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RÉSUMÉ

Résumé(Français)

Les techniques de traitement d’antenne sont largement utilisées dans de nombreux

scénarios d’application, tels que le radar, le sonar, le satellite, la navigation, la communi-

cation sans fil. Dans un scénario classique, plusieurs capteurs ou plusieurs échantillonneurs

sont régulièrement répartis pour recueillir des mesures du milieu environnant. Générale-

ment, l’information recherchée est enfouie dans les données mesurées contaminées par le

bruit. Il est alors nécessaire de développer des techniques appropriées pour extraire les

paramètres souhaités des échantillons collectés afin d’obtenir l’information.

Dans cette thèse, nous nous concentrons principalement sur l’estimation des paramètres

dans deux scénarios, qui sont l’estimation de la direction des arrivées (DOA) dans le do-

maine spatial et l’estimation de la fréquence dans le domaine temporel. La DOA et la

fréquence sont deux paramètres importants dans de nombreuses applications. Dans le

scénario spatial, le réseau linéaire uniforme (ULA), dont l’espacement entre les éléments

voisins est fixé à la moitié de la longueur d’onde, est l’une des géométries de réseau

couramment utilisées pour l’estimation de la DOA. Mais le nombre maximum de sources

détectables est limité par le nombre de capteurs dans le ULA. Lorsque le nombre de

sources devient important, le coût du matériel nécessaire pour un ULA est élevé car il

faut plus de capteurs.

Dans le scénario temps ou fréquence, les approches classiques exigent de collecter des

échantillons à un taux d’échantillonnage qui correspond à deux fois la fréquence maximale

du signal. Cependant, dans l’industrie du sans-fil de nos jours, la fréquence des signaux

pourrait être distribuée dans une très large gamme et elle pourrait inclure des signaux de

très haute fréquence. Cela constitue un défi sur le plan matériel.
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Pour réduire le coût du matériel, une stratégie prometteuse est la configuration basée

sur un échantillonnage non uniforme, dans l’espace ou dans le temps. Si la configuration

d’échantillonnage non uniform ou sparse est correctement conçue, il est possible d’obtenir

un ensemble de données virtuelles équivalant aux cas classiques, tels que l’échantillonnage

à la fréquence de Nyquist dans le domaine temporel ou le ULA dans le domaine spatial.

De cette manière, le coût du matériel peut être limité à un faible niveau par rapport au

scénario conventionnel.

Après avoir construit un ensemble de données virtuelles, de nombreuses techniques

peuvent être appliquées pour estimer les paramètres comme par exemple les techniques

de sous-espace MUSIC ou ESPRIT, de formation voies, ou encore des techniques de com-

pressive sensing. En fait, ces techniques ne sont pas directement applicables aux échan-

tillons directs de données. Un prétraitement doit être opéré pour obtenir un ensemble de

données virtuelles afin de pouvoir appliquer les techniques d’estimation des paramètres.

Dans cette thèse, notre but principal est d’étudier l’échantillonnage "sub-nyquist" afin de

mettre en œuvre l’estimation de paramètres avec un coût moindre en termes de capteurs

ou d’échantillons. La méthode MUSIC sera privilégiée dans notre étude.

Les techniques basé sur le principe de sparse sensing permettent de réduire le coût du

matériel. Parmi ces techniques récemment proposées, la détection coprime et la configura-

tion de détection nested attirent de plus en plus l’attention en raison de leurs avantages,

notamment un faible taux d’échantillonnage, la possibilité d’une expression analytique et

une mise en œuvre matérielle facile. De nombreux travaux appliquant l’échantillonnage

coprime pour l’estimation des paramètres ont été proposés ces dernières années, dans le

domaine temporel et spatial.

La théorie de la détection exploite principalement les intercorrélations entre différents

échantillons pour estimer les paramètres souhaités. Pour analyser les intercorrélations,

on considère généralement la matrice de covariance utilisant des statistiques de second

ordre ou la matrice des cumulants utilisant des statistiques d’ordre supérieur. Il est bien

établi que la matrice de covariance ou la matrice des cumulants contiennent des éléments

qui correspondent à différents retards. Si ces éléments sont correctement sélectionnés et
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ordonnés, il est possible de construire une configuration virtuelle similaire au scénario

classique. Par exemple, en utilisant l’échantillonnage coprime dans le domaine temporel,

on peut obtenir un ensemble de données d’échantillonnage virtuelles du taux de Nyquist

avec beaucoup plus d’échantillons que les échantillons coprime mesurés physiquement.

Cet ensemble de données virtuelles est appelé "coarray". En fonction de la manière dont

les intercorrélation est calculée, le coarray peut être classé en difference coarray et sum

coarray.

Dans cette thèse, nous nous concentrons sur la technique d’échantillonnage coprime

pour l’estimation de la fréquence, tandis que le réseau coprime et réseau nested array

sont considérés pour l’estimation de la DOA. Grâce à ces stratégies de détection et

d’échantillonnage non uniformes, le coût du matériel peut être réduit. En d’autres termes,

avec peu de mesures, nous pouvons obtenir un degré de liberté élevé (DOF) et détecter

plus de sources que le nombre d’échantillons ou le nombre de capteurs. Les principaux

travaux de cette thèse sont résumés ci-dessous.

(1) Nous étudions d’abord le schéma d’échantillonnage coprime pour l’estimation de

la fréquence. Nous avons constaté que l’échantillonnage coprime pouvait échouer dans des

conditions spécifiques en pratique, qui correspondent aux paramètres du signal et aux

paramètres du système d’échantillonnage. La matrice de covariance souffre d’une perte

de propriété diagonale dans ces conditions et le sous-espace du signal et le sous-espace du

bruit sont contaminés. Pour résoudre ce problème, nous proposons un nouveau schéma

d’échantillonnage basé sur le principe coprime en introduisant des retards aléatoires avant

chaque bloc d’échantillonnage.

(2) Nous proposons une technique d’interpolation pour combler les éléments man-

quants dans le schéma de difference coprime. La propriété des éléments manquants est

d’abord modélisée. Ensuite, nous concevons une technique à taux multiples pour obtenir

plusieurs ensembles de données différents, où les éléments manquants du difference-coarray

original sont inclus dans les difference-coarrays qui correspondent à différents ensembles

de données à taux multiples. L’interpolation est réalisée en sélectionnant ces éléments

et le difference-coarray résultant devient alors un ULA virtuel sans trous. En outre,
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nous prouvons que si les paramètres à taux multiples sont correctement conçus, aucun

processus d’échantillonnage supplémentaire n’est nécessaire, de sorte que notre proposi-

tion n’entraîne aucune charge d’échantillonnage supplémentaire pour les échantillonneurs

physiques.

(3) Une autre méthode permettant de combler les éléments manquants dans le difference-

coarray est conçue pour l’estimation de la DOA à l’aide de reseaux coprime. Nous analysons

la propriété des éléments manquants et caractérisons avec une structure triangulaire. De

plus, certains capteurs du coprime array se révèlent redondants, ce qui implique que la

suppression de ces capteurs ne changera pas la structure du différence-coarray. Nous réor-

ganisons ces capteurs redondants afin de combler au maximum éléments manquants dans

la matrice de différences. Les DOFs peuvent être augmentés avec notre proposition. De

plus, l’effet de couplage mutuel est limité avec le réarrangement puisque les capteurs

réarrangés sont situés à des positions plus espacées.

(4) Nous considérons également l’estimation de la DOA dans un scénario de détection

active avec une configuration de réseau éparse. Alors que la plupart des méthodes exis-

tantes considèrent les statistiques du deuxième ordre dans le système de détection active

à entrées et sorties multiples (MIMO), nous introduisons des statistiques du quatrième

ordre pour le coprime array de détection active afin de construire un réseau virtuel de

différences du quatrième ordre de la somme (4-DCSC). Nous prouvons que le 4-DCSC

est équivalent à appliquer deux fois le réseau de différences d’ordre 2 et une fois le réseau

de sommes. Cela permet d’étendre encore l’ouverture de l’ULA virtuel et d’obtenir des

DOFs élevés. La propriété du 4-DCSC est également étudiée.

(5) Étant donné que le coprime array est conçu pour générer des matrices de différence

de second ordre, ses DOFs dans le 4-DCSC sont limités et des améliorations supplémen-

taires sont possibles. Nous proposons une nouvelle géométrie de réseau pour le 4-DCSC.

Nous reformulons le problème du 4-DCSC en deux problèmes distincts : un problème de

sum-coaaray du quatrième ordre (4-SC) et un problème de différence-coarray du deux-

ième ordre. Nous optimisons le problème 4-SC en le modélisant comme un problème de

type postage stamp problem. Ensuite, le problème de différence-coarray d’ordre deux est
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formulé comme un problème de nested array. La géométrie que nous proposons permet

d’obtenir des DOFs extrêmement importants par rapport aux réseaux coprime et autres

configurations.

Nos travaux fournissent une illustration détaillée de l’estimation des paramètres souhaités

avec des configurations éparses bien conçues. Nous optimisons l’estimation du point de

vue de l’algorithme et évitons d’introduire une charge importante dans le matériel. Si

nous pouvons résumer nos travaux en une phrase, ce sera «Difference makes difference,

less is more.»

Abstract(English version)

Array signal processing techniques are widely utilized in many application scenar-

ios, such as radar, sonar, satellite, navigation, wireless communications. Considering one

conventional scenario, multiple sensors or multiple samplers are properly distributed to

collect measurements of the surrounding environment. Generally, the desired information

is buried in the measured data contaminated by noise. It is then necessary to develop

some appropriate techniques to extract the desired parameters from the collected samples

in order to obtain the information.

In this dissertation, we mainly focus on parameter estimation in two scenarios, which

are direction of arrival (DOA) estimation in the spatial domain and frequency estimation

in the temporal domain. DOA and frequency are two important parameters in many

applications. In the spatial scenario, uniform linear array (ULA), whose inter-element

spacing is set to be no more than half of the wavelength to avoid angle ambiguity, is one

of the commonly used array geometries for DOA estimation. But the maximum number

of detectable sources is limited by the number of sensors in ULA. When the number of

sources becomes large, high hardware cost will be required in ULA because more sensors

are required.

In time or frequency scenario, the conventional approaches require to collect samples

under sampling rate which corresponds to two times the maximum frequency of signal.
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This is to avoid frequency aliasing according to the well known Nyquist rate sampling

theory. However, in the wireless industry nowadays, the frequency of signals could be

distributed in a very wide range and it may include signals of very high frequency. This

will bring challenge to the hardware.

To reduce the hardware cost, a promising strategy is the sparse sensing configuration,

including sparse array in spatial domain and sparse sampling in time domain. If the sparse

configuration is properly designed, it is possible to obtain a virtual data set equivalent to

the conventional cases, such as Nyquist rate sampling in time domain or half-wavelength

ULA in spatial domain. By doing so, the hardware cost can be maintained at a low level

compared with the conventional scenarios.

After constructing the virtual data set, many techniques can be applied to estimate

the desired parameters, such as, subspace techniques including MUSIC and ESPRIT,

or beamforming methods, compressive sensing technique. Since these techniques are not

directly applied to the physical measurements, they need to be reformulated to adjust

the virtual data set. In this dissertation, our main goal is to properly design the sparse

configuration and to estimate the parameters with less hardware cost, we only consider

the MUSIC technique in our work.

The sparse sensing based techniques allow reducing the hardware cost. Among these

recently proposed theories, coprime sensing and nested sensing configuration attract in-

creasing attention due to their benefits, including low sampling rate, closed-form expres-

sion, and easy for hardware implementation. Many works applying coprime and nested

sensing theory for parameter estimation have been proposed in the past few years, espe-

cially in the time domain and the spatial domain.

Sparse sensing theory mainly exploits the cross correlations between different sam-

ples to estimate the desired parameters. To analyze the cross correlations, the covariance

matrix utilizing second order statistics or the cumulant matrix utilizing high order statis-

tics are commonly considered. It is well established that the covariance matrix or the

cumulant matrix contains elements corresponding to different lags. If these elements are

properly selected and arranged, it is possible to construct a virtual configuration similar
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to the conventional scenario. For instance, using coprime sampling in time domain, one

can obtain a virtual Nyquist rate sampling data set with much more samples than the

physically measured coprime samples. This virtual data set is named as coarray. Based on

the way that the cross correlation is calculated, coarray can be categorized into difference

coarray and sum coarray.

In this dissertation, we focus on the coprime sampling technique for frequency estima-

tion, and on the coprime array and nested array for DOA estimation. With these sparse

sensing and sparse array strategies, the hardware cost can be reduced. In other words,

with few sparse measurements, we can still obtain high degrees of freedom (DOFs) and

detect more sources than the number of samples or the number of sensors. The main

contributions of this dissertation are summarized below.

(1) We first investigate the coprime sampling scheme for frequency estimation. We have

found that the coprime sampling could fail under some specific conditions in practice,

which are related to the signal parameters and the sampling system parameters. The

covariance matrix suffers from diagonal property loss under these conditions and the signal

subspace and noise subspace are contaminated. To address this problem, we propose a

novel coprime based sampling scheme by introducing random delays before each sampling

block.

(2) We propose an interpolation technique to fill the missing elements in the difference

coarray of coprime sampling. The property of missing elements is first analyzed. Then we

design a multi-rate countermeasure for coprime sampling such that several different sets

of data can be obtained, where the missing elements of the original coprime difference

coarray are included in the difference coarrays corresponding to different sets of multi-

rate data. The interpolation is accomplished by selecting these elements and the coprime

difference coarray becomes a hole free virtual ULA. Furthermore, we prove that if the

multi-rate parameters are properly designed, no extra sampling process is required such

that our proposition brings no extra sampling burden to hardware samplers.

(3) Another method to fill the missing elements in coprime difference coarray is de-

signed for DOA estimation with coprime array. We analyze the property of the missing
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elements and describe them with a triangle-like structure. Furthermore, some sensors in

coprime array are shown to be redundant, which implies that the removal of these sensors

will not change the structure of the difference coarray. We rearrange these redundant

sensors to new position to fill the missing elements in the original difference coarray. The

DOFs can be increased with our rearrangement. Moreover, the mutual coupling effect

is limited with the rearrangement since the rearranged sensors are located at sparser

positions.

(4) We also consider the DOA in active sensing scenarios with sparse array configu-

ration. While most of the existing methods consider second order statistics in the active

sensing multi input multi output (MIMO) system, we introduce fourth order statistics for

active sensing coprime array to construct fourth order difference coarray of sum coarray

(4-DCSC). We prove that the 4-DCSC is equivalent to apply the second order differ-

ence coarray twice and the sum coarray once. This results in further extension of the

virtual ULA aperture and high DOFs can be obtained. The property of 4-DCSC is also

investigated.

(5) Since coprime array is designed for generating second order difference coarray, its

DOFs in 4-DCSC are limited and further improvement is possible. We propose a novel

sparse array geometry for 4-DCSC. We reformulate the 4-DCSC problem into two separate

problems: a fourth order sum coarray (4-SC) problem and a second order difference coarray

problem. We optimize the 4-SC problem by modeling it as a postage stamp problem. Then

the second order difference coarray problem is formulated as a nested array problem. Our

proposed geometry can achieve extremely large DOFs compared with coprime array and

other sparse array configurations.

Our works provide detailed illustration about estimating the desired parameters with

properly designed sparse configurations. We optimize the estimation from the algorithm

aspect and avoid introducing much burden to the hardware. If we can summarize our

works in one sentence, it will be «Difference makes difference, less is more.»
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INTRODUCTION

Array processing background

Along with the development of communication technology and wireless application,

array signal processing plays an important role in many applications, such as radar, sonar,

navigation, wireless communication (fifth generation communication, massive MIMO sys-

tems, mmWave communication), etc.. Data measured from sensor arrays allows to collect

information of surrounding environment, including spatial and temporal information. By

exploiting proper array signal processing techniques, one is able to extract information

buried in the measured data and obtain the estimation of desired parameters.

Among these applications, the conventional estimation algorithms are mostly con-

sidered under the Nyquist rate sampling assumption for the temporal scenario, or the

uniform linear array (ULA) assumption for the spatial cases (with inter-element spacing

no more than half of the wavelength) to avoid estimation ambiguity. However, with the

rapid technology innovation, higher sampling rate or more sensors are required in some

applications. This could cause challenge to the limited physical hardware resources, in-

cluding power, bandwidth, synchronization between sensors, number of sensors, etc.. On

the other hand, the amount of measured data is also increased when more sensors are

utilized or higher sampling rate is implemented, which introduces high complexity for

the estimation techniques. It naturally comes the following questions: Can we reduce the

cost? Is it possible to limit the amount of data? Can we breakthrough the Nyquist rate

limitation in temporal scenario, or the ULA limitation in spatial case?

Fortunately, sparse sensing and sparse arrays provide promising solution to these prob-

lems. They allow to recover desired information with some representative sparse samples.

With properly designed sparse configurations, it is possible to equivalently construct vir-
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tual samples with Nyquist rate or a virtual half wavelength spacing ULA by using few

sparse samples or sparse array sensors. In this dissertation, our general focus is to inves-

tigate the sparse temporal sensing for frequencies estimation in spectrum sensing domain

and the sparse array for direction of arrival (DOA) estimation in spatial domain. More

specifically, we consider the coprime sensing for frequencies estimation and seek for further

improvement. In spatial domain, we focus on the increase of degrees of freedom (DOFs)

by utilizing the coprime array and nested array. In this introductory chapter, we mainly

revisit the history of spectrum sensing and DOA estimation. More techniques which are

closely related to our work are reviewed in the state-of-arts chapter.

Spectrum sensing

Motivation

Radio spectrum is one of the key resources of the wireless communication industry. The

conventional static mechanism for spectrum management is to allocate a license to one

device in a specific frequency band for a given period. By doing so, different devices will

not conflict with each other in the same frequency band at the same period. Accompanied

with the strong development of communication techniques and the exponential increase

of wireless devices, the demand for radio spectrum increases rapidly while the spectrum

resource remains limited. A histogram of number of cellular subscriptions is provided in

Figure 1. It becomes more and more obvious that the static management scheme cannot

accommodate the requirement of increasing number of wireless devices. The spectrum

shortage problem has become a bottleneck which constraints the development of the

wireless communication industry.

While it becomes hard to allocate free spectrum to new devices, it should be noticed

that the licensed spectrum allocated to specified users is not always efficiently utilized. As

shown in Figure 2, in a wide frequency spectrum band, only a few sub-bands are utilized

at a specific period while other sub-bands remain unoccupied. In other words, the licensed

spectrum is rarely continuously used across the whole temporal and spatial domain. This
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Figure 1 – Increasing number of worldwide cellular subscriptions from 1999 to 2018

is mainly because one specific frequency band is allocated to one device and the device will

not occupy the frequency band when it is deactivated. To optimally utilize the spectrum

opportunities, a promising solution is using cognitive radio [1–3], which allows secondary

users to access to the licensed spectrum band when the primary user is absent.

To be more specific, we consider the cognitive radio concept defined by the Fed-

eral Communication Commission in this dissertation: A radio or system that senses its

operational electromagnetic environment and can dynamically and autonomously adjust

its radio operating parameters to modify system operation, such as maximize throughput,

mitigate interference, facilitate interoperability, access secondary markets [4, 5]. Cognitive

radio mainly includes the following parts: spectrum sensing, where the available frequency

spectrum bands are detected; decision, where the system determines the spectrum sharing

strategy for secondary users; mobilization, where the available spectrum bands are allo-

cated to the secondary users; sharing, where the secondary users access to the allocated

spectrum bands. Among these parts, spectrum sensing plays a fundamental role since

other parts are based on the assumption that the frequency spectrum bands are correctly
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Occupied sub-bands

f

Figure 2 – Sparse occupancy of sub-band in wide frequency range.

detected.

Traditionally, spectrum sensing is achieved by detecting the spectrum usage over time,

measuring the energy over the spectrum band, discovering the frequency availability over

space, investigating the existence of primary users. While secondary users seeking for

spectrum opportunity, it may cause interference to the primary users. In the case of very

week primary user signal, the interference resulted by the secondary users should be kept

at a minimal level.

Spectrum sensing techniques

Many techniques have been developed to dynamically detect narrow frequency spec-

trum bands. In [6–11], estimators based on energy detectors are proposed. The signals

are captured and measured by comparing with a given energy threshold. Energy based

estimators have low complexity and they don’t require prior knowledge of the signals [12].

These algorithms are mainly evaluated by two criteria:

Probability of detection, which indicates the probability of detecting a correct signal

when it occurs;

Probability of false alarm, the probability that the estimators consider the frequency

spectrum being utilized while actually it is unoccupied.

However, energy based estimators strongly rely on the energy threshold and the noise

level. The performance could be degraded in the low signal to noise ratio (SNR) scenarios
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[13].

Another research direction is to exploit the cyclostationarity features of signals to

determine the existence of primary users. Most artificial signals hold some cyclic features

corresponding to channel coding, symbol rate, etc. [14, 15]. Given some prior information

of the cyclic properties of signals, estimator is able to detect frequency opportunities by

capturing the cyclostationarity or signal statistics (including time domain and frequency

domain) [16–22]. Different from the power spectral density, cyclic properties can help to

distinguish the noise from the signals since the noise is normally wide sense stationary

while the modulated signals are cyclostationary.

If the prior knowledge of the primary users is perfectly known, including the spectral

properties such as the central frequency, bandwidth, and the modulation property, frame

format property, etc., the optimal estimator for spectrum sensing is the matched filter

based estimators [23–26]. These estimators can maximize the SNR and require short

period to achieve a good probability of detection for a given probability of false alarm.

But on the other hand, the prior knowledge of primary users required for the matched

filter may not be satisfied in practical scenarios [8]. And the implementation complexity

could be remarkably increased due to several implementation modules, for instance, the

demodulate part, synchronization between filters, etc. [27].

Multi-taper estimators are another type of estimators similar with the matched filter

estimators. Its complexity is lower than the matched filter while it is nearly optimal [26,

28]. The Slepian sequences, which are orthonormal and have maximal energy in the main

lobe, are utilized as filter coefficients [14]. Other spectrum sensing techniques could be

found in the literatures, including Random Hough transform estimator [29], eigenvalue

based blind estimator [30].

The above techniques are well adopted in narrowband scenario. In practice, one needs

to deal with a wide spectrum band in many scenarios. The narrowband techniques can

not be directly exploited in the wideband case since they consider the whole spectrum

band as one and make binary decision. This will degrade the spectrum sharing efficiency

because the whole spectrum band will be considered occupied even only one sub-band
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within the whole spectrum band is occupied. Other available sub-bands can not be sensed

and shared. Another important aspect for wideband spectrum sensing is that the sampling

rate is very high considering the Nyquist sampling theory [31].

A direct approach for wideband spectrum sensing is to exploit high performance

analog-to-digital converter (ADC) to detect the wide spectrum band. By dividing the

wide band into several sub-bands [32], one can apply Fast Fourier transform to categorize

the sampled data into multiple frequency domains to detect the information about the

presence of the primary user [33]. Wavelets based methods can also be utilized to locate

the discontinuities of power spectral density between neighboring occupied sub-bands and

available sub-bands [34]. As a result, high performance ADC is required, which could be

hardware expensive and with high energy consumption.

Direction of arrival estimation

Motivation

DOA estimation is referred to as estimating the arriving angle of the impinging elec-

tromagnetic signals or locating the direction of source targets as shown in Figure 3. It

has a wide range of applications in sonar, radar, navigation, surveillance, wireless com-

munications. Data measured by sensor arrays are exploited to extract spatial direction

information of the received signals.

DOA sensor array traditionally can be categorized into two major types: passive sens-

ing array and active sensing array. A passive sensing array consists of only receive sensors

which are used for receiving the impinging electromagnetic signals. Active sensing array

consists of transmit array and receive array. Transmit array emits multiple narrowband

sequentials from different sensors. These transmissions are reflected from the targets and

received by the receive array.

There are several kinds of array geometries that are well designed for DOA estimation,

such as linear array, circular array [35], planar array [36]. The linear array is one of the

most commonly adopted array since it is one dimension and easy to implement. In this
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Figure 3 – DOA estimation with receiver array.

dissertation, we focus on the linear array for both passive sensing and active sensing cases.

One most well known linear array is the uniform linear array (ULA) with spacing between

neighboring sensors is no greater than half the wavelength of impinging signals to avoid

the spatial spectrum ambiguity.

Subspace based DOA estimation techniques

DOA estimation has received significant amount of attentions for decades. Plenty

of techniques have been proposed for different applications. Beamforming methods for

DOA estimation can be considered as spatial filters. They include classical beamforming

[37], Capon beamforming [38], linear prediction [39]. Classical beamforming technique

is equivalent to a Fourier transform of outputs, which means calculation time is short.

However, the sidelobes can degrade the estimation performance if several signals coexist.

The sidelobes effect in the coexistence of several signals is taken into account in the Capon

beamforming [40] to increase the performance.
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In 1960s, linear prediction method which minimizes the mean square prediction error of

observations is introduced in DOA estimation. Other linear prediction based methods are

then developed, including backward linear prediction, forward-backward linear prediction,

autoregressive estimator [41–43]. However, linear prediction methods have long calculation

time and the resolution is limited by interference and noise.

In 1980s, another type of technique is proposed to promote the DOA estimation, which

is the subspace based technique. The subspace is obtained with the eigenvalue decompo-

sition of the covariance matrix of received signals. It can be categorized into signal sub-

space and noise subspace where the two subspaces are orthogonal to each other. A method

named estimation of signal parameters via rational invariance technique (ESPRIT) [44]

is proposed to exploit the signal subspace for estimating DOA. ESPRIT divides the array

into two sub-arrays such that the steering vectors of the two sub-arrays can be related

by a diagonal matrix. The DOA is evaluated under the assumption that two sub-arrays

share the same signal subspace.

The multiple signal classification (MUSIC) method [45] chooses to exploit noise sub-

space for DOA estimation. It is based on the assumption that the source directional

vectors are orthogonal to the noise subspace. However, MUSIC method needs to imple-

ment exhaustive search through the parameter space to achieve DOA estimation, which

leads to high computation burden. The root-MUSIC method [46] is proposed to avoid the

exhaustive search and fasten the calculation.

Main contributions

In this dissertation, we investigate on the frequency estimation for spectrum sensing

problem and the DOA estimation problem in the context of sparse reconstruction theory.

More specifically, we aim to promote the sparse sensing for frequency estimation utilizing

coprime sensing technique to ease the hardware sampling burden. For DOA, the sparse

linear array including coprime array and nested array are considered such that the number

of sensors in sparse array can be decreased. It will be illustrated in the following chapters
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that with sparse sampling or sparse array, the degrees of freedom (DOFs) can be increased

by exploiting the concept of coarray, including difference coarray and sum coarray which

can be equivalently considered as a virtual linear array with larger aperture. The main

contributions are summarized as follows.

(1) We first investigate the coprime sampling scheme for frequency estimation. We

have found that the coprime sampling could fail under some specific conditions in practice,

which are related to the signal parameters and the sampling system parameters. Under

these conditions, the covariance matrix has no more diagonal structure and the signal and

noise subspaces are contaminated. To address this problem, we propose a novel coprime

based sampling scheme by introducing random delays before each sampling block.

(2) We propose an interpolation technique to fill the missing elements in the difference

coarray of coprime scheme. The property of missing elements is first summarized. Then we

design a multi-rate countermeasure for coprime sampling to obtain several different sets

of data such that the missing elements of coprime difference coarray are included in the

difference coarrays corresponding to different sets of multi-rate data. The interpolation

is accomplished by selecting these elements and the coprime difference coarray becomes

a hole free virtual ULA. Furthermore, we prove that if the multi-rate parameters are

properly designed, no extra sampling process is required and our proposition brings no

extra sampling burden to the hardware samplers.

(3) Another method to fill the missing elements in coprime difference coarray is de-

signed for DOA estimation with coprime array. We analyze the property of the missing

elements and describe them into a triangle-like structure. Furthermore, some sensors in

coprime array are shown to be redundant, implying that the removal of these sensors

will not modify the structure of difference coarray. We rearrange these redundant sen-

sors to new positions to fill the missing elements in the difference coarray such that the

DOFs can be greatly increased. Moreover, the mutual coupling effect is reduced with the

rearrangement since the rearranged sensors are located at sparser positions.

(4) We also consider the DOA estimation in active sensing scenario with sparse array

configuration. While most of the existing methods consider second order statistics in
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the active sensing multi input multi output (MIMO) system, we introduce fourth order

statistics for active sensing coprime array to construct fourth order difference coarray of

sum coarray (4-DCSC). We prove that the 4-DCSC is equivalent to apply the second

order difference coarray twice and the sum coarray once. This results in further extension

of the virtual ULA aperture and high DOFs can be obtained.

(5) Since coprime array is designed for generating second order difference coarray, its

DOFs in 4-DCSC are limited and further improvement is possible. We propose a novel

sparse array geometry for 4-DCSC. We reformulate the 4-DCSC problem into two separate

problems: a fourth order sum coarray (4-SC) problem and a second order difference coarray

problem. We optimize the 4-SC problem by modeling it as a postage stamp problem. Then

the second order difference coarray problem is formulated as a nested array problem. Our

proposed geometry can achieve extremely large DOFs compared with coprime array and

other sparse array configurations.

Thesis organization

The remainder of this dissertation is organized as follows. In Chapter 1, we first review

the state of the art for frequency estimation in spectrum sensing using sparse sensing

techniques, as well as DOA estimation using sparse array. Then we introduce the coarray

based signal model and the coarray based MUSIC estimator. Chapter 2 provides our

propositions using coprime sampling. The diagonal property loss phenomenon is first

illustrated before the random delay proposition. And the multi-rate sampling scheme is

elaborated under the assumption that the diagonal property loss phenomenon will not

happen.

Then we explain the holes filling proposition for DOA estimation with coprime array

by rearranging physical sensors in Chapter 3. The property of holes are discussed and the

holes-triangle structure is proposed to expound our proposition. In Chapter 4, we switch

our focus to active DOA detection. The fourth order cumulants are introduced to coprime

array and the property of 4-DCSC is investigated. Then we consider the optimization
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problem of sparse array in the 4-DCSC scenario and propose a nested array based solution

to enhance the number of DOFs.

31





Chapter 1

STATE OF THE ART

1.1 Introduction

In this chapter, we review the sparse sensing techniques for frequency estimation in

spectrum sensing, including the coprime sampling, nested sampling, etc. These sparse

configurations are also adopted in DOA estimation. Possible algorithms for reconstructing

sparse samples and estimating the parameters could be compressive sensing, MUSIC,

ESPRIT, etc. Since our main concern is the sparse configuration, we consider MUSIC for

both frequency and DOA estimations without loss of generality. The coarray based signal

model will also be introduced in this chapter. Since the coarray is a virtual array, the

MUSIC method is reformulated to a coarray based MUSIC.

1.2 Spectrum sensing using sub-Nyquist sampling

1.2.1 Sub-Nyquist sampling techniques

As discussed above, the Nyquist sampling rate could be extremely high and the number

of collected samples could be huge if the sampling frequency is very high, especially in

the wideband frequency scenario. An example of Nyquist rate sampling data is shown

in Figure 1.1. To address the high sampling rate burden corresponding to the highest

frequency, sampling at a lower rate is of importance. Frequency mixing technique can be

adopted to transform the desired wide spectrum band to a lower frequency domain such

that the conventional narrowband techniques can be directly exploited [47]. Filter band

method exploits a prototype filter to estimate the baseband of signal. Other bands of
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1 3 5 7 9 11 13 15 172 4 6 8 10 12 14 16 1918 200

Nyquist rate sampler

Figure 1.1 – Data obtained with Nyquist sampler.

signal are separately transformed to lower frequency by modulating the prototype filter

and then low-pass filtered [24].

Another solution for sub-Nyquist rate sampling is multichannel based estimator. Mod-

ulated wideband converter (MWC) [48, 49] multiplies the analog signal from multiple

channels with a periodic waveform. The acquired data is processed by low pass filters

and then sampled at a rate significantly lower than the Nyquist rate. Multicoset sampling

strategy obtains samples from multiple channels by properly tuning the sampling param-

eters in different channels. It can be equivalently considered as selecting part of sparse

samples obtained by Nyquist rate or even higher rate [50, 51].

Notice that the aim of spectrum sensing is to detect the empty frequency bands, which

indicates that there could exist sparseness in the whole frequency band of interest consid-

ering the low spectrum utilization. Compressive sensing techniques can be introduced as

a promising solution for wideband spectrum sensing [52, 53]. Inspiring by the compressive

sensing theory, only few sub-Nyquist samples are required to extract the second order

statistics of signals and the wideband signal can be reconstructed [54–56]. Compressive

sensing techniques can also be combined with other spectrum sensing techniques to ease

the sampling burden for hardware [57–59].

More recently, sparse sampling theory provides a promising strategy to decrease the

sampling rate while achieving a high number of DOFs. This can be accomplished by using

34



1.2. Spectrum sensing using sub-Nyquist sampling

the difference coarray to generate a virtual sampling data set. In the following, we will

provide a detail review of sparse sampling configurations and the concept of difference

coarray.

1.2.2 Subspace based MUSIC technique

We first introduce the general signal model under Nyquist rate sampling and the

subspace based technique, named MUSIC, is employed for frequency estimation. Consider

the following signal composed of D sinusoidal components buried in an additive noise

x(t) =
D∑
i=1

Aie
j(2πfit+φi) + ω(t) (1.1)

where Ai is the amplitude, fi is the frequency of the i-th sinusoidal component, φi is the

corresponding phase assumed to be uniformly distributed in range [0, 2π] and independent

from each other, and ω(t) is a zero mean additive white Gaussian noise, independent from

the D sinusoidal components.

A Nyquist rate samplers operating at sampling interval T is utilized to sample the

noise contaminated signal, with 1
T

= 2fmax the Nyquist rate (fi < fmax). Assume that

K samples (K > D) are collected, the collected samples are organized in the following

vector form

y(t) =
D∑
i=1

a0(qi)Aiejφi + w (1.2)

where a0(qi) = [1, ejqiπ, ...ejqiπ(K−1)]T and qi = 2fiT = fi
fmax

is the normalized frequency

with qi ∈ (−1, 1), w is the corresponding noise vector. The covariance matrix of the

observed data vector is given by

R = E[yyH ] =
D∑
i=1

A2
ia0(qi)aH0 (qi) + σ2

nI = A0RsAH
0 + σ2

nI (1.3)

where A0 = [a0(q1) a0(q2) ... a0(qD)] and Rs = diag(A2
1, A

2
2, ..., A

2
D), σ2

n is the noise

power and I is the K ×K identity matrix.
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The eigenvalue decomposition of the covariance matrix R leads to

R = UΣUH = UsΛsUH
s + UnΛnUH

n (1.4)

Here, U is composed of the signal subspace Us and the noise subspace Un matrices. And

Σ = diag[λ1, λ2, ..., λK ] is the diagonal eigenvalue matrix with its eigenvalue elements in

descending order λ1 ≥ λ2 ≥ ... ≥ λK . Λs is a diagonal matrix corresponding to the D

largest eigenvalues and Λs corresponds to the remaining K −D eigenvalues. Considering

the orthogonality between the signal subspace (spanned by the steering vector) and the

noise subspace, one can estimate the frequencies by searching the peaks of the MUSIC

spectrum, given by

PMUSIC(q) = 1
aH0 (q)UnUH

n a0(q)
(1.5)
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Figure 1.2 – MUSIC spectrum for frequency estimation with 8 different sinusoidal com-
ponents, SNR=0dB.
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After searching the whole parameter range, there will be some peaks near the frequen-

cies of the signal and one can determine the estimated frequencies according to the peaks.

An example of MUSIC spectrum is provided in Figure 1.2. The red discontinuous lines

are the positions of the true frequencies of the signals. It can be seen that the peaks of

MUSIC spectrum locate very close to the true frequencies.

1.2.3 Coprime sensing and other sparse sensing techniques

Recent advances in sparse theory inspire researchers to explore the possibility of re-

ducing the sampling rate. Nested sampling mechanism employs two standard samplers

for down sampling the data [60]. One sampler is required to collect few dense measure

data at the Nyquist sampling rate and the other sampler is designed to acquire data at

a rate much lower than the Nyquist rate. It will be illustrated in the following part that

by exploiting the difference coarray, elements in the covariance matrix of sampled data

can be equivalently selected to represent a set of Nyquist rate sampled data. For instance,

with N1 physical measurements from the dense sampler and N2 = N1 + 1 sparse physical

measurements from the sparse sampler, nested sampling scheme is able to equivalently

represent N1N2 virtual measurements obtained with the Nyquist rate. Minimum redun-

dancy sampling [61] aims to search for optimal physical sampling strategy such that it can

obtain a larger number of virtual measurements than nested sampling. This is achieved

by increasing the number of consecutive elements in the difference coarray.

However, the nested sampling scheme collects some data at the Nyquist rate which

still causes hardware complexity. In minimum redundancy sampling, the Nyquist rate

sampling could be avoided but the samplers do not have closed-form expression for the

physical measurement. When the number of measurements is high, searching for the op-

timal solution requires high computational cost since combinatorial search is required.

Another sparse sampling mechanism named coprime sampling becomes attractive for fre-

quency estimation due to its closed-form expression for sampling configuration and down

converting sampling rate.

Coprime sampling scheme acquires measurement data using two standard samplers

37



Part , Chapter 1 – State of the art

MT

NT

X(t)

Figure 1.3 – Coprime samplers

[62], where one sampler is implemented with sampling interval MT and another with NT

as shown in Figure 1.3. Here M,N are two coprime integers. It is obvious that if M,N

are big, the sampling interval can be much larger than the Nyquist rate interval T . The

collected data of two samplers can be arranged as shown in Figure 1.4. We denote samples

within the period [(k − 1)MN, kMN) as a sampling unit, where k is a positive integer.

In [63], multiple units from two samplers are combined as a sampling block to calculate

the covariance matrix and the DOFs can be increased. In this dissertation, one of the

most commonly used scenario, where one sampling unit from sampler 1 and two units

from sampler 2, are considered as a sampling block. The data subsets from two samplers

associated to the l-th (l ≥ 0) block can be expressed as

xM [Nl + n] =
D∑
i=1

Aie
j

(
πqiM(Nl+n)+φi

)
+ ω(M(Nl + n)T ) (1.6)

xN [Ml +m] =
D∑
i=1

Aie
j

(
πqiN(Ml+m)+φi

)
+ ω(N(Ml +m)T ) (1.7)

where 1 ≤ m ≤ 2M − 1, 0 ≤ n ≤ N − 1 are the indices of data.

The sampling signal vectors of the l-th block can be constructed with the above data

yM [l] = [xM [Nl], xM [Nl + 1], ..., xM [Nl +N − 1]]T (1.8)

yN [l] = [xN [Ml + 1], ..., xN [Ml + 2M − 1]]T (1.9)
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1.2. Spectrum sensing using sub-Nyquist sampling

Figure 1.4 – Collected samples of two samplers with M = 3, N = 4.

Concatenating yM [l] and yN [l] leads to the following observed data vector

y[l] = [yTM [l],yTN [l]]T =
D∑
i=1

a(qi)AiejφiejπqiMNl + w[l] (1.10)

with a(qi) = [[1...ejqiπM(N−1)][ejqiπN ... ejqiπN(2M−1)]]T . Calculating the covariance matrix

Ry = E[y[l]y[l]H ] = ARsAH + σ2
nI (1.11)

We can categorize the elements of the covariance matrix into self correlations and cross

correlations. Furthermore, we can derive that the self correlations of elements from the

two samplers hold the following forms

D∑
i=1

A2
i e
jqiM(nj−nk) (1.12)

D∑
i=1

A2
i e
jqiN(mj−mk) (1.13)

where m,n are the indices of data. Similarly, the cross correlations of elements between

the two samplers can be written as

D∑
i=1

A2
i e
jqi[±(Mn−Nm)] (1.14)

It has been proved that the self correlation terms are all included in the cross correlation

terms [64]. In the following, we only consider the cross correlation for simplification.
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1.3 Second order difference coarray based MUSIC

method

Before further discussion, we first define the second order difference coarray (2-DC).

Definition 1: For a given geometry specified by position set S = {n1, n2, ..., nK}, its

2-DC can be expressed as

D = {ni − nj | ni, nj ∈ S} (1.15)

Observing the form of elements in the covariance matrix, we can find that they are

similar with (1.1). The main differences are the magnitude A2
i instead of Ai and the

sampling timing term (Mn−Nm) instead of t. Vectoring the covariance matrix, we can

obtain a vector

r = vec(Ry) =
D∑
i=1

pia∗(qi)⊗ a(qi) + σ2
ni = Adp + σ2

ni (1.16)

where Ad = A∗ � A, p = [p1, p2, ..., pD]T with pi the power of i-th signal, � denotes

the Khatri-Rao product, ⊗ denotes the Kronecker product and i = vec(I). Notice that

the term (Mn−Nm) can include many integers from −(2M − 1)N to (2M − 1)N with

1 ≤ m ≤ 2M−1, 0 ≤ n ≤ N−1. If we properly select the distinct elements and rearrange

them, which can be expressed as

z = Fr = Acp + σ2
nFi (1.17)

Here, F is the selecting matrix [65], z is the virtual signal vector after rearrangement,

which is commonly recognized as the difference coarray based virtual signal and Ac is

the manifold matrix corresponding to the coarray. A graphic illustration of 2-DC with

M = 3, N = 4 is provided in Figure 1.5. It can be observed that using 2M +N − 1 data

in block 1 as shown in Figure 1.4, we can equivalently obtain a set of data which ranges

in [−(2M − 1)N, (2M − 1)N ]. Most elements represented with solid circle in 2-DC can

be selected from the covariance matrix while there are some missing elements represented

40



1.4. Direction of arrival estimation with sparse array

Figure 1.5 – Difference coarray of data from two samplers withM = 3, N = 4. • : elements
selected from covariance matrix; ◦ : holes in 2-DC

with hollow circle. These missing elements are conventionally named ”hole”.

Then we can consider this 2-DC based virtual signal samples as Nyquist rate sampls

with a few holes and the MUSIC method can be exploited. Notice that MUSIC method can

only be used for a set of consecutive data, we only consider the longest central consecutive

part and discard the inconsecutive part. When calculating the covariance matrix of the

virtual signal, one will obtain a low rank matrix since the virtual signal vector is equivalent

to a one snapshot sampling process. To recover the rank, we can use the well established

spatial smoothing technique [66], which can be written as

Rss = 1
MN +M

MN+M−1∑
i=0

zizHi (1.18)

with zi denotes the data in vector z from −(MN + M − 1) + i to i. Then the MUSIC

method can be applied to Rss to estimate the frequencies.

1.4 Direction of arrival estimation with sparse array

1.4.1 Passive sensing sparse array configurations

Similar with the Nyquist sampling in time and frequency domain, subspace based

techniques are introduced to DOA estimation in spatial spectrum domain using ULA.

A traditional ULA structure for DOA estimation is provided in Figure 1.6. Consider

K sensors with position integer set S = {n1, n2, ..., nK} with unit inter-element spacing

d0 = λ
2 the half wavelength of impinging signals, the received signal at the k-th sensor

corresponding to direction θi can be given by

si(t)ej
2π
λ
nksin(θi) (1.19)
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Impinging signals

d0

n1 nK

θ 

Figure 1.6 – Passive receiving ULA for DOA estimation.

where si(t) is the i-th source signal. As derived above in the sparse sampling part, one can

formulate the received signal into vector form and calculate the covariance matrix before

applying the MUSIC method.

One key character of the ULA scheme is that its DOFs are limited by the number of

sensors. The number of maximum resolvable sources is K−1 with K sensors. Sparse array

configurations can break through this limitation by enlarging the inter-element spacing

to a value which is multiple of d0. For simplification, d0 will be omitted in the following

and the inter-elements spacing in sparse arrays is represented by a multiple integer.

Several sparse arrays have been proposed to estimate more sources than physical

sensors, including the minimum redundancy array (MRA), minimum hole array (MHA),

nested array, coprime array. The MRA, nested and coprime arrays follow the same spirit

as sparse sampling in frequency domain. The MHA aims to find a strategy with minimum

number of holes in the 2-DC, which requires similar combinatorial search as MRA in

sparse sampling. In [67], Cantor array is designed to be hole-free and maximally economic,

which means every sensor is essential to build the 2-DC. Composite singer array provides

an iterative way to generate a robust sparse array [68]. Another sparse configuration

considers maximum inter-element spacing constraint (MISC) [69] to maximize the length

of consecutive part in the 2-DC. Under this criterion, the designed prototype can achieve
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1.4. Direction of arrival estimation with sparse array

1 3 122 4 8

Level 1 Level 2

Figure 1.7 – Nested array with 6 sensors.

larger DOFs in the 2-DC. With less than 20 sensors, this MISC based geometry can

achieve the same DOFs as MRA.

Nested array and coprime array attract increasing research interest in recent years

due to their closed-form expression. The conventional coprime array is generalized to

two types, which are coprime array with compressed inter-element spacing (CACIS) and

coprime array with displaced subarrays (CADiS) [64]. The nested array and coprime array

can be unified within the CACIS configuration since the nested array can be considered

as a special case of coprime array with inter-element spacing of one subarray equals to

d0. An example of nested array is given in Figure 1.7. In general, for a given number

of sensors, nested array could obtain a higher number of DOFs than coprime array with

inter-element spacing larger than d0. An attempt to improve the DOFs of nested array

is illustrated in [70]. Augmented nested array (ANA) with four different geometries is

proposed in [71] to further increase the DOFs.

However, as discussed above, the 2-DC of coprime array has some holes and the infor-

mation in the inconsecutive part can not be directly utilized by the MUSIC method. An

instinct solution is to adopt some interpolation methods to fill the holes and enlarge the

consecutive part in the 2-DC. A multi frequency based mechanism is proposed in [72] to

fill the holes. Multiple frequencies are properly chosen to generate several scaled versions

of the original 2-DC and the holes can be selected from these coarrays to fill the original
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2-DC. The matrix completion and Toeplitz matrix interpolation techniques are adopted in

[73, 74]. In [75], nuclear norm minimization is proved to be a good convex solution for the

coprime 2-DC interpolation problem. Zhou et al. [76] first divide the virtual coarray sig-

nals into multiple virtual measurements, which are considered as atoms, then the atomic

norm minimization technique is applied to reconstruct the Toeplitz covariance matrix.

Another direction for filling the holes is to interpolate the holes from the physical array

aspect. A k times extended coprime array is proposed to further increase the consecutive

part in the difference coarray by increasing theM -elements sub-array to a (kM)-elements

sub-array [77]. A complementary coprime array (CCA) mechanism is then added in the

k times coprime array. Another approach expands the two sub-arrays of classical coprime

array from one period subarray to multi-period subarray [78] to enlarge the consecutive

coarray part. In [79], the inter-element spacing of classical coprime array is designed with

two integers larger than M,N such that the redundancy of coarray elements is minimized

and the consecutive coarray is extended. In [80, 81], by moving the physical array at a

certain velocity, the cross correlation between the received signals before and after the

array motions is used to fill the holes in the difference coarray.

1.4.2 DOA estimation considering mutual coupling in sparse ar-

rays

In DOA estimation, it is well established that two closely located sensors could suffer

from strong mutual coupling effect [82–84]. This effect becomes more significant as the

inter-element spacing of two sensors gets smaller. Considering the mutual coupling in the

received signal, we can write the signal vector as

xθ(t) = CAθs(t) + n(t) (1.20)

where C is the mutual coupling matrix, Aθ is the manifold matrix of sparse array and

s(t) is the source signal vector. The entries of C can be very complicated in practice. In

this dissertation, the considered array has a linear configuration. C can be approximately
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1.4. Direction of arrival estimation with sparse array

represented by a B-band symmetric Toeplitz matrix [85, 86] whose entries are given by

〈C〉i,j =


c|ni−nj |, if |ni − nj| ≤ B

0, otherwise.
(1.21)

where ni, nj ∈ S and the magnitudes of coupling coefficients c0, c1, ..., cB meet the relations

|c0| = 1 > |c1| > ... > |cB|. The magnitudes of the coupling coefficients are assumed to be

inversely proportional to their sensor separations, which can be written as

|ck|
|cl|

= l

k
(1.22)

where l, k are positive integers indicating the position separation between the correspond-

ing sensors. Many techniques have been developed to address the mutual coupling problem

in ULA geometry [87–89]. In this dissertation, the sparse array geometry is considered and

the mutual coupling in the 2-DC is mainly due to few closely distributed sensors in the

physical array. For the sparsely distributed sensors, mutual coupling effect is at a low level

and it may not be necessary to apply decoupling techniques to all sensors. Therefore, we

consider the mutual coupling mitigating problem from another aspect in our work, which

is to rebuilt the array configuration and enlarge the inter-element spacing between the

closely distributed sensors.

1.4.3 DOA in active sensing

Apart from the passive sensing, many applications need to perform DOA estimation

in an active sensing scenario, including military, satellite, aircraft detection and location.

The multiple-input multiple-output (MIMO) radar with sparse array has been considered

as a promising configuration for active array due to their equivalent sum coarray property

to achieve high DOFs [90, 91]. Considering a MIMO radar with co-located transmit and

receive arrays, we assume that the transmit and receive arrays are identical in this dis-

sertation without loss of generality. An example of coprime MIMO is given in Figure 1.8

It should be noticed that our work can be easily extended to the case of distinct transmit
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Figure 1.8 – Coprime MIMO structure.

and receive arrays.

Assuming D uncorrelated targets, multiple narrowband sequential transmissions from

the transmit array impinge the targets and the reflected signals are captured by the receive

array. The position of the K sensors of the MIMO radar is given by {n1, n2, ..., nK}. To

simplify the problem, the mutual coupling effect is not considered for the active radar in

our work. The received signal vector is given by

xs(t) =
D∑
i=1

at(θi)⊗ ar(θi)si(t) + n(t) = Ass(t) + n(t) (1.23)

where at(θi), ar(θi) are the steering vector of the transmit and receive arrays corresponding

to the i-th target, s(t)=[s1(t), s2(t), ..., sD(t)]T is the source signal vector and n(t) is the

noise vector. The manifold matrix As is denoted as

As = [as(θ1), ..., as(θD)] (1.24)

where as(θi)=at(θi)⊗ ar(θi), whose elements are given by

ejπ(ni+nj)sin(θi) (1.25)

with ni, nj ∈ S. Then xs(t) can be equivalent to the received signal in the receiver only
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passive sensing case and one can follow the same process as discussed in the passive sensing

part to estimate the DOA. Similar with 2-DC, for any two elements in S, we can define

their summation as the second order sum coarray (2-SC).

Definition 2: The 2-SC of S is the summation of two elements in S, given by

Ss = {v = ni + nj | ni, nj ∈ S} (1.26)

The coprime array configuration is adopted for the sparse MIMO radar to simulta-

neously detect coherent and uncorrelated targets in [92], where the transmit and receive

arrays can be identical or distinct in different scenarios. To increase the DOFs, the second

order difference coarray of sum coarray (2-DCSC) [93] is considered, where the 2-DC is

applied to 2-SC to obtain further enhancement of DOFs. More recently, given distinct

transmit and receive arrays, the array geometry optimization to achieve larger 2-DCSC

is addressed for nested MIMO by designing a proper larger inter-element spacing of the

receive array [94]. The inter-element spacing of the receive array in [94] is set as a scaled

version of the 2-DC aperture of the transmit array, where the transmit array is no more

identical as the receive array.

1.5 Second order statistics and high order statistics

The techniques discussed above mainly exploit the second order statistics property

of signal. Apart from the second order statistics, higher order statistics cumulants can

also be used for parameter estimation. The property of high order cumulants, saying 2q

order, is analyzed in [95] and it is proved that the high order cumulants of a ULA can

be considered as a virtual array with larger aperture. However, the virtual array concept

proposed in [95] is different from the virtual array corresponding to difference coarray.

Given a same ULA geometry, its virtual array configuration generated with the method

of [95] could have different structures due to different choices of parameters, while the

difference coarray has only one structure regardless of the choice of parameters.

To use the subspace based methods, the MUSIC method is modified to adjust the
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virtual array of high order cumulants and the 2q-MUSIC is present in [96]. It can detect a

maximum of q(N−1)+1 statistically independent sources with a ULA having N sensors.

Specifically, the fourth order cumulants attract increasing attention due to its immunity to

Gaussian noise. Many works have introduced fourth order cumulants in ULA to improve

the performance of DOA estimation [97–99].

Recently, the fourth order cumulants are investigated from another aspect. Similar

to the utilization of 2-DC in parameter estimation, the high order difference coarray

concept is introduced to achieve higher DOFs than the 2-DC [100] by adopting the high

order cumulants. In [101], the coprime array is modified to achieve larger 4-DC by adding

a third subarray with larger inter-element spacing. Similar operation is applied to the

nested array as proposed in [100, 102]. The nested array is extended to include multiple

level subarray, saying 2q level for 2q order difference coarray, with q a positive integer

here. To further increase the consecutive DOFs in the coarray, a newly subarray is added

and the inter-element spacing of the subarray is expanded according to the number of

virtual sensors in the 2-DC [103, 104] of the original array.

1.6 Conclusion

In this chapter, we review the sub-Nyquist rate spectrum sensing methods and the

sparse arrays for DOA estimation. The sub-Nyquist rate sampling can greatly ease the

hardware sampling burden while the sparse arrays can reduce the cost for hardware sensors

and also the mutual coupling effect. The idea of difference coarray is introduced to sub-

Nyquist sampling and sparse arrays to increase the DOFs. By properly selecting the

elements in the difference coarray, one is able to construct a virtual signal model having

plenty of virtual samples or virtual sensors compared to physical measurements.

Many techniques can be adopted to the difference coarray based virtual signal model

to extract the desired parameters. In this dissertation, we introduce the subspace based

MUSIC method for further discussion. The coprime sampling scheme is adopted for fre-

quency estimation due to its sparse sampling interval and easy implementation. Since the
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MUSIC method performance is limited by the holes in coprime sampling scheme, several

interpolation techniques for coprime scheme are reviewed from different aspects.

Apart from the coprime configuration, other sparse configurations including nested

array, MRA, MHA are also reviewed in this chapter. We also introduce the application of

sparse array in active sensing MIMO radar scenario. The sum coarray signal model is first

formulated to increase the DOFs before applying the difference coarray model. Different

from the sparse configurations designed for the passive sensing difference coarray, the

sparse MIMO configurations considering both the sum coarray and difference coarray to

achieve higher DOFs are also introduced. Then we present the high order statistics for

the sparse configurations. Some sparse geometries designed for the fourth order cumulants

based estimators are also reviewed.

In the following chapters, we will further present our works related to the above dis-

cussed parts.

49





Chapter 2

SPECTRUM SENSING WITH COPRIME

SAMPLING USING SECOND ORDER

DIFFERENCE COARRAY

2.1 Introduction

In this chapter, we focus on the frequency estimation using coprime sampling scheme.

Coprime sampling has been recognized as an attractive mechanism because it allows to

significantly reduce the sampling rate. With two samplers sampling data at rate MT

and NT , respectively, one can acquire two data sets as the example shown in Figure 1.4.

However, the coprime sampling mechanism is based on the hypothesis of uncorrelated

sinusoidal components, which is not always satisfied for a finite number of data samples,

even if the different signals are statistically independent. For some specific conditions, the

coprime sampling based technique completely fails. We will investigate this phenomenon

in the first section of this chapter.

Our second work on coprime sampling focuses on the holes problem in 2-DC. We aim

to fill the holes with an appropriately designed processing technique and without extra

hardware requirement. We first show that the 2-DC can be easily scaled since it is related

to the sampling rate. If one properly selects the sampling rate, it is possible to obtain a

scaled version of the 2-DC which could contain some hole elements in the original 2-DC

obtained by sampling rate MT and NT . We then propose a multi-rate coprime sampling

method to fill all the holes. Furthermore, thanks to the fact that the sampling process
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consists of several sampling blocks of data, we show that it is possible to avoid extra

sampling hardware implementation if the multi-rate method is cleverly designed.

2.2 Signal model of coprime sampling

As discussed in previous chapter, data measured by two coprime samplers are arranged

in vector form, given by

y[l] = [yTM [l],yTN [l]]T =
D∑
i=1

a(qi)AiejφiejπqiMNl + w[l] (2.1)

In practice, we can only obtain a finite number of samples of a particular realization

of y[l], for which the sinusoidal component parameters qi, Ai and φi (i = 1, 2, . . . D)

are constant. For convenience and without loss of generality, we consider the noise-free

situation to illustrate the signal model. The covariance matrix is then estimated, over L

blocks of samples, by

R̂y = 1
L

L−1∑
l=0

y[l]yH [l]

= AR̂sAH (2.2)

Notice that the coprime sampling scheme is generalized in [63], data of several sampling

units from two samplers is utilized to construct a sampling block. Covariance matrices

of different blocks are averaged to reduce the variance. Since a block includes several

units, the sampling units in one block may also be included in other blocks. This leads

to the categorization of different averaging mechanisms, including overlapping and non-

overlapping. In non-overlapping averaging, a sampling unit can not be included in different

blocks. In contrast, the overlapping mechanism indicates that a unit can be included in

different blocks simultaneously. As the example provided in Figure 2.1, five units from each

sampler are used for constructing a block. The third unit data ranging from [3MN, 4MN)

is included in block 1, block 2 and block 3. It is obvious that the data of a unit is reused

in several blocks. In other words, the number of blocks is increased with a given set of
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Figure 2.1 – Overlap coprime sampling with M = 3, N = 4.

data. The data is utilized several times for averaging such that the bias of the estimated

covariance matrix can be limited.

To evaluate the performance of estimators, the Cramér Rao Bound (CRB) offers a

theoretical lower bound of estimation variance of any unbiased estimator. The CRB has

been widely studied for traditional ULA [105, 106] and coprime coarray [65, 107, 108]. In

this section, we give the CRB of the classical coprime sampling in frequency estimation.

For signal model present above, the parameter vector is defined as

η = [q1, ..., qD, p1, ...pD, σ
2
n]T (2.3)

The (i, j)-th element of the Fisher information matrix (FIM) can be given as

FIMi,j = L trace[∂Ry

∂ηi
R−1

y
∂Ry

∂ηj
R−1

y ] (2.4)

Following the similar derivations in [65], FIM can be given as

FIM = L

 MH
f Mf MH

f Ms

MH
s Mf MH

s Ms

 (2.5)
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where

Mf = (RT
y ⊗Ry)−1/2AdRs (2.6)

Ms = (RT
y ⊗Ry)−1/2[Ac, i] (2.7)

with Ad = A∗der �As + A∗s �Ader and

Ader =
[
∂a(q1)
∂q1

,
∂a(q2)
∂q2

, ...,
∂a(qD)
∂qD

]
(2.8)

The CRB of the estimated frequencies can be obtained as

CRBf = 1
L

(MH
f (I−Ms(MH

s Ms)−1MH
s )Mf )−1 (2.9)

2.3 Diagonal property loss phenomenon

2.3.1 Problem statement

For a given realization in practise, the estimated covariance matrix R̂y = AR̂sAH is

used, where R̂s is no longer a diagonal matrix, but it is a matrix whose {i, k}-th element

can be expressed as

R̂s(i, k) = AiAke
j(φi−φk)

L

L−1∑
l=0

ejπ(qi−qk)MNl (2.10)

where, Ai, Ak, φi, φk, with i, k = 1, 2, ..., D, are constant for a given realization.

In the conventional coprime sampling scheme [66], R̂s can be equivalently considered

to be diagonal in most cases since (2.10) could be a small value when L is large enough.

However it can be observed that if there exists a pair of normalized frequencies verifying

∆ = qi − qk = 2b
MN

(2.11)

where b is an integer, then the term in equation (2.10) turns to be equal to AiAkej(φi−φk),
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which is independent of L. It is obvious that matrix R̂s will not be diagonal even for a

big value of L. In fact, in this situation, this matrix becomes rank deficient. For any pair

of distinct frequencies qi and qk satisfying this condition, the diagonal property of R̂s can

no more be hold. This phenomenon has never been reported in the framework of practical

coprime sampling. In this situation which seems to happen quite frequently, the estimated

covariance matrix (2.2) obtained from finite samples does not exhibit the same properties

as the theoretical matrix.

For co-array MUSIC method, matrix R̂y is vectorized and spatial smoothing is applied

to construct a new covariance matrix of the virtual signal. The vectorization of R̂y can

be given as

vec(R̂y) =
D∑
i=1

A2
ia∗(qi)⊗ a(qi) +

D∑
h=1

D∑
k=1,h6=k

ξhkAhAke
jπφhka∗(qk)⊗ a(qh) (2.12)

where φhk = φh − φk, ξhk = 1 only when condition (2.11) is met. Then the virtual signal

vector can be written as

xv = Fvec(R̂y) = FBp + FB′p′ (2.13)

where F is the selection matrix [65], B = [a∗(q1) ⊗ a(q1), ..., a∗(qD) ⊗ a(qD)], p =

[p1, ..., pD]T and B′ = [a∗(q1) ⊗ a(q2), ..., a∗(q1) ⊗ a(qD), ..., a∗(qD) ⊗ a(q1), ..., a∗(qD) ⊗

a(qD−1)], p′ = [ξ21A2A1e
jφ21 , ..., ξD1ADA1e

jφD1 , ..., ξ1DA1ADe
jφ1D , ..., ξ(D−1)DAD−1ADe

jφ(D−1)D ]T .

Here, h 6= k for each a∗(qk)⊗ a(qh) in B′ and ξhkAhAkejφhk in p′. We can write FBp as

FBp =
[
D∑
i=1

A2
i e
jπqi(1−(M+N)),

D∑
i=1

A2
i e
jπqi(2−(M+N)), ...,

D∑
i=1

A2
i e
jπqi(M+N−1)

]T
= Avp

(2.14)

where Av = [d(q1), ...,d(qD)] with d(qi) = [ejπqi(1−(M+N)), ejπqi(2−(M+N)), ..., ejπqi(M+N−1)]T .

Before applying the co-array MUSIC, the spatial smoothing is applied to xv. It can be

seen that if the diagonal property of R̂s holds, the virtual signal vector xv can be written

as Avp. If the diagonal property loss condition is met, vector FB′p′ consisting of some

cross terms between different frequencies will cause some problems to the co-array MU-
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SIC. Due to the cross terms of different frequencies, the virtual signal vector xv can no

longer be written in the form Avp, which is the basis of all spatial smoothing based high

resolution techniques. As a consequence, the co-array MUSIC fails in this case.

2.3.2 Embedded delay mechanism

In this section, we propose a technique to overcome the above mentioned diagonal

property loss phenomenon. The main idea is to introduce randomness in the sampling

process to artificially keep the uncorrelation between the sampled sinusoidal components.

This is achieved by introducing random delays such that the phase of different sinusoidal

components becomes random because of the different frequencies. This proposition only

considers non-overlappling averaging.

After acquiring the first block of data, a discrete random delay is introduced before

starting each new block at both samplers as illustrated in Figure 2.2. It should be noticed

that the DOFs areM+N−1 in this case because we embed the random delays after each

block. The proposed scheme can be easily generalized to increase the DOFs by embedding

the random delays after every k blocks. For instance, if the random delays are embedded

after the 2-nd, 4-th, 6-th,...blocks, data from two blocks can be jointly used to construct

the covariance matrix and the DOFs can be increased to MN +M +N − 1. Indeed, the

DOFs can be further increased to (k− 1)MN +M +N − 1 [63] if the random delays are

embedded after the k-th, 2k-th, 3k-th,...blocks. In this work, our main concern is to show

the diagonal property loss problem and give a way to fix it. Without loss of generality,

we have embedded the random delays after each block in this dissertation.

In this work, discrete random delay is considered but continuous random delay could

have been chosen too. For practical convenience of implementation, we consider the in-

troduced random delays to be multiple of the Nyquist sampling period T with a discrete

uniform distribution. The delay embedded at the front of the p-th block is denoted as tpT ,

where tp is a random integer ruled by the discrete uniform distribution U [0, α−1] (α ≥ 2).

It means that tp randomly takes one integer value in set [0, α− 1] with probability 1
α
. At

the l-th block, the total accumulated delay is
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Figure 2.2 – Random delay between coprime sampling blocks, M=4, N=5

τlT =
l∑

p=1
tpT (2.15)

Then the new concatenated samples block vector can be modified as

ỹ[l] =
D∑
i=1

a(qi)Aiejφiejπqi(MNl+τl) + w̃[l] (2.16)

Its covariance matrix can then be estimated over the L obtained blocks. Similarly to

(2.10), the {i, k}-th element in R̃s can be written as

R̃s(i, k) = AiAke
j(φi−φk)

L

L−1∑
l=0

ejπ(qi−qk)(MNl+τl) (2.17)

Since Ai, Ak, φi, φk are constant for a particular realization, we consider only the summa-
tion item in R̃s(i, k). It should be noticed that even for a set of received samples, only
one realization of the random delays is drawn. It is impossible to derive a closed-form
expression of the summation term in equation (2.17). However it makes sense to observe
the statistical mean of this term, which is given by

E

[
1
L

L−1∑
l=0

ejπ(qi−qk)(MNl+τl)
]

= 1
L

L−1∑
l=0

(
ejπ(qi−qk)(MN+α−1

2 )

α

sin(π(qi−qk)α
2 )

sin(π(qi−qk)
2 )

)l
(2.18)

To better understand how the embedded delays affect the non-diagonal terms and

fix the diagonal property loss problem, we use equation (2.18) to approximately show
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the impact of the introduced delays. When L increases, the summation term in equation

(2.17) tends to take a value close to its statistical mean. Observing equation (2.18), it

comes that the value of the summation item is given as the sum of the first L terms of a

geometric series for which the modulus of the common ratio is less than or equal to one

(equal to one only when |qi − qk| is even). Since α ≥ 2 and qi 6= qk with |qi − qk| < 2

by definition, the modulus of the common ratio will be always less than one. Hence, as

L is chosen large enough, the non diagonal elements of the estimated signal covariance

matrix R̃s will be small for any α and normalized frequencies. In fact, the non diagonal

elements tend to zero as L goes to infinity. Therefore, even in the diagonal property loss

condition defined in (2.11), two distinct signal components (qi 6= qk) will never be linearly

correlated, which means that no diagonal property loss will occur in the proposed scheme.

The coprime subspace based methods can then be applied for frequencies estimation even

under the diagonal property loss condition.

It seems that parameter α could be chosen to optimize the performance of frequencies

estimation, because the smaller the amplitude of (2.18) is, the better is the performance

of the subspace based techniques. However, for a given number of blocks L, it is not

possible to optimally choose α to obtain a lowest value of (2.18) because the normalized

frequencies are not known initially.

To better understand the effect due to α, we provide the statistical mean of (2.18) in

Figure 2.3 and Figure 2.4 considering only two frequencies withM = 4, N = 5. The x-axis

denotes the value of the difference between two frequencies and the y-axis denotes the

mean value of (2.18). Based on the above discussions, if no random delays are introduced

(τl = 0), the mean value of (2.18) will have a peak value which equals to one when the

condition (2.11) is met, i.e. ∆ = 0.1, 0.2, 0.3, .... Otherwise it will be small for other values

of ∆.

After adding the random delays, it can be observed from Figure 2.3 and Figure 2.4

that there exist some peaks where the peak values are smaller than 1. Furthermore, if

the distribution of delays is distributed in a wider range, the corresponding peak values

can further decrease to a smaller value. Apart from a few peak values in Figure 2.3 and
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Figure 2.3 – Statistical mean of (2.18) versus different values of ∆, α satisfies discrete
uniform distribution, distributed in range [0,2],[0,4],[0,8]. M = 4, N = 5.
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Figure 2.4 – Statistical mean of (2.18) versus different values of ∆, α satisfies discrete
uniform distribution, distributed in range [0,5],[0,10],[0,20],[0,30]. M = 4, N = 5.
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Figure 2.4, we can notice that most values of (2.18) are quiet small for most cases of ∆.

For example smaller than 0.1. This indicates that by introducing the random delay, the

non-diagonal terms in covariance matrix can be limited to a small value for most of the

cases to ensure the success of coarray based MUSIC method.

2.3.3 Results and discussion

In order to illustrate the above highlighted problem, firstly we provide the MUSIC

spectrum under the diagonal property loss condition with the classical coprime sampling.

Then, the MUSIC spectrum obtained from the proposed embedded random delay sampling

is displayed to show the benefit brought by the new proposed coprime sampling scheme.

Finally, RMSE performance is given to show that the proposed sampling scheme does not

affect the estimation performance when there is no diagonal property loss.

In order to illustrate the diagonal property loss phenomenon, we consider the coprime

integers M = 4 and N = 5, and D = 7 sinusoidal components with unit amplitude. The

signal-to-noise ratio (SNR) is set to 20dB. Consider L = 1000 blocks of samples. The

7 normalized frequencies in this example are selected such that there exist exactly two

pairs among them verifying the diagonal property loss condition (2.11). The normalized

frequencies are q1 = −0.40, q2 = −0.34, q3 = −0.17, q4 = 0.23, q5 = 0.39, q6 = 0.56, q7 =

0.88, and the condition is met with q4 − q3 and q6 − q2.

The coprime sampling MUSIC algorithm [66] is then applied in two scenarios:

1) the number of components D = 7 is known and the dimension of the signal subspace

dimension is set to 7 when performing MUSIC algorithm;

2) no prior knowledge of the number of components is assumed, and the minimum de-

scription length criteria (MDL) [109] is used to determine the signal subspace dimension.

In this situation, the subspace signal dimension is found to be equal to 5. Fig. 2.5

shows the estimated MUSIC spectrum under diagonal property loss phenomenon. The

vertical discontinuous lines refer to the true positions of frequencies. It can be observed

that the frequencies are not correctly estimated in both scenarios. Phantom peaks appear

at wrong frequency position and some true frequencies can not be detected.
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Figure 2.5 – MUSIC spectrum with coprime sampling in the diagonal property loss
condition, 7 sinusoidal components, M = 4 and N = 5.

Fig. 2.6 depicts the estimated MUSIC spectrum with the proposed embedded random

delays sampling method. The same frequencies setting as before is considered and α is set

to 6. It can be observed that the frequencies are correctly estimated even with two pairs

of frequencies verifying contidion (2.11).

In the following, the proposed embedded random delays scheme and the classical

coprime scheme are compared. The performance is assessed in terms of RMSE, defined

as

RMSE =

√√√√ 1
DU

D∑
i=1

U∑
u=1

(q̂i(u)− qi)2 (2.19)

where q̂i(u) is the estimate of the normalized frequency qi in the u-th estimation trial,

u = 1, 2, ..., U . In the following simulations, the following parameters are chosen, U =
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Figure 2.6 – MUSIC spectrum using embedded random delays coprime sampling, 7 sinu-
soidal components, M = 4 and N = 5.

1000,M = 4, N = 5

As explained above, the classical co-array MUSIC fails when condition (2.11) is met.

We first show the performance of the classical co-array MUSIC algorithm when the differ-

ence between some frequencies is close to 2b/(MN). In Figure 2.7, we consider 2 frequen-

cies, which are q′1 = −0.17 and q′2 = 0.23+ δ such that q′2− q′1 = 0.4+ δ, where δ is a small

offset and b = 4. We set δ to several values for comparison and no prior knowledge of D is

assumed in this case. It can be observed from Figure 2.7 that when δ varies from 0.01 to

0.0001, the classical co-array MUSIC achieves similar performance. When δ continues to

decrease, RMSE increases dramatically. This indicates that when the difference between

some frequencies tends to be close to 2b/(MN), the non-diagonal terms in R̂s become

non-negligible. The diagonal property loss problem becomes significant.
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Figure 2.7 – RMSE performance when the difference between some frequencies is close to
2b/(MN), b = 4,M = 4, N = 5.

The classical coprime scheme and the proposed scheme are compared in Figure 2.8.

For simplicity, signal with only two sinusoidal components (q1, q2) is considered. Because

the classical coprime mechanism fails under the diagonal property loss condition while our

proposed method can still robustly perform, we arbitrarily choose frequencies which do not

satisfy the diagonal property loss condition for comparison. Without loss of generality,

q1 is chosen to be −0.84 and q2 is randomly chosen in each estimation trial. Also, we

consider different values of α to compare how the embedded delay distributions affect the

performance, namely α = 6, 16, 31.

It can be observed from Fig. 2.8 that the proposed scheme can obtain similar RMSE

performance as that of the classical coprime scheme. Moreover, with different values of α,
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Figure 2.8 – RMSE performance with classical coprime sampling and embedded random
delay coprime sampling, M = 4, N = 5.

the performance does not significantly change, which means that the embedded delays do

not significantly affect the performance of coprime sampling process while being able to

fix the problem of the diagonal property loss.

2.4 Multi-rate coprime sampling to fill the holes in

second order difference coarray

2.4.1 Problem statement

In coprime sampling configuration, the 2-DC generated by coprime configuration is

a linear virtual array structure with some missing elements. This leads to information
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loss if only the contiguous part of the virtual coarray is used. It is interesting to apply

interpolation techniques to fill the holes. Many techniques have been developed in the

DOA scenario with coprime array, including multi-frequency method [72], interpolation

with moving array [80, 81], multi-period subarray [78], etc. However, these techniques are

not applicable in frequency estimation domain. The nuclear norm minimization method

and the atomic norm optimization method can be utilized in the frequency estimation.

However, the performance of nuclear norm minimization and atomic norm optimization

strongly relies on the parameter tuning and the noise level. It could lead to high complexity

if high performance is required.

2.4.2 Multi-rate coprime sampling model

The conventional coprime sampling requires two samplers acquiring data with sam-

pling rate MT and NT , respectively. To address the holes problem, we propose a multi-

rate coprime sampling scheme to interpolate the holes in the 2-DC. The signal model of

conventional coprime sampling has been discussed in the previous part. Correspondingly,

we denote the 2-DC integers set related to the conventional coprime sampling as

L = {±(Mn−Nm)} (2.20)

The maximum value in L is (2M − 1)N , which is much larger than 2M + N − 1 for

two coprime integers. Coprime sampling scheme uses the concept of difference coarray

to construct a virtual coarray and increase the DOF. Elements in L can be equivalently

considered as the indices of a virtual Nyquist rate sampler, whose samples are the corre-

sponding elements in Ry.

It can be noticed that the vectorized vector r contains all the self-lags and cross-

lags correlation. By selecting the appropriate elements corresponding to the self-lags and

cross-lags in L, we can construct a virtual coarray integer set ranging from −(2M − 1)N

to (2M − 1)N [65], in which some missing elements exist. An illustration of the virtual

coarray is given in Figure 2.9a with M = 4, N = 5. It is clear that there are some
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holes in the virtual coarray and the nonuniform coarray can not be directly employed for

efficient frequency estimation. In this section, we elaborate how the holes can be filled

by exploiting multi-rate coprime sampling without additional samples, such that all the

information included in the virtual coarray can be fully exploited.

It is worth noting that we consider the conventional coprime sampling [66] to elaborate

the proposed method in this dissertation. The proposed multi-rate method can be easily

extended to the generalized coprime sampling scheme [63] by choosing the appropriate

sampling rates in accordance with the positions of the holes. By doing so, the DOF can

be further increased.

Consider two samplers similar to the conventional coprime samplers, whose sampling

intervals are arMT and arNT with ar the multi-rate coefficient (ar > 0), respectively, the

two collected sample subsets associated with the l-th block are given by

xM,ar [Nl + n] =
D∑
i=1

Aie
j

(
πqiarM(Nl+n)+φi

)
+ ω(arM(Nl + n)T )

xN,ar [Ml +m] =
D∑
i=1

Aie
j

(
πqiarN(Ml+m)+φi

)
+ ω(arN(Ml +m)T ) (2.21)

where xM,ar [Nl + n] = x(M(Nl + n)arT ), xN,ar [Ml + m] = x(N(Ml + m)arT ), with

1 ≤ m ≤ 2M − 1, 0 ≤ n ≤ N − 1. It can be observed that the number of elements in each

block remains the same as in the original classical coprime sampling, while the sampling

interval is scaled up by a factor ar. The corresponding sampling signal vector of the l-th

block can be written as

yar [l] =
D∑
i=1

a(arqi)AiejφiejπqiarMNl + nar [l] (2.22)

Its covariance matrix can be expressed as

Ry(ar) = E[yar [l]yHar [l]] =
D∑
i=1

A2
ia(arqi)aH(arqi) + σ2

nI (2.23)

Similarly to the 2-DC of conventional coprime sampling, the self-lags and cross-lags under
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sampling rates arMT and arNT can be described by the following set

L(ar) = {±ar(Mn−Nm)} (2.24)

It is obvious that L(ar) is a scaled version of L with multi-rate coefficient ar. With

an appropriate value of ar, L(ar) can include some missing elements in L (2.20). After

vectorizing and rearranging the elements, the virtual coarray obtained with sampling

rates arMT and arNT contains some hole elements in the original virtual coarray with

sampling rates MT and NT . The idea of multi-rate coprime scheme is to find all the hole

elements from the resultant virtual coarrays generated by multi-rate coprime sampling.

These elements can be employed to fill the holes in the classical coprime coarray. This is

achieved by choosing some appropriate values of ar in accordance with the positions of

the holes.

xx xx x x x xx xx x
0 5 10 15 20 25 30 35-35 -30 -25 -20 -15 -10 -5

0 2 10 2220 24 30 36-36 -30 -24 -20-22 4 6 8 2826 3432
….   ... x xx…    
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10299 105
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-75 -69-72
…     …   ......xx

-105 -99-102

(a)

(b)

(c)

Figure 2.9 – Sampling indices of virtual coarrays with different sampling rates. (a) Sam-
pling rates MT,NT (b) Sampling rates 2MT, 2NT (c) Sampling rates 3MT, 3NT , with
M = 4 and N = 5, •: existed elements, ×: holes.

2.4.3 Holes filling in 2-DC with different sampling rate

The maximum value in L is K = (2M − 1)N . We consider a covariance matrix Rv

that can utilize all the DOFs. Therefore, we can define a set of values corresponding to

the full DOFs as

LDOF = {±i|0 ≤ i ≤ K} (2.25)

67



Part , Chapter 2 – Spectrum sensing with coprime sampling using second order difference
coarray

Then we can construct the following Toeplitz covariance matrix

Rv =



r[0] r[−1] ... r[−K]

r[1] r[0] ... r[−K + 1]

... ... ... ...

r[K] r[K − 1] ... r[0]


(2.26)

where r[i] = E[x(t)x∗(t − iT )] only depends on the lag i = 0, 1, ..., (2M − 1)N . In other

words, r[i] corresponds to the data of the i-th position in the virtual coarray. An example

of virtual coarray with M = 4, N = 5 is shown in Figure 2.9a. For a given realization, Rv

and r[i] are represented by R̂v and r̂[i], respectively.

To estimate r[i], the covariance matrix is estimated by averaging the available sample

blocks

R̂y = 1
L

L−1∑
l=0

y[l]yH [l] (2.27)

where L is the number of blocks. For the i-th position in the virtual coarray, there may

be several elements in R̂y that correspond to the same position. The i-th position r[i] is

estimated by averaging all the corresponding elements in R̂y to get r̂[i] [110].

Notice that there are some missing integers in L which are related to the missing

elements in R̂v. These elements correspond to the holes that can not be directly obtained

from R̂y. We define the missing elements set as

Lholes = {i|i ∈ (LDOF − L)} (2.28)

Alternatively, a new covariance matrix can be estimated under multi-rate coprime sam-

pling with coefficient ar, which is represented by R̂y(ar). By choosing some appropriate

values of ar, the set of lags associated with R̂y(ar) can be equivalently represented as

(2.24). All the missing elements r̂[i] can be obtained from the intersection between Lholes
and the selected sets L(ar) to reconstruct matrix R̂v. In other words, we can define Irates
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as a set of selected multi-rate coefficients allowing to fill all the holes such that

Lholes =
⋃

ar∈Irates
{Lholes ∩ L(ar)} (2.29)

For illustration, we consider the holes ±24 as shown in Figure 2.9a. Many values of ar
can be used to fill these two holes. A condensed coarray can be obtained with value

ar = 24
25 , which requires to implement another two samplers at new sampling rates 24

25MT

and 24
25NT . If we choose ar > 1, the coarray will be extended, as shown in Figure 2.9b for

ar = 2.

Meanwhile, an interesting fact is that if the multi-rate coefficient ar is set to be an

integer greater than 1, the required samples are included in the initial samples obtained

with the classical sampling rates MT and NT . These samples can be equivalently con-

sidered as the samples of the multi-rate sampling. In other words, these samples can be

directly obtained by decimating the original classical coprime samples. A graphic illustra-

tion is given in Figure 2.10 with M = 4, N = 5 and ar = 2. This is of great importance

to the sampling process because the multi-rate samples can be obtained by choosing the

appropriate samples from the original classical coprime sampling sample stream. In this

case, the resultant multi-rate covariance matrix can be expressed as follows

R̂y(ar) = 1
b L
ar
c

b L
ar
c∑

l=0
yar [l]yHar [l] (2.30)

Here, only 1
ar

samples from the xM and xN samplers are chosen for the multi-rate

scheme, which indicates that the multi-rate scheme has totally b L
ar
c blocks (b·c is the

floor operator). No additional sampling operation is required and this will not cause extra

sampling burden to the samplers. In the following sections, we only consider the case

where ar is an integer greater than 1.

Filling holes without data reusing

As shown in Figure 2.9, we considerM = 4, N = 5 to illustrate the mechanism without

reusing data. The holes occur at positions {±24,±28,±29,±32,±33,±34}. As shown in
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Figure 2.10 – Multi-rate coprime sampling indices selected from the classical coprime
sampling, M = 4, N = 5, ar = 2. ↓: sampling indices selected for multi-rate coprime
sampling.

Figure 2.9b, a new virtual coarray can be constructed by setting ar = 2. It can be easily

observed that the lags {±24,±28,±32,±34} can be obtained via this new coarray and

we can directly select these elements from Figure 2.9b to fill the holes in Figure 2.9a. In

addition, the holes {±33} and {±29} can also be filled by setting ar = 3 (Figure 2.9c)

and ar = 29 respectively. The resultant integer sets can be expressed as

L(ar = 2) = {±2(Mn−Nm)} (2.31)

L(ar = 3) = {±3(Mn−Nm)} (2.32)

L(ar = 29) = {±29(Mn−Nm)} (2.33)

Here, m,n are the indices of samples in one block. By selecting the appropriate elements

from R̂y(ar = 2), R̂y(ar = 3), R̂y(ar = 29), the holes in Figure 2.9a can all be filled

correspondingly. It comes that

{±24,±28,±32,±34} ⊆ {Lholes ∩ L(ar = 2)} (2.34)

{±33} ⊆ {Lholes ∩ L(ar = 3)} (2.35)

{±29} ⊆ {Lholes ∩ L(ar = 29)} (2.36)

Notice that each value of ar can only fill one or several specific holes. In other words,

we use only the corresponding elements in each R̂y(ar) to fill the holes and discard the

remaining elements. We define this mechanism as data no-reusing mechanism. In the
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following sections, we will explain the data reusing mechanism.

Filling holes with data reusing

The estimation variance can generally be reduced if higher number of data can be used

for calculating the average value. Comparing Figure 2.9a, Figure 2.9b and Figure 2.9c, it

can be found that there are some overlapped positions, i.e., {0,±2,±4,±6...} in Figure

2.9a and Figure 2.9b, {±6,±12,±18...} in Figure 2.9a, Figure 2.9b and Figure 2.9c. It

means that L ∩ L(ar) is not an empty set. The data in the initial coarray (Figure 2.9a)

are constructed by averaging the respective data from the sampling covariance matrix.

In Figure 2.9b and Figure 2.9c, though the data from the selected matrices R̂y(ar) are

intended to fill the holes, they simultaneously generate some data which can be reused

for calculating the overlapped positions in Figure 2.9a. In this case, we can jointly use all

the useful data in R̂y(ar) with the data in R̂y to construct the complete virtual coarray.

For illustration, we consider the position {±6}, which can be found in Figure 2.9a,

Figure 2.9b and Figure 2.9c. The respective elements in R̂y, R̂y(ar = 2), R̂y(ar = 3)

can be selected to calculate the average and be used to fill the position {±6}. This data

reusing mechanism can be applied to all the overlapped positions including the holes.

The information in the virtual coarrays generated by multi-rates can then be maximally

exploited.

Let us denote the set of multi-rate integer coefficients Irates as in (2.29), and define

the union set of overlapped positions between the original classical coprime coarray and

multiple rate coarrays as

Lrates =
⋃

ar∈Irates
{L ∩ L(ar)} (2.37)

Furthermore, assume that there are Ni entries in R̂y and Ni,ar entries in R̂y(ar), which are

denoted by R̂(i,k)
y , k = 1, 2, ..., Ni and R̂

(i,k)
y (ar), k = 1, 2, ..., Ni,ar , which correspond to the

same i-th position in the coarray, then the data reusing mechanism can be summarized

as follows:
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1) If i ∈ {L− Lrates}, we select all the corresponding entries from R̂y to calculate r̂[i]:

r̂[i] = 1
Ni

Ni∑
k=1

R̂
(i,k)
y (2.38)

2) If i ∈ Lholes, we first choose several different values of ar ∈ Irates to generate

different versions of R̂y(ar), then select all the corresponding entries from different R̂y(ar)

to calculate r̂[i]:

r̂[i] = 1∑
ar∈Irate Ni,ar

∑
ar∈Irate

Ni,ar∑
k=1

R̂
(i,k)
y (ar) (2.39)

3) If i ∈ Lrates, we select all the corresponding entries from R̂y as well as the different

versions of R̂y(ar) to jointly estimate the mean value of r̂[i]:

r̂[i] = 1
Ni +∑

ar∈Irate Ni,ar

 Ni∑
k=1

R̂
(i,k)
y +

∑
ar∈Irate

Ni,ar∑
k=1

R̂
(i,k)
y (ar)

 (2.40)

It can be noticed that for the covariance matrix R̂y(ar), apart from the entries in R̂y(ar)

that are used to estimate r̂[i] for the case i ∈ Lholes, some entries in R̂y(ar) can also be

reused to estimate the elements r̂[i] for i ∈ Lrates.

After filling all the holes in the classical coprime virtual coarray, the maximum DOF

can be fully used without discarding the non-contiguous part. Many mature techniques

can be applied on R̂v, including MUSIC [45] and ESPRIT [44], etc.

Suggested rules to choose the multi-rate coefficients

For any given situation, it is clear that different sets of multi-rate Irates can be defined

to fill all the holes. Here we suggest two rules to choose Irates:

• Rule 1: Choose ar as small as possible. This can be seen from equation (2.30) that

smaller ar can achieve higher value of L
ar
, leading to more data for calculating R̂y(ar) and

achieving better estimation performance.

• Rule 2:Make the cardinality of Irates as small as possible. In the proposed scheme,

we should calculate R̂y(ar) for each value of ar. It is straightforward that more different

coefficients will cause higher calculation complexity. Consequently, the cardinality of Irates
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should be as small as possible to reduce the calculation complexity.

To find the appropriate value of ar, the positions of holes are first obtained by the

proposition which will be specified in the next subsection. Then the prime factorization

is implemented to find the prime factors of the position value of each hole. According to

the prime factors of the position values of all holes, we can choose ar based on the above

two rules. The details are given as follows:

If several values of the positions of holes have one common prime factor (CPF), we

choose this CPF as one value of ar to fill the corresponding holes.

If there exist several common prime factors for several holes, we choose the smallest

CPF according to rule 1.

If the position of a hole have no CPF with other holes, we choose its minimum prime

factor as one value of ar.

For any integers greater than 1, we can always find at least one prime factor according

to the principle of prime factorization. This means that we can always find at least one

suitable ar 6= 1 for any hole value.

For the cases of small values of M and N which have few holes in the coarray, it could

be easy to perform the prime factorization and find the suitable ar. As for the cases of

large M and N with more holes, saying more than 10 hole elements (10 is an empirical

value), we propose the following algorithm to simplify the process of choosing ar:

1) We first consider ar1 = 2. This is because 2 is the smallest prime integer and it is

the prime factor of all even integers. By doing so, the holes with even position values can

be filled.

2) If there are still many unfilled holes (more than 10 different values), we can choose

the next prime integer greater than 2, which is ar2 = 3, and the holes with position values

of multiple of 3 are filled. If there are only a few holes remaining unfilled, the prime

factorization is then implemented to the unfilled holes to find their prime factors and

choose the suitable ar.

The reason we choose ar1 = 2 is that a smaller integer is a common divisor of more

integers, i.e., 2 is the divisor of all even integers while 3 is the divisor of one integer among
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every three contiguous integers. In general, if there are many holes needed to be filled, ar
with a smaller value can fill more holes.

2.4.4 Position property of the holes

Before choosing an appropriate value of ar, the position of missing elements in L should

be first determined. For given system parameters M and N , the following proposition

holds.

Proposition 1: The holes occur at position ±(b1M + b2N), where b1M + b2N <

(2M − 1)N , b1, b2 are integers, 1 ≤ b1 ≤ N − 1− bN
M
c and M ≤ b2 ≤ 2M − 2.

It should be noticed that the same expression of positions of the holes has been given

in [64]. However, only the lower bounds of b1 and b2 are provided. The upper bounds of

b1 and b2 have not been given. We provide the proof for the upper bounds of b1 and b2

so that all the holes can be analytically determined. We also provide a new way to prove

the lower bounds of b1 and b2.

Proof of Proposition 1

1) The first hole is located at position MN +M [63]. We first show that any integer

number in [0,MN+M−1], namely a, can be generated by the difference coarray ±(Nm−

Mn). We can rewrite a = Nm−Mn into

Nm = a+Mn

Under the conditions 0 ≤ n ≤ N − 1 and 0 ≤ a ≤MN +M − 1, for each value of a and

n, we can have a+Mn ≤ 2MN −1. Then, it can be obtained that N ≤ Nm ≤ 2MN −1,

which is equivalent to 1 ≤ m ≤ 2M − 1
N
. As N > 1 and m is an integer, we can obtain

1 ≤ m ≤ 2M − 1

It indicates that for each value of n ∈ [0, N − 1], we can always find an appropriate value

of m ∈ [1, 2M − 1] to obtain a ∈ [0,MN +M − 1].

Then we show that the value MN + M can not be obtained with ±(Nm −Mn) by
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using contradiction. Assuming that MN + M = Nm −Mn can be obtained with some

appropriate values of m,n. Then it can be derived that

M

N
= m−M

n+ 1

Notice that m −M ≤ M − 1. But as M,N are coprime integers, their ratio can not be

reduced to a radio of smaller integers. As a consequence, it is not possible to find proper

values of m and n satisfying the above equation. Similar derivation holds if we assume

MN +M = −(Nm−Mn). Hence the first hole in position MN +M is proved.

2) The general expression of positions of the holes b1M + b2N (b1 ≥ 1, b2 ≥ M) can

be proved by contradiction, which can be found in Appendix I [64].

3) Finally, we determine the upper bounds of b1 and b2. Notice that the maximum

number in L is (2M−1)N , the positions of the holes follow that b1M+b2N < (2M−1)N .

Recalling the condition b1 ≥ 1, b2 ≥M , we can have

b1M < (2M − 1)N − b2N

< 2MN −N −MN

< MN −N

b1 < N − N

M

Since N > M and b1 is an integer, we can obtain that b1 ≤ N − 1 − bN
M
c. Similarly, we

can also obtain that b2 ≤ 2M − 2. The proposition is then proved.

2.4.5 Simulation results and discussion

In this simulation part, the MUSIC algorithm is used for estimating the frequencies.

The benchmarks of comparison are to assess the maximum number of detectable frequen-

cies and the relative RMSE of the estimated frequencies.

MUSIC spectrum and number of detectable frequencies

We first consider the case of M = 4 and N = 5 to show the MUSIC spectrum of
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the proposed multi-rate coprime sampling scheme. The SNR is set to be 0dB and the

number of sampling units is set to L = 1000. Based on the Proposition of positions of

the holes, the set of holes can be determined as Lholes = {±24,±28,±29,±32,±33,±34}.

The maximum number of detectable frequencies of the coarray after filling the holes

with the proposed multi-rate coprime scheme is (2M − 1)N = 35. As explained in the

previous part, parameter ar with values in the set Irates = {2, 3, 29} has been used.

Irates = {3, 4, 17, 29} could also be chosen but according to the suggested rules, it is

preferable to use Irates = {2, 3, 29} with three different ar rather than four.
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Figure 2.11 – MUSIC spectrum of estimated frequencies, M = 4, N = 5, 35 different
sinusoidal components.

Figure 2.11 shows the MUSIC spectrum of 35 estimated frequencies which are uni-

formly distributed over interval [−0.96, 0.96]. The vertical discontinous lines correspond
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to the true positions of frequencies. It can be seen that all the frequencies are correctly

estimated using the proposed scheme. It should be mentioned that in the classical coprime

sampling, only a maximum of 23 frequencies can be estimated due to the holes, which

means that part of the DOFs has not been used. Our proposed scheme can significantly

increase the maximum number of detectable frequencies.

Performance with different multi-rate coefficients

Next, we investigate the impact of the multi-rate coefficient to the proposed scheme.

The data no-reusing mechanism is used in Figure 2.12 to focus on the impact of ar. For

simplicity, we consider a coprime array with M = 2, N = 3 which has only one pair of

holes in the difference coarray (position ±8). The number of Monte Carlo trials is set to

be 500. We only need to choose one value of ar to construct a new multi-rate coarray. The

possible solutions of integer ar are ar = 2, ar = 4, ar = 8. The classical coprime sampling

scheme with no holes filling [66] is compared with these three scenarios.

Figure 2.12 shows the performance with 4 sinusoidal components. It can be seen that

the proposed scheme outperforms the classical coprime sampling scheme. This is mainly

because the multiple coprime rate scheme fills the holes in the classical coprime virtual

coarray. Therefore, the maximum number of detectable frequencies is 9 for the proposed

method, while it is only 7 for the classical coprime scheme with M = 2, N = 3.

We can also observe from Figure 2.12 that a lower value of ar leads to a better estima-

tion performance. This benefit is due to the fact that more samples are selected from the

classical coprime sample stream if ar is set to a lower value. The estimation variance can

be reduced when more samples are used for calculating the average, which is in agreement

with the suggested rules. However, this benefit is very limited when ar varies from 4 to 2.

The two respective curves achieve very similar performance as shown in Figure 2.12. This

is because the noise can not be thoroughly eliminated even if more samples are selected

from the same sample stream. It can also be observed that there is a gap between the

RMSE of the proposed method and the CRB even in high SNR region. This is consistent

with the conclusion in [65] where the authors claim that the RMSE of coprime configu-

ration converges to a positive value and CRB tends to zero when D < M + N . Figure
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Figure 2.12 – RMSE performance with different multi-rate coefficients, M = 2, N = 3, 4
sinusoidal components.

2.13 compares the performance as a function of number of units. It is obvious that the

estimation performance is improved when more sample units are available.

Comparison of data reusing and data no-reusing

Figure 2.14 and Figure 2.15 compare the data reusing mechanism and data no-reusing

mechanism with the generalized coprime sampling scheme [63] and nuclear norm min-

imization interpolation scheme [75]. For the generalized coprime sampling scheme, we

consider two sample units from each sampler to form a sample block hereafter. Different

from the previous part with only one pair of holes, we consider M = 4, N = 5 such that

six pairs of holes are required to be filled by choosing several different values of ar simulta-

neously. The signal contains 12 sinusoidal components in Figure 2.14 and 25 components
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Figure 2.13 – RMSE performance with different multi-rate coefficients, M = 2, N = 3, 4
sinusoidal components.

in Figure 2.15. As described above, three different multi-rate coefficients Irates = {2, 3, 29}

are considered to fill all the holes.

As shown in Figure 2.14 and Figure 2.15, both the data reusing and data no-reusing

mechanism outperform the generalized coprime and the nuclear norm scheme. This is

because the generalized coprime scheme use two sample units to form a sample block in

our simulation. By doing so, some holes can be filled but there still exist some unfilled holes

and the maximum DOFs can not be fully utilized. In contrast, the proposed method can

fill all the holes distributed in [0, (2M−1)N ] and achieve better performance. In addition,

the proposed method also surpasses the nuclear norm scheme because the performance of

nuclear norm interpolation could be strongly affected by noise level. In high SNR region,

nuclear norm scheme can achieve similar performance with the proposed method.
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Figure 2.14 – Performance of data reusing & data no-reusing,M = 4, N = 5, 12 sinusoidal
components.

Furthermore, the data reusing mechanism has a slightly better performance than the

data no-reusing mechanism when SNR is low because more data are employed for con-

structing the virtual coarray. As SNR increases, two mechanisms achieve very similar

performance. This is because only part of data in R̂y(ar) is selected for the data reusing

mechanism. The improvement will be very limited. It is evident in Figure 2.14 that in

less sources scenario (i.e. 12 sinusoidal components compared to 25 components in Figure

2.15), the performance of the generalized coprime can be close to the proposed method

when SNR is high. For M = 4, N = 5, the maximum number of detectable frequencies

of the generalized coprime is 28, while it is 23 for the classical coprime and 35 for the

proposed method. It should be mentioned that the nuclear norm scheme can not always
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Figure 2.15 – Performance of data reusing & data no-reusing,M = 4, N = 5, 25 sinusoidal
components.

achieve the maximum DOFs because the actual freedom is governed by non-uniform grid

[75]. We consider 25 sinusoidal components in Figure 2.15 for comparison. It can be seen

that there is a gap between the generalized coprime and the proposed method due to

the difference of DOFs. The performance of nuclear norm scheme is the worst in Figure

2.15 and it tends to be close to the generalized coprime scheme in high SNR scheme. An

interesting fact is that the virtual coarray of the generalized coprime scheme is similar to

the classical coprime. The proposed method can also be easily applied to the generalized

coprime scheme to fill the holes and the DOFs can be further increased.
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2.5 Conclusion

In this chapter, we provide detail investigation on the coprime sampling scheme. We

first analyze the coprime sampling technique within the framework of practical sampling

realization, where only one realization of samples is available. The coprime sampling mech-

anism will suffer from diagonal property loss problem in specific conditions. We propose

an embedded random delay mechanism to overcome this problem while the performance

of coprime sampling is not significantly affected.

Then we focus on the holes filling problem in the 2-DC of coprime sampling. A multi-

rate coprime sampling scheme is proposed to settle this problem. The principle of multi-

rate coprime sampling is to construct several scaled versions of the 2-DC with different

sampling rate. With properly designed sampling strategy, the holes in the original 2-DC

can be found in different versions of the 2-DC and the holes can be filled by selecting these

data from different scaled 2-DCs. Also, the multi-rate scheme does not cause additional

sampling burden if the sampling rate parameters are set to appropriate integer values.
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Chapter 3

REARRANGED COPRIME ARRAY FOR

PASSIVE DOA ESTIMATION USING 2-DC

3.1 Introduction

In this chapter, we adopt the coprime array for DOA estimation. In the previous

chapter, we have illustrated that the 2-DC of coprime configuration has some holes and

the nonconsecutive part in the 2-DC can not be utilized. We focus on the holes filling

problem in this chapter from the physical array geometry aspect. Notice that one main

character of sparse array is its low hardware cost, which is to use few sensors to detect

more sources than sensors. In this chapter, our proposition also follows this principle and

avoids additional hardware cost. Also, the mutual coupling effect is considered in this

chapter.

Some attempts aim to fill the holes from the physical array aspect have been pro-

posed. The interpolation method with array moving at specific speed requires velocity

control operation [80, 81]. CCA method aims to add some additional sensors to con-

struct a complementary subarray to fill the holes in the 2-DC. However compared with

the conventional coprime array, CCA requires (M − 1) additional sensors to fill the holes

and totally 3M + N − 2 sensors are required, which is not an economical solution when

M becomes large [77]. Also, the introduced sensors in CCA are closely distributed with

inter-element spacing equals to half of the wavelength of incoming signals. The mutual

coupling is unavoidable as the number of sensors increases.

Most recently, the thinned coprime array (TCA) [111] shows that some sensors in a
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coprime array are found to be redundant. In other words, the difference coarray structure

will not be modified if these redundant sensors are removed from the coprime array. The

same DOFs and less mutual coupling can be achieved with fewer sensors in TCA compared

with the classical coprime array [112]. Inspired by the spirit of TCA, we propose a novel

coprime based geometry without requiring additional sensors to address the holes problem

in the 2-DC. This is realized by rearranging the redundant sensors in the conventional

coprime array to appropriate new positions, which are determined by the property of the

holes in the 2-DC.

When designing the array geometry, the mutual coupling effect is also important and

should be considered. The super nested array (SNA) is proposed in [85, 113] to reduce

the mutual coupling effect while holding the main advantages of the nested array, such

as, closed-form of sensor locations and hole free difference coarray. Another array con-

figuration based on the nested array is the augmented nested array (ANA) [71]. ANA

can increase the DOFs and reduce the mutual coupling in four different ways. However,

the mutual coupling could increase when the number of sensors becomes large [112] for

ANAI-1 and ANAI-2 (denoted as ANA1 and ANA2 in the following), while the other two

ANA arrays have to meet complicated conditions such that no holes occur in the differ-

ence coarray. The introduced sensors in CCA are closely distributed with inter-element

spacing equal to half of the wavelength of incoming signals. However, the mutual coupling

of CCA is unavoidable as the number of sensors increases. It will be shown in this chapter

that our proposition can limit the mutual coupling compared with the SNA, ANA, CCA.

3.2 2-DC of coprime array and holes-triangle

3.2.1 Signal model of coprime array

Assuming a coprime array with two sub-arrays consisting of 2M +N − 1 sensors, the

mutual coupling effect is considered in this chapter and the signal vector is given by

xθ(t) = CAθs(t) + n(t) (3.1)
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Figure 3.1 – Conventional coprime array.

Similar with the coprime sampling in time domain, we can calculate the covariance matrix

and vectorize the covariance matrix to obtain a virtual signal model.

Before further elaborating our proposition, it is important to investigate the property

of 2-DC. In this section, we first review the redundancy of sensors in coprime array.

Then we categorize the holes into holes-triangle, which will be utilized for illustrating our

proposition.

3.2.2 Redundancy of sensors and weight function

We consider the conventional coprime array, consisting of two sub-arrays, where one

sub-array has N sensors with Md0 as separation distance between two adjacent sensors

and another sub-array has 2M sensors with Nd0 as the distance between two adjacent

sensors, with d0 the half wavelength of impinging signals. The first sensor is shared by two

sub-arrays. A graphic illustration of the conventional coprime array is given in Fig. 3.1,

where M,N are two coprime integers. In this dissertation, we assume M < N without

loss of generality.

It is well established that there are some holes in the difference coarray of the classi-

cal coprime array. Since the difference coarray is a symmetric structure, for simplifying
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illustration, we only take the non-negative part of the difference coarray into account in

the following part. We rewrite the position of holes as follows [114].

H = {h|h = MN +M + b′1M + b′2N}, (3.2)

s.t. 0 ≤ b′1 ≤ N − 2− bN
M
c, 0 ≤ b′2 ≤M − 2,

h ∈ [MN +M, (2M − 1)N)

Apart from the holes, there could be several different sensor pairs that contribute to

the same virtual sensor. For further discussion, the weight function [71] is defined as the

number of sensor pairs leading to element m in the coarray

Wm = {(n1, n2) ∈ S2|n1 − n2 = m} (3.3)

ω(m) = Card(Wm) (3.4)

where ω(m) is the weight function and Wm represents the set of physical sensor pairs

leading to the m-th virtual sensor in the coarray, Card(Wm) returns the cardinality of set

Wm.

If it is a hole at the m-th position in the coarray, ω(m) = 0. It is well established

that the values of the weight function corresponding to small sensor separation m have

high mutual coupling effect. Particularly, the first three values ω(1), ω(2), ω(3) would be

of great interest since they contribute primarily to the mutual coupling due to their small

sensor separation [71, 113]. For simplification, we will exploit the first three values of

weight function for analytical discussion of the mutual coupling effect in the following

part.

In the conventional coprime array, it has been proved that some sensors in the 2M -

elements sub-array are redundant [111, 112]. In other words, removing these redundant

sensors will not change the difference coarray geometry. As shown in Fig. 3.1, by removing

the redundant sensors in the rectangle, the conventional coprime array turns out to be a

TCA.

The number of contiguous redundant sensors for a conventional coprime array (except
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for M = 3) is given by

Sred = dM2 e (3.5)

where these redundant sensors are all in the 2M -elements sub-array and the index of these

redundant sensors starts from bM2 c+1. The symbol dxe returns the smallest integer greater

than x and bxc denotes the greatest integer less than x. The proof for the redundancy of

these sensors can be found in [112].

The case ofM = 3 is special, for which, there are still dM2 e = 2 redundant sensors in the

2M -elements sub-array. However, these two redundant sensors are no longer contiguous.

Their positions are MN and N . The redundancy of sensor at position MN has been

proved in [112]. By applying the similar derivation, we can also prove the redundancy of

the sensor positioned at N .

3.2.3 Holes-triangle

To better explain the design rules of the proposed rearranged coprime array, we first

classify all the holes into a specific order with a 2D-representation. In [77], CCA method

classifies the holes into several layers including M − 1 complete layers, and M − 1 extra

sensors are required in the complementary sub-array to fill all the holes. Though CCA can

fill all the holes, the way that these extra sensors are utilized to fill the holes is not always

efficient due to the way the holes are classified. In this section, we classify the holes into

several sub-triangles, where we can fill the holes in a more efficient way. Our aim is to fill

the holes only with the dM2 e redundant sensors such that no extra sensor is required. We

classify the holes from another point of view. Based on the position of holes, we define

holes-triangle to represent all the hole elements.

Definition 3: A holes-triangle is a triangle-like structure with its elements given by

h ∈ H. (3.6)

The holes-triangle can be divided into several sub-triangles with each consisting of a left-

side and a right-side. In a sub-triangle, starting with a given hole element h, the left-side

87



Part , Chapter 3 – Rearranged coprime array for passive DOA estimation using 2-DC

MN+M

MN+M+M

MN+M+2N

MN+M+N

MN+M+2M

MN+M+(M-2)NMN+M+(N-2-ëN/Mû )M

MN+M+M+N

Left side Right side

Figure 3.2 – Holes-triangle with M = 8, N = 9.

is defined as the set

{h+ b′1M | h+ b′1M < (2M − 1)N} (3.7)

with its elements in increasing order, and the right-side is defined as the set

{h+ b′2N | h+ b′2N < (2M − 1)N} (3.8)

88



3.3. Rearranged coprime array configuration

also with its elements arranged in increasing order. The intersection element h between

the left-side and right-side is called the vertex of the corresponding sub-triangle.

An example of holes-triangle with M = 8, N = 9 is given in Fig. 3.2. The hole

elements are represented with circles and the arrows indicate the increasing direction

between two neighbor elements. We emphasize the biggest sub-triangle with two dotted

ovals for illustration, which has the most hole elements among all the sub-triangles. The

value of elements on the left-side increases fromMN +M toMN +M +(N−2−bN
M
c)M

while that of the right-side increases from MN +M to MN +M + (M − 2)N .

3.3 Rearranged coprime array configuration

3.3.1 Rearrangement of sensors

In [77], some additional sensors are introduced at the position corresponding to the

biggest value in each left-side or right-side of some sub-triangles to fill the holes. M − 1

additional sensors are required in the CCA method and it could be hardware expensive

when M is a large value. In this dissertation, we aim to fill the holes without introduc-

ing extra sensors. This can be achieved by relocating the redundant sensors at specific

sparse positions. By doing so, the length of consecutive coarray part can be significantly

increased. The position of sensors after the rearrangement can be given by:

S1={n1M |0 ≤ n1 ≤ N − 1} (3.9)

S2={n2N |(0 ≤ n2 ≤ b
M

2 c) ∪ (M + 1 ≤ n2 ≤ 2M − 1)} (3.10)

S3={−(MN +M + i(M +N))|0 ≤ i ≤ dM2 e − 2} (3.11)

S4={−(MN +M + (dM2 e − 1)N)} (3.12)

The configuration of our proposed rearranged coprime array is shown in Fig. 3.3. It can be

observed that there are totally (2M+N−1) physical sensors, exactly like the conventional

coprime array. The sub-arrays S1 and S2 form a TCA with (2M +N − 1)− dM2 e sensors.
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(2M-1)

Sub-array 1

Sub-array 2

Sub-array 3

M1
2

+






M

Sub-array 4

S3,m:

S4:

S3,m

S4

Figure 3.3 – Position of sensors in the rearranged coprime array. • : physical sensors, ◦ :
redundant sensors of the conventional coprime array.

The dM2 e redundant sensors of the original conventional coprime array are represented by

red dot circles. These redundant sensors are selected and rearranged outside the TCA to

construct sub-arrays S3 and S4.

The reason of rearranging the redundant sensors at S3 and S4 is based on the following

properties of the holes-triangle.

3.3.2 Holes filling after rearrangement

Property 1: For any given conventional coprime array, if one additional sensor is

positioned at the symmetric negative position of a sub-triangle vertex, namely −h, all the

holes elements on the left-side and right-side of the corresponding sub-array can be filled.

Proof. Assuming a given hole position h ∈ [MN + M, (2M − 1)N) in the holes-triangle,

its corresponding left-side and right-side elements can be given as set {h+ iM |h+ iM <

(2M−1)N} and {h+kN |h+kN < (2M−1)N} respectively. Sensors of the conventional

coprime array are located at two sub-arrays {n1M |0 ≤ n1 ≤ N − 1} and {m1N |0 ≤ m1 ≤

2M − 1}.

If one additional sensor is introduced at position −h, for any hole element h+ iM at

the corresponding left-side, we can always find a sensor from the N -elements sub-array of
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the conventional coprime array such that

h+ iM = iM − (−h) (3.13)

Then the hole element h+ iM can be filled. Relation (3.13) holds for all the hole elements

at the left-side because 0 ≤ i ≤ N − 2− bN
M
c is a sub-set of [0, N − 1]. Similar derivation

can be applied to the corresponding right-side. Then Property 1 is proved.

Since we pick out the redundant sensors and relocate them outside the TCA, Property

1 can be modified as

Lemma 1: For a rearranged coprime array, if one redundant sensor is relocated at

the symmetric negative position of a sub-triangle vertex, all the holes elements on the

left-side and the first bM2 c+ 1 holes at the right-side can be filled.

Proof. Similar with the proof of Property 1, the elements at the left-side can be filled.

After picking out the redundant sensors, the indexes of the first bM2 c+1 remaining sensors

in the (2M−dM2 e) elements sub-array are distributed in [0, bM2 c]. For a given hole position

h, the following bM2 c + 1 holes at the right-side, which are denoted as h + kN , can be

filled by calculating the difference

h+ kN = kN − (−h) s.t. 0 ≤ k ≤ bM2 c (3.14)

Then Lemma 1 is proved.

Our goal is to fill as many holes as possible (even all holes) with the dM2 e redundant

sensors. For each redundant sensor, a good solution is to position it at the vertex of the

sub-triangle which contains as much hole elements as possible. We have the following

property for any two sub-triangles.

Property 2: For any two sub-triangles with vertex elements h1 < h2, the number of

elements on the right-side corresponding to h2 can not be greater than that corresponding

to h1.
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Proof. This can be proved by contradiction. We assume that the elements on the right-

side of h2 are in the form h2 + i2N . Similarly, the elements on the right-side of h1 are

h1+i1N . Here, i1 ∈ [0, i1,max], i2 ∈ [0, i2,max]. The number of right-side elements associated

to h2 greater than the number of right-side elements associated to h1 is equivalent to

i1,max < i2,max. On the other hand, we should have h2 + i2,maxN < (2M − 1)N . Since

h1 < h2, we can easily obtain h1 + i2,maxN < (2M −1)N , which means that the right-side

of h1 has at least i2,max+1 elements (i1,max ≥ i2,max). This contradicts with i1,max < i2,max

and Property 2 is proved.

From Property 1 and Property 2, we can know that the left-sides can be easily filled.

This can be achieved by rearranging dM2 e−1 redundant sensors at position set S3. Since we

have only dM2 e redundant sensors to fill the holes, we particularly focus on the right-side

with the largest number of elements. This will naturally lead to the solution of position

S4. Fig. 3.4 is an example of the holes filling process withM = 7, N = 13. The highlighted

red triangles indicate the position of the rearranged redundant sensors at the symmetric

negative position. The hollow circles represent the unfilled holes and the solid circles

are the filled holes after rearranging the redundant sensors. There are totally dM2 e = 4

redundant sensors in this case, so we divide the holes filling process into 4 steps as shown

in Fig. 3.4.

It can be observed from Fig. 3.4 that three redundant sensors are rearranged at

−[MN + M + i(M + N)] in the first three steps, where 0 ≤ i ≤ dM2 e − 2 = 2. At

the first step, according to Lemma 1, only the first bM2 c+ 1 = 4 elements at the right-side

can be filled with one sensor at position −(MN +M). After the third step, the remaining

unfilled elements, including MN +M + (dM2 e − 1)(M +N), can be considered as a new

sub-triangle, whose vertex is MN + M + (dM2 e − 1)N . Therefore, we rearrange the last

redundant sensor at position −(MN +M + (dM2 e − 1)N) to fill these holes.

For a given number of sensors, the cardinality of U will be increased if most holes

are filled. Especially, we are more interested in the case where all holes in the range

[MN + M, (2M − 1)N) can be filled. Generally, 2M + N − 1 sensors are used in the

rearranged coprime array. It has been elaborated in the previous section that the number
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MN+M+(M-2)N

MN+M+(N-2-ëN/Mû )M

-(MN+M+M+N)

-(MN+M)

MN+M+(M-2)N

MN+M+(N-2-ëN/Mû )M

MN+M+(M-2)N

MN+M+(N-2-ëN/Mû )M

-[MN+M+2(M+N)]

MN+M+(M-2)N

MN+M+(N-2-ëN/Mû )M

-(MN+M+3N)

Figure 3.4 – Holes filling with the redundant sensors. M = 7, N = 13 ◦ : unfilled holes; •
: filled holes; N: rearranged sensor position.
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of redundant sensors is dM2 e. We consider the holes filling problem in two scenarios: 1)

odd value of M ; 2) even value of M .

Lemma 2: All the holes in [MN +M, (2M − 1)N) can be filled if



N can be any integer coprime with M, if M = 2, 3

3 < M ≤ 7, N < M + 4 + 12
M−3 , if M is odd

2 < M ≤ 8, N < M + 2 + 4
M−2 , if M is even.

(3.15)

The possible values of M,N satisfying Lemma 2 are listed in Table 3.1 and the proof is

provided as follows.

Table 3.1 – Possible values of M and N satisfying Lemma 2.
Possible value of M Possible value of N

2 Odd integers greater than 2
3 Integers coprime with 3
4 5,7
5 6,7,8,9,11,12,13,14
6 7
7 8,9,10,11,12,13
8 9

Proof. From the definition of holes-triangle and Lemma 1, we can easily derive that the

elements on the sub-triangle with vertex MN + M can all be filled by arranging two

sensors at positions −(MN + M) and −(MN + M + (dM2 e − 1)N). If there are some

holes remaining unfilled, without loss of generality, we can assume that there is only one

unfilled hole. Then the position of the unfilled hole can be divided into two scenarios.

1) If the unfilled hole is at the sub-triangles corresponding to S3, this unfilled hole will

be on the right-side of sub-triangle with vertex MN +M +M +N . This can be derived

according to Lemma 1 and property 2. After removing the elements in sub-triangle with

vertex MN +M , then MN +M +M +N is the smallest value of the remaining elements.

If there is another unfilled hole on another right-side corresponding to S3, there must be

one unfilled hole at the right-side of MN + M + M + N . This means MN + M + M +
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N + (bM2 c + 1)N < (2M − 1)N . Equivalently, to assure that all holes are filled, we can

formulate this case as

MN +M +M +N + (bM2 c+ 1)N > (2M − 1)N (3.16)

2) If the unfilled hole is not at the sub-triangles corresponding to S3, then this unfilled

hole will be on the right-side of the sub-triangle with vertex MN +M + (dM2 e − 1)(M +

N). This follows similar derivation as above. For the sub-triangle with vertex MN +

M + (dM2 e − 1)(M + N), its left-side elements are filled by the rearranged sensor at S4,

which is −(MN +M + (dM2 e − 1)N). However, if there are elements on the right-side of

MN + M + (dM2 e − 1)(M + N), they will remain unfilled. Then the smallest element is

equal to MN + M + (dM2 e − 1)(M + N) + N . Equivalently, to assure that all holes are

filled, we should have

MN +M + (dM2 e − 1)(M +N) +N > (2M − 1)N (3.17)

Relations (3.16) and (3.17) should both hold such that all the elements on the holes-

triangle can be filled. Considering the case with M an even integer and odd integer, we

can calculate (3.16) and (3.17) and obtain (3.15).

For the special case with M = 3, the two redundant sensors are not contiguous, which

are located at MN and N . According to the definition of the holes-triangle, there are at

most two elements at the right-side of each sub-triangle because b2 ≤M−2 = 1. Therefore,

all the holes will be filled by rearranging these two redundant sensors at −(MN + M)

and −(MN +M +N).

Then Lemma 2 is proved.

It should be mentioned that even if condition (3.15) is not met with other values ofM

and N , the rearranged coprime array can still fill most of the holes in [MN +M, (2M −

1)N). The consecutive part of the difference coarray can still be significantly enlarged. In

this case, the consecutive part ranges from 0 to h0 − 1, where h0 is the first hole in the

coarray of the rearranged coprime array. Then we can derive the following Lemma.
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Lemma 3: For M,N values that do not satisfy Lemma 2, the first hole occurs at

h0 =



M is odd


a1, if N < M(M−3)

2

a2, if N > M(M−3)
2

M is even


a1, if N < M(M−4)

4

a2, if N > M(M−4)
4

(3.18)

where a1 = MN + 2(M +N) + bM2 cN and a2 = MN + dM2 e(M +N).

Proof. If the condition in Lemma 2 is not met, there will be some unfilled holes in range

(0, (2M − 1)N). Considering only one unfilled hole, it can be written that

a1 < (2M − 1)N (3.19)

a2 < (2M − 1)N. (3.20)

Either (3.19) or (3.20) holds if only one hole is unfilled. If M is an odd value, without loss

of generality, it can be assumed that the unfilled hole occurs at position a1, which means

a1 < a2. (3.21)

Then it comes that N < M(M−3)
2 for (3.21). Similarly, if M is an even value, we can follow

the same derivation and obtain the solution N < M(M−4)
4 . Lemma 3 is then proved.

It is worth mentioning that our method does not require extra sensor to fill the holes.

While rearranging the redundant sensors, there is a trade-off between expanding the con-

secutive coarray part and having more redundant lags for averaging. On the one hand,

the sensor rearrangement could reduce the redundancy of some lags, which could poten-

tially increase the estimation error in very finite data case. On the other hand, the sensor

rearrangement can fill most of the holes. This directly provides some new information

instead of holes and allows the utilization of the inconsecutive coarray part. In general, as

M,N increase, the inconsecutive coarray part of the conventional coprime array becomes
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larger (approximate 50% of the whole coarray aperture [112] with sufficient big M,N)

and much information is wasted. If we can reduce this inconsecutive part by rearranging

few redundant sensors, it can bring more benefit for the estimation.

3.3.3 Weight function

Apart from a larger consecutive part in the difference coarray, another benefit of the

proposed rearranged coprime array is its less mutual coupling effect. It is well known that

the mutual coupling is strongly dependent on the distance separation between sensors

[82, 115]. Especially, sensors with a small distance separation could contribute strong

mutual coupling. Since ω(m) indicates the number of physical sensor pairs contributing

to separation m, we approximately quantify the mutual coupling with the help of the

weight function. For simplification, we particularly focus on the first three weight function

values, i.e. ω(1), ω(2), ω(3).

In the rearranged coprime array, sub-arrays S1, S2 form a TCA. For a given number

of M and N , the corresponding first three weight function values of TCA, denoted as

ω
′(1), ω′(2), ω′(3), have been provided in [112]. Considering the contribution of sub-arrays

S3, S4, we have the following property.

Property 3: For the proposed rearranged coprime array, the interaction between S3

and S4 contributes at most one additional value to either one of ω′(1), ω′(2), ω′(3), which

can be formulated as:

ω(1) + ω(2) + ω(3)≤ω′(1) + ω
′(2) + ω

′(3) + 1 (3.22)

s.t. ω(1) ≥ ω
′(1)

ω(2) ≥ ω
′(2)

ω(3) ≥ ω
′(3)

Proof. The interaction between S1 and S2 leads to ω′(1), ω′(2), ω′(3). The minimum spac-

ing between S3, S4 and S1, S2 is M + N ≥ 5. This means that the cross interaction

between S3, S4 and S1, S2 has zero contribution to ω(1), ω(2) and ω(3). Therefore, we
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only need to consider the interaction between S3 and S4. The minimum inter-element

spacing of S3 equals toM +N such that the self-interaction of S3 has zero contribution to

ω(1), ω(2), ω(3). On the other hand, S4 has only one sensor. The cross interaction between

S3 and S4 can be divided into two scenarios:

(1) (dM2 e − 2)(M +N) < (dM2 e − 1)N ;

(2) (dM2 e − 2)(M +N) > (dM2 e − 1)N .

In the first scenario, the only possible cross-interaction contribution to ω(1), ω(2), ω(3)

is d1 = (dM2 e−1)N−(dM2 e−2)(M+N). This is obvious because for other cross-interactions,

they hold the form d1 + k(M +N), which is greater than 5.

In the second scenario, there will be two sensors of S3 (with spacing M +N) at both

sides of S4. Assuming the distance of S4 to the nearest sensor is d′1, then the distance of S4

to the second nearest sensor is M +N − d′1. It is obvious that d
′
1 and M +N − d′1 are the

only two possible contributions to ω(1), ω(2), ω(3). Due to the coprime property ofM , N ,

the minimum value ofM+N is 5 forM = 2, N = 3. WithM = 2, N = 3, there is only one

redundant sensor located at S3 and it brings no contribution to ω(1), ω(2), ω(3). For other

values of M,N , M +N ≥ 7 and the following conditions can not hold simultaneously.

d
′

1 ≤ 3 (3.23)

M +N − d′1 ≤ 3 (3.24)

This means that d′1 and M + N − d
′
1 contribute at most one value to either one of

ω(1), ω(2), ω(3). Property 3 is then proved.

Since ω(1) contributes the most to the mutual coupling, we especially investigate ω(1)

for different M . It has been proved that ω′(1) = 2 only when M = 2 for TCA. From the

above discussion, it is obvious that our method will not increase ω(1) when M = 2. This

is because there is only one redundant sensor and the rearrangement of this redundant

sensor will not change ω(1), which means ω(1) = ω′(1) = 2 for M = 2.

When M > 2, we assume the case that the interaction between S3 and S4 contributes
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one value to ω(1), which can be formulated as

−(MN +M + i(M +N)) = −(MN +M + (dM2 e − 1)N)± 1 (3.25)

where 0 ≤ i ≤ dM2 e − 2. Then we can obtain

N = iM ± 1
dM2 e − 1− i

(3.26)

Only when the value of N meets condition (3.26), the relation ω(1) = ω′(1) + 1 = 2 is

satisfied. Notice that N > M and M > 2 as assumed above, only a few values of N will

have contribution to ω(1) for a given value of M . For example, with M = 6, only N = 7

meets condition (3.26). For other cases, our method holds a low value of ω(1) = 1, which

allows us to attenuate the mutual coupling.

Compared with other sparse array configurations, it has been proved that though

second order super nested array has small values of ω(1), ω(3), the value of ω(2) could

increase with the array size. Similar phenomenon could also happen to ANA1, ANA2 and

MRA [112]. TCA can obtain low values for ω(1), ω(2), ω(3). The proposed rearranged

coprime array has similar ω(1), ω(2), ω(3) property with TCA, which achieves ω′(1) =

ω
′(2) = ω

′(3) = 1 for odd M ≥ 5 and M 6= 6. This makes the proposed rearranged

coprime array structure a promising strategy to decrease the mutual coupling effect.

3.3.4 Holes filling ratio

Furthermore, since the number of redundant sensors is limited to dM2 e, it is important

to fill the holes in an efficient way. We define the holes filling ratio to evaluate the holes

filling efficiency.

Definition 4: For a given number of sensors that are rearranged to fill the holes, the

holes filling ratio is defined as the number of holes that can be filled by these sensors

r = Card(H)− Card(H′)
Sr

(3.27)
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Here, Card(H) and Card(H′) are the cardinality of hole elements between [MN+M, (2M−

1)N) before holes filling and after holes filling respectively. Sr is the number of rearranged

sensors, i.e. Sr = dM2 e for the proposed rearranged coprime array and Sr = M−1 for CCA

since it requires M − 1 additional sensors to fill the holes. A higher value of r indicates

that the rearranged sensors can fill more holes.

It can be derived that for given values of M and N , if the CCA mechanism and

rearranged coprime array can fill the same number of the holes, the proposed rearranged

coprime array could achieve higher value of r because dM2 e ≤ M − 1. With the increase

of M , the difference between dM2 e and M − 1 becomes larger and the proposed array can

achieve a higher r. Even in the case that the rearranged coprime array cannot fill all the

holes but fill most holes, it could still achieve a high value of r.

3.3.5 DOFs comparison with other coprime based configurations

To fairly compare our proposed method with the other coprime based methods, we

consider the optimum values of M,N for different methods for a given number of sensors.

In the following, we denote M,N for the conventional coprime array and our proposed

method, Mc, Nc for CCA and Mt, Nt for TCA.

It is obvious that our proposed method can achieve larger consecutive coarray than

the conventional coprime array because it fills the holes in the coarray constructed from

the conventional coprime array. For comparison with TCA and CCA, we consider the case

where our method can not fill all the holes. In this case, we denote the consecutive coarray

length by min(a1, a2), with a1 = MN +2(M +N)+bM2 cN and a2 = MN +dM2 e(M +N).

By referring to the selection strategy of CCA [77], Mc, Nc rely on the maximum number

of DOFs and can not be directly compared with our proposed method. We compare our

method and CCA from another point of view. Given K = 2M + N − 1 sensors, without

loss of generality, we assume that a1 < a2 for our method such that the consecutive

coarray length is a1. Then we calculate Mc, Nc for CCA by assuming that its maximum

number of DOFs is a1. Thus, from [77] it comes that CCA requires 3Mc +Nc− 2 sensors.

If 3Mc +Nc − 2 > K, then CCA requires more than K sensors to achieve the maximum
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number of DOFs of a1.

We first consider K as an even value. In this case, the two coprime integers of our

method are set to M = K+2
4 , N = K

2 [64]. Substituting these M,N values to a1 and

simplifying, we obtain

a1 > a′1 = 3K2 + 22K + 16
16 (3.28)

Then we assume that a′1 is the maximum number of DOFs of CCA, the values of Mc, Nc

can be given as [77]

Mc =
√
a′1
6 + 1

2 (3.29)

Nc =
√

3a′1
2 (3.30)

Therefore

3Mc +Nc − 2−K =
√

6a′1 − (1
2 +K)

=
√

9K2 + 66K + 48
8 −

√
8K2 + 8K + 2

8 (3.31)

Given that K > 0, it is obvious that the difference in (3.31) is greater than 0, meaning

that more sensors are required by CCA to obtain a given number of DOFs compared

with our method. Similarly, when a2 < a1 or K is an odd value, the same result can be

obtained. Then we can get the conclusion that our method can achieve larger consecutive

coarray part than CCA with a given number of sensors.

To compare with TCA, we notice that there are dMt

2 e sensors which can be removed.

If Mt = M,Nt = N , TCA has less sensors than the conventional coprime array. In other

words, for a given total number of sensors K = 2M + N − 1, Mt, Nt should be selected

as two values bigger than M,N to construct a TCA with K sensors. Without loss of

generality, we assume that Mt = M + y1, Nt = N + y2 with y1, y2 ≥ 0 and the total

number of sensors in TCA is K = 2Mt +Nt− 1− dMt

2 e = 2M +N − 1. It is obvious that

2y1 + y2 = dMt

2 e and the consecutive coarray length of TCA is MtNt +Mt.
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Similar with the above discussion, the optimum values of M,N meet the condition

N = 2M − 1 = K
2 when K is an even value. Furthermore, we assume that 2Mt + Nt − 1

is also an even value such that the optimum values of Mt, Nt satisfy Nt = 2Mt − 1. Then

it comes that

y2 = 2y1 (3.32)

Notice that 2y1 + y2 = dMt

2 e, which leads to

y1 = 1
4d
Mt

2 e (3.33)

Then it can be derived that

Mt = M + y1 = M + 1
4d
Mt

2 e

< M + 1
4(Mt

2 + 1) (3.34)

Reformulating (3.34), the following inequality can be obtained

−(MtNt +Mt) = −2M2
t > −

8
49(4M + 1)2 (3.35)

Therefore

a1 − (MtNt +Mt) = a1 − 2M2
t

> 3M2 + 5M
2 − 1− 2M2

t (3.36)

Substituting (3.35), it can be easily shown that a1 − (MtNt +Mt) > 0. Similarly, we can

also get a2 − (MtNt + Mt) > 0, which indicates that our method can achieve a larger

consecutive coarray part than TCA. Furthermore, the same conclusion can be achieved

when K = 2M +N − 1 is an odd value. Based on the above discussion, our method can

achieve larger consecutive coarray part than the existing coprime based configurations.
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Figure 3.5 – Holes filling ratio curves for the proposed method and CCA. N = M + 1.

3.4 Simulation results

In this section, we evaluate the holes filling ratio and the weight function for several

sparse arrays. The DOA performance is assessed by applying the spatial smoothing based

(SS) MUSIC algorithm. Several sparse arrays are considered for comparison, including the

nested array, second order SNA (Q=2), third order SNA (Q=3), MRA, ANA1, ANA2,

CCA, TCA. Since the conventional coprime array has the same difference coarray as TCA

for the same values of M and N , we only take TCA for comparison.
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Figure 3.6 – Weight function of seven different arrays.

3.4.1 Holes filling ratio

We first examine the holes filling ratio. The method we consider for comparison is

CCA. It should be mentioned that the CCA method utilizes additional sensors to fill

the holes while our rearranged coprime array uses only the redundant sensors from the

original conventional coprime array. From this point of view, our method is more hardware

economic compared to CCA. To assure that M and N are coprime, we set N = M + 1.

It can be seen from Fig. 3.5 that when M is small, the holes filling ratio of CCA and

the proposed rearranged coprime array is very close. As M becomes larger, the proposed

rearranged coprime array surpasses CCA and the difference between the two methods

becomes larger, which indicates that each rearranged sensor of our proposed method can

fill more holes than that of CCA.

3.4.2 Weight function

Then we compare the weight function of the nested array, ANA2, MRA, SNA (Q=2),

TCA, CCA with the proposed configuration. 14 sensors are considered in this part. For

the proposed array, we set M = 4, N = 7. The sensor positions of MRA are given in

the set {0, 1, 2, 8, 15, 16, 26, 36, 46, 56, 59, 63, 65, 68} [71]. For CCA, we set M = 3, N = 7.

104



3.4. Simulation results

It can be observed from Fig. 3.6 that the nested array and CCA have high values of

ω(1), ω(2), ω(3), which are ω(1) = 7, ω(2) = 6, ω(3) = 5 for the nested array and ω(1) =

4, ω(2) = 3, ω(3) = 7 for CCA. The ANA2 and SNA (Q=2) have small values of ω(1), ω(3)

but still hold a high value of ω(2), which are ω(2) = 5 and ω(2) = 6 respectively. The

MRA achieves ω(1) = 3 and ω(2) = ω(3) = 2 while TCA has smaller value of ω(1) = 1,

ω(2) = 2 and ω(3) = 1. Though CCA can fill all the holes, the length of the difference

coarray is limited to 35, which is only slightly larger than the consecutive part of TCA

(31 as shown in Fig. 3.6). This is due to the small value of M . The proposed method

achieves the same ω(1), ω(2), ω(3) as TCA. It can also be noticed that TCA has some

holes which are denoted as set {32, 36, 39, 40, 43, 44, 46, 47, 48}, while the proposed array

can fill all these elements.

An interesting fact is that the proposed strategy can also lead to some additional DOFs

beyond (2M − 1)N , which are the elements greater than 49 in Fig. 3.6. These additional

DOFs can be used if the compressive sensing based DOA estimation methods are applied

[101, 116]. By doing so, the proposed method can detect even more sources. In this work,

our main concern is to fill the holes and enlarge the consecutive part. We only consider

the SS-MUSIC afterward.

3.4.3 RMSE

Next, we take the mutual coupling effect into account and evaluate the RMSE of

these sparse arrays. As illustrated above, though CCA can fill the holes, its length of the

difference coarray is dramatically limited and it also has a high value of ω(1), ω(2), ω(3).

For a fair comparison, we will not compare CCA in this part.

The number of sensors is set to 18 and M = 5, N = 9 are considered for the proposed

rearranged coprime array. Notice that TCA only requires 15 sensors in this case and 3

redundant sensors are not used. For a fair comparison, we setM = 7, N = 9 for TCA such

that all 18 sensors can be utilized. By setting a largerM value, the consecutive part of TCA

is increased and the respective inter-element spacing is also increased. The sensor positions

of MRA are given by the set {0, 1, 8, 18, 28, 38, 48, 58, 68, 78, 88, 90, 92, 94, 97, 99, 101, 103}
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[117].
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Figure 3.7 – RMSE versus input SNR with 18 sensors, 12 sources, 1000 snapshots, |c1| =
0.3.

Fig. 3.7 and Fig. 3.8 examine the performance versus SNR. The number of snapshots

is set to 1000 and the mutual coupling parameters are set to c1 = |c1|ejπ/3 with |c1| = 0.3,

cl = c1e
−j(l−1)π/8/l and B = 100. When 12 sources uniformly located between −40◦ and

−40◦ impinge on the sparse arrays, the nested array exhibits the worst performance due

to its closely distributed sensors. Our proposed method achieves the best performance

compared to other methods as shown in Fig. 3.7. In the case with more sources than

sensors (25 sources in Fig. 3.8), ANA1 and ANA2 have worse performance than SNA

since they still have higher value of ω(1), ω(3) as shown in Table 3.2. The proposed

method can show very similar performance as MRA, which is slightly better than the first

few orders of SNA (Q=2, Q=3).
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Figure 3.8 – RMSE versus input SNR with 18 sensors, 25 sources, 1000 snapshots, |c1| =
0.3.

For a clear comparison, we also give the weight function and the maximum number of

detectable sources (max sources) with 18 sensors for SS-MUSIC in Table 3.2. The proposed

method and TCA show the lowest value of ω(1), ω(2), ω(3). An interesting phenomenon

can also be observed that the proposed method can detect up to 86 sources in this case,

which is greater than (2M − 1)N = 81 and very close to that of SNA. This means

that when the proposed strategy rearranges the redundant sensors to fill the holes within

[MN + M, (2M − 1)N), they may also further enlarge the consecutive part to a value

greater than (2M − 1)N simultaneously. This phenomenon happens for several different

values of M,N . On the other hand, the TCA can only detect 69 sources even though

higher values of M = 7, N = 9 are used in this case.

Fig. 3.9 and Fig. 3.10 compare the performance in terms of different number of snap-
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Table 3.2 – Weight function and maximum detectable sources with 18 sensors.
ω(1) ω(2) ω(3) max sources

Nested array 9 8 7 89
ANA2 2 7 2 96
MRA 1 6 1 103

SNA(Q=2) 1 8 1 89
TCA 1 1 1 69

Proposed array 1 1 1 86

shots. SNR is set to 0dB and |c1| = 0.3 is used. As the increase of the number of snap-

shots, the performance tends to different stable values for all methods. The length of

TCA consecutive part limits its performance, while the proposed method can expand the

consecutive part and achieve similar performance as the other arrays.
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Figure 3.9 – RMSE versus snapshots with 18 sensors, 12 sources, SNR=0dB, |c1| = 0.3.
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Figure 3.10 – RMSE versus snapshots with 18 sensors, 25 sources, SNR=0dB, |c1| = 0.3.

Finally, we investigate the performance under different magnitudes of mutual coupling

coefficient |c1|. 1000 snapshots are used and SNR is equal to 0dB. We examine the cases

with fewer sources to test the high mutual coupling scenarios, 10 sources in Fig. 3.11 and

20 sources in Fig. 3.12 respectively. The performance decreases for all methods when the

coupling coefficient becomes stronger. It can be observed from Fig. 3.11 that the proposed

array shows superiority to the other methods under high mutual coupling. Though the

TCA method has small value of ω(1), ω(2), ω(3), its performance is affected by the short

consecutive coarray. For the case of more sources than sensors, the proposed array does not

exhibit significant superiority compared to other arrays in low mutual coupling region. As

the coupling coefficient increases to values greater than 0.4, the proposed method starts

to achieve better performance than others.
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Figure 3.11 – RMSE versus |c1| with 18 sensors, 10 sources, SNR=0dB, 1000 snapshots.
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Figure 3.12 – RMSE versus |c1| with 18 sensors, 20 sources, SNR=0dB, 1000 snapshots.
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3.5 Conclusion

In this chapter, we focus on DOA estimation with coprime array. Concerning the holes

filling problem, we take it into account from the aspect of physical array geometry. The

property of the holes in the 2-DC of coprime array is investigated before formulating the

holes into a holes-triangle structure. We also review the redundant property illustrated

by the TCA, which indicates that some sensors in coprime array are redundant.

Inspiring by the TCA, we rearrange this redundant sensors to proper position such

that most of the holes can be filled. The holes-triangle is used to illustrate the proposed

rearrangement strategy of the redundant sensors. Also, the mutual coupling effect is also

considered in the proposition. The rearranged sensors are located at sparser position such

that the mutual coupling can be reduced.
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Chapter 4

ACTIVE DOA WITH SPARSE ARRAY

USING FOURTH ORDER CUMULANTS

4.1 Introduction

In this chapter, we investigate the active sensing using sparse arrays. The MIMO

radar for active DOA sensing is inspired by the MIMO communication theory. A MIMO

radar system consists of a transmit array including multiple transmitting antennas and a

receive array with multiple receiving antennas. In the previous chapters, only the difference

coarray is considered in the sparse arrays to enhance the DOFs. Apart from the difference

coarray, adopting the sum coarray is also a strategy to increase the DOFs.

The sum coarray signal has been simply discussed in the introduction chapter. To the

best of our knowledge, most literatures adopt second order statistics for MIMO radar.

In [118], the fourth order cumulants are considered in MIMO radar for DOA estimation.

However, the coarray concept is not considered in [118]. Most recently, the 4-DC related

to fourth order cumulants is analyzed in the scenario of passive DOA sensing to increase

the DOFs. But in MIMO system, the 4-DC corresponding to fourth order cumulants has

not been investigated thoroughly.

In our work, we first adopt the fourth order cumulants in sparse array MIMO system.

The considered sparse array configuration is the coprime array and our work can be

easily extended to other sparse array configurations. Compared with the second order

statistics case, we will show that the DOFs can be increased when exploiting the fourth

order cumulants in the MIMO system due to the constructed 4-DCSC. The property of
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4-DCSC is then investigated to quantify the DOFs and the holes in the coarray.

Though adopting fourth order cumulants can increase the DOFs, the enhancement of

DOFs in the 4-DCSC of coprime array is still limited since the classical coprime array is

designed for 2-DC. The same phenomenon happens in other sparse array configurations

which are designed for 2-DC, 4-DC or 2-DCSC. Is it possible to design novel sparse

array geometry such that the DOFs can be further increased for the case of 4-DCSC?

Our second work provides positive answer to this problem. We reformulate the 4-DCSC

geometry design problem and simplify it into two separate problems: a fourth order sum

coarray (4-SC) problem and a 2-DC problem. A novel virtual nested array based MIMO

geometry is then proposed and it is shown that the DOFs can be significantly increased

compared to the exist sparse array configurations.

4.2 Fourth order cumulants data model

We first introduce the fourth order cumulants data model before further discussion

about the fourth order difference coarray (4-DC). Assuming a K sensors linear array

receives the signals from D sources, where the impinging signals are assumed to be zero-

mean stationary and non-Gaussian. In our work, we also assume that the signals are

statistically independent since our main goal is to properly design the array geometry.

Without loss of generality, we denote the received signals in general form, which can be

written by

x(t) = [y1(t), y2(t), ..., yK(t)]T (4.1)

Then the fourth order cumulants of variables yi1(t), yi2(t), yi3(t), yi4(t) are given by

Cum[yi1(t), yi2(t), y∗i3(t), y∗i4(t)] = E[yi1(t)yi2(t)y∗i3(t)y∗i4(t)]− E[yi1(t)yi2(t)]E[y∗i3(t)y∗i4(t)]

−E[yi1(t)y∗i3(t)]E[yi2(t)y∗i4(t)]− E[yi1(t)y∗i4(t)]E[yi2(t)y∗i3(t)](4.2)

Here, 1 ≤ i1, i2, i3, i4 ≤ K. Consider a MIMO system composed of a transmitting array

with N transmitters and a receiving array with 2M receivers with M,N two coprime
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integers. The two coprime arrays share the same first element and their element positions

are given by

St = {nMd0 | 0 ≤ n ≤ N − 1} (4.3)

Sr = {mNd0 | 0 ≤ m ≤ 2M − 1} (4.4)

The received signal model of a coprime MIMO system has been provided in Chapter 1,

which is

xs(t) =
D∑
i=1

at(θi)⊗ ar(θi)si(t) + n(t) = Ass(t) + n(t) (4.5)

Then one can write the fourth order cumulants matrix of the MIMO received signal as

C4,x =
D∑
i=1

c4,si [as(θi)⊗ a∗s(θi)]× [as(θi)⊗ a∗s(θi)]H

=
D∑
i=1

c4,sia4(θi)aH4 (θi) (4.6)

where a4(θi) = as(θi) ⊗ a∗s(θi) with as(θi)=at(θi) ⊗ ar(θi) and c4,si is the fourth order

circular cumulant of si(t), denoted by:

c4,si = Cum[si(t), si(t), s∗i (t), s∗i (t)] (4.7)

The vector as(θi) is a 2MN × 1 vector such that the cumulant matrix C4,x is a

(2M)2N2× (2M)2N2 matrix, which has larger dimension compared with the (2M +N −

1)2 × (2M + N − 1)2 cumulant matrix in [95, 96]. Vectorizing the cumulant matrix C4,x

can lead to a virtual array signal model with larger effective array aperture, which can be

denoted by

c = vec(C4,x) = Avirp (4.8)

where p = [c4,s1 , c4,s2 , ..., c4,sD ]T is the fourth order cumulants of the D targets and Avir
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can be considered as the manifold matrix of the virtual array, which is given by

Avir = [avir(θ1), avir(θ2), ..., avir(θD)] (4.9)

with

avir(θi) = a4(θi)∗ ⊗ a4(θi) (4.10)

The elements of avir(θi) take the following form

ejπ(
∑2

i=1 vi−
∑4

i=3 vi) sin(θi) (4.11)

where vi is the element of 2-SC of MIMO system, vi ∈ Ss, i = 1, 2, 3, 4. Each vi takes

values from the sum coarray set independently. Interestingly, it can be observed that

2∑
i=1

vi −
4∑
i=3

vi = (v1 − v3)− (v4 − v2) (4.12)

It is obvious that v1 − v3, as well as v4 − v2, are the 2-DC of the sum coarray and (4.12)

is also in the form of a difference coarray. In other words, we can equivalently consider

that the 4-DC of sum coarray is obtained by calculating the 2-DC one more time to the

2-DC of the sum coarray. By properly selecting the corresponding elements to construct

the 4-DC, the spatial smoothing based MUSIC [66] can be used for the DOA estimations.

4.3 Property of 4-DCSC of coprime array

In the following, we want to apply the spatial smoothing MUSIC and it is important

to investigate the property of the 4-DCSC. Since the 4-DCSC has close relation with the

2-DC and 4-DC, we first recall some properties of 2-DC. In the previous chapters, we have

shown that the holes in the 2-DC of coprime arrays with 2M + N − 1 sensors, occur at

position

±(b1M + b2N) (4.13)
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Considering the symmetric property of the difference coarray, we classify the 2-DC of

coprime arrays into two parts: the central consecutive part which ranges from −(MN +

M − 1) to (MN +M − 1), and the inconsecutive part including holes. For simplification,

we consider only the positive coarray part and obtain the following Lemma.

Lemma 4: Considering the elements and holes in the 2-DC of coprime arrays, the

distance between the first hole and the i-th hole equals to the distance between the

elements with farthest position and the i-th farthest position.

Proof. We first focus on the holes. Denoting the distance between the first hole and i-th

hole as hi and considering M < N , we can derive that

h1 = 0, (4.14)

h2 = M (4.15)

This is because that the second hole occurs at MN + 2M . For the third hole, h3 takes

the minimum value from 2M and N , which is

h3 = h1 + min(2M,N) (4.16)

However, the relationship between the fourth hole and the first hole is uncertain be-

cause the relationship between 2M and N depends on the values of M,N . Alternatively,

we can establish the relationship between the fourth hole and the second hole, which is

given by

h4 = h2 + min(2M,N) (4.17)

This can be obtained directly from (4.13). Then, it can be generalized that

hi+2 = hi + min(2M,N) (4.18)

Similarly, for the elements in the 2-DC, we denote the element with the farthest position

(2M−1)N as the first element. The nearest element away from the first element is denoted
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as the second element, and more generally the i-th farthest position element is denoted

as the i-th element. Then the distance between this first element and the i-th element

is referred as ei. It is obvious that e1 = 0 and e2 = M because the second element is

(2M − 1)N −M . Then for the third element, it is obtained by

(2M − 1)N −min(2M,N) (4.19)

And we can have

e3 = e1 + min(2M,N) (4.20)

and

e4 = e2 + min(2M,N) (4.21)

As a result, we can derive that

ei+2 = ei + min(2M,N) (4.22)

Since h1 = e1, h2 = e2, we can obtain that hi = ei and Lemma 4 is proved.

Since the 4-DC of an array is equivalent to apply the 2-DC one more time, we can

consider the 2-DC with holes as a new array and the 2-DC is applied one more time to

this new array. The following proposition can be obtained.

Proposition 2: For coprime arrays with 2M + N − 1 sensors, the holes of its 4-DC

occur at position

±[(2M − 1)N + b1M + b2N ], (4.23)

where 1 ≤ b1 ≤ N − 1− bN
M
c and M ≤ b2 ≤ 2M − 2.

Proof. We focus only on the positive part of the 4-DC. Since the consecutive part of

the 2-DC of coprime arrays ranges from −(MN + M − 1) to (MN + M − 1), it can be

easily derived that, the elements from 0 to 2(MN +M − 1) in the 4-DC can be obtained

by taking the difference of two elements in the consecutive part of the 2-DC. Then the

elements from 2(MN + M − 1) + 1 to (2M − 1)N + MN + M − 1 can be obtained by
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taking the difference between the element (2M − 1)N and one corresponding element in

the consecutive part of the 2-DC.

Then we prove that the first hole of the 4-DC occurs at position (2M−1)N+MN+M

by contradiction. Notice that the difference between element (2M−1)N and −(MN+M),

or MN +M and −(2M − 1)N equals to (2M − 1)N +MN +M . However, ±(MN +M)

are two holes in the 2-DC. Assuming that there are two elements in the 2-DC that can

lead to (2M − 1)N +MN +M , denoted as a1, a2. It is obvious that one element should

lay in the negative part (−(2M − 1)N,−MN − M) and another in the positive part

(MN +M, (2M − 1)N). Without loss of generality, we assume that a1 is positive and a2

is negative. Then we can have

a1 − a2 = (2M − 1)N − a0 − (−MN −M − a0)

= (2M − 1)N +MN +M (4.24)

where a0 is an integer representing the distance between a1 and (2M−1)N , or the distance

between a2 and −(MN + M). However, inspired by the Lemma 4, for any elements

a1 ∈ (MN +M, (2M − 1)N) with distance a0 to (2M − 1)N , the position a2 ∈ (−(2M −

1)N,−(MN+M)) with same distance a0 to −(MN+M) must be a hole. It is impossible

to find suitable a1, a2 in the 2-DC that satisfy condition (4.24). Then the first hole position

in the 4-DC is (2M − 1)N +MN +M .

For the other holes, we can perform similar derivations. Proposition 2 is then proved.

It can be noticed that the holes in the 4-DC is a shift version of the holes in the 2-DC.

The consecutive part in the 4-DC is significantly enlarged. Then we extend Proposition

1 to the 4-DCSC of coprime arrays and the following proposition is achieved.

Proposition 3: For coprime array elements position set denoted by St∪Sr, whose sum

coarray is denoted as Ss, with the largest position value element of transmitting array St
equals to at,max, and largest position value element of receiving array Sr equals to ar,max,
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Figure 4.1 – Comparison of several coarray structures with M = 3, N = 4. (a) Physical
array; (b) Sum coarray; (c) 2-DC of physical array; (d) 2-DCSC (e) 4-DC of physical
array; (f) Proposed 4-DC of sum coarray.

the holes in the 4-DC of this sum coarray occur at position

±[2at,max + ar,max + b1M + b2N ] (4.25)

Proof. The positions of holes in the sum coarray of a coprime array have been given in

[119]. In our case with the receiver array of 2M sensors, the consecutive part of the sum

coarray lays in the range [(M − 1)(N − 1), 2MN − 1]. Some holes in the sum coarray lay

at the left side of the consecutive part, given by (2M−1)N−b1M−b2N , while the others

occur at the right side of consecutive part, given by (N − 1)M + b1M + b2N .

We first focus on the positive 2-DC of this sum coarray and the holes of this positive

2-DC occur at (N −1)M + b1M + b2N . This can be proved by taking the difference of two

elements in the sum coarray similar with the derivation illustrated in the Lemma 4. For

the inconsecutive part on the left of the sum coarray consecutive part, the first element is 0

and the i-th element locates esi away from the first element. Similarly for the inconsecutive

part on the right of the consecutive part, the first hole is (N−1)M+MN+M and the i-th

hole locates hsi away from the first hole. Following the illustration in the Lemma 4, we can

have esi = hsi. Then it is impossible to obtain (N − 1)M + M + N by taking difference

between two elements. This can be generalized and it leads to the holes expression of

2-DC of the sum coarray, which is (N − 1)M + b1M + b2N .

Then we focus on the 4-DC of this sum coarray. By using similar contradiction as

those illustrated in Proposition 2, we can obtain that the holes of 4-DC of the sum
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coarray are also a shift version of the holes in 2-DC of sum coarray, with a shift distance

of (N − 1)M + (2M − 1)N . With at,max = (N − 1)M and ar,max = (2M − 1)N , the holes

are given by 2at,max + ar,max + b1M + b2N . Proposition 3 is proved.

4.3.1 Simulation results and discussion

In this section, we will use a 9 sensors coprime array with M = 3, N = 4 in our

simulation. The spatial smoothing based MUSIC is exploited for DOA estimation. The

physical array geometry and the respective sum coarray, 2-DC, 4-DC and the proposed

strategy are shown in Figure 4.1. We can observe that the 4-DC can significantly enlarge

the coarray aperture compared to the 2-DC. However, our proposed strategy can even

further increase the aperture. Up to 52 targets can be resolved with our proposition

compared to 34 resolvable targets in 4-DC of physical array.

Figure 4.2 is the estimated MUSIC spectrum of 40 targets with SNR=0dB and 500

snapshots. The targets are uniformly distributed in [−75◦, 75◦]. It is clear that the 4-DC

of physical array method is not able to identify 40 targets while our proposition can do

it.

4.4 Virtual nested array using postage stamp prob-

lem

In this section, we assume that the transmit array and the receive array of the MIMO

system are identical. Though the 4-DCSC can increase the DOFs compared with the 2-

DCSC for a same MIMO geometry, the coprime MIMO is mainly designed for the 2-DC.

Also, most existing sparse array geometries are designed for 2-DC, 4-DC or 2-DCSC.

When they are adopted for constructing a 4-DCSC, further improvement is still possible

if the array geometry is optimized. Since the 4-DCSC is equivalent to apply the 2-DC one

more time to the 2-DCSC, the cross correlations between the elements in the 2-DCSC

make the array geometry design problem more complicate than the 2-DCSC. To address

this problem, we propose a new nested array based MIMO approach which can achieve
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Figure 4.2 – MUSIC spectrum of DOA estimation using proposed 4-DC of sum coarray.
M = 3, N = 4.

large number of consecutive DOFs in the 4-DCSC. Our proposition can be summarized

as follows;

1) We reformulate the 4-DCSC geometry design problem and simplify it into two

separate problems: a fourth order sum coarray (4-SC) problem and a 2-DC problem.

2) We separately consider the optimization of the 4-SC and the 2-DC. We formulate

the 4-SC problem as a postage stamp problem and use only a few integers to achieve a

4-SC integer set which contains a wide range of consecutive integers.

3) The 4-SC integer set is utilized to represent a virtual nested array to which the 2-DC

is applied. The inter-element spacing of the virtual nested array is determined according

to the elements in the 4-SC. By doing so, the DOFs of the corresponding 4-DCSC are

significantly increased.
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4.4.1 Reformulation of 4-DCSC

To properly design the array geometry, we first reformulate the 4-DCSC. We extract

the 4-DCSC term and rewrite it by substituting the definition of the 2-SC

(v1 − v2)− (v3 − v4)

= [(ci1 + cj1)− (ci2 + cj2)]− [(ci3 + cj3)− (ci4 + cj4)]

= (ci1 + cj1 + ci4 + cj4)− (ci2 + cj2 + ci3 + cj3) (4.26)

where ci1, cj1, ..., ci4, cj4 ∈ S. Without loss of generality, we define the 4-SC of a given

physical array as follows.

Definition 5 The 4-SC of S is the 4 times summation of elements in S, denoted by

S4sc = {u = ci1 + ci2 + ci3 + ci4 | ci1, ci2, ci3, ci4 ∈ S} (4.27)

It can be seen that (4.26) can be considered as the 2-DC of elements in S4sc. If we properly

design S and its corresponding S4sc is equivalent to a nested array, the 4-DCSC problem

can be simplified as a 2-DC problem of nested array. To this end, we should properly design

the elements of S to obtain a virtual nested array and the 4-DCSC can be equivalently

achieved by applying the 2-DC to this virtual nested array. Before further discussion, we

first introduce the postage stamp problem.

4.4.2 4-SC optimization using postage stamp problem

Given positive integers h and k, for a set of k integers Yk = {y0, y1, ..., yk−1} with

0 = y0 < y1 < y2 < ... < yk−1, the summation of h elements in Yk can generate a set

of consecutive integers Nn = {0, 1, 2, ..., n}, where the value of n is as large as possible

[120–122]. Here, the h elements in the summation can be the repetition of a same element

in Yk. This problem can be formulated as

Nn ∈ {
k−1∑
i=0

wiyi | wi ≥ 0,
k−1∑
i=0

wi = h}. (4.28)
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where coefficient wi is a non-negative integer performing as a weight coefficient of linear

combination. For given values of h and k, the possible maximum value n = n(h,Yk) is

denoted as h-range of set Yk, and the corresponding solution Yk is represented as h-basis

for integer k. The postage stamp problem is equivalent to the search of the optimum h-

basis Yk with given integers h, k such that n(h,Yk) will be as big as possible. By solving

the h-basis postage stamp problem, a much larger value of h-range can be obtained with

a small value of k.

4.4.3 virtual nested array and 2-DC

It is obvious that the 4-SC can be considered as a 4-basis postage stamp problem.

Some values of the achievable n(4,Yk) are provided in Table 4.1 with k ≤ 12 [120]. It can

be observed that as k increases, n(4,Yk) grows at a very fast rate. Our goal is to design

an array geometry which can achieve a large number of consecutive DOFs in the 4-DCSC

with as less sensors as possible.

Table 4.1 – Achievable n = n(4,Yk) with given k.
k 3 4 5 6 7 8 9 10 11 12
n 10 26 44 70 108 162 228 310 422 550

Without loss of generality, we assume that the physical array geometry consists of two

sub-arrays. Its integer sensor position indices set can then be expressed as S = S1 ∪ S2,

where S1 has N1 elements, S2 has N2 elements and S1, S2 share the same first element equal

to 0. We can separately consider the 4-SC of S1 and S2 to construct a virtual nested array.

For S1 with N1 sensors, we can obtain its 4-range n(4,YN1) by solving the postage stamp

problem. Many methods for solving the postage stamp problem have been proposed in

the number theory [121, 123]. One can also refer to Table 4.1 for the solution of n(4,Yk)

for k ≤ 12. It will be elaborated in the numerical results part that with a small value of

k, the consecutive DOFs can be a very high value, i.e. 9 sensors can achieve more than

4000 consecutive DOFs, which are sufficient for most scenarios.

Then, with N1 elements in S1, we can obtain a set of integers including the following
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part

{0, 1, 2, ..., n(4,YN1)}. (4.29)

Similarly, solving the postage stamp problem of S2 with k = N2, we can obtain the

following part

{0, 1, 2, ..., n(4,YN2)}. (4.30)

Interestingly, (4.29) and (4.30) can be equivalently related to two virtual sub-arrays of a

nested array. Without loss of generality, we consider that the integer set in (4.29) is re-

lated to a virtual nested sub-array with inter-element spacing d0. Then we can determine

the inter-element spacing of the second virtual sub-array as d1 = (n(4,YN1)+1)d0 [60] such

that the positions of the virtual sensors related to (4.30) are {(0, d1, 2d1, ..., n(4,YN2)d1)}.

By doing so, a virtual nested array is constructed and the 2-DC operation can be applied

to obtain the 4-DCSC.

The number of sensors in the two sub-arrays of a nested array has been discussed in

[60]. In our case, since we assume that two sub-arrays share the same first sensor, the total

number of sensors is N = N1 +N2−1. To choose the values of N1, N2, we follow the same

principles as in [60]. Two sub-arrays should have a similar (or the same) number of sensors,

and the number of sensors in the sub-array with larger inter-element spacing should not

be less than the sub-array with smaller inter-element spacing. More particularly, if N is

an odd value, N1 = N2 = N+1
2 . Otherwise, if N is an even value, N1 = N2− 1 = N

2 . Then

the following integer range

[−Clag, Clag] (4.31)

is a consecutive part in the 2-DC of the virtual nested array corresponding to (4.29) and

(4.30), which is also the 4-DCSC of the physical array, where Clag = n(4,YN2)(n(4,YN1)+

1).

It could be observed that n(4,YN1), n(4,YN2) are much bigger than N1, N2, which

means that Clag can be a very big value even with small values of N1, N2. For instance,

given 7 sensors with N1 = 4, N2 = 4, the consecutive part ranges in [-702, 702] and the

consecutive DOFs are 2Clag + 1 = 1405. A graphic illustration is provided in Figure 4.3.
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Only the positive part of the 4-DCSC is given since the negative part is symmetrical.
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Figure 4.3 – 4-SC and 4-DCSC of S with N = 7. (a) S1; (b) S2; (c) 4-SC of S1; (d) 4-SC
of S2; (e) 4-DCSC of S.

Apart from the consecutive integer sets in (4.29) and (4.30), it is worth noting that the

4-SC of the two sub-arrays also includes some integers bigger than n(4,Yk) as shown in

Figure 4.3, which can be considered as non-consecutive parts. When applying the 2-DC to

the 4-SC of the two sub-arrays, their non-consecutive parts can also lead to some additional

elements in the 4-DCSC and the consecutive DOFs could be potentially extended. This

phenomenon becomes significant when the value of k increases because more elements

are included in the non-consecutive part. This phenomenon will be exemplified in the

numerical results.

For the computational complexity, we consider two major parts, the cumulant matrix

estimation and the eigenvalue decomposition (EVD). The 2-SC signal vector is an K2× 1

vector and the dimension of C4,x is K4 ×K4. The EVD is implemented to a [Clag + 1]×

[Clag + 1] dimension matrix. With L snapshots, the computation complexity is 9K8L +
4
3(Clag + 1)3 [124, 125], which is higher than 2-DCSC [93]. It indicates that our proposed

scheme achieves higher DOFs with the cost of higher complexity.

For a given number of physical sensors with this strategy, we can obtain a virtual nested

array which contains large number of virtual sensors. The inter-element spacing of the

sparse virtual sub-array is expanded to O(n(4,YN1)), which is a significant enhancement

compared with O(N1) in [60]. The 2-DC can be adopted to these virtual sensors to further

increase the consecutive coarray length. This property can help to enhance the consecutive

DOFs efficiently with few physical sensors.
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4.4.4 Simulation results and discussion

In this section, we will estimate the DOA using the well established MUSIC method

and only the consecutive DOFs are utilized. The SNR is set to 0dB. The targets are

uniformly distributed in the direction interval [−60◦, 60◦].

Table 4.2 – Consecutive DOFs comparison for different array geometries.
Coarray type Array geometry consecutive DOFs

2-DCSC CPA 69
I-NA 309

4-DC SAFE-CPA 189
IEAS 305

E-FL-NA 337
4-DCSC CPA 149

Proposed method 4357

We first compare the consecutive DOFs of different geometries with 9 physical sensors

in Table 4.2. The two considered 2-DCSC geometries are CPA [93] and I-NA [94]. For

a fair comparison, we consider these two geometries utilizing the entire array as both

transmit and receive arrays. On the other hand, we also compare passive array geometries

using 4-DC, which are referred to as SAFE-CPA [101], IEAS [126] and E-FL-NA [104]. It

can be seen that the consecutive DOFs of CPA using 2-DC are limited to 69 while those

of I-NA are 309 due to its increased inter-element spacing. Similar phenomenon can be

observed for the 4-DC case.

When 4-DCSC is adopted to CPA, the consecutive DOFs can be increased compared

with 2-DCSC. However, the number of DOFs of CPA with 4-DCSC is still smaller than

some other geometries using 2-DCSC, i.e. I-NA, which indicates that proper geometry

design for 4-DCSC is required if one aims to increase the DOFs. As a comparison, our

proposed methods can significantly increase the DOFs to 2Clag + 1 = 3961 due to the

expanded inter-element spacing in the virtual nested array. If we take into account the

extended consecutive DOFs which is due to the non-consecutive part in the 4-SC, the

DOFs in the 4-DCSC are increased to 4357 as shown in Table 4.2.

Since the extended consecutive part outside the range [Clag, Clag] does not hold a
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Figure 4.4 – Consecutive DOFs comparison of 4-DCSC related to different geometries
versus number of sensors.

closed-form expression, we only focus on the consecutive DOFs within this range to ap-

proximately investigate the achievable consecutive DOFs with different number of sensors.

For the compared geometries, we also consider 4-DCSC for fair comparison. As shown in

Figure 4.4, the IEAS scheme outperforms E-FL-NA and I-NA as the number of sensors

increases while our proposed geometry can significantly surpass all the three compared

geometries. The consecutive DOFs can approximately achieve 10000 consecutive DOFs

with a total of 11 sensors, which are sufficient for most applications. Furthermore, the

consecutive DOFs increase rapidly when the number of sensors increases.

Finally, we compare the root mean square errors (RMSE) with different SNRs to

evaluate the estimation accuracy in Figure 4.5. We also adopt these geometries in the

MIMO case using 4-DCSC for fair comparison. For simplification, we use 6 sensors to
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detect 70 targets and 500 snapshots are utilized. The number of Monte-Carlo trials is

set to 200. It can be observed that the I-NA has worst performance and the E-FL-NA

scheme outperforms the IEAS scheme. This is mainly because the number of consecutive

DOFs strongly affects the RMSE performance and E-FL-NA has higher consecutive DOFs

than IEAS with 6 physical sensors, as shown in Figure 4.3. The relation of the number

of consecutive DOFs for different geometries with 6 sensors is E-FL-NA>IEAS>I-NA

while the proposed method significantly outperforms the three compared methods. The

enhanced DOFs significantly improve the RMSE performance of the proposed method.
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MIMO.
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4.5 Conclusion

In this chapter, we work on active DOA detection with sparse MIMO radar. We

first investigate the possibility for adopting fourth order cumulants to the MIMO radar.

Jointly combined with the sum coarray in active sensing, the fourth order cumulants can

generate a 4-DCSC, which has larger aperture than the second order covariance matrix

based method. The property of the 4-DCSC of coprime MIMO is derived and we show

that it holds similar holes property with the 2-DC while its DOFs are increased.

Then we reorganize the position of sensors in the MIMO array to seek for more optimal

geometry for the 4-DCSC which can have higher DOFs. We simplify the 4-DCSC and

reformulate it into two separate problems, which are a 4-SC problem and a 2-DC problem.

Then the 4-SC problem can be solved by solving a postage stamp problem. The 2-DC

problem is formulated as a virtual nested array problem and a 4-DCSC with significantly

high DOFs can be obtained.
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Chapter 5

CONCLUSION AND FUTURE

PERSPECTIVES

5.1 Conclusion

In this dissertation, our works mainly focus on sparse array and sparse sampling recon-

struction methods. Unlike the traditional ULA and Nyquist rate sampling, sparse array

and sampling can greatly reduce the hardware cost by using only a few measurements.

To rebuilt the sparse signals and estimate the desired parameters, the traditional MUSIC

method is reformulated to coarray based MUSIC dedicating for the virtual array gen-

erated by the sparse measurements. The sparse configurations considered in our works

include coprime array scheme and nested array scheme.

The coprime sampling scheme that can greatly release the sampling rate to a rate

much lower than the Nyquist sampling rate is examined in Chapter 2. Only two stan-

dard samplers are required for coprime sampling. However in practice for a realization,

coprime sampling method could encounter diagonal property loss problem under specific

conditions. We analyze this phenomenon mathematically and give the conditions under

which this problem happens. A random delay mechanism is then proposed to settle this

problem. The introduced randomness ensures the robustness of coprime sampling based

method under diagonal property loss conditions while the performance is slightly affected.

Apart from the diagonal property loss problem, there are also some holes in the 2-

DC of coprime scheme, which limits the length of consecutive coarray and decreases

the performance of the coarray based MUSIC method. We develop a multi-rate coprime
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sampling mechanism to interpolate the missing information of the holes. Multiple scaled

versions of the original 2-DC are generated by the multi-rate sampling before selecting

the hole elements from these scaled version 2-DCs. We also derive that if the multi-rate

parameters are properly designed, no extra sampling data is required and the proposed

method causes no additional sampling burden to the samplers, which is an attractive

feature.

In chapter 3, we focus on DOA estimation with coprime array. We investigate the

holes filling problem of coprime array from another aspect, which is the rearrangement

of sensors in coprime array. In conventional coprime array, some sensors are proved to be

redundant and the removal of these sensors does not change the structure of the 2-DC. In

our proposition, the rearrangement is considered only for these sensors and the relocated

positions of these sensors are carefully designed in accordance to the hole elements such

that they can fill as many holes as possible.

We also work on active DOA estimation using sparse MIMO radar in chapter 4. Con-

trary to most of the current sparse MIMO radar, we introduce the fourth order cumulants

for MIMO radar and jointly combine the 4-DC and 2-SC to further increase the DOFs.

The 4-DCSC of coprime MIMO is proved to be a promising strategy to enlarge the aper-

ture of virtual array compared with the 2-DCSC. We then consider the MIMO radar

geometry optimization problem within the framework of the 4-DCSC. A virtual nested

array similar to the passive DOA estimation case is proposed and we show that the DOFs

can be significantly increased.

5.2 Future perspectives

The above works are related to the frequency and DOA estimation. In the future,

several potential directions may be of our interest for further development.

Joint DOA and frequency estimation problem. Our previous works consider the fre-

quency estimation and DOA estimation separately. Since the key spirit of our works is

based on the difference coarray, it seems quiet promising to jointly estimate both frequency
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and DOA within a same framework.

Calibration problem. In our works, we only take the mutual coupling into account

in DOA case. In practice, there are many real world calibration problems. For instance,

in the time and frequency domain, the synchronization problem between samplers could

bring challenge for coprime sampling since coprime sampling strongly relies on the cross

correlation between the two sampled data sets. If the synchronization error becomes sig-

nificant, the difference coarray structure will be collapsed and the performance of the

coarray MUSIC method will be degraded.

Two dimension difference coarray problem. In this dissertation, only the one dimension

linear array is considered. The difference coarray can be extended to the two dimension

planar array scenario. Similarly, we can use few sensors in two dimension to generate a

much larger virtual planar array. Moreover, this can be combined with a massive MIMO

system, which is also a hot topic in recent years.
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Titre :  Estimation de paramètres à l'aide d'échantillonneurs et de réseaux coprime 

Mots clés :  Estimation de la fréquence, estimation de la direction d'arrivée, configuration coprime 

Résumé : Les réseaux et les capteurs éparse 
attirent de plus en plus l'attention en raison de 
leur capacité à augmenter les DOFs. La DOA ou 
la fréquence des signaux peut être estimée avec 
peu de capteurs d'antenne ou quelques 
échantillons sub-Nyquist collectés. Dans cette 
thèse, nous nous concentrons sur une structure 
bien reconnue, la configuration coprime, pour 
estimer la DOA ou la fréquence des signaux. 
 
Nous étudions d'abord l'échantillonnage 

coprime pour l'estimation de la fréquence et 
nous avons mis en évidence le phénomène de 
perte de propriété en diagonale à cause duquel 
l'estimation échoue totalement. Pour remédier à 
ce problème, nous proposons un mécanisme i 
ntroduisant un délai aléatoire pour garantir 
l'efficacité des méthodes basées sur 
l'échantillonnage coprime. 
 

Ensuite, nous développons également un 
schéma d'échantillonnage coprime à taux 
multiples afin d'utiliser pleinement les 
informations contenues dans les échantillons. 
 
En plus de l'estimation de la fréquence, nous 
travaillons également sur l'estimation de la 
DOA avec un réseau coprime. Nous 
réorganisons la structure des réseaux coprimes 
pour augmenter encore les DOFs sans 
introduire de coût matériel supplémentaire. 
Puis, nous introduisons des cumulants de 
quatrième ordre dans l'estimation de la DOA 
active avec le radar MIMO coprime. 
Finalement, nous optimisons la géométrie du 
radar MIMO en utilisant des cumulants de 
quatrième ordre et les DOFs peuvent être 
augmentés de manière significative. 

 

Title :  Parameters estimation with coprime samplers and arrays 

Keywords :  Frequency estimation, direction of arrival estimation, coprime configuration 

Abstract :  Sparse array and sparse sensing 
attract increasing attention due to their capability 
to increase the DOFs. The DOA or the 
frequency of signals can be estimated with few 
antenna sensors or few collected sub-Nyquist 
samples. In this dissertation, we focus on one of 
the most recognized sparse structures, coprime 
configuration, to estimate the DOA or the 
frequency of signals. 
 
We first investigate the coprime sampling for 

frequency estimation and come across with a 
diagonal property loss phenomenon for which 
the estimation totally fails. To address this 
problem, we propose a random delay based 
mechanism to ensure the effectiveness of 
coprime sampling based methods.  
 

Then we also develop a multi-rate coprime 
sampling scheme to fully utilize the information 
brought by the coprime sampling. 
 
Apart from the frequency estimation, we also 
work on the DOA estimation with coprime 
array. We rearrange the coprime array 
structure to further increase the DOFs without 
introducing additional hardware cost. Then we 
introduce fourth order cumulants in active DOA 
estimation with coprime MIMO radar. The 
DOFs of MIMO radar can be enhanced by 
adopting the fourth order cumulants. Finally, 
we optimize the MIMO radar geometry using 
fourth order cumulants and the DOFs can be 
significantly increased. 
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