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Chapter 1

Introduction

1.1 Historical motivation for coordinate descent

The idea of coordinate descent is to decompose a large optimisation problem into a sequence of one-
dimensional optimisation problems. The algorithm was �rst described for the minimization of quadratic
functions by Gauss and Seidel in [Sei74]. Coordinate descent methods have become unavoidable in
machine learning because they are very e�cient for key problems, namely Lasso, logistic regression and
support vector machines. Moreover, the decomposition into small subproblems means that only a small
part of the data is processed at each iteration and this makes coordinate descent easily scalable to high
dimensions.

We �rst decompose the space of optimisation variables X into blocks X1× . . .×Xn = X. A classical
choice when X = Rn is to choose X1 = . . . = Xn = R. We will denote Ui the canonical injection from
Xi to X, that is Ui is such that for all h ∈ Xi,

Uih = (0, . . . , 0︸ ︷︷ ︸
i−1 zeros

,h>, 0, . . . , 0︸ ︷︷ ︸
n−i zeros

)> ∈ X.

For a function f : X1 × . . .×Xn → R, we de�ne the following algorithm.

Algorithm 1 Exact coordinate descent

Start at x0 ∈ X.
At iteration k, choose l = (k mod n) + 1 (cyclic rule) and de�ne xk+1 ∈ X by{

x
(i)
k+1 = arg minz∈Xl f(x

(1)
k , . . . , x

(l−1)
k , z, x

(l+1)
k , . . . , x

(n)
k ) if i = l

x
(i)
k+1 = x

(i)
k if i 6= l

Proposition 1 ([War63]). If f is continuously di�erentiable and strictly convex and there exists x∗ =
arg minx∈X f(x), then the exact coordinate descent method (Alg. 1) converges to x∗.

Example 1 (least squares). f(x) = 1
2‖Ax− b‖

2
2 = 1

2

∑m
j=1(a>j x− bj)2

At each iteration, we need to solve in z the 1D equation

∂f

∂x(l)
(x

(1)
k , . . . , x

(l−1)
k , z, x

(l+1)
k , . . . , x

(n)
k ) = 0

For all x ∈ Rn,
∂f

∂x(l)
(x) = a>l (Ax− b) = a>l alx

(l) + a>l (
∑
j 6=l

ajx
(j))− a>l b

so we get

z∗ = x
(l)
k+1 =

1

‖al‖22

(
− a>l (

∑
j 6=l

ajx
(j)
k ) + a>l b

)
= x

(l)
k −

1

‖al‖22

(
a>l (

n∑
j=1

ajx
(j)
k )− a>l b

)
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Figure 1.1: The successive iterates of the coordinate descent method on a 2D example. The function we
are minimising is represented by its level sets: the bluer is the circle, the lower is the function values.

Example 2 (Adaboost). The Adaboost algorithm [CSS02] was designed to minimise the exponential loss
given by

f(x) =

m∑
j=1

exp(−yjh>j x).

At each iteration, we select the variable l such that l = arg maxiAs∇if(x) and we perform an exact
coordinate descent step along this coordinate.

This variable selection rule is called the greedy or Gauss-Southwell rule. Like the cyclic rule, it leads
to a converging algorithm but requires to compute the full gradient at each iteration. Greedy coordinate
descent is interesting in the case of the exponential loss because the gradient of the function has a few
very large coe�cients and many negligible coe�cients.

1.2 Why is coordinate descent useful?

Solving a one-dimensional optimisation problems is generally easy and the solution can be approximated
very well by algorithms like the bisection method. However, for the exact coordinate descent method, one
needs to solve a huge number of one-dimensional problems and the expense quickly becomes prohibitive.
Moreover, why should we solve to high accuracy the 1-dimensional problem and destroy this solution at
the next iteration?

The idea of coordinate gradient descent is to perform one iteration of gradient descent in the 1-

dimensional problem minz∈Xl f(x
(1)
k , . . . , x

(l−1)
k , z, x

(l+1)
k , . . . , x

(n)
k ) instead of solving it completely. In

general, this reduces drastically the cost of each iteration while keeping the same convergence behaviour.

Algorithm 2 Coordinate gradient descent

Start at x0.
At iteration k, choose ik+1 ∈ {1, . . . , n} and de�ne xk+1 by{

x
(i)
k+1 = x

(i)
k − γi∇if(xk) if i = ik+1

x
(i)
k+1 = x

(i)
k if i 6= ik+1

When choosing the cyclic or greedy rule, the algorithm does converge for any convex function f that
has a Lipschitz-continuous gradient and such that arg minx f(x) 6= ∅.
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In fact we will assume that we actually know the coordinate-wise Lipschitz constants of the gradient
of f , namely the Lipschitz constants of the functions

gi,x : Xi → R

h 7→ f(x+ Uih) = f(x(1), . . . , x(i−1), x(i) + h, x(i+1), . . . , x(n)) (1.1)

We will denote Li = supx L(∇gi,x) this Lipschitz constant. Written in terms of f , this means that

∀x ∈ X,∀i ∈ {1, . . . , n},∀h ∈ Xi, ‖∇f(x+ Uih)−∇f(x)‖2 ≤ Li‖Uih‖2.

Lemma 1. If f has a coordinate-wise Lipschitz gradient with constants L1, . . . , Ln, then ∀x ∈ X,
∀i ∈ {1, . . . , n},∀h ∈ Xi,

f(x+ Uih) ≤ f(x) + 〈∇if(x), h〉+
Li
2
‖h‖2

Proposition 2 ([BT13]). Assume that f is convex, ∇f is Lipschitz continuous and arg minx∈X f(x) 6= ∅.
If ik+1 is chosen with the cyclic rule ik+1 = (k mod n) + 1 and ∀i, γi = 1

Li
, then the coordinate gradient

descent method (Alg. 2) satis�es

f(xk+1)− f(x∗) ≤ 4Lmax(1 + n3L2
max/L

2
min)

R2(x0)

k + 8/n

where R2(x0) = maxx,y∈X{‖x− y‖ : f(y) ≤ f(x) ≤ f(x0)}, Lmax = maxi Li and Lmin = mini Li.

The proof of this result is quite technical and in fact the bound is much more pessimistic than what
is observed in practice (n3 is very large if n is large). This is due to the fact that the cyclic rule behaves
particularly bad on some extreme examples. To avoid such traps, it has been suggested to randomise
the coordinate selection process.

Proposition 3 ([Nes12a]). Assume that f is convex, ∇f is Lipschitz continuous and arg minx∈X f(x) 6=
∅. If ik+1 is randomly generated, independently of i1, . . . , ik and ∀i ∈ {1, . . . , n}, P(ik+1 = i) = 1

n and
γi = 1

Li
, then the coordinate gradient descent method (Alg. 2) satis�es for all x∗ ∈ arg minx f(x)

E[f(xk+1)− f(x∗)] ≤
n

k + n

(
(1− 1

n
)(f(x0)− f(x∗)) +

1

2
‖x∗ − x0‖2L

)
where ‖x‖2L =

∑n
i=1 Li‖x(i)‖22.

Comparison with gradient descent The iteration complexity of the gradient descent method is

f(xk+1)− f(x∗) ≤
L(∇f)

2(k + 1)
‖x∗ − x0‖22

This means that to get an ε-solution (i.e. such that f(xk)−f(x∗) ≤ ε), we need at most L(∇f)
2ε ‖x∗−x0‖22

iterations. What is most expensive in gradient descent is the evaluation of the gradient ∇f(x) with a
cost C, so the total cost of the method is

Cgrad = C
L(∇f)

2ε
‖x∗ − x0‖22

Neglecting the e�ect of randomisation, we usually have an ε-solution with coordinate descent in
n
ε

(
(1 − 1

n )(f(x0) − f(x∗)) + 1
2‖x∗ − x0‖2L

)
iterations. The cost of one iteration of coordinate descent is

of the order of the cost of evaluation one partial derivative ∇if(x), with a cost c, so the total cost of the
method is

Ccd = c
n

ε

(
(1− 1

n
)(f(x0)− f(x∗)) +

1

2
‖x∗ − x0‖2L

)
How do these two quantities compare?
Let us consider the case where f(x) = 1

2‖Ax− b‖
2
2.

• Computing ∇f(x) = A>(Ax− b) amounts to updating the residuals r = Ax− b (one matrix vector
product and a sum) and computing one matrix vector product. We thus have C = O(nnz(A)).
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Figure 1.2: The function in Example 4

• Computing ∇if(x) = e>i A
>(Ax− b) amounts to

1. updating the residuals r = Ax − b: one scalar-vector product and a sum since we have

rk+1 = rk + (x
(ik+1)
k+1 − x(ik+1)

k )Aeik+1
,

2. computing one vector-vector product (the ith column of A versus the residuals).

Thus c = O(nnz(Aeik+1
)) = O(nnz(A)/n) = C/n if the columns of A are equally sparse.

• f(x0)− f(x∗) ≤ L(∇f)
2 ‖x0 − x∗‖22 and it may happen that f(x0)− f(x∗)� L(∇f)

2 ‖x0 − x∗‖22

• L(∇f) = λmax(A>A) and Li = a>i ai with ai = Aei. We always have Li ≤ L(∇f) and it may
happen that Li = O(L(∇f)/n).

To conclude, in the quadratic case, Ccd ≤ Cgrad and we may have Ccd = O(Cgrad/n).

1.3 Two counter-examples

Example 3 (non-convex di�erentiable function).

f(x(1), x(2), x(3)) = −(x(1)x(2) + x(2)x(3) + x(3)x(1)) +
∑3
i=1 max(0, |x(i)| − 1)2

As shown by [Pow73], exact coordinate descent on this function started at the initial point x(0) =
(−1− ε, 1 + ε/2,−1− ε/4) has a limit cycle around the 6 corners of the cube that are not minimisers and
avoids the 2 corners that are minimisers.

This example shows that some care should be taken when applying coordinate descent to a non-convex
function. Even with this restriction, block coordinate descent (also called alternating minimization) is
often used when the objective function satis�es coordinate-wise convexity: when the partial function gi,x
de�ned in (1.1) is convex, we can approximately solve the subproblems. This situation is for instance
encountered for nonnegative matrix factorization [CZA08].

My work of the last years was focused on another challenge of coordinate descent methods: the
treatment of convex but non-di�erentiable functions.

Example 4 (non-di�erentiable convex function [Aus76]). f(x(1), x(2)) = |x(1) − x(2)| −min(x(1), x(2)) +
I[0,1]2(x) where I[0,1]2 is the convex indicator of [0, 1]2. f is convex but not di�erentiable. If we never-

theless try to run exact coordinate descent, the algorithm proceeds as x
(1)
1 = arg minz f(z, x

(2)
0 ) = x

(2)
0 ,

x
(2)
2 = arg minz f(x

(1)
1 , z) = x

(2)
0 , and so on. Thus exact coordinate descent converges in two iterations

to (x
(2)
0 , x

(2)
0 ): the algorithm is stuck on a non-di�erentiability point on the line {x(1) = x(2)} and does

not reach the minimiser (1, 1).

We can see that for non-di�erentiable convex functions, exact coordinate descent may not return the
expected solution. On this example, using the notation of (1.1), even though 0 ∈ ∂gi,x(0), for all i, we
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have 0 6∈ ∂f(x). Said otherwise, even when 0 is not in the subdi�erential of f at x, for all direction i
there may exist a subgradient q ∈ ∂f(x) such q(i) = 0.

A classical workaround is to restrict the attention to composite problems involving the sum of a
di�erentiable function and a separable nonsmooth functions [Tse01].

De�nition 1. A function f is said to be separable if it can be written as

f(x) =

n∑
i=1

fi(x
(i)) .

My contribution includes faster algorithms to deal with non-di�erentiable separable functions, smooth-
ing techniques for non-di�erentiable non-separable functions and primal-dual algorithms. A substantial
amount of my research has been driven by the wish to extend successful optimization techniques to
coordinate descent. I also have a great interest in applications of coordinate descent that involve the
resolution of optimization problems in large dimensions.

1.4 A negative result on universal coordinate descent

The universal gradient algorithm introduced by Nesterov [Nes13b] is an algorithm that is able to minimize
smooth as well as nonsmooth convex functions without any a priori knowledge on the level of smoothness
of the function. This a particularly desirable feature. First of all, the same algorithm may be used for
a large class of problems and, having no parameter to tune, it is very robust. Secondly, the adaptive
process that �discovers� the level of smoothness of the function may take pro�t of a locally favorable
situation, even though the function is di�cult to minimize at the global scope.

Our aim in the paper [FR14] is to design and analyze a universal coordinate descent method for the
problem of minimizing a convex composite function:

min
x∈RN

[F (x) ≡ f(x) + Ψ(x)] , (1.2)

where Ψ is convex and has a simple proximal operator. The function f(x) is convex and can be smooth
or nonsmooth. It is still interesting to consider the composite framework because we can take pro�t of
the proximal operator of Ψ.

Classical coordinate descent algorithm may get stuck at a non-stationary point if applied to a general
nonsmooth convex problem. However, several coordinate-descent-type methods have been proposed for
nonsmooth problems. An algorithm based on the averaging of past subgradient coordinates is presented
in [TKCW12] and a successful subgradient-based coordinate descent method for problems with sparse
subgradients is proposed by Nesterov [Nes12b]. An important feature of these algorithms is that at each
point x, one subgradient ∇f(x) is selected and then the updates are performed according to the ith

coordinate ∇if(x) of the subgradient. This is di�erent to partial subgradients. A coordinate descent
algorithm based on smoothing was proposed in [FR17] for the minimization of nonsmooth functions with
a max-structure. However if one tries to use one of these algorithms on a smooth problem, one would
get a very slow algorithm with iteration complexity in O(1/ε2).

The adaptive procedure of the universal gradient method is based on a line search, the parameter
of which estimates either the Lipschitz constant of the function (if it is nonsmooth) or the Lipschitz
constant of the gradient of the function (if it is smooth). We designed such a line search procedure
for universal coordinate descent. On top of being able to deal with nonsmooth functions, it covers the
composite framework with a nonsmooth regularizer and uses only partial derivatives evaluation.

We extend the theory of parallel coordinate descent developed in [RT15] to the universal coordinate
descent method. In particular, we de�ne a non-quadratic expected separable overapproximation for
partially separable functions that allows us to run independent line searches on all the coordinates to be
minimized at a given iteration. This is a result of independent interest as this is the �rst time that a
line search procedure is introduced for parallel coordinate descent.

We design a universal accelerated coordinate descent method with optimal rates of convergence
O(1/

√
ε) for smooth problems and O(1/ε2) for nonsmooth problems. We recover many previous results.

In particular we recover the universal primal gradient method [Nes13b] when we consider one single block
(in our notation, n = 1) and we recover the accelerated coordinate descent method [FR15]. Moreover,
the line search procedure allows us not to bother about the coordinatewise Lipschitz constant.
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Algorithm 3 Universal coordinate descent

Choose (Lj0)j∈[n] and accuracy ε.
For k ≥ 0 do:

1. Select a subgradient ∇f(xk)

2. Select block jk at random.

3. Find the smallest sk ∈ N such that for

x+
k = arg min

z∈Rj
Ψjk(z) + f(xk) + 〈∇jf(xk), z − x(jk)

k 〉+
1

2
2skLjkk ‖z − x

(jk)
k ‖2(jk),

we have
1

2

1

2sk−1Ljkk

(
‖∇jkf(xk)−∇jkf(x+

k )‖∗(jk)

)2 ≤ 2sk−1Ljkk
2

‖x(jk)
k − (x+

k )(jk)‖2(jk) +
ε

2n
.

4. Set xk+1 = x+
k and Ljkk+1 = 2skLjkk

However, as one can see on Figure 1.3, universal coordinate descent (Algorithm 3) is quite slow, much
slower than the universal gradient method. This is consistent with the dependence in n of the iteration
complexity of the algorithm which is of order n2 when ν = 0, as stated in Theorem 1 below.

0 5 10 15 20 25 30
2

2.5

3

3.5

4

4.5

5
x 10

4

time (s)

F
(x

)−
F

*

Figure 1.3: Universal coordinate descent (green) is much slower than universal gradient (blue) for the
nonsmooth problem minx‖Ax− b‖1 + ‖x‖1.

Theorem 1. Let f be a convex function with Hölder continuous gradient, that is such that there exists
ν ∈ [0, 1] such that for all x, y ∈ Rn, for all ∇f(x) ∈ ∂f(x) and for all ∇f(y) ∈ ∂f(y),

‖∇f(y)−∇f(x)‖∗ ≤Mν‖x− y‖ν .

Let us denote RM (x∗) = maxx∈D‖x−x∗‖M (usual weighted 2-norm) where D is a set containing xk for

all k and Λ̄ = 1
n

∑n
j=1 log2( 2Mj

Lj0
). Algorithm 3 converges to an ε-solution with iteration complexity

min
1≤l≤k

E[f(xl)− f(x∗)] ≤
1

k

k∑
l=1

E[f(xl)− f(x∗)] ≤
n

k
R2

0(x∗) +
2n

2
1+ν

kε
1−ν
1+ν

Λ̄R
M

2
1+ν
ν

(x∗)
2 +

ε

2
.

This study on universal coordinate descent showed that it is indeed possible to design a coordinate
descent method based solely on subgradients but in order to really gain from the coordinate descent
framework when minimizing a nonsmooth function, one should use more information on this function.
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1.5 Plan of the thesis

This thesis summarizes my research work between 2012 and 2018 while I was working at the University
of Edinburgh and at Télécom Paristech. My publications follow three main tracks:

Chapter 2. Fast algorithms for composite di�erentiable-separable functions

Coordinate descent methods have shown very e�cient for problems of the form minx f(x) +∑
i ψi(xi) with f di�erentiable. This chapter is based on the following papers.

[FQRT14] Olivier Fercoq, Zheng Qu, Peter Richtárik, and Martin Taká£. Fast distributed coordinate descent
for minimizing non-strongly convex losses. In IEEE International Workshop on Machine Learning
for Signal Processing, 2014.

[FR15] Olivier Fercoq and Peter Richtárik. Accelerated, parallel and proximal coordinate descent. SIAM
Journal on Optimization, 25(4):1997�2023, 2015.

[FR16] Olivier Fercoq and Peter Richtárik. Optimization in high dimensions via accelerated, parallel, and
proximal coordinate descent. SIAM Review, 58(4):739�771, 2016.

[QRTF16] Zheng Qu, Peter Richtárik, Martin Takác, and Olivier Fercoq. Sdna: stochastic dual newton
ascent for empirical risk minimization. In International Conference on Machine Learning, pages
1823�1832, 2016.

[FQ16] Olivier Fercoq and Zheng Qu. Restarting accelerated gradient methods with a rough strong
convexity estimate. arXiv preprint arXiv:1609.07358, 2016.

[FQ17] Olivier Fercoq and Zheng Qu. Adaptive restart of accelerated gradient methods under local
quadratic growth condition. arXiv preprint arXiv:1709.02300, 2017.

[FQ18] Olivier Fercoq and Zheng Qu. Restarting the accelerated coordinate descent method with a rough
strong convexity estimate. arXiv preprint arXiv:1803.05771, 2018.

Chapter 3. Coordinate descent methods for saddle point problems

In this line of work, I have been trying to show that coordinate descent methods can be applied
successfully to a much wider class of functions that what was previously thought. I have works on
primal-dual methods, smoothing theory and their relations to coordinate descent.

[FR13] Olivier Fercoq and Peter Richtárik. Smooth Minimization of Nonsmooth Functions by Parallel
Coordinate Descent. arXiv:1309.5885, 2013.

[Fer13] Olivier Fercoq, Parallel coordinate descent for the Adaboost problem In International Conference
on Machine Learning and Applications, 2013.

[FR14] Olivier Fercoq and Peter Richtárik. Universal coordinate descent and line search for parallel
coordinate descent. Technical report, The University of Edinburgh, 2014.

[FB15] Olivier Fercoq and Pascal Bianchi. A Coordinate Descent Primal-Dual Algorithm with Large Step
Size and Possibly Non Separable Functions. arXiv preprint arXiv:1508.04625, 2015. Accepted for
publication in SIAM Journal on Optimization.
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Chapter 2

Fast algorithms for composite

di�erentiable-separable functions

In this line of work we focus on the solution of convex optimization problems with a huge number of
variables of the form

min
x∈RN

f(x) + Ψ(x). (2.1)

Here x = (x(1), . . . , x(n)) ∈ RN is a decision vector composed of n blocks with x(i) ∈ RNi , andN =
∑
iNi.

We assume that Ψ : RN → R ∪ {+∞} is a convex (and lower semicontinous) block separable regularizer
(e.g., the L1 norm).

Despite the major limitation on the nonsmooth part of the objective, this setup has had a lot of
applications. For instance, a breakthrough was made in large scale sparse regression when coordinate
descent was shown to be the most e�cient method for the resolution of the Lasso problem [FHHT07].

2.1 Applications

In this section we describe four applications areas for accelerated coordinate descent, all motivated and
building on the work [FR15] where we developed the Accelerated, Parallel and Proximal coordinate
descent method APPROX (see Table 2.1). Empirical risk minimization is a natural framework for
coordinate descent methods but acceleration increased its range of applicability to other domains.

2.1.1 Empirical risk minimization

Empirical risk minimization (ERM) is a powerful and immensely popular paradigm for training statistical
(machine) learning models [SSBD14]. In statistical learning, one wishes to �learn� an unknown function
h∗ : X → Y, where X (set of samples) and Y (set of labels) are arbitrary domains. Roughly speaking, the
goal of statistical learning is to �nd a function (predictor, hypothesis) h : X → Y from some prede�ned
set (hypothesis class) H of predictors which in some statistical sense is the best approximation of h∗.
In particular, we assume that there is an unknown distribution D over ξ ∈ X . Given a loss function
` : Y × Y → R, we de�ne the risk (generalization error) associated with predictor h ∈ H to be

LD(h) = Eξ∼D `(h(ξ), h∗(ξ)). (2.2)

Application Paper Section

Empirical risk minimization [FQRT14, LLX15] 2.1.1
Submodular optimization Ene and Nguyen [EN15] 2.1.2

Packing and covering linear programs Allen-Zhu & Orecchia [AZO15] 2.1.3
Least-squares semide�nite programming Sun, Toh and Yang [STY16] 2.1.4

Table 2.1: Selected applications of APPROX, developed by others after the publication of [FR15].
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The goal of statistical learning is to �nd h ∈ H of minimal risk:

min
h∈H

LD(h). (2.3)

A natural albeit in general intractable choice of a loss function in some applications is `(y, y′) = 0 if
y = y′ and `(y, y′) = 1 otherwise.

Let X be a collection of images, Y = {−1, 1} and let h∗(ξ) be 1 of image ξ contains an image of
a cat, and h∗(ξ) = −1 otherwise. If we are able to learn h∗, we will be able to detect images of cats.
Problems where Y consist of two elements are called classi�cation problems. The domain set can instead
represent a video collection, a text corporus, a collection of emails or any other collection of objects
which we can represent mathematically. If Y is a �nite set consisting of more than two elements, we
speak of multi-class classi�cation. If Y = R, we speak of regression.

One of the fundamental issues making (2.3) di�cult to solve is the fact that the distribution D is not
known. ERM is a paradigm for overcoming this obstacle, assuming that we have access to independent
samples from D. In ERM, we �rst collect a training set of i.i.d. samples and their labels; that is,
S = {(ξj , yj) ∈ X × Y : j = 1, 2, . . . ,m}, where yj = h∗(ξj). Subsequently, we replace the expectation
in (2.2) de�ning the risk, by a sample average approximation, which de�nes the empirical risk:

LS(h) =
1

m

m∑
j=1

`(h(ξj), yj).

The ERM paradigm is to solve the empirical risk minimization problem

min
h∈H

LS(h) (2.4)

instead of the harder risk minimization problem (2.3). In practice, H is often chosen to be a parametric
class of functions described by a parameter x ∈ Rd. For instance, let X ⊆ Rd (d = number of features)
and Y = R, and consider the class of linear predictors: H = {h : h(ξ) = x>ξ}. Clearly, h is uniquely
de�ned by x ∈ Rd. De�ning `j : R→ R via `j(t) = 1

m`(t, yj), and setting fj(x) = `j(ξ
T
j x), we have

f(x) =

m∑
j=1

fj(x) =

m∑
j=1

`j(ξ
T
j x) = LS(h).

Hence, the ERM problem �ts our framework (2.1), with ψ ≡ 0. However, in practice one often uses
nonzero ψ, which is interpreted as a regularizer, and is included in order to prevent over�tting and hence
allow the estimator to generalize to future, unobserved samples.

ERM has a tight connection with coordinate descent methods. Indeed, coordinate descent methods
became very popular when their e�ciency was proved for the Lasso problem [FHHT07]. It is a regression
problem where the goal is to �nd sparse solutions. It can be written as

min
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖1

where y ∈ Rm is the signal, made out of m observations, A is a matrix of features of size m × n and
x is the parameter vector that we seek to estimate so that it has a few nonzero coe�cients. This is a
non-di�erentiable problem but it can be decomposed in a smooth part 1

2‖Ax− b‖
2
2 and a separable part

λ‖x‖1 = λ
∑n
i=1 |xi|. It is thus amenable to coordinate descent methods.

If the number of features is larger than the number of examples (d� m), which is typical for Lasso
problems, randomized coordinate descent is an e�cient algorithm for solving (2.1) [RT14, RT15, SSZ13].
If the training set S is so large that it does not �t the memory (or disk space) of a single machine, one
needs to employ a distributed computing system and solve ERM via a distributed optimization algorithm.
One option is the use of distributed coordinate descent [RT16c, MRT15], known as Hydra. APPROX
has been successfully applied in the distributed setting, leading to the Hydra2 method [FQRT14]. In
this work, the authors solve an ERM problem involving a training set of several terabytes in size, and
50 billion features.

If the number of examples in the training set is larger than the number of features (m � d), it is
typically not e�cient to employ randomized coordinate descent, to the ERM problem directly. Instead,
the state of the art methods are variants of randomized coordinate descent applied to the dual problem.
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The (Fenchel) dual of the regularized ERM problem for linear predictors considered above has the
form

min
y∈Rm

ψ∗

 1

m

m∑
j=1

yjξj

+
1

m

m∑
j=1

`∗j (−yj),

where ψ∗ (resp. `∗j ) is the Fenchel conjugate of ψ (resp. `j). The function y 7→ ψ∗( 1
m

∑
j yjξj) has

Lipschitz gradient if we assume that ψ is strongly convex, and y 7→ 1
m

∑m
j=1 `

∗
j (−yj) is separable. This

also �ts the framework (2.1), f corresponding to the �rst part of the objective (and consisting of a single
summand), and ψ corresponding to the second part of the objective (block separability is implied by
separability).

We developed APPROX with ERM as an application in mind and hence our numerical experiments
consider two key ERM problems: the Lasso problem and the Support Vector Machine (SVM) problem.

Following our paper, Lin, Lu and Xiao [LLX15] proposed a version of APPROX designed for strongly
convex problems. Their motivation was that practitioners often choose regularizers that are at the same
time separable and strongly convex. This leads to problems for which we have a good lower bound on the
strong convexity parameter. With this additional knowledge, they showed that the rate of convergence of
a properly modi�ed APPROX algorithm, applied to the dual problem, leads to state of the art complexity
for a class of ERM problems.

2.1.2 Submodular optimization

Ene and Nguyen [EN15] showed how the APPROX algorithm leads to a state-of-the-art method for
minimizing decomposable submodular functions. Submodular minimization has a vast and growing ar-
ray of applications, including image segmentation [RKB04, EN15], graphical model structure learning,
experimental design, Bayesian variable selection and minimizing matroid rank functions [Bac13].

We now brie�y introduce the notion of submodularity. Let V = {1, 2, . . . , d} be a �nite ground set. A
real-valued set function φ : 2V → R is called modular, if φ(∅) = 0 and there exists a vector w ∈ Rd such
that φ(A) =

∑
i∈A wi for all ∅ 6= A ⊆ V . It is called submodular if φ(A) + φ(B) ≥ φ(A ∩B) + φ(A ∪B)

for any two sets A,B ⊆ V . An equivalent and often more intuitive characterization of submodularity
is the following �diminishing returns property�: φ is submodular if and only if for all A ⊆ B ⊆ V and
k ∈ V such that k /∈ B, we have φ(A ∪ {k})− φ(A) ≥ φ(B ∪ {k})− φ(B).

Ene and Nguyen [EN15] consider the decomposable submodular minimization problem

min
A⊆V

n∑
i=1

φi(A), (2.5)

where φi : 2V → R are simple submodular functions (simplicity refers to the assumption that it is simple
to minimize φi plus a modular function). Instead of solving (2.5) directly, one can focus on solving the
unconstrained convex minimization problem

min
z∈Rd

n∑
i=1

(
φ̂i(z) +

1

2n
‖z‖2

)
, (2.6)

where ‖ · ‖ is the standard Euclidean norm, and φ̂i : Rd → R is the Lovász extension of φi (i.e., the
support function of the base polytope Pi ⊂ Rd of φi). Given a solution z, one recovers the solution of
(2.5) by setting

A = A(z) = {k ∈ V : zk ≥ 0}. (2.7)

Further, instead of solving (2.6), one focuses on its (Fenchel) dual:

min
x(1)∈P1,...,x(n)∈Pn

f(x) =
1

2

∥∥∥∥∥
n∑
i=1

x(i)

∥∥∥∥∥
2

. (2.8)

It can be shown that if x = (x(1), . . . , x(n)) ∈ Rnd = RN solves (2.8), then

z = −
n∑
i=1

x(i) (2.9)
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solves (2.6). Note that f is a convex quadratic function. If we let Ψ be the indicator function of the set
P = P1 × · · · × Pn ⊆ RN , i.e., Ψ(x) = 0 if x ∈ P and Ψ(x) = +∞ otherwise, then (2.8) is of the form
(2.1), where Ni = d for all i. It remains to apply the APPROX method to this problem, and transform
the solution back via (2.9) and then (2.7) to obtain solution of the original problem (2.5).

2.1.3 Packing and covering linear programs

Packing and covering problems are a pair of mutually-dual linear programming problems of the form

Packing LP: max
x≥0
{1Tx : Ax ≤ 1}

Covering LP: min
y≥0
{1T y : AT y ≤ 1},

where A is a real matrix, and 1 denotes the vector of appropriate dimension with all entries equal
to 1. These problems become more di�cult as the size of A grows since each iteration of interior-
point solvers becomes more expensive. Allen-Zhu and Orecchia [AZO15] developed algorithms for these
problems whose complexity is O(NA log(NA) log(ε−1)/ε) for packing and O(NA log(NA) log(ε−1)ε−1.5)
for covering LP, respectively. This complexity is nearly linear in the size of the problem NA = nnz(A)
(number of nonzero entries in A), does not depend on the magnitude of the elements of A and has a
better dependence on the accuracy ε than other nearly-linear time approaches. The improvement in
the complexity is due to the use of accelerated proximal coordinate descent techniques such as those
developed in our paper, combined with extra techniques, such as the use of an exponential penalty.

2.1.4 Least squares semi-de�nite programming

Semide�nite programming have a very important role in optimization due to its ability to model and
e�ciently solve a wide array of problems appearing in �elds such as control, network science, signal
processing and computer science [VB96, Tod01, BTN01, WSV10]. In semide�nite programming, one aims
to minimize a linear function in a matrix variable, subject to linear equality and inequality constraints
and the additional requirement that the matrix variable be positive semide�nite.

Sun, Toh and Yang [STY16] consider the canonical semide�nite program (SDP)

min
X∈Sn+, s∈RmI

〈C,X〉

subject to AE(X) = bE , AI(X) = s, L ≤ X ≤ U, l ≤ s ≤ u,

where 〈C,X〉 is the trace inner product, Sn+ is the cone of n×n symmetric positive semide�nite matrices,
AE : Sn+ → RmE and AI : Sn+ → RmI are linear maps, L ≤ U are given positive semide�nite matrices
and l ≤ u are given vectors in RmI .

The above SDP can be solved by a proximal point algorithm (PPA) of Rockafellar [Roc76a, Roc76b].
In each iteration of PPA, one needs to solve a least-squares semide�nite program (LS-SDP) of the form

(Xk+1, sk+1) = arg min
X∈Sn+,s∈RmI

〈C,X〉+
1

2σk
(‖X −Xk‖2 + ‖s− sk‖2)

subject to AE(X) = bE , AI(X) = s, L ≤ X ≤ U, l ≤ s ≤ u,

where (Xk, sk) is the previous iterate, and σk > 0 a regularization parameter. Sun, Toh and Yang [STY16]
observe that the dual of LS-SDP has block-separable constraints and can hence be written in the form
(2.1), with either 2 or 4 blocks (n = 2 or n = 4). They used this observation as a starting point to propose
new algorithms for LS-SDP that combine advanced linear algebra techniques, a �ne study of the errors
made by each inner solver, and coordinate descent ideas. They consider APPROX and block coordi-
nate descent as natural competitors to their specialized methods. They implemented the methods using
4 blocks, each equipped with a nontrivial norm de�ned by a well chosen positive semi-de�nite matrix
Bi ∈ RNi×Ni and approximate solutions to the proximity operators. Finally, Sun, Toh and Yang con-
ducted extensive experiments on 616 SDP instances coming from relaxations of combinatorial problems.
It is worth noting that on these instances, APPROX is vastly faster than standard (non-accelerated)
block coordinate descent.
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2.2 APPROX

2.2.1 Description of the algorithm

Algorithm 4 APPROX: Accelerated Parallel Proximal Coordinate Descent Method

1: Choose x0 ∈ RN and set z0 = x0 and θ0 = τ
n

2: for k ≥ 0 do
3: yk = (1− θk)xk + θkzk
4: Generate a random set of blocks Sk ∼ Ŝ
5: zk+1 = zk
6: for i ∈ Sk do
7: z

(i)
k+1 = arg minz∈RNi

{
〈∇if(yk), z − y(i)

k 〉+ nθkvi
2τ ‖z − z

(i)
k ‖2(i) + Ψi(z)

}
8: end for

9: xk+1 = yk + n
τ θk(zk+1 − zk)

10: θk+1 =

√
θ4
k+4θ2

k−θ
2
k

2
11: end for

The method starts from x0 ∈ RN and generates three vector sequences denoted {xk, yk, zk}k≥0. In
Step 3, yk is de�ned as a convex combination of xk and zk, which may in general be full dimensional
vectors. This is not e�cient; but following ideas by [LS13], we showed that it is possible to implement
the method in such a way that it not necessary to ever form yk.

The strength of the algorithm is its excellent worst case bound stated below. It relies on the assump-
tion of the existence of an expected separable overapproximation, which is a generalization of gradient
Lipschitz continuity tailored for parallel coordinate descent methods.

Assumption 1 (Expected Separable Overapproximation [RT15, FR17]). 1. f is convex and di�er-
entiable.

2. Ŝ is a uniform block sampling. That is, Ŝ is a random subset of [n] = {1, 2, . . . , n} with the
property1 that P(i ∈ Ŝ) = P(j ∈ Ŝ) for all i, j ∈ [n]. Let τ = E[|Ŝ|].

3. There are computable constants v = (v1, . . . , vn) > 0 for which the pair (f, Ŝ) admits the Expected
Separable Overapproximation (ESO):

E
[
f(x+ h[Ŝ])

]
≤ f(x) +

τ

n

(
〈∇f(x), h〉+

1

2
‖h‖2v

)
, x, h ∈ RN , (2.10)

where h
(i)

[Ŝ]
=

{
h(i) if i ∈ Ŝ
0 otherwise

If the above inequality holds, for simplicity we will write (f, Ŝ) ∼ ESO(v).

Theorem 2. Let Assumption 1 be satis�ed, with (f, Ŝ) ∼ ESO(v), where τ = E[|Ŝ|] > 0. Let x0 ∈
dom Ψ, and assume that the random sets Sk in Algorithm 4 are chosen independently, following the
distribution of Ŝ. Let x∗ be any optimal point of problem (2.1). Then the iterates {xk}k≥1 of APPROX
satisfy:

E[F (xk)− F (x∗)] ≤
4n2C∗

((k − 1)τ + 2n)2
, (2.11)

where

C∗ =
(

1− τ

n

)
(F (x0)− F (x∗)) +

1

2
‖x0 − x∗‖2v. (2.12)

In other words, for any 0 < ε ≤ C∗, the number of iterations for obtaining an ε-solution in expectation
does not exceed

k =

⌈
2n

τ

(√
C∗
ε
− 1

)
+ 1

⌉
. (2.13)

1It is easy to see that if Ŝ is a uniform sampling, then necessarily, P(i ∈ Ŝ) = E|Ŝ|
n

for all i ∈ [n].
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The main novelty in the analysis of APPROX was to show that the iterates remain within the
constraint set, although they are de�ned as an overrelaxation of admissible points in Step 9.

Lemma 2. Let {xk, zk}k≥0 be the iterates of Algorithm 4. Then for all k ≥ 0 we have

xk =

k∑
l=0

γlkzl, (2.14)

where the constants γ0
k, γ

1
k, . . . , γ

k
k are non-negative and sum to 1. That is, xk is a convex combination of

the vectors z1, . . . , zk. In particular, the constants are de�ned recursively in k by setting γ0
0 = 1, γ0

1 = 0,
γ1

1 = 1 and for k ≥ 1,

γlk+1 =


(1− θk)γlk, l = 0, . . . , k − 1,

θk(1− n
τ θk−1) + n

τ (θk−1 − θk), l = k,
n
τ θk, l = k + 1.

(2.15)

Moreover, for all k ≥ 0, the following identity holds

γkk+1 +
n− τ
τ

θk = (1− θk)γkk . (2.16)

2.2.2 Comparison with previous approaches

APPROX is the �rst randomized block coordinate descent method (APPROX) which is simultaneously
accelerated, parallel and proximal. In fact, we are not aware of any published results on accelerated
coordinate descent which would either be proximal or parallel. Our method is accelerated in the sense
that it achieves an O(1/k2) convergence rate, where k is the iteration counter. The �rst gradient method
with this convergence rate is due to Nesterov [Nes83]; see also [Tse08, BT09]. Accelerated randomized
coordinate descent method, for convex minimization without constraints, was originally proposed in 2010
by Nesterov [Nes12a].

Paper E� Blck Prx Par Acc Notable feature

Leventhal & Lewis '08 [LL10] 3 × × × × quadratic f
S-Shwartz & Tewari '09 [SST11] 3 × `1 × × 1st `1-regularized

Nesterov '10 [Nes12a] × 3 × × 3 1st blck & 1st acc
Richtárik & Taká£ '11 [RT14] 3 3 3 × × 1st proximal
Bradley et al '12 [BKBG11] 3 × `1 3 × `1-regularized parallel
Richtárik & Taká£ '12 [RT15] 3 3 3 3 × 1st general parallel
S-Shwartz & Zhang '12 [SSZ12] 3 3 3 × × 1st primal-dual

Necoara et al '12 [NNG12] 3 3 × × × 2-coordinate descent
Taká£ et al '13 [TBRS13] 3 × × 3 × 1st primal-d. & parallel

Tappenden et al '13 [TRG16a] 3 3 3 × × 1st inexact
Necoara & Clipici '13 [NC13] 3 3 3 × × coupled constraints

Lin & Xiao '13 [LX15b] × 3 × × 3 improvements on [Nes12a, RT14]
Fercoq & Richtárik '13 [FR17] 3 3 3 3 × 1st nonsmooth f

Lee & Sidford '13 [LS13] 3 × × × 3 1st e�cient accelerated
Richtárik & Taká£ '13 [RT16a] 3 × 3 3 × 1st distributed

Liu et al '13 [LWR+15] 3 × × 3 × 1st asynchronous
S-Shwartz & Zhang '13 [SSZ14] 3 × 3 × 3 acceleration in the primal
Richtárik & Taká£ '13 [RT16b] 3 × × 3 × 1st arbitrary sampling

This paper '13 3 3 3 3 3 5 times 3

Table 2.2: An overview of selected recent papers proposing and analyzing the iteration complexity of randomized coordi-
nate descent methods. The years correspond to the time the papers were �rst posted online (e.g., onto arXiv), and not the
eventual publication time. �E�� = the cost of each iteration is low (in particular, independent of the problem dimension
N); �Blck� = works with blocks of coordinates; �Prx� = can handle proximal setup (has ψ term); �Par� = can update more
blocks per iteration; �Acc� = accelerated, i.e., achieving the optimal O(1/k2) rate for non-strongly convex objectives. Our
algorithm has all these desirable properties. In the last column we highlight a single notable feature, necessarily chosen
subjectively, of each work.

Several variants of proximal and parallel (but non-accelerated) randomized coordinate descent meth-
ods were proposed [BKBG11, RT15, FR17, RT16a]. In Table 2.2 we provide a list of research papers
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proposing and analyzing randomized coordinate descent methods. The table substantiates our obser-
vation that while the block (�Blck� column) and proximal (�Prx� column) setup is relatively common
in the literature, parallel methods (�Par� column) are much less studied, and there is just a handful of
papers dealing with accelerated variants (�Acc� column). Moreover, existing accelerated methods are not
e�cient (�E�� column)�with the exception of [LS13]

2.3 Accelerated coordinate descent in a distributed setting

More and more often in modern applications, the data describing the problem is so large that it does
not �t into the RAM of a single computer. In such a case, unless the application at hand can tolerate
slow performance due to frequent HDD reads/writes, it is often necessary to distribute the data among
the nodes of a cluster and solve the problem in a distributed manner. With such big data problems it is
necessary to design algorithms able to utilize modern parallel computing architectures. This resulted in
an interest in parallel [RT15, FR17, RT16b] and distributed [RT16a] coordinate descent methods.

The core of the paper [FQRT14] forms the development of new stepsizes that improve on previous
works on parallel coordinate descent using the following assumptions on the objective function

f(x) + Ψ(x) =

m∑
j=1

φj(e
>
j Ax) +

n∑
i=1

Ψi(x
(i)) .

We also assumed that the data is partitioned among c computers dealing with s coordinates each. We
assume that each computer updates τ coordinates in parallel at each iteration. We denote n = cs. Let
ωj be the number of nonzeros in the jth row of A and ω′j be the number of �partitions active at row j�,
i.e., the number of indexes l ∈ {1, . . . , c} for which the set {i ∈ Pl : Aji 6= 0} is nonempty. As soon as A
does not have an empty row or column, we know that 1 ≤ ωj ≤ n and 1 ≤ ω′j ≤ c.

The goal is to show that there exists computable constants v1, . . . , vn such that the ESO inequal-
ity (2.10) holds:

E
[
f(x+ h[Ŝ])

]
≤ f(x) +

τ

s

(
〈∇f(x), h〉+

1

2
‖h‖2v

)
, x, h ∈ RN .

Then the algorithm will consist in Algorithm 4 that uses the Expected Separable Overapproximation
(ESO) inequality (2.10) required by Assumption 1. On top of allowing us to prove the convergence of
the algorithm, the ESO has the following bene�ts:

(i) Since the overapproximation is a convex quadratic in h, it is easy to compute h(x).

(ii) Since the overapproximation is block separable, one can compute the updates h(i)(x) in parallel for
all i ∈ {1, 2, . . . , n}.

(iii) For the same reason, one can compute the updates or i ∈ Sk only, where Sk is the sample set drawn
at iteration k following the law describing Ŝ.

Finding smaller constants vi directly transfers into longer step-sizes and thus a potentially better paral-
lelization speedup.

The �rst proposition corresponds to the shared memory framework.

Proposition 1. Suppose that f(x) =
∑m
j=1 φj(e

>
j Ax) and that Ŝ consists in choosing τc coordinates

uniformly at random. Then f satis�es the Expected Separable Overapproximation (2.10) with parameters

vi =

m∑
j=1

(
1 +

(ωj − 1)(τc− 1)

sc− 1

)
A2
ji.

The main conclusion of the study, made precise in the next proposition, is that as long as the number
of processors per computer τ ≥ 2, the e�ect of partitioning the data (across the nodes) on the iteration
complexity of the algorithm is negligible, and vanishes as τ increases.
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Proposition 2. Suppose that f(x) =
∑m
j=1 φj(e

>
j Ax) Suppose that Ŝ consists in choosing for each

computer, τ coordinates uniformly at random among the s ones it manages. Then f satis�es the Expected
Separable Overapproximation (2.10) with parameters

vi =

n∑
j=1

(
1 +

(ωj − 1)(τ − 1)

s− 1
+
(τ
s
− τ − 1

s− 1

)ω′j − 1

ω′j
ωj

)
A2
ji.

In [FQRT14], we gave an extensive comparison of the ESOs available in the literature and showed
that the newly proposed is much better than former ones.

2.4 Restart of accelerated gradient methods

On top of parallel processing, I also studied restarting schemes as a complementary mean of acceleration.
For a mild additional computational cost, accelerated gradient methods transform the proximal gra-

dient method, for which the optimality gap F (xk) − F ? decreases as O(1/k), into an algorithm with
�optimal� O(1/k2) complexity [Nes83]. Accelerated variants include the dual accelerated proximal gra-
dient [Nes05b, Nes13a], the accelerated proximal gradient method (APG) [Tse08] and FISTA [BT09].
Gradient-type methods, also called �rst-order methods, are often used to solve large-scale problems be-
cause of their good scalability and easiness of implementation that facilitates parallel and distributed
computations.

When solving a convex problem whose objective function satis�es a local quadratic error bound (this is
a generalization of strong convexity), classical (non-accelerated) gradient and coordinate descent methods
automatically have a linear rate of convergence, i.e. F (xk)− F ? ∈ O((1− µ)k) for a problem dependent
0 < µ < 1 [NNG12, DL16], whereas one needs to know explicitly the strong convexity parameter in
order to set accelerated gradient and accelerated coordinate descent methods to have a linear rate of
convergence, see for instance [LS13, LMH15, LLX14, Nes12a, Nes13a]. Setting the algorithm with an
incorrect parameter may result in a slower algorithm, sometimes even slower than if we had not tried
to set an acceleration scheme [OC12]. This is a major drawback of the method because in general, the
strong convexity parameter is di�cult to estimate.

In the context of accelerated gradient method with unknown strong convexity parameter, Nes-
terov [Nes13a] proposed a restarting scheme which adaptively approximates the strong convexity param-
eter. The same idea was exploited by Lin and Xiao [LX15a] for sparse optimization. Nesterov [Nes13a]
also showed that, instead of deriving a new method designed to work better for strongly convex func-
tions, one can restart the accelerated gradient method and get a linear convergence rate. However, the
restarting frequency he proposed still depends explicitly on the strong convexity of the function and
so O'Donoghue and Candes [OC12] introduced some heuristics to adaptively restart the algorithm and
obtain good results in practice.

The restarted algorithm is given in Algorithm 5, where APPROX(f, ψ, x̄r,K) means Algorithm 4
run on the function f + ψ with initial point x̄r and for K iterations.

Algorithm 5 APPROX with restart

Choose x0 ∈ domψ and set x̄0 = x0.
Choose RestartTimes ⊆ N.
for r ≥ 0 do
K = RestartTimes(r + 1) - RestartTimes(r)
x̄r+1 = APPROX(f, ψ, x̄r,K)

end for

Gradient method In [FQ17], we showed that, if the objective function is convex and satis�es a local
quadratic error bound, we can restart accelerated gradient methods at any frequency and get a linearly
convergent algorithm. The rate depends on an estimate of the quadratic error bound and we show that
for a wide range of this parameter, one obtains a faster rate than without acceleration. In particular, we
do not require this estimate to be smaller than the actual value. In that way, our result supports and
explains the practical success of arbitrary periodic restart for accelerated gradient methods.
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Algorithm Complexity bound Assumption

Nesterov [Nes13a] O
(

1√
µF

ln
(

1
µF

)
ln
(

1
µF ε

))
strong convexity

Lin & Xiao [LX15a] O
(

1√
µF

ln
(

1
µF

)
ln
(

1
µF ε

))
strong convexity

Liu & Yang [LY17] O
(

1√
µF

ln
(

1
µF

)2
ln
(

1
ε

))
Hölderian error bound

Fercoq & Qu [FQ17] O
(

1√
µF

ln
(

1
µF ε

))
local quadratic error bound

Table 2.3: Comparison of the iteration complexity of accelerated gradient methods with adaptation to
the local error bound.

Then, as the rate of convergence depends on the match between the frequency and the quadratic error
bound, we design a scheme to automatically adapt the frequency of restart from the observed decrease of
the norm of the gradient mapping. The approach follows the lines of [Nes13a, LX15a, LY17]. We proved
that, if our current estimate of the local error bound were correct, the norm of the gradient mapping
would decrease at a prescribed rate. We just need to check this decrease and when the test fails, we have
a certi�cate that the estimate was too large.

Our algorithm has a better theoretical bound than previously proposed methods for the adaptation
to the quadratic error bound of the objective. In particular, we can make use of the fact that our study
shows that the norm of the gradient mapping will decrease even when we had a wrong estimate of the
local error bound.

Coordinate descent In [FQ16, FQ18], we studied the case of accelerated coordinate descent. The
adaptive restart of randomized accelerated coordinate descent methods is more complex than in the
deterministic case. As the complexity bound holds in expectation only, one cannot rely on this bound
to estimate whether the rate of convergence is in line with our estimate of the local error bound, as was
done in the deterministic case.

We considered four setups, the �rst one in [FQ16], the three other ones in [FQ18]:

1. In the case where the objective satis�es a global quadratic error bound, we proposed a �xed
restarting scheme. We considered restarting at a point which is a convex combination of all previous
iterates and showed linear convergence.

Theorem 3. Let γik be the coe�cients de�ned in (2.15) and

x̊k =
1∑k−1

i=0
γik
θ2
i−1

+ 1
θ0θk−1

− 1−θ0
θ2
0

(
k−1∑
i=0

γik
θ2
i−1

xi +

(
1

θ0θk−1
− 1− θ0

θ2
0

)
xk

)

a convex combination of the k �rst iterates of APPROX. Let σ ∈ [0, 1], x̄k = σxk + (1 − σ)̊xk.
Denote ∆(x) := 1−θ0

θ2
0

(F (x)− F (x∗)) + 1
2θ2

0
distv(x,X )2

and mk(µ) :=
µθ2

0

1+µ(1−θ0)

(∑k−1
i=0

γik
θ2
i−1

+ 1
θ0θk−1

− 1−θ0
θ2
0

)
. We have

E[∆(x̄k)] ≤ max (σ, 1− σmk(µF (v))) ∆(x0).

2. If the local quadratic error bound coe�cient µ of the objective function is known, then we show
that setting a restarting period as O(1/

√
µ) yields an algorithm with optimal rate of convergence.

More precisely restarted APPROX admits the same theoretical complexity bound as the accelerated
coordinate descent methods for strongly convex functions developed in [LLX14], is applicable with
milder assumptions and exhibits better performance in numerical experiments.

Proposition 3. Let xk be the iterate of APPROX applied to the objective function F = f + ψ
with quadratic error bound coe�cient µ on the level set {x : F (x) ≤ F (x0)}. Denote: x̃ =
xk1F (xk)≤F (x0) + x01F (xk)>F (x0). We have

E[F (x̃)− F ?] ≤ θ2
k−1

(
1− θ0

θ2
0

+
1

θ2
0µ

)
(F (x0)− F ?).

Moreover, given α < 1, if k ≥ 2
θ0

(√
1+µF (v,x0)
αµF (v,x0) − 1

)
+ 1, then E[F (x̃)− F ?] ≤ α(F (x0)− F ?).
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3. If the objective function is strongly convex, we show that we can restart the accelerated coordinate
descent method at the last iterate at any frequency and get a linearly convergent algorithm. The
rate depends on an estimate of the local quadratic error bound and we show that for a wide range of
this parameter, one obtains a faster rate than without acceleration. In particular, we do not require
the estimate of the error bound coe�cient to be smaller than the actual value. The di�erence with
respect to [FQ16] is that in this section, we show that there is no need to restart at a complex
combination of previous iterates.

Theorem 4. Denote ∆(x) = 1−θ0
θ2
0

(F (x) − F ?) + 1
2θ2

0
distv(x,X )2. Assume that F is µF strongly

convex. Then the iterates of APPROX satisfy

E[∆(xK)] ≤ 1 + (1− θ0)µF

1 +
θ2
0

2θ2
K−1

µF
∆(x0)

4. If the local error bound coe�cient is not known, we introduce a variable restarting periods and
show that up to a log(log 1/ε) term, the algorithm is as e�cient as if we had known the local error
bound coe�cient.

Theorem 5. We de�ne the sequence

K0 = K0 K1 = 21K0 K2 = K0 K3 = 22K0 K4 = K0 K5 = 21K0 K6 = K0 K7 = 23K0 . . .

such that K2j−1 = 2jK0, ∀j ∈ N and |{l ≤ 2J −1 | Kl = 2jK0}| = 2×|{l ≤ 2J −1 | Kl = 2j−1K0}|
for all j ∈ {1, . . . J − 1}, J ∈ N.

We denote δ0 = F (x̃0) − F ∗ and K(µF ) = 2
θ0

(√
1+µF
e−2µF

− 1
)

+ 1, where µF is the (unknown)

quadratic error bound coe�cient µ of F .

Suppose that the restart times are given by the variable restart periods de�ned above. Then the
iterates of restarted APPROX satisfy E(F (xk)− F (x∗)) ≤ ε as soon as

k ≥
(

max
(

log
(K(µF )

K0

)
, 0
)

+ log2

( log( δ0ε )

2

)) log( δ0ε )

2
max(K(µF ),K0) .

On Figure 2.1, we can see that restarting the accelerated coordinate descent clearly outperforms both
coordinate descent and plain accelerated coordinate descent. Moreover, using a version of accelerated
coordinate descent designed for strongly convex functions [LLX14] is not safe: it may fail to converge or
be very slow depending on the estimate of strong convexity that we are using.

2.5 Using second order information

There have been several attempts at designing methods that combine randomization with the use of
curvature (second-order) information. For example, methods based on running coordinate ascent in the
dual such as [RT15, FR17, FR15, FQRT14, QRZ15] use curvature information contained in the diagonal
of a bound on the Hessian matrix. Block coordinate descent methods, when equipped with suitable
data-dependent norms for the blocks, use information contained in the block diagonal of the Hessian
[TRG16b]. A more direct route to incorporating curvature information was taken by [SYG07] in their
stochastic L-BFGS method and by [BHNS14] and [SDPG14] in their stochastic quasi-Newton methods.
Complexity estimates are not easy to �nd. An exception in this regard is the work of [BBG09], who give
a O(1/ε) complexity bound for a Quasi-Newton SGD method.

An alternative approach is to consider block coordinate descent methods with overlapping blocks [TY09a,
FT15]. While typically e�cient in practice, none of the methods mentioned above are equipped with
complexity bounds (bounds on the number of iterations). Tseng and Yun [TY09a] only showed conver-
gence to a stationary point and focus on non-overlapping blocks for the rest of their paper. Numerical
evidence that this approach is promising is provided in [FT15] with some mild convergence rate results
but no iteration complexity.

The main contribution of the work [QRTF16] is the analysis of stochastic block coordinate descent
methods with overlapping blocks. We then instantiate this to get a new algorithm�Stochastic Dual
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Figure 2.1: Comparison of (accelerated) coordinate descent algorithms for the logistic regression problem
on the dataset RCV1: coordinate descent, APPROX, APCG [LLX14] with µ ∈ {10−3, 10−5, 10−7}, Prox-
Newton [LSS12] and APPROX with variable restart initiated with K0 = K(10−2).

Newton Ascent (SDNA)�for solving a regularized Empirical Risk Minimization problem with smooth
loss functions and a strongly convex regularizer (primal problem). Our method is stochastic in nature
and has the capacity to utilize all curvature information inherent in the data.

SDNA in each iteration picks a random subset of the dual variables (which corresponds to picking a
minibatch of examples in the primal problem), following an arbitrary probability law, and maximizes,
exactly, the dual objective restricted to the random subspace spanned by the coordinates. Equivalently,
this can be seen as the solution of a proximal subproblem involving a random principal submatrix of
the Hessian of the quadratic function. Hence, SDNA utilizes all curvature information available in the
random subspace in which it operates. Note that this is very di�erent from the update strategy of parallel
/ minibatch coordinate descent methods. Indeed, while these methods also update a random subset of
variables in each iteration, they instead only utilize curvature information present in the diagonal of the
Hessian.

In the case of quadratic loss, and when viewed as a primal method, SDNA can be interpreted as a
variant of the Iterative Hessian Sketch algorithm [PW14].

SDCA-like methods need more passes through data to converge as the minibatch size increases.
However, SDNA enjoys the opposite behavior: with increasing minibatch size, up to a certain threshold,
SDNA needs fewer passes through data to converge. This observation is con�rmed by our numerical
experiments. In particular, we show that the expected duality gap decreases at a geometric rate which
i) is better than that of SDCA-like methods such as SDCA [SSZ13] and QUARTZ [QRZ15], and ii)
improves with increasing minibatch size. This improvement does not come for free: as we increase the
minibatch size, the subproblems grow in size as they involve larger portions of the Hessian. We �nd
through experiments that for some, especially dense problems, even relatively small minibatch sizes lead
to dramatic speedups in actual runtime. For instance on Figure 2.2 a batch size of 16 is enough to take
a lot of pro�t from second order information.

We assume a strong convexity and a smoothness assumption involving data-dependent norms:

f(x) + 〈∇f(x), h〉+ 1
2 〈Gh, h〉 ≤ f(x+ h), (2.17)

f(x+ h) ≤ f(x) + 〈∇f(x), h〉+ 1
2 〈Mh, h〉. (2.18)

We consider a sampling of the coordinates Ŝ and real numbers v1, . . . , vn satisfying a generalization
of Assumption 1 to nonuniform probabilities such that P(i ∈ Ŝ) = pi > 0 for all i. A large part of the
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Figure 2.2: Runtime of SDNA for minibatch sizes τ = 1, 4, 16, 32, 64 for a L2-regularized least squares
problem on the cov dataset: d = 54, n = 522, 911).

paper consists in comparing three quantities:

σ1 := λmin

(
G1/2E

[(
MŜ

)†]
G1/2

)
, (2.19)

σ2 := λmin

(
G1/2D(p)

(
E
[
MŜ

])−1
D(p)G1/2

)
, (2.20)

σ3 := λmin

(
G1/2D(p)D(v−1)G1/2

)
, (2.21)

where λmin stands for the smallest eigenvalue. We show that SDNA converges linearly as E[f(xk+1) −
f(x∗)] ≤ (1 − σ1)E[f(xk) − f(x∗)] while the parallel coordinate descent method (PCDM) converges as
E[f(xk+1) − f(x∗)] ≤ (1 − σ3)E[f(xk) − f(x∗)]. Moreover, as σ1 ≥ σ2 ≥ σ3, the worst case complexity
indicates that SDNA should be faster than PCDM. We went even further by showing that as the number
of processors τ increases, σ1(τ) ≥ τσ1(1) = τσ3(1) ≥ σ3(τ). In particular, SDNA enjoys superlinear
speedup in τ , to be compared with the sublinear speedup of PCDM.
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Chapter 3

Coordinate descent methods for saddle

point problems

We now turn to convex optimization problems of the form

min
x∈X

f(x) + g(x) + h(Mx), (3.1)

where x = (x(1), . . . , x(n)) ∈ X = X1 × . . . × Xn is a decision vector composed of n blocks f is a
di�erentiable convex function with coordinate-wise Lipschitz gradients, g : X → R∪ {+∞} and h : Y →
R∪{+∞} are convex and lower semicontinous functions andM : X → Y is a continuous linear operator.
We also assume that Y = Y1 × . . .× Yp for some integer p.

Under the standard quali�cation condition 0 ∈ ri(M dom g − domh) (where dom and ri are the
domain and the relative interior), a point x ∈ X is a minimizer of (3.1) if and only if there exists y ∈ Y
such that (x, y) is a saddle point of the Lagrangian function

L(x, y) = f(x) + g(x) + 〈y,Mx〉 − h?(y)

where h? : y 7→ supz∈Y〈y, z〉 − h(z) is the Fenchel-Legendre transform of h.
Problem (3.1) is much more general than Problem (2.1) that we studied in the previous chapter.

It allows us to consider nonsmooth nonseparable objectives, containing for instance linear equality and
inequality constraints. Indeed, it provides a uni�ed formulation for a broad set of applications in various
disciplines, see, e.g., [BT89, BV04, CBS14, CRPW12, MCTD+14, NW06, Wai14]. While problem (3.1)
is presented in the unconstrained form, it automatically covers constrained settings by means of indicator
functions. For example, (3.1) covers the following prototypical optimization template via h(z) := δ{b}(z)
(i.e., the indicator function of the convex set {b}):

min
x∈X

{
f(x) + g(x) + δ{b}(Ax)

}
= min
x∈X

{
f(x) + g(x) : Ax = b

}
, (3.2)

Note that (3.2) is su�ciently general to cover standard convex optimization subclasses, such as conic
programming, monotropic programming, and geometric programming, as speci�c instances [BTN01,
Ber96, BPC+11b].

In the �rst section of this chapter, we study a primal dual coordinate descent method based on a �xed
point operator. The other sections are devoted to methods based on a smoothing technique. We study
parallel coordinate descent for smoothed nonsmooth functions, a generalization of Nesterov's smoothing
technique to linear equality constraints and a second primal-dual coordinate descent with a very good
worst case guarantee.

3.1 A coordinate descent version of the V�u Condat method with

long step sizes

3.1.1 Introduction

There is a rich literature on primal-dual algorithms searching for a saddle point of L (see [TC14] and
references therein). In the special case where f = 0, the alternating direction method of multipliers
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(ADMM) proposed by Glowinsky and Marroco [GM75], Gabay and Mercier [GM76] and the algorithm
of Chambolle and Pock [CP11] are amongst the most celebrated ones. Based on an elegant idea also
used in [HY12], V�u [V�u13] and Condat [Con13] separately proposed a primal-dual algorithm allowing
as well to handle ∇f explicitly, and requiring one evaluation of the gradient of f at each iteration.
Hence, the ∇f is handled explicitly in the sense that the algorithm does not involve, for instance, the
call of a proximity operator associated with f . A convergence rate analysis is provided in [CP15a] (see
also [TC14]). A related splitting method has been recently introduced by [DY15].

The paper [FB19] introduces a coordinate descent (CD) version of the V�u-Condat algorithm. By
coordinate descent, we mean that only a subset of the coordinates of the primal and dual iterates is
updated at each iteration, the other coordinates being maintained to their past value. Coordinate descent
was historically used in the context of coordinate-wise minimization of a unique function in a Gauss-
Seidel sense [War63, BT89, Tse01]. Tseng et al. [LT02, TY09a, TY09b] and Nesterov [Nes12a] developped
CD versions of the gradient descent. In [Nes12a] as well as in this paper, the updated coordinates are
randomly chosen at each iteration. The algorithm of [Nes12a] has at least two interesting features. Not
only it is often easier to evaluate a single coordinate of the gradient vector rather than the whole vector,
but the conditions under which the CD version of the algorithm is provably convergent are generally
weaker than in the case of standard gradient descent. The key point is that the step size used in the
algorithm when updating a given coordinate i can be chosen to be inversely proportional to the coordinate-
wise Lipschitz constant of ∇f along its ith coordinate, rather than the global Lipschitz constant of ∇f
(as would be the case in a standard gradient descent). Hence, the introduction of coordinate descent
allows to use longer step sizes which potentially results in a more attractive performance. The random
CD gradient descent of [Nes12a] was later generalized by Richtárik and Taká£ [RT14] to the minimization
of a sum of two convex functions f + g (that is, h = 0 in problem (3.1)). The algorithm of [RT14] is
analyzed under the additional assumption that function g is separable in the sense that for each x ∈ X ,
g(x) =

∑n
i=1 gi(x

(i)) for some functions gi : Xi →]−∞,+∞].

In the literature, several papers seek to apply the principle of coordinate descent to primal-dual
algorithms. In the case where f = 0, h is separable and smooth and g is strongly convex, Zhang and
Xiao [ZX14] introduce a stochastic CD primal-dual algorithm and analyze its convergence rate (see
also [Suz14] for related works). In 2013, Iutzeler et al. [IBCH13] proved that random coordinate descent
can be successfully applied to �xed point iterations of �rmly non-expansive (FNE) operators. According
to [Gab83], the ADMM can be written as a �xed point algorithm of a FNE operator, which led the
authors of [IBCH13] to propose a coordinate descent version of ADMM with application to distributed
optimization. The key idea behind the convergence proof of [IBCH13] is to establish the so-called
stochastic Fejér monotonicity of the sequence of iterates as noted by [CP15b]. In a more general setting
than [IBCH13], Combettes et al. in [CP15b] and Bianchi et al. [BHF14] extend the proof to the so-
called α-averaged operators, which include FNE operators as a special case. This generalization allows
to apply the coordinate descent principle to a broader class of primal-dual algorithms which is no longer
restricted to the ADMM or the Douglas Rachford algorithm. For instance, Forward-Backward splitting is
considered in [CP15b] and particular cases of the V�u-Condat algorithm are considered in [BHF14, PR15].
Nevertheless, the above approach has two major limitations.

First, in order to derive a converging coordinate descent version of a given deterministic algorithm, the
latter must write as a �xed point algorithm over some product Hilbert space of the form H = H1×· · ·Hq

where the inner product in H is the sum of the inner products in the Hi's. Unfortunately, this condition
does not hold in general for the V�u-Condat method, because the inner product over H involves the
coupling linear operator M . A workaround was proposed in [BHF14] but for a particular example only.

Second and even more importantly, the approach of [IBCH13, CP15b, BHF14, PR15] needs �small�
step sizes. More precisely, the convergence conditions are identical to the ones of the brute method, the
one without coordinate descent. These conditions involve the global Lipschitz constant of the gradient
∇f instead than its coordinate-wise Lipschitz constants. In practice, it means that the application of
coordinate descent to primal-dual algorithm as suggested by [CP15b] and [BHF14] is restricted to the
use of potentially small step sizes. One of the major bene�ts of coordinate descent is lost.

Some recent works also focused on designing primal-dual coordinate descent methods with a guar-
anteed convergence rate. In [GXZ19] and [CERS18], a O(1/k) rate is obtained for the ergodic mean of
the sequences. The rates are given in terms of feasibility and optimality or Bregman distance. Those
two papers require all the dual variables to be updated at each iteration, which may not be e�cient if
there are more than a few dual variables. In the present paper, we will have much more �exibility in the
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variables we choose to update at each iteration, while retaining a provable convergence rate.
Our main contribution is to provide a CD primal-dual algorithm with a broad range of admissible

step sizes. Our numerical experiments show that remarkable performance gains can be obtained when
using larger step sizes. We also identify two setups for which the structure of the problem is favorable to
coordinate descent algorithms. Finally, we prove a sublinear rate of convergence in general and a linear
rate of convergence if the objective enjoys strong convexity properties.

3.1.2 Main algorithm and convergence theorem

Consider Problem (3.1). We note M = (Mj,i : j ∈ {1, . . . , p}, i ∈ {1, . . . , n}) where Mj,i : Xi → Yj are
the block components of M . For each j ∈ {1, . . . , p}, we introduce the set I(j) :=

{
i ∈ {1, . . . , n} :

Mj,i 6= 0
}
. Otherwise stated, the jth component of vectorMx only depends on x through the coordinates

x(i) such that i ∈ I(j). We denote by mj := card(I(j)) the number of such coordinates. Without loss of
generality, we assume that mj 6= 0 for all j. We also denote πj := 1

card(I(j)) .

For all i ∈ {1, . . . , n}, we de�ne J(i) :=
{
j ∈ {1, . . . , p} : Mj,i 6= 0

}
. Note that for every pair (i, j),

the statements i ∈ I(j) and j ∈ J(i) are equivalent.
Let σ = (σ1, . . . , σp) and τ = (τ1, . . . , τn) be two tuples of positive real numbers. Consider an

independent and identically distributed sequence (ik : k ∈ N∗) with uniform distribution on {1, . . . , n}
(the results of this paper easily extend to the selection of several primal coordinates at each iteration
with a uniform samplings of the coordinates, using the techniques introduced in [RT15]). The proposed
primal-dual coordinate descent algorithm consists in updating two sequences xk ∈ X , yk ∈ Y. It is
provided in Algorithm 6 below.

Algorithm 6 Coordinate-descent primal-dual algorithm

Initialization: Choose x0 ∈ X , y0 ∈ Y.
Iteration k: De�ne:

yk+1 = proxσ,h?
(
yk +D(σ)Mxk

)
xk+1 = proxτ,g

(
xk −D(τ)

(
∇f(xk) + 2M?yk+1 −M?yk

) )
.

For i = ik+1 and for each j ∈ J(ik+1), update:

x
(i)
k+1 = x

(i)
k+1

y
(j)
k+1 = y

(j)
k + πj(y

(j)
k+1 − y

(j)
k ) .

Otherwise, set x
(i′)
k+1 = x

(i′)
k , and y

(j′)
k+1 = y

(j′)
k .

Our convergence result holds under the following assumptions.

Assumption 2. 1. The functions f , g, h are closed proper and convex.

2. The function f is di�erentiable on X .

3. For every i ∈ {1, . . . , n}, there exists βi ≥ 0 such that for any x ∈ X , any u ∈ Xi,

f(x+ Uiu) ≤ f(x) + 〈∇f(x), Uiu〉+
βi
2
‖u‖2Xi .

4. The random sequence (ik)k∈N∗ is independent, uniformly distributed on {1, . . . , n}.

5. The step sizes τ = (τ1, . . . , τn) and σ = (σ1, . . . , σp) satisfy for all i ∈ {1, . . . , n},

τi <
1

βi + ρ
(∑

j∈J(i)(2− πj)mjσjM?
j,iMj,i

) .
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We denote by S the set of saddle points of the Lagrangian function L. Otherwise stated, a couple
(x∗, y∗) ∈ X × Y lies in S if and only if it satis�es the following inclusions

0 ∈ ∇f(x∗) + ∂g(x∗) +M?y∗ (3.3)

0 ∈ −Mx∗ + ∂h?(y∗) . (3.4)

We shall also refer to elements of S as primal-dual solutions.

Theorem 6. Let Assumption 2 hold true and suppose that S 6= ∅. Let (xk, yk) be a sequence generated
by Algorithm 6. Almost surely, there exists (x∗, y∗) ∈ S such that

lim
k→∞

xk = x∗

lim
k→∞

yk = y∗ .

In order to prove this result, we introduced the concept of duplication of dual variables. Indeed, as
noted in the introduction, the squared norm with which distances are measured in V�u and Condat's proof
is not separable. This poses a major di�culty in the analysis of coordinate descent, that we circumvented
by allowing nonseparable objective functions. When mj > 1, i.e. the dual variable y(j) in�uences several
primal variables {x(i), i ∈ I(j)}, we arti�cially duplicate the dual variable y(j) into a vector of size mj

denoted by (y(j)(i))i∈I(j). In order to get an equivalent problem, we replace h by h̃ that forces the

constraint y(j)(i) = y(j)(i′) for all i, i′ ∈ I(j). In this equivalent problem, mj = 1 for all j and we can
de�ne a separable squared norm. This allows us to prove the convergence of the algorithm with the
duplicated dual space and then Theorem 6 by showing that both algorithm are in fact the same.

E�cient implementation using problem structure In Algorithm 6, it is worth noting that quan-
tities (xk+1, yk+1) do not need to be explicitly calculated. At iteration k, only the coordinates

x
(ik+1)
k+1 and y

(j)
k+1, ∀j ∈ J(ik+1)

are needed to perform the update. From a computational point of view, it is often the case that the
evaluation of the above coordinates is less demanding than the computation of the whole vectors xk+1,
yk+1. Two situations have been reported in the literature:

• If g is separable, one only needs to compute the quantities ∇ik+1
f(xk), (2M?ȳk+1 −M?yk)(ik+1)

and proxτik+1
,gik+1

to perform the kth iteration. A classical example of such smart residual up-

date [Nes12b] can be found in the proximal coordinate descent gradient algorithm (case g separable
and h = 0) [RT14]. More generally, if g (resp. h?) is block-separable, we can use this structure in
the algorithm, even if this block structure does not match X1 × . . .×Xn (resp. Y1 × . . .× Yp).
We used this idea in Figure 3.1 to deal e�ciently with the proximal operator of the `2,1 norm.

• If g is the indicator of the consensus constraint {x1 = · · · = xn}, f is separable and h = 0, we
recover MISO [Mai15]. In that case, we can store ∇f(xk) and update its average. Thanks to the
separability of f , only one coordinate of ∇f(xk) needs to be updated at each iteration.

We used similar ideas in Figure 3.2 to deal e�ciently with the projection onto the subspace or-
thogonal to a vector.

To illustrate the importance of these implementation tricks, we give in Table 3.1 a comparison of the
number of operations to compute the updates of the standard V�u-Condat method against the proposed
algorithm.

3.1.3 Convergence rate

We present below the convergence guarantee for Algorithm 6. It is of the same order as what can be
obtained by other primal-dual methods like the ADMM [DY17], i.e. O(1/

√
k) in general. Note that the

result holds for the sequence (x̄k) only, since xk may not be feasible by design.
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Problem / Dimension of data V�u-Condat Our algorithm
Total Variation + `1 regularization O(mn+ 6n) O(m+ 12)

A ∈ Rm×n: dense; M ∈ R3n×n: nnz(M) = 6n
Support Vector Machines O(nnz(A) + n) O(nnz(Aei) + 1)

A ∈ Rm×n: sparse

Table 3.1: Number of operations per iteration for the proposed algorithm and for the standard V�u-Condat
algorithm - The use cases are the ones described in the numerical section. The numbers 6 and 12 highlight the
(mild) overhead of duplication in the Total Variation + `1 regularized least squares problem.
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Figure 3.1: Comparison of algorithms for TV+L1-regularized regression at various regularization pa-
rameters. The problem is given by minx∈Rn

1
2‖Ax − b‖22 + α

(
r‖x‖1 + (1 − r)‖Mx‖2,1

)
and the data

comes from fMRI data. Our method is dupl_prim_dual_cd (solid green curve). Note for the choices of
regularization parameters such that α(1− r) is larger, the problem is more di�cult to solve because the
total variation regularizer is dominant. This is in fact the most challenging part of the objective because
it is non-di�erentiable and non-separable.
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Figure 3.2: Comparison of algorithms for the resolution of the dual of linear SVM
maxx∈Rn − 1

2λ‖AD(b)x‖22 + eTx −
∑n
i=1 I[0,Ci](xi) − I{0}(〈b, x〉) on the RCV1 dataset. We report the

value of the duality gap after a post-processing to recover feasible primal and dual variables. We stopped
each algorithm after 100 passes through the data: note that the cost per iteration of the 5 algorithms is
similar but that the algorithm of [IBCH13] needs �rst to compute the Lipschitz constant of the gradient.
SDCA does not converge to the minimum because it does not consider the linear equality constraint.

Theorem 7. De�ne for α ≥ 1,

C1,α = max
1≤i≤n

τ−1
i + τ

−1/2
i ρ(

∑
j∈J(i)mjσjM

?
j,iMj,i)

1/2

τ−1
i − ρ(

∑
j∈J(i)mjσjM?

j,iMj,i)
(1 +

n

α
)

C2,α =
(

1 + max
1≤i≤n

α−1(n(n− 1) + 1) + 1

τ−1
i − βi − ρ(

∑
j∈J(i)(2− πj(i))mjσjM?

j,iMj,i)
βi

)
.

We have that C1,α and C2,α are nonincreasing with respect to α, and thus bounded. Let us denote
S0,∗ = f(x0)− f(x∗)− 〈∇f(x∗), x0 − x∗〉 and V (z) = V (x, y) = 1

2‖x‖
2
τ−1 + 〈Mx, y〉+ 1

2‖y‖
2
σ−1 .

De�ne the number of iterations K̂ ∈ {1, . . . , k} as a random variable, independent of {i1, . . . , ik} and
such that Pr(K̂ = l) = 1

k for all l ∈ {1, . . . , k}.
If h is L(h)-Lipschitz in the norm ‖·‖D(m)σ, then for all k ≥ 0,

E(f(x̄K̂) + g(x̄K̂) + h(Mx̄K̂)− f(x∗)− g(x∗)− h(Mx∗))

≤
C2,
√
k + 2C1,k√
k

n(S0,∗ + V (z0 − z∗)) +
4√
k
L(h)2.

If h = I{b}, then for all k ≥ 0,

E(f(x̄K̂) + g(x̄K̂)− f(x∗)− g(x∗))

≤
C2,
√
k + 2C1,k√
k

n
(
S0,∗ + V (z0 − z∗)

)
+ ‖y∗‖E(‖Mx̄K̂ − b‖)

E(‖Mx̄K̂ − b‖D(m)σ) ≤ 2√
k

(√
C2,
√
k + 2C1,k +

√
2C1,k

)(
n(S0,∗ + V (z0 − z∗))

)1/2)
3.2 Smooth minimization of nonsmooth functions with parallel

coordinate descent methods

A major question when designing a Parallel Coordinate Descent Method (PCDM) is: how should we
combine the updates computed by the various processors? One may simply compute the updates in
the same way as in the single processor case, and apply them all. However, this strategy is doomed
to fail: the method may end up oscillating between sub-optimal points [TBRS13]. Indeed, although
the individual updates are safe, there is no reason why adding them all up for should decrease the
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function value. In order to overcome this di�culty, Richtárik and Taká£ [RT15] introduced the concept
of Expected Separable Overapproximation (ESO). Thanks to this bound on the expected decrease after
one iteration of the algorithm, they could de�ne safe values for the amount of damping one should apply
to the updates in order to have a converging algorithm.

They could prove a nearly linear theoretical parallelization speedup for a composite and partially
separable function. This means that the objective function is the sum of a separable nonsmooth function
and a di�erentiable function of the form f(x) =

∑
J∈J fJ(x(J)) where each function fJ depends only

on a small number of coordinates x(J). They also showed that the way coordinates are sampled has a
huge impact on the performance. Indeed, PCDM implemented with a so-called τ -nice sampling can be
faster than PCDM implemented with a more general uniform sampling by a factor O(

√
n), where n is

the number of variables.
The goal of the paper [FR17] is to study a class of nonsmooth functions on which similar parallelization

speedups can be proved for parallel coordinate descent methods. This class of functions will be the
class of convex functions with max structure, which is very closely related to saddle points problems.
Our approach is based on the smoothing technique introduced by Nesterov in [Nes05b]. Indeed, if the
function to optimize has a max-structure, then one can de�ne a smooth approximation of the function
and minimize the approximation by any method available for smooth optimization, including coordinate
descent.

We wish to solve the problem

min
x
g(x) + h(Ax) = min

x∈RN
max
z∈Q

g(x) + 〈Ax, z〉 − h∗(z), (3.5)

where we assume that Q is bounded. Such problems were coined by Nesterov as problems with max
structure in [Nes05b]. The method we use for solving the smoothed composite problem (3.5) is given in
Algorithm 7. It relies on a smooth approximation of h(Ax) given by [Nes05b]

hµ(y) = max
z∈Q
{〈y, z〉 − h∗(z)− µd(z)}, (3.6)

where d is a function de�ned on Q, called the prox function, which is strongly convex with respect to

the norm ‖z‖v =
(∑m

j=1 v
p
j |zj |p

)1/p

.

Algorithm 7 Smoothed Parallel Coordinate Descent Method (SPCDM)

Input: initial iterate x0 ∈ RN , β > 0 and w = (w1, . . . , wn) > 0
for k ≥ 0 do
Step 1. Generate a random set of blocks Sk ⊆ {1, 2, . . . , n} following the law of Ŝ
Step 2. In parallel for i ∈ Sk, compute

s
(i)
k = arg min

t∈RNi

{
〈(A>∇hµ(Axk))(i), t〉+

βwi
2
〈Bit, t〉+ gi(x

(i)
k + t)

}
Step 3. In parallel for i ∈ Sk, update x(i)

k+1 ← x
(i)
k + s

(i)
k and set x

(j)
k+1 ← x

(j)
k for j 6∈ Sk

end for

On top of the random sampling, the algorithm depends on parameters β > 0 and w ∈ Rn+. These
parameters are determined in such a way that the function Hµ = hµ ◦ A satis�es an Expected Separable
Overapproximation (ESO) de�ned for a function φ as

E
[
φ(x+ s[Ŝ])

]
≤ φ(x) +

E[|Ŝ|]
n

(
〈∇φ(x), s〉+

β

2

n∑
i=1

wi〈Bis(i), s(i)〉

)
, x, s ∈ RN , (3.7)

where s[Ŝ] is de�ned in Assumption 1. When (3.7) holds, we say that φ admits a (β,w)-ESO with respect

to Ŝ. For simplicity, we may sometimes write (φ, Ŝ) ∼ ESO(β,w).
It is important to understand whether choosing τ > 1 (several processors), as opposed to τ = 1 (one

single processor), leads to acceleration in terms of an improved complexity bound. By analogy with
proximal gradient descent, we can see that 1

β can be interpreted as a stepsize. We would hence wish to
choose small β, but not too small so that the method does not diverge. The issue of the computation
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Table 3.2: Summary of iteration complexity results
strong convexity convexity

Nonsmooth problem with max-structure

Problem (3.5) n
τ ×

2β(τ)D
εσ +σΨ

σfµ+σΨ
× log( 1

ε ) nβ(τ)
τ × 8DDiam2

σε2 × log( 1
ε )

of a good (small) parameter β is very intricate for several reasons and is at the heart of the design of a
randomized parallel coordinate descent method. As can be seen from Table 3.2, the number of iterations

required to obtain an ε-solution for Problem (3.5) is of the form k ≥ C(ε)β(τ)
τ , where C(ε) does not

depend on τ . Hence, parallelization speedup occurs when the function T (τ) = β(τ)
τ is decreasing. This

has been proved for smooth partially separable functions in [RT15]. In [FR17], we proved it for Nesterov
separable functions.

De�nition 2 (Nesterov separability). We say that H = h ◦A is Nesterov (block) separable of degree ω
if h has the form (3.6) and

max
1≤j≤m

|{i : Aji 6= 0}| ≤ ω. (3.8)

Theorem 8 (ESO for τ -nice sampling). Let H = h ◦ A be Nesterov separable of degree ω, Ŝ be τ -nice
(i.e. for all S ⊂ {1, . . . n}, if |S| = τ , then P(Ŝ = S) = 1/

(
n
τ

)
), and w∗ be chosen as

w∗i = max{(‖Ait‖∗v)2 : t ∈ RNi , ‖t‖E = 1}, i = 1, 2, . . . , n.

Then
(Hµ, Ŝ) ∼ ESO(β,w∗),

where β = β′

µσ and, if the dual norm ‖ · ‖v is de�ned with p = 2,

β′ = β′2 = 1 +
(ω − 1)(τ − 1)

max(1, n− 1)

or, if p = 1,

β′ = β′3 =

kmax∑
k=1

min

1,
mn

τ

kmax∑
l=max{k,kmin}

clπl

 (3.9)

where cl, πl, kmin and kmax are de�ned by: kmin = max{1, τ − (n − ω)}, kmax = min{τ, ω}, cl =

max
{
l
ω ,

τ−l
n−ω

}
≤ 1 if ω < n, cl = l

ω ≤ 1 otherwise, and πl =
(ωk)(

n−ω
τ−k)

(nτ)
, kmin ≤ l ≤ kmax.

Formula (3.9) may look complicated at �rst glance but it is in fact just a sum of a few easily
computable terms. Computing β′3 has a negligible cost compared to the rest of the algorithm.

One can also easily show that using β = β′1 = min{ω, τ} always leads to a converging algorithm for
any τ -uniform sampling. However, the performance may be disappointing for an algorithm using parallel
processing. In Figure 3.3, we can see that our analysis allows us to prove a much better theoretical
parallelization speedup than the more basic result thanks to a �ne study of τ -nice samplings.

3.3 A Smooth Primal-Dual Optimization Framework for Nons-

mooth Composite Convex Minimization

3.3.1 Introduction

In [TDFC18], we introduce a new analysis framework for designing primal-dual optimization algorithms
to obtain numerical solutions to (3.1). We �rst focused on the case f = 0. Associated with the primal
problem (3.1), we de�ne the following dual formulation:

max
y∈Y

{
D(y) := −g∗(−A>y)− h∗(y)

}
, (3.10)
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Figure 3.3: Comparison of three formulae for β′ as a function of the number of processors τ (smaller β′

is better). Left: Large number of processors. Right: Zoom for smaller number of processors. We have
used matrix A ∈ Rm×n with m = 2, 396, 130, n = 3, 231, 961 and ω = 414. Blue solid line: τ -uniform

sampling, β′1 = min{ω, τ}. Green dashed line: τ -nice sampling and p = 2, β′2 = 1 + (ω−1)(τ−1)
max{1,n−1}

(Theorem 8). Red dash-dotted line: τ -nice sampling and p = 1, β′3 follows (3.9) in Theorem 8. Note
that β′1 reaches its maximal value ω quickly, whereas β′2 increases slowly. When τ is small compared to
n, this means that β′2 remains close to 1. Recall that small values of β′ directly translate into better
complexity and parallelization speedup.

where g∗ and h∗ are the Fenchel conjugate of g and h, respectively.
Among classical convex optimization methods, the primal-dual approach is perhaps one of the best

candidates to solve the primal-dual pair (3.1)-(3.10). Theory and methods along this approach have
been developed for several decades and have led to a diverse set of algorithms. A comparison between
some famous primal-dual methods and our approach in this paper is given in Tables 3.3 and 3.4. There
are several reasons for our emphasis on �rst-order primal-dual methods for (3.1)-(3.10), with the most
obvious one being their scalability. Coupled with recent demand for low-to-medium accuracy solutions
in applications, these methods indeed provide important trade-o�s between the per-iteration complexity
and the iteration-convergence rate along with the ability to distribute and decentralize the computation.

Associated with the primal problem (3.1) and the dual one (3.10), we de�ne

G(w) := P (x)−D(y), (3.11)

as a primal-dual gap function, where w := (x, y) is the concatenated primal-dual variable. The gap
function G in (3.11) is convex in terms of w. Under strong duality, we have G(w?) = 0 if and only if
w? = (x?, y?) is a primal-dual solution of (3.1) and (3.10).

In stark contrast with the existing literature, our analysis relies on a novel combination of three
classical concepts in convex optimization applied to the primal-dual gap function: Nesterov's smoothing
technique, the accelerated proximal gradient descent method and homotopy in a nontrivial manner. While
some combinations of these techniques have already been studied in the literature, their full combination
is important for the desiderata and had not been studied before.

Smoothing: We can obtain a smoothed estimate of the gap function within Nesterov's smoothing
technique applied to g and h [BT12, Nes05b]. In the sequel, we denote the smoothed gap function by
Gγβ(w) := Pβ(x) −Dγ(y) to approximate the primal-dual gap function G(w), where Pβ is a smoothed
approximation to P depending on the smoothness parameter β > 0, and Dγ is a smoothed approximation
to D depending on the smoothness parameter γ > 0. By smoothed approximation, we mean the same
max-form approximation as [Nes05b]. However, it was previously unclear how to properly update these
smoothness parameters in primal-dual methods.

Acceleration: Using an accelerated scheme, we will design new primal-dual decomposition methods
that satisfy the following smoothed gap reduction model:

Gγk+1βk+1
(w̄k+1) ≤ (1− τk)Gγkβk(w̄k) + ψk, (3.12)

where {w̄k} and the parameters are generated by the algorithms with τk ∈ [0, 1) and max(ψk, 0) converges
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Table 3.3: A comparison of convergence rates between ASGARD and ADSGARD algorithms (in the
case f = 0) and selected existing methods for solving (3.1) and (3.2). Here, all algorithms do not involve

any large matrix inversion or �complex� convex subproblem, and wk := 1
k

∑k
l=1 w

l; K is the iteration
budget; and σ is the step-size in [CP11].

Paper dom g bounded
and h Lipschitz

h Lipschitz h = δ{c}
. (optimality and feasibility)

Nesterov
[Nes05b]

P (xk) ≤ 2
√
L̄ADXDY
K

(
1+K2

k2

)
P (xk) ≤ ε

2 + 8L̄A‖x0−x?‖2DY
ε(k+1)2 not applicable

Chambolle-
Pock [CP11]

G(wk) ≤ σL̄ADX+σ−1DY
k convergence convergence

ASGARD P (xk) ≤ 2
√

2
√
L̄ADYDX
k P (xk) ≤ L̄A

2β1k
‖x̄0−x?‖2 + 2β1

k DY |g(xk)−g?| ≤
[TDFC18] L̄A

β1k
‖x̄0−x?‖2+ 3β1

k ‖ẏ−y
?‖2+ β1

k ‖y
?‖2

‖Axk − c‖Y,∗ ≤
β1

k+1

(
2‖ẏ − y?‖+

√
L̄A
β1
‖x̄0 − x?‖

)
ADSGARD G(wk) ≤ 2

√
L̄ADYDX
k G(wk) ≤ γ1

k+1‖ẋ−x
?‖2 + 2L̄A

γ1k
DY |g(xk)−g?| ≤

[TDFC18] 3γ1

k ‖ẋ−x
?‖2+ 2L̄A

γ1k
‖ẏ−y?‖2+ LA

γ1k
‖y?‖2

‖Axk − c‖Y,∗ ≤
L̄A
γ1k

(
2‖ẏ − y?‖+ 2γ1‖ẋ− x?‖

)

to zero. Similar ideas have been proposed before; for instance, Nesterov's excessive gap technique [Nes05a]
is a special case of the gap reduction model (3.12) when ψk ≤ 0 (see [TDC14]).

Homotopy: We will design algorithms to maintain (3.12) while simultaneously updating βk, γk and
τk to zero to achieve the best known convergence rate based on the assumptions imposed on the problem
template. This strategy will also allow our theoretical guarantees not to depend on the diameter of the
feasible set of (3.2). A similar technique is also proposed in [Nes05a], but only for symmetric primal-dual
methods. It is also used in conjunction with Nesterov's smoothing technique in [BH12] for unconstrained
problem but had only an O(ln(k)/k) convergence rate.

Note that without homotopy, we can directly apply Nesterov's accelerated methods to minimize the
smoothed gap function Gγβ for given γ > 0 and β > 0. In this case, these smoothness parameters must
be �xed a priori depending on the desired accuracy and the prox-diameter of both the primal and dual
problems, which may not be applicable to (3.2) due to the unboundedness of the dual feasible domain.

Table 3.4: A comparison of convergence rates between our algorithms and selected existing methods for
solving (3.2). Here, all algorithms may involve �complex� convex subproblems or matrix inversions; and
ρ is the penalty parameter in [LMon] and [MS12].

Paper g = δ{c}
ALM [LMon] |g(xk)− g?| ≤ 6

ρ
√
k
‖y?‖‖y0 − y?‖

‖Axk − c‖Y,∗ ≤ 3
ρ
√
k
‖y0 − y?‖

ADMM [MS12] |g1((x1)k) + g2((x2)k)− g1(x?1)− g2(x?2)| ≤ 6+4
√

2
k

(
1
ρ‖y

0 − y?‖2 + ρ‖x0
1 − x?1‖2A∗1A1

)
‖A1(x1)k +A2(x2)k − c‖ ≤ 2

k

√
1
ρ2 ‖y0 − y?‖2 + ‖x0

1 − x?1‖2A∗1A1

ASALGARD [TDFC18] |g(xk)− g?| ≤ 10‖y?‖Y‖ẏ−y?‖Y
γ0(k+1)2

‖Axk − c‖Y,∗ ≤ 8‖ẏ−y?‖Y
γ0(k+2)2
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3.3.2 Technical results

Lemma 3 is fundamental to our theory since it relates the decrease in the smoothed gap to the objective
value and the feasibility gap in the very important case of equality constraints. It shows that when the
smoothed gap and the smoothing parameters are small at the same time, then objective value gap and
feasibility gap are both small.

This question had been open for several years in the area of convergence rates for primal-dual methods.
Previous works either made assumptions that forbade equality constraints or proved results in terms of
quantities that are not natural measures of optimality (for instance the restricted duality gap in [CP11]).
Concurrently to our work, alternative approaches have been proposed by Y. Drori in [Dro14] and by Y.
Xu in [Xu17]. Note that although the rates obtained are the same, our approach using smoothing is
more principled.

Lemma 3. Let Gγβ be the smoothed gap function and Sβ(x; ẏ) := Pβ(x; ẏ)−P (x?) = f(x)+gβ(Ax; ẏ)−
P (x?) be the smoothed objective residual. Then, we have

Sβ(x; ẏ) ≤ Gγβ(w; ẇ) + γbX (x?, ẋ) and
1

2
‖y∗β(Ax; ẏ)− y?‖2Y,∗ ≤ bY(y?, ẏ) +

1

β
Sβ(x; ẏ). (3.13)

Suppose that g(·) := δ{c}(·). Then, for any y? ∈ y? and x ∈ X , one has

− ‖y?‖Y‖Ax− c‖Y,∗ ≤ f(x)− f(x?) (3.14)

and the following primal objective residual and feasibility gap estimates hold for (3.2):{
f(x)− f(x?) ≤ Sβ(x; ẏ)− 〈y?, Ax− c〉+ βbY(y?, ẏ),

‖Ax− c‖Y,∗ ≤ βLbY
[
‖y? − ẏ‖Y +

(
‖y? − ẏ‖2Y + 2L−1

bY
β−1Sβ(x; ẏ)

)1/2]
,

(3.15)

where the quantity in the square root is always nonnegative.

Using the smoothed gap machinery, we de�ned a new algorithm, that we called the Accelerated
Smoothed GAp ReDuction algorithm (ASGARD). The idea is at each iteration to run one step of
accelerated gradient on the smoothed gap function and then to decrease the smoothing parameter βk as
much as our analysis allows us to do while maintaining (3.12).



x̂k = (1− τk)x̄k + τkx̃
k,

y∗βk+1
(Ax̂k; ẏ) := arg max

y∈Y
〈Ax̂k, y〉 − h∗(y)− βk+1bY(y, ẏ),

x̄k+1 = proxβk+1L̄
−1
A g

(
x̂k − βk+1L̄

−1
A A>y∗βk+1

(Ax̂k; ẏ)
)
,

x̃k+1 = x̃k − τ−1
k (x̂k − x̄k+1),

τk+1 ∈ (0, 1) is the unique positive root of τ3/LbY + τ2 + τ2
k τ − τ2

k = 0,

βk+2 = βk+1

1+L−1
bY
τk+1

(ASGARD)

We prove an O(1/k) convergence rate on the objective residual P (x̄k)−P ? of (3.1) for the algorithm,
which is the best known in the literature for the fully nonsmooth setting. For the constrained case (3.2),
we also prove the convergence of the algorithm in terms of the primal objective residual and the feasibility
violation, both achieve an O(1/k) convergence rate, and are independent of the prox-diameters unlike
existing smoothing techniques [BT12, Nes05a, Nes05b]. As the optimality measure is di�erent in each
case, we state two distinct theorems.

Theorem 9. Suppose that f = 0 and h = δ{c}. Let β1 > 0 and bY be chosen such that LbY = 1. Let

{x̄k} be the primal sequence generated by Algorithm ASGARD. Then the following bounds hold for (3.2):
g(x̄k)−g? ≥ −‖y?‖Y‖Ax̄k − c‖Y,∗,

g(x̄k)−g? ≤ 1
k
L̄A
2β1
‖x̄0 − x?‖2X + ‖y?‖Y‖Ax̄k − c‖Y,∗ + 2β1

k+1bY(y?, ẏ),

‖Ax̄k − c‖Y,∗ ≤ β1

k+1

[
‖y? − ẏ‖Y +

(
‖y? − ẏ‖2Y + β−2

1 L̄A‖x̄0 − x?‖2X
)1/2]

.

(3.16)
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Clearly, the choice of β1 in Theorem 9 trades o� between ‖x̄0 − x?‖2X and ‖y? − ẏ‖2Y on the primal
objective residual g(x̄k)− g? and on the feasibility gap ‖Ax̄k − c‖Y,∗.

Theorem 10. Suppose that f = 0 and h is Lipschitz continuous, so that DY = supy∈dom g∗ bY(y, ẏ) <

+∞. Let β1 > 0 and bY be chosen such that LbY = 1. Let {x̄k} be the primal sequence generated by
Algorithm ASGARD. Then, the primal objective residual of (3.1) satis�es

P (x̄k)− P (x?) ≤ L̄A
2β1k

‖x̄0 − x?‖2X +
2β1

k + 1
DY , for all k ≥ 1. (3.17)

3.3.3 Extensions

The �exibility of the framework allowed us to develop several variants of ASGARD.

Dual algorithm We developed in [TDFC18] a dual version of ASGARD, called ADSGARD, that
updates a sequence of primal-dual vectors (x̄k, ȳk). Its main feature is that, although it is a dual
algorithm, it has guarantees on the smoothed duality gap, from which we can derive a convergence rate
in the primal space.

Moreover, by considering the non-strongly convex smoothing bX (x, ẋ) = 1
2‖Ax − Aẋ‖2, we could

de�ne ASALGARD, a method similar to the Augmented Lagrangian method but with improved worst
case guarantee of the order O(1/k2).

When the objective function g is µ-strongly convex, we showed that it is not necessary to smooth its
Fenchel conjugate g∗. Taking γk = 0 in the algorithm yields a faster algorithm with rate O(1/k2).

Heuristic restart Similar to other accelerated gradient algorithms in [GB14, OC12, SBC14, FQ16],
restarting ASGARD and ADSGARD may lead to a better performance in practice.

If we consider ASGARD, then, when a restart takes place, we perform the following steps:
x̃k+1 ← x̄k+1,
ẏ ← y∗βk+1

(Ax̄k+1; ẏ),

βk+1 ← β1,
τk+1 ← 1.

(3.18)

Extension to Problem 3.1 In [VNFC17], we showed that ASGARD can deal with di�erentiable
functions through their gradient. The step-sizes need to be adapted accordingly. We also proposed a
novel line search that adapts the step-sizes and the smoothing parameters together. Thus, if the function
h happened to be smooth near the optimum, the algorithm will automatically switch to accelerated
gradient with O(1/k2) rate.

Going from a purely proximal to a forward-backward type method was a requirement in order to
design a coordinate descent version of ASGARD that would take pro�t of longer step-sizes.

Conditional gradient with linear constraints In [YFLC18], we showed how to use the smoothing
framework with a conditional gradient method. We obtain an algorithm that, using only gradients and
linear minimization oracles, can solve complex problems, like for instance semi-de�nite programs, and
has a convergence guarantee of order O(1/

√
k). This is the �rst method with such a rate under the setup

of conditional gradient with linear constraints and the method has very good practical performance.

3.4 A primal-dual coordinate descent method based on smooth-

ing

The paper [ADFC17] develops a random coordinate descent method to solve the composite problem
(3.1):

F ? = min
x∈Rp
{F (x) = f(x) + g(x) + h(Ax)},
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where f : Rp → R, g : Rp → R ∪ {+∞}, and h : Rn → R ∪ {+∞} are proper, closed and convex
functions, A ∈ Rn×p is a given matrix. As explained before in this thesis, the optimization template (3.1)
covers many important applications including support vector machines, sparse model selection, logistic
regression, etc. It is also convenient to formulate generic constrained convex problems by choosing an
appropriate h.

Before this work, there was no coordinate descent method for the general three-composite form
(3.1) within our structure assumptions studied here that had rigorous convergence speed guarantees. In
particular, we had not derived the convergence rate of Algorithm 6 yet. For such a theoretical develop-
ment, coordinate descent algorithms require speci�c assumptions on the convex optimization problems
[Nes12a, FR15, NC13]. As a result, to rigorously handle the three-composite case, we assume that (i)
f is smooth, (ii) g is non-smooth but decomposable (each component has an �e�ciently computable�
proximal operator), and (iii) h is non-smooth.

We generalize [FR15, QR16] to the three composite case (3.1). For this purpose, we combine sev-
eral classical and contemporary ideas: We exploit the smoothing technique in [Nes05b], the e�cient
implementation technique in [Nes12a, FR15], the homotopy strategy in [TDC15], and the nonuniform
coordinate selection rule in [QR16] in our algorithm, achieving the best known complexity estimate.

Surprisingly, the combination of these ideas are achieved in a very natural and elementary primal-
dual gap-based framework. However, the extension is indeed not trivial since it requires to deal with a
composition of a non-smooth function h and a linear operator A.

We propose a new smooth primal-dual randomized coordinate descent method (Algorithm 8) for
solving (3.1) where f is smooth, g is nonsmooth, separable and has a block-wise proximal operator, and
h is a general nonsmooth function. Under such a structure, we show that our algorithm achieves the
best known O(n/k) convergence rate, where k is the iteration count.

We instantiate our algorithm to solve special cases of (3.1) including the case g = 0 and constrained
problems. We analyze the convergence rate guarantee of these variants individually and discuss the choice
of nonuniform distribution to achieve the best convergence rate. Exploiting the strategy in [FR15], we
show that our algorithm can be implemented in parallel by breaking up the full vector updates. We also
provide a restart strategy to enhance practical performance.

Algorithm 8 (SMooth, Accelerate, Randomize The Coordinate Descent (SMART-CD))

Require: Choose β1 > 0 and α ∈ [0, 1] as two input parameters.

1: Set B0
i := L̂i + ‖Ai‖2

β1
for i ∈ [n]. Compute Sα :=

∑n
i=1(B0

i )α and qi :=
(B0
i )α

Sα
for all i ∈ [n].

2: Set τ0 := min{qi : 1 ≤ i ≤ n} ∈ (0, 1] for i ∈ [n].

3: for k ← 0, 1, · · · , kmax do

4: Update x̂k := (1− τk)x̄k + τkx̃
k and compute ûk := Ax̂k.

5: Compute the dual step y∗βk+1
(ûk) := proxβ−1

k+1h
∗ẏ − β−1

k+1û
k.

6: Select a block coordinate ik ∈ [n] according to the probability distribution q.
7: Set x̃k+1 := x̃k, and compute the primal ik-block coordinate:

x̃k+1
ik

:= argmin
xik∈R

pik

{
〈∇ikf(x̂k) +ATiky

∗
βk+1

(ûk), xik − x̂ik〉(ik) + gik(xik) +
τkB

k
ik

2τ0
‖xik − x̃kik‖

2
(ik)

}
.

8: Update x̄k+1 := x̂k + τk
τ0

(x̃k+1 − x̃k).

9: Compute τk+1 ∈ (0, 1) as the unique positive root of τ3 + τ2 + τ2
k τ − τ2

k = 0.

10: Update βk+2 := βk
1+τk+1

and Bk+1
i := L̂i + ‖Ai‖2

βk+2
for i ∈ [n].

11: end for

As the proof is using Lemma 3, our convergence result is split into the two important cases of Lipschitz
h and linear equality constraint.

Theorem 11. Let x? be an optimal point of (3.1) where h is Dh∗-Lipschitz continuous and let β1 > 0
be given. Let τ0 := min{qi : i ∈ [n]} ∈ (0, 1] and β0 := (1 + τ0)β1 be given parameters. For all k ≥ 1,
the sequence {x̄k} generated by Algorithm 8 satis�es:

E[F (x̄k)− F (x?)] ≤ C?

τ0(k − 1) + 1
+
β1(1 + τ0)D2

h∗

2(τ0k + 1)
, (3.19)
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where C? := (1− τ0)(Fβ0(x0)− F (x?)) +
∑n
i=1

τ0B
0
i

qi
‖x?i − x̃0

i ‖2(i).

Theorem 12. Let {x̄k} be the sequence generated by Algorithm 8 for solving (3.1) where h = δ{b}. Then,
we have the following estimate:

E[F (x̄k)− F (x?)] ≤ (1−τ0)C∗

τ0(k−1)+1 + β1‖y?−ẏ‖2
2(τ0(k−1)+1) + ‖y∗‖E[‖Ax̄k − b‖],

E‖Ax̄k − b‖ ≤ β1

τ0(k−1)+1

[
‖y∗ − ẏ‖+

(
‖y∗ − ẏ‖2 + 4β−1

1 C∗
)1/2]

,
(3.20)

where C∗ := (1− τ0)(Fβ0(x0)− F (x?)) +
∑n
i=1

τ0B
0
i

qi
‖x?i − x̃0

i ‖2i . We note that the following lower bound

always holds −‖y?‖∗E[‖Ax̄k − b‖] ≤ E[F (x̄k)− F (x?)].
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Figure 3.4: The convergence behavior of SMART-CD (Algorithm 8) and Vu-Condat-CD (Algorithm 6)
for a degenerate linear program with repeated constraints. We observe that degeneracy of the problem
prevents Vu-Condat-CD from making any progress towards the solution (we only proved O(1/

√
k) speed

of convergence for Algorithm 6), while SMART-CD preserves O(1/k) rate as predicted by theory.
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2λ‖AD(b)x‖2 −
∑n
i=1 xi s.t. 0 ≤ xi ≤ Ci, i = 1, · · · , n, b>x = 0

}
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Chapter 4

Applications to statistics

4.1 Gap Safe screening rules for sparsity enforcing penalties

4.1.1 Introduction

The computational burden of solving high dimensional regularized regression problem has led to a vast
literature on improving algorithmic solvers in the last two decades. With the increasing popularity
of `1-type regularization ranging from the Lasso [Tib96] or group-Lasso [YL06] to regularized logistic
regression and multi-task learning, many algorithmic methods have emerged to solve the associated
optimization problems [KKB07, BJM+12]. Although for the simple `1 regularized least square a speci�c
algorithm (e.g. the LARS [EHJT04]) can be considered, for more general formulations, penalties, and
possibly larger dimensions, (block) coordinate descent has proved to be an e�cient strategy [FHT10].

Our main objective in this work is to propose a technique that can speed-up any iterative solver for
such learning problems, and that is particularly well suited for (block) coordinate descent method as this
type of method can easily ignore useless coordinates.

The safe rules introduced by [EVR12] for generalized `1 regularized problems, is a set of rules allowing
to eliminate features whose associated coe�cients are guaranteed to be zero at the optimum, even before
starting any algorithm. Relaxing the safe rule, one can obtain some additional speed-up at the price of
possible mistakes. Such heuristic strategies, called strong rules by [TBF+12] reduce the computational
cost using an active set strategy, but require di�cult post-processing to check for features possibly
wrongly discarded.

Another road to speed-up screening method has been pursued following the introduction of sequen-
tial safe rules [EVR12, WWY12, XWR14, WZL+14]. The idea is to improve the screening thanks to
the computation done for a previous regularization parameter as in homotopy/continuation methods.
This scenario is particularly relevant in machine learning, where one computes solutions over a grid
of regularization parameters, so as to select the best one, e.g. by cross-validation. Nevertheless, the
aforementioned methods su�er from the same problem as strong rules, since relevant features can be
wrongly disregarded. Indeed, sequential rules usually rely on the exact knowledge of certain theoretical
quantities that are only known approximately. Especially, for such rules to work one needs the exact
dual optimal solution from the previous regularization parameter, a quantity (almost) never available to
the practitioner.

The introduction of dynamic safe rules by [BERG15, BERG14] has opened a promising venue by
performing variable screening, not only before the algorithm starts, but also along the iterations. This
screening strategy can be applied for any standard optimization algorithm such as FISTA [BT09],
primal-dual [CP11], augmented Lagrangian [BPC+11a]. Yet, it is particularly relevant for strategies
that can bene�t from support reduction or active sets[KWGA11, JG15], such as coordinate-descent
[Fu98, FHHT07, FHT10].

We shall present the methods introduced �rst for the Lasso in [FGS15] and then for `1/`2 norms in
[NFGS15] as well as for Sparse Group Lasso in [NFGS16], and summarized in [NFGS17]. Our so-called
Gap Safe rules (because the screening rules rely on duality gap computations), improved on dynamic
safe rules for a broad class of learning problems with the following bene�ts:

• Gap Safe rules are easy to insert in existing solvers,
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• they are proved to be safe and unify sequential and dynamic rules,

• they are more e�cient in practice than previously known safe rules,

• they achieve fast variable identi�cations.

Furthermore, it is worth noting that strategies also leveraging dual gap computations have recently
been considered to safely discard irrelevant coordinates: [SKHT16] have considered screening rules for
learning tasks with both feature sparsity and sample sparsity, such as for `1-regularized SVM. In this
case, some interesting developments have been proposed, namely safe keeping strategies, which allow to
identify features and samples that are guaranteed to be active. Constrained convex problems such as
minimum enclosing ball can also be included as shown in [ROG+16]. The Blitz algorithm by [JG15] aims
to speed up working set methods using duality gaps computations; signi�cant gains were also obtained
in limited-memory and distributed settings.

4.1.2 Safe Screening rules

We propose to estimate the vector of parameters β by solving

β̂(λ) ∈ arg min
β∈Rp

Pλ(β), for Pλ(β) := F (β) + λΩ(β) :=

n∑
i=1

fi(x
>
i β) + λΩ(β) , (4.1)

where all fi : R 7→ R are convex and di�erentiable functions with 1/γ-Lipschitz gradient and Ω : Rp 7→ R+

is a norm that is group-decomposable, i.e. Ω(β) =
∑
g∈G Ωg(βg) where each Ωg is a norm on Rng . The

λ parameter is a non-negative constant controlling the trade-o� between the data �tting term and the
regularization term. We shall denote the dual norm of Ω by ΩD(z) = maxg∈G ΩDg (zg).

A dual formulation of 4.1 is given by

θ̂(λ) = arg max
θ∈∆X

−
n∑
i=1

f∗i (−λθi) =: Dλ(θ), (4.2)

where ∆X = {θ ∈ Rn : ∀g ∈ G,ΩDg (X>g θ) ≤ 1}. Moreover, the Fermat's rule reads:

∀i ∈ [n], θ̂
(λ)
i = −∇fi(x>i β̂(λ))/λ (link equation), (4.3)

∀g ∈ G, X>g θ̂(λ) ∈ ∂Ωg(β̂
(λ)
g ) (sub-di�erential inclusion). (4.4)

For any θ ∈ Rn let us introduce G(θ) := [∇f1(θ1), . . . ,∇fn(θn)]> ∈ Rn. Then the primal/dual link

equation can be written θ̂(λ) = −G(Xβ̂(λ))/λ .
Contrarily to the primal, the dual problem has a unique solution under our assumption on the fi's.

Indeed, the dual function is strongly concave.
Screening rules rely on a direct consequence of Fermat's rule. If β̂(λ)g 6= 0, then ΩDg (X>g θ̂

(λ)) = 1
thanks to the formula for the subdi�erential of a norm

∂Ω(x) =

{
{z ∈ Rd : ΩD(z) ≤ 1} = BΩD , if x = 0,

{z ∈ Rd : ΩD(z) = 1 and z>x = Ω(x)}, otherwise.
(4.5)

Since θ̂(λ) ∈ ∆X , it implies, by contrapositive, that if ΩDg (X>g θ̂
(λ)) < 1 then β̂(λ)g = 0. This relation

means that the g-th group can be discarded whenever ΩDg (X>g θ̂
(λ)) < 1. However, since θ̂(λ) is unknown,

this rule is of limited use. Fortunately, it is often possible to construct a set R ⊂ Rn, called a safe region,
that contains θ̂(λ). This observation leads to the following result.

Proposition 4 (Safe screening rule [EVR12]). If θ̂(λ) ∈ R, and g ∈ G:

max
θ∈R

ΩDg (X>g θ) < 1 =⇒ ΩDg (X>g θ̂
(λ)) < 1 =⇒ β̂(λ)g = 0 . (4.6)

The so-called safe screening rule consists in removing the g-th group from the problem whenever the
previous test is satis�ed, since then β̂(λ)g is guaranteed to be zero. Should R be small enough to screen
many groups, one can observe considerable speed-ups in practice as long as the testing can be performed
e�ciently. A natural goal is to �nd safe regions as narrow as possible: smaller safe regions can only
increase the number of screened out variables. To have useful screening procedures one needs:
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• the safe region R to be as small as possible (and to contain θ̂(λ)),

• the computation of the quantity max
θ∈R

ΩDg (X>g θ) to be cheap.

Various shapes have been considered in practice for the safe region R such as balls [EVR12], domes
[FGS15] or more re�ned sets (see [XWR14] for a survey). Here we consider for simplicity the so-called
�sphere regions� (following the terminology introduced by [EVR12]) choosing a ball R = B(θc, r) as a
safe region. Thanks to the triangle inequality, we have:

max
θ∈B(θc,r)

ΩDg (X>g θ) ≤ ΩDg (X>g θc) + max
θ∈B(θc,r)

ΩDg (X>g (θ − θc)),

and denoting ΩDg (Xg) := supu 6=0
ΩDg (X>g u)

‖u‖2 the operator norm of Xg associated to ΩDg (·), we deduce from
Proposition 4.6 the screening rule for the g-th group:

Safe sphere test: If ΩDg (X>g θc) + rΩDg (Xg) < 1, then β̂(λ)g = 0 . (4.7)

Finding a center To create a useful center for a safe sphere, one needs to be able to create dual
feasible points, i.e. points in the dual feasible set ∆X . One such point is θmax := −G(0)/λmax which
leads to the original static safe rules proposed by [EVR12]. Yet, it has a limited interest, being helpful
only for a range of small regularization parameters λ. A more generic way of creating a dual point that
will be key for creating our safe rules is to rescale any point z ∈ Rn such that it is in the dual set ∆X .
The rescaled point is denoted by Θ(z) and is de�ned by

Θ(z) :=

{
z, if ΩD(X>z) ≤ 1,

z
ΩD(X>z)

, otherwise.
(4.8)

This choice guarantees that ∀z ∈ Rn,Θ(z) ∈ ∆X . A candidate often considered for computing a dual
point consists in starting by the (generalized) residual term z = −G(Xβ)/λ. This choice is motivated

by the primal-dual link equation (4.3) i.e. θ̂(λ) = −G(Xβ̂(λ))/λ. We also have the following theoretical
guarantee.

Proposition 5 (Convergence of the dual points). Let βk be the current estimate of β̂(λ) and θk =

Θ(−G(Xβk)/λ) be the current estimate of θ̂(λ). Then limk→+∞ βk = β̂(λ) implies limk→+∞ θk = θ̂(λ).

Finding a radius Now that we have seen how to create a center candidate for the sphere, we need to
�nd a proper radius, that would allow the associated sphere to be safe. The following theorem proposes
a way to obtain a radius using the duality gap:

Theorem 13 (Gap Safe sphere). Assuming that F has 1/γ-Lipschitz gradient, we have

∀β ∈ Rp,∀θ ∈ ∆X , ‖θ̂(λ)− θ‖2 ≤

√
2(Pλ(β)−Dλ(θ))

γλ2
=: rλ(β, θ) . (4.9)

Hence R = B(θ, rλ(β, θ)) is a safe region for any β ∈ Rn and θ ∈ ∆X .

Safe Active Set Note that any time a safe rule is performed thanks to a safe region R = B(θ, r), one
can associate a safe active set Aθ,r, consisting of the features that cannot be removed yet by the test in

Equation 4.7. Hence, the safe active set contains the true support of β̂(λ).
When choosing z = −G(Xβ)/λ as proposed in Section 4.1.2 as the current residual, the computation

of θ = Θ(z) in Equation 4.8 involves the computation of ΩD(X>z). A straightforward implementation
would cost O(np) operations. This can be avoided: when using a safe rule one knows that the index
achieving the maximum for this norm is in A(θ, r). Indeed, by construction of the safe active set, it
is easy to see that ΩD(X>z) = maxg∈A(θ,r) ΩDg (X>g z). In practice the evaluation of the dual gap is
therefore O(nq) where q is the size of A(θ, r). In other words, using a safe screening rule also speeds up
the evaluation of the stopping criterion.
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Figure 4.1: Illustration of safe region di�erences between Bonnefoy et al [BERG15] (left) and Gap Safe
(right) strategies for the Lasso case. Here β is a primal point, θ is a dual feasible point (the feasible region
∆X is in orange, while the respective safe balls R are in blue), and rλ(β, θ) is de�ned by Equation 4.9.

4.1.3 Experiments

The algorithm is given in Algorithm 9. It improves an iterative solver with updates SolverUpdate by
sequentially improving the safe active set. For our experiments, we chose a frequency such that f ce = 10.
The rationale for this frequency is that computing the dual variable amounts to one matrix-vector
multiply by X, which is comparable to one iteration of gradient descent or n iterations of coordinate
descent.

Algorithm 9 Iterative solver with GAP safe rules: Solver (X, y, β, ε, K, f ce, λ)

Require: X, y, β, ε, K, f ce, λ
for k ∈ [K] do
if k mod f ce = 1 then
Compute a dual variable θ = −G(Xβ)/max(λ,ΩD(X>G(Xβ)))
Stop if Gapλ(β, θ) ≤ ε
r =

√
2Gapλ(β,θ)

γλ2 Get Gap Safe radius as in Equation 4.9

A =
{
g ∈ G : ΩDg (X>g θ) + rΩDg (Xg) ≥ 1

}
Get Safe active set

end if

βA = SolverUpdate (XA, y, βA, λ) Solve on current Safe active set
end for

4.1.4 Alternative Strategies: a Brief Survey

The Seminal Safe Regions The �rst Safe Screening rules introduced by [EVR12] can be generalized

to Problem 4.1 as follows. Take θ̂(λ0) the optimal solution of the dual problem 4.2 with a regularization
parameter λ0. Since θ̂(λ) is optimal for problem 4.2 one obtains θ̂(λ) ∈ {θ : Dλ(θ) ≥ Dλ(θ̂(λ0))}. This
set was proposed as a safe region by [EVR12]. In the regression case (where fi(z) = (yi − z)2/2), it is

straightforward to see that it corresponds to the safe sphere B(y/λ, ‖y/λ− θ̂(λ0)‖2).
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Figure 4.2: Lasso on �nancial data E2006-log1p (sparse data with n = 16087 observations and p =
1668737 features). Computation times needed to solve the Lasso regression path to desired accuracy for
a grid of 10 values of λ from λmax to λmax/20. We compare several re�nements of our Gap Safe technique
with the alternative strategies described in the literature. Seq (sequential) means that we only compute
the active set at the �rst iteration using the last point returned for the previous λ. Dyn (dynamic) means
that we update the active set every f ce iterations. We can see that dynamic updates yield much better
performance (up to a 10 times speedup).

ST3 and Dynamic ST3 A re�ned sphere rule can be obtained in the regression case by exploiting
geometric informations in the dual space. This method was originally proposed in [XXR11] and extended
in [BERG14] with a dynamic re�nement of the safe region.

Let g? ∈ arg maxg∈G ΩDg (X>y) (note that ΩDg?(X>y) = λmax), and let us de�ne

V? := {θ ∈ Rn : ΩDg?(X>g?θ) ≤ 1} and H? := {θ ∈ Rn : ΩDg?(X>g?θ) = 1}.

Let η := Xg?∇ΩDg?(X>g?y/λmax) be the vector normal to V? at y/λmax and de�ne

θc := ΠH?

( y
λ

)
=
y

λ
−
〈 yλ , η〉 − 1

‖η‖22
η and rθ :=

√
‖ y
λ
− θ‖22 − ‖

y

λ
− θc‖22 ,

where θ ∈ ∆X is any dual feasible vector. One can show that θ̂(λ) ∈ B(θc, rθ). The special case where
θ = y/λmax corresponds to the original ST3 introduced in [XXR11] for the Lasso.

Dual Polytope Projection In the regression case, [WWY12] explore other geometric properties of the

dual solution. Their method is based on the non-expansiveness of projection operators1. Indeed, for θ̂(λ)

(resp. θ̂(λ0))) being optimal dual solution of 4.2 with parameter λ (resp. λ0), one has: ‖θ̂(λ) − θ̂(λ0)‖2 =

‖Π∆X
(y/λ)− Π∆X

(y/λ0)‖2 ≤ ‖y/λ− y/λ0‖2 and hence θ̂(λ) ∈ B(θ̂(λ0), ‖y/λ− y/λ0‖2). Unfortunately,

those regions are intractable since they required the exact knowledge of the optimal solution θ̂(λ0) which
is not available in practice (except for λ0 = λmax).

Strong rules The Strong rules were introduced in [TBF+12] as a heuristic extension of the safe
rules. It consists in relaxing the safe properties to discard features more aggressively, and can be
formalized as follows. Assume that the gradient of the data �tting term ∇F is group-wise non-expansive
w.r.t. the dual norm ΩDg (·) along the regularization path i.e. that for any g ∈ G, any λ > 0, λ′ > 0,

ΩDg
(
∇gF (β̂(λ))−∇gF (β̂(λ′))

)
≤ |λ−λ′|. When choosing two regularization parameters such that λ < λ′

this assumption leads to: λΩDg (X>g θ̂
(λ)) ≤ λ′ΩDg (X>g θ̂

(λ′)) + λ′ − λ. Combining this with the screening

rule (4.6), one obtains: ΩDg (X>g θ̂
(λ′)) < 2λ−λ′

λ′ =⇒ β̂
(λ)
g = 0.

1The authors also proved an enhanced version of this safe region by using the �rm non-expansiveness of the projection
operator.
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The set of variables not eliminated is called the strong active set. Note that Strong rules are un-safe
because the non-expansiveness condition on the (gradient of the) data �tting term is usually not satis�ed
without stronger assumptions on the design matrix X; see discussion in [TBF+12]. It requires the exact

knowledge of θ̂(λ′) which is not available in practice. Using such rules, the authors advised to check the
KKT condition a posteriori, to avoid removing wrongly some features.

Correlation Based Rule Previous works in statistics have proposed various model-based screening
methods to select important variables. Those methods discard variables with small correlation between
the features and response variables. For instance Sure Independence Screening (SIS) by [FL08] reads:
for a chosen critical threshold γ remove the feature if the correlation with the observation is smaller than
γ. It is a marginal oriented variable selection method and it is worth noting that SIS can be recast as a
static sphere test in linear regression scenarios:

If ΩDg (X>g y) < γ = λ
(
1− rΩDg (Xg)

)
then β̂(λ)

g = 0 (remove Xg).

Other re�nements can also be found in the literature such as iterative screening (ISIS) [FL08], that
bears some similarities with dynamic sphere safe tests.

4.2 E�cient Smoothed Concomitant Lasso Estimation for High

Dimensional Regression

In the context of high dimensional regression where the number of features is greater than the number
of observations, standard least squares need some regularization to both avoid over-�tting and ease the
interpretation of discriminant features. Among the least squares with sparsity inducing regularization,
the Lasso [Tib96], using the `1 norm as a regularizer, is the most standard one. It hinges on a reg-
ularization parameter governing the trade-o� between data �tting and sparsity of the estimator, and
requires careful tuning. Though this estimator is well understood theoretically (we refer to [Bv11] for a
review), the choice of the tuning parameter remains an open and critical question in practice as well as in
theory. For the Lasso, statistical guarantees [BRT09] rely on choosing the tuning parameter proportional
to the noise level, a quantity that is usually unknown to practitioners. We also want to mention that
automatic tuning (e.g. by cross-validation) would be time consuming for applications like dictionary
learning, where this parameter is often set once and for all [MBPS10]. Besides, the noise level is of
practical interest since it is required in the computation of model selection criterions such as AIC, BIC,
SURE or in the construction of con�dence sets. As shown in [FGH12], this is a challenging task in high
dimension because of the spurious correlation phenomenon.

A convenient way to estimate both the regression coe�cient and the noise level is to perform a
joint estimation, for instance by performing the penalized maximum likelihood of the joint distribution.
Unfortunately, a direct approach leads to a non-convex formulation (though one can recover a jointly
convex formulation through a change of variable [SBv10]).

Another road for this joint estimation was inspired by the robust theory developed by Huber [Hub81],
particularly in the context of location-scale estimation. Indeed, Owen [Owe07] extended it to handle
sparsity inducing penalty, leading to the jointly convex optimization formulation

(β̂(λ), σ̂(λ)) ∈ arg min
β∈Rp,σ>0

‖y −Xβ‖2

2nσ
+
σ

2
+ λ‖β‖1. (4.10)

Since then, his estimator has appeared under various name, and we coined it the Concomitant Lasso.
Indeed, as far as we know Owen was the �rst to propose such a formulation.

Later, the same formulation was mentioned in [Ant10], in a response to [SBv10], and was thor-
oughly analyzed in [SZ12], under the name Scaled-Lasso. Similar results were independently obtained
in [BCW11] for the same estimator, though with a di�erent formulation. While investigating pivotal
quantities, Belloni et al. proposed to solve the following convex program: modify the standard Lasso by
removing the square in the data �tting term. Thus, they termed their estimator the Square-root Lasso
(see also [CD11]). A second approach leading to this very formulation, was proposed by [XCM10] to
account for noise in the design matrix, in an adversarial scenario. Interestingly their robust construction
led exactly to the Square-root Lasso formulation.
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Under standard design assumption (see [BRT09]), it is proved that the Scaled/Square-root Lasso
reaches optimal rates for sparse regression, with the additional bene�t that the regularization parameter
is independent of the noise level [BCW11, SZ12]. Moreover, a practical study [RTF13] has shown that
the Concomitant Lasso estimator, or its debiased version (see for instance [BC13, Led13] for a discussion
on least-squares re�tting), is particularly well suited for estimating the noise level in high dimension.

Among the solutions to compute the Concomitant Lasso, two roads have been pursued so far. On the
one hand, considering the Scaled-Lasso formulation, Sun and Zhang [SZ12] have proposed an iterative
procedure that alternates Lasso steps and noise estimation steps, the later leading to rescaling the tuning
parameter iteratively. On the other hand, considering the Square-root Lasso formulation, Belloni et al.
[BCW11] have leaned on second order cone programming solvers, e.g. TFOCS [BCG11].

Despite the appealing properties listed above, among which the superiority of the theoretical results
is the most striking, no consensus for an e�cient solver has yet emerged for the Concomitant Lasso. Our
contribution in [NFG+17] aims at providing a more numerically stable formulation, called the Smoothed
Concomitant Lasso:

arg min
β∈Rp,σ∈R

‖y −Xβ‖2

2nσ
+
σ

2
+ λ‖β‖1 + ι[σ0,+∞[(σ).

This variant allows to obtain a fast solver: we �rst adapt a coordinate descent algorithm to the smooth
version (in the sense given in [Nes05b]) of the original problem (4.10). Then, we apply safe rules strategies,
like the ones in Section 4.1 to our estimator. Such rules allow to discard features whose coe�cients
are certi�ed to be zero, either prior any computation or as the algorithm proceeds. Combined with
a coordinate descent, this leads to important acceleration in practice, as illustrated for the Lasso case
[FGS15]. We show similar accelerations for the Smoothed Concomitant Lasso, both on real and simulated
data. Overall, our method presents the same computational cost as for the Lasso, but enjoys the nice
features mentioned earlier in terms of statistical properties.

In [MFGS17], we studied an extension of the Smoothed Concomitant Lasso estimator to the case
where we know that the observations can be partitioned into given groups with a di�erent noise level.
This situation occurs for instance when observations stem from di�erent types of sensors like in M/EEG
(magnetometers, gradiometers and electrodes). This leads to the following homoscedastic model

arg min
B∈Rp×q,

σ1,...,σK∈R+

σk≥σk,∀k∈[K]

K∑
k=1

(
‖Y k −XkB‖2

2nqσk
+
nkσk
2n

)
+ λ‖B‖2,1

that can also be solved using a block coordinate descent method acting on lines of B and (σk)k∈[K].

4.3 Safe Grid Search with Optimal Complexity

Various machine learning problems are formulated as a minimization of an empirical loss function f , reg-
ularized by a term Ω whose calibration and complexity is controlled by a non negative hyperparameter λ.
The (optimal) choice of regularization parameter λ is crucial since it directly in�uences the generalization
performance of the estimator, i.e. its score on unseen data set. One of the most popular method in such
approaches is cross-validation (CV), see [AC10] for a detailed review. For simplicity, we investigate here
the simpli�ed holdout version that consists in splitting the data in two parts: on the �rst part (training
set) the method is trained for a pre-de�ned collection of candidates ΛT := {λ0, . . . , λT−1}, and on the
second part (validation set), the best parameter is selected. For a piecewise quadratic loss f and a piece-
wise linear regularization Ω, one can show [OPT00, RZ07] that the set of solutions follows a piecewise
linear curve with respect to to the parameter λ. Hence there are several e�cient algorithms that can
generate the full path such as LARS for Lasso [EHJT04], for SVM [HRTZ04] and for the generalized
linear models [PH07].

Unfortunately, these methods have a worst case complexity, i.e. the number of linear segment, that
is exponential in the dimension of the problem [GJM12] leading to unpractical solutions. To overcome
this issue, an approximation of the solution path up to accuracy ε was proposed and optimal complexity
was proved to be O(1/ε) [GJL10] in a fairly general setting. A noticeable contribution was proposed by
[MY12], who re�ned that bound to O(1/

√
ε) in the Lasso case. The later result was then generalized by

[GMLS12] with a lower and upper bound of order O(1/
√
ε). A generic algorithm was also derived by
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Algorithm 10 εp-Path on Training Set: Training_path

Input: f,Ω, εp, [λmin, λmax]
Initialize t = 0, λ0 = λmax, Λ = {λmax}.
repeat

Solve minβ f(Xβ) + λtΩ(β) up to accuracy εo < εp
Compute ρ`t = max{ρ s.t. Qt,Vf∗ (ρ) ≤ εp}
Set λt+1 = λt × (1− ρ`t)
Λ← Λ ∪ {λt+1} and t← t+ 1

until λt+1 ≤ λmin

Return: {β(λt) : λt ∈ Λ}

assuming a quadratic lower bound on the objective function. Unfortunately, this assumption does not
hold for a large class of problem, in particular for logistic regression.

Following such ideas, [SSKT15] have proposed, for classi�cation problem, to approximate the regu-
larization path for the hold-out cross-validation error. Indeed, the later is a more natural criterion to
monitor when one aims at selecting a hyperparameter guaranteed to achieve the best validation error
possible. The main idea is to construct an upper and lower bound on the validation error as simple func-
tions of the regularization parameter. Hence by sequentially varying the parameters, one can estimate a
range of parameter for which the validation error is smaller than an accuracy εv.

In [NFS+18], we revisit the approximation and validation path results in a uni�ed framework, under
general regularity assumptions on the conjugate of the loss function f that are commonly satis�ed in
machine learning problems:

Uf∗,x(z − x) ≤ f∗(z)− f∗(x)− 〈∇f∗(x), z − x〉 ,
Vf∗,x(z − x) ≥ f∗(z)− f∗(x)− 〈∇f∗(x), z − x〉 .

These assumptions are general enough to encompass both classi�cation (logistic loss) and regression
(square loss) problems.

Suppose we have at our disposal a primal/dual pair of vector (β(λt), θ(λt)) computed as outputs of
an optimization algorithm at regularization parameter λt, we denote

Gapt := Gapλt(β
(λt), θ(λt)),

∆t := f(Xβ(λt))− f(∇f∗(zt)) for zt := −λtθ(λt).

Our analysis is based on bounds on the duality gap for unseen values of the regularization parameter λ.

Lemma 4 (Bounding the Warm Start Error). Assume −λθ(λt) ∈ dom(f∗) and X>θ(λt) ∈ dom(Ω∗).
For ρ = 1− λ/λt,

Gapt + ρ · (∆t −Gapt) + Uf∗,zt(ρ · zt) ≤ Gapλ(β(λt), θ(λt)) ≤ Gapt + ρ · (∆t −Gapt) + Vf∗,zt(ρ · zt).

Denoting the upper bound Qt,Vf∗ (ρ) = Gapt + ρ · (∆t − Gapt) + Vf∗,zt(ρ · zt), we can de�ne an

algorithm (Algorithm 10) that returns an εp-Path, that is, for each λ ∈ [λmin, λmax] a β(λ) such that

f(Xβ(λ)) + λΩ(βλ) ≤ εp + f(Xβ̂(λ)) + λΩ(β̂λ).
We then provide a complexity analysis along with optimality guarantees. We discuss the relationship

between the regularity of the loss function and the complexity of the approximation path. We prove
that its complexity is O(1/ d

√
ε) for uniformly convex loss of order d > 0 i.e. uniformly convex with

modulus µ‖·‖d/d (µ > 0) and O(1/
√
ε) for the logistic loss thanks to a re�ned measure of its curvature

throughout its Generalized Self-Concordant properties [STD17]. Finally, we provide an algorithm, with
global convergence property, for selecting a hyperparameter with a validation error εv-close to the best
possible hyparameter on a given range.

4.4 Joint Quantile regression

Given a couple (X,Y ) of random variables, where Y takes scalar values, a common aim in statistics
and machine learning is to estimate the conditional expectation E[Y | X = x] as a function of x.
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Figure 4.3: Illustration of ε-path for the Lasso at accuracy ε = 10−2.

In the previous setting, called regression, one assumes that the main information in Y is a scalar value
corrupted by a centered noise. However, in some applications such as medicine, economics, social sciences
and ecology, a more complete picture than an average relationship is required to deepen the analysis.
Quantiles are natural quantities able to achieve this goal.

Since quantiles of a distribution are closely related, joint quantile regression is subsumed under the
�eld of multi-task learning [AEP08]. As a consequence, vector-valued kernel methods are appropriate
for such a task. They have already been used for various applications, such as structured classi�cation
[DOGP11] and prediction [BSdB16], manifold regularization [MBM16, BdBS11] and functional regression
[KDP+15]. Quantile regression is a new opportunity for vector-valued reproducing kernel Hilbert spaces
to perform in a multi-task problem, along with a loss that is di�erent from the `2 cost predominantly
used in the previous references.

Let Y ⊂ R be a compact set, X be an arbitrary input space and (X,Y ) ∈ X × Y a pair of random
variables following an unknown joint distribution. For a given probability τ ∈ (0, 1), the conditional
τ -quantile of (X,Y ) is the function µτ : X → R such that µτ (x) = inf{µ ∈ R : PY ≤ µX = x ≥ τ}.
Thus, given a training set {(xi, yi)}ni=1 ∈ (X × Y)n, the quantile regression problem aims at estimating
this conditional τ -quantile function µτ . Following [Koe05], this can be achieved by minimization of the
pinball loss: `τ (r) = max(τr, (τ − 1)r), where r ∈ R is a residual. Using such a loss �rst arose from the
observation that the location parameter µ that minimizes the `1-loss

∑n
i=1 |yi−µ| is an estimator of the

unconditional median [KB78].
Now focusing on the estimation of a conditional quantile, one can show that the target function µτ is

a minimizer of the τ -quantile risk Rτ (h) = E[`τ (Y −h(X))] [LLZ07]. However, since the joint probability
of (X,Y ) is unknown but we are provided with an i.i.d sample of observations {(xi, yi)}ni=1, we resort
to minimizing the empirical risk, in the same fashion as least squares correspond to the estimation of
conditional expectation. We thus wish to minimize

Remp
τ (h) =

1

n

n∑
i=1

`τ (yi − h(xi)),

within a class H ⊂ (R)X of functions, calibrated in order to overcome the shift from the true risk to
the empirical one. In particular, when H has the form: H = {h = f + b : b ∈ R, f ∈ (R)X , ψ(f) ≤ c},
with ψ : (R)X → R being a convex function and c > 0 a constant, [TLSS06] proved that (similarly to

the unconditional case) the quantile property is satis�ed: for any estimator ĥ, obtained by minimizing

Remp
τ in H, the ratio of observations lying below ĥ (i.e. yi < ĥ(xi)) equals τ to a small error (the ration

of observations exactly equal to ĥ(xi)). Moreover, under some regularity assumptions, this quantity
converges to τ when the sample grows. Note that these properties are true since the intercept b is
unconstrained.

In many real problems (such as medical reference charts), one is not only interested by estimating
a single quantile curve but a few of them. Thus, denoting [p] the range of integers between 1 and p,
for several quantile levels τj (j ∈ [p]) and functions hj ∈ H, the empirical loss to be minimized can be
written as the following separable function: Remp

τ (h1, . . . , hp) = 1
n

∑n
i=1

∑p
j=1 `τj (yi − hj(xi)), where τ

denotes the p dimensional vector of quantile levels.
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A nice feature of multiple quantile regression is thus to extract slices of the conditional distribution
of Y |X. However, when quantiles are estimated independently, an embarrassing phenomenon often
appears: quantile functions cross, thus violating the basic principle that the cumulative distribution
function should be monotonically non-decreasing. We refer to that pitfall as the crossing problem.

In [SFdB16], we propose to prevent curve crossing by considering the problem of multiple quantile
regression as a vector-valued regression problem where outputs are not independent. An interesting
feature of our method is to preserve the quantile property while most other approaches lose it when
struggling to the crossing problem. Our approach is based on de�ning a matrix-valued kernelK : (x, x′) 7→
k(x, x′)B, where k : X × X → R is a scalar-valued kernel and B is a p× p positive de�nite matrix. The
matrix B encodes the relationship between the components fj and thus, the link between the di�erent
conditional quantile estimators. A rational choice is to consider k(x, x′) = exp(−‖x − x′‖2/2σ2) and
B =

(
exp(−γ(τi − τj)2)

)
1≤i,j≤p. We then de�ne the reproducing kernel Hilbert space associated to K

[MP05] with a norm denoted ‖·‖K and choose ψ = ‖·‖K in the de�nition of our class H of functions.
Quantile estimation, as presented in this paper, comes down to minimizing a regularized empirical

risk, de�ned by the pinball loss `τ . Since this loss function is non-di�erentiable, we introduce slack
variables ξ and ξ∗ to get the following primal formulation. On top of the parameters σ and γ of the
kernel, we also consider a regularization parameter C to be tuned:

min
f∈KK,b∈Rp,
ξ,ξ∗∈(Rp)n

1

2
‖f‖2K + C

n∑
i=1

(〈τ , ξi〉`2 +〈1− τ , ξ∗i 〉`2) s.t.

{
∀i ∈ [n] : ξi ≥ 0, ξ∗i ≥ 0,

yi − f(xi)− b = ξi − ξ∗i .

A dual formulation of this problem is:

min
α∈(Rp)n

1

2

n∑
i,j=1

〈αi,K(xi, xj)αj〉`2 −
n∑
i=1

yi〈αi,1〉`2 s.t.

{∑n
i=1 αi = 0Rp ,

∀i ∈ [n] : C(τ − 1) ≤ αi ≤ Cτ ,

We chose to solve this dual problem using the primal-dual coordinate descent method Algorithm 6.
Indeed, except for the p linear equality constraints, the problem is very close to dual support vector
machines. As shown on Table 4.1, our algorithmic choice is competitive against interior point based QP
solvers and the Augmented Lagrangian method, especially for large scale problems

Table 4.1: CPU time (s) for training a randomly generated model
Size n× p QP Aug. Lag. PDCD

250 × 9 8.73 ± 0.34 261.11 ± 46.69 18.69 ± 3.54
500 × 9 75.53 ± 2.98 865.86 ± 92.26 61.30 ± 7.05
1000 × 9 621.60 ± 30.37 � 266.50 ± 41.16
2000 × 9 3416.55 ± 104.41 � 958.93 ± 107.80

Finally, in [SFdB17], by adding a group-lasso term ε
∑n
i=1‖αi‖`2 to the dual formulation, we could

de�ne an ε-insensitive version of the quantile regression problem. We can still use primal-dual coordinate
descent to solve the model and we showed that we can obtain estimations with similar quality with the
bene�t of sparse solutions α. Hence, the model is easier to interpret, store and take less time to use
when applied on new observations.
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Chapter 5

Perspectives

According to me, the optimization community has been driven by three main research agendas:

• Write optimization models that describe practical issues. There is a compromise to make between
the description power of the models and our ability to solve them.

• Discover new algorithmic paradigms that allow us to solve new, more complex models. We may
cite primal-dual methods that avoid projecting onto complex sets, stochastic gradient methods that
can replace the computation of an integral by the generation of random samples or line search that
helps taking pro�t of the local smoothness of the objective function.

• Optimize the optimization algorithms available in order to be quicker and be able to solve larger
instances. The tremendous amount of work put for this purpose has made optimization solvers
successful on a large variety of problems.

There are still major unresolved challenges in nonconvex optimization and for the resolution of prob-
lems in large dimension. I would like to add my contribution as follows.

Primal-dual methods with optimal rate of convergence

State-of-the-art primal-dual methods have either a O(1/k) rate for weakly convex functions but are rather
slow in practice or they exhibit a linear rate for well behaved function but have a worst case O(1/

√
k)

rate. My goal is to design new methods that would be e�cient in both regimes. This may require to
combine techniques from primal-dual algorithms and restart of accelerated methods as well as deriving
new bounds for the purpose of the study.

Stochastic gradient methods for constrained convex optimization

When solving an optimization problem where the objective can be written as an expectation, stochastic
gradient methods may be the preferred alternative against coordinate descent. The study of stochastic
gradient for saddle point problems has only begun very recently. I plan to base on our smoothing
technique to design new e�cient algorithms in this context.

Stochastic compressed second order methods

Optimization algorithms using Hessians usually require much less iterations than those using gradient
only, but each iteration is much more computationally intensive. We aim at developing e�cient stochastic
second order methods by extracting curvature information through randomized compression. This will
alleviate both the cost of calculating the second order derivative matrix and the cost of manipulating
the resulting matrix since it will be low rank.
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Generative models for nonconvex optimization

This line of research aims at tackling nonconvex optimization problems using a generative model. The
goal is design an optimization method that takes pro�t of a randomness to explore the set of parameters
but is also able to focus on local mimima. The generative model will be trained on a set of optimization
problems: the choice of training problems is critical to get good performance in practice. There is also a
lot of freedom on how we parametrize the algorithm. We plan to focus on neural network architectures
that have a lot of �exibility.

Analog-to-feature converter for smart sensors

This interdisciplinary project will put machine learning concerns at the heart of the design of sensors.
The goal is to extract the features of the signal before digitizing it. We expect massive computational
and energy gains through the use of a dedicated architecture, that should be optimized for our purpose.
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