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Abstract

Lattice-based cryptography is considered as a quantum-safe alternative for the replacement of
currently deployed schemes based on RSA and discrete logarithm on prime fields or elliptic
curves. It offers strong theoretical security guarantees, a large array of achievable primitives,
and a competitive level of efficiency. Nowadays, in the context of the NIST post-quantum
standardization process, future standards may ultimately be chosen and several new lattice-
based schemes are high-profile candidates. The cryptographic research has been encouraged to
analyze lattice-based cryptosystems, with a particular focus on practical aspects. This thesis is
rooted in this effort.

In addition to black-box cryptanalysis with classical computing resources, we investigate
the extended security of these new lattice-based cryptosystems, employing a broad spectrum
of attack models, e.g. quantum, misuse, timing or physical attacks. Accounting that these
models have already been applied to a large variety of pre-quantum asymmetric and symmetric
schemes before, we concentrate our efforts on leveraging and addressing the new features in-
troduced by lattice structures. Our contribution is twofold: defensive, i.e. countermeasures for
implementations of lattice-based schemes and offensive, i.e. cryptanalysis.

On the defensive side, in view of the numerous recent timing and physical attacks, we wear our
designer’s hat and investigate algorithmic protections. We introduce some new algorithmic and
mathematical tools to construct provable algorithmic countermeasures in order to systematically
prevent all timing and physical attacks. We thus participate in the actual provable protection
of the GLP, BLISS, qTesla and Falcon lattice-based signatures schemes.

On the offensive side, we estimate the applicability and complexity of novel attacks leveraging
the lack of perfect correctness introduced in certain lattice-based encryption schemes to improve
their performance. We show that such a compromise may enable decryption failures attacks
in a misuse or quantum model. We finally introduce an algorithmic cryptanalysis tool that
assesses the security of the mathematical problem underlying lattice-based schemes when partial
knowledge of the secret is available. The usefulness of this new framework is demonstrated with
the improvement and automation of several known classical, decryption-failure, and side-channel
attacks.
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Résumé

La cryptographie fondée sur les réseaux euclidiens représente une alternative prometteuse à
la cryptographie asymétrique utilisée actuellement, en raison de sa résistance présumée à un
ordinateur quantique universel. Cette nouvelle famille de schémas asymétriques dispose de
plusieurs atouts parmi lesquels de fortes garanties théoriques de sécurité, un large choix de
primitives et, pour certains de ses représentants, des performances comparables aux standards
actuels. Une campagne de standardisation post-quantique organisée par le NIST est en cours
et plusieurs schémas utilisant des réseaux euclidiens font partie des favoris. La communauté
scientifique a été encouragée à les analyser car ils pourraient à l’avenir être implantés dans tous
nos systèmes. L’objectif de cette thèse est de contribuer à cet effort.

Nous étudions la sécurité de ces nouveaux cryptosystèmes non seulement au sens de leur
résistance à la cryptanalyse en “boîte noire” à l’aide de moyens de calcul classiques, mais aussi
selon un spectre plus large de modèles de sécurité, comme les attaques quantiques, les attaques
supposant des failles d’utilisation, ou encore les attaques par canaux auxiliaires. Ces différents
types d’attaques ont déjà été largement formalisés et étudiés par le passé pour des schémas
asymétriques et symétriques pré-quantiques. Dans ce mémoire, nous analysons leur application
aux nouvelles structures induites par les réseaux euclidiens. Notre travail est divisé en deux
parties complémentaires : les contremesures et les attaques.

La première partie regroupe nos contributions à l’effort actuel de conception de nouvelles
protections algorithmiques afin de répondre aux nombreuses publications récentes d’attaques
par canaux auxiliaires. Les travaux réalisés en équipe auxquels nous avons pris part on abouti
à l’introduction de nouveaux outils mathématiques pour construire des contre-mesures algorith-
miques, appuyées sur des preuves formelles, qui permettent de prévenir systématiquement les
attaques physiques et par analyse de temps d’exécution. Nous avons ainsi participé à la pro-
tection de plusieurs schémas de signature fondés sur les réseaux euclidiens comme GLP, BLISS,
qTesla ou encore Falcon.

Dans une seconde partie consacrée à la cryptanalyse, nous étudions dans un premier temps de
nouvelles attaques qui tirent parti du fait que certains schémas de chiffrement à clé publique ou
d’établissement de clé peuvent échouer avec une faible probabilité. Ces échecs sont effectivement
faiblement corrélés au secret. Notre travail a permis d’exhiber des attaques dites « par échec de
déchiffrement » dans des modèles de failles d’utilisation ou des modèles quantiques. Nous avons
d’autre part introduit un outil algorithmique de cryptanalyse permettant d’estimer la sécurité
du problème mathématique sous-jacent lorsqu’une information partielle sur le secret est donnée.
Cet outil s’est avéré utile pour automatiser et améliorer plusieurs attaques connues comme des
attaques par échec de déchiffrement, des attaques classiques ou encore des attaques par canaux
auxiliaires.
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To improve social distancing, all lattices must guarantee
that they contain no non-zero vector shorter than 2 meters
to be considered safe. SVP-COVID.
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Cryptography, the science dedicated to protecting data and communications, has become
prevalent within a few decades. It can now be found at an industrial scale in smart cards,
mobile phones, all over the internet, etc. Cryptography can rely on a secret key, which is shared
between the sender and the receiver and nobody else. Such protocols belong in the symmetric
cryptography family, and require the sender and the receiver to agree on a common secret key,
before being able to communicate safely. Deriving a common secret key can be achieved thanks
to another category denoted asymmetric cryptography, also called public-key cryptography. The
concept has been introduced by Diffie and Hellman in 1976 [DH76]. The principle is that each
user now has a publicly available key, called public key related to its own private key. The
latter enables anyone to encrypt a message using the public key and, only the decryption is only
possible with the corresponding private key. In today’s cryptographic protocols, for performance
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reasons, a public-key scheme is typically used to derive a shared secret symmetric key between
two users. Then, symmetric cryptography, usually more efficient, is typically used for the rest
of the protocol. This thesis exclusively focuses on asymmetric cryptography.

The asymmetric cryptographic security guarantees are based on the conjectured hardness of
mathematical problems. Hard problems – which concretely means that even putting together
a lot of computing power will not allow solving them – can be used to build communication
protocols that are guaranteed to be secure. Almost all implemented cryptographic protocols
base their security on the hardness of two mathematical problems: the integer factorization and
the discrete logarithm. Unfortunately, both problems are threatened by the potential advent of
large scale quantum computers1.

Quantum computers are a new type of computers whose instructions are not based on clas-
sical physical principles, but rather on quantum physics. The lowest-level brick of a quantum
computer is a quantum bit or qubit. In contrast to a classical bit, a qubit can take infinitely
many other values (called quantum superpositions) than 0 and 1. This feature allows quantum
computers to be much faster than classical computers over some classes of problems, among
which the factorization and discrete logarithm [Sho94]. As a result, all protocols based on these
problems would be rendered insecure by a large-scale quantum computer. Progress in quantum
computing is slow but steady: the current quantum computers can manipulate about a hun-
dred physical qubits [AAB19] while more than several thousands logical2 qubits are necessary for
breaking the factorization. Some specialists expect that practical large scale universal3 quantum
computers might become a reality within the next decades [Che+16].

To prevent a collapse of cryptographic protocols, and to avoid a mono-culture of hardness
assumptions, researchers have worked on building secure cryptographic protocols which do not
rely on the factorization and discrete logarithm, and that can be expected to be impervious
to attacks performed by quantum computers. These schemes are usually labeled under the
umbrella terms “quantum-safe cryptography” or “post-quantum cryptography”. Post-quantum
cryptography has gained momentum these last few years, driven both by advances in quantum
computing and by the fact that information that needs to be protected nowadays may still
be sensitive by the time quantum computers become available. Indeed, long-term sensitive
encrypted data can be stored today and they can potentially be decrypted later, if a quantum
computer is built. Another illustration is the emerging standardization initiatives around the
world. More precisely, the NIST (National Institute of Standards and Technology, USA) is
currently running a standardization campaign for post-quantum protocols that started in fall
2017 [Che+16]. Future standards are expected in a few years.

Several promising pathways exist towards robust asymmetric post-quantum schemes, in par-
ticular those relying on the hardness of problems over lattices, error-correcting codes, multi-
variate polynomial systems, isogenies of elliptic curves or on the security of hash functions.
All these problems are expected to remain hard even in the presence of a quantum computer.
Lattice-based cryptography has been widely recognized as a foremost candidate for practical,
post-quantum security and significant efforts have been devoted to develop and analyze lattice-
based cryptosystems. In particular, it offers strong theoretical security guarantees, a large array
of achievable primitives, and a level of efficiency that can compete, at least for the so-called
structured instances, with pre-quantum constructions. This thesis is rooted in this context and
focuses on analyzing lattice-based cryptosystems.

1For a 4-minutes introductory presentation the post-quantum cryptography, please refer to this
France Culture Podcast recorded in French in the beginning of my PhD.

2There is a multiplicative factor accounting for error correcting codes necessary to convert physical qubits into
logical qubits. This factor is currently estimated at around a thousand.

3The universality for a quantum computer means that its action is not only confined to a fixed circuit but it
can be reprogrammable for executing any polynomial-time algorithm. Achieving the universality for a quantum
computer is also challenge in quantum computing.

https://www.franceculture.fr/emissions/la-recherche-montre-en-main/la-recherche-montre-en-main-mercredi-25-octobre-2017
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1.1 Cryptanalysis

The cryptanalysis is a subdomain of cryptology which consists in attacking existing crypto-
graphic constructions in order to challenge their claimed security properties. Its purpose is
to improve the cryptosystems’ security by understanding their weaknesses. In the context of
an attack against a given cryptosystem, an “attack model” should be defined containing two
important parts:

1. The target of the attack must be clearly stated. Its purpose can be to recover a private
key, the content of an encrypted message or to forge a signature for instance. In all this
thesis, the focus is on recovering the private key on lattice-based cryptosystems.

2. The attack resources must be also specified. They represent the means that are available
to the attacker. There exists a multitude of resources based on different use cases. The
less means are available to the attacker, the more powerful the attack is. First, the
computational resources available for the attacker should be quantified. These resources
include time and memory. Second, the attack model should also specify what information
is available to the attacker, the minimum being the public parameters (like the public key).
As shown in the next subsections, depending on the context, some additional information
and ressources may be available to the attacker.

1.1.1 Classical attacks

An attacker always knows at least the public parameters of a given cryptosystem and thus its
public key. She may want to recover the associated private key. A classical cryptanalysis only
uses this information to estimate the amount of computing ressources required to recover the
private key. Sometimes, depending on the model, the attack can have access to decryption or
signature oracles. The classical attacks often rely on breaking the underlying hard problem.
Such classical attack models have been studied since the beginning of cryptography and it is
now an important part of the design of new cryptosystems.

1.1.2 Quantum attacks

Quantum attacks started to be studied after Shor‘s quantum algorithm for period finding in 1994
[Sho94]. In quantum attacks, we assume that the attacker has access to quantum algorithms.
The latter are faster for certain determined tasks and they are likely to be implemented in the
future on large quantum circuits. Quantum computing falls outside the scope of this thesis but
some quantum algorithms are used in attacks as a “black-box”.
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Grover’s algorithm. We will use for example Grover’s algorithm [Gro96] in Section 4.3. It
is assumed to be able to find with high probability the unique input of a function that produces
a particular output value using just O(

√
N) evaluations of the function, where N is the cardinal

of the function’s domain.

1.1.3 Side-channel attacks

Timing attacks. In timing attacks, we assume that the attacker is able to measure the time
taken to execute cryptographic algorithms. Indeed, every algorithm in a computer takes time
to execute, and the duration can differ based on the input and the private key. For example,
the execution time of a square-and-multiply algorithm used in modular exponentiation depends
linearly on the number of bits ”1” in the private key. With several measurements and statistical
techniques, an attacker is able to recover the private key. In the context of cryptanalysis, this
model of attacks was formalized by Kocher in 1996 [Koc96]. In his work, he showed that these
attacks were practical against a number of encryption algorithms, including RSA, ElGamal, and
the Digital Signature Algorithm. Nowadays, timing attacks are an important part of crypt-
analysis [Lip+18; BB03; Por18; Ber05]. Along with the physical attacks presented in the next
subsection, they are in the side-channel attacks family.

Physical attacks. Physical attacks are a family of powerful attacks that target an algo-
rithm practical implementation on physical chips. They were introduced and formalized in
1999 [KJJ99; GP99; Cha+99]. In this setting, the corresponding attackers can observe the de-
vice’s emanations (electromagnetic waves, acoustic waves, temperature or power consumption)
to recover the private key. These physical attacks can be categorized in many different ways,
depending on the adversary’s capabilities, the available equipments or their complexity. We
refer to [MOP07] for a complete description.

We outline hereafter two types of non-invasive4 physical attacks which can extract the secret
key from the device. Both exploit traces of leakage of the device, which are the graphs represent-
ing a measured physical leakage (e.g. power consumption) during the execution of an algorithm
as a function of the time. The physical leakage is generally correlated to changes in the state of
the registers and then to the calculation processed. These two types of physical attacks are the
following.

• A single-trace analysis consists in extracting information from the visual interpretation of
one or very few traces. This type of attack often targets algorithms that are executed only
once like key generations. We mention this type of attack in Section 5.6.1.

• In a differential analysis an attacker computes intermediate values computed in the algo-
rithm and uses statistical analysis of multiple traces.

1.1.4 Misuse attacks

One may also assume that, for example for reasons related to some practical constraints, the
implementation of a cryptosystem slightly differs from the theoretical specifications. In other
words, some modifications like the reuse of randomness or private key may be implemented in
order to increase the efficiency while outside from the recommandations. This scenario has been
called misuse in [RS06]. We investigate a misuse case in Section 4.2.

4Some invasive attacks consists in injecting faults during the execution of an algorithm. They are not considered
in this thesis.
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1.2 Lattice-based cryptography

In this thesis, we denote by Zq the ring Z/qZ. We write := for a deterministic assignation and
← for a probabilistic assignation either from a probability distribution or from a function with
probabilitic output. For S a finite set, we also note $←− S for drawing uniformly at random an
element in S. For m ∈ N, we define the `2-norm on Rm as ‖x‖2 :=

√∑
i x

2
i . We use row

notations for vectors, and start indexing from 0. The notation In denotes the identity matrix of
dimension n.

1.2.1 Lattices

A lattice is essentially a set of points in the space arranged periodically. This structure has
been commonly used in many disciplines, from art5 to crystallography6. Fig. 1.1 presents a two-
dimensional lattice. This structure has received considerable attention from mathematicians
starting with the early works of Gauss around the beginning of the XIX century, Hermite and
Minkowski around the end of the XIX century and Lenstra, Lenstra and Lovasz in the 80’s to
quote a few names. Lattices started to be used as a tool for analyzing the security of a variety
of cryptographic problems. Later, they have been shown to possess some unique properties in
computational complexity leading to the current cryptographic constructions studied nowadays.

Figure 1.1: A two-dimensional lattice

A lattice is an infinite discrete structure generated by a finite set of vectors called basis
(b0, · · · ,bn−1). Informally, any lattice is defined by a small unit parallelogram defined by these
n vectors (b0, · · · ,bn−1) in Rm.

More precisely, a lattice is generated as the set of all linear integer combinations of n (n ≤ m)
linearly independent basis vectors {bj} ⊂ Rm, namely,

L :=
{∑

j
zjbj : zj ∈ Z

}
.

We say that m is the dimension of Λ and n is its rank. A lattice is full rank if n = m. The

volume of a lattice is defined as Vol(L) :=
√

det(BBT ) where B is defined as a matrix in Rn×m
whose rows are the vectors of the basis.

For simplicity, we will depict lattices here in two dimensions but in cryptography, one must
think of a high-dimensional structure.

5https://en.wikipedia.org/wiki/Latticework
6https://en.wikipedia.org/wiki/Bravais_lattice

https://en.wikipedia.org/wiki/Latticework
https://en.wikipedia.org/wiki/Bravais_lattice
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1.2.2 Geometric lattice-based hard problems

As previously stated, public-key cryptography bases its security guarantees on the conjectured
hardness of mathematical problems like the discrete logarithm or the factorization problem.
Equivalently, several recently-defined hard problems are the building bricks for lattice-based
cryptography. In this thesis, we formulate hard problems as challenges using the key words
“given” and “find” for search problems or “given” and “distinguish” for decisional problems. The
lattice-based hard problems have interesting, actively-studied properties (strong computational
hardness, worst-case to average-case reductions) [LLL82; GG98; AR04; Kho04] that place lattice-
based cryptography as a high-profile direction for post-quantum cryptography.

Let us first introduce a notation for the closed zero-centered Euclidean hyperball: for any
m ∈ N, c ∈ Rm and r > 0,

Bm(c, r) := {x ∈ Rm | ‖x− c‖2 ≤ r}. (1.1)

This ball is used to define the successive minima of a lattice. These are the sizes of linearly
independent vectors in L ordered by increasing norm. Given a lattice L, we denote by λi(L) the
i-th minimum of L, as follows.

λi(L) := inf {r > 0 : dim (Span (L ∩Bm(0, r))) ≥ i} .

For a better intuition, two of them are graphically represented in Fig. 1.2.

λ1(L)

λ2(L)

Figure 1.2: Successive minima on a two-dimensional lattice

Let us now introduce two important geometric problems on lattices.

Hard Problem 1 — Unique Shortest Vector Problem (uSVP)
Let n and m be positive integers and ρ ≥ 1 a parameter.

Given a basis (b0, · · · ,bn−1) of a lattice L ⊂ Rm that verifies λ2(L) > ρ · λ1(L)

Find a vector v ∈ L such that ‖v‖2 = λ1(L)

When ρ = 1, the problem is called Shortest Vector Problem (SVP).

We introduce another hard problem, that, instead of searching for the shortest vector,
searches for the closest to a given point from Rm. For any point t ∈ Rm and any lattice
L, the distance of t to the lattice is denoted dist(t,L) := min{‖t− x‖2 : x ∈ L}.



Lattice-based cryptography 9

Hard Problem 2 — Bounded Distance Decoding (BDD)
Let n and m be positive integers and η > 0 be a parameter. The Bounded Distance
Decoding problem is the following problem:

Given a basis (b0, · · · ,bn−1) of a lattice L ⊂ Rm, and an element t ∈ Rm that
verifies dist(t,L) ≤ η · λ1(L)

Find a vector x ∈ L closest to t.

For high-dimensional lattices, the aforementioned uSVP and BDD problems are assumed hard
even with the use of quantum computers. Contrary to the factorization and discrete logarithm
problems, these lattice problems are supported by strong computational hardness properties.
For example, on randomized instances, in certain ranges of parameters, the uSVP and BDD
problems are NP-hard [Ajt98; Ajt96; Aro+93]. Besides, the security analysis and complexity
estimation of both problems, in classical and quantum computation models, have been an active
line of research during the past 20 years. In this thesis, we briefly present two algorithmic tools
for the security analysis that will be used in the next chapters.

Babai rounding. Given a lattice L and a point t, Babai’s rounding algorithm is used to find a
point x ∈ L “reasonably close” to t [Bab85; Len81; LLL82]. It is presented in Algorithm 1. The
b·e represents a rounding to the nearest integer in Z applied coefficient-wise. Babai’s algorithm
is applied using the Moore-Penrose pseudoinverse B∼ := BT (BBT )−1 that verifies BB∼ = In.

Algorithm 1 — Babai RoundOff algorithm

Data: a basis (b0, · · · ,bn−1) ⊂ Rm written as a matrix in B ∈ Rn×m, t ∈ Rm
Result: x ∈ L close to t

1 x := btB∼eB
2 return x

Intuitively, the purpose of this rounding is to solve Hard Problem 2 by outputting a vector
x ∈ L close to t.

Proposition 1. Let t ∈ Rm, Algorithm 1 returns a vector x ∈ L such that ‖t− x‖2 ≤
√
n

2 ·‖B‖sub

where ‖B‖sub := supx∈Rm\{0}
‖xB‖2
‖x‖2 .

Proof: The vector x is in the lattice as it is a linear combination of the lines of B. Let t0 := tB∼,
thus t = t0B by definition of the Moore-Penrose pseudoinverse. Therefore,

‖t− x‖2 = ‖t0B− bt0eB‖2 ≤ ‖ t0 − bt0e︸ ︷︷ ︸
∈[− 1

2
, 1
2 ]
n

‖2 · ‖B‖sub .

As shown in Proposition 1, it is only efficient if the input basis B is given in a specific form
for which ‖B‖sub is small, which is not the case for arbitrary bases. If, by chance, the vectors of
the basis have a small norm and are almost orthogonal, ‖B‖sub will be small and Algorithm 1
can give accurate results.

The lattice reduction algorithms. As crucial part of lattice analysis, lattice reduction al-
gorithms aim at computing a basis made of relatively short and almost-orthogonal vectors from
an arbitrary input basis. A polynomial time algorithm was introduced by Lenstra, Lenstra,
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and Lovasz (LLL) [LLL82] in 1982. It can output non-zero lattice vectors whose norms are
greater than that of the shortest non-zero lattice vector by at most a factor 2O(n). Even if this
approximation seems bad for breaking any hard problem, LLL algorithm is still widely used in
cryptanalysis.

A more recent lattice reduction algorithm called Block-Korkine-Zolotarev (BKZ) [Kan83;
FP85; SE94] consists in applying LLL as a subroutine in projected sub-lattices with a fixed
dimension β, called blocksize. BKZ offers trade-offs between the quality of the output and the
complexity: higher blocksizes lead to better reduction quality (i.e. shorter vectors), at the ex-
pense of increasing the runtime. More exactly, the runtime increases exponentially in β. As
discussed in [GN08; CN11; Alk+16b; Alb+17], predicting the quality of BKZ’s output on a con-
crete lattice instance L is far from immediate and still under investigation. The current mostly
used estimation makes the experimentally verified Geometric Series Assumption (GSA). We re-
fer to [CN11] for the description and validity of this assumption. The estimation considers that,
after applying BKZ with blocksize β (denoted BKZ−β for short) the lattice basis is expected to
contain a vector b that verifies

‖b‖2 = δnβ ·Vol(L)1/n.

The factor δβ is called the root-Hermite factor and for β > 50, it is predicted to follow

δβ ∼
(

(πβ)
1
β · β

2πe

)1/(2β−2)

. (1.2)

Still assuming GSA, BKZ-β is able to solve uSVP (Hard Problem 1) instances whenever ρ ≥ τ ·δnβ
where τ < 1 is a constant depending on the lattice family. The BDD instances can also be
transformed into uSVP ones and be solved with BKZ. We detail such a transformation in more
details in Section 5.3.3. BKZ is currently the most utilized lattice reduction method [AKS01;
HPS11b; HPS11a; MW15].

1.2.3 Other hard lattice-based problems

A second class of lattice problems arose from cryptographic constructions : Learning with Errors
[Reg05] and Short Integer Solution [Ajt96]. They are somehow ad-hoc and thus cannot directly
be seen as geometrically as the ones presented in Section 1.2.2.

Hard Problem 3 — Search learning with error (LWE)
Let n,m and q be positive integers, and let χ be a distribution over Z.

Given the pair
(
A ∈ Zn×mq ,b := zA + e ∈ Zmq

)
where:

1. A is sampled uniformly at random in Zn×mq ,

2. z is sampled uniformly at random in Znq ,
3. e← χm.

Find z (or equivalently e).

The hardness of Hard Problem 3 highly depends on the distribution χ. In fact, most of
the hardness results consider that χ is a centered discrete Gaussian distribution with a small
standard deviation (we refer to Section 2.2.2 for precisions on this distribution).

To relate LWE with uSVP, the authors of [Bra+13] prove that an LWE instance is as hard as
standard geometric lattice problems.
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Hard Problem 4 — Short Integer Solution (SIS)
Let n,m and q be positive integers and γ > 0 be a parameter.

Given a matrix A ∈ Zn×mq sampled uniformly at random,

Find a non-zero vector z ∈ Znq such that

1. zA = 0

2. ‖z‖2 ≤ γ

Similarly, the hardness of Hard Problem 4 highly depends on how small γ is and the underly-
ing uSVP is simply the following: the solution z is a short vector in the lattice {x|xA = 0 mod q}.
The authors of [MR07] proved that Hard Problem 4 can be as hard as Section 1.2.2’s problems.

1.2.4 Ring variants

For designing more efficient systems, ring variants of the previous problems were introduced.
Although they were initially introduced for arbitrary polynomial rings, we instantiate a ring
which will be used in the majority of the thesis. For n, q integer parameters such that Xn + 1
is irreducible in Zq, we define

Rq :=
Zq[X]

Xn + 1
. (1.3)

Note that the parameter n does not appear in the notation as it is always a fixed parameter
of the scheme. Throughout, we abuse notation and identify elements in Zq with their repre-
sentatives in [−q/2, q/2), and elements in Rq with their representatives of degree < n. This

allows us to define the `2-norm ‖x‖2 of a polynomial x ∈ Rq, so that ‖x‖2 :=
√∑

i x
2
i where

xi ∈ [−q/2, q/2) are the coefficients of x, and extend this to vectors of polynomials y ∈ Rlq as

‖y‖2 :=
√∑

i ‖yi‖22. Identically, we define and extend the `∞-norm.

The Module-LWE (or Mod-LWE) problem [LS12b] is a generalization of Hard Problem 3. It
also includes the Ring-LWE problem introduced in [Ste+09; LPR10] as a particular case.

Hard Problem 5 — Search Module LWE (Mod-LWE)
Let n,m, q be parameters that define Rq as in Eq. (1.3), k be a positive integer and χ be
a probability distribution over Rq

Given (ai, bi) := (ai, 〈ai, z〉+ ei) ∈ Rkq ×Rq for i ∈ [0,m− 1] where:

1. the ai ∈ Rkq are sampled uniformly at random for i ∈ [0,m− 1],

2. z ∈ Rkq is sampled uniformly at random,

3. ei ← χ for i ∈ [0,m− 1].

Find z (or equivalently e).

Ring-LWE is a particular case where k = 1.

Similarly, we present the module/ring variant of Hard Problem 4.
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Hard Problem 6 — Module Short Integer Solution (Mod-SIS)
Let n, q be parameters that define Rq as in Eq. (1.3), k be a positive integer and γ > 0
be a parameter.

Given a ∈ Rkq sampled uniformly at random,

Find a non-zero z ∈ Rkq such that

1. 〈z,a〉 = 0

2. for all coefficients z[i] of z, ∀i ∈ [0, k − 1], ‖z[i]‖∞ ≤ γ

Ring-SIS is a particular case where k = 1.

Under certain conditions, these ring variants can be as hard as the problems defined in
Section 1.2.3 [LM06; PR06; Ste+09; LPR10; LPR13]. However, in practice their security is con-
jectured and it is somehow questioned because of the high structure of the underlying lattices.
Some of the designs choose to avoid this ring structure [Bos+16].

Let us present another problem that was introduced before LWE and SIS [HPS98]. It is only
defined with a cyclotomic ring and has been assumed hard since its introduction.

Hard Problem 7 — NTRU
Let n, q be two prime numbers that define Rq as in Eq. (1.3), and χ be a probability
distribution over Rq.

Given h = g/f mod q where f and g are sampled from χ.

Find g (or equivalently f).

1.2.5 Lattice constructions

In lattice-based cryptography, one advantage lies in the fact that the cryptosystems themselves
have a remarkably simple description. The underlying elementary operations are often simple
linear additions. Most of the work is in establishing and proving their security.

Public key encryption. Hoffstein, Pipher and Silverman developed one of the first construc-
tions in 1998 [HPS98], they propose an efficient public key encryption based on Hard Problem 7,
still assumed hard. This construction has inspired recent candidates for post-quantum standard-
ization. Later, Regev suggested constructions using Hard Problem 3 in [Reg03; Reg06] and the
first design has been introduced in [LP11]. The latter has also inspired very efficient recent
candidates. We present in Table 1.1 lattice-based public key encryption schemes which may be
standardized for post-quantum use.

Signatures. The first lattice-based signature scheme has been introduced in [GGH97] and the
NTRU company followed by proposing NTRUSign [Hof+03; HPS01] based on Hard Problem 7.
Both constructions were later broken because of a partial key leak in the distribution of the
signatures [NR06]. Perturbation countermeasures were proposed by the authors of [Hof+03]
but their security was subsequently broken in [DN12b]. Following this line of research, [GPV08]
introduced a framework impervious to the latter statistical attacks. The distribution of its
outputted signatures does not depend on the private key. This framework is at the origin of a
family of lattice-based signatures called “hash-and-sign”. It has led to a recent efficient candidate
called Falcon [Pre+19] based on Hard Problem 7.
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In parallel, another family of constructions emerged with Lyubashevsky’s “Fiat–Shamir
with aborts” paradigm [Lyu09] using Hards Problems 3 and 4. The underlying framework
is called Fiat–Shamir with aborts because, unlike RSA and discrete logarithm-based construc-
tions, lattice-based constructions involve sampling from sets that do not admit a nice algebraic
structure. A naive sampling algorithm would leak partial key information, the same way as it
did in schemes like GGH and NTRUSign; this is avoided by forcing the distribution of the output
signature to be independent of the private key using rejection sampling. Many instantiations of
the framework have been proposed [Lyu12; GLP12; Duc+13; PDG14; BG14] some of them very
efficient. These works lead to many efficient post-quantum candidates.

Implementations of lattice-based signature schemes from both families are presented in Ta-
ble 1.2.
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1.3 Goal and contribution of the thesis

To address the shortcomings of existing cryptosystems and help build quantum-safe algorithms,
the main goal of this thesis is the analysis of the real-world security of lattice-based post-quantum
asymmetric schemes. Real-world in this context means that, in addition to the algorithms
being selected as to offer a high conjectured black-box security in both classical and quantum
computation models, the implementations should be efficient and secure for use in software,
embedded systems, and in hardware.

In other words, in addition to black-box cryptanalysis, we intend to investigate the secu-
rity of lattice-based cryptosystems in extended security models. It implies studying {classical,
quantum, misuse, timing, physical}-attacks on lattice-based schemes and possible combinations.
With this wide program, we focus, in particular, on the possibility of leveraging and addressing
the new features introduced by the lattice structures. These new features will be encountered and
detailed later in the thesis. They include for instance: rejection sampling for signatures (de-
tailed in Section 2.2.5), use of transcendental functions (detailed in Section 2.3), use of Gaussian
distributions (presented in Section 2.2.4), non-perfect correctness for public key encryption (pre-
sented in Section 4.1.1), private keys structured in large vectors of small elements and reliance
on lattice reduction algorithms. With this thesis, we aim at:

• on the one hand, constructing provable algorithmic countermeasures when it is possible;
• on the other hand, estimating precisely the applicability and complexity of attacks in order

to provide practical security assessments of the corresponding implementations.
Part I Constructions. Concerning physical and timing attacks, the cryptographic re-

search community made numerous contributions on the possibility of applying such attacks to
lattice-based schemes [ADP18a; Bru+16; GP18; Rav+19; Bos+18a; CMP18]. To continue the
effort towards efficient and secure implementations, we put on our designer’s hat and investi-
gate the algorithmic protections against timing and side-channel attacks along with proofs of
impermeability against these attacks. This part focuses on signature schemes because they are
more subject to attacks and their protection seem challenging due to hard-to-protect features
like rejection sampling. We first focus on introducing algorithmic tools to tackle these features.
Next, we apply them to several schemes. In Table 1.3, we outline the main literature gaps that
joint research contributions presented in this thesis aim at filling in terms of protection of known
lattice-based signatures schemes.

Table 1.3: Constructive contributions of this thesis

Signature scheme Provable timing protection Provable high-order masking
Chapter 2 Chapter 3

GLP [GLP12] this thesis Section 3.3
BLISS this thesis Section 2.4 this thesis Section 3.4
Falcon this thesis Section 2.5 see Perspective 4
Crystals-Dilithium [Lyu+19] [Mig+19]
qTesla [Bin+19] this thesis Section 3.5

Part II Cryptanalysis. Concerning less studied attacks like quantum or misuse attacks,
the lattice-based schemes are neither trivially vulnerable nor provably secure. This thesis takes
a pass on improving the complexity assessment in various attack scenarios.

• Chapter 4. A potential source of weakness lies in the lack of perfect correctness of lattice-
based schemes. Our work participates in showing that it may enable decryption failures
attacks. In a first step, we introduce a misuse attack inspired from [Flu16]. Later, based
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on the work of [DAn+19a], we introduce an improved generic quantum attack targeting
public key encryptions. The security is then estimated as a function of the maximum
number of decryption queries and the (quantum or classical) work necessary.

• Chapter 5. We introduce an algorithmic tool to assess the security of the mathematical
problem underlying a lattice-based scheme when the scheme is the target of a combination
of attacks (classical and side-channel for example). This tool automatically builds lattice
reduction attacks and estimates their cost when hints of various forms are given. In
other words, this tool allows to assess the new security of the scheme after attacks have
been performed and a partial knowledge of the secret is available. The usefulness of the
presented framework is demonstrated with the improvement of several known attacks.

Parts I and II concern different cryptosystems and notions. They can be read indepen-
dently.

1.4 Publications

1.4.1 Constructive results

• Masking the GLP Lattice-Based Signature Scheme at Any Order [Bar+18]. Gilles Barthe,
Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin Grégoire, Mélissa Rossi
and Mehdi Tibouchi.

This paper, whose results are presented in Chapter 3, proposes the first provable algo-
rithmic countermeasure against physical attacks for a lattice-based signature. This coun-
termeasure has been previously applied to the decryption procedure of some lattice-based
encryption schemes, but the much more difficult case of signatures (which are highly non-
linear and typically involve randomness) were not considered until this paper. We focus
on the GLP scheme of Güneysu, Lyubashevsky and Pöppelmann [GLP12]. We show how
to provably mask it in the Ishai–Sahai–Wagner model [ISW03] at any order in a relatively
efficient manner, using extensions of the techniques of Coron et al. for converting between
arithmetic and Boolean masking [Cor17]. Our proof relies on a mild generalization of prob-
ing security that supports the notion of public outputs. We also provide a proof-of-concept
implementation to assess the efficiency of the proposed countermeasure. This paper has
been published in the proceedings of the conference EUROCRYPT in 2018.

• An Efficient and Provable Masked Implementation of qTESLA. [GR19] François Gérard
and Mélissa Rossi.

The results of this paper are also presented in Chapter 3. In this paper, we study the
lattice-based signature scheme qTESLA in the context of the masking countermeasure.
Continuing the line of research opened by the previous paper [Bar+18] with the masking
of the GLP signature scheme, we extend and modify it to mask qTESLA. Based on the
work of Migliore et al. [Mig+19], we slightly modify the parameters to improve the masked
performance while keeping the same security. The masking can be done at any order and
specialized gadgets are used to get maximal efficiency at order 1. We implemented our
countermeasure in the original code of the submission and performed tests at different
orders to assess the feasibility of our technique. This paper has been published in the
proceedings of the conference CARDIS in 2019.
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• GALACTICS: Gaussian Sampling for Lattice-Based Constant-Time Implementation of
Cryptographic Signatures, Revisited [Bar+19a]. Gilles Barthe, Sonia Belaïd, Thomas Es-
pitau, Pierre-Alain Fouque, Mélissa Rossi and Mehdi Tibouchi.

The results of this paper are presented in Chapters 2 and 3. We propose a constant-time im-
plementation of the BLISS lattice-based signature scheme. The outstanding performance
of the BLISS signature scheme stems in large part from its reliance on discrete Gaussian
distributions, which allows for better parameters and security reductions. However, that
advantage has also proved to be its Achilles’ heel, as discrete Gaussians pose serious chal-
lenges in terms of secure implementations. Implementations of BLISS so far have included
secret-dependent branches and memory accesses, both as part of the discrete Gaussian
sampling and of the essential rejection sampling step in signature generation. These de-
fects have led to multiple devastating timing attacks, and were a key reason why BLISS
was not submitted to the NIST postquantum standardization effort. In fact, almost all of
the actual candidates chose to stay away from Gaussians despite their efficiency advantage,
due to the serious concerns surrounding implementation security. Moreover, simple coun-
termeasures will often not cut it: a first contribution – not presented in this thesis as it was
handled by Thomas Espitau and Mehdi Tibouchi– shows that a reasonable-looking coun-
termeasure suggested in previous work to protect the BLISS rejection sampling can again
be defeated using novel timing attacks, in which the timing information is fed to a phase
retrieval machine learning algorithm in order to achieve a full key recovery. Fortunately,
as a second contribution, we present careful implementation techniques that allow us to
describe an implementation of BLISS with complete timing attack protection, achieving
the same level of efficiency as the original unprotected code, without resorting on floating
point arithmetic or platform-specific optimizations like AVX intrinsics. These techniques,
including a new approach to the polynomial approximation of transcendental functions,
can be applied to the masking of the BLISS signature scheme, and will hopefully make
more efficient and secure implementations of lattice-based cryptography possible going
forward. This paper has been published in the proceedings of the conference ACM-CCS
in 2019.

• Isochronous Gaussian Sampling: From Inception to Implementation [How+20] with James
Howe, Thomas Prest, Thomas Ricosset and Mélissa Rossi.

The results of this paper are also presented in Chapter 2. Gaussian sampling over the
integers is a crucial tool in lattice-based cryptography, but has proven over the recent
years to be surprisingly challenging to perform in a generic, efficient and provable secure
manner. In this paper, we present a modular framework for generating discrete Gaussians
with arbitrary center and standard deviation. Our framework is extremely simple, and
it is precisely this simplicity that allowed to make it easy to implement, provably secure,
portable, efficient, and provably resistant against timing attacks. Our sampler is a good
candidate for any trapdoor sampling and it is actually the one that has been recently im-
plemented in the Falcon signature scheme. Our second contribution – not presented in this
thesis as it was mainly handled by another co-author James Howe – aims at systematizing
the detection of implementation errors in Gaussian samplers. We provide a statistical
testing suite for discrete Gaussians called SAGA (Statistically Acceptable GAussian). In
a nutshell, our two contributions take a step towards trustable and robust Gaussian sam-
pling real-world implementations. This paper has been published in the proceedings of the
conference PQ-CRYPTO in 2020.
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1.4.2 Cryptanalysis results

• Assessment of the Key-Reuse Resilience of NewHope [Bau+19]. Aurélie Bauer, Henri
Gilbert, Guénaël Renault and Mélissa Rossi.

The results of this paper are presented in Chapter 4. NewHope is a suite of two efficient
Ring-LWE based key encapsulation mechanisms (KEMs) that has been proposed to the
NIST call for proposals for post-quantum standardization. In this paper, we study the
security of NewHope when an active adversary accesses a key establishment and is given
access to an oracle, called key mismatch oracle, which indicates whether her guess of the
shared key value derived by the party targeted by the attack is correct or not. This attack
model turns out to be relevant in key reuse situations since an attacker may then be able
to access such an oracle repeatedly with the same key either directly or using faults or
side channels, depending on the considered instance of NewHope. Following this model we
show that, by using NewHope recommended parameters, several thousands of queries are
sufficient to recover the full private key with high probability. This result has been experi-
mentally confirmed using Magma CAS implementation. While the presented key mismatch
oracle attacks do not break any of the designers’ security claims for the NewHope KEMs,
they provide better insight into the resilience of these KEMs against key reuse. In the case
of the CPA-KEM instance of NewHope, they confirm that key reuse (e.g. key caching at
server side) should be strictly avoided, even for an extremely short duration. In the case
of the CCA-KEM instance of NewHope, they allow to point out critical steps inside the
CCA transform that should be carefully protected against faults or side channels in case
of potential key reuse. This paper has been published in the proceedings of the conference
CT-RSA in 2019.

• (One) failure is not an option: Bootstrapping the search for failures in lattice-based en-
cryption schemes [DRV20]. Jan-Pieter D’Anvers, Mélissa Rossi and Fernando Virdia.

The results of this paper are also presented in Chapter 4. Lattice-based encryption schemes
are often subject to the possibility of decryption failures, in which valid encryptions are
decrypted incorrectly. Such failures, in large number, leak information about the private
key, enabling an attack strategy alternative to pure lattice reduction. Extending the "fail-
ure boosting" technique of D’Anvers et al. in PKC 2019, we propose an approach that
we call "directional failure boosting" that uses previously found "failing ciphertexts" to
accelerate the search for new ones. We analyse in detail the case where the lattice is de-
fined over polynomial ring modules quotiented by 〈Xn + 1〉 and give a proof of concept
on a simple Mod-LWE-based scheme parametrized à la Kyber768/Saber. We show that,
using our technique, for a given private key (single-target setting), the cost of searching
for additional failing ciphertexts after one or more have already been found, can be sped
up dramatically. We thus demonstrate that, in this single-target model, these schemes
should be designed so that it is hard to even obtain one decryption failure. Besides, in a
wider security model where there are many target private keys (multi-target setting), our
attack greatly improves over the state of the art. This paper has been published in the
proceedings of the conference EUROCRYPT in 2020.

• LWE with Side Information: Attacks and Concrete Security Estimation [Dac+20]. Dana
Dachman-Soled, Léo Ducas, Huijing Gong and Mélissa Rossi.

The results of this paper are presented in Chapter 5. We propose a framework for crypt-
analysis of lattice-based schemes, when side information — in the form of “hints” — about
the secret and/or error is available. Our framework generalizes the so-called primal lattice
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reduction attack, and allows the progressive integration of hints before running a final
lattice reduction step. Our techniques for integrating hints include sparsifying the lat-
tice, projecting onto and intersecting with hyperplanes, and/or altering the distribution
of the secret vector. Our main contribution is to propose a toolbox and a methodology
to integrate such hints into lattice reduction attacks and to predict the performance of
those lattice attacks with side information. While initially designed for side-channel in-
formation, our framework can also be used in other cases: exploiting decryption failures,
or simply exploiting constraints imposed by certain schemes (LAC, Round5, NTRU), that
were previously not known to (slightly) help lattice attacks. We implement a Sage 9.0
toolkit to actually mount such attacks with hints when computationally feasible, and to
predict their performances on larger instances. We provide several end-to-end application
examples, such as an improvement of a single trace attack on Frodo by Bos et al (SAC
2018). Contrary to ad-hoc practical attacks exploiting side-channel leakage, our work is a
generic way to estimate security loss even given very little side-channel information. This
paper has been accepted to the conference CRYPTO in 2020.

1.4.3 Other cryptanalysis publications

As the subject of this thesis originally included code-based and multivariate cryptography, we
also studied cryptanalytic tools for these structures. In particular, we used Gröbner basis tech-
niques for a student project with Goldreich pseudorandom generator.

• A side-channel assisted cryptanalytic attack against QcBits [Ros+17]. Mélissa Rossi, Mike
Hamburg, Michael Hutter and Mark E. Marson.

QcBits is a code-based public key algorithm based on a problem thought to be resistant to
quantum computer attacks. It is a constant time implementation for a quasi-cyclic mod-
erate density parity check (QC-MDPC) Niederreiter encryption scheme, and has excellent
performance and small key sizes. In this paper, we present a side-channel key-recovery
attack against QcBits. We first used differential power analysis (DPA) against the syn-
drome computation of the decoding algorithm to recover partial information about one
half of the private key. We then used the recovered information to set up a system of
noisy binary linear equations. Solving this system of equations gave us the entire key.
Finally, we propose a simple but effective countermeasure against the power analysis used
during the syndrome calculation. This paper has been published in the proceedings of the
conference CHES in 2017.

• On the Concrete Security of Goldreich’s Pseudorandom Generator [Cou+18]. Geoffroy
Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi and Yann Rotella.

Local pseudorandom generators allow to expand a short random string into a long pseudo-
random string, in such a way that each output bit depends on a constant number d of
input bits. Due to its extreme efficiency features, this intriguing primitive enjoys a wide
variety of potential applications in cryptography and complexity. In the polynomial regime,
where the seed is of size n and the output of size ns for s > 1, the only known solution,
commonly known as Goldreich’s PRG, proceeds by applying a simple d-ary predicate to
public random size-d subsets of the bits of the seed. While the security of Goldreich’s
PRG has been thoroughly investigated (with a variety of results deriving provable security
guarantees against classes of attacks in some parameter regimes and necessary criteria to
be satisfied by the underlying predicate), little is known about its concrete security and
efficiency. Motivated by its numerous theoretical applications and the hope of getting
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practical instantiations for some of them, we initiate a study of the concrete security of
Goldreich’s PRG, and evaluate its resistance to cryptanalytic attacks. Along the way,
we develop a new guess-and-determine-style attack, and identify new criteria which refine
existing criteria and more accurately capture the security guarantees of candidate local
PRGs. This paper has been published in the proceedings of the conference ASIACRYPT
in 2018.



Part I

Constructive results





Chapter

2
Protecting lattice-based signatures
against timing attacks

Figure 2.1: Timing attacks consist in analyzing the time that an algorithm takes to make its computa-
tions. In this example, the timing corresponds to the number of multiplications while computing exp(−x2).
When x = 0 (for the blue algorithm), there is no multiplication. When x = 3 (for the purple one), an
exponentiation should be done and several multiplications are necessary. Thus, the timing is correlated
to the secret value x. The purpose of this chapter is to modify the algorithms so that the timing does not
depend on the secret value x.

This chapter describes how to protect lattice-based signature schemes against timing attacks. It
tackles the problem of Gaussian distributions. This work began with the latmasking working
group (Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque and Mehdi Tibouchi)
because we were not able to mask a lattice-based signature called BLISS [Duc+13]. In fact,
there was a slight timing leakage in the Gaussian sampling, as presented in the last attacked
and protected version [Esp+17]. Interestingly, we were able to kill both timing and side-channel
breaches with one stone: the tools we made to handle Gaussians in order to mask BLISS can
also be applied for provably protecting BLISS against timing attacks. It has been gratifying de-
signing the polynomial approximation presented in Section 2.3 with Mehdi Tibouchi’s precious
help. The purpose was to use simple functional analysis techniques to show that Gaussian dis-
tributions are not that annoying, as they can be transformed into polynomials. Finally, Mehdi
Tibouchi implemented the resulting protected scheme to show that the protections could be al-
most inexpensive. In addition to other contributions (like a timing attack highlighting the timing
leakage performed by Mehdi Tibouchi and Thomas Espitau), this work was part of [Bar+19a]
which was accepted to the ACM-CCS conference en 2019.

The techniques used in this previous work could be reused for Falcon’s Gaussian sampler too.
Thus, by joining an ongoing project with Thomas Prest – my Thales advisor at that time – and
Thomas Ricosset, we were able to formalize Falcon Gaussian sampler and proved its security
against timing attacks. We finally figured that this sampler could also be made generic to be
reused in other settings. We sent our preliminary work to Thomas Pornin, who implemented our
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Gaussian sampler into the official implementation of Falcon. The security/performance tradeoff
eventually achieved is very satisfying, as it does not harm Falcon’s ranking in the NIST stan-
dardization process. James Howe eventually joined us for writing a paper combining our sampler
and his statistical test suite for Gaussians. The final work was published in 2020 [How+20].

Hopefully, thanks’ to these simple techniques (polynomial approximations, Rényi divergence
arguments, convolution, acceptance-rejection lemma), the Gaussian distributions can be some-
how reconsidered for practical implementations as they also provide better-suited parameters.

Chapter content
2.1 Introduction and motivations . . . . . . . . . . . . . . . . . . . . . . . 24
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2.4.6 Security and isochrony statement . . . . . . . . . . . . . . . . . . . . . . 50
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2.5.2 Security statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.3 A polynomial approximation again . . . . . . . . . . . . . . . . . . . . . 56
2.5.4 An experimentally derived base sampler . . . . . . . . . . . . . . . . . . 57
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2.5.6 Applications and limitations . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.1 Introduction and motivations

Gaussian distributions and implementation vulnerabilities. Despite their attractive
theoretical properties, lattice-based constructions present novel challenges in terms of imple-
mentation security, particularly concerning their protection against side-channel attacks. Taking
signatures as an example, possibly one of the most efficient constructions is the BLISS signature
scheme of Ducas et al. [Duc+13], which features excellent performance and has seen real-world
deployment via the VPN software suite strongSwan. Later implementations of BLISS show good
hardware performance as well [PDG14]. However, existing implementations of BLISS suffer from
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significant leakage through timing side-channels, which have led to several devastating attacks
against the implementations [Bru+16; PBY17; Esp+17; Boo+18; TW19]. The main feature
of BLISS exploited in these attacks is the use of discrete Gaussian distributions, either as part
of the Gaussian sampling used to generate the random nonces in signatures or as part of the
crucial rejection sampling step that forms the core of the Fiat–Shamir with aborts framework
that supports BLISS security.

Generally speaking, Gaussian distributions are ubiquitous in theoretical lattice-based cryp-
tography, thanks to their convenient behavior concerning proofs of security and parameter
choices. However, their role in practical implementations is less clear, mainly because of the
concerns surrounding implementation attacks. For this reason, some schemes limit or pro-
scribe the use of Gaussians [Bin+19; Lyu+19]. For example, BLISS was not submitted to the
NIST post-quantum standardization effort partly due to those concerns. Besides, the second
round candidate Dilithium [Duc+18], which can be seen as a direct successor of BLISS, replaces
Gaussian distributions by uniform ones, at the cost of larger parameters and a less efficient
implementation, specifically citing implementation issues as their justification.

However, in some situations, Gaussians are unavoidable. The most prominent example is
trapdoor sampling [GPV08; Pei10; MP12]: performing it efficiently with other distributions is an
open question, except in limited cases [LW15] which entail a growthO(

√
n) toO(n) of the output,

resulting in dwindling security levels. Given the countless applications of trapdoor sampling
(full-domain hash signatures [GPV08; Pre+19], identity-based encryption (or IBE) [GPV08;
DLP14], hierarchical IBE [Cas+10; ABB10], etc.), it is important to come up with Gaussian
samplers over the integers, which are not only efficient, but also provably secure, resistant to
timing attacks, and in general easy to deploy.

Signature security property

All the recent signature schemes are claimed EUF-CMA (existential unforgeability under chosen
message attack). Let us introduce the definition.

Adversary Challenger
(KeyGen,Sign,Verify)←−−−−−−−−−−−−

pk←−−
(
sk, pk

)
← KeyGen(1λ)

Qs queries



m(1)

−−−→
σ(1) ← Sign(sk,m(1))

σ(1)

←−−
...

m(Qs)

−−−→
σ(Qs) ← Sign(sk,m(Qs))

σ(Qs)

←−−−
forgery

{ m∗, σ∗−−−−→ b := Verify(pk,m∗, σ∗) ∧ (m∗ /∈ {m(1), . . . ,m(Qs)})

Security Game 1: EUF-CMA game.

Security Model 1. Let Qs be a fixed maximum amount of signature queries. A signature scheme
(KeyGen,Sign,Verify) is EUF-CMA-secure if any probabilistic polynomial time adversary has a
negligible probability of winning in the EUF-CMA game presented in Security Game 1.
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This security definition does not capture any timing attacker. The goal of the following work
is to design a stronger security property combining EUF-CMA and timing guarantees.

2.2 Definitions and tools

2.2.1 Isochrony

Let us now formalize the timing security guarantees that a signature implementation can claim.
To do so, we introduce the notion of isochronous existential unforgeability under chosen mes-
sage attack (I-EUF-CMA), which combines the standard EUF-CMA security property with the
timing security.

After discussing with Thomas Prest, Thomas Ricosset and James Howe, we concluded
that the term “isochronous” should be preferred to “constant-time”. Indeed, the timing
security is ensured if the execution time does not depend on the private key, may it vary.
An algorithm can run in variable time and still be impervious to timing attacks.

Security Model 2 (Isochrony). An implementation (KeyGen, Sign,Verify) of a signature scheme
is isochronously EUF-CMA-secure, or I-EUF-CMA secure for short if any probabilistic polyno-
mial time adversary has a negligible winning probability in the experiment from Security Game 2.
In that security experiment, ExecObs takes as input an algorithm and its arguments, executes
the program, and outputs the result of the computation together with the timing leakage L

(i)
Sign,

consisting of a measurement of the execution time of the i-th execution of the algorithm Sign.

Adversary Challenger
(KeyGen,Sign,Verify)←−−−−−−−−−−−−

pk←−− (sk, pk)← KeyGen(1λ)

Qs queries



µ(1)−−→ (
σ(1),L

(1)
Sign

)
← ExecObs(Sign, µ(1), sk)

σ(1),L
(1)
Sign←−−−−−−

...
µ(Qs)−−−→ (

σ(Qs),L
(Qs)
Sign

)
← ExecObs(Sign, µ(Qs), sk)

σ(Qs),L
(Qs)
Sign←−−−−−−−

forgery
{ µ∗, σ∗−−−−→

b := Verify(pk, µ∗, σ∗) ∧ (µ∗ /∈ {µ(1), . . . , µ(Qs)})

Security Game 2: The I-EUF-CMA security game. ExecObs is a universal Turing machine that takes
as input an algorithm and several possible arguments, and it returns the output of the algorithm on those
arguments, together with the timing leakage L .

In the following sections, we use some assumptions to ensure isochrony provably. First, we
will study the distribution of the execution time as a function of elementary operations. We
thus need to consider that the latter cannot leak through timing.
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Assumption 1. The elementary operations {+,−,×, /} over integer and floating-point numbers
are assumed to be performed in an isochronous way: their execution time is independent of their
inputs.

The previous assumption can be validated if the elementary operations are performed with
specific certified isochronous instructions. With general CPU instructions, [Por20] showed that
Assumption 1 is not always verified.

2.2.2 Gaussians

For σ, µ ∈ R with σ > 0, we call Gaussian function of parameters σ, µ and denote by ρσ,µ the
function defined over R as ρσ,µ(x) := exp

(
− (x−µ)2

2σ2

)
. Note that when µ = 0 we omit it in index

notation, i.e. ρσ(x) := ρσ,0(x). The parameter σ (resp. µ) is often called the standard deviation
(resp. center) of the Gaussian. In addition, for any countable set S ( R we abusively denote by
ρσ,µ(S) the sum

∑
z∈S ρσ,µ(z) when the latter converges.

In all this thesis, we denote by DS,σ,µ and call discrete Gaussian distribution of parameters
σ, µ the distribution over S defined by DS,σ,µ(z) := ρσ,µ(z)/ρσ,µ(S). Here too, when µ = 0 we
omit it in index notation, e.g. DS,σ(z) := DS,σ,0(z). We also use the notation Bp to denote the
Bernoulli distribution of parameter p

We define the support of a probability distribution, denoted Supp(·), as the set of elements
with nonzero probability.

2.2.3 Generalized Rényi divergence results

We present the definition of the Rényi divergence, which we will use massively in our security
proofs. Lemma 2 and its proof are a formalization based on the work of [Pre17, Section 3.3].
The generalization to arbitrary security parameters in Lemma 4 is also a slight contribution of
this thesis.

Definition 1 (Rényi Divergence). Let P, Q be two distributions such that Supp(P) ⊆ Supp(Q).
For a ∈ (1,+∞), we define the Rényi divergence of order a by

Ra(P,Q) :=

 ∑
x∈Supp(P)

P(x)a

Q(x)a−1

 1
a−1

.

In addition, we define the Rényi divergence of order +∞ by

R∞(P,Q) := max
x∈Supp(P)

P(x)

Q(x)
.

The Rényi divergence is not a distance; for example, it is neither symmetric nor does it
verify the triangle inequality, which makes it less convenient than the statistical distance. On
the other hand, it does verify cryptographically useful properties, including a few listed below.

In this thesis, random variables, i.e. variables whose values depend on outcomes of a random
phenomenon, are denoted in lowercase calligraphic letters e.g. a, b, x. Random vectors are
denoted in uppercase calligraphic letters e.g. C,X,Z.

Lemma 1 ([Bai+15]). For two distributions P,Q and two finite families of distributions (Pi), (Qi),
the Rényi divergence verifies these properties:

• Data processing inequality. For any function f , Ra(f(P), f(Q)) ≤ Ra(P,Q) where
the distribution f(P) (resp. f(Q)) is obtained by applying f to x← P (resp. x← Q).
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• Probability preservation. For any event E ⊆ Supp(Q) and a ∈ (1,+∞),

Q(E) ≥ P(E)
a
a−1 /Ra(P,Q), (2.1)

Q(E) ≥ P(E)/R∞(P,Q). (2.2)

• Multiplicativity. Assume that P and Q are the joint distribution of a pair of random vari-
ables (x1, x2). Assume also that x1 and x2 are independent. We then denote P(x1, x2) :=
P1(x1) ·P2(x2) and Q(x1, x2) := Q1(x1) ·Q2(x2). Then, Ra(P,Q) = Ra(P1,Q1) ·Ra(P2,Q2).

Application for security arguments. A first demonstrated in [Bai+15] and later in [Pre17,
Section 3.3], the Rényi divergence has proved to be convenient for security arguments in lattice-
based cryptography. We introduce two general lemmas (Lemmas 2 and 4) that will be used
for security arguments in this chapter. In some cases, the queries to the distributions are not
independent1, thus, one cannot apply the multiplicativity directly in our proofs. To handle these
dependencies, we introduce the following proposition.

Proposition 2. Let P and Q denote two distributions of a N -uple of random variables (xi)i<N .
For 0 ≤ i < N , assume Pi (resp Qi) is the marginal distribution of Xi, and let Pi|<i(·|x<i)
denote the conditional distribution of xi given that (x0, . . . , xi−1) = x<i. Let a > 1. Suppose that
for all 0 ≤ i < N , there exists ra,i ≥ 1 such that for all i-uple x<i in the support of Q restricted
to its first i variables,

Ra(Qi|x<i ,Pi|x<i) ≤ ra,i. (2.3)

Then:
Ra(Q,P) ≤

∏
i<N

ra,i. (2.4)

Proof: We prove the result in the case N = 2, the general case then follows by induction. We
have:

Ra(Q,P)a−1 =
∑
x1,x2

(Q1(x1) · Q2|1(x2|x1))a

(P1(x1) · P2|1(x2|x1))a−1
(2.5)

=
∑
x1

Q1(x1)a

P1(x1)a−1
·

Ra (Q2|1(·|x1),P2|1(·|x1)
)︸ ︷︷ ︸

≤ra,2


a−1

(2.6)

≤ (ra,1 · ra,2)a−1 (2.7)

This concludes the proof.

Lemma 2. Consider a cryptosystem denoted CP in which a Q-uple (x0, . . . xQ−1) is drawn ac-
cording to a distribution P. Assume that CP is λ-bit secure against a search problem. Let
us consider a copy of the latter cryptosystem, denoted CQ, where the only difference is that
(x0, . . . xQ−1) is drawn according to a distribution Q such that Supp(Q) ⊆ Supp(P).

We denote (x0, . . . xQ−1) the random variables corresponding to (x0, . . . xQ−1) that follow P
or Q depending on the case. For 0 ≤ i < Q, we denote by Pi|<i(·|x<i) (resp. Qi|<i(·|x<i)) the
conditional distribution of xi given the knowledge of (x1, . . . , xi−1) = x<i under P (resp. Q). If,
for all 0 ≤ i < Q, and for all i-uple x<i in the support of Q restricted to its first i variables,

R2λ−1(Qi|x<i ,Pi|x<i) ≤ 1 +
1

4Q
, (2.8)

then CQ is (λ− 1)-bit secure against the search problem.
1We thank Damien Stehlé for pointing that out.
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Note that when the drawing of xi is independent from the preceding drawings, Eq. (2.8) is
equivalent to assume for all 0 ≤ i < Q,

R2λ−1(Qi,Pi) ≤ 1 +
1

4Q
. (2.9)

When they are not independent, we informally assume that the Rényi divergence is small no
matter the preceding knowledge.

Proof: Let us assume that CQ is not (λ − 1)-bit secure against the search problem. Then, we
assume that an attacker that breaks the scheme CQ by solving the search problem with
a probability, denoted εQ, that is higher than 2−(λ−1) exists. Thus,

εQ > 2−(λ−1).

To succeed, the attacker draws a Q-uple (x0, . . . xQ−1) (in Supp(Q)) according to the
distribution Q. Let us denote εP the probability that the same attacker breaks the
scheme CP with querying the distribution P instead of Q. By probability preservation,
for all a ∈ (1,+∞),

εP ≥ εa/(a−1)
Q /Ra(Q,P) (2.10)

Let us set a := 2λ− 1 in Eq. (2.10). For the numerator, we have

ε
a/(a−1)
Q >

(
2−(λ−1)

) 2λ−1
2(λ−1)

=
√

2 · 2−λ. (2.11)

Thus, εP satisfies

εP >

√
2 · 2−λ

R2λ−1(Q,P)
(2.12)

We apply Proposition 2 using the hypothesis in Eq. (2.8),

R2λ−1(Q,P) ≤
(

1 +
1

4Q

)Q

≤ e1/4 ≤
√

2. (2.13)

Thus,
εP > 2−λ. (2.14)

We can conclude that our attacker is also able to break CP by solving the search problem
with a success probability strictly higher than 2−λ.

Thus, assuming that CQ is not (λ − 1)-bit secure against the search problem leads to
proving that CP is not λ-bit secure against the search problem either. The lemma is,
therefore, proved by contraposition.

Relative error lemma The following lemma, also introduced by Prest in [Pre17], shows that
a bound of δ on the relative error between two distributions implies a bound O(aδ2) on the log
of the Rényi divergence (as opposed to a bound O(δ) on the statistical distance).

Lemma 3 (Lemma 3 of [Pre17]). Let P,Q be two distributions such that Supp(P) = Supp(Q).
Suppose that the relative error between P and Q is bounded:

∃δ > 0 such that ∀x ∈ Supp(Q)

∣∣∣∣Q(x)

P(x)
− 1

∣∣∣∣ ≤ δ.
Then, for all a ∈ (1,+∞):

Ra(Q,P) ≤
(

1 +
a(a− 1)δ2

2(1− δ)a+1

) 1
a−1

∼
δ→0

1 +
aδ2

2
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Let us now introduce a new security theorem that reformulates Lemma 2 with a different
“close enough“ condition that is expressed in terms of relative error using Lemma 3.

Lemma 4. Consider a cryptosystem denoted CP in which a Q-uple (x0, . . . xQ−1) is drawn ac-
cording to a distribution P. Assume that CP is λ-bit secure against a search problem. Let
us consider a copy of the latter cryptosystem, denoted CQ, where the only difference is that
(x0, . . . xQ−1) is drawn according to a distribution Q such that Supp(Q) = Supp(P).

We denote (x0, . . . xQ−1) the random variables corresponding to (x0, . . . xQ−1) that follow P
or Q depending on the case. For 0 ≤ i < Q, we denote by Pi|<i(·|x<i) (resp. Qi|<i(·|x<i)) the
conditional distribution of xi given the knowledge of (x1, . . . , xi−1) = x<i under P (resp. Q). If,
for all 0 ≤ i < Q and for all i-uple x<i in the support of Q restricted to its first i variables,
Pi|x<i and Qi|x<i satisfy

∀x ∈ Supp(P)

∣∣∣∣Pi|x<i(x)−Qi|x<i(x)

Pi|x<i(x)

∣∣∣∣ ≤ 1√
2 (2λ− 1) · Q

, (2.15)

then CQ is (λ− 1)-bit secure against the search problem.

Proof: Let us fix 0 ≤ i < Q and a i-uple x<i in the support of Q restricted to its first i variables.
Eq. (2.15) can be rewritten as follows.

1− δ ≤
Qi|x<i
Pi|x<i

≤ 1 + δ with δ :=
1√

2 (2λ− 1) · Q
.

Since Supp(Qi|x<i) = Supp(Pi|x<i) (because Supp(P) = Supp(Q)), we apply Q times
Lemma 3 with a = 2λ− 1 and get

R2λ−1(Qi|x<i ,Pi|x<i) ≤ 1 +
(2λ−1)· 1

2(2·λ−1)Q

2
= 1 + 1

4Q .

The application of Lemma 2 allows to conclude.

2.2.4 Gaussian sampling

The purpose of Gaussian sampling is to perform the instruction x ← DZ,σ,µ where DZ,σ,µ is a
discrete Gaussian with parameters σ and µ as defined in Section 2.2.2. The latter are either
parameters of the cryptosystem or intermediate variables.

Several works devoted to sampling according to discrete Gaussian distributions [MW17;
Kar+18; DN12a] or related distributions, such as rounded Gaussians [HLS18] exist. Different
methods exist, according to the standard deviation size, as well as whether it is constant or
variable. Encryption schemes typically require small standard deviations, while signatures use
larger ones, which are fixed for Fiat–Shamir schemes and vary for hash-and-sign constructions.
It is customary to use a small standard deviation “base sampler” and build upon it to achieve
the desired large standard deviation: this is the approach presented in [MW17]. These works
can also be distinguished according to whether they require floating-point arithmetic. In par-
ticular, the rounded Gaussians of [HLS18] offer numerous attractive properties, but they have
some statistical limitations in terms of distinguishing advantage, and they rely on floating-point
implementations. We present here the isochronous Gaussian Sampling building blocks that we
will use in this thesis.



Definitions and tools 31

Optimization with positive samples

Before showing the sampling techniques, one optimization could be to sample from |DZ,σ| where
the latter denotes the distribution of the absolute value of the samples from DZ,σ. Therefore,
to sample from DZ,σ, one must use a random sign flip after drawing from |DZ,σ| to recover the
entire distribution DZ,σ.

Remark 1. One can remark that |DZ,σ| 6= DZ+,σ. Indeed DZ+,σ(z) = ρσ(z)/ρσ(Z+) while

|DZ,σ|(z) ∝
{

2 · ρσ(z) if z 6= 0
ρσ(z) if z = 0

Isochronous Cumulative Distribution Table (CDT)

Let us assume that we want to draw a sample from a distribution D. In particular; one might
take D := |DZ,σ| for a direct Gaussian sampling with a sign generation just after as will be
presented later in Chapter 3 with Gadget 11. Alternatively, one might take D = DZ+,σ for using
different techniques as will be presented in Algorithms 12 and 13.

In any case, to draw from D, the general inverse transform sampling technique originally
introduced in [Dev86, Section 2.2] can be used. It needs a Cumulative Distribution Table (CDT
for short): precompute a table of the cumulative distribution function of D. The table should
cover the interval at the points where the distribution has a non-negligible probability & 2−128.
Then, to produce a sample; one can generate a random value in [0, 1] with 128 bits of precision,
and return the index of the first entry in the table strictly larger than that value. In variable
time, this can be done relatively efficiently with a binary search, but this leaks the resulting sam-
ple through memory access patterns. As a result, an isochronous implementation has essentially
no choice but to read the entire table each time and carry out each and every comparison. This
process is summed up in Algorithm 2. The parameter w is the number of elements of the CDT
and θ is the precision of its coefficients. The CDT table contains w elements tj for j ∈ [0, w− 1]
such that tj :=

∑
0≤i≤j D(i) with θ bits of absolute precision.

Algorithm 2 — Cumulative Distribution Table Sampling (SampleCDT)

Params: w, θ, (tj)j∈[0,w−1]

Result: A sample z following D
1 z := 0
2 pick u ∈ [0, 1) uniformly with θ bits of absolute precision
3 for 0 ≤ j < w do
4 b := (tj ≤ u) /* b = 1 if (tj ≤ u), b = 0 otherwise */
5 z := z + b

6 end
7 return z

Although a basic CDT implementation would store the cumulative probabilities with 128
bits of precision, it is, in fact, possible to only store lower precision approximations, as discussed
in [PDG14; Wal19] (see also [Pre17] for an alternate approach using “conditional distribution
functions”). Nevertheless, even with these optimizations, a direct CDT leads to highly inefficient
implementations because the tables are often very heavy. Besides, this sampling does not handle
variable center and standard deviation.
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Generic Convolution techniques

An efficient approach, originally introduced by Pöppelmann et al. [PDG14] and later improved
and generalized by Micciancio and Walter [MW17], assumes that we can generate a base Gaus-
sian distribution DZ+,σ0 with not too small standard deviation σ0 using an isochronous CDT for
example. And, this allows combining samples issued with the base distribution to achieve larger
standard deviations. These convolution techniques are highly generic and can be applied for
any variable center and standard deviation. Inevitably, this convolution technique is no always
optimal for practical schemes with particular specificities. For example, for BLISS, the fixed
large standard deviation can be leveraged (see Section 2.4.5). Furthermore, for our sampler for
Falcon in Section 2.5, we leverage the fact that the variation magnitude of the center and stan-
dard deviation is very small. Both of the specific techniques use rejection sampling, explained
below.

2.2.5 Rejection sampling

Let us present the acceptance-rejection method [CRW04; MM10; Lyu12; Duc+13]. This tech-
nique, that allows to convert a set of samples from random instances of a family gv of distributions
into a subset of samples from a target distribution f , is based on the following lemma.

Lemma 5 (Acceptance-Rejection Lemma as stated in [Duc+13]). Let V be an arbitrary set,
h : V → R and f : Zm → R be probability distributions. If gv : Zm → R is a family of
distributions indexed by v ∈ V with the following property

∃M ∈ R such that ∀v ∈ V ∀z ∈ Zm Mgv(z) ≥ f(z).

The distribution of the output of the following procedure
1. v ← h
2. z←− gv
3. output (z, v) with probability f(z)

Mgv(z)
is identical to the output of

1. v ← h
2. z←− f
3. output (z, v) with probability 1/M .

A first use of Lemma 5 is the possibility to eliminate secret-dependent output distributions
with a secret-independent number of iterations as sketched in Section 2.2.6. Another key
idea of the rejection sampling is the possibility to build efficient Gaussian sampling by

1. constructing a distribution that looks somewhat like the desired Gaussian but is not
statistically close;

2. using rejection sampling to correct the discrepancy.
This is particularly useful when step 1 can be performed efficiently. This idea is applied to
both our Gaussian sampler for BLISS signature scheme in Section 2.4 and our isochronous
sampler for Falcon in Section 2.5.

2.2.6 An example of application

Let us consider the Fiat-Shamir with aborts signature scheme introduced in [Lyu12]. This
scheme is the ancestor of BLISS (described in Section 3.4), Dilithium (see Section 3.3.6) and
qTesla (see Section 3.5). This scheme is based on SIS (see Hard Problem 4) and we present
the key generation and signature in Algorithms 3 and 4. We refer to [Lyu12] for the parameter
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Algorithm 3 — Lyubashevsky key generation

Result: Private key sk = S,
Public key
pk = (A,T)

1 S
$←− {−d, . . . , d}m×k

2 A
$←− Zn×mq

3 T := AS

Algorithm 4 — Lyubashevsky signature

Data: m, pk, sk
Result: Signature sig

1 y← Dm
Z,σ

2 u := Ay
3 c := hash(u,m)
4 z := y + sc
5 return sig := (z, c) with probability

ρσ(‖z‖2)
Mρσ(‖z−Sc‖2)

Algorithm 5 — Hybrid signature algorithm

Data: m, pk, sk
Result: Signature sig

1 c
$←− {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}

2 z← Dm
Z,σ

3 return sig := (z, c) with probability 1
M and program hash(Az−Tc,m) = c

choice and verification algorithm. The hash function is chosen to satisfy hash : {0, 1}∗ → {v :
v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}.

Thanks to the rejection sampling lemma (we refer to [Lyu12, Theorem 5.1] for the detailed
proof), the signature algorithm is indistinguishable from the hybrid presented in Algorithm 5.

Remark 2. The number of iterations is variable and follows a geometric distribution of param-
eter M . Note that even though the number of iterations varies, it is independent from the
secret. This stays true even if an attacker is able to select a subset of signatures by filtering2

the output c. Indeed, assume that an attacker has access to the expectation of rejection condi-
tionned with c, i.e. Ey[(z, c) rejected | c]. The following computation shows that this quantity
is independent from S and c. Let S and c be fixed quantities,

psc := Ey[(z, c) rejected | c] = 1− 1/M · Ey

[
ρσ(‖z‖2)

ρσ(‖z− Sc‖2)

]
(2.16)

= 1− 1/M · Ey

[
ρσ(‖y + sc‖2)

ρσ(‖y‖2)

]
(2.17)

= 1− 1

Mρσ(Zn)

∑
y

ρσ(‖y‖2)ρσ(‖y + sc‖2)

ρσ(‖y‖2)
(2.18)

= 1− 1

Mρσ(Zn)

∑
y

ρσ(‖y + sc‖2) (2.19)

= 1− 1

Mρσ(Zn)

∑
z

ρσ(‖z‖2) (2.20)

= 1− 1/M. (2.21)

One may argue that, by fixing c, we also filter elements y though the hashing function and thus
the sum will not be on all y. However, in the random oracle model, the choices of c and y can be
seen as independents as long as (u,m) are not repeated which happens with negligible probability.

2We thank Damien Stehlé for suggesting this approach.
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2.3 GALACTICS: A polynomial approximation tool

This section, along with Section 2.4, are part of a work [Bar+19a] done with Gilles Barthe,
Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque and Mehdi Tibouchi. The purpose of this
section is to use Lemma 4 for replacing transcendental functions with finite input set (the density
function of an ideal distribution P) by polynomials with the same support.
The well-studied techniques for approximating transcendental functions with polynomials have
become very relevant in implementations of Gaussian sampling algorithms. They are in particu-
lar useful as the exp(·), and cosh(·) functions are necessary for Gaussian and Bimodal Gaussian
distributions. One first naive technique could be to use a Taylor development or the transcen-
dental function. However, one can find lower degrees and get a higher accuracy. For example,
in [Pre17] Prest suggests a Gaussian sampler that uses Padé approximants to evaluate the ex-
ponential function of the rejection probability. More recently, Zhao et al. have proposed a
polynomial approximation using the Sollya software package [SMC10]. Their resulting imple-
mentation runs without floating-point division [ZSS18] since that operation is known to leak
through timing. Zhao et al. use floating-point multiplications instead to compute the exponen-
tial, but this instruction does not always have isochronous execution guarantees either. Here,
we approximate the transcendental functions over an interval using integer polynomials to avoid
floating operations. Moreover, we aim to approximate using polynomials with small coefficients
so that we can use small-sized integers and obtain a straightforward implementation of Horner’s
polynomial evaluation algorithm.

Definition 2 (Polynomial Approximation). Let K ∈ R+, for f a nonzero function on an interval
I, we denote by P If a polynomial in R[x] that satisfies

∀x ∈ I,

∣∣∣∣∣P If (x)− f(x)

f(x)

∣∣∣∣∣ < 2−K (2.22)

Such a polynomial is referred to as an approximation that coincides with f up to K bits of
relative precision on I.

Lemma 6. Let f : I → R be a function defined on an interval I ⊂ R such that ∀x ∈ I 0 ≤ f(x) ≤
1. Consider a cryptosystem denoted C that requires drawing a Q-uple (a0, . . . aQ−1) ∈ {0, 1}Q such
that ai ← Bf(xi) where the xi are drawn from a distribution on I. Assume that C is λ-bit secure
against a search problem. Let

K := log2

(√
2 · (2 · λ− 1) · Q

)
.

Let us consider a copy of the latter cryptosystem, denoted Capprox, where the only difference
is that each ai ← Bf(xi) is replaced by ai ← BP If (xi)

for the same xi where P If is such that

∀x ∈ I,

∣∣∣∣∣P If (x)− f(x)

f(x)

∣∣∣∣∣ < 2−K (2.23) and ∀x ∈ I

∣∣∣∣∣P If (x)− f(x)

1− f(x)

∣∣∣∣∣ ≤ 2−K . (2.24)

Then, Capprox is (λ− 1)-bit secure against the search problem.

Proof: For all x ∈ I,∣∣∣∣∣Bf(x)(1)− BP If (x)(1)

Bf(x)(1)

∣∣∣∣∣ =

∣∣∣∣∣P If (x)− f(x)

f(x)

∣∣∣∣∣ and

∣∣∣∣∣Bf(x)(0)− BP If (x)(0)

Bf(x)(0)

∣∣∣∣∣ =

∣∣∣∣∣P If (x)− f(x)

1− f(x)

∣∣∣∣∣ .
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Thus, ∀b ∈ {0, 1}

∣∣∣∣∣Bf(x)(b)− BP If (x)(b)

Bf(x)(b)

∣∣∣∣∣ ≤ 2−K =
1√

2 (2λ− 1) · Q
.

Using Lemma 4, one can safely replace the distribution Bf(x) by the distribution BP If (x)

and the resulting cryptosystem will be (λ− 1)-bit secure against the search problem.

Remark 3. The condition of Eq. (2.24) has been added in a recent modification of this thesis.
Thus, in our applications, Eq. (2.24) will be checked experimentally once a polynomial is found.
The next paragraphs focus on a polynomial approximation verifying Eq. (2.23).

In this section, we aim at exhibiting a polynomial P If that validates Definition 2 with imple-
mentation friendly features, i.e. short-sized coefficients and a short degree. More precisely, we
must minimize two parameters in order to achieve Eq. (2.22) as tightly as possible, namely

• η, the number of bits of its coefficients,

• γ, its degree.

The procedure is as follows:
1. In a first attempt, we exhibit a candidate polynomial for f whose coefficients are in the

field R. This step gives us the minimum degree γ that is needed.
2. In a second attempt, the coefficients of the candidate polynomial are rounded to fulfill the

requirement on the number of bits η.

2.3.1 Polynomial approximation in R[x]

We start by looking for a polynomial PR in R[x] that approximates f on a defined interval I such
that ∀x ∈ I, f(x) ≤ 1/2. In this section, we re-define the infinite norm as ‖f‖∞ := supI |f(x)|.
Such a bound is convenient as Eq. (2.22) is equivalent to∥∥∥∥∥P Iff − 1

∥∥∥∥∥
∞

< 2−K . (2.25)

However, the main drawback of the infinite norm is that it is not Euclidian. One possible
efficient method to polynomially approximate with the infinite norm is introduced in [BC18]. In
the following, we present a different method which trades efficiency with accuracy: the approxi-
mation consists of the interpolation of a continuous interval instead of a discrete set of samples.
This procedure is more adapted to our setting since we want an approximation for all x in an
interval I.

To approximate on I, we can over-approximate the infinite norm by a Euclidian norm in
order to use orthogonal projections. We then propose the use of Sobolev H2 inner product. This
Euclidean metric was introduced in [Sob63] and allowed to upper bound the infinite norm. Let
us describe this inner product.

Definition 3 (Sobolev H2 inner product). For u and v two differentiable functions defined on
an interval I, Sobolev H2 inner product is defined by

〈u, v〉S :=
1

|I|

∫
I
uv + |I|

∫
I
u′v′.

The corresponding norm |·|S is

|u|2S :=
1

|I|

∫
I
u2 + |I|

∫
I
u′2.
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And the interesting property of this norm is the following.

Lemma 7 ([Kel20]). The Sobolev norm |·|S satisfies

‖u‖∞ ≤
√

2 · |u|S .

Proof: Let x0 ∈ I be such that |u(x)| ≥ |u(x0)| for all x ∈ I. We then write

u(x) = u(x0) +

∫ x

x0

u′

Hence,

|u(x)| ≤ |u(x0)|+
∫ x

x0

|u′| ≤ 1

|I|

∫
I
|u|+

∫
I
|u′|

Using Cauchy-Schwarz, we have
( ∫

I |u|
)2 ≤ |I| ∫I |u|2 and

( ∫
I |u
′|
)2 ≤ |I| ∫I |u′|2. Then,

|u(x)| ≤ 1

|I|

√
|I|
∫
I
|u|2 +

√
|I|
∫
I
|u′|2

Using the equality x+ y ≤
√

2
√
x2 + y2 for x, y ≥ 0, we have

|u(x)| ≤
√

2

√
1

|I|2
· |I|

∫
I
|u|2 + |I|

∫
I
|u′|2

Thus,
||u||∞ ≤

√
2 · |u|S

which concludes the proof.

Based on this norm, we compute a polynomial, denoted PR, as an orthogonal projection
minimizing |PR/f − 1|S and get ∥∥∥∥PR

f
− 1

∥∥∥∥
∞
≤
√

2 ·
∣∣∣∣PR
f
− 1

∣∣∣∣
S︸ ︷︷ ︸

small

.

Let R<d[X] be the space of polynomials of degree < d. To find an element of the form PR
f that

minimizes
∣∣∣PR
f − 1

∣∣∣
S
, we build the following vector space:

Ed :=

{
X 7→ P (X)

f(X)
: P ∈ R<d[X]

}
Assuming that f is a transcendental function, the function X 7→ 1 does not belong in Ed for any
d. However, for each d, there exists an element of the form PR

f ∈ Ed that minimizes
∣∣∣PR
f − 1

∣∣∣
S
.

The latter element corresponds to the orthogonal projection of 1 on Ed with respect to Sobolev
H2 inner product.

For each d, we thus derive an orthonormal basis of Ed by Gram-Schmidt orthonormaliz-
ing the canonical basis

(
1/f,X/f, · · · , Xd−1/f

)
with respect to |·|S; getting a basis denoted

(g0, · · · , gd−1). Let Πd denote the projection of 1 on Ed,

Πd =
∑d−1

i=0 〈1, gi〉S
gi
|gi|S

. (2.26)
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With Lemma 7, ‖Πd − 1‖∞ ≤
√

2 · |Πd − 1|S. With the application of the log function, a
slightly underestimated quality of the approximation can be obtained as

κ(d) := − log2

(√
2 ·
∣∣Πd − 1

∣∣
S

)
. (2.27)

Therefore, to achieve a precision K, as shown in Algorithm 6, it is sufficient to select the
degree γ as being the minimum degree such that

κ(γ) > K, i.e. ‖Πγ − 1‖∞ < 2−K , and set PR =Πγ · f.

Algorithm 6 — Polynomial Approximation with large coefficients (floatapprox)

Params: The function f , the interval I
Data: The target relative precision K
Result: A polynomial PR verifying Eq. (2.25) along with its degree

1 d := 1
2 repeat
3 Πd := Projection of x 7→ 1 on Ed with respect to |.|S
4 κ(d) := − log2

(√
2 ·
∣∣Πd − 1

∣∣
S

)
5 d := d+ 1

6 until κ ≥ K
7 return PR :=Πd · f and γ := d

2.3.2 Integer polynomial approximation

Let us assume that we have found a polynomial PR ∈ R[X]

PR(X) = a0 + a1 ·X + · · ·+ aγX
γ (2.28)

with (ai)i∈[0,γ] ∈ R verifying Eq. (2.25). We now want to derive P If from PR with coefficients of
the following form.

P If (X) = b0 · 2−m0 + b1 · 2−m1 ·X + · · ·+ bγ · 2−mγ ·Xγ , (2.29)

where (mi)i∈[0,γ] are integers and (bi)i∈[0,γ] are η-bit signed integers (i.e. ∈ [−2η−1, 2η−1[).

In order to obtain these coefficients, we need to operate a rounding of PR and minimize the
precision loss. An intuitive idea could be to multiply each coefficient ai by a large power of two
and round it to the nearest integer. Actually, one can lose less precision by using classical lattice
reduction techniques.

In a nutshell, the idea is to round PR with its closest element in a Euclidean lattice that
represents the elements in Z2η [X]/f(X). In this objective, for each coefficient ai, we first fix mi

to the unique integer such that

ai · 2mi ∈ [−2η−1, 2η−1[. (2.30)

Let us create an Euclidean lattice with the following basis

B :=

(
2−η−mi · Xi

f(X)

)
i∈[0,γ]

. (2.31)
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Our notion of closeness still refers to the Sobolev norm, which is an unusual norm for Eu-
clidean lattices. The lattice reduction must be adapted to use the Sobolev norm (using Gram
matrix corresponding to Sobolev’s inner product). And, this lattice can be LLL-reduced3 with
respect to the Sobolev H2 norm. A Babai rounding of the polynomial PR/f with respect to the
same Sobolev H2 norm gives candidates coefficients for P If . The quality of the rounding can be
evaluated as

κround(γ, η) := − log2

(
√

2 ·

∣∣∣∣∣P Iff − PR
f

∣∣∣∣∣
S

)
. (2.32)

The rounding always implies a loss of accuracy in the approximation. One can compute the
relative precision of P If by using Eqs. (2.27) and (2.32)

K ′ := 2−κ(γ) + 2−κ
round(γ,η).

If K ′ > K, then P If verifies Eq. (2.22), i.e. P If is a correct approximation that coincides with f
up to K bits of relative precision on I. Indeed, in that case:

∀x ∈ I, |P
I
f (x)−f(x)|
|f(x)| ≤

∥∥∥∥P If−ff

∥∥∥∥
∞

=

∥∥∥∥P Iff − 1

∥∥∥∥
∞

≤
∥∥∥∥P Iff − PR

f

∥∥∥∥
∞

+
∥∥∥PR
f − 1

∥∥∥
∞

≤
√

2 ·
∣∣∣∣P Iff − PR

f

∣∣∣∣
S

+
√

2 ·
∣∣∣PR
f − 1

∣∣∣
S

= 2−κ(γ) + 2−κ
round(γ,η)

≤ 2−K .

Algorithm 7 — Sketch of the full polynomial approximation

Params: The function f , the interval I
Data: The target relative precision K, the target size η
Result: A polynomial, the achieved precision K ′, the achieved size η′

1 (PR, γ) := floatApprox(K)
2 (mi)i∈[0,γ] defined with Eq. (2.30)
3 B computed with Eq. (2.31).
4 B′ := LLL-reduced B with respect to |.|S
5

P If
f

:= Babai Reduction of PR
f in B′.

6 K ′ computed with Eqs. (2.27) and (2.32)
7 η′ := maximal size of the coefficients of P If
8 return P If , K

′, η′

In Algorithm 7, we informally sketch all the steps for finding our final approximation. The
algorithm is ad-hoc and works by trial and error on the input parameters. For example, several
cases can appear.

1. The final relative precision K ′ is too small compared to the target one. In this case,
Algorithm 7 must be run with a higher input K in order to increase the degree γ.

2. The final size of the coefficients η′ is larger than the target one. This happens when the
lattice reduction was not successful enough to get a close vector in the lattice. Here too,
taking a more significant input degree can help to get a finer approximation.

3Using BKZ was not relevant for the sizes manipulated. Besides, unlike for LLL, there is no function for BKZ
that allows giving the Gram matrix as input.
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2.3.3 The Sage tool

A SageMath 9.0 class (publicly available in [Bar+19b]) was implemented. It takes a function f ,
an interval I and a target (K, η) as inputs. It follows Algorithm 7 and generates a polynomial
approximation of the function on I according to the previously described procedure. As the
computation needs to perform many integrals, the tool calls Pari/GP instructions. The tool
behaves very well on our applications (See Sections 2.4.3, 2.4.5 and 2.5.3) but as already stated,
there are no general optimality statements on this procedure.

As an example, let us use the tool to approximate the function x 7→ exp(−x) on [1, 2] with
targets (K, η) = (20, 30).

sage: load('polynomial_approximation.sage')
....: a = 1 # Lower bound for I
....: b = 2 # Upper bound for I
....: f = "exp(-x)"
....: target_precision = 20 # target relative precision
....: eta = 25 # target size of coefficients
....: size_floats = 128 # precision of intermediate computations
....: galactics = GALACTICS_approximation(a, b, size_floats, target_precision, eta, f)
....: galactics.approximate()

....................................
Step 1 : look for a polynomial with float coefficients that gives more than 20 bits of
relative precision

iteration on the degrees :

degree 0 -> precision 0
degree 1 -> precision 2
degree 2 -> precision 5
degree 3 -> precision 8
degree 4 -> precision 12
degree 5 -> precision 17
degree 6 -> precision 21
Found a degree !

Conclusion: Approximating f(x) by a degree 6 polynomial in R ensures 21 bits of precision

The corresponding polynomial is: P =
0.00030639757680663614256554200837983692209*x^6 -
0.0046377369922647502999899706886000279379*x^5 +
0.033741369917438395834270956177028799717*x^4 -
0.15596655425924862503523401481045802910*x^3 +
0.49116238390812574919951418501177974032*x^2 -
0.99591917917973812765784007336333646994*x +
0.99919276019463860932315882360313548431

....................................
Step 2 : Round the float coefficients to integer ones
Generating Lattice...
log(m[i]) = [-25, -25, -26, -27, -29, -32, -36]
LLL reduction Done

Babai Rounding...

-----------------------
| Final security : 21 |
| Max size coeffs : 25 |
-----------------------
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....................................

Exact polynomial:
P = 16763669 * 2 ^ -24

+ -33417471 * 2 ^ -25 * x ^ 1
+ 16480621 * 2 ^ -25 * x ^ 2
+ -10466641 * 2 ^ -26 * x ^ 3
+ 18114369 * 2 ^ -29 * x ^ 4
+ -4979525 * 2 ^ -30 * x ^ 5
+ 10527017 * 2 ^ -35 * x ^ 6

The final polynomial effectively provides 2−21 relative precision with x 7→ exp(−x) on [1, 2]
and the sizes of its coefficients do not exceed 25.

2.4 Isochronous BLISS

The BLISS signature scheme introduced in 2013 in [Duc+13] was possibly the most efficient
lattice-based signature scheme so far introduced at that time. It has been implemented in both
software [Duc+13] and hardware [PDG14] and boasted performance numbers comparable to
classical factoring and discrete-logarithm based schemes. BLISS can be seen as a ring-based
optimization of the earlier lattice-based scheme of Lyubashevsky [Lyu12], sharing the same
“Fiat–Shamir with aborts” structure [Lyu09].

Please note that its parameters were chosen before the NIST standardization process
and may now be considered not enough conservative compared to those of the NIST
candidates.

2.4.1 BLISS signature scheme

Algorithm 8 — BLISS key generation

Result: Signing key sk, verification key pk
1 Generate two polynomials f and g uniformly at random in Rq with exactly nδ1

entries in {±1} and nδ2 entries in {±2}
2 S = (s1, s2) := (f, 2 · g + 1)
3 if Nκ(S) ≥ C2 · 5 · (dδ1 · ne+ 4 · dδ2 · ne) · κ then
4 restart to step 2
5 end
6 aq := (2 · g + 1)/f mod q (restart if f is not invertible.)
7 A = (a1,a2) := (2 · aq, q − 2) mod 2q
8 return (pk, sk) := (A,S)

One can give a simplified description of the scheme as follows: the public key pk is a (NTRU-
like) ratio of the form aq = s2/s1 mod q, where the signing key sk is composed of polynomials
s1, s2 ∈ Rq (the cyclotomic ring is defined in Eq. (1.3)) are small and sparse. The integer n is a
power of two. See Algorithm 8 for a description of the key generation. Its security is based on
the ring variant of short integer solution (see Hard Problem 6). The parameters κ,C, δ1, δ2, q, p
are part of BLISS specifications, and we refer to [Duc+13] for the details on the function Nκ.

The BLISS signature procedure, described in Algorithm 9, works as follows. To sign a mes-
sage m, one first generates commitment values y1,y2 ∈ Rq with normally distributed coefficients
(i.e. using the distribution DZ,σ), and then computes a hash c of the message m together with
ζ · a1 · y1 + y2 mod 2q (where ζ(q − 2) = 1 mod 2q) using a cryptographic hash function, hash,
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modeled as a random oracle taking values in the set of elements of Rq with exactly κ coefficients
equal to 1 and the others to 0.

Algorithm 9 — BLISS Signature

Data: m, pk = a1, sk = S
Result: Signature sig

1 y1 ← Dn
Z,σ, y2 ← Dn

Z,σ
2 u := ζ · a1 · y1 + y2 mod 2q /* ζ(q − 2) = 1 mod 2q */
3 c := hash(bueMst mod p,m)
4 choose a random bit b
5 z1 := y1 + (−1)bs1c

6 z2 := y2 + (−1)bs2c
7 if RS(z := (z1, z2),S, c) then
8 restart to step 1
9 end

10 z†2 := (bueMst − bu− z2eMst) mod p

11 return sig := (z1, z
†
2, c)

Algorithm 10 — Detailed function RS (Step 7 in Algorithm 9)

Data: z = (z1, z2),S = (s1, s2), c ∈ Rq
Result: a bit equal to 0 with probability

1/
(
M exp(−‖c · S‖2/(2σ2)) cosh(〈z,Sc〉/σ2)

)
and 1 otherwise

1 Compute

x1 ∈ I1 :=

[
−σ

2

α2
, 0

]
and x2 ∈ I2 :=

[
−2B2σ

α
,
2B2σ

α

]
such that

x1 := ‖c · S‖2 − σ2

α2
and x2 := 2 · 〈z, c · S〉

2 Generate a pair (u1, u2) of fixed-precision numbers uniformly at random in [0, 1]2

3 Let a := 1 if u1 ≤ exp( x1
2σ2 ), and a := 0 otherwise

4 Let b := 1 if cosh( x2
2σ2 ) · u2 ≤ 1, and b := 0 otherwise

5 return a ∧ b

The signature is the triple (c, z1, z2), with zi := yi + sic, and a rejection sampling (RS)
phase is performed to ensure that the distribution of zi is independent of the private key (see
Section 2.2.5 for the rejection sampling theory). The rejection rate is defined as M := exp

(
1

2α2

)
for α a parameter of the scheme. A detailed rejection sampling procedure is presented in
Algorithm 10. It is written in a form that will be helpful for the isochronous transformation.
Originally, the approach taken in BLISS paper relies on iterated Bernoulli trials with known
constant probabilities. The variable time nature of these algorithms has led to multiple attacks.
An alternate approach is to simply evaluate the values exp( x1

2σ2 ) and cosh( x2
2σ2 ) with sufficient

precision, and compare them to uniform random values in [0, 1]. Here, the exp and cosh are
separated to account for the different polynomial approximations. The intervals I1 and I2 are
derived from BLISS construction.

The signature procedure also includes several optimizations on top of the above description.
In particular, to improve the repetition rate, it targets a bimodal Gaussian distribution for the
zi’s, so there is a random sign flip, in Step 4 of Algorithm 9, in their definition. In addition, to
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Table 2.1: Concrete parameters for BLISS.

BLISS– 0 I II III IV
n 256 512 512 512 512
q 7681 12289 12289 12289 12289
σ 100 215 107 250 271

δ1, δ2 .55 , .15 .3 , 0 .3 , 0 .42 , .03 .45, .06
Tail (bits dropped in b·eMst) 5 10 10 9 8

p := b2q/2Tailc 480 24 24 48 96
κ 12 23 23 30 39
α 0.5 1.0 0.5 0.7 0.55
B2 2492 12872 11074 10206 9901
B∞ 530 2100 1563 1760 1613

reduce the signature size, the signature element z2 is actually transmitted in compressed form
z†2, and accordingly. Thus, the element u is also compressed. The notation b·eMst represents
this compression: The Tail (parameter chosen in the specifications) least significant bits are
dropped. The signature compression does not affect our technique at all, because it only involves
non-sensitive parts of the signature generation algorithm (the input of the hash function and
the returned signature itself).

The verification procedure is given in Algorithm 11 for completeness since it does not ma-
nipulate sensitive data. B2 and B∞ are parameters detailed in BLISS specifications.

Algorithm 11 — BLISS Verification

Data: m, sig, pk
1 if ‖(z1‖2d · z†2)‖2 > B2 then
2 return reject
3 end
4 if ‖(z1‖2d · z†2)‖∞ > B∞ then
5 return reject
6 end
7 t := hash(bζ · a1 · z1 + ζ · q · ceMst + z†2 mod p,m)
8 if t 6= c then
9 return reject

10 end
11 return accept

The original BLISS paper describes a family of concrete parameters for the signature scheme,
stored in Table 2.1. The BLISS–I and BLISS–II parameter sets are optimized for speed and
compactness respectively, and both target 128 bits of security. BLISS–III and BLISS–IV are
claimed to offer 160 and 192 bits of security respectively. Finally, a BLISS–0 variant is also
given as a toy example offering a relatively low security.

2.4.2 Isochrony

We propose here a provable isochronous implementation of the signature algorithm of BLISS,
mainly relying on an alternate implementation of the rejection sampling step, carried out by
computing a sufficiently precise polynomial approximation of the rejection probability using pure
integer arithmetic.
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The key generation of BLISS can also be protected using sorting networks. Nevertheless, the
key generation is now obsolete in terms of complexity and performance compared to BLISS-B
or more recent signature implementations (Dilithium, qTESLA). Thus, in this thesis, we focus
on presenting the isochronous signature algorithm.

The goal of this section is to apply Lemma 6 for approximating :

• the exp(·) in step 3 of Algorithm 10 (see Section 2.4.3);

• the cosh(·) in step 4 of Algorithm 10 (see Section 2.4.4);

• the exp(·) in step 1 of Algorithm 9 (see Section 2.4.5).

The final security and isochrony statements are provided in Section 2.4.6.

2.4.3 Polynomial approximation for the exponential

Choosing the approximation interval Recall that the input interval is I1 =
[
−σ2/α2, 0

]
.

But, to anticipate further optimization, we approximate the polynomial in a slightly larger
interval, but still finite,

I3 := [−2 · ln(2) · σ2/α2, 0].

Choosing the factor K NIST suggested Qs = 264 maximum signature queries for post-
quantum standardization. During the rejection sampling, the call to exp() and cosh() is done
M < 2 times per signatures on average, so the polynomial approximations used in the rejection
sampling step can assume that the number of queries is Q ≈ Qs = 264. We are willing to apply
Lemma 6 with the original bit security of λ = 256 and Q = 264. The target relative precision
must be

1√
2 (2λ− 1) Q

= 2−37. (2.33)

Thus, we look for a polynomial denoted P I3exp that verifies

∀x ∈ I3,

∣∣∣∣∣exp( x
2σ2 )− P I3exp(x)

exp( x
2σ2 )

∣∣∣∣∣ ≤ 2−K (2.34)

with K = 37. In order to account for the slight loss of precision as part of the fixed point
evaluation of the polynomials using Horner’s rule, we need to take slightly more precise values:
we verify that K ≥ 39 suffices (one could use general error bounds for Horner such as [Hig02,
Eq. (5.3)]. However, since our evaluations occur on small integer intervals, it is easy to check
their precision by exhausting the intervals).

Using our approximation tool We use our polynomial approximation tool presented in
Section 2.3 with BLISS-I parameters. The final polynomial has degree 10 and 45-bit coefficients.

sage: load('polynomial_approximation.sage')
....: galactics = GALACTICS_approximation(- 2*ln(2)*215^2/1^2, 0, 128, 45, 45,

"exp(x / 2 / 215^2)")
....: galactics.approximate()
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[...]
-----------------------
| Final security : 47 |
| Max size coeffs : 45 |
-----------------------

....................................

Exact polynomial:
P = 1 * 2 ^ 0

+ 6235378607933 * 2 ^ -59 * x ^ 1
+ 17680552620763 * 2 ^ -78 * x ^ 2
+ 33422396137565 * 2 ^ -97 * x ^ 3
+ 5923120905557 * 2 ^ -113 * x ^ 4
+ 26872204609341 * 2 ^ -134 * x ^ 5
+ 25398480056119 * 2 ^ -153 * x ^ 6
+ 20570037805739 * 2 ^ -172 * x ^ 7
+ 3629577032917 * 2 ^ -189 * x ^ 8
+ 35066854785757 * 2 ^ -212 * x ^ 9
+ 14707071337199 * 2 ^ -231 * x ^ 10

Experimental verification of Eq. (2.24) To comply with Lemma 6, we must check that

∀x ∈ I3,

∣∣∣∣∣ exp
(

x
2σ2

)
−P I3exp(x)

1−exp
(

x
2σ2

)
∣∣∣∣∣ ≤ 2−40.

Perspective 1. The condition of Eq. (2.24) has been added in a recent modification of this
thesis. An interesting line of research would be to take Eq. (2.24) directly into account in the
Galactics polynomial approximation to obtain both bounds.

We experimentally check that Eq. (2.24) is verified with the outputted polynomial. First, we
notice that such a bound exists by studying the variations of the left member. More precisely,
this member decreases when x→ 0, this can be seen with computations on x = −2−i for large i
in high precision. The limit when x→ 0 is also a finite very small number. Then, we compute
the maximum by exhausting I3. Indeed, we recall that for BLISS, the input x is an integer in
I3. We finally have

∀x ∈ I3,

∣∣∣∣∣exp
(
x

2σ2

)
− P I3exp(x)

1− exp
(
x

2σ2

) ∣∣∣∣∣ ≤ 2−44, (2.35)

which is enough to validate the condition of Eq. (2.24).

2.4.4 Polynomial approximation of the hyperbolic cosine

The input interval for the hyperbolic cosine is large, namely

I2 =

[
−2B2σ

α
,
2B2σ

α

]
≈ [−5534960, 5534960]

for BLISS-I. Due to the parity of the hyperbolic cosine, the study on I2 can be reduced to
I2 =

[
0, 2B2σ

α

]
≈ [0, 5534960] for BLISS-I. The target approximation factor is the same as for

the exponential, namely K ≥ 39.

First Approach After one day of computations, the following instructions succeeded to out-
put a valid polynomial with 48 coefficients of 110 bits.

sage: load('polynomial_approximation.sage')
....: galactics = GALACTICS_approximation(0, 5534960, 512, 65, 100,

"(exp(x / 2 / 215^2) + exp(- x / 2 / 215^2) / 2")
....: galactics.approximate()
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[...]

------------------------
| Final security : 55 |
| Max size coeffs : 109 |
-----------------------

....................................

Exact polynomial:
P = 1 * 2 ^ 0

+ 579356348280174377 * 2 ^ -93 * x ^ 2
+ 776355318672508413 * 2 ^ -130 * x ^ 4
+ 915092737617992344722936430591 * 2 ^ -208 * x ^ 6
+ 477972884153784129 * 2 ^ -206 * x ^ 8
+ 683198250418101963 * 2 ^ -246 * x ^ 10
+ 732080158605593691080137637887 * 2 ^ -326 * x ^ 12
+ 941246584139471315 * 2 ^ -327 * x ^ 14
+ 1009039488665294857 * 2 ^ -368 * x ^ 16
+ 848404038966405199 * 2 ^ -409 * x ^ 18
+ 574427366621078729 * 2 ^ -450 * x ^ 20
+ 639792480494866645 * 2 ^ -492 * x ^ 22
+ 596411567633024933 * 2 ^ -534 * x ^ 24
+ 1038265388175552617133165772799 * 2 ^ -617 * x ^ 26
+ 642737561059887937 * 2 ^ -619 * x ^ 28
+ 835957399885546368823128489983 * 2 ^ -702 * x ^ 30
+ 788833826198999147 * 2 ^ -705 * x ^ 32
+ 180800091273276529 * 2 ^ -746 * x ^ 34
+ 296114798686759457 * 2 ^ -790 * x ^ 36
+ 940728566765727412999436632063 * 2 ^ -875 * x ^ 38
+ 150149332642775351 * 2 ^ -876 * x ^ 40
+ 572450757456113259692666388479 * 2 ^ -962 * x ^ 42
+ 748157035942843819 * 2 ^ -965 * x ^ 44
+ -2318931663498473299 * 2 ^ -1010 * x ^ 46
+ 11469920785630361661 * 2 ^ -1054 * x ^ 48
+ -72070497548995658817801780461567 * 2 ^ -1139 * x ^ 50
+ 45346083844645413249 * 2 ^ -1141 * x ^ 52
+ -857389151161771913179 * 2 ^ -1188 * x ^ 54
+ 112389859384283396677 * 2 ^ -1228 * x ^ 56
+ -414355076723513568697 * 2 ^ -1273 * x ^ 58
+ 337060337629183540215 * 2 ^ -1316 * x ^ 60
+ -265830663567489890942195238699007 * 2 ^ -1399 * x ^ 62
+ 336319019176325683112175007170559 * 2 ^ -1443 * x ^ 64
+ -170475232994946739825 * 2 ^ -1446 * x ^ 66
+ 167183977538710670933 * 2 ^ -1490 * x ^ 68
+ -71970509923746855587 * 2 ^ -1533 * x ^ 70
+ 216967001776759787417 * 2 ^ -1579 * x ^ 72
+ -35646442335471927163 * 2 ^ -1621 * x ^ 74
+ 81298181032640091129 * 2 ^ -1667 * x ^ 76
+ -159830707981302343261 * 2 ^ -1713 * x ^ 78
+ 147677672072565905368102480117759 * 2 ^ -1798 * x ^ 80
+ -23863574853001513117 * 2 ^ -1801 * x ^ 82
+ 113128579100766722931 * 2 ^ -1849 * x ^ 84
+ -109674964769571482255 * 2 ^ -1895 * x ^ 86
+ 21170189159645535701 * 2 ^ -1939 * x ^ 88
+ -3128582308920305019 * 2 ^ -1983 * x ^ 90
+ 85067057155831645461 * 2 ^ -2035 * x ^ 92
+ -11559169938839276831 * 2 ^ -2080 * x ^ 94
+ 96586818007198473957 * 2 ^ -2132 * x ^ 96

This approximation is convenient for the masking countermeasure (we refer to the masking
chapter in Section 3.4.1). However, the degree and size of the coefficients are large. In isochrony,
an optimization using shifts can be done.
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Second approach We use the following lemma for a more convenient approximation.

Lemma 8. Let c := 2σ2 ln(2). Assume that P I3exp is a precision K approximation of exp
( ·

2σ2

)
on I3. Let us define the following function.

tc : I2 → I3

x 7→ x−
⌊
x
c

⌋
c.

(2.36)

The following polynomial

P I2cosh(x) :=

=exp
(

x
2σ2

)︷ ︸︸ ︷
2b

x
c c · P I3exp (tc (x)) +2−b

x
c c · exp

(
c

2σ2

)
· P I3exp (−tc (x)− c)

2
(2.37)

is a precision K − 1 approximation of cosh
( ·

2σ2

)
on I2.

Proof: By definition, tc(x) belongs in I3, thus

∀x ∈ I2

|P I3exp(tc(x))− exp
(
tc(x)
2σ2

)
|

| exp
(
tc(x)
2σ2

)
|

≤ 2−K

Then, let us compute the relative error for P I2cosh. For x ∈ I2,

|P I2cosh(x)−cosh
(

x
2σ2

)
|

| cosh
(

x
2σ2

)
|

=

∣∣∣∣∣2b
x
c c·P I3exp(tc(x))+2−b

x
c c·exp

(
c

2σ2

)
·P I3exp(−tc(x)−c)−exp

(
x

2σ2

)
−exp

(
−x
2σ2

)
exp
(

x
2σ2

)
+exp

(
−x
2σ2

)
∣∣∣∣∣

≤

∣∣∣∣∣2b
x
c c·P I3exp(tc(x))−exp

(
x

2σ2

)
exp
(

x
2σ2

)
+exp

(
−x
2σ2

)
∣∣∣∣∣+

∣∣∣∣∣2−b
x
c c·exp

(
c

2σ2

)
·P I3exp(−tc(x)−c))−exp

(
−x
2σ2

)
exp
(

x
2σ2

)
+exp

(
−x
2σ2

)
∣∣∣∣∣

≤

∣∣∣∣∣2b
x
c c·P I3exp(tc(x))−exp

(
x

2σ2

)
exp
(

x
2σ2

)
∣∣∣∣∣+

∣∣∣∣∣2−b
x
c c·exp

(
c

2σ2

)
·P I3exp(−tc(x)−c)−exp

(
−x
2σ2

)
exp
(
−x
2σ2

)
∣∣∣∣∣

=

∣∣∣∣∣P I3exp(tc(x))−exp
(
tc(x)

2σ2

)
exp
(
tc(x)

2σ2

)
∣∣∣∣∣+

∣∣∣∣∣2−b
x
c c exp

(
c

2σ2

)
·P I3exp(−tc(x)−c)−exp

(
−tc(x)
2σ2

)
2−b

x
c c

2−b
x
c c exp

(
−tc(x)
2σ2

)
·exp

(
c

2σ2

)
∣∣∣∣∣

≤

∣∣∣∣∣P I3exp(tc(x))−exp
(
tc(x)

2σ2

)
exp
(
tc(x)

2σ2

)
∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
P
I3
exp(

∈I3︷ ︸︸ ︷
−tc(x)− c)−exp

(
−tc(x)−c

2σ2

)
exp
(
−tc(x)−c

2σ2

)
∣∣∣∣∣∣∣∣∣

≤ 2−K + 2−K = 2−K+1.

Note that Eq. (2.37) can be computed exactly in a fast and isochronous way. Indeed, the
factor 2b

x
c c consists in a bit shift. Namely, it consists of at most 86 shifts for BLISS-I (because⌊

x
c

⌋
≤ B2

α ln(2)σ ).

Note that Lemma 6 cannot be applied with both approaches because the requirement of
∀x ∈ I, 0 ≤ f(x) ≤ 1 is not verified. We introduce one last lemma to handle this issue.
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Lemma 9. Assume that P I2cosh(x) is a precision K approximation of cosh
( ·

2σ2

)
on I2. Then,

1

P
I2
cosh(x)

is also a precision K approximation of 1

cosh
(
·

2σ2

) on I2.

Proof: For x ∈ I2, we have ∣∣∣∣∣
1

2P
I2
cosh

(x)
− 1

2 cosh( x
2σ2

)
1

2 cosh( x
2σ2

)

∣∣∣∣∣ =

∣∣∣∣∣P I2cosh(x)−cosh
(

x
2σ2

)
P
I2
cosh(x)

∣∣∣∣∣ .
Next, we want to us the following result,

∀p, q ∈ R
∣∣∣∣p− qp

∣∣∣∣ ≤ ∣∣∣∣p− qq
∣∣∣∣+

∣∣∣∣p− qq
∣∣∣∣2 . (2.38)

Let us first prove Eq. (2.38). We have
∣∣∣p−qp ∣∣∣ =

∣∣∣p−qq ∣∣∣ · ∣∣∣ qp ∣∣∣. If |q| ≤ |p|, the result is direct.

If |q| ≥ |p|, we have
∣∣∣ qp ∣∣∣ ≤ ∣∣∣pq ∣∣∣ ≤ 1 +

∣∣∣p−qq ∣∣∣.
The application of Eq. (2.38) to p = P I2cosh(x) and q = cosh

(
x

2σ2

)
allows to conclude with:∣∣∣∣∣∣∣

1

2P
I2
cosh(x)

− 1

2 cosh
(

x
2σ2

)
1

2 cosh
(

x
2σ2

)
∣∣∣∣∣∣∣ .

∣∣∣∣∣P I2cosh(x)− cosh
(
x

2σ2

)
cosh

(
x

2σ2

) ∣∣∣∣∣ ≤ 2−K .

Experimental verification of Eq. (2.24) An experimental verification of the condition in
Eq. (2.24) can be performed similarly to Section 2.4.3. For the first approach, by exhausting I2,
we get

∀x ∈ I2,

∣∣∣∣∣cosh
(
x

2σ2

)
− P I2cosh(x)

1− cosh
(
x

2σ2

) ∣∣∣∣∣ ≤ 2−56 ≤ 2−39.

For the second approach, the bound can be derived from Eq. (2.35) with a proof similar to the
one of Lemma 9 (except that there is an 1− exp in the denominator). Thus, we get

∀x ∈ I2,

∣∣∣∣∣cosh
(
x

2σ2

)
− P I2cosh(x)

1− cosh
(
x

2σ2

) ∣∣∣∣∣ ≤ 2−44+1 ≤ 2−39.

2.4.5 Isochronous Gaussian generation for BLISS

The Gaussian sampling step is key to obtaining a fast implementation of BLISS, as it represents
half or more of the computation time of signature generation: for each signature, one needs to
generate 1024 samples of the discrete Gaussian distribution DZ,σ (possibly several times over,
in case a rejection occurs), and the standard deviation is relatively large (σ = 215 for BLISS–I).
This step has also been specifically targeted by cache timing attacks such as [Bru+16]. In the
following, we review the different possible techniques.

Direct CDT One can aim at drawing from |DZ,σ| (as defined in Section 2.2.4) with a CDT
and draw a uniformly random sign. Since the standard deviation is a fixed parameter and the
center is 0, one can consider the CDT sampling presented in Section 2.2.4. Here, for ensuring
128-bit precision on the table elements, we need to make sure that the number of elements of the
table, denoted w, is defined such that exp(−w2/(2σ2)) < 2−λ. Thus, the table should contain
w = σ

√
2λ log 2 ≈ 2730 entries for BLISS–I, we are looking at 22 kB’s worth of memory access

for every generated sample. The resulting implementation is highly inefficient.
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Using Convolution methods One might want to apply convolution techniques like [MW17]
(presented in Section 2.2.4). For the parameters of BLISS–I, one can check that the optimal
choice is to let σ2

0 = σ2

(92+72)(32+22)
. One can then generate a sample x statistically close to |DZ,σ|

from 4 samples x0,0, x0,1, x1,0, x1,1 from |DZ,σ0 |, as x = 9x0 + 7x1, where xi = 3xi,0 + 2xi,1.
Since σ0 ≈ 4.99 is much smaller than σ, using a CDT approach for the base sampler is more
reasonable: the CDT table now stores 63 entries. Generating a sample requires reading through
the table 4 times, for a total of 2 kB of memory access and 128 bits of randomness per sample.
It turns out, however, that the performance of the resulting implementation in our setting is
still somewhat underwhelming.

A strategy for Gaussian sampling with large standard deviations Finally, yet another
strategy is to generate a discrete Gaussian of a fixed small standard deviation, use it to construct
a distribution that looks like DZ+,σ, and use rejection sampling to correct the discrepancy. This
is actually the approach taken in the original BLISS paper [Duc+13]. Concretely, the sampling
is done using the distribution DZ+,σ2 where σ2 = σ/k for a given parameter k. The sampling is
described in Algorithm 12.

Algorithm 12 — BLISS-like Gaussian Sampling

Params: k, σ
Result: A sample z following DZ+,σ

1 x← DZ+,σ/k

2 y
$←− {0, . . . , k − 1}

3 z := k · x+ y
4 Goto 1 with probability exp

(
−y(y + 2kx)/(2σ2)

)
5 if z = 0 then
6 Goto 1 with probability 1/2
7 end

8 b
$← {0, 1}

9 return (−1)b · z

The idea of Steps 1 to 4 is that z = kx+ y looks “somewhat like” a sample from DZ+,σ, and
rejecting z except with probability exp

(
−y(y+ 2kx)/(2σ2)

)
yields a value that actually follows

DZ+,σ. Let us detail why the latter is true. We apply Lemma 5 from Section 2.2.5. Here, we are
in the particular case where gv is not a family of distributions but a single distribution without
being indexed by v. The distribution function g is

g(z) = g(kx+ y) =
ρσ2(x)

kρσ2(Z+)

because, once x is drawn, by Euclidian division properties, z is uniquely written as kx + y for
y ∈ {0, . . . , k − 1}. And the desired output distribution function f is

f(z) = f(kx+ y) =
ρkσ2(kx+ y)

ρkσ2(Z+)
.

Now the ratio is proportional (written ∝) to

f(z)/g(z) ∝ ρkσ2 (kx+y)

ρσ2 (x) = exp
(
− (kx+y)2

2k2σ2
2

+ x2

2σ2
2

)
∝ exp

(
−k2x2+y2+2kxy

2σ2 + k2x2

2σ2

)
∝ exp

(
−y(y+2kx)

2σ2

)
.
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In addition, one can compute the constant average repetition rate as M =
∥∥∥fg∥∥∥∞.

The idea of Steps 5 to 9 is to draw a random sign. More precisely, at Step 5, z follows DZ+,σ,
which is not exactly |DZ,σ| (see Remark 1). We thus need to divide the probability of 0 by two;
it is performed with a simple rejection sampling step.

Making it isochronous. One can think that because of the probabilistic property of Step 4 in
Algorithm 12, this cannot be isochronous. However, thanks to the statistical indistinguishability
provided by Lemma 5, the number of iterations follows a geometric distribution with parameter
M and thus is independent from any secrets.

One ingredient to add is a base sampler for the distribution |DZ,σ2 |, since the one in the orig-
inal BLISS paper does not lend itself to a convenient isochronous implementation. Fortunately,
choosing

k = 256,

makes the standard deviation σ2 ≈ 0.80 very small, and hence a CDT approach only requires
10 table entries for achieving 128-bit absolute precision.

The second ingredient is the rejection sampling. As observed in the BLISS paper, this
rejection sampling step (Step 4 of Algorithm 12) has the same form as the one used for the
overall signing algorithm (Step 7 in Algorithm 9, detailed in Algorithm 10). The isochronous
implementation of that step has been described in Algorithm 10, and we can simply reuse that
work to obtain our Gaussian sampling. In particular, we can derive a simple rejection sampling
procedure (see Procedure 1) with a Bernoulli distribution.

Procedure 1 — Detailed Rejection Sampling of BLISS Gaussian Sampler (Step 4 in Algorithm 12)

1 x3 := −y(y + 2kx)
2 Generate u a fixed-precision number uniformly at random in [0, 1]
3 return 1 if u ≤ exp( x3

2σ2 ), and 0 otherwise

Here too, we use GALACTICS to generate a polynomial approximation of exp
( ·

2σ2

)
. There

are two slight differences with the previous approximation.

1. The relative target precision must be higher because the number of queries to the distribu-
tion is also higher. More precisely, the Bernoulli distribution with exponential parameter is
called once per attempt at generating a Gaussian sample. The number of attempts is small
(≤ 2 on average) due to rejection in Gaussian sampling. However, the Gaussian sampling
is repeated 2n times to generate all the coefficients of y1,y2, and M times overall, where
M is the repetition rate of the signature scheme. Therefore, the expected number of calls
to the Bernoulli distribution as part of Gaussian sampling when generating Qs signatures,
is bounded as Q ≤ 2M · 2n · Qs ≤ 278 for BLISS–I. This implies that, in order to apply
Lemma 6, the relative target precision must be computed for λ = 256 and Q = 278,

1√
2 · (2 · λ− 1) · Q

= 2−44. (2.39)

2. We use the Euclidean division optimization of Eq. (2.36), which is used for the hyperbolic
cosine approximation. In that way, the approximation interval is I3 = [−2σ2 ln(2), 0] and

a fixed number of shifts are used to compute 2

⌊
x3

2σ2 ln(2)

⌋
.

Here is the new polynomial approximation.
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sage: load('polynomial_approximation.sage')
....: galactics = GALACTICS_approximation( - 2 * 215^2 * ln(2), 0, 128, 48, 45,

"exp(x / 2 / 215^2)")
....: galactics.approximate()

[...]
-----------------------

| Final security : 50 |
| Max size coeffs : 45 |
-----------------------

....................................

Exact polynomial:
P = 1 * 2 ^ 0

+ 24941514431733 * 2 ^ -61 * x ^ 1
+ 4420138155217 * 2 ^ -76 * x ^ 2
+ 33422396152215 * 2 ^ -97 * x ^ 3
+ 11846242059507 * 2 ^ -114 * x ^ 4
+ 26872223790743 * 2 ^ -134 * x ^ 5
+ 12699467954197 * 2 ^ -152 * x ^ 6
+ 20576945247259 * 2 ^ -172 * x ^ 7
+ 29170523303177 * 2 ^ -192 * x ^ 8
+ 2292170444093 * 2 ^ -208 * x ^ 9
+ 20154220626817 * 2 ^ -231 * x ^ 10
+ 15924804363279 * 2 ^ -251 * x ^ 11

To check Eq. (2.24), similarly to Section 2.4.3, we compute

∀x ∈ I3,

∣∣∣∣∣exp
(
x

2σ2

)
− P I3exp(x)

1− exp
(
x

2σ2

) ∣∣∣∣∣ ≤ 2−55.

Finally, in practice, this yields a Gaussian sampling of very reasonable efficiency, whose cost
is dominated by the cost of the rejection sampling step, and of the generation of the uniform
randomness. This is the approach we choose for our work.

The presented Gaussian sampler can be seen as a variant of FACCT [ZSS18]. There are
multiple differences between our works, however: in particular, FACCT relies on floating-point
arithmetic, which we specifically seek to avoid, and uses off-the-shelf software to obtain a double-
precision floating-point polynomial approximation of the function exp.

Perspective 2. The authors of the qTesla4 second round NIST submission [Bin+19] proposed an
ingenious approach to improve isochronous CDT-based discrete Gaussian sampling. In practice,
one needs to generate many samples from the discrete Gaussian distribution in each signature
(one for each coefficient of the yi polynomials). The idea is to batch all of the searches through
the CDT table corresponding to those samples. This can be done isochronously by applying an
oblivious sorting algorithm (e.g. network sorting) to the concatenation of the CDT with the list
of uniform random samples. This can be used in conjunction with the convolution technique
of [PDG14; MW17] in order to reduce the total size of the table to be sorted (which is the sum
of the CDT size and of the desired number of samples). A detailed investigation of this question
is left as interesting perspective.

2.4.6 Security and isochrony statement

We denote by I-BLISS the modified version of the original BLISS (as described in [Duc+13])
with all the modifications presented in the last sections. In other words, I-BLISS is a BLISS
version where

4While qTesla uses uniform randomness during signature generation, it does use discrete Gaussians for key
generation.
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1. as explained in Section 2.4.5: in step 1, the Algorithm 12 is called with

• a CDT sampling with 128-bit absolute precision instead of DZ+,σ2 ,

• the polynomial in Section 2.4.5 instead of exp
( ·

2σ2

)
;

2. as explained in Section 2.4.3: in step 7, the Algorithm 10 is called with

• P I1exp instead of exp
( ·

2σ2

)
,

• P I2cosh instead of cosh
( ·

2σ2

)
(either with or without the optimization).

Theorem 1. Let us assume that the original BLISS cryptosystem achieves λ-bit security by
making at most Qs = 264 signature queries. Then, the bit-security of I-BLISS achieves (λ− 3)-
bit security.

Proof: The proof consists in calling three times Lemma 6.5 More precisely, let us introduce
intermediate cases.

1. (Ideal) an unmodified version of BLISS signature is called.

2. (Inter1) Only the exponential is approximated.

3. (Inter2) Only the hyperbolic cosine is approximated.

4. (Real) The exponential in Algorithm 12 is also approximated.

The Ideal case is assumed to achieve λ-bit security. We first apply Lemma 6 to our final
polynomial approximation for assessing the bit security of the Inter1 case. Eqs. (2.34)
and (2.35) show that Lemma 6 hypothesis are verified. In Section 2.4.3, K is defined
to validate Eq. (2.33) and it is chosen as K = 39, we thus get that λInter1 ≥ λ − 1.
Secondly, we apply Lemma 6 for assessing the bit security of the Inter2 case. Here
too, K is chosen as K = 39. Thanks to Lemma 9 and the experimental verifications that
follow, we get that λInter2 ≥ λInter1−1 ≥ λ−2. We finally apply Lemma 6 one last time
for assessing the bit security of the Real case where the exponential in Algorithm 12 is
approximated. Here too, K is larger due to larger number of queries, K = 47. Similarly,
we get λReal ≥ λInter2 − 1 ≥ λ− 3.

Proposition 3. For any execution of our implementation of the signature generation
(
σ,LSign

)
←

ExecObs(Sign, µ, pk, sk), the leakage LSign can be perfectly publicly simulated from the number of
executions of the main loop. The latter, by Lemma 5, follows exactly a geometric law of param-
eter M , independent from any secret.

Indeed, we have made sure that each step of the algorithm, except for the rejection sampling,
is devoid of secret-dependent branches or memory accesses. As a result, the sequence of visited
program points and memory accesses from each step is perfectly publicly simulatable, and the
overall leakage LSign is obtained by repeating those simulations a number of times that is
equal to the number of executions of the main loop. From these two results, together with the
security of the rejection sampling, and the EUF-CMA security of BLISS, we can deduce that
our implementation achieves I-EUF-CMA security.

2.4.7 Performance and implementation

Mehdi Tibouchi implemented our isochronous BLISS for the SUPERCOP toolkit for measuring
cryptographic software performance [Bo16]. Note that the implementation is not completely up

5We thank Damien Stehlé for noting that Lemma 4 cannot be used directly.
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Table 2.2: Performance results and comparison (kcycles).

Median Isochronous?

Dilithium (ref) 515 Yes
Dilithium (avx2) 332 Yes
qTesla-I (ref) 418 Yes
Original BLISS 194 No
Our implementation 220 Yes

to date with this thesis description (e.g. the polynomials in the implementation are not the
latest ones).

We also provide a comparison to Ducas and Lepoint’s original, variable-time implementation
of BLISS on the same platform [DL13].

The Dilithium performance numbers are, for the fastest parameter set available in SUPER-
COP, namely the dilithium2 implementation, which corresponds to “medium” security param-
eters in [Duc+18] (no implementation is provided for the “weak” parameters). Timings both
for the portable C (ref) and AVX2 platform-specific (avx2) implementations are given in Ta-
ble 2.2. For qTesla, we also use the fastest available implementation (qtesla1, only in portable
C6), which corresponds to essentially the same lattice security level as BLISS–I. The performance
in Table 2.2 is consistent with the one publicly provided7 with equivalent CPUs.

As we can see in the table, the performance level achieved here is similar to the original
variable-time BLISS implementation, and the serious timing attack vulnerabilities exposed in
multiple papers are prevented.

Legitimacy of the comparison In addition, our implementation is faster than qTesla-I and
the portable C implementation of Dilithium. It even outperforms the AVX2 implementation
of Dilithium by a significant margin, while providing stronger isochrony guarantees (since the
Dilithium ring-valued hash function presents a mild timing leakage that causes the isochrony
security to rely on non-standard assumptions). Admittedly, the Dilithium parameters were de-
rived using a more conservative methodology for assessing the cost of lattice attacks and hence
probably achieve a significantly higher level of security against them. Besides, its reliance on
MLWE implies larger parameter sizes. Nevertheless, according to Wunderer’s recent reevalua-
tion [Wun19] of what is likely the strongest attack against BLISS (namely the Howgrave-Graham
hybrid attack), it is reasonable to think that BLISS–I does reach its stated security level of
around 128 bits.

2.5 A generic isochronous sampler for Falcon

In this section, we propose a generic isochronous Gaussian sampler over the integers based on
the ideas of the previous sections. It is more precisely the ‘small standard deviation’ counterpart
of our BLISS isochronous Gaussian sampling. This work [How+20] has been done with James
Howe, Thomas Prest and Thomas Ricosset.

6The “heuristic” qTesla-I parameters were recently removed from the qTesla submission documents, and the
remaining “provable” parameters are significantly less efficient. Since our goal is to compare it to comparable fast
schemes, qTesla-I appears to be the most suitable parameter choice.

7https://bench.cr.yp.to

https://bench.cr.yp.to
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This sampler was originally designed for the Falcon signature scheme [Pre+19], but we
figured that it is actually generic and can be applied in other settings. It has all the
properties which are expected of a sampler for widespread deployment. It is simple and
modular, making analysis and subsequent improvements easy. It is efficient and portable,
making it amenable to a variety of scenarios.

The main assumption of our setting is to consider that all the standard deviations are
bounded and that the center is in [0, 1]. In other words, denoting the upper bound and lower
bound on the standard deviation as σmax > σmin > 0, we present an algorithm that samples the
distribution DZ,σ,µ for any µ ∈ [0, 1] and σmin ≤ σ ≤ σmax.

2.5.1 The Gaussian sampler

Our sampling algorithm is called SamplerZ and is described in Algorithm 13. It is based on the
general idea of constructing a distribution that looks somewhat like the desired Gaussian and
use rejection sampling to correct the discrepancy.

Algorithm 13 — Gaussian Sampling (SamplerZ)

Data: µ ∈ [0, 1], σ ≤ σmax

Result: A sample z following DZ,σ,µ
1 while True do
2 z0 ← DZ+,σmax

3 b
$←− {0, 1}

4 z := (2b− 1) · z0 + b

5 x :=
z20

2σ2
max
− (z−µ)2

2σ2

6 if RS(σ, x) then
7 return z
8 end
9 end

The first step consists in sampling an element with a fixed half Gaussian distribution. The
obtained z0 sample is then transformed into z := (2b−1) ·z0 +b where b is a bit drawn uniformly
in {0, 1}. Let us denote by BGσmax the distribution of z. The distribution of z is a discrete
bimodal half-Gaussian of centers 0 and 1. More formally, for any z ∈ Z,

BGσmax(z) :=
1

2

{
DZ+,σmax

(−z) if z ≤ 0
DZ+,σmax

(z − 1) if z ≥ 1.
(2.40)

Then, to recover the desired distribution DZ,σ,µ for the inputs (σ, µ), one might want to
apply the rejection sampling technique presented in Section 2.2.5 and accept z with probability

DZ,σ,µ(z)

BGσmax(z)
∝

 exp
(

z2

2σ2
max
− (z−µ)2

2σ2

)
if z ≤ 0

exp
(

(z−1)2

2σ2
max
− (z−µ)2

2σ2

)
if z ≥ 1

∝ exp

(
z2

0

2σ2
max

− (z − µ)2

2σ2

)
.

The element inside the exp is computed in step 5 of Algorithm 13. Next, we also introduce
an algorithm denoted RS.
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−3 −2 −1 0 1 2 3 4µ

∝ DZ,σ,µ
∝ BGσmax

Figure 2.2: Graphical intuition of the distributions in SamplerZ. For a clear explanation, we have
removed the normalization factors, they do not impact the rejection sampling.

Algorithm 14 — Rejection Sampling for SamplerZ (RS)

Data: σmin ≤ σ ≤ σmax, x < 0
Result: a bit b that follows Bσmin

σ
·exp(x)

1 p := σmin
σ · exp(x)

2 i := 1 /* Lazy Bernoulli sampling */
3 repeat
4 i := i · 28

5 u
$←− {0, 28 − 1}

6 v := bp · ic & 0xff
7 until u 6= v
8 return (u < v)

The latter performs the rejection sampling (Algorithm 14): using exp(·), it returns a Bernoulli
sample with the according probability. For isochrony matters, detailed in [How+20, Section 6]
and highlighted in Section 2.5.5 (in step 1), the acceptance probability is rescaled by a factor
σmin
σ . As z follows the BGσmax distribution, after the rejection sampling, the final distribution of

SamplerZ(σ, µ) is then proportional to σmin
σ ·DZ,σ,µ, which is, after normalization exactly equal

to DZ,σ,µ.
From steps 2 to 8 in Algorithm 14, we present a lazy comparison. In fact, instead of generat-

ing a uniform random value in [0, 1] with a high bit-precision, one can generate the randomness
8 bits by 8 bits and make comparisons on the fly. This technique is not constant-time, but it
remains isochronous as the number of repetitions does not leak any information about x.

Thus, with this construction, one can derive the following proposition using Lemma 5.

Proposition 4 (Correctness). Let us assume that all the uniform distributions are perfect, then
the construction of SamplerZ (in Algorithms 13 and 14) is such that SamplerZ(σ, µ) = DZ,σ,µ.

In practical implementations, one cannot achieve perfect distributions.
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Table 2.3: Number of calls to SamplerZ, BaseSampler and ApproxExp

Notation Value for Falcon

Calls to sign (as per NIST) Qs ≤ 264

Calls to SamplerZ QsamplZ Qs · 2 · n ≤ 275

Calls to DZ+,σmax
Qbs Niter · QsamplZ ≤ 276

Calls to exp Qexp Qbs ≤ 276

2.5.2 Security statement

Table 2.3 gives the notations for the number of calls to SamplerZ, DZ+,σmax
, exp and the con-

sidered values when the sampler is instantiated for Falcon. Due to the rejection sampling in
step 9 in Algorithm 13, there will be a (potentially infinite) number of iterations of the while
loop. We will show later in Lemma 10, that the number of iterations follows a geometric law of
parameter ≈ σmin·

√
2π

2·ρσmax (Z+)
. For the example of Falcon, σmin·

√
2π

2·ρσmax (Z+)
≤ 2.

The following Theorem estimates the security of SamplerZ.

Theorem 2 (Security of SamplerZ). Consider a cryptosystem, denoted Cideal that makes at most
Qs independent queries to SamplerZ. Assume that Cideal is λ-bit secure against a search problem.
Let us consider a copy of the latter cryptosystem, denoted Creal, where the only differences are
that

• each query to DZ+,σmax
is replaced by a query to a CDT sampler (defined in Section 2.2.4)8,

denoted BaseSampler

• each query to exp() is replaced by a query to a polynomial denoted ApproxExp.

If the two following conditions are respected;

∀x < 0, max

(∣∣∣∣ApproxExp(x)− exp(x)

exp(x)

∣∣∣∣ , ∣∣∣∣ApproxExp(x)− exp(x)

1− exp(x)

∣∣∣∣) ≤ 1√
2 · (2 · λ− 1) · Qexp

(Cond. (1))

R2·λ−1

(
BaseSampler, DZ+,σmax

)
≤ 1 +

1

4 · Qbs
(Cond. (2))

then, Creal is (λ− 2)-bit secure against the search problem.

Proof: Let us introduce an intermediate case where only the base sampler is modified (the
exponential stays a perfect distribution). The 3 cases are defined as follows.

1. (Ideal) an unmodified version of SamplerZ is called

2. (Inter) Only the exponential is considered as perfect.

3. (Real) The modified SamplerZ is called.

We first apply Lemma 2 for assessing the bit security of the Inter case. Thanks to
Condition (2), we get that λInter ≥ λ− 1. We then apply Lemma 6 for assessing the bit
security of the Real case. Thanks to Condition (1), we get λReal ≥ λInter − 1 ≥ λ− 2.

8One slight difference is that the sign is not drawn, thus we replace t0 with 2t0
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To get concrete numerical values, we assume that 256 bits are claimed. For an implementa-
tion of Falcon, the numerical values are

1√
2 · (2 · λ− 1) · Qexp

≈ 2−43 and
1

4 · Qbs
≈ 2−78.

2.5.3 A polynomial approximation again

To achieve condition (1) with ApproxExp, we use again our GALACTICS tool.

sage: load('polynomial_approximation.sage')
....: galactics = GALACTICS_approximation(0, ln(2), 128, 46, 45, "exp(x)")
....: galactics.approximate()

[...]
-----------------------
| Final security : 47 |
| Max size coeffs : 45 |
-----------------------

....................................

Exact polynomial:
P = 1 * 2 ^ 0

+ 35184372088831 * 2 ^ -45 * x ^ 1
+ 4398046511129 * 2 ^ -43 * x ^ 2
+ 11728124023891 * 2 ^ -46 * x ^ 3
+ 23456248667481 * 2 ^ -49 * x ^ 4
+ 18764980474255 * 2 ^ -51 * x ^ 5
+ 3127580083557 * 2 ^ -51 * x ^ 6
+ 28579833423385 * 2 ^ -57 * x ^ 7
+ 14399595757739 * 2 ^ -59 * x ^ 8
+ 23649690795601 * 2 ^ -63 * x ^ 9
+ 28643805083125 * 2 ^ -66 * x ^ 10

Thanks to an Euclidean division optimization similar to Eq. (2.36), this polynomial is enough
to validate condition (1). For validating Eq. (2.24), we use the same technique than in Sec-
tion 2.4.3 and compute an experimental maximum by discretizing [0, ln(2)]. We get

∀x ∈ [0, ln(2)],

∣∣∣∣∣exp
(
x

2σ2

)
− P I3exp(x)

1− exp
(
x

2σ2

) ∣∣∣∣∣ ≤ 2−45.

Flexibility on the implementation of the polynomial. Depending on the platform and
the requirement for the signature, one can adapt the polynomial to fit their constraints. For
example, if one wants to minimize the number of multiplications, implementing the polynomial
with Horner’s form is the best option.

The polynomial is written in the following form:

P1(x) := a0 + x(a1 + x(a2 + x(a3 + x(a4 + x(a5 + x(a6 + x(a7 + x(a8 + x(a9 + xa10))))))))).

Evaluating P1 is then done serially as follows:

y := a10
y := a9 + y× x

...
y := a1 + y× x

y := a0 + y× x
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Table 2.4: Comparison of the polynomial methods for computing exp

Polynomial Mults Adds Depth Size of the coefficients
P1 (Horner) 10 10 10 45
P2 (Estrin) 13 9 4 45

Some architectures enjoy some level of parallelism, in which case it is desirable to minimise
the depth of the circuit computing the polynomial9. Writing P1 in Estrin’s form [Est60] is helpful
in this regard. This writing is denoted P2.

x2 := x× x

x4 := x2 × x2
P3(x) := (x4 × x4)× ((a8 + a9 × x) + x2 × a10)

+ (((a0 + a1 × x) + x2 × (a2 + a3 × x)) + x4 × ((a4 + a5 × x) + x2 × (a6 + a7 × x)))

In Table 2.4, we present the different methods with their associated number of multiplica-
tions, additions, depth of the circuit and size of the coefficients.

2.5.4 An experimentally derived base sampler

To achieve condition (2) with BaseSampler, we rely on a cumulative distribution table (CDT)
as described in Section 2.2.4. Instead of providing 128-bit absolute precision to the table entries
(as presented in Section 2.4.5), we propose an experimental alternative. We can derive a table
that experimentally verifies Condition (1).

Let a := 2 · λ− 1. To derive the parameters w and θ we use a simple script that, given σmax

and θ as inputs:

1. Computes the smallest tailcut w such that the Rényi divergence Ra between the ideal
distribution DZ+,σmax

and its restriction to {0, . . . , w} (noted D[w],σmax
) verifies

Ra(D[w],σmax
, DZ+,σmax

) ≤ 1 + 1/(4Qbs);

2. Rounds the probability density table (PDT) of D[w],σmax
with θ bits of absolute precision.

This rounding is done “cleverly” by truncating all the PDT values except the largest:

• for z ≥ 1, the value D[w],σmax
(z) is truncated: PDT (z) = 2−θ

⌊
2θD[w],σmax

(z)
⌋
.

• in order to have a probability distribution, PDT (0) = 1−
∑

z≥1 PDT (z).

3. Derives the CDT from the PDT and computes the finalRa(SampleCDTw=19,θ=72, DZ+,σmax
).

Taking σmax = 1.8205 and θ = 72 as inputs, we found w = 19.

• PDT(0) = 2−72 × 1697680241746640300030

• PDT(1) = 2−72 × 1459943456642912959616

• PDT(2) = 2−72 × 928488355018011056515

• PDT(3) = 2−72 × 436693944817054414619

• PDT(4) = 2−72 × 151893140790369201013

• PDT(5) = 2−72 × 39071441848292237840

• PDT(6) = 2−72 × 7432604049020375675

• PDT(7) = 2−72 × 1045641569992574730

• PDT(8) = 2−72 × 108788995549429682

• PDT(9) = 2−72 × 8370422445201343

• PDT(10) = 2−72 × 476288472308334

• PDT(11) = 2−72 × 20042553305308

• PDT(12) = 2−72 × 623729532807

• PDT(13) = 2−72 × 14354889437

9We are thankful to Thomas Pornin for bringing up this fact.
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• PDT(14) = 2−72 × 244322621

• PDT(15) = 2−72 × 3075302

• PDT(16) = 2−72 × 28626

• PDT(17) = 2−72 × 197

• PDT(18) = 2−72 × 1

Our experiment showed that for any a ≥ 511, Ra(SampleCDTw=19,θ=72, DZ+,σmax
) ≤ 1 +

2−80 ≤ 1 + 1
4Qbs

, which validates condition (2) for the Falcon implementation.

2.5.5 Isochrony statement

In this section, we outline the arguments that prevent Algorithm 13 against timing attacks
as defined in Security Model 2. One of the differences with the BLISS Gaussian sampler in
Section 2.4.5, is that the standard deviation and center are not public parameters, and some
knowledge on their distribution can lead to attacks (see [Fou+19]). Therefore, we need to for-
mally prove that it is isochronous with respect to the joint distribution of σ, µ and the output z.

To prove that we introduce two intermediary results. We first cite Lemma 10, which shows
that the number of iterations in the while loop of Algorithm 13 is independent of σ, µ, z. Next,
we cite Theorem 3 that outlines an intrinsic property of our sampler: it is perfectly isochronous
with respect to z and statistically isochronous (for the Rényi divergence) with respect to σ, µ.
We refer to [How+20, Section 6] for the detailed proofs of Lemma 10 and Theorem 3 which
Thomas Prest should be credited for.

Lemma 10 (Particular case of Lemma 7 of [How+20]). For all µ ∈ [0, 1] and σmin ≤ σ ≤ σmax,
the number of iterations of the while loop in SamplerZ(σ, µ) (Algorithm 13) follows a geometric
law of parameter

Ptrue(σ, µ) ≈ σmin ·
√

2π

2 · ρσmax(Z+)
.

Theorem 3 (Particular case of Theorem 8 of [How+20]). Let µ ∈ [0, 1] and σmin ≤ σ ≤
σmax.The running time of SamplerZ(σ, µ) (Algorithm 13) follows a distribution Tσ,µ such that,
for any ε ∈ (0, 1),

Ra(Tσ,µ, T ) . 1 + C · a · ε2

where C > 0 is a constant and T is a distribution independent of its inputs σ, µ and its output
z.

Finally, we introduce a theorem that states the isochrony of a signature using our sampler.

Theorem 4. Consider an adversary A making Qs signature queries against a signature algorithm
that uses SamplerZ. Assume that A breaks the security by solving a search problem with success
probability 2−λ for some λ ≥ 1. Learning the running time of each call to SamplerZ does not
increase the success probability of A by more than a constant factor.

Proof: We denote by D the publicly available signature distribution. We consider two cases:

• Strong: we give powerful timing attack capabilities to the adversary by allowing
her to learn the exact runtime of each call to SamplerZ(σ, µ) without knowing (σ, µ).
She then learns the joint distribution (D, (Tσ0,µ0 , . . . TσQ−1,µQ−1)) where Q is the total
number of calls to SamplerZ (for Falcon Q = 2nQs), Tσ,µ denotes the runtime of
SamplerZ(σ, µ) (as in Theorem 3) and (σi, µi) are the unknown possibly dependent
input parameters of SamplerZ.

• Standard: we assume that the attacker has no access to the runtime of each sam-
pling and thus we can write without loss of generality that she has access to (D,T Q)
where T is a distribution defined in Theorem 3.
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Table 2.5: Number of samples per second at 2.5 GHz for our sampler and [ZSS19].

Algorithm Number of samples
This work10 1.84× 106/sec
This work (AVX2)11 7.74× 106/sec
[ZSS19] (AVX2)12 5.43× 106/sec

Let PStrong, PStandard denote the success probability of A in the Strong and Standard
cases, respectively. We set a := λ and apply probability preservation.

PStrong ≤
(
PStandard ·Rλ((D, (Tσ0,µ0 , . . . TσQ−1,µQ−1)), (D,T Q)

)(λ−1)/λ
. (2.41)

Note that D and (Tσ0,µ0 , . . . TσQ−1,µQ−1) are independent, thus

PStrong ≤
(
PStandard ·Rλ((Tσ0,µ0 , . . . TσQ,µQ), T

Q)
)(λ−1)/λ

. (2.42)

Let us replace ε by 1√
λQ

in Theorem 3 and get

∀σ ∈ [σmin, σmax], ∀µ ∈ [0, 1] Rλ(Tσ,µ, T ) . 1 +
C

Q
.

Therefore, we can apply Proposition 2 and get

PStrong .

(
PStandard ·

(
1 +

C

Q

)Q
)(λ−1)/λ

(2.43)

. 2−λ · 2 · eC . (2.44)

2.5.6 Applications and limitations

After Thomas Ricosset performed preliminary benchmarks, Thomas Pornin has implemented our
sampler as part of the new isochronous implementation of Falcon [Por19]. This implementation
can use floating-point hardware or AVX2 instructions when available but also includes floating-
point emulation code that uses only usual integer operations. On ARM Cortex M4 CPUs,
which can only support single-precision floating-point instructions, this implementation provides
assembly implementations for the core double-precision floating-point operations more than
twice faster than the generic emulation. As a result, our sampler can be efficiently implemented
on embedded platforms as limited as Cortex M4 CPUs, while some other samplers (e.g. [Kar+19]
due to a huge code size) are not compact enough to fit embedded platforms.

The benchmarks of this sampler implementation are performed on a single Intel Core i7-
6500U CPU core clocked at 2.5 GHz. In Table 2.5, we present the running times of our
isochronous sampler in standard double-precision floating-point and in an AVX2 implemen-
tation. To compare with [ZSS19], we scale the numbers to be based on 2.5GHz. Note that for
our sampler, the number of samples per second is on average for 1.2915 < σ ≤ 1.8502 while for
[ZSS19] σ = 2 is fixed.

In Table 2.6, the running times of the Falcon isochronous implementation [Por19] that con-
tains our sampler are presented. One can compare it with a second non-isochronous implemen-
tation nearly identical except for the base sampler which is a faster lazy CDT sampler, and the
rejection sampling which is not scaled by a constant. Compared to the non-isochronous imple-
mentation, the isochronous one is about 22% slower but remains very competitive speed-wise.

10[Por19] standard double-precision floating-point (IEEE 754) with SHAKE256.
11[Por19] AVX2 implementation wth eight ChaCha20 instances in parallel (AVX2).
12[ZSS19] constant-time implementation with hardware AES256 (AES-NI).
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Table 2.6: Falcon signature generation time at 2.5 GHz.

Degree Non-isochronous (using AVX2) Isochronous (using AVX2)
512 210.88 µs (153.64 µs) 257.33 µs (180.04 µs)
1024 418.76 µs (311.33 µs) 515.28 µs (361.39 µs)

Cache-timing protection. Following this implementation of the proposed sampler also en-
sures cache-timing protection [Fac+18], as the design should13 bypass conditional branches by
using a consistent access pattern (using linear searching of the table) and have isochronous
runtime. This has shown to be sufficient in implementations of Gaussian samplers in Frodo
[Bos+16; Nae+19].

Advantages and limitations. Our sampler has an acceptance rate ≈ σmin
σmax+0.4 making it

especially suitable when σmin and σmax are close. In particular, our sampler is, so far, the fastest
isochronous sampler for the parameters in Falcon. However, the larger the gap between σmin

and σmax, the lower the acceptance rate. In addition, our sampler uses a cumulative distribution
table (CDT) which is accessed in an isochronous way. This table grows while σmax grows, while
making both running time and memory usage larger. When σmax is large or far from σmin, there
exist faster isochronous samplers based on convolution [MW17] and rejection sampling [ZSS19]14

techniques.

Perspective 3 (Application of this sampler to other schemes). A natural question is how our
algorithms presented in Section 2.5.1 could be adapted for other schemes than Falcon, for example
[MP12; DLP14; GM18; Ber+18; CGM19]. An obvious bottleneck seems to be the size of the CDT
used in SampleCDT, which is linear in the standard deviation. For larger standard deviations,
where linear searching becomes impractical, convolutions can be used to reduce σ, and thus the
runtime of the search algorithm [PDG14; Kha+18]. It would also be interesting to see if the
tree-based method of [Kar+19] has better scalability than our CDT-based method, in which case
we would recommend it for more significant standard deviations. On the other hand, once the
base sampler is implemented, we do not see any obvious obstacle for implementing our whole
framework. For example, [CGM19] or using Peikert’s sampler [Pei10] (in Falcon) entail a small
constant number of standard deviations; therefore the rejection step would be very efficient once
a base sampler for each standard deviation is implemented.

13Compilers may alter the design, thus one should always verify the design post-compilation.
14The constant-time sampler in [ZSS19] may still reveal σ.
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3
Masking lattice-based signatures

Figure 3.1: A side-channel attack consists in analyzing physical parameters related to the execution of
an algorithm. Here, an X-ray machine records the emanations of the circuits of the blue algorithm. With
statistics techniques, one can derive the secret value from the emanations .

Figure 3.2: Masking is a countermeasure to prevent side-channel attacks. The purple algorithm adds
some noise in its circuits by generating many secrets at the same time while the right secret is the sum
of all the values.
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This chapter describes how to protect lattice-based Fiat–Shamir with aborts signature schemes
against side-channel attacks with masking. Having studied the joys of masking within my first
months in Thales alongside Sonia Belaïd, industrial advisor at that time, this topic has been
an important part of this PhD. Her PhD was focused on the theoretical side of the masking
countermeasure mostly applied to symmetric cryptography, and she wanted to study its be-
haviour on lattice signatures. It eventually ended up into the creation of the latmasking working
group with Sonia Belaïd, Gilles Barthes, Thomas Espitau, Pierre-Alain Fouque, Mehdi Tibouchi
and Benjamin Grégoire. In 2017, we masked our first lattice-based signature scheme [GLP12].
Even in the comparatively simple case of GLP, the masking was surprisingly challenging. The
probabilistic nature of the signature generation, as well as its reliance on rejection sampling,
presented difficulties that had not occurred in earlier schemes. We first wanted to avoid the
heavy Boolean/arithmetic conversions à la [CGV14], but they turned out to be necessary. More
importantly, we noted that, in this type of signature schemes, some of the intermediate values
might be revealed to the attacker without threatening the security. The only drawback was that
we needed to assume non-standard assumptions. We also had to make a proof of concept to
show how the countermeasure scaled, and we benefited Mehdi Tibouchi’s fast implementation
skills. Eventually, our work was accepted for publication [Bar+18], and we wanted to study
other signature schemes that use more contrived distributions.
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BLISS [Duc+13] seemed an interesting candidate for this purpose. While dissecting the re-
jection sampling step of the latter in order to mask it, a new (slight) timing breach has been
highlighted. Later, Thomas Espitau and Mehdi Tibouchi set up a new timing attack, and we
turned our back to masking at the benefit of protecting BLISS against timing attacks (see Chap-
ter 2). We figured that some of the timing protection techniques could also help for the masking.
Eventually, the masking wasn’t really the main contribution of the paper which later arose from
this work [Bar+19a], but it is, nevertheless, highlighted in this chapter.

Our works led to a different research track started with another PhD student, François
Gérard. We wondered about the properties that make a lattice-based signature “masking-
friendly”. We ended with our ambitious “Maskarade” project where we wanted to design the
perfect masking-friendly lattice-based signature. Finally, our scheme was close to the NIST
candidate qTESLA [Bin+19](except for its key generation) and more reasonably, we preferred
to focus on the latter. It was a very interesting study as it went from the masking proofs and
parameter choices to the randomness optimization. François Gérard finally implemented the
masked version in a very optimized and portable way, and this ended up in a publication in
2019 [GR19]. In this chapter, as well as in [Bar+18; Bar+19a; GR19], my contribution concerns
the theoretical design and proofs of masked algorithms.

3.1 Introduction and motivations

As stated in our introductory chapter (Section 1.1.3), certain cryptographic implementations
may be vulnerable to physical attacks in addition to black-box attacks or timing attacks. This
family of powerful attacks targets the algorithms’ practical implementations. For example, an
attacker can observe the device’s emanations (e.g. temperature, EM radiation) to recover the se-
cret data. As the demands for practical implementations of postquantum cryptographic schemes
get more pressing ahead of the NIST postquantum standardization process, understanding the
security of those schemes against physical attacks is of paramount importance. However, the
implementation of lattice-based primitives poses new sets of challenges as far as side-channel
and other physical attacks are concerned. In particular, the reliance on Gaussian distributions,
rejection sampling or the number-theoretic transform for polynomial multiplication has shown
to open the door to new types of physical attacks for which it is not always easy to propose
efficient countermeasures.

For instance, Groot Bruinderink et al. [Bru+16] demonstrated a cache attack targeting
the Gaussian sampling of the randomness used in BLISS signatures [Duc+13], which recovers
the entire private key from the side-channel leakage of a few thousand signature generations.
Fault attacks have also been demonstrated on all kinds of lattice-based signatures [Esp+16].
In particular, Espitau et al. recover the full BLISS private key using a single fault on the
generation of the randomness (and present a similarly efficient attack on GPV-style signatures).
Besides, ACM CCS 2017 has featured several papers [Esp+17; PBY17] exposing further side-
channel attacks on BLISS, its variant BLISS–B, and their implementation in the strongSwan
VPN software. They are based on a range of different side channels (cache attacks, simple and
correlation electromagnetic analysis, branch tracing, etc.), and some of them target new parts
of the signature generation algorithm, such as the rejection sampling.
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This chapter proposes to apply the so-called masking countermeasure to lattice-based
Fiat–Shamir with aborts signatures to prevent side-channel attacks. It presents the results
of [Bar+18], [Bar+19a] and [GR19] in a combined way with a unified framework. We first
briefly present the technical context in Sections 3.1.1 and 3.1.2. Then, in Section 3.2,
we present the new security notions first introduced in [Bar+18] along with an updated
list of gadgets and techniques that are necessary for masking (taking the follow-ups into
account). In Section 3.3, we show how they can be applied to GLP. In Section 3.4, we
show that this could be extended to BLISS. Finally, in Section 3.5, we present the last
masking contribution to the NIST candidate qTESLA.

3.1.1 The masking countermeasure

The masking countermeasure, which performs computations on secret-shared data, appears
as a natural countermeasure in the side-channel landscape. It is actually the most deployed
one. Simultaneously introduced by Goubin and Patarin in [GP99] and Chari et al. [Cha+99],
it consists of randomizing the sensitive data which depend on the secret values and known
variables. Each secret input x is basically split into d + 1 variables (xi)0≤i≤d referred to as
shares: d of them are generated uniformly at random whereas the last one is computed such
that their additive combination reveals the secret value x. The integer d is called masking order.
This technique has been widely applied in prequantum cryptography. Let us introduce two types
of additive combinations in the following definition.

Definition 4 (Arithmetic and Boolean masking). A sensitive value x ∈ Z is shared with mod q
arithmetic masking if it is split into d+ 1 shares (xi)0≤i≤d with the same bit-size such that

x = x0 + · · ·+ xd (mod q). (Arithmetic masking mod q)

It is shared with Boolean masking if it is split into d+ 1 shares (xi)0≤i≤d with the same bit-size
such that

x = x0 ⊕ · · · ⊕ xd. (Boolean masking)

We sketch here why the masking is a sound technique to prevent side-channel attacks. If
the device leaks information on one manipulated variable at a time, a d-order masking generally
resists to stronger attacks that can combine information on at most d points of measure. In
particular, the authors of [Cha+99] have shown that the number of measurements required to
mount a successful differential power consumption attack (presented in Section 1.1.3) increases
exponentially with the number of shares. Their model was considering the very classical case
where each manipulated bit is leaking the sum of its value and a Gaussian noise. Therefore, the
masking order represents a trade-off between security and efficiency. In practice, most masked
schemes are in first-order (i.e. with two shares) or second-order (i.e. with three shares).

While the conceptual idea behind the masking countermeasure is pretty simple, implementing
a fully shared algorithm has shown to be a complex task. Although it is straightforward on linear
operations on which masking is equivalent to applying the original operation on each share of
the sensitive data, the procedure is much more complicated on non-linear functions. Let us first
introduce the generic model before explaining how to build proofs.

3.1.2 The ISW model

Theoretical leakage models have been introduced in order to reason correctly on the security
of implementations exposed to side-channel attacks. These models followed the observation of
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[Cha+99] that the combination of an increasing number of noisy variables exponentially increases
the difficulty of an attack. The idea of a model where the attacker receives a fixed number of
variables would correspond to a case where the attacker is only able to combine a fixed number
of intermediate variables because of the measurement noise.
These models provide proof frameworks for checking that every sensitive intermediate value is
always protected. The probing model or ISW model from its inventors [ISW03] is undoubtedly
the most deployed. Throughout all this chapter, we fix d ≥ 0 corresponding to the masking
order.

Definition 5 (ISW model). A cryptographic implementation is d-probing secure iff the joint
distribution of any set of at most d intermediate variables is independent of the secrets.

Informally, an algorithm is secure in the d-probing model if an attacker has a negligible
probability of breaking the security with the knowledge of the public data and with access to
d intermediate variables of his choice. This model is convenient to prove the security of an
implementation as it manipulates finite sets of exact values. However, at first sight, this model
does not seem to reflect the reality of the physical attacks as the latter need noisy leakage
models. In 2014, the reduction established in [DDF14] allowed to relate the d-probing security
to a side-channel security up to a certain level of noise. We will, therefore, exclusively consider
the d-probing security in this thesis.

Signature security property

In this thesis, we consider the masking protection of signature schemes in their general security
model. However, the EUF-CMA security definition (as described in Security Model 1 in Sec-
tion 2.1) does not capture any physical attacker. The goal of the following definition is to design
a stronger security property combining EUF-CMA and physical guaranties. It can be seen as a
d-probing model counterpart of the “EUF-CMA in the isochronous model” notion introduced in
Section 2.2.1 in the context of timing security1.

Definition 6. A KeyUpdate algorithm is defined as an algorithm that takes a shared private
key (ski)0≤i≤d as input and outputs another shared private key (sk′i)0≤i≤d such that

∑
i ski =∑

i sk
′
i mod q if the sharing is arithmetic or

⊕
i ski =

⊕
i sk
′
i if the sharing is Boolean.

The KeyUpdate algorithm is necessary for the in-between signature queries because an at-
tacker could make d probes for each signature generation which uses (ski)0≤i≤d. Typically, the
KeyUpdate will be a naive refreshing (see Algorithm 21).

Security Model 3. Let Q be a fixed maximum amount of signature queries. A signature scheme
(KeyGen,Sign,Verify) with signing key update algorithm KeyUpdate is EUF-CMA-secure in the
d-probing model if any probabilistic polynomial time adversary has a negligible probability of
winning the Security Game 3.

If a EUF-CMA signature scheme (KeyGen, Sign,Verify) is such that its algorithms KeyGen(·)
and Sign(·) are d-probing secure, according to Definition 5, then one can prove that the signature
scheme is EUF-CMA-secure in the d-probing model with a naive refreshing KeyUpdate. This
proof will be later detailed for GLP signature scheme in Theorem 8.

Remark 4. Security Model 3 assumes that the attacker does not get any leakage during the
KeyUpdate. In this model, the KeyUpdate is not part of the signing procedure. Another defini-
tion could assume that the attacker also gets leakage during the KeyUpdate. In this alternative
definition, the total number of observations should be bounded by d. In other words, instead of
the condition ∀i ∈ {1, . . . , Q}, |O(i)

Sign| ≤ d, one should have
∑

i∈{1,...,Q} |O
(i)
Sign| ≤ d. Typically,

the KeyUpdate algorithm will be protected as presented later in Gadget 4.
1This definition was actually introduced in the full version of our GLP paper [Bar+18] in 2018 before the

isochronous one [Bar+19a] in 2019.
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Adversary Challenger
(KeyGen,Sign,Verify,KeyUpdate)←−−−−−−−−−−−−−−−−−−−

OKeyGen−−−−→
pk,LKeyGen←−−−−−−−

(
(sk, pk),LKeyGen

)
← ExecObs(OKeyGen,KeyGen, 1λ)

Q queries



m(1),O
(1)
Sign−−−−−−→ (

σ(1),L
(1)
Sign

)
← ExecObs(O(1)

Sign, Sign, sk,m
(1))

σ(1),L
(1)
Sign←−−−−−− sk← KeyUpdate(sk)

...
m(Q),O

(Q)
Sign−−−−−−→ (

σ(Q),L
(Q)
Sign

)
← ExecObs(O(Q)

Sign, Sign, sk,m
(Q))

σ(Q),L
(Q)
Sign←−−−−−− sk← KeyUpdate(sk)

forgery
{ m∗, σ∗−−−−→

b := Verify(pk,m∗, σ∗) ∧ (m∗ /∈ {m(1), . . . ,m(Q)})∧
∧|OKeyGen| ≤ d ∧ ∀i ∈ {1, . . . , Q}, |O

(i)
Sign| ≤ d

Security Game 3: d-probing EUF-CMA game. ExecObs is a universal Turing machine that takes as
input a series of observations O∗, an algorithm and several possible arguments. It returns the output
of the algorithm on those arguments, together with the leakage values L∗ corresponding to the desired
observations.

3.1.3 Probing security and gadgets

Any algorithm is not directly easy to prove d-probing secure according to Definition 5 and Secu-
rity Model 3. For instance, in non-linear operations, the mixture of shares to compute the result
makes it mandatory to introduce random variables and the bigger the program is, the more
dependencies to be considered. For example, in [RP10], Rivain and Prouff introduced a masked
algorithm SecMult for multiplying two shared integers. Unfortunately, one case was missing in
the proof and the latter could not be easily patched. That is why Barthe et al. formally defined
in [Bar+16] two security properties, both stronger than Definition 5, namely non-interference
(Definition 8) and strong non-interference (Definition 9). The key idea is to detail and quantify
the statement “independent from the secret” of Definition 5 by numbering dependencies in terms
of shares of the inputs and outputs. That way, introducing these properties eases the security
proofs because (1) one can focus on proving the properties on small parts of the algorithms, and
(2) one can securely compose the bricks together and inserting refreshing gadgets (which refresh
sharings using fresh randomness) if necessary at carefully chosen locations2.

2Notice that non-interference was already used in practice [RP10; Cor+14] to prove probing security of imple-
mentations.
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Algorithminputs outputs

Gadget decomposition

inputs outputs

Figure 3.3: Gadget decomposition

The main idea of proving the EUF-CMA-security in the d-probing model is first to decom-
pose the algorithm into smaller elementary sub-algorithms, as illustrated in Figure 3.3.
Next, study the probing security of each individual gadget and derive its associated prop-
erties (see Definition 8 and Definition 9 below). And finally, combine all the properties
together by studying the structure of the graph created by the gadgets. The latter is
called a proof of composition.

Let us first introduce the definition of a gadget.

Definition 7. A shared value is a (d+ 1)-tuple of values, typically integers.

A (u, v)-gadget is a probabilistic algorithm that takes as inputs u shared values and re-
turns distributions over v-tuples of shared values. (u, v)-gadgets are used to implement
functions that take u inputs and produce v outputs.

Gadgets will be typically written in pseudo-code as they represent sub-parts of larger algo-
rithms. We now turn to the definition of probing security for gadgets.

Definition 8. d-non-interference (d-NI):

A gadget is d-non-interfering if and only if the joint distribution of every set of at most
d intermediate variables, corresponding to probes, depends on at most d shares of each
input. We also say that every set of at most d intermediate variables can be perfectly
simulated with at most d shares of each input.

Example 3.1.1. Consider a multiplication algorithm that takes two shared values (a0, a1, a2),
(b0, b1, b2) ∈ [0, 255]3. We want to compute (c0, c1, c2)∈ [0, 255]3 such that c0 ⊕ c1 ⊕ c2 =
(a0⊕a1⊕a2)∧(b0⊕b1⊕b2). Gadget 1 (a particular case of sec& in Gadget 3 that will be described
below) is an example of achieving 2-NI security. Let us consider several pairs of intermediate val-
ues. The joint distribution of (r0,1, r1,0) for instance follows {(u, u⊕ a0b1⊕ a1b0) : u

$←− [0, 255]},
which only depends on a0, a1 and b0, b1 (two shares of each input). The joint distribution of
(r2,1, c0) is {(u, v) : u, v

$←− [0, 255]}, which does not depend on any of the inputs. Gadget 2 is
functionally equivalent but it is not 2-NI secure. The pair (r0,1, r1,0) can be simulated with at
most two shares of each input whereas the pair (r0,2, c2) cannot. Indeed, its joint distribution

is {(u, u⊕ a0b2 ⊕ a2b0 ⊕ a2b2 ⊕ a1b2 ⊕ a2b1) : u
$←− [0, 255]}, which depends on 3 shares of each

input. It is not even 1-NI because c1 cannot be simulated with one share of each.
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Gadget 1 — Example d-NI ∧
Data: (a0, a1, a2), (b0, b1, b2)

∈ [0, 255]3

Result: (c0, c1, c2) ∈ [0, 255]3

1 r0,1, r0,2, r1,2
$←− [0, 255]

2 r1,0 := (r0,1 ⊕ a0b1)⊕ a1b0
3 r2,0 := (r0,2 ⊕ a0b2)⊕ a2b0
4 r2,1 := (r1,2 ⊕ a1b2)⊕ a2b1
5 c0 := a0b0 ⊕ (r0,1 ⊕ r0,2)
6 c1 := a1b1 ⊕ (r1,0 ⊕ r1,2)
7 c2 := a2b2 ⊕ (r2,0 ⊕ r2,1)
8 return (c0, c1)

Gadget 2 — Example Incorrect ∧
Data: (a0, a1, a2), (b0, b1, b2)

∈ [0, 255]3

Result: (c0, c1, c2) ∈ [0, 255]3

1 r0,1, r0,2
$←− [0, 255]

2 r1,0 := (r0,1 ⊕ a0b1)⊕ a1b0
3 r2,0 := (r0,2 ⊕ a0b2)⊕ a2b0
4 r2,1 := a1b2 ⊕ a2b1
5 c0 := a0b0 ⊕ (r0,1 ⊕ r0,2)
6 c1 := a1b1 ⊕ r1,0

7 c2 := a2b2 ⊕ (r2,0 ⊕ r2,1)
8 return (c0, c1)

Definition 9. d-strong-non-interference (d-SNI):

A gadget is d-strongly non-interfering if and only if the joint distribution of every set
of size d0 ≤ d containing d1 intermediate variables and d2 := d0 − d1 returned values
can be perfectly simulated with at most d1 shares of each input.

We can see that d-SNI implies d-NI, which implies d-probing security if the masking is
uniform. The d-SNI property is mostly needed for the refreshing gadgets. The latter are crucial
in an implementation as they regenerate the sharing using fresh randomness. We now introduce
the affine property for gadgets as introduced in [Bar+16].

Definition 10. A gadget is affine if and only if it manipulates its input share by share.

In other words, one observation in an affine gadget can be simulated with only one share of
its input. This property will be used for compositions.

The maskComp tool.

For certain composition proofs, we will use the maskComp tool from Barthe et al. [Bar+16].
Mehdi Tibouchi was the one handling this tool. It uses a type-based information flow analy-
sis with cardinality constraints and ensures that the composition of gadgets is d-NI secure at
arbitrary orders, by inserting refresh gadgets when required.

Examples of gadgets

Many gadgets are necessary to mask an implementation : multiplication, refreshings, linear
operations, unmasking... Let us describe some gadgets existing in the literature. We first
introduce a basic gadget that generalizes Gadget 1.

sec&

Logical and: This gadget is denoted sec&. It computes the logical and be-
tween two values given in a Boolean masked form (xi)0≤i≤d and (yi)0≤i≤d,
the output (zi)0≤i≤d, also in a Boolean masked form is such that (

⊕
i zi) =

(
⊕

i xi)∧(
⊕

i yi). A d−NI masked algorithm has been introduced in [ISW03;
RP10]. It is detailed in Gadget 3.
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Gadget 3 — Bitwise AND of Boolean maskings (sec&)

Data: Boolean maskings (xi)0≤i≤d, (yi)0≤i≤d of integers x, y; the bit size w of the
masks

Result: A Boolean masking (zi)0≤i≤d of x ∧ y
1 (zi)0≤i≤d := (xi ∧ yi)0≤i≤d
2 for i = 0 to d do
3 for j = i+ 1 to d do
4 pick a uniformly random w-bit value rij
5 rji := (xi ∧ yj)⊕ rij
6 rji := rji ⊕ (xj ∧ yi)
7 zi := zi ⊕ rij
8 zj := zj ⊕ rji
9 end

10 end
11 return (zi)0≤i≤d

Let us consider now the refreshing gadget. It has been originally introduced in [ISW03].

Ref⊕

Full Refreshing: Refreshes a Boolean sharing (xi)0≤i≤d using fresh random-
ness. It is denoted Ref⊕ [Cor14, Algorithm 4] and is made of a succession
of d + 1 linear refresh operations. The output, (zi)0≤i≤d, is still such that
(
⊕

i zi) = (
⊕

i xi). The details of this gadget are in Gadget 4.

Gadget 4 — Refresh algorithm (Ref⊕)

Data: A Boolean masking (xi)0≤i≤d of some value x; the bit size w of the returned
masks

Result: An independent Boolean masking (zi)0≤i≤d of x
1 (zi)0≤i≤d := (xi)0≤i≤d
2 for i = 0 to d do
3 for j = 1 to d do
4 pick a uniformly random w-bit value r
5 z0 := z0 ⊕ r
6 zj := zj ⊕ r
7 end
8 end
9 return (zi)0≤i≤d

In the literature, mask conversion gadgets exist; these gadgets allow to switch from one type
of masking to another type of masking. A first-order masked algorithm of this type has been
introduced in [Gou01] and a generic version with order d masked algorithm has been introduced
in [CGV14]. We adapted them to the lattice setting where the modulus is not always a power
of two and the algorithms are presented in Appendix A.

Finally, we present a gadget that allows to remove the sharing of a data (i.e. to unmask). It
is of particular use in signature schemes where the output can be public.

Full⊕

Securely unmasking: This gadget is denoted Full⊕. It securely refreshes and
unmasks an element (xi)0≤i≤d given in Boolean masking form. It outputs z
such that z = (

⊕
i xi). This gadget has been introduced and proved d − NI

in [CGV14], it is presented in Gadget 5. We write the security property of
Full⊕ in Lemma 11.
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Gadget 5 — Refresh-and-unmask algorithm (Full⊕) from [CGV14]

Data: A Boolean masking (xi)0≤i≤d of some value x; the bit size w of the masks
Result: z, the unmasked value x

1 (zi)0≤i≤d ← Ref⊕ ((xi)0≤i≤d, w)
2 z := x0 ⊕ ...⊕ xd
3 return z

Lemma 11 ([CGV14]). Full⊕ is d-NI secure.

Proof: Full⊕ is composed of a d-SNI secure refreshing Ref⊕ (made of d+1 linear refreshings inside
the loop in Step 2) of the shares and of a Boolean addition of these resulting shares. The
attacker is not able to observe an intermediate variable in all the linear refreshings (since
she only has δ ≤ d available observations). Thus, we consider that the ith refreshing is
left unobserved. As a consequence, all the following observations are independent of x’s
share except for their sum. That is, Full⊕ is d-NI secure.

3.2 New techniques for masking lattice-based signatures

In order to protect against physical attacks, one would legitimately like to apply the masking
countermeasure to lattice-based cryptography. High order masking can be done quite efficiently
and has been applied to the decryption procedure of some lattice-based encryption schemes.
Nonetheless, the much more difficult case of lattice-based signatures has not been considered
until now despite the obvious need for protection. The "masking unfriendly" operations of
lattice-based signature schemes are: hard-to-protect implementations of Gaussian distributions
and rejection sampling (this technique has been presented in Chapter 2 in Section 2.2.5). For
example, the sampling of the Gaussian randomness often involves either very large lookup tables,
which are expensive to mask efficiently. The bad news is that most lattice-based signature
schemes contain either Gaussian distributions, rejection sampling or both.

3.2.1 A new security property for lattice-based signature schemes

A new security property must be introduced to reason on the security of lattices-based schemes
in which some intermediate variables may be revealed to the adversary. Intuitively, a gadget
with public outputs O is d-non-interfering with public outputs (d-NIo) iff every set of at most
d intermediate variables can be perfectly simulated with at most d shares of each input and
the public outputs O. The idea here is not to state that public outputs do not leak sensitive
information, but rather that the masked implementation does not leak more information than
the one that is released through public outputs. We capture this intuition by letting the simulator
depend on the distribution of the public outputs.

Definition 11. A gadget with public outputs is a gadget together with a distinguished subset of
intermediate variables whose values are broadcasted during execution.

We now turn to the definition of probing security for gadgets with public outputs.

Definition 12. d-non-interference for gadgets with public outputs(d-NIo):

A gadget with public outputs O is d-NIo if and only if the joint distribution of
every set of at most d intermediate variables can be perfectly simulated with the
public outputs and at most d shares of each input.

The use of public outputs induces a weaker notion of security.
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Lemma 12. Let G be a d-NI-gadget. Then G is d-NIo secure for every subset O of intermediate
variables.

This lemma states that a gadget that does not leak any information also does not leak more
information than the one revealed by a subset of its intermediate variables.

Remark 5. Let G be a d-NIo-gadget as described in Definition 12. When the subset OG is also
part of the returned values, the algorithm is considered d-NI and not d-NIo because the outputs
were already available to the attacker in the first place. However, if the gadget G is a part of the
composition of another larger gadget G′ and if the subset of OG does not appear in the returned
values of G′, its unmasked returned values are effectively considered as public outputs.

Since d-NIo security is weaker than d-NI security, we must justify that it delivers the
required security guarantee. This is achieved by combining the proofs of security for a
modified version of the signature scheme that returns the public outputs, and the proofs
of correctness and security for the masked version. To sum up, for a correct masking proof
for lattice-based signature, one needs

• probing security proofs for all the gadgets;

• a proof of composition for the whole algorithm;

• a proof of security for a modified version of the signature scheme that returns the
public outputs.

3.2.2 Design of new Gadgets

As shown in the previous section, a complete proof of masking seems tedious to provide as many
proofs are necessary. The good news is that many gadgets are applicable to several signature
schemes. Therefore, the proof for the gadgets can be done, once and for all, and then be applied
to all signature schemes. Thus, only the composition proof remains for each scheme. In the
following, we list all the necessary gadgets for masking lattice-based signature schemes. Some
gadgets enjoy proofs generated with the maskComp tool [Bar+16]. The other gadgets were easily
proved thanks to the composability of the NI and SNI properties.

To avoid overloading this chapter, we do not present all the 14 gadgets that were designed
and proved during the thesis. We only present some representative ones in Sections 3.2.3
and 3.2.4. However, a contribution of this thesis is (1) to unify and exhaust all the tools
necessary to mask lattice-base Fiat–Shamir with aborts signature and (2) give graphical
intuition of the composition proofs. Thus, the other gadgets are still presented in Ap-
pendix A. In Table 3.1; we gather all the gadgets introduced during this thesis along with
their input and output description, their action, their security property, the reference to
their algorithm and to their security proof.
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3.2.3 Some new small gadgets

I Extend Ref⊕ and Full⊕ to arithmetic sharing

In the lattice setting, the sharings are often written in arithmetic mod q masked form.
We then extend the definition of Ref⊕ for this operation.

Ref+q

Full Arithmetic Refreshing: Denoted Ref+q , this gadget refreshes an arith-
metic mod q sharing (xi)0≤i≤d using fresh randomness. The output,
(zi)0≤i≤d, is such that (

∑
i zi mod q) = (

∑
i xi mod q). The algorithm

is the same as Gadget 4 with a + mod q in the steps 5 and 6. The
security proof holds; it is d-SNI.

Full+q

Full Addition: This gadget is denoted Full+q. It sums the shares of
a masked arithmetic input (xi)0≤i≤d. The output z is such that z =
(
∑

i xi mod q). The algorithm is the same as Gadget 5 with a Ref+q

instead of Ref⊕ and + mod q instead of ⊕. The security proof holds;
it is d-NI.

I Multiplication and Addition

MAdd

Multiply and add: This gadget is denoted MAdd. It performs the addition
of masked arithmetic inputs (xi)0≤i≤d and (yi)0≤i≤d with a multiplication
with an unmasked input a. It outputs (zi)0≤i≤d, arithmetically masked
such that

∑
i zi = a

∑
i xi +

∑
i yi mod q. Given in Gadget 6; this

algorithm is straightforwardly d-NI as proved in Lemma 13.

Gadget 6 — Multiplication and Addition (MAdd)

Data: a, (xi)0≤i≤d, (yi)0≤i≤d
1 for 0 ≤ i ≤ d do
2 zi := axi + yi
3 end
4 return (zi)0≤i≤d

Lemma 13. The MAdd gadget is d-NI secure.

Proof: Let δ ≤ d be the number of observations made by the attacker. The only possible
observations are the sensitive values x, y and z. We would like to consider all the
possible d-uple of intermediate variables. To be exhaustive, the proof consists in
filling an empty set I with at most δ indices in [0, d] such that the distribution of any
tuple (v1, ..., vδ) of intermediate variables of the block can be perfectly simulated
from the sensitive values.
We build the set I as follows: For each v ∈ (v1, ..., vδ), there exists i ∈ [0, d] such
that the value v can be written of the form zi, xi, axi or yi and we include such a
i in I. The later set contains thus at most δ indices.
Besides, by construction, we can simulate each v ∈ (v1, ..., vδ) with the correspond-
ing share of the inputs. In the end, any set of δ ≤ d intermediate variables can be
perfectly simulated with at most δ shares of each sensitive input. This is enough
to prove that MAdd is d-NI secure.
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I Modular addition

sec+q

Modular addition: This gadget is denoted sec+q . It performs the addition
mod q of two Boolean masked inputs (xi)0≤i≤d and (yi)0≤i≤d. It outputs
(zi)0≤i≤d such that (

⊕
i zi) = (

⊕
i xi)+(

⊕
i yi) mod q. The algorithm

is given in Gadget 7, it uses another Gadget 8 as a subroutine.

Gadget 7 — Mod-q addition of Boolean maskings (sec+q)

Data: Boolean maskings (xi)0≤i≤d, (yi)0≤i≤d of integers x, y; the bit size w of
the masks (with 2w > 2q)

Result: A Boolean masking (zi)0≤i≤d of x+ y mod q
1 if q is a power of two then
2 (zi)0≤i≤d ← sec+(

(
(xi)0≤i≤d, (yi)0≤i≤d, w

)
3 return (zi ∧ (q − 1))0≤i≤d
4 else
5 (qi)0≤i≤d :=

(
2w − q, 0, . . . , 0

)
6 (si)0≤i≤d ← sec+

(
(xi)0≤i≤d, (yi)0≤i≤d, w

)
7 (s′i)0≤i≤d ← sec+

(
(si)0≤i≤d, (qi)0≤i≤d, w

)
8 (bi)0≤i≤d :=

(
s′i � (w − 1)

)
0≤i≤d

9 (bi)0≤i≤d ← Ref⊕
(
(bi)0≤i≤d, w

)
10 (zi)0≤i≤d ← sec&

(
(si)0≤i≤d, (bi)0≤i≤d, w

)
11 (bi)0≤i≤d ← Ref⊕

(
(bi)0≤i≤d, w

)
12 (zi)0≤i≤d ← (zi)0≤i≤d ⊕ sec&

(
(s′i)0≤i≤d, (¬bi)0≤i≤d, w

)
13 return (zi)0≤i≤d
14 end

Gadget 8 — Integer addition (sec+)

Data: Boolean maskings (xi)0≤i≤d, (yi)0≤i≤d of integers x, y; the bit size w of
the masks

Result: A Boolean masking (zi)0≤i≤d of x+ y
1 (pi)0≤i≤d := (xi ⊕ yi)0≤i≤d
2 (gi)0≤i≤d ← sec&

(
(xi)0≤i≤d, (yi)0≤i≤d, w

)
3 for j = 1 to W := dlog2(w − 1)e − 1 do
4 pow := 2j−1

5 (ai)0≤i≤d := (gi � pow)0≤i≤d
6 (ai)0≤i≤d ← sec&

(
(ai)0≤i≤d, (pi)0≤i≤d, w

)
7 (gi)0≤i≤d := (gi ⊕ ai)0≤i≤d
8 (a′i)0≤i≤d := (pi � pow)0≤i≤d
9 (a′i)0≤i≤d ← Ref⊕

(
(a′i)0≤i≤d, w

)
10 (pi)0≤i≤d ← sec&

(
(pi)0≤i≤d, (a

′
i)0≤i≤d, w

)
11 end
12 (ai)0≤i≤d := (gi � 2W )0≤i≤d
13 (ai)0≤i≤d ← sec&

(
(ai)0≤i≤d, (pi)0≤i≤d, w

)
14 (gi)0≤i≤d := (gi ⊕ ai)0≤i≤d
15 (zi)0≤i≤d :=

(
xi ⊕ yi ⊕ (gi � 1)

)
0≤i≤d

16 return (zi)0≤i≤d
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For the non-power of two particular case, the approach is to first compute (si) =
sec+

(
(xi), (yi)

)
, which is a Boolean sharing of the sum s = x+ y without modular reduc-

tion, and then (s′i)0≤i≤d = sec+

(
(si)0≤i≤d, (qi)0≤i≤d

)
for a Boolean masking (qi)0≤i≤d of the

value −q in two’s complement form (or equivalently 2w − q). The result is a masking of
s′ = s− q in two’s complement form. In particular, we have s ≥ q if and only if the most
significant bit b of s′ is 0. Denote by z the desired modular addition x + y mod q. We
thus have:

z =

{
s if b = 1;
s′ if b = 0.

As a result, we can obtain the masking of z in a secure way as:

(zi)0≤i≤d = sec&
(
(si)0≤i≤d, (bi)0≤i≤d

)
⊕ sec&

(
(s′i)0≤i≤d, (¬bi)0≤i≤d

)
.

We consider signed integers, so the � in step 4 is an arithmetic shift and actually writes
the sign bit in the whole register. This concludes the description of sec+q .

Lemma 14. Gadgets sec+ and sec+q are d-NI secure.

Proof: Gadget sec+ is built from the Kogge-Stone adder of [Cor+15] with secure AND
and secure linear functions such as exponentiations and Boolean additions. As to
ensure its security with the combination of these masked atomic functions, the tool
maskComp was used to insert the mandatory d-SNI refreshings (Ref⊕) properly. As
deeply explained in its original paper, maskComp provides a formally proven d-NI
secure implementation.
Gadget sec+q is built from the gadget sec+ and sec& and linear operations (like
⊕). We also use the tool maskComp to generate a verified implementation auto-
matically. Note that the tool automatically adds the two refreshes (lines 9 and 11)
and provides a formally proven d-NI secure implementation.

Remark 6. This arbitrary modulus version is quite expensive when q is not a power of
two as it uses sec+, Ref⊕ and sec& twice. Nevertheless, the modulus of the arithmetic
masking is fixed by the scheme parameters. Then, for a “masking friendly“ design, we will
see that choosing a power of two for the modulus when it is possible allows a significant
speedup. In Section 3.3, we keep the non-power of two moduli, and in Section 3.5 we make
such a trade-off.

3.2.4 Some new large gadgets

In this subsection, we define gadgets that can be generalized for polynomials in Rq (defined
in Eq. (1.3)) where q is a modulus and n is an integer. For a polynomial p ∈ Rq, we will
denote by p(i) its i-th coefficient represented in a centered manner p(i) ∈ {−q/2, . . . q/2−1}.

Definition 13. For an integer k such that 0 < k ≤ (q − 1)/2, we denote by Rq,k the
elements of Rq (defined in Eq. (1.3)) with coefficients in the range [−k, k].

I Generate a polynomial uniformly in a ring

In many lattice-based signature schemes, polynomials are sampled such that their co-
efficients are sampled uniformly and independently from an integer interval of the form
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[−k, k]. In most cases, one would like to obtain those values in masked form, using order-
d arithmetic masking modulo q. Note that since all of these coefficients are completely
independent, the problem reduces to obtaining an order-d mod-q arithmetic masking of
a single random integer in [−k, k]Accordingly, we will first create an algorithm called
UGen-Coeff, which generates an order-d mod-q arithmetic masking of a single random
integer in [−k, k]. Next, we will use UGen-Coeff in an algorithm called UGen, which gen-
erates a sharing of a value in Rq (defined in Eq. (1.3)). UGen is calling UGen-Coeff n
times and is described in Gadget 10. UGen-Coeff is described hereafter and will be given
in Gadget 9. The design of this gadget has been improved in this thesis since its paper
version [Bar+18].

UGen

Uniform Generation: This gadget denoted UGen-Coeff in its coefficient
version and UGen in its polynomial version outputs (zi)0≤i≤d in mod q
arithmetic masked form such that the distribution of (

∑
i zi mod q) is

uniform. It is described in Gadget 9 and Gadget 10.

Gadget 9 — Uniform data generation for integers (UGen-Coeff)
Data: k
Result: A uniformly random integer in [−k, k] in mod-q arithmetic masked

form (zi)0≤i≤d.
1 Let w0 be the smallest integer such that 2w0 > |K| where K := −2k − 1
2 Generate uniformly random w0-bit values (xi)0≤i≤d
3 initialize (ki)0≤i≤d := (K, 0, · · · , 0)

4 (δi)0≤i≤d ← sec+

(
(xi)0≤i≤d, (ki)0≤i≤d

)
5 (bi)0≤i≤d := (δi)0≤i≤d � (w0 − 1)

6 b := Full⊕
(
(bi)0≤i≤d

)
7 if b = 0 then
8 Goto 2
9 end

10 zi ← B Aq((xi)0≤i≤d, q)
11 z0 := a0 − k
12 return (zi)0≤i≤d

Gadget 10 — Uniform data generation (UGen)
Data: k and d
Result: A uniformly random polynomial z in Rq,k in arithmetic masked form

(zi)0≤i≤d.
1 (zi)0≤i≤d := {0}d
2 for j = 0 to n− 1 do
3 (ai)0≤i≤d ← UGen-Coeff(k, d)
4 (zi)0≤i≤d := (zi + aiX

j)0≤i≤d
5 end
6 return (zi)0≤i≤d

Lemma 15. Gadget UGen-Coeff is d-NIo secure with public output b.

Proof: Here we need to ensure that the returned shares of z cannot be revealed to the
attacker through a d-order side-channel attack. The gadget xGen represents Step
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xGen sec+ � Full⊕

(K, 0, · · · , 0)

B  Aq

if b = 1

(xi)0≤i≤d (δi)0≤i≤d (bi)0≤i≤d
b = 0

b = 1

(zi)0≤i≤d

Figure 3.4: Randomness Generation UGen-Coeff

2. It is just a random generation of shares. The idea is to prove that any set of
δ ≤ d observations on UGen-Coeff can be perfectly simulated with at most δ shares
of x.
Gadget UGen-Coeff is built with no cycle. In this case, from the composition results
of [Bar+16], it is enough to prove that each sub-gadget is d-NI to achieve global
security.
From Lemmas 14 and 23, sec+ and Aq B are d-NI secure. � is trivially d-NI secure
as well since it applies a linear function. Besides, gadget Full⊕ is d-NI secure with
Lemma 11, and its output is unmasked and thus considered as a public output of
UGen-Coeff.

Corollary 1. Gadget UGen is d-NIo secure with public output b.

Proof: From Lemma 15, Gadget UGen is d-NIo secure since it only consists of the linear
application of Gadget UGen-Coeff to build the polynomial coefficients.

I Fixed center, fixed standard deviation Gaussian Generation

This gadget is needed for generating Gaussian samples. We mask the technique of cu-
mulative distribution table (CDT) explained in Chapter 2 in Section 2.2.4 withD = |DZ,σ|.
We recall that it consists in precomputing a table of the cumulative distribution function
of |DZ,σ| with a certain precision θ. To produce a sample, we generate a random value in
(0, 1] with the same precision, and return the index of the last entry in the table that is
smaller than that value.

GGenσ

Gaussian Generation: This gadget denoted GGenσ-Coeff in its coefficient
version and GGenσ in its polynomial version outputs (zi)0≤i≤d such that
the distribution of (

∑
i zi mod q) is Gaussian of standard deviation σ.

It is presented in Gadget 11 and Gadget 12.

We present the masked version of table lookup in Gadget 11. The parameters w and
θ are respectively the number of elements of the table and the bit precision of its entries.
Gadget 11 follows Algorithm 2 in a masked form. The steps 4 to 6 compute (bi)0≤i≤d
a masked form of the bit representing (tj > u). The steps 7 to 10 compute (zi)0≤i≤d a
Boolean masked form of (z + bi)0≤i≤d (where (zi)0≤i≤d is initiated to 0). Recall, as noted
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in Section 2.2.4, that this algorithm samples only half of the Gaussian, this means that to
get a centered distribution, one should sample random signs for each coefficient afterwards.

Gadget 11 — Gaussian Generation for integers (GGenσ-Coeff)
Data: A table of w probability values tj with θ bits of precision.
Result: An arithmetic masking of an element (zi)0≤i≤d following a Gaussian

of standard deviation σ
1 (zi)0≤i≤d := (0, . . . , 0)
2 initialize (ui)0≤i≤d as a θ-bit Boolean masking of a uniform random value

r ∈ (0, 1]
3 for 0 ≤ j ≤ w do
4 initialize (ki)0≤i≤d as a θ-bit Boolean masking of −tj
5 (δi)0≤i≤d ← sec+

(
(ui)0≤i≤d, (ki)0≤i≤d)

6 (bi)0≤i≤d := (δi)0≤i≤d � (θ − 1)
7 (b′i)0≤i≤d ← sec& ((bi)0≤i≤d, (zi)0≤i≤d)
8 initialize (Ji)0≤i≤d as a θ-bit Boolean masking of the index j
9 (bi)0≤i≤d ← sec& (¬(bi)0≤i≤d, (Ji)0≤i≤d)

10 (zi)0≤i≤d := (b′i)0≤i≤d ⊕ (bi)0≤i≤d
11 (zi)0≤i≤d ← Ref⊕((zi)0≤i≤d)
12 end
13 return B Aq((zi)0≤i≤d)

Remark 7. Due to the table, this process is quite heavy. For the table’s size optimization,
a Rényi divergence technique is often used. It consists in using an upper bound on the
relative error between the CDT distribution and an ideal Gaussian. This upper bound
decreases with the maximum number of queries to the algorithm and it is often lower than
a statistical distance estimation. Thus, with Rényi divergence techniques, smaller tables
allow the same bits of security. Interestingly, if GaussGen is part of the key generation, the
latter cannot be applied. Firstly, the maximum amount of queries to the key generation is
not clearly bounded. Secondly, the key generation’s security is often based on a decisional
problem, and it is currently an open problem to apply the Rényi divergence techniques to
decisional problems. Another possible optimization to reduce the size of the table would be
to use the recursivity provided in [MW17].

Lemma 16. The gadget GaussGen in Gadget 12 is d-NI secure.

Proof: A graphical representation of Gadget 12 is in Fig. 3.5. First, assume that each
iteration (without the refresh) is d-NI. Then the algorithm is a linear succession of
d-NI and d-SNI gadgets. The only subtlety is that the element (ri) forms cycles
that are broken with the d-SNI property of the refresh.
Now let us show that each iteration denoted iter is d-NI. The result comes from
the structure of this sub-gadget: it has only one cycle which is broken by the affine
property of the ⊕ gadget.

As with the previous large gadgets, the GGenσ-Coeff gadget can be generalized for
polynomials in Rq by applying GGenσ-Coeff to each of the coefficients. We present the
polynomial version in Gadget 12. From Lemma 16, we can make the following corollary.
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iter Ref⊕ iter Ref⊕ iter Ref⊕ ... Aq  B
(0, . . . , 0)

(ui)

(zi) (zi)

(ui)

(zi)

(ui)

(zi) (zi) (zi)

iter

(zi)

(ui) sec+ � sec& ⊕

sec&

(zi)
(δi) (bi) (b′i)

(bi)

(bi)

(ki)

(Ji)

Figure 3.5: Masked GGenσ-Coeff structure

Corollary 2. Gadget GGenσ is d-NI secure.

Gadget 12 — Gaussian Generation (GGenσ)
Data: A table of w probability values pj with θ bits of precision.
Result: An arithmetic masking of a polynomial (zi)0≤i≤d whose coefficients

follow a Gaussian of standard deviation σ
1 for j = 0 to n− 1 do
2 z(j) ← GGenσ-Coeff()
3 end
4 return z :=

∑
i z

(i) ·X i

3.3 Application to GLP signature scheme

As shown for Gadget 12, masked Gaussian sampling seems very inefficient. Nevertheless,
there exist lattice-based signatures that appear to support side-channel countermeasures
like masking more naturally, because they entirely avoid Gaussians and other contrived
distributions. Both randomness and rejection samplings target uniform distributions in
contiguous intervals. Examples of such schemes include the GLP scheme of Güneysu,
Lyubashevsky and Pöppelmann [GLP12], which can be seen as the ancestor of BLISS,
and later variants like the Dilithium scheme of Ducas et al. [Lyu+19].

3.3.1 The signature scheme

For GLP signature scheme, we will use the following parameters: n is a power of 2, q is a
prime number congruent to 1 modulo 2n and Rq is defined with Eq. (1.3). The elements
of Rq can be represented by polynomials of degree n − 1 with coefficients in the range
{− q−1

2
, . . . , q−1

2
− 1}. We also use Definition 13 notation Rq,k.
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The key generation algorithm for the GLP signature scheme is as follows:

Algorithm 15 — GLP key generation
Result: Signing key sk, verification key pk

1 s1, s2
$←− Rq,1 /* s1 and s2 have coefficients in {−1, 0, 1} */

2 a
$←− Rq

3 t := as1 + s2

4 sk := (s1, s2)
5 pk := (a, t)

Given the verification key pk = (a, t), if an attacker can derive the signing key, this
can also be used to solve a DCKq,n problem defined in [GLP12].

Hard Problem 8 — Decisional Compact Knapsack problem (DCK)
Let q, n be integer parameters.

Given a sample (a,b) ∈ Rq ×Rq

Distinguish whether this sample has been drawn from the uniform distribu-
tion over Rq ×Rq or the distribution (a, as1 + s2) with a uniformly random in
Rq and s1,s2 uniformly random in Rq,1.

Let us now describe the signature scheme introduced in [GLP12]. Additional functions
like transform and compress introduced in [GLP12] can be used to shorten the size of the
signatures. Note, however, that for masking purposes, we only need to consider the
original, non-compressed algorithm of Güneysu et al., which we describe below. Indeed,
signature compression does not affect our masking technique at all, because it only involves
unmasked parts of the signature generation algorithm (the input of the hash function and
the returned signature itself). As a result, although this work only discusses the non-
compressed scheme, we can directly apply our technique to the compressed GLP scheme
with no change. In fact, this is what Mehdi Tibouchi’s proof-of-concept implementation
in Section 3.3.5 actually does. The signature scheme needs a particular cryptographic
hash function,

hash : {0, 1}∗ → Dnα, (3.1)

where Dnα is the set of polynomials in Rq that have all zero coefficients except for at most
α = 32 coefficients that are in {−1,+1} (or α = 16 when using the updated parameters
presented in [Cho17]).

Let κ be a parameter. Algorithm 16 and Algorithm 17, respectively describe the GLP
signature and verification. Here is the soundness equation for the verification :

az1 + z2 − tc = ay1 + y2.
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Algorithm 16 — GLP signature

Data: m, pk = (a, t), sk = (s1, s2)
Result: Signature sig

1 y1,y2
$←− Rq,κ

2 c := hash(r := ay1 + y2,m)
3 z1 := s1c + y1

4 z2 := s2c + y2

5 if z1 or z2 /∈ Rq,κ−α then
6 restart
7 end
8 return sig := (z1, z2, c)

Algorithm 17 — GLP verification

Data: m, sig = (z1, z2, c), pk = (a, t)
1 if z1, z2 ∈ Rq,κ−α and c = hash(az1 + z2 − tc,m) then
2 accept
3 else
4 reject
5 end

The parameter κ controls the trade-off between the security and the runtime of the
scheme. The smaller κ gets, the more secure the scheme becomes and the shorter the
signatures get but the time to sign increases. The authors of the implementation of
[GLP12] suggest κ = 214, n = 512, α = 32 and q = 8383489 for ≈ 100 bits of security and
κ = 215, n = 1024, α = 32 and q = 16760833 for > 256 bits of security.

3.3.2 Security proof of the r-GLP variant

One of the operations in the signature generation is the computation of a hash function
mapping to polynomials in Rq of a very special shape (being in Dnα in Eq. (3.1)). Masking
the computation of this hash function would be highly inefficient and difficult to combine
with the rest of the algorithm. Indeed, the issue with hashing is not obtaining a masked
bit string (which could be done with something like SHA-3), but expanding that bit string
into a random-looking polynomial c of fixed, low Hamming weight in a masked form. The
corresponding operation is really hard to write down as a circuit. Moreover, even if that
could be done, it would be terrible for performance because subsequent multiplications
by c are no longer products by a known sparse constant, but full-blown ring operations
that have to be fully masked.

However, more importantly, this masking should intuitively be unnecessary. Indeed,
when we see the signature scheme as the conversion of an identification protocol under
the Fiat–Shamir transform, the hash function computation corresponds to the verifier’s
sampling of a random challenge c after it receives the commitment value r from the
prover. In particular, the verifier always learns the commitment value r (corresponding
to the input of the hash function), so if the identification protocol is “secure”, one should
always be able to reveal this value without compromising security. However, the security
of the signature scheme only offers weak guarantees on the security of the underlying
identification protocol, as discussed by Abdalla et al. [Abd+02].
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In usual Fiat–Shamir signatures, this is never an issue because the commitment value
can always be publicly derived from the signature (as it is necessary for signature verifi-
cation). However, things are more subtle in the Fiat–Shamir with aborts paradigm, since
the value r is not normally revealed in executions of the signing algorithm that do not
pass the rejection sampling step. In our setting, though, we would like to unmask the
value to compute the hash function in all cases, before knowing whether the rejection
sampling step will be successful. If we do so, the side-channel attacker can learn the pair
(r, c) corresponding to rejected executions as well, and the original security proof does
not cover this, nor does security with this additional leakage look reducible to the original
security assumption. The purpose of the next paragraphs is to prove that unmasking the
value r does not affect the security of the scheme.

This stronger security requirement can be modeled as the unforgeability under chosen
message attacks of a modified version of the GLP signature scheme in which the pair
(r, c) is made public when a rejection occurs. We call this modified scheme r-GLP, and
describe it as Algorithm 18. The modification means that, in the EUF-CMA security
game, the adversary gets access not only to correctly generated GLP signatures but also
to pairs (r, c) when rejection occurs, which is exactly the setting that arises as a result of
unmasking the value r.

We now introduce a new computational problem to handle the security of our modified
r-GLP scheme.

Hard Problem 9 — Rejected-Decisional Compact Knapsack problem (R-DCK)
Let q, n, Qs, α, κ be integer parameters.

Given (a,bi, ci) ∈ Rq ×Rq ×Dnα for i ∈ [0, Qs − 1]

Distinguish whether this sample has been drawn from

1. the procedure where
– a is drawn uniformly in Rq;
– the bi are drawn uniformly in Rq;
– the ci are drawn uniformly in Dnα.

2. or the procedure where
– elements (s1, s2, a) are firstly drawn uniformly in R2

1 ×Rq;
– for each i, elements (ci,y1,i,y2,i) are drawn uniformly in Dnα × R2

q,κ.
This step is repeated until s1ci + y1,i /∈ Rq,κ−α or s2ci + y2,i /∈ Rq,κ−α.

– the final samples are (a,bi, ci) = (a, ay1,i + y2,i, ci).

To obtain a scheme that more directly follows the original one and to keep the over-
head reasonable, we propose to use R-DCKq,n,Qs,α,κ as an extra assumption, which we
view as a pragmatic compromise. The assumption is admittedly somewhat artificial, but
the same can be said to begin with, of DCKq,n itself. Heuristically, R-DCKq,n,Qs,α,κ is
similar, except that it removes smaller (hence “easier to distinguish”) instances from the
distribution. In essence, one expects that this makes distinguishing harder, even though
one cannot really write down a reduction to formalize that intuition.
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Figure 3.6: Graphical intuition for computing P [‖s1c + y1‖∞ > κ− α] = P [‖s2c + y2‖∞]. Without
loss of generality, we only consider y1, s1, z1. To the left, we represent the distribution for the coefficients
of y1. In the middle, we represent the possible values for the coefficients of s1c. To the right, the
distribution of yi is shifted by sic to obtain the distribution of z1. The accepted (resp. rejected) z1 are in
green (resp. in orange.). We see that, no matter the shift of sic, the fraction of rejected coefficients will
stay = 2α

2κ+1 .

Algorithm 18 — Tweaked signature with public r

Data: m, pk = (a, t), sk = (s1, s2)
Result: Signature sig

1 y1
$←− Rq,κ

2 y2
$←− Rq,κ

3 r := ay1 + y2

4 c := hash(r,m)
5 z1 := s1c + y1

6 z2 := s2c + y2

7 if z1or z2 /∈ Rq,κ−α then
8 (z1, z2) := (⊥,⊥)
9 end

10 return sig := (z1, z2, c, r)

The following theorem states that the modified scheme is indeed secure, at least if
we are willing to assume the hardness of the additional R-DCKq,n,Qs,α,κ assumption. We
refer to the original paper [Bar+18] for the game-based proof.

Theorem 5. Assuming the hardness of the DCKq,n and R-DCKq,n,Qs,α,κ problems, the
signature r-GLP, presented in Algorithm 18 is EUF-CMA secure in the random oracle
model.

Remark 8. One can think that Algorithm 18 is insecure3 because the adversary have
access to the rejected c’s and the rejection probability is accessible (by counting the number
of rejected signatures over the total number of signature queries). However, the rejection
probability is, by construction, independent from s1, s2 and c. Thus, even conditioned
with smartly chosen c, the adversary cannot gain any information from this probability.
More precisely, the former probability is

P [‖s1c + y1‖∞ > κ− α] = P [‖s2c + y2‖∞ > κ− α] =
2α

2κ+ 1
.

It can be seen graphically with Fig. 3.6.

Remark 9. We can avoid the non-standard assumption R-DCKq,n,Qs,α,κ by hashing not
r but f(r) for some statistically hiding commitment f (which can itself be constructed
under DCKq,n, or standard lattice assumptions). We refer to the appendices of [Bar+18]
for details. The downside of that approach is that it incurs a non-negligible overhead in
terms of key size, signature size, and to a lesser extent signature generation time.

3We thank Damien Stehlé for suggesting this approach.
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3.3.3 Masking r-GLP signature scheme

The whole r-GLP scheme is turned into a functionally equivalent scheme secure in the
d-probing model with public outputs. Note that it suffices to mask the key generation in
the d-probing model and the signature in the d-probing model with public output r, since
the verification step does not manipulate sensitive data.

Remark 10. As the number of signature queries per private key can be high (up to 264

as required by the NIST competition), whereas, the key generation algorithm is typically
only executed once per private key, the vulnerability of the key generation to side-channel
attacks is, therefore, less critical. Only possible attacks are the side-channel attacks with
single trace (see the Section 1.1.3 in the introductory chapter). However, here, the key
generation can be easily provably masked, so we still present the technique.

For simplicity, we will show the masking on a single iteration version of the signature.
The masking can be generalized by calling the masked signature again with an SNI re-
freshing of the private key (s1, s2) if it fails.

To ensure protection against d-th order attacks, we suggest a masking countermeasure
with d+ 1 shares for the following sensitive data : y1, y2, s1 and s2. All the public vari-
ables are (a, t) (i.e., the public key), m (i.e., the message), rs (i.e., the bit corresponding
to the success of the rejection sampling), (z1, z2, c) (i.e., the signature). As mentioned
before, because of the need of r recombination, even if r is an intermediate value, it is
considered as a public output. Most operations carried out in the r-GLP signing algo-
rithm are arithmetic operations modulo q, so we would like to use an arithmetic masking.
The issue is that at some points of the algorithm, we need to perform operations that
are better expressed using Boolean masking. Those parts will be extracted from both the
key generation and the signature to be protected individually and then securely composed.

We present the masked key generation in Algorithm 19 and the masked signature
algorithm in Algorithm 20.

Algorithm 19 — Masked r-GLP key generation
Result: Signing key sk, verification key pk

1 (s1,i)0≤i≤d ← UGen(1)
2 (s2,i)0≤i≤d ← UGen(1)

3 a
$←− Rq

4 (ti)0≤i≤d := MAdd(a, (s1,i)0≤i≤d, (s2,i)0≤i≤d)
5 t := Full+q ((ti)0≤i≤d)
6 sk := ((s1,i)0≤i≤d, (s2,i)0≤i≤d)
7 pk := (a, t)
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Algorithm 20 — Masked r-GLP signature

Data: m, pk = (a, t), sk = ((s1,i)0≤i≤d, (s2,i)0≤i≤d)
Result: Signature sig

1 (y1,i)0≤i≤d ← UGen(κ)
2 (y2,i)0≤i≤d ← UGen(κ)
3 (ri)0≤i≤d := MAdd(a, (y1,i)0≤i≤d, (y2,i)0≤i≤d)
4 r := Full +q ((ri)0≤i≤d)
5 c := hash(r,m)
6 (z1,i)0≤i≤d := MAdd(c, (s1,i)0≤i≤d, (y1,i)0≤i≤d)
7 (z2,i)0≤i≤d := MAdd(c, (s2,i)0≤i≤d, (y2,i)0≤i≤d)
8 rs := RS((z1,i)0≤i≤d, κ− α) ∧ RS((z2,i)0≤i≤d, κ− α)
9 if rs = 1 then

10 (z1, z2) := (Full +q ((z1,i)0≤i≤d),Full +q ((z2,i)0≤i≤d))
11 else
12 (z1, z2) := (⊥,⊥)
13 end
14 return sig := (z1, z2, c, r)

Theorem 6. The masked r-GLP sign in Algorithm 20 is d-NIo secure with public output
{b, rs}4.

Remark 11 (Public outputs b and rs). Recall that b is a public output of UGen (Gad-
get 10). Its value corresponds to the conditions of rejection in the uniform data generation
(or equivalently the number of iterations of UGen (Gadget 10)). Giving it to the attacker
does not impact the security of the scheme. Besides, the value rs, defined in line 9 in
Algorithm 20, corresponds to the condition of rejection (or equivalently the number of
iterations of Algorithm 20). Such knowledge does not impact on the scheme’s security
because the rejection probability does not depend on the position of the coefficients.

Proof: We refer to Table 3.1 for the security properties of the gadgets. Let us assume that
an attacker has access to δ ≤ d observations on the whole signature scheme. Then,
we want to prove that all these δ observations can be perfectly simulated with at
most δ shares of each secret among y1, y2, s1 and s2 and the public variables. With

4In r-GLP, r is returned along with the signature, so it is not considered as a public output. Besides, recall
that b is a public output of UGen (Gadget 10), it corresponds to the number of iterations of the generation before
outputting a sample.
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such a result, the signature scheme is then secure in the d-probing model since no
set of at most d observations would give information on the secret values.
In the following, we consider the following distribution of the attacker’s δ obser-
vations: δ1 (resp. δ2) on the instance of UGen that produces shares of y1 (resp.
y2), δ3 on MAdd, δ4 on Full+q of r, δ5 (resp. δ6) on MAdd which produces z1 (resp.
z2), δ7 (resp. δ8) on the instance of RS for z1 (resp. z2) and δ9 (resp. δ10) on
Full+q of z1 (resp. z2). Some other observations can be made on the hash and ∧,
their number will not matter during the proof. Finally, we have

∑10
i=1 δi ≤ δ.

Now, we build the proof from right to left as follows.
Both last Full+q blocks in the very end of mSign are d-NI secure. Therefore, all
the observations performed during the execution of Full+q on z1 (resp. z2) can be
perfectly simulated with at most δ9 (resp. δ10) shares of z1 (resp. z2).
RS is d-NIo secure and does not return any sensitive element. Thus, all the obser-
vations performed in gadget RS can be perfectly simulated with at most δ7 shares
of z1 and δ8 shares of z2. So, after RS, the observations can be simulated with
δ7 + δ9 shares of z1 and δ8 + δ10 shares of z2.
MAdd is d-NI secure as well; thus, all the observations from the call of MAdd on y1

can be perfectly simulated with δ5 + δ7 + δ9 ≤ δ shares of y1 and s1. Respectively,
on y2, the observations can be perfectly simulated from δ6 + δ8 + δ10 ≤ δ shares of
y2 and s2.
The left Full+q gadget is d-NI secure and does not return any sensitive element,
then all the observations performed in this gadget can be perfectly simulated with
at most δ4 shares of r.
The left MAdd gadget is d-NI secure; thus, all the observations from its call can be
perfectly simulated with at most δ3 + δ4 shares of each one of the inputs y1 and
y2.
UGen is also d-NI secure; thus, we need to ensure that the number of reported
observations does not exceed δ. At the end of UGen, the simulation relies on
(δ3 + δ4) + (δ5 + δ7 + δ9) ≤ δ shares of y1 and (δ3 + δ4) + (δ6 + δ8 + δ10) ≤ δ shares
of y2. With the additional δ1 (resp. δ2) observations performed on the first (resp.
the second) instance of UGen, the number of observations remains below δ, which
is sufficient to ensure the security of the whole scheme in the d-probing model.
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Theorem 7. The masked GLP key generation in Algorithm 19 is d-NIo secure with public
output b.

Proof: We still refer to Table 3.1 for the security properties of the gadgets.
Here too, let us assume that an attacker has access to δ ≤ d observations on the
whole signature scheme. Hence, we want to prove that all these δ observations can
be perfectly simulated with at most δ shares of each secret among s1 and s2.
We now consider the following distribution of the attacker’s δ observations: δ1

(resp. δ2) on the instance of UGen that produces shares of s1 (resp. s2), δ3 on
MAdd, and δ4 on Full+q, such that

∑4
i=1 δi = δ.

Now, we build the proof from right to left: Full+q is used at the very end of the
key generation, and it is d-NI secure. Thus, all the observations from the call of
Full+q can be perfectly simulated with δ4 ≤ δ sensitive shares of the input t.
MAdd is d-NI; thus, all the observations from its call can be perfectly simulated
with at most δ3 + δ4 ≤ δ shares of each one of the inputs s1 and s2.
UGen is d-NIo, thus, we need to ensure that the number of reported observations
does not exceed δ. At the end of UGen, the simulation relies on (δ3 + δ4) ≤ δ
shares of s1 and s2. With the additional δ1 (resp. δ2) observations performed on
the first (resp. the second) instance of UGen, the number of observations on each
block remains below δ. All the observations can thus be perfectly simulated with
the only knowledge of the outputs; that is, the key generation algorithm is this
d-NIo secure.

3.3.4 EUF-CMA in the d-probing model

Let UnmaskedRefresh be the unmasked version of a refreshing gadget. This algorithm is
not subject to probing as in Security Model 3; the attacker cannot probe during the key
update. Its output, however, is given to the signature oracle and can be probed.

Algorithm 21 — UnmaskedRefresh

Data: (xi)0≤i≤d
1 for 0 ≤ i ≤ d− 1 do
2 Draw a uniformly random x′i with the same bit size as xi
3 end
4 x′d :=

∑d
k=0 xk −

∑d−1
k=0 x

′
k

5 return (xi)0≤i≤d

Theorem 8. Assuming the hardness of the DCKq,n and R-DCKq,n,Qs,α,κ problems, the
signature scheme r-GLP masked at order d with key update algorithm UnmaskedRefresh is
EUF-CMA secure in the d-probing model (see Security Model 3) and in the random oracle
model.

Proof: Let Advd-probing-EUF-CMA be the advantage of an adversary A against the d-probing-
EUF-CMA security game for r-GLP masked at order d with key update algorithm
UnmaskedRefresh. Remark that b is drawn under a publicly known distribution
and is independent of the secret. Hence the advantage of an adversary against the
EUF-CMA security game for GLP with returned value b, rs is exactly AdvEUF-CMA,
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the advantage of an adversary against the EUF-CMA security game for r-GLP.
This advantage is negligible and has been quantified in the proof of Theorem 5 (we
refer to [Bar+18] for the details).

In the following, we will prove that Advd-probing-EUF-CMA = AdvEUF-CMA, which is
sufficient to conclude the proof. Indeed, thanks to Theorem 5, under the hardness
of the DCKq,n and R-DCKq,n,Qs,α,κ, AdvEUF-CMA and so Advd-probing-EUF-CMA will
be negligible.

In the d-probing-EUF-CMA setting, the signature oracle called S is stateful. Let
us define this oracle by the following:

S(m,OSign) =
(
Sign(m, pk, sk(i−1)),LSign

)
where i ∈ [1, Q] is the state, i.e. the index of the query, and sk(i) = KeyUpdatei(sk)
(with the convention sk0 = sk).

Leakage Simulators

• According to Theorem 6, r-GLP Sign is d−NIo secure. One subtlety is that
the attacker A is able to make d observations on each call to the signature
oracle but not during the key refreshings.
For any set of at most d observations during the ith call to the signature or-
acle, the d−NI security ensures the existence of a perfectly simulated leakage
L (i),Sim

Sign that is generated from at most d shares of sk(i−1). Because the at-
tacker is not able to get any observation during the UnmaskedRefresh, if i 6= 1,
the d shares of sk(i−1) can be perfectly simulated from random. When i = 1,
the observations are directly simulated with at most d shares of sk(0) = sk. In
total, the Q leakages

(
L (1),Sim

Sign ...L (Q),Sim
Sign

)
are perfectly simulated from at most

d shares of sk. Thus, they are independent of the unmasked value of the secret.

• Identically, according to Theorem 7, for any set of at most d observations
during the key generation, there exists a perfectly simulated leakage L Sim

KeyGen
that is independent of the unmasked value of the secret.

Here are the hybrid games involved in the security proof.

Game G0: This game is the security game of the EUF-CMA security in the d-
probing model.
1. OKeyGen ← A
2.
(
(sk, pk),LKeyGen

)
← ExecObs(OKeyGen,KeyGen, 1λ)

3. (m∗, σ∗)← AH,S(pk,LKeyGen)

4. return 1 if Verify(pk,m∗, σ∗) = 1 and |OKeyGen| ≤ d and ∀i ∈ {1, . . . , Q}, |O(i)
Sign| ≤

d and (m∗, σ∗) has not been returned by the signature oracle
return 0 otherwise.

Game G1: Let S’ be a copy of S that outputs L (i),Sim
Sign instead of L (i)

Sign for all i.
In the following game, all the leakages given to the attacker are replaced by
the simulated leakages.



Application to GLP signature scheme 89

1. OKeyGen ← A
2.
(
(sk, pk),LKeyGen

)
← ExecObs(OKeyGen,KeyGen, 1λ)

3. (m∗, σ∗)← AH,S′(pk,L Sim
KeyGen)

4. return 1 if Verify(pk,m∗, σ∗) = 1 and |OKeyGen| ≤ d and ∀i ∈ {1, . . . , Q}, |O(i)
Sign| ≤

d and (m∗, σ∗) has not been returned by the signature oracle
return 0 otherwise.

By definition of L Sim, this game is perfectly indistinguisable from G0.

Game G2: This game is the security game of the EUF-CMA security.

1. (sk, pk)← KeyGen(1λ)

2. (m∗, σ∗)← AH,Sign(·,sk)(pk)
3. return 1 iff Verify(pk,m∗, σ∗) = 1 and (m∗, σ∗) has not been returned

by the oracle Sign(·, sk).

Since in game G1, |OKeyGen| ≤ d and |O(i)
Sign| ≤ d for all i ∈ [1, Q], having access

to L Sim provides no advantage to the attacker. Thus, the advantage for G1

is the same as the advantage for G2.

Finally Advd-probing-EUF-CMA = AdvEUF-CMA.

3.3.5 Proof of concept and performance

In our team, Mehdi Tibouchi has carried out an implementation of our masking counter-
measure based on a recent, public domain implementation of the GLP signature scheme
called GLYPH [Cho17]. The GLYPH scheme actually features a revised set of parameters
supposedly achieving a greater level of security (namely, n = 1024, q = 59393, κ = 16383
and α = 16), as well as a modified technique for signature compression. We do not claim
to vouch for those changes but stress that, for our purposes, they are essentially irrelevant.
Indeed, our countermeasure’s overhead only depends on the masking order d, the bit size
of the Boolean masks (which should be chosen as 32 bits both for GLYPH and the original
GLP parameters) and the degree n of the ring Rq (which is the same in GLYPH as in the
high-security GLP parameters). Therefore, our results on GLYPH should carry over to a
more straightforward implementation of GLP as well.

Implementation results on a single core of an Intel Core i7-3770 CPU are provided in
Table 3.2. In particular, we see that the overhead of our countermeasure with 2, 3 and 4
shares (secure in the d-probing model for d = 1, 2, 3 respectively) is around 15×, 30× and
73×. Given the complete lack of optimizations of this implementation, we believe that
this proof of concept is quite promising. The memory overhead is linear in the masking
order, so quite reasonable in practice (all masked values are simply represented as a vector
of shares).

3.3.6 Extension to Crystals-Dilithium signature scheme

Our work on GLP led to a concrete masked implementation of Dilithium with experimen-
tal leakage tests [Mig+19]. In the latter, Migliore et al. noticed that replacing the prime
modulus by a power of two allows obtaining a considerably more efficient masked scheme,
by a factor of 7.3 to 9 for the most time-consuming masking operations.
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Table 3.2: Implementation results. Timings are provided for 100 executions of the signing algorithm,
on one core of an Intel Core i7-3770 CPU-based desktop machine.

Number of shares (d+ 1) Unprotected 2 3 4 5

Total CPU time (s) 0.540 8.15 16.4 39.5 62.1

Masking overhead — ×15 ×30 ×73 ×115

3.4 Application to BLISS signature scheme

A full description of BLISS cryptosystem has been presented in the previous chapter in
Section 2.4.1. We studied how to mask the signature algorithm of BLISS in addition to
protecting it against timing attacks. The key generation of BLISS can be masked using
sorting networks and a masked polynomial generation. Nevertheless, the key generation
is now obsolete in terms of complexity and performance compared to BLISS-B or more
recent signature implementations (Dilithium, qTESLA). Thus, in this thesis, we focus on
presenting the masked signature algorithm.

3.4.1 Masking BLISS signature algorithm

Similar to r-GLP, let u-BLISS be the variant of BLISS that outputs u even in case of
failure. We here justify the security of u-BLISS and prove the d-probing security of the
key generation and the signature procedures. For the sake of clarity, we focus on a single
iteration of the latter. In other words, from now on, the signature algorithm considered
is the same as in Algorithm 9 except that if the rejection sampling asks for a restart, the
algorithm outputs ⊥. The masking can be generalized by calling the masked signature
algorithm with a refreshed private key when it fails.

For efficiency purposes, our masking countermeasure splits each sensitive data, namely
y1, y2, s1, s2, z1, z2 into d+ 1 shares and the intermediate variables that strictly depend
on them. The public variables (a1, a2) (i.e., the public key), m (i.e., the message), rs
(i.e., the bit corresponding to the success of the rejection sampling), (z1, z2, c) (i.e., the
signature) are left unmasked. Furthermore, because anyone can recombine bueMst mod p,
even if u is an intermediate value, it is considered as a public output along with the bit
rs.

We present the masked BLISS signature algorithm in Algorithm 22. The PolyEval()
function refers to the masking of the isochronous rejection sampling procedure presented
in Algorithm 10 in Chapter 2. It can easily be transformed to ensure d-probing security
as follows. Step 1 computes two elements x1 and x2 from sensitive values s and z. Mul-
tiplications must be processed with function sec& in the masked version. As for Step 2,
two sets of d+ 1 Boolean shares are generated at random in {0, 1} to represent the secret
bits u1 and u2. Steps 3 and 4 require the computation of exp(x1) and cosh(x2) with x1

and x2 sensitive values shared in Step 1. Thanks to the polynomial approximation of
these two functions, as described in Sections 2.4.3 and 2.4.4, the evaluation of exp and
cosh for these two sharings is only a combination of linear squaring and sec& operations.
As for their comparison with functions of u1 and u2, the computed arithmetic sharings
are first converted into Boolean sharings (the sharing of u1 can be first converted into an
arithmetic masking to be subtracted to exp(x1) which allows a comparison with public
values). Then, a secure comparison is performed between Boolean sharings and outputs
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two masked bits of a and b. Finally, the last multiplication in Step 5 is computed with
sec&, before a call to Full+q outputs rs.

Algorithm 22 — Masked u-BLISS signature

Data: m, pk = (a, t), sk = ((s1i)0≤i≤d, (s2i)0≤i≤d)
Result: Signature sig

1 (y1i)0≤i≤d ← GGenσ()
2 (y2i)0≤i≤d ← GGenσ()
3 (ui)0≤i≤d := MAdd(ζ · a1, (y1i)0≤i≤d, (y2i)0≤i≤d)
4 u := Full +q ((ui)0≤i≤d)
5 c := hash(bued,m)

6 (bi)0≤i≤d
$←− {0, 1}d+1

7 (bi)0≤i≤d ← B Aq((bi)0≤i≤d)
8 (bi)0≤i≤d := (2 · (bi)− 1 mod q)0≤i≤d
9 (z1i)0≤i≤d ← sec&((bi)0≤i≤d, (s1i)0≤i≤d)

10 (z2i)0≤i≤d ← sec&((bi)0≤i≤d, (s2i)0≤i≤d)
11 (z1i)0≤i≤d := MAdd(c, (z1i)0≤i≤d, (y1i)0≤i≤d)
12 (z1i)0≤i≤d ← Ref+q((z1i)0≤i≤d)
13 (z2i)0≤i≤d := MAdd(c, (z2i)0≤i≤d, (y1i)0≤i≤d)
14 (z2i)0≤i≤d ← Ref+q((z2i)0≤i≤d)
15 rs := PolyEval(sk, (z1i)0≤i≤d, (z2i)0≤i≤d, c)
16 if rs = 1 then
17 (z1, z2) := (Full +q ((z1,i)0≤i≤d),Full +q ((z2,i)0≤i≤d))

18 z†2 := (bued − bu− z2ed) mod p

19 return sig := (z1, z
†
2,u)

20 else
21 return sig := (⊥,⊥,u)
22 end

Theorem 9. The masked u-BLISS sign algorithm is d-NIo secure with public output rs.

Proof: From Table 3.1, all the sub-gadgets involved in the computation of the signature are
either d-NI secure, d-NIo secure, d-SNI secure, or they do not manipulate sensitive
data. In the d-probing model, we assume that an attacker has access to δ ≤ d exact
variables in the whole execution of the signature. Then, we want to prove that
all these δ observations can be perfectly simulated with at most δ shares of each
secret among y1, y2, s1, and s2, and the public variables. We consider the following
distribution of the attacker’s δ observations: δ1 (resp. δ2) on the instance of GGenσ
which produces y1 (resp. y2), δ3 on MAdd, δ4 on the instance of Full+q following
MAdd, δ5 on hash, δ6 on B Aq, δ7 (resp. δ8) on the instance of sec& involving s1

(resp. s2), δ9 (resp. δ10) on the instance of MAdd which outputs z1 (resp. z2), δ11
(resp. δ12) on the instance of Refresh which outputs z1 (resp. z2), δ13 on Polyeval,
δ14 (resp. δ15) on the instance of Full+q that outputs the unmasked version of z1

(resp. z2) such that
∑16

i=1 δi = δ.
We build the proof from right to left. The final Full+q are d-NI secure. As a
consequence, all the observations from their call involving z1 (resp z2) can be
perfectly simulated with at most δ14 ≤ δ shares of z1 (resp. at most δ15 ≤ δ
shares of z2). The algorithm referred to as Polyeval is also assumed d-NI secure



92 Masking lattice-based signatures

MAdd Full+qGGenσ

GGenσ

B  Aq

sec&

sec&

Full+q

Full+qMAdd

MAdd Ref+q

Ref+q

hash Polyeval

(s1,i)

(s2,i)

ζ · a1 m

rs

if rs = 1

z1

z2

(bi)

(y1,i)

(bi)

(z2,i)

(z1,i)

(y2,i)

(ui) u c

c

(y1,i)

(z1,i)

(z2,i)

(z1,i)

(z2,i)

Figure 3.9: Composition of BLISS Signature

by construction. Thus, all the observations from its call involving z1 (resp z2) can
be perfectly simulated with at most δ13 ≤ δ shares of z1 (resp. at most δ13 ≤ δ
shares of z2) and the bit rs which is public information indicating whether or
not the rejection sampling failed. Continuing from right to left, we consider both
instances of Refresh. From its d-SNI security property and since the output and
local observations are still less than δ, all observations from its call can be perfectly
simulated with at most δ11 ≤ δ (resp. δ12 ≤ δ) input shares. Both instances of
MAdd outputs variables that are immediately refreshed. MAdd is additionally d-NI
secure and has δ11 (resp. δ12) output observations and δ9 (resp. δ10) internal ones.
In both cases, the addition of the internal and output observations remains below δ.
Therefore, the d-NI property makes it possible to simulate all further observations
with δ11 + δ9 ≤ δ shares of y1,i, s1,i and the knowledge of c (resp. δ12 + δ10 ≤ δ
shares of y2,i, s2,i, and the knowledge of c). The sec& instances are d-NI secure, all
the observations after their call can be perfectly simulated with δ7 + δ11 + δ9 shares
of s1 and b (resp. δ8 + δ12 + δ10 shares of s2 and b). The gadget Aq B is d-SNI, the
fact that the addition of (δ7+δ11+δ9)+δ8+δ12+δ10 ≤ δ output observations and δ6

internal observations is less than δ is enough to guarantee the global security from
its location. The hash step only manipulates public data. Full+q is d-NI secure
(its output is given as output of the signature u-BLISS, so it is technically not a
public output, see Remark 5) and does not return any sensitive variable. Then all
the observations performed from this gadget can be perfectly simulated with at
most δ4 shares of ui. MAdd is d-NI secure. δ3 observations are performed on its
intermediate variables, and at most δ4 observations are performed on its outputs.
As δ3 + δ4 ≤ δ, all further observations can be perfectly simulated with at most
δ3 + δ4 shares of y1, δ3 + δ4 shares of y2 and the knowledge of the public value a1.
The last step of the proof is to verify that all the internal and output observations
on each instance of GGenσ are less than δ. Internal observations are respectively
δ1 and δ2 while output observations are bounded by (δ3 + δ4) + (δ11 + δ9) and
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(δ3 + δ4) + (δ12 + δ10) which are both less than δ. The d-NIo property of GGenσ
concludes the proof.

3.4.2 EUF-CMA in the d-probing model

Based on Section 3.3.4, we can prove that the security of u-BLISS reduces to the EUF-
CMA security of the original BLISS scheme by introducing a mild computational as-
sumption which is close to the classical LWE problem (see Theorem 5). This assumption
informally states that distinguishing the output distribution of u when a rejection occurs
from the uniform distribution on R2q is hard.

Remark 12. Similarly to Remark 2, assume that an attacker is able to select a subset
of signatures by filtering5 the output u (or equivalently c) and assume that she has access
to the expectation of rejection conditioned with c, i.e. Ey1,y2,b[(z1, z2, c) rejected | c]. The
following computation shows that this quantity is independent from s1, s2 and c. Let s1,
s2 and c be fixed quantities,

pbliss
sc := Ey1,y2,b[(z1, z2, c) rejected | c] =

1

M
· Ey1,y2,b

[
exp

(
−‖S · c‖2

2σ2

)−1

cosh

(
〈z,Sc〉
σ2

)−1
]

=
1

M
· Ey1,y2,b

[
ρσ(‖z‖2)

1
2
ρσ(‖z− Sc‖2) + 1

2
ρσ(‖z + Sc‖2)

]

=
1

M
·

1

2
Ey1,y2

[
ρσ(‖y + Sc‖2)

1
2
ρσ(‖y‖2) + 1

2
ρσ(‖y + 2Sc‖2)

]
︸ ︷︷ ︸

b=0

+
1

2
Ey1,y2

[
ρσ(‖y − Sc‖2)

1
2
ρσ(‖y‖2) + 1

2
ρσ(‖y − 2Sc‖2)

]
︸ ︷︷ ︸

b=1


=

1

Mρσ(Zm)
·

(∑
y

1

2

ρσ(‖y‖2)ρσ(‖y + Sc‖2)
1
2
ρσ(‖y‖2) + 1

2
ρσ(‖y + 2Sc‖2)

+
∑

y

1

2

ρσ(‖y‖2)ρσ(‖y − Sc‖2)
1
2
ρσ(‖y‖2) + 1

2
ρσ(‖y − 2Sc‖2)

)

=
1

Mρσ(Zm)
·

( ∑
z1=y+Sc

ρσ(‖z1 − Sc‖2)ρσ(‖z1‖2)

ρσ(‖z1 − Sc‖2) + ρσ(‖z1 + Sc‖2)
+

∑
z2=y−Sc

ρσ(‖z2 + Sc‖2)ρσ(‖z2‖2)

ρσ(‖z2 + Sc‖2) + ρσ(‖z2 − Sc‖2)

)
.

The summation domain for z1 and z2 is the same, so,

pbliss
sc =

1

Mρσ(Zm)
·
∑

z

(
ρσ(‖z− Sc‖2)ρσ(‖z‖2)

ρσ(‖z− Sc‖2) + ρσ(‖z + Sc‖2)
+

ρσ(‖z + Sc‖2)ρσ(‖z‖2)

ρσ(‖z + Sc‖2) + ρσ(‖z− Sc‖2)

)
=

1

Mρσ(Zm)
·
∑

z

ρσ(‖z‖2) =
1

M
.

3.5 Application to qTesla signature scheme

While the study of GLP and BLISS were proofs of concept, we now focus on applying an
optimized masking countermeasure to qTESLA, a candidate to the NIST standardization

5We thank Damien Stehlé for suggesting this approach.
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Table 3.3: Parameters for qTESLA-I and qTESLA-III

Parameters qTESLA-I qTESLA-III Description
n 512 1024 Dimension of the ring
q 4 205 569 ≈ 222 8 404 993 ≈ 223 Modulus
σ 22.93 10.2 Standard deviation
h 30 48 Nonzero entries of c
E 1586 1147 Rejection parameter
S 1586 1233 Rejection parameter
B 220 − 1 221 − 1 Bound for y
Tail 21 22 Bits dropped in [·]M

process [Bin+17]. The qTESLA signature scheme is also a Fiat-Shamir lattice-based
signature derived from the original work of Lyubashevsky [Lyu12]. This signature is,
with Dilithium [Duc+18], one of the most recent iterations of this line of research. We
slightly modify the signature and parameters to ease the addition of the countermeasure
while keeping the original security. This work has been done with François Gérard [GR19].

3.5.1 The qTESLA signature Scheme

Let us now describe qTESLA [Bin+19], a (family of) lattice-based signatures based on
the Ring-LWE problem (see Hard Problem 5) and a round-2 candidate for the NIST
post-quantum competition. The signature stems from several iterations of improvements
over the original scheme of Lyubashevsky [Lyu12]. It is, in fact, a concrete instantiation
of the scheme of Bai and Galbraith [BG14] over ideal lattices. Its direct contender in
the competition is Dilithium [Duc+18], which is also based on this same idea of having
a lattice variant of Schnorr signature. The security of Dilithium relies on problems over
module lattices instead of ideal lattices, in the hope of increasing security by reducing
algebraic structure, at the cost of a slight performance penalty.

Hereunder, we explicitly describe the main algorithms, namely key generation, sig-
nature and verification. Beforehand, let us briefly recall the functionality of each of the
subroutines for completeness. We redirect the interested reader to [Bin+19] or the NIST
submission for a detailed description. In Table 3.3, we present the different parameters
of qTESLA. We write x mod±q to denote the unique integer xct ∈ (−bq/2c, . . . , bq/2c]
(where the lower bound is included if q is odd) such that xct ≡ x (mod q). We call this
integer the centered representative of x modulo q. In the following, PRF is a pseudo-
random function, GenA generates a uniformly random polynomial, GaussSampler samples
a polynomial according to a Gaussian distribution, CheckS and CheckE verifies that a
secret polynomial does not have too large coefficients, ySampler samples a uniformly ran-
dom polynomial y ∈ Rq,B (as defined in Definition 13), hash is a collision-resistant hash
function, and Enc encodes a bit string into a sparse polynomial c ∈ Rq,1 with ||c||1 = h.

Remark 13. For the sake of practicability, we focus on the heuristic version of qTESLA
as the use case. More specifically, in Section 5.5, we implement our countermeasure in
qTESLA-I and qTESLA-III even though the techniques we are using are not specific to
any parameter set. After this work was actually accepted at the CARDIS conference,
the heuristic parameter sets, on which our experiments are based, were removed by the
qTESLA team. We emphasize that the parameters we use were not broken but are not
part of the standardization process anymore.
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Algorithm 23 — qTESLA key generation

Result: Signing key sk = (s, e, seeda, seedy), verification key pk = (seeda, t)
1 counter := 1

2 pre-seed $←− {0, 1}κ
3 seeds,e,a,y := PRF(pre-seed)
4 a := GenA(seeda)
5 repeat
6 s := GaussSampler(seeds,counter)
7 counter := counter + 1
8 until CheckS(s) = 0
9 repeat

10 e := GaussSampler(seede,counter)
11 counter := counter + 1
12 until CheckE(e) = 0
13 t := a · s + e mod q
14 sk := (s, e, seeda, seedy)
15 pk := (seeda, t)
16 return (pk, sk)

Algorithm 24 — qTESLA signature algorithm

Data: message m, sk = (s, e, seeda, seedy)
Result: sig = (z, c)

1 counter := 1

2 r
$←− {0, 1}κ

3 rand := PRF(seedy, r, hash(m))
4 y := ySampler(rand, counter)
5 a := GenA(seeda)
6 v := a · y mod±q
7 c := Enc(hash(bveMst,m))
8 z := y + s · c
9 if z 6∈ Rq,B−S then

10 counter := counter + 1
11 Goto 3
12 end
13 return (z, c)

Algorithm 25 — qTESLA verification algorithm

Data: message m, signature sig = (z, c) and public key pk = (seeda, t)
Result: 0 if the signature is accepted else −1

1 a := GenA(seeda)
2 w := a · z− t · c mod±q
3 if z 6∈ Rq,B−S or c 6= Enc(hash(bweMst,m)) then
4 return −1
5 end
6 return 0
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Key generation (Algorithm 23). The key generation will output an RLWE sample
together with some seeds used to generate public parameters and to add a deterministic
component to the signing procedure. The algorithm starts by expanding some random-
ness into a collection of seeds and generates the public polynomial a before moving on to
the two secret values s and e. Those two values are sampled from a Gaussian distribution
and have to pass some checks to ensure that the products s · c and e · c do not have too
large coefficients. After that, the main component t of the public key is computed as
t = a ·s+e. The output consists of the private key sk = (s, e, seeda, seedy) and the public
key pk = (seeda, t).

Sign (Algorithm 24). The sign procedure takes as input a message m and the
private key sk, and it outputs a signature sig = (z, c). First, in order to generate the
randomness needed in the algorithm, a seed is derived from a fresh random value r, seedy
and m. Next, a polynomial y ∈ Rq,B is sampled to compute the value v = a · y mod±q.
The algorithm will now hash the rounded version of v together with the message and
encode the result in a sparse polynomial c with only h entries in {−1, 1}. The candidate
signature is computed as z = y +s ·c. Before outputting the result, two additional checks
must be performed: we must ensure that z is in Rq,B−S and that w = v − e · c mod±q
is well rounded, meaning that ||[w]Lst||∞ < 2Lst−1 − E and ||w||∞ < bq/2c − E should
hold. When one of the checks fail, the signing procedure is restarted by sampling a new
y. When eventually both checks pass, the signature sig = (z, c) is output.

Verify (Algorithm 25). Signature verification is pretty lightweight and straightfor-
ward for this type of signature. Taking as input the message m, signature sig = (z, c)
and public key pk = (seeda, t), it works as follow: First, it generates the public param-
eter a, then computes w = a · z − t · c and accepts the signature if z ∈ Rq,[B−S] and
c 6= Enc(hash([w]Mst,m)).

3.5.2 Masking qTESLA signature scheme

In the process of masking qTESLA, we decided to make slight modifications in the signing
procedure in order to facilitate masking. The idea is that some design elements providing
small efficiency gains may be really hard to carry on to the masked version and actually
do even more harm than good. Our two main modifications are the modulus which is
chosen as the closest power of two of the original parameter set and the removal of the
PRF to generate the polynomial y.

Power of two modulo. Modular arithmetic is one of the core components of many
cryptographic schemes. While, in general, it is reasonably fast for any modulus (but not
necessarily straightforward to do in constant time), modular arithmetic in masked form
is very inefficient, and it is often one of the bottlenecks in terms of running time. The
gadget sec+q (See Gadget 7) is defined to add two integers in boolean masked form mod-
ulo q. The idea is to perform the addition over the integers naively and to subtract q if
the value is larger than q. While this works completely fine, the computational overhead
is large in practice and avoiding those reductions would drastically enhance execution
time as noticed in [Mig+19] (See Section 3.3.6). The ideal case is to work over Z2n . In
this case, almost no reductions are needed throughout the execution of the algorithm
and, when needed, can be simply performed by applying a mask on boolean shares. The
reason why working with a power of two moduli is not the standard way to instantiate
lattice-based cryptography is that it removes the possibility to use the number theoretic
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transform (NTT) to perform efficient polynomial multiplication in O(n log n). Instead,
multiplication of polynomial has to be computed using the Karatsuba/Toom-Cook algo-
rithm, which is slower for parameters used in state-of-the-art algorithms. Nevertheless,
in our case, not having to use the heavy SecAddModp gadget largely overshadows the
penalty of switching from NTT to Karatsuba. Since modulus for both parameter sets
were already close to a power of two, we rounded to the closest one, i.e. 222 for qTESLA-I
and 223 for qTESLA-III. This modification does not change the security of the scheme.
Indeed, security-wise, for the heuristic version of the scheme that we study, we need a q
such that q > 4B 6 and the corresponding decisional LWE instance is still hard. However,
the form of q does not impact the hardness of the problem as shown in [LS12a] and, since
q was already extremely close to a power of two for both parameters sets, the practical
bit hardness of the corresponding instance is not sensibly changed.

Removal of the PRF. It is well known that in Schnorr-like signatures, a devastating
attack is possible if the adversary gets two different signatures using the same y. Indeed,
they can simply compute the secret s = z−z′

c−c′
. While such a situation is very unlikely due

to the large size of y, a technique to create a deterministic version of the signature was
introduced in [MRa+99]. The idea is to compute y as PRF(secret_seed,m) such that
each message will have a different value for y unless a collision is found in PRF. This
modification acts as a protection against very weak entropy sources but is not necessary to
the security of the signature and was not present in ancestors of qTESLA. Unfortunately,
adding this determinism also enabled some side-channel attacks [Pod+17; GP18]. Hence,
the authors of qTESLA decided to take the middle ground by keeping the deterministic
design but also seeding the oracle with a fresh random value r7.
While those small safety measures certainly make sense if they do not incur a significant
performance penalty, we decided to drop them and simply sample y at random at the
beginning of the signing procedure. The reason is twofold. First, keeping deterministic
generation of y implied masking the hash function evaluation itself, which is really inef-
ficient if not needed and would unnecessarily complicate the masking scheme. Second,
implementing a masking countermeasure is, in general, making the hypothesis that a rea-
sonable source of randomness (or at least not weak to the point of having a nonce reuse
on something as large as y) is available to generate shares and thus can also be used for
the signature itself.

Masked sign The masked signature can be found in Algorithm 27. After generating the
public parameter a with the original GenA procedure, the gadget UGen (See Gadget 10)
is used to get polynomials yi such that y =

∑N
i=0 yi belongs to Rq,B. Then, thanks

to the distributive property of the multiplication of ring elements, we can compute v =
a·y =

∑N
i=0 a·yi using regular polynomial multiplication, without relying on any complex

gadget. The polynomial c is computed using the subroutine MaskedHash which is using
the Rnd gadget (See Gadget 20) to compute qTESLA’s rounding and hashing on a masked
polynomial. Similarly to other Fiat–Shamir with aborts signatures (like GLP, Dilithium or
qTesla), the computation of the hash function does not have to be performed in masked
form since the knowledge of its inputs does not impact the security. Once c has been
computed, the candidate signature can be computed directly on shares with the masked
private key as z = y + s · c =

∑N
i=0 yi + si · c. Using the RS and WRnd gadgets (See

Gadgets 18 and 22), the security and correctness parts of the signature follow trivially.
6The other condition on q in the parameters table of the submission is to enable the NTT
7Note that the fault attacks is still possible in case of failure of the RNG picking r
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Once all checks have been passed, the signature can be safely unmasked using sec+q (See
Gadget 7).

Algorithm 26 — Masked Hash

Data: The n coefficients a(j) to hash, in arithmetic masked form (a
(j)
i )0≤i≤d

and the message to sign m
Result: Hash of the polynomial c

1 Let u be a byte array of size n
2 for j = 1 to n do
3 uj ← Rnd((a

(j)
i )0≤i≤d, Tail)

4 end
5 c := hash(u,m)
6 c := Enc(c)
7 return c

Algorithm 27 — qTESLA masked signature algorithm

Data: message m, private key sk = ((si)0≤i≤d, (ei)0≤i≤d), seed sd
Result: Signature sig = (zunmasked, c)

1 a := GenA(sd)
2 (yi)0≤i≤d ← UGen(B)
3 for i = 0, . . . , d do
4 vi := a · yi
5 end
6 c := MaskedHash((vi)0≤i≤d,m)
7 (zi)0≤i≤d := MAdd(c, (si)0≤i≤d, (yi)0≤i≤d)
8 if rs := RS((zi)0≤i≤d, B − S) = 0 then
9 Goto 2

10 end
11 (wi)0≤i≤d := MAdd(c, (ei)0≤i≤d, (vi)0≤i≤d)
12 if r := WRnd ((wi)0≤i≤d, q/2− E, 2Tail−1 − E, Tail) = 0 then
13 Goto 2
14 end
15 zunmasked := Full +q ((zi)0≤i≤d)
16 return (zunmasked, c)

Masked key generation The number of signature queries per private key can be high
(up to 264 as required by the NIST competition). In contrast, the key generation algo-
rithm is typically only executed once per private key. The performance of the masked key
generation is, therefore, less critical. We present here an (inefficient) masked version of
the key generation algorithm that can be found in Algorithm 28. One can remark that
the bottleneck gadget, GGenσ (See Gadget 12), needs to make T comparisons for each
coefficient of the polynomial which goes to a total of T · n comparisons for the whole
generation. With a value of T around 200, sampling from the table is actually sensibly
heavier than signing. Thus, our goal with this masked qTESLA key generation is to prove
that masking without changing the design is costly but still doable. However, for a practi-
cal implementation in which the key generation might be vulnerable to side channels, one
could prefer changing the design of the scheme. For example, Dilithium or GLP generate
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the keys uniformly at random on a small interval and thus avoid this issue. One downside
of these faster key generation is that the parameters of the scheme should be adapted in
order to avoid having too many rejections in the signing algorithm.

In Algorithm 28, the element a is generated in unmasked form because it is also part
of the public key. Then, s and e are drawn using the gadget GGenσ. Another gadget
MChk (See Gadget 23) is also introduced in the key generation. It checks that the sum
of the h largest entries (in absolute value) is not above some bounds that can be found
in Table 3.3. Then the public key t is computed in masked form and securely unmasked
with the Full+q gadget.

Algorithm 28 — Masked qTesla Key Generation

Result: sk = ((si)0≤i≤d, (ei)0≤i≤d, sd), pk = (sd, t)

1 pre-seed r←− {0, 1}κ
2 sd := PRF(pre-seed)
3 a := GenA(sd)
4 repeat
5 (si)0≤i≤d ← GGenσ()
6 until chk1 := MChk((si)0≤i≤d, h, S) 6= 0
7 repeat
8 (ei)0≤i≤d ← GGenσ()
9 until chk2 := MChk((ei)0≤i≤d, h, E) 6= 0

10 initialize (signs
i )0≤i≤d and (signe

i )0≤i≤d as two 1-bit arithmetic masking of
either −1 or 1

11 (si)0≤i≤d ← sec& ((signs
i )0≤i≤d, (si)0≤i≤d)

12 (ei)0≤i≤d ← sec& ((signe
i )0≤i≤d, (ei)0≤i≤d)

13 (ti)0≤i≤d := MAdd(a, (si)0≤i≤d, (ei)0≤i≤d)
14 t := Full +q ((ti)0≤i≤d)
15 sk := ((si)0≤i≤d, (ei)0≤i≤d, sd)
16 pk := (sd, t)
17 return sk, pk

3.5.3 EUF-CMA security in the d-probing model

We introduce a theorem that proves the d-NIo property of our masked key generation
algorithm.

Theorem 10. The key generation algorithm presented in Algorithm 28 is d-NIo secure
with public outputs chk1 and chk2.

Remark 14. The knowledge of chk1 and chk2 cannot give more information on the
outputted private key. Indeed, it only gives information on the number of attempts before
outputting a key pair.

Proof: The overall gadget decomposition of the key generation is in Fig. 3.10. We omit
some of the non-sensitive values (like sd) for clarity. For simplicity and without
losing generality, the theorem only considers one iteration of the key generation:
the algorithm outputs ⊥ if the checks are not validated. The public outputs chk1
and chk2 are then related to the number of iterations that is independent of the
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Figure 3.10: Masked qTESLA Key Generation structure

final secrets e or s. The structure is very similar to the key generation of GLP
in Algorithm 19, and there is no cycle in the structure. Thus, we can conclude
that all the observations can be perfectly simulated with the only knowledge of
the outputs.

In the following, we introduce a theorem that proves the d-NIo property of our masked
signature algorithm. Here too, without losing generality, the theorem only considers one
iteration for the signature: the signing algorithm outputs ⊥ if one of the tests in Steps 9
or 13 in Algorithm 27 has failed. We denote by

(
r(j)
)

0≤j<n,
(
rs(j)

)
0≤j<n and

(
u(j)
)

0≤j<n
the outputs of RS, WRnd and Rnd (the values for each coefficient j ∈ [0, n− 1]).

Theorem 11. Each iteration of the masked signature in Algorithm 27 is d-NIo secure
with public outputs8 {(

r(j)
)

0≤j<n ,
(
rs(j)

)
0≤j<n ,

(
u(j)
)

0≤j<n

}
.

Proof: The overall gadget decomposition of the signature is in Fig. 3.11.

The gadget & multiplies each share of the polynomial y by the public value a.
By linearity, it is d-NI. Thus, all the sub-gadgets involved are either d-NI secure,
d-NIo secure or they do not manipulate sensitive data (See Table 3.1). We prove
that the final composition of all gadgets is d-NIo. As there is no cycle in the
structure, the proof can be easily built from right to left similarly as for the proof
of Theorem 6.

Definition 14. We denote by (r, rs, u)-qTESLA a variant of qTESLA where all the values{(
r(j)
)

0≤j<n ,
(
rs(j)

)
0≤j<n ,

(
u(j)
)

0≤j<n

}
are outputted for each iteration during the signing algorithm.

8The number of iterations of the gadget UGen is omited as a public output.
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Figure 3.11: Masked qTESLA Signature structure

Theorem 11 allows reducing the EUF-CMA security in the d-probing model of our
masked qTESLA signature at order d to the EUF-CMA security of (r, rs, u)-qTESLA.
The security proof of qTESLA does not fully support (r, rs, u)-qTESLA because the
adversary is not supposed to see the values of the signing’s failed attempts. However,
we can prove, with a Theorem similar to Theorem 5, that under some computational
assumptions, outputting

(
u(j)
)

0≤j<n for each iteration does not affect the security. The

values
{(
r(j)
)

0≤j<n ,
(
rs(j)

)
0≤j<n

}
correspond to rejection’s conditions, and more precisely,

the positions of the coefficients of the polynomials that do not pass the rejections. Such
knowledge does not impact the scheme’s security because the rejection probability does
not depend on the position of the coefficients.

3.5.4 Optimized implementation and performance

This work was focused on performance and reusability, and François Gérard was the
implementor. Our masked signature implementation still keeps the property of being
compatible with the original verifying procedure of qTESLA and has been directly imple-
mented within the code of the submission. Even if we target high order masking, we also
implemented specialized gadgets for order 1 masking to provide a lightweight version of
the masking scheme with a reasonable performance fitting nicely on embedded systems.
We finally provided extensive performance data and showed that the cost of provable
masking could be reasonable, at least for small orders.

We performed benchmarks for the two parameters sets qTESLA-I and qTESLA-III9 on
a laptop with a CPU Intel Core i7-6700HQ running at 2.60GHz as well as on a cortex-M4
microcontroller for the masking of order 1.

9As explained in Remark 13, the heuristic parameter sets on which our experiments are based, are now removed
by the qTESLA team. We emphasize that the parameters we use for the implementation were not broken but
are not part of the standardization process anymore. Furthermore, our theoretical work is somewhat oblivious to
the underlying parameter set used to instantiate the signature, and the code can be adapted to implement the
provably-secure sets as well.
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Randomness We performed the tests with and without the random number generator
activated (in gadgets). The reason why we decided to switch off the RNG10 is to show
how masking schemes of this magnitude are sensitive to the speed at which the device
is capable of retrieving randomness. We also tested the smaller parameter set at order
1 on a Cortex-M4 microcontroller to see how it performs on a device more realistically
vulnerable to side-channel attacks. We speculate that the scaling difference between the
microcontroller and the computer is due to the fact that architectural differences matter
less for the masking code than for the base signature code. Our tests with the randomness
enabled were performed using xoshiro128** [BV18], a really fast PRNG that has been
recently used to speed-up public parameters generation in a lattice-based cryptosystem
[Bos+18b]. An implementor who is looking for our technique’s real-life application and
believes that masking needs a strong randomness would maybe want to use, instead,
a cryptographically secure PRNG. Another option could be to expand a seed with the
already available cSHAKE function, but as we will see in the sequel, it might be pretty
expensive as the number of random bytes required grows very fast with the number of
shares.

Individual gadgets. The result for individual gadgets over 1 000 000 executions can
be found in Table 3.4. The table is divided into two parts: the top part contains mea-
surements for the signing gadgets implementing functionalities of the signature and the
bottom part contains measurements for the base gadgets implementing elementary oper-
ations. Unsurprisingly, we see that the most expensive signing gadget is WRnd. Indeed,
it has to perform two absolute value computations in addition to two comparisons. Nev-
ertheless, an actual substantial overall gain of performances would rather come from an
improvement of the conversion from arithmetic to boolean masking since it is the slowest
base gadget and is used in all signing gadgets. Furthermore, it should also be pointed
out that most gadgets have a non-negligible dependency on the speed of sec& since it is
called multiple times in sec+, which itself appears multiple times in signing gadgets.

Signing procedure. The results for the full signature are given in Table 3.5. Since a
large portion of the execution time is spent in calls to the random number generator, we
decided to benchmark with and without the PRNG. The mention RNG off means that
rand_uint32() was set to return 0. The mention RNG on means that rand_uint32()
was set to return the next value of xoshiro128**. The purpose is to give an idea of how the
algorithm itself is scaling, regardless of the speed at which the device is able to provide
randomness. At the same time, the discrepancy between the values with and without
the RNG underlines how masking schemes of this magnitude are sensitive to randomness
sampling. In Table 3.7, we also computed the average number of calls to rand_uint32()
to see how much randomness is needed for each order. Each call is retrieving a uniformly
random 32-bit integer. As expected, this number is growing fast when the masking order
is increased. The results for the masked signature at order 1 on cortex-M4 microcontroller
are given in Table 3.6. We speculate that the scaling difference between the microcontroller
and the computer is due to the fact that architectural differences matter less for the
masking code than for the base signature code. Furthermore, we can see that qTESLA-III
is scaling better than qTESLA-I. In addition to the natural variance of the experiments,
we explain this result by the fact that increasing the masking order reduces the impact
of the polynomial multiplication on the timing of the whole signature in favor of masking
operations. Factoring out polynomial operations, qTESLA-III is scaling better because

10To switch the RNG off, we just set the rand_uint32() function to return 0
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Table 3.4: Median speed of principal gadgets in clock cycles over 1000000 executions

Masking order Order 1 Order 2 Order 3 Order 4 Order 5

UGen 98 410 840 1 328 2 416

Rnd 164 1 400 2 454 4 314 6 142

WRnd 280 2 080 3 914 6 432 9 034

RS 178 1 440 2 496 4 432 6 254

sec+q 44 294 592 870 1 192

sec& 20 28 44 70 96

Aq B 96 786 1 152 3 148 3 500

B Aq 20 42 108 288 884

Table 3.5: Median speed of masked signature in kilo clock cycles over 10000 executions

Masking order Un-
masked Order 1 Order 2 Order 3 Order 4 Order 5

qTESLA-I (RNG off) 646 2 394 7 000 9 220 16 578 24 375

qTESLA-I (RNG on) 671 2 504 13 879 24 583 39 967 59 551

qTESLA-I (RNG on)
Scaling 1 ×4 ×21 ×37 ×60 ×89

qTESLA-III (RNG off) 1 253 4 295 9 946 14 485 25 351 34 415

qTESLA-III (RNG on) 1 319 4 880 21 932 33 521 59 668 83 289

qTESLA-III (RNG on)
Scaling 1 ×3 ×17 ×25 ×45 ×63

the probability of rejection for these parameters sets is lower than for qTESLA-I. Hence,
even if n is twice as large, less than twice the masking operations are performed overall.

As noted in [Mig+19], the power of two moduli allows getting a reasonable penalty
factor for low masking orders. Without such a modification, the scheme would have been
way slower. Besides, our implementation seems to outperform the masked implementation
of Dilithium as given in [Mig+19]. The timing of our order 1 masking for qTESLA-I is
around 1.3 ms, and our order 2 is around 7.1 ms. This result comes with no surprise
because the unmasked version of qTESLA already outperformed Dilithium. However, we
do not know if our optimizations on the gadgets could lead to a better performance for a
masked Dilithium.
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Table 3.6: Median speed of masked signature in kilo clock cycles over 1000 executions for qTESLA-I on
cortex-M4 microcontroller

Masking order Unmasked Order 1

qTESLA-I CortexM4 11 304 23 520

Table 3.7: Average number of calls to rand_uint32() (×1000)

Masking order Order 1 Order 2 Order 3 Order 4 Order 5

qTESLA-I 86 1 383 2 762 4 924 7 638

qTESLA-III 115 1 827 3 722 6 482 10 006

3.6 Perspectives

This chapter has presented the masking techniques for lattice-based Fiat–Shamir with
aborts signatures. Several key new problems were encountered:

1. Expensive Mask conversions. Most steps of the signing lattice algorithm involve
linear operations on polynomials that can be cheaply masked using mod q arithmetic
masking. However, for some operations like the generation of the randomness or the
rejection sampling, this representation is less convenient. Therefore, we must carry
out conversions from Boolean masking to arithmetic masking and the other way
around.

2. Public outputs. For performance reasons, some intermediate variables may be
revealed to the attacker. The scheme must then be proved secure with these public
outputs. Besides, we introduced a new notion of security to account for public
outputs.

3. “Masking Friendliness”. Some sets of parameters are easier to mask than others.
For example, by choosing a power of two as modulus, one can get better perfor-
mance. Now that this is demonstrated providing one set of parameters that are
more “masking-friendly” within the NIST competition could be an asset for the can-
didates.

Perspective 4. A vital perspective would be to improve masked Gaussian Sampling (See
Gadget 11). Indeed, even with recursion techniques, the cumulative distribution table
seems heavy to carry in a masked form. This is what keeps us from masking the Falcon
signature scheme, which is the only hash-and-sign signature from the competition.
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Chapter

4
Decryption failure attacks

Figure 4.1: Decryption failure attacks consist in analyzing the success or failure of an algorithm. Some-
times, an algorithm can generate an –extremely rare– problematic intermediate value that ends up with a
failure. In practice, failures are very rare and if they happen, the algorithm is simply restarted. However,
this knowledge can trigger attacks. For example, the purple algorithm chooses x = 0 which is the only
value that cannot be inverted in R. In that case, an attacker can conclude that the secret value was 0.

The study of this chapter focuses on decryption failure attacks on lattice-based public key
encryption or key exchanges. Guénaël Renault, one of my advisors at ANSSI suggested
this topic to me at the beginning of my PhD. It was a perfect entry into the field of lattice-
based KEMs. We started with the original lattice-based encryption scheme [LPR10], and
we progressively understood the additional features that lead to NewHope [Alk+16b] then
to the NIST lattice-based key exchange submissions that directly inherited the framework
[Pöp+19; Nae+19; Sch+19]. The study was done through the prism of the decryption
failures attacks. The latter family of attacks has been originally suggested by Fluhrer
in [Flu16] against a reconciliation-based key exchange à la [Pei14]. With members of
the ANSSI team: Aurélie Bauer, Henri Gilbert and Guénaël Renault, we found a way
to adapt Fluhrer’s attack to the recent decryption-based NewHope in a passively secure
setting with key reuse [Bau+19]. Although our attack did not infringe any of the designed
security claimes for NewHope, the main message of the paper was to warn the potential
users on possible misuse contexts (see Section 4.1.3 for a definition)where the key is reused
in scheme secure against passive attacks. It enables powerful decryption failures attacks.

Later on, a new family of generic attacks on schemes with stronger security models
were introduced [DAn+19a]: they were no longer targeting the schemes in a misuse set-
ting. After a post-quantum spring school in Oxford in 2019, with Jan-Pieter D’Anvers,
Alessandro Bussoni, Henri Gilbert and Fernando Virdia, we started to consider a new
hypothesis: the possible bootstrapping of the search for one failure in order to generate
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other ones. The key idea was to consider the possible decryption failures in a geometric
way. A few months later, Jan-Pieter D’Anvers, Fernando Virdia and I wrote the results of
this study in a paper [DRV20] and we were very proud by the implications of the results.
On the one hand, our paper show that after obtaining only one failure, anyone can find
other ones “for free” and thus break the security. On the other hand, our paper greatly
improves the state of the art concerning the multitarget attack model. Our student paper
“(One) failure is not an option” has been accepted to Eurocrypt 20201.
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This chapter highlights the implications of the non-perfect correctness feature that is
inherent in lattice-based key exchanges. It seems that it can lead to vulnerabilities in
various settings. Even though there is no total break of any of the NIST candidates,
we do not know for sure that a nonzero failure probability can be harmless in any
use case.

4.1 Introduction and motivations

4.1.1 Key Encapsulation Mechanisms (KEM)

As opposed to signature schemes, this chapter will study the security of lattice-based Key
Encapsulation Mechanisms (or KEMs). Informally, with a KEM, one can generate an
encapsulated key and send it to a public channel. The receiver, that knows a private key,
is able to recover the key from its encapsulated version.

Definition 15. A Key Encapsulation Mechanism KEM is a triple of algorithms containing

1. a probabilitic key generation algorithm, denoted KeyGen, that returns a public/private
key pair (pk, sk);

1We refer to our animated Eurocrypt video https://www.youtube.com/watch?v=5zg2N82LpRs for a presenta-
tion of the geometric idea of the paper.

https://www.youtube.com/watch?v=5zg2N82LpRs
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2. a probabilitic encapsulation algorithm, denoted Encaps, that takes pk as input and
generates an encapsulated key ctkey and a key mkey;

3. a deterministic decapsulation algorithm, denoted Decaps that takes as input sk and
ctkey and returns mkey or ⊥, denoting failure.

A KEM is correct if for
(
sk, pk

)
← KEM.KeyGen(1λ),

P [KEM.Decaps(sk, ctkey) 6= mkey : (ctkey,mkey)← KEM.Encaps(pk)]

is negligible in the security parameter. We say that it is perfectly correct if the latter
probability is zero for all

(
sk, pk

)
← KEM.KeyGen(1λ).

Key Encapsulation Mechanisms can be built from a better known type of mechanism,
namely Public Key Encryption mechanisms (PKE). The difference between a PKE and
a KEM is slight: in a nutshell, instead of outputting a key mkey, a chosen message m
is given as input. Thus, the encapsulated key ctkey becomes a ciphertext ct. When
considering KEMs, we will sometimes abusively use the term “message” for the common
key mkey and “ciphertext” for the encapsulated key ctkey. The NIST call specifically asks
for quantum-resistant KEM proposals.

4.1.2 Security properties

We can define several security properties for key encapsulation mechanisms that are in-
herited from the security properties of the public key encryptions.

Security Model 4 (IND-CPA security [KL14]). A KEM = (KeyGen,Encaps,Decaps)
is IND-CPA, or “passively secure” if any probabilistic polynomial time adversary A has
a negligible advantage of winning in the IND-CPAA,KEM(1λ) game presented in Security
Game 4.

Adversary Challenger
KEM=(KeyGen,Encaps,Decaps)←−−−−−−−−−−−−−−−−−−−

pk←−−
(
sk, pk

)
← KeyGen(1λ)

(ctkey,mkey)← Encaps(pk)

b
$←− {0, 1}

m′key = mkey if b = 0, m′key
$←− {0, 1}n otherwise

pk,ctkey,m′key←−−−−−−−−
b′−−→ b′ = b

Security Game 4: IND-CPA game for KEM.

IND-CPA is the basic security requirement for the KEM designers. We now introduce
a stronger security property where a decapsulation oracle is provided. We assume that
the maximum number of ciphertexts that can be queried to it for each key pair is

Q = 2K ;

where in practice, K = 64 is often considered [NIS16, Section 4.A.2]. In this chapter, we
keep the maximum number of queries as a parameter with no specific value in order to
provide an adaptable granularity in the security assessment. Indeed, to mount an attack,
the adversary trades off between the total number of queries and the work.
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Security Model 5 (IND-CCA security [KL14]). A KEM = (KeyGen,Encaps,Decaps)
is IND-CCA, or “actively secure”, if any probabilistic polynomial time adversary A has
a negligible probability of winning in the IND-CCAA,K(1λ) game presented in Security
Game 5.

Adversary Challenger
KEM=(KeyGen,Enc,Dec)←−−−−−−−−−−−−−−− (

sk, pk
)
← KeyGen(1λ)

(ctkey,mkey)← Encaps(pk)

b
$←− {0, 1}

m′key = mkey if b = 0, m′key
$←− {0, 1}n otherwise

pk,ctkey,m′key←−−−−−−−−

2K queries



ct
(1)
key 6=ctkey−−−−−−−→

u(1) := Decaps(sk, ct
(1)
key)

u(1)←−−
...

ct
(2K )
key 6=ctkey−−−−−−−−→

u(2K) := Decaps(sk, ct
(2K)
key )

u(2
K )

←−−−−
distinguishing

{ b′−−→ b′ = b

Security Game 5: IND-CCA game for KEMs.

Both properties originally existed for public-key encryption schemes (PKE). Lyuba-
shevsky, Peikert and Regev [LPR10] introduced a simple protocol to build passively se-
cure encryption from the Ring-LWE problem, inspired from the Diffie-Hellman key ex-
change [DH76] and ElGamal public-key encryption [ElG85]. Others were later introduced
in [Pei14; Din12]. Naturally, the protocol can also be adapted to work based on LWE
with no ring structure (Hard Problem 3) and on Mod-LWE (Hard Problem 5). In order
to obtain active security, designers usually use an off-the-shelf CCA compiler, usually a
(post-quantum) variant [Den03; HHK17; TU16; SXY17; Jia+17] of the Fujisaki-Okamoto
transform [FO13] (FO). These come with proofs of security in the (quantum) random or-
acle model, with explicit bounds about the loss of security caused by the transformation.

4.1.3 Attack model

One commonly occurring characteristic of lattice-based KEM schemes is the lack of perfect
correctness. In other words, for

(
sk, pk

)
← KEM.KeyGen(1λ),

P [KEM.Decaps(sk, ctkey) = mkey : (ctkey,mkey)← KEM.Encaps(pk)] < 1.

This means that sometimes, ciphertexts generated honestly using a valid public key
may lead to decapsulation failures under the corresponding private key. Throughout this
thesis, we’ll refer to such events as “key mismatches”, “failures”, “decryption failures” or
“decapsulation failures”.
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Misuse on IND-CPA schemes. While in practice, schemes are parametrized in such a
way that decryption failures do not undermine overall performance, these can be lever-
aged as a vehicle for key recovery attacks against the key pair used to generate them.
Jaulmes and Joux [JJ00] described such attacks against NTRU, after which it was ex-
tended in [How+03] and [GN07]. A similar attack on Ring-LWE based schemes was later
presented by Fluhrer [Flu16] and extended by Băetu et al. [Băe+19]. It is also shown in
[Ber+17a] that the private key of the round 1 NIST candidate HILA5 can be recovered
following Fluhrer’s approach. The aforementioned attacks all use specially crafted, dis-
honestly derived, ciphertexts that increase the probability of failure. Section 4.2 presents
an attack that fits in this framework.

Leveraging the decryption failures is only possible if the scheme is not IND-CCA (see
Security Model 4) and the private key is kept for several queries. More precisely, these
attacks are in amisuse situation where the same key pair (sk, pk) is reused for multiple key
establishments by the private key owner in an IND-CPA implementation. While slightly
less powerful than a chosen ciphertext attack where a decryption oracle is available, attacks
leveraging decryption failures still belong to the active attack category. Admittedly, it is
not surprising that an active attack can be successful on a passively secure scheme because
these attacks are outside of their security models. The study in Section 4.2 is motivated
by the belief that an in-depth understanding of the security offered by candidate KEM
mechanisms submitted to the NIST call for proposals in key reuse situations is a useful
part of their cryptanalytic evaluation, even for those candidates for which key reuse is
considered as a misuse of the mechanism in an IND-CPA implementation. Having an
accurate estimate of the number of decryption queries and the complexity of the private
key recovery really helps to assess the possible danger2.

Generic attack techniques for IND-CCA schemes. The aforementioned attacks can
be prevented with a transformation that achieves chosen ciphertext security (see Security
Model 5). It stops the adversary from being able to freely maleate ciphertexts. Indeed, the
randomness used during the encapsulation is generated by submitting the message mkey

(and sometimes also the public key) to a random oracle. As this procedure is repeatable
with knowledge of the message mkey, one can check the validity of ciphertexts ctkey during
decapsulation. Hence, an adversary who wants to generate custom ephemeral ciphertexts
ctkey would need to know a preimage of the appropriate random coins for the random
oracle.

Therefore, their only option is to mount a Grover’s search by randomly generating ci-
phertexts corresponding to different messages (see Section 1.1.2 for details on the quantum
Grover’s algorithm). The authors of the NIST Post-Quantum candidate Kyber [Sch+19]
noted that it is possible to select ciphertexts with higher failure probability than average.
D’Anvers et al. [DVV18] extended this idea to an attack called “failure boosting”, where
ciphertexts ctkey with higher failure probability are generated in a first offline phase.
Submitting only the selected “weak” ciphertexts speeds the search for decryption fail-
ures. [DVV18] provides an analysis of the effectiveness of the attack on several NIST
candidates. At the same time, Guo et al. [GJN19] described a similar generic adaptive
attack that they applied against the IND-CCA secure ss-ntru-pke variant of NTRUEn-
crypt [Zha+19], which used an adaptive search for decryption failures exploiting infor-

2A similar need to investigate the resilience of candidate algorithms in misuse situations was encountered
in the framework of the CAESAR competition aimed at selecting authenticated encryption primitives. In that
competition, much analysis was conducted on the resistance of candidates to key recovery attacks in misuse cases
such as nonce or decryption misuse (i.e. allowing nonce re-use in the leakage of the decryption failure oracles),
and this provided quite useful information for the algorithms selection process.
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mation from previously collected ciphertexts. The latter two papers were merged into
[DAn+19a]. Section 4.3 presents an extension of the latter technique that bootstraps
the search for failures based on [DRV20]. Basically, our paper shows that, under certain
hypothesis, even one failed decryption per private key can result in significantly easier
further decryption failures and thus key recovery attacks. Our paper also tackles the
multitarget setting where an attacker can aim at many key pairs in order to break at least
one of them.

This chapter unites two works [Bau+19] and [DRV20] that were chronologically
separated. The first work, presented in Section 4.2, was initiated in 2017 while the
second one, presented in Section 4.3, started in 2019 after the introduction of the
stronger generic attacks in [DAn+19a]. In this thesis, we improve (and simplify) the
results of [Bau+19] in Section 4.2 by combining them with the results of Chapter 5.

4.1.4 Key mismatch oracle

A decryption failure attack is a key recovery attack that leverages the lack of perfect cor-
rectness of the target scheme. In this section, we detail the access to the decryption failure
information. The private key owner will be referred to as Alice. Note that Alice is also the
party who initiates the two-round key establishment by sending her public key. Alice per-
forms a key generation

(
sk, pk

)
← KEM.KeyGen(1λ) and she keeps her key pair for many

exchanges. Alice’s private key sk is the target of the attack. A client, denoted Bob, can
query Alice for making a key exchange using (ctkey,mkey)← KEM.Encaps(pk) and sending
ctkey to Alice. Alice thus derives the shared key with m′key := KEM.Decaps(sk, ctkey). Bob
derives his symmetric keys based on the common shared key mkey. If Alice is later able
to decrypt (and respond) based on m′key, her version of mkey, it means that no decryption
failure happened.

Moreover, in the opposite case, if m′key 6= mkey; the shared symmetric keys are different
between Alice and Bob, Alice will not be able to respond, and Bob will notice a decryption
failure. We introduce an oracle to capture this bit of information (success or failure of
the key exchange). We use the generic name of key mismatch oracle.

Definition 16 (key mismatch oracle). Let KEM = (KeyGen,Encaps,Decaps) with a mes-
sage space M and a ciphertext space Ct. For all key pairs

(
sk, pk

)
← KeyGen(1λ), a key

mismatch oracle is an oracle that outputs a bit corresponding to the success or failure of
the decapsulation:

∀ctkey ∈ Ct,mkey ∈M Osk(ctkey,mkey) =

{
1 if Decaps(sk, ctkey) = mkey

0 otherwise.

This definition can be identically translated to a PKE.

4.2 An example of decryption failure attack on an IND-CPA
scheme

With its strong performance and its RLWE based security, NewHope is a high profile
candidate of the NIST competition. Studying its security under several attacker models
seems relevant.
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Algorithm 29 — Key Encoding

Data: ν ∈ {0, 1}256

1 D := 0
2 for i := 0 to 255 do
3 Di := νi.4s
4 Di+256 := νi.4s
5 Di+512 := νi.4s
6 Di+768 := νi.4s

7 end
8 return D

Algorithm 30 — Key Decoding

Data: D ∈ Rq
1 ν := 0
2 for i := 0 to 255 do

3 t :=
∑3

j=0

∣∣∣∣ Di+256·j − 4s

∣∣∣∣
4 if t < q then νi := 1 else

νi := 0

5 end
6 return ν

4.2.1 NewHope KEM

Parameters Let q be a prime number. Depending on the context, the elements in Zq
can be equivalently represented as integers in {0, . . . , q − 1} or in {−

⌊
q−1

2

⌋
, . . . ,

⌊
q−1

2

⌋
}.

The notation Rq refers to the polynomial ring Zq[x]/(xn + 1) with n a power of 2. If P
belongs to Rq, it is a polynomial of degree at most (n− 1) with coefficients P(i) belonging
to the set Zq. Such elements can also be represented as vectors whose i-th coordinate
is the coefficient related to xi. Let us define ψκ the centered binomial distribution of
parameter κ: one may sample from ψκ for integer κ > 0 by computing

∑κ
i=1 bi− b′i, where

the bi,b′i ∈ {0, 1} are uniform independent bits. Its standard deviation is
√
κ/2.

Property 1. The elements generated according to a centered binomial distribution ψk of
parameter κ are in the interval [−κ, κ]. In NewHope, κ = 8; thus, the coefficients of the
small elements are in [−8, 8].

By convention, for a ∈ Z, we define Sign(a) as positive (i.e "+1") when a ≥ 0 and as
negative (i.e "−1") when a < 0. If x ∈ R, the integer bxe is defined as bx+ 1

2
c ∈ Z.

NewHope [Pöp+19] is a Ring-LWE based key establishment scheme (see Hard Prob-
lem 5) derived from NewHope-Usenix[Alk+16b], that is simplified because it does not
use the reconciliation anymore. In this section, we describe NewHope, where we omit some
details (e.g. the so-called NTT transform or the encoding of the messages) to simplify
the presentation. This does not imply any loss of generality for our attack. To ease the
understanding, we will describe the CPA-KEM version of NewHope in this section as the
key mismatch oracle can be easily derived.

The polynomial ring Rq used in NewHope has the following parameters: (n, q) =
(1024, 12289) or (n, q) = (512, 12289). The coefficients of the small elements drawn from
Rq follow a centered binomial distribution ψnκ with κ = 8. The standard deviation is

a =
√

8
2

= 2. We decided to focus on explaining the attack for n = 1024. Indeed, for
n = 512 there is twice less redundancy, and the attack is easier. Thus, we fix n = 1024.
These elements will be seen as vectors of size n with integer components. We denote
s = 1536 which is such that q = 8s + 1. The aim of the system is to share a key of size
n
4

= 256 bits.
A public value A ∈ Rq is derived from a published seed. Four specific functions

are introduced: Encode, Decode, Compress and Decompress. They are described in Algo-
rithms 29 to 32. Note that we partly deviate from the notation of the original specification
of these algorithms, since we use the parameter s (the original description is in [Alk+16a]).
The following paragraphs describe these functions.
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Algorithm 31 — Compression

Data: C ∈ Rq
1 for i := 0 to n− 1 do
2 c[i] :=

⌈
8.C[i]
q

⌋
mod 8

3 end
4 return c

Algorithm 32 — Decompression

Data: c ∈ [0, 8[n

1 for i := 0 to n− 1 do
2 C’[i] :=

⌈
q.c[i]

8

⌋
3 end
4 return C’

Compress and Decompress.

The function Compress (Algorithm 31) takes as input a vector C in Rq and applies on
each of its components a modulus switching to obtain an element c in Z8[x]/(xn + 1).
Compressing a vector C essentially means keeping the 3 most significant bits of each
coefficient. The function Decompress (Algorithm 32) shifts the bits of the input c ∈ [0, 8[n

to place them among the most significant bits. These functions are not the inverse of each
other.

Encode and Decode.

The Encode function takes a n/4-bit input ν with n/4 = 256 and creates an element
D ∈ Rq which stores 4 times the element ν. The redundancy is used by the function
Decode to recover ν with a noisy D.

Let us now describe this scheme represented in Fig. 4.2.

1. Setup: Alice generates S and E with ψ8. She sends her public key pk := (seed,B :=
AS + E) to Bob.

2. Key Encapsulation: From a random coin acting as a seed3, Bob derives 3 small
secrets S’, E’ and E” in Rq and a random element νB of size n/4 which will be used
to construct the encapsulated key. He computes U := AS’+E’. He encodes νB into
a redundant element D of Rq using the algorithm Encode (Algorithm 29). Bob uses
Compress (Algorithm 31) to compress C := BS’+E” +D into an element with very
small coefficients as described above. He sends ctkey := (Compress(C),U) to Alice.
He deduces the shared secret as mkey := hash(νB).

3. Key Decapsulation: Alice decompresses ctkey with Decompress intoC’(Algorithm 32).
She computes C’−US which is close to

C−US = ES’ + E” + D− E’S. (4.1)

Since ES’ + E” − E’S is small, she recovers an estimated value νA of νB with a
decoding algorithm called Decode( Algorithm 30). From νA, she can deduce m′key :=
hash(νA). Alice and Bob get the same key mkey = m′key with high probability.

Remark 15. This Section presents NewHope-CPA-KEM, which is the target of this Sec-
tion. Note that a PKE called NewHope-CPA-PKE has also been introduced in [Pöp+19].

3This seed is not necessary in the IND-CPA version but it is used in the IND-CCA transformed version where
Alice re-encapsulates for checking the validity of the ciphertext.
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Parameters: q = 12289, n = 1024, Error Distribution: ψn8
Alice Bob

1. Key Generation

seed
$← {0, ..., 255}32

A := Parse(hash(seed))

S,E← ψn8 coin
$← {0, ..., 255}32

B := AS + E 2. Encapsulation Enc(pk, coin)
sk := S ν ′B

coin←−− {0, 1}n/4

S’,E’,E” coin←−− ψn8
pk := (seed,B)
−−−−−−−−−−−−−→ A := Parse(hash(seed))

U := AS′ + E′

νB := hash(ν ′B)
D := Encode(νB)
C := BS’ + E” + D

3. Decapsulation Dec(ctkey, sk)
ctkey := (c,U)
←−−−−−−−−−−−−− c := Compress(C)

C’ := Decompress(c)
D’ := C’−US mkey := hash(νB)
νA := Decode(D’)
m′key := hash(νA)

Figure 4.2: Simplified NewHope

4.2.2 Key mismatch oracle attack

We assume that NewHope is implemented in the misuse case described in Section 4.1.3.
The use of the key mismatch oracle obviously leaks information on Alice’s private key S
as it is only passively secure. But the task of recovering S entirely seems much more
complicated. Indeed as defined in Definition 16, the only information provided by the key
mismatch oracle is a bit representing the success or mismatch of the key agreement. The
difficulty for an attacker, called Eve, is to choose appropriate generated (ctkey,mkey) pairs
dishonestly to get useful information on small parts of S.

In a first step, Eve simplifies her part of the protocol in such a way that the knowledge
of the key mismatch oracle output bit Osk(ctkey,mkey) can be easily exploited. To do so,
she can fix, for instance, νE such that:

νE := (1, 0, . . . , 0) and thus mkey := hash(νE). (4.2)

The value of νE = (1, 0, . . . , 0) has not been arbitrarily chosen; as we will see later, the
0 in positions 1 to 255 will help the success rate of the attack. From now on, the value
of mkey is fixed according to Eq. (4.2). Moreover, if we replace ctkey by its definition:
ctkey = (c,U), the oracle of Definition 16 can be reformulated using the oracle O1 defined
below.

Definition 17. Let us introduce oracle O1 such that O1
sk(c,U) := Osk

(
(c,U),mkey

)
With this new definition, Eve can adapt the values of c and U to leverage Oracle O1 and
retrieve information on S. In other words, since mkey is fixed, the inputs (c,U) are the
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degrees of liberty for finding S.

From Alice’s side, the link between νA and S passes through the functions Decode, De-
compress (Algorithms 30 and 32) and the element D’: νA = Decode(D’) = Decode(C′ −
US) = Decode(Decompress(c)−US). Thus, from the definition of the Decode algorithm,
the value of νA[i], the i-th component of νA, is deduced from the following sign computa-
tion:

Sign

( 3∑
j=0

∣∣∣∣ (Decompress(c)−U · S)[i+ 256 · j]− 4s

∣∣∣∣ −q ) (4.3)

We recall here that 0 is positive by convention.

The problem for Eve is that she is unable to know the number of errors that will
occur at the end of the decryption computations and the positions in which they appear.
Indeed, the key mismatch oracle only gives one bit of information corresponding either to
mismatch or success. If there is a mismatch, Eve knows that at least one bit of νA is
different from νE, but she can not determine which one (or which ones). Therefore, in
order to mount an effective attack, Eve needs to restrict all these different possibilities by
making the following hypothesis:

Assumption 2. For i from 1 to 255, the component νA[i] is equal to 0.

If Assumption 2 is verified, any failure in the communication comes from a single error
in νA located in the very first component νA[0]. Indeed, in that case, the success of the
exchange only depends on the first computed value νA[0]. In particular, if we assume this
hypothesis, the oracle O2 depends only on the νA[0], and we obtain the following result.

Lemma 17. Under Assumption 2, the initial oracle O1 can be rewritten as

O1
sk(c,U) = O1

S(c,U) = Sign

( j=3∑
j=0

∣∣∣∣ (Decompress(c)−US)[0 + 256 · j]− 4s

∣∣∣∣ −q )

For mounting her attack, Eve has to find pairs (c,U) that

1. target the smallest number of bits of S
2. verify Assumption 2
For item 1, the Decode algorithm takes coefficients of S four by four, and thus the size

of the smallest target is a quadruplet of coefficients of S. Actually, for a given quadruplet
of integers ` = (`0, `1, `2, `3) and a target index k (i.e. an index corresponding to the
components of S that Eve wants to retrieve), by taking

U =
s

2
x−k and c =

3∑
j=0

(
(`j + 4) mod 8

)
· x256·j (4.4)

one can prove (see in Proposition 5) that Eve targets the quadruplet
(
S[k+ 256 · j]

)
j=0···3.

Indeed, the element x−k will ”rotate” S to target
(
S[k + 256 · j]/2

)
j=0···3 and c is induced

by the quadruplet ` = (`0, `1, `2, `3) that can vary.
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About item 2, with the choice of Eq. (4.4), Assumption 2 is not validated if there exist
k ∈ [0, 255] such that

Sign

( j=3∑
j=0

∣∣∣∣ 4 + S[k + 256 · j]/2
∣∣∣∣ −8

)
< 0 (4.5)

A probability analysis can be done by listing of all quadruplets in [−k, k] that verify
Eq. (4.5). Only a few unlikely quadruplet (e.g. [-8, -8, -8, -8]) verify it. For the consid-
ered set of parameters, Assumption 2 is correct for 98% of the private keys.

We can now introduce O2, a reformulation of O1 depending on target index k and the
quadruplet ` (see Eq. (4.4)):

O2
S(k, `) := O1

S

(
s

2
x−k,

3∑
j=0

(
(`j + 4) mod 8

)
· x256·j

)
Proposition 5. Final oracle. Let us assume that Assumption 2 is verified. Let k be
a target index (k ∈ [0, 255]). For a given integer quadruplet ` in [−4, 3]4, the (c,U) is
explicit in Eq. (4.4) is such that

O2
S(k, `) = Sign

( ∑j=3
j=0

∣∣∣∣ `j − S[k+256·j]
2

+
1+Sign(`j)

2s

∣∣∣∣ −8− 1
s

)
≈
s�0

Sign

( ∑j=3
j=0

∣∣∣∣ `j − S[k+256·j]
2

∣∣∣∣ −8

)
The quadruplet ` is restricted to [−4, 3]4 so that `j + 4 ∈ [0, 7]. Indeed, by definition,

the Decompress function (Algorithm 32) takes its inputs in Z8. In the next section, we
explain how to effectively use the form O2 of the key mismatch oracle to extract the secret
S.

Proof: Let k be an index defined in [0, 255] and let us fix ` = (`0, `1, `2, `3) ∈ [−4, 3]4. We
show how the explicit values for (c,U) given in Equation 4.4 provide the expected
result.
Let us compute the values Decompress(c)[256 · j] :

Decompress(c)[256 · j] =

⌈
(`j+4 mod 8)×q

8

⌋
=

⌈
(`j + 4 mod 8)s+

(`j+4 mod 8)

8

⌋
= (`j + 4 mod 8)s+

⌈
(`j+4 mod 8)

8

⌋
=

{
(`j + 4 mod 8)s if `j < 0
(`j + 4 mod 8)s+ 1 if `j ≥ 0

Under Assumption 2 the equation given by Lemma 17 thus becomes:

Sign

( j=3∑
j=0

∣∣∣∣ (`j + 4 mod 8).s− sS[k + nj]

2
− 4s+

1 + Sign(`j)

2

∣∣∣∣ −(8s+ 1)

)
Since ` belong in [−4, 3]4, we can remove the modulo and divide by s to obtain
the final oracle.
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4.2.3 Key recovery

With Proposition 5, one can see that the secret S is directly in jeopardy. In fact,
the output of the oracle greatly depends on the coefficients of the secret, and it is
possible to manipulate them separately by groups of four. Several iteration methods
on ` can be performed to recover the coefficients of S, and the real challenge is to
minimize the number of queries to the key mismatch oracle.

In [Bau+19], we present a technique that consists in studying the variation of a func-
tion f`1,`2,`3(`0) = O2

S(k, (`0, `1, `2, `3)) for fixed k, `1, `2, `3 (where the three last integers
are fixed randomly and k ∈ [0, 255]). The minimum of this function corresponds to
`0 = S[k]/2. In our paper [Bau+19], we considered b·c by mistake instead of d·c in the
Decompress function. Consequently, the term 1+Sign(`j)

2s
was not taken into account. It

led to an underestimation of the number of queries necessary to recover the full secret,
originally estimated at around 18, 500 queries. Indeed, the term 1+Sign(`j)

2s
actually leads

to some wrong candidates for finding the minimum of the function f`1,`2,`3 which compli-
cates the attack. In [QCD19], the authors claimed that the attack actually needs more
redundancy in the search for the minimum and thus that more queries are needed for a
full key recovery. In this thesis, in view of the results of Chapter 5, we take a different
path that does not increase the number of queries previously estimated. The technique
to query the oracle remains exactly the same, but the obtained data is analyzed through
the prism of Chapter 5. More precisely, in Section 5.6.2, we will show that there exists an
attack 80 bits below the claimed security with the same number of queries as estimated
in [Bau+19], namely 18, 500 average queries.

Experiment This work is still supported by the proof of concept coded in Magma CAS in
2017 [BCP97]4. We ran 1000 experiments and we were able to run the attack on 95% of
the private keys (because of Assumption 2). The latter attack outputs a candidate for
the private key within 17, 000 queries on average. This candidate is close to the secret
and can be used for decreasing lattice-reduction attacks as shown in Section 5.6.2.

4.3 (One) failure is not an option: an improved attack on a
CCA scheme

Let us now introduce [DRV20]. Contrary to the decryption failure attack on the passively
secure NewHope KEM presented in Section 4.2, a generic attack cannot use specially
crafted ciphertexts (as in Eq. (4.4)).

The target: a generic scheme.

4The Magma code can be found at https://www.di.ens.fr/~mrossi/

https://www.di.ens.fr/~mrossi/
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Algorithm 33 — PKE.KeyGen

Result: (sk, pk)

1 A
$←− Rl×lq

2 s, e ∈ Rlq ← Dl
Z,σs ×D

l
Z,σe

3 b := sAT + e
4 return (sk := s, pk := (b,A))

Algorithm 34 — PKE.Enc

Data: pk = (b,A),m ∈M; coin
Result: a ciphertext ct

1 s′, e′ ∈ Rlq
coin←−− Dl

Z,σs ×D
l
Z,σe

2 e′′ ∈ Rq
coin←−− DZ,σe

3 b′ := s′A + e′

4 v′ := bs′T + e′′ + bq/2c ·m
5 return ct := (v′,b′)

Algorithm 35 — PKE.Dec

Data: sk = s, ct = (v′,b′)
Result: A message m′

6
1 m′ := bb2/qc(v′ − b′sT )e
2 return m′

l n q σs σe Failure probability Classical Quantum

Chosen parameters 3 256 8192 2.00 2.00 2−119 2195 2177

Saber 3 256 8192 1.41 2.29 2−136 2203 2185

Kyber 768 3 256 3329 1.00 1.00/1.38† 2−164 2181 2164

† Standard deviation of the error term in the public key and ciphertext respectively

Table 4.1: Comparison between our target scheme and Saber and Kyber 768, as parametrized in Round
2 of the NIST PQC standardization process. The classical (resp. quantum) security is evaluated using
the Core-SVP [Alk+16b] methodology, assuming the cost of BKZ with block size β to be 20.292β (resp.
20.265β).

For the need of the study, we had to consider a generic scheme based on Mod-LWE
(see Hard Problem 5) with no rounding and no error-correcting code. Although
no such implementation exists without these features, we take inspiration from two
NIST candidates Saber [DAn+19b] and Crystals-Kyber [Sch+19] to design a simpler
scheme with similar specifications. The parameters are chosen to provide similar
resistance to known quantum and classical attacks while being simpler to analyse
due to the lack of rounding and error-correcting code.

Let q, n, l, σs, σz be public parameters, and we use the polynomial ringRq = Zq[x]/(xn+
1) as defined in Eq. (1.3). We describe a general passively secure (Security Model 4) pub-
lic key encryption scheme derived from [LPR10] based on Mod-LWE (Hard Problem 5) in
Algorithms 33 to 35. In the latter, a random coin ∈ {0, 1}256 acts as a seed for drawing
from Gaussian distributions. These Gaussian distributions follow Section 2.2.2 notations.
The message space is defined asM := {polynomials in Rq with coefficients in {0, 1}}.

We show the corresponding IND-CCA secure (see Security Model 5) KEM Decapsu-
lation and Encapsulation in Algorithms 36 and 37 using a CCA transformation derived
from the Fujisaki-Okamoto transform [FO13]. hash0 and hash1 are hash functions. In the
KEM, the ciphertext space is Ct = (Rl

q, Rq) and the space of the common key mkey, called
as “message space” isM = {0, 1}256.

We selected a set of parameters to implement Algorithms 33 to 37. They ensure a
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Algorithm 36 — KEM.Encaps

Data: pk
Result: a ciphertext ctkey, a

common key mkey

1 m
$←− {0, 1}256

2 (mkey; coin) := hash0(pk,m)
3 ctkey := PKE.Enc(pk,m, coin)
4 mkey := hash1(mkey, coin)
5 return (ctkey,mkey)

Algorithm 37 — KEM.Decaps

Data: sk, ctkey

Result: a common key mkey

1 m′ := PKE.Dec(sk, ctkey)
2 (mkey

′, coin′) := hash0(pk,m′)
3 ct′key := PKE.Enc(pk,m′; coin′)

4 if ctkey = ct′key then
5 return mkey := hash1(mkey

′, coin′)
6 else
7 return mkey :=⊥ // Could return

a pseudo-random string to

implicitly reject

similar failure probability and security to Kyber and Saber. These parameters can be
found in Table 4.1. The security estimates are generated using the Core-SVP methodol-
ogy [Alk+16b] and the LWE estimator5 [Alb+18], while the failure probability of Kyber
and Saber is given as reported in their respective NIST round 2 documentations [Sch+19;
DAn+19b]. The failure probability of our chosen parameters is determined by calculating
the variance of the error term and assuming the distribution to be Gaussian.

Remark 16. We do not consider the case of “plain” LWE based schemes like FrodoKEM [Nae+19]
or Round5 [Baa+19]. Nonetheless, we believe that the attack methodology could translate
to the LWE setting as the failure condition and the failure probabilities are similar to the
investigated case.

Remark 17. Several lattice-based candidates submitted to the NIST post-quantum cryp-
tography standardization process use variants of the protocol by Lyubashevsky et al. [LPR10].
Deviating from the original design, most candidates perform an additional rounding of the
ciphertext v′, in order to reduce bandwidth. The designers of New Hope [Pöp+19] and
LAC [Lu+19] choose to work directly over rings (or equivalently, they choose a module
of rank l = 1) and add error correction on the encapsulated message, while the designers
of Kyber [Sch+19] and Saber [DAn+19b] choose a module of rank l > 1 and perform an
additional rounding of b′ (and b in case of Saber). We here focus on the basic version
given in Algorithms 33 to 37 and leave the study of the effect of compression for further
work.

Introduction of the failure boosting. The “failure boosting” is a technique introduced
in [DAn+19a] to increase the failure rate of (Ring/Mod)-LWE/LWR based schemes by
honestly generating ciphertexts and only querying weak ones, i.e. those that have a
failure probability above a certain threshold ft > 0. This technique is especially useful
in combination with Grover’s algorithm, in which case the search for weak ciphertexts
can be sped up quadratically (see Section 1.1.2). The attack assumes that a key pair has
been drawn by the target (sk, pk)← KEM.Keygen(1λ) and the attacker knows pk, and she
wants to find sk. The failure boosting consists of two phases: a precomputation phase,
and a phase where the decryption oracle is queried.

Precomputation phase. The adversary does an offline search for weak ciphertexts. For
finding one weak ciphertext, the adversary has to proceed as follows.

5The estimator can be found at https://bitbucket.org/malb/lwe-estimator/.

https://bitbucket.org/malb/lwe-estimator/
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1. Generate an encapsulation pair with (ctkey,mkey)← KEM.Encaps(pk).

2. If P fail
pk (ctkey,mkey) > ft, keep ctkey in a weak ciphertext list, otherwise go to Step 1.

In Step 2, P fail
pk (.) is defined as the failure probability given a public key pk, a certain

ciphertext ctkey and common shared key mkey. It is computed as follows.

P fail
pk (ctkey,mkey) :=

∑
sk

P [Osk(ctkey,mkey) = 0] · P [(sk, pk)← KEM.Keygen(1λ)]. (4.6)

Let Denc
pk be the probability distribution of the output of KEM.Encaps(pk). In other

words, for ctkey ∈ Ct andmkey ∈M,Denc
pk (ctkey,mkey) := P [(ctkey,mkey)← KEM.Encaps(pk)].

The probability of finding a weak ciphertext can be expressed as follows:

αft :=
∑

 (ctkey,mkey) ∈ (Ct,M) :
P fail

pk (ctkey,mkey) > ft


Denc

pk (ctkey,mkey). (4.7)

An adversary thus needs to perform on average α−1
ft

work to obtain one weak ciphertext,

or
√
α−1
ft

assuming Grover’s search achieves a full speed-up.
Decryption oracle query phase. After the precomputation phase, an adversary has a

probability βft that a weak ciphertext results in a failure, where βft can be calculated as
a weighted average of the failure probabilities of weak ciphertexts:

βft :=

∑
(ctkey,mkey):Pfail

pk (ctkey,mkey)>ft
Denc

pk (ctkey,mkey) · P fail
pk (ctkey,mkey)∑

(ctkey,mkey):Pfail
pk (ctkey,mkey)>ft

Denc
pk (ctkey,mkey)

. (4.8)

Thus to obtain one decryption failure with probability 1 − e−1, an adversary needs
to perform approximately β−1

ft
queries and therefore α−1

ft
β−1
ft

work (or
√
α−1
ft
β−1
ft

using a
quantum computer).

Application to the generic lattice-based scheme. Throughout this chapter, we use the
extended definition for the norms as presented in Section 1.2.4. Following the execution
of the protocol in Algorithms 36 and 37, for a private key6 composed of (s, e) and a
ciphertext ctkey and a common key mkey both generated from small elements s′, e′ and
e′′, we get by construction

O(s,e)(ctkey,mkey) = 0 ⇐⇒ ‖es′T − se′T + e′′‖∞ > q/4 (4.9)

where we recall that O is defined in Definition 16. Thus,

P fail
pk (ctkey,mkey) =

∑
(s,e)

P
[
‖es′T − se′T + e′′‖∞ > q/4

]
· P [(s, e, pk)← KEM.Keygen(1λ)].

(4.10)
The analysis of [DAn+19a] provides several assessments of αft and βft with several

schemes. The better an adversary can predict P fail
pk (ct,K), the more efficient failure boost-

ing will be. With no information about the secret, except its distribution, an adversary is
6Here, for the ease of the writing, we consider that e is also part of the private key.
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Figure 4.3: Simplified diagram to represent the ciphertexts (in blue). The weak ones are defined as the
ciphertexts with a probability higher than ft.

bound to standard failure boosting as presented above. For a graphical intuition, a two-
dimensional toy example is depicted in Fig. 4.3, where the red arrow abusively represents
the secret as a vector. Ciphertexts that lie in the dashed area will provoke a failure as
the inner product with the secret vector will exceed the threshold qt. The blue circle is a
circle of ciphertexts that have a certain failure probability ft as estimated by an adversary
who does not know the secret. During the failure boosting procedure, we will generate
random ciphertexts and only select the ciphertexts with a higher failure probability than
ft, i.e. that are outside the blue circle. One can graphically see in Fig. 4.3 that these
ciphertexts will have a higher failure probability and a higher norm. Note that Fig. 4.3
is an oversimplified 2-dimension example that does not take into account the polynomial
structure and the high dimensionality of the space.

4.3.1 Definitions on failure events

In this section, we rewrite the access to the bit of information given by the key mismatch
oracle in an inequality in the scalar product. This expression in Eq. (4.9) can be simplified
by defining the vector S as the vertical concatenation of −s and e, the vector C as the
concatenation of e′ and s′, and by replacing e′′ with G, as shown below:

S :=

[
−s
e

]
C :=

[
e′

s′

]
G := e′′. (4.11)

For a more visual explanation, until the end of this chapter, S and C are written as
column vectors. Here, S contains the secret elements of the private key and C and G
consist of elements used to construct the ciphertext and common key7. By using these
vectors, the error expression can be rewritten: a failure occurs when ‖STC + G‖∞ > q/4.

The standard deviation of the terms in the polynomial STC equals
√

2nσsσe, versus a
standard deviation of σe for the terms of G. Therefore, the influence of G on the failure
rate is limited, i.e. ‖STC + G‖∞ ≈ ‖STC‖∞. Let qt := q/4 denote the failure threshold,

7When talking about ciphertexts, we will sometimes refer to their underlying elements C and G.
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we will consider that

OS(ctkey,mkey) = 0 ⇐⇒ ‖STC‖∞ > qt. (4.12)

However, with some extra work, one could have rewritten a more accurate Eq. (4.12) as
‖STC‖∞ > qt − ‖G‖∞, and instead of considering qt to be fixed, taken the distribution
of qt − ‖G‖∞ as shown in [DAn+19a]. For the ease of the implementation and due to
the low influence of G on the failure rate, we prefer to stick with Eq. (4.12). We now
introduce a more handy way of writing the failure condition (Eq. (4.12)) by only using
vectors in Zq.
Definition 18 (Coefficient vector). For S ∈ Rl×1

q , we denote by S ∈ Zln×1
q , the represen-

tation of S where each polynomial is decomposed as a list of its coefficients in8 Zq starting
by the low degree coefficients.

Definition 19 (Rotations). For r ∈ Z and C ∈ Rl×1
q , we denote by C(r) ∈ Rl×1

q , the
following vector of polynomials

C(r) := Xr ·C(X−1) mod Xn + 1.

Correspondingly, C(r) ∈ Zln×1
q denotes its coefficient vector.

It is easy to show that C(r) is constructed as to ensure that for r ∈ [0, ..., n − 1], the
rth coordinate of ST · C is given by the scalar product S

T · C(r). In other words, one is
now able to decompose STC as a sum of products:

ST ·C =
∑

r∈[0,n−1]

S
T ·C(r) ·Xr. (4.13)

One can observe that this construction is only valid for the modulo Xn + 1 ring
structure, but it could be adapted for other ring structures. Note that for any r ∈ Z,
C(r+n) = −C(r) and C(r+2n) = C(r). Besides, taking into account the extension of the
norms to vectors of polynomials, one can make the following remark.

Remark 18. Note that for any r ∈ Z, ‖C(r)‖2 = ‖C‖2 = ‖C‖2 and ‖C(r)‖∞ = ‖C‖∞ =
‖C‖∞.

The decomposition in Eq. (4.13) will allow a geometric interpretation of the failures
as it will be shown in the rest of the chapter. First, let us introduce a brief example to
illustrate Definitions 18 and 19.

Example 4.3.1. For a secret S and a ciphertext C in Z2×1
q [X]/(X3 + 1):

S =

[
s0,0 + s0,1X + s0,2X

2

s1,0 + s1,1X + s1,2X
2

]
, C =

[
c0,0 + c0,1X + c0,2X

2

c1,0 + c1,1X + c1,2X
2

]
(4.14)

we get the following vectors:

S =


s0,0

s0,1

s0,2

s1,0

s1,1

s1,2

 , C(0) =


c0,0

−c0,2

−c0,1

c1,0

−c1,2

−c1,1

 C(1) =


c0,1

c0,0

−c0,2

c1,1

c1,0

−c1,2

 C(2) =


c0,2

c0,1

c0,0

c1,2

c1,1

c1,0

 C(3) =


−c0,0

c0,2

c0,1

−c1,0

c1,2

c1,1

 . . .
8Here, all the elements in Zq are represented as integers belonging in [−q/2, q/2].
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Now, let us verify Eq. (4.13) by considering the coefficient of X1 in STC:

s0,0c0,1 + s0,1c0,0 − s0,2c0,2 + s1,0c1,1 + s1,1c1,0 − s1,2c1,2 = S
T ·C(1). (4.15)

In case of a failure event, STC satisfies Eq. (4.12). Therefore, at least one element
among all the coefficients

S
T ·C(0) , . . . , S

T ·C(2n−1)

is larger than qt. Indeed, note that ∀r ∈ [0, 2n−1] S
T ·C(r) < −qt =⇒ S

T ·C(r+n) > qt.

Definition 20 (Failure event). A failure event will be denoted with F .More precisely, for
r ∈ [0, 2n− 1], we denote by Fr the failure event where

S
T ·C(r) > qt.

The event Fr gives a two-fold information: it provides the location of the failure in the
STC polynomial, and it also provides the sign of the coefficient that caused the failure.
Thus,

OS(ctkey,mkey) = 1 ⇐⇒ ∃r ∈ [0, 2n− 1] S
T ·C(r) > qt (Fr). (4.16)

An assumption on the failing ciphertexts. In order to predict the results of our attack,
we will make the following orthogonality assumption.

Assumption 3. Let N � 2nl, and C0 , · · · , CN be ciphertexts that lead to failure events
Fr0 , · · · , FrN . The vectors C

(r0)
0 , · · · , C

(rN )
N are considered orthogonal when projected on

the hyperplane orthogonal to S.

This assumption is an approximation that is supported by the fact that normally-
distributed vectors in high-dimensional space have a strong tendency towards orthogonal-
ity [CFJ13].

4.3.2 Directional failure boosting

Once N ≥ 1 decryption failures C0, . . . ,CN−1 are found, additional information about the
private key S becomes available, and can be used to refine the failure estimation for new
ciphertexts and thus speed up failure boosting. We now introduce an iterative two-step
method to perform directional failure boosting.

Step 1 An estimate, denoted E, of the ‘direction’ of the secret S in Zlnq is obtained from
C0, . . . ,CN−1.

Step 2 The estimate E is used to inform the search for weak ciphertexts and improve the fail-
ure probability prediction for a new ciphertext CN . One is able to refine Eq. (4.9)’s
criterion P fail

pk (ctkey,mkey) ≥ ft.

Once new failing ciphertexts are found in step 2, one can go back to step 1 and improve
the estimate E and thus bootstrap the search for new failures.

To give an intuition, a two-dimensional toy representation can be found in Fig. 4.4.
Like in the classical failure boosting technique (presented before in Fig. 4.3), the red
arrow depicts the secret S, while the additional blue arrow marks estimate E. Using
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Figure 4.4: The directional information allows a refined acceptance criterion, here represented as an
ellipse.

this estimate, we can refine the acceptance criterion to the depicted ellipse to reflect our
knowledge about the secret better. Ciphertexts outside this ellipse will be flagged as weak
ciphertexts, and while the probability of finding such a ciphertext is the same, the failure
probability of weak ciphertexts is now higher. As in, more of the blue zone lies in the
dashed area.

Step 1: Estimating the direction E

Informally, E should be a vector that has approximately the same direction as S. Denoting
the angle between E and S as θES, the bigger | cos(θES)|, the closer our estimate is to ±S
and the better our estimate of failure probability will be. Since we focus on estimating
the direction of S, E will always be normalized.

In this section, we derive an estimate E of the direction of the secret S given N ≥ 1
ciphertexts C0, . . . ,CN−1. Our goal is to find E such that | cos(θES)| is as big as possible.
We will first discuss the case where the adversary has one ciphertext, then the case where
she has two, followed by the more general case where she has N ciphertexts.

One ciphertext. Assume that a unique failing ciphertext C is given. For a failure event
Fr, E = C(r)/

∥∥∥C(r)

∥∥∥
2
is a reasonable choice as cos(θES) is bigger than average. This can

be seen as follows:

|cos(θES)| =

∣∣∣ST · E∣∣∣∥∥S∥∥
2

∥∥E∥∥
2

=

∣∣∣ST ·C(r)

∣∣∣∥∥S∥∥
2

∥∥∥C(r)

∥∥∥
2

>
qt∥∥S∥∥

2

∥∥∥C(r)

∥∥∥
2

. (4.17)

Keeping in mind that the cosine of angles between random vectors strongly tends to
zero in high dimensional space, so that even a relatively small value of |cos(θES)| might
be advantageous.
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Table 4.2: Experimental probability of finding the correct relative rotations and thus building the correct
estimate E with the knowledge of 2, 3, 4 and 5 failing ciphertexts. This experiment has been performed
by generating 1000 times each number of ciphertexts and trying to find the correct values of the ri.

2 ciphertexts 3 ciphertexts 4 ciphertexts 5 ciphertexts

P [ri = δi,0 ∀i ∈ [1, N − 1]] 84.0% 95.6% > 99.0% > 99.0%

One can argue that it is not possible to compute C(r) without knowledge of r; but
in the general case, the failure location is unknown. However, E = C(0)/

∥∥∥C(0)

∥∥∥
2
is an

equally good estimate regardless of the value of r. Indeed, C(0) approximates a rotation
of the secret S′ := X−r · S instead of S, which can be seen using the equality A

T · B =

X iA
T ·X iB:

S
T ·C(r) = X−r · ST ·X−rXrC(0)

= X−r · ST ·C(0).
(4.18)

Furthermore, multiplicating a polynomial in Rq with a power of X does not change its
infinity norm, as the multiplication only results in the rotation or negation of coefficients.
Thus, using an estimate of the direction of X−r · S is as good as an estimate of the
direction of S when predicting the failure probability of ciphertexts, and we can use
E = C(0)/

∥∥∥C(0)

∥∥∥
2
.

Multiple ciphertexts. Now, we assume that N linearly independent failing ciphertexts
C0, . . . ,CN−1, resulting from failure events Fr0 , . . . , FrN−1

respectively, are given. In
[DRV20], we introduce a generalized method to recover the relative positions denoted
δ1,0, . . . , δN−1,0 with high probablity. The technique is based on the “loopy belief propa-
gation” algorithm [Pea14]. Basically, we represent the ciphertexts C0, . . . ,CN−1 as nodes
in a fully connected graph. For two ciphertexts Ci and Cj, for any r ∈ [0, 2n − 1], the
inner product

C
(r+ri)
i

T

·C(r+rj)
j

is slightly correlated to the secret because both C
(r+ri)
i and C

(r+rj)
j fail for the same ro-

tated secret X−rS. The algorithm takes random pairs of ciphertexts and propagate the
best relative positions. It finally converges with outputting a δ1,0, . . . , δN−1,0. We refer to
our paper for more details on the method. In Table 4.2, we show the experimental results
obtained using this technique by Jan-Pieter D’Anvers, who is to be credited for the idea
of loopy belief propagation.

Once these relative positions are found, they can be combined in an estimate E with
E := Ctot/

∥∥Ctot

∥∥
2
where

Ctot :=

C
(0)
0 /

∥∥∥C(0)
0

∥∥∥
2

+
∑

i∈[1,N−1]

C
(δi,0)
i /

∥∥∥C(δi,0)
i

∥∥∥
2

 /N. (4.19)
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Step 2: Finding weak ciphertexts

In this section, we are given an estimate E and we refine the acceptance criterion. Instead
of accepting if P fail

pk (ctkey,mkey) ≥ ft, our condition is slightly changed to a new condition
denoted Qfail

pk (ctkey,mkey,E) > ft.

First, for r ∈ [0, 2n− 1], we will estimate the probability that a ciphertext leads to an
error in the rth location. Decomposing the vectors S and C in a component orthogonal
to E, denoted with subscript ⊥, and a component parallel to E, denoted with subscript
‖, we obtain a failure expression. We write “| E” to represent the knowledge of the vector
E.

P
[
S
T ·C(r) > qt | E

]
=P

[
S‖

T ·C(r)
‖ + S⊥

T ·C(r)
⊥ > qt | E

]
=P

 ∥∥S∥∥
2

∥∥∥C(r)

∥∥∥
2

cos(θSE) cos(θC(r)E) +

‖S‖2

∥∥∥C(r)

∥∥∥
2

sin(θSE) sin(θC(r)E) cos(θSCr)

 > qt | E


=P

cos(θSCr) >
qt −

∥∥S∥∥
2

∥∥∥C(r)

∥∥∥
2

cos(θSE) cos(θCrE)∥∥S∥∥
2

∥∥∥C(r)

∥∥∥
2

sin(θSE) sin(θCrE)
| E


where θSE and θC(r)E are the angles of S and C(r) with the estimate E respectively, and
where θSCr is the angle between S⊥ and C

(r)
⊥ . We assume no other knowledge about

the direction of the secret apart from the directional estimate E. In this case, using
Assumption 3, θSCr can be estimated as a uniform angle in a (2nl−1)-dimensional space.
Then θSCr is assumed to follow the random angle probability distribution (defined as
Θ2nl−1 in [DRV20]).

The values E, ‖C‖2 and cos(θC(r)E) are known, meanwhile the values ‖S‖ and θSE
can be modelled using their probability distribution. Thus, we can approximate the
probability P

[
S
T ·C(r) > qt | E

]
.

Assumption 4. We assume that failures at different locations are independent.

According to [DAn+19a], Assumption 4 is a valid assumption for schemes without
error-correcting codes.

We can then calculate the failure probability of a certain ciphertext as:

Qfail
pk (ctkey,mkey,E) := 1−

2n∏
r=0

(
1− P

[
S
T ·C(r) > qt | E

])
(4.20)

As this expression gives us a better prediction of the failure probability of ciphertexts
by using the information embedded in E, we can more accurately (Grover) search for weak
ciphertexts and thus reduce the work to find the next decryption failure. Moreover, the
better E approximates the direction of S, the easier it becomes to find a new decryption
failure.

Verification of the accuracy of the estimate

To verify the efficiency of the directional failure boosting, one must quantify the accuracy
of the estimate E computed according to Section 4.3.2. In this purpose, the cosine cos(θSE)
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Table 4.3: Accuracy of the estimate derived from several failures. Expected value of cos(θSE). The
closer to 1, the more accurate E is.

#failures 1 2 3 5 10 20 30 50 100

theoretical 0.328 0.441 0.516 0.613 0.739 0.841 0.885 0.926 0.961

experimental 0.318 0.429 0.502 0.600 0.727 0.832 0.878 0.921 0.958

(actually, it is cos(θS′E) for S ′ being a fixed rotation of the secret that can be recovered with
2N tests) can be experimentally computed. We refer to our paper for more information
on the experiment [DRV20].

4.3.3 Finalizing the attack with lattice reduction

Once multiple failures are found, the private key can be recovered with lattice reduction
techniques as presented in [DVV18, Section 4] and in [GJN19, Step 3 of the attack]. The
following section simply outlines how their technique transposes to our framework. As
shown in Section 4.3.2, an estimate E of the direction of a rotated version S′ = XrS with
an unknown value r is provided. Therefore, similarly to [GJN19], an attacker can obtain
an estimation of S′ (and not only its direction) by rescaling

E′ := E ·Nqt ·

∥∥∥∥∥∥C(0)
0 +

∑
i∈[1,n−1]

C
(ri)
i

∥∥∥∥∥∥
2

−1

,

using the approximation E′
T · 1/N

(
C

(0)
0 +

∑
i∈[1,n−1] C

(ri)
i

)
≈ qt.

Then, for each possible r ∈ [0, 2n− 1], an attacker can perform lattice reduction and
recover candidates for s, e that are accepted if they verify b = As + e. One caveat is that
an attacker may have to run a lattice reduction up to 2n times. Since E′−S′ is small, the
attacker can construct an appropriate lattice basis encoding E′ − S′ as a unique shortest
target vector and solves the corresponding Unique-SVP problem with the BKZ algorithm
[SE94; CN11; Alk+16b; Alb+17]. The block size of BKZ will depend on the accuracy of
the estimate E. Indeed, the standard deviation of E′i−S′i is of the order of σs · sin(θS′E)
(assuming that θS′E is small and ‖S′‖2 ≈ ‖E′‖2).

Anticipating Chapter 5, the information given by our estimate can be modeled by
approximate hints : for all i ∈ [0, ln− 1],

S′i + e = E′i

where e follows a centered normal distribution of standard deviation σ2
s · sin(θS′E)2.

Thus, when many decryption failures are available, sin(θS′E) gets very small, and the
complexity of total key recovery including the primal lattice reduction is dominated by
the work required for constructing E. For example, in the case of our toy scheme, if
cos(θS′E) > 0.985, using the tool introduced in Chapter 5 (or [APS15]), the BKZ block
size becomes lower than 363 which leads to less than 2100 quantum work (in the Core-
SVP [Alk+16b] 0.265β model). As we will see in Section 4.3.4, this is less than the work
required to find the first failure.
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Remark 19. One can think that the failures obtained by directional failure boosting will
not be totally independent. Indeed, the failing ciphertexts are roughly following the same
direction. However, applying our Assumption 3, in high dimensions, for a reasonable
number n of failures (N � 2ln), the hypercone in which the failures belong is large enough
in order for linear dependencies to happen with very low probability.

4.3.4 Estimation of the attack performance

The key takeaway of this section is that, for Table 4.1 parameters, the more failing
ciphertexts have been found, the easier it becomes to obtain the next one, and that
most of the effort is concentrated in finding the first failure. The final work and
query overheads are stored in Table 4.4.

In this section, we will derive the optimal work and queries for an adversary, in order
to obtain N ciphertexts with probability 1 − e−1. We introduce the following notation:
to find the (i+ 1)th failing ciphertext; the adversary performs Qi queries. Using a Poisson
distribution, the success probability of finding the (i + 1)th ciphertext in Qi queries is
1−e−Qiβi,fi . The probability of obtaining N failures can then be calculated as the product
of the success probabilities of finding ciphertexts 0 to N − 1:

PN =
N−1∏
i=0

(1− e−Qiβi,fi ). (4.21)

This is a slight underestimation of the success probability of the attack because if an
adversary finds a failing ciphertext in less than Qi samples, she can query more ciphertexts
in the next stages i+ 1, . . . , N . However, this effect is small due to the large value of Qi.

The total amount of precomputation quantum work and the total amount of queries
to obtain the N failing ciphertexts by performing Qi tries for each ciphertext, can be
expressed as

Wtot
N :=

N−1∑
i=0

Qi√
αi,fi︸ ︷︷ ︸

:=Wi

Qtot
N :=

N−1∑
i=0

Qi. (4.22)

Recall that for now, we assume there is no upper limit to the number of decryption
queries that can be made, and we focus on minimizing the amount of work. The values of
Qi that minimize the total quantum workWtot

N can be found using the following Lagrange
multiplier, minimizing the total amount of work to find N failures with probability 1−e−1

using the above probability model:

L(Q0, · · · , QN−1, λ) =
N−1∑
t=0

Qi√
αi,fi

+ λ

(
(1− e−1)−

N−1∏
i=0

(1− e−Qiβi,fi )

)
(4.23)

By equating the partial derivative of L in Q0, · · · , QN−1 and λ to zero and solving the
resulting system of equations, we obtain the optimal values of Q0, · · · , QN−1 to mount
our attack.

The resulting total work and queries of obtaining N ciphertext using directional failure
boosting are given in Table 4.4 and Fig. 4.5. One can see that the majority of the work
lies in obtaining the first ciphertext and that obtaining more than one ciphertext can be
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ciphertexts N 1 2 3 5 10 20 30

log2(Wtot
N ) 112.45 112.77 112.78 112.78 112.78 112.78 112.78

log2(Wtot
N /Wtot

1 ) — 0.32 0.33 0.33 0.33 0.33 0.33

log2(Qtot
N ) 102.21 102.86 102.87 102.87 102.87 102.87 102.87

log2(Qtot
N /Qtot

1 ) — 0.65 0.66 0.66 0.66 0.66 0.66

Table 4.4: Quantum work Wtot
N and queries Qtot

N required to find N failing ciphertexts with probability
1− e−1. Finding the first ciphertext requires the heaviest amount of computation. After the third failing
ciphertext is found, the following ones are essentially for free.

20 21 22 23 24 25

available failing ciphertexts
25

219

233

247

261

275

289

2103

2117

to
ta

l w
or

k/
qu

er
ie

s

work/queries to obtain next ciphertexts

work
query

Figure 4.5: Quantum work Wi and number of decryption queries Qi required to find a new failing
ciphertext, given the i failing ciphertexts found previously.

done in less than double the work and queries, or less than one extra bit of complexity.
For schemes with a lower failure probability, failing ciphertexts will be more correlated to
the secret, so that the directional information is higher and directional failure boosting
will be more effective.

In conclusion, the security of a scheme with low failure probability under a single tar-
get decryption failure attack can be approximated by the amount of work and queries that
an adversary needs to do in order to obtain the first decryption failure. We emphasize the
fact that obtaining many failures for a low overhead threatens the security of the scheme
(See Section 4.3.3).

4.3.5 Applications

In Fig. 4.6, the total work and queries needed to obtain n ciphertexts with probability
1 − e−1 is plotted for both the traditional failure boosting, and our directional failure
boosting approach. For a fair comparison between both results, we adapted the method
for estimating the total work and queries with success probability 1 − e−1 using the
traditional failure boosting of [DAn+19a]. For more information about our method, we
refer to our paper [DRV20].
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Figure 4.6: Quantum work Wtot
N and number of decryption queries Qtot

N required to obtain N failing
ciphertexts with probability 1− e−1, given the number of previously found failing ciphertexts.

l n q σs σe Failure probability Claimed
Security

ss-ntru-pke 1 1024 230 + 213 + 1 724 724 > 2−80 2198

Table 4.5: Parameters of the ss-ntru-pke [Zha+17] scheme.

Minimizing the number of queries instead

In case a maximal number of decryption queries is imposed, say Q = 2K , the same attack
strategy can be applied. However, to limit the number of queries Qtot

N necessary in the
attack, a stronger preprocessing

√
α−1
i,ft

might be necessary to increase the failure prob-
ability βi,ft of weak ciphertexts over 2−K . The only change needed to accomplish this
consists in selecting the threshold ft for each i appropriately.

Too much preprocessing when K = 64. Note that, for most practical schemes (e.g.
Kyber or Saber), increasing the failure probability β0,ft over 2−64 is not practically feasible
or would require too much preprocessing

√
α−1

0,ft
. For example, considering the parameters

given in Table 4.1, achieving β0,ft > 2−64 requires an amount of total quantum work for
finding the first failure larger than 2190.

Application to ss-ntru-pke and improvement of Guo et al. [GJN19]

In [GJN19], an adaptive multitarget attack is proposed on the ss-ntru-pke version of
NTRUEncrypt [Zha+17], a Ring-LWE based encryption scheme that claims security
against chosen ciphertext attacks. The parameters of this scheme are given in Table 4.5.

The attack performs at most 264 queries on at most 264 targets and has a classical cost
of 2216 work, and a quantum cost of 2140 when speeding up the offline phase with Grover’s
search. We adapt directional failure boosting to this attack model and propose both a
single and multitarget attack.

For the single target attack, our proposed methodology in Section 4.3.4 needs more
than 264 queries to obtain a ciphertext. To mitigate this, we increase the pre-computational
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Figure 4.7: Quantum work Wtot
N and number of decryption queries Qtot

N required to find a new failing
ciphertext for ss-ntru-pke, given the ones found previously.

scheme claimed multitarget our single target our multitarget
security attack [GJN] attack attack

ss-ntru-pke 2198 2139.5 2139.6 296.6

Table 4.6: Comparison of costs for different attacks against ss-ntru-pke [Zha+17].

work
√
α−1 so that the failure probability of weak ciphertexts β increases over a certain ft,

which is chosen as 2−57 to make sure the total queries are below 264. The effect is a bigger
overall computation, but a reduction in the number of necessary decryption queries. The
rest of the attack proceeds as discussed in Section 4.3.4. The work or queries needed to
obtain an extra failing ciphertext with the knowledge of N failing ciphertexts can be seen
in Fig. 4.7a. The cost of this single target attack is 2139.6, which is close to the cost of
their multitarget attack 2139.5, as can be seen in Table 4.6.

In the multitarget case, we can use a maximum of 264 · 264 queries to find the first
failing ciphertext, after which we use the methodology of the single target attack to obtain
further ciphertext with a limited amount of queries. In practice, we stay well below the
query limit to find the first failure. In this case, the work is dominated by finding the
second decryption failure, as we need to do this in under 264 queries. The resulting work
to obtain an extra ciphertext is depicted in Fig. 4.7b. The cost of this attack is 296.6,
which is well below the cost of 2139.5 reported by Guo et al.

4.4 Perspectives

This chapter provides an intuition of the danger of the decryption failures for the lattice-
based KEMs.

• When implemented in a misuse situation with key reuse in the IND-CPA version,
the security of a lattice-based scheme can dramatically decrease. For the example of
NewHope (Section 4.2), the security is largely decreased with less than 214 queries;
and it can be totally broken with less than 220 queries. It is thus absolutely necessary
to avoid these misuse situations.
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• When implemented in an IND-CCA version, the work of Section 4.3 leads us to be-
lieve that having access to one failure could jeopardize the whole security. However,
our results lays the first stones, and further work is still required. First, our results
only apply to a simple scheme that does not correspond to any of the NIST lattice-
based candidates thought. Second, in our example, accessing to the first failure cost
2102 queries, which seem above the NIST limit of 264. Studying the security in a
limited query setting (and/or in a multitarget case) is left as an interesting future
work.

Perspective 5 (Application to schemes with error correction). For schemes with strong
error correction, such as LAC [Lu+19], the error probability of the ciphertext before error
correction is relatively high, which results in a lower correlation between the secret and
failing ciphertexts. This would complicate the effectiveness of directional failure boosting
in several ways: finding the right rotation of ciphertext to combine them into E becomes
less straightforward, and the resulting E would be less correlated with the secret. However,
by finding one failure, an adversary would already have more than one equation due to
the multiple errors. Thus the effectiveness of directional failure boosting in these circum-
stances can not be derived from our results and would be an interesting future research
topic.

Perspective 6 (Multitarget attack with limited number of queries.). In case an attacker
has multiple possible targets 2T but can perform at most 2K queries at each target, she
can initially search for one of more ciphertexts using a small and thus more optimal
βft > 2−(T+K), before focussing on one target and limiting to βft > 2−K, which requires
more preprocessing and possibly more work. In this case, finding the first decryption failure
is not necessarily the limiting factor for the adversary. While the attack strategy has been
touched upon in Section 4.3.5, finding the optimal attack strategy and its efficiency would
be interesting future work.

Perspective 7 (On the choice of the 264 queries limit). As seen in Chapters 2 and 4, the
queries limitation is crucial for security assessments. One the one hand, it helps defining
the parameters to avoid timing and classical attacks. On the other hand, it helps avoiding
decryption failure attacks. All the security estimations are based on the 264 queries limit
suggested by the NIST. Allowing more queries, in an order of 280 for instance, would be
devastating for existing schemes. For ensuring the same security, the designers would need
to derive larger parameters and, thus, slower algorithms. Besides, the 264 limits seems
low for schemes that are supposed to be instantiated in the next decades. An interesting
perspective can be to precisely study and motivate a choice for the maximum queries limit
depending of the future usage in the cryptographic protocols.
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Chapter

5
Lattice reduction attacks with side in-
formation

Figure 5.1: The security of an algorithm is commonly expressed in "bits", where n-bit security means
that the attacker would have to perform 2n operations to break it. After a complete timing, physical or
decryption-failure attack, the full secret is known and the security decreases to 0. However, the attacks
do not often provide the full secret but only side information on it. This chapter gives a way to compute
the remaining attack complexity when some side information on the secret is given.

This work has been the last project of this PhD. It somehow wraps up the works of the
previous chapters in a unified framework to estimate the complexity of lattice reduction
with side information (side-channels, failures or implementation constraints). Huijing
Gong and her advisor Dana Dachman-Soled joined Léo Ducas and me in this project and
they provided precious help on the theoretical side.

This chapter corresponds to the final version of [Dac+20] recently accepted to the
CRYPTO conference1. It has been very interesting and stimulating to develop such a
federating framework with so many applications. Although my contributions are mainly
related to the inclusion of the hints and the applications along with their implementations,
everyone of us contributed to all parts of this research.

The tool that we designed looks very handy for cryptanalysis and, hopefully, it will
help finish attacks that recover partial information on the secret. To ensure an easy use,
a small tutorial is presented on the Github of our tool at: https://github.com/lducas/
leaky-LWE-Estimator.

1We refer to our animated Crypto video https://www.youtube.com/watch?v=wCaLcbWnwDI for a presentation
of the geometric intuition.

https://github.com/lducas/leaky-LWE-Estimator
https://github.com/lducas/leaky-LWE-Estimator
https://www.youtube.com/watch?v=wCaLcbWnwDI
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5.1 Introduction and motivations

The ongoing standardization process and anticipated deployment of lattice-based cryp-
tography raises an important question: How resilient are lattices to side-channel attacks
or other forms of side information? While there are numerous works addressing this
question for specific cryptosystems (See [ADP18b; Bru+16; GP18; Rav+19; Rav+18;
Bos+18a] for side-channel attacks targeting lattice-based NIST candidates), these works
use rather ad-hoc methods to reconstruct the private key, requiring new techniques and
algorithms to be developed for each setting. For example, the work of [Bos+18a] uses
brute-force methods for a portion of the attack, while [Boo+18] exploits linear regression
techniques. Moreover, ad-hoc methods do not allow (1) to take advantage of decades
worth of research and (2) optimization of standard lattice attacks. Second, most of the
side-channel attacks from prior work consider substantial amounts of information leakage
and show that it leads to feasible recovery of the entire key, whereas one may be inter-
ested in more precise tradeoffs in terms of information leakage versus concrete security
of the scheme. The above motivates the focus of this chapter: Can one integrate side
information into a standard lattice attack, and if so, by how much does the information
reduce the cost of this attack? Given that side-channel resistance is the next step toward
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LWE/BDD Kannan−−−−−→ uSVPΛ′
Section 5.3.4−−−−−−−−→ Lattice

reduction

Figure 5.2: Primal attack without hints (prior art).

the technological readiness of lattice-based cryptography, and that we expect numerous
new projects in this growing area, we believe that a general framework and a prediction
software are in order.

In this chapter, we propose a framework that generalizes the so-called primal lattice
reduction attack, and allows the progressive integration of “hints” (i.e. side information
that takes one of several forms) before running the final lattice reduction step. This study
is summarized in Figs. 5.2 and 5.3 and developed in Section 5.3.We also present a Sage 9.0
toolkit to actually mount such attacks with hints when computationally feasible, and to
predict their performance on larger instances. Our predictions are validated by extensive
experiments. Our tool and these experiments are described in Section 5.5. We finally
demonstrate the usefulness of our framework and tool via three example applications.
Our main example (Section 5.6.1) revisits the side-channel information obtained from the
first side-channel attack of [Bos+18a] against Frodo. In that article, it was concluded that
a divide-and-conquer side-channel template attack would not lead to a meaningful attack
using standard combinatorial search for reconstruction of the secret. Our technique allows
to integrate this side-channel information into lattice attacks, and to predict the exact
security drop. For example, the CCS2 parameter set very conservatively aims for 128-bits
of post-quantum security (or 448 “bikz” as defined in Section 5.3.4); but after the leakage
of [Bos+18a] we predict that its security drops to 29 “bikz”, i.e. that it can be broken
with BKZ-29.

Interestingly, we note that our framework is not only useful in the side-channel sce-
nario; we are, for example, also able to model decryption failures as hints fitting our
framework. This allows us to reproduce some predictions from [DVV18]. This is dis-
cussed in Section 5.6.2.

Perhaps more surprisingly, we also find a novel improvement to analyze a few schemes
(LAC [Lu+19], Round5 [Gar+19]) without any side-channel or oracle queries. Indeed,
such schemes use ternary distribution for secrets, with a prescribed numbers of 1 and
−1: this hint fits our framework, and lead to a (very) minor improvement, discussed in
Section 5.6.3.

Lastly, our framework also encompasses and streamlines existing tweaks of the primal
attack: the choice of ignoring certain LWE equations to optimize the volume-dimension
trade-off, as well as the re-centering [Ngu19] and isotropization [Hof+09; Che+18] ac-
counting for potential a-priori distortions of the secret. It also implicitly solves the ques-
tion of the optimal choice of the coefficient for Kannan Bounded Distance Decoding
problem (denoted BDD see Hard Problem 2) to unique Shortest Vector Problem (denoted
uSVP see Hard Problem 1) [Kan87].

Technical overview. Our work is based on a generalization of the Bounded Distance
Decoding problem (see Hard Problem 2) to a Distorted version (DBDD), which allows to
account for the potentially non-spherical covariance of the secret vector to be found.

Each hint will affect the lattice itself, the mean and/or the covariance parameter of
the DBDD instance, making the problem easier (see Fig. 5.3). At last, we make the
distribution spherical again by applying a well-chosen linear transformation, reverting
to a spherical BDD instance before running the attack. Thanks to the hints, this new
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Figure 5.3: The primal attack with hints (our work).

instance will be easier than the initial one. Let us assume that v, l, k and σ are parameters
known by the attacker. Our framework can handle four types of hints on the secret s or
on the lattice Λ.

• Perfect hints: 〈s, v〉 = l intersect the lattice with an hyperplane.

• Modular hints : 〈s, v〉 = l mod k sparsify the lattice.

• Approximate hints : 〈s, v〉 = l + εσ decrease the covariance of the secret.

• Short vector hints : v ∈ Λ project orthogonally to v.

While the first three hints are clear wins for the performance of lattice attacks, the last
one is a trade-off between the dimension and the volume of the lattice. This last type of
hint is in fact meant to generalize the standard trick consisting of ‘ignoring’ certain LWE
equations; ignoring such an equation can be interpreted geometrically as such a projection
orthogonally to a so-called q-vector.

All the transformations of the lattice above can be computed in polynomial time. How-
ever, computing with general distribution in large dimension is not possible; we restrict
our study to the case of Gaussian distributions of arbitrary covariance, for which such
computations are also poly-time.

Some of these transformations remain quite expensive, in particular, because they
involve rational numbers with very large denominators, and it remains rather impractical
to run them on cryptographic-grade instances. Fortunately, up to a necessary hypothesis
of primitivity of the vector v (with respect to either Λ or its dual depending on the type of
hint), we can also predict the effect of each hint on the lattice parameters, and therefore
run faster predictions of the attack cost.

From Leaks to Hints. At first, it may not be so clear that the types of hints above are
so useful in realistic applications, in particular since they need to be linear on the secret.
Of course our framework can handle rather trivial hints such as the perfect leak of a secret
coefficient si = l. Slightly less trivial is the case where only the low-order bits leaks, a
hint of the form si = l mod 2.

We note that most of the computations done during an LWE decryption are linear:
leaking any intermediate register during a matrix vector product leads to a hint of the
same form (possibly mod q). Similarly, the leak of a NTT coefficient of a secret in a
Ring/Module variant can also be viewed as such.

Admittedly, such ideal leaks of a full register are not the typical scenario and leaks
are typically not linear (for the addition in Zq) on the content of the register. However,
such non-linearities can be handled by approximate hints. For instance, let s0 be a
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secret coefficient (represented by a signed 16-bits integer), whose a priori distribution is
supported by {−5, . . . , 5}. Consider the case where we learn the Hamming weight of s0,
say H(s0) = 2. Then, we can narrow down the possibilities to s0 ∈ {3, 5}. This leads to
two hints:

• a modular hint: s0 = 1 mod 2,

• an approximate hint: s0 = 4 + ε1, where ε1 has variance 1.

While closer to a realistic scenario, the above example remains rather simplified. A
detailed example of how realistic leaks can be integrated as hints will be given in Sec-
tion 5.6.1, based on the leakage data from [Bos+18a].

5.2 Preliminaries

5.2.1 Linear Algebra

We use bold lower case letters to denote vectors, and bold upper case letters to denote
matrices. Let 〈·, ·〉 denote the inner product of two vectors of the same size. Let us
introduce the row span of a matrix (denoted Span(·)) as the subspace generated by all
R-linear combinations of the rows of its input.

Definition 21 (Positive Semidefinite). A n × n symmetric real matrix M is positive
semidefinite if scalar xMxT ≥ 0 for all x ∈ Rn; if so we write M ≥ 0. Given two n× n
real matrix A and B, we note A ≥ B if A−B is positive semidefinite.

Definition 22. A matrix M is a square root of Σ, denoted
√

Σ, if

MT ·M = Σ,

Our techniques involve keeping track of the covariance matrix Σ of the secret and
error vectors as hints are progressively integrated. The covariance matrix may become
singular during this process and will not have an inverse. Therefore, in the following, we
introduce some degenerate notions for the inverse and the determinant of a square matrix.
Essentially, we restrict these notions to the row span (denoted Span()) of their input. For
X ∈ Rd×k (with any d, k ∈ N), we will denote ΠX the orthogonal projection matrix onto
Span(X). More formally, let Y be a maximal set of independent row-vectors of X; the
orthogonal projection matrix is given by ΠX := YT · (Y ·YT )−1 ·Y. Its complement (the
projection orthogonally to Span(X)) is denoted Π⊥X := Id−ΠX. We naturally extend the
notation ΠF and Π⊥F to subspaces F ⊂ Rd. By definition, the projection matrices satisfy
Π2
F = ΠF , ΠT

F = ΠF and ΠF ·Π⊥F = Π⊥F ·ΠF = 0.

Definition 23 (Restricted inverse and determinant). Let Σ be a symmetric matrix. We
define a restricted inverse denoted Σ∼ as

Σ∼ := (Σ + Π⊥Σ)−1 −Π⊥Σ.

It satisfies Span(Σ∼) = Span(Σ) and Σ ·Σ∼ = ΠΣ.
We also denote rdet(Σ) as the restricted determinant defined as follows.

rdet(Σ) := det(Σ + Π⊥Σ).
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The idea behind Definition 23 is to provide an (artificial) invertibility property to the
input Σ by adding the missing orthogonal part and to remove it afterwards. For example,

if Σ =

[
A 0
0 0

]
where A is invertible,

Σ∼ =

([
A 0
0 0

]
+

[
0 0
0 1

])−1

−
[
0 0
0 1

]
=

[
A−1 0

0 0

]
and rdet Σ = det(A).

5.2.2 Statistics

Recall that random variables, i.e. variables whose values depend on outcomes of a random
phenomenon, are denoted in lowercase calligraphic letters e.g. a, b. Random vectors are
denoted in uppercase calligraphic letters e.g. C,X,Z.

Before hints are integrated, we will assume that the secret and error vectors follow
a multidimensional normal (Gaussian) distribution. Hints will typically correspond to
learning a (noisy, modular or perfect) linear equation on the secret. We must then consider
the altered distribution on the secret, conditioned on this information. Fortunately, this
will also be a multidimensional normal distribution with an altered covariance and mean.
In the following, we present the precise formulae for the covariance and mean of these
conditional distributions. The notations derive from the ones defined Section 2.2.2 because
we consider a generalized continuous distribution.

Definition 24 (Multidimensional normal distribution). Let d ∈ Z, for µ ∈ Zd and Σ
being a symmetric positive semidefinite matrix of dimension d×d, we denote by Gd

Σ,µ the
multidimensional normal distribution supported by µ + Span(Σ) by the following

x ∈ Rd 7→
1√

(2π)rank(Σ) · rdet(Σ)
exp

(
−1

2
(x− µ) ·Σ∼ · (x− µ)T

)
.

Theorem 12 shows the altered distribution of a normal random variable conditioned on
its noisy linear transformation value, following from the more generalized result of [Liu19,
Equations (6) and (7)], which we refer to for the calculative proof.

Theorem 12 (Conditional distribution X|〈X,v〉 + e). Suppose that X ∈ Zd has a Gd
Σ,µ

distribution and e has a G1
σ2
e ,0

distribution. Let us fix v ∈ Rd as a nonzero vector and
z ∈ Z. We define the following scalars:

z := 〈X,v〉+ e, µ2 := 〈v,µ〉 and σ2 := vΣvT + σ2
e

If σ2 6= 0, the conditional distribution of X
∣∣∣ (z = z) is Gd

Σ′,µ′, where

µ′ = µ +
(z − µ2)

σ2

vΣ

Σ′ = Σ− ΣvTvΣ

σ2

.

If σ2 = 0, the conditional distribution of X
∣∣∣ (z = z) is Gd

Σ,µ.

Remark 20. We note that Theorem 12 is also valid for X|〈X,v〉 by letting σe = 0.
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5.2.3 Lattices

Recall for Section 5.1 that a lattice, denoted here as Λ, is a discrete additive subgroup of
Rm, which is generated as the set of all linear integer combinations of n (m ≥ n) linearly
independent basis vectors {bj} ⊂ Rm, namely,

Λ :=
{∑

j
zjbj : zj ∈ Z

}
,

A matrix B having the basis vectors as rows is called a basis matrix. Recall that the
volume of a lattice Λ is defined as Vol(Λ) :=

√
det(BBT ). The dual lattice of Λ in Rn is

defined as follows.
Λ∗ := {y ∈ Span(B) | ∀x ∈ Λ, 〈x,y〉 ∈ Z}.

Note that, (Λ∗)∗ = Λ, and Vol(Λ∗) = 1/Vol(Λ). For a detailed introduction of dual
lattices properties, we refer to [Mic20].

Lemma 18 ([Mar13, Proposition 1.3.4]). Let Λ be a lattice and let F be a subspace of
Rn. If Λ∩F is a lattice, then the dual of Λ∩F is the orthogonal projection onto F of the
dual of Λ. In other words, each element of Λ∗ is multiplied by the projection matrix ΠF :

(Λ ∩ F )∗ = Λ∗ ·ΠF .

Definition 25 (Primitive vectors). A set of vector y1, . . . ,yk ∈ Λ is said primitive with
respect to Λ if Λ ∩ Span(y1, . . . ,yk) is equal to the lattice generated by y1, . . . ,yk. Equiv-
alently, it is primitive if it can be extended to a basis of Λ. If k = 1, y1, this is equivalent
to y1/i 6∈ Λ for any integer i ≥ 2.

To predict the hardness of the lattice reduction on altered instances , we must compute
the volume of the final transformed lattice. We devise a highly efficient way to do this, by
observing that each time a hint is integrated, we can update the volume of the transformed
lattice, given only the volume of the previous lattice and information about the current
hint (under mild restrictions on the form of the hint). In the following, we present technical
lemmas that will be useful for progressively computing the volume of the transformed
lattice when different types of hints are integrated. We refer to the original paper for
their proofs [Dac+20].

Lemma 19 (Volume of a lattice slice). Given a lattice Λ with volume Vol(Λ), and a
primitive vector v with respect to Λ∗. Let v⊥ denote subspace orthogonal to v. Then
Λ ∩ v⊥ is a lattice with volume Vol(Λ ∩ v⊥) = ‖v‖ · Vol(Λ).

Lemma 20 (Volume of a sparsified lattice). Let Λ be a lattice, v̄ ∈ Λ∗ be a primitive
vector of Λ∗, and k > 0 be an integer. Let Λ′ = {x ∈ Λ | 〈x, v̄〉 = 0 mod k} be a sublattice
of Λ. Then Vol(Λ′) = k · Vol(Λ).

Lemma 21 (Volume of a projected lattice). Let Λ be a lattice, v ∈ Λ be a primitive
vector of Λ. Let Λ′ = Λ · Π⊥v be a sublattice of Λ. Then Vol(Λ′) = Vol(Λ)/‖v‖. More
generally, if V is a primitive set of vectors of Λ, then Λ′ = Λ ·Π⊥V has volume Vol(Λ′) =

Vol(Λ)/
√

det(VVT ).

Lemma 22 (Lattice volume under linear transformations). Let Λ be a lattice in Rn,
and M ∈ Rn×n a matrix such that ker M = Span(Λ)⊥. Then we have Vol(Λ ·M) =
rdet(M) Vol(Λ).
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5.3 Distorted Bounded Distance Decoding (DBDD)

5.3.1 Definition

We first introduce a variant of the LWE problem as presented in Hard Problem 3. Indeed,
we need the search LWE problem in its short-secret variant which is the most relevant to
practical LWE-based encryption. As shown in [Alb+18], all the (Mod, Ring, plain)LWE-
based schemes can be embedded into Hard Problem 10.

Hard Problem 10 — Search LWE problem with short secrets
Let n,m and q be positive integers, and let χ be a distribution over Z.

Given the pair
(
A ∈ Zm×nq ,b = zAT + e ∈ Zmq

)
where:

1. A ∈ Zm×nq is sampled uniformly at random,
2. z ← χn, and e ← χm are sampled with independent and identically

distributed coefficients following the distribution χ.

Find z.

The primal attack (See for example [Alb+17]) against (search)-LWE proceeds by view-
ing the LWE instance as an instance of a Bounded Distance Decoding (BDD) problem,
converting it to a uSVP instance (via Kannan’s embedding [Kan87]), and finally applying
a lattice reduction algorithm to solve the uSVP instance. The central tool of our frame-
work is a generalization of BDD that accounts for potential distortion in the distribution
of the secret noise vector that is to be recovered.

Hard Problem 11 — Distorted Bounded Distance Decoding problem (DBDD)
Let Λ ⊂ Rd be a lattice, Σ ∈ Rd×d be a symmetric matrix and µ ∈ Span(Λ) ⊂ Rd

such that
Span(Σ) ( Span(Σ + µT · µ) = Span(Λ). (5.1)

The Distorted Bounded Distance Decoding problem DBDDΛ,µ,Σ is the following
problem:

Given µ,Σ and a basis of Λ.

Find the unique vector x ∈ Λ ∩ E(µ,Σ)

where E(µ,Σ) denotes the ellipsoid

E(µ,Σ) := {x ∈ µ + Span(Σ)|(x− µ) ·Σ∼ · (x− µ)T ≤ rank(Σ)}.

We will refer to the triple I = (Λ,µ,Σ) as the instance of the DBDDΛ,µ,Σ problem.

Intuitively, Hard Problem 11 corresponds to knowing that the secret vector x to be
recovered follows a distribution of variance Σ and average µ. The quantity (x−µ) ·Σ∼ ·
(x − µ)T can be interpreted as a non-canonical Euclidean squared distance ‖x − µ‖2

Σ,
and the expected value of such a distance for a Gaussian x of variance Σ and average
µ is rank(Σ). One can argue that, for such a Gaussian, there is a constant probability
that ‖x − µ‖2

Σ is slightly greater than rank(Σ)2. Since we are interested in the average
behavior of our attack, we ignore this benign technical detail. In fact, we will typically

2The choice of rank(Σ) as a radius is somewhat arbitrary and can be multiplied by any constant factor.
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DBDD BDD uSVP

Figure 5.4: Graphical intuition of DBDD, BDD and uSVP in dimension two: the problem consists in
finding a nonzero element of Λ in the colored zone. The identity hyperball is larger for uSVP to represent
the fact that, during the reduction, the uSVP lattice has one dimension more than for BDD.

interpret DBDD as the promise that the secret follows a Gaussian distribution of center
µ and covariance Σ.

The ellipsoid can be seen as an affine transformation (that we call “distortion”) of
the centered hyperball of radius rank(Σ). Let us re-use the notation for the hyperball
introduced in Eq. (1.1), i.e. for any d ∈ N Bd(0, d) denotes an hyperball of dimension and
radius d. In particular Bd(0, d) = E(0, Id). One can thus write using Definition 22:

E(µ,Σ) = Brank(Σ)(0, rank(Σ)) ·
√

Σ + µ. (5.2)

From the Span inclusion in Eq. (5.1), one can deduce that the condition is equivalent
to requiring µ /∈ Span(Σ) and rank(Σ + µT ·µ) = rank(Σ) + 1 = rank(Λ). This detail is
necessary for embedding it properly into a uSVP instance (See later in Section 5.3.3).

Particular cases of Hard Problem 11. Let us temporarily ignore the condition in
Eq. (5.1) to study some particular cases. As shown in Fig. 5.4, when Σ = Id, DBDDΛ,µ,Id

is BDD instance. Indeed, the ellipsoid becomes a shifted hyperball E(µ, Id) = {x ∈
µ + Rd×d | ‖x − µ‖2 ≤ d} = Bd + µ. If in addition µ = 0, DBDDΛ,0,Id becomes a uSVP
instance on Λ.

5.3.2 Embedding LWE into DBDD

In the typical primal attack framework (Fig. 5.2), one directly views LWE as a BDD
instance of the same dimension. For our purposes, however, it will be useful to apply
Kannan’s Embedding at this stage and therefore increase the dimension of the lattice by
1. While it could be delayed to the last stage of our attack, this extra fixed coefficient 1
will be particularly convenient when we integrate hints (see Remark 25 in Section 5.4).
It should be noted that no information is lost through this transformation. Indeed, the
parameters µ and Σ allow us to encode the knowledge that the solution we are looking
for has its last coefficient set to 1 and nothing else.

In more details, the solution s := (e, z) of an LWE instance is extended to

s̄ := (e, z, 1), (5.3)

which is a short vector in the lattice Λ =
{

(x,y, w) |x + yAT − bw = 0 mod q
}
. A basis

of this lattice is given by the row vectors ofqIm 0 0
AT −In 0
b 0 1

 .
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Denoting µχ and σ2
χ the average and variance of the LWE distribution χ (See Hard Prob-

lem 10), we can convert this LWE instance to a DBDDΛ,µ,Σ instance with µ = [µχ · · ·µχ 1]

and Σ =
[
σ2
χIm+n 0

0 0

]
. The lattice Λ is of full rank in Rd where d := m + n + 1, and its

volume is qm. Note that the rank of Σ is only d− 1: the ellipsoid has one less dimension
than the lattice. It then validates the requirement of Eq. (5.1).

Remark 21. Typically, Kannan’s embedding from BDD to uSVP leaves the bottom right
matrix coefficient as a free parameter, say c, to be chosen optimally. The optimal value
is the one maximizing

‖(z; c)‖
det(Λ)1/d

=
(m+ n)σχ + c

(c · qm)1/d
,

namely, c = σχ according to the arithmetic-geometric mean inequality. Some prior
work [Alb+17; BMW19] instead chose c = 1. While this is benign since σχ is typi-
cally not too far from 1, it remains a sub-optimal choice. Looking ahead, in our DBDD
framework, this choice becomes irrelevant thanks to the isotropization step introduced in
the next section; we can therefore choose any value without affecting the final result.

5.3.3 Converting DBDD to uSVP

In this section, we explain how a DBDD instance (Λ,µ,Σ) is converted into a uSVP one.
Two modifications are necessary.

First, let us show that the ellipsoid in Hard Problem 11 is contained in a larger centered
ellipsoid (with one more dimension) as follows:

E(µ,Σ) ⊂ E(0,Σ + µT · µ). (5.4)

Using Eq. (5.2), one can write

E(µ,Σ) = Brank(Σ)(0, rank(Σ)) ·
√

Σ + µ ⊂ Brank(Σ)(0, rank(Σ)) ·
√

Σ± µ,

where Brank(Σ) is defined in Eq. (1.1). And, with Equation Eq. (5.1), one can deduce
rank(Σ + µT · µ) = rank(Σ) + 1, then:

Brank(Σ)(0, rank(Σ)) ·
√

Σ± µ ⊂ Brank(Σ)+1(0, rank(Σ) + 1) ·
[√

Σ
µ

]
.

We apply Definition 22 which confirms the inclusion of Eq. (5.4):

E(µ,Σ) ⊂ Brank(Σ)+1(0, rank(Σ) + 1) ·
[√

Σ
µ

]
= E(0,Σ + µT · µ).

Thus, we can homogenize and transform the instance into a centered one with Σ′ :=
Σ + µT · µ.

Secondly, to get an isotropic distribution (i.e. with all its eigenvalues being 1), one
can just multiply every element of the lattice with the pseudoinverse of

√
Σ′. We get a

new covariance matrix Σ′′ =
√

Σ′
∼ ·Σ′ ·

√
Σ′
∼T

= ΠΣ′ ·ΠΣ′
T . And since ΠΣ′ = ΠT

Σ′ and
Π2

Σ′ = ΠΣ′ (see Section 5.2.1), Σ′′ = ΠΣ′ = ΠΛ, the last equality coming from Eq. (5.1).
In a nutshell, one must make by the two following changes:

homogenize: (Λ,µ,Σ) 7→ (Λ,0,Σ′ := Σ + µT · µ)

isotropize: (Λ,0,Σ′) 7→ (Λ ·M,0,ΠΛ)
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where M := (
√

Σ′)∼.
From the solution x to the uSVPΛ·M problem, one can derive x′ = xM∼ the solution

to the DBDDΛ,µ,Σ problem. Note that, to solve a DBDD instance, one can ignore the
isotropization and directly apply lattice reduction before the second step. This leads,
however, to less efficient attacks.

Remark 22. One should note that the first homogenization step “forgets” some infor-
mation about the secret’s distribution. This, however, is inherent to the conversion to
a unique-SVP problem which is geometrically homogeneous and is already present in the
original primal attack.

5.3.4 Security estimates of uSVP: bikz versus bits

The attack on a uSVP instance consists of applying, the algorithm BKZ-β, presented in
Section 1.2.2, on the uSVP lattice Λ for an appropriate block size parameter β. The cost
of the attack grows with β, however, modeling this cost precisely is at the moment rather
delicate, as the state of the art seems to still be in motion. Numerous NIST candidates
choose to underestimate this cost, keeping a margin to accommodate future improvements,
and there seems to be no clear consensus on which model to use (see [Alb+18] for a
summary of existing cost models).

While this problem is orthogonal to our work, we still wish to be able to formulate
quantitative security losses. We therefore express all concrete security estimates using the
blocksize β as our measure of the level of security, and treat the latter as a measurement
of the security level in a unit called the bikz. We thereby leave the question of the exact
bikz-to-bit conversion estimate outside the scope of this chapter, and recall that those
conversion formulae are not necessarily linear, and may have small dependency in other
parameters. For the sake of concreteness, we note that certain choose, for example, to
claim 128 bits of security for 380 bikz, and in this range, most models suggest a security
increase of one bit every 2 to 4 bikz.

Remark 23. We also clarify that the estimates given within this chapter only concern
the pure lattice attack via the uSVP embedding discussed above. In particular, we note
that some NIST candidates with ternary secrets [Lu+19] also consider the hybrid attack
of [How07], which we ignore in this work. We nevertheless think that the compatibility
with our framework is plausible, with some effort.

Predicting β from a uSVP instance The state-of-the-art predictions for solving uSVP
instances using BKZ were given in [Alk+16b; Alb+17]. Namely, for Λ a lattice of dimen-
sion dim(Λ), it is predicted that BKZ-β can solve a uSVPΛ instance with secret s when√

β/ dim(Λ) · ‖s‖ ≤ δ
2β−dim(Λ)−1
β · Vol(Λ)1/ dim(Λ) (5.5)

where δβ is the so called root-Hermite factor of BKZ-β presented in Section 1.2.2. We
recall that, for β ≥ 50, the root-Hermite factor is predictable :

δβ =

(
(πβ)

1
β · β

2πe

)1/(2β−2)

. (5.6)

Note that the uSVP instances we generate are isotropic and centered so that the secret
has covariance Σ = I (or Σ = ΠΛ if Λ is not of full rank) and µ = 0. Thus, on average, we
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have ‖s‖2 = rank(Σ) = dim(Λ). Therefore, β can be estimated as the minimum integer
that satisfies √

β ≤ δ
2β−dim(Λ)−1
β · Vol(Λ)1/dim(Λ). (5.7)

While β must be an integer as a BKZ parameter, we nevertheless provide a continuous
value, for a finer comparison of the difficulty of an instance.

Remark 24. To predict security, one does not need the basis of Λ, but only its dimen-
sion and its volume. Similarly, it is not necessary to explicitly compute the isotropiza-
tion matrix M of Section 5.3.3, thanks to Lemma 22: Vol(Λ ·M) = rdet(M) Vol(Λ) =
rdet(Σ′)−1/2 Vol(Λ). These two shortcuts will allow us to efficiently make predictions for
cryptographically large instances, in our lightweight implementation of Section 5.5.

Refined prediction for small blocksizes For experimental validation purposes of our
work, we prefer to have accurate prediction even for small blocksizes; a regime where
those predictions are not accurate with the current state of the art. Léo Ducas suggested
a refined strategy using BKZ-simulation and a probabilistic model, we refer to the paper
[Dac+20] for more details.

5.4 Including hints

In this Section, we define several categories of hints—perfect hints, modular hints,
approximate hints (conditioning and a posteriori), and short vector hints—and
show that these types of hints can be integrated into a DBDD instance. Hints belonging to
these categories typically have the form of a linear equation in s (and possibly additional
variables). As emphasized in Section 5.1, these hints have lattice-friendly forms and their
usefulness in realistic applications may not be obvious. We refer to Section 5.6 for detailed
applications of these hints.

The technical challenge, therefore, is to characterize the effect of such hints on the
DBDD instance—i.e. determine the resulting (Λ′,µ′,Σ′) of the new DBDD instance, after
the hint is incorporated.

Henceforth, let I = DBDDΛ,µ,Σ be a fixed instance and let s be its secret solution.
Each hint will introduce new constraints on s and will ultimately decrease the security
level.

Non-Commutativity It should be noted that many types of hints commute: integrat-
ing them in any order will lead to the same DBDD instance. Potential exceptions are
numerical modular hints (See later in Section 5.4.2) and a posteriori approximate
hints (See later in Section 5.4.4): they do not always commute with the other types of
hints, and do not always commute between themselves, unless the vectors v’s of those
hints are all orthogonal to each other. The reason is: in these cases, the distribution in
the direction of v is redefined which erases the prior information.

5.4.1 Perfect Hints

Definition 26 (Perfect hint). A perfect hint on the secret s is the knowledge of v ∈ Zd−1

and l ∈ Z, such that
〈s, v〉 = l.
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A perfect hint is quite strong in terms of additional knowledge. It allows decreasing the
dimension of the lattice by one. One could expect such hints to arise from the following
scenarios:

• The full leak without noise of an original coefficient, or even an unreduced interme-
diate register since most of the computations are linear. For the second case, one
may note that optimized implementations of NTT typically attempt to delay the
first reduction modulo q, so leaking a register on one of the first few levels of the
NTT would indeed lead to such a hint.

• A noisy leakage of the same registers, but with still a rather high guessing confi-
dence. In that case it may be worth making the guess while decreasing the success
probability of the attack.3 This could happen in a cold-boot attack scenario. This
is also the case in the single trace attack on Frodo [Bos+18a] that we will study as
one of our examples in Section 5.6.1.

• More surprisingly, certain schemes, including some NIST candidates offer such a
hint ‘by design’. Indeed, LAC and Round5 choose ternary secret vectors with a
prescribed number of 1’s and −1’s, which directly induce one or two such perfect
hints. This will be detailed in Section 5.6.3.

Integrating a perfect hint into a DBDD instance Let v ∈ Zd−1 and l ∈ Z be such that
〈s,v〉 = l. Note that the hint can also be written as

〈s̄, v̄〉 = 0,

where s̄ is the extended LWE secret as defined in Eq. (5.3) and v̄ := (v ; −l).

Remark 25. Here we understand the interest of using Kannan’s embedding before in-
tegrating hints rather than after: it allows to also homogenize the hint, and therefore to
make Λ′ a proper lattice rather than a lattice coset (i.e. a shifted lattice).

Including this hint is done by modifying the DBDDΛ,µ,Σ to DBDDΛ′,µ′,Σ′ , where:

Λ′ = Λ ∩
{
x ∈ Zd | 〈x, v̄〉 = 0

}
Σ′ = Σ− (v̄Σ)T v̄Σ

v̄Σv̄T
(5.8)

µ′ = µ− 〈v̄,µ〉
v̄Σv̄T

v̄Σ (5.9)

We now explain how to derive the new mean µ′ and the new covariance Σ′. Let z be
the random variable 〈s̄, v̄〉, where s̄ has mean µ and covariance Σ. Then µ′ is the mean
of s̄ conditioned on z = 0, and Σ′ is the covariance of s̄ conditioned on z = 0. Using
Theorem 12, we obtain the corresponding conditional mean and covariance.

We note that lattice Λ′ is an intersection of Λ and a hyperplane orthogonal to v̄. Given
B as the basis of Λ, by Lemma 18, a basis of Λ′ can be computed as follows:

1. Let D be dual basis of B. Compute D⊥ := D ·Π⊥v̄ .

2. Apply LLL algorithm on D⊥ to eliminate linear dependencies. Then delete the first
row of D⊥ (which is 0 because with the hyperplane intersection, the dimension of
the lattice is decremented).

3One may then re-amplify the success probability by retrying the attack making guesses at different locations
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3. Output the dual of the resulting matrix.

While polynomial time, the above computation is quite heavy, especially as there is no
convenient library offering a parallel version of LLL. Fortunately, for predicting attack
costs, one only needs the dimension of the lattice Λ and its volume. These can easily be
computed assuming v̄ is a primitive vector (See Definition 25) of the dual lattice: the
dimension decreases by 1, and the volume increases by a factor ||v̄||. This is stated and
proved in Lemma 19. Intuitively, the primitivity condition is needed since then one can
scale the leak to 〈s, fv〉 = fl for any non-zero factor f ∈ R and get an equivalent leak;
however there is only one factor f that can ensure that f v̄ ∈ Λ∗, and is primitive in it.

Remark 26. Note that if v̄ is not in the span of Λ—as typically occurs if other non-
orthogonal perfect hints have already been integrated—Lemma 19 should be applied to the
orthogonal projection v̄′ = v̄ · ΠΛ of v̄ onto Λ. Indeed, the perfect hint 〈s̄, v̄′〉 = 0
replacing v̄ by v̄′ is equally valid.

5.4.2 Modular Hints

Definition 27 (Modular hint). A modular hint on the secret s is the knowledge of v ∈
Zd−1, k ∈ Z and l ∈ Z, such that

〈s, v〉 = l mod k.

We can expect such hints to arise from several scenarios:

• obtaining the value of an intermediate register during LWE decryption would likely
correspond to giving such a modular equation modulo q. This is also the case if an
NTT coefficient leaks in a Ring-LWE scheme. It can also occur “by design” if the
LWE secret is chosen so that certain NTT coordinates are fixed to 0 modulo q, as
is the case in some instances of Order LWE [Bol+19].

• obtaining the absolute value a = |s| of a coefficient s implies s = a mod 2a, and such
a hint could be obtained by a timing attack on an unprotected implementation of a
table-based sampler, in the spirit of [Bru+16].

• obtaining the Hamming weight of the string b1b2 . . . b
′
1b
′
2 . . . used to sample a centered

binomial coefficient s =
∑
bi −

∑
b′i (as done in NewHope and Kyber [Sch+19;

Pöp+19]) reveals, in particular, s mod 2. Indeed, the latter string (or at least some
parts of it) is more likely to be leaked than the Hamming weight of s.

Integrating a modular hint into a DBDD instance. Let v ∈ Zd, k ∈ Z and l ∈ Z be
such that 〈s,v〉 = l mod k. Note that the hint can also be written as

〈s̄, v̄〉 = 0 mod k (5.10)

where s̄ is the extended LWE secret as defined in Eq. (5.3) and v̄ := (v ; −l). We refer to
Remark 25 for the legitimacy of such dimension increase.

Intuitively, such a hint should only sparsify the lattice, and leave the average and the
variance unchanged. This is not entirely true, this is only (approximately) true when
the variance is sufficiently large in the direction of v to ensure smoothness, i.e. when
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k2 � vΣvT ; one can refer to [MR07, Lemma 3.3 and Lemma 4.2] for the quality of that
approximation. In this smooth case, we therefore have:

Λ′ = Λ ∩
{
x ∈ Zd | 〈x,v〉 = 0 mod k

}
(5.11)

µ′ = µ (5.12)
Σ′ = Σ (5.13)

On the other hand, if k2 � vΣvT , then the residual distribution will be highly concen-
trated on a single value, and one should therefore instead use a perfect 〈s, v〉 = l+ ik for
some i.

Numerical solution. One can wonder how to include the hint if the smoothness is not
ensured and if it is not a perfect hint. One can always resort to a numerical computation
of the average µc and the variance σ2

c of the one-dimensional centered discrete Gaussian
of variance σ2 = vΣvT over the coset l + kZ. Thus, the lattice should then be sparsified
as in the smooth case with Equation Eq. (5.11) and the following corrections must be
applied:

µ′ = µ +
µc − 〈v̄,µ〉

v̄Σv̄T
v̄Σ (5.14)

Σ′ = Σ +

(
σ2
c

(v̄Σv̄T )2
− 1

v̄Σv̄T

)
(v̄Σ)T (v̄Σ) (5.15)

(5.16)

Intuitively, these formulae completely erase prior information on 〈s, v̄〉, before it is re-
placed by the new average and variance in the adequate direction. Both can be derived
using Theorem 12.

As for perfect hints, the computation of Λ′ can be done by working on the dual lattice.
More specifically:

1. Let D be dual basis of B.

2. Redefine v̄ := v̄ ·ΠΛ, noting that this does not affect the validity of the hint.

3. Append v̄/k to D and obtain D′

4. Apply LLL algorithm on D′ to eliminate linear dependencies. Then delete the first
row of D′ (which is 0 since we introduced a linear dependency).

5. Output the dual of the resulting matrix.

Also, as for perfect hints, the parameters of the new lattice Λ′ can be predicted: the
dimension is unchanged, and the volume increases by a factor k under a primitivity
condition, which is proved by Lemma 20.

5.4.3 Approximate Hints (conditioning)

Definition 28 (Approximate hint). An approximate hint on secret s is the knowledge of
v ∈ Zd−1 and l ∈ Z, such that

〈s, v〉+ e = l,

where e models noise following a centered normal distribution of standard deviation σ2
e ,

independent of s.
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One can expect such hints from:

• any noisy side channel information about a secret coefficient. This is the case of our
study in Section 5.6.1.

• decryption failures. In Section 5.6.2, we show how this type of hint can represent
the information gained by a decryption failure.

To include this knowledge in the DBDD instance, we must combine this knowledge
with the prior knowledge on the solution s of the instance.

Integrating an approximate hint into a DBDD instance Let v ∈ Zd−1 and l ∈ Z be
such that 〈s,v〉 ≈ l. Note that the hint can also be written as

〈s̄, v̄〉+ e = 0 (5.17)

where s̄ is the extended LWE secret as defined in Eq. (5.3), v̄ := (v ; −l), and e has
N1(0, σ2

e) distribution. The unique shortest non-zero solution of DBDDΛ,µ,Σ, is also the
unique solution of the instance DBDDΛ′,µ′,Σ′ where

Λ′ = Λ (5.18)

Σ′ = Σ− (v̄Σ)T v̄Σ

v̄Σv̄T + σ2
e

(5.19)

µ′ = µ− 〈v̄,µ〉
v̄Σv̄T + σ2

e

v̄Σ (5.20)

We note that Eq. (5.18) comes from

Λ′ := Λ ∩
{
x ∈ Zd | 〈x, v̄〉+ e = 0, for all possible e ∼ N1(0, σ2

e)
}

= Λ.

The new covariance and mean follow from Theorem 12.

Consistency with Perfect Hint Note that if σe = 0, we fall back to a perfect hint
〈s,v〉 = l. The above computation of Σ′ Eq. (5.19) (resp. µ′ Eq. (5.20)) is indeed
equivalent to Eq. (5.8) (resp. Eq. (5.9)) from Section 5.4.1. Note however, in our imple-
mentation, that to avoid singularities, we require the span of Span(Σ + µTµ) = Span(Λ)
(See the requirement in Equation Eq. (5.1)): If σe = 0, one must instead use a Perfect
hint.

Multi-dimensional approximate hints The formulae of [Liu19] are even more general,
and one could consider a multidimensional hint of the form sV + e = l, where V ∈ Rn×k

and e a Gaussian noise of any covariance Σe. However, those general formulae require
explicit matrix inversion which becomes impractical in large dimension. We therefore only
implemented full-dimensional (k = n) hint integration in the super-lightweight version of
our tool, which assumes all covariance matrices to be diagonal. These will be used for
hints obtained from decryption failures in Section 5.6.2.

5.4.4 Approximate Hint (a posteriori)

In certain scenarios, one may more naturally obtain directly the a posteriori distribution
of 〈s,v〉, rather than a hint 〈s,v〉 + e = l for some error e independent of s. Such a
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scenario is typical in template attacks, as we exemplify via the single trace attack on
Frodo from [Bos+18a], which we study in Section 5.6.1.

Given the a posteriori distribution of 〈s̄, v̄〉, one can derive its mean µap and variance
σ2

ap and apply the corrections to compute the new mean and covariance exactly as in
Eqs. (5.14) and (5.15).

Λ′ = Λ (5.21)

µ′ = µ +
µap − 〈v̄,µ〉

v̄Σv̄T
v̄Σ (5.22)

Σ′ = Σ +

(
σ2

ap

(v̄Σv̄T )2
− 1

v̄Σv̄T

)
(v̄Σ)T (v̄Σ) (5.23)

5.4.5 Short vector hints

Definition 29 (Short vector hint). A short vector hint on the lattice Λ is the knowledge
of a short vector v such that

v ∈ Λ.

Note that such hints are not related to the secret, and are not expected to be obtained
by side-channel information, but rather by the very design of the scheme. In particular,
the lattice Λ underlying LWE instance modulo q contains the so-called q-vectors, i.e. the
vectors (q, 0, 0, . . . , 0) and its permutations. These vectors are in fact implicitly exploited
in the literature on the cryptanalysis of LWE since at least [LP11]. Indeed, in some
regimes, the best attacks are obtained by ‘forgetting’ certain LWE equations, which can
be geometrically interpreted as a projection orthogonally to that vector. Note that, among
all hints, the short vector hints should be the last to be integrated. In our context, we
need to generalize this idea beyond q-vector because the q-vectors may simply disappear
after the integration of a perfect or modular hint. For example, after the integration
of a perfect hint 〈s, (1, 1, . . . , 1)〉 = 0, all the q-vectors are no longer in the lattice, but
(q,−q, 0, . . . , 0) still is, and so are all its permutations.

Resolving the DBDD problem resulting from this projection will not directly lead to
the original secret, as projection is not injective. However, as long as we keep n + 1
dimensions out of the n + m + 1 dimensions of the original LWE instance, we can still
efficiently reconstruct the full LWE secret by solving a linear system over the rationals.

Integrating a short vector hint into a DBDD instance It is the case when the secret
vector is short enough to be a solution after applying projection Π⊥v̄ on DBDDΛ,Σ,µ .

Λ′ = Λ ·Π⊥v̄ (5.24)
Σ′ = (Π⊥v̄ )T ·Σ ·Π⊥v̄ (5.25)
µ′ = µ ·Π⊥v̄ (5.26)

To compute a basis of Λ′, one can simply apply the projection to all the vectors of its
current basis, and then eliminate linear dependencies in the resulting basis using LLL.

Remark 27. Once a short vector hint v ∈ Λ has been integrated, Λ has been transformed
into Λ′. And, if one has to perform another short vector hint integration v1 ∈ Λ, v1 should
be projected onto Λ′ with v · ΠΛ′ ∈ Λ′. In our implementation, however, this has been
taken into account and one can simply apply the same transformation as above, replacing
a single vector v by a matrix V.
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The dimension of the lattice decreases by one (or by k, if one directly integrates a
matrix of k vectors) and the volume of the lattice also decreases according to Lemma 21.

Worthiness and choice of short vector hints Integrating such a hint induces a trade-
off between the dimension and the volume, and therefore it is not always advantageous
to integrate. We refer to [Dac+20] for a discussion on the worthiness of the short vector
hints. In the typical studied cases, the short vector hints are either the q-vectors or some
simple transformation of the q-vectors (See Section 5.6.3 for example).

5.5 Implementation

5.5.1 Our sage implementation

We propose three implementations of our framework, all following the same python/sage
9.0 API.4 More specifically, the API and some common functions are defined in a sage
file denoted DBDD_generic.sage, as a class DBDD_Generic. Three derived classes are then
given:

1. The class DBDD (provided in DBDD.sage) is the full-fledged implementation: i.e. it
fully maintains all information about a DBDD instance as one integrates hints: the
lattice Λ, the covariance matrix Σ and the average µ. While polynomial time,
maintaining the lattice information can be quite slow, especially since consecutive
intersections with hyperplanes can lead to manipulations on rationals with large
denominators. It also allows to finalize the attack, running the homogenization,
isotropization and lattice reduction, based on the fplll library available through sage.
We note that if one were to repeatedly use perfect or modular hints, a lot of effort
would be spent on uselessly alternating between the primal and the dual lattice.
Instead, we implement a caching mechanism for the primal and dual basis, and only
update them when necessary.

2. The class DBDD_predict (provided in DBDD_predict.sage) is the lightweight imple-
mentation: it only fully maintains the covariance information, and the parameters
of the lattice (dimension, volume). It must therefore work under assumptions about
the primitivity of the vector v; in particular, it cannot detect hints that are redun-
dant. If one must resort to this faster variant on large instances, it is advised to
consider potential (even partial) redundancy between the given hints, and to run a
comparison with the previous on small instances with similarly generated hints.

3. The class DBDD_predict_diag (provided in DBDD_predict_diag.sage) is the super-
lightweight implementation. It maintains the same information as the above, but
requires the covariance matrix to remain diagonal at all times. In particular, one
can only integrate hints for which the directional vector v is colinear with a canonical
vector.

5.5.2 Tests and validation

In our paper [Dac+20], we present a demonstration of our tool with some extracts of
Sage 9.0 code. We implement two tests to verify the correctness of our scripts, and more
generally the validity of our predictions.

4While we would have preferred a full python implementation, we are making a heavy use of linear algebra
over the rationals for which we could find no convenient python library.
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Figure 5.5: Experimental verification of the security decay predictions for each type of hint. Each data
point was averaged over 256 samples.

Consistency checks. Our first test simply verifies that all three classes always agree
perfectly. More specifically, we run all three versions on a given instance, integrating the
same random hint in all of them, and compare their hardness prediction. We first test
using the full-fledged version that the primitivity condition does hold, and discard the
hint if not, as we know that predictions cannot be correct on such hints. This verification
passes.

Prediction verifications. We now verify experimentally the prediction made by our tool
for various types of hints, by comparing those predictions to actual attack experiments.
This is done for a given set of LWE parameters, and increasing the number of hints. The
details of the experiments and the results are given in Fig. 5.5.

While our predictions seem overall accurate, we still note a minor discrepancy of up to
2 or 3 bikz in the low blocksize regime. This exceeds the error made by prediction on the
attack without any hint, which was below 1 bikz, even in the same low blocksize regime.
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We suspect that this discrepancy is due to residual q-vectors, or small combinations of
them, that are hard to predict for randomly generated hints but would still benefit by
lattice reduction. We tested that hypothesis by running similar experiments, but leaving
certain coordinates untouched by hints, so to still explicitly know some q-vectors for
short-vector hint integration, if they are “worthy”. This did not to improve the accuracy
of our prediction. We are at the moment unable to explain it. We nevertheless find
our predictions satisfactory, considering that even without considering hints, previous
predictions [Alb+17] were much less accurate.

5.6 Applications

The purpose of this section is to exemplify our tool on a several known side-channel,
decryption-failures, or classical attacks. We chose several simple scenarios already existing
in the literature to show how our framework can be used. Even though the results in
themselves are not claimed to beat the best known attacks, we believe that it opens the
path for more applications and more elaborate hybrid lattice attacks.

5.6.1 Hints from side channels: application to [Bos+18a]

In [Bos+18a], W. Bos et al. study the feasibility of a single-trace power analysis of the
Frodo Key Encapsulation Mechanism [Nae+19]. We refer to Section 1.1.3 for more details
on this single-trace attack model. Specifically, in a first approach, they analyze the pos-
sibility of a divide-and-conquer attack targeting a multiplication in the key generation.
This attack was claimed unsuccessful in [Bos+18a] because the brute force phase after
recovering a candidate for the private key was too expensive. Along with this unsuccessful
result, a successful powerful extend-and-prune attack is provided in [Bos+18a].

Keeping the purpose of this section in mind, improving the former unsuccessful
divide-and-conquer attack of [Bos+18a] is a perfect application for understanding
the impact of our framework. However, note that we do not claim to have found
the best single-trace attack on Frodo as more powerful dedicated attacks, like in
[Bos+18a], exist.

Frodo KEM. FrodoKEM is based on small-secret-LWE (Hard Problem 10), we outline
here some details necessary to understand the attack. Note that we use different letter
notations from [Nae+19] for consistency with this chapter. For parameters n and q, the
private key is (z ∈ Znq , e ∈ Znq ) where the coefficients of z and e, denoted zi and ei, can take
several values in a small set that we denote L. The public key is

(
A ∈ Zn×nq ,b = zA + e

)
.

The goal of the attack is to recover z by making measurements during the multiplication
between z and A when computing b in the key generation. Note that there is no multi-
plication involving e and thus we do not target it in this attack. Six sets of parameters
are considered: CCS1, CCS2, CCS3 and CCS4 introduced in [Bos+16] and NIST1 and
NIST2 introduced in [Nae+17]. For example, with NIST1 parameters,

n = 640, q = 215 and L = {−11, · · · , 11}.

Side-channel simulation. The divide-and-conquer attack provided by [Bos+18a] simu-
lates side-channel information using ELMO, a power simulator for a Cortex M0 [MOW17].
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This tool outputs simulated power traces using an elaborate leakage model with Gaussian
noise. Thus, it is parameterized by the standard deviation of the side-channel noise. For
proofs of concept, the authors of [MOW17] suggest to choose the standard deviation of
the simulated noise as

σSimNoise := 0.0045,

for a realistic leakage modelization. This standard deviation was also the one chosen in
[Bos+18a, Fig. 2b] and W. Bos et al. implemented a Matlab script, that calls ELMO,
to simulate the side-channel information applied on Frodo. This precise side-channel
simulator was provided to us by the authors of [Bos+18a] and we were able to re-generate
all their data with Matlab still using σSimNoise = 0.0045.

Template attack. The divide-and-conquer side-channel attack proposed by W. Bos et
al. belongs in the template attack family. Template attacks were introduced in [CRR03].
In a nutshell, these attacks include a profiling phase and an online phase. Let us detail
the template divide-and-conquer attack for Frodo implemented in [Bos+18a].

1. The profiling phase consists in using a copy of the device and recording a large
number of traces using many different known secret values. From these measures, the
attacker can derive the multidimensional distribution of several interest points when
the traces share a same secret coefficient. More precisely, in the case of FrodoKEM,
for a given index i ∈ [0, n − 1], the interest points will be the instants in the trace
when zi is multiplied by the coefficients of A (n interest points in total). Let us
define

ci := (T [ti,0], . . . , T [ti,n−1]) c ∈ Rn, (5.27)

where T denotes the trace measurement and (ti,k) denote the instants of the muti-
plication of zi with the coefficients Ai,k for (i, k) ∈ [0, n− 1]. The random variable
vector associated to ci is denoted Ci. For each i ∈ [0, n− 1] and x ∈ L, the goal of
the profiling phase is to learn the center of the probability distribution

Di,x(c) := P [Ci = c | zi = x] .

By hypothesis for template attacks (see [CRR03, Section 2.1]), Di,x is assumed to
follow a multidimenstional normal distribution of standard deviation σSimNoise. Thus,
the attacker recovers the center of Di,x for each i ∈ [0, n−1] and x ∈ L by averaging
all the measured ci that validate zi = x. The center of Di,x is denoted ti,x and
we call it a template. Before going further, [Bos+18a] actually make the following
independence assumption.

Assumption 5. ti,x only depends on x and is independent from the index i. Thus,
ti,x = tx.

Essentially, this common assumption considers that the index i ∈ [0, n − 1] of the
target coefficient do not influence the leakage. Consequently, the attacker only has
to derive t0,x for example.

2. In a second step, the attacker knows the templates tx for all x ∈ L. She also knows
the interest points ti,k as defined above in Eq. (5.27). She will construct a candidate
z̃ for the secret z by recovering the coefficients one by one. For each unknown secret
coefficient zi, she makes the measurement ci as defined in Eq. (5.27). Using this
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Table 5.1: Examples of scores associated to the secret values si ∈ {0,±1}, after the side-channel analysis
of [Bos+18a] for NIST1 parameters. The best score in each score table is highlighted. This best guess is
correct for the first 3 score table, but incorrect for the last one.

zi
S

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
0 -4098 -3918 -4344 -2580 -3212 -3108 -3758 -3155 -3583 -3498 -3900 -340
1 -3273 -3114 -3491 -1951 -2495 -2405 -2972 -2445 -2819 -2744 -3098 -365
−1 -341 -335 -352 -465 -358 -369 -329 -362 -331 -334 -328 -3712
−1 -306 -298 -319 -414 -314 -323 -290 -317 -291 -293 -291 -3608

. . . 1 2 3 4 5 6 7 8 9 10 11
0 . . . -380 -367 -452 -818 -975 -933 -1084 -368 -459 -453 -592
1 . . . -325 -328 -338 -546 -657 -627 -737 -333 -344 -342 -407
−1 . . . -3079 -3195 -2656 -1696 -1461 -1521 -1329 -3231 -2648 -2685 -2201
−1 . . . -2982 -3097 -2564 -1617 -1385 -1444 -1256 -3132 -2556 -2593 -2115

measurement, she can derive an a posteriori probability distribution: with her fixed
i ∈ [0, n− 1] and measured ci ∈ R, she computes for all x ∈ L,

P [zi = x | Ci = ci] =
P [zi = x]

P [Ci = ci]
· P [Ci = ci | zi = x] (5.28)

∝ P [zi = x] · exp

(
−‖ci − tx‖2

2

2σ2
SimNoise

)
(5.29)

In [Bos+18a], a score table, denoted (Si[x])x∈L is derived from the a posteriori dis-
tribution as follows,

Si[x] := ln (P [zi = x | Ci = ci]) (5.30)

= ln (P [zi = x])− ‖ci − tx‖2
2

2σ2
SimNoise

. (5.31)

Finally, the output candidate for zi is z̃i := argmaxx∈L(Si[x]).

One can use the presented attack in “black-box” to generate the score tables using
the script from [Bos+18a]. As an example, using the NIST1 parameters, show several
measured scores (S[−11], · · · , S[11]) corresponding to several secret coefficients in Ta-
ble 5.1. The first line corresponds to a secret equal to 0, the second line to 1 and the
third and fourth line to −1. The last line is an example of failed guessing because we see
that the outputted candidate is not −1. We remark that the values having the opposite
sign are assigned a very low score, we conjecture that it is because the sign is filling the
register and then the Hamming weight of the register will be very far from the correct one.

With this template attack, one can recover z̃ ≈ z. However, W. Bos et al. could not
conclude the attack with a key recovery even though much information leaked about the
secret. Frustratingly, a brute force phase to derive z from z̃ cannot lead to any security
threat as stated in [Bos+18a, Section 3]. They actually pointed out an interesting open
question: "possibly [...] novel lattice reduction algorithms [can] take into account side-
channel information". The following solves this open question by combining the knowledge
obtained in the divide-and-conquer template attack of [Bos+18a] with our framework.
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Table 5.2: Probability distributions derived from Table 5.1, along with variances and centers.

zi
A posteriori distribution

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0.001 0 0 0 0 0.258 0 0.035 0.002 0.704 0
−1 0 0 0 0 0 0 0.560 0 0.206 0.028 0.206 0

. . . 1 2 3 4 5 6 7 8 9 10 11 center variance
0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 . . . 0.95 0.4 0 0 0 0 0 0.1 0 0 0 1.05 0.06
−1 . . . 0 0 0 0 0 0 0 0 0 0 0 -2.11 3.11
−1 . . . 0 0 0 0 0 0 0 0 0 0 0 -3.68 2.63

Table 5.3: Cost of the attacks without/with hints without/with guesses.

NIST1 NIST2 CCS1 CCS2 CCS3 CCS4
Attack without hints (bikz) 487 708 239 448 492 584
Attack with hints (bikz) 330 423 128 123 219 230
Attack with hints & guesses (bikz) 292 298 70 29 124 129
Number of guesses g 100 250 200 300 250 250
Success probability 0.86 0.64 0.87 0.77 0.81 0.84

Our refinement. We first instantiate a DBDD instance with a chosen set of parameters.
Then we assume that, for each secret coefficient zi, we are given the associated score
table Si thanks to the presented template attack. We simply go back to the a posteriori
distribution in Eq. (5.29) by applying the exp() and renormalizing the score table. As an
example, we show the probability distributions derived from Table 5.1, along with their
variances and centers in Table 5.2.

Finally, we use our framework to introduce n a posteriori approximate hints to our
DBDD instance with the derived centers and variances for each score table. When the
variance is exactly 0, we integrate perfect hints instead.

Results. One can note that the obtained security fluctuates a bit from instance to in-
stance, as it depends on the strength of the hints, which themselves depend on the ran-
domness of the scheme. In the first two lines of Table 5.3, we show the new security with
the inclusion of the approximate hints averaged on 50 tests per set of parameters.

Guessing. To improve the attack further, one can note from Table 5.2 that certain key
values have a very high probability of being correct, and assuming it is, one can replace
an approximate hint with a perfect one. For example, considering the second line of
Table 5.2, the secret has a probability of 0.95 to be 1 and thus guessing it trades a perfect
hint for a decrease of the success probability of the attack by 5%. This hybrid attack
exploiting hints, guesses and lattice reduction, works as follows. Let g be a parameter.

1. Include all the approximate and perfect hints given by the score tables,

2. Order the coefficients of the secret zi according to the maximum value of their a
posteriori distribution table,
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3. Include perfect hints for the g first coefficients and then solve and check the solution.

Increasing the number of guesses g leads to a trade-off between the cost of the attack
and its success probability. We have chosen here a success probability larger than 0.6,
while reducing the attack cost by 38 to 145 bikz depending on the parameter set. Given
that 1 bit of security corresponds roughly to 3 or 4 bikz, this is undoubtedly advantageous.

The results presented above are very recent (lastly improved on May the 20th 2020).
We remark that, with these results, the attacks with guesses on the parameters
CCS1 and CCS2 seem doable in practice while it was not the case with our original
results. However, some improvements of the implementation remain to be done in
order to actually mount the attack. The full-fledged implementation cannot handle
the large matrices of the original DBDD instance. We require another class of
implementation which fully maintains all information about the instance, like the
DBDD class, and assumes that the covariance matrix Σ is diagonal to simplify the
computations, like the DBDD_predict_diag class.

Perspective 8 (Second-guessing.). It should be noted that, given a single trace, one
cannot naively retry the attack to boost its success probability. Indeed, the “second-best"
guess may already have a much lower success probability than the first, and an interesting
perspective boils down to setting up a hybrid attack mixing lattice reduction within our
framework, and key-ranking.

5.6.2 Hints from decryption failures

Another kind of hint our framework can model are hints provided by decryption failures.

Application to [DAn+19a]

In addition to the immediate application of our framework on Section 4.3’s decryption
failure attack (see Section 4.3.3), one can also apply our framework to the anterior work
of D’Anvers et al. [DVV18], as originally presented in our paper [Dac+20]. In the lat-
ter, to compare the predictions given by our tool to the ones from [DVV18], we chose
FRODOKEM-976 parameters, for which we were able to reproduce the data5. We note
that our framework produces essentially similar predictions, as shown in Fig. 5.6, and
refer to our paper for more details on the technique.

Application to the results of Section 4.2.3 ([Bau+19])

As a contribution of this thesis, we apply our framework to the work of Section 4.2.3 for
an alternative way to recover the private key. In Section 4.2.3, let k be fixed in [0, 255],
the attacker wants to recover the secret S[k] ∈ [−8, 8] and she has access to the sign of a
function f`1,`2,`3 that can be written as

f`1,`2,`3(`0) = V`1,`2,`3︸ ︷︷ ︸
constant

+

∣∣∣∣ `0 −

∈[−8,8]︷︸︸︷
S[k]

2
+

1 + Sign(`0)

2s

∣∣∣∣ .
5https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures/

https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures/
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Figure 5.6: Security decrease as a function of the number of failures in FRODOKEM-976.

As shown in [Bau+19], depending on the value of V`1,`2,`3 that can be negative, two
changes of sign can happen when iterating `0 = {−4, . . . 3}. If two changes of sign do
not happen, we redraw the values of (`1, `2, `3) until two changes of sign occur (we refer
to [Bau+19, Section 4.2] for proving that it terminates). Therefore, let us assume that
there are two changes of sign, which is obtained after ≈ 18 decryption oracle queries on
average. So, this strategy takes around 18 × 1024 ≈ 18, 500 oracle queries, referring to
[Bau+19] for more details about the queries estimation.

Similarly to Section 5.6.1, we perform a learning phase to derive an a posteriori dis-
tribution knowning the position of the changes of sign of f`1,`2,`3 . Before the attack, with
a functional analysis, one can learn the possible position of the changes of sign with the
knowledge of the value of S[k] with the study of the variations of f`1,`2,`3 . For example, if
S[k] = −5, the function can be written as follows

f`1,`2,`3(`0) = V`1,`2,`3 + F [`0 + 4]

with F = [1.5, 0.5, 0.5, 1.5, 2.50065, 3.50065, 4.50065, 5.50065]. Thus, if there are two
changes of sign when iterating f`1,`2,`3 with `0 = {−4, . . . 3}, the only possible issue is
that f`1,`2,`3(`0) < 0 for `0 ∈ {−3,−2}. From this learning phase, one can derive the
aposteriori knowledge of the secret coefficient when knowing the position of the change
of sign. More precisely, we obtain an aposteriori knowledge presented in Table 5.4.

Table 5.4: Aposteriori knowledge after Section 4.2.3 attack

Values `0 that ver-
ify f`1,`2,`3(`0) < 0

{0, 1, 2} {−3,−2} {1} {0} {−3,−2,−1} {−3,−2,−1, 0, 1} ...

Candidate for S[k] 2 or 3 −5 2 or 3 0 or 1 −4 or −3 −4 ...

We can see that for any recovered sign variation of f`1,`2,`3 , there is
1. either one possible value a for S[k], which leads to a perfect hint (diagonal)

S[k] = a;
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2. or two possible consecutive values (a, a+ 1) for S[k], which leads to an approximate
hint (diagonal)

S[k] + e = a+ 0.5 where e ∼ N1(0, 1/12).

It only remains to apply the tool of Chapter 5 to estimate the new security of the scheme
with the knowledge of the secret. We estimate around 1000 approximate hints and 20
perfect ones. By using our tool, the expected bikz security becomes 660, which corresponds
to going from 256 bits of security to roughly 175 bits of security. The number of queries
is the same as estimated in [Bau+19] : 18, 500.

5.6.3 Hints from structural design

LAC is a Ring-LWE round two candidate of the NIST post-quantum competition [Lu+19].
The secrets are two polynomials s0, s1 (denoted s and e in the specifications) whose coeffi-
cients follow a distribution ψn,h, the uniform distribution over ternary vectors {−1, 0, 1}n
with exactly h/2 ones and h/2 minus ones. Thus, two structural perfect hints can be
derived:

n−1∑
i=0

s0[i] = 0 and
n−1∑
i=0

s1[i] = 0.

The same structure appears in the submission Round5 (only for s0) as it also require the
number of −1 coefficients to be balanced with number of 1 coefficients of their ternary
polynomial. This new knowledge has been included in the security analysis, and the results
are stored in Table 5.5. For Round5, we arbitrarily chose for our testing the parameter set
R5ND_{1, 3, 5}KEM_0d. A structure also appears in the NTRU submission [Zha+19],
our framework can be applied but there are some subtleties due to the underlying ring
and the homogenous property of the underlying BDD problem. We refer to our paper for
further details on NTRU [Dac+20].

Remark 28. Note, however, that integrating such hints removes some q-vectors from
the lattice. For LAC, we note that while q-vectors are not in the lattice, a difference of
2 such vectors is still in it, for example, the short vector hint (q,−q, 0, 0, . . . , 0) ∈ Λ.
We iteratively integrate (q,−q, 0, 0, . . . , 0), (0, q,−q, 0, . . . , 0), (0, 0, q,−q, . . . , 0), . . . until
such hints are not worthy anymore, i.e. until such hints do not decrease the cost of the
attack anymore.

Remark 29. A similar structure is present in the candidate NTRU-Prime in its stream-
lined and LPR versions [Ber+19]. In the secret vector, the number of ±1’s is fixed to an
integer w without knowing the exact number of positive and negative ones. Thus, one can
include a modular hint

n−1∑
i=0

s0[i] = w mod 2.

The loss of security is, however, essentially negligible.

5.7 Perspectives

Perspective 9 (Many other side-channel applications). The applications showed in this
frameworks can exemplify our tool. However, there is much left to do on the application
and side-channel side. Among the interesting perspectives, one can cite a power analysis
on the NTT computation or the application in a cold-boot scenario.
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Table 5.5: New security estimates in bikz

LAC-128 LAC-192 LAC-256

without hints 509.03 985.64 1104.83
with 2 hints 505.94 982.74 1101.61

R5ND_{1}KEM_0d R5ND_{3}KEM_0d R5ND_{5}KEM_0d

without hints 494.39 658.67 877.71
with 1 hint 492.94 657.23 876.24

Perspective 10 (Adaptation of this tool to the dual attack). The dual attack is a dis-
tinguishing attack that is also part of the security analysis of several schemes. For most
NIST schemes it is significantly less efficient than the primal attack, but adapting this
work for this attack is still a natural question. In principle, the dual attack could also
be made to work within our framework. However, we see two difficulties. First, the cost
of the dual attack can not be analyzed solely based on the blocksize of SVP oracle calls.
Secondly, the cost of the dual attack has not been confirmed by extensive experiments,
unlike the primal one.
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Appendix

A
Appendix: Masked Gadgets

I Adapting the mask conversions

Using sec+q instead of sec+ in the algorithms of [CGV14, Section 4], we also imme-
diately obtain an algorithm denoted Aq B for converting a mod-q arithmetic masking
x =

∑d
i=0 xi mod q of a value x ∈ [0, q) into a Boolean masking z =

⊕d
i=0 zi of the same

value. The naive way of doing so (see Gadget 13), which is the counterpart of [CGV14,
§4.1], is to simply construct a Boolean masking of each of the shares xi, and to apply
sec+q to those masked values iteratively. This is simple and secure, but as noted by Coron
et al., this approach has cubic complexity in the masking order d (because sec+ and hence
sec+q are quadratic). A more advanced, recursive approach allows to obtain quadratic
complexity for the whole conversion: this is described in [CGV14, Section 4.2], and di-
rectly applies to the lattice-based signatures setting. It was not applied in our paper but
it is presented here as a contribution of this thesis in Gadget 14. When a masked value
composed of an odd number of shares d is presented to the algorithm, it first splits them
in two uneven parts of size bd/2c + 1 and bd/2c before proceeding to the recursive call.
The subroutine Expand takes as input an arbitrary number of shares d′ and the bit size
of the masks. It expands them in 2d′ shares (with a 0 padding) and then refreshes them
using Ref⊕(., w). Applying Expand to both parts, we end up with a part p1 of size d + 1
and a part p2 of size d− 1. We merge the two last shares of p1 and append a zero to p2 to
get two size d masking that are finally added together to yield the final boolean masking.

Aq  B

Mask conversion: This gadget denoted Aq B converts an input (xi)0≤i≤d
in mod q arithmetic masked form to (zi)0≤i≤d in Boolean masked form
such that (

⊕
i zi) = (

∑
i xi mod q). It is described in Gadget 13, and

a more efficient version is in Gadget 14.

Gadget 13 — Conversion arithmetic to Boolean masking; simple cubic version

Data: Arithmetic masking (xi)0≤i≤d modulo q of an integer x; the bit size w
of the returned masks (with 2w > 2q)

Result: A Boolean masking (zi)0≤i≤d of x
1 (zi)0≤i≤d :=

(
0, . . . , 0

)
2 for j = 0 to d do
3 (bi)0≤i≤d :=

(
xj, 0, . . . , 0

)
4 (bi)0≤i≤d ← Ref⊕

(
(bi)0≤i≤d, w

)
5 (zi)0≤i≤d ← sec+q

(
(zi)0≤i≤d, (bi)0≤i≤d, w

)
6 end
7 return (zi)0≤i≤d
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Gadget 14 — Conversion arithmetic to Boolean masking (Aq B)

Data: Arithmetic masking (xi)0≤i≤d modulo q of an integer x; the bit size w
of the returned masks (with 2w > 2q)

Result: A Boolean masking (zi)0≤i≤d of x
1 if d = 0 then
2 z0 := x0

3 return z0

4 end
5 HALF := bd/2c
6 (ai)0≤i≤HALF ← Aq B((xi)0≤i≤HALF)
7 (a′i)0≤i≤2∗HALF := Expand((ai)0≤i≤HALF, w)
8 (yi)0≤i≤b(d−1)/2c ← Aq B((xi)HALF+1≤i≤d)
9 (y′i)0≤i≤2∗b(d−1)/2c := Expand((yi)0≤i≤b(d+1)/2c, w)

10 if d is even then
11 y′2∗b(d−1)/2c := 0

12 x′2∗HALF−1 := x′2∗HALF−1 ⊕ x′2∗HALF
13 end
14 (zi)0≤i≤d ← sec+q((x

′
i)0≤i≤d, (y

′
i)0≤i≤d, w)

Lemma 23. Gadget Aq B is d-SNI secure.

Proof: Let us first prove the d-SNI security of Gadget 13. A graphical representation is
in Fig. A.1.
Let O be a set of observations performed by the attacker on the final returned value,
let IAj be the set of internal observations made in step j in the gadget sec+q (line 5),
and IRj be the set of internal observations made in the step j in the initialization
of b (line 3) or in the Ref⊕ (line 4). Assuming that |O| +

∑
(|IAj | + |IRj |) ≤ d,

the gadget is d-SNI secure, if we can build a simulator allowing to simulate all the
internal and output observations made by the attacker using a set S of shares of
x such that |S| ≤

∑
(|IAj |+ |IRj |).

At the last iteration (see Fig. A.2), the set of observations O∪IAd can be simulated
using a set Szd−1

of shares of z and Sbd−1
of shares of b with |Szd−1

| ≤ |O| + |IAd|
and |Sbd−1

| ≤ |O|+ |IAd | (because the gadget sec+q is d-NI secure). Since the Ref⊕
is d-SNI secure, the sets Sbd−1

and IRd can be simulated using a set Sb′d−1
of input

shares with |Sb′d−1
| ≤ |IRd |. If IRd is not empty, then Sb′d−1

may contain xd, so
we add xd to S. For each iteration of the loop, this process can be repeated. At
the very first iteration, several shares of z may be necessary to simulate the set of
observations. However, there are all initialized to 0, nothing is added to S.
At the end we can conclude that the full algorithm can be simulated using the set
S of input shares. Furthermore we have |S| ≤

∑
|IRj | (since aj is added in S only

if IRj is not empty), so we can conclude that |S| ≤
∑
|IAj |+ |IRj | which concludes

the proof. The security of Aq B (Gadget 14) is the same. The only difference is
that we generalize it for d being arbitrary (i.e. non power of two). This still keeps
the d-SNI property.

I The reverse mask conversion
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(0, 0, ..., 0)

Ref⊕ sec+q

(x0, 0, ..., 0) (bi)0≤i≤d
Step 0

Ref⊕ sec+q

(x1, 0, ..., 0) (bi)0≤i≤d

(zi)0≤i≤d

(zi)0≤i≤d

Step 1

...

Ref⊕ sec+q

(xj , 0, ..., 0) (zi)0≤i≤d

(zi)0≤i≤d

Step j

...

Ref⊕ sec+q

(xd, 0, ..., 0) (bi)0≤i≤d

(zi)0≤i≤d

Step d

Figure A.1: Graphical Representation of Aq B

Ref⊕
IRd

sec+q

IAd

(xd, 0, ..., 0)
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d−1

Sbd−1

Szd−1

O

Step d

Figure A.2: Last step of Aq B with probes.
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zGen Neg Aq  B sec+q Full⊕
(zi)0≤i≤d (a′i)0≤i≤d

(xi)0≤i≤d

(yi)0≤i≤d (ai)0≤i≤d
z0

(zi)1≤i≤d

Figure A.3: Graphical Representation of B Aq

B  Aq

Reverse Mask conversion: This gadget denoted B Aq converts an input
(xi)0≤i≤d in a Boolean masked form to (zi)0≤i≤d in mod q arithmetic
masked form such that (

∑
i zi mod q) = (

⊕
i xi). It is described in

Gadget 15.
With both algorithms sec+q and Aq B in hand, we can easily build the B Aq algorithm

by mimicking [CGV14, Algorithm 6]. To convert the Boolean masking (xi)0≤i≤d of x to a
mod-q arithmetic masking, we first generate random integer shares zi ∈ [0, q), 1 ≤ i ≤ d,
uniformly at random. We then define a′i = −zi mod q = q − zi for 1 ≤ i ≤ d and a′0 = 0.
The tuple (a′i)0≤i≤d is thus a mod-q arithmetic masking of the sum a′ = −

∑
1≤i≤d zi mod q.

Using Aq B, we convert this arithmetic masking to a Boolean masking (yi)0≤i≤d, so that⊕d
i=0 yi = a′. Now, let (ai)0≤i≤d = sec+q

(
(xi)0≤i≤d, (yi)0≤i≤d

)
; this is a Boolean masking

of:

a = (x+ a′) mod q =

(
x−

d∑
i=1

zi

)
mod q.

We then securely unmask this value using the Full⊕ procedure, and set z0 = a mod q.
Then, we have:

d∑
i=0

zi mod q = a+
d∑
i=1

zi mod q = x−
d∑
i=1

zi +
d∑
i=1

zi mod q = x mod q.

Gadget 15 — Conversion Boolean to arithmetic masking (B Aq)

Data: Boolean masking (xi)0≤i≤d of an integer x; the modulus q
Result: A arithmetic masking (zi)0≤i≤d of x

1 generate uniform integers (zi)1≤i≤d in [0, q)
2 a′0 := 0
3 a′i := −zi mod q for i = 1, . . . , d

4 (yi)0≤i≤d ← Aq B
(
(a′i)0≤i≤d

)
5 (ai)0≤i≤d ← sec+q

(
(xi)0≤i≤d, (yi)0≤i≤d

)
6 z0 := Full⊕

(
(ai)0≤i≤d

)
7 return (zi)0≤i≤d

Lemma 24. Gadget B Aq is d-SNI secure.

Proof: Full⊕ is d-NI secure and z0 is not revealed after its execution. All the δ0 ≤ d
observations made by the attacker of this last instance of Full⊕ can be perfectly
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simulated with z0 (for the observations performed after the unobserved linear re-
freshing) and at most δ0 − 1 shares of a (for the observations made before the
unobserved linear refreshing).

I AbsVal: Compute an absolute value

sec|.|

Absolute value: This gadget denoted sec|.| takes an input (xi)0≤i≤d in
a Boolean masked and returns an output (zi)0≤i≤d in Boolean masked
form such that (

⊕
i zi) = |

⊕
i xi|. It is described in Gadget 16.

For some masked comparisons, two comparisons on each signed coefficients are neces-
sary. And, sometimes, it is actually less intensive to explicitly compute the absolute value
and do only one comparison. The gadget takes as input any integer x masked in Boolean
form on w bits and outputs its absolute value (i.e. x if x < 2w−1 and x− 2w if x ≥ 2w−1).
Since computers are performing two’s complement arithmetic, the absolute value of x can
be computed as follows:

1. m := x� RADIX − 1

2. |x| := (x+m)⊕m

We recall that we consider signed integers. So, one can note that the � in the first
step is an arithmetic shift and actually writes the sign bit in the whole register. If x is
negative then m = −1 (all ones in the register) and if x is positive then m = 0. The gad-
get sec|.| is using the same technique to compute |x|. The small difference is that the sign
bit is in position w instead of position RADIX. This is why step 1 is moving the sign bit
(modulo 2w) in first position before extending it to the whole register to compute the mask.

Gadget 16 — Absolute Value (sec|.|)
Data: A boolean masking (xi)0≤i≤d of some integer x ∈ Z and an integer w
Result: A boolean masking (zi)0≤i≤d corresponding to the absolute value of x

1 (maski)0≤i≤d := (xi)0≤i≤d � (w − 1)
2 (x′i)0≤i≤d ← Ref⊕((xi)0≤i≤d)
3 (xi)0≤i≤d ← sec+((x′i)0≤i≤d, (maski)0≤i≤d))
4 (zi)0≤i≤d := ((xi)0≤i≤d ⊕ (maski)0≤i≤d) ∧ (2w − 1)
5 return (zi)0≤i≤d

For computing the absolute value of an element x modulo q. It consists in calling
sec|.|(x, dlog2(q)e).

Lemma 25. The gadget sec|.| in Gadget 16 is d-NI secure.

Proof: A graphical representation of sec|.| is in Fig. A.4.
We consider that the attacker made δ ≤ d observations. In the following, we prove
that all these δ observations can be perfectly simulated with at most δ shares of
(xi)0≤i≤d.
In the following, we consider the following distribution of the attacker’s δ obser-
vations: δ1 observed during the computations of the shift that produces shares
of (maski)0≤i≤d, δ2 observed during the computations of the Ref⊕ that produces
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�

Ref⊕

sec+ ⊕,&
(xi)

(xi)

(maski)

(maski)

(x′i)

(xi) (zi)

Figure A.4: sec|.| structure

(x′i)0≤i≤d, δ3 observed during the sec+, and δ4 observed during the final ⊕ and ∧
step. Finally, we have

∑4
i=1 δi ≤ δ.

We build the proof classically from right to left. By linearity for Boolean masking,
the final ⊕ and ∧ step is d-NI. It is also an affine gadget. In other words, each
observation can be simulated with either one share of x or one share of mask.
Thus, all the observations from its call can be simulated with at most δ4 shares
among all the shares of x and mask. Then it can be simulated with at most x1

shares of x and x2 shares of mask with x1 + x2 = δ4.The gadget sec+ is d-NI then
all the observations from its call can be simulated with at most x1 + δ3 shares of
mask and x′. Identically, the shift is d-NI (by linearity), so the observations from
its call can be simulated with at most δ1 + (x1 + δ3) + x2 = δ1 + δ3 + δ4 shares of
x. Finally, all the observations during the computations of sec|.| can be simulated
with at most δ1 + δ2 + δ3 + δ4 ≤ δ shares of x.

I Uniform Rejection Sampling

In many lattice-based Fiat–Shamir with aborts signature schemes, there is a rejection
sampling step. Let us consider a uniform one. This check consists in knowing if an
arithmetically masked element in x ∈ Z/qZ is in the interval [−param, param]. Again,
carrying out this check using mod-q arithmetic masking seems difficult, so we again resort
to Boolean masking using Aq B.

RS

Uniform Rejection Sampling: This gadget denoted RS-Coeff in its co-
efficient version and RS in its polynomial version takes an arithmetic
mod q input (xi)0≤i≤d and an unmasked value param and outputs 1 iff
|
∑

i xi mod q| ≤ param, 0 otherwise. It is presented in Gadget 17
and Gadget 18.

In [Bar+18], we designed a gadget verifying that the centered representative of a
masked integer is greater than −param and applied it to both x and −x. In [Mig+19],
a less computationally intensive approach was taken: their rejection sampling gadget
takes as input an arithmetic masking of a coefficient x ∈ Z/qZ identified by its canonical
representative and checks directly that either x − param is negative or x − q + param is
positive. This can be easily done using precomputed constants (−param−1, 0, . . . , 0) and
(−q + param, 0, . . . , 0). The last approach we introduced (in [GR19]) is similar but we
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first compute the absolute value of x and perform the masked test |x| ≤ param. This
saves the need for a masked operation to aggregate both tests.

Gadget 17 — Rejection sampling for integers (RS-Coeff)

Data: The shared element (xi)0≤i≤d to check in mod-q arithmetic masked
representation; param

Result: The bit rs equal to 1 iff |x| ≤ param, and 0 otherwise.
1 (SUPi)0≤i≤d := (−param, 0, ..., 0)
2 (ai)0≤i≤d ← Aq B((xi)0≤i≤d)
3 (a′i)0≤i≤d ← sec|.|((ai)0≤i≤d, dlog2(q)e)
4 (a′i)0≤i≤d ← sec+q((a

′
i)0≤i≤d, (SUPi)0≤i≤d)

5 (bi)0≤i≤d := ((a′i)0≤i≤d � RADIX− 1)
6 return rs := Full⊕((bi)0≤i≤d)

Lemma 26. Gadget RS-Coeff is d-NI secure.

Proof: The rejection sampling is a succession of gadgets without cycle. Thus, for proving
its d-NI security, it remains to prove the d-NIo or d-NI security of each of its
gadgets: Aq B, sec|.|, sec+q , � and Full⊕. As seen before, Aq B (Lemma 23),
sec|.| (Lemma 25), Full⊕ (Lemma 11) and sec+ (Lemma 14) are d-NI. The � is
linear for Boolean masking, so it is d-NI. Thus, rejection sampling is d-NI.

The Rejection sampling gadget can be generalized for polynomials in Rq (defined
in Eq. (1.3)) by applying RS to each of the coefficient. The values rs(j) correspond
to the conditions of rejection, and more precisely, the positions of the coefficients of the
polynomial that do not pass the rejections. Such a knowledge does not impact the security
of the scheme because the rejection probability does not depend on the position of the
coefficients and their number.

Gadget 18 — Rejection sampling (RS)

Data: A shared polynomial (xi)0≤i≤d to check in mod-q arithmetic masked
representation, param

Result: The bit rs equal to 1 if all the coefficients, denoted x(i) of x satisfy
|x(i)| ≤ param, and 0 otherwise.

1 for j = 0 to n− 1 do
2 rs(j) := RS-Coeff(x(j))
3 end
4 return rs := rs(0) ∧ rs(1) · · · ∧ rs(n−1)

Then, from Remark 5 and Lemma 26, we can make the following corollary.

Corollary 3. Gadget RS is d-NIo secure with public outputs rs(j).

I Masked rounding

In certain schemes, a compression technique [BG14] is introduced to reduce the size
of the signature. It implies rounding coefficients of a polynomial and keeping the k most
significant bits. In many cases, revealing the polynomial before rounding would allow an
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adversary to get extra information on secret values and thus, this operation has to be
done on the masked polynomial.

Rnd

Rounding: This gadget denoted Rnd-Coeff in its coefficient version and
Rnd in its polynomial version in Rq takes an arithmetic mod q in-
put (xi)0≤i≤d and an unmasked value Tail and outputs z = b

∑
i xi

mod qeMst where b·eMst means dropping Tail least significant bits. It is
presented in Gadget 19 and Gadget 20.

The first step is to compute the centered representative of x, i.e. subtract q from
x if x ≥ q/2. The second step is the computation of (x − bxeLst)/2Tail (where b·eLst
defines keeping the Tail least significant bits). We used a small trick here. Subtract-
ing the centered representative modulo 2Tail is actually equivalent to the application of a
rounding to the closest multiple of 2Tail with ties rounded down. Hence we first computed
x+2Tail−1−1 and dropped the Tail least significant bits. This is analogous to computing
bxe = bx+ 0.499 . . . c to find the closest integer to a real value.

Gadget 19 — Masked rounding for integers - (Rnd-Coeff)

Data: An arithmetic masking (xi)0≤i≤d of some integer x, Tail the number
of most significant bits that are kept

Result: An integer z corresponding to the modular rounding of x, i.e.
z = bxeMst where b·eMst denotes dropping the Tail least significant
bits

1 (MINUS_Q_HALFi)0≤i≤d := (−q/2− 1, 0, ..., 0)
2 (CONSTi)0≤i≤d := (2Tail−1 − 1, 0, ..., 0)
3 (x′i)0≤i≤d ← Aq B(xi)0≤i≤d
4 (bi)0≤i≤d ← sec+((x′i)0≤i≤d, (MINUS_Q_HALFi)0≤i≤d)
5 b0 = ¬b0

6 (bi)0≤i≤d := ((bi)0≤i≤d � RADIX− 1)� dlog2(q)e
7 (x′i)0≤i≤d ← Refresh((x′i)0≤i≤d)
8 (x′i)0≤i≤d := (x′i)0≤i≤d ⊕ (bi)0≤i≤d
9 (x′i)0≤i≤d ← sec+((x′i)0≤i≤d, (CONSTi)0≤i≤d)

10 (x′i)0≤i≤d := (x′i)0≤i≤d � Tail

11 return z := Full⊕((x′i)0≤i≤d)

Gadget 20 — Masked rounding (Rnd)

Data: A shared polynomial (xi)0≤i≤d, in mod-q arithmetic masked
representation, Tail the number of least significant bits to drop

Result: The polynomial z corresponding to the modular rounding of x
1 for j = 0 to n− 1 do
2 z(j) ← Rnd-Coeff((x

(j)
i )0≤i≤d, Tail)

3 end
4 return z :=

∑
i z

(i) ·X i

Lemma 27. The gadget Rnd-Coeff in Gadget 19 is d-NI.

Proof: A graphical representation of Gadget 19 is in Fig. A.5. Let δ ≤ d be the number
of observations made by the attacker. Our goal is to prove that all these δ obser-
vations can be perfectly simulated with at most δ shares of (xi)0≤i≤d.
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Figure A.5: Masked Rounding structure MaskedRound

In the following, a distribution of the attacker’s δ observations is considered as
follows: δ1 observed during Aq B calculations producing shares of (x′i)0≤i≤d, δ2 ob-
served during sec+ calculations producing (bi)0≤i≤d, δ3 observed during the switch
and shift stages, δ4 observed during the ⊕ operation, δ5 observed during sec+

calculations producing (x′i)0≤i≤d, δ6 observed during the final shift stage, and δ7

observed during the final Full⊕ stage. Finally, we have
∑7

i=1 δi ≤ δ.

We build the proof from right to left. The algorithm Full⊕ is d-NI. As a conse-
quence, all the observations from its call can be perfectly simulated with at most
δ7 ≤ δ shares of x′. The shift algorithm is a linear operation and thus it is d-NI
secure. Thus, all observations from its call can be perfectly simulated with at most
δ6 + δ7 ≤ δ shares of x′. The algorithm sec+ is d-NI secure and similarly, all the
observations from its call can be simulated with at most δ5 + δ6 + δ7 ≤ δ shares
of x′ and CONST (but the latter is a public constant). The ⊕ operation is also
linear, so it is d-NI. Then, all the observations made from its call can be simulated
with at most δ4 + δ5 + δ6 + δ7 ≤ δ shares of x′ and b, and with the knowledge of
u. Actually, we remark that ⊕ is also a affine gadget. Thus, all the observations
can be exactly simulated with at most v1 shares of x′ and v2 shares of b such that
v1 + v2 = δ4 + δ5 + δ6 + δ7. Let us consider now the switch and shift operations.
They are linear so d-NI secure and thus all observations made from its call can be
simulated with at most δ3+v2 ≤ δ observations on b. Considering the first instance
of sec+, its d − NI security implies that all the observations from its call can be
simulated with at most δ2 + δ3 + v2 ≤ δ shares of x′ and MINUS_Q_HALF (but
the latter is a public constant). Finally, we consider the algorithm Aq B which is
d-NI secure. There are at most v1 + (δ2 + δ3 + v2) =

∑7
i=2 δi observations made on

the outputs and δ1 made locally. Thus, all the observations during Gadget 20 can
be simulated with at most

∑8
i=1 δi ≤ δ ≤ d shares of the input x.

From Remark 5 and Lemma 27, we can make the following corollary.

Corollary 4. Gadget Rnd is d-NI secure, thus d-NIo secure with public outputs z(j).

I Masked well-rounded

In Bai–Galbraith signatures [BG14], the signature scheme can fail the verification and
may have to be restarted even if the rejection sampling test has been successful. This
results from the fact that the signature acts as a proof of knowledge only on the s part
of the private key and not on the error e. Nonetheless, thanks to the rounding, the
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verifier will be to give a correct input to the hash function if the commitment is ’well-
rounded’. Since not well-rounded signatures would leak information on the private key,
this verification has to be performed in masked form.

WRnd

Check the Rounding: This gadget denoted WRnd-Coeff in its coefficient
version and WRnd in its polynomial version takes an arithmetic mod q
input (xi)0≤i≤d and 3 unmasked values param1, param2 and Tail and
outputs 1 iff |

∑
i xi mod q| < param1 and |b

∑
i xi mod qeLst| < param2

where b·eLst denotes keeping the Tail least significant bits. It is pre-
sented in Gadget 21 and Gadget 22.

While the cost of this rather simple operation is negligible compared to polynomial
multiplication in the unprotected signature, this test is fairly expensive in masked form.
Indeed, it requires four comparisons in addition to the extraction of the low bits of x.
The techniques are inspired from RS and Rnd gadgets. After trying the four comparisons
method, we realized that the best strategy was actually to compute both absolute values
with the sec|.| gadget. While comparisons only require one sec+ and one shift, which is
less than sec|.|, the cost of all sec& operations between the results of those comparisons
makes our approach of computing the absolute value slightly better.

Gadget 21 — Masked well-rounded for integers (WRnd-Coeff)

Data: Integer x ∈ Zq in arithmetic masked form (xi)0≤i≤d, param1, param2

and Tail the number of least significant bits that are kept.
Result: wr = 1 iff (|x| ≤ param1) ∧ (|bxeLst| ≤ param2), wr = 0 otherwise.

1 (SUP1i)0≤i≤d := (param1, 0, ..., 0)
2 (SUP2i)0≤i≤d := (param2, 0, ..., 0)
3 (x′i)0≤i≤d ← Aq B(xi)0≤i≤d
4 (ai)0≤i≤d ← sec|.|((x′i)0≤i≤d, dlog2(q)e)
5 (ai)0≤i≤d ← sec+((ai)0≤i≤d, (SUP1i)0≤i≤d))
6 (bi)0≤i≤d := (ai)0≤i≤d � (RADIX− 1)
7 (x′i)0≤i≤d ← Ref⊕((x′i)0≤i≤d)
8 (x′i)0≤i≤d := (x′i)0≤i≤d ∧ 2Tail − 1
9 (yi)0≤i≤d ← sec|.|((x′i)0≤i≤d, Tail)

10 (yi)0≤i≤d ← sec+((yi)0≤i≤d, (SUP2i)0≤i≤d))
11 (b′i)0≤i≤d := (yi)0≤i≤d � (RADIX− 1)
12 (bi)0≤i≤d ← sec&((bi)0≤i≤d, (b

′
i)0≤i≤d)

13 return wr := Full⊕((bi)0≤i≤d)

Lemma 28. The gadget WRnd-Coeff in Gadget 21 is d-NI secure.

Proof: A graphical representation of Gadget 21 is in Fig. A.6. Let δ ≤ d be the number
of observations made by the attacker. Our goal is to prove that all these δ obser-
vations can be perfectly simulated with at most δ shares of (xi)0≤i≤d.
In the following, we consider the following distribution of the attacker’s δ obser-
vations: δ1 observed during the computation of Aq B that produces shares of
(x′i)0≤i≤d, δ2 observed during the computation of the upper sec|.| that produces
the shares of (ai)0≤i≤d, δ3 observed during the Refresh, δ4 observed during the
computations of the ∧ and sec|.| that produces the shares of (yi)0≤i≤d, δ5 observed
during the sec+ that produces (ai)0≤i≤d, δ6 observed during the sec+ that produces
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Figure A.6: Masked WRnd-Coeff structure

(yi)0≤i≤d, δ7 observed during the shift step that produces (bi)0≤i≤d, δ8 observed
during the shift step that produces (b′i)0≤i≤d, δ9 observed during the sec&, and
finally δ10 observed during the final Full⊕ step. Finally, we have

∑10
i=1 δi ≤ δ.

We build the proof from right to left. The algorithm Full⊕ is d-NI. As a conse-
quence, all the observations from its call can be perfectly simulated with at most
δ10 ≤ δ shares of b. The sec& algorithm is d-NI secure. So, all the observations
from its call can be perfectly simulated with at most δ9 + δ10 ≤ δ shares of b and
b′. If we look at the lower gadgets of the figure, let us consider the shift that
creates b′, the sec+ that creates y and the ∧, sec|.|. All three gadgets are d-NI
secure, so all observations at the right side of ∧, sec|.| can be simulated with at
most δ4 + δ6 + δ8 + δ9 + δ10 ≤ δ share of x′. We now consider the Refresh algorithm.
Since it is d-SNI secure and since the output and local observations are still less
than δ, all observations from its call can be perfectly simulated with at most δ3 ≤ δ
shares of x′. Now let us consider the upper gadgets. The shift that creates b, the
sec+ that creates a and the sec|.| are d-NI secure, so all observations at the right
side of sec|.| can be simulated with at most δ2 + δ5 + δ7 + δ9 + δ10 ≤ δ shares of x′.
Finally, we consider the algorithm Aq B which is d-NI secure. There are at most
δ3 + (δ2 + δ5 + δ7 + δ9 + δ10) ≤ δ observations made on the outputs and δ1 made
locally. Thus, all the observations during WRnd-Coeff can be simulated with at
most δ1 + δ2 + δ3 + δ5 + δ7 + δ9 + δ10 ≤ δ ≤ d shares of the input x.

Gadget 22 — Masked well-rounded (WRnd)

Data: A shared polynomial (xi)0≤i≤d, in mod-q arithmetic masked
representation, param1, param2 and Tail the number of least
significant bits that are kept.

Result: The bit wr equal to 1 if all the coefficients, denoted x(i) of x satisfy
(|x(i)| ≤ param1) ∧ (|bx(i)eLst| ≤ param2)

1 for j = 0 to n− 1 do
2 wr(j) ← WRnd-Coeff(x(j), param1, param2, Tail)
3 end
4 return wr := wr(0) ∧ wr(1) · · · ∧ wr(n−1)

As with the previous large gadgets, the WRnd gadget can be generalized for poly-
nomials in Z/qZ by applying WRnd-Coeff to each of the coefficients. The values wr(j)
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correspond to the conditions of the well rounding, and more precisely, the positions of
the coefficients of the polynomial that do not pass the condition. From Remark 5 and
Lemma 28, we can make the following corollary.

Corollary 5. Gadget WRnd is d-NIo secure with public outputs wr(j).

I Masked Checking

The purpose of this gadget is to check that the sum of the hmost significant coefficients
of its inputs is not too large. To recover the most significant coefficients, this algorithm
uses a straightforwardly masked bubble sort by doing h passes on the list of coefficients.
The bubble sort uses a masked exchange subroutine where the bit 0 or 1, representing the
need for an exchange or not, is also masked. It finishes with a masked comparison with
a precomputed bound.

MChk

Masked checking: This gadget denoted MChk takes an arithmetic mod
q input (xi)0≤i≤d, an unmasked integer h and a an unmasked bound
S. It outputs a bit ms such that ms = 1 iff the sum of the h largest
coefficients of x is larger than S, ms = 0 otherwise. It is presented in
Gadget 23.

Lemma 29. Assuming that the bubble sort in step 2 is a d-NI subgadget, the gadget
MaskedCheck in Gadget 23 is d-NI secure.

Proof: Gadget 23 is a succession of non interfering gadgets with no cycles and the last
gadget is d-NI. Thus, the whole algorithm is d-NI secure.

Gadget 23 — Masked Check (MChk)

Data: An arithmetic masking of a polynomial (xi)0≤i≤d, an integer h and a
bound S

Result: ms := 1 if the sum of its h largest coefficients is larger than the
bound S and 0 otherwise

1 (BOUNDi)0≤i≤d := (−S, 0, . . . , 0)

2 Find the h largest coefficients ((c
(0)
i )0≤i≤d, . . . , (c

(h−1)
i )0≤i≤d) of (xi)0≤i≤d with

a masked bubble sort.
3 (sumi)0≤i≤d ← sec+((c

(0)
i )0≤i≤d, . . . , (c

(h−1)
i )0≤i≤d)

4 (δi)0≤i≤d ← sec+((sumi)0≤i≤d, (BOUNDi)0≤i≤d)
5 (δi)0≤i≤d := ((δi)0≤i≤d � RADIX − 1)
6 return ms := Full⊕(δ)
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ABSTRACT 
 
Lattice-based cryptography is considered as a quantum-safe alternative for the replacement of currently deployed 
schemes based on RSA and discrete logarithm on prime fields or elliptic curves. It offers strong theoretical security 
guarantees, a large array of achievable primitives, and a competitive level of efficiency. Nowadays, in the context of the 
NIST post-quantum standardization process, future standards may ultimately be chosen and several new lattice-based 
schemes are high-profile candidates.  The cryptographic research has been encouraged to analyze lattice-based 
cryptosystems, with a particular focus on practical aspects. This thesis is rooted in this effort.  
In addition to black-box cryptanalysis with classical computing resources, we investigate the extended security of these 
new lattice-based cryptosystems, employing a broad spectrum of attack models e.g. quantum, misuse, timing or 
physical attacks. Accounting that these models have already been applied to a large variety of pre-quantum asymmetric 
and symmetric schemes before, we concentrate our efforts on leveraging and addressing the new features introduced 
by lattice structures. Our contribution is twofold: defensive, i.e. countermeasures for implementations of lattice-based 
schemes and offensive, i.e. cryptanalysis. 
On the defensive side, in view of the numerous recent timing and physical attacks, we wear our designer's hat and 
investigate algorithmic protections. We introduce some new algorithmic and mathematical tools to construct provable 
algorithmic countermeasures in order to systematically prevent all timing and physical attacks. We thus participate in 
the actual provable protection of the GLP, BLISS, qTesla and Falcon lattice-based signatures schemes. 
On the offensive side, we estimate the applicability and complexity of novel attacks leveraging the lack of perfect 
correctness introduced in certain lattice-based encryption schemes to improve their performance. We show that such a 
compromise may enable decryption failures attacks in a misuse or quantum model. We finally introduce an algorithmic 
cryptanalysis tool that assesses the security of the mathematical problem underlying lattice-based schemes when 
partial knowledge of the secret is available. The usefulness of this new framework is demonstrated with the 
improvement and automation of several known classical, decryption-failure, and side-channel attacks. 

MOTS CLÉS 
Cryptographie        Cryptanalyse        Réseaux euclidiens

RÉSUMÉ 

La cryptographie fondée sur les réseaux euclidiens représente une alternative prometteuse à la cryptographie 
asymétrique utilisée actuellement, en raison de sa résistance présumée à un ordinateur quantique universel. Cette 
nouvelle famille de schémas asymétriques dispose de plusieurs atouts parmi lesquels de fortes garanties théoriques de 
sécurité, un large choix de primitives et, pour certains de ses représentants, des performances comparables aux 
standards actuels. Une campagne de standardisation post-quantique organisée par le NIST est en cours et plusieurs 
schémas utilisant des réseaux euclidiens font partie des favoris. La communauté scientifique a été encouragée à les 
analyser car ils pourraient à l'avenir être implantés dans tous nos systèmes. L'objectif de cette thèse est de contribuer à 
cet effort. 
Nous étudions la sécurité de ces nouveaux cryptosystèmes non seulement au sens de leur résistance à la cryptanalyse 
en ''boîte noire'' à l'aide de moyens de calcul classiques, mais aussi selon un spectre plus large de modèles de 
sécurité, comme les attaques quantiques, les attaques supposant des failles d'utilisation, ou encore les attaques par 
canaux auxiliaires. Ces différents types d’attaques ont déjà été largement formalisés et étudiés par le passé pour des 
schémas asymétriques et symétriques pré-quantiques. Dans ce mémoire, nous analysons leur application aux 
nouvelles structures induites par les réseaux euclidiens. Notre travail est divisé en deux parties complémentaires : les  
contremesures et les attaques. 
La première partie regroupe nos contributions à l'effort actuel de conception de nouvelles protections algorithmiques 
afin de répondre aux nombreuses publications récentes d’attaques par canaux auxiliaires. Les travaux réalisés en 
équipe auxquels nous avons pris part on abouti à l'introduction de nouveaux outils mathématiques pour construire des 
contre-mesures algorithmiques, appuyées sur des preuves formelles, qui permettent de prévenir systématiquement les 
attaques physiques et par analyse de temps d'exécution. Nous avons ainsi participé à la protection de plusieurs 
schémas de signature fondés sur les réseaux euclidiens comme GLP, BLISS, qTesla ou encore Falcon. 
Dans une seconde partie consacrée à la cryptanalyse, nous étudions dans un premier temps de nouvelles attaques qui 
tirent parti du fait que certains schémas de chiffrement à clé publique ou d'établissement de clé peuvent échouer avec 
une faible probabilité. Ces échecs sont effectivement faiblement corrélés au secret. Notre travail a permis d’exhiber des 
attaques dites « par échec de déchiffrement » dans des modèles de failles d'utilisation ou des modèles quantiques.  
Nous avons d'autre part introduit un outil algorithmique de cryptanalyse permettant d’estimer la sécurité du problème 
mathématique sous-jacent lorsqu’une information partielle sur le secret est donnée. Cet outil s’est avéré utile pour 
automatiser et améliorer plusieurs attaques connues comme des attaques par échec de déchiffrement, des attaques 
classiques ou encore des attaques par canaux auxiliaires.

KEYWORDS 
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