In this manuscript, we study non-interactive arguments of knowledge, a cryptographic primitive that allows a prover to convince a verifier of the truth of a certain statement. In particular, we will analyze cryptographic constructions that allow a user to prove knowledge of a so-called witness x that satisfies a circuit C, i.e. such that C(x) = 1. We will focus on protocols that hide x while simultaneously guaranteeing soundness of the system. That is, cryptographic schemes that make it hard for the verifier to learn information about the input x that satisfies C.

First, we prove the existence of witness-indistinguishable non-interactive arguments of knowledge in the standard model. We call these protocols non-interactive zaps of knowledge, or zaks. Secondly, we revisit a family of zero-knowledge arguments of knowledge (SNARKs) that is particularly appealing for real-world applications due to its short (constant) proof size. We show that it can be moved to post-quantum assumptions, as long as the verifier is known in advance. We provide an implementation and extended benchmarks for this construction. Lastly, we consider a novel, anonymous cryptocurrency whose security can be guaranteed via arguments of knowledge: Mimblewimble. The cryptocurrency was proposed by an anonymous author in 2016. We provide the first formal analysis of it, fixing a security issue present in the initial proposal.
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Chapter 1 Introduction

Cryptography is the science of secure communication. It configures who can do what, from what [START_REF] Rogaway | The moral character of cryptographic work[END_REF]. In many applications today, securing the communication means allowing users to prove that they are acting according to a given protocol and yet only reveal information that is necessary [START_REF] Chase | Efficient non-interactive zero-knowledge proofs for privacy applications[END_REF]. Zero-knowledge (ZK) proof systems [START_REF] Goldwasser | The knowledge complexity of interactive proof systems[END_REF] allow us to prove statements about user secrets, without giving away anything more than what is strictly necessary. They can be used to prove that we are who we say we are, while never meeting in person, and while giving away nothing that could be used to impersonate us in future [START_REF] Chase | Efficient non-interactive zero-knowledge proofs for privacy applications[END_REF]. The essence of zero-knowledge proof systems is that it's possible to prove the truth of a certain statement and successfuly convince another party, without revealing any additional information besides the truth of the statement. Soundness of a proof system demands that if the proof verifies, then the statement is true.

A natural strengthening of security for a proof systems if a so-called proof of knowledge: it guarantees that, whenever the verifier is convinced by an efficient prover, not only the statement was true, but also the prover had knowledge of a witness associated to the statement. This fact is captured by requiring the existence of a knowledge extractor that can extract a valid witness from the proof. This stronger notion is essential in certain applications of zero-knowledge proofs such as anonymous credentials (cf. Section 1.4) and confidential transactions (cf. Chapter 5).

In this thesis, we are concerned with the design of cryptographic protocols (or cryptosystems) on the topic of non-interactive proofs of knowledge. We restrict ourselves to proofs of knowledge where security holds computationally, also called arguments of knowledge. Settling on computational security allows for significant savings in communication (and verification) [START_REF] Wee | Lower bounds for non-interactive zero-knowledge[END_REF], leading to schemes that can be implemented in practice. We focus on arguments of knowledge for which we can guarantee strong privacy guarantees: when ZK cannot be achieved, we focus on the (weaker) notion of witness indistinguishability.

Proof systems

Proof systems are interactive protocols where a user (called the prover) attempts to convince another user (called the verifier) that a certain proposition is true. We say that a proof system is non-interactive if the prover sends a single message to deliver the whole "proof". In a proof system, both parties are formalized as Turing Machines; the prover is computationally unbounded, while the verifier's runtime is polynomially bounded. The protocol is such that it's not possible to convince the verifier of a wrong statement. This property is called soundness, or validity. P versus NP. Proof systems are not only a cryptographic tool but also an object of study in theoretical computer science. One of the most important open problems in computer science is the problem of P versus NP. Essentially, it asks whether every problem whose solution can be efficiently verified can also be efficiently solved. It is one of the seven Millennium Prize Problems of the Clay Mathematics Institute. More formally, the class P is the class of languages L that can be decided in polynomial time. NP is the class of languages L such that there exists an algorithm that takes as input two bit strings x and w and that can decide in polynomial time (in the size of x), whether w is a valid proof or witness that x ∈ L . We suppose that for any statement x there exists such a witness w, while otherwise, no such witness exists.

The complexity class corresponding to interactive proofs is denoted IP and was studied in two seminal papers by Babai [START_REF] Babai | Trading group theory for randomness[END_REF], and Goldwasser, Micali, and Rackoff [START_REF] Goldwasser | The knowledge complexity of interactive proof-systems (extended abstract)[END_REF]. Interestingly, the power of interactive proof systems is not decreased if the verifier is only allowed random queries (that is, if it merely tosses coins and sends any outcome to the prover) [START_REF] Goldwasser | Private coins versus public coins in interactive proof systems[END_REF].

Shamir [START_REF] Shamir | IP=PSPACE. In 31st FOCS[END_REF] showed that IP is equal to the class PSPACE, which corresponds to algorithms that use a polynomial amount of space to store intermediate variables. The class PSPACE contains all languages that can be recognized by an algorithm that uses polynomial space, but which is allowed unbounded running time. In particular, the class PSPACE contains the class NP.

Another characterization of NP was provided via Probabilistically Checkable Proofs (PCP). A PCP[r(λ), q(λ)] is a type of proof that can be verified in polynomial time using at most O(r(λ)) random bits and by reading at most O(q(λ)) bits of the proof. The so-called PCP theorem [ALM + 92] states that NP = PCP[log λ, 1]. In other words, any language in NP can be encoded as a PCP that can be verified by only reading a constant number of bits and by using O(log λ) bits of randomness.

NIZK. An interactive proof system is said to be zero-knowledge (ZK) if the proof does not reveal any information besides the truth of the proposition (and whatever can be inferred from it). The concept of zero-knowledge proof systems was first proposed in [START_REF] Goldwasser | The knowledge complexity of interactive proof systems[END_REF] and is a central tool in modern cryptography. Consider an NP relation R which defines the language of all statements x for which there exists a witness w so that (x, w) ∈ R. In a zero-knowledge proof for R a prover, knowing a witness, wants to convince a verifier that x is in the language, without revealing any additional information about the witness. More precisely, a ZK proof system must be complete, that is, if the prover knows a witness for x then it can convince the verifier; sound, in that no malicious prover can convince the verifier of a false statement; and zero-knowledge: the execution of the protocol reveals no information to the verifier (beyond the fact that x is in the language). Soundness protects the verifier; zero knowledge protects the prover.

For practical applications, researchers immediately recognized two limiting factors in zeroknowledge proofs: the original protocols were interactive and the proof could be as long as (if not longer than) the witness. Non-interactive zero-knowledge proofs (NIZK) proofs [START_REF] Blum | Non-interactive zero-knowledge and its applications[END_REF] and succinct ZK arguments [START_REF] Kilian | A note on efficient zero-knowledge proofs and arguments (extended abstract)[END_REF][START_REF] Micali | CS proofs[END_REF] were introduced shortly thereafter. NIZK allow the prover to convince the verifier by only sending a single message. However, NIZK must rely on the existence of a common reference string (CRS) to which prover and verifier have access [START_REF] Goldreich | Definitions and properties of zero-knowledge proof systems[END_REF]. The CRS is assumed to have been set up by some trusted party, which represents a serious limitation for all applications of NIZK in scenarios where parties mutually distrust each other.

Zaps. Feige and Shamir [START_REF] Feige | Witness indistinguishable and witness hiding protocols[END_REF] proposed a relaxation of zero knowledge called witness indistinguishability, which only requires that it is indistinguishable which witness was used to compute a proof. This notion turns out to be sufficient in many contexts. Dwork and Naor [START_REF] Dwork | Zaps and their applications[END_REF] constructed a two-round witness-indistinguishable proof system for NP in the plain model, that is, where no trusted CRS is assumed. In their protocol, the first message (sent from the verifier to the prover) can be fixed once and for all, and the second one provides the actual proof. They called such protocols zaps. Barak,Ong,and Vadhan [BOV03] introduced the concept of non-interactive zaps, where the prover sends a single message to deliver the proof. Non-interactive zaps are thus non-interactive proof systems without a CRS. Since in this scenario it is impossible to achieve zero knowledge [START_REF] Goldreich | Definitions and properties of zero-knowledge proof systems[END_REF], witness indistinguishability (WI) is the best one can hope for.

Groth, Ostrovsky, and Sahai constructed the first non-interactive zaps from standard assumptions [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF]. Subsequently, Ràfols extended this line of research [START_REF] Ràfols | Stretching groth-sahai: NIZK proofs of partial satisfiability[END_REF]. All these zaps satisfy soundness, that is, a valid proof can only be computed for valid statements. Knowledge-soundness is an alternative notion of validity that not only demands the statement to be true, but also that the prover knows a witness for it. More specifically, knowledge-soundness requires that for each prover there exists an efficient extractor which can extract a witness from the prover whenever the latter outputs a valid proof. (When this holds for computationally bounded provers only, we speak of arguments rather than proofs [START_REF] Brassard | Minimum disclosure proofs of knowledge[END_REF].) Since, by definition, false statements have no witnesses, knowledge-soundness implies the standard notion of (computational) soundness.

More recently, Bellare, Fuchsbauer and Scafuro investigated the security of NIZK in the face of parameter subversion and observed that NI zaps provide subversion-resistant soundness and WI. This leaves open the question of whether it is possible to construct a subversion resistant WI zap that is knowledge-sound. We tackle this question in Chapter 3.

SNARKs.

Starting from Kilian's protocol [START_REF] Kilian | A note on efficient zero-knowledge proofs and arguments (extended abstract)[END_REF], Micali [START_REF] Micali | CS proofs[END_REF] constructed a one-message succinct argument for NP whose soundness is set in the random oracle model. Succinctness here means that the proof length is independent of the witness. Such systems are called succinct noninteractive arguments (SNARGs) [START_REF] Gentry | Separating succinct non-interactive arguments from all falsifiable assumptions[END_REF]. Several SNARGs constructions have been proposed [START_REF] Groth | Short pairing-based non-interactive zero-knowledge arguments[END_REF][START_REF] Gennaro | Quadratic span programs and succinct NIZKs without PCPs[END_REF][START_REF] Groth | On the size of pairing-based non-interactive arguments[END_REF], and the area of SNARGs has become popular in the last years with the proposal of constructions which introduced significant improvements in efficiency. An important remark is that all such constructions are based on non-falsifiable assumptions [START_REF] Naor | On cryptographic assumptions and challenges (invited talk)[END_REF], a class of assumptions that is likely to be inherent in proving the security of SNARGs for general NP languages (without random oracles), as shown by Gentry and Wichs [START_REF] Gentry | Separating succinct non-interactive arguments from all falsifiable assumptions[END_REF].

Many SNARGs are also arguments of knowledge [START_REF] Brassard | Computationally convincing proofs of knowledge[END_REF] -so called SNARKs [BCCT12, BCC + 14]. That is, they satisfy the stronger notion of validity called knowledge-soundness. SNARKs were initially introduced for verifiable computation and are now the most widely deployed proof systems. For instance, they are used in cryptocurrencies such as Zcash [BCG + 14], which guarantees confidentiality of monetary transactions via zero-knowledge SNARKs (zk-SNARKs). Zeroknowledge SNARKs are non-interactive succint arguments of knowledge that satisfy zero knowledge. As for all NIZK systems, a drawback of zk-SNARKs is that they require a CRS, that is, they require a one-time trusted setup of public parameters. Since for SNARKs every CRS has a simulation trapdoor, subversion of these parameters leads to full compromise of soundness [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF].

Instantiations and applications

Modern cryptography focuses on the idea of provable security [START_REF] Stern | Why provable security matters? (invited talk)[END_REF]. Provable security requires to define a formal communication model that describes how parties within the protocol, and an adversary. The capabilities of the adversary are formalized via the notion of oracle queries. No assumption is made on the specific attack method an adversary may use [START_REF] Koblitz | Another look at "provable security[END_REF].

Security properties are defined as one or more games, each intended to capture a security property, played by the adversary within the pre-defined communication model. The protocol is proven secure by showing that a successful attack would imply a solution to an underlying intractable assumption, like the discrete log or the shortest vector problem. As long as the underlying problem is sufficiently hard, the adversary's advantage is negligible, and the protocol is guaranteed to resist attacks by any adversary who works within the communication model regardless of what specific attacks are mounted. This allows us to pose trust on a handful of well-established hard problems, and have a mathematically rigorous theorem that establishes some guarantee of security (defined in a suitable way) under these problems.

Most of our protocols will be studied in the Common Reference String (CRS) model. The CRS model captures the assumption that a trusted setup in which all involved parties get access to the same output taken from some PPT algorithm G. Schemes proven secure in the CRS model are secure provided that the setup was performed correctly. If the output distribution of G is uniform, the CRS model is also seen as an acronym for Common Random String, to underline the fact that no particular structure on the CRS is required. The limits of the CRS model, particularly in the context of NIZKs, have been studied by Bellare, Fuchsbauer and Scafuro [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF], that studied what can be achieved when the CRS is set up maliciously. More recently, Groth et al. [GKM + 18] have provided an alternative model where a number of users can update a universal CRS. The updatable CRS model guarantees security if at least one of the users updating the CRS is honest.

Real-world applications. Results in the scope of proof systems were considered mostly theoretical proofs of concept until recently, when several theoretical and practical breakthroughs [PHGR13, BBB + 18] proved they could be effectively used (with modern hardware) for securing complex cryptographic protocols. As more versatile forms of zero knowledge become ever more practical, previously unrealizable applications are beginning to emerge: zero-knowledge proofs provide a means to send credit card details safely and securely to a trusted retail brand [START_REF] Chase | Efficient non-interactive zero-knowledge proofs for privacy applications[END_REF]; electronic voting systems such as Helios [START_REF] Adida | Helios: Web-based open-audit voting[END_REF] use them to guarantee privacy while withholding security; electronic cash systems such as zCash [BCG + 14], Monero, QuisQuis [START_REF] Fauzi | Quisquis: A new design for anonymous cryptocurrencies[END_REF] use arguments of knowledge to guarantee some degree of privacy in money transactions; privacy-preserving services [DGS + 18] are using them to guarantee anonymity of their users.

Additionally, in the past few years, a remarkable effort of standardization that attempts to unite members of industry and academia has also led to a series of documents for standardization proposals. For more information, we direct the reader towards https://zkproof.org.

Our results

We revisit non-interactive arguments of knowledge under two different aspects: first we explore what can be achieved in terms of privacy without any setup assumption nor random oralces; secondly, we explore what can be achieved using the current frameworks for constructing zeroknowledge proofs and post-quantum assumptions. To conclude, we illustrate how arguments of knowledge can be used to build privacy enhancing applications, and secure our digital communications. [START_REF] Fuchsbauer | Non-interactive zaps of knowledge[END_REF]. This work defines a witness-indistinguishable argument of knowledge in the standard model, that is, a non-interactive zap of knowledge. While non-interactive zero-knowledge (NIZK) proofs require trusted parameters, Groth, Ostrovsky and Sahai [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF] constructed non-interactive witness-indistinguishable (NIWI) proofs without any setup; they called their scheme a non-interactive zap.

Non-Interactive zaps of knowledge

In Chapter 3, we provide the first NIWI argument of knowledge without parameters. Consequently, our scheme is also the first subversion-resistant knowledge-sound proof system, a notion recently proposed by Fuchsbauer [Fuc18]. This work extends the analysis of Bellare et al. [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF] on proof systems in the face of parameter subversion. We also present an alternative and more efficient ZAK based on Groth-Sahai proofs, which could be relevant for practical applications.

Designated-verifier, lattice-based zk-SNARKs [GMNO18].

To this day, zk-SNARKs are being used for delegating computation, electronic cryptocurrencies, and anonymous credentials. However, all current SNARKs implementations rely on assumptions that succumb to attacks on quantum computers (pre-quantum) and, for this reason, are not expected to withstand cryptanalytic efforts over the next few decades.

In Chapter 4, we introduce the first designated-verifier zk-SNARK based on lattice assumptions, which are believed to be post-quantum secure. We provide a generalization in the spirit of Gennaro et al. [START_REF] Gennaro | Quadratic span programs and succinct NIZKs without PCPs[END_REF] to the SNARK of Danezis et al. [START_REF] Danezis | Square span programs with applications to succinct NIZK arguments[END_REF] that is based on Square Span Programs (SSPs). We focus on designated-verifier proofs and propose a protocol in which a proof consists of just 5 LWE encodings. We provide a concrete choice of parameters as well as extensive benchmarks on a C implementation, showing that our construction is practically instantiable. that extend OT starting with a small number (say, security parameter λ) of "base" OTs, to create poly(λ) additional OTs using only symmetric primitives, with computational security λ.

In this work, we presented a novel 1-out-of-N oblivious transfer (OT) extension protocol with active security, which achieves very low overhead compared to the passively secure protocol of Kolesnikov and Kumaresan [START_REF] Kolesnikov | Improved OT extension for transferring short secrets[END_REF]. Our protocol obtains active security using a consistency check which requires only simple computation and has a communication overhead that is independent of the total number of OTs to be produced. We prove its security in both the random oracle model and the standard model, assuming a variant of correlation robustness. We describe an implementation, which demonstrates our protocol only incurs an overhead of around 5-30% on top of the passively secure protocol.

Furthermore, random 1-out-of-N OT is a key building block in recent, very efficient, passively secure private set intersection (PSI) protocols. Private set intersection allows two parties to compute the intersection of their sets without revealing anything except the intersection. Our random OT extension protocol has the interesting feature that it even works when N is exponentially large in the security parameter, provided that the sender only needs to obtain polynomially many outputs. We show that this can be directly applied to improve the performance of PSI, allowing the core private equality test and private set inclusion subprotocols to be carried out using just a single OT each. This leads to a reduction in communication of up to 3 times for the main component of PSI.

Internet Standards

In addition to the academic publications, we helped with (minor) contributions to the following IETF drafts:

Hashing to the curve [FHSS + 19]. Many cryptographic protocols require a procedure to hash an arbitrary input to a point on an elliptic curve, e.g. Password Authenticated Key Exchange [START_REF] Boyko | Provably secure passwordauthenticated key exchange using Diffie-Hellman[END_REF], Identity-Based Encryption [START_REF] Boneh | Identity-based encryption from the Weil pairing[END_REF] and Boneh-Lynn-Shacham signatures [START_REF] Boneh | Short signatures from the Weil pairing[END_REF]. This procedure is known as hashing to the curve; i.e., a hash function H : {0, 1} * → G.

Unfortunately for implementors, the precise hash function that is suitable for a given scheme is not necessarily included in the description of the protocol. Compounding this problem is the need to pick a suitable curve for the specific protocol. Together with Brice Minaud and an undergraduate student Anita Dürr, we contributed to the standard and added a section about fast hashing into BLS curves [START_REF] Paulo | Constructing elliptic curves with prescribed embedding degrees[END_REF] and fast cofactor multiplication [SBC + 09, FKR12, BP17].

Anonymous Tokens [START_REF] Davidson | The Privacy Pass Protocol[END_REF]. Anonymous tokens are lightweight authorization mechanisms that can be useful in quickly assessing the reputation of a client in latency-sensitive communication.

Increasingly the stability of our information-based world depends on trusted, reliable sources of content. An unwanted by-product of the growth of Content Delivery Networks (CNDs) is that a handful of organizations are becoming global arbiters for which content requests are allowed and which are blocked in an attempt to stanch malicious traffic. In particular, users hiding behind privacy-enhancing tools such as Tor can be unfairly targeted by anti-spam or anti-DoS countermeasures. Anonymous Tokens we provide a solution to prevent users from being exposed to a disproportionate amount of internet challenges such as CAPTCHAs [DGS + 18], and more generally to check that a client has been previously authorized by a service without learning any other information.

Once standardized, such lightweight authorization mechanisms will be useful in quickly assessing the reputation of a client in latency-sensitive communication. As a part of an internship at Google under the supervision of Mariana Raykova and Tancrède Lepoint, I had the chance to assess and extend the scheme in the process of standardization.

Chapter 2

Preliminaries

In this chapter, we introduce the notation and basic assumptions and primitives employed throughout this manuscript. We start by recalling some standard mathematical and computational notions, then we briefly introduce provable security. We also recall some well-known number-theoretic assumptions, to introduce the cryptographic primitives used throughout this work.

Notation

Sets, integers, moduli, and associated rings and groups. We denote real numbers by R, integers by Z and non-negative integers by N. If q is a positive integer, we denote by Z q the ring of integers modulo q. Often, q will be an odd prime; in these cases, we will consider the ring Z q just as an additive group (Z q , +) or just consider the multiplicative subgroup (Z * q , •) of order ϕ(q) = q -1, where ϕ is Euler's totient function. In all of our constructions, the order of Z q will be public. Therefore, elements of Z q are represented as integers of the set 0, q -1 . For an integer x ∈ Z, x mod q is the reminder of the Euclidean division of x by q. It can be seen both as an integer in 0, q -1 and as an element of Z q . Vectors are denoted by lower-case bold letters, like v, and are always columns. We indicated a vector v's entry by v i (not in bold). We use v T to denote the transpose of a vector v.

Random variables.

For a random variable X over a probability space (Ω, Σ, Pr), and a possible outcome x, we write Pr[X = x] to indicate the measure of the preimage of {x} ∈ Σ under Pr. We denote the action of sampling x from X with x ← X. Let us call range of a random variable X : Ω → E the set of elements x ∈ E for which the probability that X has outcome x is strictly positive. In this work, we refer only to random variables whose range is finite.

A random variable X defined on a finite probability space (Ω, Pr) is said to have the uniform distribution if Pr[X = x] = 1/| Im(X)| where Im(X) denotes the image of X. Given a non-empty finite set S, we let x ←$ S denote the operation of sampling an element x from S uniformly at random.

Asymptotics.

Given a function f : N → R, the set O(f ) describes all functions that can be asymptotically upper-bounded by f , that is, all g such that ∃c, λ 0 ∈ N, 0 ≤ g(λ) ≤ cf (λ) for all λ ≥ λ 0 . With a slight abuse of notation, we write g = O(f ) to denote that g ∈ O(f ). The set Õ(f ) describes all functions that can be upper-bounded by f ignoring logarithmic factors, that is, all g such that ∃c, k, λ 0 ∈ N, 0 ≤ g(λ) ≤ cf (λ) log k (λ) for all λ ≥ λ 0 . We use the notation o(f ) to identify all functions that can be asymptotically upper-bounded by f , where the upper-bound is strict. That is, all g such that ∀c ∃λ 0 ∈ N, 0 ≤ g(λ) < cf (λ) for all λ ≥ λ 0 .

A function

µ : N → [0, 1] is negligible (denoted µ = negl(λ)) if µ(λ) = o(λ -c ) for any fixed constant c. That is, if for all c ∈ N there exists λ c ∈ N such that µ(λ) < λ -c for all λ ≥ λ c . A function ν is overwhelming if 1 -ν = negl(λ).
We let poly(λ) denote the set of polynomials in λ (more precisely, functions upper-bounded by a polynomial in λ) with integer coefficients.

Languages, machines, function families and complexity classes. Languages are denoted in calligraphic, e.g. L. We focus on languages whose alphabet is the set of bits {0, 1}.

Algorithms are formalized as Turing Machines and denoted in serif, e.g. M. We let M.rl(λ) be a length function (i.e., a function N → N polynomially bounded) in λ defining the length of the randomness for a probabilistic interactive Turing Machine M. By y := M(x 1 , . . . ; r) we denote the operation of running algorithm M on inputs x 1 , . . . and coins r ∈ {0, 1} M.rl(λ) and letting y denote the output. We see M both as a Turing Machine as well as a random variable. By y ← M(x 1 , . . .), we denote y := M(x 1 , . . . ; r) for random r ∈ M.rl(λ), and [M(x 1 , . . .)] the range of M on inputs x 1 , . . .. Unless otherwise specified, all the algorithms defined throughout this work are assumed to be probabilistic Turing machines that run in time poly(λ) -i.e., in PPT. An adversary is denoted by A; when it is interacting with an oracle O, we write A O . For two PPT machines A, B, with (A B)(x) we denote the execution of A followed by the execution of B on the same input x and with the same random coins. The output of the two machines is concatenated and separated with a semicolon, e.g., (out

A ; out B ) ← (A B) (x).
We say that a language L is in the complexity class P if there exists a deterministic Turing machine M that can recognize L in polynomial time. We say that L is in NP if there exists a non-deterministic Turing machine M that can recognize L in polynomial time. For a language L, we denote with R L ⊆ L × {0, 1} * the relation associated to L. For a pair (φ, w) ∈ R L , we call φ ∈ L the statement and w ∈ {0, 1} * the witness. A language L is NP-complete if it there is a reduction to it that runs in polynomial time.

In this manuscript, we will mostly work with the language of circuit satisfiability, which is NPcomplete. For a binary circuit C, the set R(C) is the set of inputs w that satisfy C(w) = 1. Without loss of generality, we assume that circuits consist solely of NAND gates. Unless otherwise specified, all following algorithms are assumed to be randomized and to run in time poly(λ). Unless otherwise stated, we only consider uniform machines to model the adversary A and the extractor Ext, in the spirit of Goldreich et al. [START_REF] Goldreich | A uniform-complexity treatment of encryption and zero-knowledge[END_REF][START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF]. We use the names "machine", "Turing Machine", and "algorithm" interchangeably. A machine A that outputs a boolean 1 or 0 is called a distinguisher. If an algorithm calls a subroutine which returns ⊥, we assume it stops and returns ⊥ (this does not hold for an adversary calling an oracle which returns ⊥).

Provable security

Security notions of cryptographic assumptions are often described as expermiments or games where an adversary is called with one or several inputs, and potentially given oracle access to some subprocedures. A security experiment is seen both as an algorithm and as a random variable (more exactly, as a process indexed in λ ∈ N). Some of our security notions consist in distinguishing two experiments EXP 0 (λ) and EXP 1 (λ). In this case, we need a measure of the ability of A to distinguish EXP 0 A (λ) and EXP 1 A (λ).

Definition 2.1 (Statistical Distance). Let X 0 (λ), X 1 (λ) be two families of random variables indexed by λ ∈ N, with range R. The statistical distance between X 0 and X 1 is a map N → [0, 1]:

∆(X 0 (λ), X 1 (λ)) := 1 2 x∈R |Pr[X 0 (λ) = x] -Pr[X 1 (λ) = x]| .
It can be easily shown that the statistical distance is a metric on probability distributions. We say that X 0 and X 1 are perfectly indistinguishable if ∆(X 0 , X 1 ) = 0. We say that X 1 and X 1 are statistically indistinguishable if ∆(X 0 , X 1 ) is negligible in λ. It can be shown that perfect and statistical indistinguishability are an equivalence relation for families of random variables indexed in λ ∈ N with the same range R. 

Adv exp A (λ) := ∆ EXP 0 A (λ), EXP 1 A (λ) = Pr EXP 0 A (λ) = 1 -Pr EXP 1 A (λ) = 1
The last equality can be shown applying the definition of statistical distance and using the negation rule. If two random variables are perfectly indistinguishable, then the advantage of any unbounded distinguisher A is zero. If two random variables are statistically indistinguishable, then the advantage of any unbounded distinguisher A is negligible. We say that two random variables are computationally indistinguishable if the advantage of any PPT algorithm in distinguishing EXP 0 A (λ) and EXP 1 A (λ) is negligible. It can be shown that computational indistinguishability is an equivalence relation for families of random variables indexed in λ ∈ N with the same range R.

Sometimes, we are interested in studying the success probability of an adversary in winning a computational security experiment. In these cases, as opposed to indistinguishability-based notions, we study the probability that at the end of the interaction the adversary outputs the solution for a problem believed to be computationally hard. Definition 2.3. Let EXP A (λ) be a family of random variables indexed in λ ∈ N and parameterized in a Turing machine A, with range {0, 1}. The advantage of A in winning EXP A (λ) is a map N → [0, 1] defined as:

Adv exp A (λ) := Pr[EXP A (λ) = 1]
Sometimes (for instance, in Definition 5.5, where a lot of security experiments are displayed), we will denote the security experiment within the probability measure, e.g.:

Adv exp A (λ) := Pr[code-of-experiment : winning-condition] .
In the rest of this manuscript, we will say that a notion holds perfectly if the advantage associated to the security experiment is zero, for any unbounded adversary A. We will say that a notion holds statistically if the advantage associated to the security experiment is negligible in λ, for any unbounded adversary A. We will say that a notion holds computationally if the advantage associated to the security experiment is negligible in λ, for any PPT adversary A.

Proofs by hybrid arguments

Most of our security proofs are proofs by hybrid arguments as defined in [START_REF] Bellare | The security of triple encryption and a framework for code-based game-playing proofs[END_REF][START_REF] Shoup | OAEP reconsidered[END_REF] to bound the success probability of an adversary A in some game EXP A (λ) corresponding to a certain security notion.

Roughly speaking, in instistinguishability-based notions, we bound the advantage of the adversary by constructing a sequence of experiments where EXP 0 A (λ) will be the process associated to the first experiment and EXP 1 A (λ) to the last one. We will prove that two consecutive games are perfectly, statistically, or computationally indistinguishable. In other words, we bound the difference of success probabilities between two consecutive games by a negligible quantity. By the CHAPTER 2. PRELIMINARIES triangular inequality, it will follow that the security experiments EXP 0 A (1 λ ) and EXP 1 A (1 λ ) are indistinguishable, except with negligible probability, for the adversary A.

Similarly, in order to bound the probability of an adversary A in winning an experiment EXP A (λ), we construct a sequence of hybrids where the first game is EXP A (λ), and the last game corresponds to some security assumption or is such that the adversary just cannot win.

Cryptographic primitives

We denote by λ ∈ N the security parameter. In Chapter 4, when exhamining concrete security, we will specify another parameter to indicate statistical security, κ ∈ N. Throughout this work, we assume the existence of a PPT algorithm Pgen that, given as input the security parameter in unary 1 λ , outputs a set of parameters Γ. This can be, concretely, the description of a finite cyclic group of prime order where computing discrete logarithm is hard, a symmetric or asymmetric bilinear group description, or a set of lattice parameters. For the sake of simplicity, we will denote all our schemes w.r.t. a set of parameters Γ and assume that the security parameter (λ ∈ N such that Γ ← Pgen(1 λ )) can be derived from Γ.

Commitment schemes

A commitment scheme Com consists of the following three algorithms:

• σ ← Com.G(Γ), the CRS generation algorithm, outputs a CRS σ.

• (C, r) ← Com.C(σ, v), the commitment algorithm, outputs a commitment C to the given value v together with the opening information r.

• bool ← Com.O(σ, C, v, r), the opening algorithm, outputs 1 if C is a commitment to v witnessed by r, and 0 otherwise.

We denote with V cp the space set of values, with R cp the set of possible openings, and with C cp the set of commitments. In this work, Com.C will always return the randomness used, and Com.O simply recomputes the commitment and checks that C = Com.C(σ, V ; r). Consequently, correctness of the scheme is trivial. To ease notation for commitments and openings, we will always assume that the set of parameters Γ can be deduced from σ, and omit the opening information from the returned value if specified within the random coins. Generally, we require commitment schemes to be hiding and binding. Loosely speaking, a scheme is hiding if the commitment C reveals no information about v. A scheme is binding if a cheating committer cannot change its mind about the value it committed to. Formally, it is hard to find C, v, r, v and

r such that v = v and Com.O(σ, C, v, r) = 1 = Com.O(σ, C, v , r ).

Definition 2.4 (Hiding).

A commitment scheme Com is hiding if for any PPT adversary A:

Adv hid Com,A (λ) := Pr HID 0 Com,A (λ) = 1 -Pr HID 1 Com,A (λ) = 1 = negl(λ) ,
where the game HID Com,A (λ) is defined in Fig. 2.1.

Definition 2.5 (Binding).

A commitment scheme Com is binding if for any PPT adversary A:

Adv bnd Com,A (λ) := Pr BND Com,A (λ) = 1 = negl(λ) ,
where the game BND Com,A (λ) is defined in Fig. 2.1.

Game HID b Com,A (λ) Γ ← Pgen(1 λ ) σ ← Com.G(Γ) b ← A Commit (σ) return b Oracle Commit(v 0 , v 1 ) (C, r) ← Com.C(σ, v b ) return C Game BND Com,A (λ) Γ ← Pgen(1 λ ) σ ← Com.G(Γ) (C, v 0 , r 0 , v 1 , r 1 ) ← A(σ) return v 0 = v 1 and Com.O(σ, C, v 0 , r 0 ) and Com.O(σ, C, v 1 , r 1 )
Figure 2.1: The games for hiding (HID) and binding (BND) of a commitment scheme Com.

Throughout this work, and more specifically in Chapter 3, we also require a perfectly binding commitment scheme to be extractable, that is, Com is equipped with a setup algorithm Com.G that in addition to σ returns also some trapdoor τ , and there exists an efficient extraction algorithm Com.E that, given as input the trapdoor information τ , recovers the value v to which C is bound.

Proof systems

A (non-interactive) proof system Π for a relation R consists of the following three algorithms:

• (σ, vrs, τ ) ← Π.G(Γ) the CRS generation algorithm takes as input some set of parameters Γ and outputs a tuple consisting of: a common reference string σ that will be given publicly; a designated verifier string vrs, that will be used for verifying; and a trapdoor τ that will be useful for proving security of the proof system.

• π ← Π.P(σ, φ, w), a prover which takes as input some (φ, w) ∈ R and a CRS σ, and outputs a proof π.

• bool ← Π.V(vrs, φ, π) a verifier that, given as input a statement φ together with a proof π outputs 1 or 0, indicating acceptance of the proof.

In most instances, we will be dealing with publicly verifiable protocols. In publicly verifiable proofs, the verifier key vrs is equal to the CRS σ; in those cases, we will omit it from the output of the setup algorithm. In this manuscript, we will often deal with families of relations, i.e. relations R δ parametrized by some δ ∈ N. For those, we assume that the proof system Π is defined over the family of relations R = {R δ } δ and that the setup algorithm Π.G takes an additional parameter δ which specifies the particular relation used during the protocol (and which is included in the returned CRS). For instance, in Chapter 5, when describing proofs for a certain range 0, v max , the proof system will be defined over a relation R vmax , where v max is the maximum integer allowed. Generally, we require proof systems to be complete and sound. A proof system is complete if every honestly-generated proof verifies.

Definition 2.6 (Completeness).

A non-interactive proof system Π for relation R is (computationally) complete if for any PPT adversary A:

Adv compl Π,R,A (λ) := Pr COMPL Π,R,A (λ) = 1 = negl(λ) ,
where COMPL Π,R,A (λ) is the game depicted in Fig. 2.2.

Game COMPL Π,R,A (λ) Γ ← Pgen(1 λ ) (σ, vrs, τ ) ← Π.G(Γ) (φ, w) ← A(σ) π ← Π.P(σ, φ, w) return (Π.V(vrs, φ, π) = 0 and (φ, w) ∈ R)
Game S-EXT Π,R,A (λ)

Q := ( ) ; Γ ← Pgen(1 λ ) (σ, τ ) ← Π.G(Γ) (φ, π) ← A Prove (σ) for i = 1 . . . |u| do w i := Π.Ext(σ, τ, φ i , π i ) return |u| i=1 Π.V(vrs, φ i , π i ) and (φ i , π i ) / ∈ Q and (φ i , w i ) ∈ R Game KSND Π,R,A,Ext A (λ) Γ ← Pgen(1 λ ) (σ, vrs, τ ) ← Π.G(Γ) (φ, π; w) ← (A Ext) Π.V(vrs,σ,•) (σ) return (Π.V(vrs, φ, π) = 1 and (φ, w) ∈ R)
Oracle Prove(u) Soundness. The central security property of a proof system is soundness, that is, no adversary can produce a proof for a false statement. A stronger notion is knowledge-soundness. Knowledge soundness [START_REF] Bellare | On defining proofs of knowledge[END_REF] means that for any prover able to produce a valid proof, there exists an efficient algorithm which, when given the same inputs as the prover (and the same random coins), is capable of extracting a witness for the given statement. This algorithm is called knowledge extractor, and it embodies the concept that the prover "must know" a witness for the given statement. Formally:

π ← Π.Sim(σ, τ, φ) Q := Q ((φ, π)) return π
Definition 2.7 (Knowledge Soundness). A non-interactive proof system Π for relation R is knowledge-sound if for any PPT adversary A there exists a PPT extractor Ext such that:

Adv ksnd Π,R,A,Ext (λ) := Pr KSND Π,R,A,Ext (λ) = 1 = negl(λ) , where KSND Π,R,A,Ext (λ) is defined in Figure 2.2.
An argument of knowledge is a knowledge-sound proof system [START_REF] Brassard | Computationally convincing proofs of knowledge[END_REF]. If the adversary is computationally unbounded, we speak of proofs rather than arguments.

Remark 2.8. Note that the verification oracle is relevant only for designated-verifier proof systems, as in publicly verifiable protocols the adversary is provided as input the CRS and can simply run the verification algorithm. An important consideration that arises when defining knowledge soundness in the designated-verifier setting is whether the adversary should be granted access to a verification oracle. Pragmatically, allowing the adversary to query a verification oracle captures the fact that VRS can be reused poly (λ) times. While this distinction cannot be made in the publicly verifiable setting, the same is not true for the designated-verifier setting. In the specific case of our construction, we formulate and prove our protocol allowing the adversary access to the verification algorithm (which has been named strong soundness in the past [START_REF] Boneh | Lattice-based SNARGs and their application to more efficient obfuscation[END_REF]), and later discuss which optimizations can be made when using the weaker notion of soundness, where the adversary cannot access the verification oracle.

Game ZK b Π,R,A (λ) Γ ← Pgen(1 λ ) (σ, τ ) ← Π.G(Γ) b ← A Prove (σ) return b Oracle Prove(φ, w) if (φ, w) ∈ R then return ⊥ π 0 ← Π.P(σ, φ, w) π 1 ← Π.Sim(σ, τ, φ) return π b Game WI b Π,R,A (λ) Γ ← Pgen(1 λ ) (σ, τ ) ← Π.G(Γ) b ← A Prove (σ) return b
Oracle Prove(φ, w 0 , w 1 ) In security proofs where the reduction simulates certain proofs, knowledge-soundness might not be sufficient. The stronger notion simulation-extractability guarantees that even then, from every proof output by the adversary, Π.Ext can extract a witness. Note that we define a multi-statement variant of simulation extractability: the adversary returns a list of statements and proofs and wins if there is at least one statement such that the corresponding proof is valid and the extractor fails to extract a witness. Definition 2.9 (Simulation-Extractability). A non-interactive proof system Π for relation R is (multi-statement) simulation-extractable if there exists an extractor Π.Ext such that, for any PPT adversary A, Adv s-ext Π,R,A (λ) := Pr S-EXT Π,R,A (λ) = 1 = negl(λ) , whereS-EXT be as defined in Fig. 2.2. Zero knowledge. A proof system Π is zero-knowledge if proofs leak no information about the witness. More precisely, Π specifies an additional PPT algorithm Π.Sim that takes as input the trapdoor information τ and a statement u, and outputs a valid proof π indistinguishable from those generated via Π.P.

if (φ, w 0 ) ∈ R or (φ, w 1 ) ∈ R : return ⊥ π ← Π.P(σ, φ, w b ) return π
We define a simulator Π.Sim for a proof system Π as:

• π * ← Π.Sim(σ, τ, φ): the simulated prover algorithm takes as input a CRS, a trapdoor τ , and a statement φ and outputs a simulated proof π * .

Definition 2.10 (Zero Knowledge). A non-interactive proof system Π for relation R is zeroknowledge if there exists a simulator Π.Sim such that, for any PPT adversary A:

Adv zk Π,R,A (λ) = Pr ZK 0 Π,R,A (λ) = 1 -Pr ZK 1 Π,R,A (λ) = 1 = negl(λ) ,
where

ZK b Π,R,A (λ) is defined in Figure 2.3.
Feige and Shamir [START_REF] Feige | Witness indistinguishable and witness hiding protocols[END_REF] proposed a relaxation of zero knowledge called witness indistinguishability, which only requires that it is indistinguishable which witness was used to compute a proof.

In other words, witness indistinguishability states that no PPT adversary can tell which of any two possible witnesses has been used to construct a proof.

Definition 2.11. A proof system Π for relation R is witness-indistinguishable (WI) if, for any

PPT adversary A:

Adv wi Π,R,A (λ) := Pr WI 0 Π,R,A (λ) = 1 -Pr WI 1 Π,R,A (λ) = 1 = negl(λ) ,
and WI b Π,R,A (λ) is the game depicted in Fig. 2.3.

Zaps. A (non-interactive) zap is a witness-indistinguishable, non-interactive proof system: the prover simply sends a single message to deliver the whole proof, without any setup needed. The proof system thus reduces to a pair (P, V) or can be considered as defined above, but with a CRS generation algorithm that always outputs ⊥. In Chapter 3, we will introduce non-interactive zaps of knowledge, that is, non-interactive zaps that are arguments of knowledge (cf. Definition 2.7). Motivated by the subversion of trusted public parameters in standardized cryptographic protocols led by mass-surveillance activities, Bellare, Fuchsbauer and Scafuro [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF] investigate what security properties can be maintained for NIZK when its trusted parameters are subverted. CRS's for NIZK are especially easy to subvert, since they must be subvertible by design: zero knowledge requires that an honest CRS must be indistinguishable from a backdoored one, where the backdoor is the trapdoor used to simulate proofs.

SNARKs

Bellare et al. defined multiple security properties that protect against parameter subversion: subversion soundness (S-SND) means that no adversary can generate a malicious CRS together with a valid proof for a false statement; subversion zero knowledge (S-ZK) requires that even if the adversary sets up the CRS, there exists a simulator able to produce its full view; and subversion witness indistinguishability (S-WI) formalizes that even for proofs that were made under a subverted CRS, it is still infeasible to tell which of two witnesses was used.

Following Goldreich and Oren [GO94], Bellare et al. [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF] also showed that it is impossible to achieve subversion soundness and (standard) zero knowledge simultaneously. For subversionsound proof systems, subversion witness indistinguishability is thus the best one can hope for. The authors [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF] observe that since proof systems that do not rely on a CRS cannot succumb to CRS-subversion attacks, non-interactive zaps [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF] achieve both S-SND and S-WI.

Bellare et al. did not consider the stronger notion of knowledge soundness, which is the notion achieved by SNARKs, and which in many applications is the required notion for the used proof systems. For example, for all kinds of anonymous authentication, users prove knowledge of signatures (often called certificates or credentials, depending on the context); in this case soundness is not sufficient, as signatures always exist, but in the security proof they must actually be extracted in order to rely on their unforgeability. Fuchsbauer [START_REF] Fuchsbauer | Subversion-zero-knowledge SNARKs[END_REF] has recently defined a subversion-resistant notion of knowledge soundness but left it open to give a scheme that achieves it. Such a scheme would protect against possible parameter subversion in any context where proving knowledge of a witness is required. In this chapter:

(i) We provide the first non-interactive zap with knowledge soundness; that is, a witness-indistinguishable proof system without parameters for which there exists an extractor that CHAPTER 3. ARGUMENTS OF KNOWLEDGE WITHOUT SETUP: ZAKS recovers a witness from every valid proof.

(ii) Our zap is also the first fully subversion-resistant WI argument-of-knowledge system. In particular, it satisfies the recently defined notion of subversion knowledge soundness [START_REF] Fuchsbauer | Subversion-zero-knowledge SNARKs[END_REF], as well as subversion witness indistinguishability [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF] (the strongest notion compatible with S-SND).

Bellare et al. [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF] introduce a new type of knowledge-of-exponent assumption, which they call DH-KE. They prove (standard) soundness and subversion zero knowledge of their main construction under DH-KE and the decision linear assumption (DLin) [START_REF] Boneh | Short group signatures[END_REF]. Our construction builds on the DLin-based non-interactive zap from [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF], whose soundness we upgrade to knowledge soundness, assuming DH-KE. As for this zap, the language of our proof system is circuit satisfiability and thus universal. Groth, Ostrovsky and Sahai's [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF] starting point is a "dual-mode" [GOS06b, PVW08] non-interactive proof system, for which there are two indistinguishable types of CRS: one leading to proofs that are perfectly sound and the other leading to proofs that are perfectly WI. To construct a non-interactive zap, they let the prover choose the CRS. As the prover could choose a CRS that leads to "unsound" proofs, the prover must actually choose two CRS's that are related in a way that guarantees that at least one of them is of the "sound" type. It must then provide a proof of the statement under both of them. The authors [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF] then show that this protocol still achieves computational WI.

We turn their construction into a proof of knowledge by again doubling the proof, thereby forcing the prover to prove knowledge of a trapdoor which allows to extract the witness from one of the sound proofs. We prove our non-interactive zap of knowledge secure under the same assumptions as Bellare et al.'s S-ZK+SND scheme. Our result is summarized in the following theorem.

Theorem 3.1. Assuming DLin and DH-KE, there exists a non-interactive zap for circuit satisfiability that satisfies knowledge soundness. The proof size is O(λk), where λ is the security parameter and k is the size of the circuit.

Let us finally note that our system also implies a proof system which achieves (standard) knowledge soundness, (standard) zero knowledge and subversion witness indistinguishability. This is obtained by plugging our zap of knowledge into the construction by Bellare et al. [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF] that achieves SND, ZK and S-WI.

Their scheme uses a length-doubling pseudorandom generator (PRG) and a CRS contains a random bit string σ of length 2λ (where λ is the security parameter). A proof for statement x is a zap for the following statement: either x is a valid statement or σ is in the range of the PRG. Using a zap of knowledge (ZaK), knowledge soundness follows from knowledge soundness of the ZaK since with overwhelming probability σ is not in the range of the PRG. (The extractor must thus extract a witness for x.) Zero knowledge follows from WI of the zap, as after replacing σ with an element in the range of the PRG, proofs can be simulated using a preimage of σ. Finally, S-WI follows from S-WI of the zap. 

(12w + 8g + 3) (|G 1 |+|G 2 |) SXDH (ADH-KE)
Bitanski and Paneth [START_REF] Bitansky | ZAPs and non-interactive witness indistinguishability from indistinguishability obfuscation[END_REF] presented a different approach to constructing zaps and WI proofs based on indistinguishability obfuscation (iO), but constructions using iO are only of theoretical interest. Ràfols [START_REF] Ràfols | Stretching groth-sahai: NIZK proofs of partial satisfiability[END_REF] showed how to base non-interactive zaps on Groth-Sahai proofs, thereby achieving an improvement in efficiency (by a constant factor) over the original construction [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF]. Her construction can be implemented in asymmetric ("Type-1") pairing groups.

Her scheme can also serve as the starting point for a scheme achieving knowledge soundness and we explore this in Section 3.5 . (See Table 3.1 for an overview.) Although this scheme is more efficient, we decided to concentrate on building a scheme from [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF], as we can prove it secure under the assumptions that underlie Bellare et al.'s [BFS16] SND+S-ZK scheme; in contrast, a scheme built on asymmetric bilinear groups would require an analogue of the DH-KE assumption in such groups (we refer to it as ADH-KE in Section 3.5 ). This is a qualitatively different assumption, as without a symmetric pairing it cannot be checked whether the triple returned by the adversary is of the right form (see Fig. 3.1); it would thus not be efficiently decidable if an adversary has won the game. Finally, our main scheme achieves tight security, whereas our proof of knowledge soundness in Section 3.5 has a security loss that is linear in the circuit size.

Cryptographic assumptions

Throughout this chapter, we make use of prime-order abelian groups equipped with a (symmetric) bilinear map. Concretely, we assume the existence of groups G, G T of odd prime order p of length λ and an efficiently computable non-degenerate bilinear map e : G × G → G T . That is, the map e is such that for all U, V ∈ G and a, b ∈ Z p : e(aU, bV ) = ab • e(U, V ), and if U is a generator of G, then e(U, U ) is a generator of G T . We say that a bilinear group is verifiable if there exists an efficient verification algorithm that outputs 1 if and only if Γ = (p, G, G T , e) is the description of a bilinear group. For instance, the elliptic-curve group of [START_REF] Boneh | Short group signatures[END_REF] equipped with the Weil pairing is publicly verifiable. In most practical scenarios, the group description is embedded as a part of the protocol specification and agreed upon in advance; in these cases there is no need for verification.

In other words, we assume the existence of a deterministic algorithm GrGen that, given as input the security parameter in unary 1 λ , outputs a bilinear group description Γ. The same assumption was already employed by Bellare et al. [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF]. The main advantage in choosing GrGen to be deterministic is that every entity in the scheme can (re)compute the group from the security parameter, and no party must be trusted with generating the group. Moreover, real-world pairing schemes are defined for groups that are fixed for some λ. For the sake of simplicity, we define all our schemes w.r.t. a group description Γ and assume that the security parameter (λ ∈ N such that Γ := GrGen(1 λ )) can be derived from Γ.

Our protocol is based on the DH-KE assumption and the existence of a homomorphic extractable commitment scheme. Such schemes have been widely studied and there are constructions from standard assumptions such as the subgroup decision assumption or the decisional linear (DLin) assumption [START_REF] Boneh | Short group signatures[END_REF]. For this work, we rely on the latter, which is also used in [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF].

Game DLin b

GrGen,A (λ) The DLin assumption [START_REF] Boneh | Short group signatures[END_REF] for an abelian group G = G of order p states that it is computationally difficult to distinguish (uG, vG, urG, vsG, (r + s)G) with u, v, r, s ←$ Z p from a uniformly random 5-tuple in G. Assumption 3.2 (DLin). We say that the Decisional Linear assumption holds for the group generator GrGen if for all PPT adversaries A we have:

Γ := (p, G, G T , e, G) := GrGen(1 λ ) u, v, r, s ←$ Z p if b = 1 : H := (r + s)G else : H ←$ G b ← A(Γ, uG, vG, urG, vsG, H) return b Game DH-KE GrGen,A,Ext (λ) Γ := (p, G, G T , e, G) := GrGen(1 λ ) r ←$ {0, 1} A.rl(λ) (X, Y, Z) := A(Γ; r) s ← Ext(Γ, r) if sG = X ∨ sG = Y : return 0 return (e(X, Y ) = e(Z, G))
Adv dlin G,A (λ) := Pr DLin 0 G,A (λ) = 1 -Pr DLin 1 G,A (λ) = 1 = negl(λ) ,
where the game DLin G,A (λ) is defined in Fig. 3.1.

The intuition behind DH-KE [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF] is that it is difficult for some machine to produce a (Diffie-Hellman) DH triple (xG, yG, xyG) in G without knowing at least x or y. The assumption is in the spirit of earlier knowledge-of-exponent assumptions [Gro10, BCI + 10], whose simplest form states that given (G, xG) ∈ G 2 it is hard to return (yG, xyG) without knowing y.

Assumption 3.3 (DH-KE).

The Diffie-Hellman Knowledge of Exponent assumption holds for the bilinear group generator GrGen if for any PPT adversary A there exists a PPT extractor Ext such that:

Adv dhke GrGen,A,Ext (λ) := Pr DH-KE GrGen,A,Ext (λ) = 1 = negl(λ) ,

where the game DH-KE GrGen,A,Ext (λ) is defined in Fig. 3.1.

In other variants of knowledge of exponent assumptions the adversary is provided with some auxiliary information, which amounts to a stronger assumption. This is typically required as in the security proofs the reduction obtains a challenge which it needs to embed in the input to the adversary. In our specific case, all the proof material is generated by the prover itself, including the CRS. Consequently, the game DH-KE considers an adversary that simply takes as input a group description, without any auxiliary information. Compared to [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF], where the adversary is provided with additional information, our variant is thus weaker.

An extractable commitment scheme from DLin

We recall the homomorphic commitment scheme based on linear encryption [START_REF] Boneh | Short group signatures[END_REF] by Groth Ostrovsky and Sahai [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF]. It defines two types of key generation: a perfectly hiding and perfectly binding one. Given a bilinear group Γ := (p, G, G T , e, G), it defines two key-generation algorithms Com.G (b) and Com.G (h) producing binding and hiding keys, respectively:

Com.G (h) (Γ) τ := (r u , s v ) ←$ (Z * p ) 2 ; (x, y) ←$ (Z * p ) 2 F := xG, H := yG (U, V, W ) := (r u F, s v H, (r u + s v )G) σ := (F, H, U, V, W ) return (σ, τ ) Com.G (b) (Γ) τ := (x, y, z) ←$ (Z * p ) 3 ; (r u , s v ) ←$ (Z * p ) 2 F := xG, H := yG (U, V, W ) := (r u F, s v H, (r u + s v + z)G) σ := (F, H, U, V, W ) return (σ, τ )
In order to commit to a value m ∈ Z p , one samples r, s ←$ Z p and returns:

C = Com.C(m; r, s) = mU + rF, mV + sH, mW + (r + s)G .
Since Com.C(m 0 ; r 0 , s 0 ) + Com.C(m 1 ; r 1 , s 1 ) = Com.C(m 0 + m 1 ; r 0 + r 1 , s 0 + s 1 ), commitments are additively homomorphic. A committed value is opened by providing the randomness (r, s). Under a perfectly hiding key, a commitment to m can be opened to any value m , given trapdoor information τ = (r u , s v ):

Com.C(m; r, s) = (mr u + r)F, (ms v + s)V, (mr u + r + ms v + s)G = Com.C m ; r -(m -m)r u , s -(m -m)s v ) . (3.1)
Under the DLin assumption, keys output by the perfectly hiding setup are computationally indistinguishable from ones output by the perfectly binding setup. For this reason, the perfectly hiding setup leads to computationally binding commitments and vice versa. We say that a triple of group elements is linear w.r.t. (F, H, G) if it is of the form (rF, sH, (r + s)G) for some r, s ∈ Z p . Commitments to 0 are linear triples and every commitment under a hiding key is also a linear. Under a binding key we have:

Com.C(m; r, s) = (mr u + r)F, (ms v + s)H, mzG + (mr u + r + ms v + s)G .

A commitment to m is thus a linear encryption [START_REF] Boneh | Short group signatures[END_REF] of mzG ∈ G 1 under randomness (mr u + r, ms v + s). Given a commitment C and the trapdoor information τ = (x, y, z), one can extract the committed message. The extraction algorithm Com.D is defined as:

Com.D τ, (C 0 , C 1 , C 2 ) := dLog z -1 (C 2 -x -1 C 0 -y -1 C 1 ) , (3.2)
where dLog can be efficiently computed if the message space is of logarithmic size; for instance, assuming m ∈ {0, 1}, we define Com.D to return 0 if

(C 2 -x -1 C 0 -y -1 C 1 )
is the identity element, and 1 otherwise.

Theorem 3.4 ([GOS06a]

). Assuming DLin, Com, as defined above, is an extractable homomorphic commitment scheme that is:

• perfectly binding, computationally hiding when instantiated with Com.G (b) ;

• computationally binding, perfectly hiding when instantiated with Com.G (h) .

The "parameter switching" technique, which defines different types of keys that are computationally indistinguishable, has proved very useful and also applies to encryption schemes. The idea has been defined (and named) several times. "Parameter switching" [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF] is also called "meaningful/meaningless encryption" [START_REF] Kol | Cryptography and game theory: Designing protocols for exchanging information[END_REF], "dual-mode encryption" [START_REF] Peikert | A framework for efficient and composable oblivious transfer[END_REF] and "lossy encryption" [START_REF] Bellare | Possibility and impossibility results for encryption and commitment secure under selective opening[END_REF].

Groth-Ostrovsky-Sahai zaps

Proof of binarity

Consider the CRS σ := (F, H, U, V, W ) and Γ := (p, G, G T , e, G) resulting from the execution of (one of the two types of) the key generation algorithm Com.G. Note that F, H are two generators of G and (U, V, W ) is a linear tuple w.r.t. (F, H, G) iff the key generation algorithm is chosen hiding. Groth, Ostrovsky and Sahai [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF] presented a witness-indistinguishable non-interactive proof system Bin for proving that C ∈ G 3 is a commitment to {0, 1} under σ. The intuition behind this construction is that, by the homomorphic property of Com, proving that C commits to a bit is equivalent to showing that either

C = (C 0 , C 1 , C 2 ) or C := C -Com.C(1; (0, 0)) = C -(U, V, W ) is a linear tuple with respect to (F, H, G). If we consider the discrete logarithms w.r.t (F, H, G) of the above commitments, i.e. letting C = (r 0 F, s 0 H, t 0 G) and C = (r 1 F, s 1 H, t 1 G), we have that: C or C is a linear tuple ⇐⇒ t 0 = r 0 + s 0 or t 1 = r 1 + s 1 ⇐⇒ (r 0 + s 0 -t 0 )(r 1 + s 1 -t 1 ) = 0 ⇐⇒ r 0 r 1 + r 0 s 1 + s 0 r 1 + s 0 s 1 + t 0 t 1 -(r 0 t 1 + t 0 r 1 + s 0 t 1 + t 0 s 1 ) = 0. (3.3)
Consider a prover Bin.P holding the witness (b, r, s) ∈ {0, 1}× Z p ×Z p for (C, C ), where b indicates which tuple is linear and r, s are its contained randomness. In order to convince a verifier, it proceeds as follows: choose t ←$ Z p and let Π = [π i,j ] i∈{0,1},j∈{0,1,2} , where:

π 0,0 := r(2b -1)U + r 2 F π 1,0 := s(2b -1)U + (rs + t)F π 0,1 := r(2b -1)V + (rs -t)H π 1,1 := s(2b -1)V + s 2 H π 0,2 := r(2b -1)W + (r 2 + rs + t)G π 1,2 := s(2b -1)W + (s 2 + rs -t)G (3.4)
A verifier Bin.V, on input the CRS σ, the statement C and Π, computes π 2,j := π 1,j + π 0,j for j = 0, 1, 3 and returns 1 if all the following equations are satisfied:

e(F, π 0,0 ) = e(C 0 , C 0 -U ), e(F, π 0,1 ) + e(H, π 1,0 ) = e(C 0 , C 1 -V ) + e(C 1 , C 0 -U ) e(H, π 1,1 ) = e(C 1 , C 1 -V ), e(F, π 0,2 ) + e(G, π 2,0 ) = e(C 0 , C 2 -W ) + e(C 2 , C 0 -U ) e(G, π 2,2 ) = e(C 2 , C 2 -W ), e(H, π 1,2 ) + e(G, π 2,1 ) = e(C 1 , C 2 -W ) + e(C 2 , C 1 -V ).
(3.5)

If we consider, as we did for the commitments, the discrete logarithms of the proof matrix w.r.t.

(F, H, G), i.e. we put

m i,0 := log F (π i,0 ), m i,1 := log H (π i,1 ), m i,2 := log G (π i,2 ),
for i = 0, 1, then we observe that the verification equation sets: m 2,i := m 0,i + m 1,i , and then checks the following:

m 0,0 = r 0 r 1 m 0,1 + m 1,0 = r 0 s 1 + s 0 r 1 m 1,1 = s 0 s 1 m 0,2 + m 2,0 = r 0 t 1 + t 0 r 1 m 2,2 = t 0 t 1 m 1,2 + m 2,1 = s 0 t 1 + t 0 s 1 (3.6)
By substitution, this is exactly what Eq. (3.3) affirms.

Bin.P(σ, C, (b, r, s))

Construct Π as per Eq. (3.4) return Π Bin.V(σ, C, Π) [π i,j ] i∈{0,1},j∈{0,1,2} = Π
for j = 0, 1, 2 do π 2,j := π 1,j + π 0,j return (Eq. (3.5))

Figure 3.2: The Bin protocol.

As previously mentioned, the key generation algorithm is identical to Com.G. If the setup is perfectly binding, perfect completeness and perfect soundness follow immediately from Eq. (3.6). Perfect witness indistinguishability follows from the observation that a proof with a witness (0, r 0 , s 0 ) gives the same proof as using witness (1, r 1 , s 1 ) with randomness t = t + r 0 s 1 -s 0 r 1 . On the other hand, on a perfectly hiding key generation every commitment is a linear tuple, and thus there is nothing to prove.

Theorem 3.5 ([GOS06a]

). The protocol Bin is a non-interactive proof system with perfect completeness, perfect soundness, and perfect witness indistinguishability.

To construct a non-interactive zap (i.e., a WI proof system without a CRS), Groth, Ostrovsky and Sahai [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF] first construct a proof system for circuit satisfiability with a CRS, based on the commitment scheme from Section 3.2 and their proof of binarity. Then, in order to make their scheme CRS-less, they define the prover to pick two CRS's that are correlated in a way that makes it impossible for the adversary to cheat under both of them.

As the commitment scheme described in Section 3.2 is homomorphic, it is possible to perform linear operations on commitments, and in particular prove logical relations between them.

First, proving that either C or C := C -(U, V, W ) is linear proves that C is a commitment to a bit. In order to prove that committed values satisfy wire assignments of a NAND gate, Groth et al. [START_REF] Groth | Perfect non-interactive zero knowledge for NP[END_REF] 

observe that if a, b ∈ {0, 1} then c := ¬(a ∧ b) iff t := a + b + 2c -2 ∈ {0, 1}.
Reasoning with homomorphic commitments, we have that three commitments 

A := (A 0 , A 1 , A 2 ), B := (B 0 , B 1 , B 2 ),
T := A + B + 2 • C -2 • (U, V, W ) (3.7)
is a commitment to either 0 or 1. Thus, to prove that A, B, C are commitments to values in {0, 1} and that C is a commitment to the NAND of the values in A and B, it is sufficient to prove that A, B, C and T are all bit commitments. With these observations, GOS construct a perfectly witness-indistinguishable proof system Circ for circuit satisfiability as follows:

The key generation algorithm Circ.G simply emulates Com.G (h) , that is, it generates a hiding commitment key. The prover Circ.P(σ, C, w) takes as input a circuit C and a witness w satisfying ZAP.P(1 λ , φ, w)

Γ := GrGen(1 λ ) ; (σ 0 , τ ) ← Circ.G(Γ) σ 1 := σ 0 + (0, 0, 0, 0, G) π 0 ← Circ.P(σ 0 , φ, w); π 1 ← Circ.P(σ 1 , φ, w) return (σ 0 , π 0 , π 1 ) ZAP.V(φ, (σ 0 , π 0 , π 1 )) σ 1 := σ 0 + (0, 0, 0, 0, G) return i∈{0,1} Circ.V(σ i , φ, π i ) Figure 3.3: The (non-interactive) ZAP protocol of [GOS06a].
C(w) = 1, and does the following: represent the circuit evaluation C(w) in such a way that w k is the value running in the k-th wire. For each w k , produce a commitment C k ← Com.C(σ, w k ) to w k and prove it is to a bit under σ using proof system Bin. For each gate, construct T from the commitments corresponding to the ingoing and outgoing wires as above and prove that it too is a commitment to 0 or 1. For the output commitment, create a commitment C out to 1 that can be easily reproduced and checked by the verifier: C out := Com.C(σ, 1; (0, 0)). Let Π be the collection of all other commitments together with the respective proofs of binarity generated. Return Π.

The verifier Circ.V(σ, C, Π), computes C out := Com.C(σ, 1; (0, 0)) and for every gate the value T as in Eq. (3.7); using Bin.V, it checks that all the wire commitments are to values in {0, 1} and respect the gates (by checking the values T ); if all verifications succeed, return 1. Otherwise, return 0.

Theorem 3.6 ([GOS06a]). Assuming DLin, Circ is a non-interactive, perfectly sound computationally witness-indistinguishable proof system.

The reason why we cannot let the prover choose the CRS in Circ is that it could chose it as a perfectly hiding CRS and then simulate proofs. However, if the prover must construct two proofs under two different CRS's which are related in such a way that at least one of them is not linear (and thus binding), then the prover cannot cheat. In particular, note that given a 5-tuple σ 0 ∈ G 5 , and defining σ 1 := σ 0 + (0, 0, 0, 0, G) then at most one of σ 0 , σ 1 is linear. At the same time, both of them are valid CRS's. With this last trick, it is straightforward to construct the zap scheme ZAP, as illustrated in Fig. 3.3.

Theorem 3.7 ([GOS06a]

). Assuming DLin, ZAP is a non-interactive zap with perfect soundness and computational witness indistinguishability. Remark 3.8. We note that soundness of ZAP relies only on the fact that Γ is a bilinear group. In [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF] the prover is allowed to generate Γ and it is required that Γ is verifiable. We presented a zap for deterministically generated groups, as considered by Bellare et al. [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF], which is also required for our construction of non-interactive zaps of knowledge in the next section.

ZAK: a non-interactive zap of knowledge

We now present our NIWI argument of knowledge for circuit satisfiability. The high-level idea of our protocol is to double the ZAP proof of [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF] and link the two CRS's so the prover must know the extraction trapdoor for one of them. Whereas the protocol ZAP used two Circ proofs to construct a zap from a proof that requires a CRS, we will use two zap proofs to not only prove circuit satisfiability, but to prove knowledge of a satisfying assignment. More specifically, knowledge soundness is obtained by generating two independent zap proofs, and then linking the respective trapdoor information with multiple DH in a matrix of group elements ∆. This additional matrix ∆, that we call linking element, is constructed in such a way that (under DH-KE) it is possible to recover the trapdoor from one of the two zap proofs, and use it to extract the witness from the commitments contained in a valid zap proof. Witness indistinguishability of the single proofs follows immediately from [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF], but our proofs also contain the linking element ∆, which depend on the randomness of the CRS's. We thus have to argue that these additional elements do not harm witness indistinguishability.

Bellare et al. [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF] also used an extractor to recover the trapdoor hidden in an adversarially generated CRS to construct a scheme satisfying subversion-zero knowledge. Our protocol is detailed in Fig. 3.4, where by DH we denote the algorithm that checks that δ i,j is the CDH of (σ 0,0 ) i and (σ 1,0 ) j (see below).

ZAK.P(1 λ , φ, w)

Γ := GrGen(1 λ ) for i = 0, 1 do (σ i,0 , τ i ) ← Circ.G(Γ) σ i,1 := σ i,0 + (0, 0, 0, 0, G) π i,0 ← Circ.P(σ i,0 , φ, w) π i,1 ← Circ.P(σ i,1 , φ, w)
Compute ∆ from τ 0 , τ 1 as in Eq. (3.8).

Σ := [σ i,0 ] i∈{0,1} , Π = [π i,j ] i,j∈{0,1} return (Σ, ∆, Π) ZAK.V(φ, (Σ, ∆, Π)) / / Check if ∆ is consistent with Σ if not DH(∆, Σ) : return 0 for i in {0, 1} do σ i,1 := σ 0 + (0, 0, 0, 0, G) return i,j∈{0,1} Circ.V(σ i,j , φ, π i,j ) Figure 3.4: The ZAK protocol.
The trapdoor information τ 0 = (x 0 , y 0 ) and τ 1 = (x 1 , y 1 ) is correlated in ∆ to form the following products:

∆ := [δ i,j ] i,j∈{0,1} =   x 0 x 1 G x 0 y 1 G y 0 x 1 G y 0 y 1 G   (3.8)
Correctness of ∆ can be checked by the verification algorithm using the bilinear map. For i = 0, 1, let the CRS be σ i = (F i , H i , U i , V i , W i ), and let x i , y i be such that:

F i := x i G, H i := y i G,
in which case ∆ is constructed as in Eq. (3.8). The verifier checks that the following holds:

e(δ 0,0 , G) = e(F 0 , F 1 ), e(δ 0,1 , G) = e(F 0 , H 1 ), e(δ 1,0 , G) = e(H 0 , F 1 ), e(δ 1,1 , G) = e(H 0 , H 1 ). (3.9)
Let us denote by DH the algorithm that, given as input Σ and ∆ returns 1 if all equalities of Eq. (3.9) are satisfied, and 0 otherwise. This procedure is used by the verification equation, as detailed in Fig. 3.4. We now proceed with the proof of our main result, Theorem 3.1, which we rephrase here for completeness: Theorem 3.1. Assume that DLin and DH-KE hold for GrGen. Then ZAK as defined in Fig. 3.4 is a non-interactive zap that satisfies knowledge soundness and witness indistinguishability. In particular, we have

Adv ksnd ZAK (λ) ≤ 4 • Adv dh-ke (λ) and Adv wi ZAK (λ) ≤ 8 • Adv dlin (λ).
Completeness of the protocol is trivial: the prover (respectively, the verifier) simply performs 4 iterations of Circ proofs (respectively, verifications), and therefore correctness is implied by Theorem 3.6 and the fact that ∆ as in Eq. (3.8) satisfies Eq. (3.9). We now prove knowledge soundness and witness indistinguishability.

Proof (computational knowledge soundness). We show that for any adversary able to produce a valid proof we can construct a PPT extractor that can extract a witness from such a proof with overwhelming probability. Let A be an adversarial prover in game KSND Π,A (λ) (Fig. 2.2, with Π.G void). On input

Game KSND ZAK,CIRC-SAT,A,Ext

A (λ) Γ := GrGen(1 λ ) ; r ←$ {0, 1} A.rl(λ) (C, (Σ, ∆, Π)) := A(1 λ ; r) w ← Ext(1 λ , r) return ZAK.V(C, (Σ, ∆, Π)) and C(w) = 1
1 λ , A returns a proof consisting of σ i,0 = (F i , H i , U i , V i , W i ) for i ∈ {0, 1}, of ∆ = [δ i,j ] i,j∈{0,1} and Π = [π i,j ] i,j∈{0,1}
. The game KSND ZAK,CIRC-SAT (λ) is given in Fig. 3.5. From A we construct four adversaries A i,j (for i, j ∈ {0, 1}) that execute A and output some components of the proof produced by A, namely

(F 0 , F 1 , δ 0,0 ) = (x 0 G, x 1 G, x 0 x 1 G), (for A 0,0 ) (F 0 , H 1 , δ 0,1 ) = (x 0 G, y 1 G, x 0 y 1 G), (for A 0,1 ) (H 0 , F 1 , δ 1,0 ) = (y 0 G, x 1 G, y 0 x 1 G), (for A 1,0 ) (H 0 , H 1 , δ 0,1 ) = (y 0 G, y 1 G, y 0 y 1 G), (for A 1,1 )
where x i , y i are such that

F i = x i G, H i = y i G,
and these four equations hold if ZAK.V(C, (Σ, ∆, Π)) returns 1. By the DH-KE assumption there exist extractors Ext i,j for each of the adversaries A i,j that given its coins outputs:

x 0 or x 1 , x 0 or y 1 , (for Ext 0,0 , Ext 0,1 )

y 0 or x 1 , y 0 or y 1 (for Ext 1,0 , Ext 1,1 )
if the above equations hold. The statement (x 0 ∨ x 1 ) ∧ (y 0 ∨ x 1 ) ∧ (x 0 ∨ y 1 ) ∧ (y 0 ∨ y 1 ) is logically equivalent to (x 0 ∧ y 0 ) ∨ (x 1 ∧ y 1 ). This means that together, these four extractors allow to recover either (x 0 , y 0 ) or (x 1 , y 1 ), that is, the extraction trapdoor for one of the CRS's. Let i * be such that

(x i * , y i * ) is the extracted pair. For j ∈ {0, 1}, let F i * , H i * , U i * , V i * , W i * ∈ G be such that σ i * ,j = (F i * , H i * , U i * , V i * , W i * + jG).
Let j * ∈ {0, 1} be the smallest integer satisfying:

x -1 i * U i * + y -1 i * V i * -(W i * + j * G) = 0G.
The above implies that σ i * ,j * is not a linear tuple, which means that it is a binding CRS. Let C (i * ,j * ),k denote the commitment to the k-th wire contained in π i * ,j * . Using the extraction algorithm described in Eq. (3.2) we can recover this witness:

w k = Com.D (x i * , y i * ), C (i * ,j * ),k .
It remains to prove that the extracted witness is indeed correct. Upon receiving a valid proof from adversary A, we know from the verification equation (the subroutine DH) that each A i,j will output a DH triple. Therefore, extractors Ext i,j together recover τ i * = (x i * , y j * ) with probability at least 1i,j∈{0,1} Adv dhke GrGen,A i,j ,Ext i,j (λ), that is, by DH-KE, with overwhelming probability. Since the commitment scheme Com is perfectly binding if the CRS is not a linear tuple (Theorem 3.4), a message w k is always successfully extracted. Correctness of w k follows from the underlying proof system: by perfect soundness of Bin (Theorem 3.5) we are guaranteed that w k ∈ {0, 1}; by perfect soundness of Circ (Theorem 3.6) that each gate evaluation is correct. The bound in the construction of the extractor is tight: we have Adv ksnd (λ) ≤ 4 • Adv dhke (λ).

Oracle Prove in H 1 , H 2 , and H 3

Γ := GrGen(1 λ ) (σ 0,0 , τ i ) ← Circ.G(Γ) (σ 0,0 , τ i ) ← Com.G (b) (Γ) σ 0,1 := σ 0,0 + (0, 0, 0, 0, G) (σ 0,1 , τ i ) ← Circ.G(Γ) σ 0,0 := σ 0,1 -(0, 0, 0, 0, G) π 0,0 ← Circ.P(σ 0,0 , C, w 1 ) π 0,1 ← Circ.P(σ 0,1 , C, w 0 ) / /
The second zap is as in ZAK.P using w 0 .

(σ 1,0 , π 1,0 , π 1,1 ) ← ZAP.P(1 λ , C, w 0 ) Compute ∆ as in Eq. (3.8). return (Σ, ∆, Π) Oracle Prove in H 4 and H 5 Γ := GrGen(1 λ ) (σ 0,1 , τ i ) ← Circ.G(Γ) σ 0,0 := σ 0,1 -(0, 0, 0, 0, G) (σ 0,1 , τ i ) ← Com.G (b) (Γ) π 0,0 ← Circ.P(σ 0,0 , C, w 1 ) π 0,1 ← Circ.P(σ 0,1 , C, w 1 )
/ / The second zap is as in ZAK.P using w 0 .

(σ 1,0 , π 1,0 , π 1,1 ) ← ZAP.P(1 λ , C, w 0 ) Compute ∆ as in Eq. (3.8). return (Σ, ∆, Π) Figure 3.6: Overview of the simulations of the prove oracle in the first hybrid games for the proof of WI. Hybrids H 1 and H 4 are defined by ignoring all boxes (the light gray highlights the differences with respect to the previous hybrids), whereas H 2 and H 5 include the light boxes but not the gray one and H 3 includes all boxes.

Proof (computational witness indistinguishability). Consider an adversary in the WI game (Fig. 2.3, where Π.G is void) that makes q = q(λ) queries to the Prove oracle, each of the form (C (k) , w (k) 0 , w (k) 1 ), for 0 ≤ k < q. Consider the following sequence of hybrid games where H 0 corresponds to WI 0 ZAK,CIRC-SAT,A (1 λ ) and H 12 corresponds to WI 1 ZAK,CIRC-SAT,A (1 λ ). The games differ in how the Prove oracle is implemented, which is specified in Fig. 3.6 for the first half of the hybrids (the second half is analogous). We give an overview of all hybrids in Table 3.2 below.

H 0 The challenger simulates an honest Prove oracle, using (for every k < q) the first witness w (k) 0 supplied by the adversary. It outputs

(Σ (k) , ∆ (k) , Π (k) )
, where in particular we recall:

Σ (k) =   σ (k) 0,0 = (F (k) 0 , H (k) 0 , U (k) 0 , V (k) 0 , W (k) 0 ) σ (k) 1,0 = (F (k) 1 , H (k) 1 , U (k) 1 , V (k) 1 , W (k) 1 )   and Π (k) =   π (k) 0,0 π (k) 0,1 π (k) 1,0 π (k) 1,1   .
Recall that the two rows of [Σ (k) |Π (k) ] are independent zaps and that σ (k) 0,0 and σ (k) 1,0 are chosen to be hiding. The Prove oracle computes σ (k) i,j which is of the form

σ (k) i,j = F (k) i , H (k) i , U (k) i , V (k) i , W (k) i + jG , for i, j ∈ {0, 1}. Furthermore, π (k) i,j is a Circ proof using w (k) 0 under the CRS σ (k) i,j .
H 1 For every Prove query, the simulator uses witness w (k) 1 (instead of w (k) 0 ) to produce π (k) 0,0 . As the respective CRS σ (k) 0,0 was generated using the perfectly hiding commitment setup Circ.G, the two hybrids are distributed equivalently (any commitment under a hiding key is a random linear triple; cf. Eq. (3.1)).

H 2 For every Prove query, the simulator now generates CRS σ (k) 0,0 as a binding key via Com.G (b) ; σ (k) 0,1 is generated as before (adding (0, 0, 0, 0, G)), and so are all proofs. Note that the linking Hybrid σ

(k) 0,0 π (k) 0,0 σ (k) 0,1 π (k) 0,1 σ (k) 1,0 π (k) 1,0 σ (k) 1,1 π (k) 1,1 H 0 (h) w 0 (b) w 0 (h) w 0 (b) w 0 H 1 w 1 H 2 (b) H 3 (h) H 4 w 1 H 5 (b) H 6 (h) H 7 w 1 H 8 (b) H 9 (h) H 10 w 1 H 11 (b) H 12 (h) w 1 (b) w 1 (h) w 1 (b) w 1 elements ∆ (k) can be constructed knowing only the trapdoor (x (k) 1 , y (k) 1 ) of the CRS σ (k)
1,0 , which remained unchanged:

∆ (k) =   y (k) 1 H (k) 0 y (k) 1 F (k) 0 x (k) 1 H (k) 0 x (k) 1 F (k) 0   .
(3.10)

H 1 and H 2 are computationally indistinguishable under the DLin assumption: given a DLin challenge (F, H, U, V, W ), the reduction can exploit the random self-reducibility property of DLin to construct q instances of the DLin challenge:

∀k < q select x(k) , ȳ(k) , r(k) , s(k) , z(k) ←$ Z p and compute σ (k) 0,0 as x(k) F, ȳ(k) H, r(k) x(k) F +z (k) x(k) U, s(k) ȳ(k) H+z (k) ȳ(k) V, (r (k) +s (k) )G + z(k) W . Each σ (k)
0,0 is a random linear tuple if and only if the DLin challenge is, and it is a uniformly random tuple if the DLin challenge is, as shown in [START_REF] Bellare | NIZKs with an untrusted CRS: Security in the face of parameter subversion[END_REF]. Computing σ (k) 1,0 as in H 1 (hiding) and defining ∆ as in Eq. (3.10), the simulator generates the rest of the game as defined. It returns the adversary's guess and thus breaks DLin whenever the adversary distinguishes H 1 and H 2 .

H 3 The simulator replaces each CRS σ (k) 0,1 for all k < q with a hiding commitment and defines σ (k) 0,0 := σ (k) 0,1 -(0, 0, 0, 0, G), which is therefore (once again) binding. More specifically, the simulator creates a linear tuple invoking Circ.G:

σ (k) 0,1 = x (k) 0 G, y (k) 0 G, x (k) 0 r (k) G, y (k) 0 s (k) G, (r (k) + s (k) )G
where x (k) 0 , y (k) 0 , r (k) , s (k) ←$ Z p . The two distributions are proven computationally indistinguishable under DLin by an argument analogous to the one for H 1 → H 2 . This time the challenger constructs all the Game XDH b I,GrGen,A (λ) instances of the DLin challenge for σ (k) 0,1 , while σ (k) 0,0 is derived. From there, the proof proceeds identically.

Γ := (p, G 1 , G 2 , G T , e, G 1 , G 2 ) := GrGen(1 λ ) x, y ←$ Z * p if b = 1 : H := xyG I else : H ←$ G I b ← A(Γ, xG I , yG I , H) return b Game ADH-KE GrGen,A,Ext (λ) Γ := (p, G 1 , G 2 , G T , e, G 1 , G 2 ) := GrGen(1 λ ) r ←$ {0, 1} A.rl(λ) (X, Y, Z) := A(Γ; r) s ← Ext(Γ, r) if sG 1 = X ∨ sG 1 = Y : return 0 return (Z = log G1 (X) • Y )
H 4 The simulator replaces each proof π (k) 0,1 by using w (k) 1 instead of w (k) 0 (∀k < q). This hybrid is equivalently distributed as the previous one; this is proved via the same argument as for H 0 → H 1 .

H 5 The simulator switches σ (k) 0,1 from a hiding to a binding key. This game hop is analogous to the hop H 1 → H 2 (which switched σ (k) 0,0 from hiding to binding).

H 6 The simulator switches σ (k) 0,0 from binding to hiding. Indistinguishability from the previous hybrid is shown analogously to the hop H 2 → H 3 . Note that in this hybrid the first zap (σ (k) 0,0 , π (k) 0,0 , π (k) 0,1 ) is distributed according to the protocol specification, but using witness w (k) 1 .

Hybrids H 7 to H 12 are now defined analogously to hybrids H 1 to H 6 , except for applying all changes to σ (k) 1 and π (k) 1,0 and π (k) 1,1 . In hybrid H 12 the adversary is then given arguments of knowledge for witness w 1 .

As the difference between hybrids H 1 and H 12 is bounded by 8 times the advantage of a DLin distinguisher, the adversary has total advantage

Adv wi ZAK,C,A (λ) ≤ 8 • Adv dlin ZAK,C,A (λ) = negl(λ) .
The bound is thus tight.

Non-interactive zaps of knowledge in asymmetric groups

In this section we show an alternative and more efficient approach to constructing non-interactive zaps of knowledge for circuit satisfiability. In contrast to symmetric bilinear groups used in the previous section, we will work with asymmetric pairings, that is, bilinear maps e :

G 1 × G 2 → G T (where G 1 = G 1 , G 2 = G 2
and G T are abelian additive groups of prime order p). We assume a deterministic algorithm GrGen that outputs an (asymmetric) group description

Γ := (p, G 1 , G 2 , G T , e, G 1 , G 2 ).

Cryptographic assumptions

By extending GOS proofs [START_REF] Groth | Perfect non-interactive zero knowledge for NP[END_REF], Goth and Sahai [START_REF] Groth | Efficient non-interactive proof systems for bilinear groups[END_REF] provide a general framework for non-interactive witness-indistinguishable (NIWI) proof systems, which can be based (among other computational assumptions) on SXDH. The SXDH assumption for an asymmetric pairing group CHAPTER 3. ARGUMENTS OF KNOWLEDGE WITHOUT SETUP: ZAKS generator GrGen informally states that the decisional Diffie-Hellman assumption holds in both G 1 and G 2 .

Assumption 3.2 (SXDH). We say that the Symmetric External Diffie-Hellman assumption holds for the asymmetric bilinear group generator GrGen if for all PPT adversaries A we have:

Adv XDH1 GrGen,A (λ) := Pr XDH 0 1,GrGen,A (λ) = 1 -Pr XDH 1 1,GrGen,A (λ) = 1 = negl(λ) and Adv XDH2 GrGen,A (λ) := Pr XDH 0 2,GrGen,A (λ) = 1 -Pr XDH 1 2,GrGen,A (λ) = 1 = negl(λ) ,
where XDH b I,GrGen,A (λ) (for I = 1, 2) is defined in Fig. 3.7.

In order to construct zaps of knowledge over asymmetric bilinear groups, we require the analogue of DH-KE for such groups, in particular for their first base group G 1 . We give a formal definition.

Assumption 3.3 (ADH-KE). The Asymmetric Diffie-Hellman Knowledge of Exponent assumption holds for (the first base group of) the asymmetric group generator GrGen if for any PPT

adversary A there exists a PPT extractor Ext such that:

Adv adh-ke GrGen,A,Ext (λ) := Pr ADH-KE GrGen,A,Ext (λ) = negl(λ) ,
where the game ADH-KE GrGen,A,Ext (λ) is defined in Fig. 3.7.

Groth-Sahai (GS) proofs [START_REF] Groth | Efficient non-interactive proof systems for bilinear groups[END_REF] achieve improved efficiency by working for group-dependent languages, in contrast to the more elementary proof system Bin of "bit commitment" (given in Section 3.3) used for circuit satisfiability. More recently, Ràfols [START_REF] Ràfols | Stretching groth-sahai: NIZK proofs of partial satisfiability[END_REF] gave a construction of noninteractive zaps from GS proofs, which leads to more efficient non-interactive zaps (by a constant factor). Relying on the asymmetric variant of the DH-KE assumption, we show how to achieve knowledge soundness also for GS zaps. Interestingly, the scheme does not require any alteration to the protocol, that is, under ADH-KE we can show that a GS zap is already a GS zap of knowledge.

Groth-Sahai zaps

We first describe the GS-based zap and then argue that it satisfies knowledge soundness under ADH-KE.

SXDH commitments and proofs of binarity.

The SXDH commitment scheme of Groth and Sahai [START_REF] Groth | Efficient non-interactive proof systems for bilinear groups[END_REF] allows to commit to values in Z p both in G 1 and in G 2 (here we parametrize the algorithm with I ∈ {1, 2} for compactness). The properties of the scheme are very similar to those of GOS's [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF] DLin-based commitments (Section 3.2). Again, commitment keys can be generated in one of two possible "modes", one perfectly hiding and one perfectly binding.

Com.G (h)

I (Γ) τ := (x, y) ←$ (Z * p ) 2 V := (xG I , G I ) W := (xyG I , yG I ) σ := (V, W) return (σ, τ ) Com.G (b) I (Γ) τ := (x, z) ←$ (Z * p ) 2 ; y ←$ Z * p V := (xG I , G I ) W := (xyG I , (y + z)G I ) σ := (V, W) return (σ, τ )
The commitment key thus consists of vectors V, W ∈ G 2 I , for I = 1, 2. Committing to a value m ∈ Z p is performed by sampling r ←$ Z p and computing: 

(V 0 , W 1 , W 0 ) with respect to V 1 = G I , whereas binding setup returns random values (V 0 , W 1 , W 0 ).
If V, W are linearly dependent, which is the case when generated by Com.G (h) I , then the commitment is perfectly hiding; a commitment C to a value m can be opened to any value m ∈ Z p given the trapdoor information τ = (x, y):

Com.C I (m; r) =   x(my + r)G I (my + r)G I   = Com.C I m ; r + (m -m )y .
If V, W are linearly independent then the commitment is perfectly binding and for message spaces of logarithmic size the committed value can be extracted using the trapdoor information τ = (x, z) generated by Com.G (b)

I : m = Com.E I τ, C := dLog z -1 (C 1 -x -1 C 0 ) .
A commitment in G I can be shown to be bound to a bit via two quadratic equations in Z p , as introduced by Groth and Sahai [START_REF] Groth | Efficient non-interactive proof systems for bilinear groups[END_REF]. To do so, we require another commitment in the opposite source group G 3-I . Let b 1 be the value committed over G 1 and b 2 the value committed over G 2 . Our goal is to prove that b 1 ∈ {0, 1}; at the same time we prove b 1 = b 2 . This can be done by proving that the commitments satisfy the following two equations:

b 1 (b 2 -1) = 0 and b 2 (b 1 -1) = 0 . (3.11)
We refer the reader to [GS08, §9 p. 28] for how to construct proofs for the above equations being satisfied by the committed values.1 A proof for one such equation consists of one element from each source group. We can thus define a proof system Bin, which, given a commitment in G 1 and another one in G 2 , proves that the committed values are bits using 2(|G

1 | + |G 2 |) group elements.
The key generation algorithm Bin.G simply executes Com.G

(b) 1 and Com.G (b) 2 .
Proofs of circuit satisfiability. Now that we have a witness-indistinguishable system for proving that a commitment is bound to a bit b ∈ {0, 1} over asymmetric bilinear groups under the SXDH assumption, we can construct a protocol Circ for proving circuit satisfiability analogously to scheme by GOS [START_REF] Groth | Perfect non-interactive zero knowledge for NP[END_REF] given in Section 3.3: The prover commits to each wire in the circuit twice (once in G 1 and once in G 2 ), proves that the committed values are to either 0 or 1, and for each NAND gate with input wire values a, b and output wire value c it proves that (a+b+2c-2) ∈ {0, 1}. The output commitment is fixed again to Com.C(1; 0). This defines Circ.P((σ 1 , σ 2 ), φ, w) where σ I is a CRS in group G I , φ is the statement, i.e., a circuit description and w is the witness, a satisfying assignment. A proof π consists thus of commitments C 1,k ∈ G 2 1 and C 2,k ∈ G 2 2 and proofs of binarity π k for every wire w k , and moreover proofs π i for every gate g i .

A zap from SXDH. Again, a ZAP is constructed from Circ analogously to the GOS zap [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF] given in Section 3.3. There, a zap consisted of 2 Circ-proofs for two related CRS's of which one was guaranteed to be binding and thus lead to sound proofs. For SXDH we now create two related CRS's in each group G 1 and G 2 , so we are guaranteed that for each group one of them is binding. Intuitively, we need to construct 4 Circ proofs, one for each combination of a CRS in G 1 with one from G 2 . We are then guaranteed that one of the four proofs is under two binding CRS, which asserts that the prover cannot cheat. (Note that we do not actually need four full Circ proofs, as they can share the commitments.)

More specifically, the prover constructs two CRS's σ I,0 , for I = 1, 2, for perfectly hiding SXDH commitments in G 1 and G 2 . Then, it computes (again for I = 1, 2):

σ I,1 := σ I,0 -(0, 0) , (0, G I ) .
(3.12)

As for the zap described in Section 3.3, σ I,1 is deterministically generated from σ I,0 and at least one of the two CRS's leads to perfectly binding commitments. For simplicity, we will refer to the following matrix of CRS in order to perform Circ proofs:

Σ := [(σ 1,i , σ 2,j )] 0≤i,j≤1 :=   (σ 1,0 , σ 2,0 ) (σ 1,0 , σ 2,1 ) (σ 1,1 , σ 2,0 ) (σ 1,1 , σ 2,1 )   . (3.13)
Then, the prover commits to every wire value w k computing:

C I,j,k ← Com.C I (σ I,j , w k ), (3.14) 
for each I ∈ {1, 2} and each j ∈ {0, 1}. Reusing these commitments, the prover now computes four Circ proofs π i,j (with i, j ∈ {0, 1})). This boils down to computing, for all i ∈ {0, 1} and all wire indices k:

π i,j,k ←Bin.P (σ 1,i , σ 2,j ), (C 1,i,k , C 2,j,k ), w k , (3.15)
and proceeding in the same way for all gates. With a slight abuse of notation, in the explicit construction of Figure 3.8 we denote this whole process with:

π i,j ←Circ.P (σ 1,i , σ 2,j ), φ, w ,
keeping in mind that the commitments are not recomputed for each proof, and that instead we are using the commitments C I,i,k in G I to wire w k under the CRS σ I,i . The construction of ZAP.V(φ, π) is straightforward: Upon receiving a proof

σ 1,0 , σ 2,0 , (C 1,j,k , C 2,j,k ) i,j∈{0,1} , [π i,j ] i,j∈{0,1}
the verifier computes the correlated CRS's σ 1,1 , σ 2,1 according to Eq. (3.12) and verifies each of the proofs π i,j for i, j ∈ {0, 1} using Circ.V((σ 1,i , σ 2,j ), φ, π i,j ) (using the respective commitments, as we described above). It returns true if all proofs verified.

Theorem 3.4. Assume SXDH and ADH-KE holds for the asymmetric group generation GrGen.

Then ZAP as defined in Fig. 3.8 is a non-interactive zap that satisfies knowledge soundness and witness indistinguishability.

Witness indistinguishability of the ZAP proof follows from an hybrid argument analogous to the proof of witness indistinguishability of [START_REF] Groth | Non-interactive zaps and new techniques for NIZK[END_REF]. We now prove that the scheme also satisfies computational knowledge soundness. Proof (computational knowledge soundness). Let A be the PPT adversary in the game KSND A,ZAP (λ) able to produce a proof for which ZAP.V returned 1. The proof is of the form:

ZAP.P(1 λ , φ, w)

Γ = (p, G 1 , G 2 , G T , e, G 1 , G 2 ) := GrGen(1 λ ) for I = 1, 2 do σ I,0 ← Com.G (h) I (Γ) σ I,1 := σ I,0 -((0, 0) , (0, G I ) ) Compute (C I,j,k ) I,j,k as per Eq. (3.14) for i, j ∈ {0, 1} do π i,j ← Circ.P((σ 1,i , σ 2,j ), φ, w) return σ 1,0 , σ 2,0 , (C I,j,k ) I,j,k , [π i,j ] i,j Procedure Test-DH(A, B, C, s) Γ = (p, G 1 , G 2 , G T , e, G 1 , G 2 ) := GrGen(1 λ ) if sG 1 = A and sB = C return 1 if sG 1 = B and sA = C
σ 1,0 , σ 2,0 , (C 1,j,k , C 2,j,k ) i,j∈{0,1} , [π i,j ] i,j )
where π i,j is a valid Circ proof under the CRS (σ 1,i , σ 2,j ) -with σ 1,1 and σ 2,1 derived from σ 1,0 and σ 2,0 as per Equation (3.12).

First, we claim that the extractor is able to find the index i * ∈ {0, 1} of the perfectly binding CRS for G 1 . Consider the adversary A 1,0 (A 1,1 , resp.) that behaves as A, but simply outputs the elements (V 0 , W 1 , W 0 ) contained in CRS σ 1,0 (σ 1,1 , resp.). By ADH-KE there exists an extractor Ext 1,0 (Ext 1,1 , resp.) that outputs a value s 0 (s 1 , resp.) in Z p . If the triple the adversary outputs is a DH triple (which is the case for a perfectly hiding setup), the respective extractor will output the discrete logarithm of one of the first two elements (except with negligible probability). This can be efficiently tested: for a value s output by the extractor, either

sG 1 = V 0
and sW 1 = W 0 , or sG 1 = W 1 and sV 0 = W 0 , (3.16) hold. Thus, let i * ∈ {0, 1} be the first value s i * for which Eq. (3.16) does not hold. There exists such an i * because at most one of σ 1,0 and σ 1,1 = σ 1,0 -((0, 0) , (0, G 1 ) ) can be a DH triple and thus a hiding commitment key. In G 2 can can also be at most one hiding commitment key; let j * be the smallest index such that σ 2,j * is binding. Note that our extractor will not know the value of j * . The CRS (σ 1,i * , σ 2,j * ) is thus of type "perfectly binding". By soundness of the Bin proof associated to every pair

(C 1,i * ,k , C 2,j * k ), the committed values b 1,k and b 2,k satisfy b 1,k = b 2,k and b 1,k , b 2,k ∈ {0, 1}.
It now remains to show that these values contained in the commitments corresponding to input wires (which by perfect soundness of Circ constitute a satisfying assignment) can be extracted; in particular, we extract the value from C 1,i * ,k (note that the extractor knows i * ).

Using (once again) the initial adversary A, we can construct multiple adversaries

A (b) k , one for each commitment C 1,i * ,k = (C 1,i * ,k,0 , C 1,i * ,k,1
) to an input wire, and each possible wire value b = 0, 1. The adversary A (b) k runs A and outputs:

(V 0 , C 1,i * ,k,1 , C 1,i * ,k,0 ), ( for 
A (0) k ) (V 0 , C 1,i * ,k,1 -W 1 , C 1,i * ,k,0 -W 0 ) (for A (1) k )
where k that outputs some value s

σ 1,i * = (V 0 , V 1 , W 0 , W 1 ). Note that if C 1,i * ,k is a commitment to 0 then (V 0 , C 1,i * ,k ) it
(b) k (with b = 0, 1), if A (b)
k output a DH triple. Using the same reasoning of Eq. (3.16), we can test which of the two triples is a valid DH triple. To do so, we use the procedure Test-DH depicted in Fig. 3.8. For each commitment C 1,i * ,k , there exists a single index b k for which the sub-procedure Test-DH returned 1: if there were more than one we would be violating the perfect binding property of the commitment scheme, if there were none we would be violating the perfect soundness of Bin (as the commitment would be bound to a value different from 0, 1).

At this point, we are done: the extractor for knowledge soundness runs all above extractors and recovers the bit b k from every commitment, which is the correct wire value because of soundness of the Circ protocol under a perfectly binding key generation.

As we needed to construct as many extractors as there are input wires in the circuit, the security loss depends on the size of the circuit.

Chapter 4

Succinct arguments of knowledge: SNARKs

This work was published in the proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. It was completed with co-authors Rosario Gennaro, Michele Minelli, and Anca Niţulescu.

In [START_REF] Gennaro | Quadratic span programs and succinct NIZKs without PCPs[END_REF], Gennaro, Gentry, Parno and Raykova proposed a new, influential characterization of the complexity class NP using Quadratic Span Programs (QSPs), a natural extension of span programs defined by Karchmer and Wigderson [START_REF] Karchmer | On span programs[END_REF]. They show there is a very efficient reduction from boolean circuit satisfiability problems to QSPs. Their work has led to fast progress towards practical verifiable computations. For instance, using Quadratic Arithmetic Programs (QAPs), a generalization of QSPs for arithmetic circuits, Pinocchio [START_REF] Parno | Pinocchio: Nearly practical verifiable computation[END_REF] provides evidence that verified remote computation can be faster than local computation. At the same time, their construction is zero-knowledge, enabling the server to keep intermediate and additional values used in the computation private. Optimized versions of SNARK protocols based on QSPs approach are used in various practical applications, including cryptocurrencies such as Zcash [BCG + 14], to guarantee anonymity while preventing double-spending.

The QSP approach was generalized in [BCI + 13] under the concept of Linear PCP (LPCP), a form of interactive ZK proofs where security holds under the assumption that the prover is restricted to compute only linear combinations of its inputs. These proofs can then be turned into (designated-verifier) SNARKs by using an extractable linear-only encryption scheme, i.e., an encryption scheme where any adversary can output a valid new ciphertext only if this is an affine combination of some previous encryptions that the adversary had as input (intuitively this "limited malleability" of the encryption scheme, will force the prover into the above restriction).

So far all known zk-SNARKs rely on "classical" pre-quantum assumptions1 . Yet, there are widely deployed systems relying on zk-SNARKs (for instance, the Zcash cryptocurrency [BCG + 14]) which are expected not to withstand cryptanalitic efforts over the course of the next 10 years [ABL + 17, Appendix C]. We attempt to make a step forward in this direction by building a designated-verifier zk-SNARK from lattice-based (knowledge) assumptions. Our scheme uses as a main building block encodings that rely on the Learning With Errors (LWE) assumption, initially The first paper has two main results: an improvement on the LPCP construction in [BCI + 13] and a construction of linear-only encryption based on LWE. The second paper presents a different approach where the information-theoretic LPCP is replaced by a LPCP with multiple provers, which is then compiled into a SNARG again via linear-only encryption. The main advantage of this approach is that it reduces the overhead on the prover, achieving what they call quasi-optimality2 . The stronger notion of knowledge soundness (which leads to SNARKs) can be achieved by replacing the linear-only property with a stronger (extractable) assumption [BCI + 13].

Our contributions. In this paper, we frame the construction of Danezis et al. [START_REF] Danezis | Square span programs with applications to succinct NIZK arguments[END_REF] for Square Span Programs in the framework of "encodings" introduced by Gennaro et al. [START_REF] Gennaro | Quadratic span programs and succinct NIZKs without PCPs[END_REF]. We slightly modify the definition of encoding to accommodate for the noisy nature of LWE schemes. This allows us to have a more fine-grained control over the error growth, while keeping previous example encodings still valid instantiations. Furthermore, SSPs are similar to but simpler than Quadratic Span Programs (QSPs) since they use a single series of polynomials, rather than 2 or 3. We use SSPs to build simpler and more efficient designated-verifier SNARKs and Non-Interactive Zero-Knowledge arguments (NIZKs) for circuit satisfiability (CIRC-SAT).

We think our work is complementary to [START_REF] Boneh | Lattice-based SNARGs and their application to more efficient obfuscation[END_REF][START_REF] Boneh | Quasi-optimal snargs via linear multi-prover interactive proofs[END_REF]. However, there are several reasons why we believe that our approach is preferable: Zero-knowledge. The LPCP-based protocols in [START_REF] Boneh | Lattice-based SNARGs and their application to more efficient obfuscation[END_REF][START_REF] Boneh | Quasi-optimal snargs via linear multi-prover interactive proofs[END_REF] do not investigate the possibility of achieving zero-knowledge. This leaves open the question of whether zk-SNARKs can be effectively instantiated. Considering the LPCP constructed for a QSP satisfiability problem, there is a general transformation to obtain ZK property [BCI + 13]. However, in the case of "noisy" encodings, due to possible information leakages in the error term, this transformation cannot be directly applied. Our SNARK construction, being SSP-based, can be made ZK at essentially no cost for either the prover or the verifier. Our transformation is different, exploiting special features of SSPs, and yields a zk-SNARK with almost no overhead. Our construction constitutes the first (designated-verifier) zk-SNARK on lattices.

Weaker assumptions. The linear-only property on encodings introduced in [BCI + 13] implies all the security assumptions needed by a SSP-suitable encoding, but the reverse is not known to hold. Our proof of security therefore relies on weaker assumptions and, by doing so, "distills" the minimal known assumptions needed to prove security for SSP, and instantiates them with lattices. We study the relations between our knowledge assumption and the (extractable) linear-only assumption in Section 4.3.

Simplicity and efficiency.

While the result in [START_REF] Boneh | Quasi-optimal snargs via linear multi-prover interactive proofs[END_REF] seems asymptotically more efficient than any SSP-based approach, we believe that, for many applications, the simplicity and efficiency of the SSP construction will still provide a concrete advantage in practice. We implemented and tested our scheme: we provide some possible concrete parameters for the instantiation of our zk-SNARKs in Table 4.1, whereas more details on the implementation, along with benchmark results, are presented in Section 4.6.

Technical challenges

Although conceptually similar to the original proof of security for QSPbased SNARKs, our construction must incorporate some additional modifications in order to overcome the noise growth of the LWE-based homomorphic operations. These challenges do not arise in the line of work of Boneh et al. [START_REF] Boneh | Lattice-based SNARGs and their application to more efficient obfuscation[END_REF][START_REF] Boneh | Quasi-optimal snargs via linear multi-prover interactive proofs[END_REF] due to the more general (and stronger) assumption of linear-only encoding (see Section 4.3 for details). Additionally, our construction benefits from the optimizations of SSP-based SNARKs [START_REF] Danezis | Square span programs with applications to succinct NIZK arguments[END_REF].

Instantiating our encoding scheme with a lattice-based scheme like Regev encryption, differs from [START_REF] Gennaro | Quadratic span programs and succinct NIZKs without PCPs[END_REF] and introduces some technicalities, first in the verification step of the protocol, and secondly in the proof of security. Our encoding scheme is additively homomorphic and allows for linear operations; however, correctness of the encoding is guaranteed only for a limited number of homomorphic operations because of the error growth in lattice-based encoding schemes. More specifically, to compute a linear combination of N encodings, we need to scale some parameters for correctness to hold. Throughout this work we will consider only encodings where a bounded number of homomorphic "linear" operations is allowed, and make sure that this bound is sufficient to perform verification and to guarantee the existence of a security reduction.

Square Span Programs

We characterize NP as Square Span Programs (SSPs) over some field F of order p. SSPs were introduced first by Danezis et al. [START_REF] Danezis | Square span programs with applications to succinct NIZK arguments[END_REF].

Definition 4.1 (SSP).

A Square Span Program (SSP) over the field F is a tuple consisting of m+1 polynomials v 0 (x), . . . , v m (x) ∈ F[x] and a target polynomial t(x) such that deg(v i (x)) deg(t(x)) for all i = 0, . . . , m. We say that the square span program ssp has size m and degree d = deg(t(x)). We say that ssp accepts an input a 1 , . . . , a ∈ {0, 1} λ if and only if there exist a +1 , . . . , a m ∈ {0, 1} λ satisfying:

t(x) divides v 0 (x) + m i=1 a i v i (x) 2 -1.
We say that ssp verifies a boolean circuit C : {0, 1} → {0, 1} if it accepts exactly those inputs (a 1 , . . . , a ) ∈ {0, 1} satisfying C(a 1 , . . . , a ) = 1.

Universal circuit.

In the definition, we may see C as a logical specification of a satisfiability problem. In our zk-SNARK we will split the inputs into u public and w private inputs to make it compatible with the universal circuit C U : {0, 1} u × {0, 1} w → {0, 1}, that take as input an u -bit description of a freely chosen circuit C and an w -bit value w, and return 1 if and only if C(w) = 1. Along the lines of [START_REF] Danezis | Square span programs with applications to succinct NIZK arguments[END_REF], we consider the "public" inputs from the point of view of the prover. For an outsourced computation, they might include both the inputs sent by the clients and the outputs returned by the server performing the computation. 

Encoding schemes

Encoding schemes for SNARKs were initially introduced in [START_REF] Gennaro | Quadratic span programs and succinct NIZKs without PCPs[END_REF]. Here, we present a variant of this definition that accommodates for encodings with noise.

Definition 4.3 (Encoding Scheme

). An encoding scheme Enc over a field F is composed of the following algorithms:

• (pk, sk) ← E.K(Γ), a key generation algorithm that takes as input the main parameters Γ and outputs some secret state sk together with some public information pk. To ease notation, we are going to assume the message space is always part of the public information and that pk can be derived from sk.

• S ← Enc.E(Γ, param, a), a non-deterministic encoding algorithm mapping a field element a to some encoding space S. Depending on the encoding algorithm, Enc.E will require either the public information pk generated from Enc.K or the secret state sk. For our application, it will be the case of sk. To ease notation, we will omit Γ and this additional argument.

The output space S is such that {[Enc.E(a)] : a ∈ F} partitions S, where [Enc.E(a)] denotes the set of the possible evaluations of the algorithm Enc.E on a.

The above algorithms must satisfy the following properties: Quadratic root detection: there exists an efficient algorithm that, given some parameter δ (either pk or sk), Enc.E(a 0 ), . . . , Enc.E(a t ), and the quadratic polynomial pp ∈ F[x 0 , . . . , x t ], can distinguish if pp(a 1 , . . . , a t ) = 0. With a slight abuse of notation, we will adopt the writing pp(ct 0 , . . . , ct t ) = 0 to denote the quadratic root detection algorithm with inputs δ, ct 0 , . . . , ct t , and pp.

Game q-PKE Enc,Z,A,Ext A ,z (λ)

Γ ← Pgen(1 λ ); (pk, sk) ← Enc.K(Γ) (α, s) ←$ F *
σ ← (pk, Enc.E(1), Enc.E(s), . . . , Enc.E(s q ), Enc.E(α), Enc.E(αs), . . . , Enc.E(αs q )) z ← Z(pk, σ) (ct, ĉt; a 0 , . . . , a q ) ← (A Ext A )(σ, z)

return ( ĉt -αct ∈ [Enc.E(0)]) ∧ ct ∈ Enc.E( q i a i s i ) Game q-PKEQ Enc,A,Ext A (λ) Γ ← Pgen(1 λ ); (pk, sk) ← Enc.K(Γ) s ←$ F σ ← (pk, Enc.E(1), Enc.E(s), . . . , Enc.E(s q ), Enc.E(s q+2 ), . . . , Enc.E(s 2q )) (Enc.E(c), e; b) ← (A Ext A )(σ) if b = 0 : return e ∈ [Enc.E(c)] else : return e ∈ [Enc.E(c)]
Game q-PDH Enc,A (λ)

Γ ← Pgen(1 λ ); (pk, sk) ← Enc.K(Γ) s ←$ F σ ← (pk, Enc.E(1), Enc.E(s), . . . , Enc.E(s q ),
Enc.E(s q+2 ), . . . , Enc.E(s 2q ))

y ← A(σ) return y ∈ Enc.E(s q+1 )
Figure 4.1: Games for q-PKE, q-PKEQ, q-PDH assumptions.

Image verification: there exists an efficiently computable algorithm ∈ that, given as input some parameter δ (again, either pk or sk), can distinguish if an element c is a correct encoding of a field element.

Our specific instantiation of the encoding scheme presents some slight differences with [START_REF] Gennaro | Quadratic span programs and succinct NIZKs without PCPs[END_REF]. In fact, we can allow only for a limited number of homomorphic operations because of the error growth in lattice-based encoding schemes. We note that this modification does not invalidate previous constructions. Sometimes, in order to ease notation, we will employ the writing ct := Eval (Enc.E (a i ) i , c) = Enc.E (t), actually meaning that ct is a valid encoding of t = a i c i ; that is, ct ∈ [Enc.E (t)]. It will be clear from the context (and the use of symbol for assignment instead of that for sampling) that the randomized encoding algorithm Enc.E is not actually invoked.

Decoding algorithm. When using a homomorphic encryption scheme in order to instantiate an encoding scheme, we simply define the decoding algorithm Enc.D as the decryption procedure of the scheme. More specifically, since we study encoding schemes derived from encryption functions, quadratic root detection and image verification for designated verifiers are trivially obtained by using the decryption procedure Enc.D.

Cryptographic assumptions

Throughout this work we rely on a number of computational assumptions. All of them are longstanding assumptions in the frame of dlog-hard groups, and have already been generalized in the scope of "encoding schemes" in [START_REF] Gennaro | Quadratic span programs and succinct NIZKs without PCPs[END_REF]. We recall them here for completeness.

The q-power knowledge of exponent assumption (q-PKE) is a generalization of the knowledge of exponent assumption (KEA) introduced by Damgard [START_REF] Damgård | Towards practical public key systems secure against chosen ciphertext attacks[END_REF]. It says that given Enc.E(s), . . . , Enc.E(s q ) and Enc.E(αs), . . . , Enc.E(αs q ) for some coefficient α, it is difficult to generate ct, ĉt that encode c, αc without knowing the linear combination of the powers of s that produces ct. Assumption 4.4 (q-PKE). The q-Power Knowledge of Exponent (q-PKE) assumption holds relative to an encoding scheme Enc and for the class Z of auxiliary input generators if, for every non-uniform PPT auxiliary input generator Z ∈ Z and non-uniform PPT adversary A, there exists a non-uniform extractor Ext such that:

Adv pke Enc,Z,A,Ext A (λ) := Pr q-PKE Enc,Z,A,Ext A (λ) = 1 = negl(λ) ,
where q-PKE Enc,Z,A,Ext A (λ) is the game depicted in Figure 4.1.

The q-PDH assumption has been a long-standing, standard q-type assumption [Gro10, BBG05], It basically states that given Enc.E(1), Enc.E (s) , . . . , Enc.E (s q ) , Enc.E s q+2 , . . . , Enc.E s 2q , it is hard to compute an encoding of the missing power Enc.E(s q+1 ). Assumption 4.5 (q-PDH). The q-Power Diffie-Hellman (q-PDH) assumption holds for encoding Enc if for all PPT adversaries A we have:

Adv q-PDH Enc,A (λ) := Pr q-PDH Enc,A (λ) = 1 = negl(λ) ,
where q-PDH Enc,A (λ) is defined as in Figure 4.1.

Optionally, to achieve strong-soundness (see Remark 2.8), we need an assumption to be able to "compare" adversarially-generated messages. The q-PKEQ assumptions states that for any adversary A that outputs two ciphertexts, there exists an extractor Ext A that can tell whether they encode the same value. Assumption 4.6 (q-PKEQ). The q-Power Knowledge of Equality (q-PKEQ) assumption holds for the encoding scheme Enc if, for every PPT adversary A, there exists an extractor Ext A such that:

Adv q-PKEQ Enc,A,Ext A (λ) := Pr q-PKEQ Enc,A,Ext

A (λ) = 1 = negl(λ) ,
where q-PKEQ Enc,A,Ext A (λ) is the game depicted in Figure 4.1.

Te q-PKEQ assumption is needed solely in the case where the attacker has access to a verification oracle. Since the encoding could be non-deterministic, the simulator in the security reduction of Section 4.5 needs to rely on q-PKEQ to simulate the verification oracle. Pragmatically, this assumption allows us to test for equality of two adversarially-produced encodings without having access to the secret key.

Finally, we recall here a well-known assumption for lattices, that we will use to instantiate our quantum-secure encoding scheme.

Assumption 4.7 (dLWE). The decisional Learning With Errors (dLWE) assumption holds for a parameter generation algorithm Lgen if for any PPT adversary A:

Adv dLWE Lgen,A (λ) := Pr dLWE Lgen,A (λ) = 1 -1/2 = negl(λ) ,
where dLWE Lgen,A (λ) is defined as in Figure 4.2.

In [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF], Regev showed that solving the decisional LWE problem is as hard as solving some lattice problems in the worst case. 

Game dLWE

Lgen,A (λ) Γ := (p, q, n, α) ← Lgen(1 λ ) s ←$ Z n q b ←$ {0, 1} b ← A Encode (Γ) return b Oracle Encode() a ←$ Z n q e ← χ qα if b = 1 c := s • a + e elsec ←$ Z q return (a, c)

An encoding scheme based on learning with errors

In this section we describe a possible instantiation of the encoding scheme based on learning with errors (LWE).

Lattices. A m-dimensional lattice Λ is a discrete additive subgroup of R m . For an integer k < m and a rank k matrix B ∈ R m×k , Λ (B) = Bx ∈ R m | x ∈ Z k is the lattice generated by the columns of B.
Gaussian distribution. For any σ ∈ R + , let ρ σ (x) := e -π x 2 /σ 2 be the Gaussian function over R n with mean 0 and parameter σ. For any discrete subset A ⊆ R n we define ρ σ (A) := x∈A ρ σ (x), the discrete integral of ρ σ over A. We then define χ σ , the discrete Gaussian distribution over A with mean 0 and parameter σ as:

χ σ : A → R + : y → ρ σ (y) ρ σ (A) .
We denote by χ n σ the discrete Gaussian distribution over R n where each entry is independently sampled from χ σ .

Lattice-based encoding scheme

We propose an encoding scheme Enc that consists of three algorithms as depicted in Figure 4.3. This is a slight variation of the classical LWE cryptosystem initially presented by Regev [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF] and later extended in [START_REF] Brakerski | Efficient fully homomorphic encryption from (standard) LWE[END_REF]. The encoding scheme Enc is described by parameters Γ := (q, n, p, α), with q, n, p ∈ N such that (p, q) = 1, and 0 < α < 1. Our construction is an extension of the one presented in [START_REF] Brakerski | Efficient fully homomorphic encryption from (standard) LWE[END_REF].

We assume the existence of a PPT algorithm Lgen that, given as input the security parameter in unary 1 λ , outputs an LWE encoding description Γ := (p, q, n, α) ← Lgen(1 λ ). In real-world encoding, generally parameters are fixed for some well-known values of λ. For the sake of simplicity, we define our encoding scheme with a LWE encoding description Γ and assume that the security parameter λ can be derived from Γ.

Roughly speaking, the public information is constituted by the LWE parameters Γ and an encoding of m is simply an LWE encryption of m. The LWE secret key constitutes the secret state of the encoding scheme.

Basic properties

Correctness. We say that the encoding scheme is (statistically) correct if all valid encodings are decoded successfully (with overwhelming probability). We say that an encoding ct of a message m under secret key s is valid if Enc.D (Γ, s, ct) = m. We say that an encoding is fresh if it is generated through the Enc.E algorithm. We say that an encoding is stale if it is not fresh. 

Enc.K(Γ)

s ←$ Z n q return (⊥, s) Enc.E(Γ, s, m) a ←$ Z n q σ := qα; e ← χ σ return (-a, a • s + pe + m) Enc.D(Γ, s, (c 0 , c 1 )) return (c 0 • s + c 1 ) (mod p)

Technical challenges

Noise growth. During the homomorphic evaluation the noise grows as a result of the operations which are performed on the encodings. Consequently, in order to ensure that the output of Eval is a valid encoding of the expected result, we need to start with a sufficiently small noise in each of the initial encodings.

In order to bound the size of the noise, we first need a basic theorem on the tail bound of discrete Gaussian distributions due to Banaszczyk [START_REF] Banaszczyk | Inequalities for convex bodies and polar reciprocal lattices inr n[END_REF]:

Lemma 4.10 ([Ban95, Lemma 2.4]). For any σ, T ∈ R + and a ∈ R n : Pr[x ← χ n σ : |x • a| ≥ T σ a ] < 2 exp(-πT 2 ). (4.1)
At this point, this corollary follows:

Corollary 4.11. Let s ←$ Z n q be a secret key and m = (m 0 , . . . , m d-1 ) ∈ Z d p be a vector of messages. Let ct be a vector of d fresh encodings so that ct i ← Enc.E (Γ, s, m i ), and c ∈ Z d p be a vector of coefficients. If q > 2p 2 σ κd π , then Eval (c, ct) outputs a valid encoding of m • c under the secret key s with probability overwhelming in κ.

Proof. The fact that the message part is m • c is trivially true by simple homomorphic linear operations on the encodings. Then the final encoding is valid if the error does not grow too much during these operations. Let e ∈ Z d p be the vector of all the error terms in the d encodings, and let T = κ/π. Then by Lemma 4.10 we have:

Pr e ← χ d σ : |e • c | ≥ κ π σ c < 2 exp(-κ).
For correctness we need the absolute value of the final noise to be less than q/2p (cf. Lemma 4.9). Since it holds that ∀c ∈ Z d p , c ≤ p √ d, we can state that correctness holds if:

κ π σp √ d < q 2p
which gives q > 2p 2 σ κd π .

Smudging. When computing a linear combination of encodings, the distribution of the error term in the final encoding does not result in a correctly distributed fresh encoding. The resulting error distribution depends on the coefficients used for the linear combination, and despite correctness of the decryption still holds, the error could reveal more than just the plaintext. We combine homomorphic evaluation with a technique called smudging [AJL + 12], which "smudges out" any difference in the distribution that is due to the coefficients of the linear combination, thus hiding any potential information leak. This technique has been also called "noise flooding" in the past [START_REF] Banerjee | Pseudorandom functions and lattices[END_REF]. Proof. Let ∆ denote the statistical distance between the two distributions. By its definition:

∆ = 1 2 B 1 +B 2 v=-(B 1 +B 2 ) |Pr [y = v] -Pr [y = v -x]| = 1 2   -B 2 v=-(B 1 +B 2 ) 1 B 2 + B 1 +B 2 v=B 2 1 B 2   = B 1 B 2 .
The result follows immediately.

In order to preserve the correctness of the encoding scheme while allowing linear evaluations, we need once again q to be large enough to accommodate for the flooding noise. In particular, q will have to be at least superpolynomial in the statistical security parameter κ.

Corollary 4.13. Let s ∈ Z n q be a secret key and m = (m 1 , . . . , m d ) ∈ Z d p be a vector of messages. Let ct be a vector of d encodings so that ct i is a valid encoding of m i , and c ∈ Z d p be a vector of coefficients. Let e Eval be the noise in the encoding output by Eval (ct, c) and B Eval a bound on its absolute value. Finally, let B sm = 2 κ B Eval , and e sm ←$ [-B sm , B sm ]. Then the statistical distance between the distribution of e sm and that of e sm + e Eval is 2 -κ . Moreover, if q > 2p B Eval (2 κ + 1) then the result of Eval (ct, c ) + (0, e sm ) is a valid encoding of m • c under the secret key s.

Proof. The claim on the statistical distance follows immediately from Lemma 4.12 and the fact that the message part is m • c is true by simple homomorphic linear operations on the encodings. In order to ensure that the final result is a valid encoding, we need to make sure that the error in this output encoding remains smaller than q/2p. The final error is upper bounded by B Eval + B sm , so we have:

B Eval + B sm < q 2p =⇒ B Eval + 2 κ B Eval < q 2p =⇒ q > 2p B Eval (2 κ + 1) .
Error testing. By making non-blackbox use of our LWE encoding scheme, it is possible to define an implementation of the function test-error in order to guarantee the existence of a security reduction from adversarially-generated proofs. In fact, it is not sufficient to show that a series of homomorphic operations over a forged proof can break one of the assumptions. We must also guarantee that these manipulations do not alter the correctness of the encoded value. In the specific case of LWE encodings, it is sufficient to use the secret key, recover the error, and enforce an upper bound on its norm. A possible implementation of test-error is displayed in Figure 4.4.

Other requirements for security reduction. The following lemma will be needed later during the security proof. It essentially defines the conditions under which we can take an encoding, add a smudging term to its noise, sum it with the output of an execution of Eval and finally multiply the result by an element in Z p .

Lemma which immediately gives the result.

Conditions on the modulus q. Corollaries 4.11 and 4.13 and Lemma 4.14 give the conditions that the modulus q has to respect in order to allow for all the necessary computations. In particular, Corollary 4.11 gives the condition to be able to homomorphically evaluate a linear combination of fresh encodings through the algorithm Eval; Corollary 4.13 gives the condition to be able to add a smudging noise to the result of such an evaluation; Lemma 4.14 gives a condition that will have to be satisfied in the security reduction. They are ordered from the least stringent to the most stringent, so the condition that must be satisfied in the end is the one given by Lemma 4.14:

q > 2p 2 ((2 κ + 1) B e + B Eval ) (4.3)
Leftover hash lemma (LHL). We now recall the definition of min-entropy, and the famous "leftover hash lemma" introduced by Impagliazzo et al. [START_REF] Håstad | A pseudorandom generator from any one-way function[END_REF].

Definition 4.15 (Min-entropy). The min-entropy of a random variable X is defined as:

H ∞ (X) = -log max x Pr[X = x]
Lemma 4.16 (Leftover hash lemma). Assume a family of functions

H x : {0, 1} n → {0, 1} x∈X is universal, i.e., ∀a = b ∈ {0, 1} n : Pr x∈X [H x (a) = H x (b)] = 2 -.
Then, for any random variable Y :

∆ ((X, H X (Y )) , (X, U )) ≤ 1 2 2 -H∞(Y ) • 2 ,
where U ←$ {0, 1} .

Zero Knowledge. We now present a version of the LHL that will be useful later in this work, when proving the zero knowledge property of our construction. In a nutshell, it says that a random linear combination of the columns of a matrix is statistically close to a uniformly random vector, for some particular choice of coefficients.

Lemma 4.17 ("Specialized" leftover hash lemma). Let n, p, q, d be non-negative integers. Let A ←$ Z n×d q , and r ←$ Z d p . Then we have:

∆ ((A, Ar ) , (A, u )) ≤ 1 2 p -d • q n ,
where Ar is computed modulo q, and u ←$ Z n q .

Proof. For the vector r, we have that H ∞ (r ) = d log p. Then the proof is immediate from Lemma 4.16:

∆ ((A, Ar ) , (A, u)) ≤ 1 2 2 -d log p • q n = 1 2 p -d • q n .

Lattices and assumptions

In this section, we analyze the assumptions that we make in this work and how they relate to the assumptions made in previous works. At a first glimpse, it might seem unjustified to have brought assumptions often used in the dLog setting into the lattice domain, where they are highly nonstandard. Despite this fact, in this section we argue (i) that the q-PKE and q-PDH assumptions are weaker than the targeted linear-only malleability of [BCI + 13, BISW17], and (ii) which consequences an attack on those assumptions would have. Over the course of the last years, a long line of research in lattice-based cryptography has been trying to develop fully-homomorphic encryption schemes and bilinear pairing maps. So far, no bilinear map is known in the context of lattices, and some have argued that its existence would lead to efficient cryptographic primitives such as multilinear maps and indistinguishability obfuscation (iO). Furthermore, although there exist FHE schemes based on lattices, it is not clear how to achieve it without giving away additional information such as encryption of the secret key itself. Showing that it is possible to indeed compute non-linear homomorphisms on top of Regev's encryption scheme would be a major breakthrough in both research areas. We see this as a win-win situation.

Game EXT-LO Enc,M,A,Ext

A (λ) (pk, sk) ← Enc.K(1 λ , 1 d ) (m 1 , . . . , m d ) ← M(1 λ , 1 d ) σ ← (Enc.E(m 1 ), . . . , Enc.E(m d )) (ct; a 0 , . . . , a d ) ← (A Ext A )(σ) return ct ∈ Enc.E(a 0 + d i=1 a i m i )
Moreover, our assumptions are weaker than previously employed assumptions for lattice-based SNARGs. Indeed, the linear-only assumption of [BCI + 13, BISW17] informally states that an adversary can only perform affine operations over the encodings provided as input. More specifically: Definition 4.18 (EXT-LO, [BCI + 13]). An encoding scheme Enc satisfies extractable linear-only target malleability if for all PPT adversaries A and plaintext generation algorithm M there exists an efficient extractor Ext such that the advantage:

Adv ext-lo Enc,M,A,Ext A (λ) := Pr EXT-LO Enc,M,A,Ext A (λ) = 1 = negl(λ) ,
where EXT-LO Enc,M,A,Ext A (λ) is defined as in Figure 4.5.

We note that, despite [BCI + 13] presents the above assumption for so-called linear-only encryption schemes, all such schemes are also encodings satisfying the properties of Definition 4.3.

It is not immediately clear to see what does this assumption imply in the case of LWE encodings (like the one we presented in section Section 4.2) or the one in [START_REF] Lindner | Better key sizes (and attacks) for LWE-based encryption[END_REF], used in [START_REF] Boneh | Lattice-based SNARGs and their application to more efficient obfuscation[END_REF]. Consider for example a set of parameters Γ allowing for d -1 homomorphic operations modulo p and the adversary A that, upon receiving as input d ciphertexts, computes d homomorphic linear operations on them. With non-negligible probability the error wraps around the modular representation, leading to a "decryptable" encoding (any element of Z n+1 q is a valid encoding) but for which the adversary does not know an affine map. The authors of [START_REF] Boneh | Lattice-based SNARGs and their application to more efficient obfuscation[END_REF] suggest to use doubleencryption in these cases, i.e., present two different encodings of each value, and ask the adversary to homomorphically evaluate these terms twice. If the two ciphertexts do not encode the same element, the game is lost. Obviously, this comes at the cost of doubling the size of each encoding and doubling the computation time for the prover and the verifier.

Theorem 4.19. If Enc is an IND-CPA extractable linear-only encoding scheme, it satisfies q-PDH.

Proof. Let us consider an adversary A PDH for the q-PDH assumption. We show that there exists an adversary able to break IND-CPA.

Consider the PPT machine A that samples uniformly at random two field elements, s 0 and s 1 , then submits the two distinct chosen plaintexts s q+1 0 , s q+1 1 to the IND-CPA challenger. A queries the IND-CPA encoding oracle with s k 0 , s k 1 for k = 0, . . . , q, q + 2, . . . , 2q. The oracle gives back some encodings σ := Enc.E(1), Enc.E(s b ), . . . , Enc.E(s q b ), Enc.E(s q+2 b ), . . . , Enc.E(s 2q b ) for b ∈ {0, 1}. A runs the q-PDH adversary on σ, thus obtaining (with non-negligible probability) some encoding ct ∈ Enc.E(s q+1 b ) . By EXT-LO, there exists an extractor Ext LO which, given as input σ and the same random coins of the adversary A PDH , returns a polynomial p such that p(s b ) = s q+1 b . Let f (x) := p(x) -x q+1 . By q-PDH, f (s b ) = 0; by Schwartz-Zippel lemma, f (s 1-b ) = 0 with probability 1 -2q/|F| = 1 -negl(λ). A returns the bit b * such that f (s b * ) = 0, thus solving the IND-CPA challenge with overwhelming probability.

Theorem 4.20. If Enc is an IND-CPA extractable linear-only encoding scheme, it satisfies q-PKE.

Proof. We will show that Enc satisfies q-PKE, meaning there is no A PKE Ext A able to win the q-PKE game (cf. Figure 4.1).

Suppose by contradiction that there exists an adversary A PKE able to produce a valid output ct, ĉt, i.e., such that αct -ĉt = 0. We show that as a consequence there exists an extractor Ext A that outputs the correct linear combination with non negligible probability.

Let M be the plaintext generation algorithm that, upon receiving the computational security parameter λ and d = 2q + 2 in unary form, samples s ←$ F and outputs plaintexts 1, s, . . . , s q . Let σ ← (Enc.E(1), Enc.E(s), . . . , Enc.E(s q ), Enc.E(α), Enc.E(αs), . . . , Enc.E(αs q )). The adversary A PKE , when run on this input σ, outputs (with non-negligible probability) ct, ĉt such that αct-ĉt = 0 (via quadratic root detection algorithm).

Let us define the adversaries B 0 and B 1 for the game EXT-LO that, upon receiving as input σ, run the same instantiation of A PKE and output ct -respectively ĉt. By our claim of linearonly property, there exist the extractors Ext 0 and Ext 1 for B 0 and B 1 , respectively, outputting a 0 , . . . , a q , b 0 , . . . , b q and a 0 , . . . , a q , b 0 , . . . , b q such that:

ct ∈ Enc.E d i a i s i + d i b i αs i , ĉt ∈ Enc.E d i a i s i + d i b i αs i
with non negligible probability. Knowing that αct -ĉt = 0 implies either that the polynomial:

P (X, Y ) = X 2 d i b i Y i + X d i (a i -b i )Y i -d i a i Y i
is the zero polynomial, or that (α, s) are roots of P (X, Y ). The second case is ruled out by semantic security of the encoding scheme and Schwartz-Zippel lemma, by a reasoning similar to the proof of Theorem 4.19.

The case where P (X, Y ) = 0 gives us b i = a i = 0, a i = b i ∀i = 0, . . . , q. Therefore, we are able to define an extractor Ext A for q-PKE that outputs the coefficients a i of the linear combination with non-negligible probability, showing that any successful adversary against q-PKE able to output ct, ĉt such that αct -ĉt ∈ [Enc.E(0)], has knowledge of the coefficients a i such that ct ∈ Enc.E d i a i s i .

Our designated-verifier zk-SNARK

Let Enc be an encoding scheme (Definition 4.3). Let C be some circuit taking as input an φ -bit string and outputting 0 or 1. Let := φ + w , where φ is the length of the "public" input, and w the length of the private input. The value m corresponds to the number of wires in C and n to the number of fan-in 2 gates. Let d := m + n. We construct a zk-SNARK scheme for any relation R C on pairs (φ, w) ∈ {0, 1} φ × {0, 1} w that can be computed by a polynomial size circuit C with m wires and n gates. Our protocol is formally depicted in 

ν(x) := v 0 (x) + m i=1 a i v i (x) + γt(x) v mid (x) := m i> φ a i v i (x) + γt(x) h(x) = (ν(x) 2 -1)/t(x)
/ / Compute the proof terms as per Eq. (4.6) Then, it runs (pk, sk) ← Enc.K(1 λ ) using the encoding scheme Enc. Finally, it samples α, β, s ← F such that t(s) = 0, and returns the CRS: σ := Γ, ssp, pk, Enc.E(1), Enc.E(s), . . . , Enc.E(s d ),

H := Eval((Enc.E(s i )) d i , (h i ) d i ) = Enc.E(h(s)) Ĥ := Eval((Enc.E(αs i )) d i , (h i ) d i ) = Enc.E(αh(s)) V := Eval((Enc.E(αs i ) d i , (ν i ) d i ) = Enc.E(αν(s)) B w := Eval((Enc.E(βv i (s))) m i (Enc.E(βt(s))), (a i ) m i (γ)) V w := Eval((Enc.E(s i )) d i , (v midi ) d i ) = Enc.E(v mid (s)) Apply smudging on H, Ĥ, V , B w , V w return (H, Ĥ, V , V w , B w )
Enc.E(α), Enc.E(αs), . . . , Enc.E(αs d ),

Enc.E(βt(s)), (Enc.E(βv i (s))) m i= φ +1 (4.4)
The error for each of these encodings has to be chosen carefully. In a nutshell, we need to intentionally increase the magnitude of the noise in some encodings, in order to mimic its distribution in the simulated CRS provided to the adversary in the security reduction. Failing to do so results in limiting the adversary's ability to perform homomorphic operations on the CRS and, thus, in a flawed proof. We defer further analysis on this point to Section 4.6. The verification string vrs consists of the secret key sk, and the CRS σ. The trapdoor τ consists of the secret key sk and the secrets s, α, β.

Prover. The prover algorithm, on input some statement φ := (a 1 , . . . , a φ ), computes a witness w := (a φ +1 , . . . , a m ) such that (φ w) = (a 1 , . . . , a m ) is a satisfying assignment for the circuit C. The (a i ) i are such that:

t(x) divides v 0 (x) + m i=1 a i v i (x)
2 as per Theorem 4.2. Then, it samples γ ←$ F and sets ν(x) := v 0 (x) + m i=1 a i v i (x) + γt(x). Let:

h(x) := (v 0 (x) + m i a i v i (x) + γt(x)) 2 -1 t(x) = ν(x) 2 -1 t(x) , (4.5)
whose coefficients can be computed from the polynomials provided in the ssp; them by linear evaluation it is possible to obtain:

H := Enc.E(h(s)), Ĥ := Enc.E(αh(s)), V := Enc.E (αν(s)) , V w := Enc.E   m i= φ +1 a i v i (s) + γt(s)   , B w := Enc.E   β   m i= φ +1 a i v i (s) + γt(s)     .
(4.6)

In fact, the encoding H -respectively, Ĥ -can be computed from the encodings of 1, s, . . . , s d -respectively, α, αs, . . . , αs d -and the coefficients of Equation (4.5). The element V can be computed from the encodings of αs, . . . , αs d . Finally, V w -respectively, B w -can be computed from the encodings of s, . . . , s d -respectively, βt(s), βv φ +1 (s), . . . , βv m (s). All these linear evaluations involve at most d + 1 terms and the coefficients are bounded by p. Using the above elements, the prover returns a proof π := (H, Ĥ, V , V w , B w ).

Verifier. Upon receiving a proof π and a statement φ = (a 1 , . . . , a φ ), the verifier, in possession of the verification key vrs (that implicitly contains the σ), proceeds with the following verifications. First, it uses the quadratic root detection algorithm of the encoding scheme Enc to verify that the proof satisfies: ĥs -αh s = 0 and vs -αv s = 0, (eq-pke)

(v 2 s -1) -h s t s = 0, (eq-div)
b s -βw s = 0.

(eq-lin)

where (h s , ĥs , vs , w s , b s ) are the values encoded in (H, Ĥ, V , V w , B w ) := π and t s , v s are computed as t s := t(s) and v s := v 0 + φ i=1 a i v i (s) + w s . Then, the verifier checks whether it is still possible to perform some homomorphic operations, using the test-error procedure, implemented in Figure 4.4 for the specific case of lattice encodings. More precisely, the verifier tests whether it is still possible to add another encoding and multiply the result by an element bounded by p, without compromising the correctness of the encoded element. This will guarantee the existence of a reduction in the knowledge soundness proof of Section 4.5. If all above checks hold, the verifier returns 1. Otherwise, return 0. Remark 4.21. Instantiating our encoding scheme on top of a "noisy" encryption scheme like Regev's introduces multiple technicalities that affect the protocol, the security proof, and the parameters' choice. For instance, in order to compute a linear combination of d encodings via Eval we need to scale down the error parameter and consequently increase the parameters q and n in order to maintain correctness and security. Similarly, the distributions of the error terms and the random vectors are affected by the homomorphic evaluation, and we must guarantee that the resulting terms are still simulatable. All these issues will be formally addressed in Section 4.5, and then analyzed more pragmatically in Section 4.6.

Proofs of security

In this section, we prove our main theorem: Theorem 4.22. If the q-PKE, q-PKEQ and q-PDH assumptions hold for the encoding scheme Enc, the protocol Π on Enc is a zk-SNARK with statistical completeness, statistical zero knowledge and computational knowledge soundness. Statistical completeness. Corollary 4.11 states the conditions on Γ for which the homomorphically computed encodings are valid with probability at least 1 -negl (κ). Lemma 4.14 affirms that correctly generated proofs satisfy Equation (4.2) with probability overwhelming in κ. Therefore test-error returns true and completeness follows trivially by Theorem 4.2.

Knowledge soundness

Proof of computational knowledge soundness. Let A Π be the PPT adversary in the game for knowledge soundness (Figure 2.2) able to produce a proof π for which Π.V returned 1. We first claim that it is possible to extract the coefficients of the polynomial v(x) corresponding to the values v s encoded in V . The setup algorithm first generates the parameters (pk, sk) of an encoding scheme Enc and picks α, β, s ∈ F, which are used to compute Enc.E(1), Enc.E(s), . . . , Enc.E(s d ), Enc.E(α), Enc.E(αs), . . . , Enc.E(αs d ). Fix some circuit C, and let ssp be an SSP for C. Let A PKE be the d-PKE adversary, that takes as input a set of encodings: σ := pk, Enc.E(1), Enc.E(s), . . . , Enc.E(s d ), Enc.E(α), Enc.E(αs), . . . , Enc.E(αs d ) .

The auxiliary input generator Z is the PPT machine that upon receiving as input σ, samples β ←$ Z p , constructs the remaining terms of the CRS (as per Equation (4.4)), and outputs them in z using ssp. Thus, A PKE sets σ := (ssp σ z) and invokes A Π (σ). As a result, it obtains a proof π = (H, Ĥ, V , V w , B w ). On this proof, it computes:

V := Enc.E   v 0 + φ i=1 a i v i (s) + w s   = V w + v 0 + φ i=1 a i v i (s). (4.7)
where w s is the element encoded in V w . Finally, A PKE returns ( V , V ). If the adversary A outputs a valid proof, then by verification equation Eq. (eq-pke) it holds that the two encodings (V, V ) encode values v s , vs such that vs -αv s = 0. Therefore, by q-PKE assumption there exists an extractor Ext PKE that, using the same input (and random coins) of A PKE , outputs a vector (c 0 , . . . , c d ) ∈ F d+1 such that V is an encoding of d i=0 c i s i and V is an encoding of d i=0 αc i s i . In the same way, it is possible to recover the coefficients of the polynomial h(x) used to construct (H, Ĥ), the first two elements of the proof of A Π (again, by Eq. (eq-pke)).

Our witness extractor Ext Π , given σ, emulates the extractor Ext PKE above on the same input σ, using as auxiliary information z the rest of the CRS given as input to Ext Π . By the reasoning discussed above, Ext Π can recover (c 0 , . . . , c d ) coefficients extracted from the encodings (V, V ). Consider now the polynomial v(x) := d i=0 c i x i . If it is possible to write the polynomial as v(x) = v 0 (x) + m i a i v i (x) + δt(x) such that (a 1 , . . . , a m ) ∈ {0, 1} m satisfies the assignment for the circuit C with u = (a 1 , . . . , a φ ), then the extractor returns the witness w = (a φ +1 , . . . , a m ).

With overwhelming probability, the extracted polynomial v(x) := d i=0 c i x i does indeed provide a valid witness w. Otherwise, there exists a reduction to q-PDH that uses the SNARK adversary A Π . Define the polynomial:

v mid (x) := v(x) -v 0 (x) - φ i=1 a i v i (x).
We know by definition of SSP and by Theorem 4.2 that C is satisfiable if and only if:

t(x) | v 2 (x) -1 ∧ v mid (x) = d i c i x i -v 0 (x) - φ i a i v i (x) ∈ Span(v φ +1 , . . . , v m , t)
Therefore, by contradiction, if the adversary A Π does not know a witness w ∈ {0, 1} m-φ for u (such that (u, w) ∈ R C ), but still the two verification checks Eq. (eq-div) and Eq. (eq-lin) pass, we have that either one of the following two cases must hold:

i. t(x)h(x) = v 2 (x) -1, but t(s)h(s) = v 2 (s) -1; or ii. v mid (x) ∈ Span(v φ +1 , . . . , v m , t), but B w is an encoding of βv mid (s).
Let B PDH be an adversary against the q-PDH assumption. Given a q-PDH challenge:

Enc.E(1), Enc.E(s), . . . , Enc.E(s q ), Enc.E s q+2 , . . . , Enc.E s 2q , for q ∈ {2d -1, d} adversary B PDH samples uniformly at random α ←$ F, and defines some β ∈ F (that we will formally construct later) and constructs a CRS as per Equation (4.4). There are some subtleties in how B PDH generates the value β. In fact, β can be generated without knowing its value explicitly, but rather knowing its representation over the power basis s i 2q i=0,i =q+1 -that is, knowing a polynomial β(x) and its evaluation in s. Some particular choices of β will allow us to provide a solution for a q-PDH challenge. B PDH invokes the adversary A Π as well as the extractor Ext Π on the generated CRS, thus obtaining a proof π and the linear combination used by the prover for the polynomials h(x), v(x) and also extracts a witness for the statement being proved.

For the strong soundness (see Remark 2.8), in order to simulate the verification oracle and to answer the verification queries of A Π , B PDH has to compare its encodings (obtained from the extracted coefficients and its input) with A's proof terms, accepts if the terms match, and rejects otherwise. Because the encoding scheme is not deterministic, adversary B PDH invokes the PKEQ extractor and simulates the verification oracle correctly with overwhelming probability.

The reduction in the two mentioned cases works as follows:

i. The extracted polynomials h(x) and v(x

) satisfy t(s)h(s) = v 2 (s)-1, but t(x)h(x) = v 2 (x)-1.
By q-PDH assumption this can happen only with negligible probability. We define p(x) = v 2 (x) -1 -t(x)h(x), that in this case is a non-zero polynomial of degree k ≤ 2d having s as a root. Let p k be the highest nonzero coefficient of p(x). Write p(

x) = x k -p -1 k • p(x). Since s is a root of x k -p(x), it is a root of x q+1 -x q+1-k p(x). B PDH solves q-PDH by computing Enc.E(s q+1 ) = Enc.E(s q+1-k p(s)) for q = 2d -1. Since deg(p) ≤ k -1,
the latter is a known linear combination of encodings Enc.E(1), Enc.E(s), . . . , Enc.E(s q ) which are available from the q-PDH challenge. More precisely, B PDH will compute Eval((Enc.E(s i+q+1-k )) i , (p i ) 2d-1 i ) on fresh encodings Enc.E(1), Enc.E(s), Enc.E(s 2 ), . . . , Enc.E(s q ) solving the q-PDH challenge for q ≥ 2d -1.

ii. In the second case, suppose that the polynomial v mid extracted as previously described cannot be expressed as a linear combination of {v φ +1 , . . . , v m , t}. The proof still passes the verification, so we have a consistent value for B w ∈ [Enc.E(βv mid (s))].

B PDH generates a uniformly random polynomial a(x) of degree q subject to the constraint that all of the polynomials a(x)t(x) and {a(x)v i (x)} m i= φ +1 have coefficient 0 for x q+1 . We note that for q = d, there are q -(mφ ) > 0 degrees of freedom in choosing a(x).

B PDH defines β to be the evaluation of a(x) in s, i.e., β := a(s). Remark that B PDH does not know s explicitly, but having access to the encodings of 2q -1 powers of s, it is able to generate valid encodings (Enc.E(βv i (s))) i and Enc.E(βt(s)) using Eval. Note that, by construction of β, this evaluation is of d + 1 elements in F and that the (q + 1)-th power of s is never used. Now, since v mid (x) is not in the proper span, the coefficient of degree q + 1 of xa(x)v mid (x) must be nonzero with overwhelming probability 1 -1/|F|. The term B w of the proof must encode a known polynomial in s: 2q i=0 b i s i := βv mid (s) = a(s)v mid (s) where the coefficient b q+1 is non-trivial. B PDH can subtract off encodings of multiples of other powers of s to recover Enc.E(s q+1 ) and break q-PDH. This requires an evaluation on fresh encodings:

Eval (Enc.E(s i )) q+d i=0 i =q+1 , (-b i ) q+d i=0 i =q+1
.

(4.8)

Adding the above to B w and multiplying by the inverse of the (q + 1)-th coefficient (using once again Eval) will provide a solution to the q-PDH problem for q = d.

Since the two cases above are not possible by q-PDH assumption, Ext Π extracts a valid witness if the proof of A Π is valid.

Zero knowledge

In order to obtain a zero-knowledge protocol, we perform smudging of the proofs terms, and we randomize the target polynomial t(x). The first step hides the witness, the second makes the distribution of the final noise independent from the coefficient a i . The random vectors constituting the first element of the ciphertext are guaranteed to be statistically indistinguishable from uniformly random vectors by leftover hash lemma (cf. Lemma 4.17).

Proof of zero knowledge. The simulator for zero knowledge is shown in Figure 4.7. The error are independently sampled from the same uniform distribution over the (integer

) interval [-2 κ T σ Bw , 2 κ T σ Bw ],
where T is a small constant and σ Bw := pσ √ d + 1 p 2 + mφ . We will call this the smudging distribution.

Checking that the proof output by Π.Sim is indeed correct (i.e., that it verifies Eqs. (eq-pke) to (eq-lin)) is trivial. We are left with showing that the two proofs are statistically indistinguishable.

Note that once the value of V w in the proof has been fixed, the verification equations uniquely determine H, Ĥ, V , and B w . This means that for any (u, w) such that C(u, w) = 1, both the real arguments and the simulated arguments are chosen uniformly at random such that the verification equations will be satisfied. One can prove that values for V w are statistically indistinguishable when executing Π.P and Π.Sim: V w is the encoding of a uniformly random variable γ w in Π.Sim and the masking of a polynomial evaluation by adding γt(s), where γ is chosen uniformly at random (note that t(s) = 0) in Π.P. What is encoded in the remaining terms is simply dictated by the verification constraints.

In both worlds, the proof is a tuple of 5 encodings (H, Ĥ, V , V w , B w ). Once the vrs is fixed, each encoding can be written as (-a, a • s + pe + m), for some a ∈ Z n q and some m ∈ Z p satisfying the verification equations. Due to Lemma 4.16, the random vectors a are indistinguishable from uniformly random in both worlds. The error terms are statistically indistinguishable due to Lemma 4.12. (See Section 4.6 for a detailed explanation of these values.)

Zero knowledge comes at a cost: smudging the error terms requires us to scale the ciphertext modulus by κ bits. For those applications where zero knowledge is not required, we can simplify the protocol by removing γt(x) from the computation of h(x) and avoiding the smudging procedure on every proof term. In Table 4.1 we show some choices of parameters, both with and without zero knowledge.

Simulator Π.Sim(σ, τ, φ) 

(Γ, sk, s, α, β) := τ ; (a 1 , . . . , a φ ) := φ γ w ←$ F h := (v 0 (s) + φ i a i v i (s) + γ w ) 2 -1 / t(s) H ← Enc.E(h); Ĥ ← Enc.E(αh); V ← Enc.E(αv 0 (s) + φ i a i αv i (s) + αγ w ) V w ← Enc.E(γ w ); B w ← Enc.E(βγ w ) Apply smudging on H, Ĥ, V , B w , V w return (H, Ĥ, V , V w , B w )

Knowledge soundness

Before diving into the technical details of the proof of soundness, we provide some intuition in an informal sketch of the security reductions: the CRS for the scheme contains encodings of Enc.E(s), . . . , Enc.E(s d ), as well as encodings of these terms multiplied by some field elements α, β ∈ F. The scheme requires the prover P to exhibit encodings computed homomorphically from such CRS.

The reason for requiring the prover to duplicate its effort w.r.t. α is so that the simulator in the security proof can extract representations of V , Ĥ as degree-d polynomials v(x), h(x) such that v(s) = v s , h(s) = h s , by the q-PKE assumption (for q = d). The assumption also guarantees that this extraction is efficient. This explains the first quadratic root detection check Equation (eq-pke) in the verification algorithm.

Suppose an adversary manages to forge a SNARK of a false statement and pass the verification test. Then, by soundness of the square span program (Theorem 4.2), for the extracted polynomials v(x), h(x) and for the new defined polynomial v mid (x) := v(x) -v 0 (x) -φ i a i v i (x), one of the following must be true:

i. h(x)t(x) = v 2 (x) -1, but h(s)t(s) = v 2 (s) -1, from Equation (eq-div);
ii. v mid (x) ∈ Span(v φ +1 , . . . , v m ), but B w is a valid encoding of Enc.E(βv mid (s)), from Equation (eq-lin).

If the first case holds, then p(x) := (v 2 (x) -1) -h(x)t(x) is a nonzero polynomial of degree some k ≤ 2d that has s as a root, since the verification test implies (v 2 (s) -1) -h(s)t(s) = 0. The simulator can use p(x) to solve q-PDH for q ≥ 2d -1 using the fact that Enc.E s q+1-k p(s) ∈ [Enc.E(0)] and subtracting off encodings of lower powers of s to get Enc.E(s q+1 ).

To handle the second case, i.e., to ensure that v mid (x) is in the linear span of the v i (x)'s with φ < i ≤ m we use an extra scalar β, supplement the CRS with the terms [Enc.E(βv i (s))] i> φ , Enc.E(βt(s)), and require the prover to present (encoded) βv mid (s) in its proof. The adversary against q-PDH will choose a polynomial β(x) convenient to solve the given instance. More specifically, it sets β(x) with respect to the set of polynomials {v i (x)} i> φ such that the coefficient for x q+1 in β(x)v mid (x) is zero. Then, to generate the values in the σ it sets β := β(s) (which can be computed from its input consisting of encodings of powers of s). Using the above, it runs the SNARK adversary and to obtain from its output B w an encoding of some polynomial with coefficient s q+1 non-zero and thus solve q-PDH. Also here, the verification algorithm guarantees that even with all the above homomorphic operations, the challenger still decrypts the correct value with 1 -negl(κ) probability.

As previously mentioned in Remark 2.8, the proof of knowledge soundness allows oracle access to the verification procedure. In the context of a weaker notion of soundness where the adversary does not have access to the Π.V(vrs, •, •) oracle, the proof is almost identical, except that there is no need for the B PDH adversary to answer queries and to simulate the verification, and therefore no need for the q-PKEQ assumption. This greatly simplifies our construction: the protocol does not need to rely on the q-PKEQ assumption, and the prime modulus can be of κ bits.

Efficiency and concrete parameters

The prover's computations are bounded by the security parameter and the size of the circuit, i.e., P ∈ O (λd). As in [START_REF] Gennaro | Quadratic span programs and succinct NIZKs without PCPs[END_REF][START_REF] Danezis | Square span programs with applications to succinct NIZK arguments[END_REF], the verifier's computations depend solely on the security parameter, i.e., V ∈ O (λ). The proof consists of a constant number (precisely, 5) of LWE encodings, i.e., |π| = 5 • O (λ). Finally, the complexity for the setup procedure is O (λd).

Using the propositions from Section 4.2 and knowing the exact number of homomorphic operations that need to be performed in order to produce a proof, we can now attempt at providing some concrete parameters for our encoding scheme.

We fix the statistical security parameter κ := 32, as already done in past works on fully homomorphic encryption (e.g., [START_REF] Ducas | FHEW: Bootstrapping homomorphic encryption in less than a second[END_REF][START_REF] Chillotti | Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds[END_REF]). We fix the circuit size d := 2 15 , which is sufficient for some practical applications such as the computation of SHA-256. For some practical examples of circuits, we direct the reader towards [BCG + 14, PHGR13].

For a first attempt at implementing our solution, we assume a weaker notion of soundness, i.e., that in the KSND game the adversary does not have access to a verification oracle (cf. Figure 2.2). Concretely, this means that the only bound in the size of p is given by the guessing probability of the witness, and the guessing of a field element. We thus fix p to be a prime3 of 32 bits for the size of the message space.

The CRS is composed of encodings of different nature: some of them are fresh (Enc.E(1), Enc.E(s), . . . , Enc.E(s d )), some happen to be stale in the construction of A PKE and the construction of B PDH Section 4.5 (Item i.) (Enc.E(αs), . . . , Enc.E(αs d )), and some are stale from the construction of B PDH Section 4.5 (Item ii.) (Enc.E(βt(s)), (Enc.E(βv i (s))) i ). Since, as we have seen, B PDH manipulates the q-PDH challenge via homomorphic operations, we must guarantee that the protocol adversary can perform at least the same number of homomorphic operations as in the real-world protocol. Therefore, in the real protocol, we must intentionally increase the magnitude of the noise in the CRS: the terms Enc.E(αs i ) (with i = 0, . . . , d) are generated by multiplying the respective fresh encoding Enc.E(s i ) by a term bounded by p; the terms Enc.E(βt(s)), [Enc.E(βv i (s))] i instead are generated via Eval of d + 1 elements with coefficients bounded by p. Concretely, when encoding these elements using the encoding scheme of Section 4.2, the error for Enc.E(αs i ) is sampled from p • χ σ ; the error for Enc.E(βt(s)), Enc.E(βv i (s))) is sampled from (p √ d + 1) • χ σ . The proof π consists of five elements (H, Ĥ, V , V w , B w ), as per Equation (4.6). H and V w are computed using an affine function on d encodings with coefficients modulo p; Ĥ, V are computed using a linear function on d + 1 encodings with coefficients modulo p; finally, B w is computed using a linear combination of mφ encodings with coefficients in {0, 1}, except the last one which is modulo p. Overall, the term that carries the highest load of homomorphic computations is B w . To it, we add a smudging term for constructing a zero knowledge proof π.

In the construction of the adversary B PDH (Item ii.) we need to perform some further homomorphic operations on the proof element B w in order to solve the q-PDH challenge, namely one addition (Equation (4.8)) and one multiplication by a known scalar b bounded by p. The final result is the solution to the q-PDH challenge.

We now outline the calculations that we use to choose the relevant parameters for our encoding scheme. In particular, we will focus on the term B w since, as already stated, it is the one that is involved in the largest number of homomorphic operations. The correctness of the other terms follows directly from Corollary 4.11.

First of all, the terms (βv i (s)) i and βt(s) are produced through the algorithm Eval executed on d + 1 fresh encodings with coefficients modulo p. Let σ be the discrete Gaussian parameter of the noise terms in fresh encodings; then, by Pythagorean additivity, the Gaussian parameter of encodings output by this homomorphic evaluation is σ Eval := pσ √ d + 1. Then the term βt(s) is multiplied by a coefficient in Z p , and the result is added to a subset sum of the terms (βv i (s)) i , i.e., a weighted sum with coefficients in {0, 1} λ . It is trivial to see that, for the first term, the resulting Gaussian parameter is bounded by pσ Eval , whereas for the second term it is bounded by σ Eval mφ . The parameter of the sum of these two terms is then bounded by σ Bw := σ Eval p 2 + mφ . Let us then consider a constant factor T for "cutting the Gaussian tails", i.e., such that the probability of sampling from the distribution and obtaining a value with magnitude larger than T times the standard deviation is as small as desired. We can then write that the absolute value of the error in B w is bounded by T σ Bw . At this point we add a smudging term, which amounts to multiplying the norm of the noise by (2 κ + 1) (cf. Corollary 4.13). Finally, the so-obtained encoding has to be summed with the output of an Eval invoked on 2d fresh encodings with coefficients modulo p and multiplied by a constant in Z p . The final noise is then bounded by T pσ Bw (2 κ + 1) + T pσ Eval (cf. Lemma 4.14). By substituting the values of σ Eval , σ Bw , remembering that σ := αq and imposing the condition for having a valid encoding, we obtain:

T p 2 αq √ d + 1 p 2 + m -φ (2 κ + 1) + 1 < q 2p .
The above corresponds to Equation (4.3) with bounds B e := T σ Bw and B Eval := T σ Eval . By simplifying q and isolating α, we get:

α < 1 2T p 3 √ d + 1 p 2 + m -φ (2 κ + 1) + 1
.

With our choice of parameters and by taking T = 8, we can select for instance α = 2 -180 . Once α and p are chosen, we select the remaining parameters q and n in order to achieve the desired level of security for the LWE encoding scheme. To do so, we take advantage of Albrecht's estimator4 [APS15] which, as of now, covers the following attacks: meet-in-the-middle exhaustive search, coded-BKW [START_REF] Guo | Coded-BKW: Solving LWE using lattice codes[END_REF], dual-lattice attack and small/sparse secret variant [START_REF] Albrecht | On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL[END_REF], lattice reduction with enumeration [START_REF] Lindner | Better key sizes (and attacks) for LWE-based encryption[END_REF], primal attack via uSVP [AFG14, BG14], Arora-Ge algorithm [AG11] using Gröbner bases [START_REF] Albrecht | Algebraic algorithms for LWE[END_REF]. Some possible choices of parameters are reported in Table 4.1.

Finally, based on these parameters, we can concretely compute the size of the CRS5 and that of the proof π. The CRS is composed of d + (d + 1) + (m + 1) encodings, corresponding to the encodings of the d powers of s, the encodings of α multiplied by the d + 1 powers of s, the m encodings of (βv i ) i , and the encoding of βt (s). This amounts to (2d + m + 2) LWE encodings, each of which has size (n + 1) log q bits6 . For the calculations, we bound m by d and state that the size of the CRS is that of (3d + 2) LWE encodings. From an implementation point of view, where the vector a is the output of a seeded PRG. This has been proven secure in the random oracle model [START_REF] Steven | Space-efficient variants of cryptosystems based on learning with errors[END_REF]. Therefore, the communication complexity is greatly reduced, as sending an LWE encoding just amounts to sending the seed for the PRG and the value b ∈ Z q . For security to hold, we can take the size of the seed to be λ bits, thus obtaining the final size of the CRS: (3d + 2) log q + λ bits. The proof π is composed of 5 LWE encodings, therefore it has size |π| = 5 (n + 1) log q bits. Note that in this case we cannot trivially use the same trick with the PRG, since the encodings are produced through homomorphic evaluations.

In Table 4.2 we show a comparison between our implementation, the zk-SNARK of [PHGR13] (informally called "Pinocchio"), and the recent implementation of [START_REF] Boneh | Lattice-based SNARGs and their application to more efficient obfuscation[END_REF] by Samir Menon, Brennan Shacklett, and David Wu7 . Despite the fact that the construction of Parno et al. [START_REF] Parno | Pinocchio: Nearly practical verifiable computation[END_REF] is fundamentally different as it targets encoding over elliptic curves, we believe that they provide a good term of comparison (when used with circuits of the same size) for the loss incurred when using lattice-based encodings instead. Note therefore that the security parameter of [START_REF] Parno | Pinocchio: Nearly practical verifiable computation[END_REF] is not comparable with the two other results.

Moreover, it is worth noting that the implementation of [START_REF] Boneh | Lattice-based SNARGs and their application to more efficient obfuscation[END_REF] targets 80 bits of security, which is justified using the estimate provided in [START_REF] Lindner | Better key sizes (and attacks) for LWE-based encryption[END_REF]. We report λ = 100 as given by Albrecht's tool [START_REF] Martin R Albrecht | On the concrete hardness of learning with errors[END_REF], which we believe to be more accurate. Nonetheless, the estimated post-quantum security level is 50, thus insufficient for modern applications. Additionally, we note that, despite targeting the construction of SNARGs, it seems the construction of [START_REF] Boneh | Lattice-based SNARGs and their application to more efficient obfuscation[END_REF] can be turned into a SNARK by using the stronger extractable linear-only assumption. In order to achieve this, they can use a technique called double encryption, which doubles the size of each ciphertext. More details about this are given in Section 4.3.

Implementation

We implemented our construction in standard C11, using the library GMP [START_REF] Granlund | GNU MP: The GNU Multiple Precision Arithmetic Library[END_REF] for handling arbitrary precision integers and the library FLINT [START_REF] Hart | FLINT: Fast Library for Number Theory[END_REF] for handling polynomials. We chose the pseudo-Mersenne prime p := 2 32 -5, and a the modulus q := 2 736 . This allows for fast arithmetic operations: reduction modulo q simply consists in a bitmask, modular operations by p can fit a uint64_t type, and multiplication of a scalar modulo p to a vector in Z n+1 q does not require any memory allocation for the carry. The dimension of the lattice was chosen n = 1470, corresponding to the "medium" security level displayed in Table 4.1. We used AES-256 in counter mode as a PRG, taking advantage of AES-NI instructions when available.

We performed extensive benchmarks of our protocol on a single thread of an Intel Core i7-4770K CPU @ 3.50GHz, running Debian (kernel version 4.9.110). Our implementation is publicly For proving satisfiability of a boolean circuit with roughly 2 14 gates (i.e., d = 2 15 ), we measured 57 s for the CRS generation algorithm; 53 s for the prover; 2.28 ms for the verifier (on average, over 100 repeated executions varying SSPs). This is about one order of magnitude slower w.r.t. Pinocchio's benchmarks [PHGR13, Fig. 8]; verification instead is one order of magnitude faster. More detailed benchmarks for different circuit sizes can be found in Table 4.3.

Chapter 5

Mimblewimble: a private cryptocurrency

This work was published in the proceedings of the 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT. It was completed with co-authors Georg

Fuchsbauer and Yannick Seurin. In this particular work, my role was largely assistive, with Georg and Yannick leading the way.

Proposed in 2008 and launched early 2009, Bitcoin [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] is a decentralized payment system in which transactions are registered in a distributed and publicly verifiable ledger called a blockchain. Bitcoin departs from traditional account-based payment systems where transactions specify an amount moving from one account to another. Instead, each transaction consists of a list of inputs and a list of outputs. Each output contains a value (expressed as a multiple of the currency unit, 10 -8 bitcoin) and a short script specifying how the output can be spent. The most common script is Pay to Public Key Hash (P2PKH) and contains the hash of an ECDSA public key, commonly called a Bitcoin address. Each input of a transaction contains a reference to an output of a previous transaction in the blockchain and a script that must match the script of that output. In the case of P2PKH, an input must provide a public key that hashes to the address of the output it spends and a valid signature for this public key.

Each transaction spends one or more previous transaction outputs and creates one or more new outputs, with a total value not larger than the total value of coins being spent. The system is bootstrapped through special transactions called coinbase transactions, which have outputs but no inputs and therefore create money (and also serve to incentivize the proof-of-work consensus mechanism, which allows users to agree on the valid state of the blockchain).

To avoid double-spending attacks, each output of a transaction can only be referenced once by an input of a subsequent transaction. Note that this implies that an output must necessarily be spent entirely. As transactions can have multiple outputs, change can be realized by having the sender assign part of the outputs to an address she controls. Since all transactions that ever occurred since the inception of the system are publicly available in the blockchain, whether an output has already been spent can be publicly checked. In particular, every transaction output recorded in the blockchain can be classified either as an unspent transaction output (UTXO) if it has not been referenced by a subsequent transaction input so far, or a spent transaction output (STXO) otherwise. Hence, the UTXO set "encodes" all bitcoins available to be spent, while the STXO set only contains "consumed" bitcoins and could, in theory, be deleted.

The validation mechanics in Bitcoin requires new users to download and validate the entire blockchain in order to check that their view of the system is not compromised.1 Consequently, the security of the system and its ability to enroll new users relies on (a significant number of) Bitcoin clients to persistently store the entire blockchain. Once a new node has checked the entire blockchain, it is free to "prune" it2 and retain only the freshly computed UTXO set, but it will not be able to convince another newcomer that this set is valid. Consider the following toy example. A coinbase transaction creates an output txo 1 for some amount v associated with a public key pk 1 . This output is spent by a transaction T 1 creating a new output txo 2 with amount v associated with a public key pk 2 . Transaction T 1 contains a valid signature σ 1 under public key pk 1 . Once a node has verified σ 1 , it is ensured that txo 2 is valid and the node can therefore delete the coinbase transaction and T 1 . By doing this, however, he cannot convince anyone else that output txo 2 is indeed valid.

At the time of writing, the size of Bitcoin's blockchain is over 200 GB.3 Downloading and validating the full blockchain can take up to several days on standard hardware. In contrast, the size of the UTXO set, containing around 60 millions elements, is only a couple of GB.

Bitcoin privacy. Despite some common misconception, Bitcoin offers a very weak level of privacy. Although users can create multiple pseudonymous addresses at will, the public availability of all transaction data often allows to link them and reveals a surprisingly large amount of identifying information, as shown in many works [AKR + 13, MPJ + 13, RS13, KKM14].

Several protocols have been proposed with the goal of improving on Bitcoin's privacy properties, such as Cryptonote [vS13] (implemented for example by Monero), Zerocoin [START_REF] Miers | Zerocoin: Anonymous distributed E-cash from Bitcoin[END_REF] and Zerocash [BCG + 14]. On the other hand, there are privacy-enhancing techniques compatible with Bitcoin, for example coin mixing [BBSU12, BNM + 14, RMK14, HAB + 17], to ensure payer anonymity. Below we describe three specific proposals that have paved the way for Mimblewimble.

Confidential Transactions. Confidential Transactions (CT), described by Maxwell [Max15],

based on an idea by Back [START_REF] Back | Bitcoins with homomorphic value[END_REF] and now implemented by Monero, allow to hide the values of transaction outputs. The idea is to replace explicit amounts in transactions by homomorphic commitments: this hides the value contained in each output, but the transaction creator cannot modify this value later on. 4More specifically, the amount v in an output is replaced by a Pedersen commitment C = vH + rG, where H and G are generators of an (additively denoted) discrete-log-hard group and r is a random value. Using the homomorphic property of the commitment scheme, one can prove that a transaction does not create money out of thin air, i.e., that the sum of the outputs is less than the sum of the inputs. Consider a transaction with input commitments

C i = v i H + r i G, 1 ≤ i ≤ n, and output commitments Ĉi = vi H + ri G, 1 ≤ i ≤ m. The transaction does not create money iff n i=1 v i ≥ m
i=1 vi . This can be proved by providing an opening (f, r) with f ≥ 0 for

n i=1 C i -m i=1
Ĉi , whose validity can be publicly checked. The difference f between inputs and outputs are so-called fees that reward the miner that includes the transaction in a block.

Note that arithmetic on hidden values is done modulo p, the order of the underlying group. Hence, a malicious user could spend an input worth 2 and create two outputs worth 10 and p -8, which would look the same as a transaction creating two outputs worth 1 each. To ensure that commitments do not contain large values that cause such mod-p reductions, a non-interactive zeroknowledge (NIZK) proof that the committed value is in 0, v max (a so-called range proof ) is added to each commitment, where v max is small compared to p.

CoinJoin. When a Bitcoin transaction has multiple inputs and outputs, nothing can be inferred about "which input goes to which output" beyond what is imposed by their values (e.g., if a transaction has two inputs with values 10 BTC and 1 BTC, and two outputs with values 10 BTC and 1 BTC, all that can be said is that at least 9 BTC flowed from the first input to the first output). CoinJoin [START_REF] Maxwell | CoinJoin: Bitcoin privacy for the real world[END_REF] builds on this technical principle to let different users create a single transaction that combines all of their inputs and outputs. When all inputs and outputs have the same value, this perfectly mixes the coins. Note that unlike CT, CoinJoin does not require any change to the Bitcoin protocol and is already used in practice. However, this protocol is interactive as participants need all input and output addresses to build the transaction. Saxena et al. [START_REF] Saxena | Increasing Anonymity in Bitcoin[END_REF] proposed a modification of the Bitcoin protocol which essentially allows users to perform CoinJoin non-interactively and which relies on so-called composite signatures.5 Cut-through. A basic property of the UTXO model is that a sequence of two transactions, a first one spending an output txo 1 and creating txo 2 , followed by a second one spending txo 2 and creating txo 3 , is equivalent to a single cut-through transaction spending txo 1 and creating txo 3 . While such an optimization is impossible once transactions have been included in the blockchain (as mentioned before, this would violate public verifiability of the blockchain), this has been suggested [START_REF] Maxwell | Transaction cut-through[END_REF] for unconfirmed transactions, i.e., transactions broadcast to the Bitcoin network but not included in a block yet. As we will see, the main added benefit of Mimblewimble is to allow post-confirmation cut-through.

Mimblewimble.

Mimblewimble was first proposed by an anonymous author in 2016 [START_REF] Elvis | Mimblewimble[END_REF]. The idea was then developed further by Poelstra [START_REF] Poelstra | Mimblewimble[END_REF]. At the time of writing, there are at least two independent implementations of Mimblewimble as a cryptocurrency: one is called Grin,6 the other Beam. 7Mimblewimble combines in a clever way CT, a non-interactive version of CoinJoin, and cutthrough of transaction inputs and outputs. As with CT, a coin is a commitment C = vH + rG to its value v using randomness r, together with a range proof π. If CT were actually employed in Bitcoin, spending a CT-protected output would require the knowledge of the opening of the commitment and, as for a standard output, of the secret key associated with the address controlling the coin. Mimblewimble goes one step further and completely abandons the notion of addresses or more generally scripts: spending a coin only requires knowledge of the opening of the commitment. As a result, ownership of a coin C = vH + rG is equivalent to the knowledge of its opening, and the randomness r of the commitment now acts as the secret key for the coin.

Exactly as in Bitcoin, a Mimblewimble transaction specifies a list C = (C 1 , . . . , C n ) of input coins (which must be coins existing in the system) and a list Ĉ = ( Ĉ1 , . . . , Ĉm ) of output coins, where

C i = v i H + r i G for 1 ≤ i ≤ n and Ĉi = vi H + ri G for 1 ≤ i ≤ m.
We will detail later how exactly such a transaction is constructed. Leaving fees aside for simplicity, the transaction is balanced (i.e., does not create money) iff vi -v i = 0, which, letting C denote n i=1 C i , is equivalent to:

Ĉ -C = (v i H + ri G) -(v i H + r i G) = ( ri -r i ) G .
In other words, knowledge of the opening of all coins in the transaction and balancedness of the transaction implies knowledge of the discrete logarithm in base G of E := Ĉ -C, called the excess of the transaction in Mimblewimble jargon. Revealing the opening (0, r := ri -r i ) of the excess E as in CT would leak too much information (e.g., together with the openings of the input coins and of all output coins except one, this would yield the opening of the remaining output coin); however, knowledge of r can be proved by providing a valid signature (on the empty message) under public key E using some discrete-log-based signature scheme. Intuitively, as long as the commitment scheme is binding and the signature scheme is unforgeable, it should be infeasible to compute a valid signature for an unbalanced transaction.

Transactions (legitimately) creating money, such as coinbase transactions, can easily be incorporated by letting the supply s (i.e., the number of monetary units created by the transaction) be explicitly specified and redefining the excess of the transaction as E := Ĉ -C -sH. All in all, a Mimblewimble transaction is a tuple tx = (s, C, Ĉ, K) with K := (π, E, σ) , (5.1)

where s is the supply, C is the input coin list, Ĉ is the output coin list, and K is the so-called kernel, which contains the list π of range proofs for output coins,8 the (list of) transaction excesses E (as there can be several; see below), and a signature σ.9 Such transactions can now easily be merged non-interactively à la CoinJoin: consider tx 0 = (s 0 , C 0 , Ĉ0 , (π 0 , E 0 , σ 0 )) and tx 1 = (s 1 , C 1 , Ĉ1 , (π 1 , E 1 , σ 1 )); then the aggregate transaction tx resulting from merging tx 0 and tx 1 is simply tx := s 0 + s 1 , C 0 C 1 , Ĉ0 Ĉ1 , π 0 π 1 , (E 0 , E 1 ), (σ 0 , σ 1 ) .

(5.2)

Moreover, if the signature scheme supports aggregation, as for example the BLS scheme [START_REF] Boneh | Aggregate and verifiably encrypted signatures from bilinear maps[END_REF][START_REF] Bellare | Unrestricted aggregate signatures[END_REF], the pair (σ 0 , σ 1 ) can be replaced by a compact aggregate signature σ for the public keys E := (E 0 , E 1 ).

An aggregate transaction (s, C, Ĉ, (π, E, σ)) is valid if all range proofs verify, σ is a valid aggregate signature for E and if

Ĉ -C -sH = E .
(5.3)

As transactions can be recursively aggregated, the resulting kernel will contain a list E of kernel excesses, one for each transaction that has been aggregated. The main novelty of Mimblewimble, namely cut-through, naturally emerges from the way transactions are aggregated and validated. Assume that some coin C appears as an output in tx 0 and as an input in tx 1 ; then, one can erase C from the input and output lists of the aggregate transaction tx, and tx will still be valid since (5.3) will still hold. Hence, each time an output of a transaction tx 0 is spent by a subsequent transaction tx 1 , this output can be "forgotten" without losing the ability to validate the resulting aggregate transaction.

In Mimblewimble the ledger is itself a transaction of the form (5.1), which starts out empty, and to which transactions are recursively aggregated as they are added to the ledger. We assume that for a transaction to be allowed onto the ledger, its input list must be contained in the output list of the ledger (this corresponds to the natural requirement that only coins that exist in the ledger can be spent). Then, it is easy to see that the following holds:

(i) the supply s of the ledger is equal to the sum of the supplies of all transactions added to the ledger so far;

(ii) the input coin list of the ledger is always empty.

Property (i) follows from the definition of aggregation in (5.2). Property (ii) follows inductively. At the inception of the system the ledger is empty (thus the first transaction added to the ledger must be a transaction with an empty input coin list and non-zero supply, a minting transaction). Any transaction tx added to the ledger must have its input coins contained in the output coin list of the ledger; thus cut-through will remove all of them from the joint input list, hence the updated ledger again has no input coins (and the coins spent by tx are deleted from its outputs).

The ledger in Mimblewimble is thus a single aggregate transaction whose supply s is equal to the amount of money that was created in the system and whose output coin list Ĉ is the analogue of the UTXO set in Bitcoin. Its kernel K allows to cryptographically verify its validity. The history of all transactions that have occurred is not retained, and only one kernel excess per transaction (a very short piece of information) is recorded.

Our contribution.

A first attempt at proving the security of Mimblewimble was partly undertaken by Poelstra [START_REF] Poelstra | Mimblewimble[END_REF]. We follow a different approach: we put forward a general syntax and a framework of game-based security definitions for an abstraction of Mimblewimble that we dub an aggregate cash system. Formalizing security for a cash system requires care. For example, Zerocoin [START_REF] Miers | Zerocoin: Anonymous distributed E-cash from Bitcoin[END_REF] was recently found to be vulnerable to denial-of-spending attacks [RTRS18] that were not captured by the security model in which Zerocoin was proved secure. To avoid such pitfalls, we keep the syntax simple, while allowing to express meaningful security definitions. We formulate two natural properties that define the security of a cash system: inflation-resistance ensures that the only way money can be created in a system is explicitly via the supply contained in transactions; resistance to coin theft guarantees that no one can spend a user's coins as long as she keeps her keys safe. We moreover define a privacy notion, transaction indistinguishability, which states that a transaction does not reveal anything about the values it transfers from its inputs to its outputs.

We then give a black-box construction of an aggregate cash system, which naturally generalizes Mimblewimble, from a homomorphic commitment scheme Com, an (aggregate) signature scheme Sig, and a NIZK range-proof system Π. We believe that such a modular treatment will ease the exploration of post-quantum instantiations of Mimblewimble or related systems.

Note that in our description of Mimblewimble, we have not yet explained how to actually create a transaction that transfers some amount ρ of money from a sender to a receiver. It turns out that this is a delicate question. The initial description of the protocol [START_REF] Elvis | Mimblewimble[END_REF] proposed the following one-round procedure: However, a subtle problem arises with this protocol. Once the transaction has been added to the ledger, the change outputs C should only be spendable by the sender, who owns them. It turns out that the receiver is also able to spend them by "reverting" the transaction tx. Indeed, he knows the range proofs for coins in C and the secret key (-k -k i ) for the transaction with inputs C C and outputs C. Arguably, the sender is given back her initial input coins in the process, but (i) she could have deleted the secret keys for these old coins, making them unspendable, and (ii) this violates any meaningful formalization of security against coin theft. A natural way to prevent such a malicious behavior would be to let the sender and the receiver, each holding a share of the secret key corresponding to public key E := C C -C, engage in a two-party interactive protocol to compute σ. Actually, this seems to be the path Grin is taking, although, to the best of our knowledge, the problem described above with the original protocol has never been documented.

We show that the spirit of the original non-interactive protocol can be salvaged, so a sender can make a payment to a receiver without the latter's active involvement. In our solution the sender first constructs a full-fledged transaction tx spending C and creating change coins C as well as a special output coin C = ρH + kG, and sends tx and the opening (ρ, k) of the special coin to the receiver. (Note that, unlike in the previous case, k is now independent from the keys of the coins in C and C .) The receiver then creates a second transaction tx spending the special coin C and creating its own output coins C and aggregates tx and tx . As intended, this results in a transaction with inputs C and outputs C C since C is removed by cut-through. The only drawback of this procedure is that the final transaction, being the aggregate of two transactions, has two kernel excesses instead of one for the interactive protocol mentioned above.

After specifying our protocol MW[Com, Sig, Π], we turn to proving its security in our definitional framework. To this end, we first define two security notions, EUF-NZO and EUF-CRO, tying the commitment scheme and the signature scheme together (cf. Page 65). Assuming that proof system Π is simulation-extractable [DDO + 01, Gro06], we show that EUF-NZO-security for the pair (Com, Sig) implies that MW is resistant to inflation, while EUF-CRO-security implies that MW is resistant to coin theft. Transaction indistinguishability follows from zero knowledge of Π and Com being hiding.

Finally, we consider two natural instantiations of MW[Com, Sig, Π]. For each, we let Com be the Pedersen commitment scheme [START_REF] Torben | Non-interactive and information-theoretic secure verifiable secret sharing[END_REF]. When Sig is instantiated with the Schnorr signature scheme [START_REF] Schnorr | Efficient signature generation by smart cards[END_REF], we show that the pair (Com, Sig) is EUF-NZO-and EUF-CRO-secure under the Discrete Logarithm assumption. When Sig is instantiated with the BLS signature scheme [START_REF] Boneh | Short signatures from the Weil pairing[END_REF], we show that the pair (Com, Sig) is EUF-NZO-and EUF-CRO-secure under the CDH assumption. Both proofs are in the random-oracle model. BLS signatures have the additional benefit of supporting aggregation [START_REF] Boneh | Aggregate and verifiably encrypted signatures from bilinear maps[END_REF][START_REF] Bellare | Unrestricted aggregate signatures[END_REF], so that the ledger kernel always contains a short aggregate signature, independently of the number of transactions that have been added to the ledger. We stress that, unlike Zerocash [BCG + 14], none of these two instantiations require a trusted setup.

Future work.

As already noted by Poelstra [START_REF] Poelstra | Mimblewimble[END_REF], given the aggregate of two transactions for which no cut-through occurred, it is possible to distinguish the inputs and outputs of each original transaction by solving a simple subset sum problem based on the two kernel excesses contained in the aggregate transaction. To achieve indistinguishability of aggregate transactions, Poelstra10 proposed to add a so-called kernel offset (a random commitment to zero) to each transaction, and to add them when merging transactions (so that any transaction now contains a list of kernel excesses and a single kernel offset). We leave the formal analysis of this proposal, which has already been implemented in Grin, for future work.

Cryptographic assumptions

Throughout this chapter, we will have to work with lists of commitments and signatures. A list L = (x 1 , . . . , x n ), also denoted (x i ) n i=1 , is a finite sequence. The length of a list L is denoted |L|.

For i = 1, . . . , |L|, the i-th element of L is denoted L[i], or L i when no confusion is possible. By L 0 L 1 we denote the list L 0 followed by L 1 . The empty list is denoted ( ). Given a list L of elements of an additive group, we let L denote the sum of all elements of L. Let L 0 and L 1 be two lists, each without repetition. We write L 0 ⊆ L 1 iff each element of L 0 also appears in L 1 . We define L 0 ∩ L 1 to be the list of all elements that simultaneously appear in both L 0 and L 1 , ordered as in L 0 . The difference between L 0 and L 1 , denoted L 0 -L 1 , is the list of all elements of L 0 that do not appear in L 1 , ordered as in L 0 . So, for example (1, 2, 3) -(2, 4) = (1, 3). We define the cut-through of two lists L 0 and L 1 , denoted cut(L 0 , L 1 ), as:

cut(L 0 , L 1 ) := (L 0 -L 1 , L 1 -L 0 ) .
Bilinear groups. Similairly to Chapter 3, we assume the existence of groups G, G T of odd prime order p of length λ and an efficiently computable non-degenerate bilinear map e :

G × G → G T .
That is, the map e is such that for all U, V ∈ G and a, b ∈ Z p : e(aU, bV ) = ab • e(U, V ), and if U is a generator of G, then e(U, U ) is a generator of G T .

In order to construct an aggregate cash system we will use three cryptographic primitives: a commitment scheme Com (cf. Section 2.3), an aggregate signature scheme Sig, and a noninteractive zero-knowledge proof system Π (cf. Section 2.3). For compatibility reasons, the setup algorithms for each of these schemes are split: a common algorithm GrGen(1 λ ) first returns main parameters Γ (specifying e.g. an abelian group), and specific algorithms Com.G, Sig.G, and Π.G take as input Γ and return the specific parameters cp, sp, and crs for each primitive. We assume that Γ is contained in cp, sp, and crs.

Recursive aggregate signature scheme. An aggregate signature scheme allows to (publicly) combine an arbitrary number n of signatures (from potentially distinct users and on potentially distinct messages) into a single (ideally short) signature [START_REF] Boneh | Aggregate and verifiably encrypted signatures from bilinear maps[END_REF][START_REF] Lysyanskaya | Sequential aggregate signatures from trapdoor permutations[END_REF][START_REF] Bellare | Unrestricted aggregate signatures[END_REF]. Traditionally, the syntax of an aggregate signature scheme only allows the aggregation algorithm to take as input individual signatures. We consider aggregate signature schemes supporting recursive aggregation, where the aggregation algorithm can take as input aggregate signatures (supported for example by the schemes based on BLS signatures [START_REF] Boneh | Aggregate and verifiably encrypted signatures from bilinear maps[END_REF][START_REF] Bellare | Unrestricted aggregate signatures[END_REF]). A recursive aggregate signature scheme Sig consists of the following algorithms:

• sp ← Sig.G(Γ): the parameter generation algorithm takes as input main parameters Γ and outputs signature parameters sp, which implicitly define a secret-key space S sp and a publickey space P sp (we let the message space be {0, 1} * );

• (sk, pk) ← Sig.K(sp): the key generation algorithm takes signature parameters sp and outputs a secret key sk ∈ S sp and a public key pk ∈ P sp ;

• σ ← Sig.S(sp, sk, m): the signing algorithm takes as input parameters sp, a secret key sk ∈ S sp , and a message m ∈ {0, 1} * and outputs a signature σ;

• σ ← Sig.A sp, (L 0 , σ 0 ), (L 1 , σ 1 ) : the aggregation algorithm takes parameters sp and two pairs of public-key/message lists L i = (pk i,j , m i,j )

|L i |
j=1 and (aggregate) signatures σ i , i = 0, 1; it returns an aggregate signature σ;

• bool ← Sig.V(sp, L, σ): the (deterministic) verification algorithm takes parameters sp, a list L = (pk i , m i ) |L| i=1 of public-key/message pairs, and an aggregate signature σ; it returns 1 or 0, indicating validity of σ. Correctness of a recursive aggregate signature scheme is defined recursively. An aggregate signature scheme is correct if for every λ, every message m ∈ {0, 1} * , every Γ ∈ [GrGen(1 λ )], sp ∈ [Sig.G(Γ)], (sk, pk) ∈ [Sig.K(sp)] and every (L 0 , σ 0 ), (L 1 , σ 1 ) with Sig.V(sp, L 0 , σ 0 ) = 1 = Sig.V(sp, L 1 , σ 1 ) we have Pr Sig.V sp, ((pk, m)) , Sig.S(sp, sk, m) = 1 = 1 and Pr Sig.V sp, L 0 L 1 , Sig.A sp, (L 0 , σ 0 ), (L 1 , σ 1 ) = 1 = 1 .

Note that for any recursive aggregate signature scheme, one can define an aggregation algorithm Sig.A that takes as input a list of triples (pk i , m i , σ i ) n i=1 and returns an aggregate signature σ for (pk i , m i ) n i=1 , which is the standard syntax for an aggregate signature scheme. Algorithm Sig.A calls Sig.A recursively n -1 times, aggregating one signature at a time.

The standard security notion for aggregate signature schemes is existential unforgeability under chosen-message attack (EUF-CMA) [START_REF] Boneh | Aggregate and verifiably encrypted signatures from bilinear maps[END_REF][START_REF] Bellare | Unrestricted aggregate signatures[END_REF]. Definition 5.1 (EUF-CMA). Let game EUF-CMA be as defined in Fig. 5.1. An aggregate signature scheme Sig is existentially unforgeable under chosen-message attack if for any PPT adversary A:

Adv euf-cma Sig,A (λ) := Pr EUF-CMA Sig,A (λ) = 1 = negl(λ) .

Note that any standard signature scheme can be turned into an aggregate signature scheme by letting the aggregation algorithm simply concatenate signatures, i.e., Sig.A(sp, (L 0 , σ 0 ), (L 1 , σ 1 )) returns (σ 0 , σ 1 ), but this is not compact. Standard EUF-CMA-security of the original scheme implies EUF-CMA-security in the sense of Definition 5.1 for this construction. This allows us to capture standard and (compact) aggregate signature schemes, such as the ones proposed in [START_REF] Boneh | Aggregate and verifiably encrypted signatures from bilinear maps[END_REF][START_REF] Bellare | Unrestricted aggregate signatures[END_REF], in a single framework.

Compatibility. For our aggregate cash system, we require the commitment scheme Com and the aggregate signature scheme Sig to satisfy some "combined" security notions. We say that Com and Sig are compatible if they use the same GrGen and if for any λ, any Γ ∈ [GrGen(1 λ )], cp ∈ [Com.G(Γ)] and sp ∈ [Sig.G(Γ)], the following holds:

• S sp = R cp , i.e., the secret-key space of Sig is the same as the randomness space of Com;

• P sp = C cp , i.e., the public-key space of Sig is the same as the commitment space of Com;

• Sig.K proceeds by drawing sk ←$ R cp and setting pk := Com.C(cp, 0; sk).

We define two security notions for compatible commitment and aggregate signature schemes. The first one roughly states that only commitments to zero can serve as signature-verification keys; more precisely, a PPT adversary cannot simultaneously produce a signature for a (set of) freely chosen public key(s) and a non-zero opening of (the sum of) the public key(s).

Game EUF-NZO Com,Sig,A (λ) Proof. Let A be an adversary against the binding security of Com. We construct an adversary B against the EUF-NZO security of (Com, Sig). On input (cp, sp), B simply runs A(cp) which returns (v 0 , r 0 ) and (v 1 , r 1 ) such that v 0 = v 1 and (using the homomorphic property) Com.C(cp, v 0 -v 1 ; r 0r 1 ) = Com.C(cp, 0; 0). Then, B draws r ←$ R cp = S sp and computes C = Com.C(cp, 0; r). Clearly, B can produce a signature for public key C for any message since it knows the corresponding secret key r. On the other hand, C = Com.C(cp, v 0 -v 1 ; r + r 0 -r 1 ), so that B also has an opening to a non-zero value for C, and hence can win the EUF-NZO game. Since B is successful exactly when A is, the result follows.

Γ ← GrGen(1 λ ) ; cp ← Com.G(Γ) ; sp ← Sig.G(Γ) (L, σ, (v, r)) ← A(cp, sp) ((X i , m i ))
The second security definition is more involved. It roughly states that, given a challenge public key C * , no adversary can produce a signature under -C * . Moreover, we only require the adversary to make a signature under keys X 1 , . . . , X n of its choice, as long as it knows an opening to the difference between their sum and -C * . This must even hold if the adversary is given a signing oracle for keys related to C * . Informally, the adversary is faced with the following dilemma: either it picks public keys X 1 , . . . , X n honestly, so it can produce a signature but it cannot open X i + C * ; or it includes -C * within the public keys, allowing it to open X i + C * , but then it cannot produce a signature. Definition 5.4 (EUF-CRO). Let game EUF-CRO be as defined in Fig. 5.3. A pair of compatible homomorphic commitment and aggregate signature schemes (Com, Sig) is existentially unforgeable with challenge-related opening if for any PPT adversary A: 

Adv euf-cro Com,Sig,A (λ) := Pr EUF-CRO Com,Sig,A (λ) = 1 = negl(λ) . Game EUF-CRO Com,Sig,A (λ) Γ ← GrGen(1 λ ) ; cp ← Com.G(Γ) sp ← Sig.G(Γ) ; (r * , C * ) ← Sig.K(sp) (L, σ, (v, r)) ← A Sign (cp, sp, C * ) ; ((X i , m i ))

Aggregate cash system

Coins. The public parameters pp set up by the cash system specify a coin space C pp and a key space K pp . A coin is an element C ∈ C pp ; to each coin is associated a coin key k ∈ K pp , which allows spending the coin. The value v of a coin is an integer in 0, v max , where v max is a system parameter. We assume that there exists a function mapping pairs (v, k) ∈ 0, v max × K pp to coins in C pp ; we do not assume this mapping to be invertible or even injective.

Ledger. Similarly to any ledger-based currency such as Bitcoin, an aggregate cash system keeps track of available coins in the system via a ledger. We assume the ledger to be unique and available at any time to all users. How users are kept in consensus on the ledger is outside the scope of this manuscript. In our abstraction, a ledger Λ simply provides two attributes: a list of all coins available in the system Λ.out, and the total value Λ.sply those coins add up to. We say that a coin C exists in the ledger Λ if C ∈ Λ.out.

Transactions.

Transactions allow to modify the state of the ledger. Formally, a transaction tx provides three attributes: a coin input list tx.in, a coin output list tx.out, and a supply tx.sply ∈ N specifying the amount of money created by tx. We classify transactions into three types. A transaction tx is said to be:

• a minting transaction if tx.sply > 0 and tx.in = ( ); such a transaction creates new coins of total value tx.sply in the ledger;

• a transfer transaction if tx.sply = 0 and tx.in = ( ); such a transaction transfers coins (by spending previous transaction outputs and creating new ones) but does not increase the overall value of coins in the ledger;

• a mixed transaction if tx.sply > 0 and tx.in = ( ).

Pre-transactions. Pre-transactions allow users to transfer money to each other. Formally, a pre-transaction provides three attributes: a coin input list ptx.in, a list of change coins ptx.chg, and a remainder ptx.rmdr. When Alice wants to send money worth ρ to Bob, she selects coins of hers of total value v ≥ ρ and specifies the desired values for her change coins when v > ρ.

The resulting pre-transaction ptx has therefore some input coin list ptx.in with total amount v, a change coin list ptx.chg, and some remainder ρ = ptx.rmdr. Alice sends this pre-transaction (via a secure channel) to Bob, who, in turn, finalizes it into a valid transaction and adds it to the ledger.

Aggregate cash system. An aggregate cash system Cash consists of the following algorithms:

• (pp, Λ) ← Cash.G(1 λ , v max ): the setup algorithm takes as input the security parameter λ in unary and a maximal coin value v max and returns public parameters pp and an initial (empty) ledger Λ.

• (tx, k) ← Cash.M(pp, v): the mint algorithm takes as input a list of values v and returns a minting transaction tx and a list of coin keys k for the coins in tx.out, such that the supply of tx is the sum of the values v.

• • (tx, k ) ← Cash.R(pp, ptx, v ): the receiving algorithm takes as input a pre-transaction ptx and a list of values v whose sum equals the remainder of ptx; it returns a transfer transaction tx and a list of secret keys k for the fresh coins in the output of tx, one for each value in v .

• Λ ← Cash.L(pp, Λ, tx): the ledger algorithm takes as input the ledger Λ and a transaction tx to be included in Λ; it returns an updated ledger Λ or ⊥.

• tx ← Cash.A(pp, tx 0 , tx 1 ): the transaction aggregation algorithm takes as input two transactions tx 0 and tx 1 whose input coin lists are disjoint and whose output coin lists are disjoint; it returns a transaction tx whose supply is the sum of the supplies of tx 0 and tx 1 and whose input and output coin list is the cut-through of tx 0 .in tx 1 .in and tx 0 .out tx 1 .out.

We say that an aggregate cash system Cash is correct if its procedures Cash.G, Cash.M, Cash.S, Cash.R, Cash.L, and Cash.A behave as expected with overwhelming probability (that is, we allow that with negligible probability things can go wrong, typically, because an algorithm could generate the same coin twice). We give a formal definition that uses two auxiliary procedures: Cons, which checks if a list of coins C is consistent with respect to values v and keys k; and V, which given as input a ledger or a (pre-)transaction determines if they respect some notion of cryptographic validity.

Definition 5.5 (Correctness). An aggregate cash system Cash is correct if there exist procedures V(•, •) and Cons(•, •, •, •) such that for any v max ∈ N and (not necessarily PPT) A M , A S , A R , A A and A L the following functions are overwhelming in λ:

Pr (pp, Λ) ← Cash.G(1 λ , v max ) : Cash.V(pp, Λ) Pr (pp, Λ) ← Cash.G(1 λ , v max ) : Cash.V(pp, Λ) Pr      (pp, Λ) ← Cash.G(1 λ , v max ) v ← A M (pp, Λ) (tx, k) ← Cash.M(pp, v) : v ∈ 0, v max * ⇒      Cash.V(pp, tx) ∧ tx.in = ( ) ∧ tx.sply = v ∧ Cons(pp, tx.out, v, k)           Pr             (pp, Λ) ← Cash.G(1 λ , v max ) (C, v, k, v ) ← A S (pp, Λ) (ptx, k ) ← Cash.S(pp, (C, v, k), v ) :   Cons(pp, C, v, k) ∧ v v ∈ 0, v max * ∧ v -v ∈ 0, v max   ⇒      Cash.V(pp, ptx) ∧ ptx.in = C ∧ ptx.rmdr = v -v ∧ Cons(pp, ptx.chg, v , k )                  Pr          (pp, Λ) ← Cash.G(1 λ , v max ) (ptx, v ) ← A R (pp, Λ) (tx, k ) ← Cash.R(pp, ptx, v ) : Cash.V(pp, ptx) ∧ v ∈ 0, v max * ∧ ptx.rmdr = v ⇒      Cash.V(pp, tx) ∧ tx.sply = 0 ∧ tx.in = ptx.in ∧ ptx.chg ⊆ tx.out ∧ Cons(pp, tx.out -ptx.chg, v , k )               Pr             (pp, Λ) ← Cash.G(1 λ , v max ) (tx 0 , tx 1 ) ← A A (pp, Λ) tx ← Cash.A(pp, tx 0 , tx 1 ) :   Cash.V(pp, tx 0 ) ∧ tx 0 .in ∩ tx 1 .in = ( ) ∧ Cash.V(pp, tx 1 ) ∧ tx 0 .out ∩ tx 1 .out = ( )   ⇒      Cash.V(pp, tx) ∧ tx.sply = tx 0 .sply + tx 1 .sply ∧ tx.in = (tx 0 .in tx 1 .in) -(tx 0 .out tx 1 .out) ∧ tx.out = (tx 0 .out tx 1 .out) -(tx 0 .in tx 1 .in)                  Pr             (pp, Λ) ← Cash.G(1 λ , v max ) (Λ, tx) ← A L (pp, Λ) Λ ← Cash.L(pp, Λ, tx) :   Cash.V(pp, Λ) ∧ Cash.V(pp, tx) ∧ tx.in ⊆ Λ.out ∧ tx.out ∩ Λ.out = ( )   ⇒      Λ = ⊥ ∧ Cash.V(pp, Λ ) ∧ Λ .out = (Λ.out -tx.in) tx.out ∧ Λ .sply = Λ.sply + tx.sply                 

Security definitions

Security against inflation. A sound payment system must ensure that the only way money can be created is via the supply of transactions, typically minting transactions. This means that for any tx the total value of the output coins should be equal to the sum of the total value of the input coins plus the supply tx.sply of the transaction. Since coin values are not deducible from a transaction (this is one of the privacy features of such a system), we define the property at the level of the ledger Λ.

We say that a cash system is resistant to inflation if no adversary can spend coins from Λ.out worth more than Λ.sply. The adversary's task is thus to create a pre-transaction whose remainder is strictly greater than Λ.sply; validity of the pre-transaction is checked by completing it to a transaction via R and adding it to the ledger via L. This is captured by the definition below. Definition 5.6 (Inflation-resistance). We say that an aggregate cash system Cash is secure against inflation if for any v max and any PPT adversary A:

Adv infl Cash,A (λ, v max ) := Pr INFL Cash,A (λ, v max ) = 1 = negl(λ) ,
where INFL Cash,A (λ, v max ) is defined in Fig. 5.4.

Security against coin theft. Besides inflation, which protects the soundness of the system as a whole, the second security notion protects individual users. It requires that only a user can spend coins belonging to him, where ownership of a coin amounts to knowledge of the coin secret key. This is formalized by the experiment in Fig. 5.5, which proceeds as follows. The challenger sets up the system and maintains the ledger Λ throughout the game (we assume that the consensus protocol provides this). The adversary can add any valid transaction to the ledger through an oracle Ledger.

Game INFL

Cash,A (λ, v max ) (pp, Λ 0 ) ← Cash.G(1 λ , v max ) (Λ, ptx, v) ← A(pp, Λ 0 ) (tx, k) ← Cash.R(pp, ptx, v)
return ⊥ ← Cash.L(pp, Λ, tx) and Λ.sply < v

Figure 5.4: Game formalizing resistance to inflation of a cash system Cash.

The challenger also simulates an honest user and manages her coins; in particular, it maintains a list Hon, which represents the coins that the honest user expects to own in the ledger. The game also maintains two hash tables Val and Key that map coins produced by the game to their values and keys. We write e.g. Val(C) := v to mean that the pair (C, v) is added to Val and let Val(C) denote the value v for which (C, v) is in Val. This naturally generalizes to lists letting Val(C) be the list v such that (C i , v i ) is in Val for all i.

The adversary can interact with the honest user and the ledger using the following oracles:

• Mint is an oracle that mints coins for the honest user. It takes as input a vector of values v, creates a minting transaction tx together with the secret keys of the output coins, adds tx to the ledger and appends the newly created coins to Hon.

• Receive lets the adversary send coins to the honest user. The oracle takes as input a pretransaction ptx and output values v; it completes ptx to a transaction tx creating output coins with values v, adds tx to the ledger, and appends the newly created coins to Hon.

• Send lets the adversary make an honest user send coins to it. It takes as input a list C of coins contained in Hon and a list of change values v ; it also checks that none of the coins in C has been queried to Send before (an honest user does not double-spend). It returns a pre-transaction ptx spending the coins from C and creating change output coins with values v . The oracle only produces a pre-transaction and returns it to the adversary, but it does not alter the ledger. This is why the list Hon of honest coins is not altered either; in particular, the sent coins C still remain in Hon.

• Ledger lets the adversary commit a transaction tx to the ledger. If the transaction output contains the (complete) set of change coins of a pre-transaction ptx previously sent to the adversary, then these change coins are added to Hon, while the input coins of ptx are removed from Hon.

Note that the list Hon represents the coins that the honest user should consider hers, given the system changes induced by the oracle calls: coins received directly from the adversary via Receive or as fresh coins via Mint are added to Hon. Coins sent to the adversary in a pre-transaction ptx via Send are only removed once all change coins of ptx have been added to the ledger via Ledger. Note also that, given these oracles, the adversary can simulate transfers between honest users. It can simply call Send to receive an honest pre-transaction ptx and then call Receive to have the honest user receive ptx.

The winning condition of the game is now simply that Hon does not reflect what the honest user would expect, namely Hon is not fully contained in the ledger (because the adversary managed to spend a coin that is still in Hon, which amounts to stealing it from the honest user). Definition 5.8 (Transaction indistinguishability). We say that an aggregate cash system Cash is transaction-indistinguishable if for any v max and any PPT adversary A:

Game IND-TX b

Cash,A (λ, v max ) (pp, Λ) ← Cash.G(1 λ , v max ) b ← A Tx (pp, Λ) return b Oracle Tx((v 0 , v 0 , v 0 ), (v 1 , v 1 , v 1 )) if not (v 0 , v 0 , v 0 , v 1 , v 1 , v 1 ∈ 0, v max * ) return ⊥ if |v 0 | = |v 1 | or |v 0 | + |v 0 | = |v 1 | + |v 1 | return ⊥ / / as number of coins is not hidden if v 0 = (v 0 v 0 ) or v 1 = (v 1 v 1 ) return ⊥ / / as transactions must be balanced (tx, k) ← M(pp, v b ) (ptx, k ) ← S(pp, (tx.out, v b , k), v b ) (tx * , k ) ← R(pp, ptx, v b ) return tx *
Adv tx-ind Cash,A (λ, v max ) := Pr TX-IND 0 Cash,A (λ, v max ) = 1 -Pr TX-IND 1 Cash,A (λ, v max ) = 1 is negligible, where TX-IND b Cash,A (λ, v max ) is defined in Fig. 5.6.

Construction of an aggregate cash system Description

Let Com be a homomorphic commitment scheme such that for cp ← Com.G(GrGen(1 λ )) we have value space V cp = Z p with p of length λ (such as the Pedersen scheme). Let Sig be an aggregate signature scheme that is compatible with Com. For v max ∈ N, let R vmax be the (efficiently computable) relation on commitments with values at most v max , i.e.:

R vmax := cp, C), (v, r) ∧ C = Com.C(cp, v; r) ∧ v ∈ 0, v max ,
where we implicitly assume that the family depends also on Γ ∈ [GrGen(1 λ )], and that it is fixed for all statements. Let Π be a simulation-extractable NIZK proof system for the family of relations R = {R vmax } vmax .

For notational simplicity, we will use the following vectorial notation for Com, R, and Π: given C, v, and r with |C| = |v| = |r|, we let

Com.C(cp, v; r) := Com.C(cp, v i ; r i ) |v| i=1 , R vmax ((cp, C), (v, r)) := |C| i=1 R vmax (Γ cp , (cp, C i ), (v i , r i )) , Π.P(crs, (cp, C), (v, r)) := Π.P(crs, (cp, C i ), (v i , r i )) |C| i=1 , Π.V(crs, (cp, C), π) := |C| i=1 Π.V(crs, (cp, C i ), π i ) ,
and likewise for Π.Sim. We also assume that messages are the empty string e if they are omitted from Sig.V and Sig.A; that is, we overload notation and let:

Sig.V(sp, (X i ) n i=1 , σ) := Sig.V(sp, ((X i , e)) n i=1 , σ)

A transaction tx = (s, C, Ĉ, K) with K = (π, E, σ) is said to be valid if all range proofs are valid, Exc(tx) = E, and σ is a valid signature for E (with all messages ε). 11When a user wants to make a payment of an amount ρ, she creates a transaction tx with input coins C of values v with v ≥ ρ and with output coins a list of fresh change coins of values v so that v = v -ρ. She also appends one more special coin of value ρ to the output. The pre-transaction ptx is then defined as this transaction tx, the remainder ptx.rmdr := ρ and the key for the special coin.

When receiving a pre-transaction ptx = (tx, ρ, k), the receiver first checks that tx is valid and that k is a key for the special coin C := tx.out[|tx.out|] of value ρ. He then creates a transaction tx that spends C (using its key k) and creates coins of combined value ρ. Aggregating tx and tx yields a transaction tx with tx .sply = 0, tx .in = ptx.in and tx .out containing ptx.chg and the freshly created coins. The receiver then submits tx to the ledger.

The ledger accepts a transaction if it is valid (as defined above) and if its input coins are contained in the output coin list of the ledger (which corresponds to the UTXO set in other systems). We do not consider any other conditions related to the consensus mechanism, such as fees being included in a transaction to incentivize its inclusion in the ledger or a proof-of-work being included in a minting transaction.

In Fig. 5.7 we first define auxiliary algorithms that create coins and transactions and verify their validity by instantiating the procedures V and Cons from Definition 5.5. Using these we then formally define MW[Com, Sig, Π] in Fig. 5.8. Lemma 5.9 (Collision-resistance). Let Com be a (binding and hiding) commitment scheme. Then for any

(v 0 , v 1 ) ∈ V 2 cp , the probability that C(cp, v 0 ; r 0 ) = C(cp, v 1 ; r 1 ) for r 0 , r 1 ←$ R cp is negligible.
The proof of the lemma is straightforward: for v 0 = v 1 this would break binding and for v 0 = v 1 it would break hiding.

Correctness. We start with showing some properties of the auxiliary algorithms in Fig. 5.7. For any v ∈ 0, v max * and (C, k, π) ← Coin(pp, v), we have Cons(pp, C, v, k) with overwhelming probability due to Lemma 5.9. Moreover, correctness of Sig and Π implies that MkTx run on consistent (C, v, k) and values v ∈ 0, v max * with v ≥ v produces a tx which is accepted by V with overwhelming probability and whose supply is the difference vv.

We now show that the protocol MW[Com, Sig, Π] described in Fig. 5.8 satisfies Definition 5.5. It is immediate that an empty ledger output by G(1 λ , v max ) verifies. As M invokes MkTx on empty inputs and output values v, correctness of M follows from correctness of MkTx. Correctness of S also follows from correctness of MkTx when the preconditions on the values, consistency of the coins and the supply, and vv = ρ ∈ 0, v max hold (note that ptx.rmdr = ρ). Therefore, with overwhelming probability the pre-transaction is valid, and the change coins are consistent. Correctness of A is straightforward: it returns a transaction with the desired supply, input, and output coin list whose validity follows from correctness of Sig.A and Π.V and

E 0 + E 1 = Ĉ0 -C 0 -C(cp, s 0 , 0) + Ĉ1 -C 1 -C(cp, s 1 , 0) = Ĉ -C -C(cp, s 0 + s 1 , 0)
, where the first equation follows from V(pp, tx 0 ) and V(pp, tx 0 ) and the second from the properties of cut-through. For any adversary A L returning (Λ, tx), if V(pp, Λ) = 1, then Λ.in = ( ) and Λ is valid when interpreted as a transaction. Since the input list of Λ is empty, L(pp, Λ, tx) = A(pp, Λ, tx) and so L is correct because A is.

Finally, we consider R, which is slightly more involved. Consider an adversary A R returning (ptx, v ) with ptx = (tx, ρ, k ) and let (tx , k ) ← MW.R(pp, ptx, v ). First, the preconditions trivially guarantee that the output is not ⊥. Consider the call (tx , k ) ← MW.MkTx(pp, (C , ρ, k ), v ) Game 0 . This is the original inflation game as presented in Definition 5.6 for the specific instantiation Cash := MW where MW.G has been written out and the first winning condition ⊥ ← MW.L(pp, Λ, tx) has been expanded with all those that are necessary for the specific case of MW. Hence,

Adv Game 0 MW,A (λ, v max ) = Adv infl MW,A (λ, v max ) .
(5.5) Game 1 . We strenghten the previous game by adding an extra winning condition. We claim that this is perfectly indistinguishable from Game 0 . Since V(pp, tx) = 1, this implies in particular that MW.R did not return ⊥. Then, tx.in = ptx.in by correctness of MW.R and, by inspection of MW.R, ptx.rmdr = v and V(pp, ptx) hold whenever MW.R does not return ⊥. Hence, Adv Game 1 MW,A (λ, v max ) = Adv Game 0 MW,A (λ, v max ) .

(5.6) Game 2 . We modify Game 1 so that the experiment returns 0 whenever the adversary creates too many coins (which may cause the sum of their values to be larger than p). We claim that the two games are computationally indistinguishable. Since the adversary A runs in polynomial time, there is a polynomial t A (λ) that upper-bounds the output length of A, and in particular |v| + |Λ.out| + |ptx.chg|. On the other hand, the value space V cp = Z p is such that log p + 1 = λ; in other words, p ≥ 2 λ-1 . Therefore, there exists λ 0 ∈ N such that:

v max • t A (λ) < 2 λ-1 ≤ p for any λ ≥ λ 0 .
Let ν A (λ) denote the probability that Game 2 returns 0 in line (I). We thus have Adv Game 2 MW,A (λ, v max ) ≥ Adv Game 1 MW,A (λ, v max ) -ν A (λ) .

(5.7)

Since there exists λ 0 ∈ N such that |v| + |Λ.out| + |ptx.chg| ≤ t A (λ) < p/v max for all λ > λ 0 , we have ν A (λ) = 0 for all such λ. Therefore, ν A (λ) is negligible.

Game 4 . This final game attempts to extract valid openings for Ĉ (the output coins of the ledger) and C (the change coins of the pre-transaction) from the proofs contained in the kernels of Λ and tx ; it returns 0 if extraction fails for any of these coins. The rest of the game is left unchanged. Consider an adversary B se for game S-EXT Π which on input a simulated CRS crs simulates Game 3 for A (again this does not require to query oracle Prove) and returns ( Ĉ C , π π ) if Game 3 returns 1 and aborts otherwise. Note that for Game 3 to return 1, all range proofs in the kernel of Λ and tx must be valid. Hence, B se wins game S-EXT Π exactly when Game 3 returns 1 and Game 4 returns 0, so that Adv Game 4 MW,A (λ, v max ) = Adv Game 3 MW,A (λ, v max ) -Adv s-ext Π,Rv max ,Bse (λ) .

(5.8)

The reduction to EUF-NZO. We now construct an adversary B against EUF-NZO-security of (Com, Sig). B takes as input (cp, sp) and simulates Game 4 : it retrieves Γ from (cp, sp), generates crs ← Π.Sim.G(Γ), and runs A on input (cp, sp, crs) and an empty ledger. If the game returns 0, then B aborts. Otherwise, we show that B can break EUF-NZO each time Game 4 returns 1. Game 4 returning 1 implies in particular (in all the following we use the notation of Fig. 5.9): At this stage, we only need to prove that v ≡ 0 mod p. To see it, note that:

ρ (iv) > s ≥ v = i∈ 1,| Ĉ| vi ≥ i∈I vi ,
where the second inequality follows from s ≡ v (mod p), s ≥ 0 (by (i)), and 0 ≤ v < | Ĉ| • v max < p (by (v)). Since v ≥ ρ -i∈I vi , this implies that v > 0. On the other hand:

v ≤ v + ρ ≤ (|C | + |v|) • v max < p
again by (v). Hence, 0 < v < p, and this proves our claim. Wrapping up, (E , σ , (v , k )) is a valid EUF-NZO solution.

In both cases, B wins the EUF-NZO game every time Game 4 returns 1. We thus have:

Adv euf-nzo B (λ) ≥ Adv Game 4 A (λ, v max ) .
(5.9)

The theorem follows from Eqs. (5.5) to (5.9).

MW is depicted in Fig. 5.11. Since the guess is uniform and perfectly hidden from the adversary, we have:

Adv Game 2 MW,A (λ, v max ) ≥ 1 h A • n A
• Adv Game 1 MW,A (λ, v max ) .

(5.12) Game 3 . In Game 3 we introduce two modifications in how queries to Send are handled (Fig. 5.11, including the boxes). We claim that Game 3 returns 1 with exactly the same probability as Game 2 , so that Adv Game 3 MW,A (λ, v max ) = Adv Game 2 MW,A (λ, v max ) .

(5.13) This is because the modifications only make the game return 0 earlier. To see this, we consider an execution of Game 2 which returns 1 in line (I) or (II) and show that the corresponding execution of Game 3 also returns 1. Consider first an execution which returns 1 in line (I). Since C ∈ Chg and Chg ∩ Hon = ( ) (see argument after (5.11)), C is never queried to Send, so Game 3 cannot return 0 in line (IV); moreover, C is never defined, so Game 3 cannot return 0 in line (III) either. Hence, Game 3 also returns 1 in line (I). Consider now an execution which returns 1 in line (II) during a query Ledger(tx * ). We consider several cases depending on the value of ptx at the end of the execution:

1. ptx = ⊥: the analysis is like in case (I): C is never queried to Send (as otherwise ptx would get defined) and C is never defined, hence Game 3 cannot return 0 in line (III) or (IV).

2. ptx = ⊥, that is, C has been queried to Send: First, since Game 2 arriving in line (II) implies that the ĩ-th change output of ptx exists, Game 3 cannot have returned 0 in line (IV). Hence, C was created and added to Chg. We first argue that C must still be in Chg at the end of the game: C can only be removed from Chg during an oracle call Ledger(tx) with ptx.chg ⊆ tx.out. However, at the same time such a call removes ptx.in from Hon. This however contradicts that Game 2 returns 1 in line (II), which implies C ∈ Hon when by construction we have C ∈ ptx.in. We conclude that C ∈ Chg when the game returns. Hence C cannot have been queried to Send (for which it must be in Hon) and therefore Game 3 does not return 0 in line (III).

Game 4 . We define Game 4 , a slight variation of Game 3 . When C is created, instead of running Π.P on the witness (v, k), it sets π i ← Π.Sim(crs, τ, (cp, C i )); if A queries Send(C, v ) with C ∈ C and there is an ĩ-th change coin C, it also simulates the proof for C. Game 4 is easily shown to be indistinguishable from Game 3 by constructing the following adversary B zk for game ZK Π,Rv max : it receives crs (which is either produced by Π.G or by Π.Sim) and simulates Game 3 , querying its oracle Prove((cp, C), (v, k)) when producing the proof for C = C or C = C; B zk returns 1 if A wins Game 3 and 0 otherwise. Since B zk perfectly simulates Game 3 or Game 4 depending on the bit of its ZK challenger, we have:

Adv Game 4
MW,A (λ, v max ) ≥ Adv Game 3 MW,A (λ, v max ) -Adv zk Π,Rv max ,B zk (λ) .

(5.14)

Note that there can only be one Send query containing C. The only other query which B cannot answer (as it lacks a necessary coin key) is Send(C, v ) with C ∈ C. If this happens then B aborts. Hence, B perfectly simulates Game 5 . We now show how B computes a solution for the EUF-CRO challenge whenever A wins Game 5 . Fig. 5.12 specifies B's simulation of the oracle Ledger and its behavior in case A wins Game 5 (via the procedure Finalize). We claim that whenever Finalize(tx * ) is called, the following holds: Together this shows that whenever A wins Game 5 then B wins EUF-CRO, that is Adv euf-cro Com,Sig,B (λ) = Adv Game 5 MW,A (λ, v max ) .

(5.16)

The theorem now follows from Eqs. (5.10) to (5.16).

Transaction-indistinguishability

Theorem 5.12 (Transaction indistinguishability (Def. 5.8)). Assume that Com is a homomorphic hiding commitment scheme, Sig a compatible signature scheme, and Π is a zero-knowledge proof system. Then the aggregate cash system MW[Com, Sig, Π] is transaction-indistinguishable. More precisely, for any v max and any PPT adversary A which makes at most q A queries to its oracle Tx, there exist PPT adversaries B zk and B hid such that:

Adv tx-ind MW,A (λ, v max ) ≤ Adv zk Π,Rv max ,B zk (λ) + q A • Adv hid Com,B hid (λ) .

Proof of Theorem 5.12. We start with instantiating Cash in Fig. 5.6 with MW and write out game TX-IND MW in Fig. 5.14, where the boxes should be ignored. (We have simplified the description by omitting checks for inputs that are created correctly by the experiment.) We next define a game Game 1 (Fig. 5.14, including the boxes) where all range proofs are simulated. It is straightforward to construct an adversary B zk so that Adv Game 1 MW,A (λ, v max ) ≥ Adv tx-ind MW,A (λ, v max ) -Adv zk Π,Rv max ,B zk (λ) . By Lemma 5.14, in order to prove the theorem, it suffices to construct B such that Adv hid-prr Com,B (λ) ≥ 1 q A • Adv Game 1 MW,A (λ, v max ) .

(5.20)

Consider a Tx-oracle query (v 0 , v 0 , v 0 ), (v 1 , v 1 , v 1 ) with v 0 , v 0 , v 0 , v 1 , v 1 , v 1 ∈ [0, v max ] * and

|v 0 | = |v 1 | |v 0 | + |v 0 | = |v 1 | + |v 1 | v 0 + v 0 -v 0 = 0 = v 1 + v 1 -v 1 .
(5.21)

We will show that the response of Tx 

Instantiations

A group description is a tuple Γ = (p, G, G) where p is an odd prime of length λ, G is an additive abelian group of prime order p, and G is a generator of G. A bilinear group description is a tuple Γ = (p, G, G T , e, G) where p is an odd prime of length λ, G and G T are groups of order p (we denote G T multiplicatively), G is a generator of G and e is an efficiently computable nondegenerate bilinear map e : G × G → G T (i.e., the map e is such that for all U, V ∈ G and a, b ∈ Z p , e(aU, bV ) = e(U, V ) ab , and e(G, G) is a generator of G T ). We assume the existence of a PPT algorithm GrGen (GrGen ) that, given as input the security parameter in unary 1 λ , outputs a group description Γ (a bilinear group description Γ ).

For groups generated by GrGen we will make the assumption that discrete logarithms (DL) are hard to compute, while for bilinear groups generated by GrGen we will make the computational Diffie-Hellman (CDH) assumption. They state that the advantages:

Adv dl

GrGen,A dl (λ) := Pr DL GrGen,A dl (λ) = 1 Adv cdh GrGen ,A cdh (λ) := Pr CDH GrGen ,A cdh (λ) = 1 and are negligible in λ for all PPT adversaries A dl and A cdh , where games DL and CDH are specified in Fig. 5.15.

For the Pedersen-Schnorr (Pedersen-BLS) instantiation, the main setup algorithm GrGen consists of a (bilinear) group generation algorithm GrGen (GrGen ).

Pedersen Commitments. The homomorphic commitment scheme proposed by Pedersen [START_REF] Torben | Non-interactive and information-theoretic secure verifiable secret sharing[END_REF], denoted PDS, is defined as: A commitment C is opened by providing the value v and the randomness r. Pedersen commitments are computationally binding under the DL assumption and perfectly hiding. Since PDS.C(cp, v 0 ; r 0 ) + PDS.C(cp, v 1 ; r 1 ) = PDS.C(cp, v 0 + v 1 ; r 0 + r 1 ), Pedersen commitments are additively homomorphic. PDS translates immediately to the case of a bilinear group description Γ .

PDS.G(Γ)

Schnorr Signatures. We recall the Schnorr signature scheme [START_REF] Schnorr | Efficient signature generation by smart cards[END_REF] in Fig. 5.16. Note that we use the key-prefixed variant of the scheme, where the public key is hashed together with the commitment and the message. This corresponds to the strong Fiat-Shamir transform as defined in [START_REF] Bernhard | How not to prove yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios[END_REF], which ensures extractability in situations where the adversary can select public keys adaptively, which is the case in the EUF-NZO and EUF-CRO security games. Note that no non-interactive aggregation procedure is known for Schnorr signatures other than trivially concatenating individual signatures.

SCH.G(Γ)

Our security proofs for the Pedersen-Schnorr pair are in the random oracle model and make use of the standard rewinding technique of Pointcheval and Stern [START_REF] Pointcheval | Security arguments for digital signatures and blind signatures[END_REF] for extracting discrete logarithms from a successful adversary. This requires some particular care since in both the EUF-NZO and the EUF-CRO games, the adversary can output multiple signatures for distinct public keys for which the reduction must extract discrete logarithms. Fortunately, a generalized forking lemma by Bagherzandi, Cheon, and Jarecki [START_REF] Bagherzandi | Multisignatures secure under the discrete logarithm assumption and a generalized forking lemma[END_REF] shows that for Schnorr signatures, one can perform multiple extractions efficiently. Equipped with it, we can prove the following two lemmas, whose proofs can be found in the full version of the article [START_REF] Fuchsbauer | Aggregate cash systems: A cryptographic investigation of mimblewimble[END_REF].

Lemma 5.16. The pair (PDS, SCH) is EUF-NZO-secure in the random oracle model under the DL assumption. More precisely, for any p.p.t. adversary A making at most q h random oracle queries and returning a forgery for a list of size at most N , there exists a PPT adversary B running in time at most 8N 2 q h /δ A • ln(8N/δ A ) • t A , where δ A = Adv euf-nzo PDS,SCH,A (λ) and t A is the running time of A, such that:

Adv euf-nzo PDS,SCH,A (λ) ≤ 8 Adv dl GrGen,B (λ).

Lemma 5.17. The pair (PDS, SCH) is EUF-CRO-secure in the random oracle model under the DL assumption. More precisely, for any p.p.t. adversary A making at most q h random oracle queries and q s signature queries, returning a forgery for a list of size at most N , and such that δ A = Adv euf-cro PDS,SCH,A (λ) ≥ 2q s /p, there exists a PPT adversary B running in time at most 16N 2 (q h + q s )/δ A • ln(16N/δ A ) • t A , where t A is the running time of A, such that: Adv euf-nzo PDS,SCH,A (λ) ≤ Adv dl GrGen,B (λ) + q s + 8 p .

Corollary 5.18. MW[PDS, SCH, Π] with Π zero-knowledge and simulation-extractable is inflationresistant and theft-resistant in the random oracle model under the DL assumption.

  If a, b are two integers such that a < b, we denote the (closed) integer interval from a to b by a, b . We use [b] as shorthand for 1, b .
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 2 Let A be a Turing machine, and EXP b A (λ) (with b ∈ {0, 1}) be two families of random variables indexed in λ ∈ N with range R. The advantage of A in distinguishing the experiments EXP b A (λ) (for b ∈ {0, 1}) is a map N → [0, 1] defined as:
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 22 Figure 2.2: Games for completeness (COMPL), knowledge soundness (KSND), and simulationextractability soundness (S-EXT).
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 23 Figure 2.3: Games for zero knowledge (ZK), and witness indistinguishability (WI).
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 31 Figure 3.1: Games for Assumptions 3.2 (DLin) and 3.3 (DH-KE).

  and C := (C 0 , C 1 , C 2 ) are bound respectively to the values a, b, c, such that c = ¬(a ∧ b), if and only if

Figure 3 . 5 :

 35 Figure 3.5: Knowledge soundness game for the ZAK protocol.

Figure 3 . 7 :

 37 Figure 3.7: Games for Assumptions 3.2 (SXDH) and 3.3 (ADH-KE).

  Com.C I (m; r) := mW + rV. The commitment scheme is additively homomorphic, since Com.C I (m 0 ; r 0 ) + Com.C I (m 1 ; r 1 ) = Com.C I (m 0 + m 1 ; r 0 + r 1 ). The two setups Com.G (h) I and Com.G (b) I are computationally indistinguishable under DDH in G I : hiding setup returns a DH triple

Figure 3

 3 Figure 3.8: The non-interactive zap scheme based on SXDH and the procedure for testing DH triples used in the proof.

  Theorem 4.2 ([DFGK14, Theorem 2]). For any boolean circuit C : {0, 1} → {0, 1} of m wires and n fan-in 2 gates there exists a degree d = m + n square span program ssp = (v 0 (x), . . . , v m (x), t(x)) over a field F, of order p ≥ max(d, 8) that verifies C. SSP generation. We consider the uniform probabilistic algorithm SSP that, on input a boolean circuit C : {0, 1} → {0, 1} of m wires and n gates, chooses a field F, with |F| ≥ max(d, 8) for d = m + n, and samples d random elements r 0 , . . . , r d ∈ F to define the target polynomial t(x) = d-1 i=0 (x -r i ), together with the set of polynomials {v 0 (x), . . . , v m (x)} composing the SSP corresponding to C. (v 0 (x), . . . , v m (x), t(x)) ← SSP(C)

  d-linearly homomorphic: there exists a poly (λ) algorithm Eval that, given as input the public parameters pk, a vector of encodings (Enc.E (a 1 ) , . . . , Enc.E (a d )), and coefficients c = (c 1 , . . . , c d ) ∈ F d , outputs a valid encoding of a • c with probability overwhelming in λ.
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 42 Figure 4.2: The decisional LWE problem for parameters Γ.
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 43 Figure 4.3: An encoding scheme based on LWE.

Lemma 4. 9

 9 (Correctness). Let ct = (-a, a • s + pe + m) be an encoding. Then ct is a valid encoding of a message m ∈ Z p if e < q 2p .Image verification. Using the decryption algorithm Enc.D, and provided with the secret key (i.e., δ := sk), we can implement image verification. The algorithm ∈ for image verification proceeds as follows: decrypts the encoded element and tests for equality between the two messages.Quadratic root detection.The algorithm Q for quadratic root detection is straightforward using Enc.D: decrypt the message and evaluate the polynomial, testing if it is equal to 0.d-linearly homomorphicity. Given a vector of d encodings ct ∈ Z d×(n+1) q and a vector of coefficients c ∈ Z d p , the homomorphic evaluation algorithm is defined as follows: Eval (ct, c) := c•ct.

Lemma 4 .

 4 12 (Noise Smudging,[START_REF] Gentry | Fully homomorphic encryption using ideal lattices[END_REF]). Let B 1 = B 1 (κ) and B 2 = B 2 (κ) be positive integers. Let x ∈ [-B 1 , B 1 ] be a fixed integer and y ←$ [-B 2 , B 2 ]. Then the distribution of y is statistically indistinguishable from that of y + x, as long as B 1 /B 2 = negl(κ).

  Figure 4.4: The error testing procedure.
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 45 Figure 4.5: Game for Extractable Linear-Only target malleability.

  Figure 4.6. Setup Π.G(Γ) α, β, s ←$ F; (pk, sk) ← Enc.K(Γ) (v 0 , . . . , v m (x), t(x)) ← SSP(C) Compute σ as per Eq. (4.4) vrs := (Γ, sk); τ := (Γ, sk, s, α, β) return (σ, vrs, τ ) Verifier Π.V(vrs, u, π) (H, Ĥ, V , V w , B w ) := π (a 1 , a 2 , . . . a φ ) := u; (Γ, sk) := vrs w s := Enc.D(V w ); b s := Enc.D(B w ) h s := Enc.D(H); ĥs := Enc.D( Ĥ) vs := Enc.D( V ); t s := t(s) v s := v 0 (s) + φ i=1 a i v i (s) + w s Check Eqs. (eq-pke) to (eq-lin) return test-error(Γ, sk, B w ) Prover Π.P(σ, φ, w) (Γ, ssp, pk, . . . ) := σ (v 0 , . . . , v m (x), t(x)) := ssp u := (a 1 , . . . , a φ ) ∈ {0, 1} φ ; w := (a φ +1 , . . . , a m )

Figure 4 . 6 :

 46 Figure 4.6: Our zk-SNARK protocol Π.
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 47 Figure 4.7: Simulator for zero knowledge.

•

  the sender selects input coins C of total value v ≥ ρ; it creates change coins C of total value v -ρ and sends C, C , range proofs for C and the opening (-ρ, k) of C -C to the receiver (over a secure channel); • the receiver creates additional output coins C (and range proofs) of total value ρ with keys (k i ), computes a signature σ with the secret key k + k i and defines the transaction tx = 0, C, C C , π, E = C + C -C, σ .

Game

  Figure 5.1: The EUF-CMA security game for an aggregate signature scheme Sig.

  n i=1 := L return Sig.V(sp, L, σ) and n i=1 X i = Com.C(cp, v; r) and v = 0

Figure 5

 5 Figure 5.2: The EUF-NZO security game for a pair of compatible additively homomorphic commitment and aggregate signature schemes (Com, Sig).

  Figure 5.3: The EUF-CRO security game for a pair of compatible additively homomorphic commitment and aggregate signature schemes (Com, Sig).

  ptx, k ) ← Cash.S(pp, (C, v, k), v ): the sending algorithm takes as input a list of coins C together with the associated lists of values v and secret keys k and a list of change values v whose sum is at most the sum of the input values v; it returns a pre-transaction ptx and a list of keys k for the change coins of ptx, such that the remainder of ptx is the sum of the values v minus the sum of the values v .

Figure 5

 5 Figure 5.6: Game formalizing transaction indistinguishability of a cash system Cash.

  (i) V(pp, Λ) = 1; (ii) C Λ = ( ); (iii) C ⊆ Ĉ; (iv) s < ρ; (v) (|v| + | Ĉ| + |C |) • v max < p; (vi) V(pp, ptx) = 1, which in turn implies: (a) V(pp, tx ) = 1; (b) s := tx .sply = 0; (c) C * = Com.C(cp, ρ; k * ).Let v := v and k := k. Two cases may occur.• v ≡ s mod p: In this case, B returns (E, σ, (v -s, k)). We claim that this is a valid EUF-NZO solution. By (i), σ is a valid signature for E and E = Exc(Λ) where by definition:Exc(Λ) = Ĉ -C Λ -Com.C(cp, s; 0) = Ĉ -Com.C(cp, s; 0) (by (ii)) = | Ĉ| i=1 Com.C(cp, vi ; ki ) -Com.C(cp, s; 0) = Com.C(cp, v -s; k) . Since v -s ≡ 0 mod p, (v -s, k) is a non-zeroopening for E. • v ≡ s mod p: In this case, B must exploit the pre-transaction (unlike in the previous case where the ledger was sufficient). Let v := v and k := k . Let us denote with I the set of indexes such that C = ( Ĉ[i]) i∈I , which exists by (iii). By (vi)(a), σ is a valid signature for E and E = Exc(tx ) where by definition: Exc(tx ) = C + C * -C -Com.C(cp, s ; 0) = C + C * -C (by (vi)(b)) = C + Com.C(cp, ρ; k * ) -C (by (vi)(c)) = Com.C(cp, v ; k ) + Com.C(cp, ρ; k * ) -i∈I Com.C(cp, vi ; ki ) = Com.C cp, v + ρ -i∈I vi ; k + k * -i∈I ki , Let v := v +ρ-i∈I vi and k := k +k * -i∈I ki , so that (v , k ) is an opening of Exc(tx ).

  First, the game returns 0 if the adversary makes a call Send(C, v ) with C ∈ C and |v | < ĩ. If there is a call ptx ← Send(C, v ) with C ∈ C and |v | ≥ ĩ, then the game defines C := ptx.chg[ĩ]. Once C has been defined, the game returns 0 if the adversary makes a call Send(C, v ) with C ∈ C.

  (i) C ∈ tx * .in; (ii) C / ∈ tx * .out; (iii) C / ∈ tx * .in; (iv) C / ∈ tx * .out. Property (i) is clearly necessary for Finalize(tx * ) to be called. Property (ii) must hold as otherwise tx * .in ∩ tx * .out = ( ), which implies V(pp, tx * ) = 0 and hence MW.A(pp, Λ, tx * ) (and hence MW.L(pp, Λ, tx * )) would return ⊥. To prove (iii) and (iv), we distinguish two cases. Assume first that Finalize(tx * ) is called in line (I). Since C ∈ Chg and Chg ∩ Hon = ( ) (see argument after (5.11)), C has never been queried to Send, thus C has never been defined and (iii) and (iv) trivially hold. Assume now that Finalize(tx * ) is called in line (II). If ptx = ⊥ then as before C = ⊥ and (iii) and (iv) trivially hold. If ptx = ⊥, then necessarily (by inspection of the code) ptx.chg[ĩ] = C / ∈ tx * .out and (iv) holds. It remains to prove (iii). As in the reasoning for Game 3 , we have C ∈ Chg. Moreover, we have tx * .in ∩ Chg = ( ), since otherwise B would have returned in line (I) of Fig. 5.12. Together this implies C / ∈ tx * .in. It is easily seen that all coins in Λ.out have a valid proof in the ledger's kernel (otherwise MW.L (and thus Ledger) would not have included them in Λ.out). The reduction can thus use the extractor to obtain the values and keys of the coins in C -( C): (v i ) i∈[|C|]\(j) and (k i ) i∈[|C|]\(j) . From the proofs π contained in tx * , it can moreover extract the values and keys of the output coins Ĉ: (v i ) i∈[| Ĉ|] and ( ki ) i∈[| Ĉ|] . Since MW.V(pp, tx * ), we have: (a) Sig.V(sp, E, σ) (b) E = Ĉ -C -Com.C(cp, s; 0) = i Ĉii =j C i + C * + Com.C(cp, v j ; k j ) -Com.C(cp, s; 0) = -C * + Com.C(cp, i vii v i -s =:v ; i kii k i =:r ) B thus returns (E, σ, (v, r)), which makes it win the game EUF-CRO.

  Figure 5.15: The Discrete Logarithm and Computational Diffie-Hellman games.

  (p, G, G) := Γ ; H ←$ G return cp := (Γ, H) PDS.C(cp, v, r) ((p, G, G), H) := cp return C := vH + rG

  Figure 5.16: The Schnorr aggregate signature scheme.

Chapter 3 Arguments of knowledge without setup: ZAKs

  

	. A non-interactive proof system Π for a relation R is succinct if the proof has size This work was published in the proceedings of the 16th International Conference on Applied Cryptography
	and Network Security, ACNS. It was completed with co-author Georg Fuchsbauer, and awarded "best quasi-linear in the security parameter, i.e., |π| = Õ(λ). A succinct non-interactive argument of knowledge (SNARK) is a non-interactive proof system that is complete, succinct, and knowledge-student paper" with a monetary compensation from Springer.
	sound. A zk-SNARK is a SNARK that satisfies zero knowledge (cf. Definition 2.10).

Table 3 .

 3 1: Efficiency and security of the original zaps and our constructions of zaps of knowledge, where w is the number of wires, g the number of gates and |G| is the size of an element of a group G.

	Protocol

Table 3

 3 

.2: Overview of changes throughout the hybrids: (h) denotes hiding setup; (b) denotes binding setup; w b identifies the witness used to produce the proof.

  is of the form (xG 1 , rG 1 , rxG 1 ) for some x, r ∈ Z p , and thus a DH triple. If C k is a commitment to one, then C -W is a commitment to 0 and thus (V 0 , C 1,i * ,k -W) is a DH triple as above.By ADH-KE for each adversary A

	(b) k there exists an extractor Ext (b)

Table 4 .

 4 1: Security estimates for different choices of LWE parameters (circuit size fixed to d = 2 15 ), together with the corresponding sizes of the proof π and of the CRS (when using a seeded PRG for its generation).

	security level	λ	n	log α	log q	|π|	|σ|	ZK
	medium	168	1270	-150	608	0.46 MB	7.13 MB	
		162	1470	-180	736	0.64 MB	8.63 MB	
	high	244	1400	-150	672	0.56 MB	7.88 MB	
		247	1700	-180	800	0.81 MB	9.37 MB	
	paranoid	357	1450	-150	800	0.69 MB	9.37 MB	
		347	1900	-180	864	0.98 MB	10.1 MB	
	proposed by Regev in 2005 [Reg05], and right now the most widespread post-quantum cryptosys-
	tem supported by a theoretical proof of security.				

SNARGs based on lattices. Recently, in two companion papers [BISW17, BISW18], Boneh et al. provided the first designated-verifier SNARGs construction based on lattice assumptions.

  The correctness of the message part comes immediately from performing homomorphic linear operations on encodings, and the final output is valid if the noise remains below a certain threshold. After adding the smudging term and performing the sum, the noise term is at most B

	p ((2 κ + 1) B e + B Eval ) <	q 2p	,	(4.2)

4.14 (For reduction). Let s, ct, c, e Eval , B Eval be as in Corollary 4.13, and let ct = (-a , s • a + pe + m ) be a valid encoding of a message m ∈ Z p with noise e bounded by B e . Let B sm = 2 κ B e and e sm ←$ [-B sm , B sm ] be a "smudging noise". Then, if q > 2p 2 ((2 κ + 1) B e + B Eval ), it is possible to add the smudging term e sm to ct , sum the result with the output of Eval (ct, c ), multiply the outcome by a coefficient bounded by p, and obtain a valid encoding of k (m • c + m ).

Proof. e + B sm + B Eval = (2 κ + 1) B e + B Eval . After the multiplication by a coefficient bounded by p, it is at most p ((2 κ + 1) B e + B Eval ). Thus, the encoding is valid if:

Table 4 .

 4 2: Comparison with previous works. PQ stands for post-quantum. We note that the construction of[START_REF] Parno | Pinocchio: Nearly practical verifiable computation[END_REF] is very different (namely, based on elliptic curves), and comparing security levels is therefore difficult.

	PQ	λ	ZK	|π|	|σ|	d
	[PHGR13]	256		288 B	6.50 MB	23,785
	[BISW17]	100		0.02 MB	1.23 GB	10,000
	Section 4.4	162		0.64 MB	8.63 MB	32,767
	we can consider LWE encodings (a, b) ∈ Z n+1 q			

Table 4 .

 4 3: Benchmarks of our proof system (zk) for different circuit sizes (i.e., d). Time is measured using gettimeofday(2). Encoding a uniformly random element of Z p using Enc.Enc.E takes on average 310 µs (std. dev. 34 µs); decoding it using Enc.Enc.D is about the same order of magnitude, 197 µs (std. dev. 24 µs). Measurements were done over 100, 000 samples. The algorithm for homomorphic evaluations Eval is able to compute a linear combination of 2 15 ciphertexts with coefficients modulo p in roughly 13 s, and of 2 18 in about 94 s.

	Circ. size	Setup (s)	Prover (s)	Verifier (ms)
	2 10	1.46 s ± 18.7 ms 1.61 s ± 27.8 ms 1.26 ms ± 16 µs
	2 13	12.3 s ± 37.9 ms	13 s ± 224 ms 1.50 ms ± 16 µs
	2 15	57.8 s ± 134 ms 53.6 s ± 247 ms 2.28 ms ± 17 µs
	2 16	167 s ± 269 ms	235 s ± 451 ms 3.46 ms ± 17 µs
	available 8 .			

In GS notation, the equations are defined by setting the parameters a := (0), b := (-1), Γ := [1], and t := 0 for the first equation and a := (-1), b := (0), Γ := [1], t := 0 for the second.

We note that the original protocol of Kilian[START_REF] Kilian | A note on efficient zero-knowledge proofs and arguments (extended abstract)[END_REF] is a zk-SNARK which can be instantiated with a postquantum assumption since it requires only a collision-resistant hash function -however (even in the best optimized version recently proposed in[START_REF] Ben-Sasson | Scalable, transparent, and post-quantum secure computational integrity[END_REF]) the protocol does not seem to scale well for even moderately complex computations.

This is the first scheme where the prover does not have to compute a cryptographic group operation for each wire of the circuit, which is instead true e.g., in QSP-based protocols.

In particular, we need p and q to be relatively prime for the correctness of the encoding scheme [BV11, footnote 18].

https://bitbucket.org/malb/lwe-estimator

We take into account only the encodings that are contained in the CRS. The other terms have considerably smaller impact on its size or can be agreed upon offline (e.g., the SSP).

Note that the magnitude of the noise term, i.e., whether the encoding is fresh or stale, has no impact on the size of an encoding. This size is a function only of n (the number of elements in the vector) and the modulus q.

Results are extracted from the source code at https://github.com/dwu4/lattice-snarg.

See https://www.di.ens.fr/~orru/pq-zk-snarks.

So-called Simplified Verification Payment (SPV) clients only download much smaller pieces of the blockchain allowing them to verify specific transactions. However, they are less secure than fully validating clients and they do not contribute to the general security of the system[START_REF] Gervais | On the privacy provisions of bloom filters in lightweight bitcoin clients[END_REF][START_REF] Sompolinsky | Bitcoin's Security Model Revisited[END_REF].

This functionality was introduced in Bitcoin Core v0.11, see https://github.com/bitcoin/bitcoin/blob/v0. 11.0/doc/release-notes.md#block-file-pruning.

See https://www.blockchain.com/charts/blocks-size.

Commitments are actually never publicly opened; however the opening information is used when spending a coin and remains privy to the participants.

An earlier, anonymous version of the paper used the name one-way aggregate signature (OWAS), see https://bitcointalk.org/index.php?topic=290971. Composite signatures are very similar to aggregate signatures[START_REF] Boneh | Aggregate and verifiably encrypted signatures from bilinear maps[END_REF].

 6 See http://grin-tech.org and https://github.com/mimblewimble/grin/blob/master/doc/intro.

md.7 See https://www.beam-mw.com.

Since inputs must be coins that already exist in the system, their range proofs are contained in the kernels of the transactions that created them.

A transaction fee can easily be added to the picture by making its amount f explicit and adding f H to the transaction excess. For simplicity, we omit it here.

See https://www.reddit.com/r/Bitcoin/comments/4vub3y/.

If E in a transaction tx consists of a single element, it must be E = Exc(tx), so E could be omitted from the transaction; we keep it for consistency.

Acknowledgments

Game STEAL Cash,A (λ, v max ) (pp, Λ) ← Cash.G(1 λ , v max ) Hon, Val, Key, Ptx := ( ) Definition 5.7 (Theft-resistance). We say that an aggregate cash system Cash is secure against coin theft if for any v max and any PPT adversary A:

Adv steal

Cash,A (λ, v max ) := Pr STEAL Cash,A (λ, v max ) = 1 = negl(λ) ,

where STEAL Cash,A (λ, v max ) is defined in Fig. 5.5.

Transaction indistinguishability.

An important security feature that Mimblewimble inherits from Confidential Transactions [START_REF] Maxwell | [END_REF] is that the amounts involved in a transaction are hidden so that only the sender and the receiver know how much money is involved. In addition, a transaction completely hides which inputs paid which outputs and which coins were change and which were added by the receiver. We formalize this via the following game, specified in Fig. 5.6. The adversary submits two sets of values (v 0 , v 0 , v 0 ) and (v 1 , v 1 , v 1 ) representing possibles values for input coins, change coins and receiver's coins of a transaction. The game creates a transaction with values either from the first or the second set and the adversary must guess which. For the transaction to be valid, we must have v b = v b + v b for both b = 0, 1. Moreover, transactions do not hide the number of input and output coins. We therefore also require that |v and likewise for Sig.A sp, ((X 0,i

From Com, Sig and Π we construct an aggregate cash system MW[Com, Sig, Π] as follows. The public parameters pp consist of commitment and signature parameters cp, sp, and a CRS for Π. A coin key k ∈ K pp is an element of the randomness space R cp of the commitment scheme, i.e.,

to the value v of the coin using the coin key k as randomness. Hence, C pp = C cp .

A transaction tx = (s, C, Ĉ, K) consists of a supply tx.sply = s, an input coin list tx.in = C, an output coin list tx.out = Ĉ, and a kernel K. The kernel K is a triple (π, E, σ) where π is a list of range proofs for the output coins, E is a non-empty list of signature-verification keys (which are of the same form as commitments) called kernel excesses, and σ is an (aggregate) signature. We define the excess of the transaction tx, denoted Exc(tx), as the sum of outputs minus the sum of inputs, with the supply s converted to an input coin with k = 0:

Intuitively, Exc(tx) should be a commitment to 0, as the committed input and output values of the transaction should cancel out; this is evidenced by giving a signature under key Exc(tx) (which could be represented as the sum of elements (E i ) due to aggregation; see below).

Λ := 0, ( ), ( ), (( ), ( ), e) return pp := (cp, sp, crs), Λ MW.A(pp, tx 0 , tx 1 )

where inside MW.R. We claim that with overwhelming probability, (tx.in tx .in)∩(tx.out tx .out) = (C ). First, tx.in ∩ tx.out = ( ), as otherwise V(pp, tx) = 0 and V(pp, ptx) = 0. By definition of MkTx, tx .in = (C ) and by Lemma 5.9, tx .out ∩ (tx.in (C )) = ( ) with overwhelming probability. Hence:

and by correctness of A, C is the only coin removed by cut-through during the call tx ← MW.A(pp, tx, tx ). Thus, the input coin list of tx is the same as that of ptx and the change is contained in the output coin list of tx . The pre-conditions V(pp, ptx) and v = ρ imply that tx.sply = 0 and tx .sply = 0, respectively. Hence, tx .sply = 0 by correctness of A. Validity of tx and consistency of the new coins follow from correctness of A (and validity of the output of MkTx). Game Game 4

Inflation resistance

(crs, τ ) ← Π.G(Γ, v max ) ; pp := (cp, sp, crs) ; Λ 0 := 0, ( ), ( ), (( ), ( ), e) 

Proof. Consider an adversary A that runs on input public parameters pp = (cp, sp, crs) and an empty ledger, and wins the game INFL A,MW (λ, v max ) with non-negligible probability. The proof proceeds via the following sequence of games, defined in Fig. 5.9 (and whose indistinguishability we argue below): 

Theft-resistance

Proof. To simplify the analysis, we first modify game STEAL in that it aborts if the experiment generates the same coin twice by chance. By Lemma 5.9, the probability ν(λ) of this happening is negligible. Now consider an adversary A that wins the (modified) game STEAL in Fig. 5.5, thus Hon Λ.out holds when the adversary terminates. We proceed via a sequence of games.

Game 0 . Inspection of the STEAL game shows the following:

• a coin in Hon must have been added to Hon during an oracle call to Mint, Receive or Ledger; during this, it is also added to Λ.out;

• in order for a coin to be removed from Λ.out, it has to be in tx.in for some tx queried to Ledger;

• if after such a call the coin is still in Hon and the adversary stops, then it has won.

Following this analysis, we further modify the game STEAL as Game 0 in Fig. 5.10 (ignore the boxes for now), so that it declares A won whenever the condition Hon ⊆ Λ.out is first satisfied. We have highlighted the changes w.r.t. the original game in gray. By the above analysis we have

(5.10) (Note that A could win Game 0 but not STEAL by putting a stolen coin back into the ledger.)

Game 1 . To simplify the proof, we strengthen the security notion by defining a game that is easier to win than Game 0 and then show that even this is infeasible. Consider an adversary that queries Send, which creates a pre-transaction ptx with change coins ptx.chg, and then queries Ledger on a transaction tx that spends coins of ptx.chg that are not in Hon yet. In the original game, this does not constitute a win, since only coins in Hon can be stolen. Our strengthened game Game 1 does consider such behavior as winning the game. In particular, the game stores the change coins generated during Send calls in a list Chg and removes them from Chg once they are added to Hon. It also stops and declares the game won if the adversary manages to spend a coin from Chg. Game 1 is also defined in Fig. 5.10 by including the boxes. Since every adversary that wins Game 0 also wins Game 1 , we have:

(5.11)

Inspection of Game 1 yields that at any point during the execution the following holds: Chg∪Hon contains exactly all coins ever produced by the game and Chg ∩ Hon = ( ): coins are produced by Mint, Receive or Send, where the former two add the coins to Hon and the latter adds them to Chg; further, all coins removed from Chg by Ledger are added to Hon.

Games Game 0 and Game

Chg, Hon, Val, Key, Ptx := ( ) Game 2 . Consider a winning execution of Game 1 and let tx * denote the transaction such that A wins during call Ledger(tx * ). Define a coin C as follows: if A stole a coin from Chg, i.e., it won in line (I), then C is the first coin in tx * .in that is also in Chg; if the adversary won by stealing a coin from Hon, i.e., in line (II), then C is the first coin in tx * .in that is also in Hon.

Now consider the case the adversary wins in line (II) and previously made a query Send(C, v ) with C ∈ C. Let ptx, with C ∈ ptx.in, be the pre-transaction returned by Send. Then we must have ( * ) ptx.chg ⊆ tx * .out, as otherwise, during the final call to Ledger, Hon would have been updated to Hon := (Honptx.in) ptx.chg, thereby removing C from Hon, which contradicts the definition of C, as no coin can ever be re-added to Hon. We define ĩ as the index of the first coin in ptx.chg that is not in tx * .out, which by ( * ) exists.

Having now defined a coin C, which uniquely exists for every winning execution of Game 1 and ĩ, which uniquely exists if the adversary won in line (II) and queried C C to Send, we define Game 2 . Let h A and n A be upper bounds on the number of coins created during the execution and on the number of change coins in a pre-transaction. Game 2 is defined like Game 1 , except that at the beginning, Game 2 samples ĩ ←$ [n A ] and guesses C among all (at most h A ) produced coins and returns 0 in case the adversary lost or the guess was not correct. Game 2 for the cash system Game 5 . Our final game will be Game 5 , which is defined as Game 4 , except that if a call Ledger(tx * ) ends up in line (I) or (II), then instead of immediately returning 1, Game 5 does the following: let tx * = (s, C, Ĉ, (π, E, σ)); let C := C -( C) and for all C (for which we have C ⊆ Λ.out; otherwise MW.L, and thus Ledger, would return ⊥), it collects the corresponding proofs π in the kernel of the ledger and it runs:

If we have ¬ R vmax (cp, C Ĉ), (v v, k k) then Game 5 returns 0; otherwise, it returns 1.

We show that Game 5 is indistinguishable from Game 4 . To start with, note that since MW.L(pp, Λ, tx * ) did not return ⊥, both Λ and tx * are valid and thus the following hold:

• Π.V(crs, C , π ) and • Π.V(crs, Ĉ, π).

We construct an adversary B se against simulation-extractability of Π, which receives a simulated CRS crs and has access to an oracle Prove, as follows. Adversary B se simulates Game 4 , using its oracle Prove (since it does not have the simulation trapdoor) for the simulated proofs for C and C; if Game 4 ends up in lines (I) or (II), B se returns (C Ĉ, π π); otherwise B se aborts. Since B se wins game S-EXT Π whenever Game 4 returns 1 while Game 5 would not, we have

(5.15)

The reduction to EUF-CRO. We now construct an adversary B against EUF-CRO of (Com, Sig), which makes a single call to its Sign oracle, and show that B breaks EUF-CRO with the same probability as A wins Game B uses the zero-knowledge simulator to produce the range proofs for the two coins C and C. Moreover, when C is created by Mint, Send or Receive, the transaction containing it as its j-th output must be signed. B uses its related-key signing oracle Sign to do this: letting (k i ) i and ( ki ) i =j be the keys of the inputs and other outputs of the transaction, B requires a signature under i =j ki + (k j + r * )i k i ; it thus makes a query Sign ( kk, e) (this is the only time B makes a query).

Finally, consider the query Send(C, v ) with C[j] = C for some j, which would also require the signing key for C in order to compute the resulting pre-transaction: 

Λ := 0, ( ), ( ), (( ), ( ), e) Chg, Hon, Val, Key, Ptx := ( ) 

Oracle Ledger(tx)

Hon := (Honptx.in) ptx.chg 

Game HID-PRR b

/ / oracle query in game HID Com : Before proving the theorem, we show a fact that will be useful for the proof. Consider commitment parameters cp for Com and let v b , v b ∈ V cp ; then the following distributions are all equivalent:

(5.17)

(

(The distribution in) (5.18) is equivalent to (the one in) (5.17) since Com is additively homomorphic; (5.19) is equivalent to (5.18) since R cp is a group and therefore r + r and k are equally distributed. Now consider an adversary A that chooses v 0 , v 0 , v 1 , v 1 ∈ V cp such that v 0 + v 0 = v 1 + v 1 and receives a tuple (C, C , k) as defined in (5.17) for a random b ←$ {0, 1} and A has to guess b. Then if Com is hiding, A's advantage will be negligible; intuitively, this is because (5.17) is distributed as (5.19) and in the latter the only thing depending on b is C (since v 0 + v 0 = v 1 + v 1 ). More formally, one can construct an adversary B for the game HID b Com,A (1 λ ) game which queries its challenge oracle on (v 0 , v 1 ) to get C and simulates distribution (5.17) that A expects using (5.19).

We generalize this indistinguishability notion to vectors of values of length more than two as follows:

Definition 5.13 (HID-PRR). Let game HID-PRR be as defined in Fig. 5.13. A commitment scheme Com is hiding under partially revealed randomness if for any PPT adversary A:

The following is proved by generalizing reduction B sketched above.

Lemma 5.14. Any hiding homomorphic commitment scheme Com is also HID-PRR. More precisely, for any PPT adversary A, there exists a PPT adversary B such that:

Proof. Fix values v b and let v b denote the first |v b | -1 components of v b . Then, as above, the following distributions can be shown to be the same: BLS.A(sp, (L 0 , σ 0 ), (L 1 , σ 1 ))

Figure 5.17: The BLS aggregate signature scheme. BLS Signatures. The Boneh-Lynn-Shacham (BLS) signature scheme [START_REF] Boneh | Short signatures from the Weil pairing[END_REF] is a simple deterministic signature scheme based on pairings. It is defined in Fig. 5.17. We consider the key-prefixed variant of the scheme (i.e., the public key is hashed together with the message) which allows to securely aggregate signatures on the same message [START_REF] Boneh | Aggregate and verifiably encrypted signatures from bilinear maps[END_REF][START_REF] Bellare | Unrestricted aggregate signatures[END_REF]. EUF-CMA-security can be proved in the random oracle model under the CDH assumption.

The security proofs for the Pedersen-BLS pair are also in the random oracle model but do not use rewinding. They are reminiscent of the proof of [BGLS03, Theorem 3.2] and can be found in the full version [START_REF] Fuchsbauer | Aggregate cash systems: A cryptographic investigation of mimblewimble[END_REF].

Lemma 5.19. The pair (PDS, BLS) is EUF-NZO-secure in the random oracle model under the CDH assumption. More precisely, for any PPT adversary A making at most q h random oracle queries and returning a forgery for a list of size at most N , there exists a PPT adversary B running in time at most t A + (q h + N + 2)t M , where t A is the running time of A and t M is the time of a scalar multiplication in G, such that: 
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