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Chapter 1 Introduction IFI ristoril motivtion for oordinte desent he ide of oordinte desent is to deompose lrge optimistion prolem into sequene of oneE dimensionl optimistion prolemsF he lgorithm ws (rst desried for the minimiztion of qudrti funtions y quss nd eidel in eiURF goordinte desent methods hve eome unvoidle in mhine lerning euse they re very e0ient for key prolemsD nmely vssoD logisti regression nd support vetor mhinesF woreoverD the deomposition into smll suprolems mens tht only smll prt of the dt is proessed t eh itertion nd this mkes oordinte desent esily slle to high dimensionsF e (rst deompose the spe of optimistion vriles X into loks X 1 × . . . × X n = XF e lssil hoie when X = R n is to hoose X 1 = . . . = X n = RF e will denote U i the nonil injetion from X i to XD tht is U i is suh tht for ll h ∈ X i D U i h = (0, . . . , 0 i-1 zeros ,h , 0, . . . , 0 n-i zeros ) ∈ X.

por funtion f : X 1 × . . . × X n → RD we de(ne the following lgorithmF Algorithm 1 ixt oordinte desent trt t x 0 ∈ XF et itertion kD hoose l = (k mod n) + 1 @yli ruleA nd de(ne x k+1 ∈ X y

x (i) k+1 = arg min z∈X l f (x (1) k , . . . , x (l-1) k , z, x (l+1) k , . . . , x (n) k ) if i = l x (i) k+1 = x (i) k if i = l
Proposition 1 @rTQA. If f is continuously dierentiable and strictly convex and there exists x * = arg min x∈X f (x), then the exact coordinate descent method (Alg. 1) converges to x * .

Example 1 @lest squresA.

f (x) = 1 2 Ax -b 2 2 = 1 2 m j=1 (a j x -b j ) 2
At each iteration, we need to solve in z the 1D equation

∂f ∂x (l) (x (1) 
k , . . . , x

(l-1) k , z, x (l+1) k , . . . , x (n) k ) = 0
For all x ∈ R n , ∂f ∂x (l) (x) = a l (Axb) = a l a l x (l) + a l ( j =l a j x (j) ) -a l b so we get

z * = x (l) k+1 = 1 a l 2 2 -a l ( j =l a j x (j) k ) + a l b = x (l) k - 1 a l 2 2 a l ( n j=1 a j x (j) k ) -a l b
S pigure IFIX he suessive itertes of the oordinte desent method on Ph exmpleF he funtion we re minimising is represented y its level setsX the luer is the irleD the lower is the funtion vluesF

Example 2 @edoostA. The Adaboost algorithm [CSS02] was designed to minimise the exponential loss given by

f (x) = m j=1
exp(-y j h j x).

At each iteration, we select the variable l such that l = arg max i As∇ i f (x) and we perform an exact coordinate descent step along this coordinate. This variable selection rule is called the greedy or Gauss-Southwell rule. Like the cyclic rule, it leads to a converging algorithm but requires to compute the full gradient at each iteration. Greedy coordinate descent is interesting in the case of the exponential loss because the gradient of the function has a few very large coecients and many negligible coecients.

IFP hy is oordinte desent usefulc olving oneEdimensionl optimistion prolems is generlly esy nd the solution n e pproximted very well y lgorithms like the isetion methodF roweverD for the ext oordinte desent methodD one needs to solve huge numer of oneEdimensionl prolems nd the expense quikly eomes prohiitiveF woreoverD why should we solve to high ury the IEdimensionl prolem nd destroy this solution t the next itertionc he ide of oordinte grdient desent is to perform one itertion of grdient desent in the IE dimensionl prolem min z∈X l f (x

(1) k , . . . , x (l-1) k , z, x (l+1) k , . . . , x (n)
k ) insted of solving it ompletelyF sn generlD this redues drstilly the ost of eh itertion while keeping the sme onvergene ehviourF Algorithm 2 goordinte grdient desent trt t x 0 F et itertion kD hoose i k+1 ∈ {1, . . . , n} nd de(ne x k+1 y

x (i) k+1 = x (i) k -γ i ∇ i f (x k ) if i = i k+1 x (i) k+1 = x (i) k if i = i k+1
hen hoosing the yli or greedy ruleD the lgorithm does onverge for ny onvex funtion f tht hs vipshitzEontinuous grdient nd suh tht arg min x f (x) = ∅F T sn ft we will ssume tht we tully know the coordinate-wise vipshitz onstnts of the grdient of f D nmely the vipshitz onstnts of the funtions g i,x : X i → R h → f (x + U i h) = f (x (1) , . . . , x (i-1) , x (i) + h, x (i+1) , . . . , x (n) )

@IFIA e will denote L i = sup x L(∇g i,x ) this vipshitz onstntF ritten in terms of f D this mens tht ∀x ∈ X, ∀i ∈ {1, . . . , n}, ∀h ∈ X i , ∇f

(x + U i h) -∇f (x) 2 ≤ L i U i h 2 .
Lemma 1. If f has a coordinate-wise Lipschitz gradient with constants L 1 , . . . , L n , then ∀x ∈ X, ∀i ∈ {1, . . . , n}, ∀h ∈ X i ,

f (x + U i h) ≤ f (x) + ∇ i f (x), h + L i 2 h 2
Proposition 2 @fIQA. Assume that f is convex, ∇f is Lipschitz continuous and arg min x∈X f (x) = ∅.

If i k+1 is chosen with the cyclic rule i k+1 = (k mod n) + 1 and ∀i, γ i = 1 Li , then the coordinate gradient descent method (Alg. 2) satises

f (x k+1 ) -f (x * ) ≤ 4L max (1 + n 3 L 2 max /L 2 min ) R 2 (x 0 ) k + 8/n
where R 2 (x 0 ) = max x,y∈X { xy : f (y) ≤ f (x) ≤ f (x 0 )}, L max = max i L i and L min = min i L i .

he proof of this result is quite tehnil nd in ft the ound is muh more pessimisti thn wht is oserved in prtie @n 3 is very lrge if n is lrgeAF his is due to the ft tht the yli rule ehves prtiulrly d on some extreme exmplesF o void suh trpsD it hs een suggested to rndomise the oordinte seletion proessF Proposition 3 @xesIPA. Assume that f is convex, ∇f is Lipschitz continuous and arg min x∈X f (x) = ∅. If i k+1 is randomly generated, independently of i 1 , . . . , i k and ∀i ∈ {1, . . . , n}, P(i k+1 = i) = 1 n and

γ i = 1
Li , then the coordinate gradient descent method (Alg. 2) satises for all x * ∈ arg min x f (x)

E[f (x k+1 ) -f (x * )] ≤ n k + n (1 - 1 n )(f (x 0 ) -f (x * )) + 1 2 x * -x 0 2 L where x 2 L = n i=1 L i x (i) 2 2 .
Comparison with gradient descent he itertion omplexity of the grdient desent method is

f (x k+1 ) -f (x * ) ≤ L(∇f ) 2(k + 1) x * -x 0 2 2
his mens tht to get n Esolution @iFeF suh tht f (x k ) -f (x * ) ≤ AD we need t most L(∇f ) 2

x * -x 0 2 2 itertionsF ht is most expensive in grdient desent is the evlution of the grdient ∇f (x) with ost CD so the totl ost of the method is

C grad = C L(∇f ) 2 x * -x 0 2 2
xegleting the e'et of rndomistionD we usully hve n Esolution with oordinte desent in

n (1 -1 n )(f (x 0 ) -f (x * )) + 1 2 x * -x 0 2
L itertionsF he ost of one itertion of oordinte desent is of the order of the ost of evlution one prtil derivtive ∇ i f (x)D with ost cD so the totl ost of the method is 

C cd = c n (1 - 1 n )(f (x 0 ) -f (x * )) + 1 2 x * -
(i k+1 ) k+1 -x (i k+1 ) k )Ae i k+1 D
PF omputing one vetorEvetor produt @the i th olumn of A versus the residulsAF hus c = O(nnz(Ae i k+1 )) = O(nnz(A)/n) = C/n if the olumns of A re eqully sprseF

• f (x 0 ) -f (x * ) ≤ L(∇f ) 2 x 0 -x * 2 2 nd it my hppen tht f (x 0 ) -f (x * ) L(∇f ) 2 x 0 -x * 2 2
• L(∇f ) = λ max (A A) nd L i = a i a i with a i = Ae i F e lwys hve L i ≤ L(∇f ) nd it my hppen tht

L i = O(L(∇f )/n)F
o onludeD in the qudrti seD C cd ≤ C grad nd we my hve C cd = O(C grad /n)F

IFQ wo ounterEexmples

Example 3 @nonEonvex di'erentile funtionA.

f (x (1) , x (2) , x (3) ) = -(x (1) x (2) + x (2) x (3) + x (3) x (1) ) + 3 i=1 max(0, |x (i) | -1) 2

As shown by [Pow73], exact coordinate descent on this function started at the initial point x (0) = (-1 -, 1 + /2, -1 -/4) has a limit cycle around the 6 corners of the cube that are not minimisers and avoids the 2 corners that are minimisers.

his exmple shows tht some re should e tken when pplying oordinte desent to nonEonvex funtionF iven with this restritionD lok oordinte desent @lso lled lternting minimiztionA is often used when the ojetive funtion stis(es oordinteEwise onvexityX when the prtil funtion g i,x de(ned in @IFIA is onvexD we n pproximtely solve the suprolemsF his sitution is for instne enountered for nonnegtive mtrix ftoriztion geHVF wy work of the lst yers ws foused on nother hllenge of oordinte desent methodsX the tretment of onvex ut nonEdi'erentile funtionsF Example 4 @nonEdi'erentile onvex funtion eusUTA. f (x (1) , x (2) ) = |x (1) -x (2) | -min(x (1) , x (2) ) + x) where I [0,1] 2 is the convex indicator of [0, 1] 2 . f is convex but not dierentiable. If we nevertheless try to run exact coordinate descent, the algorithm proceeds as x (1)

I [0,1] 2 (
1 = arg min z f (z, x (2) 0 ) = x (2) 0 , x (2) 2 = arg min z f (x (1) 1 , z) = x
(2) 0 , and so on. Thus exact coordinate descent converges in two iterations to (x (2) 0 , x

(2) 0 ): the algorithm is stuck on a non-dierentiability point on the line {x (1) = x (2) } and does not reach the minimiser (1, 1).

e n see tht for nonEdi'erentile onvex funtionsD ext oordinte desent my not return the expeted solutionF yn this exmpleD using the nottion of @IFIAD even though 0 ∈ ∂g i,x (0)D for ll iD we V hve 0 ∈ ∂f (x)F id otherwiseD even when H is not in the sudi'erentil of f t xD for ll diretion i there my exist sugrdient q ∈ ∂f (x) suh q (i) = 0F e lssil workround is to restrit the ttention to omposite prolems involving the sum of di'erentile funtion nd separable nonsmooth funtions seHIF Denition 1. A function f is said to be separable if it can be written as

f (x) = n i=1 f i (x (i) ) .
wy ontriution inludes fster lgorithms to del with nonEdi'erentile seprle funtionsD smoothE ing tehniques for nonEdi'erentile nonEseprle funtions nd primlEdul lgorithmsF e sustntil mount of my reserh hs een driven y the wish to extend suessful optimiztion tehniques to oordinte desentF s lso hve gret interest in pplitions of oordinte desent tht involve the resolution of optimiztion prolems in lrge dimensionsF IFR e negtive result on universl oordinte desent he universl grdient lgorithm introdued y xesterov xesIQ is n lgorithm tht is le to minimize smooth s well s nonsmooth onvex funtions without ny priori knowledge on the level of smoothness of the funtionF his prtiulrly desirle fetureF pirst of llD the sme lgorithm my e used for lrge lss of prolems ndD hving no prmeter to tuneD it is very roustF eondlyD the dptive proess tht disovers the level of smoothness of the funtion my tke pro(t of lolly fvorle situtionD even though the funtion is di0ult to minimize t the glol sopeF yur im in the pper pIR is to design nd nlyze universal coordinate descent method for the prolem of minimizing onvex omposite funtionX

min x∈R N [F (x) ≡ f (x) + Ψ(x)] ,
@IFPA where Ψ is onvex nd hs simple proximl opertorF he funtion f (x) is onvex nd n e smooth or nonsmoothF st is still interesting to onsider the omposite frmework euse we n tke pro(t of the proximl opertor of ΨF glssil oordinte desent lgorithm my get stuk t nonEsttionry point if pplied to generl nonsmooth onvex prolemF roweverD severl oordinteEdesentEtype methods hve een proposed for nonsmooth prolemsF en lgorithm sed on the verging of pst sugrdient oordintes is presented in ugIP nd suessful sugrdientEsed oordinte desent method for prolems with sprse sugrdients is proposed y xesterov xesIPF en importnt feture of these lgorithms is tht t eh point xD one sugrdient ∇f (x) is seleted nd then the updtes re performed ording to the i th oordinte ∇ i f (x) of the sugrdientF his is di'erent to prtil sugrdientsF e oordinte desent lgorithm sed on smoothing ws proposed in pIU for the minimiztion of nonsmooth funtions with mxEstrutureF rowever if one tries to use one of these lgorithms on smooth prolemD one would get very slow lgorithm with itertion omplexity in O(1/ 2 )F he dptive proedure of the universl grdient method is sed on line serhD the prmeter of whih estimtes either the vipshitz onstnt of the funtion @if it is nonsmoothA or the vipshitz onstnt of the grdient of the funtion @if it is smoothAF e designed suh line serh proedure for universl oordinte desentF yn top of eing le to del with nonsmooth funtionsD it overs the omposite frmework with nonsmooth regulrizer nd uses only prtil derivtives evlutionF e extend the theory of prllel oordinte desent developed in IS to the universl oordinte desent methodF sn prtiulrD we de(ne nonEqudrti expeted seprle overpproximtion for prtilly seprle funtions tht llows us to run independent line serhes on ll the oordintes to e minimized t given itertionF his is result of independent interest s this is the (rst time tht line serh proedure is introdued for prllel oordinte desentF e design universl elerted oordinte desent method with optiml rtes of onvergene O(1/ √ ) for smooth prolems nd O(1/ 2 ) for nonsmooth prolemsF e reover mny previous resultsF sn prtiulr we reover the universl priml grdient method xesIQ when we onsider one single lok @in our nottionD n = 1A nd we reover the elerted oordinte desent method pISF woreoverD the line serh proedure llows us not to other out the oordintewise vipshitz onstntF

W Algorithm 3 niversl oordinte desent ghoose (L j 0 ) j∈[n] nd ury F por k ≥ 0 doX IF elet sugrdient ∇f (x k ) PF elet lok j k t rndomF QF pind the smllest s k ∈ N suh tht for x + k = arg min z∈Rj Ψ j k (z) + f (x k ) + ∇ j f (x k ), z -x (j k ) k + 1 2 2 s k L j k k z -x (j k ) k 2 (j k ) , we hve 1 2 1 2 s k -1 L j k k ∇ j k f (x k ) -∇ j k f (x + k ) * (j k ) 2 ≤ 2 s k -1 L j k k 2 x (j k ) k -(x + k ) (j k ) 2 (j k ) + 2n F RF et x k+1 = x + k nd L j k k+1 = 2 s k L j k k
roweverD s one n see on pigure IFQD universl oordinte desent @elgorithm QA is quite slowD muh slower thn the universl grdient methodF his is onsistent with the dependene in n of the itertion omplexity of the lgorithm whih is of order n 2 when ν = 0D s stted in heorem I elowF pigure IFQX niversl oordinte desent @greenA is muh slower thn universl grdient @lueA for the nonsmooth prolem min x Axb 1 + x 1 F Theorem 1. Let f be a convex function with Hölder continuous gradient, that is such that there exists ν ∈ [0, 1] such that for all x, y ∈ R n , for all ∇f (x) ∈ ∂f (x) and for all ∇f (y) ∈ ∂f (y),

∇f (y) -∇f (x) * ≤ M ν x -y ν . Let us denote R M (x * ) = max x∈D x -x * M (usual weighted 2-norm) where D is a set containing x k for all k and Λ = 1 n n j=1 log 2 ( 2M j L j 0
). Algorithm 3 converges to an -solution with iteration complexity

min 1≤l≤k E[f (x l ) -f (x * )] ≤ 1 k k l=1 E[f (x l ) -f (x * )] ≤ n k R 2 0 (x * ) + 2n 2 1+ν k 1-ν 1+ν ΛR M 2 1+ν ν (x * ) 2 + 2 .
his study on universl oordinte desent showed tht it is indeed possile to design oordinte desent method sed solely on sugrdients ut in order to relly gin from the oordinte desent frmework when minimizing nonsmooth funtionD one should use more informtion on this funtionF IH IFS ln of the thesis his thesis summrizes my reserh work etween PHIP nd PHIV while s ws working t the niversity of idinurgh nd t éléom ristehF wy pulitions follow three min trksX ghpter PF Fast algorithms for composite dierentiable-separable functions goordinte desent methods hve shown very e0ient for prolems of the form min x f (x) + i ψ i (x i ) with f di'erentileF his hpter is sed on the following ppersF pIR ylivier peroqD heng uD eter ihtárikD nd wrtin ká£F pst distriuted oordinte desent Fast algorithms for composite dierentiable-separable functions sn this line of work we fous on the solution of onvex optimiztion prolems with huge numer of vriles of the form min

x∈R N f (x) + Ψ(x). @PFIA rere x = (x (1) , . . . , x (n) ) ∈ R N is deision vetor omposed of n loks with x (i) ∈ R Ni D nd N = i N i F
e ssume tht Ψ : R N → R ∪ {+∞} is onvex @nd lower semiontinousA lok seprle regulrizer @eFgFD the L1 normAF hespite the mjor limittion on the nonsmooth prt of the ojetiveD this setup hs hd lot of pplitionsF por instneD rekthrough ws mde in lrge sle sprse regression when oordinte desent ws shown to e the most e0ient method for the resolution of the vsso prolem prrHUF PFI epplitions sn this setion we desrie four pplitions res for elerted oordinte desentD ll motivted nd uilding on the work pIS where we developed the eelertedD rllel nd roximl oordinte desent method ey @see le PFIAF impiril risk minimiztion is nturl frmework for oordinte desent methods ut elertion inresed its rnge of ppliility to other dominsF 2.1.1 Empirical risk minimization impiril risk minimiztion @iwA is powerful nd immensely populr prdigm for trining sttistil @mhineA lerning models fhIRF sn sttistil lerningD one wishes to lern n unknown funtion h * : X → YD where X @set of smplesA nd Y @set of lelsA re ritrry dominsF oughly spekingD the gol of sttistil lerning is to (nd funtion @preditorD hypothesisA h : X → Y from some prede(ned set @hypothesis lssA H of preditors whih in some sttistil sense is the est pproximtion of h * F sn prtiulrD we ssume tht there is n unknown distriution D over ξ ∈ X F qiven loss funtion : Y × Y → RD we de(ne the risk @generliztion errorA ssoited with preditor h ∈ H to e yne of the fundmentl issues mking @PFQA di0ult to solve is the ft tht the distriution D is not knownF iw is prdigm for overoming this ostleD ssuming tht we hve ess to independent smples from DF sn iwD we (rst ollet training set of iFiFdF smples nd their lelsY tht isD S = {(ξ j , y j ) ∈ X × Y : j = 1, 2, . . . , m}D where y j = h * (ξ j )F usequentlyD we reple the expettion in @PFPA de(ning the riskD y smple verge pproximtionD whih de(nes the empirical riskX

L D (h) = E ξ∼D (h(ξ), h * (ξ)). @PFPA
L S (h) = 1 m m j=1 (h(ξ j ), y j ).
he iw prdigm is to solve the empirical risk minimization prolem

min h∈H L S (h) @PFRA
insted of the hrder risk minimiztion prolem @PFQAF sn prtieD H is often hosen to e prmetri lss of funtions desried y prmeter

x ∈ R d F por instneD let X ⊆ R d @d a numer of feturesA nd Y = RD nd onsider the lss of linear predictorsX H = {h : h(ξ) = x ξ}F glerlyD h is uniquely de(ned y x ∈ R d F he(ning j : R → R vi j (t) = 1 m (t, y j )D nd setting f j (x) = j (ξ T j x)D we hve f (x) = m j=1 f j (x) = m j=1 j (ξ T j x) = L S (h).
reneD the iw prolem (ts our frmework @PFIAD with ψ ≡ 0F roweverD in prtie one often uses nonzero ψD whih is interpreted s regulrizerD nd is inluded in order to prevent over(tting nd hene llow the estimtor to generlize to futureD unoserved smplesF iw hs tight onnetion with oordinte desent methodsF sndeedD oordinte desent methods eme very populr when their e0ieny ws proved for the vsso prolem prrHUF st is regression prolem where the gol is to (nd sprse solutionsF st n e written s min

x∈R n 1 2 Ax -b 2 2 + λ x 1
where y ∈ R m is the signlD mde out of m oservtionsD A is mtrix of fetures of size m × n nd x is the prmeter vetor tht we seek to estimte so tht it hs few nonzero oe0ientsF his is nonEdi'erentile prolem ut it n e deomposed in smooth prt 1 2 Axb 2 2 nd seprle prt λ x 1 = λ n i=1 |x i |F st is thus menle to oordinte desent methodsF sf the numer of fetures is lrger thn the numer of exmples @d mAD whih is typil for vsso prolemsD rndomized oordinte desent is n e0ient lgorithm for solving @PFIA IRD ISD IQF sf the trining set S is so lrge tht it does not (t the memory @or disk speA of single mhineD one needs to employ distriuted omputing system nd solve iw vi distriuted optimiztion lgorithmF yne option is the use of distriuted oordinte desent ITD wISD known s rydrF ey hs een suessfully pplied in the distriuted settingD leding to the rydrP method pIRF sn this workD the uthors solve n iw prolem involving trining set of severl terytes in sizeD nd SH illion feturesF sf the numer of exmples in the trining set is lrger thn the numer of fetures @m dAD it is typilly not e0ient to employ rndomized oordinte desentD to the iw prolem diretlyF snstedD the stte of the rt methods re vrints of rndomized oordinte desent pplied to the dual prolemF IR he @penhelA dul of the regulrized iw prolem for liner preditors onsidered ove hs the form

min y∈R m ψ *   1 m m j=1 y j ξ j   + 1 m m j=1 * j (-y j ),
where ψ * @respF * j A is the penhel onjugte of ψ @respF j AF he funtion y → ψ * ( 1 m j y j ξ j ) hs vipshitz grdient if we ssume tht ψ is strongly onvexD nd y → 1 m m j=1 * j (-y j ) is seprleF his lso (ts the frmework @PFIAD f orresponding to the (rst prt of the ojetive @nd onsisting of single summndAD nd ψ orresponding to the seond prt of the ojetive @lok seprility is implied y seprilityAF e developed ey with iw s n pplition in mind nd hene our numeril experiments onsider two key iw prolemsX the vsso prolem nd the upport etor whine @wA prolemF pollowing our pperD vinD vu nd io vvIS proposed version of ey designed for strongly onvex prolemsF heir motivtion ws tht prtitioners often hoose regulrizers tht re t the sme time seprle and strongly onvexF his leds to prolems for whih we hve good lower ound on the strong onvexity prmeterF ith this dditionl knowledgeD they showed tht the rte of onvergene of properly modi(ed ey lgorithmD pplied to the dul prolemD leds to stte of the rt omplexity for lss of iw prolemsF 2.1.2 Submodular optimization ine nd xguyen ixIS showed how the ey lgorithm leds to stteEofEtheErt method for minimizing decomposable submodular functionsF umodulr minimiztion hs vst nd growing rE ry of pplitionsD inluding imge segmenttion ufHRD ixISD grphil model struture lerningD experimentl designD fyesin vrile seletion nd minimizing mtroid rnk funtions fIQF e now rie)y introdue the notion of sumodulrityF vet V = {1, 2, . . . , d} e (nite ground setF e relEvlued set funtion φ : 2

V → R is lled modularD if φ(∅) = 0 nd there exists vetor w ∈ R d suh tht φ(A) = i∈A w i for ll ∅ = A ⊆ V F st is lled submodular if φ(A) + φ(B) ≥ φ(A ∩ B) + φ(A ∪ B)
for ny two sets A, B ⊆ V F en equivlent nd often more intuitive hrteriztion of sumodulrity is the following diminishing returns propertyX φ is sumodulr if nd only if for ll

A ⊆ B ⊆ V nd k ∈ V suh tht k / ∈ BD we hve φ(A ∪ {k}) -φ(A) ≥ φ(B ∪ {k}) -φ(B)F
ine nd xguyen ixIS onsider the decomposable sumodulr minimiztion prolem

min A⊆V n i=1 φ i (A), @PFSA
where φ i : 2 V → R re simple sumodulr funtions @simpliity refers to the ssumption tht it is simple to minimize φ i plus modulr funtionAF snsted of solving @PFSA diretlyD one n fous on solving the unonstrined onvex minimiztion prolem

min z∈R d n i=1 φi (z) + 1 2n z 2 , @PFTA
where • is the stndrd iuliden normD nd φi : R d → R is the vovász extension of φ i @iFeFD the support funtion of the se polytope P i ⊂ R d of φ i AF qiven solution zD one reovers the solution of @PFSA y setting

A = A(z) = {k ∈ V : z k ≥ 0}.
@PFUA purtherD insted of solving @PFTAD one fouses on its @penhelA dulX min

x (1) ∈P1,...,x (n) ∈Pn f (x) = 1 2 n i=1 x (i) 2 . @PFVA st n e shown tht if x = (x (1) , . . . , x (n) ) ∈ R nd = R N solves @PFVAD then z = - n i=1
x (i) @PFWA IS solves @PFTAF xote tht f is onvex qudrti funtionF sf we let Ψ e the inditor funtion of the set

P = P 1 × • • • × P n ⊆ R N D iFeFD Ψ(x) = 0 if x ∈ P nd Ψ(x)
= +∞ otherwiseD then @PFVA is of the form @PFIAD where N i = d for ll iF st remins to pply the ey method to this prolemD nd trnsform the solution k vi @PFWA nd then @PFUA to otin solution of the originl prolem @PFSAF 

min X∈S n + , s∈R m I C, X sujet to A E (X) = b E , A I (X) = s, L ≤ X ≤ U, l ≤ s ≤ u,
where C, X is the tre inner produtD S n + is the one of n × n symmetri positive semide(nite mtriesD

A E : S n + → R m E nd A I : S n + → R m I
re liner mpsD L ≤ U re given positive semide(nite mtries nd l ≤ u re given vetors in R m I F he ove h n e solved y proximl point lgorithm @eA of okfellr oUTD oUTF sn eh itertion of eD one needs to solve least-squares semidenite program (LS-SDP) of the form

(X k+1 , s k+1 ) = arg min X∈S n + ,s∈R m I C, X + 1 2σ k ( X -X k 2 + s -s k 2 ) sujet to A E (X) = b E , A I (X) = s, L ≤ X ≤ U, l ≤ s ≤ u,
where (X k , s k ) is the previous iterteD nd σ k > 0 regulriztion prmeterF unD oh nd ng IT oserve tht the dul of vEh hs lokEseprle onstrints nd n hene e written in the form @PFIAD with either P or R loks @n = 2 or n = 4AF hey used this oservtion s strting point to propose new lgorithms for vEh tht omine dvned liner lger tehniquesD (ne study of the errors mde y eh inner solverD nd oordinte desent idesF hey onsider ey nd lok oordiE nte desent s nturl ompetitors to their speilized methodsF hey implemented the methods using R loksD eh equipped with nontrivil norm de(ned y well hosen positive semiEde(nite mtrix 

B i ∈ R Ni×Ni nd
y k = (1 -θ k )x k + θ k z k 4:
qenerte rndom set of loks S k ∼ Ŝ 5:

z k+1 = z k 6:
for i ∈ S k do 7:

z (i) k+1 = arg min z∈R N i ∇ i f (y k ), z -y (i) k + nθ k vi 2τ z -z (i) k 2 (i) + Ψ i (z) 8:
end for 9:

x k+1 = y k + n τ θ k (z k+1 -z k ) 10: θ k+1 = √ θ 4 k +4θ 2 k -θ 2 k 2
11: end for he method strts from x 0 ∈ R N nd genertes three vetor sequenes denoted {x k , y k , z k } k≥0 F sn tep QD y k is de(ned s onvex omintion of x k nd z k D whih my in generl e full dimensionl vetorsF his is not e0ientY ut following ides y vIQD we showed tht it is possile to implement the method in suh wy tht it not neessry to ever form y k F he strength of the lgorithm is its exellent worst se ound stted elowF st relies on the ssumpE tion of the existene of n expeted seprle overpproximtionD whih is generliztion of grdient vipshitz ontinuity tilored for prllel oordinte desent methodsF Assumption 1 @ixpeted eprle yverpproximtion ISD pIUA. 1. f is convex and dierentiable. 2. Ŝ is a uniform block sampling. That is, Ŝ is a random subset of [n] = {1, 2, . . . , n} with the property 1 that P(i ∈ Ŝ) = P(j ∈ Ŝ) for all i, j ∈

[n]. Let τ = E[| Ŝ|].
3. There are computable constants v = (v 1 , . . . , v n ) > 0 for which the pair (f, Ŝ) admits the Expected Separable Overapproximation (ESO):

E f (x + h [ Ŝ] ) ≤ f (x) + τ n ∇f (x), h + 1 2 h 2 v , x, h ∈ R N , @PFIHA
where

h (i) [ Ŝ] = h (i) if i ∈ Ŝ 0
otherwise If the above inequality holds, for simplicity we will write (f, Ŝ) ∼ ESO(v).

Theorem 2. Let Assumption 1 be satised, with (f, Ŝ) ∼ ESO(v), where τ = E[| Ŝ|] > 0. Let x 0 ∈ dom Ψ, and assume that the random sets S k in Algorithm 4 are chosen independently, following the distribution of Ŝ. Let x * be any optimal point of problem @PFIA. Then the iterates {x k } k≥1 of APPROX satisfy:

E[F (x k ) -F (x * )] ≤ 4n 2 C * ((k -1)τ + 2n) 2 , @PFIIA
where

C * = 1 - τ n (F (x 0 ) -F (x * )) + 1 2 x 0 -x * 2 v . @PFIPA
In other words, for any 0 < ≤ C * , the number of iterations for obtaining an -solution in expectation does not exceed IU he min novelty in the nlysis of ey ws to show tht the itertes remin within the onstrint setD lthough they re de(ned s n overrelxtion of dmissile points in tep WF Lemma 2. Let {x k , z k } k≥0 be the iterates of Algorithm 4. Then for all k ≥ 0 we have

k = 2n τ C * -1 + 1 . @PFIQA
x k = k l=0 γ l k z l , @PFIRA
where the constants γ 0 k , γ 1 k , . . . , γ k k are non-negative and sum to 1. That is, x k is a convex combination of the vectors z 1 , . . . , z k . In particular, the constants are dened recursively in k by setting γ 0 0 = 1, γ 0 1 = 0, γ 1 1 = 1 and for k ≥ 1,

γ l k+1 =      (1 -θ k )γ l k , l = 0, . . . , k -1, θ k (1 -n τ θ k-1 ) + n τ (θ k-1 -θ k ), l = k, n τ θ k , l = k + 1. @PFISA
Moreover, for all k ≥ 0, the following identity holds everl vrints of proximl nd prllel @ut nonEelertedA rndomized oordinte desent methE ods were proposed fufqIID ISD pIUD ITF sn le PFP we provide list of reserh ppers IV proposing nd nlyzing rndomized oordinte desent methodsF he tle sustntites our oserE vtion tht while the lok @flk olumnA nd proximl @rx olumnA setup is reltively ommon in the litertureD prllel methods @r olumnA re muh less studiedD nd there is just hndful of ppers deling with elerted vrints @e olumnAF woreoverD existing elerted methods re not e0ient @i' olumnA"with the exeption of vIQ PFQ eelerted oordinte desent in distriuted setting wore nd more often in modern pplitionsD the dt desriing the prolem is so lrge tht it does not (t into the ew of single omputerF sn suh seD unless the pplition t hnd n tolerte slow performne due to frequent rhh redsGwritesD it is often neessry to distriute the dt mong the nodes of luster nd solve the prolem in distriuted mnnerF ith suh ig dt prolems it is neessry to design lgorithms le to utilize modern prllel omputing rhiteturesF his resulted in n interest in prllel ISD pIUD IT nd distriuted IT oordinte desent methodsF he ore of the pper pIR forms the development of new stepsizes tht improve on previous works on prllel oordinte desent using the following ssumptions on the ojetive funtion

γ k k+1 + n -τ τ θ k = (1 -θ k )γ k k . @PFITA 2.
f (x) + Ψ(x) = m j=1 φ j (e j Ax) + n i=1 Ψ i (x (i) ) .
e lso ssumed tht the dt is prtitioned mong c omputers deling with s oordintes ehF e ssume tht eh omputer updtes τ oordintes in prllel t eh itertionF e denote n = csF vet ω j e the numer of nonzeros in the jth row of A nd ω j e the numer of prtitions tive t row jD iFeFD the numer of indexes l ∈ {1, . . . , c} for whih the set {i ∈ P l : A ji = 0} is nonemptyF es soon s A does not hve n empty row or olumnD we know tht 1 ≤ ω j ≤ n nd 1 ≤ ω j ≤ cF he gol is to show tht there exists omputle onstnts v 1 , . . . , v n suh tht the iy inequlE ity @PFIHA holdsX

E f (x + h [ Ŝ] ) ≤ f (x) + τ s ∇f (x), h + 1 2 h 2 v , x, h ∈ R N .
hen the lgorithm will onsist in elgorithm R tht uses the ixpeted eprle yverpproximtion @iyA inequlity @PFIHA required y essumption IF yn top of llowing us to prove the onvergene of the lgorithmD the iy hs the following ene(tsX @iA ine the overpproximtion is onvex qudrti in hD it is easy to compute h(x)F @iiA ine the overpproximtion is lok seprleD one can compute the updates h (i) (x) in parallel for ll i ∈ {1, 2, . . . , n}F @iiiA por the sme resonD one can compute the updates or i ∈ S k onlyD where S k is the smple set drwn t itertion k following the lw desriing ŜF pinding smller onstnts v i diretly trnsfers into longer stepEsizes nd thus potentilly etter prlE leliztion speedupF he (rst proposition orresponds to the shred memory frmeworkF Proposition 1. Suppose that f (x) = m j=1 φ j (e j Ax) and that Ŝ consists in choosing τ c coordinates uniformly at random. Then f satises the Expected Separable Overapproximation @PFIHA with parameters

v i = m j=1 1 + (ω j -1)(τ c -1) sc -1 A 2 ji .
he min onlusion of the studyD mde preise in the next propositionD is tht s long s the numer of proessors per omputer τ ≥ 2D the e'et of prtitioning the dt @ross the nodesA on the itertion omplexity of the lgorithm is negligileD nd vnishes s τ inresesF IW Proposition 2. Suppose that f (x) = m j=1 φ j (e j Ax) Suppose that Ŝ consists in choosing for each computer, τ coordinates uniformly at random among the s ones it manages. Then f satises the Expected Separable Overapproximation @PFIHA with parameters

v i = n j=1 1 + (ω j -1)(τ -1) s -1 + τ s - τ -1 s -1 ω j -1 ω j ω j A 2 ji .
sn pIRD we gve n extensive omprison of the iys ville in the literture nd showed tht the newly proposed is muh etter thn former onesF PFR estrt of elerted grdient methods yn top of prllel proessingD s lso studied restrting shemes s omplementry men of elertionF por mild dditionl omputtionl ostD elerted grdient methods trnsform the proximl grE dient methodD for whih the optimlity gp

F (x k ) -F dereses s O(1/k)D into n lgorithm with optiml O(1/k 2 )
omplexity xesVQF eelerted vrints inlude the dul elerted proximl grE dient xesHSD xesIQD the elerted proximl grdient method @eqA seHV nd pse fHWF qrdientEtype methodsD lso lled (rstEorder methodsD re often used to solve lrgeEsle prolems eE use of their good slility nd esiness of implementtion tht filittes prllel nd distriuted omputtionsF hen solving onvex prolem whose ojetive funtion stis(es lol qudrti error ound @this is generliztion of strong onvexityAD lssil @nonEelertedA grdient nd oordinte desent methods utomtilly hve liner rte of onvergeneD iFeF F (x k ) -F ∈ O((1 -µ) k ) for prolem dependent 0 < µ < 1 xxqIPD hvITD wheres one needs to know expliitly the strong onvexity prmeter in order to set elerted grdient nd elerted oordinte desent methods to hve liner rte of onvergeneD see for instne vIQD vwrISD vvIRD xesIPD xesIQF etting the lgorithm with n inorret prmeter my result in slower lgorithmD sometimes even slower thn if we hd not tried to set n elertion sheme ygIPF his is mjor drwk of the method euse in generlD the strong onvexity prmeter is di0ult to estimteF sn the ontext of elerted grdient method with unknown strong onvexity prmeterD xesE terov xesIQ proposed restrting sheme whih dptively pproximtes the strong onvexity prmE eterF he sme ide ws exploited y vin nd io vIS for sprse optimiztionF xesterov xesIQ lso showed thtD insted of deriving new method designed to work etter for strongly onvex funE tionsD one n restrt the elerted grdient method nd get liner onvergene rteF roweverD the restrting frequeny he proposed still depends expliitly on the strong onvexity of the funtion nd so y9honoghue nd gndes ygIP introdued some heuristis to dptively restrt the lgorithm nd otin good results in prtieF he restrted lgorithm is given in elgorithm SD where ey@f, ψ, xr , KA mens elgorithm R run on the funtion f + ψ with initil point xr nd for K itertionsF Algorithm 5 ey with restrt

ghoose x 0 ∈ dom ψ nd set x0 = x 0 F ghoose estrtimes ⊆ NF for r ≥ 0 do K a estrtimes@r + 1A E estrtimes@rA xr+1 a ey@f, ψ, xr , KA

end for

Gradient method sn pIUD we showed thtD if the ojetive funtion is onvex nd stis(es lol qudrti error oundD we n restrt elerted grdient methods t any frequeny nd get linerly onvergent lgorithmF he rte depends on n estimte of the qudrti error ound nd we show tht for wide rnge of this prmeterD one otins fster rte thn without elertionF sn prtiulrD we do not require this estimte to e smller thn the tul vlueF sn tht wyD our result supports nd explins the prtil suess of ritrry periodi restrt for elerted grdient methodsF PH elgorithm gomplexity ound essumption

xesterov xesIQ O 1 √ µ F ln 1 µ F ln 1 µ F strong onvexity vin 8 io vIS O 1 √ µ F ln 1 µ F ln 1 µ F strong onvexity viu 8 ng vIU O 1 √ µ F ln 1 µ F 2 ln 1 rölderin error ound peroq 8 u pIU O 1 √ µ F ln 1 µ F
lol qudrti error ound le PFQX gomprison of the itertion omplexity of elerted grdient methods with dpttion to the lol error oundF henD s the rte of onvergene depends on the mth etween the frequeny nd the qudrti error oundD we design sheme to utomtilly dpt the frequeny of restrt from the oserved derese of the norm of the grdient mppingF he pproh follows the lines of xesIQD vISD vIUF e proved thtD if our urrent estimte of the lol error ound were orretD the norm of the grdient mpping would derese t presried rteF e just need to hek this derese nd when the test filsD we hve erti(te tht the estimte ws too lrgeF yur lgorithm hs etter theoretil ound thn previously proposed methods for the dpttion to the qudrti error ound of the ojetiveF sn prtiulrD we n mke use of the ft tht our study shows tht the norm of the grdient mpping will derese even when we hd wrong estimte of the lol error oundF Coordinate descent sn pITD pIVD we studied the se of elerted oordinte desentF he dptive restrt of rndomized elerted oordinte desent methods is more omplex thn in the deterministi seF es the omplexity ound holds in expettion onlyD one nnot rely on this ound to estimte whether the rte of onvergene is in line with our estimte of the lol error oundD s ws done in the deterministi seF e onsidered four setupsD the (rst one in pITD the three other ones in pIVX IF sn the se where the ojetive stis(es glol qudrti error oundD we proposed (xed restrting shemeF e onsidered restrting t point whih is onvex omintion of ll previous itertes nd showed liner onvergeneF Theorem 3. Let γ i k be the coecients dened in @PFISA and

xk = 1 k-1 i=0 γ i k θ 2 i-1 + 1 θ0θ k-1 -1-θ0 θ 2 0 k-1 i=0 γ i k θ 2 i-1 x i + 1 θ 0 θ k-1 - 1 -θ 0 θ 2 0 x k a convex combination of the k rst iterates of APPROX. Let σ ∈ [0, 1], xk = σx k + (1 -σ)x k . Denote ∆(x) := 1-θ0 θ 2 0 (F (x) -F (x * )) + 1 2θ 2 0 dist v (x, X ) 2 and m k (µ) := µθ 2 0 1+µ(1-θ0) k-1 i=0 γ i k θ 2 i-1 + 1 θ0θ k-1 -1-θ0 θ 2 0 .
We have

E[∆(x k )] ≤ max (σ, 1 -σm k (µ F (v))) ∆(x 0 ).
PF sf the lol qudrti error ound oe0ient µ of the ojetive funtion is knownD then we show tht setting restrting period s O(1/ √ µ) yields n lgorithm with optiml rte of onvergeneF wore preisely restrted ey dmits the sme theoretil omplexity ound s the elerted oordinte desent methods for strongly onvex funtions developed in vvIRD is pplile with milder ssumptions nd exhiits etter performne in numeril experimentsF Proposition 3. Let x k be the iterate of APPROX applied to the objective function

F = f + ψ
with quadratic error bound coecient µ on the level set {x :

F (x) ≤ F (x 0 )}. Denote: x = x k 1 F (x k )≤F (x0) + x 0 1 F (x k )>F (x0) .
We have

E[F (x) -F ] ≤ θ 2 k-1 1 -θ 0 θ 2 0 + 1 θ 2 0 µ (F (x 0 ) -F ). Moreover, given α < 1, if k ≥ 2 θ0 1+µ F (v,x0) αµ F (v,x0) -1 + 1, then E[F (x) -F ] ≤ α(F (x 0 ) -F ).
PI QF sf the ojetive funtion is strongly onvexD we show tht we n restrt the elerted oordinte desent method t the lst iterte t ny frequeny nd get linerly onvergent lgorithmF he rte depends on n estimte of the lol qudrti error ound nd we show tht for wide rnge of this prmeterD one otins fster rte thn without elertionF sn prtiulrD we do not require the estimte of the error ound oe0ient to e smller thn the tul vlueF he di'erene with respet to pIT is tht in this setionD we show tht there is no need to restrt t omplex omintion of previous itertesF Theorem 4. Denote ∆(x) = 1-θ0

θ 2 0 (F (x) -F ) + 1 2θ 2 0 dist v (x, X ) 2 . Assume that F is µ F strongly convex. Then the iterates of APPROX satisfy E[∆(x K )] ≤ 1 + (1 -θ 0 )µ F 1 + θ 2 0 2θ 2 K-1 µ F ∆(x 0 )
RF sf the lol error ound oe0ient is not knownD we introdue vrile restrting periods nd show tht up to log(log 1/ ) termD the lgorithm is s e0ient s if we hd known the lol error ound oe0ientF

Theorem 5. We dene the sequence

K 0 = K 0 K 1 = 2 1 K 0 K 2 = K 0 K 3 = 2 2 K 0 K 4 = K 0 K 5 = 2 1 K 0 K 6 = K 0 K 7 = 2 3 K 0 . . . such that K 2 j -1 = 2 j K 0 , ∀j ∈ N and |{l ≤ 2 J -1 | K l = 2 j K 0 }| = 2 × |{l ≤ 2 J -1 | K l = 2 j-1 K 0 }| for all j ∈ {1, . . . J -1}, J ∈ N.
We denote

δ 0 = F (x 0 ) -F * and K(µ F ) = 2 θ0 1+µ F e -2 µ F -1 + 1
, where µ F is the (unknown) quadratic error bound coecient µ of F . Suppose that the restart times are given by the variable restart periods dened above. Then the iterates of restarted APPROX satisfy

E(F (x k ) -F (x * )) ≤ as soon as k ≥ max log K(µ F ) K 0 , 0 + log 2 log( δ0 ) 2 log( δ0 ) 2 max(K(µ F ), K 0 ) .
yn pigure PFID we n see tht restrting the elerted oordinte desent lerly outperforms oth oordinte desent nd plin elerted oordinte desentF woreoverD using version of elerted oordinte desent designed for strongly onvex funtions vvIR is not sfeX it my fil to onverge or e very slow depending on the estimte of strong onvexity tht we re usingF PFS sing seond order informtion here hve een severl ttempts t designing methods tht omine rndomiztion with the use of urvture @seondEorderA informtionF por exmpleD methods sed on running oordinte sent in the dul suh s ISD pIUD pISD pIRD IS use urvture informtion ontined in the digonl of ound on the ressin mtrixF flok oordinte desent methodsD when equipped with suitle dtEdependent norms for the loksD use informtion ontined in the lok digonl of the ressin qITF e more diret route to inorporting urvture informtion ws tken y qHU in their stohsti vEfpq method nd y frxIR nd hqIR in their stohsti qusiExewton methodsF gomplexity estimtes re not esy to (ndF en exeption in this regrd is the work of ffqHWD who give O(1/ ) omplexity ound for usiExewton qh methodF en lterntive pproh is to onsider lok oordinte desent methods with overlpping loks HWD pISF hile typilly e0ient in prtieD none of the methods mentioned ove re equipped with omplexity ounds @ounds on the numer of itertionsAF seng nd un HW only showed onverE gene to sttionry point nd fous on nonEoverlpping loks for the rest of their pperF xumeril evidene tht this pproh is promising is provided in pIS with some mild onvergene rte results ut no itertion omplexityF he min ontriution of the work pIT is the nlysis of stohsti lok oordinte desent methods with overlpping loksF e then instntite this to get new lgorithm"tohsti hul 

rcv1 λ 1 =10000 COORDINATE DESCENT APPROX APCG mu = 1e-3 APCG mu = 1e-5 APCG mu = 1e-7 PROX-NEWTON Variable restart APPROX mu0 = 1e-2
pigure PFIX gomprison of @elertedA oordinte desent lgorithms for the logisti regression prolem on the dtset gIX oordinte desentD eyD egq vvIR with µ ∈ {10 -3 , 10 -5 , 10 -7 }D roxE xewton vIP nd ey with vrile restrt initited with K 0 = K(10 -2 )F

xewton esent @hxeA"for solving regulrized impiril isk winimiztion prolem with smooth loss funtions nd strongly onvex regulrizer @priml prolemAF yur method is stohsti in nture nd hs the pity to utilize ll urvture informtion inherent in the dtF hxe in eh itertion piks rndom suset of the dul vriles @whih orresponds to piking minith of exmples in the priml prolemAD following n ritrry proility lwD nd mximizesD extlyD the dul ojetive restrited to the rndom suspe spnned y the oordintesF iquivlentlyD this n e seen s the solution of proximl suprolem involving rndom prinipl sumtrix of the ressin of the qudrti funtionF reneD hxe utilizes ll urvture informtion ville in the rndom suspe in whih it opertesF xote tht this is very di'erent from the updte strtegy of prllel G minith oordinte desent methodsF sndeedD while these methods lso updte rndom suset of vriles in eh itertionD they insted only utilize urvture informtion present in the digonl of the ressinF sn the se of qudrti lossD nd when viewed s priml methodD hxe n e interpreted s vrint of the stertive ressin keth lgorithm IRF hgeElike methods need more psses through dt to onverge s the minith size inresesF roweverD hxe enjoys the opposite ehviorX with inresing minith sizeD up to ertin thresholdD hxe needs fewer psses through dt to onvergeF his oservtion is on(rmed y our numeril experimentsF sn prtiulrD we show tht the expeted dulity gp dereses t geometri rte whih iA is etter thn tht of hgeElike methods suh s hge IQ nd e ISD nd iiA improves with inresing minith sizeF his improvement does not ome for freeX s we inrese the minith sizeD the suprolems grow in size s they involve lrger portions of the ressinF e (nd through experiments tht for someD espeilly dense prolemsD even reltively smll minith sizes led to drmti speedups in tul runtimeF por instne on pigure PFP th size of IT is enough to tke lot of pro(t from seond order informtionF e ssume strong onvexity nd smoothness ssumption involving dtEdependent normsX pper onsists in ompring three quntitiesX

f (x) + ∇f (x), h + 1 2 Gh, h ≤ f (x + h), @PFIUA f (x + h) ≤ f (x) + ∇f (x), h + 1 2 Mh,
σ 1 := λ min G 1/2 E M Ŝ † G 1/2 , @PFIWA σ 2 := λ min G 1/2 D(p) E M Ŝ -1 D(p)G 1/2 , @PFPHA σ 3 := λ min G 1/2 D(p)D(v -1 )G 1/2 , @PFPIA
where λ min stnds for the smllest eigenvlueF e show tht hxe onverges linerly s

E[f (x k+1 ) - f (x * )] ≤ (1 -σ 1 )E[f (x k ) -f (x * )]
while the prllel oordinte desent method @ghwA onverges s Coordinate descent methods for saddle point problems e now turn to onvex optimiztion prolems of the form

E[f (x k+1 ) -f (x * )] ≤ (1 -σ 3 )E[f (x k ) -f (x * )]F woreoverD s σ 1 ≥ σ 2 ≥ σ 3 D
min x∈X f (x) + g(x) + h(M x), @QFIA where x = (x (1) , . . . , x (n) ) ∈ X = X 1 × . . . × X n is deision vetor omposed of n loks f is di'erentile onvex funtion with oordinteEwise vipshitz grdientsD g : X → R ∪ {+∞} nd h : Y → R ∪ {+∞} re onvex nd lower semiontinous funtions nd M : X → Y is ontinuous liner opertorF e lso ssume tht Y = Y 1 × . . . × Y p
for some integer pF nder the stndrd quli(tion ondition 0 ∈ ri(M dom gdom h) @where dom nd ri re the domin nd the reltive interiorAD point x ∈ X is minimizer of @QFIA if nd only if there exists y ∈ Y suh tht (x, y) is sddle point of the vgrngin funtion

L(x, y) = f (x) + g(x) + y, M x -h (y)
where h : y → sup z∈Y y, zh(z) is the penhelEvegendre trnsform of hF rolem @QFIA is muh more generl thn rolem @PFIA tht we studied in the previous hpterF st llows us to onsider nonsmooth nonseprle ojetivesD ontining for instne liner equlity nd inequlity onstrintsF sndeedD it provides uni(ed formultion for rod set of pplitions in vrious disiplinesD seeD eFgFD fVWD fHRD gfIRD gIPD wgh + IRD xHTD iIRF hile prolem @QFIA is presented in the unonstrined formD it utomtilly overs onstrined settings y mens of inditor funtionsF por exmpleD @QFIA overs the following prototypil optimiztion templte vi h(z) := δ {b} (z) @iFeFD the inditor funtion of the onvex set {b}AX weker thn in the se of stndrd grdient desentF he key point is tht the step size used in the lgorithm when updting given oordinte i n e hosen to e inversely proportionl to the coordinatewise vipshitz onstnt of ∇f long its ith oordinteD rther thn the glol vipshitz onstnt of ∇f @s would e the se in stndrd grdient desentAF reneD the introdution of oordinte desent llows to use longer step sizes whih potentilly results in more ttrtive performneF he rndom gh grdient desent of xesIP ws lter generlized y ihtárik nd kᣠIR to the minimiztion of sum of two onvex funtions f + g @tht isD h = 0 in prolem @QFIAAF he lgorithm of IR is nlyzed under the dditionl ssumption tht funtion g is separable in the sense tht for eh x ∈ X D

min x∈X f (x) + g(x) + δ {b} (Ax) = min x∈X f (x) + g(x) : Ax = b , @QFPA xote tht @QFPA
g(x) = n i=1 g i (x (i) )
for some funtions g i : X i →] -∞, +∞]F sn the litertureD severl ppers seek to pply the priniple of oordinte desent to primlEdul lgorithmsF sn the se where f = 0D h is seprle nd smooth nd g is strongly onvexD hng nd io IR introdue stohsti gh primlEdul lgorithm nd nlyze its onvergene rte @see lso uzIR for relted worksAF sn PHIQD sutzeler et lF sfgrIQ proved tht rndom oordinte desent n e suessfully pplied to (xed point itertions of (rmly nonEexpnsive @pxiA opertorsF eording to qVQD the ehww n e written s (xed point lgorithm of pxi opertorD whih led the uthors of sfgrIQ to propose oordinte desent version of ehww with pplition to distriuted optimiztionF he key ide ehind the onvergene proof of sfgrIQ is to estlish the soElled stohsti pejér monotoniity of the sequene of itertes s noted y gISF sn more generl setting thn sfgrIQD gomettes et al. in gIS nd finhi et al. frpIR extend the proof to the soE lled αEverged opertorsD whih inlude pxi opertors s speil seF his generliztion llows to pply the oordinte desent priniple to roder lss of primlEdul lgorithms whih is no longer restrited to the ehww or the hougls hford lgorithmF por instneD porwrdEfkwrd splitting is onsidered in gIS nd prtiulr ses of the £ uEgondt lgorithm re onsidered in frpIRD ISF xeverthelessD the ove pproh hs two mjor limittionsF pirstD in order to derive onverging oordinte desent version of given deterministi lgorithmD the ltter must write s (xed point lgorithm over some produt rilert spe of the form H = H 1 × • • • H q where the inner produt in H is the sum of the inner produts in the H i 9sF nfortuntelyD this ondition does not hold in generl for the £ uEgondt methodD euse the inner produt over H involves the oupling liner opertor M F e workround ws proposed in frpIR ut for prtiulr exmple onlyF eond nd even more importntlyD the pproh of sfgrIQD gISD frpIRD IS needs smll step sizesF wore preiselyD the onvergene onditions re identil to the ones of the rute methodD the one without oordinte desentF hese onditions involve the glol vipshitz onstnt of the grdient ∇f insted thn its oordinteEwise vipshitz onstntsF sn prtieD it mens tht the pplition of oordinte desent to primlEdul lgorithm s suggested y gIS nd frpIR is restrited to the use of potentilly smll step sizesF yne of the mjor ene(ts of oordinte desent is lostF ome reent works lso foused on designing primlEdul oordinte desent methods with gurE nteed onvergene rteF sn qIW nd giIVD O(1/k) rte is otined for the ergodi men of the sequenesF he rtes re given in terms of fesiility nd optimlity or fregmn distneF hose two ppers require ll the dul vriles to e updted t eh itertionD whih my not e e0ient if there re more thn few dul vrilesF sn the present pperD we will hve muh more )exiility in the PT vriles we hoose to updte t eh itertionD while retining provle onvergene rteF yur min ontriution is to provide gh primlEdul lgorithm with rod rnge of dmissile step sizesF yur numeril experiments show tht remrkle performne gins n e otined when using lrger step sizesF e lso identify two setups for whih the struture of the prolem is fvorle to oordinte desent lgorithmsF pinllyD we prove suliner rte of onvergene in generl nd liner rte of onvergene if the ojetive enjoys strong onvexity propertiesF 3.1.2 Main algorithm and convergence theorem gonsider rolem @QFIAF e note M = (M j,i : j ∈ {1, . . . , p}, i ∈ {1, . . . , n}) where M j,i : X i → Y j re the lok omponents of M F por eh j ∈ {1, . . . , p}D we introdue the set I(j) := i ∈ {1, . . . , n} : M j,i = 0 . ytherwise sttedD the jth omponent of vetor M x only depends on x through the oordintes x (i) suh tht i ∈ I(j)F e denote y m j := card(I(j)) the numer of suh oordintesF ithout loss of generlityD we ssume tht m j = 0 for ll jF e lso denote π j := 1 card(I(j)) . por ll i ∈ {1, . . . , n}D we de(ne J(i) := j ∈ {1, . . . , p} : M j,i = 0 . xote tht for every pir (i, j)D the sttements i ∈ I(j) nd j ∈ J(i) re equivlentF vet σ = (σ 1 , . . . , σ p ) nd τ = (τ 1 , . . . , τ n ) e two tuples of positive rel numersF gonsider n independent nd identilly distriuted sequene (i k : k ∈ N * ) with uniform distriution on {1, . . . , n} @the results of this pper esily extend to the seletion of severl priml oordintes t eh itertion with uniform smplings of the oordintesD using the tehniques introdued in ISAF he proposed primlEdul oordinte desent lgorithm onsists in updting two sequenes

x k ∈ X D y k ∈ YF st is provided in elgorithm T elowF Algorithm 6 goordinteEdesent primlEdul lgorithm InitializationX ghoose x 0 ∈ X D y 0 ∈ YF Iteration kX he(neX y k+1 = prox σ,h y k + D(σ)M x k x k+1 = prox τ,g x k -D(τ ) ∇f (x k ) + 2M y k+1 -M y k . por i = i k+1 nd for eh j ∈ J(i k+1 )D updteX x (i) k+1 = x (i) k+1 y (j) k+1 = y (j) k + π j (y (j) k+1 -y (j) k ) . ytherwiseD set x (i ) k+1 = x (i ) k D nd y (j ) k+1 = y (j ) k F
yur onvergene result holds under the following ssumptionsF Assumption 2. 1. The functions f , g, h are closed proper and convex.

2. The function f is dierentiable on X .

3. For every i ∈ {1, . . . , n}, there exists β i ≥ 0 such that for any x ∈ X , any u ∈ X i ,

f (x + U i u) ≤ f (x) + ∇f (x), U i u + β i 2 u 2 Xi .
4. The random sequence (i k ) k∈N * is independent, uniformly distributed on {1, . . . , n}.

5. The step sizes τ = (τ 1 , . . . , τ n ) and σ = (σ 1 , . . . , σ p ) satisfy for all i ∈ {1, . . . , n}, τ i < 1

β i + ρ j∈J(i) (2 -π j )m j σ j M j,i M j,i
. PU e denote y S the set of sddle points of the vgrngin funtion LF ytherwise sttedD ouple (x * , y * ) ∈ X × Y lies in S if nd only if it stis(es the following inlusions

0 ∈ ∇f (x * ) + ∂g(x * ) + M y * @QFQA 0 ∈ -M x * + ∂h (y * ) .
@QFRA e shll lso refer to elements of S s primlEdul solutionsF Theorem 6. Let Assumption 2 hold true and suppose that S = ∅. Let (x k , y k ) be a sequence generated by Algorithm 6. Almost surely, there exists (x * , y * ) ∈ S such that

lim k→∞ x k = x * lim k→∞ y k = y * .
sn order to prove this resultD we introdued the onept of duplition of dul vrilesF sndeedD s noted in the introdutionD the squred norm with whih distnes re mesured in £ u nd gondt9s proof is not seprleF his poses mjor di0ulty in the nlysis of oordinte desentD tht we irumvented y llowing nonseprle ojetive funtionsF hen m j > 1D iFeF the dul vrile y (j) in)uenes severl priml vriles {x (i) , i ∈ I(j)}D we rti(illy duplite the dul vrile y (j) into vetor of size m j denoted y (y(j)(i)) i∈I(j) F sn order to get n equivlent prolemD we reple h y h tht fores the onstrint y (j) (i) = y (j) (i ) for ll i, i ∈ I(j)F sn this equivlent prolemD m j = 1 for ll j nd we n de(ne seprle squred normF his llows us to prove the onvergene of the lgorithm with the duplited dul spe nd then heorem T y showing tht oth lgorithm re in ft the smeF Ecient implementation using problem structure sn elgorithm TD it is worth noting tht qunE tities (x k+1 , y k+1 ) do not need to e expliitly lultedF et itertion kD only the oordintes

x (i k+1 ) k+1 nd y (j) k+1 , ∀j ∈ J(i k+1 )
re needed to perform the updteF prom omputtionl point of viewD it is often the se tht the evlution of the ove oordintes is less demnding thn the omputtion of the whole vetors x k+1 D y k+1 F wo situtions hve een reported in the litertureX • sf g is seprleD one only needs to ompute the quntities

∇ i k+1 f (x k )D (2M ȳk+1 -M y k ) (i k+1 )
nd prox τi k+1 ,gi k+1 to perform the kth itertionF e lssil exmple of suh smrt residul upE dte xesIP n e found in the proximl oordinte desent grdient lgorithm @se g seprle nd h = 0A IRF wore generllyD if g @respF h A is lokEseprleD we n use this struture in the lgorithmD even if this lok struture does not mth X 1 × . . . × X n @respF Y 1 × . . . × Y p AF e used this ide in pigure QFI to del e0iently with the proximl opertor of the 2,1 normF 2 Axb 2 2 + α r x 1 + (1 -r) M x 2,1 nd the dt omes from fws dtF yur method is dupl_prim_dual_cd @solid green urveAF xote for the hoies of regulriztion prmeters suh tht α(1 -r) is lrgerD the prolem is more di0ult to solve euse the totl vrition regulrizer is dominntF his is in ft the most hllenging prt of the ojetive euse it is nonEdi'erentile nd nonEseprleF PW 

• sf g is the inditor of the onsensus onstrint {x 1 = • • • = x n }D f is seprle nd h = 0D
(mn + 6n) O(m + 12) A ∈ R m×n X denseY M ∈ R 3n×n X nnz(M ) = 6n upport etor whines O(nnz(A) + n) O(nnz(Ae i ) + 1) A ∈ R m×n X
max x∈R n -1 2λ AD(b)x 2 2 + e T x - n i=1 I [0,Ci] (x i ) -I {0} ( b, x
) on the gI dtsetF e report the vlue of the dulity gp fter postEproessing to reover fesile priml nd dul vrilesF e stopped eh lgorithm fter IHH psses through the dtX note tht the ost per itertion of the S lgorithms is similr ut tht the lgorithm of sfgrIQ needs (rst to ompute the vipshitz onstnt of the grdientF hge does not onverge to the minimum euse it does not onsider the liner equlity onstrintF Theorem 7. Dene for α ≥ 1,

C 1,α = max 1≤i≤n τ -1 i + τ -1/2 i ρ( j∈J(i) m j σ j M j,i M j,i ) 1/2 τ -1 i -ρ( j∈J(i) m j σ j M j,i M j,i ) (1 + n α ) C 2,α = 1 + max 1≤i≤n α -1 (n(n -1) + 1) + 1 τ -1 i -β i -ρ( j∈J(i) (2 -π j (i))m j σ j M j,i M j,i ) β i .
We have that C 1,α and C 2,α are nonincreasing with respect to α, and thus bounded. Let us denote

S 0, * = f (x 0 ) -f (x * ) -∇f (x * ), x 0 -x * and V (z) = V (x, y) = 1 2 x 2 τ -1 + M x, y + 1 2 y 2 σ -1
. Dene the number of iterations K ∈ {1, . . . , k} as a random variable, independent of {i 1 , . . . , i k } and such that Pr( K = l) = 1 k for all l ∈ {1, . . . , k}.

If h is L(h)-Lipschitz in the norm • D(m)σ , then for all k ≥ 0, E(f (x K ) + g(x K ) + h(M x K ) -f (x * ) -g(x * ) -h(M x * )) ≤ C 2, √ k + 2C 1,k √ k n(S 0, * + V (z 0 -z * )) + 4 √ k L(h) 2 .
If h = I {b} , then for all k ≥ 0,

E(f (x K ) + g(x K ) -f (x * ) -g(x * )) ≤ C 2, √ k + 2C 1,k √ k n S 0, * + V (z 0 -z * ) + y * E( M x K -b ) E( M x K -b D(m)σ ) ≤ 2 √ k C 2, √ k + 2C 1,k + 2C 1,k n(S 0, * + V (z 0 -z * )) 1/2
QFP mooth minimiztion of nonsmooth funtions with prllel oordinte desent methods e mjor question when designing rllel goordinte hesent wethod @ghwA isX how should we omine the updtes omputed y the vrious proessorsc yne my simply ompute the updtes in the sme wy s in the single proessor seD nd pply them llF roweverD this strtegy is doomed to filX the method my end up osillting etween suEoptiml points fIQF sndeedD lthough the individul updtes re sfeD there is no reson why dding them ll up for should derese the QH funtion vlueF sn order to overome this di0ultyD ihtárik nd kᣠIS introdued the onept of ixpeted eprle yverpproximtion @iyAF hnks to this ound on the expeted derese fter one itertion of the lgorithmD they ould de(ne sfe vlues for the mount of dmping one should pply to the updtes in order to hve onverging lgorithmF hey ould prove nerly liner theoretil prlleliztion speedup for omposite nd prtilly seprle funtionF his mens tht the ojetive funtion is the sum of seprle nonsmooth funtion nd di'erentile funtion of the form f (x) = J∈J f J (x (J) ) where eh funtion f J depends only on smll numer of oordintes x (J) F hey lso showed tht the wy oordintes re smpled hs huge impt on the performneF sndeedD ghw implemented with soElled τ Enie smpling n e fster thn ghw implemented with more generl uniform smpling y ftor O( √ n)D where n is the numer of vrilesF he gol of the pper pIU is to study lss of nonsmooth funtions on whih similr prlleliztion speedups n e proved for prllel oordinte desent methodsF his lss of funtions will e the lss of onvex funtions with mx strutureD whih is very losely relted to sddle points prolemsF yur pproh is sed on the smoothing tehnique introdued y xesterov in xesHSF sndeedD if the funtion to optimize hs mxEstrutureD then one n de(ne smooth pproximtion of the funtion nd minimize the pproximtion y ny method ville for smooth optimiztionD inluding oordinte desentF e wish to solve the prolem

min x g(x) + h(Ax) = min x∈R N max z∈Q g(x) + Ax, z -h * (z), @QFSA
where we ssume tht Q is oundedF uh prolems were oined y xesterov s prolems with mx struture in xesHSF he method we use for solving the smoothed omposite prolem @QFSA is given in elgorithm UF st relies on smooth pproximtion of h(Ax) given y xesHS

h µ (y) = max z∈Q { y, z -h * (z) -µd(z)}, @QFTA
where d is funtion de(ned on QD lled the prox funtionD whih is strongly onvex with respet to

the norm z v = m j=1 v p j |z j | p 1/p F Algorithm 7 moothed rllel goordinte hesent wethod @ghwA Input: initil iterte x 0 ∈ R N D β > 0 nd w = (w 1 , . . . , w n ) > 0 for k ≥ 0 do
Step 1. qenerte rndom set of loks S k ⊆ {1, 2, . . . , n} following the lw of

Ŝ

Step 2. sn prllel for i ∈ S k D ompute

s (i) k = arg min t∈R N i (A ∇h µ (Ax k )) (i) , t + βw i 2 B i t, t + g i (x (i) k + t)
Step 3. sn prllel for i ∈ S k D updte

x (i) k+1 ← x (i) k + s (i) k nd set x (j) k+1 ← x (j) k for j ∈ S k
end for yn top of the rndom smplingD the lgorithm depends on prmeters β > 0 nd w ∈ R n + F hese prmeters re determined in suh wy tht the funtion H µ = h µ • A stis(es n Expected Separable Overapproximation @iyA de(ned for funtion φ s

E φ(x + s [ Ŝ] ) ≤ φ(x) + E[| Ŝ|] n ∇φ(x), s + β 2 n i=1 w i B i s (i) , s (i) , x, s ∈ R N , @QFUA
where s [ Ŝ] is de(ned in essumption IF hen @QFUA holdsD we sy tht φ dmits (β, w)Eiy with respet to ŜF por simpliityD we my sometimes write (φ, Ŝ) ∼ ESO(β, w)F st is importnt to understnd whether hoosing τ > 1 @severl proessorsAD s opposed to τ = 1 @one single proessorAD leds to elertion in terms of n improved omplexity oundF fy nlogy with proximl grdient desentD we n see tht 1

β n e interpreted s stepsizeF e would hene wish to hoose smll βD ut not too smll so tht the method does not divergeF he issue of the omputtion QI le QFPX ummry of itertion omplexity results strong onvexity onvexity xonsmooth prolem with mxEstruture

rolem @QFSA n τ × 2β(τ )D σ +σΨ σ fµ +σΨ × log( 1 ) nβ(τ ) τ × 8DDiam 2 σ 2 × log( 1 )
of good @smllA prmeter β is very intrite for severl resons nd is t the hert of the design of rndomized prllel oordinte desent methodF es n e seen from le QFPD the numer of itertions required to otin n Esolution for rolem @QFSA is of the form k ≥ C( ) β(τ ) τ D where C( ) does not depend on τ F reneD prlleliztion speedup ours when the funtion T (τ ) = β(τ ) τ is deresingF his hs een proved for smooth prtilly seprle funtions in ISF sn pIUD we proved it for xesterov seprle funtionsF Denition 2 @xesterov seprilityA. We say that H = h • A is xesterov @lokA seprle of degree ω if h has the form @QFTA and

max 1≤j≤m |{i : A ji = 0}| ≤ ω.
@QFVA Theorem 8 @iy for τ Enie smplingA. Let H = h • A be Nesterov separable of degree ω, Ŝ be τ -nice (i.e. for all S ⊂ {1, . . . n}, if |S| = τ , then P( Ŝ = S) = 1/ n τ ), and w * be chosen as

w * i = max{( A i t * v ) 2 : t ∈ R Ni , t E = 1}, i = 1, 2, . . . , n.
Then

(H µ , Ŝ) ∼ ESO(β, w * ),
where β = β µσ and, if the dual norm • v is dened with p = 2,

β = β 2 = 1 + (ω -1)(τ -1) max(1, n -1)
or, if p = 1,

β = β 3 = kmax k=1 min    1, mn τ kmax l=max{k,kmin} c l π l    @QFWA
where c l , π l , k min and k max are dened by:

k min = max{1, τ -(n -ω)}, k max = min{τ, ω}, c l = max l ω , τ -l n-ω ≤ 1 if ω < n, c l = l ω ≤ 1 otherwise, and π l = ( ω k )( n-ω τ -k ) ( n τ ) , k min ≤ l ≤ k max .
pormul @QFWA my look omplited t (rst glne ut it is in ft just sum of few esily omputle termsF gomputing β 3 hs negligile ost ompred to the rest of the lgorithmF yne n lso esily show tht using β = β 1 = min{ω, τ } lwys leds to onverging lgorithm for ny τ Euniform smplingF roweverD the performne my e disppointing for n lgorithm using prllel proessingF sn pigure QFQD we n see tht our nlysis llows us to prove muh etter theoretil prlleliztion speedup thn the more si result thnks to (ne study of τ Enie smplingsF QFQ e mooth rimlEhul yptimiztion prmework for xonsE mooth gomposite gonvex winimiztion @heorem VAF Red dash-dotted line: τ Enie smpling nd p = 1D β 3 follows @QFWA in heorem VF xote tht β 1 rehes its mximl vlue ω quiklyD wheres β 2 inreses slowlyF hen τ is smll ompred to nD this mens tht β 2 remins lose to IF ell tht smll vlues of β diretly trnslte into etter omplexity nd prlleliztion speedupF where g * nd h * re the penhel onjugte of g nd hD respetivelyF emong lssil onvex optimiztion methodsD the primlEdul pproh is perhps one of the est ndidtes to solve the primlEdul pir @QFIAE@QFIHAF heory nd methods long this pproh hve een developed for severl dedes nd hve led to diverse set of lgorithmsF e omprison etween some fmous primlEdul methods nd our pproh in this pper is given in les QFQ nd QFRF here re severl resons for our emphsis on (rstEorder primlEdul methods for @QFIAE@QFIHAD with the most ovious one eing their slilityF goupled with reent demnd for lowEtoEmedium ury solutions in pplitionsD these methods indeed provide importnt trdeEo's etween the perEitertion omplexity nd the itertionEonvergene rte long with the ility to distriute nd deentrlize the omputtionF essoited with the priml prolem @QFIA nd the dul one @QFIHAD we de(ne G(w) := P (x) -D(y), @QFIIA s primlEdul gp funtionD where w := (x, y) is the ontented primlEdul vrileF he gp funtion G in @QFIIA is onvex in terms of wF nder strong dulityD we hve G(w ) = 0 if nd only if w = (x , y ) is primlEdul solution of @QFIA nd @QFIHAF sn strk ontrst with the existing litertureD our nlysis relies on novel omintion of three lssil onepts in onvex optimiztion pplied to the primlEdul gp funtionX xesterov9s smoothing tehniqueD the accelerated proximl grdient desent method nd homotopy in nontrivil mnnerF hile some omintions of these tehniques hve lredy een studied in the litertureD their full omintion is importnt for the desidert nd hd not een studied eforeF

Smoothing: e n otin smoothed estimte of the gp funtion within xesterov9s smoothing tehnique pplied to g nd h fIPD xesHSF sn the sequelD we denote the smoothed gp funtion y G γβ (w) := P β (x) -D γ (y) to pproximte the primlEdul gp funtion G(w)D where P β is smoothed pproximtion to P depending on the smoothness prmeter β > 0D nd D γ is smoothed pproximtion to D depending on the smoothness prmeter γ > 0F fy smoothed pproximtionD we men the sme mxEform pproximtion s xesHSF roweverD it ws previously unler how to properly updte these smoothness prmeters in primlEdul methodsF Acceleration: sing n elerted shemeD we will design new primlEdul deomposition methods tht stisfy the following smoothed gp redution modelX

G γ k+1 β k+1 ( wk+1 ) ≤ (1 -τ k )G γ k β k ( wk ) + ψ k , @QFIPA
where { wk } nd the prmeters re generted y the lgorithms with τ k ∈ [0, 1) nd max(ψ k , 0) onverges QQ le QFQX e omprison of onvergene rtes etween eqeh nd ehqeh lgorithms @in the se f = 0A nd seleted existing methods for solving @QFIA nd @QFPAF rereD ll lgorithms do not involve ny lrge mtrix inversion or omplex onvex suprolemD nd w k := 1 k k l=1 w l Y K is the itertion udgetY nd σ is the stepEsize in gIIF per dom g ounded nd h vipshitz

h vipshitz h = δ {c} F @optimlity nd fesiilityA xesterov xesHS P (x k ) ≤ 2 √ LA D X D Y K 1+ K 2 k 2 P (x k ) ≤ 2 + 8 LA x 0 -x 2 D Y (k+1) 2 not pplile ghmolleE ok gII G(w k ) ≤ σ LA D X +σ -1 D Y k onvergene onvergene eqeh P (x k ) ≤ 2 √ 2 √ LA D Y D X k P (x k ) ≤ LA 2β1k x0 -x 2 + 2β1 k D Y |g(x k )-g | ≤ hpgIV LA β1k x0 -x 2 + 3β1 k ẏ-y 2 + β1 k y 2 Ax k -c Y, * ≤ β1 k+1 2 ẏ -y + √ LA β1 x0 -x ehqeh G(w k ) ≤ 2 √ LA D Y D X k G(w k ) ≤ γ1 k+1 ẋ-x 2 + 2 LA γ1k D Y |g(x k )-g | ≤ hpgIV 3γ1 k ẋ-x 2 + 2 LA γ1k ẏ-y 2 + L A γ1k y 2 Ax k -c Y, * ≤ LA γ1k 2 ẏ -y + 2γ 1 ẋ -x
to zeroF imilr ides hve een proposed eforeY for instneD xesterov9s exessive gp tehnique xesHS is speil se of the gp redution model @QFIPA when ψ k ≤ 0 @see hgIRAF

Homotopy: e will design lgorithms to mintin @QFIPA while simultneously updting β k D γ k nd τ k to zero to hieve the est known onvergene rte sed on the ssumptions imposed on the prolem templteF his strtegy will lso llow our theoretil gurntees not to depend on the dimeter of the fesile set of @QFPAF e similr tehnique is lso proposed in xesHSD ut only for symmetri primlEdul methodsF st is lso used in onjuntion with xesterov9s smoothing tehnique in frIP for unonstrined prolem ut hd only n O(ln(k)/k) onvergene rteF xote tht without homotopyD we n diretly pply xesterov9s elerted methods to minimize the smoothed gp funtion G γβ for given γ > 0 nd β > 0F sn this seD these smoothness prmeters must e (xed priori depending on the desired ury nd the proxEdimeter of oth the priml nd dul prolemsD whih my not e pplile to @QFPA due to the unoundedness of the dul fesile dominF le QFRX e omprison of onvergene rtes etween our lgorithms nd seleted existing methods for solving @QFPAF rereD ll lgorithms my involve omplex onvex suprolems or mtrix inversionsY nd ρ is the penlty prmeter in vwon nd wIPF per

g = δ {c} evw vwon |g(x k ) -g | ≤ 6 ρ √ k y y 0 -y Ax k -c Y, * ≤ 3 ρ √ k y 0 -y ehww wIP |g 1 ((x 1 ) k ) + g 2 ((x 2 ) k ) -g 1 (x 1 ) -g 2 (x 2 )| ≤ 6+4 √ 2 k 1 ρ y 0 -y 2 + ρ x 0 1 -x 1 2 A * 1 A1 A 1 (x 1 ) k + A 2 (x 2 ) k -c ≤ 2 k 1 ρ 2 y 0 -y 2 + x 0 1 -x 1 2 A * 1 A1 eevqeh hpgIV |g(x k ) -g | ≤ 10 y Y ẏ-y Y γ0(k+1) 2 Ax k -c Y, * ≤ 8 ẏ-y Y γ0(k+2) 2 QR

Technical results

vemm Q is fundmentl to our theory sine it reltes the derese in the smoothed gp to the ojetive vlue nd the fesiility gp in the very importnt se of equlity onstrintsF st shows tht when the smoothed gp nd the smoothing prmeters re smll t the sme timeD then ojetive vlue gp nd fesiility gp re oth smllF his question hd een open for severl yers in the re of onvergene rtes for primlEdul methodsF revious works either mde ssumptions tht forde equlity onstrints or proved results in terms of quntities tht re not nturl mesures of optimlity @for instne the restrited dulity gp in gIIAF gonurrently to our workD lterntive pprohes hve een proposed y F hrori in hroIR nd y F u in uIUF xote tht lthough the rtes otined re the smeD our pproh using smoothing is more prinipledF Lemma 3. Let G γβ be the smoothed gap function and S β (x; ẏ) := P β (x; ẏ) -P (x ) = f (x) + g β (Ax; ẏ) -P (x ) be the smoothed objective residual. Then, we have

S β (x; ẏ) ≤ G γβ (w; ẇ) + γb X (x , ẋ) and 1 2 y * β (Ax; ẏ) -y 2 Y, * ≤ b Y (y , ẏ) + 1 β S β (x; ẏ). @QFIQA
Suppose that g(•) := δ {c} (•). Then, for any y ∈ y and x ∈ X , one has

-y Y Ax -c Y, * ≤ f (x) -f (x ) @QFIRA
and the following primal objective residual and feasibility gap estimates hold for @QFPA:

f (x) -f (x ) ≤ S β (x; ẏ) -y , Ax -c + βb Y (y , ẏ), Ax -c Y, * ≤ βL b Y y -ẏ Y + y -ẏ 2 Y + 2L -1 b Y β -1 S β (x; ẏ) 1/2 , @QFISA
where the quantity in the square root is always nonnegative.

sing the smoothed gp mhineryD we de(ned new lgorithmD tht we lled the eelerted moothed qep ehution lgorithm @eqehAF he ide is t eh itertion to run one step of elerted grdient on the smoothed gp funtion nd then to derese the smoothing prmeter β k s muh s our nlysis llows us to do while mintining @QFIPAF

                       xk = (1 -τ k )x k + τ k xk , y * β k+1 (Ax k ; ẏ) := arg max y∈Y Ax k , y -h * (y) -β k+1 b Y (y, ẏ), xk+1 = prox β k+1 L-1 A g xk -β k+1 L-1 A A y * β k+1 (Ax k ; ẏ) , xk+1 = xk -τ -1 k (x k -xk+1 ), τ k+1 ∈ (0, 1) is the unique positive root of τ 3 /L b Y + τ 2 + τ 2 k τ -τ 2 k = 0, β k+2 = β k+1 1+L -1 b Y τ k+1
@eqehA e prove n O(1/k) onvergene rte on the ojetive residul P (x k ) -P of @QFIA for the lgorithmD whih is the est known in the literture for the fully nonsmooth settingF por the onstrined se @QFPAD we lso prove the onvergene of the lgorithm in terms of the priml ojetive residul nd the fesiility violtionD oth hieve n O(1/k) onvergene rteD nd re independent of the proxEdimeters unlike existing smoothing tehniques fIPD xesHSD xesHSF es the optimlity mesure is di'erent in eh seD we stte two distint theoremsF Theorem 9. Suppose that f = 0 and h = δ {c} . Let β 1 > 0 and b Y be chosen such that L b Y = 1. Let {x k } be the primal sequence generated by Algorithm ASGARD. Then the following bounds hold for @QFPA:

         g(x k )-g ≥ -y Y Ax k -c Y, * , g(x k )-g ≤ 1 k LA 2β1 x0 -x 2 X + y Y Ax k -c Y, * + 2β1 k+1 b Y (y , ẏ), Ax k -c Y, * ≤ β1 k+1 y -ẏ Y + y -ẏ 2 Y + β -2 1 LA x0 -x 2 X 1/2 .
@QFITA QS glerlyD the hoie of β 1 in heorem W trdes o' etween x0 -x 2 X nd yẏ 2 Y on the priml ojetive residul g(x k ) -g nd on the fesiility gp Ax kc Y, * F Theorem 10. Suppose that f = 0 and h is Lipschitz continuous, so that D Y = sup y∈dom g * b Y (y, ẏ) < +∞. Let β 1 > 0 and b Y be chosen such that L b Y = 1. Let {x k } be the primal sequence generated by Algorithm ASGARD. Then, the primal objective residual of @QFIA satises

P (x k ) -P (x ) ≤ LA 2β 1 k x0 -x 2 X + 2β 1 k + 1 D Y , for all k ≥ 1. @QFIUA

Extensions he )exiility of the frmework llowed us to develop severl vrints of eqehF

Dual algorithm e developed in hpgIV dul version of eqehD lled ehqehD tht updtes sequene of primlEdul vetors (x k , ȳk )F sts min feture is thtD lthough it is dul lgorithmD it hs gurntees on the smoothed dulity gpD from whih we n derive onvergene rte in the priml speF woreoverD y onsidering the nonEstrongly onvex smoothing b X (x, ẋ) = 1 2 Ax -A ẋ 2 D we ould de(ne eevqehD method similr to the eugmented vgrngin method ut with improved worst se gurntee of the order O(1/k 2 )F hen the ojetive funtion g is µEstrongly onvexD we showed tht it is not neessry to smooth its penhel onjugte g * F king γ k = 0 in the lgorithm yields fster lgorithm with rte O(1/k 2 )F Heuristic restart imilr to other elerted grdient lgorithms in qfIRD ygIPD fgIRD pITD restrting eqeh nd ehqeh my led to etter performne in prtieF sf we onsider eqehD thenD when restrt tkes pleD we perform the following stepsX

       xk+1 ← xk+1 , ẏ ← y * β k+1 (Ax k+1 ; ẏ), β k+1 ← β 1 , τ k+1 ← 1.
@QFIVA Extension to Problem 3.1 sn xpgIUD we showed tht eqeh n del with di'erentile funtions through their grdientF he stepEsizes need to e dpted ordinglyF e lso proposed novel line serh tht dpts the stepEsizes nd the smoothing prmeters togetherF husD if the funtion h hppened to e smooth ner the optimumD the lgorithm will utomtilly swith to elerted grdient with O(1/k 2 ) rteF qoing from purely proximl to forwrdEkwrd type method ws requirement in order to design oordinte desent version of eqeh tht would tke pro(t of longer stepEsizesF Conditional gradient with linear constraints sn pvgIVD we showed how to use the smoothing frmework with onditionl grdient methodF e otin n lgorithm thtD using only grdients nd liner minimiztion orlesD n solve omplex prolemsD like for instne semiEde(nite progrmsD nd hs onvergene gurntee of order O(1/ √ k)F his is the (rst method with suh rte under the setup of onditionl grdient with liner onstrints nd the method hs very good prtil performneF QFR e primlEdul oordinte desent method sed on smoothE ing he pper ehpgIU develops rndom oordinte desent method to solve the omposite prolem @QFIAX

F = min x∈R p {F (x) = f (x) + g(x) + h(Ax)},

QT

where f : R p → RD g : R p → R ∪ {+∞}D nd h : R n → R ∪ {+∞} re properD losed nd onvex funtionsD A ∈ R n×p is given mtrixF es explined efore in this thesisD the optimiztion templte @QFIA overs mny importnt pplitions inluding support vetor mhinesD sprse model seletionD logisti regressionD etF st is lso onvenient to formulte generi onstrined onvex prolems y hoosing n pproprite hF fefore this workD there ws no oordinte desent method for the generl threeEomposite form @QFIA within our struture ssumptions studied here tht hd rigorous onvergene speed gurnteesF sn prtiulrD we hd not derived the onvergene rte of elgorithm T yetF por suh theoretil developE mentD oordinte desent lgorithms require spei( ssumptions on the onvex optimiztion prolems xesIPD pISD xgIQF es resultD to rigorously hndle the threeEomposite seD we ssume tht @iA f is smoothD @iiA g is nonEsmooth ut deomposle @eh omponent hs n e0iently omputle proximl opertorAD nd @iiiA h is nonEsmoothF e generlize pISD IT to the three omposite se @QFIAF por this purposeD we omine sevE erl lssil nd ontemporry idesX e exploit the smoothing tehnique in xesHSD the e0ient implementtion tehnique in xesIPD pISD the homotopy strtegy in hgISD nd the nonuniform oordinte seletion rule in IT in our lgorithmD hieving the est known omplexity estimteF urprisinglyD the omintion of these ides re hieved in very nturl nd elementry primlE dul gpEsed frmeworkF roweverD the extension is indeed not trivil sine it requires to del with omposition of nonEsmooth funtion h nd liner opertor AF e propose new smooth primlEdul rndomized oordinte desent method @elgorithm VA for solving @QFIA where f is smoothD g is nonsmoothD seprle nd hs lokEwise proximl opertorD nd h is generl nonsmooth funtionF nder suh strutureD we show tht our lgorithm hieves the est known O(n/k) onvergene rteD where k is the itertion ountF e instntite our lgorithm to solve speil ses of @QFIA inluding the se g = 0 nd onstrined prolemsF e nlyze the onvergene rte gurntee of these vrints individully nd disuss the hoie of nonuniform distriution to hieve the est onvergene rteF ixploiting the strtegy in pISD we show tht our lgorithm n e implemented in prllel y reking up the full vetor updtesF e lso provide restrt strtegy to enhne prtil performneF Algorithm 8 @woothD eelerteD ndomize he goordinte hesent @weEghAA Require: ghoose

β 1 > 0 nd α ∈ [0, 1] s two input prmetersF 1: et B 0 i := Li + Ai 2 β1 for i ∈ [n]F gompute S α := n i=1 (B 0 i ) α nd q i := (B 0 i ) α Sα for ll i ∈ [n]F 2: et τ 0 := min{q i : 1 ≤ i ≤ n} ∈ (0, 1] for i ∈ [n]F 3: for k ← 0, 1, • • • , k max do 4: pdte xk := (1 -τ k )x k + τ k xk nd ompute ûk := Ax k F 5: gompute the dul step y * β k+1 (û k ) := prox β -1 k+1 h * ẏ -β -1 k+1 ûk . 6:
elet lok oordinte i k ∈ [n] ording to the proility distriution qF 

xk+1 i k := argmin xi k ∈R p i k ∇ i k f (x k ) + A T i k y * β k+1 (û k ), x i k -xi k (i k ) + g i k (x i k ) + τ k B k i k 2τ 0 x i k -xk i k 2 (i k ) . 8: pdte xk+1 := xk + τ k τ0 (x k+1 -xk )F 9:
gompute τ k+1 ∈ (0, 1) s the unique positive root of

τ 3 + τ 2 + τ 2 k τ -τ 2 k = 0F 10: pdte β k+2 := β k 1+τ k+1 nd B k+1 i := Li + Ai 2 β k+2 for i ∈ [n]F
11: end for es the proof is using vemm QD our onvergene result is split into the two importnt ses of vipshitz h nd liner equlity onstrintF Theorem 11. Let x be an optimal point of @QFIA where h is D h * -Lipschitz continuous and let β 1 > 0 be given. Let τ 0 := min{q i : i ∈ [n]} ∈ (0, 1] and β 0 := (1 + τ 0 )β 1 be given parameters. For all k ≥ 1, the sequence {x k } generated by Algorithm 8 satises:

E[F (x k ) -F (x )] ≤ C τ 0 (k -1) + 1 + β 1 (1 + τ 0 )D 2 h * 2(τ 0 k + 1) , @QFIWA QU where C := (1 -τ 0 )(F β0 (x 0 ) -F (x )) + n i=1 τ0B 0 i qi x i -x0 i 2 (i) .
Theorem 12. Let {x k } be the sequence generated by Algorithm 8 for solving @QFIA where h = δ {b} . Then, we have the following estimate:

     E[F (x k ) -F (x )] ≤ (1-τ0)C * τ0(k-1)+1 + β1 y -ẏ 2 2(τ0(k-1)+1) + y * E[ Ax k -b ], E Ax k -b ≤ β1 τ0(k-1)+1 y * -ẏ + y * -ẏ 2 + 4β -1 1 C * 1/2 , @QFPHA
where

C * := (1 -τ 0 )(F β0 (x 0 ) -F (x )) + n i=1 τ0B 0 i qi x i -x0 i 2 i .
We note that the following lower bound always holds pigure QFRX he onvergene ehvior of weEgh @elgorithm VA nd uEgondtEgh @elgorithm TA for degenerte liner progrm with repeted onstrintsF e oserve tht degenery of the prolem prevents uEgondtEgh from mking ny progress towrds the solution @we only proved O(1/ √ k) speed of onvergene for elgorithm TAD while weEgh preserves O(1/k) rte s predited y theoryF pigure QFSX gomprison of oordinte desent methods for dul w with is on rcv1 dtsetX RUDPQT exmplesD PHDPRP fetures ! min x

-y * E[ Ax k -b ] ≤ E[F (x k ) -F (x )].
1 2λ AD(b)x 2 - n i=1 x i s.t. 0 ≤ x i ≤ C i , i = 1, • • • , n, b x = 0 QV Chapter 4
Applications to statistics RFI qp fe sreening rules for sprsity enforing penlties 4.1.1 Introduction he omputtionl urden of solving high dimensionl regulrized regression prolem hs led to vst literture on improving lgorithmi solvers in the lst two dedesF ith the inresing populrity of 1 Etype regulriztion rnging from the vsso iWT or groupEvsso vHT to regulrized logisti regression nd multiEtsk lerningD mny lgorithmi methods hve emerged to solve the ssoited optimiztion prolems uufHUD ftw + IPF elthough for the simple 1 regulrized lest squre spei( lgorithm @eFgF the ve irtHRA n e onsideredD for more generl formultionsD penltiesD nd possily lrger dimensionsD @lokA oordinte desent hs proved to e n e0ient strtegy prIHF yur min ojetive in this work is to propose tehnique tht n speedEup ny itertive solver for suh lerning prolemsD nd tht is prtiulrly well suited for @lokA oordinte desent method s this type of method n esily ignore useless oordintesF he safe rules introdued y iIP for generlized 1 regulrized prolemsD is set of rules llowing to eliminte fetures whose ssoited oe0ients re gurnteed to e zero t the optimumD even efore strting ny lgorithmF elxing the sfe ruleD one n otin some dditionl speedEup t the prie of possile mistkesF uh heuristi strtegiesD lled strong rules y fp + IP redue the omputtionl ost using n tive set strtegyD ut require di0ult postEproessing to hek for fetures possily wrongly disrdedF enother rod to speedEup sreening method hs een pursued following the introdution of sequential safe rules iIPD IPD IRD v + IRF he ide is to improve the sreening thnks to the omputtion done for previous regulriztion prmeter s in homotopyGontinution methodsF his senrio is prtiulrly relevnt in mhine lerningD where one omputes solutions over grid of regulriztion prmetersD so s to selet the est oneD eFgF y rossEvlidtionF xeverthelessD the forementioned methods su'er from the sme prolem s strong rulesD sine relevnt fetures n e wrongly disregrdedF sndeedD sequentil rules usully rely on the ext knowledge of ertin theoretil quntities tht re only known pproximtelyF ispeillyD for suh rules to work one needs the ext dul optiml solution from the previous regulriztion prmeterD quntity @lmostA never ville to the prtitionerF he introdution of dynamic safe rules y fiqISD fiqIR hs opened promising venue y performing vrile sreeningD not only efore the lgorithm strtsD ut lso long the itertionsF his sreening strtegy n e pplied for ny stndrd optimiztion lgorithm suh s pse fHWD primlEdul gIID ugmented vgrngin fg + IIF etD it is prtiulrly relevnt for strtegies tht n ene(t from support redution or tive setsuqeIID tqISD suh s oordinteEdesent puWVD prrHUD prIHF e shll present the methods introdued (rst for the vsso in pqIS nd then for 1 / 2 norms in xpqIS s well s for prse qroup vsso in xpqITD nd summrized in xpqIUF yur soElled qp fe rules @euse the sreening rules rely on dulity gp omputtionsAD improved on dynmi sfe rules for rod lss of lerning prolems with the following ene(tsX • qp fe rules re esy to insert in existing solversD QW • they re proved to e sfe nd unify sequentil nd dynmi rulesD

• they re more e0ient in prtie thn previously known sfe rulesD

• they hieve fst vrile identi(tionsF purthermoreD it is worth noting tht strtegies lso leverging dul gp omputtions hve reently een onsidered to sfely disrd irrelevnt oordintesX urIT hve onsidered sreening rules for lerning tsks with oth feture sprsity nd smple sprsityD suh s for 1 Eregulrized wF sn this seD some interesting developments hve een proposedD nmely safe keeping strtegiesD whih llow to identify fetures nd smples tht re gurnteed to e tiveF gonstrined onvex prolems suh s minimum enlosing ll n lso e inluded s shown in yq + ITF he flitz lgorithm y tqIS ims to speed up working set methods using dulity gps omputtionsY signi(nt gins were lso otined in limitedEmemory nd distriuted settingsF 4.1.2 Safe Screening rules e propose to estimte the vetor of prmeters β y solving

β(λ) ∈ arg min β∈R p P λ (β), for P λ (β) := F (β) + λΩ(β) := n i=1 f i (x i β) + λΩ(β) , @RFIA
where ll f i : R → R re onvex nd di'erentile funtions with 1/γEvipshitz grdient nd Ω : R p → R + is norm tht is groupEdeomposleD iFeF Ω(β) = g∈G Ω g (β g ) where eh Ω g is norm on R ng F he λ prmeter is nonEnegtive onstnt ontrolling the trdeEo' etween the dt (tting term nd the regulriztion termF e shll denote the dul norm of Ω y Ω D (z) = max g∈G Ω D g (z g )F e dul formultion of RFI is given y

θ(λ) = arg max θ∈∆ X - n i=1 f * i (-λθ i ) =: D λ (θ), @RFPA
where

∆ X = {θ ∈ R n : ∀g ∈ G, Ω D g (X g θ) ≤ 1}F woreoverD the permt9s rule redsX ∀i ∈ [n], θ(λ) i = -∇f i (x i β(λ) )/λ (link eqution), @RFQA ∀g ∈ G, X g θ(λ) ∈ ∂Ω g ( β(λ) g ) (suEdi'erentil inlusion). @RFRA
por ny θ ∈ R n let us introdue G(θ) := [∇f 1 (θ 1 ), . . . , ∇f n (θ n )] ∈ R n F hen the primlGdul link eqution n e written θ(λ) = -G(X β(λ) )/λ . gontrrily to the primlD the dul prolem hs unique solution under our ssumption on the f i 9sF sndeedD the dul funtion is strongly onveF reening rules rely on diret onsequene of permt9s ruleF sf β(λ) g = 0D then Ω D g (X g θ(λ) ) = 1 thnks to the formul for the sudi'erentil of norm

∂Ω(x) = {z ∈ R d : Ω D (z) ≤ 1} = B Ω D , if x = 0, {z ∈ R d : Ω D (z) = 1 nd z x = Ω(x)}, otherwise. @RFSA ine θ(λ) ∈ ∆ X D it impliesD y ontrpositiveD tht if Ω D g (X g θ(λ) ) < 1 then β(λ) g = 0F his reltion mens tht the gEth group n e disrded whenever Ω D g (X g θ(λ) ) < 1F roweverD sine θ(λ) is unknownD
this rule is of limited useF portuntelyD it is often possile to onstrut set R ⊂ R n D lled safe regionD tht ontins θ(λ) F his oservtion leds to the following resultF Proposition 4 @fe sreening rule iIPA. If θ(λ) ∈ R, and g ∈ G:

max θ∈R Ω D g (X g θ) < 1 =⇒ Ω D g (X g θ(λ) ) < 1 =⇒ β(λ) g = 0 .
@RFTA he soElled safe screening rule onsists in removing the gEth group from the prolem whenever the previous test is stis(edD sine then β(λ) g is gurnteed to e zeroF hould R e smll enough to sreen mny groupsD one n oserve onsiderle speedEups in prtie s long s the testing n e performed e0ientlyF e nturl gol is to (nd sfe regions s nrrow s possileX smller sfe regions n only inrese the numer of sreened out vrilesF o hve useful sreening proedures one needsX

RH

• the sfe region R to e s smll s possile @nd to ontin θ(λ) AD

• the omputtion of the quntity max θ∈R Ω D g (X g θ) to e hepF rious shpes hve een onsidered in prtie for the sfe region R suh s lls iIPD domes pqIS or more re(ned sets @see IR for surveyAF rere we onsider for simpliity the soElled sphere regions @following the terminology introdued y iIPA hoosing ll R = B(θ c , r) s sfe regionF hnks to the tringle inequlityD we hveX max θ∈B(θc,r)

Ω D g (X g θ) ≤ Ω D g (X g θ c ) + max θ∈B(θc,r) Ω D g (X g (θ -θ c )), nd denoting Ω D g (X g ) := sup u =0 Ω D g (X g u) u 2
the opertor norm of X g ssoited to Ω D g (•)D we dedue from roposition RFT the sreening rule for the gEth groupX fe sphere testX sf

Ω D g (X g θ c ) + rΩ D g (X g ) < 1, then β(λ) g = 0 . @RFUA
Finding a center o rete useful enter for sfe sphereD one needs to e le to rete dul fesile pointsD iFeF points in the dul fesile set ∆ X F yne suh point is θ max := -G(0)/λ max whih leds to the originl stti sfe rules proposed y iIPF etD it hs limited interestD eing helpful only for rnge of smll regulriztion prmeters λF e more generi wy of reting dul point tht will e key for reting our sfe rules is to resle ny point z ∈ R n suh tht it is in the dul set ∆ X F he resled point is denoted y Θ(z) nd is de(ned y

Θ(z) := z, if Ω D (X z) ≤ 1, z Ω D (X z) , otherwiseF @RFVA
his hoie gurntees tht ∀z ∈ R n , Θ(z) ∈ ∆ X F e ndidte often onsidered for omputing dul point onsists in strting y the @generlizedA residul term z = -G(Xβ)/λF his hoie is motivted y the primlEdul link eqution @RFQA iFeF θ(λ) = -G(X β(λ))/λF e lso hve the following theoretil gurnteeF

Proposition 5 @gonvergene of the dul pointsA. Let β k be the current estimate of β(λ) and θ k = Θ(-G(Xβ k )/λ) be the current estimate of θ(λ) . Then lim k→+∞ β k = β(λ) implies lim k→+∞ θ k = θ(λ) .

Finding a radius xow tht we hve seen how to rete enter ndidte for the sphereD we need to (nd proper rdiusD tht would llow the ssoited sphere to e sfeF he following theorem proposes wy to otin rdius using the dulity gpX Theorem 13 @qp fe sphereA. Assuming that F has 1/γ-Lipschitz gradient, we have

∀β ∈ R p , ∀θ ∈ ∆ X , θ(λ) -θ 2 ≤ 2(P λ (β) -D λ (θ)) γλ 2 =: r λ (β, θ) . @RFWA Hence R = B(θ, r λ (β, θ)) is a safe region for any β ∈ R n and θ ∈ ∆ X .
Safe Active Set xote tht ny time sfe rule is performed thnks to sfe region R = B(θ, r)D one n ssoite safe active set A θ,r D onsisting of the fetures tht nnot e removed yet y the test in iqution RFUF reneD the sfe tive set ontins the true support of β(λ) F hen hoosing z = -G(Xβ)/λ s proposed in etion RFIFP s the urrent residulD the omputtion of θ = Θ(z) in iqution RFV involves the omputtion of Ω D (X z)F e strightforwrd implementtion would ost O(np) opertionsF his n e voidedX when using sfe rule one knows tht the index hieving the mximum for this norm is in A(θ, r)F sndeedD y onstrution of the sfe tive setD it is esy to see tht Ω D (X z) = max g∈A(θ,r) Ω D g (X g z)F sn prtie the evlution of the dul gp is therefore O(nq) where q is the size of A(θ, r)F sn other wordsD using sfe sreening rule lso speeds up the evlution of the stopping riterionF RI pigure RFIX sllustrtion of sfe region di'erenes etween fonnefoy et l fiqIS @leftA nd qp fe @rightA strtegies for the vsso seF rere β is priml pointD θ is dul fesile point @the fesile region ∆ X is in orngeD while the respetive sfe lls R re in lueAD nd r λ (β, θ) is de(ned y iqution RFWF 4.1.3 Experiments he lgorithm is given in elgorithm WF st improves n itertive solver with updtes olverpdte y sequentilly improving the sfe tive setF por our experimentsD we hose frequeny suh tht f ce = 10F he rtionle for this frequeny is tht omputing the dul vrile mounts to one mtrixEvetor multiply y XD whih is omprle to one itertion of grdient desent or n itertions of oordinte desentF Algorithm 9 stertive solver with qe sfe rulesX olver (X, y, β, , K, f ce , λ) Require: X, y, β, , K, f ce , λ

for k ∈ [K] do if k mod f ce = 1 then gompute dul vrile θ = -G(Xβ)/ max(λ, Ω D (X G(Xβ))) top if Gap λ (β, θ) ≤ r = 2Gap λ (β,θ) γλ 2
qet qp fe rdius s in iqution RFW

A = g ∈ G : Ω D g (X g θ) + rΩ D g (X g ) ≥ 1 qet fe tive set end if β A = olverpdte (X A , y, β A , λ)
olve on urrent fe tive set end for

Alternative Strategies: a Brief Survey

The Seminal Safe Regions he (rst fe reening rules introdued y iIP n e generlized to rolem RFI s followsF ke θ(λ0) the optiml solution of the dul prolem RFP with regulriztion prmeter λ 0 F ine θ(λ) is optiml for prolem RFP one otins θ(λ) ∈ {θ : D λ (θ) ≥ D λ ( θ(λ0) )}F his set ws proposed s sfe region y iIPF sn the regression se @where f i (z) = (y i -z) 2 /2AD it is strightforwrd to see tht it orresponds to the sfe sphere B(y/λ, y/λθ(λ0)

2 )F RP pigure RFPX vsso on (nnil dt iPHHTElogIp @sprse dt with n = 16087 oservtions nd p = 1668737 feturesAF gomputtion times needed to solve the vsso regression pth to desired ury for grid of IH vlues of λ from λ max to λ max /20F e ompre severl re(nements of our qp fe tehnique with the lterntive strtegies desried in the litertureF eq @sequentilA mens tht we only ompute the tive set t the (rst itertion using the lst point returned for the previous λF hyn @dynmiA mens tht we updte the tive set every f ce itertionsF e n see tht dynmi updtes yield muh etter performne @up to IH times speedupAF ST3 and Dynamic ST3 e re(ned sphere rule n e otined in the regression se y exploiting geometri informtions in the dul speF his method ws originlly proposed in II nd extended in fiqIR with dynmi re(nement of the sfe regionF vet g ∈ arg max g∈G Ω D g (X y) @note tht Ω D g (X y) = λ max AD nd let us de(ne

V := {θ ∈ R n : Ω D g (X g θ) ≤ 1} nd H := {θ ∈ R n : Ω D g (X g θ) = 1}.
vet η := X g ∇Ω D g (X g y/λ max ) e the vetor norml to V t y/λ max nd de(ne

θ c := Π H y λ = y λ - y λ , η -1 η 2 2 η nd r θ := y λ -θ 2 2 - y λ -θ c 2 2 ,
where θ ∈ ∆ X is ny dul fesile vetorF yne n show tht θ(λ) ∈ B(θ c , r θ )F he speil se where θ = y/λ max orresponds to the originl Q introdued in II for the vssoF Dual Polytope Projection sn the regression seD IP explore other geometri properties of the dul solutionF heir method is sed on the nonEexpnsiveness of projetion opertors 1 F sndeedD for θ(λ) @respF θ(λ0) )A eing optiml dul solution of RFP with prmeter λ @respF λ 0 AD one hsX θ(λ) -θ(λ0)

2 = Π ∆ X (y/λ) -Π ∆ X (y/λ 0 ) 2 ≤ y/λ -y/λ 0 2 nd hene θ(λ) ∈ B( θ(λ0) , y/λ -y/λ 0 2 )F nfortuntelyD
those regions re intrtle sine they required the exact knowledge of the optiml solution θ(λ0) whih is not ville in prtie @exept for λ 0 = λ max AF Strong rules he trong rules were introdued in fp + IP s heuristic extension of the sfe rulesF st onsists in relxing the safe properties to disrd fetures more ggressivelyD nd n e formlized s followsF essume tht the grdient of the dt (tting term ∇F is groupEwise nonEexpnsive wFrFtF the dul norm Ω D g (•) long the regulriztion pth iFeF tht for ny g

∈ GD ny λ > 0, λ > 0D Ω D g ∇ g F ( β(λ) ) -∇ g F ( β(λ ) ) ≤ |λ -λ |F hen hoosing two regulriztion prmeters suh tht λ < λ this ssumption leds toX λΩ D g (X g θ(λ) ) ≤ λ Ω D g (X g θ(λ ) ) + λ -λ.
gomining this with the sreening rule @RFTAD one otinsX

Ω D g (X g θ(λ ) ) < 2λ-λ λ =⇒ β(λ) g = 0.
1 The authors also proved an enhanced version of this safe region by using the rm non-expansiveness of the projection operator.

RQ he set of vriles not eliminted is lled the strong active setF xote tht trong rules re unEsfe euse the nonEexpnsiveness ondition on the @grdient of theA dt (tting term is usully not stis(ed without stronger ssumptions on the design mtrix XY see disussion in fp + IPF st requires the ext knowledge of θ(λ ) whih is not ville in prtieF sing suh rulesD the uthors dvised to hek the uu ondition posterioriD to void removing wrongly some feturesF Correlation Based Rule revious works in sttistis hve proposed vrious modelEsed sreening methods to selet importnt vrilesF hose methods disrd vriles with smll orreltion etween the fetures nd response vrilesF por instne ure sndependene reening @sA y pvHV redsX for hosen ritil threshold γ remove the feture if the orreltion with the oservtion is smller thn γF st is mrginl oriented vrile seletion method nd it is worth noting tht s n e rest s stti sphere test in liner regression senriosX

sf

Ω D g (X g y) < γ = λ 1 -rΩ D g (X g ) then β(λ) g = 0 (remove X g ).
yther re(nements n lso e found in the literture suh s itertive sreening @ssA pvHVD tht ers some similrities with dynmi sphere sfe testsF RFP i0ient moothed gonomitnt vsso istimtion for righ himensionl egression sn the ontext of high dimensionl regression where the numer of fetures is greter thn the numer of oservtionsD stndrd lest squres need some regulriztion to oth void overE(tting nd ese the interprettion of disriminnt feturesF emong the lest squres with sprsity induing regulriztionD the vsso iWTD using the 1 norm s regulrizerD is the most stndrd oneF st hinges on regE ulriztion prmeter governing the trdeEo' etween dt (tting nd sprsity of the estimtorD nd requires reful tuningF hough this estimtor is well understood theoretilly @we refer to fvII for reviewAD the hoie of the tuning prmeter remins n open nd ritil question in prtie s well s in theoryF por the vssoD sttistil gurntees fHW rely on hoosing the tuning prmeter proportionl to the noise levelD quntity tht is usully unknown to prtitionersF e lso wnt to mention tht utomti tuning @eFgF y rossEvlidtionA would e time onsuming for pplitions like ditionry lerningD where this prmeter is often set one nd for ll wfIHF fesidesD the noise level is of prtil interest sine it is required in the omputtion of model seletion riterions suh s esgD fsgD i or in the onstrution of on(dene setsF es shown in pqrIPD this is hllenging tsk in high dimension euse of the spurious orreltion phenomenonF e onvenient wy to estimte oth the regression oe0ient nd the noise level is to perform joint estimtionD for instne y performing the penlized mximum likelihood of the joint distriutionF nfortuntelyD diret pproh leds to nonEonvex formultion @though one n reover jointly onvex formultion through hnge of vrile fvIHAF enother rod for this joint estimtion ws inspired y the roust theory developed y ruer ruVID prtiulrly in the ontext of lotionEsle estimtionF sndeedD ywen yweHU extended it to hndle sprsity induing penltyD leding to the jointly onvex optimiztion formultion

( β(λ) , σ(λ) ) ∈ arg min β∈R p ,σ>0 y -Xβ 2 2nσ + σ 2 + λ β 1 . @RFIHA
ine thenD his estimtor hs ppered under vrious nmeD nd we oined it the gonomitnt vssoF sndeedD s fr s we know ywen ws the (rst to propose suh formultionF vterD the sme formultion ws mentioned in entIHD in response to fvIHD nd ws thorE oughly nlyzed in IPD under the nme ledEvssoF imilr results were independently otined in fgII for the sme estimtorD though with di'erent formultionF hile investigting pivotl quntitiesD felloni et lF proposed to solve the following onvex progrmX modify the stndrd vsso y removing the squre in the dt (tting termF husD they termed their estimtor the qureEroot vsso @see lso ghIIAF e seond pproh leding to this very formultionD ws proposed y gwIH to ount for noise in the design mtrixD in n dversril senrioF snterestingly their roust onstrution led extly to the qureEroot vsso formultionF RR nder stndrd design ssumption @see fHWAD it is proved tht the ledGqureEroot vsso rehes optiml rtes for sprse regressionD with the dditionl ene(t tht the regulriztion prmeter is independent of the noise level fgIID IPF woreoverD prtil study pIQ hs shown tht the gonomitnt vsso estimtorD or its deised version @see for instne fgIQD vedIQ for disussion on lestEsqures re(ttingAD is prtiulrly well suited for estimting the noise level in high dimensionF emong the solutions to ompute the gonomitnt vssoD two rods hve een pursued so frF yn the one hndD onsidering the ledEvsso formultionD un nd hng IP hve proposed n itertive proedure tht lterntes vsso steps nd noise estimtion stepsD the lter leding to resling the tuning prmeter itertivelyF yn the other hndD onsidering the qureEroot vsso formultionD felloni et lF fgII hve lened on seond order one progrmming solversD eFgF pyg fgqIIF hespite the ppeling properties listed oveD mong whih the superiority of the theoretil results is the most strikingD no onsensus for n e0ient solver hs yet emerged for the gonomitnt vssoF yur ontriution in xpq + IU ims t providing more numerilly stle formultionD lled the moothed gonomitnt vssoX arg min

β∈R p ,σ∈R y -Xβ 2 2nσ + σ 2 + λ β 1 + ι [σ0,+∞[ (σ).
his vrint llows to otin fst solverX we (rst dpt oordinte desent lgorithm to the smooth version @in the sense given in xesHSA of the originl prolem @RFIHAF henD we pply sfe rules strtegiesD like the ones in etion RFI to our estimtorF uh rules llow to disrd fetures whose oe0ients re erti(ed to e zeroD either prior ny omputtion or s the lgorithm proeedsF gomined with oordinte desentD this leds to importnt elertion in prtieD s illustrted for the vsso se pqISF e show similr elertions for the moothed gonomitnt vssoD oth on rel nd simulted dtF yverllD our method presents the sme omputtionl ost s for the vssoD ut enjoys the nie fetures mentioned erlier in terms of sttistil propertiesF sn wpqIUD we studied n extension of the moothed gonomitnt vsso estimtor to the se where we know tht the oservtions n e prtitioned into given groups with di'erent noise levelF his sitution ours for instne when oservtions stem from di'erent types of sensors like in wGiiq @mgnetometersD grdiometers nd eletrodesAF his leds to the following homosedsti model arg min

B∈R p×q , σ1,...,σ K ∈R+ σ k ≥σ k ,∀k∈[K] K k=1 Y k -X k B 2 2nqσ k + n k σ k 2n + λ B 2,1
tht n lso e solved using lok oordinte desent method ting on lines of B nd (σ k ) k∈[K] F RFQ fe qrid erh with yptiml gomplexity rious mhine lerning prolems re formulted s minimiztion of n empiril loss funtion f D regE ulrized y term Ω whose lirtion nd omplexity is ontrolled y non negtive hyperprmeter λF he @optimlA hoie of regulriztion prmeter λ is ruil sine it diretly in)uenes the generliztion performne of the estimtorD iFeF its sore on unseen dt setF yne of the most populr method in suh pprohes is rossEvlidtion @gAD see egIH for detiled reviewF por simpliityD we investigte here the simpli(ed holdout version tht onsists in splitting the dt in two prtsX on the (rst prt @training setA the method is trined for preEde(ned olletion of ndidtes Λ T := {λ 0 , . . . , λ T -1 }D nd on the seond prt @validation setAD the est prmeter is seletedF por pieewise qudrti loss f nd pieeE wise liner regulriztion ΩD one n show yHHD HU tht the set of solutions follows pieewise liner urve with respet to to the prmeter λF rene there re severl e0ient lgorithms tht n generte the full pth suh s ve for vsso irtHRD for w rHR nd for the generlized liner models rHUF nfortuntelyD these methods hve worst se omplexityD iFeF the numer of liner segmentD tht is exponentil in the dimension of the prolem qtwIP leding to unprtil solutionsF o overome this issueD n pproximtion of the solution pth up to ury ws proposed nd optiml omplexity ws proved to e O(1/ ) qtvIH in firly generl settingF e notiele ontriution ws proposed y wIPD who re(ned tht ound to O(1/ √ ) in the vsso seF he lter result ws then generlized y qwvIP with lower nd upper ound of order O(1/ √ )F e generi lgorithm ws lso derived y RS Algorithm 10 p Eth on rining etX Training_path Input:

f, Ω, p , [λ min , λ max ] snitilize t = 0D λ 0 = λ max D Λ = {λ max }F repeat olve min β f (Xβ) + λ t Ω(β) up to ury o < p gompute ρ t = max{ρ sFtF Q t,V f * (ρ) ≤ p } et λ t+1 = λ t × (1 -ρ t ) Λ ← Λ ∪ {λ t+1 } nd t ← t + 1 until λ t+1 ≤ λ min Return: {β (λt) : λ t ∈ Λ}
ssuming qudrti lower ound on the ojetive funtionF nfortuntelyD this ssumption does not hold for lrge lss of prolemD in prtiulr for logisti regressionF pollowing suh idesD uIS hve proposedD for lssi(tion prolemD to pproximte the reguE lriztion pth for the holdEout rossEvlidtion errorF sndeedD the lter is more nturl riterion to monitor when one ims t seleting hyperprmeter gurnteed to hieve the est vlidtion error possileF he min ide is to onstrut n upper nd lower ound on the vlidtion error s simple funE tions of the regulriztion prmeterF rene y sequentilly vrying the prmetersD one n estimte rnge of prmeter for whih the vlidtion error is smller thn n ury v F sn xp + IVD we revisit the pproximtion nd vlidtion pth results in uni(ed frmeworkD under generl regulrity ssumptions on the onjugte of the loss funtion f tht re ommonly stis(ed in mhine lerning prolemsX

U f * ,x (z -x) ≤ f * (z) -f * (x) -∇f * (x), z -x , V f * ,x (z -x) ≥ f * (z) -f * (x) -∇f * (x), z -x .
hese ssumptions re generl enough to enompss oth lssi(tion @logisti lossA nd regression @squre lossA prolemsF uppose we hve t our disposl primlGdul pir of vetor (β (λt) , θ (λt) ) omputed s outputs of n optimiztion lgorithm t regulriztion prmeter λ t D we denote Gap t := Gap λt (β (λt) , θ (λt) ),

∆ t := f (Xβ (λt) ) -f (∇f * (z t )) for z t := -λ t θ (λt) .
yur nlysis is sed on ounds on the dulity gp for unseen vlues of the regulriztion prmeter λF Lemma 4 @founding the rm trt irrorA. Assume -λθ (λt) ∈ dom(f * ) and X θ (λt) ∈ dom(Ω * ). pigure RFQX sllustrtion of Epth for the vsso t ury = 10 -2 F sn the previous settingD lled regressionD one ssumes tht the min informtion in Y is slr vlue orrupted y entered noiseF roweverD in some pplitions suh s mediineD eonomisD soil sienes nd eologyD more omplete piture thn n verge reltionship is required to deepen the nlysisF untiles re nturl quntities le to hieve this golF ine quntiles of distriution re losely reltedD joint quntile regression is susumed under the (eld of multiEtsk lerning eiHVF es onsequeneD vetorEvlued kernel methods re pproprite for suh tskF hey hve lredy een used for vrious pplitionsD suh s strutured lssi(tion hyqII nd predition fdfITD mnifold regulriztion wfwITD fdfII nd funtionl regression uh + ISF untile regression is new opportunity for vetorEvlued reproduing kernel rilert spes to perform in multiEtsk prolemD long with loss tht is di'erent from the 2 ost predominntly used in the previous referenesF vet Y ⊂ R e ompt setD X e n ritrry input spe nd (X, Y ) ∈ X × Y pir of rndom vriles following n unknown joint distriutionF por given proility τ ∈ (0, 1)D the onditionl τ Equntile of (X, Y ) is the funtion µ τ : X → R suh tht µ τ (x) = inf{µ ∈ R : PY ≤ µX = x ≥ τ }F husD given trining set {(x i , y i )} n i=1 ∈ (X × Y) n D the quntile regression prolem ims t estimting this onditionl τ Equntile funtion µ τ F pollowing uoeHSD this n e hieved y minimiztion of the pinball lossX τ (r) = max(τ r, (τ -1)r), where r ∈ R is residulF sing suh loss (rst rose from the oservtion tht the lotion prmeter µ tht minimizes the 1 Eloss n i=1 |y i -µ| is n estimtor of the unonditionl medin ufUVF xow fousing on the estimtion of onditionl quntileD one n show tht the trget funtion µ τ is minimizer of the τ Equntile risk R τ (h) = E[ τ (Yh(X))] vvHUF roweverD sine the joint proility of (X, Y ) is unknown ut we re provided with n iFiFd smple of oservtions {(x i , y i )} n i=1 D we resort to minimizing the empiril riskD in the sme fshion s lest squres orrespond to the estimtion of onditionl expettionF e thus wish to minimize

For ρ = 1 -λ/λ t , Gap t + ρ • (∆ t -Gap t ) + U f * ,zt (ρ • z t ) ≤ Gap λ (β (λt) , θ (λt) ) ≤ Gap t + ρ • (∆ t -Gap t ) + V f * ,zt (ρ • z t ). henoting the upper ound Q t,V f * (ρ) = Gap t + ρ • (∆ t -Gap t ) + V f * ,zt (ρ • z t )D we n de(ne n lgorithm @elgorithm IHA tht returns n p EthD tht isD for eh λ ∈ [λ min , λ max ] β (λ) suh tht f (Xβ (λ) ) + λΩ(β λ ) ≤ p + f (X β(λ) ) + λΩ( βλ )F e then
R emp τ (h) = 1 n n i=1 τ (y i -h(x i )),
within lss H ⊂ (R) X of funtionsD lirted in order to overome the shift from the true risk to the empiril oneF sn prtiulrD when H hs the formX

H = {h = f + b : b ∈ R, f ∈ (R) X , ψ(f ) ≤ c}D with ψ : (R) X →
R eing onvex funtion nd c > 0 onstntD vHT proved tht @similrly to the unonditionl seA the quantile property is stis(edX for ny estimtor ĥD otined y minimizing R emp τ in HD the rtio of oservtions lying elow ĥ @iFeF y i < ĥ(x i )A equls τ to smll error @the rtion of oservtions extly equl to ĥ(x i )AF woreoverD under some regulrity ssumptionsD this quntity onverges to τ when the smple growsF xote tht these properties re true sine the interept b is unonstrinedF sn mny rel prolems @suh s medil referene hrtsAD one is not only interested y estimting single quntile urve ut few of themF husD denoting [p] the rnge of integers etween 1 nd pD for severl quntile levels τ j @j ∈ [p]A nd funtions h j ∈ HD the empiril loss to e minimized n e written s the following seprle funtionX R emp τ (h 1 , . . . , h p ) = 1 n n i=1 p j=1 τj (y i -h j (x i )), where τ denotes the p dimensionl vetor of quntile levelsF RU e nie feture of multiple quntile regression is thus to extrt slies of the onditionl distriution of Y |XF roweverD when quntiles re estimted independentlyD n emrrssing phenomenon often ppersX quntile funtions rossD thus violting the si priniple tht the umultive distriution funtion should e monotonilly nonEderesingF e refer to tht pitfll s the crossing problemF sn pdfITD we propose to prevent urve rossing y onsidering the prolem of multiple quntile regression s vetorEvlued regression prolem where outputs re not independentF en interesting feture of our method is to preserve the quntile property while most other pprohes lose it when struggling to the rossing prolemF yur pproh is sed on de(ning mtrixEvlued kernel K : (x, x ) → k(x, x )BD where k : X × X → R is slrEvlued kernel nd B is p × p positive de(nite mtrixF he mtrix B enodes the reltionship etween the omponents f j nd thusD the link etween the di'erent onditionl quntile estimtorsF e rtionl hoie is to onsider k(x, x ) = exp(-xx 2 /2σ 2 ) nd B = exp(-γ(τ i -τ j ) 2 ) 1≤i,j≤p F e then de(ne the reproduing kernel rilert spe ssoited to K wHS with norm denoted • K nd hoose ψ = • K in the de(nition of our lss H of funtionsF untile estimtionD s presented in this pperD omes down to minimizing regulrized empiril riskD de(ned y the pinll loss τ F ine this loss funtion is nonEdi'erentileD we introdue slk vriles ξ nd ξ * to get the following priml formultionF yn top of the prmeters σ nd γ of the kernelD we lso onsider regulriztion prmeter C to e tunedX

min f ∈K K ,b∈R p , ξ,ξ * ∈(R p ) n 1 2 f 2 K + C n i=1 ( τ , ξ i 2 + 1 -τ , ξ * i 2 ) sFtF ∀i ∈ [n] : ξ i ≥ 0, ξ * i ≥ 0, y i -f (x i ) -b = ξ i -ξ * i .
e dul formultion of this prolem isX

min α∈(R p ) n 1 2 n i,j=1 α i , K(x i , x j )α j 2 - n i=1 y i α i , 1 2 sFtF n i=1 α i = 0 R p , ∀i ∈ [n] : C(τ -1) ≤ α i ≤ Cτ ,
e hose to solve this dul prolem using the primlEdul oordinte desent method elgorithm TF sndeedD exept for the p liner equlity onstrintsD the prolem is very lose to dul support vetor mhinesF es shown on le RFID our lgorithmi hoie is ompetitive ginst interior point sed solvers nd the eugmented vgrngin methodD espeilly for lrge sle prolems le RFIX g time @sA for trining rndomly generted model ize n × p • rite optimiztion models tht desrie prtil issuesF here is ompromise to mke etween the desription power of the models nd our ility to solve themF

• hisover new lgorithmi prdigms tht llow us to solve newD more omplex modelsF e my ite primlEdul methods tht void projeting onto omplex setsD stohsti grdient methods tht n reple the omputtion of n integrl y the genertion of rndom smples or line serh tht helps tking pro(t of the lol smoothness of the ojetive funtionF

• yptimize the optimiztion lgorithms ville in order to e quiker nd e le to solve lrger instnesF he tremendous mount of work put for this purpose hs mde optimiztion solvers suessful on lrge vriety of prolemsF here re still mjor unresolved hllenges in nononvex optimiztion nd for the resolution of proE lems in lrge dimensionF s would like to dd my ontriution s followsF Primal-dual methods with optimal rate of convergence tteEofEtheErt primlEdul methods hve either O(1/k) rte for wekly onvex funtions ut re rther slow in prtie or they exhiit liner rte for well ehved funtion ut hve worst se O(1/ √ k) rteF wy gol is to design new methods tht would e e0ient in oth regimesF his my require to omine tehniques from primlEdul lgorithms nd restrt of elerted methods s well s deriving new ounds for the purpose of the studyF Stochastic gradient methods for constrained convex optimization hen solving n optimiztion prolem where the ojetive n e written s n expettionD stohsti grdient methods my e the preferred lterntive ginst oordinte desentF he study of stohsti grdient for sddle point prolems hs only egun very reentlyF s pln to se on our smoothing tehnique to design new e0ient lgorithms in this ontextF Stochastic compressed second order methods yptimiztion lgorithms using ressins usully require muh less itertions thn those using grdient onlyD ut eh itertion is muh more omputtionlly intensiveF e im t developing e0ient stohsti seond order methods y extrting urvture informtion through rndomized ompressionF his will llevite oth the ost of lulting the seond order derivtive mtrix nd the ost of mnipulting the resulting mtrix sine it will e low rnkF RW Generative models for nonconvex optimization his line of reserh ims t tkling nononvex optimiztion prolems using genertive modelF he gol is design n optimiztion method tht tkes pro(t of rndomness to explore the set of prmeters ut is lso le to fous on lol mimimF he genertive model will e trined on set of optimiztion prolemsX the hoie of trining prolems is ritil to get good performne in prtieF here is lso lot of freedom on how we prmetrize the lgorithmF e pln to fous on neurl network rhitetures tht hve lot of )exiilityF Analog-to-feature converter for smart sensors his interdisiplinry projet will put mhine lerning onerns t the hert of the design of sensorsF he gol is to extrt the fetures of the signl efore digitizing itF e expet mssive omputtionl nd energy gins through the use of dedited rhitetureD tht should e optimized for our purposeF SH 
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 2 row do these two quntities omprec vet us onsider the se where f(x) = 1 2 Axb 2 2 F • gomputing ∇f (x) = A (Axb) mounts to updting the residuls r = Axb @one mtrix vetor produt nd sumA nd omputing one mtrix vetor produtF e thus hve C = O(nnz(A))F funtion in ixmple R • gomputing ∇ i f (x) = e i A (Axb) mounts to IF updting the residuls r = Ax -bX one slrEvetor produt nd sum sine we hve r k+1 = r k + (x

  in generl intrtle hoie of loss funtion in some pplitions is (y, y ) = 0 if y = y nd (y, y ) = 1 otherwiseF vet X e olletion of imgesD Y = {-1, 1} nd let h * (ξ) e 1 of imge ξ ontins n imge of tD nd h * (ξ) = -1 otherwiseF sf we re le to lern h * D we will e le to detet imges of tsF rolems where Y onsist of two elements re lled classication problemsF he domin set n insted represent video olletionD text orporusD olletion of emils or ny other olletion of ojets whih we n represent mthemtillyF sf Y is (nite set onsisting of more thn two elementsD we spek of multi-class classicationF sf Y = RD we spek of regressionF

  the worst se omplexity indites tht hxe should e fster thn ghwF e went even further y showing tht s the numer of proessors τ inresesD σ 1 (τ ) ≥ τ σ 1 (1) = τ σ 3 (1) ≥ σ 3 (τ )F sn prtiulrD hxe enjoys superliner speedup in τ D to e ompred with the suliner speedup of ghwF PR Chapter 3

  we reover wsy wiISF sn tht seD we n store ∇f (x k ) nd updte its vergeF hnks to the seprility of f D only one oordinte of ∇f (x k ) needs to e updted t eh itertionF e used similr ides in pigure QFP to del e0iently with the projetion onto the suspe orE thogonl to vetorF o illustrte the importne of these implementtion triksD we give in le QFI omprison of the numer of opertions to ompute the updtes of the stndrd £ uEgondt method ginst the proposed lgorithmF 3.1.3 Convergence rate e present elow the onvergene gurntee for elgorithm TF st is of the sme order s wht n e otined y other primlEdul methods like the ehww hIUD i.e. O(1/ √ k) in generlF xote tht the result holds for the sequene (x k ) onlyD sine x k my not e fesile y designF PV rolem G himension of dt £ uEgondt yur lgorithm otl rition C 1 regulriztion O

  sprse le QFIX xumer of opertions per itertion for the proposed lgorithm nd for the stndrd £ uEgondt lgorithm E he use ses re the ones desried in the numeril setionF he numers T nd IP highlight the @mildA overhed of duplition in the otl rition C 1 regulrized lest squres of lgorithms for CL 1 Eregulrized regression t vrious regulriztion pE rmetersF he prolem is given y min x∈R n 1

  -Shwartz & Zhang) Primal-dual coordinate descent (PD-CD) PD-CD without duplication RCD (Necoara & Patrascu) PD-CD with small steps (Iutzeler et al) pigure QFPX gomprison of lgorithms for the resolution of the dul of liner w

  introdue new nlysis frmework for designing primlEdul optimiztion lgorithms to otin numeril solutions to @QFIAF e (rst foused on the se f = 0F essoited with the priml prolem @QFIAD we de(ne the following dul formultionX max y∈Y D(y) := -g * (-A y) -h * (y) , of three formule for β s funtion of the numer of proessors τ @smller β is etterAF Left: vrge numer of proessorsF Right: oom for smller numer of proessorsF e hve used mtrix A ∈ R m×n with m = 2, 396, 130D n = 3, 231, 961 nd ω = 414F Blue solid line: τ Euniform smplingD β 1 = min{ω, τ }F Green dashed line: τ Enie smpling nd p = 2D β 2 = 1 + (ω-1)(τ -1) max{1,n-1}

  = xk D nd ompute the priml i k Elok oordinteX

  provide omplexity nlysis long with optimlity gurnteesF e disuss the reltionship etween the regulrity of the loss funtion nd the omplexity of the pproximtion pthF e prove tht its omplexity is O(1/ d √ ) for uniformly onvex loss of order d > 0 iFeF uniformly onvex with modulus µ • d /d @µ > 0A nd O(1/ √ ) for the logisti loss thnks to re(ned mesure of its urvture throughout its qenerlized elfEgonordnt properties hIUF pinllyD we provide n lgorithmD with glol onvergene propertyD for seleting hyperprmeter with vlidtion error v Elose to the est possile hyprmeter on given rngeF RFR toint untile regression qiven ouple (X, Y ) of rndom vrilesD where Y tkes slr vluesD ommon im in sttistis nd mhine lerning is to estimte the onditionl expettion E[Y | X = x] s funtion of xF RT

  ± HFQR PTIFII ± RTFTW IVFTW ± QFSR SHH × W USFSQ ± PFWV VTSFVT ± WPFPT 61.30 ± UFHS IHHH × W TPIFTH ± QHFQU ! 266.50 ± RIFIT PHHH × W QRITFSS ± IHRFRI ! 958.93 ± IHUFVH pinllyD in pdfIUD y dding groupElsso term n i=1 α i 2 to the dul formultionD we ould de(ne n Einsensitive version of the quntile regression prolemF e n still use primlEdul oordinte desent to solve the model nd we showed tht we n otin estimtions with similr qulity with the ene(t of sprse solutions αF reneD the model is esier to interpretD store nd tke less time to use when pplied on new oservtionsF RV Chapter 5 Perspectives eording to meD the optimiztion ommunity hs een driven y three min reserh gendsX
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  It is easy to see that if Ŝ is a uniform sampling, then necessarily, P(i ∈ Ŝ) =

	E| Ŝ| n	for all i ∈ [n].
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	worst se gurnteeF
	QFI e oordinte desent version of the £ u gondt method with
	long step sizes
	3.1.1 Introduction
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