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Abstract

In this manuscript, we study non-interactive arguments of knowledge, a cryptographic primitive
that allows a prover to convince a verifier of the truth of a certain statement. In particular, we will
analyze cryptographic constructions that allow a user to prove knowledge of a so-called witness
x that satisfies a circuit C, i.e. such that C(x) = 1. We will focus on protocols that hide x while
simultaneously guaranteeing soundness of the system. That is, cryptographic schemes that make
it hard for the verifier to learn information about the input x that satisfies C.

First, we prove the existence of witness-indistinguishable non-interactive arguments of knowl-
edge in the standard model. We call these protocols non-interactive zaps of knowledge, or zaks.
Secondly, we revisit a family of zero-knowledge arguments of knowledge (SNARKs) that is partic-
ularly appealing for real-world applications due to its short (constant) proof size. We show that
it can be moved to post-quantum assumptions, as long as the verifier is known in advance. We
provide an implementation and extended benchmarks for this construction. Lastly, we consider a
novel, anonymous cryptocurrency whose security can be guaranteed via arguments of knowledge:
Mimblewimble. The cryptocurrency was proposed by an anonymous author in 2016. We provide
the first formal analysis of it, fixing a security issue present in the initial proposal.
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Chapter 1

Introduction

Cryptography is the science of secure communication. It configures who can do what, from
what [Rog15]. In many applications today, securing the communication means allowing users
to prove that they are acting according to a given protocol and yet only reveal information that
is necessary [Cha08]. Zero-knowledge (ZK) proof systems [GMR89] allow us to prove statements
about user secrets, without giving away anything more than what is strictly necessary. They can be
used to prove that we are who we say we are, while never meeting in person, and while giving away
nothing that could be used to impersonate us in future [Cha08]. The essence of zero-knowledge
proof systems is that it’s possible to prove the truth of a certain statement and successfuly convince
another party, without revealing any additional information besides the truth of the statement.
Soundness of a proof system demands that if the proof verifies, then the statement is true.

A natural strengthening of security for a proof systems if a so-called proof of knowledge: it
guarantees that, whenever the verifier is convinced by an efficient prover, not only the statement
was true, but also the prover had knowledge of a witness associated to the statement. This fact is
captured by requiring the existence of a knowledge extractor that can extract a valid witness from
the proof. This stronger notion is essential in certain applications of zero-knowledge proofs such
as anonymous credentials (cf. Section 1.4) and confidential transactions (cf. Chapter 5).

In this thesis, we are concerned with the design of cryptographic protocols (or cryptosystems) on
the topic of non-interactive proofs of knowledge. We restrict ourselves to proofs of knowledge where
security holds computationally, also called arguments of knowledge. Settling on computational
security allows for significant savings in communication (and verification) [Wee07], leading to
schemes that can be implemented in practice. We focus on arguments of knowledge for which we
can guarantee strong privacy guarantees: when ZK cannot be achieved, we focus on the (weaker)
notion of witness indistinguishability.

1.1 Proof systems

Proof systems are interactive protocols where a user (called the prover) attempts to convince
another user (called the verifier) that a certain proposition is true. We say that a proof system is
non-interactive if the prover sends a single message to deliver the whole “proof”. In a proof system,
both parties are formalized as Turing Machines; the prover is computationally unbounded, while
the verifier’s runtime is polynomially bounded. The protocol is such that it’s not possible to
convince the verifier of a wrong statement. This property is called soundness, or validity.

P versus NP. Proof systems are not only a cryptographic tool but also an object of study in
theoretical computer science. One of the most important open problems in computer science is
the problem of P versus NP. Essentially, it asks whether every problem whose solution can be
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efficiently verified can also be efficiently solved. It is one of the seven Millennium Prize Problems
of the Clay Mathematics Institute. More formally, the class P is the class of languages L that can
be decided in polynomial time. NP is the class of languages L such that there exists an algorithm
that takes as input two bit strings x and w and that can decide in polynomial time (in the size of
x), whether w is a valid proof or witness that x ∈ L . We suppose that for any statement x there
exists such a witness w, while otherwise, no such witness exists.

The complexity class corresponding to interactive proofs is denoted IP and was studied in two
seminal papers by Babai [Bab85], and Goldwasser, Micali, and Rackoff [GMR85]. Interestingly,
the power of interactive proof systems is not decreased if the verifier is only allowed random queries
(that is, if it merely tosses coins and sends any outcome to the prover) [GS86].

Shamir [Sha90] showed that IP is equal to the class PSPACE, which corresponds to algorithms
that use a polynomial amount of space to store intermediate variables. The class PSPACE contains
all languages that can be recognized by an algorithm that uses polynomial space, but which is
allowed unbounded running time. In particular, the class PSPACE contains the class NP.

Another characterization of NP was provided via Probabilistically Checkable Proofs (PCP). A
PCP[r(λ), q(λ)] is a type of proof that can be verified in polynomial time using at most O(r(λ)) ran-
dom bits and by reading at most O(q(λ)) bits of the proof. The so-called PCP theorem [ALM+92]
states that NP = PCP[log λ, 1]. In other words, any language in NP can be encoded as a PCP that
can be verified by only reading a constant number of bits and by using O(log λ) bits of randomness.

NIZK. An interactive proof system is said to be zero-knowledge (ZK) if the proof does not reveal
any information besides the truth of the proposition (and whatever can be inferred from it). The
concept of zero-knowledge proof systems was first proposed in [GMR89] and is a central tool in
modern cryptography. Consider an NP relation R which defines the language of all statements x
for which there exists a witness w so that (x,w) ∈ R. In a zero-knowledge proof for R a prover,
knowing a witness, wants to convince a verifier that x is in the language, without revealing any
additional information about the witness. More precisely, a ZK proof system must be complete,
that is, if the prover knows a witness for x then it can convince the verifier; sound, in that no
malicious prover can convince the verifier of a false statement; and zero-knowledge: the execution
of the protocol reveals no information to the verifier (beyond the fact that x is in the language).
Soundness protects the verifier; zero knowledge protects the prover.

For practical applications, researchers immediately recognized two limiting factors in zero-
knowledge proofs: the original protocols were interactive and the proof could be as long as (if
not longer than) the witness. Non-interactive zero-knowledge proofs (NIZK) proofs [BFM88] and
succinct ZK arguments [Kil92, Mic94] were introduced shortly thereafter. NIZK allow the prover to
convince the verifier by only sending a single message. However, NIZK must rely on the existence
of a common reference string (CRS) to which prover and verifier have access [GO94]. The CRS is
assumed to have been set up by some trusted party, which represents a serious limitation for all
applications of NIZK in scenarios where parties mutually distrust each other.

Zaps. Feige and Shamir [FS90] proposed a relaxation of zero knowledge called witness indistin-
guishability, which only requires that it is indistinguishable which witness was used to compute
a proof. This notion turns out to be sufficient in many contexts. Dwork and Naor [DN00] con-
structed a two-round witness-indistinguishable proof system for NP in the plain model, that is,
where no trusted CRS is assumed. In their protocol, the first message (sent from the verifier to the
prover) can be fixed once and for all, and the second one provides the actual proof. They called
such protocols zaps. Barak, Ong, and Vadhan [BOV03] introduced the concept of non-interactive
zaps, where the prover sends a single message to deliver the proof. Non-interactive zaps are thus
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non-interactive proof systems without a CRS. Since in this scenario it is impossible to achieve zero
knowledge [GO94], witness indistinguishability (WI) is the best one can hope for.

Groth, Ostrovsky, and Sahai constructed the first non-interactive zaps from standard assump-
tions [GOS06a]. Subsequently, Ràfols extended this line of research [Ràf15]. All these zaps satisfy
soundness, that is, a valid proof can only be computed for valid statements. Knowledge-soundness
is an alternative notion of validity that not only demands the statement to be true, but also that
the prover knows a witness for it. More specifically, knowledge-soundness requires that for each
prover there exists an efficient extractor which can extract a witness from the prover whenever
the latter outputs a valid proof. (When this holds for computationally bounded provers only, we
speak of arguments rather than proofs [BCC88].) Since, by definition, false statements have no
witnesses, knowledge-soundness implies the standard notion of (computational) soundness.

More recently, Bellare, Fuchsbauer and Scafuro investigated the security of NIZK in the face of
parameter subversion and observed that NI zaps provide subversion-resistant soundness and WI.
This leaves open the question of whether it is possible to construct a subversion resistant WI zap
that is knowledge-sound. We tackle this question in Chapter 3.

SNARKs. Starting from Kilian’s protocol [Kil92], Micali [Mic94] constructed a one-message
succinct argument for NP whose soundness is set in the random oracle model. Succinctness here
means that the proof length is independent of the witness. Such systems are called succinct non-
interactive arguments (SNARGs) [GW11]. Several SNARGs constructions have been proposed
[Gro10, GGPR13, Gro16], and the area of SNARGs has become popular in the last years with the
proposal of constructions which introduced significant improvements in efficiency. An important
remark is that all such constructions are based on non-falsifiable assumptions [Nao03], a class
of assumptions that is likely to be inherent in proving the security of SNARGs for general NP
languages (without random oracles), as shown by Gentry and Wichs [GW11].

Many SNARGs are also arguments of knowledge [BLCL91] – so called SNARKs [BCCT12,
BCC+14]. That is, they satisfy the stronger notion of validity called knowledge-soundness. SNARKs
were initially introduced for verifiable computation and are now the most widely deployed proof
systems. For instance, they are used in cryptocurrencies such as Zcash [BCG+14], which guar-
antees confidentiality of monetary transactions via zero-knowledge SNARKs (zk-SNARKs). Zero-
knowledge SNARKs are non-interactive succint arguments of knowledge that satisfy zero knowl-
edge. As for all NIZK systems, a drawback of zk-SNARKs is that they require a CRS, that is,
they require a one-time trusted setup of public parameters. Since for SNARKs every CRS has a
simulation trapdoor, subversion of these parameters leads to full compromise of soundness [BFS16].

1.2 Instantiations and applications

Modern cryptography focuses on the idea of provable security [Ste03]. Provable security requires
to define a formal communication model that describes how parties within the protocol, and an
adversary. The capabilities of the adversary are formalized via the notion of oracle queries. No
assumption is made on the specific attack method an adversary may use [KM07].

Security properties are defined as one or more games, each intended to capture a security prop-
erty, played by the adversary within the pre-defined communication model. The protocol is proven
secure by showing that a successful attack would imply a solution to an underlying intractable as-
sumption, like the discrete log or the shortest vector problem. As long as the underlying problem
is sufficiently hard, the adversary’s advantage is negligible, and the protocol is guaranteed to resist
attacks by any adversary who works within the communication model regardless of what specific
attacks are mounted.
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This allows us to pose trust on a handful of well-established hard problems, and have a mathe-
matically rigorous theorem that establishes some guarantee of security (defined in a suitable way)
under these problems.

Most of our protocols will be studied in the Common Reference String (CRS) model. The CRS
model captures the assumption that a trusted setup in which all involved parties get access to the
same output taken from some PPT algorithm G. Schemes proven secure in the CRS model are
secure provided that the setup was performed correctly. If the output distribution of G is uniform,
the CRS model is also seen as an acronym for Common Random String, to underline the fact that
no particular structure on the CRS is required. The limits of the CRS model, particularly in the
context of NIZKs, have been studied by Bellare, Fuchsbauer and Scafuro [BFS16], that studied
what can be achieved when the CRS is set up maliciously. More recently, Groth et al. [GKM+18]
have provided an alternative model where a number of users can update a universal CRS. The
updatable CRS model guarantees security if at least one of the users updating the CRS is honest.

Real-world applications. Results in the scope of proof systems were considered mostly theoret-
ical proofs of concept until recently, when several theoretical and practical breakthroughs [PHGR13,
BBB+18] proved they could be effectively used (with modern hardware) for securing complex cryp-
tographic protocols. As more versatile forms of zero knowledge become ever more practical, pre-
viously unrealizable applications are beginning to emerge: zero-knowledge proofs provide a means
to send credit card details safely and securely to a trusted retail brand [Cha08]; electronic voting
systems such as Helios [Adi08] use them to guarantee privacy while withholding security; electronic
cash systems such as zCash [BCG+14], Monero, QuisQuis [FMMO18] use arguments of knowledge
to guarantee some degree of privacy in money transactions; privacy-preserving services [DGS+18]
are using them to guarantee anonymity of their users.

Additionally, in the past few years, a remarkable effort of standardization that attempts to
unite members of industry and academia has also led to a series of documents for standardization
proposals. For more information, we direct the reader towards https://zkproof.org.

1.3 Our results

We revisit non-interactive arguments of knowledge under two different aspects: first we explore
what can be achieved in terms of privacy without any setup assumption nor random oralces;
secondly, we explore what can be achieved using the current frameworks for constructing zero-
knowledge proofs and post-quantum assumptions. To conclude, we illustrate how arguments of
knowledge can be used to build privacy enhancing applications, and secure our digital communi-
cations.

Non-Interactive zaps of knowledge [FO18]. This work defines a witness-indistinguishable
argument of knowledge in the standard model, that is, a non-interactive zap of knowledge. While
non-interactive zero-knowledge (NIZK) proofs require trusted parameters, Groth, Ostrovsky and
Sahai [GOS06a] constructed non-interactive witness-indistinguishable (NIWI) proofs without any
setup; they called their scheme a non-interactive zap.

In Chapter 3, we provide the first NIWI argument of knowledge without parameters. Conse-
quently, our scheme is also the first subversion-resistant knowledge-sound proof system, a notion
recently proposed by Fuchsbauer [Fuc18]. This work extends the analysis of Bellare et al. [BFS16]
on proof systems in the face of parameter subversion. We also present an alternative and more
efficient ZAK based on Groth-Sahai proofs, which could be relevant for practical applications.

https://zkproof.org
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Designated-verifier, lattice-based zk-SNARKs [GMNO18]. To this day, zk-SNARKs are
being used for delegating computation, electronic cryptocurrencies, and anonymous credentials.
However, all current SNARKs implementations rely on assumptions that succumb to attacks on
quantum computers (pre-quantum) and, for this reason, are not expected to withstand cryptana-
lytic efforts over the next few decades.

In Chapter 4, we introduce the first designated-verifier zk-SNARK based on lattice assumptions,
which are believed to be post-quantum secure. We provide a generalization in the spirit of Gennaro
et al. [GGPR13] to the SNARK of Danezis et al. [DFGK14] that is based on Square Span Programs
(SSPs). We focus on designated-verifier proofs and propose a protocol in which a proof consists of
just 5 LWE encodings. We provide a concrete choice of parameters as well as extensive benchmarks
on a C implementation, showing that our construction is practically instantiable.

Aggregate Cash Systems and Mimblewimble [FOS19]. Mimblewimble is an electronic
cash system proposed by an anonymous author in 2016 [Jed16]. It combines several privacy-
enhancing techniques initially envisioned for Bitcoin, such as Confidential Transactions [Max15],
non-interactive merging of transactions [SMD14a], and cut-through of transaction inputs and out-
puts [Max13b]. As a remarkable consequence, coins can be deleted once they have been spent
while maintaining public verifiability of the ledger, which is not possible in Bitcoin. This results in
tremendous space savings for the ledger and efficiency gains for new users, who must verify their
view of the system.

In Chapter 5, we adopt a provable-security approach to analyze the security of Mimblewimble.
We give a precise syntax and formal security definitions for an abstraction of Mimblewimble that
we call an aggregate cash system. We then formally prove the security of Mimblewimble in this
definitional framework. Our results imply in particular that two natural instantiations (with
Pedersen commitments and Schnorr [Sch90] or BLS [BLS04] signatures) are provably secure against
inflation and coin theft under standard assumptions.

1.4 Associated publications and other contributions

Besides what is exposed in this thesis, during my time as a PhD student I explored other crypto-
graphic primitives, such as oblivious transfer, function secret sharing, hash functions that mapped
to elliptic curve points, and anonymous tokens.

Conference Papers

Homomorphic Secret Sharing [BCG+17]. A (2-party) Homomorphic Secret Sharing scheme
splits an input x into shares (x0, x1) such that each share computationally hides x, and there exists
an efficient homomorphic evaluation algorithm Eval such that for any function (or “program”) P
from a given class it holds that Eval(x0, P )+ Eval(x1, P ) = P (x). HSS schemes were introduced by
Boyle et al. [BGI16, BGI17]. In this work, we propose a number of theoretical and practical opti-
mizations. We implemented both the naïve algorithms as well as the optimized version developed
in this work, and provided exteded benchmarks as well as performance graphs.

Actively Secure 1-out-of-N OT Extension [OOS17]. Oblivious Transfer (OT) is a two-
party protocol between a sender S and a receiver R. The sender transmits some of its inputs to
the receiver, in such a way that its choice remains oblivious, and at the same time R cannot obtain
more information than it is entitled to. For example, in its simplest flavor, 1-out-of-2 OT, a sender
has two input messages m0 ∈ {0, 1}λ and m1 ∈ {0, 1}λ and learns nothing. The receiver inputs
a choice bit b and learns only mb. Oblivious Transfer extensions [Bea96, IKNP03] are protocols
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that extend OT starting with a small number (say, security parameter λ) of “base” OTs, to create
poly(λ) additional OTs using only symmetric primitives, with computational security λ.

In this work, we presented a novel 1-out-of-N oblivious transfer (OT) extension protocol with
active security, which achieves very low overhead compared to the passively secure protocol of
Kolesnikov and Kumaresan [KK13]. Our protocol obtains active security using a consistency check
which requires only simple computation and has a communication overhead that is independent
of the total number of OTs to be produced. We prove its security in both the random oracle
model and the standard model, assuming a variant of correlation robustness. We describe an
implementation, which demonstrates our protocol only incurs an overhead of around 5–30% on
top of the passively secure protocol.

Furthermore, random 1-out-of-N OT is a key building block in recent, very efficient, passively
secure private set intersection (PSI) protocols. Private set intersection allows two parties to com-
pute the intersection of their sets without revealing anything except the intersection. Our random
OT extension protocol has the interesting feature that it even works when N is exponentially large
in the security parameter, provided that the sender only needs to obtain polynomially many out-
puts. We show that this can be directly applied to improve the performance of PSI, allowing the
core private equality test and private set inclusion subprotocols to be carried out using just a single
OT each. This leads to a reduction in communication of up to 3 times for the main component of
PSI.

Internet Standards

In addition to the academic publications, we helped with (minor) contributions to the following
IETF drafts:

Hashing to the curve [FHSS+19]. Many cryptographic protocols require a procedure to
hash an arbitrary input to a point on an elliptic curve, e.g. Password Authenticated Key Ex-
change [BMP00], Identity-Based Encryption [BF01] and Boneh-Lynn-Shacham signatures [BLS01].
This procedure is known as hashing to the curve; i.e., a hash function H : {0, 1}∗ → G.

Unfortunately for implementors, the precise hash function that is suitable for a given scheme is
not necessarily included in the description of the protocol. Compounding this problem is the need
to pick a suitable curve for the specific protocol. Together with Brice Minaud and an undergraduate
student Anita Dürr, we contributed to the standard and added a section about fast hashing into
BLS curves [BLS03] and fast cofactor multiplication [SBC+09, FKR12, BP17].

Anonymous Tokens [DS19]. Anonymous tokens are lightweight authorization mechanisms
that can be useful in quickly assessing the reputation of a client in latency-sensitive communication.

Increasingly the stability of our information-based world depends on trusted, reliable sources
of content. An unwanted by-product of the growth of Content Delivery Networks (CNDs) is that
a handful of organizations are becoming global arbiters for which content requests are allowed
and which are blocked in an attempt to stanch malicious traffic. In particular, users hiding
behind privacy-enhancing tools such as Tor can be unfairly targeted by anti-spam or anti-DoS
countermeasures. Anonymous Tokens we provide a solution to prevent users from being exposed
to a disproportionate amount of internet challenges such as CAPTCHAs [DGS+18], and more
generally to check that a client has been previously authorized by a service without learning any
other information.

Once standardized, such lightweight authorization mechanisms will be useful in quickly assess-
ing the reputation of a client in latency-sensitive communication. As a part of an internship at
Google under the supervision of Mariana Raykova and Tancrède Lepoint, I had the chance to
assess and extend the scheme in the process of standardization.



Chapter 2

Preliminaries

In this chapter, we introduce the notation and basic assumptions and primitives employed through-
out this manuscript. We start by recalling some standard mathematical and computational notions,
then we briefly introduce provable security. We also recall some well-known number-theoretic as-
sumptions, to introduce the cryptographic primitives used throughout this work.

2.1 Notation
Sets, integers, moduli, and associated rings and groups. We denote real numbers by R,
integers by Z and non-negative integers by N. If a, b are two integers such that a < b, we denote
the (closed) integer interval from a to b by Ja, bK. We use [b] as shorthand for J1, bK.

If q is a positive integer, we denote by Zq the ring of integers modulo q. Often, q will be an odd
prime; in these cases, we will consider the ring Zq just as an additive group (Zq,+) or just consider
the multiplicative subgroup (Z∗q , ·) of order ϕ(q) = q − 1, where ϕ is Euler’s totient function.

In all of our constructions, the order of Zq will be public. Therefore, elements of Zq are
represented as integers of the set J0, q − 1K. For an integer x ∈ Z, x mod q is the reminder of the
Euclidean division of x by q. It can be seen both as an integer in J0, q − 1K and as an element of
Zq. Vectors are denoted by lower-case bold letters, like v, and are always columns. We indicated
a vector v’s entry by vi (not in bold). We use vT to denote the transpose of a vector v.

Random variables. For a random variable X over a probability space (Ω,Σ,Pr), and a possible
outcome x, we write Pr[X = x] to indicate the measure of the preimage of {x} ∈ Σ under Pr.
We denote the action of sampling x from X with x ← X. Let us call range of a random variable
X : Ω → E the set of elements x ∈ E for which the probability that X has outcome x is strictly
positive. In this work, we refer only to random variables whose range is finite.

A random variable X defined on a finite probability space (Ω,Pr) is said to have the uniform
distribution if Pr[X = x] = 1/| Im(X)| where Im(X) denotes the image of X. Given a non-empty
finite set S, we let x←$S denote the operation of sampling an element x from S uniformly at
random.

Asymptotics. Given a function f : N → R, the set O(f) describes all functions that can be
asymptotically upper-bounded by f , that is, all g such that ∃c, λ0 ∈ N, 0 ≤ g(λ) ≤ cf(λ) for all
λ ≥ λ0. With a slight abuse of notation, we write g = O(f) to denote that g ∈ O(f). The set
Õ(f) describes all functions that can be upper-bounded by f ignoring logarithmic factors, that is,
all g such that ∃c, k, λ0 ∈ N, 0 ≤ g(λ) ≤ cf(λ) logk(λ) for all λ ≥ λ0. We use the notation o(f) to
identify all functions that can be asymptotically upper-bounded by f , where the upper-bound is
strict. That is, all g such that ∀c ∃λ0 ∈ N, 0 ≤ g(λ) < cf(λ) for all λ ≥ λ0.
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A function µ : N → [0, 1] is negligible (denoted µ = negl(λ)) if µ(λ) = o(λ−c) for any fixed
constant c. That is, if for all c ∈ N there exists λc ∈ N such that µ(λ) < λ−c for all λ ≥ λc. A
function ν is overwhelming if 1− ν = negl(λ). We let poly(λ) denote the set of polynomials in λ
(more precisely, functions upper-bounded by a polynomial in λ) with integer coefficients.

Languages, machines, function families and complexity classes. Languages are denoted
in calligraphic, e.g. L. We focus on languages whose alphabet is the set of bits {0, 1}.

Algorithms are formalized as Turing Machines and denoted in serif, e.g. M. We let M.rl(λ) be
a length function (i.e., a function N → N polynomially bounded) in λ defining the length of the
randomness for a probabilistic interactive Turing Machine M. By y := M(x1, . . . ; r) we denote the
operation of running algorithm M on inputs x1, . . . and coins r ∈ {0, 1}M.rl(λ) and letting y denote
the output. We see M both as a Turing Machine as well as a random variable. By y ← M(x1, . . .),
we denote y := M(x1, . . . ; r) for random r ∈ M.rl(λ), and [M(x1, . . .)] the range of M on inputs
x1, . . .. Unless otherwise specified, all the algorithms defined throughout this work are assumed to
be probabilistic Turing machines that run in time poly(λ) – i.e., in PPT. An adversary is denoted
by A; when it is interacting with an oracle O, we write AO. For two PPT machines A,B, with
(A‖B)(x) we denote the execution of A followed by the execution of B on the same input x and
with the same random coins. The output of the two machines is concatenated and separated with
a semicolon, e.g., (outA; outB)← (A‖B) (x).

We say that a language L is in the complexity class P if there exists a deterministic Turing
machine M that can recognize L in polynomial time. We say that L is in NP if there exists a
non-deterministic Turing machine M that can recognize L in polynomial time. For a language L,
we denote with RL ⊆ L×{0, 1}∗ the relation associated to L. For a pair (φ,w) ∈ RL, we call φ ∈ L
the statement and w ∈ {0, 1}∗ the witness. A language L is NP-complete if it there is a reduction
to it that runs in polynomial time.

In this manuscript, we will mostly work with the language of circuit satisfiability, which is NP-
complete. For a binary circuit C, the set R(C) is the set of inputs w that satisfy C(w) = 1. Without
loss of generality, we assume that circuits consist solely of NAND gates. Unless otherwise specified,
all following algorithms are assumed to be randomized and to run in time poly(λ). Unless otherwise
stated, we only consider uniform machines to model the adversary A and the extractor Ext, in the
spirit of Goldreich et al. [Gol93, BFS16]. We use the names “machine”, “Turing Machine”, and
“algorithm” interchangeably. A machine A that outputs a boolean 1 or 0 is called a distinguisher.
If an algorithm calls a subroutine which returns ⊥, we assume it stops and returns ⊥ (this does
not hold for an adversary calling an oracle which returns ⊥).

2.2 Provable security

Security notions of cryptographic assumptions are often described as expermiments or games where
an adversary is called with one or several inputs, and potentially given oracle access to some
subprocedures. A security experiment is seen both as an algorithm and as a random variable
(more exactly, as a process indexed in λ ∈ N).

Some of our security notions consist in distinguishing two experiments EXP0(λ) and EXP1(λ).
In this case, we need a measure of the ability of A to distinguish EXP0

A(λ) and EXP1
A(λ).

Definition 2.1 (Statistical Distance). Let X0(λ), X1(λ) be two families of random variables in-
dexed by λ ∈ N, with range R. The statistical distance between X0 and X1 is a map N→ [0, 1]:

∆(X0(λ), X1(λ)) := 1
2
∑
x∈R
|Pr[X0(λ) = x]− Pr[X1(λ) = x]| .
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It can be easily shown that the statistical distance is a metric on probability distributions. We
say that X0 and X1 are perfectly indistinguishable if ∆(X0, X1) = 0. We say that X1 and X1
are statistically indistinguishable if ∆(X0, X1) is negligible in λ. It can be shown that perfect and
statistical indistinguishability are an equivalence relation for families of random variables indexed
in λ ∈ N with the same range R.

Definition 2.2. Let A be a Turing machine, and EXPbA(λ) (with b ∈ {0, 1}) be two families
of random variables indexed in λ ∈ N with range R. The advantage of A in distinguishing the
experiments EXPbA(λ) (for b ∈ {0, 1}) is a map N→ [0, 1] defined as:

Advexp
A (λ) := ∆

(
EXP0

A(λ), EXP1
A(λ)

)
=
∣∣∣Pr

[
EXP0

A(λ) = 1
]
− Pr

[
EXP1

A(λ) = 1
]∣∣∣

The last equality can be shown applying the definition of statistical distance and using the
negation rule. If two random variables are perfectly indistinguishable, then the advantage of any
unbounded distinguisher A is zero. If two random variables are statistically indistinguishable, then
the advantage of any unbounded distinguisher A is negligible. We say that two random variables
are computationally indistinguishable if the advantage of any PPT algorithm in distinguishing
EXP0

A(λ) and EXP1
A(λ) is negligible. It can be shown that computational indistinguishability is

an equivalence relation for families of random variables indexed in λ ∈ N with the same range R.
Sometimes, we are interested in studying the success probability of an adversary in winning

a computational security experiment. In these cases, as opposed to indistinguishability-based
notions, we study the probability that at the end of the interaction the adversary outputs the
solution for a problem believed to be computationally hard.

Definition 2.3. Let EXPA(λ) be a family of random variables indexed in λ ∈ N and parameterized
in a Turing machine A, with range {0, 1}. The advantage of A in winning EXPA(λ) is a map
N→ [0, 1] defined as:

Advexp
A (λ) := Pr[EXPA(λ) = 1]

Sometimes (for instance, in Definition 5.5, where a lot of security experiments are displayed),
we will denote the security experiment within the probability measure, e.g.:

Advexp
A (λ) := Pr[code-of-experiment : winning-condition] .

In the rest of this manuscript, we will say that a notion holds perfectly if the advantage
associated to the security experiment is zero, for any unbounded adversary A. We will say that a
notion holds statistically if the advantage associated to the security experiment is negligible in λ,
for any unbounded adversary A. We will say that a notion holds computationally if the advantage
associated to the security experiment is negligible in λ, for any PPT adversary A.

Proofs by hybrid arguments

Most of our security proofs are proofs by hybrid arguments as defined in [BR06, Sho01] to bound
the success probability of an adversary A in some game EXPA(λ) corresponding to a certain
security notion.

Roughly speaking, in instistinguishability-based notions, we bound the advantage of the ad-
versary by constructing a sequence of experiments where EXP0

A(λ) will be the process associated
to the first experiment and EXP1

A(λ) to the last one. We will prove that two consecutive games
are perfectly, statistically, or computationally indistinguishable. In other words, we bound the
difference of success probabilities between two consecutive games by a negligible quantity. By the
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triangular inequality, it will follow that the security experiments EXP0
A(1λ) and EXP1

A(1λ) are
indistinguishable, except with negligible probability, for the adversary A.

Similarly, in order to bound the probability of an adversary A in winning an experiment
EXPA(λ), we construct a sequence of hybrids where the first game is EXPA(λ), and the last game
corresponds to some security assumption or is such that the adversary just cannot win.

2.3 Cryptographic primitives

We denote by λ ∈ N the security parameter. In Chapter 4, when exhamining concrete security, we
will specify another parameter to indicate statistical security, κ ∈ N. Throughout this work, we
assume the existence of a PPT algorithm Pgen that, given as input the security parameter in unary
1λ, outputs a set of parameters Γ. This can be, concretely, the description of a finite cyclic group
of prime order where computing discrete logarithm is hard, a symmetric or asymmetric bilinear
group description, or a set of lattice parameters. For the sake of simplicity, we will denote all our
schemes w.r.t. a set of parameters Γ and assume that the security parameter (λ ∈ N such that
Γ← Pgen(1λ)) can be derived from Γ.

Commitment schemes

A commitment scheme Com consists of the following three algorithms:

• σ ← Com.G(Γ), the CRS generation algorithm, outputs a CRS σ.

• (C, r) ← Com.C(σ, v), the commitment algorithm, outputs a commitment C to the given
value v together with the opening information r.

• bool ← Com.O(σ,C, v, r), the opening algorithm, outputs 1 if C is a commitment to v wit-
nessed by r, and 0 otherwise.

We denote with Vcp the space set of values, with Rcp the set of possible openings, and with
Ccp the set of commitments. In this work, Com.C will always return the randomness used, and
Com.O simply recomputes the commitment and checks that C = Com.C(σ, V ; r). Consequently,
correctness of the scheme is trivial. To ease notation for commitments and openings, we will always
assume that the set of parameters Γ can be deduced from σ, and omit the opening information
from the returned value if specified within the random coins.

Generally, we require commitment schemes to be hiding and binding. Loosely speaking, a
scheme is hiding if the commitment C reveals no information about v. A scheme is binding if a
cheating committer cannot change its mind about the value it committed to. Formally, it is hard
to find C, v, r, v′ and r′ such that v 6= v′ and Com.O(σ,C, v, r) = 1 = Com.O(σ,C, v′, r′).

Definition 2.4 (Hiding). A commitment scheme Com is hiding if for any PPT adversary A:

Advhid
Com,A(λ) :=

∣∣∣Pr
[
HID0

Com,A(λ) = 1
]
− Pr

[
HID1

Com,A(λ) = 1
]∣∣∣ = negl(λ) ,

where the game HIDCom,A(λ) is defined in Fig. 2.1.

Definition 2.5 (Binding). A commitment scheme Com is binding if for any PPT adversary A:

Advbnd
Com,A(λ) := Pr

[
BNDCom,A(λ) = 1

]
= negl(λ) ,

where the game BNDCom,A(λ) is defined in Fig. 2.1.
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Game HIDb
Com,A(λ)

Γ← Pgen(1λ)
σ ← Com.G(Γ)
b′ ← ACommit(σ)
return b′

Oracle Commit(v0, v1)

(C, r)← Com.C(σ, vb)
return C

Game BNDCom,A(λ)

Γ← Pgen(1λ)
σ ← Com.G(Γ)
(C, v0, r0, v1, r1)← A(σ)
return v0 6= v1 and

Com.O(σ,C, v0, r0) and Com.O(σ,C, v1, r1)

Figure 2.1: The games for hiding (HID) and binding (BND) of a commitment scheme Com.

Throughout this work, and more specifically in Chapter 3, we also require a perfectly binding
commitment scheme to be extractable, that is, Com is equipped with a setup algorithm Com.G that
in addition to σ returns also some trapdoor τ , and there exists an efficient extraction algorithm
Com.E that, given as input the trapdoor information τ , recovers the value v to which C is bound.

Proof systems

A (non-interactive) proof system Π for a relation R consists of the following three algorithms:

• (σ, vrs, τ) ← Π.G(Γ) the CRS generation algorithm takes as input some set of parameters Γ
and outputs a tuple consisting of: a common reference string σ that will be given publicly;
a designated verifier string vrs, that will be used for verifying; and a trapdoor τ that will be
useful for proving security of the proof system.

• π ← Π.P(σ, φ, w), a prover which takes as input some (φ,w) ∈ R and a CRS σ, and outputs
a proof π.

• bool ← Π.V(vrs, φ, π) a verifier that, given as input a statement φ together with a proof π
outputs 1 or 0, indicating acceptance of the proof.

In most instances, we will be dealing with publicly verifiable protocols. In publicly verifiable proofs,
the verifier key vrs is equal to the CRS σ; in those cases, we will omit it from the output of the
setup algorithm. In this manuscript, we will often deal with families of relations, i.e. relations Rδ
parametrized by some δ ∈ N. For those, we assume that the proof system Π is defined over the
family of relations R = {Rδ }δ and that the setup algorithm Π.G takes an additional parameter
δ which specifies the particular relation used during the protocol (and which is included in the
returned CRS). For instance, in Chapter 5, when describing proofs for a certain range J0, vmaxK,
the proof system will be defined over a relation Rvmax , where vmax is the maximum integer allowed.

Generally, we require proof systems to be complete and sound. A proof system is complete if
every honestly-generated proof verifies.

Definition 2.6 (Completeness). A non-interactive proof system Π for relation R is (computation-
ally) complete if for any PPT adversary A:

Advcompl
Π,R,A(λ) := Pr

[
COMPLΠ,R,A(λ) = 1

]
= negl(λ) ,

where COMPLΠ,R,A(λ) is the game depicted in Fig. 2.2.
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Game COMPLΠ,R,A(λ)

Γ← Pgen(1λ)
(σ, vrs, τ)← Π.G(Γ)
(φ,w)← A(σ)
π ← Π.P(σ, φ, w)
return (Π.V(vrs, φ, π) = 0 and (φ,w) ∈ R)

Game S-EXTΠ,R,A(λ)

Q := ( ) ; Γ← Pgen(1λ)
(σ, τ)← Π.G(Γ)
(φ, π)← AProve(σ)
for i = 1 . . . |u| do
wi := Π.Ext(σ, τ, φi, πi)

return
∨|u|
i=1
(
Π.V(vrs, φi, πi) and (φi, πi) /∈ Q and (φi, wi) 6∈ R

)

Game KSNDΠ,R,A,ExtA(λ)

Γ← Pgen(1λ)
(σ, vrs, τ)← Π.G(Γ)
(φ, π;w)← (A‖Ext)Π.V(vrs,σ,·)(σ)
return (Π.V(vrs, φ, π) = 1 and (φ,w) 6∈ R)

Oracle Prove(u)

π ← Π.Sim(σ, τ, φ)
Q := Q ‖ ((φ, π))
return π

Figure 2.2: Games for completeness (COMPL), knowledge soundness (KSND), and simulation-
extractability soundness (S-EXT).

Soundness. The central security property of a proof system is soundness, that is, no adversary
can produce a proof for a false statement. A stronger notion is knowledge-soundness. Knowledge
soundness [BG93] means that for any prover able to produce a valid proof, there exists an efficient
algorithm which, when given the same inputs as the prover (and the same random coins), is capable
of extracting a witness for the given statement. This algorithm is called knowledge extractor, and
it embodies the concept that the prover “must know” a witness for the given statement. Formally:

Definition 2.7 (Knowledge Soundness). A non-interactive proof system Π for relation R is knowledge-
sound if for any PPT adversary A there exists a PPT extractor Ext such that:

Advksnd
Π,R,A,Ext(λ) := Pr

[
KSNDΠ,R,A,Ext(λ) = 1

]
= negl(λ) ,

where KSNDΠ,R,A,Ext(λ) is defined in Figure 2.2.

An argument of knowledge is a knowledge-sound proof system [BLCL91]. If the adversary is
computationally unbounded, we speak of proofs rather than arguments.

Remark 2.8. Note that the verification oracle is relevant only for designated-verifier proof systems,
as in publicly verifiable protocols the adversary is provided as input the CRS and can simply
run the verification algorithm. An important consideration that arises when defining knowledge
soundness in the designated-verifier setting is whether the adversary should be granted access to
a verification oracle. Pragmatically, allowing the adversary to query a verification oracle captures
the fact that VRS can be reused poly(λ) times. While this distinction cannot be made in the
publicly verifiable setting, the same is not true for the designated-verifier setting. In the specific
case of our construction, we formulate and prove our protocol allowing the adversary access to the
verification algorithm (which has been named strong soundness in the past [BISW17]), and later
discuss which optimizations can be made when using the weaker notion of soundness, where the
adversary cannot access the verification oracle.
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Game ZKb
Π,R,A(λ)

Γ← Pgen(1λ)
(σ, τ)← Π.G(Γ)
b′ ← AProve(σ)
return b′

Oracle Prove(φ,w)

if (φ,w) 6∈ R then return ⊥
π0 ← Π.P(σ, φ, w)
π1 ← Π.Sim(σ, τ, φ)
return πb

Game WIbΠ,R,A(λ)

Γ← Pgen(1λ)
(σ, τ)← Π.G(Γ)
b′ ← AProve(σ)
return b′

Oracle Prove(φ,w0, w1)

if (φ,w0) 6∈ R or (φ,w1) 6∈ R :
return ⊥

π ← Π.P(σ, φ, wb)
return π

Figure 2.3: Games for zero knowledge (ZK), and witness indistinguishability (WI).

In security proofs where the reduction simulates certain proofs, knowledge-soundness might not
be sufficient. The stronger notion simulation-extractability guarantees that even then, from every
proof output by the adversary, Π.Ext can extract a witness. Note that we define a multi-statement
variant of simulation extractability: the adversary returns a list of statements and proofs and wins
if there is at least one statement such that the corresponding proof is valid and the extractor fails
to extract a witness.

Definition 2.9 (Simulation-Extractability). A non-interactive proof system Π for relation R is
(multi-statement) simulation-extractable if there exists an extractor Π.Ext such that, for any PPT
adversary A,

Advs-ext
Π,R,A(λ) := Pr

[
S-EXTΠ,R,A(λ) = 1

]
= negl(λ) ,

whereS-EXT be as defined in Fig. 2.2.

Zero knowledge. A proof system Π is zero-knowledge if proofs leak no information about the
witness. More precisely, Π specifies an additional PPT algorithm Π.Sim that takes as input the
trapdoor information τ and a statement u, and outputs a valid proof π indistinguishable from
those generated via Π.P.

We define a simulator Π.Sim for a proof system Π as:

• π∗ ← Π.Sim(σ, τ, φ): the simulated prover algorithm takes as input a CRS, a trapdoor τ ,
and a statement φ and outputs a simulated proof π∗.

Definition 2.10 (Zero Knowledge). A non-interactive proof system Π for relation R is zero-
knowledge if there exists a simulator Π.Sim such that, for any PPT adversary A:

Advzk
Π,R,A(λ) =

∣∣Pr
[
ZK0

Π,R,A(λ) = 1
]
− Pr

[
ZK1

Π,R,A(λ) = 1
]∣∣ = negl(λ) ,

where ZKb
Π,R,A(λ) is defined in Figure 2.3.

Feige and Shamir [FS90] proposed a relaxation of zero knowledge called witness indistinguisha-
bility, which only requires that it is indistinguishable which witness was used to compute a proof.
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In other words, witness indistinguishability states that no PPT adversary can tell which of any
two possible witnesses has been used to construct a proof.

Definition 2.11. A proof system Π for relation R is witness-indistinguishable (WI) if, for any
PPT adversary A:

Advwi
Π,R,A(λ) :=

∣∣∣Pr
[
WI0

Π,R,A(λ) = 1
]
− Pr

[
WI1

Π,R,A(λ) = 1
]∣∣∣ = negl(λ) ,

and WIbΠ,R,A(λ) is the game depicted in Fig. 2.3.

Zaps. A (non-interactive) zap is a witness-indistinguishable, non-interactive proof system: the
prover simply sends a single message to deliver the whole proof, without any setup needed. The
proof system thus reduces to a pair (P,V) or can be considered as defined above, but with a CRS
generation algorithm that always outputs ⊥. In Chapter 3, we will introduce non-interactive zaps
of knowledge, that is, non-interactive zaps that are arguments of knowledge (cf. Definition 2.7).

SNARKs. A non-interactive proof system Π for a relation R is succinct if the proof has size
quasi-linear in the security parameter, i.e., |π| = Õ(λ). A succinct non-interactive argument of
knowledge (SNARK) is a non-interactive proof system that is complete, succinct, and knowledge-
sound. A zk-SNARK is a SNARK that satisfies zero knowledge (cf. Definition 2.10).



Chapter 3

Arguments of knowledge without
setup: ZAKs

This work was published in the proceedings of the 16th International Conference on Applied Cryptography
and Network Security, ACNS. It was completed with co-author Georg Fuchsbauer, and awarded “best
student paper” with a monetary compensation from Springer.

Motivated by the subversion of trusted public parameters in standardized cryptographic proto-
cols led by mass-surveillance activities, Bellare, Fuchsbauer and Scafuro [BFS16] investigate what
security properties can be maintained for NIZK when its trusted parameters are subverted. CRS’s
for NIZK are especially easy to subvert, since they must be subvertible by design: zero knowledge
requires that an honest CRS must be indistinguishable from a backdoored one, where the backdoor
is the trapdoor used to simulate proofs.

Bellare et al. defined multiple security properties that protect against parameter subversion:
subversion soundness (S-SND) means that no adversary can generate a malicious CRS together
with a valid proof for a false statement; subversion zero knowledge (S-ZK) requires that even
if the adversary sets up the CRS, there exists a simulator able to produce its full view; and
subversion witness indistinguishability (S-WI) formalizes that even for proofs that were made
under a subverted CRS, it is still infeasible to tell which of two witnesses was used.

Following Goldreich and Oren [GO94], Bellare et al. [BFS16] also showed that it is impossible
to achieve subversion soundness and (standard) zero knowledge simultaneously. For subversion-
sound proof systems, subversion witness indistinguishability is thus the best one can hope for. The
authors [BFS16] observe that since proof systems that do not rely on a CRS cannot succumb to
CRS-subversion attacks, non-interactive zaps [GOS06a] achieve both S-SND and S-WI.

Bellare et al. did not consider the stronger notion of knowledge soundness, which is the notion
achieved by SNARKs, and which in many applications is the required notion for the used proof sys-
tems. For example, for all kinds of anonymous authentication, users prove knowledge of signatures
(often called certificates or credentials, depending on the context); in this case soundness is not
sufficient, as signatures always exist, but in the security proof they must actually be extracted in
order to rely on their unforgeability. Fuchsbauer [Fuc18] has recently defined a subversion-resistant
notion of knowledge soundness but left it open to give a scheme that achieves it. Such a scheme
would protect against possible parameter subversion in any context where proving knowledge of a
witness is required. In this chapter:

(i) We provide the first non-interactive zap with knowledge soundness; that is, a witness-in-
distinguishable proof system without parameters for which there exists an extractor that



16 CHAPTER 3. ARGUMENTS OF KNOWLEDGE WITHOUT SETUP: ZAKS

recovers a witness from every valid proof.

(ii) Our zap is also the first fully subversion-resistant WI argument-of-knowledge system. In
particular, it satisfies the recently defined notion of subversion knowledge soundness [Fuc18],
as well as subversion witness indistinguishability [BFS16] (the strongest notion compatible
with S-SND).

Bellare et al. [BFS16] introduce a new type of knowledge-of-exponent assumption, which they
call DH-KE. They prove (standard) soundness and subversion zero knowledge of their main con-
struction under DH-KE and the decision linear assumption (DLin) [BBS04]. Our construction
builds on the DLin-based non-interactive zap from [GOS06a], whose soundness we upgrade to
knowledge soundness, assuming DH-KE. As for this zap, the language of our proof system is cir-
cuit satisfiability and thus universal. Groth, Ostrovsky and Sahai’s [GOS06a] starting point is a
“dual-mode” [GOS06b, PVW08] non-interactive proof system, for which there are two indistin-
guishable types of CRS: one leading to proofs that are perfectly sound and the other leading to
proofs that are perfectly WI. To construct a non-interactive zap, they let the prover choose the
CRS. As the prover could choose a CRS that leads to “unsound” proofs, the prover must actually
choose two CRS’s that are related in a way that guarantees that at least one of them is of the
“sound” type. It must then provide a proof of the statement under both of them. The authors
[GOS06a] then show that this protocol still achieves computational WI.

We turn their construction into a proof of knowledge by again doubling the proof, thereby
forcing the prover to prove knowledge of a trapdoor which allows to extract the witness from
one of the sound proofs. We prove our non-interactive zap of knowledge secure under the same
assumptions as Bellare et al.’s S-ZK+SND scheme. Our result is summarized in the following
theorem.

Theorem 3.1. Assuming DLin and DH-KE, there exists a non-interactive zap for circuit satisfia-
bility that satisfies knowledge soundness. The proof size is O(λk), where λ is the security parameter
and k is the size of the circuit.

Let us finally note that our system also implies a proof system which achieves (standard)
knowledge soundness, (standard) zero knowledge and subversion witness indistinguishability. This
is obtained by plugging our zap of knowledge into the construction by Bellare et al. [BFS16] that
achieves SND, ZK and S-WI.

Their scheme uses a length-doubling pseudorandom generator (PRG) and a CRS contains a
random bit string σ of length 2λ (where λ is the security parameter). A proof for statement x is
a zap for the following statement: either x is a valid statement or σ is in the range of the PRG.
Using a zap of knowledge (ZaK), knowledge soundness follows from knowledge soundness of the
ZaK since with overwhelming probability σ is not in the range of the PRG. (The extractor must
thus extract a witness for x.) Zero knowledge follows from WI of the zap, as after replacing σ with
an element in the range of the PRG, proofs can be simulated using a preimage of σ. Finally, S-WI
follows from S-WI of the zap.

Related work. Since the introduction of non-interactive zaps [BOV03, GOS06a], a number of
papers have studied and provided different (and more efficient) implementations of zaps. Groth
and Sahai [GS08] provided a more general framework for NIWI and NIZK proofs, which leads to
more efficient proofs for concrete languages (instead of circuit satisfiability). Furthermore, their
proof system can also be based on other assumptions apart from DLin, such as SXDH, allowing
for shorter proofs.
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Table 3.1: Efficiency and security of the original zaps and our constructions of zaps of knowledge,
where w is the number of wires, g the number of gates and |G| is the size of an element of a group
G.

Protocol Efficiency Assumptions
Zap [GOS06a] (18w + 12g + 5) |G| DLin
Zap of knowledge, Section 3.4 (36w + 24g + 14) |G| DLin, DH-KE
Zap [Ràf15] (of knowledge; Section 3.5) (12w + 8g + 3) (|G1|+|G2|) SXDH (ADH-KE)

Bitanski and Paneth [BP15] presented a different approach to constructing zaps and WI proofs
based on indistinguishability obfuscation (iO), but constructions using iO are only of theoret-
ical interest. Ràfols [Ràf15] showed how to base non-interactive zaps on Groth-Sahai proofs,
thereby achieving an improvement in efficiency (by a constant factor) over the original construc-
tion [GOS06a]. Her construction can be implemented in asymmetric (“Type-1”) pairing groups.

Her scheme can also serve as the starting point for a scheme achieving knowledge soundness
and we explore this in Section 3.5 . (See Table 3.1 for an overview.) Although this scheme is more
efficient, we decided to concentrate on building a scheme from [GOS06a], as we can prove it secure
under the assumptions that underlie Bellare et al.’s [BFS16] SND+S-ZK scheme; in contrast, a
scheme built on asymmetric bilinear groups would require an analogue of the DH-KE assumption in
such groups (we refer to it as ADH-KE in Section 3.5 ). This is a qualitatively different assumption,
as without a symmetric pairing it cannot be checked whether the triple returned by the adversary
is of the right form (see Fig. 3.1); it would thus not be efficiently decidable if an adversary has
won the game. Finally, our main scheme achieves tight security, whereas our proof of knowledge
soundness in Section 3.5 has a security loss that is linear in the circuit size.

3.1 Cryptographic assumptions

Throughout this chapter, we make use of prime-order abelian groups equipped with a (symmetric)
bilinear map. Concretely, we assume the existence of groups G,GT of odd prime order p of length
λ and an efficiently computable non-degenerate bilinear map e : G × G → GT . That is, the map
e is such that for all U, V ∈ G and a, b ∈ Zp : e(aU, bV ) = ab · e(U, V ), and if U is a generator of
G, then e(U,U) is a generator of GT . We say that a bilinear group is verifiable if there exists an
efficient verification algorithm that outputs 1 if and only if Γ = (p,G,GT , e) is the description of a
bilinear group. For instance, the elliptic-curve group of [BBS04] equipped with the Weil pairing is
publicly verifiable. In most practical scenarios, the group description is embedded as a part of the
protocol specification and agreed upon in advance; in these cases there is no need for verification.

In other words, we assume the existence of a deterministic algorithm GrGen that, given as input
the security parameter in unary 1λ, outputs a bilinear group description Γ. The same assumption
was already employed by Bellare et al. [BFS16]. The main advantage in choosing GrGen to be
deterministic is that every entity in the scheme can (re)compute the group from the security
parameter, and no party must be trusted with generating the group. Moreover, real-world pairing
schemes are defined for groups that are fixed for some λ. For the sake of simplicity, we define all
our schemes w.r.t. a group description Γ and assume that the security parameter (λ ∈ N such that
Γ := GrGen(1λ)) can be derived from Γ.

Our protocol is based on the DH-KE assumption and the existence of a homomorphic ex-
tractable commitment scheme. Such schemes have been widely studied and there are construc-
tions from standard assumptions such as the subgroup decision assumption or the decisional linear
(DLin) assumption [BBS04]. For this work, we rely on the latter, which is also used in [GOS06a].
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Game DLinbGrGen,A(λ)

Γ := (p,G,GT , e,G) := GrGen(1λ)
u, v, r, s←$Zp
if b = 1 : H := (r + s)G
else : H ←$G
b′ ← A(Γ, uG, vG, urG, vsG,H)
return b′

Game DH-KEGrGen,A,Ext(λ)

Γ := (p,G,GT , e,G) := GrGen(1λ)
r←$ {0, 1}A.rl(λ)

(X,Y, Z) := A(Γ; r)
s← Ext(Γ, r)
if sG = X ∨ sG = Y : return 0
return (e(X,Y ) = e(Z,G))

Figure 3.1: Games for Assumptions 3.2 (DLin) and 3.3 (DH-KE).

The DLin assumption [BBS04] for an abelian group G = 〈G〉 of order p states that it is
computationally difficult to distinguish (uG, vG, urG, vsG, (r + s)G) with u, v, r, s←$Zp from a
uniformly random 5-tuple in G.

Assumption 3.2 (DLin). We say that the Decisional Linear assumption holds for the group
generator GrGen if for all PPT adversaries A we have:

Advdlin
G,A(λ) :=

∣∣∣Pr
[
DLin0

G,A(λ) = 1
]
− Pr

[
DLin1

G,A(λ) = 1
]∣∣∣ = negl(λ) ,

where the game DLinG,A(λ) is defined in Fig. 3.1.

The intuition behind DH-KE [BFS16] is that it is difficult for some machine to produce a
(Diffie-Hellman) DH triple (xG, yG, xyG) in G without knowing at least x or y. The assumption is
in the spirit of earlier knowledge-of-exponent assumptions [Gro10, BCI+10], whose simplest form
states that given (G, xG) ∈ G2 it is hard to return (yG, xyG) without knowing y.

Assumption 3.3 (DH-KE). The Diffie-Hellman Knowledge of Exponent assumption holds for the
bilinear group generator GrGen if for any PPT adversary A there exists a PPT extractor Ext such
that:

Advdhke
GrGen,A,Ext(λ) := Pr

[
DH-KEGrGen,A,Ext(λ) = 1

]
= negl(λ) ,

where the game DH-KEGrGen,A,Ext(λ) is defined in Fig. 3.1.

In other variants of knowledge of exponent assumptions the adversary is provided with some
auxiliary information, which amounts to a stronger assumption. This is typically required as in
the security proofs the reduction obtains a challenge which it needs to embed in the input to the
adversary. In our specific case, all the proof material is generated by the prover itself, including
the CRS. Consequently, the game DH-KE considers an adversary that simply takes as input a
group description, without any auxiliary information. Compared to [BFS16], where the adversary
is provided with additional information, our variant is thus weaker.

3.2 An extractable commitment scheme from DLin

We recall the homomorphic commitment scheme based on linear encryption [BBS04] by Groth
Ostrovsky and Sahai [GOS06a]. It defines two types of key generation: a perfectly hiding and
perfectly binding one. Given a bilinear group Γ := (p,G,GT , e,G), it defines two key-generation
algorithms Com.G(b) and Com.G(h) producing binding and hiding keys, respectively:
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Com.G(h)(Γ)

τ := (ru, sv)←$ (Z∗p)2; (x, y)←$ (Z∗p)2

F := xG, H := yG

(U, V,W ) := (ruF, svH, (ru + sv)G)
σ := (F,H,U, V,W )
return (σ, τ)

Com.G(b)(Γ)

τ := (x, y, z)←$ (Z∗p)3; (ru, sv)←$ (Z∗p)2

F := xG, H := yG

(U, V,W ) := (ruF, svH, (ru + sv + z)G)
σ := (F,H,U, V,W )
return (σ, τ)

In order to commit to a value m ∈ Zp, one samples r, s←$Zp and returns:

C = Com.C(m; r, s) =
(
mU + rF,mV + sH,mW + (r + s)G

)
.

Since Com.C(m0; r0, s0) + Com.C(m1; r1, s1) = Com.C(m0 + m1; r0 + r1, s0 + s1), commitments
are additively homomorphic. A committed value is opened by providing the randomness (r, s).
Under a perfectly hiding key, a commitment to m can be opened to any value m′, given trapdoor
information τ = (ru, sv):

Com.C(m; r, s) =
(
(mru + r)F, (msv + s)V, (mru + r +msv + s)G

)
= Com.C

(
m′; r − (m′ −m)ru, s− (m′ −m)sv)

)
.

(3.1)

Under the DLin assumption, keys output by the perfectly hiding setup are computationally indis-
tinguishable from ones output by the perfectly binding setup. For this reason, the perfectly hiding
setup leads to computationally binding commitments and vice versa.

We say that a triple of group elements is linear w.r.t. (F,H,G) if it is of the form (rF, sH, (r+
s)G) for some r, s ∈ Zp. Commitments to 0 are linear triples and every commitment under a hiding
key is also a linear. Under a binding key we have:

Com.C(m; r, s) =
(
(mru + r)F, (msv + s)H, mzG+ (mru + r +msv + s)G

)
.

A commitment to m is thus a linear encryption [BBS04] of mzG ∈ G1 under randomness (mru+r,
msv + s). Given a commitment C and the trapdoor information τ = (x, y, z), one can extract the
committed message. The extraction algorithm Com.D is defined as:

Com.D
(
τ, (C0, C1, C2)

)
:= dLog

(
z−1(C2 − x−1C0 − y−1C1)

)
, (3.2)

where dLog can be efficiently computed if the message space is of logarithmic size; for instance,
assuming m ∈ {0, 1}, we define Com.D to return 0 if (C2−x−1C0−y−1C1) is the identity element,
and 1 otherwise.

Theorem 3.4 ([GOS06a]). Assuming DLin, Com, as defined above, is an extractable homomorphic
commitment scheme that is:

• perfectly binding, computationally hiding when instantiated with Com.G(b);

• computationally binding, perfectly hiding when instantiated with Com.G(h).

The “parameter switching” technique, which defines different types of keys that are computa-
tionally indistinguishable, has proved very useful and also applies to encryption schemes. The idea
has been defined (and named) several times. “Parameter switching” [GOS06a] is also called “mean-
ingful/meaningless encryption” [KN08], “dual-mode encryption” [PVW08] and “lossy encryption”
[BHY09].



20 CHAPTER 3. ARGUMENTS OF KNOWLEDGE WITHOUT SETUP: ZAKS

3.3 Groth-Ostrovsky-Sahai zaps

Proof of binarity

Consider the CRS σ := (F,H,U, V,W ) and Γ := (p,G,GT , e,G) resulting from the execution of
(one of the two types of) the key generation algorithm Com.G. Note that F,H are two generators of
G and (U, V,W ) is a linear tuple w.r.t. (F,H,G) iff the key generation algorithm is chosen hiding.
Groth, Ostrovsky and Sahai [GOS06a] presented a witness-indistinguishable non-interactive proof
system Bin for proving that C ∈ G3 is a commitment to {0, 1} under σ. The intuition behind this
construction is that, by the homomorphic property of Com, proving that C commits to a bit is
equivalent to showing that either C = (C0, C1, C2) or C ′ := C − Com.C(1; (0, 0)) = C − (U, V,W )
is a linear tuple with respect to (F,H,G). If we consider the discrete logarithms w.r.t (F,H,G) of
the above commitments, i.e. letting C = (r0F, s0H, t0G) and C ′ = (r1F, s1H, t1G), we have that:

C or C ′ is a linear tuple
⇐⇒ t0 = r0 + s0 or t1 = r1 + s1

⇐⇒ (r0 + s0 − t0)(r1 + s1 − t1) = 0
⇐⇒ r0r1 + r0s1 + s0r1 + s0s1 + t0t1 − (r0t1 + t0r1 + s0t1 + t0s1) = 0.

(3.3)

Consider a prover Bin.P holding the witness (b, r, s) ∈ {0, 1}×Zp×Zp for (C,C ′), where b indicates
which tuple is linear and r, s are its contained randomness. In order to convince a verifier, it
proceeds as follows: choose t←$Zp and let Π = [πi,j ]i∈{0,1},j∈{0,1,2}, where:

π0,0 := r(2b− 1)U + r2F π1,0 := s(2b− 1)U + (rs+ t)F
π0,1 := r(2b− 1)V + (rs− t)H π1,1 := s(2b− 1)V + s2H

π0,2 := r(2b− 1)W + (r2 + rs+ t)G π1,2 := s(2b− 1)W + (s2 + rs− t)G
(3.4)

A verifier Bin.V, on input the CRS σ, the statement C and Π, computes π2,j := π1,j + π0,j for
j = 0, 1, 3 and returns 1 if all the following equations are satisfied:

e(F, π0,0) = e(C0, C0 − U),
e(F, π0,1) + e(H,π1,0) = e(C0, C1 − V ) + e(C1, C0 − U)

e(H,π1,1) = e(C1, C1 − V ),
e(F, π0,2) + e(G, π2,0) = e(C0, C2 −W ) + e(C2, C0 − U)

e(G, π2,2) = e(C2, C2 −W ),
e(H,π1,2) + e(G, π2,1) = e(C1, C2 −W ) + e(C2, C1 − V ).

(3.5)

If we consider, as we did for the commitments, the discrete logarithms of the proof matrix w.r.t.
(F,H,G), i.e. we put

mi,0 := logF (πi,0), mi,1 := logH(πi,1), mi,2 := logG(πi,2),

for i = 0, 1, then we observe that the verification equation sets: m2,i := m0,i + m1,i, and then
checks the following:

m0,0 = r0r1 m0,1 +m1,0 = r0s1 + s0r1

m1,1 = s0s1 m0,2 +m2,0 = r0t1 + t0r1

m2,2 = t0t1 m1,2 +m2,1 = s0t1 + t0s1

(3.6)

By substitution, this is exactly what Eq. (3.3) affirms.
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Bin.P(σ,C, (b, r, s))

Construct Π as per Eq. (3.4)
return Π

Bin.V(σ,C,Π)

[πi,j ]i∈{0,1},j∈{0,1,2} = Π
for j = 0, 1, 2 do π2,j := π1,j + π0,j

return (Eq. (3.5))

Figure 3.2: The Bin protocol.

As previously mentioned, the key generation algorithm is identical to Com.G. If the setup is per-
fectly binding, perfect completeness and perfect soundness follow immediately from Eq. (3.6). Per-
fect witness indistinguishability follows from the observation that a proof with a witness (0, r0, s0)
gives the same proof as using witness (1, r1, s1) with randomness t′ = t+ r0s1− s0r1. On the other
hand, on a perfectly hiding key generation every commitment is a linear tuple, and thus there is
nothing to prove.

Theorem 3.5 ([GOS06a]). The protocol Bin is a non-interactive proof system with perfect com-
pleteness, perfect soundness, and perfect witness indistinguishability.

To construct a non-interactive zap (i.e., a WI proof system without a CRS), Groth, Ostrovsky
and Sahai [GOS06a] first construct a proof system for circuit satisfiability with a CRS, based on
the commitment scheme from Section 3.2 and their proof of binarity. Then, in order to make their
scheme CRS-less, they define the prover to pick two CRS’s that are correlated in a way that makes
it impossible for the adversary to cheat under both of them.

As the commitment scheme described in Section 3.2 is homomorphic, it is possible to perform
linear operations on commitments, and in particular prove logical relations between them.

First, proving that either C or C ′ := C − (U, V,W ) is linear proves that C is a commitment to
a bit. In order to prove that committed values satisfy wire assignments of a NAND gate, Groth
et al. [GOS06b] observe that if a, b ∈ {0, 1} then c := ¬(a ∧ b) iff t := a + b + 2c − 2 ∈ {0, 1}.
Reasoning with homomorphic commitments, we have that three commitments A := (A0, A1, A2),
B := (B0, B1, B2), and C := (C0, C1, C2) are bound respectively to the values a, b, c, such that
c = ¬(a ∧ b), if and only if

T := A+B + 2 · C − 2 · (U, V,W ) (3.7)

is a commitment to either 0 or 1. Thus, to prove that A,B,C are commitments to values in {0, 1}
and that C is a commitment to the NAND of the values in A and B, it is sufficient to prove that
A, B, C and T are all bit commitments. With these observations, GOS construct a perfectly
witness-indistinguishable proof system Circ for circuit satisfiability as follows:

The key generation algorithm Circ.G simply emulates Com.G(h), that is, it generates a hiding
commitment key. The prover Circ.P(σ, C, w) takes as input a circuit C and a witness w satisfying

ZAP.P(1λ, φ, w)

Γ := GrGen(1λ) ; (σ0, τ)← Circ.G(Γ)
σ1 := σ0 + (0, 0, 0, 0, G)
π0 ← Circ.P(σ0, φ, w); π1 ← Circ.P(σ1, φ, w)
return (σ0, π0, π1)

ZAP.V(φ, (σ0, π0, π1))

σ1 := σ0 + (0, 0, 0, 0, G)
return

(∧
i∈{0,1} Circ.V(σi, φ, πi)

)

Figure 3.3: The (non-interactive) ZAP protocol of [GOS06a].
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C(w) = 1, and does the following: represent the circuit evaluation C(w) in such a way that wk is
the value running in the k-th wire. For each wk, produce a commitment Ck ← Com.C(σ,wk) to
wk and prove it is to a bit under σ using proof system Bin. For each gate, construct T from the
commitments corresponding to the ingoing and outgoing wires as above and prove that it too is a
commitment to 0 or 1. For the output commitment, create a commitment Cout to 1 that can be
easily reproduced and checked by the verifier: Cout := Com.C(σ, 1; (0, 0)). Let Π be the collection
of all other commitments together with the respective proofs of binarity generated. Return Π.

The verifier Circ.V(σ, C,Π), computes Cout := Com.C(σ, 1; (0, 0)) and for every gate the value
T as in Eq. (3.7); using Bin.V, it checks that all the wire commitments are to values in {0, 1}
and respect the gates (by checking the values T ); if all verifications succeed, return 1. Otherwise,
return 0.

Theorem 3.6 ([GOS06a]). Assuming DLin, Circ is a non-interactive, perfectly sound computa-
tionally witness-indistinguishable proof system.

The reason why we cannot let the prover choose the CRS in Circ is that it could chose it as a
perfectly hiding CRS and then simulate proofs. However, if the prover must construct two proofs
under two different CRS’s which are related in such a way that at least one of them is not linear
(and thus binding), then the prover cannot cheat. In particular, note that given a 5-tuple σ0 ∈ G5,
and defining σ1 := σ0 + (0, 0, 0, 0, G) then at most one of σ0, σ1 is linear. At the same time, both
of them are valid CRS’s. With this last trick, it is straightforward to construct the zap scheme
ZAP, as illustrated in Fig. 3.3.

Theorem 3.7 ([GOS06a]). Assuming DLin, ZAP is a non-interactive zap with perfect soundness
and computational witness indistinguishability.

Remark 3.8. We note that soundness of ZAP relies only on the fact that Γ is a bilinear group. In
[GOS06a] the prover is allowed to generate Γ and it is required that Γ is verifiable. We presented
a zap for deterministically generated groups, as considered by Bellare et al. [BFS16], which is also
required for our construction of non-interactive zaps of knowledge in the next section.

3.4 ZAK: a non-interactive zap of knowledge

We now present our NIWI argument of knowledge for circuit satisfiability. The high-level idea of
our protocol is to double the ZAP proof of [GOS06a] and link the two CRS’s so the prover must
know the extraction trapdoor for one of them. Whereas the protocol ZAP used two Circ proofs to
construct a zap from a proof that requires a CRS, we will use two zap proofs to not only prove
circuit satisfiability, but to prove knowledge of a satisfying assignment. More specifically, knowledge
soundness is obtained by generating two independent zap proofs, and then linking the respective
trapdoor information with multiple DH in a matrix of group elements ∆. This additional matrix
∆, that we call linking element, is constructed in such a way that (under DH-KE) it is possible
to recover the trapdoor from one of the two zap proofs, and use it to extract the witness from
the commitments contained in a valid zap proof. Witness indistinguishability of the single proofs
follows immediately from [GOS06a], but our proofs also contain the linking element ∆, which
depend on the randomness of the CRS’s. We thus have to argue that these additional elements do
not harm witness indistinguishability.

Bellare et al. [BFS16] also used an extractor to recover the trapdoor hidden in an adversarially
generated CRS to construct a scheme satisfying subversion-zero knowledge. Our protocol is de-
tailed in Fig. 3.4, where by DH we denote the algorithm that checks that δi,j is the CDH of (σ0,0)i
and (σ1,0)j (see below).



3.4. ZAK: A NON-INTERACTIVE ZAP OF KNOWLEDGE 23

ZAK.P(1λ, φ, w)

Γ := GrGen(1λ)
for i = 0, 1 do

(σi,0, τi)← Circ.G(Γ)
σi,1 := σi,0 + (0, 0, 0, 0, G)
πi,0 ← Circ.P(σi,0, φ, w)
πi,1 ← Circ.P(σi,1, φ, w)

Compute ∆ from τ0, τ1 as in Eq. (3.8).
Σ := [σi,0]i∈{0,1}, Π = [πi,j ]i,j∈{0,1}
return (Σ,∆,Π)

ZAK.V(φ, (Σ,∆,Π))

// Check if ∆ is consistent with Σ

if not DH(∆,Σ) : return 0
for i in {0, 1} do
σi,1 := σ0 + (0, 0, 0, 0, G)

return
( ∧

i,j∈{0,1} Circ.V(σi,j , φ, πi,j)
)

Figure 3.4: The ZAK protocol.

The trapdoor information τ0 = (x0, y0) and τ1 = (x1, y1) is correlated in ∆ to form the follow-
ing products:

∆ := [δi,j ]i,j∈{0,1} =

x0x1G x0y1G

y0x1G y0y1G

 (3.8)

Correctness of ∆ can be checked by the verification algorithm using the bilinear map. For
i = 0, 1, let the CRS be σi = (Fi, Hi, Ui, Vi,Wi), and let xi, yi be such that:

Fi := xiG, Hi := yiG,

in which case ∆ is constructed as in Eq. (3.8). The verifier checks that the following holds:

e(δ0,0, G) = e(F0, F1), e(δ0,1, G) = e(F0, H1),
e(δ1,0, G) = e(H0, F1), e(δ1,1, G) = e(H0, H1).

(3.9)

Let us denote by DH the algorithm that, given as input Σ and ∆ returns 1 if all equalities of
Eq. (3.9) are satisfied, and 0 otherwise. This procedure is used by the verification equation, as
detailed in Fig. 3.4.

We now proceed with the proof of our main result, Theorem 3.1, which we rephrase here for
completeness:

Theorem 3.1. Assume that DLin and DH-KE hold for GrGen. Then ZAK as defined in Fig. 3.4
is a non-interactive zap that satisfies knowledge soundness and witness indistinguishability. In
particular, we have

Advksnd
ZAK(λ) ≤ 4 · Advdh-ke(λ) and Advwi

ZAK(λ) ≤ 8 · Advdlin(λ).

Completeness of the protocol is trivial: the prover (respectively, the verifier) simply performs
4 iterations of Circ proofs (respectively, verifications), and therefore correctness is implied by
Theorem 3.6 and the fact that ∆ as in Eq. (3.8) satisfies Eq. (3.9). We now prove knowledge
soundness and witness indistinguishability.

Proof (computational knowledge soundness). We show that for any adversary able to produce a
valid proof we can construct a PPT extractor that can extract a witness from such a proof with
overwhelming probability.
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Game KSNDZAK,CIRC-SAT,A,ExtA(λ)

Γ := GrGen(1λ) ; r←$ {0, 1}A.rl(λ)

(C, (Σ,∆,Π)) := A(1λ; r)
w ← Ext(1λ, r)
return ZAK.V(C, (Σ,∆,Π)) and C(w) 6= 1

Figure 3.5: Knowledge soundness game for the ZAK protocol.

Let A be an adversarial prover in game KSNDΠ,A(λ) (Fig. 2.2, with Π.G void). On input 1λ,
A returns a proof consisting of σi,0 = (Fi, Hi, Ui, Vi,Wi) for i ∈ {0, 1}, of ∆ = [δi,j ]i,j∈{0,1} and
Π = [πi,j ]i,j∈{0,1}. The game KSNDZAK,CIRC-SAT(λ) is given in Fig. 3.5. From A we construct
four adversaries Ai,j (for i, j ∈ {0, 1}) that execute A and output some components of the proof
produced by A, namely

(F0, F1, δ0,0) = (x0G, x1G, x0x1G), (for A0,0)
(F0, H1, δ0,1) = (x0G, y1G, x0y1G), (for A0,1)
(H0, F1, δ1,0) = (y0G, x1G, y0x1G), (for A1,0)
(H0, H1, δ0,1) = (y0G, y1G, y0y1G), (for A1,1)

where xi, yi are such that Fi = xiG, Hi = yiG, and these four equations hold if ZAK.V(C, (Σ,∆,Π))
returns 1. By the DH-KE assumption there exist extractors Exti,j for each of the adversaries Ai,j
that given its coins outputs:

x0 or x1, x0 or y1, (for Ext0,0, Ext0,1)
y0 or x1, y0 or y1 (for Ext1,0, Ext1,1)

if the above equations hold. The statement (x0 ∨ x1) ∧ (y0 ∨ x1) ∧ (x0 ∨ y1) ∧ (y0 ∨ y1) is logically
equivalent to (x0∧ y0)∨ (x1∧ y1). This means that together, these four extractors allow to recover
either (x0, y0) or (x1, y1), that is, the extraction trapdoor for one of the CRS’s. Let i∗ be such that
(xi∗ , yi∗) is the extracted pair.

For j ∈ {0, 1}, let Fi∗ , Hi∗ , Ui∗ , Vi∗ ,Wi∗ ∈ G be such that σi∗,j = (Fi∗ , Hi∗ , Ui∗ , Vi∗ ,Wi∗ + jG).
Let j∗ ∈ {0, 1} be the smallest integer satisfying:

x−1
i∗ Ui∗ + y−1

i∗ Vi∗ − (Wi∗ + j∗G) 6= 0G.

The above implies that σi∗,j∗ is not a linear tuple, which means that it is a binding CRS. Let
C(i∗,j∗),k denote the commitment to the k-th wire contained in πi∗,j∗ . Using the extraction algo-
rithm described in Eq. (3.2) we can recover this witness:

wk = Com.D
(
(xi∗ , yi∗), C(i∗,j∗),k

)
.

It remains to prove that the extracted witness is indeed correct. Upon receiving a valid proof
from adversary A, we know from the verification equation (the subroutine DH) that each Ai,j will
output a DH triple. Therefore, extractors Exti,j together recover τi∗ = (xi∗ , yj∗) with probability at
least 1−∑i,j∈{0,1} Advdhke

GrGen,Ai,j ,Exti,j (λ), that is, by DH-KE, with overwhelming probability. Since
the commitment scheme Com is perfectly binding if the CRS is not a linear tuple (Theorem 3.4),
a message wk is always successfully extracted. Correctness of wk follows from the underlying
proof system: by perfect soundness of Bin (Theorem 3.5) we are guaranteed that wk ∈ {0, 1}; by
perfect soundness of Circ (Theorem 3.6) that each gate evaluation is correct. The bound in the
construction of the extractor is tight: we have Advksnd(λ) ≤ 4 · Advdhke(λ).
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Oracle Prove in H1, H2 , and H3

Γ := GrGen(1λ)
(σ0,0, τi)← Circ.G(Γ)

(σ0,0, τi)← Com.G(b)(Γ)

σ0,1 := σ0,0 + (0, 0, 0, 0, G)

(σ0,1, τi)← Circ.G(Γ)
σ0,0 := σ0,1 − (0, 0, 0, 0, G)

π0,0 ← Circ.P(σ0,0, C, w1)
π0,1 ← Circ.P(σ0,1, C, w0)
// The second zap is as in ZAK.P using w0.

(σ1,0, π1,0, π1,1)← ZAP.P(1λ, C, w0)
Compute ∆ as in Eq. (3.8).
return (Σ,∆,Π)

Oracle Prove in H4 and H5

Γ := GrGen(1λ)
(σ0,1, τi)← Circ.G(Γ)
σ0,0 := σ0,1 − (0, 0, 0, 0, G)

(σ0,1, τi)← Com.G(b)(Γ)

π0,0 ← Circ.P(σ0,0, C, w1)
π0,1 ← Circ.P(σ0,1, C, w1)
// The second zap is as in ZAK.P using w0.

(σ1,0, π1,0, π1,1)← ZAP.P(1λ, C, w0)
Compute ∆ as in Eq. (3.8).
return (Σ,∆,Π)

Figure 3.6: Overview of the simulations of the prove oracle in the first hybrid games for the proof of
WI. Hybrids H1 and H4 are defined by ignoring all boxes (the light gray highlights the differences
with respect to the previous hybrids), whereas H2 and H5 include the light boxes but not the
gray one and H3 includes all boxes.

Proof (computational witness indistinguishability). Consider an adversary in theWI game (Fig. 2.3,
where Π.G is void) that makes q = q(λ) queries to the Prove oracle, each of the form (C(k), w(k)

0 , w(k)
1 ),

for 0 ≤ k < q. Consider the following sequence of hybrid games where H0 corresponds to
WI0

ZAK,CIRC-SAT,A(1λ) and H12 corresponds to WI1
ZAK,CIRC-SAT,A(1λ). The games differ in how

the Prove oracle is implemented, which is specified in Fig. 3.6 for the first half of the hybrids (the
second half is analogous). We give an overview of all hybrids in Table 3.2 below.

H0 The challenger simulates an honest Prove oracle, using (for every k < q) the first witness
w(k)

0 supplied by the adversary. It outputs (Σ(k),∆(k),Π(k)), where in particular we recall:

Σ(k) =

σ(k)
0,0 = (F (k)

0 , H (k)
0 , U (k)

0 , V (k)
0 , W (k)

0 )
σ

(k)
1,0 = (F (k)

1 , H (k)
1 , U (k)

1 , V (k)
1 , W (k)

1 )

 and Π(k) =

π(k)
0,0 π

(k)
0,1

π
(k)
1,0 π

(k)
1,1

 .
Recall that the two rows of [Σ(k)|Π(k)] are independent zaps and that σ(k)

0,0 and σ(k)
1,0 are chosen

to be hiding. The Prove oracle computes σ(k)
i,j which is of the form σ(k)

i,j =
(
F (k)
i , H (k)

i , U (k)
i ,

V (k)
i , W (k)

i + jG
)
, for i, j ∈ {0, 1}. Furthermore, π(k)

i,j is a Circ proof using w(k)
0 under the CRS

σ(k)
i,j .

H1 For every Prove query, the simulator uses witness w(k)
1 (instead of w(k)

0 ) to produce π(k)
0,0. As

the respective CRS σ(k)
0,0 was generated using the perfectly hiding commitment setup Circ.G,

the two hybrids are distributed equivalently (any commitment under a hiding key is a random
linear triple; cf. Eq. (3.1)).

H2 For every Prove query, the simulator now generates CRS σ(k)
0,0 as a binding key via Com.G(b);

σ(k)
0,1 is generated as before (adding (0, 0, 0, 0, G)), and so are all proofs. Note that the linking
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Table 3.2: Overview of changes throughout the hybrids: (h) denotes hiding setup; (b) denotes
binding setup; wb identifies the witness used to produce the proof.

Hybrid σ
(k)
0,0 π

(k)
0,0 σ

(k)
0,1 π

(k)
0,1 σ

(k)
1,0 π

(k)
1,0 σ

(k)
1,1 π

(k)
1,1

H0 (h) w0 (b) w0 (h) w0 (b) w0

H1 w1

H2 (b)
H3 (h)
H4 w1

H5 (b)
H6 (h)
H7 w1

H8 (b)
H9 (h)
H10 w1

H11 (b)
H12 (h) w1 (b) w1 (h) w1 (b) w1

elements ∆(k) can be constructed knowing only the trapdoor (x(k)
1 , y(k)

1 ) of the CRS σ(k)
1,0,

which remained unchanged:

∆(k) =

y(k)
1 H

(k)
0 y

(k)
1 F

(k)
0

x
(k)
1 H

(k)
0 x

(k)
1 F

(k)
0

 . (3.10)

H1 and H2 are computationally indistinguishable under the DLin assumption: given a DLin
challenge (F,H,U, V,W ), the reduction can exploit the random self-reducibility property of
DLin to construct q instances of the DLin challenge: ∀k < q select x̄(k), ȳ(k), r̄(k), s̄(k), z̄(k)←$Zp
and compute σ(k)

0,0 as
(
x̄(k)F, ȳ(k)H, r̄(k)x̄(k)F+z̄(k)x̄(k)U, s̄(k)ȳ(k)H+z̄(k)ȳ(k)V, (r̄(k)+s̄(k))G

+z̄(k)W
)
.

Each σ(k)
0,0 is a random linear tuple if and only if the DLin challenge is, and it is a uniformly

random tuple if the DLin challenge is, as shown in [BFS16]. Computing σ(k)
1,0 as in H1 (hiding)

and defining ∆ as in Eq. (3.10), the simulator generates the rest of the game as defined. It
returns the adversary’s guess and thus breaks DLin whenever the adversary distinguishes H1
and H2.

H3 The simulator replaces each CRS σ(k)
0,1 for all k < q with a hiding commitment and defines

σ(k)
0,0 := σ(k)

0,1 − (0, 0, 0, 0, G), which is therefore (once again) binding. More specifically, the
simulator creates a linear tuple invoking Circ.G:

σ(k)
0,1 =

(
x(k)

0 G, y(k)
0 G, x(k)

0 r(k)G, y(k)
0 s(k)G, (r(k) + s(k))G

)
where x(k)

0 , y(k)
0 , r(k), s(k)←$Zp.

The two distributions are proven computationally indistinguishable under DLin by an ar-
gument analogous to the one for H1 → H2. This time the challenger constructs all the
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Game XDHb
I,GrGen,A(λ)

Γ := (p,G1,G2,GT , e,G1, G2) := GrGen(1λ)
x, y←$Z∗p
if b = 1 : H := xyGI

else : H ←$GI
b′ ← A(Γ, xGI , yGI , H)
return b′

Game ADH-KEGrGen,A,Ext(λ)

Γ := (p,G1,G2,GT , e,G1, G2) := GrGen(1λ)
r←$ {0, 1}A.rl(λ)

(X,Y, Z) := A(Γ; r)
s← Ext(Γ, r)
if sG1 = X ∨ sG1 = Y : return 0
return (Z = logG1(X) · Y )

Figure 3.7: Games for Assumptions 3.2 (SXDH) and 3.3 (ADH-KE).

instances of the DLin challenge for σ(k)
0,1, while σ

(k)
0,0 is derived. From there, the proof proceeds

identically.

H4 The simulator replaces each proof π(k)
0,1 by using w(k)

1 instead of w(k)
0 (∀k < q).

This hybrid is equivalently distributed as the previous one; this is proved via the same
argument as for H0 → H1.

H5 The simulator switches σ(k)
0,1 from a hiding to a binding key. This game hop is analogous to

the hop H1 → H2 (which switched σ(k)
0,0 from hiding to binding).

H6 The simulator switches σ(k)
0,0 from binding to hiding. Indistinguishability from the previous

hybrid is shown analogously to the hop H2 → H3. Note that in this hybrid the first zap
(σ(k)

0,0, π
(k)
0,0, π

(k)
0,1) is distributed according to the protocol specification, but using witness w(k)

1 .

Hybrids H7 to H12 are now defined analogously to hybrids H1 to H6, except for applying all changes
to σ(k)

1 and π(k)
1,0 and π(k)

1,1. In hybrid H12 the adversary is then given arguments of knowledge for
witness w1.

As the difference between hybrids H1 and H12 is bounded by 8 times the advantage of a DLin
distinguisher, the adversary has total advantage

Advwi
ZAK,C,A(λ) ≤ 8 · Advdlin

ZAK,C,A(λ) = negl(λ) .

The bound is thus tight.

3.5 Non-interactive zaps of knowledge in asymmetric groups

In this section we show an alternative and more efficient approach to constructing non-interactive
zaps of knowledge for circuit satisfiability. In contrast to symmetric bilinear groups used in the
previous section, we will work with asymmetric pairings, that is, bilinear maps e : G1 × G2 →
GT (where G1 = 〈G1〉, G2 = 〈G2〉 and GT are abelian additive groups of prime order p). We
assume a deterministic algorithm GrGen that outputs an (asymmetric) group description Γ :=
(p,G1,G2,GT , e,G1, G2).

Cryptographic assumptions

By extending GOS proofs [GOS06b], Goth and Sahai [GS08] provide a general framework for
non-interactive witness-indistinguishable (NIWI) proof systems, which can be based (among other
computational assumptions) on SXDH. The SXDH assumption for an asymmetric pairing group
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generator GrGen informally states that the decisional Diffie-Hellman assumption holds in both G1
and G2.

Assumption 3.2 (SXDH). We say that the Symmetric External Diffie-Hellman assumption holds
for the asymmetric bilinear group generator GrGen if for all PPT adversaries A we have:

AdvXDH1
GrGen,A(λ) :=

∣∣∣Pr
[
XDH0

1,GrGen,A(λ) = 1
]
− Pr

[
XDH1

1,GrGen,A(λ) = 1
]∣∣∣ = negl(λ) and

AdvXDH2
GrGen,A(λ) :=

∣∣∣Pr
[
XDH0

2,GrGen,A(λ) = 1
]
− Pr

[
XDH1

2,GrGen,A(λ) = 1
]∣∣∣ = negl(λ) ,

where XDHb
I,GrGen,A(λ) (for I = 1, 2) is defined in Fig. 3.7.

In order to construct zaps of knowledge over asymmetric bilinear groups, we require the ana-
logue of DH-KE for such groups, in particular for their first base group G1. We give a formal
definition.

Assumption 3.3 (ADH-KE). The Asymmetric Diffie-Hellman Knowledge of Exponent assump-
tion holds for (the first base group of) the asymmetric group generator GrGen if for any PPT
adversary A there exists a PPT extractor Ext such that:

Advadh-ke
GrGen,A,Ext(λ) := Pr

[
ADH-KEGrGen,A,Ext(λ)

]
= negl(λ) ,

where the game ADH-KEGrGen,A,Ext(λ) is defined in Fig. 3.7.

Groth-Sahai (GS) proofs [GS08] achieve improved efficiency by working for group-dependent
languages, in contrast to the more elementary proof system Bin of “bit commitment” (given in
Section 3.3) used for circuit satisfiability. More recently, Ràfols [Ràf15] gave a construction of non-
interactive zaps from GS proofs, which leads to more efficient non-interactive zaps (by a constant
factor). Relying on the asymmetric variant of the DH-KE assumption, we show how to achieve
knowledge soundness also for GS zaps. Interestingly, the scheme does not require any alteration to
the protocol, that is, under ADH-KE we can show that a GS zap is already a GS zap of knowledge.

Groth-Sahai zaps

We first describe the GS-based zap and then argue that it satisfies knowledge soundness under
ADH-KE.

SXDH commitments and proofs of binarity. The SXDH commitment scheme of Groth
and Sahai [GS08] allows to commit to values in Zp both in G1 and in G2 (here we parametrize
the algorithm with I ∈ {1, 2} for compactness). The properties of the scheme are very similar to
those of GOS’s [GOS06a] DLin-based commitments (Section 3.2). Again, commitment keys can
be generated in one of two possible “modes”, one perfectly hiding and one perfectly binding.

Com.G(h)
I (Γ)

τ := (x, y)←$ (Z∗p)2

V := (xGI , GI)>

W := (xyGI , yGI)>

σ := (V,W)
return (σ, τ)

Com.G(b)
I (Γ)

τ := (x, z)←$ (Z∗p)2; y←$Z∗p
V := (xGI , GI)>

W := (xyGI , (y + z)GI)>

σ := (V,W)
return (σ, τ)
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The commitment key thus consists of vectors V,W ∈ G2
I , for I = 1, 2. Committing to a value

m ∈ Zp is performed by sampling r←$Zp and computing:

Com.CI(m; r) := mW + rV.

The commitment scheme is additively homomorphic, since Com.CI(m0; r0)+Com.CI(m1; r1) =
Com.CI(m0 + m1; r0 + r1). The two setups Com.G(h)

I and Com.G(b)
I are computationally indis-

tinguishable under DDH in GI : hiding setup returns a DH triple (V0,W1,W0) with respect to
V1 = GI , whereas binding setup returns random values (V0,W1,W0).

If V,W are linearly dependent, which is the case when generated by Com.G(h)
I , then the

commitment is perfectly hiding; a commitment C to a value m can be opened to any value
m′ ∈ Zp given the trapdoor information τ = (x, y):

Com.CI(m; r) =

x(my + r)GI
(my + r)GI

 = Com.CI
(
m′; r + (m−m′)y

)
.

If V,W are linearly independent then the commitment is perfectly binding and for message
spaces of logarithmic size the committed value can be extracted using the trapdoor information
τ = (x, z) generated by Com.G(b)

I :

m = Com.EI
(
τ, C

)
:= dLog

(
z−1(C1 − x−1C0)

)
.

A commitment in GI can be shown to be bound to a bit via two quadratic equations in Zp, as
introduced by Groth and Sahai [GS08]. To do so, we require another commitment in the opposite
source group G3−I . Let b1 be the value committed over G1 and b2 the value committed over G2.
Our goal is to prove that b1 ∈ {0, 1}; at the same time we prove b1 = b2. This can be done by
proving that the commitments satisfy the following two equations:

b1(b2 − 1) = 0 and b2(b1 − 1) = 0 . (3.11)

We refer the reader to [GS08, §9 p. 28] for how to construct proofs for the above equations being
satisfied by the committed values.1 A proof for one such equation consists of one element from
each source group. We can thus define a proof system Bin, which, given a commitment in G1 and
another one in G2, proves that the committed values are bits using 2(|G1|+ |G2|) group elements.
The key generation algorithm Bin.G simply executes Com.G(b)

1 and Com.G(b)
2 .

Proofs of circuit satisfiability. Now that we have a witness-indistinguishable system for
proving that a commitment is bound to a bit b ∈ {0, 1} over asymmetric bilinear groups under the
SXDH assumption, we can construct a protocol Circ for proving circuit satisfiability analogously to
scheme by GOS [GOS06b] given in Section 3.3: The prover commits to each wire in the circuit twice
(once in G1 and once in G2), proves that the committed values are to either 0 or 1, and for each
NAND gate with input wire values a, b and output wire value c it proves that (a+b+2c−2) ∈ {0, 1}.
The output commitment is fixed again to Com.C(1; 0). This defines Circ.P((σ1, σ2), φ, w) where σI
is a CRS in group GI , φ is the statement, i.e., a circuit description and w is the witness, a
satisfying assignment. A proof π consists thus of commitments C1,k ∈ G2

1 and C2,k ∈ G2
2 and

proofs of binarity πk for every wire wk, and moreover proofs πi for every gate gi.
1In GS notation, the equations are defined by setting the parameters a := (0), b := (−1), Γ := [1], and t := 0 for

the first equation and a := (−1), b := (0), Γ := [1], t := 0 for the second.
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A zap from SXDH. Again, a ZAP is constructed from Circ analogously to the GOS zap
[GOS06a] given in Section 3.3. There, a zap consisted of 2 Circ-proofs for two related CRS’s of
which one was guaranteed to be binding and thus lead to sound proofs. For SXDH we now create
two related CRS’s in each group G1 and G2, so we are guaranteed that for each group one of them
is binding. Intuitively, we need to construct 4 Circ proofs, one for each combination of a CRS in
G1 with one from G2. We are then guaranteed that one of the four proofs is under two binding
CRS, which asserts that the prover cannot cheat. (Note that we do not actually need four full Circ
proofs, as they can share the commitments.)

More specifically, the prover constructs two CRS’s σI,0, for I = 1, 2, for perfectly hiding SXDH
commitments in G1 and G2. Then, it computes (again for I = 1, 2):

σI,1 := σI,0 −
(
(0, 0)>, (0, GI)>

)
. (3.12)

As for the zap described in Section 3.3, σI,1 is deterministically generated from σI,0 and at least
one of the two CRS’s leads to perfectly binding commitments. For simplicity, we will refer to the
following matrix of CRS in order to perform Circ proofs:

Σ := [(σ1,i, σ2,j)]0≤i,j≤1 :=

(σ1,0, σ2,0) (σ1,0, σ2,1)
(σ1,1, σ2,0) (σ1,1, σ2,1)

 . (3.13)

Then, the prover commits to every wire value wk computing:

CI,j,k ← Com.CI(σI,j , wk), (3.14)

for each I ∈ {1, 2} and each j ∈ {0, 1}. Reusing these commitments, the prover now computes
four Circ proofs πi,j (with i, j ∈ {0, 1})). This boils down to computing, for all i ∈ {0, 1} and all
wire indices k:

πi,j,k ←Bin.P
(
(σ1,i, σ2,j), (C1,i,k,C2,j,k), wk

)
, (3.15)

and proceeding in the same way for all gates. With a slight abuse of notation, in the explicit
construction of Figure 3.8 we denote this whole process with:

πi,j ←Circ.P
(
(σ1,i, σ2,j), φ, w

)
,

keeping in mind that the commitments are not recomputed for each proof, and that instead we
are using the commitments CI,i,k in GI to wire wk under the CRS σI,i.
The construction of ZAP.V(φ, π) is straightforward: Upon receiving a proof(

σ1,0, σ2,0, (C1,j,k,C2,j,k)i,j∈{0,1}, [πi,j ]i,j∈{0,1}
)

the verifier computes the correlated CRS’s σ1,1, σ2,1 according to Eq. (3.12) and verifies each of
the proofs πi,j for i, j ∈ {0, 1} using Circ.V((σ1,i, σ2,j), φ, πi,j) (using the respective commitments,
as we described above). It returns true if all proofs verified.

Theorem 3.4. Assume SXDH and ADH-KE holds for the asymmetric group generation GrGen.
Then ZAP as defined in Fig. 3.8 is a non-interactive zap that satisfies knowledge soundness and
witness indistinguishability.

Witness indistinguishability of the ZAP proof follows from an hybrid argument analogous to
the proof of witness indistinguishability of [GOS06a]. We now prove that the scheme also satisfies
computational knowledge soundness.
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ZAP.P(1λ, φ, w)

Γ = (p,G1,G2,GT , e,G1, G2) := GrGen(1λ)
for I = 1, 2 do

σI,0 ← Com.G(h)
I (Γ)

σI,1 := σI,0 − ((0, 0)>, (0, GI)>)
Compute (CI,j,k)I,j,k as per Eq. (3.14)
for i, j ∈ {0, 1} do
πi,j ← Circ.P((σ1,i, σ2,j), φ, w)

return
(
σ1,0, σ2,0, (CI,j,k)I,j,k, [πi,j ]i,j

)

Procedure Test-DH(A,B,C, s)

Γ = (p,G1,G2,GT , e,G1, G2) := GrGen(1λ)
if sG1 = A and sB = C

return 1
if sG1 = B and sA = C

return 1
else

return 0

Figure 3.8: The non-interactive zap scheme based on SXDH and the procedure for testing DH
triples used in the proof.

Proof (computational knowledge soundness). LetA be the PPT adversary in the game KSNDA,ZAP(λ)
able to produce a proof for which ZAP.V returned 1. The proof is of the form:(

σ1,0, σ2,0, (C1,j,k,C2,j,k)i,j∈{0,1}, [πi,j ]i,j)
)

where πi,j is a valid Circ proof under the CRS (σ1,i, σ2,j) - with σ1,1 and σ2,1 derived from σ1,0 and
σ2,0 as per Equation (3.12).

First, we claim that the extractor is able to find the index i∗ ∈ {0, 1} of the perfectly binding
CRS for G1. Consider the adversary A1,0 (A1,1, resp.) that behaves as A, but simply outputs the
elements (V0,W1,W0) contained in CRS σ1,0 (σ1,1, resp.). By ADH-KE there exists an extractor
Ext1,0 (Ext1,1, resp.) that outputs a value s0 (s1, resp.) in Zp. If the triple the adversary outputs
is a DH triple (which is the case for a perfectly hiding setup), the respective extractor will output
the discrete logarithm of one of the first two elements (except with negligible probability). This
can be efficiently tested: for a value s output by the extractor, either

sG1 = V0 and sW1 = W0 , or
sG1 = W1 and sV0 = W0 , (3.16)

hold. Thus, let i∗ ∈ {0, 1} be the first value si∗ for which Eq. (3.16) does not hold. There exists
such an i∗ because at most one of σ1,0 and σ1,1 = σ1,0 − ((0, 0)>, (0, G1)>) can be a DH triple and
thus a hiding commitment key. In G2 can can also be at most one hiding commitment key; let j∗
be the smallest index such that σ2,j∗ is binding. Note that our extractor will not know the value
of j∗. The CRS (σ1,i∗ , σ2,j∗) is thus of type “perfectly binding”.

By soundness of the Bin proof associated to every pair (C1,i∗,k,C2,j∗k), the committed values
b1,k and b2,k satisfy b1,k = b2,k and b1,k, b2,k ∈ {0, 1}. It now remains to show that these values
contained in the commitments corresponding to input wires (which by perfect soundness of Circ
constitute a satisfying assignment) can be extracted; in particular, we extract the value from C1,i∗,k
(note that the extractor knows i∗).

Using (once again) the initial adversary A, we can construct multiple adversaries A(b)
k , one

for each commitment C1,i∗,k = (C1,i∗,k,0, C1,i∗,k,1) to an input wire, and each possible wire value
b = 0, 1. The adversary A(b)

k runs A and outputs:

(V0, C1,i∗,k,1, C1,i∗,k,0), (for A(0)
k )

(V0, C1,i∗,k,1 −W1, C1,i∗,k,0 −W0) (for A(1)
k )
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where σ1,i∗ = (V0, V1,W0,W1). Note that if C1,i∗,k is a commitment to 0 then (V0,C1,i∗,k) it is of
the form (xG1, rG1, rxG1) for some x, r ∈ Zp, and thus a DH triple. If Ck is a commitment to
one, then C−W is a commitment to 0 and thus (V0,C1,i∗,k −W) is a DH triple as above.

By ADH-KE for each adversary A(b)
k there exists an extractor Ext(b)

k that outputs some value
s

(b)
k (with b = 0, 1), if A(b)

k output a DH triple. Using the same reasoning of Eq. (3.16), we can test
which of the two triples is a valid DH triple. To do so, we use the procedure Test-DH depicted in
Fig. 3.8. For each commitment C1,i∗,k, there exists a single index bk for which the sub-procedure
Test-DH returned 1: if there were more than one we would be violating the perfect binding property
of the commitment scheme, if there were none we would be violating the perfect soundness of Bin
(as the commitment would be bound to a value different from 0, 1).

At this point, we are done: the extractor for knowledge soundness runs all above extractors and
recovers the bit bk from every commitment, which is the correct wire value because of soundness
of the Circ protocol under a perfectly binding key generation.

As we needed to construct as many extractors as there are input wires in the circuit, the
security loss depends on the size of the circuit.



Chapter 4

Succinct arguments of knowledge:
SNARKs

This work was published in the proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. It was completed with co-authors Rosario Gennaro, Michele Minelli, and Anca
Niţulescu.

In [GGPR13], Gennaro, Gentry, Parno and Raykova proposed a new, influential characteriza-
tion of the complexity class NP using Quadratic Span Programs (QSPs), a natural extension of
span programs defined by Karchmer and Wigderson [KW93]. They show there is a very efficient
reduction from boolean circuit satisfiability problems to QSPs. Their work has led to fast progress
towards practical verifiable computations. For instance, using Quadratic Arithmetic Programs
(QAPs), a generalization of QSPs for arithmetic circuits, Pinocchio [PHGR13] provides evidence
that verified remote computation can be faster than local computation. At the same time, their
construction is zero-knowledge, enabling the server to keep intermediate and additional values used
in the computation private. Optimized versions of SNARK protocols based on QSPs approach are
used in various practical applications, including cryptocurrencies such as Zcash [BCG+14], to
guarantee anonymity while preventing double-spending.

The QSP approach was generalized in [BCI+13] under the concept of Linear PCP (LPCP),
a form of interactive ZK proofs where security holds under the assumption that the prover is
restricted to compute only linear combinations of its inputs. These proofs can then be turned
into (designated-verifier) SNARKs by using an extractable linear-only encryption scheme, i.e., an
encryption scheme where any adversary can output a valid new ciphertext only if this is an affine
combination of some previous encryptions that the adversary had as input (intuitively this “limited
malleability” of the encryption scheme, will force the prover into the above restriction).

So far all known zk-SNARKs rely on “classical” pre-quantum assumptions1. Yet, there are
widely deployed systems relying on zk-SNARKs (for instance, the Zcash cryptocurrency [BCG+14])
which are expected not to withstand cryptanalitic efforts over the course of the next 10 years
[ABL+17, Appendix C]. We attempt to make a step forward in this direction by building a
designated-verifier zk-SNARK from lattice-based (knowledge) assumptions. Our scheme uses as a
main building block encodings that rely on the Learning With Errors (LWE) assumption, initially

1We note that the original protocol of Kilian [Kil92] is a zk-SNARK which can be instantiated with a post-
quantum assumption since it requires only a collision-resistant hash function – however (even in the best optimized
version recently proposed in [BSBHR18]) the protocol does not seem to scale well for even moderately complex
computations.
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Table 4.1: Security estimates for different choices of LWE parameters (circuit size fixed to d = 215),
together with the corresponding sizes of the proof π and of the CRS (when using a seeded PRG
for its generation).

security level λ n logα log q |π| |σ| ZK

medium
168 1270 −150 608 0.46 MB 7.13 MB

162 1470 −180 736 0.64 MB 8.63 MB 3

high
244 1400 −150 672 0.56 MB 7.88 MB

247 1700 −180 800 0.81 MB 9.37 MB 3

paranoid
357 1450 −150 800 0.69 MB 9.37 MB

347 1900 −180 864 0.98 MB 10.1 MB 3

proposed by Regev in 2005 [Reg05], and right now the most widespread post-quantum cryptosys-
tem supported by a theoretical proof of security.

SNARGs based on lattices. Recently, in two companion papers [BISW17, BISW18], Boneh
et al. provided the first designated-verifier SNARGs construction based on lattice assumptions.

The first paper has two main results: an improvement on the LPCP construction in [BCI+13]
and a construction of linear-only encryption based on LWE. The second paper presents a different
approach where the information-theoretic LPCP is replaced by a LPCP with multiple provers,
which is then compiled into a SNARG again via linear-only encryption. The main advantage of this
approach is that it reduces the overhead on the prover, achieving what they call quasi-optimality2.
The stronger notion of knowledge soundness (which leads to SNARKs) can be achieved by replacing
the linear-only property with a stronger (extractable) assumption [BCI+13].

Our contributions. In this paper, we frame the construction of Danezis et al. [DFGK14] for
Square Span Programs in the framework of “encodings” introduced by Gennaro et al. [GGPR13].
We slightly modify the definition of encoding to accommodate for the noisy nature of LWE schemes.
This allows us to have a more fine-grained control over the error growth, while keeping previous
example encodings still valid instantiations. Furthermore, SSPs are similar to but simpler than
Quadratic Span Programs (QSPs) since they use a single series of polynomials, rather than 2 or 3.
We use SSPs to build simpler and more efficient designated-verifier SNARKs and Non-Interactive
Zero-Knowledge arguments (NIZKs) for circuit satisfiability (CIRC-SAT).

We think our work is complementary to [BISW17, BISW18]. However, there are several reasons
why we believe that our approach is preferable:

Zero-knowledge. The LPCP-based protocols in [BISW17, BISW18] do not investigate the pos-
sibility of achieving zero-knowledge. This leaves open the question of whether zk-SNARKs
can be effectively instantiated. Considering the LPCP constructed for a QSP satisfiability
problem, there is a general transformation to obtain ZK property [BCI+13]. However, in
the case of “noisy” encodings, due to possible information leakages in the error term, this
transformation cannot be directly applied. Our SNARK construction, being SSP-based, can

2This is the first scheme where the prover does not have to compute a cryptographic group operation for each
wire of the circuit, which is instead true e.g., in QSP-based protocols.



35

be made ZK at essentially no cost for either the prover or the verifier. Our transforma-
tion is different, exploiting special features of SSPs, and yields a zk-SNARK with almost no
overhead. Our construction constitutes the first (designated-verifier) zk-SNARK on lattices.

Weaker assumptions. The linear-only property on encodings introduced in [BCI+13] implies all
the security assumptions needed by a SSP-suitable encoding, but the reverse is not known to
hold. Our proof of security therefore relies on weaker assumptions and, by doing so, “distills”
the minimal known assumptions needed to prove security for SSP, and instantiates them with
lattices. We study the relations between our knowledge assumption and the (extractable)
linear-only assumption in Section 4.3.

Simplicity and efficiency. While the result in [BISW18] seems asymptotically more efficient
than any SSP-based approach, we believe that, for many applications, the simplicity and
efficiency of the SSP construction will still provide a concrete advantage in practice. We
implemented and tested our scheme: we provide some possible concrete parameters for the
instantiation of our zk-SNARKs in Table 4.1, whereas more details on the implementation,
along with benchmark results, are presented in Section 4.6.

Technical challenges Although conceptually similar to the original proof of security for QSP-
based SNARKs, our construction must incorporate some additional modifications in order to over-
come the noise growth of the LWE-based homomorphic operations. These challenges do not arise
in the line of work of Boneh et al. [BISW17, BISW18] due to the more general (and stronger)
assumption of linear-only encoding (see Section 4.3 for details). Additionally, our construction
benefits from the optimizations of SSP-based SNARKs [DFGK14].

Instantiating our encoding scheme with a lattice-based scheme like Regev encryption, differs
from [GGPR13] and introduces some technicalities, first in the verification step of the protocol,
and secondly in the proof of security. Our encoding scheme is additively homomorphic and allows
for linear operations; however, correctness of the encoding is guaranteed only for a limited number
of homomorphic operations because of the error growth in lattice-based encoding schemes. More
specifically, to compute a linear combination of N encodings, we need to scale some parameters
for correctness to hold. Throughout this work we will consider only encodings where a bounded
number of homomorphic “linear” operations is allowed, and make sure that this bound is sufficient
to perform verification and to guarantee the existence of a security reduction.

Square Span Programs

We characterize NP as Square Span Programs (SSPs) over some field F of order p. SSPs were
introduced first by Danezis et al. [DFGK14].

Definition 4.1 (SSP). A Square Span Program (SSP) over the field F is a tuple consisting of m+1
polynomials v0(x), . . . , vm(x) ∈ F[x] and a target polynomial t(x) such that deg(vi(x)) 6 deg(t(x))
for all i = 0, . . . ,m. We say that the square span program ssp has size m and degree d = deg(t(x)).
We say that ssp accepts an input a1, . . . , a` ∈ {0, 1}λ if and only if there exist a`+1, . . . , am ∈ {0, 1}λ
satisfying:

t(x) divides
(
v0(x) +

m∑
i=1

aivi(x)
)2

− 1.

We say that ssp verifies a boolean circuit C : {0, 1}` → {0, 1} if it accepts exactly those inputs
(a1, . . . , a`) ∈ {0, 1}` satisfying C(a1, . . . , a`) = 1.
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Universal circuit. In the definition, we may see C as a logical specification of a satisfiability
problem. In our zk-SNARK we will split the ` inputs into `u public and `w private inputs to make
it compatible with the universal circuit CU : {0, 1}`u × {0, 1}`w → {0, 1}, that take as input an
`u-bit description of a freely chosen circuit C and an `w-bit value w, and return 1 if and only if
C(w) = 1. Along the lines of [DFGK14], we consider the “public” inputs from the point of view of
the prover. For an outsourced computation, they might include both the inputs sent by the clients
and the outputs returned by the server performing the computation.

Theorem 4.2 ([DFGK14, Theorem 2]). For any boolean circuit C : {0, 1}` → {0, 1} of m wires and
n fan-in 2 gates there exists a degree d = m+n square span program ssp = (v0(x), . . . , vm(x), t(x))
over a field F, of order p ≥ max(d, 8) that verifies C.

SSP generation. We consider the uniform probabilistic algorithm SSP that, on input a boolean
circuit C : {0, 1}` → {0, 1} of m wires and n gates, chooses a field F, with |F| ≥ max(d, 8)
for d = m + n, and samples d random elements r0, . . . , rd ∈ F to define the target polynomial
t(x) = ∏d−1

i=0 (x − ri), together with the set of polynomials {v0(x), . . . , vm(x)} composing the SSP
corresponding to C.

(v0(x), . . . , vm(x), t(x))← SSP(C)

Encoding schemes

Encoding schemes for SNARKs were initially introduced in [GGPR13]. Here, we present a variant
of this definition that accommodates for encodings with noise.

Definition 4.3 (Encoding Scheme). An encoding scheme Enc over a field F is composed of the
following algorithms:

• (pk, sk)← E.K(Γ), a key generation algorithm that takes as input the main parameters Γ and
outputs some secret state sk together with some public information pk. To ease notation, we
are going to assume the message space is always part of the public information and that pk
can be derived from sk.

• S ← Enc.E(Γ, param, a), a non-deterministic encoding algorithm mapping a field element a
to some encoding space S. Depending on the encoding algorithm, Enc.E will require either
the public information pk generated from Enc.K or the secret state sk. For our application,
it will be the case of sk. To ease notation, we will omit Γ and this additional argument.
The output space S is such that {[Enc.E(a)] : a ∈ F} partitions S, where [Enc.E(a)] denotes
the set of the possible evaluations of the algorithm Enc.E on a.

The above algorithms must satisfy the following properties:

d-linearly homomorphic: there exists a poly(λ) algorithm Eval that, given as input the pub-
lic parameters pk, a vector of encodings (Enc.E (a1) , . . . ,Enc.E (ad)), and coefficients c =
(c1, . . . , cd) ∈ Fd, outputs a valid encoding of a · c with probability overwhelming in λ.

Quadratic root detection: there exists an efficient algorithm that, given some parameter δ (ei-
ther pk or sk), Enc.E(a0), . . . ,Enc.E(at), and the quadratic polynomial pp ∈ F[x0, . . . , xt], can
distinguish if pp(a1, . . . , at) = 0. With a slight abuse of notation, we will adopt the writing
pp(ct0, . . . , ctt) = 0 to denote the quadratic root detection algorithm with inputs δ, ct0, . . . , ctt,
and pp.
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Game q-PKEEnc,Z,A,ExtA,z(λ)

Γ← Pgen(1λ); (pk, sk)← Enc.K(Γ)
(α, s)←$F∗

σ ← (pk,Enc.E(1),Enc.E(s), . . . ,Enc.E(sq),Enc.E(α),Enc.E(αs), . . . ,Enc.E(αsq))
z ← Z(pk, σ)
(ct, ĉt; a0, . . . , aq)← (A‖ExtA)(σ, z)
return (ĉt− αct ∈ [Enc.E(0)]) ∧ ct 6∈

[
Enc.E(

∑q
i ais

i)
]

Game q-PKEQEnc,A,ExtA(λ)

Γ← Pgen(1λ); (pk, sk)← Enc.K(Γ)
s←$F
σ ← (pk,Enc.E(1),Enc.E(s), . . . ,Enc.E(sq),

Enc.E(sq+2), . . . ,Enc.E(s2q))
(Enc.E(c), e; b)← (A‖ExtA)(σ)
if b = 0 : return e ∈ [Enc.E(c)]
else : return e 6∈ [Enc.E(c)]

Game q-PDHEnc,A(λ)

Γ← Pgen(1λ); (pk, sk)← Enc.K(Γ)
s←$F
σ ← (pk,Enc.E(1),Enc.E(s), . . . ,Enc.E(sq),

Enc.E(sq+2), . . . ,Enc.E(s2q))
y ← A(σ)
return y ∈

[
Enc.E(sq+1)

]

Figure 4.1: Games for q-PKE, q-PKEQ, q-PDH assumptions.

Image verification: there exists an efficiently computable algorithm ∈ that, given as input some
parameter δ (again, either pk or sk), can distinguish if an element c is a correct encoding of
a field element.

Our specific instantiation of the encoding scheme presents some slight differences with [GGPR13].
In fact, we can allow only for a limited number of homomorphic operations because of the er-
ror growth in lattice-based encoding schemes. We note that this modification does not invali-
date previous constructions. Sometimes, in order to ease notation, we will employ the writing
ct := Eval (Enc.E (ai)i , c) = Enc.E (t), actually meaning that ct is a valid encoding of t = ∑

aici;
that is, ct ∈ [Enc.E (t)]. It will be clear from the context (and the use of symbol for assignment
instead of that for sampling) that the randomized encoding algorithm Enc.E is not actually invoked.

Decoding algorithm. When using a homomorphic encryption scheme in order to instantiate
an encoding scheme, we simply define the decoding algorithm Enc.D as the decryption procedure of
the scheme. More specifically, since we study encoding schemes derived from encryption functions,
quadratic root detection and image verification for designated verifiers are trivially obtained by
using the decryption procedure Enc.D.

4.1 Cryptographic assumptions

Throughout this work we rely on a number of computational assumptions. All of them are long-
standing assumptions in the frame of dlog-hard groups, and have already been generalized in the
scope of “encoding schemes” in [GGPR13]. We recall them here for completeness.

The q-power knowledge of exponent assumption (q-PKE) is a generalization of the knowledge
of exponent assumption (KEA) introduced by Damgard [Dam92]. It says that given Enc.E(s), . . . ,
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Enc.E(sq) and Enc.E(αs), . . . ,Enc.E(αsq) for some coefficient α, it is difficult to generate ct, ĉt that
encode c, αc without knowing the linear combination of the powers of s that produces ct.

Assumption 4.4 (q-PKE). The q-Power Knowledge of Exponent (q-PKE) assumption holds rel-
ative to an encoding scheme Enc and for the class Z of auxiliary input generators if, for every
non-uniform PPT auxiliary input generator Z ∈ Z and non-uniform PPT adversary A, there
exists a non-uniform extractor Ext such that:

Advpke
Enc,Z,A,ExtA(λ) := Pr

[
q-PKEEnc,Z,A,ExtA(λ) = 1

]
= negl(λ) ,

where q-PKEEnc,Z,A,ExtA(λ) is the game depicted in Figure 4.1.

The q-PDH assumption has been a long-standing, standard q-type assumption [Gro10, BBG05],
It basically states that given

(
Enc.E(1),Enc.E (s) , . . . ,Enc.E (sq) ,Enc.E

(
sq+2) , . . . ,Enc.E

(
s2q)), it

is hard to compute an encoding of the missing power Enc.E(sq+1).

Assumption 4.5 (q-PDH). The q-Power Diffie-Hellman (q-PDH) assumption holds for encoding
Enc if for all PPT adversaries A we have:

Advq-PDH
Enc,A (λ) := Pr

[
q-PDHEnc,A(λ) = 1

]
= negl(λ) ,

where q-PDHEnc,A(λ) is defined as in Figure 4.1.

Optionally, to achieve strong-soundness (see Remark 2.8), we need an assumption to be able
to “compare” adversarially-generated messages. The q-PKEQ assumptions states that for any
adversary A that outputs two ciphertexts, there exists an extractor ExtA that can tell whether
they encode the same value.

Assumption 4.6 (q-PKEQ). The q-Power Knowledge of Equality (q-PKEQ) assumption holds
for the encoding scheme Enc if, for every PPT adversary A, there exists an extractor ExtA such
that:

Advq-PKEQ
Enc,A,ExtA(λ) := Pr

[
q-PKEQEnc,A,ExtA(λ) = 1

]
= negl(λ) ,

where q-PKEQEnc,A,ExtA(λ) is the game depicted in Figure 4.1.

Te q-PKEQ assumption is needed solely in the case where the attacker has access to a verifica-
tion oracle. Since the encoding could be non-deterministic, the simulator in the security reduction
of Section 4.5 needs to rely on q-PKEQ to simulate the verification oracle. Pragmatically, this
assumption allows us to test for equality of two adversarially-produced encodings without having
access to the secret key.

Finally, we recall here a well-known assumption for lattices, that we will use to instantiate our
quantum-secure encoding scheme.

Assumption 4.7 (dLWE). The decisional Learning With Errors (dLWE) assumption holds for a
parameter generation algorithm Lgen if for any PPT adversary A:

AdvdLWE
Lgen,A(λ) := Pr

[
dLWELgen,A(λ) = 1

]
− 1/2 = negl(λ) ,

where dLWELgen,A(λ) is defined as in Figure 4.2.

In [Reg05], Regev showed that solving the decisional LWE problem is as hard as solving some
lattice problems in the worst case.
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Game dLWELgen,A(λ)

Γ := (p, q, n, α)← Lgen(1λ)
s←$Znq
b←$ {0, 1}
b′ ← AEncode(Γ)
return b′

Oracle Encode()

a←$Znq
e← χqα

if b = 1 c := s · a + e

elsec←$Zq
return (a, c)

Figure 4.2: The decisional LWE problem for parameters Γ.

4.2 An encoding scheme based on learning with errors
In this section we describe a possible instantiation of the encoding scheme based on learning with
errors (LWE).

Lattices. A m-dimensional lattice Λ is a discrete additive subgroup of Rm. For an integer
k < m and a rank k matrix B ∈ Rm×k, Λ (B) =

{
Bx ∈ Rm | x ∈ Zk

}
is the lattice generated by

the columns of B.

Gaussian distribution. For any σ ∈ R+, let ρσ(x) := e−π‖x‖
2/σ2 be the Gaussian function over

Rn with mean 0 and parameter σ. For any discrete subset A ⊆ Rn we define ρσ(A) := ∑
x∈A ρσ(x),

the discrete integral of ρσ over A. We then define χσ, the discrete Gaussian distribution over A
with mean 0 and parameter σ as:

χσ : A→ R+ : y 7→ ρσ(y)
ρσ(A) .

We denote by χnσ the discrete Gaussian distribution over Rn where each entry is independently
sampled from χσ.

Lattice-based encoding scheme

We propose an encoding scheme Enc that consists of three algorithms as depicted in Figure 4.3.
This is a slight variation of the classical LWE cryptosystem initially presented by Regev [Reg05]
and later extended in [BV11]. The encoding scheme Enc is described by parameters Γ := (q, n, p, α),
with q, n, p ∈ N such that (p, q) = 1, and 0 < α < 1. Our construction is an extension of the one
presented in [BV11].

We assume the existence of a PPT algorithm Lgen that, given as input the security parameter
in unary 1λ, outputs an LWE encoding description Γ := (p, q, n, α) ← Lgen(1λ). In real-world
encoding, generally parameters are fixed for some well-known values of λ. For the sake of simplicity,
we define our encoding scheme with a LWE encoding description Γ and assume that the security
parameter λ can be derived from Γ.

Roughly speaking, the public information is constituted by the LWE parameters Γ and an
encoding of m is simply an LWE encryption of m. The LWE secret key constitutes the secret state
of the encoding scheme.

Basic properties

Correctness. We say that the encoding scheme is (statistically) correct if all valid encodings are
decoded successfully (with overwhelming probability).
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Enc.K(Γ)

s←$Znq
return (⊥, s)

Enc.E(Γ, s,m)

a←$Znq
σ := qα; e← χσ

return (−a, a · s + pe+m)

Enc.D(Γ, s, (c0, c1))

return (c0 · s + c1) (mod p)

Figure 4.3: An encoding scheme based on LWE.

Definition 4.8. An encoding scheme Enc is correct if, for any Γ ∈ [Lgen(1λ)] and s ∈ [Enc.K(Γ)]
and m ∈ Zp:

Pr[Enc.D(Γ, s,Enc.E(Γ, s,m)) 6= m] = negl(λ) .

We say that an encoding ct of a message m under secret key s is valid if Enc.D (Γ, s, ct) = m.
We say that an encoding is fresh if it is generated through the Enc.E algorithm. We say that an
encoding is stale if it is not fresh.

Lemma 4.9 (Correctness). Let ct = (−a,a · s + pe+m) be an encoding. Then ct is a valid
encoding of a message m ∈ Zp if e < q

2p .

Image verification. Using the decryption algorithm Enc.D, and provided with the secret key
(i.e., δ := sk), we can implement image verification. The algorithm ∈ for image verification proceeds
as follows: decrypts the encoded element and tests for equality between the two messages.

Quadratic root detection. The algorithm Q for quadratic root detection is straightforward
using Enc.D: decrypt the message and evaluate the polynomial, testing if it is equal to 0.

d-linearly homomorphicity. Given a vector of d encodings ct ∈ Zd×(n+1)
q and a vector of

coefficients c ∈ Zdp, the homomorphic evaluation algorithm is defined as follows: Eval (ct, c) := c·ct.

Technical challenges

Noise growth. During the homomorphic evaluation the noise grows as a result of the operations
which are performed on the encodings. Consequently, in order to ensure that the output of Eval is
a valid encoding of the expected result, we need to start with a sufficiently small noise in each of
the initial encodings.

In order to bound the size of the noise, we first need a basic theorem on the tail bound of
discrete Gaussian distributions due to Banaszczyk [Ban95]:

Lemma 4.10 ([Ban95, Lemma 2.4]). For any σ, T ∈ R+ and a ∈ Rn:

Pr[x← χnσ : |x · a| ≥ Tσ ‖a‖ ] < 2 exp(−πT 2). (4.1)

At this point, this corollary follows:

Corollary 4.11. Let s←$Znq be a secret key and m = (m0, . . . ,md−1) ∈ Zdp be a vector of messages.
Let ct be a vector of d fresh encodings so that cti ← Enc.E (Γ, s,mi), and c ∈ Zdp be a vector of
coefficients. If q > 2p2σ

√
κd
π , then Eval (c, ct) outputs a valid encoding of m · c under the secret

key s with probability overwhelming in κ.
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Proof. The fact that the message part is m · c is trivially true by simple homomorphic linear
operations on the encodings. Then the final encoding is valid if the error does not grow too much
during these operations. Let e ∈ Zdp be the vector of all the error terms in the d encodings, and
let T =

√
κ/π. Then by Lemma 4.10 we have:

Pr
[
e← χdσ : |e · c | ≥

√
κ

π
σ ‖c ‖

]
< 2 exp(−κ).

For correctness we need the absolute value of the final noise to be less than q/2p (cf. Lemma 4.9).
Since it holds that ∀c ∈ Zdp, ‖c ‖ ≤ p

√
d, we can state that correctness holds if:√

κ

π
σp
√
d <

q

2p

which gives q > 2p2σ

√
κd

π
.

Smudging. When computing a linear combination of encodings, the distribution of the error
term in the final encoding does not result in a correctly distributed fresh encoding. The resulting
error distribution depends on the coefficients used for the linear combination, and despite correct-
ness of the decryption still holds, the error could reveal more than just the plaintext. We combine
homomorphic evaluation with a technique called smudging [AJL+12], which “smudges out” any
difference in the distribution that is due to the coefficients of the linear combination, thus hiding
any potential information leak. This technique has been also called “noise flooding” in the past
[BPR12].

Lemma 4.12 (Noise Smudging, [Gen09]). Let B1 = B1 (κ) and B2 = B2 (κ) be positive integers.
Let x ∈ [−B1, B1] be a fixed integer and y←$ [−B2, B2]. Then the distribution of y is statistically
indistinguishable from that of y + x, as long as B1/B2 = negl(κ).

Proof. Let ∆ denote the statistical distance between the two distributions. By its definition:

∆ = 1
2

B1+B2∑
v=−(B1+B2)

|Pr [y = v]− Pr [y = v − x]| = 1
2

 −B2∑
v=−(B1+B2)

1
B2

+
B1+B2∑
v=B2

1
B2

 = B1
B2
.

The result follows immediately.

In order to preserve the correctness of the encoding scheme while allowing linear evaluations, we
need once again q to be large enough to accommodate for the flooding noise. In particular, q will
have to be at least superpolynomial in the statistical security parameter κ.

Corollary 4.13. Let s ∈ Znq be a secret key and m = (m1, . . . ,md) ∈ Zdp be a vector of messages.
Let ct be a vector of d encodings so that cti is a valid encoding of mi, and c ∈ Zdp be a vector of
coefficients. Let eEval be the noise in the encoding output by Eval (ct, c) and BEval a bound on its
absolute value. Finally, let Bsm = 2κBEval, and esm←$ [−Bsm, Bsm]. Then the statistical distance
between the distribution of esm and that of esm + eEval is 2−κ. Moreover, if q > 2pBEval (2κ + 1)
then the result of Eval (ct, c ) + (0, esm) is a valid encoding of m · c under the secret key s.

Proof. The claim on the statistical distance follows immediately from Lemma 4.12 and the fact
that the message part is m · c is true by simple homomorphic linear operations on the encodings.
In order to ensure that the final result is a valid encoding, we need to make sure that the error in
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Procedure test-error(Γ, s, (c0, c1))

e′ := (c0 · s + c1) // p
return (Eq. (4.3))

Figure 4.4: The error testing procedure.

this output encoding remains smaller than q/2p. The final error is upper bounded by BEval +Bsm,
so we have:

BEval +Bsm <
q

2p =⇒ BEval + 2κBEval <
q

2p =⇒ q > 2pBEval (2κ + 1) .

Error testing. By making non-blackbox use of our LWE encoding scheme, it is possible to
define an implementation of the function test-error in order to guarantee the existence of a security
reduction from adversarially-generated proofs. In fact, it is not sufficient to show that a series
of homomorphic operations over a forged proof can break one of the assumptions. We must also
guarantee that these manipulations do not alter the correctness of the encoded value. In the
specific case of LWE encodings, it is sufficient to use the secret key, recover the error, and enforce
an upper bound on its norm. A possible implementation of test-error is displayed in Figure 4.4.

Other requirements for security reduction. The following lemma will be needed later during
the security proof. It essentially defines the conditions under which we can take an encoding, add
a smudging term to its noise, sum it with the output of an execution of Eval and finally multiply
the result by an element in Zp.

Lemma 4.14 (For reduction). Let s, ct, c, eEval, BEval be as in Corollary 4.13, and let ct′ =
(−a′, s · a′ + pe′ +m′) be a valid encoding of a message m′ ∈ Zp with noise e′ bounded by Be. Let
Bsm = 2κBe and esm←$ [−Bsm, Bsm] be a “smudging noise”. Then, if q > 2p2 ((2κ + 1)Be +BEval),
it is possible to add the smudging term esm to ct′, sum the result with the output of Eval (ct, c ),
multiply the outcome by a coefficient bounded by p, and obtain a valid encoding of k (m · c +m′).

Proof. The correctness of the message part comes immediately from performing homomorphic
linear operations on encodings, and the final output is valid if the noise remains below a certain
threshold. After adding the smudging term and performing the sum, the noise term is at most
Be +Bsm +BEval = (2κ + 1)Be +BEval. After the multiplication by a coefficient bounded by p, it
is at most p ((2κ + 1)Be +BEval). Thus, the encoding is valid if:

p ((2κ + 1)Be +BEval) <
q

2p, (4.2)

which immediately gives the result.

Conditions on the modulus q. Corollaries 4.11 and 4.13 and Lemma 4.14 give the conditions
that the modulus q has to respect in order to allow for all the necessary computations. In particular,
Corollary 4.11 gives the condition to be able to homomorphically evaluate a linear combination of
fresh encodings through the algorithm Eval; Corollary 4.13 gives the condition to be able to add
a smudging noise to the result of such an evaluation; Lemma 4.14 gives a condition that will have
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to be satisfied in the security reduction. They are ordered from the least stringent to the most
stringent, so the condition that must be satisfied in the end is the one given by Lemma 4.14:

q > 2p2 ((2κ + 1)Be +BEval) (4.3)

Leftover hash lemma (LHL). We now recall the definition of min-entropy, and the famous
“leftover hash lemma” introduced by Impagliazzo et al. [HILL99].

Definition 4.15 (Min-entropy). The min-entropy of a random variable X is defined as:

H∞ (X) = − log
(
max
x

Pr[X = x ]
)

Lemma 4.16 (Leftover hash lemma). Assume a family of functions
{
Hx : {0, 1}n → {0, 1}`

}
x∈X

is universal, i.e., ∀a 6= b ∈ {0, 1}n:

Prx∈X [Hx (a) = Hx (b)] = 2−`.

Then, for any random variable Y :

∆ ((X,HX (Y )) , (X,U`)) ≤
1
2
√

2−H∞(Y ) · 2`,

where U`←$ {0, 1}`.

Zero Knowledge. We now present a version of the LHL that will be useful later in this work,
when proving the zero knowledge property of our construction. In a nutshell, it says that a random
linear combination of the columns of a matrix is statistically close to a uniformly random vector,
for some particular choice of coefficients.

Lemma 4.17 (“Specialized” leftover hash lemma). Let n, p, q, d be non-negative integers. Let
A←$Zn×dq , and r←$Zdp. Then we have:

∆ ((A,Ar ) , (A,u )) ≤ 1
2

√
p−d · qn,

where Ar is computed modulo q, and u←$Znq .

Proof. For the vector r, we have that H∞ (r ) = d log p. Then the proof is immediate from
Lemma 4.16:

∆ ((A,Ar ) , (A,u)) ≤ 1
2

√
2−d log p · qn = 1

2

√
p−d · qn.

4.3 Lattices and assumptions
In this section, we analyze the assumptions that we make in this work and how they relate to the
assumptions made in previous works. At a first glimpse, it might seem unjustified to have brought
assumptions often used in the dLog setting into the lattice domain, where they are highly non-
standard. Despite this fact, in this section we argue (i) that the q-PKE and q-PDH assumptions are
weaker than the targeted linear-only malleability of [BCI+13, BISW17], and (ii) which consequences
an attack on those assumptions would have.

Over the course of the last years, a long line of research in lattice-based cryptography has
been trying to develop fully-homomorphic encryption schemes and bilinear pairing maps. So far,
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Game EXT-LOEnc,M,A,ExtA(λ)

(pk, sk)← Enc.K(1λ, 1d)
(m1, . . . ,md)← M(1λ, 1d)
σ ← (Enc.E(m1), . . . ,Enc.E(md))
(ct; a0, . . . , ad)← (A‖ExtA)(σ)

return ct 6∈
[
Enc.E(a0 +

∑d
i=1 aimi)

]
Figure 4.5: Game for Extractable Linear-Only target malleability.

no bilinear map is known in the context of lattices, and some have argued that its existence
would lead to efficient cryptographic primitives such as multilinear maps and indistinguishability
obfuscation (iO). Furthermore, although there exist FHE schemes based on lattices, it is not clear
how to achieve it without giving away additional information such as encryption of the secret key
itself. Showing that it is possible to indeed compute non-linear homomorphisms on top of Regev’s
encryption scheme would be a major breakthrough in both research areas. We see this as a win-win
situation.

Moreover, our assumptions are weaker than previously employed assumptions for lattice-based
SNARGs. Indeed, the linear-only assumption of [BCI+13, BISW17] informally states that an ad-
versary can only perform affine operations over the encodings provided as input. More specifically:

Definition 4.18 (EXT-LO, [BCI+13]). An encoding scheme Enc satisfies extractable linear-only
target malleability if for all PPT adversaries A and plaintext generation algorithm M there exists
an efficient extractor Ext such that the advantage:

Advext-lo
Enc,M,A,ExtA(λ) := Pr

[
EXT-LOEnc,M,A,ExtA(λ) = 1

]
= negl(λ) ,

where EXT-LOEnc,M,A,ExtA(λ) is defined as in Figure 4.5.

We note that, despite [BCI+13] presents the above assumption for so-called linear-only encryp-
tion schemes, all such schemes are also encodings satisfying the properties of Definition 4.3.

It is not immediately clear to see what does this assumption imply in the case of LWE encodings
(like the one we presented in section Section 4.2) or the one in [LP11], used in [BISW17]. Consider
for example a set of parameters Γ allowing for d − 1 homomorphic operations modulo p and the
adversaryA that, upon receiving as input d ciphertexts, computes d homomorphic linear operations
on them. With non-negligible probability the error wraps around the modular representation,
leading to a “decryptable” encoding (any element of Zn+1

q is a valid encoding) but for which
the adversary does not know an affine map. The authors of [BISW17] suggest to use double-
encryption in these cases, i.e., present two different encodings of each value, and ask the adversary
to homomorphically evaluate these terms twice. If the two ciphertexts do not encode the same
element, the game is lost. Obviously, this comes at the cost of doubling the size of each encoding
and doubling the computation time for the prover and the verifier.

Theorem 4.19. If Enc is an IND-CPA extractable linear-only encoding scheme, it satisfies q-PDH.

Proof. Let us consider an adversary APDH for the q-PDH assumption. We show that there exists
an adversary able to break IND-CPA.

Consider the PPT machine A that samples uniformly at random two field elements, s0 and s1,
then submits the two distinct chosen plaintexts sq+1

0 , sq+1
1 to the IND-CPA challenger. A queries
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the IND-CPA encoding oracle with sk0, sk1 for k = 0, . . . , q, q+2, . . . , 2q. The oracle gives back some
encodings σ :=

(
Enc.E(1),Enc.E(sb), . . . ,Enc.E(sqb),Enc.E(sq+2

b ), . . . ,Enc.E(s2q
b )
)
for b ∈ {0, 1}. A

runs the q-PDH adversary on σ, thus obtaining (with non-negligible probability) some encoding
ct ∈

[
Enc.E(sq+1

b )
]
. By EXT-LO, there exists an extractor Ext LO which, given as input σ and

the same random coins of the adversary APDH, returns a polynomial p such that p(sb) = sq+1
b .

Let f(x) := p(x) − xq+1. By q-PDH, f(sb) = 0; by Schwartz-Zippel lemma, f(s1−b) 6= 0 with
probability 1 − 2q/|F| = 1 − negl(λ). A returns the bit b∗ such that f(sb∗) = 0, thus solving the
IND-CPA challenge with overwhelming probability.

Theorem 4.20. If Enc is an IND-CPA extractable linear-only encoding scheme, it satisfies q-PKE.

Proof. We will show that Enc satisfies q-PKE, meaning there is no APKE‖ExtA able to win the
q-PKE game (cf. Figure 4.1).

Suppose by contradiction that there exists an adversary APKE able to produce a valid output
ct, ĉt, i.e., such that αct − ĉt = 0. We show that as a consequence there exists an extractor ExtA
that outputs the correct linear combination with non negligible probability.

Let M be the plaintext generation algorithm that, upon receiving the computational security
parameter λ and d = 2q + 2 in unary form, samples s←$F and outputs plaintexts 1, s, . . . , sq.
Let σ ← (Enc.E(1),Enc.E(s), . . . ,Enc.E(sq),Enc.E(α),Enc.E(αs), . . . ,Enc.E(αsq)). The adversary
APKE, when run on this input σ, outputs (with non-negligible probability) ct, ĉt such that αct−ĉt =
0 (via quadratic root detection algorithm).

Let us define the adversaries B0 and B1 for the game EXT-LO that, upon receiving as input
σ, run the same instantiation of APKE and output ct - respectively ĉt. By our claim of linear-
only property, there exist the extractors Ext0 and Ext1 for B0 and B1, respectively, outputting
a0, . . . , aq, b0, . . . , bq and a′0, . . . , a′q, b′0, . . . , b′q such that:

ct ∈
[
Enc.E

(∑d
i ais

i +∑d
i biαs

i
)]
, ĉt ∈

[
Enc.E

(∑d
i a
′
is
i +∑d

i b
′
iαs

i
)]

with non negligible probability.
Knowing that αct− ĉt = 0 implies either that the polynomial:

P (X,Y ) = X2∑d
i biY

i +X
∑d
i (ai − b′i)Y i −

∑d
i a
′
iY

i

is the zero polynomial, or that (α, s) are roots of P (X,Y ). The second case is ruled out by semantic
security of the encoding scheme and Schwartz-Zippel lemma, by a reasoning similar to the proof
of Theorem 4.19.

The case where P (X,Y ) = 0 gives us bi = a′i = 0, ai = b′i∀i = 0, . . . , q. Therefore, we are
able to define an extractor ExtA for q-PKE that outputs the coefficients ai of the linear combi-
nation with non-negligible probability, showing that any successful adversary against q-PKE able
to output ct, ĉt such that αct − ĉt ∈ [Enc.E(0)], has knowledge of the coefficients ai such that
ct ∈

[
Enc.E

(∑d
i ais

i
)]
.

4.4 Our designated-verifier zk-SNARK

Let Enc be an encoding scheme (Definition 4.3). Let C be some circuit taking as input an `φ-bit
string and outputting 0 or 1. Let ` := `φ + `w, where `φ is the length of the “public” input, and
`w the length of the private input. The value m corresponds to the number of wires in C and n to
the number of fan-in 2 gates. Let d := m+ n. We construct a zk-SNARK scheme for any relation
RC on pairs (φ,w) ∈ {0, 1}`φ × {0, 1}`w that can be computed by a polynomial size circuit C with
m wires and n gates. Our protocol is formally depicted in Figure 4.6.
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Setup Π.G(Γ)

α, β, s←$F; (pk, sk)← Enc.K(Γ)
(v0, . . . , vm(x), t(x))← SSP(C)
Compute σ as per Eq. (4.4)
vrs := (Γ, sk); τ := (Γ, sk, s, α, β)
return (σ, vrs, τ)

Verifier Π.V(vrs, u, π)

(H, Ĥ, V̂ , Vw, Bw) := π

(a1, a2, . . . a`φ) := u; (Γ, sk) := vrs
ws := Enc.D(Vw); bs := Enc.D(Bw)
hs := Enc.D(H); ĥs := Enc.D(Ĥ)
v̂s := Enc.D(V̂ ); ts := t(s)

vs := v0(s) +
∑`φ
i=1 aivi(s) + ws

Check Eqs. (eq-pke) to (eq-lin)
return test-error(Γ, sk, Bw)

Prover Π.P(σ, φ, w)

(Γ, ssp, pk, . . . ) := σ

(v0, . . . , vm(x), t(x)) := ssp
u := (a1, . . . , a`φ) ∈ {0, 1}`φ ;
w := (a`φ+1, . . . , am)
ν(x) := v0(x) +

∑m
i=1 aivi(x) + γt(x)

vmid(x) :=
∑m
i>`φ

aivi(x) + γt(x)
h(x) = (ν(x)2 − 1)/t(x)
// Compute the proof terms as per Eq. (4.6)

H := Eval((Enc.E(si))di , (hi)di ) = Enc.E(h(s))
Ĥ := Eval((Enc.E(αsi))di , (hi)di ) = Enc.E(αh(s))
V̂ := Eval((Enc.E(αsi)di , (νi)di ) = Enc.E(αν(s))
Bw := Eval((Enc.E(βvi(s)))mi ‖(Enc.E(βt(s))), (ai)mi ‖(γ))
Vw := Eval((Enc.E(si))di , (vmidi)di ) = Enc.E(vmid(s))
Apply smudging on H, Ĥ, V̂ , Bw, Vw
return (H, Ĥ, V̂ , Vw, Bw)

Figure 4.6: Our zk-SNARK protocol Π.

CRS generation. The setup algorithm G takes as input some complexity 1λ in unary form and
the circuit C : {0, 1}`φ×{0, 1}`w → {0, 1}. It generates a square span program of degree d = m+n
over a field F, of size |F| ≥ d that verifies C by running:

ssp := (v0(x), . . . , vm(x), t(x))← SSP(C)

Then, it runs (pk, sk)← Enc.K(1λ) using the encoding scheme Enc. Finally, it samples α, β, s← F
such that t(s) 6= 0, and returns the CRS:

σ :=
(

Γ, ssp, pk, Enc.E(1),Enc.E(s), . . . ,Enc.E(sd),

Enc.E(α),Enc.E(αs), . . . ,Enc.E(αsd),

Enc.E(βt(s)), (Enc.E(βvi(s)))mi=`φ+1

) (4.4)

The error for each of these encodings has to be chosen carefully. In a nutshell, we need to inten-
tionally increase the magnitude of the noise in some encodings, in order to mimic its distribution
in the simulated CRS provided to the adversary in the security reduction. Failing to do so results
in limiting the adversary’s ability to perform homomorphic operations on the CRS and, thus, in
a flawed proof. We defer further analysis on this point to Section 4.6. The verification string vrs
consists of the secret key sk, and the CRS σ. The trapdoor τ consists of the secret key sk and the
secrets s, α, β.

Prover. The prover algorithm, on input some statement φ := (a1, . . . , a`φ), computes a witness
w := (a`φ+1, . . . , am) such that (φ‖w) = (a1, . . . , am) is a satisfying assignment for the circuit C.
The (ai)i are such that:

t(x) divides
(
v0(x) +

m∑
i=1

aivi(x)
)2

− 1,
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as per Theorem 4.2. Then, it samples γ←$F and sets ν(x) := v0(x) +∑m
i=1 aivi(x) + γt(x). Let:

h(x) := (v0(x) +∑m
i aivi(x) + γt(x))2 − 1

t(x) = ν(x)2 − 1
t(x) , (4.5)

whose coefficients can be computed from the polynomials provided in the ssp; them by linear
evaluation it is possible to obtain:

H := Enc.E(h(s)), Ĥ := Enc.E(αh(s)), V̂ := Enc.E (αν(s)) ,

Vw := Enc.E

 m∑
i=`φ+1

aivi(s) + γt(s)

 ,
Bw := Enc.E

β
 m∑

i=`φ+1
aivi(s) + γt(s)

 .
(4.6)

In fact, the encoding H - respectively, Ĥ - can be computed from the encodings of 1, s, . . . , sd
- respectively, α, αs, . . . , αsd - and the coefficients of Equation (4.5). The element V̂ can be
computed from the encodings of αs, . . . , αsd. Finally, Vw - respectively, Bw - can be computed from
the encodings of s, . . . , sd - respectively, βt(s), βv`φ+1(s), . . . , βvm(s). All these linear evaluations
involve at most d+ 1 terms and the coefficients are bounded by p. Using the above elements, the
prover returns a proof π := (H, Ĥ, V̂ , Vw, Bw).

Verifier. Upon receiving a proof π and a statement φ = (a1, . . . , a`φ), the verifier, in possession
of the verification key vrs (that implicitly contains the σ), proceeds with the following verifications.
First, it uses the quadratic root detection algorithm of the encoding scheme Enc to verify that the
proof satisfies:

ĥs − αhs = 0 and v̂s − αvs = 0, (eq-pke)
(v2
s − 1)− hsts = 0, (eq-div)

bs − βws = 0. (eq-lin)

where (hs, ĥs, v̂s, ws, bs) are the values encoded in (H, Ĥ, V̂ , Vw, Bw) := π and ts, vs are computed
as ts := t(s) and vs := v0 +∑`φ

i=1 aivi(s) + ws.
Then, the verifier checks whether it is still possible to perform some homomorphic operations,

using the test-error procedure, implemented in Figure 4.4 for the specific case of lattice encodings.
More precisely, the verifier tests whether it is still possible to add another encoding and multiply
the result by an element bounded by p, without compromising the correctness of the encoded
element. This will guarantee the existence of a reduction in the knowledge soundness proof of
Section 4.5. If all above checks hold, the verifier returns 1. Otherwise, return 0.

Remark 4.21. Instantiating our encoding scheme on top of a “noisy” encryption scheme like Regev’s
introduces multiple technicalities that affect the protocol, the security proof, and the parameters’
choice. For instance, in order to compute a linear combination of d encodings via Eval we need
to scale down the error parameter and consequently increase the parameters q and n in order to
maintain correctness and security. Similarly, the distributions of the error terms and the random
vectors are affected by the homomorphic evaluation, and we must guarantee that the resulting
terms are still simulatable. All these issues will be formally addressed in Section 4.5, and then
analyzed more pragmatically in Section 4.6.



48 CHAPTER 4. SUCCINCT ARGUMENTS OF KNOWLEDGE: SNARKS

4.5 Proofs of security
In this section, we prove our main theorem:

Theorem 4.22. If the q-PKE, q-PKEQ and q-PDH assumptions hold for the encoding scheme
Enc, the protocol Π on Enc is a zk-SNARK with statistical completeness, statistical zero knowledge
and computational knowledge soundness.

Statistical completeness. Corollary 4.11 states the conditions on Γ for which the homomorphically
computed encodings are valid with probability at least 1 − negl(κ). Lemma 4.14 affirms that
correctly generated proofs satisfy Equation (4.2) with probability overwhelming in κ. Therefore
test-error returns true and completeness follows trivially by Theorem 4.2.

Knowledge soundness

Proof of computational knowledge soundness. LetAΠ be the PPT adversary in the game for knowl-
edge soundness (Figure 2.2) able to produce a proof π for which Π.V returned 1. We first claim
that it is possible to extract the coefficients of the polynomial v(x) corresponding to the values vs
encoded in V . The setup algorithm first generates the parameters (pk, sk) of an encoding scheme
Enc and picks α, β, s ∈ F, which are used to compute Enc.E(1),Enc.E(s), . . . ,Enc.E(sd),Enc.E(α),
Enc.E(αs), . . . ,Enc.E(αsd). Fix some circuit C, and let ssp be an SSP for C. Let APKE be the
d-PKE adversary, that takes as input a set of encodings:

σ :=
(

pk,Enc.E(1),Enc.E(s), . . . ,Enc.E(sd),Enc.E(α),Enc.E(αs), . . . ,Enc.E(αsd)
)
.

The auxiliary input generator Z is the PPT machine that upon receiving as input σ, samples
β←$Zp, constructs the remaining terms of the CRS (as per Equation (4.4)), and outputs them in
z using ssp. Thus, APKE sets σ := (ssp‖σ‖z) and invokes AΠ(σ). As a result, it obtains a proof
π = (H, Ĥ, V̂ , Vw, Bw). On this proof, it computes:

V := Enc.E

v0 +
`φ∑
i=1

aivi(s) + ws

 = Vw + v0 +
`φ∑
i=1

aivi(s). (4.7)

where ws is the element encoded in Vw. Finally, APKE returns (V̂ , V ). If the adversary A outputs a
valid proof, then by verification equation Eq. (eq-pke) it holds that the two encodings (V, V̂ ) encode
values vs, v̂s such that v̂s − αvs = 0. Therefore, by q-PKE assumption there exists an extractor
ExtPKE that, using the same input (and random coins) ofAPKE, outputs a vector (c0, . . . , cd) ∈ Fd+1

such that V is an encoding of ∑d
i=0 cis

i and V̂ is an encoding of ∑d
i=0 αcis

i. In the same way, it is
possible to recover the coefficients of the polynomial h(x) used to construct (H, Ĥ), the first two
elements of the proof of AΠ (again, by Eq. (eq-pke)).

Our witness extractor ExtΠ, given σ, emulates the extractor ExtPKE above on the same input
σ, using as auxiliary information z the rest of the CRS given as input to ExtΠ. By the reasoning
discussed above, ExtΠ can recover (c0, . . . , cd) coefficients extracted from the encodings (V, V̂ ).
Consider now the polynomial v(x) := ∑d

i=0 cix
i. If it is possible to write the polynomial as

v(x) = v0(x) +∑m
i aivi(x) + δt(x) such that (a1, . . . , am) ∈ {0, 1}m satisfies the assignment for the

circuit C with u = (a1, . . . , a`φ), then the extractor returns the witness w = (a`φ+1, . . . , am).
With overwhelming probability, the extracted polynomial v(x) := ∑d

i=0 cix
i does indeed provide

a valid witness w. Otherwise, there exists a reduction to q-PDH that uses the SNARK adversary
AΠ. Define the polynomial:

vmid(x) := v(x)− v0(x)−
`φ∑
i=1

aivi(x).
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We know by definition of SSP and by Theorem 4.2 that C is satisfiable if and only if:

t(x) | v2(x)− 1 ∧

vmid(x) =
d∑
i

cix
i − v0(x)−

`φ∑
i

aivi(x) ∈ Span(v`φ+1, . . . , vm, t)

Therefore, by contradiction, if the adversary AΠ does not know a witness w ∈ {0, 1}m−`φ for u
(such that (u,w) ∈ RC), but still the two verification checks Eq. (eq-div) and Eq. (eq-lin) pass, we
have that either one of the following two cases must hold:

i. t(x)h(x) 6= v2(x)− 1, but t(s)h(s) = v2(s)− 1; or

ii. vmid(x) 6∈ Span(v`φ+1, . . . , vm, t), but Bw is an encoding of βvmid(s).

Let BPDH be an adversary against the q-PDH assumption. Given a q-PDH challenge:(
Enc.E(1),Enc.E(s), . . . ,Enc.E(sq),Enc.E

(
sq+2

)
, . . . ,Enc.E

(
s2q
))
, for q ∈ {2d− 1, d}

adversary BPDH samples uniformly at random α←$F, and defines some β ∈ F (that we will formally
construct later) and constructs a CRS as per Equation (4.4). There are some subtleties in how
BPDH generates the value β. In fact, β can be generated without knowing its value explicitly,
but rather knowing its representation over the power basis

{
si
}2q
i=0,i 6=q+1 – that is, knowing a

polynomial β(x) and its evaluation in s. Some particular choices of β will allow us to provide a
solution for a q-PDH challenge. BPDH invokes the adversary AΠ as well as the extractor ExtΠ on
the generated CRS, thus obtaining a proof π and the linear combination used by the prover for
the polynomials h(x), v(x) and also extracts a witness for the statement being proved.

For the strong soundness (see Remark 2.8), in order to simulate the verification oracle and
to answer the verification queries of AΠ, BPDH has to compare its encodings (obtained from the
extracted coefficients and its input) with A’s proof terms, accepts if the terms match, and rejects
otherwise. Because the encoding scheme is not deterministic, adversary BPDH invokes the PKEQ
extractor and simulates the verification oracle correctly with overwhelming probability.

The reduction in the two mentioned cases works as follows:

i. The extracted polynomials h(x) and v(x) satisfy t(s)h(s) = v2(s)−1, but t(x)h(x) 6= v2(x)−1.
By q-PDH assumption this can happen only with negligible probability. We define p(x) =
v2(x)− 1− t(x)h(x), that in this case is a non-zero polynomial of degree k ≤ 2d having s as
a root. Let pk be the highest nonzero coefficient of p(x). Write p̃(x) = xk − p−1

k · p(x). Since
s is a root of xk − p̃(x), it is a root of xq+1 − xq+1−kp̃(x). BPDH solves q-PDH by computing
Enc.E(sq+1) = Enc.E(sq+1−kp̃(s)) for q = 2d− 1. Since deg(p̃) ≤ k − 1, the latter is a known
linear combination of encodings Enc.E(1),Enc.E(s), . . . ,Enc.E(sq) which are available from
the q-PDH challenge. More precisely, BPDH will compute Eval((Enc.E(si+q+1−k))i, (p̃i)2d−1

i )
on fresh encodings Enc.E(1),Enc.E(s),Enc.E(s2), . . . ,Enc.E(sq) solving the q-PDH challenge
for q ≥ 2d− 1.

ii. In the second case, suppose that the polynomial vmid extracted as previously described can-
not be expressed as a linear combination of {v`φ+1, . . . , vm, t}. The proof still passes the
verification, so we have a consistent value for Bw ∈ [Enc.E(βvmid(s))].
BPDH generates a uniformly random polynomial a(x) of degree q subject to the constraint
that all of the polynomials a(x)t(x) and {a(x)vi(x)}mi=`φ+1 have coefficient 0 for xq+1. We
note that for q = d, there are q − (m− `φ) > 0 degrees of freedom in choosing a(x).
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BPDH defines β to be the evaluation of a(x) in s, i.e., β := a(s). Remark that BPDH does
not know s explicitly, but having access to the encodings of 2q − 1 powers of s, it is able
to generate valid encodings (Enc.E(βvi(s)))i and Enc.E(βt(s)) using Eval. Note that, by
construction of β, this evaluation is of d+ 1 elements in F and that the (q+ 1)-th power of s
is never used. Now, since vmid(x) is not in the proper span, the coefficient of degree q + 1 of
xa(x)vmid(x) must be nonzero with overwhelming probability 1− 1/|F|. The term Bw of the
proof must encode a known polynomial in s: ∑2q

i=0 bis
i := βvmid(s) = a(s)vmid(s) where the

coefficient bq+1 is non-trivial. BPDH can subtract off encodings of multiples of other powers of
s to recover Enc.E(sq+1) and break q-PDH. This requires an evaluation on fresh encodings:

Eval
(

(Enc.E(si))q+di=0
i 6=q+1

, (−bi)q+di=0
i 6=q+1

)
. (4.8)

Adding the above to Bw and multiplying by the inverse of the (q + 1)-th coefficient (using
once again Eval) will provide a solution to the q-PDH problem for q = d.

Since the two cases above are not possible by q-PDH assumption, ExtΠ extracts a valid witness if
the proof of AΠ is valid.

Zero knowledge

In order to obtain a zero-knowledge protocol, we perform smudging of the proofs terms, and we
randomize the target polynomial t(x). The first step hides the witness, the second makes the distri-
bution of the final noise independent from the coefficient ai. The random vectors constituting the
first element of the ciphertext are guaranteed to be statistically indistinguishable from uniformly
random vectors by leftover hash lemma (cf. Lemma 4.17).

Proof of zero knowledge. The simulator for zero knowledge is shown in Figure 4.7. The error are
independently sampled from the same uniform distribution over the (integer) interval [−2κTσBw ,
2κTσBw ], where T is a small constant and σBw := pσ

√
d+ 1

√
p2 +m− `φ. We will call this the

smudging distribution.
Checking that the proof output by Π.Sim is indeed correct (i.e., that it verifies Eqs. (eq-pke)

to (eq-lin)) is trivial. We are left with showing that the two proofs are statistically indistinguishable.
Note that once the value of Vw in the proof has been fixed, the verification equations uniquely

determine H, Ĥ, V̂ , and Bw. This means that for any (u,w) such that C(u,w) = 1, both the real
arguments and the simulated arguments are chosen uniformly at random such that the verification
equations will be satisfied. One can prove that values for Vw are statistically indistinguishable when
executing Π.P and Π.Sim: Vw is the encoding of a uniformly random variable γw in Π.Sim and
the masking of a polynomial evaluation by adding γt(s), where γ is chosen uniformly at random
(note that t(s) 6= 0) in Π.P. What is encoded in the remaining terms is simply dictated by the
verification constraints.

In both worlds, the proof is a tuple of 5 encodings (H, Ĥ, V̂ , Vw, Bw). Once the vrs is fixed,
each encoding can be written as (−a,a · s + pe + m), for some a ∈ Znq and some m ∈ Zp satis-
fying the verification equations. Due to Lemma 4.16, the random vectors a are indistinguishable
from uniformly random in both worlds. The error terms are statistically indistinguishable due to
Lemma 4.12. (See Section 4.6 for a detailed explanation of these values.)

Zero knowledge comes at a cost: smudging the error terms requires us to scale the ciphertext
modulus by κ bits. For those applications where zero knowledge is not required, we can simplify
the protocol by removing γt(x) from the computation of h(x) and avoiding the smudging procedure
on every proof term. In Table 4.1 we show some choices of parameters, both with and without
zero knowledge.
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Simulator Π.Sim(σ, τ, φ)

(Γ, sk, s, α, β) := τ ; (a1, . . . , a`φ) := φ

γw←$F

h :=
(

(v0(s) +
∑`φ
i aivi(s) + γw)2 − 1

)
/ t(s)

H ← Enc.E(h); Ĥ ← Enc.E(αh); V̂ ← Enc.E(αv0(s) +
∑`φ
i aiαvi(s) + αγw)

Vw ← Enc.E(γw); Bw ← Enc.E(βγw)
Apply smudging on H, Ĥ, V̂ , Bw, Vw
return (H, Ĥ, V̂ , Vw, Bw)

Figure 4.7: Simulator for zero knowledge.

Knowledge soundness

Before diving into the technical details of the proof of soundness, we provide some intuition in an
informal sketch of the security reductions: the CRS for the scheme contains encodings of Enc.E(s),
. . . ,Enc.E(sd), as well as encodings of these terms multiplied by some field elements α, β ∈ F. The
scheme requires the prover P to exhibit encodings computed homomorphically from such CRS.

The reason for requiring the prover to duplicate its effort w.r.t. α is so that the simulator in the
security proof can extract representations of V̂ , Ĥ as degree-d polynomials v(x), h(x) such that
v(s) = vs, h(s) = hs, by the q-PKE assumption (for q = d). The assumption also guarantees that
this extraction is efficient. This explains the first quadratic root detection check Equation (eq-pke)
in the verification algorithm.

Suppose an adversary manages to forge a SNARK of a false statement and pass the verification
test. Then, by soundness of the square span program (Theorem 4.2), for the extracted polynomials
v(x), h(x) and for the new defined polynomial vmid(x) := v(x) − v0(x) −∑`φ

i aivi(x), one of the
following must be true:

i. h(x)t(x) 6= v2(x)− 1, but h(s)t(s) = v2(s)− 1, from Equation (eq-div);

ii. vmid(x) 6∈ Span(v`φ+1, . . . , vm), but Bw is a valid encoding of Enc.E(βvmid(s)), from Equa-
tion (eq-lin).

If the first case holds, then p(x) := (v2(x) − 1) − h(x)t(x) is a nonzero polynomial of degree
some k ≤ 2d that has s as a root, since the verification test implies (v2(s)− 1)−h(s)t(s) = 0. The
simulator can use p(x) to solve q-PDH for q ≥ 2d − 1 using the fact that Enc.E

(
sq+1−kp(s)

)
∈

[Enc.E(0)] and subtracting off encodings of lower powers of s to get Enc.E(sq+1).
To handle the second case, i.e., to ensure that vmid(x) is in the linear span of the vi(x)’s with

`φ < i ≤ m we use an extra scalar β, supplement the CRS with the terms [Enc.E(βvi(s))]i>`φ ,
Enc.E(βt(s)), and require the prover to present (encoded) βvmid(s) in its proof. The adversary
against q-PDH will choose a polynomial β(x) convenient to solve the given instance. More specif-
ically, it sets β(x) with respect to the set of polynomials {vi(x)}i>`φ such that the coefficient for
xq+1 in β(x)vmid(x) is zero. Then, to generate the values in the σ it sets β := β(s) (which can
be computed from its input consisting of encodings of powers of s). Using the above, it runs the
SNARK adversary and to obtain from its output Bw an encoding of some polynomial with coef-
ficient sq+1 non-zero and thus solve q-PDH. Also here, the verification algorithm guarantees that
even with all the above homomorphic operations, the challenger still decrypts the correct value
with 1− negl(κ) probability.
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As previously mentioned in Remark 2.8, the proof of knowledge soundness allows oracle access
to the verification procedure. In the context of a weaker notion of soundness where the adversary
does not have access to the Π.V(vrs, ·, ·) oracle, the proof is almost identical, except that there is
no need for the BPDH adversary to answer queries and to simulate the verification, and therefore
no need for the q-PKEQ assumption. This greatly simplifies our construction: the protocol does
not need to rely on the q-PKEQ assumption, and the prime modulus can be of κ bits.

4.6 Efficiency and concrete parameters

The prover’s computations are bounded by the security parameter and the size of the circuit,
i.e., P ∈ Õ (λd). As in [GGPR13, DFGK14], the verifier’s computations depend solely on the
security parameter, i.e., V ∈ O (λ). The proof consists of a constant number (precisely, 5) of LWE
encodings, i.e., |π| = 5 · Õ (λ). Finally, the complexity for the setup procedure is Õ (λd).

Using the propositions from Section 4.2 and knowing the exact number of homomorphic oper-
ations that need to be performed in order to produce a proof, we can now attempt at providing
some concrete parameters for our encoding scheme.

We fix the statistical security parameter κ := 32, as already done in past works on fully
homomorphic encryption (e.g., [DM15, CGGI16]). We fix the circuit size d := 215, which is
sufficient for some practical applications such as the computation of SHA-256. For some practical
examples of circuits, we direct the reader towards [BCG+14, PHGR13].

For a first attempt at implementing our solution, we assume a weaker notion of soundness, i.e.,
that in the KSND game the adversary does not have access to a verification oracle (cf. Figure 2.2).
Concretely, this means that the only bound in the size of p is given by the guessing probability of
the witness, and the guessing of a field element. We thus fix p to be a prime3 of 32 bits for the
size of the message space.

The CRS is composed of encodings of different nature: some of them are fresh (Enc.E(1),
Enc.E(s), . . . ,Enc.E(sd)), some happen to be stale in the construction of APKE and the construction
of BPDH Section 4.5 (Item i.) (Enc.E(αs), . . . ,Enc.E(αsd)), and some are stale from the construc-
tion of BPDH Section 4.5 (Item ii.) (Enc.E(βt(s)), (Enc.E(βvi(s)))i). Since, as we have seen, BPDH

manipulates the q-PDH challenge via homomorphic operations, we must guarantee that the proto-
col adversary can perform at least the same number of homomorphic operations as in the real-world
protocol. Therefore, in the real protocol, we must intentionally increase the magnitude of the noise
in the CRS: the terms Enc.E(αsi) (with i = 0, . . . , d) are generated by multiplying the respective
fresh encoding Enc.E(si) by a term bounded by p; the terms Enc.E(βt(s)), [Enc.E(βvi(s))]i instead
are generated via Eval of d+1 elements with coefficients bounded by p. Concretely, when encoding
these elements using the encoding scheme of Section 4.2, the error for Enc.E(αsi) is sampled from
p · χσ; the error for Enc.E(βt(s)),Enc.E(βvi(s))) is sampled from (p

√
d+ 1) · χσ.

The proof π consists of five elements (H, Ĥ, V̂ , Vw, Bw), as per Equation (4.6). H and Vw are
computed using an affine function on d encodings with coefficients modulo p; Ĥ, V̂ are computed
using a linear function on d+1 encodings with coefficients modulo p; finally, Bw is computed using
a linear combination of m − `φ encodings with coefficients in {0, 1}, except the last one which is
modulo p. Overall, the term that carries the highest load of homomorphic computations is Bw.
To it, we add a smudging term for constructing a zero knowledge proof π.

In the construction of the adversary BPDH (Item ii.) we need to perform some further homo-
morphic operations on the proof element Bw in order to solve the q-PDH challenge, namely one
addition (Equation (4.8)) and one multiplication by a known scalar b bounded by p. The final
result is the solution to the q-PDH challenge.

3In particular, we need p and q to be relatively prime for the correctness of the encoding scheme [BV11, footnote
18].
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We now outline the calculations that we use to choose the relevant parameters for our encoding
scheme. In particular, we will focus on the term Bw since, as already stated, it is the one that
is involved in the largest number of homomorphic operations. The correctness of the other terms
follows directly from Corollary 4.11.

First of all, the terms (βvi(s))i and βt(s) are produced through the algorithm Eval executed
on d+ 1 fresh encodings with coefficients modulo p. Let σ be the discrete Gaussian parameter of
the noise terms in fresh encodings; then, by Pythagorean additivity, the Gaussian parameter of
encodings output by this homomorphic evaluation is σEval := pσ

√
d+ 1. Then the term βt(s) is

multiplied by a coefficient in Zp, and the result is added to a subset sum of the terms (βvi(s))i,
i.e., a weighted sum with coefficients in {0, 1}λ. It is trivial to see that, for the first term, the
resulting Gaussian parameter is bounded by pσEval, whereas for the second term it is bounded
by σEval

√
m− `φ. The parameter of the sum of these two terms is then bounded by σBw :=

σEval
√
p2 +m− `φ. Let us then consider a constant factor T for “cutting the Gaussian tails”, i.e.,

such that the probability of sampling from the distribution and obtaining a value with magnitude
larger than T times the standard deviation is as small as desired. We can then write that the
absolute value of the error in Bw is bounded by TσBw . At this point we add a smudging term,
which amounts to multiplying the norm of the noise by (2κ + 1) (cf. Corollary 4.13). Finally, the
so-obtained encoding has to be summed with the output of an Eval invoked on 2d fresh encodings
with coefficients modulo p and multiplied by a constant in Zp. The final noise is then bounded by
TpσBw (2κ + 1)+TpσEval (cf. Lemma 4.14). By substituting the values of σEval, σBw , remembering
that σ := αq and imposing the condition for having a valid encoding, we obtain:

Tp2αq
√
d+ 1

(√
p2 +m− `φ (2κ + 1) + 1

)
<

q

2p.

The above corresponds to Equation (4.3) with bounds Be := TσBw and BEval := TσEval. By
simplifying q and isolating α, we get:

α <
1

2Tp3
√
d+ 1

(√
p2 +m− `φ (2κ + 1) + 1

) .
With our choice of parameters and by taking T = 8, we can select for instance α = 2−180.

Once α and p are chosen, we select the remaining parameters q and n in order to achieve the
desired level of security for the LWE encoding scheme. To do so, we take advantage of Albrecht’s
estimator4 [APS15] which, as of now, covers the following attacks: meet-in-the-middle exhaustive
search, coded-BKW [GJS15], dual-lattice attack and small/sparse secret variant [Alb17], lattice
reduction with enumeration [LP11], primal attack via uSVP [AFG14, BG14], Arora-Ge algorithm
[AG11] using Gröbner bases [ACFP14]. Some possible choices of parameters are reported in
Table 4.1.

Finally, based on these parameters, we can concretely compute the size of the CRS5 and that
of the proof π. The CRS is composed of d + (d+ 1) + (m+ 1) encodings, corresponding to the
encodings of the d powers of s, the encodings of α multiplied by the d + 1 powers of s, the m
encodings of (βvi)i, and the encoding of βt (s). This amounts to (2d+m+ 2) LWE encodings,
each of which has size (n+ 1) log q bits6. For the calculations, we bound m by d and state that
the size of the CRS is that of (3d+ 2) LWE encodings. From an implementation point of view,

4https://bitbucket.org/malb/lwe-estimator
5We take into account only the encodings that are contained in the CRS. The other terms have considerably

smaller impact on its size or can be agreed upon offline (e.g., the SSP).
6Note that the magnitude of the noise term, i.e., whether the encoding is fresh or stale, has no impact on the

size of an encoding. This size is a function only of n (the number of elements in the vector) and the modulus q.

https://bitbucket.org/malb/lwe-estimator
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Table 4.2: Comparison with previous works. PQ stands for post-quantum. We note that the
construction of [PHGR13] is very different (namely, based on elliptic curves), and comparing
security levels is therefore difficult.

PQ λ ZK |π| |σ| d

[PHGR13] 7 256 3 288 B 6.50 MB 23,785
[BISW17] 3 100 7 0.02 MB 1.23 GB 10,000

Section 4.4 3 162 3 0.64 MB 8.63 MB 32,767

we can consider LWE encodings (a, b) ∈ Zn+1
q where the vector a is the output of a seeded PRG.

This has been proven secure in the random oracle model [Gal13]. Therefore, the communication
complexity is greatly reduced, as sending an LWE encoding just amounts to sending the seed for
the PRG and the value b ∈ Zq. For security to hold, we can take the size of the seed to be λ
bits, thus obtaining the final size of the CRS: (3d+ 2) log q + λ bits. The proof π is composed of
5 LWE encodings, therefore it has size |π| = 5 (n+ 1) log q bits. Note that in this case we cannot
trivially use the same trick with the PRG, since the encodings are produced through homomorphic
evaluations.

In Table 4.2 we show a comparison between our implementation, the zk-SNARK of [PHGR13]
(informally called “Pinocchio”), and the recent implementation of [BISW17] by Samir Menon,
Brennan Shacklett, and David Wu7. Despite the fact that the construction of Parno et al.
[PHGR13] is fundamentally different as it targets encoding over elliptic curves, we believe that
they provide a good term of comparison (when used with circuits of the same size) for the loss
incurred when using lattice-based encodings instead. Note therefore that the security parameter
of [PHGR13] is not comparable with the two other results.

Moreover, it is worth noting that the implementation of [BISW17] targets 80 bits of security,
which is justified using the estimate provided in [LP11]. We report λ = 100 as given by Albrecht’s
tool [APS15], which we believe to be more accurate. Nonetheless, the estimated post-quantum
security level is 50, thus insufficient for modern applications. Additionally, we note that, despite
targeting the construction of SNARGs, it seems the construction of [BISW17] can be turned into
a SNARK by using the stronger extractable linear-only assumption. In order to achieve this, they
can use a technique called double encryption, which doubles the size of each ciphertext. More
details about this are given in Section 4.3.

Implementation

We implemented our construction in standard C11, using the library GMP [Gt12] for handling
arbitrary precision integers and the library FLINT [HJP13] for handling polynomials. We chose
the pseudo-Mersenne prime p := 232 − 5, and a the modulus q := 2736. This allows for fast
arithmetic operations: reduction modulo q simply consists in a bitmask, modular operations by
p can fit a uint64_t type, and multiplication of a scalar modulo p to a vector in Zn+1

q does not
require any memory allocation for the carry. The dimension of the lattice was chosen n = 1470,
corresponding to the “medium” security level displayed in Table 4.1. We used AES-256 in counter
mode as a PRG, taking advantage of AES-NI instructions when available.

We performed extensive benchmarks of our protocol on a single thread of an Intel Core i7-
4770K CPU @ 3.50GHz, running Debian (kernel version 4.9.110). Our implementation is publicly

7Results are extracted from the source code at https://github.com/dwu4/lattice-snarg.

https://github.com/dwu4/lattice-snarg
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Table 4.3: Benchmarks of our proof system (zk) for different circuit sizes (i.e., d).

Circ. size Setup (s) Prover (s) Verifier (ms)

210 1.46 s ± 18.7 ms 1.61 s ± 27.8 ms 1.26 ms ± 16 µs
213 12.3 s ± 37.9 ms 13 s ± 224 ms 1.50 ms ± 16 µs
215 57.8 s ± 134 ms 53.6 s ± 247 ms 2.28 ms ± 17 µs
216 167 s ± 269 ms 235 s ± 451 ms 3.46 ms ± 17 µs

available 8. Time is measured using gettimeofday(2). Encoding a uniformly random element of
Zp using Enc.Enc.E takes on average 310 µs (std. dev. 34 µs); decoding it using Enc.Enc.D is about
the same order of magnitude, 197 µs (std. dev. 24 µs). Measurements were done over 100, 000
samples. The algorithm for homomorphic evaluations Eval is able to compute a linear combination
of 215 ciphertexts with coefficients modulo p in roughly 13 s, and of 218 in about 94 s.

For proving satisfiability of a boolean circuit with roughly 214 gates (i.e., d = 215), we measured
57 s for the CRS generation algorithm; 53 s for the prover; 2.28 ms for the verifier (on average,
over 100 repeated executions varying SSPs). This is about one order of magnitude slower w.r.t.
Pinocchio’s benchmarks [PHGR13, Fig. 8]; verification instead is one order of magnitude faster.
More detailed benchmarks for different circuit sizes can be found in Table 4.3.

8See https://www.di.ens.fr/~orru/pq-zk-snarks.

https://www.di.ens.fr/~orru/pq-zk-snarks




Chapter 5

Mimblewimble: a private
cryptocurrency

This work was published in the proceedings of the 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, EUROCRYPT. It was completed with co-authors Georg
Fuchsbauer and Yannick Seurin. In this particular work, my role was largely assistive, with Georg and
Yannick leading the way.

Proposed in 2008 and launched early 2009, Bitcoin [Nak08] is a decentralized payment system in
which transactions are registered in a distributed and publicly verifiable ledger called a blockchain.
Bitcoin departs from traditional account-based payment systems where transactions specify an
amount moving from one account to another. Instead, each transaction consists of a list of inputs
and a list of outputs. Each output contains a value (expressed as a multiple of the currency unit,
10−8 bitcoin) and a short script specifying how the output can be spent. The most common script
is Pay to Public Key Hash (P2PKH) and contains the hash of an ECDSA public key, commonly
called a Bitcoin address. Each input of a transaction contains a reference to an output of a previous
transaction in the blockchain and a script that must match the script of that output. In the case
of P2PKH, an input must provide a public key that hashes to the address of the output it spends
and a valid signature for this public key.

Each transaction spends one or more previous transaction outputs and creates one or more
new outputs, with a total value not larger than the total value of coins being spent. The system
is bootstrapped through special transactions called coinbase transactions, which have outputs but
no inputs and therefore create money (and also serve to incentivize the proof-of-work consensus
mechanism, which allows users to agree on the valid state of the blockchain).

To avoid double-spending attacks, each output of a transaction can only be referenced once
by an input of a subsequent transaction. Note that this implies that an output must necessarily
be spent entirely. As transactions can have multiple outputs, change can be realized by having
the sender assign part of the outputs to an address she controls. Since all transactions that ever
occurred since the inception of the system are publicly available in the blockchain, whether an
output has already been spent can be publicly checked. In particular, every transaction output
recorded in the blockchain can be classified either as an unspent transaction output (UTXO) if it
has not been referenced by a subsequent transaction input so far, or a spent transaction output
(STXO) otherwise. Hence, the UTXO set “encodes” all bitcoins available to be spent, while the
STXO set only contains “consumed” bitcoins and could, in theory, be deleted.

The validation mechanics in Bitcoin requires new users to download and validate the entire
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blockchain in order to check that their view of the system is not compromised.1 Consequently,
the security of the system and its ability to enroll new users relies on (a significant number of)
Bitcoin clients to persistently store the entire blockchain. Once a new node has checked the entire
blockchain, it is free to “prune” it2 and retain only the freshly computed UTXO set, but it will
not be able to convince another newcomer that this set is valid.

Consider the following toy example. A coinbase transaction creates an output txo1 for some
amount v associated with a public key pk1. This output is spent by a transaction T1 creating a
new output txo2 with amount v associated with a public key pk2. Transaction T1 contains a valid
signature σ1 under public key pk1. Once a node has verified σ1, it is ensured that txo2 is valid and
the node can therefore delete the coinbase transaction and T1. By doing this, however, he cannot
convince anyone else that output txo2 is indeed valid.

At the time of writing, the size of Bitcoin’s blockchain is over 200 GB.3 Downloading and
validating the full blockchain can take up to several days on standard hardware. In contrast, the
size of the UTXO set, containing around 60 millions elements, is only a couple of GB.

Bitcoin privacy. Despite some common misconception, Bitcoin offers a very weak level of pri-
vacy. Although users can create multiple pseudonymous addresses at will, the public availability of
all transaction data often allows to link them and reveals a surprisingly large amount of identifying
information, as shown in many works [AKR+13, MPJ+13, RS13, KKM14].

Several protocols have been proposed with the goal of improving on Bitcoin’s privacy prop-
erties, such as Cryptonote [vS13] (implemented for example by Monero), Zerocoin [MGGR13]
and Zerocash [BCG+14]. On the other hand, there are privacy-enhancing techniques compatible
with Bitcoin, for example coin mixing [BBSU12, BNM+14, RMK14, HAB+17], to ensure payer
anonymity. Below we describe three specific proposals that have paved the way for Mimblewimble.

Confidential Transactions. Confidential Transactions (CT), described by Maxwell [Max15],
based on an idea by Back [Bac13] and now implemented by Monero, allow to hide the values
of transaction outputs. The idea is to replace explicit amounts in transactions by homomorphic
commitments: this hides the value contained in each output, but the transaction creator cannot
modify this value later on.4

More specifically, the amount v in an output is replaced by a Pedersen commitment C =
vH + rG, where H and G are generators of an (additively denoted) discrete-log-hard group and
r is a random value. Using the homomorphic property of the commitment scheme, one can prove
that a transaction does not create money out of thin air, i.e., that the sum of the outputs is less
than the sum of the inputs. Consider a transaction with input commitments Ci = viH + riG,
1 ≤ i ≤ n, and output commitments Ĉi = v̂iH + r̂iG, 1 ≤ i ≤ m. The transaction does not create
money iff ∑n

i=1 vi ≥
∑m
i=1 v̂i. This can be proved by providing an opening (f, r) with f ≥ 0 for∑n

i=1Ci −
∑m
i=1 Ĉi, whose validity can be publicly checked. The difference f between inputs and

outputs are so-called fees that reward the miner that includes the transaction in a block.
Note that arithmetic on hidden values is done modulo p, the order of the underlying group.

Hence, a malicious user could spend an input worth 2 and create two outputs worth 10 and p− 8,
which would look the same as a transaction creating two outputs worth 1 each. To ensure that

1So-called Simplified Verification Payment (SPV) clients only download much smaller pieces of the blockchain
allowing them to verify specific transactions. However, they are less secure than fully validating clients and they do
not contribute to the general security of the system [GCKG14, SZ16].

2This functionality was introduced in Bitcoin Core v0.11, see https://github.com/bitcoin/bitcoin/blob/v0.
11.0/doc/release-notes.md#block-file-pruning.

3See https://www.blockchain.com/charts/blocks-size.
4Commitments are actually never publicly opened; however the opening information is used when spending a

coin and remains privy to the participants.

https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning
https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning
https://www.blockchain.com/charts/blocks-size
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commitments do not contain large values that cause such mod-p reductions, a non-interactive
zero-knowledge (NIZK) proof that the committed value is in J0, vmaxK (a so-called range proof ) is
added to each commitment, where vmax is small compared to p.

CoinJoin. When a Bitcoin transaction has multiple inputs and outputs, nothing can be inferred
about “which input goes to which output” beyond what is imposed by their values (e.g., if a
transaction has two inputs with values 10 BTC and 1 BTC, and two outputs with values 10 BTC
and 1 BTC, all that can be said is that at least 9 BTC flowed from the first input to the first
output). CoinJoin [Max13a] builds on this technical principle to let different users create a single
transaction that combines all of their inputs and outputs. When all inputs and outputs have
the same value, this perfectly mixes the coins. Note that unlike CT, CoinJoin does not require
any change to the Bitcoin protocol and is already used in practice. However, this protocol is
interactive as participants need all input and output addresses to build the transaction. Saxena
et al. [SMD14b] proposed a modification of the Bitcoin protocol which essentially allows users to
perform CoinJoin non-interactively and which relies on so-called composite signatures.5

Cut-through. A basic property of the UTXO model is that a sequence of two transactions, a
first one spending an output txo1 and creating txo2, followed by a second one spending txo2 and
creating txo3, is equivalent to a single cut-through transaction spending txo1 and creating txo3.
While such an optimization is impossible once transactions have been included in the blockchain (as
mentioned before, this would violate public verifiability of the blockchain), this has been suggested
[Max13b] for unconfirmed transactions, i.e., transactions broadcast to the Bitcoin network but
not included in a block yet. As we will see, the main added benefit of Mimblewimble is to allow
post-confirmation cut-through.

Mimblewimble. Mimblewimble was first proposed by an anonymous author in 2016 [Jed16].
The idea was then developed further by Poelstra [Poe16]. At the time of writing, there are at least
two independent implementations of Mimblewimble as a cryptocurrency: one is called Grin,6 the
other Beam.7

Mimblewimble combines in a clever way CT, a non-interactive version of CoinJoin, and cut-
through of transaction inputs and outputs. As with CT, a coin is a commitment C = vH + rG
to its value v using randomness r, together with a range proof π. If CT were actually employed
in Bitcoin, spending a CT-protected output would require the knowledge of the opening of the
commitment and, as for a standard output, of the secret key associated with the address controlling
the coin. Mimblewimble goes one step further and completely abandons the notion of addresses or
more generally scripts: spending a coin only requires knowledge of the opening of the commitment.
As a result, ownership of a coin C = vH + rG is equivalent to the knowledge of its opening, and
the randomness r of the commitment now acts as the secret key for the coin.

Exactly as in Bitcoin, a Mimblewimble transaction specifies a list C = (C1, . . . , Cn) of input
coins (which must be coins existing in the system) and a list Ĉ = (Ĉ1, . . . , Ĉm) of output coins,
where Ci = viH + riG for 1 ≤ i ≤ n and Ĉi = v̂iH + r̂iG for 1 ≤ i ≤ m. We will detail later
how exactly such a transaction is constructed. Leaving fees aside for simplicity, the transaction is
balanced (i.e., does not create money) iff ∑

v̂i −
∑
vi = 0, which, letting ∑C denote ∑n

i=1Ci, is

5An earlier, anonymous version of the paper used the name one-way aggregate signature (OWAS), see https:
//bitcointalk.org/index.php?topic=290971. Composite signatures are very similar to aggregate signatures
[BGLS03].

6See http://grin-tech.org and https://github.com/mimblewimble/grin/blob/master/doc/intro.md.
7See https://www.beam-mw.com.

https://bitcointalk.org/index.php?topic=290971
https://bitcointalk.org/index.php?topic=290971
http://grin-tech.org
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://www.beam-mw.com
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equivalent to: ∑
Ĉ−

∑
C = ∑(v̂iH + r̂iG)−∑(viH + riG) = (∑ r̂i −

∑
ri)G .

In other words, knowledge of the opening of all coins in the transaction and balancedness of the
transaction implies knowledge of the discrete logarithm in base G of E := ∑

Ĉ−
∑

C, called the
excess of the transaction in Mimblewimble jargon. Revealing the opening (0, r := ∑

r̂i −
∑
ri)

of the excess E as in CT would leak too much information (e.g., together with the openings of
the input coins and of all output coins except one, this would yield the opening of the remaining
output coin); however, knowledge of r can be proved by providing a valid signature (on the empty
message) under public key E using some discrete-log-based signature scheme. Intuitively, as long as
the commitment scheme is binding and the signature scheme is unforgeable, it should be infeasible
to compute a valid signature for an unbalanced transaction.

Transactions (legitimately) creating money, such as coinbase transactions, can easily be incor-
porated by letting the supply s (i.e., the number of monetary units created by the transaction) be
explicitly specified and redefining the excess of the transaction as E := ∑

Ĉ −
∑

C − sH. All in
all, a Mimblewimble transaction is a tuple

tx = (s,C, Ĉ,K) with K := (π,E, σ) , (5.1)

where s is the supply, C is the input coin list, Ĉ is the output coin list, andK is the so-called kernel,
which contains the list π of range proofs for output coins,8 the (list of) transaction excesses E (as
there can be several; see below), and a signature σ.9

Such transactions can now easily be merged non-interactively à la CoinJoin: consider tx0 =
(s0,C0, Ĉ0, (π0, E0, σ0)) and tx1 = (s1,C1, Ĉ1, (π1, E1, σ1)); then the aggregate transaction tx re-
sulting from merging tx0 and tx1 is simply

tx :=
(
s0 + s1,C0 ‖C1, Ĉ0 ‖ Ĉ1,

(
π0 ‖π1, (E0, E1), (σ0, σ1)

))
. (5.2)

Moreover, if the signature scheme supports aggregation, as for example the BLS scheme [BGLS03,
BNN07], the pair (σ0, σ1) can be replaced by a compact aggregate signature σ for the public keys
E := (E0, E1).

An aggregate transaction (s,C, Ĉ, (π,E, σ)) is valid if all range proofs verify, σ is a valid
aggregate signature for E and if ∑

Ĉ−
∑

C− sH = ∑
E . (5.3)

As transactions can be recursively aggregated, the resulting kernel will contain a list E of kernel
excesses, one for each transaction that has been aggregated.

The main novelty of Mimblewimble, namely cut-through, naturally emerges from the way
transactions are aggregated and validated. Assume that some coin C appears as an output in tx0
and as an input in tx1; then, one can erase C from the input and output lists of the aggregate
transaction tx, and tx will still be valid since (5.3) will still hold. Hence, each time an output of a
transaction tx0 is spent by a subsequent transaction tx1, this output can be “forgotten” without
losing the ability to validate the resulting aggregate transaction.

In Mimblewimble the ledger is itself a transaction of the form (5.1), which starts out empty,
and to which transactions are recursively aggregated as they are added to the ledger. We assume
that for a transaction to be allowed onto the ledger, its input list must be contained in the output
list of the ledger (this corresponds to the natural requirement that only coins that exist in the
ledger can be spent). Then, it is easy to see that the following holds:

8Since inputs must be coins that already exist in the system, their range proofs are contained in the kernels of
the transactions that created them.

9A transaction fee can easily be added to the picture by making its amount f explicit and adding fH to the
transaction excess. For simplicity, we omit it here.
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(i) the supply s of the ledger is equal to the sum of the supplies of all transactions added to the
ledger so far;

(ii) the input coin list of the ledger is always empty.

Property (i) follows from the definition of aggregation in (5.2). Property (ii) follows inductively.
At the inception of the system the ledger is empty (thus the first transaction added to the ledger
must be a transaction with an empty input coin list and non-zero supply, a minting transaction).
Any transaction tx added to the ledger must have its input coins contained in the output coin
list of the ledger; thus cut-through will remove all of them from the joint input list, hence the
updated ledger again has no input coins (and the coins spent by tx are deleted from its outputs).
The ledger in Mimblewimble is thus a single aggregate transaction whose supply s is equal to the
amount of money that was created in the system and whose output coin list Ĉ is the analogue of
the UTXO set in Bitcoin. Its kernel K allows to cryptographically verify its validity. The history
of all transactions that have occurred is not retained, and only one kernel excess per transaction
(a very short piece of information) is recorded.

Our contribution. A first attempt at proving the security of Mimblewimble was partly under-
taken by Poelstra [Poe16]. We follow a different approach: we put forward a general syntax and a
framework of game-based security definitions for an abstraction of Mimblewimble that we dub an
aggregate cash system.

Formalizing security for a cash system requires care. For example, Zerocoin [MGGR13] was
recently found to be vulnerable to denial-of-spending attacks [RTRS18] that were not captured
by the security model in which Zerocoin was proved secure. To avoid such pitfalls, we keep the
syntax simple, while allowing to express meaningful security definitions. We formulate two natural
properties that define the security of a cash system: inflation-resistance ensures that the only way
money can be created in a system is explicitly via the supply contained in transactions; resistance
to coin theft guarantees that no one can spend a user’s coins as long as she keeps her keys safe. We
moreover define a privacy notion, transaction indistinguishability, which states that a transaction
does not reveal anything about the values it transfers from its inputs to its outputs.

We then give a black-box construction of an aggregate cash system, which naturally generalizes
Mimblewimble, from a homomorphic commitment scheme Com, an (aggregate) signature scheme
Sig, and a NIZK range-proof system Π. We believe that such a modular treatment will ease the
exploration of post-quantum instantiations of Mimblewimble or related systems.

Note that in our description of Mimblewimble, we have not yet explained how to actually create
a transaction that transfers some amount ρ of money from a sender to a receiver. It turns out that
this is a delicate question. The initial description of the protocol [Jed16] proposed the following
one-round procedure:

• the sender selects input coins C of total value v ≥ ρ; it creates change coins C′ of total value
v − ρ and sends C, C′, range proofs for C′ and the opening (−ρ, k) of ∑C′ −

∑
C to the

receiver (over a secure channel);

• the receiver creates additional output coins C′′ (and range proofs) of total value ρ with
keys (k′′i ), computes a signature σ with the secret key k +∑

k′′i and defines the transaction
tx =

(
0,C,C′ ‖C′′,

(
π,E = ∑

C′ +∑
C′′ −

∑
C, σ

))
.

However, a subtle problem arises with this protocol. Once the transaction has been added to the
ledger, the change outputs C′ should only be spendable by the sender, who owns them. It turns
out that the receiver is also able to spend them by “reverting” the transaction tx. Indeed, he knows
the range proofs for coins in C and the secret key (−k −∑ k′′i ) for the transaction with inputs
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C′ ‖C′′ and outputs C. Arguably, the sender is given back her initial input coins in the process,
but (i) she could have deleted the secret keys for these old coins, making them unspendable, and
(ii) this violates any meaningful formalization of security against coin theft.

A natural way to prevent such a malicious behavior would be to let the sender and the receiver,
each holding a share of the secret key corresponding to public key E := ∑

C′ ‖C′′−
∑

C, engage in
a two-party interactive protocol to compute σ. Actually, this seems to be the path Grin is taking,
although, to the best of our knowledge, the problem described above with the original protocol
has never been documented.

We show that the spirit of the original non-interactive protocol can be salvaged, so a sender
can make a payment to a receiver without the latter’s active involvement. In our solution the
sender first constructs a full-fledged transaction tx spending C and creating change coins C′ as
well as a special output coin C = ρH + kG, and sends tx and the opening (ρ, k) of the special
coin to the receiver. (Note that, unlike in the previous case, k is now independent from the keys
of the coins in C and C′.) The receiver then creates a second transaction tx′ spending the special
coin C and creating its own output coins C′′ and aggregates tx and tx′. As intended, this results
in a transaction with inputs C and outputs C′ ‖C′′ since C is removed by cut-through. The only
drawback of this procedure is that the final transaction, being the aggregate of two transactions,
has two kernel excesses instead of one for the interactive protocol mentioned above.

After specifying our protocol MW[Com,Sig,Π], we turn to proving its security in our definitional
framework. To this end, we first define two security notions, EUF-NZO and EUF-CRO, tying the
commitment scheme and the signature scheme together (cf. Page 65). Assuming that proof
system Π is simulation-extractable [DDO+01, Gro06], we show that EUF-NZO-security for the
pair (Com, Sig) implies that MW is resistant to inflation, while EUF-CRO-security implies that
MW is resistant to coin theft. Transaction indistinguishability follows from zero knowledge of Π
and Com being hiding.

Finally, we consider two natural instantiations of MW[Com,Sig,Π]. For each, we let Com be
the Pedersen commitment scheme [Ped92]. When Sig is instantiated with the Schnorr signature
scheme [Sch91], we show that the pair (Com,Sig) is EUF-NZO- and EUF-CRO-secure under the
Discrete Logarithm assumption. When Sig is instantiated with the BLS signature scheme [BLS01],
we show that the pair (Com, Sig) is EUF-NZO- and EUF-CRO-secure under the CDH assumption.
Both proofs are in the random-oracle model. BLS signatures have the additional benefit of sup-
porting aggregation [BGLS03, BNN07], so that the ledger kernel always contains a short aggregate
signature, independently of the number of transactions that have been added to the ledger. We
stress that, unlike Zerocash [BCG+14], none of these two instantiations require a trusted setup.

Future work. As already noted by Poelstra [Poe16], given the aggregate of two transactions for
which no cut-through occurred, it is possible to distinguish the inputs and outputs of each original
transaction by solving a simple subset sum problem based on the two kernel excesses contained
in the aggregate transaction. To achieve indistinguishability of aggregate transactions, Poelstra10

proposed to add a so-called kernel offset (a random commitment to zero) to each transaction,
and to add them when merging transactions (so that any transaction now contains a list of kernel
excesses and a single kernel offset). We leave the formal analysis of this proposal, which has already
been implemented in Grin, for future work.

5.1 Cryptographic assumptions
Throughout this chapter, we will have to work with lists of commitments and signatures. A list
L = (x1, . . . , xn), also denoted (xi)ni=1, is a finite sequence. The length of a list L is denoted |L|.

10See https://www.reddit.com/r/Bitcoin/comments/4vub3y/.

https://www.reddit.com/r/Bitcoin/comments/4vub3y/
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For i = 1, . . . , |L|, the i-th element of L is denoted L[i], or Li when no confusion is possible. By
L0 ‖L1 we denote the list L0 followed by L1. The empty list is denoted ( ). Given a list L of
elements of an additive group, we let ∑L denote the sum of all elements of L. Let L0 and L1 be
two lists, each without repetition. We write L0 ⊆ L1 iff each element of L0 also appears in L1.
We define L0 ∩ L1 to be the list of all elements that simultaneously appear in both L0 and L1,
ordered as in L0. The difference between L0 and L1, denoted L0−L1, is the list of all elements of
L0 that do not appear in L1, ordered as in L0. So, for example (1, 2, 3)− (2, 4) = (1, 3). We define
the cut-through of two lists L0 and L1, denoted cut(L0,L1), as:

cut(L0,L1) := (L0 − L1,L1 − L0) .

Bilinear groups. Similairly to Chapter 3, we assume the existence of groups G,GT of odd prime
order p of length λ and an efficiently computable non-degenerate bilinear map e : G × G → GT .
That is, the map e is such that for all U, V ∈ G and a, b ∈ Zp : e(aU, bV ) = ab · e(U, V ), and if U
is a generator of G, then e(U,U) is a generator of GT .

In order to construct an aggregate cash system we will use three cryptographic primitives:
a commitment scheme Com (cf. Section 2.3), an aggregate signature scheme Sig, and a non-
interactive zero-knowledge proof system Π (cf. Section 2.3). For compatibility reasons, the setup
algorithms for each of these schemes are split: a common algorithm GrGen(1λ) first returns main
parameters Γ (specifying e.g. an abelian group), and specific algorithms Com.G, Sig.G, and Π.G
take as input Γ and return the specific parameters cp, sp, and crs for each primitive. We assume
that Γ is contained in cp, sp, and crs.

Recursive aggregate signature scheme. An aggregate signature scheme allows to (publicly)
combine an arbitrary number n of signatures (from potentially distinct users and on potentially dis-
tinct messages) into a single (ideally short) signature [BGLS03, LMRS04, BNN07]. Traditionally,
the syntax of an aggregate signature scheme only allows the aggregation algorithm to take as input
individual signatures. We consider aggregate signature schemes supporting recursive aggregation,
where the aggregation algorithm can take as input aggregate signatures (supported for example by
the schemes based on BLS signatures [BGLS03, BNN07]). A recursive aggregate signature scheme
Sig consists of the following algorithms:

• sp ← Sig.G(Γ): the parameter generation algorithm takes as input main parameters Γ and
outputs signature parameters sp, which implicitly define a secret-key space Ssp and a public-
key space Psp (we let the message space be {0, 1}∗);

• (sk, pk)← Sig.K(sp): the key generation algorithm takes signature parameters sp and outputs
a secret key sk ∈ Ssp and a public key pk ∈ Psp;

• σ ← Sig.S(sp, sk,m): the signing algorithm takes as input parameters sp, a secret key sk ∈
Ssp, and a message m ∈ {0, 1}∗ and outputs a signature σ;

• σ ← Sig.A
(
sp, (L0, σ0), (L1, σ1)

)
: the aggregation algorithm takes parameters sp and two

pairs of public-key/message lists Li =
(
(pki,j ,mi,j)

)|Li|
j=1 and (aggregate) signatures σi, i =

0, 1; it returns an aggregate signature σ;

• bool ← Sig.V(sp,L, σ): the (deterministic) verification algorithm takes parameters sp, a list
L =

(
(pki,mi)

)|L|
i=1 of public-key/message pairs, and an aggregate signature σ; it returns 1 or

0, indicating validity of σ.
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Game EUF-CMASig,A(λ)

Q := ( ); Γ← GrGen(1λ)
sp← Sig.G(Γ) ; (sk, pk)← Sig.K(sp)
(L, σ)← ASign(pk)
return

(
∃m : (pk,m) ∈ L ∧ m /∈ Q

)
and Sig.V(sp,L, σ)

Oracle Sign(m)

σ ← Sig.S(sk,m)
Q := Q ‖ (m)
return σ

Figure 5.1: The EUF-CMA security game for an aggregate signature scheme Sig.

Correctness of a recursive aggregate signature scheme is defined recursively. An aggregate
signature scheme is correct if for every λ, every message m ∈ {0, 1}∗, every Γ ∈ [GrGen(1λ)],
sp ∈ [Sig.G(Γ)], (sk, pk) ∈ [Sig.K(sp)] and every (L0, σ0), (L1, σ1) with Sig.V(sp,L0, σ0) = 1 =
Sig.V(sp,L1, σ1) we have

Pr
[
Sig.V

(
sp, ((pk,m)) , Sig.S(sp, sk,m)

)
= 1

]
= 1 and

Pr
[
Sig.V

(
sp,L0 ‖L1, Sig.A

(
sp, (L0, σ0), (L1, σ1)

))
= 1

]
= 1 .

Note that for any recursive aggregate signature scheme, one can define an aggregation algorithm
Sig.A′ that takes as input a list of triples

(
(pki,mi, σi)

)
n
i=1 and returns an aggregate signature σ for(

(pki,mi)
)
n
i=1, which is the standard syntax for an aggregate signature scheme. Algorithm Sig.A′

calls Sig.A recursively n− 1 times, aggregating one signature at a time.
The standard security notion for aggregate signature schemes is existential unforgeability under

chosen-message attack (EUF-CMA) [BGLS03, BNN07].

Definition 5.1 (EUF-CMA). Let game EUF-CMA be as defined in Fig. 5.1. An aggregate signa-
ture scheme Sig is existentially unforgeable under chosen-message attack if for any PPT adversary
A:

Adveuf-cma
Sig,A (λ) := Pr

[
EUF-CMASig,A(λ) = 1

]
= negl(λ) .

Note that any standard signature scheme can be turned into an aggregate signature scheme by
letting the aggregation algorithm simply concatenate signatures, i.e., Sig.A(sp, (L0, σ0), (L1, σ1)) re-
turns (σ0, σ1), but this is not compact. Standard EUF-CMA-security of the original scheme implies
EUF-CMA-security in the sense of Definition 5.1 for this construction. This allows us to capture
standard and (compact) aggregate signature schemes, such as the ones proposed in [BGLS03,
BNN07], in a single framework.

Compatibility. For our aggregate cash system, we require the commitment scheme Com and
the aggregate signature scheme Sig to satisfy some “combined” security notions. We say that
Com and Sig are compatible if they use the same GrGen and if for any λ, any Γ ∈ [GrGen(1λ)],
cp ∈ [Com.G(Γ)] and sp ∈ [Sig.G(Γ)], the following holds:

• Ssp = Rcp, i.e., the secret-key space of Sig is the same as the randomness space of Com;

• Psp = Ccp, i.e., the public-key space of Sig is the same as the commitment space of Com;

• Sig.K proceeds by drawing sk←$Rcp and setting pk := Com.C(cp, 0; sk).

We define two security notions for compatible commitment and aggregate signature schemes. The
first one roughly states that only commitments to zero can serve as signature-verification keys;
more precisely, a PPT adversary cannot simultaneously produce a signature for a (set of) freely
chosen public key(s) and a non-zero opening of (the sum of) the public key(s).
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Game EUF-NZOCom,Sig,A(λ)

Γ← GrGen(1λ) ; cp← Com.G(Γ) ; sp← Sig.G(Γ)
(L, σ, (v, r))← A(cp, sp)
((Xi,mi))ni=1 := L
return Sig.V(sp,L, σ) and

∑n
i=1Xi = Com.C(cp, v; r) and v 6= 0

Figure 5.2: The EUF-NZO security game for a pair of compatible additively homomorphic com-
mitment and aggregate signature schemes (Com,Sig).

Definition 5.2 (EUF-NZO). Let game EUF-NZO be as defined in Fig. 5.2. A pair of compatible
homomorphic commitment and aggregate signature schemes (Com, Sig) is existentially unforgeable
with non-zero opening if for any PPT adversary A:

Adveuf-nzo
Com,Sig,A(λ) := Pr

[
EUF-NZOCom,Sig,A(λ) = 1

]
= negl(λ) .

EUF-NZO-security of the pair (Com,Sig) implies that Com is binding.

Lemma 5.3. Let (Com, Sig) be a pair of compatible additively homomorphic commitment and
aggregate signature schemes. Then, for any PPT adversary A, there exists a PPT adversary B
such that:

Advbnd
Com,A(λ) = Adveuf-nzo

Com,Sig,B(λ) .

Proof. Let A be an adversary against the binding security of Com. We construct an adversary B
against the EUF-NZO security of (Com, Sig). On input (cp, sp), B simply runs A(cp) which returns
(v0, r0) and (v1, r1) such that v0 6= v1 and (using the homomorphic property) Com.C(cp, v0−v1; r0−
r1) = Com.C(cp, 0; 0). Then, B draws r←$Rcp = Ssp and computes C = Com.C(cp, 0; r). Clearly,
B can produce a signature for public key C for any message since it knows the corresponding secret
key r. On the other hand, C = Com.C(cp, v0 − v1; r + r0 − r1), so that B also has an opening to a
non-zero value for C, and hence can win the EUF-NZO game. Since B is successful exactly when
A is, the result follows.

The second security definition is more involved. It roughly states that, given a challenge public
key C∗, no adversary can produce a signature under −C∗. Moreover, we only require the adversary
to make a signature under keys X1, . . . , Xn of its choice, as long as it knows an opening to the
difference between their sum and −C∗. This must even hold if the adversary is given a signing
oracle for keys related to C∗. Informally, the adversary is faced with the following dilemma:
either it picks public keys X1, . . . , Xn honestly, so it can produce a signature but it cannot open∑
Xi + C∗; or it includes −C∗ within the public keys, allowing it to open ∑Xi + C∗, but then it

cannot produce a signature.

Definition 5.4 (EUF-CRO). Let game EUF-CRO be as defined in Fig. 5.3. A pair of compatible
homomorphic commitment and aggregate signature schemes (Com, Sig) is existentially unforgeable
with challenge-related opening if for any PPT adversary A:

Adveuf-cro
Com,Sig,A(λ) := Pr

[
EUF-CROCom,Sig,A(λ) = 1

]
= negl(λ) .
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Game EUF-CROCom,Sig,A(λ)

Γ← GrGen(1λ) ; cp← Com.G(Γ)
sp← Sig.G(Γ) ; (r∗, C∗)← Sig.K(sp)
(L, σ, (v, r))← ASign′

(cp, sp, C∗) ; ((Xi,mi))ni=1 := L
return Sig.V(sp,L, σ) and

∑n
i=1Xi = −C∗ + Com.C(cp, v; r)

Oracle Sign′(a,m)

sk′ := a+ r∗

return Sig.S(sp, sk′,m)

Figure 5.3: The EUF-CRO security game for a pair of compatible additively homomorphic com-
mitment and aggregate signature schemes (Com,Sig).

5.2 Aggregate cash system

Coins. The public parameters pp set up by the cash system specify a coin space Cpp and a key
space Kpp. A coin is an element C ∈ Cpp; to each coin is associated a coin key k ∈ Kpp, which
allows spending the coin. The value v of a coin is an integer in J0, vmaxK, where vmax is a system
parameter. We assume that there exists a function mapping pairs (v, k) ∈ J0, vmaxK×Kpp to coins
in Cpp; we do not assume this mapping to be invertible or even injective.

Ledger. Similarly to any ledger-based currency such as Bitcoin, an aggregate cash system keeps
track of available coins in the system via a ledger. We assume the ledger to be unique and available
at any time to all users. How users are kept in consensus on the ledger is outside the scope of
this manuscript. In our abstraction, a ledger Λ simply provides two attributes: a list of all coins
available in the system Λ.out, and the total value Λ.sply those coins add up to. We say that a coin
C exists in the ledger Λ if C ∈ Λ.out.

Transactions. Transactions allow to modify the state of the ledger. Formally, a transaction tx
provides three attributes: a coin input list tx.in, a coin output list tx.out, and a supply tx.sply ∈ N
specifying the amount of money created by tx. We classify transactions into three types. A
transaction tx is said to be:

• a minting transaction if tx.sply > 0 and tx.in = ( ); such a transaction creates new coins of
total value tx.sply in the ledger;

• a transfer transaction if tx.sply = 0 and tx.in 6= ( ); such a transaction transfers coins (by
spending previous transaction outputs and creating new ones) but does not increase the
overall value of coins in the ledger;

• a mixed transaction if tx.sply > 0 and tx.in 6= ( ).

Pre-transactions. Pre-transactions allow users to transfer money to each other. Formally, a
pre-transaction provides three attributes: a coin input list ptx.in, a list of change coins ptx.chg,
and a remainder ptx.rmdr. When Alice wants to send money worth ρ to Bob, she selects coins
of hers of total value v ≥ ρ and specifies the desired values for her change coins when v > ρ.
The resulting pre-transaction ptx has therefore some input coin list ptx.in with total amount v, a
change coin list ptx.chg, and some remainder ρ = ptx.rmdr. Alice sends this pre-transaction (via a
secure channel) to Bob, who, in turn, finalizes it into a valid transaction and adds it to the ledger.
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Aggregate cash system. An aggregate cash system Cash consists of the following algorithms:

• (pp,Λ) ← Cash.G(1λ, vmax): the setup algorithm takes as input the security parameter λ
in unary and a maximal coin value vmax and returns public parameters pp and an initial
(empty) ledger Λ.

• (tx,k) ← Cash.M(pp,v): the mint algorithm takes as input a list of values v and returns a
minting transaction tx and a list of coin keys k for the coins in tx.out, such that the supply
of tx is the sum of the values v.

• (ptx,k′) ← Cash.S(pp, (C,v,k),v′): the sending algorithm takes as input a list of coins C
together with the associated lists of values v and secret keys k and a list of change values v′
whose sum is at most the sum of the input values v; it returns a pre-transaction ptx and a
list of keys k′ for the change coins of ptx, such that the remainder of ptx is the sum of the
values v minus the sum of the values v′.

• (tx,k′′) ← Cash.R(pp, ptx,v′′): the receiving algorithm takes as input a pre-transaction ptx
and a list of values v′′ whose sum equals the remainder of ptx; it returns a transfer transaction
tx and a list of secret keys k′′ for the fresh coins in the output of tx, one for each value in v′′.

• Λ′ ← Cash.L(pp,Λ, tx): the ledger algorithm takes as input the ledger Λ and a transaction
tx to be included in Λ; it returns an updated ledger Λ′ or ⊥.

• tx ← Cash.A(pp, tx0, tx1): the transaction aggregation algorithm takes as input two transac-
tions tx0 and tx1 whose input coin lists are disjoint and whose output coin lists are disjoint;
it returns a transaction tx whose supply is the sum of the supplies of tx0 and tx1 and whose
input and output coin list is the cut-through of tx0.in ‖ tx1.in and tx0.out ‖ tx1.out.

We say that an aggregate cash system Cash is correct if its procedures Cash.G, Cash.M, Cash.S,
Cash.R, Cash.L, and Cash.A behave as expected with overwhelming probability (that is, we allow
that with negligible probability things can go wrong, typically, because an algorithm could generate
the same coin twice). We give a formal definition that uses two auxiliary procedures: Cons, which
checks if a list of coins C is consistent with respect to values v and keys k; and V, which given
as input a ledger or a (pre-)transaction determines if they respect some notion of cryptographic
validity.

Definition 5.5 (Correctness). An aggregate cash system Cash is correct if there exist procedures
V(·, ·) and Cons(·, ·, ·, ·) such that for any vmax ∈ N and (not necessarily PPT) AM,AS,AR,AA and
AL the following functions are overwhelming in λ: Pr

[
(pp,Λ)← Cash.G(1λ, vmax) : Cash.V(pp,Λ)

]
Pr
[

(pp,Λ)← Cash.G(1λ, vmax) : Cash.V(pp,Λ)
]

Pr


(pp,Λ)← Cash.G(1λ, vmax)
v← AM(pp,Λ)
(tx,k)← Cash.M(pp,v)

: v ∈ J0, vmaxK∗ ⇒


Cash.V(pp, tx) ∧ tx.in = ( ) ∧
tx.sply = ∑

v ∧

Cons(pp, tx.out,v,k)




Pr



(pp,Λ)← Cash.G(1λ, vmax)
(C,v,k,v′)← AS(pp,Λ)
(ptx,k′)← Cash.S(pp, (C,v,k),v′) :

 Cons(pp,C,v,k) ∧ v ‖v′ ∈ J0, vmaxK∗ ∧∑
v−

∑
v′ ∈ J0, vmaxK



⇒


Cash.V(pp, ptx) ∧ ptx.in = C ∧

ptx.rmdr = ∑
v−

∑
v′ ∧

Cons(pp, ptx.chg,v′,k′)




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Pr


(pp,Λ)← Cash.G(1λ, vmax)
(ptx,v′′)← AR(pp,Λ)
(tx,k′′)← Cash.R(pp, ptx,v′′)

:

(
Cash.V(pp, ptx) ∧ v′′∈ J0, vmaxK∗ ∧ ptx.rmdr = ∑

v′′
)

⇒


Cash.V(pp, tx) ∧ tx.sply = 0 ∧
tx.in = ptx.in ∧ ptx.chg ⊆ tx.out ∧

Cons(pp, tx.out− ptx.chg,v′′,k′′)





Pr



(pp,Λ)← Cash.G(1λ, vmax)
(tx0, tx1)← AA(pp,Λ)
tx ← Cash.A(pp, tx0, tx1) :

 Cash.V(pp, tx0) ∧ tx0.in ∩ tx1.in = ( ) ∧
Cash.V(pp, tx1) ∧ tx0.out ∩ tx1.out = ( )



⇒


Cash.V(pp, tx) ∧ tx.sply = tx0.sply + tx1.sply ∧

tx.in = (tx0.in ‖ tx1.in)− (tx0.out ‖ tx1.out) ∧
tx.out = (tx0.out ‖ tx1.out)− (tx0.in ‖ tx1.in)





Pr



(pp,Λ)← Cash.G(1λ, vmax)
(Λ, tx)← AL(pp,Λ)
Λ′ ← Cash.L(pp,Λ, tx) :

 Cash.V(pp,Λ) ∧ Cash.V(pp, tx) ∧
tx.in ⊆ Λ.out ∧ tx.out ∩ Λ.out = ( )



⇒


Λ′ 6= ⊥ ∧ Cash.V(pp,Λ′) ∧
Λ′.out = (Λ.out− tx.in) ‖ tx.out ∧

Λ′.sply = Λ.sply + tx.sply





Security definitions

Security against inflation. A sound payment system must ensure that the only way money
can be created is via the supply of transactions, typically minting transactions. This means that
for any tx the total value of the output coins should be equal to the sum of the total value of the
input coins plus the supply tx.sply of the transaction. Since coin values are not deducible from a
transaction (this is one of the privacy features of such a system), we define the property at the
level of the ledger Λ.

We say that a cash system is resistant to inflation if no adversary can spend coins from Λ.out
worth more than Λ.sply. The adversary’s task is thus to create a pre-transaction whose remainder
is strictly greater than Λ.sply; validity of the pre-transaction is checked by completing it to a
transaction via R and adding it to the ledger via L. This is captured by the definition below.

Definition 5.6 (Inflation-resistance). We say that an aggregate cash system Cash is secure against
inflation if for any vmax and any PPT adversary A:

Advinfl
Cash,A(λ, vmax) := Pr

[
INFLCash,A(λ, vmax) = 1

]
= negl(λ) ,

where INFLCash,A(λ, vmax) is defined in Fig. 5.4.

Security against coin theft. Besides inflation, which protects the soundness of the system as a
whole, the second security notion protects individual users. It requires that only a user can spend
coins belonging to him, where ownership of a coin amounts to knowledge of the coin secret key.
This is formalized by the experiment in Fig. 5.5, which proceeds as follows. The challenger sets
up the system and maintains the ledger Λ throughout the game (we assume that the consensus
protocol provides this). The adversary can add any valid transaction to the ledger through an
oracle Ledger.
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Game INFLCash,A(λ, vmax)

(pp,Λ0)← Cash.G(1λ, vmax)
(Λ, ptx,v)← A(pp,Λ0)
(tx,k)← Cash.R(pp, ptx,v)
return ⊥ 6← Cash.L(pp,Λ, tx) and Λ.sply <

∑
v

Figure 5.4: Game formalizing resistance to inflation of a cash system Cash.

The challenger also simulates an honest user and manages her coins; in particular, it maintains
a list Hon, which represents the coins that the honest user expects to own in the ledger. The game
also maintains two hash tables Val and Key that map coins produced by the game to their values
and keys. We write e.g. Val(C) := v to mean that the pair (C, v) is added to Val and let Val(C)
denote the value v for which (C, v) is in Val. This naturally generalizes to lists letting Val(C) be
the list v such that (Ci, vi) is in Val for all i.

The adversary can interact with the honest user and the ledger using the following oracles:

• Mint is an oracle that mints coins for the honest user. It takes as input a vector of values
v, creates a minting transaction tx together with the secret keys of the output coins, adds tx
to the ledger and appends the newly created coins to Hon.

• Receive lets the adversary send coins to the honest user. The oracle takes as input a pre-
transaction ptx and output values v; it completes ptx to a transaction tx creating output
coins with values v, adds tx to the ledger, and appends the newly created coins to Hon.

• Send lets the adversary make an honest user send coins to it. It takes as input a list C of
coins contained in Hon and a list of change values v′; it also checks that none of the coins
in C has been queried to Send before (an honest user does not double-spend). It returns a
pre-transaction ptx spending the coins from C and creating change output coins with values
v′. The oracle only produces a pre-transaction and returns it to the adversary, but it does not
alter the ledger. This is why the list Hon of honest coins is not altered either; in particular,
the sent coins C still remain in Hon.

• Ledger lets the adversary commit a transaction tx to the ledger. If the transaction output
contains the (complete) set of change coins of a pre-transaction ptx previously sent to the
adversary, then these change coins are added to Hon, while the input coins of ptx are removed
from Hon.

Note that the list Hon represents the coins that the honest user should consider hers, given the
system changes induced by the oracle calls: coins received directly from the adversary via Receive
or as fresh coins via Mint are added to Hon. Coins sent to the adversary in a pre-transaction ptx
via Send are only removed once all change coins of ptx have been added to the ledger via Ledger.
Note also that, given these oracles, the adversary can simulate transfers between honest users. It
can simply call Send to receive an honest pre-transaction ptx and then call Receive to have the
honest user receive ptx.

The winning condition of the game is now simply that Hon does not reflect what the honest
user would expect, namely Hon is not fully contained in the ledger (because the adversary managed
to spend a coin that is still in Hon, which amounts to stealing it from the honest user).
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Game STEALCash,A(λ, vmax)

(pp,Λ)← Cash.G(1λ, vmax)
Hon,Val,Key,Ptx := ( )
AMint,Send,Receive,Ledger(pp,Λ)
return (Hon * Λ.out)

Aux function Store(C,v,k)

Val(C) := v ; Key(C) := k

Oracle Mint(v)

(tx,k)← Cash.M(pp,v)
Λ← Cash.L(pp,Λ, tx)
Hon := Hon ‖ tx.out
Store(tx.out,v,k)
return tx

Oracle Send(C,v′)

if C * Hon or
⋃

ptx∈Ptx ptx.in ∩ C 6= ( )
return ⊥ // only honest coins never sent can be queried

(ptx,k′)← Cash.S
(
pp, (C,Val(C),Key(C)),v′

)
Store(ptx.chg,v′,k′) ; Ptx := Ptx ‖ (ptx)
return ptx

Oracle Receive(ptx,v)

(tx,k)← Cash.R(pp, ptx,v)
Λ′ ← Ledger(tx) // updates Hon

if Λ′ = ⊥ : return ⊥
Hon := Hon ‖ (tx.out− ptx.chg)
Store(tx.out− ptx.chg,v,k)
return tx

Oracle Ledger(tx)

Λ′ ← Cash.L(pp,Λ, tx)
if Λ′ = ⊥ : return ⊥ else : Λ := Λ′

for all ptx ∈ Ptx do
if ptx.chg ⊆ tx.out
// if all change of ptx now in ledger

Ptx := Ptx − (ptx)
Hon := (Hon− ptx.in) ‖ ptx.chg
// consider input of ptx consumed

return Λ

Figure 5.5: Game formalizing resistance to coin theft of a cash system Cash.

Definition 5.7 (Theft-resistance). We say that an aggregate cash system Cash is secure against
coin theft if for any vmax and any PPT adversary A:

Advsteal
Cash,A(λ, vmax) := Pr

[
STEALCash,A(λ, vmax) = 1

]
= negl(λ) ,

where STEALCash,A(λ, vmax) is defined in Fig. 5.5.

Transaction indistinguishability. An important security feature that Mimblewimble inherits
from Confidential Transactions [Max15] is that the amounts involved in a transaction are hidden so
that only the sender and the receiver know how much money is involved. In addition, a transaction
completely hides which inputs paid which outputs and which coins were change and which were
added by the receiver.

We formalize this via the following game, specified in Fig. 5.6. The adversary submits two sets
of values (v0,v′0,v′′0) and (v1,v′1,v′′1) representing possibles values for input coins, change coins
and receiver’s coins of a transaction. The game creates a transaction with values either from the
first or the second set and the adversary must guess which. For the transaction to be valid, we
must have ∑vb = ∑

v′b +∑
v′′b for both b = 0, 1. Moreover, transactions do not hide the number

of input and output coins. We therefore also require that |v0| = |v1| and |v′0|+ |v′′0| = |v′1|+ |v′′1|
(note that e.g. the number of change coins can differ).
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Game IND-TXb
Cash,A(λ, vmax)

(pp,Λ)← Cash.G(1λ, vmax)
b′ ← ATx(pp,Λ)
return b′

Oracle Tx((v0,v′0,v′′0), (v1,v′1,v′′1))

if not (v0,v′0,v′′0 ,v1,v′1,v′′1 ∈ J0, vmaxK∗)
return ⊥

if |v0| 6= |v1| or |v′0|+ |v′′0 | 6= |v′1|+ |v′′1 |
return ⊥ // as number of coins is not hidden

if
∑

v0 6=
∑

(v′0 ‖v′′0) or
∑

v1 6=
∑

(v′1 ‖v′′1)
return ⊥ // as transactions must be balanced

(tx,k)← M(pp,vb)
(ptx,k′)← S(pp, (tx.out,vb,k),v′b)
(tx∗,k′′)← R(pp, ptx,v′′b )
return tx∗

Figure 5.6: Game formalizing transaction indistinguishability of a cash system Cash.

Definition 5.8 (Transaction indistinguishability). We say that an aggregate cash system Cash is
transaction-indistinguishable if for any vmax and any PPT adversary A:

Advtx-ind
Cash,A(λ, vmax) :=

∣∣∣Pr
[
TX-IND0

Cash,A(λ, vmax) = 1
]
− Pr

[
TX-IND1

Cash,A(λ, vmax) = 1
]∣∣∣

is negligible, where TX-INDb
Cash,A(λ, vmax) is defined in Fig. 5.6.

5.3 Construction of an aggregate cash system

Description

Let Com be a homomorphic commitment scheme such that for cp ← Com.G(GrGen(1λ)) we have
value space Vcp = Zp with p of length λ (such as the Pedersen scheme). Let Sig be an aggre-
gate signature scheme that is compatible with Com. For vmax ∈ N, let Rvmax be the (efficiently
computable) relation on commitments with values at most vmax, i.e.:

Rvmax:=
{(

cp, C), (v, r)
) ∣∣ ∧ C=Com.C(cp, v; r) ∧ v ∈ J0, vmaxK

}
,

where we implicitly assume that the family depends also on Γ ∈ [GrGen(1λ)], and that it is fixed
for all statements. Let Π be a simulation-extractable NIZK proof system for the family of relations
R = {Rvmax }vmax

.
For notational simplicity, we will use the following vectorial notation for Com, R, and Π: given

C, v, and r with |C| = |v| = |r|, we let

Com.C(cp,v; r) :=
(
Com.C(cp, vi; ri)

)|v|
i=1 ,

Rvmax((cp,C), (v, r)) := ∧|C|
i=1 Rvmax(Γcp, (cp, Ci), (vi, ri)) ,

Π.P(crs, (cp,C), (v, r)) :=
(
Π.P(crs, (cp, Ci), (vi, ri))

)|C|
i=1 ,

Π.V(crs, (cp,C), π) := ∧|C|
i=1 Π.V(crs, (cp, Ci), πi) ,

and likewise for Π.Sim. We also assume that messages are the empty string e if they are omitted
from Sig.V and Sig.A; that is, we overload notation and let:

Sig.V(sp, (Xi)ni=1, σ) := Sig.V(sp, ((Xi, e))ni=1, σ)



72 CHAPTER 5. MIMBLEWIMBLE: A PRIVATE CRYPTOCURRENCY

MW.Coin((cp, sp, crs),v)

(C,k) := Com.C(cp,v)
π ← Π.P(crs, (cp,C), (v,k))
return (C,v, π)

MW.MkTx((cp, sp, crs), (C,v,k), v̂)

if ¬Cons(pp,C,v,k) : return ⊥
s :=

∑
v̂−

∑
v

if v ‖ v̂ 6⊆ J0, vmaxK∗ or s < 0
return ⊥

(Ĉ, k̂, π̂)← MW.Coin(pp, v̂)
E :=

∑
Ĉ−

∑
C− Com.C(cp, s; 0)

σ ← Sig.S(sp,
∑

k̂−
∑

k, e)
K := (π̂, E, σ)
tx := (s,C, Ĉ,K)
return (tx, k̂)

MW.Cons((cp, sp, crs),C,v,k)

return |C| = |v| = |k| and v ∈ J0, vmaxK∗

and
(
∀ i 6= j : Ci 6= Cj

)
and C = Com.C(cp,v; k)

// Cons(pp, ( ), ( ), ( )) returns 1

MW.V((cp, sp, crs), tx)

if tx =(0, (), (), ((), (), e)) : return 1
(s,C, Ĉ,K) := tx; (π,E, σ) := K

Exc :=
∑

Ĉ−
∑

C− Com.C(cp, s; 0)
return

(
∀ i 6= j : Ci 6= Cj ∧ Ĉi 6= Ĉj

)
and C ∩ Ĉ = ( )

and s ≥ 0 and Π.V(crs, Ĉ, π) and∑
E = Exc and Sig.V(sp,E, σ)

MW.V(pp, ptx)

(tx, ρ, k′) := ptx
return MW.V(pp, tx) and tx.sply = 0 and

MW.Cons(pp, tx.out[|tx.out|], ρ, k′)

MW.V(pp,Λ)

tx := Λ // interpret Λ as transaction

return MW.V(pp, tx) and tx.in = ( )

Figure 5.7: Auxiliary algorithms for the MW aggregate cash system.

and likewise for Sig.A
(
sp, ((X0,i)n0

i=1, σ0), ((X1,i)n1
i=1, σ1)

)
.

From Com, Sig and Π we construct an aggregate cash system MW[Com, Sig,Π] as follows. The
public parameters pp consist of commitment and signature parameters cp, sp, and a CRS for Π.
A coin key k ∈ Kpp is an element of the randomness space Rcp of the commitment scheme, i.e.,
Kpp = Rcp. A coin C = Com.C(cp, v; k) is a commitment to the value v of the coin using the coin
key k as randomness. Hence, Cpp = Ccp.

A transaction tx = (s,C, Ĉ,K) consists of a supply tx.sply = s, an input coin list tx.in = C, an
output coin list tx.out = Ĉ, and a kernel K. The kernel K is a triple (π,E, σ) where π is a list of
range proofs for the output coins, E is a non-empty list of signature-verification keys (which are
of the same form as commitments) called kernel excesses, and σ is an (aggregate) signature. We
define the excess of the transaction tx, denoted Exc(tx), as the sum of outputs minus the sum of
inputs, with the supply s converted to an input coin with k = 0:

Exc(tx) := ∑
Ĉ−

∑
C− Com.C(cp, s; 0) . (5.4)

Intuitively, Exc(tx) should be a commitment to 0, as the committed input and output values of
the transaction should cancel out; this is evidenced by giving a signature under key Exc(tx) (which
could be represented as the sum of elements (Ei) due to aggregation; see below).



5.3. CONSTRUCTION OF AN AGGREGATE CASH SYSTEM 73

A transaction tx = (s,C, Ĉ,K) with K = (π,E, σ) is said to be valid if all range proofs are
valid, Exc(tx) = ∑

E, and σ is a valid signature for E (with all messages ε).11

When a user wants to make a payment of an amount ρ, she creates a transaction tx with input
coins C of values v with ∑v ≥ ρ and with output coins a list of fresh change coins of values v′
so that ∑v′ = ∑

v − ρ. She also appends one more special coin of value ρ to the output. The
pre-transaction ptx is then defined as this transaction tx, the remainder ptx.rmdr := ρ and the key
for the special coin.

When receiving a pre-transaction ptx = (tx, ρ, k), the receiver first checks that tx is valid and
that k is a key for the special coin C ′ := tx.out[|tx.out|] of value ρ. He then creates a transaction
tx′ that spends C ′ (using its key k) and creates coins of combined value ρ. Aggregating tx and tx′
yields a transaction tx′′ with tx′′.sply = 0, tx′′.in = ptx.in and tx′′.out containing ptx.chg and the
freshly created coins. The receiver then submits tx′′ to the ledger.

The ledger accepts a transaction if it is valid (as defined above) and if its input coins are
contained in the output coin list of the ledger (which corresponds to the UTXO set in other
systems). We do not consider any other conditions related to the consensus mechanism, such as
fees being included in a transaction to incentivize its inclusion in the ledger or a proof-of-work
being included in a minting transaction.

In Fig. 5.7 we first define auxiliary algorithms that create coins and transactions and verify
their validity by instantiating the procedures V and Cons from Definition 5.5. Using these we then
formally define MW[Com,Sig,Π] in Fig. 5.8.

Lemma 5.9 (Collision-resistance). Let Com be a (binding and hiding) commitment scheme. Then
for any (v0, v1) ∈ V 2

cp, the probability that C(cp, v0; r0) = C(cp, v1; r1) for r0, r1←$Rcp is negligible.

The proof of the lemma is straightforward: for v0 6= v1 this would break binding and for v0 = v1
it would break hiding.

Correctness. We start with showing some properties of the auxiliary algorithms in Fig. 5.7.
For any v ∈ J0, vmaxK∗ and (C,k, π) ← Coin(pp,v), we have Cons(pp,C,v,k) with overwhelming
probability due to Lemma 5.9. Moreover, correctness of Sig and Π implies that MkTx run on
consistent (C,v,k) and values v̂ ∈ J0, vmaxK∗ with

∑
v̂ ≥

∑
v produces a tx which is accepted by

V with overwhelming probability and whose supply is the difference ∑v−
∑

v̂.
We now show that the protocol MW[Com,Sig,Π] described in Fig. 5.8 satisfies Definition 5.5.

It is immediate that an empty ledger output by G(1λ, vmax) verifies. As M invokes MkTx on empty
inputs and output values v, correctness of M follows from correctness of MkTx. Correctness of
S also follows from correctness of MkTx when the preconditions on the values, consistency of the
coins and the supply, and ∑v −

∑
v′ = ρ ∈ J0, vmaxK hold (note that ptx.rmdr = ρ). Therefore,

with overwhelming probability the pre-transaction is valid, and the change coins are consistent.
Correctness of A is straightforward: it returns a transaction with the desired supply, input, and
output coin list whose validity follows from correctness of Sig.A and Π.V and ∑E0 + ∑

E1 =
Ĉ0−

∑
C0−C(cp, s0, 0)+ Ĉ1−

∑
C1−C(cp, s1, 0) = ∑

Ĉ−
∑

C−C(cp, s0 +s1, 0), where the first
equation follows from V(pp, tx0) and V(pp, tx0) and the second from the properties of cut-through.

For any adversary AL returning (Λ, tx), if V(pp,Λ) = 1, then Λ.in = ( ) and Λ is valid when
interpreted as a transaction. Since the input list of Λ is empty, L(pp,Λ, tx) = A(pp,Λ, tx) and so
L is correct because A is.

Finally, we consider R, which is slightly more involved. Consider an adversary AR returning
(ptx,v′′) with ptx = (tx, ρ, k′) and let (tx′′,k′′)← MW.R(pp, ptx,v′′). First, the preconditions triv-
ially guarantee that the output is not ⊥. Consider the call (tx′,k′′)← MW.MkTx(pp, (C ′, ρ, k′),v′′)

11If E in a transaction tx consists of a single element, it must be E = Exc(tx), so E could be omitted from the
transaction; we keep it for consistency.
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MW.G(1λ, vmax)

Γ← GrGen(1λ)
cp← Com.G(Γ)
sp← Sig.G(Γ)
(crs, τ)← Π.G(Γ, vmax)
Λ :=

(
0, ( ), ( ), (( ), ( ), e)

)
return

(
pp := (cp, sp, crs),Λ

)
MW.A(pp, tx0, tx1)

if ¬MW.V(pp, tx0) or
¬MW.V(pp, tx1) or
tx0.in ∩ tx1.in 6= ( ) or
tx0.out ∩ tx1.out 6= ( )

return ⊥(
s0,C0, Ĉ0, (π0,E0, σ0)

)
:= tx0(

s1,C1, Ĉ1, (π1,E1, σ1)
)

:= tx1

C := C0 ‖C1 − Ĉ0 ‖ Ĉ1

Ĉ := Ĉ0 ‖ Ĉ1 −C0 ‖C1

π := (π0,i)i∈I0
‖ (π1,i)i∈I1

where Ij := {i : Ĉj,i /∈ C1−j}
// π contains the proofs for coins in Ĉ

σ ← Sig.A
(
sp, (E0, σ0), (E1, σ1)

)
K := (π,E0 ‖E1, σ)
return (s0 + s1,C, Ĉ,K)

MW.M(pp, v̂)

(tx, k̂)← MW.MkTx(pp, (( ), ( ), ( )), v̂)
return (tx, k̂) // If ⊥ ← MkTx, M returns ⊥

MW.S(pp, (C,v,k),v′)

ρ :=
∑

v−
∑

v′

(tx, k̂)← MW.MkTx(pp, (C,v,k),v′ ‖ ρ)
ptx := (tx, ρ, k̂|v′|+1)

return (ptx, (k̂i)|v
′|

i=1)

MW.R(pp, ptx,v′′)

(tx, ρ, k′) := ptx
if ¬MW.V(pp, ptx) or ρ 6=

∑
v′′

return ⊥
C ′ := tx.out[|tx.out|]
(tx′,k′′)← MW.MkTx(pp, (C ′, ρ, k′),v′′)
tx′′ ← MW.A(pp, tx, tx′)
return (tx′′,k′′)

MW.L(pp,Λ, tx)

if Λ.in 6= ( ) or tx.in 6⊆ Λ.out
return ⊥

return MW.A(pp,Λ, tx) // returns ⊥ if Λ or tx invalid

Figure 5.8: The MW aggregate cash system. (Recall that algorithms return ⊥ when one of their
subroutines returns ⊥.)

inside MW.R. We claim that with overwhelming probability, (tx.in ‖ tx′.in)∩(tx.out ‖ tx′.out) = (C ′).
First, tx.in ∩ tx.out = ( ), as otherwise V(pp, tx) = 0 and V(pp, ptx) = 0. By definition of MkTx,
tx′.in = (C ′) and by Lemma 5.9, tx′.out∩ (tx.in ‖ (C ′)) = ( ) with overwhelming probability. Hence:

(tx.in ‖ tx′.in) ∩ (tx.out ‖ tx′.out) = (C ′) ∩ tx.out = (C ′)

and by correctness of A, C ′ is the only coin removed by cut-through during the call tx′′ ←
MW.A(pp, tx, tx′). Thus, the input coin list of tx′′ is the same as that of ptx and the change
is contained in the output coin list of tx′′. The pre-conditions V(pp, ptx) and ∑v′′ = ρ imply that
tx.sply = 0 and tx′.sply = 0, respectively. Hence, tx′′.sply = 0 by correctness of A. Validity of tx′′
and consistency of the new coins follow from correctness of A (and validity of the output of MkTx).

5.4 Inflation resistance

Theorem 5.10 (Inflation-resistance (Def. 5.6)). Assume that the pair (Com,Sig) is EUF-NZO-
secure and that Π is zero-knowledge and simulation-extractable. Then the aggregate cash system
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Game Game0

Γ← GrGen(1λ) ; cp← Com.G(Γ) ; sp← Sig.G(Γ)
(crs, τ)← Π.G(Γ, vmax) ; pp := (cp, sp, crs) ; Λ0 :=

(
0, ( ), ( ), (( ), ( ), e)

)
(Λ, ptx,v)← A(pp,Λ0)
(tx,k)← MW.R(pp, ptx,v)
return V(pp,Λ) and V(pp, tx) and Λ.in = ( )

and tx.in ⊆ Λ.out and Λ.sply <
∑

v

Games Game1 and Game2

Γ← GrGen(1λ) ; cp← Com.G(Γ) ; sp← Sig.G(Γ)
(crs, τ)← Π.G(Γ, vmax) ; pp := (cp, sp, crs) ; Λ0 :=

(
0, ( ), ( ), (( ), ( ), e)

)
(Λ, ptx,v)← A(pp,Λ0)
(tx,k)← MW.R(pp, ptx,v)

if p/vmax ≤ |v|+ |Λ.out|+ |ptx.chg| : return 0 (I)

return V(pp,Λ) and V(pp, tx) and Λ.in = ( )
and ptx.in ⊆ Λ.out and Λ.sply < ptx.rmdr and V(pp, ptx)

Game Game4

Γ← GrGen(1λ) ; cp← Com.G(Γ) ; sp← Sig.G(Γ)
(crs, τ)← Π.G(Γ, vmax) ; pp := (cp, sp, crs) ; Λ0 :=

(
0, ( ), ( ), (( ), ( ), e)

)
(Λ, ptx,v)← A(pp,Λ0)
(s,CΛ, Ĉ,K) := Λ ; (π,E, σ) := K // just parsing

(tx′, ρ, k∗) := ptx ; (s′,C,C′‖ (C∗) ,K ′) := tx′ ; (π′‖ (π∗) ,E′, σ′) := K ′ // just parsing

(tx,k)← MW.R(pp, ptx,v)
if p/vmax ≤ |v|+ |Ĉ|+ |C′| : return 0

(v̂‖v′, k̂‖k′) := Π.Ext(crs, τ, (cp, Ĉ‖C′), π‖π′)
if ¬Rvmax

(
(cp, Ĉ‖C′), (v̂‖v′, k̂‖k′)

)
: return 0

return V(pp,Λ) and V(pp, tx) and CΛ = ( )
and C ⊆ Ĉ and s < ρ and V(pp, ptx)

Figure 5.9: Games modifying INFLMW,A(λ, vmax). Changes w.r.t. previous games are highlighted
or boxed .

MW[Com, Sig,Π] is secure against inflation. More precisely, for any vmax and any PPT adversary
A, there exists a negligible function νA and PPT adversaries B, Bzk and Bse such that

Advinfl
MW,A(λ, vmax) ≤ Adveuf-nzo

Com,Sig,B(λ) + Advs-ext
Π,Rvmax ,Bse(λ) + νA(λ) .

Proof. Consider an adversary A that runs on input public parameters pp = (cp, sp, crs) and an
empty ledger, and wins the game INFLA,MW(λ, vmax) with non-negligible probability. The proof
proceeds via the following sequence of games, defined in Fig. 5.9 (and whose indistinguishability
we argue below):



76 CHAPTER 5. MIMBLEWIMBLE: A PRIVATE CRYPTOCURRENCY

Game0. This is the original inflation game as presented in Definition 5.6 for the specific in-
stantiation Cash := MW where MW.G has been written out and the first winning condition
⊥ 6← MW.L(pp,Λ, tx) has been expanded with all those that are necessary for the specific case
of MW. Hence,

AdvGame0
MW,A (λ, vmax) = Advinfl

MW,A(λ, vmax) . (5.5)

Game1. We strenghten the previous game by adding an extra winning condition. We claim that
this is perfectly indistinguishable from Game0. Since V(pp, tx) = 1, this implies in particular that
MW.R did not return ⊥. Then, tx.in = ptx.in by correctness of MW.R and, by inspection of MW.R,
ptx.rmdr = ∑

v and V(pp, ptx) hold whenever MW.R does not return ⊥. Hence,

AdvGame1
MW,A (λ, vmax) = AdvGame0

MW,A (λ, vmax) . (5.6)

Game2. We modify Game1 so that the experiment returns 0 whenever the adversary creates
too many coins (which may cause the sum of their values to be larger than p). We claim that
the two games are computationally indistinguishable. Since the adversary A runs in polynomial
time, there is a polynomial tA(λ) that upper-bounds the output length of A, and in particular
|v|+ |Λ.out|+ |ptx.chg|. On the other hand, the value space Vcp = Zp is such that blog pc+ 1 = λ;
in other words, p ≥ 2λ−1. Therefore, there exists λ0 ∈ N such that:

vmax · tA(λ) < 2λ−1 ≤ p for any λ ≥ λ0.

Let νA(λ) denote the probability that Game2 returns 0 in line (I). We thus have

AdvGame2
MW,A (λ, vmax) ≥ AdvGame1

MW,A (λ, vmax)− νA(λ) . (5.7)

Since there exists λ0 ∈ N such that |v| + |Λ.out| + |ptx.chg| ≤ tA(λ) < p/vmax for all λ > λ0, we
have νA(λ) = 0 for all such λ. Therefore, νA(λ) is negligible.

Game4. This final game attempts to extract valid openings for Ĉ (the output coins of the ledger)
and C′ (the change coins of the pre-transaction) from the proofs contained in the kernels of Λ and
tx′; it returns 0 if extraction fails for any of these coins. The rest of the game is left unchanged.
Consider an adversary Bse for game S-EXTΠ which on input a simulated CRS crs simulates Game3
for A (again this does not require to query oracle Prove) and returns (Ĉ‖C′, π‖π′) if Game3
returns 1 and aborts otherwise. Note that for Game3 to return 1, all range proofs in the kernel
of Λ and tx′ must be valid. Hence, Bse wins game S-EXTΠ exactly when Game3 returns 1 and
Game4 returns 0, so that

AdvGame4
MW,A (λ, vmax) = AdvGame3

MW,A (λ, vmax)− Advs-ext
Π,Rvmax ,Bse(λ) . (5.8)

The reduction to EUF-NZO. We now construct an adversary B against EUF-NZO-security
of (Com, Sig). B takes as input (cp, sp) and simulates Game4: it retrieves Γ from (cp, sp), generates
crs ← Π.Sim.G(Γ), and runs A on input (cp, sp, crs) and an empty ledger. If the game returns 0,
then B aborts. Otherwise, we show that B can break EUF-NZO each time Game4 returns 1.

Game4 returning 1 implies in particular (in all the following we use the notation of Fig. 5.9):
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(i) V(pp,Λ) = 1; (ii) CΛ = ( ); (iii) C ⊆ Ĉ; (iv) s < ρ;

(v) (|v|+ |Ĉ|+ |C′|) · vmax < p;

(vi) V(pp, ptx) = 1, which in turn implies:

(a) V(pp, tx′) = 1;
(b) s′ := tx′.sply = 0;
(c) C∗ = Com.C(cp, ρ; k∗).

Let v̂ := ∑
v̂ and k̂ := ∑

k̂. Two cases may occur.

• v̂ 6≡ s mod p: In this case, B returns (E, σ, (v̂−s, k̂)). We claim that this is a valid EUF-NZO
solution. By (i), σ is a valid signature for E and ∑E = Exc(Λ) where by definition:

Exc(Λ) = ∑
Ĉ−

∑
CΛ − Com.C(cp, s; 0)

= ∑
Ĉ− Com.C(cp, s; 0) (by (ii))

= ∑|Ĉ|
i=1 Com.C(cp, v̂i; k̂i)− Com.C(cp, s; 0)

= Com.C(cp, v̂ − s; k̂) .

Since v̂ − s 6≡ 0 mod p, (v̂ − s, k̂) is a non-zero opening for ∑E.

• v̂ ≡ s mod p: In this case, B must exploit the pre-transaction (unlike in the previous case
where the ledger was sufficient). Let v′ := ∑

v′ and k′ := ∑
k′. Let us denote with I the set

of indexes such that C = (Ĉ[i])i∈I , which exists by (iii). By (vi)(a), σ′ is a valid signature
for E′ and ∑E′ = Exc(tx′) where by definition:

Exc(tx′) = ∑
C′ + C∗ −

∑
C− Com.C(cp, s′; 0)

= ∑
C′ + C∗ −

∑
C (by (vi)(b))

= ∑
C′ + Com.C(cp, ρ; k∗)−∑C (by (vi)(c))

= Com.C(cp, v′; k′) + Com.C(cp, ρ; k∗)−∑i∈I Com.C(cp, v̂i; k̂i)
= Com.C

(
cp, v′ + ρ−

∑
i∈I v̂i; k′ + k∗ −

∑
i∈I k̂i

)
,

Let v′′ := v′+ρ−∑i∈I v̂i and k′′ := k′+k∗−
∑
i∈I k̂i, so that (v′′, k′′) is an opening of Exc(tx′).

At this stage, we only need to prove that v′′ 6≡ 0 mod p. To see it, note that:

ρ
(iv)
> s ≥ v̂ =

∑
i∈J1,|Ĉ|K

v̂i ≥
∑
i∈I

v̂i,

where the second inequality follows from s ≡ v̂ (mod p), s ≥ 0 (by (i)), and 0 ≤ v̂ <
|Ĉ| · vmax < p (by (v)). Since v′′ ≥ ρ−∑i∈I v̂i, this implies that v′′ > 0. On the other hand:

v′′ ≤ v′ + ρ ≤ (|C′|+ |v|) · vmax < p

again by (v). Hence, 0 < v′′ < p, and this proves our claim. Wrapping up, (E′, σ′, (v′′, k′′))
is a valid EUF-NZO solution.

In both cases, B wins the EUF-NZO game every time Game4 returns 1. We thus have:

Adveuf-nzo
B (λ) ≥ AdvGame4

A (λ, vmax) . (5.9)

The theorem follows from Eqs. (5.5) to (5.9).
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5.5 Theft-resistance

Theorem 5.11 (Theft-resistance (Def. 5.7)). Assume that the pair (Com,Sig) is EUF-CRO-secure
and that Π is zero-knowledge and simulation-extractable. Then the aggregate cash system MW[Com,
Sig,Π] is secure against coin theft. More precisely, for any vmax and any PPT adversary A, which,
via its oracle calls, makes the challenger create at most hA coins and whose queries (C,v′) to
Send satisfy |v′| ≤ nA, there exists a negligible function ν, a PPT adversary B making a single
signing query, and PPT adversaries Bzk and Bse such that

Advsteal
MW,A(λ, vmax) ≤ hA(λ) ·nA(λ) ·

(
Adveuf-cro

Com,Sig,B(λ)+Advzk
Π,Rvmax ,Bzk(λ)+Advs-ext

Π,Rvmax ,Bse(λ)
)
+ν(λ) .

Proof. To simplify the analysis, we first modify game STEAL in that it aborts if the experiment
generates the same coin twice by chance. By Lemma 5.9, the probability ν(λ) of this happening is
negligible. Now consider an adversary A that wins the (modified) game STEAL in Fig. 5.5, thus
Hon * Λ.out holds when the adversary terminates. We proceed via a sequence of games.

Game0. Inspection of the STEAL game shows the following:

• a coin in Hon must have been added to Hon during an oracle call to Mint, Receive or
Ledger; during this, it is also added to Λ.out;

• in order for a coin to be removed from Λ.out, it has to be in tx.in for some tx queried to
Ledger;

• if after such a call the coin is still in Hon and the adversary stops, then it has won.

Following this analysis, we further modify the game STEAL as Game0 in Fig. 5.10 (ignore the
boxes for now), so that it declares A won whenever the condition Hon 6⊆ Λ.out is first satisfied.
We have highlighted the changes w.r.t. the original game in gray. By the above analysis we have

AdvGame0
MW,A (λ, vmax) ≥ Advsteal

MW,A(λ, vmax)− ν(λ) . (5.10)

(Note that A could win Game0 but not STEAL by putting a stolen coin back into the ledger.)

Game1. To simplify the proof, we strengthen the security notion by defining a game that is easier
to win than Game0 and then show that even this is infeasible. Consider an adversary that queries
Send, which creates a pre-transaction ptx with change coins ptx.chg, and then queries Ledger on
a transaction tx that spends coins of ptx.chg that are not in Hon yet. In the original game, this
does not constitute a win, since only coins in Hon can be stolen.

Our strengthened game Game1 does consider such behavior as winning the game. In particular,
the game stores the change coins generated during Send calls in a list Chg and removes them from
Chg once they are added to Hon. It also stops and declares the game won if the adversary manages
to spend a coin from Chg. Game1 is also defined in Fig. 5.10 by including the boxes. Since every
adversary that wins Game0 also wins Game1, we have:

AdvGame1
MW,A (λ, vmax) ≥ AdvGame0

MW,A (λ, vmax) . (5.11)

Inspection of Game1 yields that at any point during the execution the following holds: Chg∪Hon
contains exactly all coins ever produced by the game and Chg ∩ Hon = ( ): coins are produced by
Mint, Receive or Send, where the former two add the coins to Hon and the latter adds them to
Chg; further, all coins removed from Chg by Ledger are added to Hon.
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Games Game0 and Game1

(pp,Λ)← Cash.G(1λ, vmax)

Chg, Hon,Val,Key,Ptx := ( )

AMint,Send,Receive,Ledger(pp,Λ)
return 0

Aux function Store(C,v,k)

Val(C) := v ; Key(C) := k

Oracle Mint(v)

(tx,k)← Cash.M(pp,v)
Λ← Cash.L(pp,Λ, tx)
Hon := Hon ‖ tx.out
Store(tx.out,v,k)
return tx

Oracle Send(C,v′)

if C * Hon or
⋃

ptx∈Ptx ptx.in ∩ C 6= ( )
return ⊥

(ptx,k′)← Cash.S
(
pp,C,Val(C),Key(C),v′

)
Store(ptx.chg,v′,k′); Ptx := Ptx ‖ (ptx)

Chg := Chg ‖ (ptx.chg)

return ptx

Oracle Receive(ptx,v)

(tx,k)← Cash.R(pp, ptx,v)
Λ′ ← Ledger(tx)
if Λ′ = ⊥ : return ⊥
Hon := Hon ‖ (tx.out− ptx.chg)
Store(tx.out− ptx.chg,v,k)
return tx

Oracle Ledger(tx)

Λ′ ← Cash.L(pp,Λ, tx)
if Λ′ = ⊥ : return ⊥ else : Λ := Λ′

for all ptx ∈ Ptx do
if ptx.chg ⊆ tx.out :

Ptx := Ptx − (ptx)
Hon := (Hon− ptx.in) ‖ ptx.chg
Chg := Chg − ptx.chg

if tx.in ∩ Chg 6= ( ) // change stolen!

stop game returning true (I)

if tx.in ∩ Hon 6= ( ) // coin stolen!

stop game returning true (II)
return Λ

Figure 5.10: Reformulated and strengthened coin stealing game.

Game2. Consider a winning execution of Game1 and let tx∗ denote the transaction such that A
wins during call Ledger(tx∗). Define a coin C̃ as follows: if A stole a coin from Chg, i.e., it won
in line (I), then C̃ is the first coin in tx∗.in that is also in Chg; if the adversary won by stealing a
coin from Hon, i.e., in line (II), then C̃ is the first coin in tx∗.in that is also in Hon.

Now consider the case the adversary wins in line (II) and previously made a query Send(C,v′)
with C̃ ∈ C. Let p̃tx, with C̃ ∈ p̃tx.in, be the pre-transaction returned by Send. Then we must
have (∗) p̃tx.chg 6⊆ tx∗.out, as otherwise, during the final call to Ledger, Hon would have been
updated to Hon := (Hon − p̃tx.in) ‖ p̃tx.chg, thereby removing C̃ from Hon, which contradicts the
definition of C̃, as no coin can ever be re-added to Hon. We define ı̃ as the index of the first coin
in p̃tx.chg that is not in tx∗.out, which by (∗) exists.

Having now defined a coin C̃, which uniquely exists for every winning execution of Game1
and ı̃, which uniquely exists if the adversary won in line (II) and queried C 3 C̃ to Send, we define
Game2. Let hA and nA be upper bounds on the number of coins created during the execution
and on the number of change coins in a pre-transaction. Game2 is defined like Game1, except that
at the beginning, Game2 samples ı̃←$ [nA] and guesses C̃ among all (at most hA) produced coins
and returns 0 in case the adversary lost or the guess was not correct. Game2 for the cash system
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MW is depicted in Fig. 5.11. Since the guess is uniform and perfectly hidden from the adversary,
we have:

AdvGame2
MW,A (λ, vmax) ≥ 1

hA · nA
· AdvGame1

MW,A (λ, vmax) . (5.12)

Game3. In Game3 we introduce two modifications in how queries to Send are handled (Fig. 5.11,
including the boxes). First, the game returns 0 if the adversary makes a call Send(C,v′) with
C̃ ∈ C and |v′| < ı̃. If there is a call ptx ← Send(C,v′) with C̃ ∈ C and |v′| ≥ ı̃, then the game
defines C := ptx.chg[̃ı]. Once C has been defined, the game returns 0 if the adversary makes a call
Send(C,v′) with C ∈ C.

We claim that Game3 returns 1 with exactly the same probability as Game2, so that

AdvGame3
MW,A (λ, vmax) = AdvGame2

MW,A (λ, vmax) . (5.13)

This is because the modifications only make the game return 0 earlier. To see this, we consider an
execution of Game2 which returns 1 in line (I) or (II) and show that the corresponding execution
of Game3 also returns 1. Consider first an execution which returns 1 in line (I). Since C̃ ∈ Chg
and Chg ∩ Hon = ( ) (see argument after (5.11)), C̃ is never queried to Send, so Game3 cannot
return 0 in line (IV); moreover, C is never defined, so Game3 cannot return 0 in line (III) either.
Hence, Game3 also returns 1 in line (I). Consider now an execution which returns 1 in line (II)
during a query Ledger(tx∗). We consider several cases depending on the value of p̃tx at the end
of the execution:

1. p̃tx = ⊥: the analysis is like in case (I): C̃ is never queried to Send (as otherwise p̃tx would
get defined) and C is never defined, hence Game3 cannot return 0 in line (III) or (IV).

2. p̃tx 6= ⊥, that is, C̃ has been queried to Send: First, since Game2 arriving in line (II)
implies that the ı̃-th change output of p̃tx exists, Game3 cannot have returned 0 in line (IV).
Hence, C was created and added to Chg. We first argue that C must still be in Chg at
the end of the game: C can only be removed from Chg during an oracle call Ledger(tx)
with p̃tx.chg ⊆ tx.out. However, at the same time such a call removes p̃tx.in from Hon.
This however contradicts that Game2 returns 1 in line (II), which implies C̃ ∈ Hon when by
construction we have C̃ ∈ p̃tx.in. We conclude that C ∈ Chg when the game returns. Hence
C cannot have been queried to Send (for which it must be in Hon) and therefore Game3
does not return 0 in line (III).

Game4. We define Game4, a slight variation of Game3. When C̃ is created, instead of running
Π.P on the witness (v, k), it sets πi ← Π.Sim(crs, τ, (cp, Ci)); if A queries Send(C,v′) with C̃ ∈ C
and there is an ı̃-th change coin C, it also simulates the proof for C.

Game4 is easily shown to be indistinguishable from Game3 by constructing the following ad-
versary Bzk for game ZKΠ,Rvmax : it receives crs (which is either produced by Π.G or by Π.Sim) and
simulates Game3, querying its oracle Prove((cp, C), (v, k)) when producing the proof for C = C̃
or C = C; Bzk returns 1 if A wins Game3 and 0 otherwise. Since Bzk perfectly simulates Game3
or Game4 depending on the bit of its ZK challenger, we have:

AdvGame4
MW,A (λ, vmax) ≥ AdvGame3

MW,A (λ, vmax)− Advzk
Π,Rvmax ,Bzk(λ) . (5.14)
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Games Game2 and Game3

c̃←$ [hA] ; ı̃←$ [nA] ; c := 0 ;

C̃ := ⊥ ; p̃tx := ⊥ ; C := ⊥
(pp,Λ)← MW.G(1λ, vmax)
Chg,Hon,Val,Key,Ptx := ( )
AMint,Send,Receive,Ledger(pp,Λ)
return 0

Aux function Store(C,v,k)

Val(C) := v ; Key(C) := k

MW.Coin(pp,v)

for i = 1 . . . |v| do
c := c+ 1 // increase coin ctr

Ci := Com.C(cp, vi; ki)
πi ← Π.P(crs, (cp, Ci), (vi, ki))
if c = c̃ : C̃ := Ci

return
(
(Ci)|v|i=1 , (ki)

|v|
i=1 , (πi)

|v|
i=1
)

Oracle Send(C,v′)

if C * Hon or
⋃

ptx∈Ptx ptx.in ∩ C 6= ( )
return ⊥

(ptx,k′)← MW.S
(
pp,C,Val(C),Key(C),v′

)
if C̃ ∈ C : p̃tx := ptx // this can only happen once

Store(ptx.chg,v′,k′) ; Ptx := Ptx ‖ (ptx)
Chg := Chg ‖ (ptx.chg) ; return ptx

MW.S(pp, (C,v,k),v′)

ρ :=
∑

v−
∑

v′

if ¬Cons(pp,C,v,k) : return ⊥
if v ‖v′ ‖ ρ 6⊆ [0, vmax]∗ : return ⊥

if C ∈ C : stop game returning false (III)
if C̃ ∈ C // ptx being created will be p̃tx

if |v′| < ı̃ : stop game returning false (IV)
(Ĉ, k̂, π̂)← MW.Coin(pp,v′ ‖ ρ)
C := Ĉ[̃ı]

else : (Ĉ, k̂, π̂)← MW.Coin(pp,v′ ‖ ρ)
σ ← Sig.S(sp,

∑
k̂−

∑
k, e)

tx :=
(
0,C, Ĉ,

(
π̂,
∑

Ĉ−
∑

C, σ
))

return
(
ptx := (tx, ρ, k̂|v′|+1), (k̂i)|v

′|
i=1
)

Oracle Ledger(tx)

Λ′ ← MW.L(pp,Λ, tx)
if Λ′ = ⊥ : return ⊥ else : Λ := Λ′

for all ptx ∈ Ptx do
if ptx.chg ⊆ tx.out

Ptx := Ptx − (ptx)
Hon := (Hon− ptx.in) ‖ ptx.chg
Chg := Chg − ptx.chg

if tx.in ∩ Chg 6= ( )
if C̃ = tx.in[j] with j = min{i | tx.in[i]∈Chg}
stop game returning true (I)

else: stop game returning false
if tx.in ∩ Hon 6= ( )

if C̃ = tx.in[j] with j = min{i | tx.in[i]∈Hon}
∧ (p̃tx = ⊥ ∨ ı̃ = min{i | p̃tx.chg[i] /∈ tx.out})
stop game returning true (II)

else: stop game returning false
return Λ

Figure 5.11: Game2 and Game3 for Cash := MW, where oracles Mint and Receive are defined
as in Fig. 5.10 and MW.G, MW.M, MW.L, and MW.R are defined as in Fig. 5.8. Changes from
Game1 to Game2 are highlighted and changes from Game2 to Game3 are boxed .

Game5. Our final game will be Game5, which is defined as Game4, except that if a call Ledger(tx∗)
ends up in line (I) or (II), then instead of immediately returning 1, Game5 does the following: let
tx∗ = (s,C, Ĉ, (π̂,E, σ)); let C′ := C−(C̃) and for all C′ (for which we have C′ ⊆ Λ.out; otherwise
MW.L, and thus Ledger, would return ⊥), it collects the corresponding proofs π′ in the kernel of
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the ledger and it runs:

• (v,k) := Π.Ext(crs, τ, (cp,C′), π′)

• (v̂, k̂) := Π.Ext(crs, τ, (cp, Ĉ), π̂)

If we have ¬Rvmax

(
(cp,C′ ‖ Ĉ), (v ‖ v̂,k ‖ k̂)

)
then Game5 returns 0; otherwise, it returns 1.

We show that Game5 is indistinguishable from Game4. To start with, note that since MW.L(pp,Λ,
tx∗) did not return ⊥, both Λ and tx∗ are valid and thus the following hold:

• Π.V(crs,C′, π′) and

• Π.V(crs, Ĉ, π̂).

We construct an adversary Bse against simulation-extractability of Π, which receives a simulated
CRS crs and has access to an oracle Prove, as follows. Adversary Bse simulates Game4, using its
oracle Prove (since it does not have the simulation trapdoor) for the simulated proofs for C̃ and
C; if Game4 ends up in lines (I) or (II), Bse returns (C′ ‖ Ĉ, π′ ‖ π̂); otherwise Bse aborts. Since
Bse wins game S-EXTΠ whenever Game4 returns 1 while Game5 would not, we have

AdvGame5
MW,A (λ, vmax) ≥ AdvGame4

MW,A (λ, vmax)− Advs-ext
Π,Rvmax ,Bse(λ) . (5.15)

The reduction to EUF-CRO. We now construct an adversary B against EUF-CRO of (Com, Sig),
which makes a single call to its Sign′ oracle, and show that B breaks EUF-CRO with the same
probability as A wins Game5. The modified procedures MW.Coin, MW.MkTx (which uses MW.Coin
and is used by Mint and Receive) and MW.S are formally defined in Fig. 5.12 (MW.Coin now
has an additional parameter j, which is set to ⊥ by default).
B receives input (cp, sp, C∗). It computes (crs, τ)← Π.G(Γ, vmax) and picks random c̃ and ı̃. It

runs A on pp := (cp, sp, crs) and simulates all of A’s oracles as defined by Game5 (cf. also Fig. 5.11),
except that it embeds the challenge C∗ into C̃ and, in case C̃ is queried to Send, it also embeds
C∗ into the ı̃-th change coin C. If there is no ı̃-th change coin, in particular, if there are no change
coins, then B aborts (as Game5 would return 0 anyway).

By “embedding” C∗ into C̃, we mean that instead of computing C̃ as C(cp, v, k), B sets C̃ :=
C∗ + C(cp, v, k) and does thus not know C̃’s actual key k̃ = k + r∗, where C∗ = r∗G.
B uses the zero-knowledge simulator to produce the range proofs for the two coins C̃ and C.

Moreover, when C̃ is created by Mint, Send or Receive, the transaction containing it as its j-th
output must be signed. B uses its related-key signing oracle Sign′ to do this: letting (ki)i and
(k̂i)i 6=j be the keys of the inputs and other outputs of the transaction, B requires a signature under∑
i 6=j k̂i + (kj + r∗) −∑i ki; it thus makes a query Sign′(∑ k̂ −

∑
k, e) (this is the only time B

makes a query).
Finally, consider the query Send(C,v′) with C[j] = C̃ for some j, which would also require

the signing key for C̃ in order to compute the resulting pre-transaction:

p̃tx =
(
tx = (0,C, Ĉ, (π̂,∑ Ĉ−

∑
C, σ)), ρ, k̂|v|+1

)
,

where σ is a signature for the verification key ∑ Ĉ−
∑

C. Since B embedded C∗ in C via C̃ and
in Ĉ via C, the two occurrences cancel out and B knows the corresponding signing key. More
precisely, ∑ k̂−

∑
k is the signing key for ∑ Ĉ−

∑
C, since:∑

Ĉ−
∑

C = ∑
i 6=j Com.C(cp, v̂i; k̂i) +

(
C∗ + Com.C(cp, vj ; kj)

)
−
∑
i 6=ı̃ Com.C(cp, vi; ki)−

(
C∗ + Com.C(cp, vı̃; kı̃)

)
= Com.C

(
cp, 0;∑i k̂i −

∑
ki
)
.
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Note that there can only be one Send query containing C̃. The only other query which B cannot
answer (as it lacks a necessary coin key) is Send(C,v′) with C ∈ C. If this happens then B aborts.
Hence, B perfectly simulates Game5.

We now show how B computes a solution for the EUF-CRO challenge whenever A wins Game5.
Fig. 5.12 specifies B’s simulation of the oracle Ledger and its behavior in case A wins Game5
(via the procedure Finalize). We claim that whenever Finalize(tx∗) is called, the following holds:

(i) C̃ ∈ tx∗.in; (ii) C̃ /∈ tx∗.out; (iii) C /∈ tx∗.in; (iv) C /∈ tx∗.out.
Property (i) is clearly necessary for Finalize(tx∗) to be called. Property (ii) must hold as

otherwise tx∗.in ∩ tx∗.out 6= ( ), which implies V(pp, tx∗) = 0 and hence MW.A(pp,Λ, tx∗) (and
hence MW.L(pp,Λ, tx∗)) would return ⊥. To prove (iii) and (iv), we distinguish two cases. Assume
first that Finalize(tx∗) is called in line (I). Since C̃ ∈ Chg and Chg ∩ Hon = ( ) (see argument
after (5.11)), C̃ has never been queried to Send, thus C has never been defined and (iii) and
(iv) trivially hold. Assume now that Finalize(tx∗) is called in line (II). If p̃tx = ⊥ then as before
C = ⊥ and (iii) and (iv) trivially hold. If p̃tx 6= ⊥, then necessarily (by inspection of the code)
p̃tx.chg[̃ı] = C /∈ tx∗.out and (iv) holds. It remains to prove (iii). As in the reasoning for Game3,
we have C ∈ Chg. Moreover, we have tx∗.in ∩ Chg = ( ), since otherwise B would have returned in
line (I) of Fig. 5.12. Together this implies C /∈ tx∗.in.

It is easily seen that all coins in Λ.out have a valid proof in the ledger’s kernel (otherwise MW.L
(and thus Ledger) would not have included them in Λ.out). The reduction can thus use the
extractor to obtain the values and keys of the coins in C − (C̃): (vi)i∈[|C|]\(j) and (ki)i∈[|C|]\(j).
From the proofs π contained in tx∗, it can moreover extract the values and keys of the output coins
Ĉ: (v̂i)i∈[|Ĉ|] and (k̂i)i∈[|Ĉ|]. Since MW.V(pp, tx∗), we have:

(a) Sig.V(sp,E, σ)
(b) ∑

E = ∑
Ĉ−

∑
C− Com.C(cp, s; 0)

= ∑
i Ĉi −

(∑
i 6=j Ci + C∗ + Com.C(cp, vj ; kj)

)
− Com.C(cp, s; 0)

= −C∗ + Com.C(cp,
∑
i v̂i −

∑
i vi − s︸ ︷︷ ︸

=:v

;∑i k̂i −
∑
i ki︸ ︷︷ ︸

=:r

)

B thus returns (E, σ, (v, r)), which makes it win the game EUF-CRO.
Together this shows that whenever A wins Game5 then B wins EUF-CRO, that is

Adveuf-cro
Com,Sig,B(λ) = AdvGame5

MW,A (λ, vmax) . (5.16)

The theorem now follows from Eqs. (5.10) to (5.16).

5.6 Transaction-indistinguishability

Theorem 5.12 (Transaction indistinguishability (Def. 5.8)). Assume that Com is a homomorphic
hiding commitment scheme, Sig a compatible signature scheme, and Π is a zero-knowledge proof
system. Then the aggregate cash system MW[Com,Sig,Π] is transaction-indistinguishable. More
precisely, for any vmax and any PPT adversary A which makes at most qA queries to its oracle
Tx, there exist PPT adversaries Bzk and Bhid such that:

Advtx-ind
MW,A(λ, vmax) ≤ Advzk

Π,Rvmax ,Bzk(λ) + qA · Advhid
Com,Bhid(λ) .
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Adversary BSign′(cp, sp, C∗)

c̃←$ [hA] ; ı̃←$ [nA] ; c := 0
C̃ := ⊥ ; p̃tx := ⊥ ; C := ⊥
(crs, τ)← Π.G(Γ, vmax)
Λ :=

(
0, ( ), ( ), (( ), ( ), e)

)
Chg,Hon,Val,Key,Ptx := ( )
AMint,Send,Receive,Ledger((cp, sp, crs),Λ)
return ⊥ // if not stopped earlier

MW.Coin(pp,v, j)

for i = 1 . . . |v| do
c := c+ 1 ; ki←$Rcp

if c = c̃ or i = j :
Ci := C∗ + Com.C(cp, vi; ki) // embed

πi ← Π.Sim(crs, τ, (cp, Ci)) // challenge

else:Ci := Com.C(cp, vi; ki)
πi ← Π.P(crs, (cp, Ci), (vi, ki))

if c = c̃ : C̃ := Ci

return
(

(Ci)|v|i=1 , (ki)
|v|
i=1 , (πi)

|v|
i=1
)

MW.MkTx(pp, (C,v,k), v̂)

if ¬Cons(pp,C,v,k) : return ⊥
s :=

∑
v̂−

∑
v

if v ‖ v̂ 6⊆ [0, vmax]∗ or s < 0
return ⊥

(Ĉ, k̂, π̂)← MW.Coin(pp, v̂)
if C̃ ∈ Ĉ // C̃ created in this tx

Sign′(
∑

k̂−
∑

k, e)
else :σ← Sig.S(sp,

∑
k̂−

∑
k, e)

tx :=
(
s,C, Ĉ,

(
π̂,
∑

Ĉ−
∑

C, σ
))

return (tx, k̂)

Procedure Finalize(tx)

tx = (s,C, Ĉ, (π̂,E, σ)) ; C′ := C− (C̃)
let π′ be the proofs for C′ in Λ
(v,k) := Π.Ext(crs, τ, (cp,C′), π′)
(v̂, k̂) := Π.Ext(crs, τ, (cp, Ĉ), π̂)
if ¬Rvmax

(
(cp,C′ ‖ Ĉ), (v ‖ v̂,k ‖ k̂)

)
abort

return (E, σ,
∑

v̂−
∑

v− s,
∑

k̂−
∑

k)

MW.S(pp, (C,v,k),v′)

ρ :=
∑

v−
∑

v′

if ¬Cons(pp,C,v,k) : return ⊥
if v ‖v′ ‖ ρ 6⊆ [0, vmax]∗ : return ⊥
if C ∈ C : abort
if C̃ ∈ C // ptx being created will be p̃tx

if |v′| < ı̃ : abort
// embed challenge in ı̃-th change coin:

(Ĉ, k̂, π̂)← MW.Coin(pp,v′ ‖ ρ, ı̃)
C := Ĉ[̃ı]

else : (Ĉ, k̂, π̂)← MW.Coin(pp,v′ ‖ ρ)
σ ← Sig.S(sp,

∑
k̂−

∑
k, e)

tx :=
(
0,C, Ĉ,

(
π̂,
∑

Ĉ−
∑

C, σ
))

return
(
ptx := (tx, ρ, k̂|v′|+1), (k̂i)|v

′|
i=1
)

Oracle Ledger(tx)

Λ′ ← MW.L(pp,Λ, tx)
if Λ′ = ⊥ : return ⊥ else : Λ := Λ′

for all ptx ∈ Ptx do
if ptx.chg ⊆ tx.out

Ptx := Ptx − (ptx)
Hon := (Hon− ptx.in) ‖ ptx.chg
Chg := Chg − ptx.chg

if tx.in ∩ Chg 6= ( )
if C̃ = tx.in[j] with j = min{i | tx.in[i] ∈ Chg}

Finalize(tx)
else : abort (I)

if tx.in ∩ Hon 6= ( )
if C̃ = tx.in[j] with j = min{i | tx.in[i] ∈ Hon} :
∧ (p̃tx = ⊥ ∨ ı̃ = min{i | p̃tx.chg[i] /∈ tx.out})

// C = p̃tx.chg[̃ı]

Finalize(tx)
else : abort (II)

return Λ

Figure 5.12: Reduction B simulating Game5 (only showing oracles that differ from Fig. 5.11).
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Game HID-PRRb
Com,A(1λ)

Γ← GrGen(1λ)
cp← Com.G(Γ)
(v0,v1, state)← A(cp)
if |v0| 6= |v1| or

∑
v0 6=

∑
v1

return 0
(C, r) := Com.C(cp,vb)
b′ ← A(C,

∑
r, state)

return b′

Adversary B(cp)

(v0,v1, state)← A(cp)
if |v0| 6= |v1| or

∑
v0 6=

∑
v1

return 0
for i = 1 . . . |v0| − 1 do
// oracle query in game HIDCom:

Ci ← Commit(v0[i], v1[i])
C′ := (Ci)|v0|−1

i=1 ; k←$Rcp

b′ ← A
(
C′ ‖

(
Com.C(cp,

∑
v0; k)−

∑
C′
)
, k), state

)
return b′

Figure 5.13: Game HID-PRR and adversary B for Lemma 5.14.

Before proving the theorem, we show a fact that will be useful for the proof. Consider commit-
ment parameters cp for Com and let vb, v′b ∈ Vcp; then the following distributions are all equivalent:[

r, r′←$Rcp : C := Com.C(cp, vb; r), C ′ := Com.C(cp, v′b; r′); k := r + r′
]
, (5.17)[

r, r′←$Rcp : C := Com.C(cp, vb; r), C ′ := Com.C(cp, vb + v′b; r + r′)− C; k := r + r′
]
, (5.18)[

r, k←$Rcp : C := Com.C(cp, vb; r), C ′ := Com.C(cp, vb + v′b; k)− C, k
]
. (5.19)

(The distribution in) (5.18) is equivalent to (the one in) (5.17) since Com is additively homomor-
phic; (5.19) is equivalent to (5.18) since Rcp is a group and therefore r + r′ and k are equally
distributed.

Now consider an adversary A that chooses v0, v
′
0, v1, v

′
1 ∈ Vcp such that v0 + v′0 = v1 + v′1 and

receives a tuple (C,C ′, k) as defined in (5.17) for a random b←$ {0, 1} and A has to guess b. Then
if Com is hiding, A’s advantage will be negligible; intuitively, this is because (5.17) is distributed
as (5.19) and in the latter the only thing depending on b is C (since v0 + v′0 = v1 + v′1). More
formally, one can construct an adversary B for the game HIDb

Com,A(1λ) game which queries its
challenge oracle on (v0, v1) to get C and simulates distribution (5.17) that A expects using (5.19).

We generalize this indistinguishability notion to vectors of values of length more than two as
follows:

Definition 5.13 (HID-PRR). Let game HID-PRR be as defined in Fig. 5.13. A commitment
scheme Com is hiding under partially revealed randomness if for any PPT adversary A:

Advhid-prr
Com,A(λ) :=

∣∣∣Pr
[
HID-PRR0

Com,A(λ) = 1
]
− Pr

[
HID-PRR1

Com,A(λ) = 1
]∣∣∣ = negl(λ) .

The following is proved by generalizing reduction B sketched above.

Lemma 5.14. Any hiding homomorphic commitment scheme Com is also HID-PRR. More pre-
cisely, for any PPT adversary A, there exists a PPT adversary B such that:

Advhid-prr
Com,A(λ) ≤ Advhid

Com,B(λ) .

Proof. Fix values vb and let v′b denote the first |vb| − 1 components of vb. Then, as above, the
following distributions can be shown to be the same:[

r←$ (Rcp)|vb| : C := Com.C(cp,vb; r), k := ∑
r
]
,[

r′←$ (Rcp)|vb|−1, k←$Rcp :
(
C′ := Com.C(cp,v′b; r′)

)
‖
(
Com.C(cp,

∑
vb; k)−∑C′

)
, k
]
.
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IND-TXb
MW,A(λ, vmax) Game1

Γ← GrGen(1λ)
cp← Com.G(Γ)
sp← Sig.G(Γ)
(crs, τ)← Π.G(Γ, vmax)
b′ ← ATx(pp)
return b′

MW.Coin((cp, sp, crs),v)

for i = 1 . . . |v| do
ki←$Rcp

Ci := Com.C(cp, vi; ki)
πi ← Π.P(crs, (cp, Ci), (vi, ki))
πi ← Π.Sim(crs, τ, (cp, Ci))

return
(
(Ci)|v|i=1, (ki)

|v|
i=1, (πi)

|v|
i=1
)

MW.MkTx(pp, (C,v,k), v̂)

s :=
∑

v̂−
∑

v
(Ĉ, k̂, π̂)← MW.Coin(pp, v̂)
E :=

∑
Ĉ−

∑
C− Com.C(cp, s; 0)

σ ← Sig.S(sp,
∑

k̂−
∑

k, e)
return (tx := (s,C, Ĉ, (π̂, E, σ)), k̂)

Oracle Tx((v0,v′0,v′′0), (v1,v′1,v′′1))

if not (v0,v′0,v′′0 ,v1,v′1,v′′1 ∈ [0, vmax]∗)
return ⊥

if |v0| 6= |v1| or |v′0|+ |v′′0 | 6= |v′1|+ |v′′1 |
return ⊥

if
∑

v0 6=
∑

(v′0 ‖v′′0) or
∑

v1 6=
∑

(v′1 ‖v′′1)
return ⊥

// (tx,k)← M(pp,vb)

(tx,k)← MW.MkTx(pp, (( ), ( ), ( )),vb)
(
∑

vb, ( ),C,K) := tx
// (ptx,k′)← S(pp, (tx.out,vb,k),v′b)

ρ :=
∑

vb −
∑

v′b
(tx′,k′ ‖ k∗)← MW.MkTx(pp, (C,vb,k),v′b ‖ ρ)(
0,C,C′ ‖C∗, (π′ ‖π∗, E′, σ′)

)
:= tx′

// where E′ =
∑

C′ + C∗ −
∑

C− 0

// and σ′ ← S
(

sp,
∑

k′ + k∗ −
∑

k, e
)

// (tx∗,k′′)← R(pp, ptx,v′′b ) with ptx := (tx′, ρ, k∗)

// note that ρ =
∑

v′′b
(tx′′,k′′)← MW.MkTx(pp, (C∗, ρ, k∗),v′′b )(
0, (C∗),C′′, (π′′, E′′, σ′′)

)
:= tx′′

// where E′′ =
∑

C′′ − C∗ − 0

// and σ′′ ← S
(

sp,
∑

k′′ − k∗, e
)

tx∗ ← MW.A(pp, tx′, tx′′)
// if tx∗ 6= ⊥:(

0,C,C′ ‖C′′, (π′ ‖π′′, (E′, E′′), σ∗)
)

:= tx∗

// where σ∗ ← Sig.A
(

sp, ((E′), σ′), ((E′′), σ′′)
)

return tx∗

Figure 5.14: Transaction-indistinguishability game for MW and hybrid game .

Let A be an adversary for game HID-PRRCom. We construct an adversary B for game HIDCom
as shown in Fig. 5.13. By the observation above, game HID-PRRCom is perfectly simulated by
B. Hence, B wins HIDCom with the same advantage as A distinguishes b = 0 from b = 1 in game
HID-PRRCom.

Before proving Theorem 5.12, we state another simple fact.

Lemma 5.15. Let Com be an (additively) homomorphic commitment scheme, parameters cp be
output by Com.G, v ∈ Vcp and r ∈ Rcp. Then Com.C(cp,−v;−r) = −Com.C(cp, v; r).

Proof. We have Com.C(cp, 0; 0) = 0, since Com.C(cp, v; r) = Com.C(cp, 0+v; 0+r) = Com.C(cp, 0; 0)+
Com.C(cp, v; r). This implies 0 = Com.C(cp, v − v; r − r) = Com.C(cp, v; r) + Com.C(cp,−v;−r),
which shows the statement.
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Proof of Theorem 5.12. We start with instantiating Cash in Fig. 5.6 with MW and write out game
TX-INDMW in Fig. 5.14, where the boxes should be ignored. (We have simplified the description
by omitting checks for inputs that are created correctly by the experiment.) We next define a game
Game1 (Fig. 5.14, including the boxes) where all range proofs are simulated. It is straightforward
to construct an adversary Bzk so that

AdvGame1
MW,A (λ, vmax) ≥ Advtx-ind

MW,A(λ, vmax)− Advzk
Π,Rvmax ,Bzk(λ) .

By Lemma 5.14, in order to prove the theorem, it suffices to construct B such that

Advhid-prr
Com,B (λ) ≥ 1

qA
· AdvGame1

MW,A (λ, vmax) . (5.20)

Consider a Tx-oracle query (v0,v′0,v′′0), (v1,v′1,v′′1) with v0,v′0,v′′0,v1,v′1,v′′1 ∈ [0, vmax]∗ and

|v0| = |v1|
|v′0|+ |v′′0| = |v′1|+ |v′′1|

∑
v′0 +∑

v′′0 −
∑

v0 = 0 = ∑
v′1 +∑

v′′1 −
∑

v1 . (5.21)

We will show that the response of Tx is independent of b. (If one of the conditions in (5.21) does
not hold, then Tx returns ⊥, independently of b). By Fig. 5.14, the oracle reply is of the form

tx∗ =
(
0,C,C′ ‖C′′,

(
π′ ‖π′′, (E′, E′′),Sig.A

(
sp, ((E′), σ′), ((E′′), σ′′)

)))
with (5.22)

σ′ ← S
(
sp,
∑

k′ + k∗ −
∑

k, e
)

σ′′ ← S
(
sp,
∑

k′′ − k∗, e
)

E′ = ∑
C′ + C∗ −

∑
C = Com.C(cp,

∑
v′b + ρ−

∑
vb;

∑
k′ + k∗ −

∑
k)

= Com.C(cp, 0; ∑k′ + k∗ −
∑

k) (5.23)
E′′ = ∑

C′′ − C∗ = Com.C(cp,
∑

v′′b − ρ; ∑k′′ − k∗) = Com.C(cp, 0; ∑k′′ − k∗) , (5.24)

where the last equations in (5.23) and (5.24) follow since Com is homomorphic and ∑vb−
∑

v′b =
ρ = ∑

v′′b , by the definition of ρ and (5.21).
On the other hand, for vectors vb,v′b,v′′b , for which (5.21) holds, we have that the distribution[

k ‖k′ ‖k′′←$R|v0|+|v′0|+|v′′0 |cp : C ‖C′ ‖C′′, k := ∑
k′ +∑

k′′ −
∑

k
]

(5.25)

with C := C(cp,vb,k), C′ := C(cp,v′b,k′) and C′′ := C(cp,v′′b ,k′′) are indistinguishable for b = 0
or b = 1. This follows by applying Lemma 5.14 to vectors −vb ‖v′b ‖v′′b , for b = 0, 1, and then
using Lemma 5.15. From (5.25) we get that[

k ‖k′ ‖k′′ ‖ (k∗)←$R|v0|+|v′0|+|v′′0 |+1
cp : C ‖C′ ‖C′′, r′ := ∑

k′+k∗−
∑

k, r′′ := ∑
k′′−k∗

]
(5.26)

is also indistinguishable for b = 0 and b = 1: We could construct a reduction B(5.26) that, given
(C ‖C′ ‖C′′, k) distributed as in (5.25), samples r ← Rcp and runs a distinguisher for (5.26) on
(C ‖C′ ‖C′′, r, k − r); the latter is distributed correctly, since r′ and r′′ are uniform conditioned
on r′ + r′′ = k.

Since oracle Tx does not reveal C∗ and thus k∗ is perfectly hidden, (5.26) implies that tx∗ in
(5.22) is also indistinguishable for b = 0 or b = 1: we can construct an adversary B(5.22) which,
given an output of the form (5.26), computes a tuple of the form (5.22) by setting:

π′ ← Π.Sim(crs, τ, (cp,C′)) σ′ ← Sig.S
(
sp, r′, e

)
E′ = Com.C(cp, 0; r′)

π′′ ← Π.Sim(crs, τ, (cp,C′′)) σ′′ ← Sig.S
(
sp, r′′, e

)
E′′ = Com.C(cp, 0; r′′) ,

where we additionally used that |C0| = |C1| and |(C′0 ‖C′′0)| = |(C′1 ‖C′′1)|, as implied by (5.21).
All oracle replies are thus distinguishable with advantage at most Advhid-prr

Com,B (λ), where B combines
adversaries B(5.26) and B(5.22), defined above. This shows (5.20) and thus the theorem.
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Game DLGrGen,A(λ)

Γ := (p,G, G)← GrGen(1λ)
x←$Zp ; X := xG

x′ ← A(Γ, X)
return x′ = x

Game CDHGrGen′,A(λ)

Γ′ := (p,G,GT , e,G)← GrGen′(1λ)
x←$Zp ; y←$Zp
Z ← A(Γ, xG, yG)
return Z = xyG

Figure 5.15: The Discrete Logarithm and Computational Diffie-Hellman games.

5.7 Instantiations

A group description is a tuple Γ = (p,G, G) where p is an odd prime of length λ, G is an additive
abelian group of prime order p, and G is a generator of G. A bilinear group description is a
tuple Γ′ = (p,G,GT , e,G) where p is an odd prime of length λ, G and GT are groups of order
p (we denote GT multiplicatively), G is a generator of G and e is an efficiently computable non-
degenerate bilinear map e : G×G→ GT (i.e., the map e is such that for all U, V ∈ G and a, b ∈ Zp,
e(aU, bV ) = e(U, V )ab, and e(G,G) is a generator of GT ). We assume the existence of a PPT
algorithm GrGen (GrGen′) that, given as input the security parameter in unary 1λ, outputs a group
description Γ (a bilinear group description Γ′).

For groups generated by GrGen we will make the assumption that discrete logarithms (DL) are
hard to compute, while for bilinear groups generated by GrGen′ we will make the computational
Diffie-Hellman (CDH) assumption. They state that the advantages:

Advdl
GrGen,Adl(λ) := Pr

[
DLGrGen,Adl

(λ) = 1
]

Advcdh
GrGen′,Acdh

(λ) := Pr
[
CDHGrGen′,Acdh

(λ) = 1
]

and are negligible in λ for all PPT adversaries Adl and Acdh, where games DL and CDH are
specified in Fig. 5.15.

For the Pedersen-Schnorr (Pedersen-BLS) instantiation, the main setup algorithm GrGen con-
sists of a (bilinear) group generation algorithm GrGen (GrGen′).

Pedersen Commitments. The homomorphic commitment scheme proposed by Pedersen [Ped92],
denoted PDS, is defined as:

PDS.G(Γ)

(p,G, G) := Γ ; H ←$G
return cp := (Γ, H)

PDS.C(cp, v, r)

((p,G, G), H) := cp
return C := vH + rG

A commitment C is opened by providing the value v and the randomness r. Pedersen com-
mitments are computationally binding under the DL assumption and perfectly hiding. Since
PDS.C(cp, v0; r0) + PDS.C(cp, v1; r1) = PDS.C(cp, v0 + v1; r0 + r1), Pedersen commitments are ad-
ditively homomorphic. PDS translates immediately to the case of a bilinear group description
Γ′.

Schnorr Signatures. We recall the Schnorr signature scheme [Sch91] in Fig. 5.16. Note that
we use the key-prefixed variant of the scheme, where the public key is hashed together with the
commitment and the message. This corresponds to the strong Fiat-Shamir transform as defined
in [BPW12], which ensures extractability in situations where the adversary can select public keys
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SCH.G(Γ)

(p,G, G) := Γ
Select H : {0, 1}∗ → Zp
return sp := (Γ,H)

SCH.K(sp)

((p,G, G),H) := sp
x←$Zp; X := xG

sk := x; pk := X

return (sk, pk)

SCH.A(sp, (L0,σ0), (L1,σ1))

return σ0 ‖σ1

SCH.S(sp, sk,m)

((p,G, G),H) := sp
x := sk; X := xG

r←$Zp; R := rG

c := H(X,R,m); s := r + cx

return σ := (R, s)

SCH.V(sp,L, σ)

((p,G, G),H) := sp
((Xi,mi))ni=1 := L
((Ri, si))ni=1 := σ

for i in J1, nK do ci := H(Xi, Ri,mi)
return

∧n
i=1(siG = Ri + ciXi)

Figure 5.16: The Schnorr aggregate signature scheme.

adaptively, which is the case in the EUF-NZO and EUF-CRO security games. Note that no
non-interactive aggregation procedure is known for Schnorr signatures other than trivially con-
catenating individual signatures.

Our security proofs for the Pedersen-Schnorr pair are in the random oracle model and make
use of the standard rewinding technique of Pointcheval and Stern [PS00] for extracting discrete
logarithms from a successful adversary. This requires some particular care since in both the EUF-
NZO and the EUF-CRO games, the adversary can output multiple signatures for distinct public
keys for which the reduction must extract discrete logarithms. Fortunately, a generalized forking
lemma by Bagherzandi, Cheon, and Jarecki [BCJ08] shows that for Schnorr signatures, one can
perform multiple extractions efficiently. Equipped with it, we can prove the following two lemmas,
whose proofs can be found in the full version of the article [FOS19].

Lemma 5.16. The pair (PDS,SCH) is EUF-NZO-secure in the random oracle model under the DL
assumption. More precisely, for any p.p.t. adversary A making at most qh random oracle queries
and returning a forgery for a list of size at most N , there exists a PPT adversary B running in
time at most 8N2qh/δA · ln(8N/δA) · tA, where δA = Adveuf-nzo

PDS,SCH,A(λ) and tA is the running time
of A, such that:

Adveuf-nzo
PDS,SCH,A(λ) ≤ 8 Advdl

GrGen,B(λ).

Lemma 5.17. The pair (PDS,SCH) is EUF-CRO-secure in the random oracle model under the
DL assumption. More precisely, for any p.p.t. adversary A making at most qh random oracle
queries and qs signature queries, returning a forgery for a list of size at most N , and such that
δA = Adveuf-cro

PDS,SCH,A(λ) ≥ 2qs/p, there exists a PPT adversary B running in time at most 16N2(qh+
qs)/δA · ln(16N/δA) · tA, where tA is the running time of A, such that:

Adveuf-nzo
PDS,SCH,A(λ) ≤ Advdl

GrGen,B(λ) + qs + 8
p

.

Corollary 5.18. MW[PDS,SCH,Π] with Π zero-knowledge and simulation-extractable is inflation-
resistant and theft-resistant in the random oracle model under the DL assumption.
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BLS.G(Γ′)

(p,G,GT , e,G) := Γ′

Select H : {0, 1}∗ → G
return sp := (Γ′,H)

BLS.K(sp)

((p,G,GT , e,G),H) := sp
x←$Zp; X := xG

sk := x; pk := X

return (sk, pk)

BLS.A(sp, (L0, σ0), (L1, σ1))

return σ0 + σ1

BLS.S(sp, sk,m)

((p,G,GT , e,G),H) := sp
x := sk; X := xG

Q := H(X,m)
return σ := xQ

BLS.V(sp,L, σ)

((p,G,GT , e,G),H) := sp
((Xi,mi))ni=1 := L
return e(σ,G) =

∏n
i=1 e(Xi,H(Xi,mi))

Figure 5.17: The BLS aggregate signature scheme.

BLS Signatures. The Boneh–Lynn–Shacham (BLS) signature scheme [BLS01] is a simple deter-
ministic signature scheme based on pairings. It is defined in Fig. 5.17. We consider the key-prefixed
variant of the scheme (i.e., the public key is hashed together with the message) which allows to
securely aggregate signatures on the same message [BGLS03, BNN07]. EUF-CMA-security can be
proved in the random oracle model under the CDH assumption.

The security proofs for the Pedersen-BLS pair are also in the random oracle model but do not
use rewinding. They are reminiscent of the proof of [BGLS03, Theorem 3.2] and can be found in
the full version [FOS19].

Lemma 5.19. The pair (PDS,BLS) is EUF-NZO-secure in the random oracle model under the
CDH assumption. More precisely, for any PPT adversary A making at most qh random oracle
queries and returning a forgery for a list of size at most N , there exists a PPT adversary B
running in time at most tA + (qh + N + 2)tM , where tA is the running time of A and tM is the
time of a scalar multiplication in G, such that:

Advcdh
GrGen,B(λ) = Adveuf-nzo

PDS,BLS,A(λ).

Lemma 5.20. The pair (PDS,BLS) is EUF-CRO-secure in the random oracle model under the
CDH assumption. More precisely, for any PPT. adversary A making at most qh random oracle
queries and qs = O(1) signature queries and returning a forgery for a list of size at most N , there
exists a PPT adversary B running in time at most tA + (2qh + 3qs + N + 2)tM , where tA is the
running time of A and tM is the time of a scalar multiplication in G, such that:

Advcdh
GrGen,B(λ) ≥ 1

4 · (2N)qs · Adveuf-cro
PDS,BLS,A(λ).

Corollary 5.21. MW[PDS,BLS,Π] with Π zero-knowledge and simulation-extractable is inflation-
resistant and theft-resistant in the random oracle model under the CDH assumption.
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MOTS CLÉS

cryptographie, peuves de connaissance, preuves à divulgation nulle, post-quantique, cryptomonnaie.

RÉSUMÉ

Cette thèse étudie les arguments de connaissance non-interactives, une brique de base utilisé en cryptographie quiper-
met à un fuornisseur de preuve de convaincre un vérificateur qu’une proposition est vraie sans révéler d’autres infor-
mations que la véracité de la proposition. Notre attention se porte en particulier sur la constructions des nouveaux
arguments avec des garanties de sécurité plus fortes: d’abord, nous montrons l’existence des arguments de connais-
sance non-interactives et witness-indistinguishable dans le modèle standard (sans oracle aléatoire ni chaîne de référence
commune). Ensuite, nous étudions la sécurité post-quantique des SNARKs, une famille de schémas de preuve de con-
naissance succincte. Enfin, nous analysons la sécurité d’une crypto monnaie anonyme dont la sécurité est garantie par
des arguments de connaissance: Mimblewimble. La cryptomonnaie était proposée par un auteur anonyme en 2016, et
nous fournissons la première analyse formelle de sa sécurité.

ABSTRACT

This thesis studies non-interactive arguments of knowledge, a cryptographic primitive that allows a prover to convince a
verifier of the truth of a certain statement. It focuses on cryptographic constructions that allow a user to prove knowledge
of a so-called witness x that satisfies a circuit C, while simultaneously hiding it.
First, we prove the existence of non-interactive witness-indistinguishable arguments of knowledge in the standard model.
Our proof system is an argument of knowledge that is secure even if an adversary subverts the initial parameters. Sec-
ondly, we revisit a family of zero-knowledge arguments of knowledge (SNARKs), and show that it can be moved to
post-quantum assumptions, as long as the verifier is known in advance. Lastly, we consider a novel, anonymous cryp-
tocurrency whose security can be guaranteed via arguments of knowledge: Mimblewimble. The cryptocurrency was
proposed by an anonymous author in 2016. We provide the first formal analysis of it, fixing a security issue present in the
initial proposal.

KEYWORDS

cryptography, proof of knowledge, zero-knowledge proof, cryptocurrency, post-quantum.


	Introduction
	Proof systems
	Instantiations and applications
	Our results
	Associated publications and other contributions

	Preliminaries
	Notation
	Provable security
	Cryptographic primitives

	Arguments of knowledge without setup: ZAKs
	Cryptographic assumptions
	An extractable commitment scheme from DLin
	Groth-Ostrovsky-Sahai zaps
	ZAK: a non-interactive zap of knowledge
	Non-interactive zaps of knowledge in asymmetric groups

	Succinct arguments of knowledge: SNARKs
	Cryptographic assumptions
	An encoding scheme based on learning with errors
	Lattices and assumptions
	Our designated-verifier zk-SNARK
	Proofs of security
	Efficiency and concrete parameters

	Mimblewimble: a private cryptocurrency
	Cryptographic assumptions
	Aggregate cash system
	Construction of an aggregate cash system
	Inflation resistance
	Theft-resistance
	Transaction-indistinguishability
	Instantiations

	Bibliography

