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1
Introduction

1.1 Background and motivation

In supply chain management and logistics systems, the transportation costs often represent an important
part. The design of transportation network offers a great potential to reduce costs, time, the environmental
impacts and improve service quality. However, the planning and operation of less-than-truckload (LTL)
freight transportation networks are a challenge for transportation corporates because there are many ori-
gins (suppliers) and destinations (clients) with small demand to serve in the network. Direct transportation
between origins-destinations would require plenty of vehicles which are often not fully loaded. In order to
reduce the number of vehicles and fully use their capacity, it is an efficient option to locate one or several
facilities called hubs in the network. The hubs collect, sort and consolidate the freight from many origins,
then ship it to the destinations or transfer it to other hubs. The Hub Location Problem (HLP) is concer-
ned with the design of a transportation network where suppliers and clients are in direct connection with
a designated hub. The field of the HLP has been abundantly researched for more than thirty years with a
large amount of works. These works has been classified and synthesized in the review papers of Campbell
[1994], Klincewicz [1998], Bryan and O’kelly [1999], Klose and Drexl [2005], Alumur and Kara [2008],
Campbell and O’Kelly [2012], Farahani et al. [2013]).

As opposed to the HLP, the Hub Location and Routing Problem (HLRP) corresponds to the design of
a hub network system where the collection of goods from suppliers to a given hub and the distribution of
goods from a destination hub to clients are organized through vehicle routing. The HLRP encompasses
both the strategic and operational decision levels. From a total cost perspective, it includes the strategies
of deciding the number of hubs to open and their location. At the operational decision level, it determines
the assignment of origins and destinations to the open hubs, the flow transfer between hubs and planning
of the pick-up/delivery routes. In the transport of freight, the collection and distribution of goods may be
organized separately through distinct collection and delivery routes, or jointly, such as it is the case for
postal services. The research on the problem of the hub location-routing is limited. Considering the wide
range of applications of this problem offers many opportunities for research.

Recently, the concerns about the environmental impact on freight transport and goods operations have
been mounting. It is predicted that over 80 % of the transport companies will be significantly influenced by
the global warming, especially the CO2 emissions, by the year of 2020 (Piecyk and McKinnon [2010]). Such
fact indicates the importance of incorporating environmental factors into the logistics-related decisions. The
emissions of GHG (Green House Gas) have already been considered in areas such as the Pollution Routing
Problem (PRP) (Barth et al. [2005], Xiao et al. [2012], Demir et al. [2012], Demir et al. [2014] and Kramer
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et al. [2015]). In the field of the HLRP, only the work of Mohammadi et al. [2013c] has introduced the
environmental effects into the HLRP in the form of a multi-objective mixed integer linear programming
model.

1.2 Thesis objectives
In this thesis, we consider the Capacitated Single Allocation Hub Location-Routing problem (CSAHLRP)
with independent collection and delivery processes. We seek to address the hub location and vehicle routing
strategies such that the location of hubs, the allocation of supplier/client nodes to hubs, the routings between
nodes allocated to the same hub, as well as the inter-hub freight transportations, in order to achieve an
efficient network design system.

The first objective of the thesis is to optimize the total network cost of the HLRP. To reach this ob-
jective, we propose a mixed integer linear programming model (MILP) for the CSAHLRP with aims at
minimizing the total cost for the less-than-truck load (LTL) transport network. Computational experimenta-
tions are conducted with CPLEX solver on the basis of a set of instances of different sizes and characteristics
which we have generated. Furthermore, we propose and experiment a memetic algorithm to solve large-size
CSAHLRPs.

The second objective is to study and balance the relationship of cost and environmental effect of trans-
port. We extend the single-objective HLRP model into a bi-objective MILP model for minimizing the total
cost and CO2 emissions. Experiments on small instances are conducted with CPLEX by means of the epsi-
lon constraint method. To solve the bi-objective CSAHLRP, a modified memetic algorithm (MA) combined
with a fast elitist non-dominated sorting genetic algorithm (NSGAII) and an efficient non-domination level
update (ENLU) method is developed to exhibit approximations of the Pareto front.

At last, a two-step procedure is proposed to solve the single-objective HLRP based on a hub location
problem (HLP) and two distinct vehicle routing problems for suppliers and clients allocated to each hub by
the first step. Our single-objective MILP model is decomposed accordingly and our MA is adapted to solve
the HLRP following these two steps.

A data base of instances of different sizes and characteristics has been developed in order to conduct
extensive experiments for solving all these problems using the different solution techniques and validate
our approaches.

1.3 Outline of the thesis
This thesis contains four parts : Part I includes a comprehensive state-of-the-art about the Hub Location
Problem (HLP), the Location Routing Problem (LRP), the Hub Location-Routing Problem (HLRP) and
also relevant works concerning the environmental factors and especially the consideration of CO2 emissions
of transport (Chapter 2). Part II addresses the single-objective HLRP (Chapters 3and 5). Part III is devoted
to the study on the bi-objective HLRP (Chapters 6and 7). Finally, the two-phase method is presented and
solved in Part IV (Chapters 8 and 9).

Chapter 2 provides a state-of-the-art for the HLP, the LRP and the HLRP, addressing the problem defi-
nitions, classifications and mathematical formulations, as well as the solution methods. Furthermore, since
we extended the HLRP into a multi-objective problem with environmental considerations, related problems
such as the Pollution Routing Problem (PRP) are briefly introduced. Finally, we propose a conclusion and
identify several research directions.

Chapter 3 describes a mathematical model of the single-objective Hub-location Routing Problem. The
model contains the decisions of the Capacitated Single Allocation Hub Location Problem (CSAHLP) such
as the determination of hub numbers, the decisions of hub location and flows exchange between hub points.
It also integrates advanced vehicle routing formulations and decision variables, such as flow variable on
vehicle, to schedule local tours for the HLRP.
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Chapter 4 proposes a Memetic Algorithm (MA) for the single-objective HLRP, combining a genetic
algorithm (GA) and an iterated local search (ILS), to determine location and routing jointly.

Chapter 5 presents in detail the computational experiments which we performed with two solution
methods, solving the MILP with the CPLEX solver and the MA. The generation of data sets used for
all the experiments is explained, as well as the parameters setting of the CPLEX and the MA. Then, the
computational results of both methods are investigated and compared.

Chapter 6 investigates the impacts of CO2 emissions on transport, both for the collection and delivery
routing and for inter-hub transport, and integrated the CO2 emission formulations into the single-objective
model of the HLRP to construct a bi-objective model with aims at minimizing both cost and CO2 emissions.
Furthermore, to solve the bi-objective CSAHLRP, a memetic algorithm (MA) combined with a fast elitist
non-dominated sorting genetic algorithm (NSGAII) is developed.

Chapter 7 presents the experimental results of the proposed bi-objective MA, which are compared with
the results of the single-objective MA and solving the bi-objective MILP model with Epsilon Constraint
(EC) method.

Chapter 8 proposes a two-phase method to solve the single-objective HLRP where the hub location
and routes planing are considered sequentially in two phases. Adapted MILP models are proposed and the
single-objective MA is adapted to solve the problems.

Chapter 9 analyzes the experimental results obtained by the two-phase MILPs solved with CPLEX and
by the MA, and compares the results with the global single-objective HLRP models.

Finally, an overview of the main contributions of the thesis is summarized and some future research
directions are proposed in Chapter 10.





2
Literature review

Our researched Hub Location-Routing Problem (HLRP) can be considered as an integrated problem of the
Hub Location Problem (HLP) and the Vehicle Routing Problem (VRP). It is also similar to the Many-to-
Many Location-Routing Problem (MMLRP) which is a variant of the Location-Routing Problem (LRP).
Thus it is necessary to give an overview of the two main close problems of the HLP and the LRP before
researching the HLRP. This chapter provides the state-of-the-art for the HLP, the LRP and the HLRP in
Sections 2.1, 2.2 and 2.3, addressing the problem definitions, classifications and mathematical formulations,
as well as the solution methods. Furthermore, since we extended the HLRP into a multi-objective problem
with environmental considerations, the related problems such as the Pollution Routing Problem (PRP) and
the sustainable Supply Chain Network Design (SCND) are briefly introduced in Section 2.4. Finally, we
make a conclusion and suggest several future research proposals in Section 2.5.

2.1 The Hub Location Problem
The Hub Location Problem (HLP) tackles the location of hub facilities and the assignment of customers
to the hubs in the hub networks where the cost required for establishing hubs and transferring flows bet-
ween hubs is lower than the cost required for transporting flows directly. The main features of the HLP
(Campbell and O’Kelly [2012]) are : first, the demand is presented as the flows between the origin and
destination (O-D) pairs instead of individual demands ; second, the flows transported via inter-hub benefit
from a discounted cost ; last, the locations of the hubs and the allocation scheme are to be determined. The
HLPs are a challenging topic since most of the problems are NP-hard even if the locations of the hubs are
known (Alumur and Kara [2008]). The HLPs have been applied mainly to airlines and airport industries,
postal delivery systems, supply chain management, freight transportations, telecommunication services and
emergency services. More real-life applications of the HLPs can be found in Farahani et al. [2013].

The HLP and its variants have been widely researched since 1987 and several reviews have provided a
comprehensive understanding in terms of fundamental definitions, classifications, hub network topologies,
mathematical models, solution methods, uncertainty and competition, and so on. Campbell [1994] gave the
first survey on the discrete HLPs. Klincewicz [1998] focused on the telecommunication industry and revie-
wed the facility location problem in the backbone/tributary network. Bryan and O’kelly [1999] reviewed
the Hub-and-Spoke (HS) networks in air transportation. Klose and Drexl [2005] provided a review of the
facility location models for distribution system, especially the continuous location models and the network
location models. Alumur and Kara [2008] classified the network hub location models and gave a review
of the HLPs from the year of 1987 to 2007. In the article of Campbell and O’Kelly [2012], the origins of
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the hub location especially in transportation were reflected and the research of the hub location problem
for 25 years were presented. They provided an insight into recent research, discussing the shortages and
promising directions. Farahani et al. [2013] highlighted the research works that are published after 2007
and summarized the new recent trend of the HLPs to take into account in the future.

In this section, we provide the main criteria for classifying the HLPs. Then some fundamental and
important mathematical models are presented describing various types of the HLPs. Finally, the articles of
the HLPs after the year 2012 are reviewed as a supplementary of the previously published survey papers.

2.1.1 Classification of the HLPs

In order to classify the hub location problems, various criteria can be used. One of the main classifying
criteria is the way of determining the hub number. When the number of hubs to open is pre-specified, the
problem is called the p-HLPs, and extremely, if just one hub is established, the problem is defined as the
single-Hub Location Problems (single-HLPs). On the other hand, there are problems where the number
of open hubs has to be determined as part of the solution. The second important criterion is based on the
allocation schemes : the single allocation scheme in which each non-hub node must be allocated to only one
selected hub node ; the multiple allocation where the non-hub nodes are allowed to be assigned to more than
one hub. Recently, a r–allocation HLP was proposed (Yaman [2011], Todosijević et al. [2017]), allowing
each non-hub node to be allocated to at most r hubs. Another important criterion takes the center and
median objectives into account. The problem seeking to minimize total transportation cost (mini-sum) is
the hub median problem while the problem with the objective of minimizing the maximal distance between
a hub and the non-hub nodes (mini-max) is named the hub center problem. All the commonly used criteria
are given as follows :

– The domain of candidate hub nodes : the discrete domain where the hubs are predetermined nodes ; the
continuous domain where the solution domain is a sphere or plane ; the network where the candidate
hub can be located at all the nodes of the network ;

– The certainty of the environment : the deterministic problem in which all the parameters are known ;
the non-deterministic problem in which at least one parameter (such as travel time or customer de-
mand) is stochastic ;

– The number of hub nodes to be located : pre-specified or not ;

– The allocation scheme : single allocation and multiple allocation ;

– The objective : center objective (mini-max) and median objective (mini-sum) ;

– The hub capacity : uncapacitated and capacitated ;

– The cost of locating hub nodes : fixed cost and no cost ;

– The cost of transportation between non-hub nodes and hub nodes : fixed cost, variable cost and no
cost ;

There are also some other hub location problems such as : the dynamic HLP, including multiple time
periods with various costs and adding new demand of O-D pairs in each time period (Correia et al. [2011]) ;
the competitive HLP, considering the competition between multiple service providers (Niknamfar et al.
[2017]) ; and the HLPs with reliability considerations (Parvaresh et al. [2013], An et al. [2015], Azizi et al.
[2016]).
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2.1.2 Mathematical models of the HLPs

Single-Hub Location Problem

The first mathematical formulation in the research field of the HLP was proposed by O’kelly [1987b]. It
dealt with an Uncapacitated Single Allocation Hub Median Location Problem in the network domain. In
this problem, the number of open hubs is specified as only one (Single-HLP). No establishing cost of the
hub facility is considered. Cik stands for the unit transportation cost between node i and hub k. Oi and Di

are the outgoing and ingoing flows from node i. The binary decision variable Yik is equal to 1 if node i is
allocated to a hub located at node k, 0 otherwise. Ykk equals to 1 means that the location of k is a hub node.
The single-HLP is formulated as follows :

min
∑
i

∑
k

CikYik(Oi +Di) (2.1)

Subject to ∑
k

Ykk = 1 (2.2)∑
k

Yik = 1 ∀i (2.3)

Yik ≤ Ykk ∀i, k (2.4)
Yik ∈ {0, 1} ∀i, k (2.5)

The objective function (2.1) minimizes the total transferring cost via the hub. Constraints (2.2) indicate
that there is only one hub in the network. Constraints (2.3) are the allocation constraints of the non-hub
nodes. Constraints (2.4) ensure that non-hub nodes can only be connected to the hub node. Constraints
(2.5) define the decision variables.

Single Allocation p-Hub Median Location Problem

The model of the Single Allocation p-hub Location Problem (SApHLP) is presented as an extension of the
single-HLP of O’kelly [1987b]. Here, the SApHLP is formulated as a quadratic integer model. The number
of hubs to be located in the model is denoted by p. The demand between two non-hub nodes should be
transferred through at least one and at most two hub nodes. The non-hub nodes are allocated to only one
hub (single allocation). In addition, a discount parameter α (0 ≤ α < 1) denotes the economies of scale due
to the inter-hub transfer. Wij is the amount of flow between two nodes i and j. The SApHLP is formulated
as follows : ∑

i

∑
k

CikYik(
∑
j

Wij) +
∑
k

∑
i

CkiYik(
∑
j

Wji)

+ α
∑
i

∑
j

∑
k

∑
m

WijCkmYikYjm
(2.6)
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Subject to ∑
k

Yik = 1 ∀i (2.7)∑
k

Ykk = p (2.8)

Yik ≤ Ykk ∀i, k (2.9)
Yik ∈ {0, 1} ∀i, k (2.10)

Regarding the objective function (2.6), it minimizes the total transportation cost in the hub network. The
first term stands for the transportation cost from non-hub node i to hub node k if node i is allocated to hub k.
The second term stands for the transportation cost from hub node k to non-hub node i if node i is allocated to
hub k. Moreover, the third term of the objective function calculates the transferring cost between two hubs
k and m with a discount factor. Constraints (2.7) ensure the single allocation. Constraints (2.8) stipulate
that exactly p hub nodes are selected. Constraints (2.9) enforce node i be allocated to a location k only if a
hub is located at node k. Finally, Constraints (2.10) define the binary decision variables.

Multiple allocation p-Hub Median Location Problem

Campbell [1991] proposed a linear mathematical formulation for the p-hub median location problem. This
problem is a multiple allocation problem in which every non-hub node could be allocated to more than one
hub. Ckm

ij is defined as the unit transportation cost starting from non-hub node i, transferring between hub
nodes k and m and ending at non-hub node j (Formulation (2.11)).

Ckm
ij = Cik + αCkm + Cmj (2.11)

The non-negative allocation variables are denoted as Xkm
ij (Xkm

ij ≥ 0). Furthermore, the binary decision
variables Yk equal to 1 when a hub is located at node k, otherwise 0. The other assumptions are similar
to the p-HLPs. The Multiple Allocation p-Hub Median Location Problem (MApHMLP) is formulated as
follows :

min
∑
i

∑
j

∑
k

∑
m

Ckm
ij WijX

km
ij (2.12)

Subject to ∑
k

Yk = p (2.13)∑
k

∑
m

Xkm
ij = 1 ∀i, j (2.14)

Xkm
ij ≤ Ym ∀i, j, k,m (2.15)

Xkm
ij ≤ Yk ∀i, j, k,m (2.16)

Xkm
ij ≥ 0 ∀i, j, k,m (2.17)

Yk ∈ {0, 1} ∀k (2.18)

The objective function (2.12) minimizes the total transportation cost. Constraint (2.13) ensure that exactly
p hubs should be located. Constraints (2.14) indicate that each O–D pair (i, j) is allocated to the hub nodes
k and m. Constraints (2.15) and (2.16) ensure the consistency between variables Xkm

ij and Yk. Constraints
(2.17) and (2.18) define the decision variable types.

Instead of considering unit flow transportation cost between two nodes, Campbell [1994] suggested a
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fixed link cost gik to connect the non-hub nodes to the hub nodes. The binary variables Zik equal to 1 if a
link between the non-hub node i and the hub node k is built. The cost term (objective function) is provided
below : ∑

i

∑
k

gikZik (2.19)

The constraints are similar to the MApHMLP (Constraints (2.13) to (2.18)). Besides, the model also
introduces the capacity of hubs to limit the flows allocated to each hub. That is, the flows going through
each hub must fit the capacity of the hub. The capacity of the hub k is denoted as hk. The constraints (2.20)
should be considered in the p-hub median location problem :∑

m

∑
i

∑
j

WijX
km
ij +

∑
s

∑
i

∑
j

WijX
sk
ij ≤ hkYk ∀k (2.20)

In Constraints (2.20), the first and second terms represent the total incoming and outgoing flows for the hub
k.

Continuous p-Hub Location Problem

In the continuous p-HLPs, hub nodes are located based on a plane or a sphere (O’kelly [1986], Aykin and
Brown [1992]) and each non-hub node must be allocated to exactly one hub (single allocation). The p hub
nodes to be located are fully interconnected. The objective of the model is to minimize the total cost. At
least one and at most two hub nodes should be visited for transferring flows of each O-D pair. The hubs are
uncapacitated and no fixed establishing hub cost is considered.

The notation of the problem is similar to the SApHMLPs. Moreover, a vector Ni stands for the location
vector of non-hub node i ; the decision variable Pk denotes the location vector of hub node k (k =1, ...,
p) ; d(i, j) is considered as the Euclidean distance between two nodes i and j. The continuous p-HLP is
formulated as follows :

min
∑
i

∑
j

∑
k

∑
m

WijYikYjm(d(Ni, Pk) + αd(Pk, Pm) + d(Nj, Pm)) (2.21)

Subject to ∑
k

Yik = 1 ∀i (2.22)

Pk = (ak, bk) k = 1, ..., p (2.23)
Yij ∈ {0, 1} ∀i, j (2.24)

The objective function (2.21) minimizes the total transportation cost in the hub network. The first term is
the transportation cost originated from the non-hub node i to the hub node k, and the second term is the
transportation cost between hub nodes, finally the third term is the transportation cost generated from the
hub node k to the non-hub node m. Constraints (2.22) indicate the single allocation. Constraints (2.23) and
(2.24) define the decision variables.

p-Hub Center Location Problem

The p-Hub Center Location Problem aims to minimize the maximum distance (cost) of origin-destination
(O-D) pairs. The real-life applications of this problem exist in the emergency facility location problem
and the perishable commodities transportation problem (Campbell [1994]). Note that the constraints and
notation of the problem are similar to the MApHMLPs (constraints (2.13) to (2.18)) except for the objective
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function which is formulated as follows :

min max
i,j,k,m

Ckm
ij WijX

km
ij (2.25)

The objective function (2.25) minimizes the maximum transportation cost of O-D pairs. For other improved
models of the p-Hub Center Location Problems, the articles of Kara and Tansel [2000], Yaman and Elloumi
[2012], Campbell et al. [2007] and Ernst et al. [2009] are recommended.

Hub Covering Location Problems

The classic Hub Covering Location Problem seeks to find the best locations for hubs so as to ensure each
O-D pair is covered by a pair of hub nodes (Campbell [1994]). Each O-D pair is covered if the cost (time,
etc.) is lower than or equal to a pre-specified value of γij (Constraint (2.26)).

Ckm
ij ≤ γij (2.26)

The Hub Covering Location Problem can be further developed into three other variants : the p-Hub Covering
Location Problem, the Hub Set Covering Location Problem and the p-Hub Maximal Covering Location
Problems.

Regarding the p-Hub Covering Location Problem, the only difference compared to the classic ones is
the pre-specified number of open hubs.

The Hub Set Covering Location Problem deals with the selection of open hubs which are subjected to
a fixed establishing cost, and the allocations of O-D pairs to the hubs. The notation of the problem is given
as : Fk is the fixed cost of selecting node k as a hub ; Ckm

ij is the transfer cost from the origin node i to the
destination node j via hubs located at nodes k andm ; γij stands for the maximum cost allowed for covering
links connecting the nodes i and j ; Yk is the location variable and V km

ij is equal to 1 if the hubs k and m
cover the O-D pair (i, j), otherwise 0. The Hub Set Covering Location Problem is formulated as follows :

min
∑
k

FkYk (2.27)

Subject to ∑
k

∑
m

V km
ij Xkm

ij ≥ 1 ∀i, j (2.28)

Xkm
ij ≤ Ym ∀i, j, k,m (2.29)

Xkm
ij ≤ Yk ∀i, j, k,m (2.30)

Xkm
ij ≥ 0 ∀k (2.31)

Yk ∈ {0, 1} ∀k (2.32)

The objective of the model is to minimize the total cost of opening new hubs (Formula (2.27)). Constraints
(2.28) impose that an O-D pair is covered by at least one hub pair. Constraints (2.29) and (2.30) ensure that
the origin node i and destination node j can only be allocated to the nodes of k and m that are selected as
hubs. Constraints (2.31) and (2.32) define the decision variables.

The p-Hub Maximal Covering Location Problems is devoted to locate p hubs to maximize the demands
within a coverage distance. The fixed cost of opening hubs is not considered in the model. This problem is
formulated as follows :

max
∑
i

∑
j

∑
k

∑
m

WijV
km
ij Xkm

ij (2.33)
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The objective function (2.33) maximizes the amount of transportation demand covered. The constraints are
the same as in the MApHMLP from (2.15) to (2.18).

Multi-objective p-Hub Location Problem

The cost and service, as well as sustainable considerations, are of great importance in hub networks de-
signing. The services regarded in many articles include the service time (da Graça Costa et al. [2008]),
the travel time (Mohammadi et al. [2013a], Ebrahimi Zade and Lotfi [2015], Yang et al. [2017]) and the
responsiveness and social aspects (Zhalechian et al. [2017a]). The environment aspects in literature mainly
include the pollution gas such as CO2 emissions (Mohammadi et al. [2014], Ghodratnama et al. [2015]).

The multi-objective HLP model presented was proposed by da Graça Costa et al. [2008] with two
objectives : minimizing the transportation cost and the maximum service time of the hub nodes. It is an
uncapacitated single allocation p-HLP and the hub nodes are fully connected. At least one and at most two
hub nodes should be visited for transferring flows between two non-hub nodes. There is no fixed cost to
initiate service at hub nodes. A new notation of Tk is introduced which stands for the operating time of hub
k to process one unit flow. The multi-objective HLP is formulated as follows :

min
∑
i

∑
j

∑
k

∑
m

WijYikYjm(Cik + αCkm + Cjm) (2.34)

min max
k
{Tk(

∑
i

∑
j

WijYik +
∑
i

∑
j

WjiYjmYik)} (2.35)

The first objective function (2.34) minimizes the total transportation cost in the hub network. The second
objective function (2.35) minimizes the maximum service time of hub nodes. The constraints are the same
as in the SApHMLP (Constraints (2.7) to (2.10)).

Capacitated Single Allocation Hub Location Problem

Regarding the models of the Capacitated Single Allocation Hub Location Problem (CSAHLP), Ernst and
Krishnamoorthy [1999] provided an integer linear formulation with an inter-hub flow fraction variable and
an allocation variable. Correia et al. [2011] considered the hub capacity as another decision variable with
varied fixed installing costs corresponding to relevant hub capacity. They proposed several mixed integer
formulations and a set of preprocessing tests to reduce the formulation size. Saiedy et al. [2011] presented an
improved model of CSAHLP with n-hub centers with less indices and constraints to get the model faster to
solve by CPLEX for small and medium instances. Karimi et al. [2014] imposed the hub capacity constraint
on the single hierarchical hub median location problem and studied the effect of hub capacity on total costs
based on the Iranian Airport Data (IAD).

Here, we describe the model proposed by Ernst and Krishnamoorthy [1999]. Assume that in the postal
delivery network, mail from postal districts (nodes in the network) has to be collected by a mail sorting
center (hub in the network) with a limited sorting ability (hub capacity). The model deals with the number
and location of hubs and allocations of non-hub nodes to hubs in order to minimize the total network cost.

The CSAHLP in a postal delivery network is defined on a complete graphG = (N,A) in whichN is the
set of n nodes and A is the set of arcs. The decision variable zik ∈ {0, 1} equals to 1 if the non-hub node i is
allocated to a hub k, and 0 otherwise. If one hub is located at node k, zkk = 1, otherwise 0. Another decision
variable Y i

kl is defined as the total amount of commodity flows from the non-hub i transferred between the
hubs k and l. Further, α, β and γ are denoted as the unit transporting cost of inter-hub transfers, pick-ups
and deliveries, respectively. Oi =

∑
j∈N qij and Di =

∑
j∈N qji represent the demand of the pick-up and

the delivery of the node i. dij is the distance from node i to node j. Γk is the capacity of hub k. The fixed
locating cost is denoted as Fk. Then the formulation of the CSAHLP is given as
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min
∑
i∈N

∑
k∈N

dikzik(βOi + γDi) +
∑
i∈N

∑
k∈N

∑
l∈N

αdklY
i
kl +

∑
k∈N

Fkzkk (2.36)

Subject to ∑
k∈N

zik = 1 ∀i ∈ N (2.37)

zik ≤ zkk ∀i, k ∈ N (2.38)∑
i∈N

Oizik ≤ Γkzkk ∀k ∈ N (2.39)∑
l∈N

Y i
kl −

∑
l∈N

Y i
lk = Oizik −

∑
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qijzjk ∀i, k ∈ N (2.40)

zik ∈ {0, 1} ∀i, k ∈ N (2.41)

Y i
kl ≥ 0 ∀i, k ∈ N (2.42)

Objective function (2.36) minimizes the collection and delivery cost, the inter-hub transportation cost and
the fixed cost of locating hubs. Constraints (2.37) are the single allocation constraint. Constraints (2.38)
ensure that the non-hub nodes are allocated to a hub only if it is open. Constraints (2.39) limit total collection
demand on each hub. Constraints (2.40) inquire that the supply at the nodes is determined by the allocations
zik. Constraints (2.41) and (2.42) specify the decision variables.

2.1.3 Data sets of the HLPs

In the hub location research, two data sets are commonly used : the AP (Australian Post) data set and
the CAB (U.S. Civil Aeronautics Board) data set. They provide valuable benchmarks derived from real-
world applications of various scales and have been applied in most of the hub location literature. The CAB
data set is based on the airline passenger traffic between 25 US cities in 1970 and was first introduced
for hub location in O’kelly [1987b]. The AP data set (Ernst and Krishnamoorthy [1996]) is derived from
the Australian postal delivery network with up to 200 nodes of postal districts in Sydney, Australia. The
flow matrix of the CAB is symmetrical while the flow matrix of the AP is not. Another data set used in the
literature is the Turkey postal (PTT) data set for ground transportation between 81 cities in Turkey. This data
set was introduced in Tan and Kara [2007] to dealt with the latest arrival hub covering problem, minimizing
the number of hubs within a predetermined time bound. Meyer et al. [2009] created random instances with
up to 400 nodes which are called URAND data sets for the single allocation p-hub center problem. Based
on the AP data set with 200 nodes, Silva and Cunha [2009] generated four larger instances with 300 and
400 nodes and applied reduction factors (0.9 and 0.8) to the fixed costs of hubs. Table 2.1 shows the details
of the data sets and the first reference in the field of the HLP.

TABLE 2.1 : Data sets of the HLPs

Acronym First reference Maximum number
Size 1 Parameter2 Resourceof nodes

CAB O’kelly [1987b] 25 2-4/10-25 α={0.2, 0.4, 0.6, 0.8, 1.0} U.S. airline
β = γ =1 passenger traffic

AP Ernst and Krishnamoorthy [1996] 200 2-20/10-200 α =0.75, β =3 Australian postal
γ =2 delivery network

PTT Tan and Kara [2007] 81 - α′ ={0.2, 0.4, 0.6, 0.8, 1.0} Turky national postal
service (PTT)

URAND Meyer et al. [2009] 400 2-5/100-400 α =0.75 Random

Silva Silva and Cunha [2009] 400 2-5/300-400 α =0.75, β =3 Based on AP data set
γ =2 with 200 nodes

1 Structure of the instance size : min–max number of facilities/ min–max number of customers
2 α : inter-hub cost coefficient ; β : pick-up cost coefficient ; γ : delivery cost coefficient ; α′ : inter-hub travel time coefficient
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2.1.4 State-of-the-art of the HLPs in recent five years
In this part, the main research of the HLPs covering the period from 2013 to 2017 are reviewed as a com-
plementary of the previous survey articles.

(1) Uncapacitated HLPs
It is seemed that the uncapacitated HLPs are the main focus in the field of HLPs in recent years. Marić

et al. [2013] designed a Memetic Algorithm (MA) with two local search heuristics for solving the Un-
capacitated Single Allocation Hub Location Problem (USAHLP). The experimental results based on the
Civil Aeronautics Board and Australian Postal (CAB/AP) data sets (Ernst and Krishnamoorthy [1999])
showed the superiority of the proposed MA over existing heuristic approaches for solving the USAHLP.
Abyazi-Sani and Ghanbari [2016] proposed an efficient Tabu search (TS) with several new tabu rules for
the USAHLP. The computational experiments were conducted on all the CAB/AP data sets and also the
data set with 300 and 400 nodes created by Silva and Cunha [2009]. Compared with recently proposed
approaches, the results showed that the proposed TS was able to find all the optimal and best benchmark
solutions. More importantly, it also decreased the computational time.

Kratica [2013] dealt with the Uncapacitated Multiple Allocation p-hub Median Problem (UMApHMLP)
by an Electromagnetism-like method (EM). The EM was able to find excellent results on large-scale ins-
tances of the standard AP data set with up to 200 nodes and the instances with up to 400 nodes which
was created by Meyer et al. [2009]. Later, they extended this method to solve the capacitated version of
the problem. Bailey et al. [2013] proposed a new solution method based on a Particle Swarm Optimization
(PSO) to solve the UMApHMLP. To solve the Uncapacitated Single Allocation p-Hub Location Problem
(USApHLP), Rasoulinejad et al. [2013] introduced a Tabu Search (TS) and applied a clustering method to
improve the performance of the TS. Recently, Meier [2017] introduced the integer variables for the number
of used vehicles into the Uncapacitated Single Allocation p-Hub Median Location Problem (USApHMLP).
A mixed integer program formulation with fewer variables but more constraints were proposed to form a
more precise model for the problem.

Regarding the Uncapacitated Hub Location Covering Problem, Peker and Kara [2015] extended the
definition of coverage and introduced “partial coverage” which changes with distance. They studied the
“partial converge” of the single and multiple p-Hub Maximal Covering Problem by relaxing the definition
of the binary coverage. The p-Hub Maximal Covering Problem aims to locate p hubs within a coverage
distance so as to maximize the demands. Silva and Cunha [2017] developed a TS heuristic for the Uncapa-
citated Single Allocation p-Hub Maximal Covering Problem to solve to optimality the instances with up to
50 nodes from the AP data set. Furthermore, the proposed TS was also able to solve all instances of the AP
data set with up to 200 nodes in shorter CPU times. Ebrahimi-Zade et al. [2016] proposed a dynamic model
with flexible covering radius for the multi-period Hub Set Covering Problem and solved it by a modified
Genetic Algorithm (GA) based on a real-world case study.

Damgacioglu et al. [2015] coped with the uncapacitated single allocation Planar Hub Location Problem
(PHLP) in which the solution domain of the problem is a plane. A mathematical formulation was proposed
for the PHLP and a Genetic Algorithm (PHLGA) was developed to solve the problem.

(2) Capacitated HLPs
Compared to its uncapacitated version, capacitated HLPs were not so extensively studied. Correia et al.

[2014] considered the multiple products transportation of the capacitated single-allocation hub location
problem (CSAHLP). Two cases were considered : (1) the hubs can handle only one product or (2) the
hubs can handle all the types of products. Later, Stanojević et al. [2015] proposed a hybrid optimization
method, consisting of an Evolutionary Algorithm (EA) and a Branch-and-Bound (B& B) method to solve
the CSAHLP and tested it on the standard Australia Post (AP) hub data sets with up to 300 nodes.

(3) Variant HLPs
Some researches extend the HLPs with more realistic variants in the real-world such as the unpredictable

hub disruptions (Parvaresh et al. [2013], An et al. [2015], Azizi et al. [2016]), the multiple products (Correia
et al. [2014]), the multimodal hubs (SteadieSeifi et al. [2014], Serper and Alumur [2016]), the hubs which
are not fully linked (Martins de Sá et al. [2015a], Martins de Sá et al. [2015b]), the serving orders (Puerto
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et al. [2011], Puerto et al. [2013])) and so on.
One of the interest of the variant HLPs in recent years is the HLP with unpredictable hub disruptions.

This problem considers the hub disruptions which may be caused by natural disasters, labour dispute and
weather conditions. Parvaresh et al. [2013] formulated a bi-level game model for the Multiple Allocation
p-Hub Median Problem under intentional disruptions. Two algorithms based on the Simulated Annealing
(SA) were defined to solve the problem. An et al. [2015] proposed a set of reliable Hub-and-Spoke (H&S)
network design models for both single and multiple allocation schemes considering disruptions and alterna-
tive routes. A Lagrangian relaxation (LR) algorithm with variable fixing and a Branch-and-Bound (B&B)
method was implemented to solve the CAB instances. Azizi et al. [2016] assumed that if a hub was dis-
rupted, the entire demand initially served by this hub was handled by a backup facility. They proposed
a mathematical formulation to minimize the regular and hub fail transportation cost. A genetic algorithm
(GA) was implemented to test large instances of the CAB and Turkish Postal System.

Saboury et al. [2013] proposed an advanced mathematical programming formulation for a specific ap-
plication of the HLP, namely the Hub Location Problem with fully interconnected backbone and access
networks. Two hybrid heuristics incorporating a Variable Neighborhood Search (VNS) into the SA and TS
were developed to obtain the optimal solutions of 24 small instances from the literature. Furthermore, some
newly generated medium and large instances were solved efficiently in a quite short CPU time.

In the articles of Martins de Sá et al. [2015a]a and Martins de Sá et al. [2015b]b, a hub network where
not all the hub facilities were fully interconnected was considered. The problem was called the Hub Line
Location Problem (HLLP) in which the locations of all the selected hubs were linked together by means
of a path or a line. The problem coped with the minimization of the total travel time for O-P pairs. A
Benders-Branch-and-Cut algorithm and several heuristic algorithms are applied to solve the problem.

Puerto et al. [2016] focused on the Capacitated Single Allocation Ordered Median Hub Location pro-
blem (CSA-OMHLP) which was originally from Puerto et al. [2011] and Puerto et al. [2013]. The Ordered
Median Hub Location problem introduced the ordinal information by applying rank dependent compen-
sation factors on routings from the origin nodes to the hubs. They presented a new formulation with two
preprocessing phases and a Branch-and-Bound-and-Cut (B&B&Cut) based algorithm to solve the model.
The tests on AP data set proved that the proposed method gave good solutions in competitive running times.

Serper and Alumur [2016] considered the intermodal hub networks by introducing alternative trans-
portation modes and vehicle types. Furthermore, they incorporated decisions on designing the inter-hub
network that the hubs are not fully interconnected. A variable neighbourhood search algorithm was develo-
ped and tested on the Turkish network and CAB data sets. Such study is seemed to be so far the first hub
location study in the literature determining the optimal number of various types of vehicles to operate the
intermodal hub network.

(3) The HLPs with uncertainty
Recently, there is a new trend in the research of the HLPs taking into account the presence of uncertainty.

Uncertainty can be regarded as an unforeseen and unpredictable situations of a system due to the flaws of
human knowledge (Guzmáan et al. [2016]). The uncertainty in the hub networks may occur in flows, costs,
times and hub operations.

Yang et al. [2013b] presented a p-Hub Center Problem with fuzzy travel times. They adopted the Value-
at-Risk (VaR) criterion in the formulation and developed a hybrid algorithm of Genetic Algorithm (GA) and
local search. The numerical experiments showed that the proposed algorithm outperformed the LINGO sol-
ver and the standard GA. Mohammadi et al. [2016] studied a bi-objective Single Allocation p-Hub Center-
Median Problem (BSpHCMP) and assumed that the flows, costs, times and hub operations were under
uncertainty. A fuzzy-queuing approach was used to model the uncertainties and an Evolutionary Algorithm
(EA) based on game theory and Invasive Weed Optimization (IWO) algorithm was developed. The overview
of the literature on the fuzzy models and resolution methods was given by Guzmáan et al. [2016].

Talbi and Todosijević [2017] focused on the uncertainty in the flow for the Uncapacitated Multiple
Allocation p-Hub Median Problem(UMApHMP). They formulated a deterministic UMApHMP model and
then introduced uncertainty into the model by assuming that the flows to be transferred are subject to
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uncertainty. A new robustness measure was proposed in order to build a solution which is robust for any
realization of the flow. Furthermore, a Variable Neighborhood Search (VNS) was developed to evaluate the
performance of the robustness measures on benchmark p-hub instances.

The studies of the HLPs are presented in Table 2.3 and 2.4. Table 2.3 gives a review of the HLPs without
uncertainty while Table 2.4 shows the HLP references taking into account the uncertainties. To introduce
various kinds of HLPs properly, The meanings of different notation are explained in Table 2.2.

TABLE 2.2 : Notations for different HLPs
Capacity of hubs Allocation scheme Type of HLPs Number of hubs

Capacitated (C) Single allocation (SA) Median (M) Single (1)
Uncapacitated (U) Multiple allocation (MA) Center (T) More than one (p)

r-allocation (RA) Covering (V)
Set covering (SV)
Maximum covering (MV)
Line location (HLLP)
Order Median (OM)
Sustainable (SHLP)

2.1.5 Conclusion
In this section, we include a summary of the main classifications of the hub location problems. The funda-
mental mathematical formulations for various hub location problems are also presented. Furthermore, we
provide a concise overview of the main developments and most recent trends in hub location problems by
reviewing the researches in recent five years including exact methods, heuristic and metaheuristic solution
methods. The described research shows that the field of hub location is moving towards new directions in
terms of considering various realistic problem variants.

2.2 The Location-routing Problems
The objective of the Location-Routing Problem (LRP) is to serve customers at minimum total cost by jointly
determining the locations of candidate facilities and constructing an associated set of vehicle routes. It
encompasses two NP-hard problems : the classic Facility Location Problem (FLP) and the Vehicle Routing
Problem (VRP). In special cases, if all customers are served by a depot through direct transportation, the
LRP becomes a standard location problem. On the other hand, if the locations of the facilities are pre-
specified, the LRP reduces to a VRP (Nagy and Salhi [2007]). Wide real-life applications of the LRPs
have been studied in terms of locating capacitated urban distribution centers, consumer goods distributions,
postal or parcel deliveries and so on (Drexl and Schneider [2015]). For example, Menezes et al. [2016]
developed an easily implementable rough-cut approach and implemented it to solve two real life cases : the
supermarket chain of Casino Group in southeast France and the household material recycling network in
Calgary of Canada. This methodology was based on a pragmatic transformation of the distances between
the candidate locations and the demand nodes. It divided the LRP in two sub-problems : locating a collection
of regional distribution centres (RDCs) to minimize the total travelled distance ; finding the optimal routes
for the configuration obtained in the first stage (VRP).

The LRPs have been studied for decades since 1998 with a significant amount of literature on the general
LRPs and their variant problems. Several survey papers of the LRPs have given an overview of the literature
from different perspectives. It seems that Balakrishnan et al. [1987] gave the first survey on the iterated
facility location and the vehicle routing problems. Other early survey papers can be found in Laporte et al.
[1988], Laporte [1989], Berman et al. [1995], Min et al. [1998] and Nagy and Salhi [2007]. Recently, Lopes
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TABLE 2.3 : Reviews of the HLPs without uncertainty
Problem Article Exact solution algorithms Heuristics/metaheuristics

U-RA-M-p-HLP Todosijević et al. [2017] Variable Neighborhood Search

U-SA-V-HLP Dukkanci and Kara [2017] Heuristic based on subgradient approach

U-SA-MV-p-HLP Silva and Cunha [2017] Tabu Search

U-SA-M-p-HLP Meier [2017] MIP formulations

Mesgari and Barzinpour [2016] Variable Neighborhood Search

&&Social network centrality measure

U-SA-T-p-HLP Brimberg et al. [2017] Nested Variable Neighborhood

Descent Strategy

U-SA-M-p-HLP Azizi et al. [2016] Genetic Algorithm

U-SA-SV-HLP Ebrahimi-Zade et al. [2016] Genetic Algorithm

U-SA-HLP Damgacioglu et al. [2015] Genetic Algorithm

An et al. [2015] Lagrangian relaxation

&& Branch-and-Bound

Saboury et al. [2013] Variable Neighborhood Search

Marić et al. [2013] Memetic Algorithm

Bailey et al. [2013] Particle Swarm Optimization

Rasoulinejad et al. [2013] Simulated Annealing

U-SA-OM-HLP Puerto et al. [2013] Branch-and-Bound-and-Cut

U-MA-T-p-HLP Miskovic [2017] Memetic Algorithm

U-MA-HLLP Martins de Sá et al. [2015b] Benders-Branch-and-Cut Heuristic algorithms

U-MA-M-p-HLP Mahmutogullari and Kara [2016] Enumeration-based algorithms

Parvaresh et al. [2013] Tabu Search

Kratica [2013] Electromagnetism-like Method

U-MA-HLP He et al. [2015] MIP heuristic

U-HLLP Martins de Sá et al. [2015a] Benders Decomposition Algorithm

C-SA-HLP Hoff et al. [2017] Memory structures &&Local Search

Tanash et al. [2017] Branch-and-Bound

Serper and Alumur [2016] Variable Neighborhood Search

Stanojević et al. [2015] Evolutionary Algorithm

&& Branch-and-Bound

Niknamfar et al. [2017] Multi-objective Biogeography-based

Optimization && Opposition NSGA-II

C-SA-OM-HLP Puerto et al. [2016] Branch-and-Bound-and-Cut

MV-p-HLP Peker and Kara [2015] MILP formulations
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TABLE 2.4 : Reviews of the HLPs with uncertainty
Single-objective HLPs

Problem Article Exact solution algorithms
Heuristic /metaheuristic

solution algorithms

C-MA-HLP Meraklı and Yaman [2017] Benders decomposition algorithm

U-SA-T-p-HLP Gao and Qin [2016] Chance-constrained programming Intelligent algorithm

Yang et al. [2013b] Genetic Algorithm &&

Local search

Yang et al. [2013a] Particle Swarm Optimization

U-SA-IH&S Yang et al. [2016] Fuzzy random programming Multi-start simulated annealing

U-MA-M-p-HLP Meraklı and Yaman [2016] Benders decomposition algorithm

U-MA-HLP Zhai et al. [2016] Variable neighbourhood search

&& Genetic Algotithm

U-RA-M- p-HLP Peiró et al. [2014] Heuristic based on GRASP

U-HLP Shahabi and Unnikrishnan [2014] Conic integer programming

Shahabi and Unnikrishnan [2014] Conic integer programming

Multi-objective HLPs

Problem Article Exact solution algorithms
Heuristic /metaheuristic

solution algorithms

U-SA-HLP Yang et al. [2017] Two-phase approach

C-SA-HLP Zhalechian et al. [2017b] Two-phase solution method

C-SA-p-HLP Zhalechian et al. [2017c] Me-based possibilistic programming Hybrid differential evolution&&

imperialist competitive algorithm

U-SA-T-M-p-HLP Mohammadi et al. [2016] Fuzzy-queuing approach Evolutionary algorithm

based on game theory &&

invasive weed optimization

C-SA-V-p-HLP Ghodratnama et al. [2015] Fuzzy goal programming

&&Torabi and Hassini’s method

Mohammadi et al. [2013a] Imperialist Competitive Algorithm

C-SA-SHLP Mohammadi et al. [2014] Mixed possibilistic– Simulated annealing &&

stochastic programming Imperialist Competitive Algorithm
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et al. (2013)Lopes et al. [2013] presented a taxonomy taking into account the structure characteristics,
solution methods and objectives of the LRPs up to 2013. Prodhon and Prins [2014] analysed the recent
literature of the standard and new extensions of the LPR since the survey of Nagy and Salhi [2007]. Drexl
and Schneider [2015] focused on the survey of variants and extensions of the LRP. Albareda-Sambola
[2015] provided an overview of the most relevant contributions on the so-called classical location-routing
problems. Later in 2017, Schneider and Drexl [2017] reviewed the literature of standard LRP between 2006
and spring 2016 by presenting detailed descriptions of the individual articles.

In this section, we classified the LRP and its variant problems by several criteria that most of the lite-
rature used in Section 2.2.1. The benchmark instances are also given in Section 2.2.2. In Section 2.2.3, we
focus on the standard Capacitated Location-routing Problem (CLRP), describing the definition of the stan-
dard CLRP, the mathematical models and afterwards, the solution methods to solve the standard CLRP are
reviewed from the year of 2002 to 2017. Section 2.2.4 gives a breif introduction of the multi-objective LRPs
and highlights the most relevant articles to our problems. Finally, the conclusion of the main constribution
is in the Section 2.2.5.

2.2.1 Classification of the LRPs
Since there are numerous types or variants of LRPs, a summary of the important classifying criteria helps
to capture the main characteristics of the problems and get an overview of the research field of the LRPs.
The basic and main criteria of the LPRs are shown below :

– The solution domain : the discrete domain where the potential locations for opening facilities are
particular nodes of a graph ; the continuous domain where the facilities are allowed to be located
anywhere in a sphere or plane ; the network where the candidate locations may be chosen to locate
facilities at any vertex or anywhere on a link (edge, arc) of a network ;

– The nature of data : the LRPs in which all the data are pre-specified (deterministic data) ; the LRPs
that some of the data are given with a probability distributions (stochastic data) ; and the LRPs that
some of the data are in the form of fuzzy numbers (fuzzy data). One can refer to the survey paper of
Berman et al. [1995] regarding the LRPs with uncertainty ;

– The planning period : the static problems compromise only one determined period ; the periodic LRPs
(PLRP) include multiple planning periods with deterministic data ; the dynamic LRPs also consider
multiple planning periods but some information such as customer demand are unknown at first and
become available over time ;

– The vertex routing and arc routing : the vertex routing problems serve customers at vertices while the
Location-arc routing problems (LARP) consider demands along the arcs of the network ;

– The echelon of distribution network : in the single echelon problems, customers are directly served
by depots ; in the multiple echelon problems, routes are added to supply the depots from several
main facilities or plants before serving the customers. For each echelon, some pre-specified vehicles
are only allowed to visit the facilities defining the echelon. There are load transfers among different
echelons. In particular, many papers of the two-echelon LRPs (2E-LRP) have appeared in the last few
years and one survey paper of the 2E-LRP is found given by Cuda et al. [2015] ;

– The number of objective functions : single-objective problems usually consider the minimization
of the total cost while multi-objective problems deal with several objective functions such as cost,
service quality and environment affection ;

Other main variant LRPs are the Prize-collecting LRPs (PCLRPs), the Location-inventory-routing pro-
blem, the LRP with Simultaneous Pickup and Delivery (LRPSPD) and the Many-to-many LRPs. PCLRPs
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allow some customers not to be visited by any tour but a penalty called outsourcing cost are applied to these
customers (Ahn et al. [2012]). Location-inventory-routing problems take the inventory into account and ta-
ckle with the decisions of time and amount of demand to order from the manufacturer (Zhang et al. [2008]).
The LRPSPD not only consider the delivery scheme but also include the pick-up demand of customers in
the network. Goods are delivered to one customer from one selected depot. At the same time, the goods
are picked up from the customer. The simultaneous deliveries and pick-ups for one customer happen in the
same vehicle (Karaoglan et al. [2011]). The many-to-many LRPs (MMLRPs), which is very similar to our
researched problem, consider both the simultaneous or separate pick-ups and deliveries with pre-determined
O-D demands. The decisions of load transfer between the facilities are also part of the solutions (Nagy and
Salhi [1998]). The concrete reviews of the MMLRPs are presented in Section 2.3.

Recently, a new variant of LRPs called the Latency Location-Routing Problem (LLRP) is introduced
consisting of optimally determining both the locations of depots and the routes of vehicles to minimize
the waiting time of recipients (Moshref-Javadi and Lee [2016]). Other variant LRPs were discussed in the
article of Drexl and Schneider [2015].

2.2.2 Benchmark instances of the LRPs

In order to evaluate the efficiency of the developed solution methods and the solution quality, some standar-
dized benchmark instances have been extensively used in recent literature. The list of the main benchmark
instances are show in Table 2.5 (Drexl and Schneider [2015], Schneider and Drexl [2017]). The benchmarks
for the LRP are also widely used in many papers of LRP variants to assess the performance of their propo-
sed methods. Table 2.5 presents the reference which was the first to introduce the instances, the numbers
and size of the instances, as well as the internet link of getting access to those instances. For simplicity, the
following sections use the acronyms of the benchmark instances to discuss the articles that are mentioned.



34 CHAPITRE 2. LITERATURE REVIEW

TABLE 2.5 : Benchmark instances of the LRPs

Acronym First reference
Number of

Size1 Link
Instances

Perl Ph.D. dissertation 5 2–15/12–318 sweet.ua.pt/sbarreto/_private
of Perl (1983) /SergioBarretoHomePage.htm

TB Tuzun and Burke [1999] 36 10–20/100–200 prodhonc.free.fr/homepage
B Ph.D. dissertation of Barreto (2003) 13 5–14/21–150 sweet.ua.pt/sbarreto/_private

and used in Barreto et al. [2007] /SergioBarretoHomePage.htm
ADF Albareda-Sambola et al. [2005] 15 5–10/10–30 Not on the Internet
PPW Prins et al. [2006b] 30 5–10/20–200 prodhonc.free.fr/homepage
ABR Akca et al. [2009] 12 5/30–40 claudio.contardo.org/instances
BMW Baldacci et al. [2011] 4 14/150–199 claudio.contardo.org/instances
HKM Harks et al. [2013] 27 100–1000/1000–10,000 www.coga.tu-berlin.de/v-

menue/download_media/clrlib

2E-LRP2

GPTV Gonzalez-Feliu et al. [2008] 105 1/2–4/12–50 people.brunel.ac.uk/ ?mastjjb
/-jeb/orlib/vrp2einfo.html

CPMT Crainic et al. [2010] 132 1/2–10/50–250 people.brunel.ac.uk/ ?mastjjb
/-jeb/orlib/vrp2einfo.html

NPP-N Nguyen et al. [2010] 24 1/5–10/20–200 prodhonc.free.fr/homepage
NPP-P Nguyen et al. [2010] (PPW modified 30 1/5–10/20–200 prodhonc.free.fr/homepage

by adding one level-0 facility)
S Sterle [2008] 93 2–5/3–20/8–200 Not on the Internet

Other LRPs

Prodhon PLRP3, Prodhon and Prins [2008] 30 5–10/20–200 prodhonc.free.fr/homepage
KAKD LRPSPD4, Karaoglan et al. [2011] 37 2–10/8–100 Not on the Internet
LPFS LARP5, Lopes et al. [2014] 30 11–140 lore.web.ua.pt

1 Structure of the instance size : min–max number of facilities/ min–max number of customers
2 2E-LRP : two echelon location-routing problem
3 PLRP : periodic location-routing problem
4 LRPSPD : location-routing problem with simultaneous pick-up and delivery
5 LARP : location-arc routing problem
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2.2.3 State-of-the-art of the standard CLRP in fifteen years
This section addresses the standard CLRP which we define as a discrete, static, deterministic, single-echelon
and single-objective location-routing problem. No inventory decisions are considered. In the problem, the
following constraints must be satisfied :

(1) Both the depots and vehicles are capacitated and subject to a fixed cost when they are utilized ;

(2) The set of potential depots is finite ;

(3) The total demand of customers assigned to one depot must fit its capacity ;

(4) Each customer is served by one single vehicle and assigned to only one depot ;

(5) Each route begins and ends at the same hub ;

(6) Each vehicle performs at most one trip and the total demand of the customers it visits must not exceed
its capacity.

In the following parts of this section, we introduce the mathematical models of the standard CLRP, further-
more, a wide overview on the literature researching the standard CLRP is given.

Mathematical model for the standard CLRP

The initial studies of the LRPs focused on the version with either uncapacitated depots or uncapacitated
vehicles (Laporte et al. [1986], Laporte et al. [1988]). In 2002, Wu et al. [2002] proposed a mathematical
formulation for the standard CLRP considering an unlimited homogeneous fleet. Later, Belenguer et al.
[2011] added a new variable into the CLRP model and developed a two-index vehicle-flow formulation.

Prins et al. [2006b] proposed a mixed integer linear programming (MILP) model with only binary
decision variables. According to Prins et al. [2006b], the CLRP can be defined on a complete and undirected
graph G(N,A,C), in which N is the set of nodes consisting of the potential depot subset H and customer
subset I ; A is the set of arcs and each arc a ∈ A satisfies the triangle inequality ; C is the distance-based
cost matrix of traversing each arc. A set of unlimited homogeneous vehicles J are shared by all the hubs
and subject to a capacity constraint. The notations used in the model of CSALRP are shown in Table 2.6.

TABLE 2.6 : Notations used in the model of the CLRP
Fk Opening cost of hub k

Γk Capacity of hub k

Di Demand of customer i

Q Capacity of a vehicle

V F Fixed cost of using a vehicle

Ca Cost of traversing the arc a

Yk Binary variable : if the hub is located at node k or not

zik Binary variable : if customer i is assigned to hub k or not

faj Binary variable : if arc a is traversed by vehicle j



36 CHAPITRE 2. LITERATURE REVIEW

The model of the standard CLRP can be formulated as

min
∑
k∈H

FkYk +
∑
a∈A

∑
j∈J

Cafaj +
∑
j∈J

∑
a∈δ+(J)

V Ffaj (2.43)

Subject to∑
j∈J

∑
a∈δ−(i)

faj = 1 ∀i ∈ I (2.44)

∑
i∈I

∑
a∈δ−(k)

Difaj ≤ Q ∀j ∈ J (2.45)

∑
a∈δ+(k)

faj −
∑

a∈δ−(k)

faj = 0 ∀j ∈ J,∀k ∈ N (2.46)

∑
a∈δ+(k)

faj ≤ 1 ∀j ∈ J (2.47)

∑
a∈L(S)

faj ≤ |S| − 1 ∀S ⊆ I,∀j ∈ J (2.48)

∑
a∈δ+(k)∩δ− (I)

faj +
∑

a∈δ−(i)

faj ≤ 1 + zik ∀i ∈ I,∀j ∈ J,∀k ∈ K (2.49)

∑
i∈I

Dizik ≤ ΓkYk ∀k ∈ K (2.50)

faj, zik, Yi ∈ {0, 1} ∀a ∈ A,∀k ∈ K, ∀i ∈ I,∀j ∈ J (2.51)

The objective function (2.43) minimizes the total costs which include the hub opening costs, arc traver-
sing costs and costs of using vehicles. Constraints (2.44) ensure that each customer is served by a single
route. Constraints (2.45) guarantee that the total demand each vehicle visits must respect the vehicle capa-
city. Constraints (2.46) and (2.47) guarantee the continuity of each route and that each route starts and ends
at the same hub. Constraints (2.48) eliminate illegal subtours. Constraints (2.49) show that a customer can
be assigned to a hub only if there are routes connecting the hub. Constraints (2.50) are the hub capacity
constraint. Constraints (2.51) define the decision variables.

The solution methods for the standard CLRP

This part provides an overview of the literature on the standard CLRP from the year 2002 to 2017. As
stated, the CLRP includes two problems known to be NP-hard. The exact methods proposed to solve the
standard CLRP in the literature are rare compared to the heuristic and metaheuristic methods which are
usually much easier and more flexible to implement and modify. The total articles found for the standard
CLRP are listed in Table 2.7 presenting the solution methods, the benchmark instances and programme
platforms each article used. The relevant abbreviations for the solution methods are summarized in Table
2.8.

(1) Exact solution methods
There are five works found which proposed exact algorithms to solve the standard CLRP. Akca et al.

[2009] presented a branch-and-price algorithm (B&P) based on the set-partitioning formulation and pro-
posed five classes of valid inequalities. An elementary shortest path problem with resource constraints
(ESPPRC), which was well-studied as a subproblem in many different routing problems, was solved by
means of the exact and heuristic variants of the label setting algorithms. For computational testing, they
implemented four variants of the B&P algorithms based on the different pricing schemes. Computational
experiments are performed with the Perl and B instances. Furthermore, they created the ABR instances
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to test the algorithm. The largest instances with 5 depots and 40 customers were solved to optimality and
good upper bounds could be quickly obtained. Later, Baldacci et al. [2011] applied the formulation of Akca
et al. [2009] and described a new exact algorithm. In the method, a bounding procedure based on dyna-
mic programming (DP) and dual ascent (DA) methods decomposed the LRP into a multi-capacitated depot
vehicle-routing problems (MCDVRPs).The computational experiments were conducted with the Perl, TB,
B, ABR, PPW and BMW instances. 50 out of the 60 instances including the largest instance of 14 depots
and 199 customers were solved to optimality. Furthermore, 25 of those instances were solved to optimality
for the first time and 25 best-known solutions were improved.

Belenguer et al. [2011] proposed a zero-one linear model which was strengthened by new families of
valid inequalities. A Branch-and-Cut (B&C) approach was presented and evaluated by testing on the Perl,
B, ABR and PPW instances. The computational results showed that 26 instances with up to 5 depots and
50 customers were solved to optimality. Contardo et al. [2013a] extended the two-index formulation of Be-
lenguer et al. [2011] and introduced three new formulations based on vehicle flows and commodity flows.
The results showed that the proposed two-index vehicle-flow formulation produced tighter gaps and was
able to solve large instances with up to 100 customers. In the article of Contardo et al. [2013a], numerous
additional inequalities are added to the arc-variable formulation of Belenguer et al. [2011]. An exact algo-
rithm based on Cut-and-Column Generation was proposed and showed that the algorithm outperformed the
results obtained by Belenguer et al. [2011] and Contardo et al. [2013a].

(2) Heuristic solution methods
Barreto et al. [2007] proposed a cluster analysis based on the sequential heuristic of distribution-first,

location-second. Moreover, four grouping techniques and six proximity measures were used to obtain dif-
ferent versions of the heuristic. The evaluation of the proposed heuristic proved its good performance with
an average small gap.

Prins et al. [2007] combined the Lagrangian relaxation (LR) and the granular tabu search (GTS) to form
an iterative two-stage heuristic. The initial feasible solution was generated by a greedy heuristic. In the
first stage, each route of the current solution was aggregated into a super-customer and a repair procedure
disaggregated the super-customers into a new LRP solution. Then in the second stage, the solution was
improved by a GTS heuristic. The experiments showed that the procedure was able to find the same or even
better solutions in short time compared to the methods of Tuzun and Burke [1999], Prins et al. [2006b] and
Barreto et al. [2007]. Chen and Ting [2007] proposed another two-stage heuristic. The first stage was similar
to Prins et al. [2007] while the second stage applied a SA to improve the solution. Computational tests were
conducted using the Perl and B instances. The proposed heuristic was capable of improving the results
with less computing time. A different two-phase hybrid heuristic algorithm was developed by Escobar et al.
[2013]. The construction phase applied a Lin–Kernighan–Helsgaun heuristic and the second phase used a
modified GTS with different diversification strategies to improve the solutions. Computational experiments
showed that the proposed algorithm was able to find the highest number of best known solutions and even
produced several new best known solutions in short computing time.

Lopes et al. [2008] developed a decision-support tool (DST) to implement the CLRP with two levels
(depots and customers). The solution procedure embedded was a sequential route-first location-second heu-
ristic. It enabled access to online geographic data through web map servers (WMS). Computational ex-
periments were conducted using the B instances. The average gap between the heuristic solution and the
lower bound obtained by a two-index flow formulation was 4.8%. Lam and Mittenthal [2013] proposed a
three-stage heuristic by applying a hierarchical clustering approach, a Lin–Kernighan–Helsgaun heuristic
(Helsgaun) and an LS with string-relocate and string-exchange moves respectively.

(3) Metaheuristic solution methods
Wu et al. [2002] divided the Multi-depot Location-routing problem (MDLRP) into two sub-problems,

the location-allocation problem and the general vehicle routing problem, respectively. A simulated annea-
ling (SA) based decomposition approach was developed to solve each sub-problem in a sequential manner.
Bouhafs et al. [2006] iteratively applied the SA for selecting depots and the Ant Colony Optimization for
determining routes.
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Prins et al. [2006a] presented a Greedy randomized adaptive search procedure (GRASP) complemented
by a learning process and a path relinking (PR). In the GRASP, a randomized extended Clarke and Wright
algorithm (RECWA) was used to generate solutions and construct an elite set. In the post-optimization step,
they used the PR to improve new solutions from the elite set. Computational results indicated that compared
to the methods of Tuzun and Burke [1999] and Barreto et al. [2007] the proposed algorithm improved the
solution quality but the method of Tuzun and Burke (1999) was faster on the tests with TB instances. For the
same problem, Prins et al. [2006b] described another method called the Memetic Algorithm with Population
Management (MA|PM). A small population was firstly initialized by the RECWA (Prins et al. [2006a]) and
a randomized nearest-neighbor-based (NN) method. Then the solutions were improved by applying Local
Search (LS) with given probabilities. To keep the diversity of the population, a distance measure proposed
by Prins et al. [2006a] was applied. Such method was able to obtain the best solutions for all instance sets
of TB, B, and PPW but with higher computing time.

Duhamel et al. [2008] proposed a different MA by applying a giant-tour without route or depot deli-
miters to present a complete solution. A splitting procedure with a dynamic-programming based labeling
algorithm was used to evaluate the fitness. In numerical tests on the TB and PPW instances, the quality of
the proposed MA was between the quality of Prins et al. [2006b] and Prins et al. (Prins et al. [2006a], Prins
et al. [2007]). However, the MA required significantly higher computing time. Later in 2010, Duhamel et al.
[2010] described a hybrid GRASP with an Evolutionary Local Search (ELS) to solve the CLRP. The initial
solutions were constructed by the RECWA of Prins et al. [2006b] and transformed into a giant tour repre-
sentation. A tabu list with forbidden facilities was modified by a number of ELS iterations. The algorithm
stopped after a given number of GRASP iterations. Such method improved a large number of best solutions
compared to the methods of Prins et al. [2006a] and Prins et al. [2007] but still required higher computing
time.

Marinakis and Marinaki [2008b] provided a bilevel genetic algorithm (GA). The GRASP and Expan-
ding Neighborhood search (ENS) procedure described in Marinakis and Marinaki [2008a] were applied to
generate the initial population. A case study of a Greece company was presented. No results comparison
with Prins et al. [2006b], Prins et al. [2006a] and Prins et al. [2007] was discussed.

In the article of Yu et al. (2010), an SA based solution approach was presented. The experiment of the
proposed method on the TB, B, and PPW instances showed that the solution quality of the SA dominated
all the methods of Tuzun and Burke [1999], Bouhafs et al. [2006], Prins et al. [2006b], Prins et al. [2006a],
Prins et al. [2007], Barreto et al. [2007] and Duhamel et al. [2010] with a sacrifice of higher computing time
which was, however, considered to be acceptable for a strategic problem.

Derbel et al. [2011] investigated many heuristic solution approaches to solve the LRP and proposed
a variable neighbourhood search (VNS) algorithm. Such algorithm embedded a variable neighbourhood
descent (VND) into the LS process. The performance of the proposed method was tested on the B ins-
tances. Competitive results were obtained compared with existing solution methods. No computing time
was reported. Jabal-Ameli et al. [2011] proposed another VNS with facility reduction mechanism and ob-
tained competitive solutions. Ting and Chen [2013] developed an ACO algorithm which iteratively applied
three ant colonies for facility location, customer assignment and routing. The ACO was able to improve the
solution quality of Yu et al. [2010] on the B, TB, PPW instances in reasonable time.

Escobar et al. [2014] applied a VNS to select the neighbourhood structure for the GTS. The algorithm
was able to achieve better solution quality within a shorter time. Contardo et al. [2014] presented a matheu-
ristic using a GRASP and heuristic column generation. The results were compared with numerous previous
authors and proved to be capable of yielding similar or tighter average gaps for all instance sets. Recently,
Schneider and Löffler [2015] introduced a tree-based search algorithm (TBSA) to tackle large-scale ins-
tances. The proposed TBSA combined a tree-like search on depot configurations and a GTS for route
improvement. Computational experiments showed the good solution quality on newly generated instances
with up to 600 customers and 30 depots.
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TABLE 2.7 : State-of-the-art of the standard CLRP
Author Problem

Exact Heuristics/
Program Benchmark instances

Algorithm Metaheuristics
Akca et al. [2009] CLRP B&P Linux based worksation Perl/B/ABR

Belenguer et al. [2011] CLRP B&C Visual C++ Perl/B/ABR/PPW

Baldacci et al. [2011] CLRP DP&DA Visual CPLEX 11.0
Perl/TB/B/ABR/

PPW/BMW
Contardo et al. [2013a] CLRP B&C Visual CPLEX 12.2 Perl/TB/B/ABR/PPW

Contardo et al. [2013b] CLRP C&CG
Visual C++ Perl/TB/B/ABR/

/CPLEX 12.2 PPW/BMW
Wu et al. [2002] MDLRP SA based LINGO/Visual C++ Perl/Created

composition
Bouhafs et al. [2006] CLRP SA+ACS – Perl/B
Prins et al. [2006a] CLRP GRASP+PR Visual C++ TB/B/PPW
Prins et al. [2006b] CLRP MA|PM Visual C++ TB/B/PPW
Barreto et al. [2007] CLRP Cluster analysis – B

based heuristic
Prins et al. [2007] CLRP LR+GTS Visual C++ TB/B/PPW

Chen and Ting [2007] MDLRP LH+SA Visual C++ Perl/B
Lopes et al. [2008] CLRP DST Visual Basic 6.0 B

Duhamel et al. [2008] CLRP MA Borland C++ 6.0 TB/B/PPW
Marinakis and Marinaki [2008a] CLRP HybPSO Fortran 90 Perl/B
Marinakis and Marinaki [2008b] CLRP Bilevel GA Fortran 90 Perl/B

/Greek company
Duhamel et al. [2010] CLRP GRASP+ELS Borland C++ 6.0 TB/B/PPW

Sodsoon [2010] CLRP MMAS Visual C++ 6.0 Perl
Yu et al. [2010] CLRP SA C language TB/B/PPW

Jokar and Sahraeian [2011] CLRP Two-phase heuristic MATLAB R2009b B/PPW
Nadizadeh et al. [2011] CLRP GCM MATLAB 7.0.4 B

Derbel et al. [2011] CLRP VND C language B
Jabal-Ameli et al. [2011] CLRP VND MATLAB R2007b TB/B

Jokar and Sahraeian [2012] CLRP SA MATLAB B
Ting and Chen [2013] CLRP MACO Borland C++ 5.0 Perl/TB/B/PPW

Lam and Mittenthal [2013] MDLRP Clustering- – TB/B
based heuristic

Escobar et al. [2013] CLRP Two-phase HGTS Visual C++ TB/B/PPW
/CPLEX 12.1

Contardo et al. [2014] CLRP GRASP + LS Visual C++ ABR/TB/B/BMW
/CPLEX12.5

Escobar et al. [2014] CLRP GVTNS C++ TB/B/PPW
Rybičková et al. [2016] CLRP GA language Julia Created
Kechmane et al. [2016] CLRP MA C language PPW

Lopes et al. [2016] CLRP hybrid GA C# TB/B/PPW
Quintero-Araujo et al. [2017] CLRP BR Java PPW/B/ABR
Schneider and Löffler [2015] CLRP TBSA C++ TB/PPW/Created



40 CHAPITRE 2. LITERATURE REVIEW

TABLE 2.8 : Summary of abbreviations of the solution methods
B&P Branch-and-Price algorithm
B&C Branch-and-Cut algorithm
DP&DA Dynamic programming and dual ascent methods
C&CG Cut-and-column generation
SA Simulated Annealing
ACS Ant Colony System
GRASP Greedy randomized adaptive search procedure
PR Rath relinking
MA|PM Memetic Algorithm with Population Management
LR Lagrangean relaxation
GTS Granular Tabu Search
LH Lagrangean heuristic
DST decision-support tool
MA Memetic Algorithm
HybPSO Hybrid Particle Swarm Optimization
GA Genetic Algorithm
ELS Evolutionary Local Search
MMAS MAX–MIN Ant System
GCM Greedy Clustering Method
VND Variable Neighborhood Descent based heuristic
MACO Multiple Ant Colony Optimization
2-Phase HGTS Two-phase Hybrid Granular Tabu Search
LS Local Search
GVTNS Granular Variable Tabu Neighborhood Search
BR Biased-randomization
TBSA Tree-based Search Algorithm

2.2.4 The multi-objective LRPs
There has been a significant amount of literature published on the general LRP and its multiobjectve va-
riants. Among those problems, the hazardous waste location-routing problem is one of the hub location
problems focusing on multiple objectives. Further discussions can refer to the article of Lopes et al. [2013].
Two recent articles from Ardjmand et al. [2015] and Asgari et al. [2017] proposed a Genetic Algorithm
(GA) to solve the hazardous waste LRP. In consideration to the total cost and risk in the Hazardous Mate-
rials Management (HAZMAT) LRP network, Ardjmand et al. [2015] formulated a bi-objective model and
proposed a GA to find high quality solutions in a short time. Asgari et al. [2017] developed a multi-objective
model for the obnoxious waste LRP with three objective functions of minimizing the undesirability of the
treatment and disposal facility, the total cost, and the risk of transporting untreated wastes. A Memetic Al-
gorithm was proposed applying a Tabu Search (TS) algorithm as the local search and was experimented on
the HAZMAT system in Singapore.

Another focus of the multi-objective LRP lies in reducing the environmental effect in addition to the
minimization of total cost. Govindan et al. [2014] introduced a two-echelon location–routing problem
with time-windows (2E-LRPTW) in a perishable food supply chain network (SCN). They proposed a bi-
objective optimization model by considering the cost and environmental effect at the same time. A hybrid
multi-objective metaheuristic algorithm combining the adapted Multi-Objective Particle Swarm Optimi-
zation (MOPSO) and the Adapted Multi-Objective Variable Neighborhood Search (AMOVNS) algorithm
was proposed. More recently, Tricoire and Parragh [2017] focused on a Green City Hub Location-Routing
Problem (GCHLRP) with fleet-size-and-mix for a long-term horizon. They built a bi-objective model in
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which only single allocation was allowed and routing length was restricted. The demand of customers to be
served differed on different days within the horizon. Two objectives were intended to be obtained simulta-
neously : to minimize the fixed cost which was caused by opening hubs and using vehicles ; and to minimize
the CO2 emissions which were incurred by daily operational routing. The CO2 emissions were dependent
on different arcs and vehicle loads. After modeling, a decomposition approach was used in a separate set
covering model and was tested on the instances from the industrial partners to generate approximate fronts.
Farrokhi-Asl et al. [2017] proposed and compared the Non-Dominated Sorting Genetic Algorithm (NSGA-
II) and Multi-Objective Particle Swarm Optimization (MOPSO) for a bi-objective location-routing-problem
in waste collection management. The results showed that the NSGA-II outperforms the MOPSO in solving
the target problems. Toro et al. [2017] proposed a bi-objective Capacitated Location-Routing (CLRP) mo-
del with the purposes of minimizing the operational costs and the environmental effect (CO2 emissions).
Based on the forces acting on each used vehicle, they developed a fuel consumption formulation. A classic
ε-constraint method was implemented on eight test scenarios, up to 100 customers, and a sensitivity analysis
was conducted to reveal the trade-offs between the two objectives.

2.2.5 Conclusion
The main contribution of this section lies in giving a large overview of the standard CLRP. The definitions
and models are presented and the main literature of 15 years up to 2017 has been reviewed by detailed
descriptions of the solution methods to solve the standard CLRP.

2.3 The Hub Location-Routing Problem
The Hub Location-Routing Problem (HLRP) is similar to the Many-to-Many Location-Routing Problem
(MMLRP) introduced by Nagy and Salhi [1998], which deals with terminal locations, plans vehicle tours
and designs inter-hub flow exchanges to satisfy customer demands in order to minimize the total cost.

Table 2.9 shows the main characteristics of the HLP, the LRP and the HLRP. The symbol "×" means
that the problem inherits the features. The flow exchanged between origin-destination pairs (O-D) and the
direct links between hubs constitute two main features of the HLRP (de Camargo et al. [2013]). Figure 2.1
gives a simple illustration of the different network structures of the classic HLP, the standard LRP and the
HLRP. The HLP emphasizes the importance of the inter-hub connection and flow transfer while consider
only direct transportation between hubs and customers. On contrary, the LRP addresses the necessity of
routing customers to reduce the pick-up and/or delivery cost, however, this problem ignores the connection
among hubs. The HLRP integrates all the considerations.

TABLE 2.9 : The differences between the HLP, the LRP and the HLRP
Problem Hub location Non-hub nodes allocation Local tour O-D demand

HLP × × ×
LRP × × ×
HLP × × × ×

Although the Hub Location Problem (HLP), the Location-Routing Problem (LRP) and the Vehicle Rou-
ting Problem (VRP) have aroused much attention and have been widely investigated separately, previous
research in the area of HLRP is limited.

As mentioned above, the concept of the Many-to-Many Location-Routing Problem (MMLRP) was first
introduced by Nagy and Salhi in 1998 (Nagy and Salhi [1998]). They considered the demands to satisfy
each pair of customers (suppliers and clients) as well as the capacity restrictions of terminals. The pick-up
and delivery processes might or might not be made simultaneously within the same tours but local tours
were subjected to a routing length constraint. Wasner and Zäpfel [2004] addressed the Austria postal service
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FIGURE 2.1 : Illustration of the related problem networks

problem as a case study and investigated the possibility of direct connections between non-hub pairs for the
capacitated single allocation MMLRP. They developed a hierarchical method due to the difficulty in solving
the problem by standard solvers. Only one instance was solved in both these articles.

Catanzaro et al. [2011] proposed a Partitioning-Hub-Location-Routing Problem (PHLRP), partitioning
the target network into several sub-networks. For each sub-network, hub locations, multiple allocations and
traffic routings were scheduled with an LTL system. They presented an Integer Programming (IP) model
and explored some valid inequalities to strengthen it.

de Camargo et al. [2013] provided a new formulation and solved the MMLRP by means of a specially
tailored Benders decomposition algorithm. In their assumptions, the hubs and vehicles were subjected to a
fixed installation cost and each customer had to be visited once and was subjected to a charge, called the
handling cost, for each assignment. A discount was applied to lower the transportation cost if the freight
was transferred through hubs because of the full truckload transportation assumption between hubs. Further-
more, they allowed pick-ups and deliveries to occur simultaneously and imposed a maximum tour duration.
Their formulation led to a decomposition into two sub-problems, leading to the application of an efficient
Bender decomposition. Computational experiments were carried out based on the Australian Post (AP)
standard data set and the approach succeeded in solving problems with up to 100 nodes. In the study of
Setak et al. [2013], a comprehensive and flexible model of the HLRP was proposed. The aim was to build
a general hub network topology to minimize the total cost, establishing hub nodes and inter-hub links, and
connecting hub nodes and non-hub nodes. Paths containing only one hub node or a direct link from origin
to destination were allowed. In their experiments, data from the Australian Post (AP) and Civil Aeronautics
Board (CAB) were used. Mokhtari and Abbasi [2014] used a Variable Neighborhood Particle Swarm Op-
timization Algorithm (VNPSO) to solve the many-to-many HLRP with uncapacitated hubs. The efficiency
of the proposed algorithm was compared to a Bender’s decomposition algorithm using numerous samples
created randomly. Numerical results indicated that it performed better for large-scale problems. Zhang et al.
[2014] proposed a model for the CSAHLRP and developed a branch-and-cut algorithm, conducting experi-
ments using the AP data set. Bostel et al. [2015] studied the HLRP applied to the special features of postal
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service systems in which collections and deliveries may occur simultaneously within the same routes. A
memetic algorithm based on a genetic algorithm and a local search was developed to solve the problem. To
the best of our knowledge, only one article may be found for the study of the multi-objective HLRP. Mo-
hammadi et al. [2013b] focused on a stochastic green HLRP (SGHLRP) and tried to minimize the total cost
and the environmental effect. They proposed a multi-objective mixed integer linear programming model
and applied a Multi-Objective Invasive Weed Optimization (MOIWO) algorithm to identify Pareto optimal
solutions.

All the articles mentioned above concern problems in which the number of hubs to open needs to be de-
cided. Other articles research similar problems but with predetermined open hub numbers. Such problems
are called Many-to-Many p Hub-Location Routing Problems (MMpHLRP). Çetiner et al. [2010] developed
an iterative two-stage solution procedure for locating hubs and planning local tours. In their assumptions,
they allowed multiple allocations of non-hub to hub nodes and simultaneous pick-ups and deliveries, while
imposing a maximum tour length constraint. They applied their procedure to a randomly-generated data
set and studied a case from the Turkish postal service. Sun [2013] decomposed the HLRP into two sub-
problems : the HLP in the first stage and the multi-depot VRP in the second. An Ant Colony Optimization
(ACO) algorithm was applied to the two stages. Rieck et al. [2014] designed a many-to-many network struc-
ture with three layers : the supplier layer, the potential hub layer and the delivery layer. A mixed-integer
linear model was proposed and applied to solve 15-node networks to optimality. Rodríguez-Martín et al.
[2014] introduced a Hub Location and Routing Problem that is very close to the Single Allocation p-Hub
Median Problem (SApHMP). This aimed to position p hubs, allocate customer nodes to a single hub and
connect within the same tour customer nodes that had the same hub allocation. At most q nodes could be
allocated to one hub and just one travelling tour was allowed for each hub. A branch-and-cut algorithm was
developed to solve the problem. More recently, a solution method based on an Endosymbiotic Evolutionary
Algorithm (EEA) was proposed by Sun [2015] to deal with the hub location and vehicle routing problems
simultaneously. Zameni and Razmi [2015] presented a mixed-integer formulation for a multimodal p-hub
location-routing problem with simultaneous pick-ups and deliveries. They considered a multimodal trans-
portation system, which consisted of different transport modes with different characteristics.

The articles on the HLRP described in this section are listed and their main characteristics compared in
Table 2.10. The notations used are explained in Table 2.11. These tables illustrate the wide variety of the
characteristics of problems addressed and solution techniques used.

2.4 Environmental considerations

With the increasing concern for sustainable factors, environmental considerations have become important
to consider in logistics and transport planning models. Many factors may be considered, such as are dis-
cussed in Chardine-Baumann and Botta-Genoulaz [2014], among which the use of resources, especially
energy consumption, and pollution emitted, among which greenhouse gas (GHG) are recognized as a major
pollution factor in industrial and transport activities. Among those, the CO2 emissions are considered as
a representative factor of GHG. In this research, we will consider the minimization of CO2 emissions of
transport as well the minimization of costs as a second objective.

Many researches have been devoted to the estimation and analytical formulation of CO2 emissions.
Generally speaking, the amount of CO2 emissions and other pollution gas emitted by a vehicle mainly
depends on the vehicle load, speed and travelling distance, among other factors (Bektaş and Laporte [2011]).
In order to calculate CO2 emissions, two estimation methods are used : the fuel-based and the distance based
methodologies (Ubeda et al. [2011]).

In the fuel-based method, the CO2 emissions are based on the fuel’s consumption (Barth et al. [2005]).
By means of catching temporal CO2 emissions based on the vehicle load, the speed and the travelling dis-
tance, this methodology can be applied to estimate CO2 emissions for road freight transportation problems
such as the Pollution Routing Problem (PRP) (Barth et al. [2005], Xiao et al. [2012], Demir et al. [2012],
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TABLE 2.10 : Recent literature of the HLRP
Authors

Hub
capacity

Number
of hubs

Hub
location

Non-Hub
allocation

Routing
constraints

Exact
method

Heuristics
Application

/Data
Problem

size
Pick-up
/delivery

Our research Yes Unfixed Yes Single Capacitated CPLEX MA1 AP 100 Distinct

Nagy and Salhi [1998] Yes Unfixed Yes Single Length - Hierarchical
One

instance
249 Simultaneous

Liu and Lee [2003] No One No
Single

+ direct
Capacitated - Heuristic

Random
instances

25 Distinct

Wasner and Zäpfel [2004] Yes Unfixed Yes
Multiple
+ direct

Capacitated - Hierarchical
Austrian

parcel
10 Simultaneous

Çetiner et al. [2010] No p hubs Yes Multiple Length -
Two-stage
heuristic

Turkish
postal

81 Simultaneous

Catanzaro et al. [2011] No Unfixed Yes Multiple
Node

number
B&C2 -

Random
instances

450 Distinct

de Camargo et al. [2013] No Unfixed Yes Single Time BDA3 - AP4 100 Simultaneous

Setak et al. [2013] No Unfixed Yes
Single

+ direct
No CPLEX -

AP
& CAB5

20 Distinct

Mohammadi et al. [2013c] Yes Unfixed Yes Single
Capacitated ;
Arrival time

- MOIWO6 Random
instances

100 Simultaneous

Mokhtari and Abbasi [2014] No Unfixed Yes Single Time - VNPSO7 Random
instances

300 Simultaneous

Rodríguez-Martín et al. [2014] No p hubs Yes Single
Node

number
B&C -

AP
& CAB

50 Distinct

Rieck et al. [2014] No p hubs Yes
Single

+ direct
Capacitated -

Multi-start
+ GA8

Timbertrade
industry

140 Distinct

Zhang et al. [2014] Yes Unfixed Yes Single Capacitated
CPLEX-

B&C
- AP 100 Distinct

Zameni and Razmi [2015] No p hubs Yes Single Time GAMS GA
AP

& CAB
50 Simultaneous

Sun [2013] Yes p hubs Yes Single Capacitated -
Two-stage

ACO9

Random
instances

200 Simultaneous

Sun [2015] Yes p hubs Yes Single Capacitated - EEA10 Random
instances

200 Distinct

Bostel et al. [2015] Yes Unfixed Yes Single Capacitated CPLEX MA
AP

postal
100 Simultaneous

TABLE 2.11 : Solution method notation of the HLRP
1 MA Memetic Algorithm 2 B&C Branch-and-Cut algorithm

3 BDA Benders Decomposition Algorithm 4 AP Australian Post standard data set

5 CAB Civil Aeronautics Board data set 6 MOIWO Multi-Objective Invasive Weed Optimization

7 VNPSO Variable Neighborhood Particle Swarm Optimization algorithm 8 GA Genetic Algorithm

9 ACO Ant Colony Optimization algorithm 10 EEA Endosymbiotic Evolutionary Algorithm

Demir et al. [2014] and Kramer et al. [2015]).
Alternatively, the distance based methodologies use emission factors based on travelled distance to

estimate CO2 emissions (Ubeda et al. [2011]). This method is based on the distance the vehicle travels and
the distance-based emission factors which are based on the fuel type. Instead of the real vehicle load used
by the first method, it considers fixed load coefficients to generate the distance-based emission factor, such
as the emission factor of fully loaded, 50%-loaded, empty truck, etc. Therefore this second method may
evaluate the CO2 emissions only when the percentages of vehicle load and relevant emission factors are
assumed known.

Both the Commission of the European Communities (DGVII) and the Department for Environment,
Food and Rural Affairs of United Kingdom (DEFRA) apply the distance-based method to estimate general
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CO2 emissions for global transportation. The report of DGVII (MEET, Hickman et al. [1999]) classifies
vehicles into several categories according to their gross weights. A formulation is developed to calculate
CO2 emission factors corresponding to unloaded and fully loaded vehicles. The DEFRA directly presents
CO2 emission factors corresponding to different vehicle loads based on estimated data of UK vehicles
(DEFRA [2005]).

In this research we will use both methods for estimated emissions for collection or distribution tours,
where vehicle loads are varying, or for inter-hub transport where we assume full vehicle loads.

2.5 Conclusions and research proposals
In this chapter, we reviewed recent literature on the HLP and the LRP which have attracted many resear-
chers, as well as the literature on the HLRP. We shed light on basic classification, mathematic models and
solution approaches (algorithms) for both the classic and variant problems. By means of surveying the ma-
thematical models and solutions methods, we can inspire from the efficient formulations and methods to
determine our research problem and build the problem models.

It is obvious that the research on the HLRP in LTL transport network is very limited. Most of the
papers on the HLRP fail to take into account vehicle capacity constraints and the determination of the
open hub numbers at the same time. Almost all the researches of the HLRP consider the demand structure
that the collection and delivery of products happen simultaneously. Thus the development of a general
model for the HLRP that the collections and deliveries are performed separately in capacitated vehicles is
a promising research direction. It also can be concluded from the literature of the HLP, the LRP and the
HLRP that although some heuristics or exact solution methods have been proposed, only small and medium
problems can be solved. The development of the hybrid metaheuristic methods is the trend to solve the large-
size problem. Furthermore, although the requirement of reducing the effect of transport on enviroment is
mounting, the environment aspect in the HLRP literature is ignored. There is a need to develop the models
taking both the economical and environmental aspects into consideration. Inspired by the literature of the
Pollution Vehicle Routing Problem (PRP) and sustainable Supply Chain Network Design (SCND), the
environment aspect can be considered in the HLRP.

Our work, developed in the next chapters, is devoted to the CSAHLRP with distinct pick-ups and deli-
veries for general many-to-many LTL transport. We propose a new MILP model by integrating the efficient
flow variables and constraints of the VRP into the classic HLP formulations. Solutions are obtained by sol-
ving the model with an MILP solver, and developing a Memetic Algorithm (MA) for instances of different
sizes based on the AP data set. Further, we extend the single-objective HLRP into a multi-objective problem
by considering both the total cost and the CO2 emissions caused by transportation (freight collection, de-
livery and inter-hub transfer). A hybrid MA is developed to generate the approximated Pareto Front of the
non-dominated cost/CO2 solutions. At last, the HLRP model is decomposed into the HLP and VRP models.
The proposed single-objective is adapted to deal with the HLRP by solving the HLP first and then the VRP
on the separate collections and deliveries.





II
Single-objective HLRP for minimizing cost
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3
Mathematical model for the single-objective
HLRP

In this chapter, we present a single-objective Hub Location-Routing mathematical formulation. The model
contains decisions of the determination of hub numbers, the decisions of hub location and product flows
exchange between hub points. It also integrates vehicle routing formulations and decision variables, such
as the flow variables on vehicle, to schedule local tours for the HLRP. The formulations of hub location and
allocation are inspired from the classic HLP model (O’kelly [1987a], Ernst and Krishnamoorthy [1999],
Correia et al. [2011], Saiedy et al. [2011], Karimi et al. [2014]). The other important routing and vehicle
load (flow) variables and formulations are motivated by the works of Single Capacitated Vehcile Routing
Problem (SCVRP) (Kara et al. [2007], Toth and Vigo [2014]) and Pollution Vehicle Routing problem (PRP)
(Demir et al. [2012], Xiao et al. [2012], Demir et al. [2014] and Kramer et al. [2015]).

This chapter is organized as follows. Section 3.1 introduces the problem definition of the CSAHLRP
and corresponding assumptions. Section 3.2 presents notations for parameters and decision variables. With
these notations, a Mixed Integer Linear Programming (MILP) HLRP model is proposed with comprehensive
explanations.

3.1 Problem definition

The CSAHLRP studied here is defined on a complete directed graph G = (N,A) containing a set of
vertices N and a set of arcs A where N = H ∪ I ∪ J . H = {k | k = 1, 2, ...h} presents a set of potential
hubs. Each potential hub is capacitated and subjected to a fixed cost Fk once selected open. I = {i | i =
h+1, h+2, ..., h+m} and J = {j | j = h+m+1, h+m+2, ..., h+m+n} stand for the sets of customers
and clients who should be served. The numbers and locations of potential hubs, suppliers and clients are
known data. Each pair of i and j (i ∈ I , j ∈ J) is associated with a given amount of freight flow qij to be
shipped between them. The total supplyOi =

∑
j∈J

qij of supplier i and demandDj =
∑
i∈I
qij of client j should

be satisfied. The set A = A1 ∪ A2 ∪ A3 includes the collection arc set A1 = {(i, j) : i, j ∈ I ∪ H}, the
delivery arc set A2 = {(i, j) : i, j ∈ J ∪H} and the inter-hub transfer arc set A3 = {(l, k) : l, k ∈ H}. A
fleet of identical vehicles available for collections and deliveries is denoted as set V with a fixed capacityQ.
Once a vehicle travels from non-hub node i to non-hub node j, a routing cost is incurred that is dependent
on the distance dij . The transportation costs between two hubs are determined by travelling distances and
transferred flows and inter-hub transport is not subject to capacity restrictions. To model the collection and
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delivery routes, a flow variable fij is used (see Karaoglan and Altiparnak (2105)), representing the vehicle
load on each arc(i, j). Figure 3.1 illustrates the general network of the HLRP.

FIGURE 3.1 : General network of the HLRP

The following other constraints must hold :

- The capacity of each hub and collection/delivery vehicle must not be exceeded.

- The collection and delivery processes are independent. Collections are executed preceding long dis-
tances transfers of inter-hub, while deliveries are performed after the inter-hub transport processes.

- Each route must start and end at the same selected hub.

- During collections and deliveries, suppliers /clients on the same route must be assigned to the same
selected hub.

- The demand of each non-hub node has to be consolidated in the allocated hub, which means that the
direct transportations for supplier-client pairs are forbidden.

- Suppliers or clients on the same route must be assigned to only one selected hub.

- Each route must be visited by only one vehicle and each vehicle must contain only one type of flow
(collected or delivered).

- The offers of suppliers can be transferred at most two hubs before delivering to clients.

- In inter-hub transportations, vehicles connect hubs directly to one another and there are no tours

The problem is to determine simultaneously the location of the hubs, the allocation of the suppliers and
clients to hubs, the collection and delivery routing processes between nodes allocated to the same hub, as
well as the inter-hub freight transportation. The optimization goal is to minimize the total fixed and variable
costs.
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TABLE 3.1 : Notation used in the model of the HLRP
Sets Description
H Set of hub nodes, H = {k | k = 1, 2, ..., h}
I Set of supplier nodes, I = {i | i = h+ 1, h+ 2, ..., h+m}
J Set of client nodes, J = {j | j = h+m+ 1, h+m+ 2, ..., h+m+n}
N Set of all nodes, N = H ∪ I ∪ J
A1 Set of arcs in collection routing, A1 = {(i, j) : i, j ∈ I ∪H}
A2 Set of arcs in delivery routing, A2 = {(i, j) : i, j ∈ J ∪H}
A3 Set of arcs in inter-hub transfer, A3 = {(l, k) : l, k ∈ H}
A Set of all arcs, A = {(i, j) : i, j ∈ N}
Parameters
Fk Fixed cost of operating hub k
Γk Capacity of hub k
C Fixed cost of a vehicle
ck Handling cost to operate one unit product in hub k , k ∈ H
Q Capacity of a vehicle
qij Flow quantity from supplier i ∈ I to client j ∈ J
dij Distance between two nodes i and j, arc (i, j) ∈ A
α Unit cost parameter for the inter-hub transport
β Unit cost parameter for the collection tour
γ Unit cost parameter for the delivery tour
Oi Total quantity of flow originating at supplier i, Oi =

∑
j∈J

qij

Dj Total quantity of flow for client j, Dj =
∑
i∈I

qij

Decision variables
Y i
kl The fraction of flow shipped from supplier i via hubs k to l, k, l ∈ H ,

and i ∈ I

zik

The allocation variable of a node i to a hub k. It is equal to 1 if the node
i is allocated to the hub k, 0 otherwise ; especially, zkk = 1 if the hub k
is selected to be open, i ∈ N, k ∈ H

xij Equal to 1 if a vehicle traverses arc (i, j), and 0 otherwise

fij
Vehicle load on arc(i, j) if a vehicle travels directly from node i to node
j, otherwise 0, (i, j) ∈ A1 ∪A2

3.2 A mathematical model for the single-objective HLRP

All the notions used in developing the corresponding HLRP model are summarized in Table (3.1). Using
these notation, the HLRP model for minimizing total costs can be formulated as follows :

HLRP-COST min
∑
k∈H

Fkzkk +
∑
i∈I

∑
(k,l)∈A3

αdklOiY
i
kl +

∑
(i,j)∈A1

βdijxij +
∑

(i,j)∈A2

γdijxij

+
∑
i∈I

∑
k∈H

ckOizik +
∑
i∈I

∑
(k,l)∈A3

clOiY
i
kl +

∑
k∈H

∑
i∈I∪J

Cxki
(3.1)

Subject to
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— hub location constraints :

zik ≤ zkk ∀i ∈ N, ∀k ∈ H (3.2)∑
k∈H

zik = 1 ∀i ∈ I ∪ J (3.3)∑
i∈I

Oizik ≤ Γkzkk ∀k ∈ H (3.4)∑
j∈J

Djzjl ≤ Γlzll ∀l ∈ H (3.5)∑
l∈H

Y i
kl = zik ∀i ∈ I,∀k ∈ H (3.6)∑

k∈H

Y i
klOi =

∑
j∈J

qijzjl ∀i ∈ I,∀l ∈ H (3.7)

— collection routing constraints :∑
j∈I∪H

xij = 1 ∀i ∈ I (3.8)∑
i∈I∪H

xij −
∑
i∈I∪H

xji = 0 ∀j ∈ I ∪H (3.9)

xki ≤ zik ∀i ∈ I, k ∈ H (3.10)
xik ≤ zik ∀i ∈ I, k ∈ H (3.11)
xij + zik + zjl ≤ 2 ∀i, j ∈ I, i 6= j,∀k, l ∈ H, k 6= l (3.12)∑
j∈I∪H

fij −
∑
j∈I∪H

fji = Oi ∀i ∈ I (3.13)∑
i∈I

fik =
∑
i∈I

zikOi ∀k ∈ H (3.14)

fij ≤ (Q−Oj)xij ∀i ∈ I ∪H,∀j ∈ I (3.15)
Oixij ≤ fij ∀i ∈ I,∀j ∈ I ∪H (3.16)∑
i∈I

fki = 0 ∀k ∈ H (3.17)

fik ≤ Qxik ∀i ∈ I, k ∈ H (3.18)

— delivery routing constraints :∑
j∈J∪H

xij = 1 ∀i ∈ J (3.19)∑
i∈J∪H

xij −
∑
i∈J∪H

xji = 0 ∀j ∈ J ∪H (3.20)

xjk ≤ zjk ∀j ∈ J, k ∈ H (3.21)
xkj ≤ zjk ∀j ∈ J, k ∈ H (3.22)
xij + zik + zjl ≤ 2 ∀i, j ∈ J, i 6= j,∀k, l ∈ H, k 6= l (3.23)∑
i∈J∪H

fij −
∑
i∈J∪H

fji = Dj ∀j ∈ J (3.24)
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j∈J

fkj =
∑
j∈J

zjkDj ∀k ∈ H (3.25)

fij ≤ (Q−Di)xij ∀i ∈ J,∀j ∈ J ∪H (3.26)
Djxij ≤ fij ∀i ∈ J ∪H,∀j ∈ J (3.27)∑
j∈J

fjk = 0 ∀k ∈ H (3.28)

fkj ≤ Qxkj ∀j ∈ J, k ∈ H (3.29)

— domain of variables :

zik ∈ {0, 1} ∀i ∈ N, ∀k ∈ H (3.30)
xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ N (3.31)

0 ≤ Y i
kl ≤ 1 ∀i ∈ I,∀k, l ∈ H (3.32)

fij ≥ 0 ∀(i, j) ∈ A1 ∪ A2 (3.33)

— valid inequalities :

xij + xji ≤ 1 ∀i, j ∈ I (3.34)
xij + xji ≤ 1 ∀i, j ∈ J (3.35)∑
k∈H

zkk ≥ d
∑

i∈I
∑

j∈J qij

Γk
e (3.36)

∑
k∈H

∑
i∈I

xki ≥ d
∑

i∈I Oi

Q
e (3.37)

∑
k∈H

∑
j∈J

xkj ≥ d
∑

j∈J Dj

Q
e (3.38)

In addition, routing variables xij would be ignored in a preprocessing step whenever Oi + Oj >
Q,∀i, j ∈ I, i 6= j or Di +Dj > Q,∀i, j ∈ J, i 6= j (Karaoglan and Altiparmak [2015]).

The objective function (3.1) minimizes the total fixed and variable costs of the CSAHLRP network.
More precisely, it includes the fixed cost for opening hubs, the transportation cost between hubs, local
collection and delivery routing costs, the freight operating cost in hubs, and the fixed cost of routing vehicles
once used. Constraints (3.2) ensure that non-hub nodes can be allocated to a hub only if the hub is open.
Constraints (3.3) force each non-hub node to be assigned to only one hub (single allocation). Hub capacity
constraints (3.4) and (3.5) limit the total collection and delivery load on hubs. Constraints (3.6) and (3.7)
are flow conservation equations. They impose the demand of each supplier or client to be served by the
allocated hub (Ernst and Krishnamoorthy [1999]). Constraints (3.8) to (3.18) assure a reasonable collection
process. Constraints (3.8) guarantee that each supplier is visited just once. Constraints (3.9) guarantee an
equal number of incoming and outgoing arcs. Constraints (3.10) - (3.12) eliminate illegal routes that do not
start and end at the same hub. Constraints (3.13) are the flow conservation constraints for collections. Each
time the vehicle serves a supplier, it must load all of its demand. Constraints (3.14) ensure that the total
collection load entering each open hub equals the total demand of the suppliers who are allocated to the
hub. Constraints (3.15) and (3.16) provide an upper and lower bound for the collection flows. Constraints
(3.17) guarantee that the load on each vehicle is zero when leaving one open hub for collecting (Karaoglan
and Altiparmak [2015], Yu and Lin [2016]). Constraints (3.18) impose that if there is no arc between a
supplier node and a hub node, the flow should be zero. Constraints (3.19)-(3.29) relative to the delivery
processes represent conditions similar to those for the collections. Constraints (3.30)-(3.33) specify the
variables zik, xij , Y i

kl and fij , respectively. Constraints (3.34) to (3.38) are valid inequalities : constraints
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(3.34) and (3.35) are sub-tour elimination ; constraint (3.36) restricts the minimum number of open hubs
(Bostel et al. [2015]) ; finally, constraints (3.37) and (3.38) provide a lower bound of the total number of
vehicles required in any feasible solution.

3.3 Conclusion
In this Chapter, we focus on the CSAHLRP with distinct pick-ups and deliveries for general many-to-
many LTL transport and define the researched problem in details. The characteristic of considering the
predetermined flow for pairs of origin-destination is the main difference between the proposed HLRP and
the LRP. We propose a new MILP model by integrating the efficient flow variables and constraints of the
VRP into the classic HLP formulations.



4
A memetic algorithm for the single-objective
HLRP

Since the HLRP integrates a hub location problem (HLP) and a vehicle routing problem (VRP), which are
both NP-hard optimization problems, commercial solvers cannot solve large instances and the number of
exact solution methods of the HLP and the VRP is limited. Thus, heuristic and metaheuristic algorithms
have been developed in order to obtain good quality solutions in a reasonable computing time. In this
chapter, we propose a Memetic Algorithm (MA), combining a genetic algorithm (GA) and an iterated local
search (ILS), to determine location and routing jointly. This algorithm is inspired from Derbel et al. [2012].

This chapter is organized as follows. Section 4.1 gives a global overview of the general MA. Section 4.2
depicts the sketch and specific process of the proposed MA. Section 4.2 presents the systematic view of the
MA process. Section 4.2.1 to 4.2.4 describe the GA operation in terms of the solution representation, the
initial population, the selection, crossover and mutation operators. Section 4.2.5 gives the way to develop
the ILS on local collection/delivery and hub location parts independently. Finally, a conclusion is presented
in Section 4.3.

4.1 An overview of the memetic algorithm
Heuristic methods are specific problem-dependent techniques which are often trapped by local optimum in
search process, while the metaheuristic methods guide a series of heuristics by incorporating them in an
iterative framework for a better evolution and for the acceleration of convergence in search space (Glover
and Kochenberger [2006]). The research of metaheuristics has been growing rapidly in the last few years.
Various classifications of metaheuristics can be found in articles of Blum and Roli [2003], Lozano and
García-Martínez [2010] and Blum et al. [2011]. Among these metaheuristics, the evolutionary algorithms
(EA), especially the hybrid EAs, have attracted great attentions because of their flexibility, simplicity and
adaptability in a changing environment (Blum and Roli [2003]). According to the control strategy, the hy-
brid EAs are grouped into three types : the collaborative EAs, the integrative EAs and the metaheuristics
with evolutionary intensification and diversity (I&D) components (Lozano and García-Martínez [2010]).
In collaborative hybrid EAs, different EAs are applied to exchange information such as solutions and pa-
rameters in a parallel or in a pipeline way. The integrative hybrid EAs, such as memetic algorithm (MA),
integrate one algorithm (subordinate) as a component into the EA (master). The third type of the hybrid
EAs replaces main I&D components with evolutionary ones to improve the performance.

The word "memetic" of memetic algorithms is inspired from the interpretation of human culture being
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able to be composed into simple units, namely memes (see Bateson [1978]). Strong and useful memes
propagate in human communities and form new memes by being modified and combined, which therefore
generates the human knowledge, at the same time, the weak and uninteresting ones die away. Inspired by the
diffusion way of the memes, the memetic algorithm (MA) hybrid an Evolutionary Algorithm (EA) which is
composed of an integrated sequence of existing operators and a set of local searches which is used to search
an optimal (or quasi-optimal) solution (Neri and Cotta [2012]). As mentioned, the MA belongs to the class
of integrative hybrid metaheuristics. The basic scheme of the MA is that a population-based EA provides
a global framework to obtain solutions and a local search procedure is executed within it to improve the
qualities of thees solutions.

The algorithmic structures of the MA offer a general guideline to solve complex practical problems :

(1) Initializing procedure. The first set of solutions with required numbers (population size) is produced.
The producing process can be random as for the traditional EA. In the other way, sophisticated me-
chanisms such as the heuristics can be used at the beginning of MA in attempt to inject high-quality
initial solutions.

(2) Parents selection and combination. The selection procedure is responsible for determining which
candidate individuals can survive for reproduction. The performance of each individual is typically
related to its fitness which can be measured by the objective function or other guiding functions based
on the objective function. Selected parents are therefore combined to created new promising offspring
into the following generation.

(3) Local improvement. It starts from an individual and searches the neighbourhood by means of modi-
fying the configuration of the individual at each step. The modification is composed of many moves
such as changing the value of one variable, swapping two variables, replacing one variable with the
other and so on, with aims to reach the local optimum (Moscato and Cotta [2003]). The newly genera-
ted offspring with preferable structure are accepted to the next searching round, otherwise, the current
individual is kept. A termination criterion should be set to stop the process. The stopping criteria can
be the maximum number of iterations, the maximum consecutive iterations without improvement and
other mechanisms (Deb [2001]) depending on specific characteristics of the problem.

(4) New generation. In this step, decisions have to be made whether an offspring should survive in the
next generation. Considerations of both the quality and diversity of one offspring are the basic rules.

Due to their nature-inspired characteristics, the memetic algorithms are capable of exploring and iden-
tifying more promising areas of the search spaces during genetic operations. Furthermore, to overcome the
low efficiency of the GA in locating optimum solutions, the local searches resort to determine local optimum
solutions in specific regions (Blum et al. [2011]). The MA has been utilized to handle numerous real-world
problems in fields of machine learning and robotics, electronics and engineering, molecular optimization,
transportation problems an so on. They have shown a remarkable success especially to cope with NP hard
problems. Many variants of the MA have been applied to deal with the LRP and HLRP and some important
works can be seen in Table 4.1.

Prins et al. [2006a] and Prodhon and Prins [2008] solved the LRP by a Memetic Algorithm with Po-
pulation Management (MA|PM) which was first proposed in Sörensen and Sevaux [2006]. The algorithm
of MA|PM starts on a small population and improves solutions by local search. Subsequently, a dynamic
distance-based population management technique is utilized to replace the traditional mutation operator.
Prins et al. [2006a] focused on the Capacitated Location-Routing Problem (CLRP) and conducted the expe-
riments on three sets of randomly generated Euclidean instances. The results indicated a good performance
compared to other metaheuristics. Later, Prodhon and Prins [2008] applied the MA|PM on the periodic
location-routing problem (PLRP). Prodhon [2011] hybridized an Evolutionary Local Search (ELS) with a
heuristic based on the Randomized Extended Clarke and Wright Algorithm (RECWA) to solve large ins-
tances of the PLRP. This method outperformed the previous methods for solving the PLRP. Karaoglan and
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TABLE 4.1 : The application of MA on the LRPs and the HLRPs
Problem Article method Data size)
CLRP Prins et al. [2006a] MA | PM 200

Derbel et al. [2012] GA+ILS 30
PLRP Prodhon and Prins [2008] MA | PM 200

Prodhon [2011] ELS+RECWA 200
LRPSPD Karaoglan and Altiparmak [2010] GA+SA 200
LRIP Forouzanfar and Tavakkoli-Moghaddam [2012] GA 60

TLRP Martínez-Salazar et al. [2014]
GA+LS
GA+TS

50

CLRPMB Karaoglan and Altiparmak [2015] GA+SA+IPF 100
USApHLRP Rieck et al. [2014] Multi-start+GA 146
USApHLRP Zameni and Razmi [2015] GA 50 (AP& CAB)
CSAHLRP Zhang et al. [2014] GA+ILS 100 (AP)
CSAHLRP Our research GA+ILS 100 (AP)

Altiparmak [2010] proposed a hybrid metaheuristic based on a GA and a Simulated Annealing (SA) method
to cope with a Location-Routing Problem with simultaneous pickup and delivery (LRPSPD). Experimental
results were compared to the upper bounds generated by the MIP and indicated its capability in finding
optimal or very good quality solutions. Derbel et al. [2012] introduced a hybrid metaheuristic that a GA is
combined with an ILS using four neighbourhood structures to solve the CLRP. After being tested on five
benchmark problem sets, it showed that the results were better than the best previously ones obtained by
a Tabu Search (TS) heuristic. Forouzanfar and Tavakkoli-Moghaddam [2012] applied a GA to solve the
Location-Routing-Inventory Problems (LRIP). Martínez-Salazar et al. [2014] presented and compared two
MAs. One replace the mutation process with a simple local search, while the other utilized a TS as the
mutation operator. Computational results of these two algorithms indicated that the second one was bet-
ter.Recently, Karaoglan and Altiparmak [2015] considered a Capacitated Location-Routing Problem with
Mixed Backhauls (CLRPMB) by a MA and compared the results with the lower bounds obtained by the
Branch-and-Cut (B & C) algorithm. The proposed MA was a combination of a GA, a SA and a integer pro-
gramming formulation (IPF). The instances of the CLRP and the CLRPMB derived from the literature were
tested by the proposed MA. As a result, it proved that MA improved some best known feasible solutions
and obtained good quality solutions.

The application of MAs also can be found in solving the HLRPs in literature. Rieck et al. [2014] pre-
sented a metaheuristic algorithm for an Uncapacitated Single Allocation p-Hub Location-Routing Problem
(USApHLRP). This algorithm embedded a multi-start procedure which was based on a fix-and-optimize
scheme into a GA. The computational experiments were conducted on randomly generated instances. Za-
meni and Razmi [2015] focused on the USApHLRP and solved the small and medium scales by GAMS
software while a GA was developed to solve the large instances. Zhang et al. [2014] integrated a set of ILS
into a GA for solving a Capacitated Single Allocation Hub Location-Routing Problem (CSAHLRP). Other
articles of MAs and hybrid GAs that are related to the researched HLRP are listed in Table 4.2.

4.2 Algorithmic design of the MA for the HLRP
In this section, the algorithmic design of the MA for the HLRP is presented, aiming at minimizing the
total network cost of the HLRP. First of all, the generic framework and pseudo-code of the proposed MA
are introduced in Figure 4.1 and Algorithm 1. The initial population is generated using both heuristic
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TABLE 4.2 : Literatures of MA/hybrid GA on related problems
Problem Articles
VRP

Berger and Barkaoui [2003], Baker and Ayechew [2003], Prins [2004], Ombuki et al.
[2006], Potvin [2007], Ho et al. [2008], Prins [2009], Nagata et al. [2010], Vidal et al.
[2012], Mohammed et al. [2012], Barkaoui and Gendreau [2013], Nalepa and Czech
[2014], Cattaruzza et al. [2014], Liu et al. [2014]

HLP
Abdinnour-Helm [1998], Topcuoglu et al. [2005], Kratica et al. [2011], Kratica et al.
[2012], Cunha and Silva [2007], Stanimirović [2007], Stanimirović [2008], Stanimi-
rović [2012], Takano and Arai [2009], Naeem and Ombuki-Berman [2010], Moham-
madi et al. [2010], Sun and Park [2012], Marić et al. [2013], Bashiri et al. [2013]

LRP
Prins et al. [2006a], Derbel et al. [2012], Prodhon and Prins [2008], Prodhon [2011],
Karaoglan and Altiparmak [2010], Forouzanfar and Tavakkoli-Moghaddam [2012],
Martínez-Salazar et al. [2014], Karaoglan and Altiparmak [2015]

HLRP
Rieck et al. [2014], Zhang et al. [2014], Zameni and Razmi [2015]

methods to accelerate the convergence of the algorithm and randomized solutions to keep its diversity. Each
individual is evaluated by a fitness function corresponding to the objective function plus a penalty cost
based on the capacity violation. Pairs of parent solutions are selected by a unique fitness binary tournament
selection (line 6), and a one-point crossover with a probability is applied on the selected parents pairs,
followed by a mutation procedure (line 8 and line 10) (Section 4.2.4). Next, local searches are implemented
iteratively on the vehicle routing and hub location parts of the chromosomes to create new offsprings (line
11) (Section 4.2.5). When the new offspring improves the current best solution, it is automatically saved as
the current best (line 13). Finally, the newly-generated offspring is added to the current generation and the
worst individual is eliminated (line 17). The whole process stops when the maximum number of iterations of
the algorithm or the number of successive iterations without improvement is reached (line 5). The following
sections describe the main phases of the MA in detail.

FIGURE 4.1 : Generic framework of the MA
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Algorithm 1 The MA for the HLRP
Input Npop : population size ; Pc : probability of crossover ; Pm : probability of mutation ; MaxI : maximum

iterations ; NoImp : maximum iterations without improvement
Output Best solution xbest
1: n← 0 ; m← 0 ; S ← ∅
2: Generate initial generation with Npop chromosomes
3: Calculate fitness Feva(x) for each chromosome x
4: Find current best solution xbest, Feva(xbest)←Min Feva(x)
5: while (n < MaxI) and (m < NoImp) do
6: Select pairs of parent chromosomes based on a tournament unique fitness selection operator and stored in a

solution set of S
7: for each pair of parents in the set of S do
8: Apply a 1-point crossover operator with a probability Pc to the two selected parents to obtain the offspring
xnew

9: end for
10: Apply mutation to xnew with a probability Pm
11: Apply iterated local search (ILS) to xnew and obtain new solution x

′
new

12: if Feva(x
′
new) < Feva(xbest) then

13: Update current best solution xbest ← x
′
new

14: else
15: m← m+ 1
16: end if
17: Update current generation
18: n← n+ 1
19: end while

return xbest

4.2.1 Solution representation and evaluation
A fundamental issue in designing a GA is to represent individuals as a set of chromosomes. Different ge-
netic representations are proposed depending on the problem and can affect the performance of the GA
(Ardjmand et al. [2015], Deng et al. [2016]). In our approach, each chromosome P (x) stands for one solu-
tion x and contains two vectors : the selected hub vector H(x) and the non-hub nodes routing vector A(x),
according to the encoding scheme proposed by Prins et al. [2006a]. Vector H(x) contains the selected hubs
and their assignment configuration. Vector A(x) records the permutation of suppliers and clients according
to their served sequences on a route. The positions of the open hubs in vector H(x) are connected with
their allocated suppliers and clients in vector A(x). As one supplier/client must be served by only one hub,
the vector A(x) does not contain duplicates, that is, each supplier/client must appear only once in the vec-
tor A(x). More specifically, consider a chromosome P (x) and its two vectors H(x) = {h1, h2, ...hn} and
A(x) = {a1, a2, ...an}. For every i = {1, 2, ...n}, if ai = j, hi = k, the non-hub node j is assigned to hub k.
The tours for collections and deliveries can be deduced following the allocation scheme. According to the
fixed sequence in vector A(x), one vehicle starts from the first open hub and visits suppliers following the
allocation scheme of the route until the capacity of the vehicle is reached. Then a new tour begins and the
process continues until all the suppliers are routed. The same procedure takes place for the delivery routes.

Take an example with 3 hubs, 5 suppliers and 5 clients. Figure 4.2 illustrates one representation of the
chromosome P (x) and its corresponding network sketch. The hubs, suppliers and clients are numbered
in natural numbers 1, 2, ...13. Nodes 1, 2 and 3 represent the hubs. Nodes 4, 5, ...8 stand for the suppliers
(numbers in gray in Figure 4.2) and the remaining nodes from 9 to 13 are the clients. Hubs 1 and 3 are
selected open. The arrows between vectors H(x) and A(x) in the first part of the figure indicate the al-
location scheme. For instance, the position of the supplier nodes 7, 6 and 8 correspond to hub 3 in vector
H(x), which means that these suppliers are allocated to hub 3. If the total demand of the three suppliers
can be served by one vehicle (fit vehicle capacity), the route from hub 3 starts with supplier 7, then goes to
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6 and 8 and ends back at hub 3. Similarly, clients 9, 13 and 12 are assigned to hub 1. However, if there is
insufficient vehicle space after serving client 9, a new route is created beginning with client 13, to continue
the delivery process. This method of representation is simple and fast at simultaneously capturing locations
and routings, which enables us to build feasible solutions and apply GA operators efficiently.

In order to compare and select the chromosome solutions, every individual is evaluated in terms of its
fitness value, determined by a fitness evaluation function Feva(x). The fitness function Feva(x) of a solution
x is defined as :

Feva(x) = ObjV alue(x) + Penalty(x) (4.1)

Penalty(x) = σ
∑
k∈H

max{0,
∑
i∈I

zikOi − Γk}+ σ
∑
k∈H

max{0,
∑
j∈J

zjkDj − Γk} (4.2)

where ObjV alue(x) denotes the objective value of solution x calculated by Equation (3.1) (see Section
3.2). σ is the penalty parameter with a large value,

∑
i∈I zikOi and

∑
j∈J zjkDj represent the total demand

of suppliers and clients allocated to an open hub k, Γk is the capacity of hub k, for loading or unloading
operations. Thus the sum of the collection and delivery quantities violating the capacity of all open hubs
is multiplied by the penalty parameter σ to calculate the penalty cost Penalty(x) for solution x (Equation
(4.2)).

FIGURE 4.2 : Representation of an HLRP solution

4.2.2 Initialization of a population
To initialize the MA, an initial population must be generated. As mentioned in the global framework of the
MA, the set of initial solutions consists of heuristic and random ones. Figure 4.3 presents the three main
steps of the generation procedure : hub locating, non-hub allocating and local vehicle routing.

More specifically, in Algorithm 2, the minimum number MinH of hubs to open is first calculated in
order to satisfy the total demand. Then, the subsets H1, H2, ...Hn of the potential hub set H are generated.
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FIGURE 4.3 : Generation of an initial population

Each hub subset Hi must meet the minimum hub number requirement such as MinH ≤ |Hi| ≤ |H| (line
3). Each time, one of the hub subsets is selected non-repetitively as the current open hub configuration
(line 5). Non-hub nodes are allocated to these open hubs by the allocation procedure (line 6). Under such
an allocation scheme, two algorithms (NN and CWA) are applied to create two different local collection
and delivery routing schemes (line 7). This means that two feasible solutions are generated at the same
time with the same hub locations and allocations but different local tours. The process iterates until the
required population size is reached or all the hub location subsets have been considered. Because of the
limited number of hub subsets, the heuristic procedure may fail to reach the required population size. The
remaining solutions are randomly produced.

Allocation process

The allocation process is inspired from the allocation part of the Extended Clarke and Wright Algorithm
(ECWA) proposed by Karaoglan and Altiparmak [2015]. The main reason for allocating nodes to hubs is to
determine for each non-hub node, the first and second nearest hubs and calculate the saving (difference in
costs/distances) between the two allocations (Algorithm 3 : line 2 to line 5). Then, the non-hub nodes are
classified in non-increasing order of their savings. The non-hub nodes with the largest saving are allocated
first, then the available hub capacity is updated and the process continues. When some nodes cannot be
allocated to their nearest hub, their saving is recalculated. Furthermore, random new hubs may be opened if
there are still suppliers/clients left because the remaining capacity of the open hubs is not enough to serve
them (lines 16 to 18). Depots without customers are closed (line 22). Assignment procedures for collection
and delivery are independent. Algorithm 3 shows the allocation procedure for suppliers, which is similar
for clients.
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Algorithm 2 Generating initial solutions
Input H : potential hub set ; Γ : hub capacity ; D : total demand ; Npop : population size ; other HLRP data
Output Generation Gen

1: count← 0, i← 1

2: MinH ←
⌊
D

Γ

⌋
// Minimum hub number

3: Generate non-repetitive hub subsets H1, H2, ...Hn of H that MinH ≤ |Hi| ≤ |H|, i = 1, 2, ...n
4: repeat
5: Select a subset Hi as the open hub set
6: Non-hub node allocation (Algorithm 3)
7: Local routing for collections and deliveries (NN & CWA)
8: count← count+ 2; i← i+ 1
9: until count = Npop or i = n

10: if count < Npop then
11: repeat
12: Randomly generate one individual
13: count← count+ 1
14: until count = Npop
15: end if

return Gen
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Algorithm 3 Supplier allocation procedure
Input H∗ : open hub set ; I : supplier set ; Γk : hub capacity for hub k, k ∈ H∗ ;

dij : distance between two nodes i and j , i, j ∈ H∗ ∪ I
Output Assignment scheme for each supplier node

1: SI ← I ; CapHk ← Γk ; zik ← 0 ; Si ← 0, i ∈ {1, 2, ..., |SI|} // Initialization
2: for each supplier i, i ∈ SI do
3: k

′
(i)← arg min{dik | Oi ≤ CapHk}, k ∈ H∗ // Find the nearest hub for supplier i

4: l
′
(i)← arg min{dil | Oi ≤ CapHl}, l ∈ (H∗\k′(i)) // Find the second nearest hub for supplier i

5: Si ← di,l′ (i) − di,k′ (i) // Savings for supplier i
6: end for
7: for all suppliers i, i ∈ SI do
8: Find a supplier i∗ with the largest saving : i∗ ← arg max{Si}, i ∈ SI
9: end for

10: if Oi∗ ≤ CapHk′ (i∗) then
11: zi∗,k′ (i∗) ← 1 // Assign supplier i∗ to hub k

′
(i∗)

12: CapHk′ (i∗) ← CapHk′ (i∗) −Oi∗ // Update the current hub capacity
13: SI ← SI\i∗ // Remove the supplier node that has been allocated from List SI
14: end if
15: if SI 6= ∅ then
16: if (there is at least one supplier i ∈ SI , for all k ∈ H∗, Oi > CapHk) then
17: Open a new hub h, h ∈ H and h /∈ H∗
18: H∗ ← h
19: end if
20: go to Step 2
21: end if
22: Close the hubs with no assigned supplier nodes

return supplier assignment plans

Routing process

For each hub, the local routing problem, for the non-hub nodes allocated to it, is solved by two different
heuristics (NN and CWA) and separately for suppliers and clients. The classic NN approach is based on the
simple idea of inserting the nearest neighbor of the last inserted node into the route until the capacity of the
vehicle is exhausted. New routes start from the hub until all the allocated non-hub nodes of a given hub are
inserted.

An improved version of the CWA, proposed by Caccetta et al. [2013], generates the second routing
solution. It calculates all the savings between non-hub nodes, and creates a savings list in a non-increasing
order. The pairs of nodes are successively considered according to the savings list to build the routes. Three
situations may occur : (i) if neither of the two nodes has been assigned to a route, a new route is built
between them; (ii) if one of the two nodes has been included in the existing route without violating the
vehicle capacity, the two nodes are connected and added to the same route ; (iii) if both nodes have already
been inserted into two different routes, the two nodes are not connected. The process repeats until all the
nodes are inserted into a route.

4.2.3 Selecting parents for crossover
Since higher quality solutions can be captured with high-quality neighbourhood, good parents should be
selected for the crossover process to form the new generation. Many selection methods have been researched
in the literature, such as tournament selection, roulette wheel selection, ranking selection and so on (Reeves
[2003]). After preliminary experiments, we adopt a unique fitness binary tournament selection (Fortin and
Parizeau [2013]) to keep the diversity of the selected parents.
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The unique fitness binary tournament selection defines a unique fitness set F , F = {feva(i)|i ∈ |F|},
including the unique fitness of the individuals from the current generation without repeating values (Fortin
and Parizeau [2013]). Here, feva(i) stands for the value of the ith fitness in F . Take a population with
5 individuals as a simple example. Assume that the fitness values of the five individuals are Feva(x1) =
e, Feva(x2) = f, Feva(x3) = e, Feva(x4) = b and Feva(x5) = e, respectively. Thus, the unique fitness set
F = {e, f, b}. If the fitness value e is selected during the selection procedure, one of the solutions sharing
the same fitness value (individual x1, x3 or x5) is randomly included in a selection set S. The advantage lies
in limiting the chances of individuals with the same fitness reproducing so that the preservation of diversity
is stimulated.

Algorithm 4 illustrates the selection process. τ is denoted as the number of fitnesses to select in each
iteration of the selection procedure and a solution set S is used to store the selected individuals. The value
of τ equals the minimum value between the number of unique fitnesses and double the number of solutions
left to select (line 3) (Fortin and Parizeau [2013]). Random τ unique fitnesses from fitness set F are stored
in a list G (line 4). Next, the fitnesses in list G are compared with each other and the one with the smallest
value is assigned to p (line 6), after which, one of the solutions with the same fitness of p is added to the
final selection set S (lines 7 and 8). If the number of selected solutions |S| is not equal to the size of the
population, the whole procedure continues. Finally, the individuals in the set of S are randomly arranged in
pairs with the purpose of applying the crossover operator in the next phase (line 11).

Algorithm 4 Unique fitness selection
Input Gen : current generation ; Npop : population size ; F : unique fitness set of the individuals in Gen
Output Selected parents set S

1: τ ← 0, S ← ∅, G← ∅
2: while |S| 6= Npop do // Tournament selection
3: τ ← min{2(Npop− |S|), |F|} // Generate the number of fitnesses to be compared
4: Select random τ fitnesses from F and store in list G
5: for (j ← 1, 3, 5..., |G| − 1) do
6: p← arg min{G(j), G(i+ 1)} // Compare two fitnesses and select the better one
7: Randomly select one individual x so that Feva(x) = p, x ∈ Gen
8: S ← S ∪ x // Put the selected individual in the set of S
9: end for

10: end while
11: The individuals in the set of S are arranged randomly in pairs // Pairs of parents for the crossover

return S

4.2.4 Crossover and mutation

The selection procedure is followed by a one-point crossover operation on both the hub location vector
H(x) and the routing vector A(x) with a probability Pc, simultaneously swapping nodes on selected parent
pairs to form new offspring. Figure 4.4 illustrates the crossover procedure on chromosomes. Two crossover
points PL and PR are defined for the location part and the routing part, respectively. The hub location vector
H(x) of a new offspring combines the code of Parent 1 before crossover point PL and the code of Parent
2 after PL. On the routing vector A(x), the new offspring takes the code of Parent 1 before PR as the first
part. The second part sequentially copies the code of A(x) of Parent 2 except for the nodes that have been
copied from Parent 1.

The mutation operator mutates the chromosome by using two different methods on the two sections
A(x) and H(x). An example is shown in Figure 4.5. In the location section H(x), the hub assignment is
modified by randomly choosing hubs to be replaced by others. Such a procedure makes it possible to open
a new hub or close a hub. In the routing section A(x), the random locations of two points are exchanged.



4.2. ALGORITHMIC DESIGN OF THE MA FOR THE HLRP 65

FIGURE 4.4 : The crossover operator

FIGURE 4.5 : Illustration of the mutation : hub 3 is opened to replace some locations of current open hubs ;
the positions of two non-hub nodes are exchanged

4.2.5 Local search method
The iterated local search (ILS) aims to improve further the newly generated offspring. Inspired by the
method of Manzour-al Ajdad et al. [2012], this section describes the iterated local search (ILS) heuristic that
is implemented to seek a local optimal solution by exploring the neighbourhood of offspring. As illustrated
in Algorithms 5 and 6, first the local search is applied to the routing part of the chromosome with swap
and insertion operators (line 1). Then, four operators are applied sequentially on the hub section : hub
replacement, hub closing, hub opening and hub swapping operators (lines 2 to 8). Operations on the routing
part restart after each operation on the hub location part (line 7). All the operators are applied on offspring
chromosomes before they are decoded into real HLRP solutions.

ILS on routing

The ILS procedure on the routing part of a selected chromosome uses the following two neighbourhoods
(Figure 4.6) :

(1) Swap : Two non-hub nodes are selected to exchange their positions while other nodes remain unchan-
ged.

(2) Insertion : One non-hub node is shifted from its position and inserted into a random position in the
routing vector. The operation is conducted on all the non-hub nodes. The insertion for each node is
applied to all the positions to select the best one.

The two operators on the chromosome provide two types of possible changes to the real routing schemes :
changing the node sequence in the same route and conserving the same hub allocation or reassigning nodes
to a new route, which alters not only the routing schedule but also the allocation scheme.
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Algorithm 5 Iterated local search
Input Current best solution xbest ; newly generated chromosome P (xnew)
Output Updated best solution xbest

1: Local search on routing part of P (xnew) (Algorithm 6)
2: for each local search operator on hubs do
3: Local search on the hub part of P (xnew) to obtain new offspring P (x

′
new)

4: if x′new < xbest then
5: xbest ← x

′
new ; // Update the current best solution

6: end if
7: Local search on the routing part of P (x

′
new) (Algorithm 6)

8: end for
return xbest

Algorithm 6 Local search on routing
Input Current best solution xbest ; the chromosome to be operated : P (xnew)
Output Updated best solution xbest ;

1: for each local search operator on routing do
2: Apply local search operator to the routing part of chromosome P (xnew) to generate new offspring P (x

′
new)

3: if x′new < xbest then
4: xbest ← x

′
new // Update the current best solution

5: end if
6: P (xnew)← P (x

′
new)

7: end for
return xbest ;

FIGURE 4.6 : Local search on the routing
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ILS on hub location and allocation

During the ILS on the hub location part, four local search neighbourhoods are used sequentially in order to
explore better the hub location and non-hub allocation solutions (Figure 4.7).

(1) Replacement. If not all the potential hubs have been selected to be opened in the hub location vector,
one random open hub is chosen and replaced by a hub previously closed.

(2) Closing. One open hub is randomly selected to be closed and is replaced by another currently open
hub.

(3) Opening. Several positions are randomly chosen and a new potential hub is opened and placed on the
selected positions. If all the potential hubs are open, the operation will be skipped and other operations
will continue.

(4) Swap. Two positions are randomly selected and the corresponding hubs are exchanged while other
nodes remain unchanged.

FIGURE 4.7 : Local search on the hub location and allocation

4.3 Conclusion
In conclusion to this chapter, we present the algorithmic structures of MA to the considered HLRP. In the
MA framework, the initial population includes heuristic and random individuals. Three different simple
heuristics are applied : the algorithm inspired by the ECWA is used to allocate non-hub nodes to opened
hub facilities, the NN and CWA take the hub location and allocation solutions of the ECWA as the input
and are responsible for scheduling local collection and delivery tours. Random individuals are also allowed
when the amount of the heuristic ones are not able to satisfy the required population size. Individuals



68 CHAPITRE 4. A MEMETIC ALGORITHM FOR THE SINGLE-OBJECTIVE HLRP

from the initial generation are selected by calling a tournament selection operator based on their unique
fitnesses to generate new offspring by an one-point crossover and a mutation operator. Afterwards, the
ILS is implemented to search for the best neighbourhood individuals by means of modifying the genes on
the chromosome. In order to evaluate the performance of the proposed MA, in the following chapter, the
computational experiments are conducted on both the model of the HLRP proposed in Chapter 3 and the
proposed MA.



5
Computational experiments for the
single-objective HLRP

In this chapter, we show details of the computational experiments which we performed with two solution
methods : the CPLEX solver and the MA we proposed. The generation of data sets used for all the expe-
riments are explained, as well as the parameters setting of the CPLEX and the MA. Then, we present and
investigate the computational results of both methods.

we first describe the data sets and parameters used for all the experiments in Section 5.1. Then, the im-
plementation and assessment of the MILP model is presented in Section 5.2, where we discuss the tuning
of CPLEX parameters and the efficiency of the valid inequalities of the MILP model. The assessment of
the memetic algorithm is discussed in Section 5.3, where we describe the parameters and variants of the
implementation of the algorithm. Computational results are presented in Section 5.4, where we investigate
the results obtained with CPLEX and the MA in terms of non-hub node allocation, hub location and col-
lection/delivery routes depending on the sizes and parameters of instances. Lastly, some sensitivity analysis
questions are discussed in Section 5.5 regarding the stability of the MA and the influence of fixed costs on
the solutions.

5.1 Data and parameters

Since there are no published benchmark instances for the HLRP, we have generated the problem instance
networks on the basis of the AP data set (Ernst and Krishnamoorthy [1999]). According to our hypothesis,
it is assumed that the processes of picking up the freight from the suppliers and delivering it to the clients
are distinct, and that the demand flows between each supplier-client pair are predetermined. Hubs may be
located at the same geographical position as suppliers or clients. The distances between two nodes have
been extracted from the AP data set. The flows (in tons) for each supplier-client pair have been generated
uniformly within the interval [0.15, 1.0] in order to be consistent with the capacity of the vehicles (15 tons,
see Table 5.3) and the possibility of loading the freight of several suppliers (resp. clients) within the same
collection (resp. delivery) routes.

We have generated 27 instances, each with up to 100 non-hub nodes and 10 potential hub nodes. Ins-
tances with 10 or 15 supplier and client nodes are referred to as “small instances" ; those with 20 to 30
supplier and client nodes as “medium instances", and those with 35 to 50 supplier and client nodes as “large
instances". The detail utilized data sets are shown in Table 5.1.

69
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In addition to different configurations of potential hub numbers, we consider three scenarios for each ins-
tance, with different hub capacities. By doing so, we can explore the influences of hub capacities on the solu-
tions. The names of the instances are denoted as |H|-|I|-|J |-|Γ|. H stands for the candidate hub number set,
|H|∈ {3, 6, 10}. I and J are sets of supplier and client nodes : |I|=|J |∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}.
Γ refers to the set of hub types with integer capacities corresponding to 1/3, 1/2 or 1 of the total demand,
which depends of the instance size in the AP data set.

Tables 5.2 and 5.3 show the values of parameters for hubs and vehicles. The parameters concerning ve-
hicles (fixed costs and unit transportation cost) are based on logistics data from the French Comité National
Routier CNR1 data base. The unit cost of handling unit flow in hubs was communicated by a French logistic
company.

TABLE 5.1 : Data structures of the HLRP
Size Notation |H|-|I|-|J | Hub capacity |Γ|

Small
3/6/10-10-10 10/15/30

3/6/10-15-15 30/45/90

Medium
3/6/10-20-20 45/60/120

3/6/10-25-25 45/60/120

3/6/10-30-30 60/90/165

Large

3/6/10-35-35 60/90/180

3/6/10-40-40 75/105/210

3/6/10-45-45 75/105/195

3/6/10-50-50 75/120/225

TABLE 5.2 : Parameter values for hubs
Name Value Name Value

Fixed cost Fk (C) 1000 Handling cost ck (C/t) 1.78

TABLE 5.3 : Cost parameter values for vehicles
Name Value Name Value

Load capacity Q (ton) 15 Fixed cost for tour C ( C) 100

Unit transfer cost α (C /km.t) 0.057 Unit collection cost β (C /km) 0.8

Unit delivery cost γ (C /km) 0.8

The proposed MILP model is coded in Visual studio C++ 2012 and solved with CPLEX 12.6.1.,while
the MA approach is implemented in Visual studio C++ 2012 using PCs with 3.07 GHz and 8 GB RAM
memory. The general notation used in the tables is explained below :

• UB : best objective value found by CPLEX in 3 hours for each instance ;

• LB : lower bound found by CPLEX within three hours ;

• %Gap : deviation in % between the best objective found by CPLEX and the lower bound found by

CPLEX for each instance. Here, %Gap =
UB − LB

UB
× 100% ;

1http ://www.cnr.fr/en
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• Zbest : best objective value found by the MA in 10 runs for each instance ;

• CPU time (s) : total CPU time of CPLEX in seconds to obtain the best objective ;

• %GapMA : deviation in % between the best objective found by MA and the lower bound found by

CPLEX for each instance. Here, %GapMA =
Zbest − LB

Zbest
× 100% ;

• Ttotal (s) : total CPU time of 10 runs of the MA;

• Open hub : hub location scheme of the best solution ;

• Route numbers : total number of collection and delivery routes of the best solution.

5.2 CPLEX assessments

5.2.1 CPLEX parameter tuning
Since the solving strategy of CPLEX is controlled by a variety of parameters, tuning them for a given mo-
del and instance set is an efficient way of improving the performance of the solution process. Preliminary
experiments were conducted using the tuning tool of CPLEX to analyze the HLRP model and determine
the values of the parameters that might provide the best performance as a possible alternative to the default
parameter setting. All the experiments of CPLEX in the article are conducted with a computing time limi-
tation of 3 hours. In addition, to avoid a failure due to running out of memory for some instances, we set a
tree memory limit of 1500 megabytes.

The parameter values and meanings for each CPLEX parameter are shown in Tables 5.4, 5.5 and 5.6,
together with the default value. The first and most critical CPLEX parameter is the “MIPEmphasis", which
controls trade-offs between feasibility, optimality and speed in MILP solving (Table 5.4). The second im-
portant CPLEX parameter, “Probe", sets the extent of probing to be performed on variables before MILP
branching (Table 5.5). Another CPLEX parameter, “NodeSel", sets the rules for selecting the next node to
process when backtracking (Table 5.6).

TABLE 5.4 : Description of the “MIPEmphasis" parameter
Parameter value Meaning

0 Balance optimality and feasibility (default value)
1 Emphasize feasibility over optimality
2 Emphasize optimality over feasibility
3 Emphasize moving best bound
4 Emphasize finding hidden feasible solutions

TABLE 5.5 : Description of the “Probe" parameter
Parameter value Meaning

-1 No probing
0 Automatic : let CPLEX choose (default value)
1 Moderate probing level
2 Aggressive probing level
3 Very aggressive probing level
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TABLE 5.6 : Description of the “NodeSel" parameter
Parameter value Meaning

0 Depth-first search
1 Best-bound search (default value)
2 Best-estimate search
3 Alternative best-estimate search

TABLE 5.7 : Computational results with various values of the “MIPEmphasis" parameter
Instance
|H|-|I|-|J |

Value of
MIPEmphasis

Hub
capacity UB LB %LB CPU

time (s)
Open
hub

3-15-15

0 45 7462.16 7461.42 0.00 5708.81 1,3
1 45 7462.16 7358.38 1.39 10800.00 1,3
2 45 7462.16 7461.42 0.00 1654.27 1,3
3 45 7610.30 6683.56 12.17 10800.10 1, 3
4 45 7462.16 7461.42 0.00 4868.48 1,3

6-15-15

0 45 7941.40 6945.99 12.53 6683.29 3, 5
1 45 7462.16 6771.94 9.25 10800.10 1,3
2 45 7462.16 7365.29 1.30 10758.80 1,3
3 45 8283.96 6303.38 23.91 10800.62 4, 5
4 45 7641.28 7319.08 4.22 10800.20 1,3

10-15-15

0 45 7520.19 6887.13 8.42 10800.20 3, 7
1 45 7558.49 6750.89 10.68 5620.59 3, 7
2 45 7520.19 6866.90 8.69 10800.10 3, 7
3 45 9948.98 6073.97 38.95 10800.39 1, 5, 6
4 45 7324.31 7062.16 3.58 10800.17 3, 7

3-20-20

0 60 8834.60 8089.80 8.43 5695.94 2, 3
1 60 8887.65 7795.58 12.29 5788.13 2, 3
2 60 8818.09 8218.53 6.80 7210.90 2, 3
3 60 9737.83 7237.44 25.68 10830.57 2, 3
4 60 8985.71 7971.49 11.29 1798.52 2, 3

6-20-20

0 60 8688.73 7450.89 14.25 5416.45 2, 5
1 60 8344.64 7349.01 11.93 10800.50 4, 5
2 60 8743.26 7694.95 11.99 8509.99 2, 5

3 60 17397.65 6983.38 59.86 10800.32
1, 2, 3,
4, 5, 6

4 60 8384.87 7473.72 10.87 5483.81 4, 5

10-20-20

0 60 8887.31 7067.59 20.48 10800.40 2, 10
1 60 8771.65 7026.70 19.89 7044.94 4, 10
2 60 8920.17 7067.59 20.77 10800.20 2, 10
3 60 15164.34 6615.81 56.37 10800.45 1, 3, 8
4 60 8930.93 6987.30 21.76 10800.20 2, 10
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TABLE 5.8 : Computational results with various values of the “Probe" (MIPEmphasis=2)
Instance
|H|-|I|-|J |

Value of
Probe

Hub
capacity

UB LB %LB
CPU

time (s)
Open
hub

3-15-15

-1 45 7686.60 6811.45 11.39 10800.1 1,3
0 45 7462.16 7461.42 0.00 1654.27 1,3
1 45 7563.56 6810.52 9.96 10800.4 1,3
2 45 7920.67 6795.13 14.21 10800.2 1,3
3 45 7462.16 7461.42 0.00 2867.89 1,3

6-15-15

-1 45 8535.16 6203.83 27.31 10800.51 1, 6
0 45 7462.16 7365.29 1.30 10758.80 1,3
1 45 9528.43 6143.42 35.53 10800.06 2, 4, 6
2 45 8205.48 6186.77 24.60 10800.09 3, 4
3 45 7777.28 7332.20 5.72 10800.20 1,3

10-15-15

-1 45 10137.55 5681.88 43.95 10800.03 4, 10
0 45 7520.19 6866.90 8.69 10800.10 3, 7
1 45 9332.45 5692.86 39.00 10800.26 7, 10
2 45 9332.45 5692.86 39.00 10800.50 7, 10
3 45 7419.54 7091.31 4.42 10800.20 3, 7

3-20-20

-1 60 11380.61 7072.62 37.85 10800.07 1, 2
0 60 8818.09 8218.53 6.80 7210.90 2, 3
1 60 9848.75 7134.95 27.55 10800.37 2, 3
2 60 9423.12 7146.59 24.16 10800.45 2, 3
3 60 8647.53 8289.40 4.14 10801.30 2, 3

6-20-20

-1 60 9198.84 6295.61 31.56 10800.04 5, 6
0 60 8743.26 7694.95 11.99 8509.99 2, 5
1 60 9095.09 6204.51 31.78 10800.18 2, 5
2 60 11049.25 6231.52 33.03 10800.14 1, 5
3 60 9018.76 7686.20 14.78 7818.56 5, 6

10-20-20

-1 60 9680.66 5941.86 38.62 10800.78 6, 10
0 60 8920.17 7067.59 20.77 10800.20 2, 10
1 60 8836.65 6462.38 26.87 10800.31 6, 10
2 60 8836.65 6462.38 26.87 10800.26 6, 10
3 60 8892.90 7137.98 19.73 10800.10 2, 8
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TABLE 5.9 : Computational results with various values of the “NodeSel" (MIPEmphasis=2)
Instance
|H|-|I|-|J |

Value of
NodeSel

Hub
capacity

UB LB %LB
CPU

time (s)
Open
hub

3-15-15
0 45 8081.53 6590.66 18.44 10800.00 1,3
1 45 7462.16 7461.42 0.00 1654.27 1,3
2 45 7462.16 7461.42 0.00 4440.55 1,3
3 45 7462.16 6679.13 10.49 10800.30 1,3

6-15-15

0 45 8130.35 6088.56 25.11 10800.46 1, 6
1 45 7462.16 7365.29 1.30 10758.80 1,3
2 45 7641.28 7237.06 3.02 10800.20 1,3
3 45 7893.69 6197.77 21.48 10800.16 3, 6

10-15-15

0 45 11377.64 5854.74 48.54 10800.07
1, 2, 3,
4, 7, 8

1 45 7520.19 6866.90 8.69 10800.10 3, 7
2 45 7920.32 6792.19 14.24 10800.20 3, 7
3 45 8659.80 5864.17 32.28 10800.14 3, 6

3-20-20

0 60 14870.28 7064.44 52.49 10800.07 1, 2, 3
1 60 8818.09 8218.53 6.80 7210.90 2, 3
2 60 9264.33 7805.41 15.75 1729.06 2, 3
3 60 11172.95 7030.78 37.07 10800.20 1, 2, 3

6-20-20

0 60 17909.40 6853.64 61.73 10800.12 1, 2, 4, 6
1 60 8743.26 7694.95 11.99 8509.99 2, 5
2 60 8581.63 7328.60 14.60 5008.45 4, 5
3 60 9273.86 6158.03 33.60 10800.33 5, 6

10-20-20

0 60 20125.48 5888.42 70.74 10800.14
1, 2, 3,
5, 6, 7,
8, 9, 10

1 60 8920.17 7067.59 20.77 10800.20 2, 10
2 60 9431.47 6987.30 25.84 10800.30 6, 10
3 60 10935.84 5922.43 45.84 10800.38 1, 7, 10
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TABLE 5.10 : Comparison of the CPLEX parameter settings
Instance
|H|-|I|-|J |

CPLEX
parameter

Hub
capacity

UB LB %LB
CPU

time (s)
Open
hub

3-15-15
M2 45 7462.16 7461.42 0.00 1654.27 1,3

M2&P3 45 7462.16 7461.42 0.00 2867.89 1,3

6-15-15
M2 45 7462.16 7365.29 1.30 10758.80 1,3

M2&P3 45 7777.28 7332.20 5.72 10800.20 1,3

10-15-15
M2 45 7520.19 6866.90 8.69 10800.10 3, 7

M2&P3 45 7419.54 7091.31 4.42 10800.20 3, 7

3-20-20
M2 60 8818.09 8218.53 6.80 7210.90 2, 3

M2&P3 60 8647.53 8289.40 4.14 10801.30 2, 3

6-20-20
M2 60 8743.26 7694.95 11.99 8509.99 2, 5

M2&P3 60 9018.76 7686.20 14.78 7818.56 5, 6

10-20-20
M2 60 8920.17 7067.59 20.77 10800.20 2, 10

M2&P3 60 8892.90 7137.98 19.73 10800.10 2, 8

The results of our experiments for tuning the CPLEX parameters with data sets of different sizes are
presented in the Tables of 5.7, 5.8 5.9 and 5.10. The experiments with the “MIPEmphasis" parameter while
keeping the other CPLEX parameters as default are presented in Table 5.7. In most cases, setting “MIPEm-
phasis" to 2 (emphasizing optimality over feasibility) yields competitive upper bounds and lower bounds
with smaller gaps. Regarding the experiments with the “Probe" parameter, “MIPEmphasis" was pre-set to
2 and the other CPLEX parameters to their default value. The very aggressive probing level (parameter
value 3) improved the solutions for most of the instances, especially by obtaining competitive lower bounds
(Tables 5.8 and 5.10). Similar experiments with “NodeSel" parameter, setting “MIPEmphasis" to 2 and the
other CPLEX parameters to default, showed that the default value of the “NodeSel" parameter (1) (best-
bound search) outperformed other “NodeSel" values (Table 5.9). These tuned CPLEX parameter values
were retained in our further experiments. Note from the above tables that different pre-set CPLEX parame-
ters may affect the solutions, generating different location, allocation and routing plans for the solutions of
our problems.

5.2.2 Efficiency of valid inequalities in the MILP model

To analyze the efficiency of valid inequalities that we proposed in our MILP model, some tests were conduc-
ted to compare the results obtained with and without implementing these valid inequalities. Table 5.11 com-
pares the results obtained for different sizes of instances. They show that including the valid inequalities in
the proposed model provides a good performance in terms of improving lower bounds and decreasing gaps
under the same time limitations (3 hours). It also decreases the upper bounds for most of the instance tests
by up to more than 10%. The resulting solutions may consequently be changed in terms of opened hubs and
the number of routes, which are generally reduced.



76 CHAPITRE 5. COMPUTATIONAL EXPERIMENTS FOR THE SINGLE-OBJECTIVE HLRP

TABLE 5.11 : Efficiency assessment of the valid inequalities
Model without valid inequalities Model with valid inequalities

Instance

|H|-|I|-| J |-|Γ |
UB LB %Gap

Open

hub

Number

of routes
%UB1 %LB2 %Gap

Open

hub

Number

of routes

3-15-15-30 8828.59 8390.40 4.96 1, 2, 3 11 1.79 0.91 5.78 1, 2, 3 11

6-15-15-30 8707.18 7295.05 16.22 2, 4, 5 12 -3.04 5.16 9.14 1, 5, 6 13

10-15-15-30 8524.27 6680.63 21.63 5, 7, 10 12 1.32 7.89 16.55 1, 4, 5 12

3-20-20-45 10200.29 9593.82 5.95 1, 2, 3 18 -2.25 0.23 3.56 1, 2, 3 17

6-20-20-45 10435.48 8418.60 19.33 2, 3, 5 18 -0.74 7.30 12.79 3, 4, 5 17

10-20-20-45 10395.17 7901.05 23.99 2, 5, 10 19 -4.40 7.70 14.37 2, 8, 9 18

3-25-25-45 11811.05 10154.53 14.03 1, 2, 3 18 -2.62 -0.15 11.85 1, 2, 3 18

6-25-25-45 13502.91 8963.01 33.62 1, 2, 3 19 -10.13 4.18 23.05 1, 2, 3 17

Note : UB
′

and LB
′

are denoted as the upper bound and lower bound obtained by CPLEX with valid inequalities.

1 Decreased/increased level of the upper bound (objective value) : %UB= (UB
′ − UB)/UB × 100%

2 Decreased/increased level of the lower bound : %LB= (LB
′ − LB)/LB × 100%

5.3 MA assessments

5.3.1 Parameter settings for the MA

The parameters of the proposed MA were tuned in terms of population size, maximum number of iterations
and probabilities used for crossover and mutation. Preliminary experiments show that when the population
size increases to 200, the overall performance of the MA is improved, but larger population sizes lead to
no further improvement. Furthermore, setting the probability of crossover and mutation to 0.8 and 0.7,
respectively, is the best combination. In order to obtain high quality solutions, the MA was run 10 times for
each instance (this policy will be evaluated later on in regards to the experimental results). Below are some
justifications to support these parameter settings.

We iterated the MA process up to 1000 iterations and recorded the results every 100 iterations for 10
runs each, i.e. for iteration number {100, 200, 300,..., 1000}. The results show that the solutions of small
and medium instances remain unchanged after 100 iterations in all 10 runs (such as instance 6-25-25) of
the MA. On the other hand, the MA can improve solutions of large instances until the iterations reach 200
(such as 10-40-40).

In Tables 5.12 and 5.13, the column “Run rank" refers to the rank of the run of the MA from 1 to 10.
The column “Initial generation" indicates the best solution in the initial population. The next three columns
refer to the best solution found after every 100 iterations of the MA. In the column “Run rank" of Table
5.12, the notation “1-10" indicates that all the solutions obtained with a run number of 1 to 10 of the MA
are identical. The small instance solutions (e.g. instance 6-25-25 for different hub capacities) were not
improved after 100 iterations. Table 5.13 provides the solutions of the large instance 10-40-40 with a hub
capacity of 75 for 10 runs while Figure 5.1 plots the average solutions of 10 runs for successive iterations
of the MA. The solutions are improved continuously until the generation of 140. More iterations lead to no
more improvement. Therefore, two stopping criteria were set for each run of the MA : the iterations were
stopped whenever no improvement was obtained every 100 iterations, with a maximum number of 200.

5.3.2 Implementation of the MA

In order to find the most efficient way to combine the operators of the MA for the allowed number of
iterations (200), several variants were tested, especially the following two, denoted MA-1 and MA-2. Finally
MA-2 was retained for our experiments with our complete set of instances.
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TABLE 5.12 : Results of the MA up to 1000 iterations for medium instances
Instance

|H|-|I|-|J |-|Γ|
Run
rank

Initial
generation

The 100th
iteration

The 200th
iteration

Iterations
300-1000

6-25-25-45 1-10 11204.20 11003.34 11003.34 11003.34
6-25-25-60 1-10 10657.20 10228.00 10228.00 10228.00

6-25-25-120

1 9251.17 9158.65 9158.65 9158.65
2 9251.17 9158.65 9158.65 9158.65
3 9251.17 9071.24 9071.24 9071.24
4 9251.17 9156.66 9156.66 9156.66
5 9251.17 9158.65 9158.65 9158.65
6 9251.17 9158.65 9158.65 9158.65
7 9251.17 9062.72 9062.72 9062.72
8 9251.17 9062.72 9062.72 9062.72
9 9251.17 9158.65 9158.65 9158.65

10 9251.17 9158.65 9158.65 9158.65

TABLE 5.13 : Results of the MA up to 1000 iterations for large instances
Instance

|H|-|I|-|J |-|Γ|
Run
rank

Initial
generation

100
iterations

200
iterations

Iterations
300-1000

10-40-40-75

1 15493.40 14902.80 14902.80 14902.80
2 15404.10 14797.90 14797.90 14797.90
3 15420.40 14980.30 14765.90 14765.90
4 15516.70 14662.60 14662.60 14662.60
5 15261.50 14678.00 14678.00 14678.00
6 15149.10 14731.50 14731.50 14731.50
7 15420.40 14726.20 14714.70 14714.70
8 15391.70 14945.70 14945.70 14945.70
9 15240.60 14462.00 14462.00 14462.00

10 15798.50 14891.40 14882.70 14882.70

FIGURE 5.1 : Average results of the MA in 10 runs up to 1000 iterations (Instance 10-40-40-75)

For each iteration of the algorithm, MA-1 actually ignores the mutation process and executes syste-
matically the full local search procedure on every newly generated offspring of the population after the
crossover. This variant of the MA implementation yields good quality solutions but needs a very long com-
puting time for large instances. In fact, the CPU running time of the LS phase consumes more than 95% of
the total time of the algorithm. Alternatively, MA-2 fully executes the mutation step of the genetic part of
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the algorithm with a probability after the crossover process, but the LS is called only after every 10 itera-
tions of the genetic part, with the goal of reducing the computing time. Furthermore, the LS step is applied
on three offspring only, which are randomly selected from the ten best offspring of the current generation.
In addition, for each operator of the LS, once the target of the current offspring is improved, the procedure
jumps to the next operator without considering the other offspring.

TABLE 5.14 : Computational tests on different ways of implementing the MA
MA-1 MA-2

Instance
|H|-|I|-|J |

Hub
capacity

Zbest
CPU

time(s)
Open
hub

Zbest
CPU

time(s)
Open
hub

%Time %Cost

3-10-10
10 5750.33 22.01 1, 2, 3 5746.53 16.52 1, 2, 3 -24.94% -0.07%
15 4269.15 23.49 1, 2 4269.15 12.60 1, 2 -46.36% 0.00
30 3277.36 42.73 2 3277.36 14.36 2 -66.39% 0.00

3-25-25
45 11626.37 295.02 1, 2, 3 11676.80 83.38 1, 2, 3 -71.74% 0.40%
60 10568.01 255.67 1, 3 10557.60 97.25 1, 3 -61.97% -0.10%

120 9938.67 372.607 1 9834.14 98.24 1 -73.64% -1.05%

6-30-30
60 13114.97 1143.10 2, 4, 6 13052.10 306.87 4, 5, 6 -73.15% -0.48%
90 11976.11 1224.82 4, 6 11973.20 411.62 2, 6 -66.39% -0.02%

165 11408.26 1631.38 2 11401.80 338.96 2 -78.93% -0.06%

10-45-45
75 13209.28 ≥4h 3, 5, 9 13486.70 2630.10 3, 5, 9 -83.18% 2.10%

105 12501.18 ≥5h 8, 9 12557.00 2471.17 8, 9 -88.41% 0.45%
195 12033.95 ≥8h 8 12134.90 3025.74 1 -89.50% 0.84%

10-50-50
75 16284.53 ≥4h 2, 3, 5, 10 16441.56 2953.06 2, 5, 10 -85.98% 0.96%

120 15242.27 ≥8h 2, 5 15471.72 5645.03 8, 10 -82.51% 1.51%
225 14185.63 ≥13h 8 14712.64 4960.14 8 -89.41% 3.72%

Table 5.14 presents the MA results of some small, medium and large instances running 10 times.
Item %Time indicates the reduced percentage of the computing time when comparing MA-2 and MA-
1. %Time=(T2− T1)/T1× 100% where T1 and T2 are the CPU time of MA-1 and MA-2, respectively. Item
%Cost indicates the increased or decreased percentage of the total cost when comparing MA-2 to MA-1.
%Cost=(Z2−Z1)/Z1×100% where Z1 and Z2 are the total cost of MA-1 and MA-2. For small and medium
instances (e.g. instances 3-10-10, 3-25-25 and 6-30-30), the performance of MA-2 is comparable to that of
MA-1 in terms of solution quality while MA-2 greatly reduces the total computing time compared to MA-
1. For large instances (e.g. instances 10-45-45 and 10-50-50), the solutions found by MA-2 are inferior to
those of MA-2 with an increased cost percentage of up to 3.72%. However, MA-2 reduces by almost 90%
the computing time of MA-1. Thus, in order to achieve a good overall performance in terms of solution
quality and computing time, we finally retained MA-2 for the experiments on our complete instance set.
The results are presented in the next section.

5.4 Analysis of computational results
Tables 5.15 and 5.16 present the problem solutions obtained by CPLEX and the MA. Table 5.15 reveals that
the CPLEX solver can find optimal solutions for the smallest instances only. It has difficulties in solving
medium-sized problems, obtaining low quality solutions with gaps of up to 39.91% (instance 10-30-30-
165). The computing time with CPLEX reaches 3 hours for most of the instances, even many small ones.
The CPLEX solutions for large instances are not presented, as their gaps reach as high as 70%. The proposed
MA finds solutions for all instance sets and is capable of solving some small-sized problems to optimality.
Moreover, for medium-sized problems, it reduces the biggest gap of CPLEX from 39.91% to 13.64%. Most
importantly, the MA dramatically reduces the computing time for small and medium problems. Computing
times for 10 runs for each instance lie between 16 and 850 seconds for small- to medium-sized instances.
Large-sized instances are solved in no more than 6000 seconds for the largest of them (Instance 10-50-50-
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120). In terms of logistics solutions, the numbers of open hubs are usually identical for CPLEX and the MA
but they may not be the same hubs. The numbers of routes are comparable.

TABLE 5.15 : Computational results for small- and medium-sized instances
CPLEX MA

Instance
|H|-|I|-|J |

Hub
capacity

UB LB %Gap
CPU

time(s)
Open
hub

Number
of routes

Zbest
%Gap

MA
Ttotal

(s)
Open
hub

Number
of routes

3-10-10
10 5666.52 5665.96 0.00 593.79 1, 2, 3 6 5746.53 1.40 16.52 1, 2, 3 6
15 4269.15 4268.74 0.00 217.22 1, 2 4 4269.15 0.00 12.60 1, 2 4
30 3277.36 3277.06 0.00 18.80 2 4 3277.36 0.00 14.36 2 4

6-10-10
10 5666.52 5379.10 5.07 10800.10 1, 2, 3 6 5659.78 4.96 58.57 3, 4, 6 6
15 4269.15 4180.61 2.07 10800.00 1, 2 4 4269.15 2.07 59.04 1, 2 4
30 3272.23 3271.92 0.00 157.76 4 4 3272.23 0.00 73.36 4 4

10-10-10
10 5792.80 5054.14 12.75 9192.72 1, 2, 8 6 5659.78 10.70 91.94 3, 4, 6 6
15 4363.80 4169.43 4.45 10800.20 8, 10 4 4258.45 2.09 82.25 2, 10 4
30 3245.62 3245.35 0.00 591.82 10 4 3245.62 0.00 87.76 10 4

3-15-15
30 8986.43 8467.11 5.78 10754.40 1, 2, 3 11 9015.79 6.09 22.89 1, 2, 3 11
45 7584.04 7298.24 3.15 10536.69 1, 3 12 7638.35 4.45 34.19 1, 3 12
90 6484.38 6279.90 3.15 10800.06 3 11 6539.41 3.97 60.63 3 11

6-15-15
30 8442.86 7671.57 9.14 10471.90 1, 5, 6 13 8127.86 5.61 32.68 1, 3, 5 12
45 7107.65 6854.66 3.56 10800.15 3, 5 12 7107.65 3.56 40.88 3, 5 12
90 6247.91 5977.35 4.33 10454.62 5 12 6179.78 3.28 89.62 5 11

10-15-15
30 8637.04 7207.55 16.55 10800.30 1, 4, 5 12 7863.46 8.34 114.30 5, 7, 10 12
45 7013.07 6331.47 9.72 10800.11 7, 10 12 6861.88 7.73 131.45 7, 10 12
90 6199.35 5974.59 3.63 10800.14 5 11 6199.35 3.63 145.86 5 11

3-20-20
45 9970.62 9615.48 3.56 10800.10 1, 2, 3 17 10024.00 4.08 65.34 1, 2, 3 16
60 8825.23 8671.00 1.75 10800.09 2, 3 16 9048.58 4.17 82.64 2, 3 17

120 8046.43 7749.60 3.69 10314.67 3 16 8057.46 3.82 83.86 3 16

6-20-20
45 10357.90 9033.56 12.79 10800.10 3, 4, 5 17 9806.10 7.88 113.05 2, 4, 5 17
60 9257.22 8183.36 11.6 10800.23 4, 5 16 9022.21 9.30 116.44 3, 4 17

120 8046.43 7684.09 4.50 10800.53 3 16 8041.56 4.45 128.07 3 16

10-20-20
45 9938.18 8509.61 14.37 10800.10 2, 8, 9 18 9632.53 11.66 280.64 8, 9, 10 18
60 9520.10 7618.43 19.98 10800.30 5, 9 17 8725.87 12.69 244.04 7, 8 17

120 7982.97 7017.70 12.09 10800.30 10 16 7885.86 11.01 257.96 7 16

3-25-25
45 11502.00 10139.00 11.85 9145.94 1, 2, 3 18 11676.80 13.17 83.38 1, 2, 3 18
60 10602.79 9488.80 10.51 9369.65 1, 2, 3 18 10557.60 10.12 97.25 1, 3 16

120 9865.98 9154.83 7.23 7024.90 1 16 9834.14 6.91 98.24 1 16

6-25-25
45 12135.20 9337.74 23.05 10800.30 1, 2, 3 17 11125.50 16.07 154.74 1, 2, 5 16
60 12148.32 8963.21 26.22 10800.20 2, 5 19 10252.00 12.57 205.04 1, 5 16

120 9036.62 8376.68 7.30 10800.09 5 16 9062.72 7.57 181.49 5 16

10-25-25
45 13209.30 8868.87 32.86 10800.20 1, 2, 3 18 10856.20 18.31 378.57 1, 8, 10 17
60 13154.29 8043.80 38.85 10800.40 1, 3 24 10159.40 20.82 367.40 1, 8 16

120 10281.30 7478.24 27.26 10800.19 5, 6 17 9056.17 17.42 406.98 5 16

3-30-30
60 15402.67 12812.91 16.82 10800.10 1, 2, 3 27 14732.00 13.03 124.47 1, 2, 3 25
90 12945.41 11688.06 9.71 10800.20 1, 2 24 12994.00 10.05 164.00 1, 2 24

165 11498.92 10928.82 4.96 10800.10 2 24 11401.80 4.15 147.97 2 23

6-30-30
60 14296.41 11439.38 19.98 10800.20 2, 4, 5 27 13052.10 12.36 306.87 4, 5, 6 24
90 13838.82 10461.64 24.40 10800.90 2, 6 27 11973.20 12.62 411.62 2, 6 24

165 12246.40 10531.57 14.00 10800.20 4 25 11401.80 7.63 338.96 2 23

10-30-30
60 17617.62 11161.86 36.64 10800.70 1, 5, 7 33 12952.60 13.83 653.84 2, 6, 7 23
90 15289.92 10301.50 32.63 10800.70 4, 5, 8 27 11987.10 14.06 847.83 4, 6 22

165 16362.83 9831.77 39.91 10800.90 1, 7, 8 34 11384.40 13.64 773.67 8 23
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TABLE 5.16 : Computational results of the MA for large sized instances
Instance
|H|-|I|-|J |

Hub
capacity

Zbest
Ttotal

(s)
Open
hub

Number
of routes

Instance
|H|-|I|-|J |

Hub
capacity

Zbest
Ttotal

(s)
Open
hub

Number
of routes

3-35-35
60 15303.30 97.10 1, 2, 3 27

3-40-40
75 16172.60 200.44 1, 2, 3 30

90 12704.90 178.36 1, 2 26 105 15233.90 295.92 2, 3 29
180 11895.80 209.94 1 24 210 13442.10 280.27 2 28

6-35-35
60 13486.80 364.61 1, 4, 6 27

6-40-40
75 15257.80 324.14 3, 4, 5 31

90 12747.70 301.76 1, 6 26 105 14317.30 507.60 4, 5 30
180 11997.80 500.38 6 25 210 13296.30 736.69 5 28

10-35-35
60 13579.80 552.54 1, 4, 6 27

10-40-40
75 14586.30 1355.50 2, 7, 10 30

90 12655.50 1116.98 1, 2 26 105 13838.00 2591.37 2,10 29
180 11975.80 1246.83 6 25 210 13267.60 2021.55 4 28

3-45-45
75 14364.90 698.43 1, 2, 3 26

3-50-50
75 17242.60 219.578 1, 2, 3 33

105 13282.50 582.82 1, 3 25 120 16324.10 723.49 1, 2 32
195 12165.40 483.29 1 25 225 14848.40 375.73 2 32

6-45-45
75 13808.20 839.39 1, 2, 5 27

6-50-50
75 16669.30 2175.56 2, 3, 5 34

105 12808.70 1153.75 1, 5 26 120 15564.30 2558.65 2, 5 32
195 12158.20 1067.82 1 25 225 14719.20 1231.40 2 30

10-45-45
75 13486.70 2630.10 3, 5, 9 28

10-50-50
75 16441.56 2953.06 2, 5, 10 33

105 12557.00 2471.17 8, 9 26 120 15471.72 5645.03 8, 10 32
195 12134.90 3025.74 1 25 225 14712.64 4960.14 8 32

Figure 5.2 gives an insight into how the solutions are found by CPLEX and the MA within the optimi-
zation process in terms of increasing time for a small instance set (3-10-10) with two hub capacities (the
X scales are limited to the first seconds of the optimization process). The time and relevant objective value
of the MA refer here to the average values of the 10 runs. UB and LB indicate the upper bound and lower
bound found by CPLEX. The initial solution found by the MA, which is very close to the optimal one, is
much smaller than that found by CPLEX. We observe that the MA can find the optimal solutions in a few
seconds. Similar results are observed with larger instances. The initial solution found by the MA is much
smaller than that found by CPLEX and the solution is improved continuously and quickly to obtain a good
quality solution whose cost value is much smaller than that of the solution found by CPLEX in 3 hours.

Finally, and logically, the solutions are improved, reaching lower costs, when the hub capacity increases,
looking at the MA results for instances with 3 candidate hubs as an example in Figure 5.3. Node numbers
in the graph indicate the total number of hubs, suppliers and clients. The graphs show that for a given node
number, increasing the hub capacity results in an equal or decreasing cost. However, as shown in Figure
5.4, the instance sets with larger node numbers are more difficult to solve, causing increased gaps. Besides,
the solver can find better solutions if there is more choice of potential hubs (Figure 5.5).
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FIGURE 5.2 : Solution evolution with CPLEX and the MA for instance 3-10-10 (two hub capacities)
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FIGURE 5.3 : MA results with different hub capacities (3 potential hubs) : when the capacity of hubs
increases, the cost decreases

FIGURE 5.4 : Solution gaps with different potential hub numbers obtained by the MA : the gap increases
when the number of nodes and the number of potential hubs increase
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FIGURE 5.5 : MA results with different potential hub numbers (small hub capacity)

5.5 Sensitivity analysis

5.5.1 Stability assessment of the MA
This section assesses the performance of the proposed MA in terms of the stability of the solutions obtained
by the ten runs for each iteration regarding solving the instance sets. For the ten runs, we computed the

coefficient of relative standard deviation (RSD), RSD =
SD

Z̄
× 100%. This indicator shows the variance in

% of the objective values of ten runs compared to the average value. Here, SD is denoted as the standard
deviation between the average objective value Z̄ in 10 runs and the best value Zi found by the MA for

the ith run, SD =

√∑10
i=1 (Z̄ − Zi)2

10
. Table 5.17 gives the details of the solution results Zbest, the average

objective values Z̄ and RSD values. Most of the latter are below 1%, and the average RSD is 0.86 %
for all the instances. Figure 5.6 shows the average RSD value for different problem scales. Regarding the
instances with different potential hub values, the average RSD values show relatively smooth curves without
significant fluctuations. The stability of the MA proves its robustness and usefulness for decision-making.
The small values attained by the RSD also suggest that just one or a few runs could be performed instead
of ten to determine meaningful solutions of real-life problems in a dramatically reduced computing time.
This would make it possible to test more alternative scenarios and sensitivity analyses, which is essential
for decision-making.
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TABLE 5.17 : The values of the performance indicators of the MA
Instance Hub

Zbest Z̄
RSD Instance Hub

Zbest Z̄
RSD

|H|-|I|-|J | capacity (%) |H|-|I|-|J | capacity (%)

3-10-10
10 5746.53 5875.03 1.02

3-15-15
30 9015.79 9197.77 0.93

15 4269.15 4346.48 1.45 45 7638.35 7648.21 0.15
30 3277.36 3305.91 0.89 90 6539.41 6577.51 0.61

6-10-10
10 5659.78 5685.16 0.72

6-15-15
30 8127.86 8149.25 0.46

15 4269.15 4273.32 0.16 45 7107.65 7107.65 0.00
30 3272.23 3278.57 0.36 90 6179.78 6204.06 0.16

10-10-10
10 5659.78 5701.61 0.39

10-15-15
30 7863.46 7985.20 1.44

15 4258.45 4356.21 1.43 45 6861.88 7058.62 1.84
30 3245.62 3270.34 1.19 90 6199.35 6239.15 0.55

3-20-20
45 10024.00 10070.54 0.27

3-25-25
45 11676.8 11708.41 0.16

60 9048.58 9172.50 0.53 60 10557.6 10592.83 0.24
120 8057.46 8112.80 0.36 120 9834.14 9949.95 0.47

6-20-20
45 9806.10 9929.67 0.84

6-25-25
45 11125.50 11185.62 0.20

60 9022.21 9027.58 0.18 60 10252.00 10359.96 0.54
120 8041.56 8070.13 0.35 120 9062.72 9129.23 0.42

10-20-20
45 9632.53 9689.02 0.46

10-25-25
45 10856.20 10995.55 1.05

60 8725.87 8932.15 2.62 60 10159.40 10281.32 0.69
120 7885.86 7946.51 0.58 120 9056.17 9142.30 0.80

3-30-30
60 14732.00 14790.89 0.31

3-35-35
60 15303.30 15332.62 0.21

90 12994.00 13303.53 2.23 90 12704.90 12825.50 0.55
165 11401.80 11475.92 0.56 180 11895.80 12096.61 0.75

6-30-30
60 13052.10 13086.44 0.24

6-35-35
60 13486.80 13515.46 0.28

90 11973.20 11989.19 0.11 90 12747.70 12780.62 0.13
165 11401.80 11498.66 0.45 180 11997.80 12114.40 0.42

10-30-30
60 12952.60 13165.92 1.55

10-35-35
60 13579.80 13862.39 1.90

90 11987.1 12282.38 2.01 90 12655.50 12997.95 2.27
165 11384.4 11492.18 0.72 180 11975.80 12191.16 1.48

3-40-40
75 16172.60 16232.34 0.28

3-45-45
75 14364.90 14485.52 0.59

105 15233.90 15488.97 1.13 105 13282.50 13399.95 0.51
210 13442.10 13615.45 0.87 195 12165.40 12252.92 0.58

6-40-40
75 15257.80 15339.58 0.22

6-45-45
75 13808.20 13964.20 0.85

105 14317.30 14361.29 0.30 105 12808.70 13234.49 2.08
210 13296.30 13395.88 0.76 195 12158.20 12261.14 0.69

10-40-40
75 14586.3 14941.4 2.12

10-45-45
75 13486.7 13838.82 1.81

105 13838 14369.58 2.53 105 12557.00 12846.71 1.84
210 13267.6 13507.67 1.69 195 12134.90 12345.26 1.27

3-50-50
75 17242.6 17304.01 0.26

6-50-50
75 16669.30 16865.87 0.46

120 16324.10 16464.26 0.48 120 15564.30 15733.77 0.85
225 14848.40 15007.79 0.52 225 14719.20 14967.48 0.91

10-50-50
75 16441.56 16811.56 1.24
120 15471.72 15883.81 1.86
225 14712.64 15021.89 2.26
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FIGURE 5.6 : Average values of the RSD indicators of the single-objective MA

5.5.2 Influence of the hub fixed cost
In the analysis presented above, a value of 1000 was used for the hub fixed costs. However for real-life appli-
cations, the fixed costs of logistics facilities may be highly dependent on the particular case. In this section,
we report a sensitivity analysis conducted on a possible range of fixed costs Fk = {1000, 500, 200, 100, 0}.
All the results presented in Table 5.18 were obtained with the MA. In this table, the Fk column indicates
the fixed cost value of opening one potential hub. The Fix_hub column represents the total fixed cost of the
opened hubs. Column Cost′ records the total cost of the solutions excluding the fixed hub cost, Cost′ =
Zbest− Fix_hub. The following five columns correspond to Cost′ and stand for the collection cost, the deli-
very cost, the inter-hub transfer cost, the handling cost and the fixed cost of using the vehicles, respectively.
It can be observed in Table 5.18 that, for a given hub capacity, the fixed hub cost has no obvious influence
on the solutions of small instances (e.g. instance 6-20-20) until it is set to a small value of 100 or even 0,
which leads logically to opening more hubs and a reduced value of Cost′ . For large instances (e.g. ins-
tance 10-35-35), when the fixed hub cost decreases, the number of open hubs and the inter-hub transfer
cost increase while the collection cost, delivery cost and Cost′ decrease. When there is no fixed hub cost,
all the potential hubs are open and the best solution (the lowest Cost′ ) is obtained. This confirms the fact
that a larger number of open hubs yields a lower value of the total cost (excluding fixed hub costs). The
total cost on an HLRP network is reduced by increasing the volume of inter-hub transportations, which is a
fundamental hypothesis of Hub Location Problems.
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TABLE 5.18 : Sensitivity analysis on the hub fixed cost
Instance Hub

Fk
Open

Zbest Fix_hub Cost′
Collect

Deliv_cost
Inter-hub Handle

Fix_V
|H|-|I|-|J | capacity hub cost cost cost

6-20-20

45

1000 2, 3, 5 9786.87 3000 6786.87 2527.13 1789.44 548.92 321.38 1600

500 2, 3, 5 8286.87 1500 6786.87 2527.13 1789.44 548.92 321.38 1600

200 2, 3, 5 7386.87 600 6786.87 2527.13 1789.44 548.92 321.38 1600

100 2, 3, 4, 6 7094.27 400 6694.27 2431.23 1571.51 762.95 328.59 1600

0 1,2,3,4,5,6 6593.05 0 6593.05 2380.97 1489.97 782.03 340.09 1600

60

1000 3, 4 9022.21 2000 7022.21 2745.16 1835.18 458.48 283.39 1700

500 3, 4 8022.21 1000 7022.21 2745.16 1835.18 458.48 283.39 1700

200 3, 4 7422.21 400 7022.21 2745.16 1835.18 458.48 283.39 1700

100 3, 4, 6 7120.05 300 6820.05 2745.16 1659.98 528.57 286.35 1600

0 1,2,3,4,5,6 6585.17 0 6585.17 2380.97 1493.44 767.86 342.90 1600

120

1000 3 8118.95 1000 7118.95 3014.13 2320.09 0.00 184.73 1600

500 3 7618.95 500 7118.95 3014.13 2320.09 0.00 184.73 1600

200 3 7334.59 200 7118.95 3029.77 2320.09 0.00 184.73 1600

100 2, 3, 6 7185.71 300 6885.71 2737.47 1700.26 558.20 289.78 1600

0 1,2,3,4,5,6 6585.17 0 6585.17 2380.97 1493.44 767.86 342.90 1600

10-35-35

60

1000 1, 4, 6 13579.80 3000 10579.80 3184.48 3073.48 1102.38 519.44 2700

500 1, 2, 4, 6 12096.50 2000 10096.50 2901.26 2727.64 1127.09 540.52 2800

200
1, 2, 4,

10791.40 1200 9691.40 2473.98 2367.77 1495.23 554.38 2700
5, 6, 8

100
1, 2, 3,

10375.90 600 9775.90 2359.16 2265.70 1597.45 553.55 3000
4, 6, 8

0
1, 2, 3, 4, 5,

9544.05 0 9544.05 1993.95 2166.77 1717.42 565.92 3100
6,7,8,9,10

90

1000 1, 2 12655.50 2000 10665.50 3664.28 3270.35 672.05 448.86 2600

500 1, 2, 7 11690.00 1500 10190.00 2981.73 3063.52 1060.79 484.00 2600

200 1,2,4,6,8 10767.40 1000 9767.40 2474.04 2419.48 1425.76 548.10 2900

100 1,2,4,6,8 10228.00 500 9728.00 2481.83 2474.24 1424.43 547.46 2800

0
1, 2, 4,

9477.82 0 9477.82 2157.88 2237.03 1619.83 563.07 2900
5, 6, 7, 8

180

1000 6 11975.80 1000 10975.80 4011.31 4162.94 0.00 301.55 2500

500 2, 6 11579.80 1000 10571.80 3423.21 3304.53 803.78 448.33 2600

200 1,2,4,6,8 10748.70 1000 9748.70 2596.53 2387.85 1423.35 541.00 2800

100
1, 2, 4,

10211.90 600 9611.90 2429.35 2305.50 1520.47 556.85 2800
5, 6, 8

0
1,2,3,4,5,

9526.86 0 9526.86 1952.32 2103.72 1800.78 570.04 3100
6,7,8,9,10
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5.6 Conclusion
In this chapter, we conducted extensive comparative experiments to solve the problem and model with the
CPLEX solver and with the memetic metaheuristic, with the goal of determining solutions of least total cost
in a reasonable computing time. For the purpose of experiments, we generated a benchmark of instances of
different sizes and characteristics, ranging from 3-10-10 to 10-50-50 potential hubs, suppliers and clients
respectively, with a wide range of hub capacities. In order to achieve significant results, we tuned the main
parameter of CPLEX and compared different implementations of the memetic algorithm.

The results show that CPLEX can solve the model to optimality only for small instances and finds
feasible solutions for larger instances only with a gap, whose size grows with that of the instances. Solution
times reach 3 hours even for medium-sized instances and convergence is slow. This prevents solving large
realistic instances in this fashion. Alternatively, our memetic algorithm can find feasible solutions to the
problem for all types of instances in a reasonable computing time and with limited gaps compared to the
lower bounds of CPLEX. Convergence of the memetic algorithm to good solutions is fast and the solutions
are very stable. We also conducted sensitivity analyses essential in a decision-making process, such as
regarding the results in terms of the fixed cost of opening hubs, potential hub numbers and capacities.
Fewer potential hubs and a larger capacity of hubs will logically reduce the complexity of the problem;
more potential hubs and a larger capacity of hubs result in a decrease in the total network costs.
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6
A mathematical model and a MA for the
bi-objective HLRP

With the concerns about sustainable development, the environmental impact of freight transport and goods
operations have been an increasing matter of interest. It is indeed predicted that over 80 % of the trans-
port companies will be significantly influenced by the global warming, especially relatively to the CO2

emissions, by the year of 2020 (Piecyk and McKinnon [2010]). Such facts suggests the importance of in-
corporating environmental factors into logistics-related decisions.

In this chapter, we first investigate the impacts of CO2 emissions due to transport, on the Hub Location-
Routing Problem (HLRP). By including the costs and CO2 emission functions, we then propose a bi-
objective mathematical model of the green HLRP, considering both economic and environmental factors.
Second, we describe a bi-objective Memetic Algorithm (MA). This bi-objective MA associates a previously
proposed single-objective MA to a Non-dominated Sorting Genetic Algorithm (NSGAII) and an Efficient
Non-domination Level Update (ENLU) method, as well as a two-dimensional local search. This procedure
is intended to generate an approximation of the Pareto front of non dominated solutions of the problem.

This chapter is organized as follows. Section 6.1 gives the problem definition of the proposed bi-
objective model and describes the formulations of calculating CO2 emissions. The bi-objective model of the
HLRP is then presented. Section 6.2 develops a bi-objective MA which is inspired by the single-objective
MA proposed in Chapter 4 to generate the approximate Pareto Front.

6.1 Problem definition and mathematical formulations

6.1.1 General features
We propose a bi-objective model for the CSAHLRP with separate collection and delivery tours which is
an extension of the single objective model introduced in Chapter 3. For the sake of clarity, we describe
the complete model below. The model is defined on a complete directed graph G = (N,A) containing
a set of vertices N and a set of arcs A where N = H ∪ I ∪ J . H = {k | k = 1, 2, ...h} presents a
set of potential hubs. Each potential hub is capacitated and subjected to a fixed cost Fk once selected open.
I = {i | i = h+1, h+2, ..., h+m} and J = {j | j = h+m+1, h+m+2, ..., h+m+n} stand for the sets
of customers and clients who should be served. The numbers and locations of potential hubs, suppliers and
clients are known data. Each pair of i and j (i ∈ I , j ∈ J) is associated with a given amount of freight flow
qij to be shipped between them. The total supplyOi =

∑
j∈J

qij of supplier i and demandDj =
∑
i∈I
qij of client
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j should be satisfied. The set A = A1 ∪A2 ∪A3 includes the collection arc set A1 = {(i, j) : i, j ∈ I ∪H},
the delivery arc setA2 = {(i, j) : i, j ∈ J∪H} and the inter-hub transfer arc setA3 = {(l, k) : l, k ∈ H}. A
fleet of identical vehicles available for collections and deliveries is denoted as set V with a fixed capacityQ.
Once a vehicle travels from non-hub node i to non-hub node j, a routing cost is incurred that is dependent
on the distance dij . The transportation costs between two hubs are determined by travelling distances and
transferred flows and inter-hub transport is not subject to capacity restrictions. To model the collection and
delivery routes, a flow variable fij is used (see Karaoglan and Altiparmak [2015]), representing the vehicle
load on each arc(i, j). The following other constraints must hold :

- The capacity of each hub and collection/delivery vehicle must not be exceeded.

- The demand of each non-hub node has to be consolidated in the allocated hub. The direct transporta-
tions for supplier-client pairs are forbidden.

- The demand of suppliers can be transferred at most two hubs before delivering to clients.

- Suppliers or clients on the same route must be assigned to the same and only one selected hub (single
allocation).

- Each route must start and end at the same selected hub.

- The collection and delivery processes are independent. Collections are executed preceding the long-
distance transfers among the open hubs while deliveries are performed after the inter-hub transport
processes.

- Each route must be visited by only one vehicle and each vehicle must contain only one type of flow
(collected or delivered).

- In inter-hub transportations, vehicles connect hubs directly to one another and there are no tours.

The goal of the model is to minimize the total cost and CO2 emissions of transport by locating the hubs,
allocating the suppliers/clients to the open hubs, planning the collection/delivery routes between the nodes
and the inter-hub freight transportations.

6.1.2 The CO2 emission formulations
In this section, we consider the CO2 emissions caused by transport. Three types of transportation emissions
are considered : the CO2 emissions during the collections, the inter-hub transportations and the deliveries.
Regarding the collection and delivery activities, the vehicle loads to and from the hubs are unknown in
advance, variable and change from one node to another depending on the collections or deliveries. So we
will use the fuel-based method which is more appropriate for estimating the emissions in this case, according
to Section 2.4 of Chapter 2. To the contrary, we assume that regarding inter-hub transport, trucks are always
fully loaded. Therefore we will use the distance-based method to estimate the emissions originating from
inter-hub transport.

The CO2 emission formulation for collection and delivery transportations is therefore based on the fuel
consumption model described by Barth et al. [2005], Demir et al. [2012] and Demir et al. [2014], which
estimates the fuel consumptions of each vehicle instantaneously depending of its load (see Section 2.4,
Chapter 2). As a result, the CO2 emissions emitted along the arcs of a collection or delivery tour for a given
type of vehicle may be estimated by the following formula :

e(d, f) = (w1 + w2fij)dij (6.1)
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where e(d, f) represent the CO2 emissions along an arc of length dij with a vehicle load fij and w1 and
w2 are fixed coefficients.

Concerning the inter-hub transportation, assumed to be corresponded to a full-loaded transport process,
the CO2 emissions of which are estimated by a distance-based formulation (MEET, Hickman et al. [1999]).
This formulation combines a hot emissionEhot and a cold-start emissionEstart (see Section 2.4, Chapter 2).
Ehot stands for the CO2 emissions mainly caused by fuel consuming. Estart is a fixed emission according
to the type of vehicle. It results that for a given type of vehicle travelling along a distance between hubs k
and l, the CO2 emissions may be estimated by :

E(dkl) = ehot × dkl + Estart (6.2)

6.1.3 Bi-objective model for the HLRP

The model of the bi-objective HLRP is an extension of the single-objective model of the HLRP. We for-
mulate the CO2 emission objective function HLRP-CO2 and integrate it into the single-objective model
HLRP-COST in Chapter 3, which aims at minimizing total cost, to form the bi-objective one. For sake of
clarity, we present the whole model in this section. The bi-objective HLRP model for minimizing total costs
and CO2 emissions can be formulated as follows :

Sets

H – Set of hub nodes, H = {k | k = 1, 2, ..., h} ;
I – Set of supplier nodes, I = {i | i = h+ 1, h+ 2, ..., h+m} ;
J –Set of client nodes, J = {j | j = h+m+ 1, h+m+ 2, ..., h+m+ n} ;
N –Set of all nodes, N = H ∪ I ∪ J ;
A1 – Set of arcs in collection routing, A1 = {(i, j) : i, j ∈ I ∪H} ;
A2 –Set of arcs in delivery routing, A2 = {(i, j) : i, j ∈ J ∪H} ;
A3 –Set of arcs in inter-hub transfer, A3 = {(l, k) : l, k ∈ H} ;
A – Set of all arcs, A = {(i, j) : i, j ∈ N} ;

Parameters

Fk–Fixed cost of operating hub k ;
Γk–Capacity of hub k ;
ck – Handling cost to operate one unit product in hub k , k ∈ H ;
C – Fixed cost of a vehicle ;
Q– Capacity of a vehicle ;
qij –Flow quantity from supplier i ∈ I to client j ∈ J ;
dij– Distance between two nodes i and j, arc (i, j) ∈ A ;
α – Unit cost parameter for the inter-hub transport ;
β– Unit cost parameter for the collection tour ;
γ– Unit cost parameter for the delivery tour ;
Oi– Total quantity of flow originating at supplier i, Oi =

∑
j∈J

qij ;

Dj– Total quantity of flow for client j, Dj =
∑
i∈I
qij ;

E(dkl) – CO2 emission for inter-hub transfer from hub k to l when the vehicle is full-loaded, l, k ∈ H ;
w1, w2 – CO2 emission constants of transportation.
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Decision variables

Y i
kl – the fraction of flow shipped from supplier i via hubs k to l, l ∈ H , k 6= l and i ∈ I ;

zik – the allocation variable of a node i to a hub k. It is equal to 1 if the node i is allocated to the hub k,
0 otherwise ; especially, zkk = 1 if the hub k is selected to be open, i ∈ N, k ∈ H ;

xij – is equal to 1 if a vehicle traverses arc (i, j), and 0 otherwise.

fij – vehicle load on arc(i, j) if a vehicle travels directly from node i to node j, otherwise 0. (i, j) ∈
A1 ∪ A2 ;

With respect to those notations, the bi-objective HLRP model for minimizing total costs and CO2 emis-
sions can be formulated as follows :

HLRP-COST

min
∑
k∈H

Fkzkk +
∑
i∈I

∑
(k,l)∈A3

αdklOiY
i
kl +

∑
(i,j)∈A1

βdijxij +
∑

(i,j)∈A2

γdijxij

+
∑
i∈I

∑
k∈H

ckOizik +
∑
i∈I

∑
(k,l)∈A3

clOiY
i
kl +

∑
k∈H

∑
i∈I∪J

Cxki
(6.3)

HLRP-CO2

min
∑

(i,j)∈A1

(w1xij + w2fij)dij +
∑

(i,j)∈A2

(w1xij + w2fij)dij +
∑
i∈I

∑
(k,l)∈A3,k 6=l

E(dkl)OiY
i
kl (6.4)

Subject to

— hub location constraints :

zik ≤ zkk ∀i ∈ N,∀k ∈ H (6.5)∑
k∈H

zik = 1 ∀i ∈ I ∪ J (6.6)∑
i∈I

Oizik ≤ Γkzkk ∀k ∈ H (6.7)∑
j∈J

Djzjl ≤ Γlzll ∀l ∈ H (6.8)∑
l∈H

Y i
kl = zik ∀i ∈ I,∀k ∈ H (6.9)∑

l∈H

Y i
lkOi =

∑
j∈J

qijzjk ∀i ∈ I,∀k ∈ H (6.10)
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— collection routing constraints :∑
j∈I∪H

xij = 1 ∀i ∈ I (6.11)∑
i∈I∪H

xij −
∑
i∈I∪H

xji = 0 ∀j ∈ I ∪H (6.12)

xki ≤ zik ∀i ∈ I, k ∈ H (6.13)
xik ≤ zik ∀i ∈ I, k ∈ H (6.14)
xij + zik + zjl ≤ 2 ∀i, j ∈ I, i 6= j,∀k, l ∈ H, k 6= l (6.15)∑
j∈I∪H

fij −
∑
j∈I∪H

fji = Oi ∀i ∈ I (6.16)∑
i∈I

fik =
∑
i∈I

zikOi ∀k ∈ H (6.17)

fij ≤ (Q−Oj)xij ∀i ∈ I ∪H,∀j ∈ I (6.18)
Oixij ≤ fij ∀i ∈ I,∀j ∈ I ∪H (6.19)∑
i∈I

fki = 0 ∀k ∈ H (6.20)

fik ≤ Qxik ∀i ∈ I, k ∈ H (6.21)

— delivery routing constraints :∑
j∈J∪H

xij = 1 ∀i ∈ J (6.22)∑
i∈J∪H

xij −
∑
i∈J∪H

xji = 0 ∀j ∈ J ∪H (6.23)

xjk ≤ zjk ∀j ∈ J, k ∈ H (6.24)
xkj ≤ zjk ∀j ∈ J, k ∈ H (6.25)
xij + zik + zjl ≤ 2 ∀i, j ∈ J, i 6= j,∀k, l ∈ H, k 6= l (6.26)∑
i∈J∪H

fij −
∑
i∈J∪H

fji = Dj ∀j ∈ J (6.27)∑
j∈J

fkj =
∑
j∈J

zjkDj ∀k ∈ H (6.28)

fij ≤ (Q−Di)xij ∀i ∈ J,∀j ∈ J ∪H (6.29)
Djxij ≤ fij ∀i ∈ J ∪H,∀j ∈ J (6.30)∑
j∈J

fjk = 0 ∀k ∈ H (6.31)

fkj ≤ Qxkj ∀j ∈ J, k ∈ H (6.32)

— domain of decision variables :

zik ∈ {0, 1} ∀i ∈ N, ∀k ∈ H (6.33)
xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ N (6.34)

0 ≤ Y i
kl ≤ 1 ∀i ∈ I,∀k, l ∈ H (6.35)

fij ≥ 0 ∀(i, j) ∈ A1 ∪ A2 (6.36)



96 CHAPITRE 6. A MATHEMATICAL MODEL AND A MA FOR THE BI-OBJECTIVE HLRP

— valid inequalities :

xij + xji ≤ 1 ∀i, j ∈ I (6.37)
xij + xji ≤ 1 ∀i, j ∈ J (6.38)∑
k∈H

zkk ≥ d
∑

i∈I
∑

j∈J qij

Γk
e (6.39)

∑
k∈H

∑
i∈I

xki ≥ d
∑

i∈I Oi

Q
e (6.40)

∑
k∈H

∑
j∈J

xkj ≥ d
∑

j∈J Dj

Q
e (6.41)

In addition, routing variables xij would be ignored in a preprocessing step whenever Oi + Oj >
Q,∀i, j ∈ I, i 6= j or Di +Dj > Q,∀i, j ∈ J, i 6= j (Karaoglan and Altiparmak [2015]).

The objective function (6.3) minimizes the total fixed and variable costs of the CSAHLRP network in-
cluding the fixed cost for opening hubs, the transportation cost between hubs, local collection and delivery
routing costs, the freight operating cost in hubs, and the fixed cost of using vehicles. The objective function
(6.4) intends to minimize the total transportation CO2 emissions. The first and second term denote the trans-
portation emissions during collections and deliveries which is determined by both the travelling distance
and vehicle load. The third term computes the CO2 emissions of long distance transportation between hubs
depending on the distances (Jamshidi et al. [2012]).

Constraints (6.5) to (6.10) are classic constraints of the HLP. Constraint (6.5) ensure that non-hub nodes
can be allocated to a hub only if the hub is open. Constraint (6.6) force each non-hub node to be assigned to
only one hub (single allocation). Hub capacity constraints (6.7) and (6.8) limit the total collection and deli-
very load on hubs. Constraints (6.9) and (6.10) are flow conservation equations. They impose the demand
of each supplier or client to be served by the allocated hub (Ernst and Krishnamoorthy [1999]).

Constraints (6.11) to (6.21) assure a reasonable collection process. Constraint (6.11) make sure that each
supplier is visited just once. Constraint (6.12) guarantee an equal number of incoming and outgoing arcs.
Constraints (6.13) - (6.15) eliminate illegal routes that do not start and end at the same hub. Constraints
(6.16) are the flow conservation constraints for collections. Each time the vehicle serves a supplier, it must
load all of its demand. Constraint (6.17) ensure that the total collection load entering each open hub equals
the total demand of the suppliers who are allocated to the hub. Constraints (6.18) and (6.19) provide an
upper and lower bound for the collection flows. Constraint (6.20) guarantee that the load on each vehicle
is zero when leaving one open hub for collecting (Karaoglan and Altiparmak [2015], Yu and Lin [2016]).
Constraints (6.21) impose that when there is no arc between a supplier node and a hub node, the flow should
be zero. Constraints (6.22)-(6.32) relative to the delivery processes represent conditions similar to those for
the collections.

Constraints (6.33)-(6.36) specify the variables zik, xij , Y i
kl and fij , respectively. Constraints (6.37) to

(6.41) are valid inequalities : constraints (6.37) and (6.38) are sub-tour elimination (Karaoglan and Altipar-
mak [2015]) ; constraint (6.39) restricts the minimum number of open hubs (Bostel et al. [2015]) ; finally,
constraints (6.40) and (6.41) provide a lower bound of the total number of vehicles required in any feasible
solution.

6.2 Memetic algorithm for the bi-objective HLRP
In this section, we adapt the memetic algorithm developed for the mono-objective case (Chapter 4) to solve
the bi-objective HLRP minimizing the cost and CO2 emissions. It applies the general framework of the MA
and is combined with a fast elitist Non-dominated Sorting Genetic Algorithm (NSGAII). The following
subsections describe the algorithmic design of the bi-objective MA in terms of solution representation,
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global framework, generation of initial population, fast non-dominating sorting, genetic operators (selec-
tion, crossover and mutation), a non-dominance level update sorting method and the two-dimensional local
searches.

6.2.1 Solution representation
As initially proposed by Derbel et al. [2012], a candidate solution x is represented by a chromosome P (x)
containing two vectors : the selected hub vector H(x) and the non-hub nodes routing vector A(x) (Figure
6.1). Vector H(x) keeps a set of selected hubs and their assignment configuration. Vector A(x) records the
non-repeated permutation of suppliers and clients conforming to their served sequences on a route (routing
level). Each supplier/client is allocated to the open hub in the corresponding position in vector H(x). For
a chromosome P (x), its two vectors are enumerated as H(x) = {h1, h2, ...hn} and A(x) = {a1, a2, ...an}.
For every position i = {1, 2, ...n}, if hi = k, ai = j, the non-hub node j is assigned to hub k. The tours for
collections and deliveries can be deduced based on the feasible allocation configurations. According to the
fixed sequence in vector A(x), one vehicle starts from the first open hub and adds suppliers with the same
allocating scheme into the route until the capacity of the vehicle is reached and a new tour begins. Such
process continues until all the suppliers are routed. The same procedure happens to the delivery routes.
More details can be found in Chapter 4.

FIGURE 6.1 : Solution representation of the HLRP

6.2.2 Global framework of the bi-objective MA
In the MA, the initial population is originally ranked and sorted in different levels based on the NSGAII
(Deb et al. [2002]). The density of the solutions in the population is calculated by a crowded-comparison
operator (fitness) to guide the selection process at the various stages of the algorithm. When an offspring
is generated, the Non-Dominance Level (NDL) of all solutions is updated. Instead of sorting all the current
individuals each time, an Efficient Non-dominance Level Update (ENLU) method (Li et al. [2016]) just
updates the NDL of some solutions that need to be changed, which reduces the time complexity from
O(mN2) (NSGAII procedure) to O(mN

√
N). The main framework is described as follows and showed in

Figure 6.2. More details of each step will be specifically introduced in the following sections.
Step 1 : Initialization and classification

Initial population consists in heuristic and random solutions. Initial solutions are classified into
feasible and infeasible solution archives.
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Step 2 : Fast non-dominated sorting (NSGAII)

We define Fi as the solution set in which all the solutions ranked in NDL i are stored. The set
F, F = {F1, F2...Fn}, represents the NDL structure of the current generation. The solutions
in lower NDLs dominate the solutions in higher NDLs. The solutions in F1 dominate all the
solutions in the other NDLs.

(Step 3 to Step 6 repeat until stopping criterion is reached)
Step 3 : Fitness

The fitness for each feasible individual is calculated by the crowded-comparison operator, while
the fitnesses of the infeasible individuals are zero.

Step 4 : Selection, crossover and mutation

A unique fitness set is obtained to guide the binary tournament selection procedure. The ap-
proach selects the best fitnesses and the individuals sharing the best fitness are randomly chosen
to survive. Each time two individuals are randomly compared in the selection process. Three
cases are considered : If the two solutions are feasible, the solution in lower NDL is selected ;
otherwise, if they are in the same NDL, the solution with the biggest fitness (crowding-distance
operator) survives ; In the second case in which one feasible and one infeasible solutions are
compared, the feasible one survives ; the third case compares two infeasible solutions and se-
lects a random solution. After the selection procedure, a one-point crossover operator with a
crossover probability is applied to a pair of selected parents to generate new offsprings, which
are then mutated with a mutation probability.

Step 5 : Non-dominance level update sorting

New generated offsprings are compared with the current generation and the NDLs are updated.

Step 6 : Local search

A two-dimensional iterated local search on the non-dominated individuals on the NDL 1 is
performed. The local search explores the solution space first on the cost objective value and
then on the CO2 objective value to find new non-dominated solutions.

6.2.3 Initial population

The initial population includes both heuristic and randomized solutions. Three fast heuristics are imple-
mented to generate good initial solutions : a Nearest Neighborhood Algorithm (NN), a Clarke and Wright
algorithm (CWA) (Caccetta et al. [2013]) and an Extended Clarke and Wright Algorithm (ECWA) (Karao-
glan and Altiparmak [2015]). The thorough idea of generating the heuristic solutions is to consider all the
combinations of hubs (all the non-repetitive open hub subsets) which must meet the minimum hub number
requirement. For each open hub subset, the non-hub nodes are allocated to the open hubs by the algorithm
ECWA. Following this allocation scheme, two feasible solutions are generated at the same time by two
algorithms (NN and CWA) which create two different local collection and delivery routing schemes. Since
the number of generated individuals is dependent on the amount of hub subsets and may fail to reach the
required population size, the remaining solutions are randomly produced. Generated solutions are classified
into feasible and infeasible sets by means of checking hub capacity violation.
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FIGURE 6.2 : Generic framework of the proposed MA for the bi-objective HLRP

6.2.4 Fast non-dominated sorting

The fast elitist Non-dominated Sorting Genetic Algorithm (NSGAII) is proposed by Deb et al. [2002] and
has proved its high performance in terms of convergence and spread of solutions. It can be observed in
Algorithm 7, we associate to each feasible solution p, np the number of solutions which dominate solution
p and the set Sp including the solutions dominated by solution p. At the beginning, the individuals in the
feasible solution set P are compared with each other (lines 2 to 9) to obtain np and Sp. The individuals which
are non-dominated by none of the others, corresponding to np = 0, are ranked in NDL 1 and included in
set F1 (lines 10 and 11). For each individual p in F1, we consider the set Sp of solutions dominated by p
and for each individual q in Sp, we reduce its nq by one. If nq of a solution q is reduced to 0, solution q
is added to the second non-dominated level F2 (line 25). The process repeats until all the individuals have
been ranked in a NDL.

6.2.5 Fitness function

In the proposed MA, the fitness of a feasible individual is associated to its crowding-distance with other so-
lutions in the same NDL (Deb et al. [2002]). The crowding distance estimates solution density surrounding a
specific solution by calculating the size of the largest cuboid enclosing the solution point without including
any other point (Figure 6.3). In Algorithm 8, Fi denotes a set of Ni non-dominated solutions in NDL i (line
1). L[j]dist is the fitness of solution j which equals the sum of the normalized crowing-distances of all the
objective values of solution j. The set Ldist(i) stores the fitnesses of all the individuals with the same NDL
i. Firstly, Ldist(i) and L[j]dist are initialized (lines 2 to 5). Regarding each objective m, the individuals are
sorted in ascending order based on the value of objective m (line 7). Let L[j]m refer to the m-th objective
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Algorithm 7 NSGAII
Input Initial population Gen ; Feasible solution set P , P ⊂ Gen
Output Non-dominance level structure F = {F1, F2...Fi}

1: Sp ← ∅, np ← 0, i← 1 // Initialisation
2: for each individual p, p ∈ P do
3: for each individual q, q ∈ P, q 6= p do
4: if (p ≺ q) then
5: Sp ← Sp ∪ q // Include q into p’s dominating set Sp
6: else if (q ≺ p) then
7: np ← np + 1 // The munber of solutions dominating solution p increases
8: end if
9: end for

10: if (np = 0) then
11: F1 ← F1 ∪ p //members of the first NDL
12: end if
13: end for
14: while Fi 6= ∅ do
15: H ← ∅
16: for each p ∈ Fi do
17: for each q ∈ Sp do
18: nq ← nq − 1
19: if (nq = 0) then // There is no solution dominating q
20: H ← H ∪ q
21: end if
22: end for
23: end for
24: i← i+ 1
25: Fi ← H // Current front is formed with all members
26: end while

return F = {F1, F2...Fi}

value of the j-th individual. The “extreme solutions” (solution 1 and solution Ni), with the smallest and lar-
gest objective value, are assigned an infinite crowding distance (line 8). For each intermediary solution, the
procedure computes the normalized difference between the following and preceding individuals of current
objective m, and sums it to the individual crowding distance (line 9 to 10). Here parameters fmaxm and fminm

are the minimum and maximum values of objective m found in Fi. In the same NDL, solutions with big-
ger crowding-distance value (loose density in the objective space) have a better chance to be selected. The
fitness of an infeasible solution is set to 0. Equations (6.42) show the fitness function Feva(x) of individual
x :

Feva(x) =

{
0 if solution x is infeasible
L[x]dist if solution x is feasible

(6.42)

6.2.6 Selection
The selection procedure select unique fitness of parent solutions by a binary tournament selection (Fortin
and Parizeau [2013]). A unique fitness set FP (without repeating values) for the feasible solutions is built to
limit the recurrence of solutions with the same fitness. Each fitness is marked with a level corresponding to
the NDL of its corresponding individuals. The fitnesses of the infeasible solutions are stored in a set FO and
marked with a NDL that is as large as infinity. Algorithm 9 presents the selection process. τ represents the
number of fitnesses to select at each iteration of the selection procedure and a solution set S is used to store
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FIGURE 6.3 : The crowding-distance of solution i

Algorithm 8 Crowding-distance operator
Input Non-dominated solution set Fi with a NDL of i
Output Crowding distance set Ldist(i)

1: Ni ← |Fi| // Number of individuals
2: Ldist(i)← ∅ // Set of crowding distances
3: for j ← 1 to Ni do // Initialization
4: L[j]dist ← 0
5: end for
6: for m← 1 to 2 do // Two objectives : cost and CO2 emissions
7: Sort solutions in Fi in ascending order according to the value of m
8: L[1]dist ← L[Ni]dist ←∞ // Boundary solutions
9: for j ← 2 to Ni − 1 do

10: L[j]dist ← L[j]dist +
L[j + 1]m − L[j − 1]m

fmaxm − fminm

// The normalized crowding distance

11: end for
12: Ldist(i)← Ldist(i) ∪ L[j]dist
13: end for

return Ldist(i)

the selected individuals. The value of τ equals the minimum value between the number of unique fitnesses
and twice the number of individuals remaining to be selected (line 4). τ unique fitnesses selected randomly
from the fitness set F are stored in a list G (line 5). Then, the fitnesses in list G are compared between any
two and the best ones (half of τ fitnesses) are selected based on the selection criteria below (SelectRoule in
line 7) :

Selection criteria

(1) If the NDLs of two fitnesses are different, the fitness with the smallest rank is selected ;

(2) If the NDLs of two fitnesses are equal and the fitness values are bigger than 0, the largest fitness
survives ;

(3) If both fitnesses are equal to 0, one random individual survives.

Each time one fitness is selected, one random individual sharing the same fitness is added to the final
selection set S (lines 8 and 9). The whole procedure continues until the number of selected solutions |S|
reaches the population size. Finally, the individuals in the set S are randomly arranged in pairs with the
purpose of applying the crossover operator in the next phase (line 12).
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Algorithm 9 Selection operator
Input Gen : current generation ; Npop : population size ; FP : unique fitness set of the feasible individuals in P ;
FO : fitness set of the infeasible individuals in O, P ∪O = Gen

Output Selected parents set S
1: τ ← 0, S ← ∅, G← ∅
2: F ← FP ∪ FO
3: while |S| 6= Npop do
4: τ ← min{2(Npop− |S|), |F|} // Generate the number of fitnesses to be compared
5: Select random τ fitnesses from F and store in list G
6: for (j ← 1, 3, 5..., |G| − 1) do
7: p ← SelectRule{G(j), G(i + 1)} // Compare two fitnesses and select one according to the selection

criteria
8: Randomly select one individual x so that Feva(x) = p, x ∈ Gen
9: S ← S ∪ x // Put the selected individual in the set of S

10: end for
11: end while
12: The individuals in the set of S are arranged randomly in pairs // Pairs of parents for the crossover

return S

6.2.7 Crossover and mutation

The selection procedure is followed by a one-point crossover operation simultaneously swapping nodes on
selected parent pairs to form new offsprings. The hub location vector H(x) of a new offspring combines
the code of the first parent before crossover point PH and the code of the second parent after PH . The first
part of the routing vector A(x) of the offspring takes the same code as the first parent before the crossover
point PA. The second part of A(x) is made of the code of the second parent, deleting the nodes which have
been placed in the first part and sequentially placing the remaining nodes. The mutation operator mutates
the chromosome by using two different methods on sections A(x) and H(x). In the location section H(x),
the hub assignment is modified by randomly choosing hubs to be replaced by others. With this procedure, it
is possible to open a new hub or to close a hub. In the routing section A(x), the locations of two randomly
selected points are exchanged.

6.2.8 Non-dominance level update sorting

This section intends to explore an efficient way to add new offspring into the current generation and update
the solutions whose NDL requires to be changed (Li et al. [2016]). Assume that the current NDL sets are
{F1, F2, ..., Fi, ...Fn}. The total number of solutions in NDL set Fi is |Fi| and Fi(j) represents the jth
solution in set Fi. According to the property of the non-dominance level, the solutions in the lower level
cannot be dominated by any solution of a higher level and each solution in Fi dominates at least one solution
in Fi+1 ( 1 ≤ i < n}). Therefore, the solutions can move to at most the next non-domination level during
the updating.

Four circumstances are taken into account to rank a new offspring x′ with a NDL and to update the NDLs
of other solutions in current generation (Algorithm 10) : (1) the new offspring x′ which is dominated by a
solution in Fi is moved to be compared with the next NDL Fi+1 (lines 15 and 16). If Fi is the last NDL (i =
n), x′ is added into a newly created NDL Fn+1 ; (2) the new offspring x′ which dominates all the solutions
in Fi is added into Fi and all the other solutions in Fi are moved to Fi+1 (lines 17 to 19) ; (3) the new
offspring x′ which is non-nominated by the other solutions in Fi is added into Fi (lines 20 to 22) ; (4) the
last but the most complex case is when the new offspring dominates some solutions and is non-dominated
by the remaining ones in Fi (line 24). Algorithm 11 presents the pseudo-code for the fourth case. Offspring
x′ is added into Fi, and the solutions in Fi which are dominated by x′ are moved from Fi to a set S. In
a special case when i = n, the solutions in S are assigned a newly generated NDL Fn+1 and the process
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stops. Otherwise, each solution x in S is compared with all the solutions in the next NDL Fj . If some of the
solutions in Fj are dominated by the solutions in S, these dominated solutions are moved into a temporary
archive T and similar operations of Algorithm 11 are conducted to re-rank the solutions in T in a higher
NDL (Fj+1 or more).

Algorithm 10 Efficient Non-dominance Level Update (ENLU)
Input Non-domination level structure F = {F1, F2...Fn}, offspring solution x′

Output Non-domination level structure F
1: case1← 0, case2← 0, case3← 0 // Initialisation of three cases
2: for i← 1 to n do // For each current NDL
3: S ← ∅
4: for j ← 1to |Fi| do
5: if (x

′
is non-dominated with Fi(j) then

6: case1← 1
7: else if (x

′
is dominated by Fi(j)) then

8: case2← 1
9: break

10: else
11: case3← 1
12: S ← S ∪ Fi(j)
13: end if
14: end for
15: if (cas2 = 1) then // the offspring is dominated
16: break
17: else if (cas1 = 0) and (cas3 = 1) then // the offspring dominates all the solutions in current level
18: move all solutions originally in Fi to Fi+1

19: break
20: else if (cas1 = 1) and (cas3 = 0) then // the offspring is non-dominated with all the solutions in current

level
21: Add x

′
in Fi

22: break
23: else
24: LevelUpdate(S, i+ 1) (Algorithm 11) // the offspring dominates some solutions in current level
25: break
26: end if
27: end for
28: Delete the solution with the worst fitness in the maximum NDL

return F

After assigning an offspring with a NDL, one inferior individual of current generation is removed (line
28, Algorithm 10) : when there still exist some infeasible solutions in the population, a random infeasible
individual is eliminated ; when all the solutions are feasible, the algorithm gets rid of the solution with the
worst fitness in the last level Fn.
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Algorithm 11 Non-dominance level update : LevelUpdate(S, j)
Input Non-dominance level structure F = {F1, F2...Fn} ; S : the set of solutions removed from Fi, i + 1 = j,

i ∈ {1, 2, ..., n}
Output Update non-dominance level structure F

1: Add all solutions in S to Fj , j = i+ 1
2: if (j 6= n+ 1) then
3: T ← ∅
4: for j ← 1 to |S| do
5: for k ← 1 to |Fj | do
6: if (Sj � Fj(k) then
7: T ← T ∪ Fj(k)
8: end if
9: end for

10: end for
11: if (T 6= ∅) then
12: LevelUpdate(T, j + 1) (Algorithm 11)
13: end if
14: end if

return F

6.2.9 Two-dimensional local search
The key idea of the two-dimensional local search method lies in applying single-objective local searches on
both objectives simultaneously to generate a set of non-dominated solutions during the searches (Tricoire
[2012]). Figure 6.4.(a) and 6.4.(b) illustrate the neighbourhood of a given solution in half shaded circles.
Figure 6.4.(c) shows the relevant portions of solution space for a given solution in two directions. Given a
set of non-dominated solutions, the local search operators explore first the neighbourhood on the direction
of minimizing CO2 emissions (Figure 6.4.(a)), then on the direction of minimizing cost (Figure 6.4.(b)).
Algorithm 12 gives an outline of the two-dimensional local search of the bi-objective HLRP. During the
LS procedure, if the solution x is improved in terms of at least one objective, the improved solution x′ is
added in the current generation. The ENLU procedure (Algorithm 10) updates the NDL and eliminates the
worst solution.

FIGURE 6.4 : Portions of solution space for the bi-objective HLRP : (a) Search space on direction 1 :
minimization of cost ; (b) Search space on direction 2 : minimization of CO2 ; (c) Overall search spaces
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Algorithm 12 Two-directional Local Search
Input P (x) : the offspring chromosome to be operated ; Vm(x) : the value of the m-th objective of the solution x ;

Gen : current generation
Output Updated non-dominance levels ;

1: for m← 1 to 2 do // Local search on two directions : the cost and the CO2

2: for each local search operator do
3: Local search on P (x) to generate feasible offspring x′

4: if Vm(x′) < Vm(x) then
5: Gen← Gen ∪ x′
6: Non-dominance level update (Algorithm 10)
7: Delete one inferior solution x′′ from Gen
8: end if
9: end for

10: end for
return Updated non-dominance levels
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The local search operators on the single-objective HLRP proposed by in Chapter 4 are also applicable to
the bi-objective HLRP because the searches on each direction only consider one objective. The local search
operators are utilized on the routing part and hub location part of the chromosome : swap and insertion
operations on the routing part ; hub replacement, hub closing, hub opening and hub swapping operators on
the hub location part.

Figure 6.5 shows how the LS are implemented to find new non-dominated solutions. For each objective
(direction) of one solution in NDL 1 (Figure 6.5.(a)), the LS is applied and two new offsprings are generated
(Figure 6.5.(b)). A new set of non-dominated solutions is formed by adding the new offsprings into the
current generation through the ENLU procedure (Figure 6.5.(c)).

FIGURE 6.5 : Local search on the non-dominated solutions of NDL 1

6.3 Conclusion
In this chapter, the environmental aspect is taken into account to the HLRP. Many emission formulations
are explored and implemented to generate the green HLRP model for minimizing cost and CO2 emissions.
Furthermore, a bi-objective memetic algorithm is developed to solve the CSAHLRP with respect to mini-
mization of cost and CO2 emissions. A fast elitist Non-dominated Sorting Genetic Algorithm (NSGAII) is
integrated into the process of the MA to sort the initial population in different non-dominance level. After
the GA operators, a two-dimensional Local Search is implemented to generate better offsprings. Each time
a offspring is generated, an Efficient Non-domination Level Update (ENLU) method is employed to update
the non-dominance levels. The approach builds approximated Pareto Front to exhibit the trade-off relation-
ship between cost and CO2 emissions. The computational results of the bi-objective MA are presented and
investigated in the next chapter.



7
Computational experiments for the bi-objective
HLRP

In this chapter, the experiment results of the proposed memetic algorithm for the bi-objective HLRP are
analyzed, which are compared with the results of the single-objective MA and Epsilon Constraint (EC)
method. In Section 7.1, the data set and the global parameters are introduced. The EC method and the
results are shown in Section 7.2. Sections 7.3 and 7.4 introduce the parameter settings of the proposed MA
and investigate the experiment results. The proposed MA is coded in Visual studio C++ 2012. Both of the
MA and the EC method are experimented on PCs with 3.07 GHz and 8 GB RAM memory.

7.1 Data and parameters

The data set used to test the bi-objective HLRP takes the same data set were generated to solve the single-
objective HLRP. The data set contains 27 instances with up to 100 non-hub nodes and 10 hub nodes. Each
location the of supplier/client node point is randomly selected from AP data set and distances between those
nodes are extracted (Ernst and Krishnamoorthy [1999]). The flows (in tons) for each supplier-client pair
have been generated uniformly within the interval [0.15, 1.0] in order to be consistent with the capacity of
the vehicles (15 tons) and the possibility of loading the freight of several suppliers (resp. clients) within the
same collection (resp. delivery) routes. The names of the instances are denoted as |H|-|I|-|J |-|Γ|. H stands
for the candidate hub number set, |H|∈ {3, 6, 10}. I and J are sets of supplier and client nodes : |I|=|J |∈
{10, 15, 20, 25, 30, 35, 40, 45, 50}. Γ refers to the set of hub types with integer capacities corresponding to
1/3, 1/2 or 1 of the total demand, which depends of the instance size in the AP data set. Instances with 10
or 15 supplier and client nodes are referred to as “small instances" ; those with 20 to 30 supplier and client
nodes as “medium instances", and those with 35 to 50 supplier and client nodes as “large instances".

Tables 7.1 and 7.2 show the values of parameters for hubs and vehicles. The parameters concerning ve-
hicles (fixed costs and unit transportation cost) are based on logistics data from the French Comité National
Routier CNR1 data base. The unit cost of handling unit flow in hubs was communicated by a French logistic
company. The parameter values of CO2 emissions can be found in Table 7.3.

1http ://www.cnr.fr/en
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TABLE 7.1 : Parameter values for hubs
Name Value Name Value

Fixed cost Fk (C) 1000 Handling cost ck (C/t) 1.78

TABLE 7.2 : Cost parameter values for vehicles
Name Value Name Value

Load capacity Q (ton) 15 Fixed cost for tour C ( C) 100

Unit transfer cost α (C /km.t) 0.057 Unit collection cost β (C /km) 0.8

Unit delivery cost γ (C /km) 0.8

TABLE 7.3 : Emission parameter values for vehicles (per unit flow)

Emission parameter
Hot emission
factor (kg/km)

Cold express emission
(kg/cold start)

w1 w2 Ehot Estart

0.510100 0.022220 0.026667 0.033333

7.2 Epsilon constraint method
Based on the bi-objective HLRP model stated above, we generated a number of non-dominated solutions
by means of the Augmented Epsilon Constraint (AUGMECON) method proposed by Mavrotas [2009].
In order to generate points on the Pareto Front, first we solve the single-objective problems individually
with just one objective function and all the constraints of the model, which will generate the minimum
and maximum range of two objective values. We define f1(x) standing for the objective function of cost
(Equation (6.3), Chapter 6) and f2(x) the objective function of CO2 emissions (Equation (6.4), Chapter 6).
Let Xc denote the best solution of the cost model and Xe the best solution of the CO2 model. z1(Xc) and
z2(Xc) represent the cost and CO2 values of solution Xc. Accordingly, z1(Xe) and z2(Xe) represent the
cost and CO2 values of solution Xe. A payoff table will be constructed as

TABLE 7.4 : Payoff table of epsilon constraint method
Cost value CO2 value

f1(x) (HLRP-COST) z1(Xc) z2(Xc)

f2(x) (HLRP-CO2) z1(Xe) z2(Xe)

The ranges of the cost and CO2 values are z1(Xc) ≤ f1(x) ≤ z1(Xe), z2(Xe) ≤ f2(x) ≤ z2(Xc),
respectively. We have observed that the single-objective model for minimizing CO2 is solved much faster
in obtaining optimal or good feasible solutions in many experiments. Thus the cost values were posed as
constraints and the CO2 emissions were minimized with the AUGMECON method :

min f2(x)− eps ∗ s/(z1(Xe)− z1(Xc))

st
x ∈ S
f1(x) + s = ε

ε = z1(Xe)− h/g ∗ (z1(Xe)− (z1(Xc))

(7.1)
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In the AUGMECON model (7.1), eps is an adequately small number (usually between 10−3 and 10−6),
s is the slack or surplus variable for the ε constraint, S is the feasible region, and g is the number of the grid
points, h = 0, 1, . . . , g. Here we set eps to 10−5 and g to 10 which means that 11 ε values will be tested
for each problem instance. The objective is to minimize the total CO2 emissions under a sequence of cost
constraints.

The model is coded in Visual studio C++ 2012 and solved with CPLEX 12.6.1.with a maximum CPU
time of 3 hours and a 1500MB’s limitation of the tree memory for all the problem instances. Due to the
large computing time and the difficulty of solving the HLRP, we only conducted the experiments on some
small and medium sized instances. The results are shown and compared with the results of the proposed
MA in Table 7.13 in the next section. Here, as an example, Table 7.5 shows the payoff table of Instance 10-
10-10-10, the results of which are from the single-objective HLRP model. Table 7.6 presents the solutions
found by the AUGMECON model. In the second column of Table 7.6, the range of cost values are divided
into 10 intervals (11 grid points) according to the payoff table. Under each cost constraint, the model seeks
to minimize the objective function of the model (7.1). We obtained 10 solutions : 8 non-dominated and 6
optimal. Since the 4th and 6th solutions are dominated by the solution 3 and 7, respectively, they are not
considered in the following discussion. Notice that CPLEX stopped less than 3 hours in some cases because
of the limitations of the tree memory.

TABLE 7.5 : The payoff table of Instance 10-10-10-10
Cost value CO2 value

f1(x) (HLRP-COST) 5792.80 1544.49

f2(x) (HLRP-CO2) 12720.00 735.68

TABLE 7.6 : The results of the AUGMECON model of Instance 10-10-10-10
Number of
solutions

ε value
(cost constraint)

UB(CO2) LB Gap (%) CPU time(s) Cost value

1 12720.00 735.684 735.68 0.00 8.92 12620.00

2 12027.30 785.03 785.03 0.00 355.19 11707.30

3 11334.60 840.67 840.67 0.00 3130.98 10768.70

4 10641.80 840.67 840.67 0.00 3443.97 10568.70

5 9949.13 896.87 896.87 0.00 7528.55 9754.69

6 9256.41 983.01 894.40 9.01 6973.86 8687.81

7 8563.69 952.51 952.51 0.00 10695.80 8526.67

8 7870.97 1028.98 982.42 4.52 10800.30 7625.44

9 7178.25 1273.94 992.51 22.09 10800.20 6976.49

10 6485.53 1609.60 1017.06 36.81 5830.20 6089.47

11 5792.80 - 1036.01 - 10800.00 -

Total time (s) 70367.95

7.3 Parameter settings for the bi-objective MA
The tunning of several parameters of the MA lies in the probability of crossover and mutation, the size of
population and the iteration of the MA (the stopping criterion). The first parameter is the crossover and
mutation probability. Since we found that the same values used in the single-objective MA are also efficient
in the bi-objective problem, we keep the probability of crossover and mutation as 0.8 and 0.7. The second
parameter is the population size. Various population sizes of {50, 100, 200} were tested. The results of
population size of 50 and 100 converge quickly with no improvement. Thus the population size of 200 is
selected in consideration of the performance of the generation.
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The last parameter is the iteration times of the MA. In order to stop the total algorithm, a number of ite-
rations of the MA was predefined as the stopping criterion. We selected three instances with small, medium
and large sizes and ran the MA for 1000 iterations. The non-dominated solutions found are recorded during
each 100 iterations. In Table 7.7, the column of Iterations indicates the number of iterations (generations)
of the MA. The following two columns display the total number of the non-dominated solutions of current
iteration and the newly generated non-dominated solutions compared to the ones of the last 100 iterations.
The last column records the computing time in seconds. It shows that more solutions can be generated
by increasing the iterations of the MA and when the iteration reaches to 300 and 400, the most new non-
dominated solutions were yielded. However, it is more time-consuming with more iterations. Figure 7.1
revealed the evolutions of the computing time of Instance 10-50-50-75, indicating that after 400 iterations,
the computing time increased dramatically. The non-dominated individuals generated are also investiga-
ted and shown in Figures 7.2 to 7.4, which present the non-dominated solutions found in the generation
of initial, 100, 200, 300, 400 and 1000 for Instances 6-10-10-15, 10-25-25-45 and 10-50-50-75. Solutions
obtained after 400 iterations just improve slightly the approximate Pareto Front. Thus it can be concluded
that although more iterations of the MA generate more non-dominated solutions, the approximate Pareto
Front is not improved after 400 iterations, at the same time, more iterations costs more computing time. To
keep a balance between the computing time and the quality of the approximate Pareto Front, we stop the
algorithm after 400 iterations for all the instances. Moreover, for each problem instance, we obtain the final
Pareto front as a result of five independent runs of the MA. More runs of the MA does not improve the final
front.

Alternatively, the MA fully executes the mutation step of the genetic part of the algorithm with a proba-
bility after the crossover process, but the LS is called only after every 10 iterations of the genetic part. After
the mutation, the solutions in NDL 1 are arranged in descending order based on the crowding distances.
The top 5 of the solutions are applied by the local search operators (if the number of the solutions in NDL
1 is less than 5, all these solutions are applied by the LS).

TABLE 7.7 : The number of non-dominated solutions after each 100 iterations of the MA
Instance 6-10-10-15 Instance 10-25-25-45 Instance 10-50-50-75

Iterations (generation)
Total

solutions
New

solutions
Time (s)

Total
solutions

New
solutions

Time (s)
Total

solutions
New

solutions
Time (s)

Initial 7 7 0.05 14 14 0.31 9 9 0.83
100 15 15 6.86 39 39 124.10 26 26 345.48
200 15 4 14.55 42 41 335.69 40 40 1029.40
300 12 9 22.10 72 46 585.97 69 57 2390.12
400 13 8 29.63 88 30 851.97 75 46 4046.30
500 14 3 39.66 95 17 1127.98 79 38 5891.55
600 15 2 62.05 97 8 1405.44 87 28 7934.00
700 15 1 84.24 99 3 1700.66 94 26 9967.79
800 15 0 106.88 99 0 1990.33 98 12 12108.30
900 15 0 129.28 101 2 2277.59 99 9 14273.90
1000 15 0 151.62 101 0 2569.22 103 13 16346.90
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FIGURE 7.1 : Computing time evolution of the bi-objective MA (Instance 10-50-50-75)

FIGURE 7.2 : Non-dominated solutions with different MA iterations for small instance (6-10-10-15)

FIGURE 7.3 : Non-dominated solutions with different MA iterations for medium instance (10-25-25-45)
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FIGURE 7.4 : Non-dominated solutions with different MA iterations for large instance (10-50-50-75)

7.4 Results analysis
Figure 7.5 shows the initial and the 50th generation of the proposed MA for Instance 10-50-50-75, respec-
tively. It can be observed that the solutions in the initial generation are scattered in the solution space. After
only 50 generations, the population members move closer to each other and move towards the points with
smaller objective values. Figure 7.6 presents the improvement of the generation from 100 to 400 iterations
of the MA. The solutions are continuously improved until the MA reaches the 400th generation.

FIGURE 7.5 : Illustration of the convergence of the MA after 50 iterations (Instance 10-50-50-75)

Figures 7.7 and 7.8 explain how the approximate Pareto Front is obtained. For each run of the MA,
the non-dominated solutions are generated in Figure 7.7. These solutions are then sorted by the NSGAII,
getting rid of the dominated individuals. Finally, the non-dominated solutions are retained in Figure 7.8.
It is obvious that non-dominated solutions of Instance 10-50-50-75 are not evenly spread across the ap-
proximate Pareto front due to the limited number of candidate hubs and suppliers/clients. More specifically,
Figure 7.8 presents a typical trade-off front of hub locations with the black boxes showing which hubs are
opened. Different number of open hubs yield the solutions with big differences (the values of cost and CO2
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FIGURE 7.6 : Generation evolution from 100 to 400 iterations of the MA (Instance 10-50-50-75)

emissions). Opening three hubs (hubs 2, 5 and 10) generate the solutions with the smallest cost and large
CO2 emissions ; on the contrary, when all the 10 hubs are opened, the value of CO2 emissions is small while
the cost is large. We define the solution with the smallest cost or CO2 emissions an “extreme solution” of
an approximate Pareto front. The similar characters of the approximate Pareto front can be seen for other
instances.

FIGURE 7.7 : Non-dominated solutions for each run of the MA (Instance 10-50-50-75)

To ensure good quality solutions be found, the “extreme solutions” of the proposed MA are compared
with the results of the single-objective HLRP solved by CPLEX and the MA (5). Tables 7.8 and Table 7.9
record the number of “extreme solutions” dominating the solutions of the single-objective methods. The
columns of “Total” are the total number of the small, medium and large instances tested. The columns of
“Dominating” present the number of the “extreme solutions”, both the cost and CO2 values of which are
smaller. When compared to the single-objective model of minimizing cost, the bi-objective MA is able to
obtain 34 higher quality “extreme solutions” out of 45 small and medium instances. On the other hand, for
the single-objective model of minimizing CO2 emissions, CPLEX is slightly better than the bi-objective
MA (only 15 solutions out of 45 are improved) since most of the small and medium instances are solved to
optimality by CPLEX. Regarding the single-objective MA, the bi-objective MA tends to find the “extreme
solutions” which are slightly better than the solutions of the single-objective MA. More than half of the
single-objective solutions are improved. It seems that the two-dimensional local search is able to explore
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FIGURE 7.8 : The hierarchical nature of the approximate Pareto Front (Instance 10-50-50-75)

more neighbors that the single directional search can not find. Therefore, in most cases, the range of the
approximate Pareto Front obtained by the proposed MA covers or even improves the best solutions of
single-objective methods. More details of the results are presented in Tables 7.14 to 7.21. The solution in
bold indicate that it is better than the solution obtained by the other methods in terms of both cost and CO2

emissions.
Tables 7.10 to 7.12 show the results by the proposed bi-objective MA : the number of the non-dominated

solutions, the “extreme solutions” and the total computing time for 5 runs of the MA. More non-dominated
solutions can be found as the problem scale increases. Instances with more potential hubs enlarge the range
of the Pareto Front and moves the Front towards left and downward (Figure 7.9), improving the Pareto
Front. Solutions with small CO2 tends to open all the potential hubs, causing a large cost of opening hubs ;
solutions with small cost consider the balance of the fixed hub cost and the transportation cost to select
hubs to open which increase the CO2. In addition, with the same hub location scheme, the cost and CO2

emissions also show the trade-offs in a limited range.

TABLE 7.8 : The number of “extreme solutions” dominating the solutions of the single-objective model
Comparison with the single-objective model of minimizing cost

No. of potential hubs
No. of small instances No. of medium instances Total number
Total Dominating Total Dominating Total Dominating

3 6 3 9 4 15 7
6 6 5 9 7 15 12
10 6 6 9 9 15 15

Total number 18 14 27 20 45 34
Comparison with the single-objective model of minimizing CO2

No. of potential hubs
No. of small instances No. of medium instances Total number
Total Dominating Total Dominating Total Dominating

3 6 2 9 2 15 4
6 6 3 9 4 15 7
10 6 0 9 4 15 4

Total number 18 5 27 10 45 15
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TABLE 7.9 : The number of “extreme solutions” dominating the solutions of the single-objective MA
Comparison with the single-objective MA of minimizing cost

No. of potential hubs
No. of small instances No. of medium instances No. of large instances Total number
Total Dominating Total Dominating Total Dominating Total Dominating

3 6 4 9 5 12 10 27 19
6 6 4 9 6 12 6 27 16

10 6 4 9 5 12 9 27 18
Total number 18 12 27 16 36 25 81 53

Comparison with the single-objective MA of minimizing CO2

No. of potential hubs
No. of small instances No. of medium instances No. of large instances Total number
Total Dominating Total Dominating Total Dominating Total Dominating

3 6 5 9 5 12 11 27 21
6 6 3 9 4 12 5 27 12

10 6 4 9 3 12 2 27 9
Total number 18 12 27 12 36 18 81 42

TABLE 7.10 : Results of the small instances by the bi-objective MA
Instance
|H|-|I|-|J |

Hub
capacity

Number
of solutions

Extreme solutions
Ttotal (s)
for 5 runsMinimum cost solution Minimum CO2 solution

Cost CO2 (kg) Open hub Cost CO2 (kg) Open hub

3-10-10
10 3 5831.25 1505.73 3 (1,2,3) 5844.76 1498.74 3 (1,2,3) 128.60
15 3 4269.15 1356.04 2 (1,2 ) 5458.71 1274.68 3 (1,2,3) 100.00
30 12 3292.09 1447.46 1 (2) 5421.24 1262.78 3 (1,2,3) 469.05

6-10-10
10 5 5674.96 1398.79 3 (3.4.6) 8714.84 1103.36 6 (1,2,3,4,5,6) 361.46
15 14 4269.15 1352.20 2 (1,2) 7560.33 1082.03 5 (2,3,4,5,6) 488.27
30 23 3272.23 1415.67 1 (4) 8704.95 1098.55 6 (1,2,3,4,5,6) 647.18

10-10-10

10 26 5653.86 1368.19 3 (2,4,8) 12636.4 813.627 10 (1,2,3,4,5, 743.986,7,8,9,10)

15 21 4270.88 1415.75 2 (2,10) 12544.50 752.61 10 (1,2,3,4,5, 901.936,7,8,9,10)

30 37 3245.62 1432.28 1 (10) 12520.5 751.689 10 (1,2,3,4,5, 1085.866,7,8,9,10)

3-15-15
30 11 8903.94 3490.18 3 (1,2,3) 9139.52 3417.68 3 (1,2,3) 234.71
45 6 7638.35 3175.21 2 (1,3) 8578.73 3087.26 3 (1,2,3) 500.24
90 14 6484.38 3384.42 1 (3) 8364.55 2939.81 3 (1,2,3) 753.31

6-15-15
30 5 8103.17 2674.95 3 (1,4,5) 10891.20 2362.88 6 (1,2,3,4,5,6) 226.26
45 9 7107.65 2871.19 2 (3,5) 10891.20 2362.88 6 (1,2,3,4,5,6) 396.99
90 15 6195.44 3127.02 1 (5) 10891.20 2362.88 6 (1,2,3,4,5,6) 653.52

10-15-15

30 21 7748.22 2496.67 3 (5,9,10) 14990.6 2104.68 10 (1,2,3,4,5, 1200.266,7,8,9,10)

45 17 6977.86 2727.92 2 (7,10) 15153.9 2142.01 10 (1,2,3,4,5, 1314.556,7,8,9,10)

90 28 6179.78 3143.7 1 (5) 13843.9 2095.77 9 (1,2,4,5,6, 1660.117,8,9,10)
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TABLE 7.11 : Results of the medium instances by the bi-objective MA
Instance
|H|-|I|-|J |

Hub
capacity

Number of
solutions

Extreme solutions
Ttotal (s)
for 5 runsMinimum cost solution Minimum CO2 solution

Cost CO2 (kg) Open hub Cost CO2 (kg) Open hub

3-20-20
45 2 9995.20 3785.73 3 (1,2,3) 10066.50 3754.40 3 (1,2,3) 356.51
60 10 8869.83 3751.21 2 (2,3) 10086.30 3674.49 3 (1,2,3) 994.91

120 12 8025.93 4270.36 1 (3) 10072.50 3689.35 3 (1,2,3) 1510.81

6-20-20
45 13 9806.10 3608.92 3 (2,4,5) 11892.20 3291.17 5 (1,2,4,5,6) 716.77
60 10 9022.21 3817.45 2 (3,4) 10891.80 3371.53 4 (2,4,5,6) 850.54

120 21 8168.26 4220.88 1 (3) 11892.20 3291.17 5 (1,2,4,5,6) 1331.47

10-20-20

45 45 9659.79 3421.93 3 (8,9,10) 15481.50 2786.51 9 (2,3,4,5, 2117.746,7,8,9,10)

60 30 8772.36 3859.54 2 (9,10) 15510.90 2743.64 9 (1,2,4,5, 2477.126,7,8,9,10)

120 46 7885.86 4103.71 1 (7) 16416.00 2733.03 10 (1,2,3,4,5, 3267.606,7,8,9,10)

3-25-25
45 6 11670.30 4799.12 3 (1,2,3) 11734.90 4770.93 3 (1,2,3) 111.31
60 13 10568.00 5009.01 2 (1,3) 11288.80 4653.72 3 (1,2,3) 309.58

120 23 9918.14 5772.74 1 (3) 11227.70 4570.93 3 (1,2,3) 819.69

6-25-25
45 28 11003.30 4706.25 3 (1,2,5) 13656.30 3834.22 6 (1,2,3,4,5,6) 1323.36
60 59 10329.80 4995.49 2 (1,5) 13710.60 3854.10 6 (1,2,3,4,5,6) 1686.92

120 26 9040.91 5045.22 1 (5) 13710.80 3854.80 6 (1,2,3,4,5,6) 3380.92

10-25-25

45 97 10771.20 4415.79 3 (1,8,10) 17647.40 3362.46 10 (1,2,3,4,5, 4071.306,7,8,9,10)

60 148 10160.10 4791.64 2 (5,10) 16829.10 3423.05 9 (1,2,3,5, 5063.186,7,8,9,10)

120 157 9031.86 5087.97 1 (5) 17661.50 3392.94 10 (1,2,3,4,5, 6393.386,7,8,9,10)

3-30-30
60 8 14586.00 6362.02 3 (1,2,3) 14611.40 6240.27 3 (1,2,3) 123.57
90 3 13727.30 5629.61 3 (1,2,3) 13749.40 5618.24 3 (1,2,3) 226.73

165 7 11528.30 6314.13 1 (2) 13065.30 5372.74 3 (1,2,3) 1839.07

6-30-30
60 38 12878.50 5271.05 3 (4,5,6) 15588.60 4647.83 6 (1,2,3,4,5,6) 1798.98
90 27 11965.40 5576.79 2 (4,6) 15720.50 4640.85 6 (1,2,3,4,5,6) 2838.03

165 31 11528.30 6314.13 1 (2) 15729.70 4638.17 6 (1,2,3,4,5,6) 4647.24

10-30-30

60 70 12852.50 5344.25 3 (4,6,8) 18435.00 4088.57 9 (1,2,4,5, 5604.376,7,8,9,10)

90 63 11957.70 5522.70 2 (2,6) 19487.80 4064.15 10 (1,2,3,4,5, 8033.566,7,8,9,10)

165 66 11391.40 6154.92 1 (8) 18427.60 4069.25 9 (1,2,4,5, 12915.206,7,8,9,10)
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TABLE 7.12 : Results of the large instances by the bi-objective MA
Instance
|H|-|I|-|J |

Hub
capacity

Number of
solutions

Extreme solutions
Ttotal (s)

for five runsMinimum cost solution Minimum CO2 solution
Cost CO2 (kg) Open hub Cost CO2 (kg) Open hub

3-35-35
60 3 14587.10 6246.41 3 (1,2,3) 14603.90 6241.53 3 (1,2,3) 212.60
90 33 12623.80 5952.05 2 (1,2) 13765.50 5603.89 3 (1,2,3) 1358.98
180 30 12168.90 6612.14 1 (1) 13435.40 5608.56 3 (1,2,3) 3641.68

6-35-35
60 56 13392.30 5446.99 3 (1,4,6) 16111.90 4654.08 6 (1,2,3,4,5,6) 3604.13
90 78 12625.00 5879.15 2 (2,6) 16149.10 4653.46 6 (1,2,3,4,5,6) 4711.90
180 64 12071.10 6533.25 1 (6) 16149.10 4655.60 6 (1,2,3,4,5,6) 7952.50

10-35-35

60 78 13506.30 5715.40 3 (1,2,6) 18725.50 4111.02 9 (1,2,3,4, 11788.305,6,7,8,10)

90 76 12705.90 5732.97 2 (1,4) 19779.10 4051.28 10 (1,2,3,4,5, 15813.906,7,8,9,10)

180 65 12051.80 6639.90 1 (6) 18740.70 4111.79 9 (1,2,3,4, 24082.005,6,7,8,10)

3-40-40
75 13 16066.00 6962.21 3 (1,2,3) 16197.00 6853.72 3 (1,2,3) 325.58
105 38 15206.70 7435.66 2 (1,2) 15637.50 6553.53 3 (1,2,3) 982.89
210 97 13417.50 7428.76 1 (2) 15724.40 6670.78 3 (1,2,3) 3048.44

6-40-40
75 67 15328.20 6344.15 3 (3,4,5) 17472.10 5316.80 6 (1,2,3,4,5,6) 4782.40
105 67 13885.90 6649.84 2 (4,5) 17529.10 5340.61 6 (1,2,3,4,5,6) 6902.36
210 83 13282.20 7321.81 1 (5) 17663.90 5353.70 6 (1,2,3,4,5,6) 11451.80

10-40-40

75 73 14612.70 6014.34 3 (2,5,10) 20007.70 4612.24 9 (1,3,4,5, 18576.506,7,8,9,10)

105 51 13687.30 6431.53 2 (2,10) 19987.80 4588.83 9 (1,3,4,5, 23834.906,7,8,9,10)

210 100 13165.70 7405.01 1 (5) 20178.70 4584.12 9 (1,3,4,5, 37141.506,7,8,9,10)

3-45-45
75 63 14294.10 6336.42 3 (1,2,3) 14519.60 6204.08 3 (1,2,3) 626.66
105 25 13353.00 6380.85 2 (1,2) 14600.00 6319.74 3 (1,2,3) 2414.79
195 66 12047.10 6744.57 1 (1) 14083.10 6176.04 3 (1,2,3) 4985.50

6-45-45
75 188 13925.80 5912.93 3 (2,3,5) 16828.20 5481.92 6 (1,2,3,4,5,6) 8130.60
105 81 12823.70 6076.64 2 (1,5) 15853.30 5513.80 5 (1,2,4,5,6) 5910.32
195 105 12162.70 6803.82 1 (1) 16856.80 5511.05 6 (1,2,3,4,5,6) 7837.90

10-45-45

75 102 13209.30 5519.39 3 (3,5,9) 20297.90 4711.60 10 (1,2,3,4,5, 31991.306,7,8,9,10)

105 113 12428.40 5746.30 2 (8,9) 19317.10 4665.70 9 (2,3,4,5, 38676.106,7,8,9,10)

195 150 12111.30 6815.60 1 (1) 20410.00 4669.68 10 (1,2,3,4, 50243.805,6,7,8,9,10)

3-50-50
75 36 17043.40 7642.11 3 (1,2,3) 17157.50 7588.11 3 (1,2,3) 926.05
120 38 16099.70 7984.76 2 (1,2 ) 16542.90 6961.95 3 (1,2,3) 3074.31
225 87 14777.90 8283.47 1 (2) 16097.20 6691.41 3 (1,2,3) 8429.92

6-50-50
75 36 16556.2 6450.02 4 (1,2,3,5) 18670.4 5953.01 6 (1,2,3,4,5,6) 5293.64
120 116 15501.00 7796.98 2 (2,5) 18675.6 6068.97 6 (1,2,3,4,5,6) 8532.99
225 61 14826.80 8292.34 1 (2) 17647.40 6097.73 5 (1,2,3,4,5) 5209.28

10-50-50

75 74 16423.40 7327.94 3 (2,5,10) 22155.30 5076.42 10 (1,2,3,4,5, 19480.906,7,8,9,10)

120 70 15272.70 7456.37 2 (8,10) 20960.60 5117.58 9 (2,3,4,5, 29069.906,7,8,9,10)

225 71 14291.30 7954.63 1 (8) 21208.50 5136.84 9 (1,2,3,4, 44201.005,7,8,9,10)
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FIGURE 7.9 : The approximate Pareto Front of instances with 80 nodes (medium hub capacity) : the instance
with 10 potential hubs obtain superior front than the instance with 6 potential hubs

7.5 Performance assessment of the bi-objective MA
Since the outcome of our method is an approximate Pareto front, to evaluate the quality of this approxi-
mation Pareto front is important. Various measures have been developed to assess the performance of the
multi-objective optimizers. Considering that each measure only provides one aspect of the respective front,
we use three measures to evaluate our method in different aspects.

The first evaluating indicator is the unary epsilon indicator Iε(A,B) introduced by Zitzler et al. [2003],
indicating how far two approximate Pareto Fronts A and B are from each other. For a bi-objective minimi-
zation problem, a non-dominated solution with objective vector z1 = (z1

1 , z
1
2) is called ε-dominating another

non-dominated solution with objective vector z2 = (z2
1 , z

2
2) if and only if ∀i = 1, 2, z1

i < ε× z2
i for a given

ε. In practice, the binary ε-indicator Iε(A,B) can be calculated as follows :

εz1,z2 = max
1≤i≤2

z1/z2 ∀z1 ∈ A, ∀z2 ∈ B (7.2)

εz2 = min
z1∈A

εz1,z2 ∀z2 ∈ B (7.3)

Iε(A,B) = max
z2∈B

εz2 (7.4)

The smallest value of the indicator is 1 and the Pareto Front with a smaller indicator value is better.
The second indicator is the Ratio of approximated Pareto Front, introduced by Altiparmak et al. [2006].

It calculates the percentage of solution numbers from a approximated Pareto front A that are not dominated
by all the solutions from another approximated Pareto front B . To compute the Ratio of approximated
Pareto front A :

RPA = (| A | − | {X ∈ A | ∃Y ∈ A ∪B : Y � X} |)/ | A | (7.5)

in which Y � X means that X is dominated by solution Y . A big value of PRA means more number of
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solutions from the approximate Pareto set A are not dominated by any member of the set A ∪B.
The last indicator is called the hypervolume indicator (Zitzler et al. [2003]) H , representing the scale

of the space covered by a set of non-dominated solutions respect to a reference point (Equation (7.6)). We
take the nadir point as the reference point. A set with a larger hypervolume is better.

H = (HA −HB)/HB × 100% (7.6)

In order to assess the approximate Pareto Front generated by the proposed MA, we first generated another
set of Pareto approximation by means of the AUGMECON method (Mavrotas [2009]), then a reference set
is generated consisting of the set of all non-dominated solutions provided by both AUGMECON method
and the MA. The values of the unary epsilon indicator and the ratio indicator are calculated by comparing
solutions of the AUGMECON method and the MA to the reference set.

Table 7.13 reports the number of non-dominated solutions found by the bi-objective MA and the AUG-
MECON method, the three indicator values and also the CPU time for small and medium instances. The
last row shows the average value of these items. The results show that the MA is able to generate more
non-dominated solutions for small and medium instances with the average CPU time of 1462.58 seconds,
whilst AUGMECON method can only find average 6.12 points in a large computing time (the average value
is 76234.66 seconds). Regarding the performance assessment indicators, the MA is superior to the AUG-
MECON method in both the unary and hypervolume indicators mainly due to its capability to find good
extreme solutions and more numbers of non-dominated solutions. In terms of the R indicator, the MA gives
a slightly better value in average. For small instances, the AUGMECON method performs better in finding
optimal solutions, which leads to a big R indicator value. When the problem scales increase, the R values
of the AUGMECON method decrease and are inferior to which of the MA.

TABLE 7.13 : Values of unary epsilon, Ratio (R), Hypervolume (Hyper) and CPU Time

Instance
|H|-|I|-|J |-|Γ|

Number of non-dominated points Unary ε-indicator R-indicator Hyper CPU Time (s)

MA
AUGMECON

MA AUGMECON MA AUGMECON (%) MA AUGMECON
Total solutions Optimal solutions

3-10-10-15 3 3 3 1 1.02 0.67 1 1.01 100.00 1361.11

3-10-10-30 12 5 5 1.01 1.04 0.83 1 1.22 469.05 713.86

6-10-10-10 5 6 3 1.04 1.02 0.6 0.83 -3 361.46 6583.97

6-10-10-15 14 5 5 1.03 1.02 0.71 1 -5.02 488.27 58537.09

6-10-10-30 23 7 7 1.05 1.02 0.61 1 -6.24 647.18 24100.89

10-10-10-10 26 8 5 1.11 1.18 0.38 0.75 6.63 743.98 70367.95

10-10-10-15 21 10 6 1.05 1.11 0.76 0.9 1.2 901.93 54142.97

10-10-10-30 37 10 8 1.05 1.06 0.92 0.9 2.1 1085.86 51255.46

3-15-15-30 11 2 0 1.01 1.01 0.91 1 5.11 234.71 118800.30

3-15-15-45 6 2 2 1.01 1.01 0.33 1 -10.44 500.24 63338.30

3-15-15-90 14 3 3 1.02 1.02 0.43 1 -4.44 753.31 31032.85

6-15-15-30 5 4 3 1 1.03 0.8 0.75 7.8 226.26 28120.36

6-15-15-45 9 6 5 1.01 1.05 1 0.67 6.59 396.99 38831.41

6-15-15-90 15 7 7 1.01 1.01 1 0.43 0.27 653.52 46261.07

10-15-15-30 21 10 5 1.06 1.12 0.14 0.8 2.35 1200.26 80637.01

10-15-15-45 17 10 5 1.08 1.05 0.71 0.8 -3.93 1314.55 83871.48

10-15-15-90 28 9 3 1.06 1.14 0.54 0.78 5.74 1660.11 93277.61

6-20-20-45 13 6 1 1.02 1.12 1 0.33 39.99 716.77 117213.70

6-20-20-60 10 5 0 1.04 1.1 1 0.8 18.08 850.54 118801.00

6-20-20-120 21 6 0 1.02 1.13 1 0.5 9.92 1331.47 118801.80

10-20-20-45 45 6 1 1.03 1.21 0.89 0.83 24.39 2117.74 113155.80

10-20-20-60 30 7 1 1.01 1.22 0.97 0.29 26.01 2477.12 114792.80

10-20-20-120 46 10 1 1.01 1.17 0.91 0.5 19.18 3267.60 111700.00

10-25-25-45 97 5 0 1 1.45 1 0 185.97 4071.30 118801.30

10-25-25-60 148 4 0 1 1.53 1 0 162.68 5063.18 118802.60

10-25-25-120 157 3 0 1 1.76 1 0 201.91 6393.38 118800.50

Average 32.08 6.12 1.02 1.14 0.77 0.69 26.73 1462.58 76234.66
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7.6 Conclusion
In this chapter, computational experiments of the bi-objective MA were conducted and the results were
favourably compared with those obtained by solving our bi-objective MILP model with an epsilon constraint
method. Firstly, the parameters of the MA are tuned in terms of the population size and the iteration times.
Then the process of generating and improving approximated Pareto Front is investigated.

The computational results showed that our method is efficient in providing high quality solutions for
small instances in reasonable time. Epsilon constraint method takes a large computing time and is only able
to yield fronts for the small and medium instances. The bi-objective MA produces competitive solutions
with the epsilon constraint method in a fast computing time. This method could find approximate Pareto
front for large instances while the epsilon constraint method could not obtain solutions in 3 hours. We
also investigated the “extreme solutions”, the solutions with the smallest cost or smallest CO2 emissions,
with the best solutions obtained by the single-objective method. Many “extreme solutions” dominate the
solutions of the single-objective model and MA. It seems that the bi-objective MA tends to find better
“extreme solutions” than the single-objective one but with a longer computing time. The bi-objective MA
captures the trade-off between minimizing total cost and CO2 emissions and exhibits approximations of the
Pareto front in a reasonable computing time.

TABLE 7.14 : Results comparison between the single-objective model of minimizing cost and the bi-
objective MA (small instances)

Instance
|H|-|I|-|J |

Hub
capacity

Single-objective model-minimizing cost (CPLEX) Bi-objective MA-extreme solution-smallest cost

UB (Cost) Gap (%) CO2

(kg)
Open
hub

CPU
Time (s) Cost CO2

(kg)
Open
hub

Ttotal (s)
for 5 runs

3-10-10
10 5666.52 0.00 1471.70 1,2,3 593.79 5831.25 1505.73 1,2,3 128.60
15 4269.15 0.00 1502.29 1,2 217.22 4269.15 1356.04 1,2 100.00
30 3277.36 0.00 1530.22 2 18.80 3292.09 1447.46 2 469.05

6-10-10
10 5666.52 5.07 1444.11 1,2,3 10800.10 5674.96 1398.79 3.4.6 361.46
15 4269.15 2.07 1378.58 1,2 10800.00 4269.15 1352.20 1,2 488.27
30 3272.23 0.00 1457.81 4 157.76 3272.23 1415.67 4 647.18

10-10-10
10 5792.80 12.75 1544.49 1,2,8 9192.72 5653.86 1368.19 2,4,8 743.98
15 4363.80 4.45 1493.60 8,10 10800.20 4270.88 1415.75 2,10 901.93
30 3245.62 0.00 1491.81 10 591.82 3245.62 1432.28 10 1085.86

3-15-15
30 8986.43 5.78 3678.36 1,2,3 10754.40 8903.94 3490.18 1,2,3 234.71
45 7584.04 3.15 3350.93 1,3 10536.69 7638.35 3175.21 1,3 500.24
90 6484.38 3.15 3461.76 3 10800.06 6484.38 3384.42 3 753.31

6-15-15
30 8442.86 9.14 2997.28 1,5,6 10471.90 8103.17 2674.95 1,4,5 226.26
45 7107.65 3.56 3072.90 3,5 10800.15 7107.65 2871.19 3,5 396.99
90 6247.91 4.33 3269.20 5 10454.62 6195.44 3127.02 5 653.52

10-15-15
30 8637.04 16.55 3286.11 1,4,5 10800.30 7748.22 2496.67 5,9,10 1200.26
45 7013.07 9.72 2872.48 7,10 10800.11 6977.86 2727.92 7,10 1314.55
90 6199.35 3.63 3310.07 5 10800.14 6179.78 3143.70 5 1660.11
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TABLE 7.15 : Results comparison between the single-objective model of minimizing cost and the bi-
objective MA (medium instances)

Instance
|H|-|I|-|J |

Hub
capacity

Single-objective model-minimizing cost (CPLEX) Bi-objective MA-extreme solution-smallest cost

UB (Cost) Gap (%) CO2

(kg)
Open
hub

CPU
Time (s) Cost CO2

(kg)
Open
hub

Ttotal (s)
for 5 runs

3-20-20
45 9970.62 3.56 3884.89 1,2,3 10800.10 9995.20 3785.73 1,2,3 356.51
60 8825.23 1.75 3985.89 2,3 10800.09 8869.83 3751.21 2,3 994.91

120 8046.43 3.69 4388.88 3 10314.67 8025.93 4270.36 3 1510.81

6-20-20
45 10357.90 12.79 4204.20 3,4,5 10800.10 9806.10 3608.92 2,4,5 716.77
60 9257.22 11.60 4256.21 4,5 10800.23 9022.21 3817.45 3,4 850.54

120 8046.43 4.50 4420.06 3 10800.53 8168.26 4220.88 3 1331.47

10-20-20
45 9938.18 14.37 3736.80 2,8,9 10800.10 9659.79 3421.93 8,9,10 2117.74
60 9520.10 19.98 4395.74 5,9 10800.30 8772.36 3859.54 9,10 2477.12

120 7982.97 12.09 4286.43 10 10800.30 7885.86 4103.71 7 3267.60

3-25-25
45 11502.00 11.85 4892.32 1,2,3 9145.94 11670.30 4799.12 1,2,3 111.31
60 10602.80 10.51 5277.23 1,2,3 9369.65 10568.00 5009.01 1,3 309.58

120 9865.98 7.23 5889.18 1 7024.90 9918.14 5772.74 3 819.69

6-25-25
45 12135.20 23.05 5551.65 1,2,3 10800.30 11003.30 4706.25 1,2,5 1323.36
60 12148.30 26.22 6339.43 2,5 10800.20 10329.80 4995.49 1,5 1686.92

120 9036.62 7.30 5116.88 5 10800.09 9040.91 5045.22 5 3380.92

10-25-25
45 13209.60 32.86 5670.53 1,2,3 10800.20 10771.20 4415.79 1,8,10 4071.30
60 13154.30 38.85 6477.13 1,3 10800.40 10160.10 4791.64 5,10 5063.18

120 10281.30 27.26 5079.90 5,6 10800.19 9031.86 5087.97 5 6393.38

3-30-30
60 15402.70 16.82 6910.90 1,2,3 10800.10 14586.00 6362.02 1,2,3 123.57
90 12945.40 9.71 6356.45 1,2 10800.20 13727.30 5629.61 1,2,3 226.73

165 11498.90 4.96 6462.61 2 10800.10 11528.30 6314.13 2 1839.07

6-30-30
60 14296.40 19.98 6345.32 2,4,5 10800.20 12878.50 5271.05 4,5,6 1798.98
90 13838.80 24.40 6874.12 2,6 10800.90 11965.40 5576.79 4,6 2838.03

165 12246.40 14.00 6880.91 4 10800.20 11528.30 6314.13 2 4647.24

10-30-30
60 17617.60 36.64 8204.67 1,5,7 10800.70 12852.50 5344.25 4,6,8 5604.37
90 15289.90 32.63 7333.51 4,5,8 10800.70 11957.70 5522.70 2,6 8033.56

165 16362.80 39.91 7140.5 1,7,8 10800.90 11391.40 6154.92 8 12915.20

TABLE 7.16 : Results comparison between the single-objective model of minimizing CO2 and the bi-
objective MA (small instances)

Instance
|H|-|I|-|J |

Hub
capacity

Single-objective model-minimizing CO2 (CPLEX) Bi-objective MA-extreme solution-smallest CO2

UB
(CO2)

Gap
(%) Open hub Cost CPU

Time (s)
CO2

(kg) Cost Open hub Ttotal (s)
for 5 runs

3-10-10
10 1413.86 0.00 1,2,3 5807.03 474.19 1498.74 5844.76 1,2,3 128.60
15 1274.68 0.00 1,2,3 5558.71 123.76 1274.68 5458.71 1,2,3 100.00
30 1262.78 0.00 1,2,3 5621.24 31.14 1262.78 5421.24 1,2,3 469.05

6-10-10
10 1063.32 0.00 1,2,3,4,5,6 8750.77 478.83 1103.36 8714.84 1,2,3,4,5,6 361.46
15 1050.58 0.00 1,2,3,4,5,6 8585.96 47.19 1082.03 7560.33 2,3,4,5,6 488.27
30 1050.58 0.00 1,2,3,4,5,6 8585.96 113.07 1098.55 8704.95 1,2,3,4,5,6 647.18

10-10-10

10 735.68 0.00 1,2,3,4,5, 12720.00 6.75 813.63 12636.40 1,2,3,4,5, 743.986,7,8,9,10 6,7,8,9,10

15 723.66 0.00 1,2,3,4,5, 12803.02 3.37 752.61 12544.50 1,2,3,4,5, 901.936,7,8,9,10 6,7,8,9,10

30 723.66 0.00 1,2,3,4,5, 12703.02 4.15 751.69 12520.50 1,2,3,4,5, 1085.866,7,8,9,10 6,7,8,9,10

3-15-15
30 3423.17 3.43 1,2,3 9098.48 10800.11 3417.68 9139.52 1,2,3 234.71
45 3045.93 0.00 1,2,3 8628.05 1578.82 3087.26 8578.73 1,2,3 500.24
90 2884.41 0.00 1,2,3 8479.69 241.99 2939.81 8364.55 1,2,3 753.31

6-15-15
30 2362.88 0.00 1,2,3,4,5,6 11191.18 42.42 2362.88 10891.20 1,2,3,4,5,6 226.26
45 2362.88 0.00 1,2,3,4,5,6 11191.18 45.35 2362.88 10891.20 1,2,3,4,5,6 396.99
90 2362.88 0.00 1,2,3,4,5,6 11291.18 42.76 2362.88 10891.20 1,2,3,4,5,6 653.52

10-15-15

30 1984.98 0.00 1,2,3,4,5, 15316.61 108.50 2104.68 14990.60 1,2,3,4,5, 1200.266,7,8,9,10 6,7,8,9,10

45 1979.26 0.00 1,2,3,4,5, 15174.80 176.72 2142.01 15153.90 1,2,3,4,5, 1314.556,7,8,9,10 6,7,8,9,10

90 1979.26 0.00 1,2,3,4,5, 15274.80 91.10 2095.77 13843.90 1,2,4,5,6 1660.116,7,8,9,10 ,7,8,9,10
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TABLE 7.17 : Results comparison between the single-objective model of minimizing CO2 and the bi-
objective MA (medium instances)

Instance
|H|-|I|-|J |

Hub
capacity

Single-objective model-minimizing CO2 (CPLEX) Bi-objective MA-extreme solution-smallest CO2

UB
(CO2)

Gap
(%) Open hub Cost CPU

Time (s)
CO2

(kg) Cost Open hub Ttotal (s)
for 5 runs

3-20-20
45 3711.13 0.00 1,2,3 10111.65 1677.59 3754.40 10066.50 1,2,3 356.51
60 3635.14 0.00 1,2,3 9984.84 952.81 3674.49 10086.30 1,2,3 994.91

120 3639.57 0.00 1,2,3 10118.83 473.52 3689.35 10072.50 1,2,3 1510.81

6-20-20
45 3244.70 0.56 1,2,3,4,5,6 13197.59 10800.12 3291.17 11892.20 1,2,4,5,6 716.77
60 3247.20 0.44 1,2,3,4,5,6 13013.35 10800.04 3371.53 10891.80 2,4,5,6 850.54

120 3241.37 0.57 1,2,3,4,5,6 13180.27 10800.39 3291.17 11892.20 1,2,4,5,6 1331.47

10-20-20

45 2708.59 0.00 1,2,3,4,5, 16729.12 7993.32 2786.51 15481.50 2,3,4,5, 2117.746,7,8,9,10 6,7,8,9,10

60 2708.59 0.00 1,2,3,4,5, 16729.12 6733.28 2743.64 15510.90 1,2,4,5, 2477.126,7,8,9,10 6,7,8,9,10

120 2708.59 0.00 1,2,3,4,5, 16829.12 3172.20 2733.03 16416.00 1,2,3,4,5, 3267.606,7,8,9,10 6,7,8,9,10

3-25-25
45 4548.75 5.53 1,2,3 11764.50 10800.11 4770.93 11734.90 1,2,3 111.31
60 4766.25 11.10 1,2,3 12131.95 10800.06 4653.72 11288.80 1,2,3 309.58

120 4524.67 6.08 1,2,3 11606.15 10800.03 4570.93 11227.70 1,2,3 819.69

6-25-25
45 3835.51 9.40 1,2,3,4,5,6 14236.98 10800.07 3834.22 13656.30 1,2,3,4,5,6 1323.36
60 3982.59 12.64 1,2,3,4,5,6 14837.02 10800.32 3854.10 13710.60 1,2,3,4,5,6 1686.92

120 3939.65 11.34 1,2,3,4,5,6 14527.92 10800.12 3854.80 13710.80 1,2,3,4,5,6 3380.92

10-25-25

45 3511.84 13.13 1,2,3,4,5, 18231.49 10800.26 3362.46 17647.40 1,2,3,4,5, 4071.306,7,8,9,10 6,7,8,9,10

60 3438.99 11.28 1,2,3,4,5, 18422.60 10800.26 3423.05 16829.10 1,2,3,5, 5063.186,7,8,9,10 6,7,8,9,10

120 3386.73 9.60 1,2,3,4,5, 18187.72 10800.39 3392.94 17661.50 1,2,3,4,5, 6393.386,7,8,9,10 6,7,8,9,10

3-30-30
60 6391.98 8.34 1,2,3 15475.18 10800.04 6240.27 14611.40 1,2,3 123.57
90 5539.11 4.86 1,2,3 13788.01 10800.03 5618.24 13749.40 1,2,3 226.73

165 5344.72 2.02 1,2,3 13369.74 10800.09 5372.74 13065.30 1,2,3 1839.07

6-30-30
60 4619.08 4.39 1,2,3,4,5,6 15805.87 10800.07 4647.83 15588.60 1,2,3,4,5,6 1798.98
90 4654.22 5.03 1,2,3,4,5,6 16081.93 10800.09 4640.85 15720.50 1,2,3,4,5,6 2838.03

165 4575.33 3.33 1,2,3,4,5,6 16096.30 10800.40 4638.17 15729.70 1,2,3,4,5,6 4647.24

10-30-30

60 4150.95 10.13 1,2,3,4,5, 20183.27 10800.20 4088.57 18435.00 1,2,4,5, 5604.376,7,8,9,10 6,7,8,9,10

90 4278.89 12.80 1,2,3,4,5, 20239.49 10800.23 4064.15 19487.80 1,2,3,4,5, 8033.566,7,8,9,10 6,7,8,9,10

165 3994.54 6.35 1,2,3,4,5, 20065.92 10800.15 4069.25 18427.60 1,2,4,5, 12915.206,7,8,9,10 6,7,8,9,10
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TABLE 7.18 : Results comparison between the single-objective MA of minimizing cost and the bi-objective
MA (small and medium instances)

Instance Hub Single-objective MA-minimum cost Bi-objective MA-smallest cost
|H|-|I|-|J | capacity Zbest (cost) CO2 (kg) Open hub Ttotal (s) Zbest (cost) CO2 (kg) Open hub Ttotal (s)

3-10-10
10 5746.53 1517.57 1,2,3 16.52 5831.25 1505.73 1,2,3 128.60
15 4269.15 1415.65 1,2 12.60 4269.15 1356.04 1,2 100.00
30 3277.36 1492.34 2 14.36 3292.09 1447.46 2 469.05

6-10-10
10 5659.78 1482.07 3,4,6 58.57 5674.96 1398.79 3,4,6 361.46
15 4269.15 1411.81 1,2 59.04 4269.15 1352.20 1,2 488.27
30 3272.23 1488.00 4 73.36 3272.23 1415.67 4 647.18

10-10-10
10 5659.78 1424.80 3,4,6 91.94 5653.86 1368.19 2,4,8 743.98
15 4258.45 1461.08 2,10 82.25 4270.88 1415.75 2,10 901.93
30 3245.62 1505.29 10 87.76 3245.62 1432.28 10 1085.86

3-15-15
30 9015.79 3719.58 1,2,3 22.89 8903.94 3490.18 1,2,3 234.71
45 7638.35 3408.77 1,3 34.19 7638.35 3175.21 1,3 500.24
90 6539.41 3627.33 3 60.63 6484.38 3384.42 3 753.31

6-15-15
30 8127.86 2955.39 1,3,5 32.68 8103.17 2674.95 1,4,5 226.26
45 7107.65 3046.81 3,5 40.88 7107.65 2871.19 3,5 396.99
90 6179.78 3345.48 5 89.62 6195.44 3127.02 5 653.52

10-15-15
30 7863.46 2912.96 5,7,10 114.30 7748.22 2496.67 5,9,10 1200.26
45 6861.88 2768.84 7,10 131.45 6977.86 2727.92 7,10 1314.55
90 6199.35 3344.24 5 145.86 6179.78 3143.70 5 1660.11

3-20-20
45 10024.00 3963.97 1,2,3 65.34 9995.20 3785.73 1,2,3 356.51
60 9048.58 3889.14 2,3 82.64 8869.83 3751.21 2,3 994.91
120 8057.46 4301.58 3 83.86 8025.93 4270.36 3 1510.81

6-20-20
45 9806.10 3669.61 2,4,5 113.05 9806.10 3608.92 2,4,5 716.77
60 9022.21 3861.62 3,4 116.44 9022.21 3817.45 3,4 850.54
120 8041.56 4337.30 3 128.07 8168.26 4220.88 3 1331.47

10-20-20
45 9632.53 3527.65 8,9,10 280.64 9659.79 3421.93 8,9,10 2117.74
60 8725.87 3699.73 7,8 244.04 8772.36 3859.54 9,10 2477.12
120 7885.86 4180.06 7 257.96 7885.86 4103.71 7 3267.60

3-25-25
45 11676.80 4926.71 1,2,3 83.38 11670.30 4799.12 1,2,3 111.31
60 10557.60 5282.91 1,3 97.25 10568.00 5009.01 1,3 309.58
120 9834.14 5817.00 1 98.24 9918.14 5772.74 3 819.69

6-25-25
45 11125.50 4953.9 1,2,5 154.74 11003.30 4706.25 1,2,5 1323.36
60 10252.00 5137.41 1,5 205.04 10329.80 4995.49 1,5 1686.92
120 9062.72 5192.18 5 181.49 9040.91 5045.22 5 3380.92

10-25-25
45 10856.20 4481.20 1,8,10 378.57 10771.20 4415.79 1,8,10 4071.30
60 10159.40 4805.06 1,8 367.40 10160.10 4791.64 5,10 5063.18
120 9056.17 5103.81 5 406.98 9031.86 5087.97 5 6393.38

3-30-30
60 14732.00 6635.12 1,2,3 124.47 14586.00 6362.02 1,2,3 123.57
90 12994.00 6380.28 1,2 164.00 13727.30 5629.61 1,2,3 226.73
165 11401.80 6457.16 2 147.97 11528.30 6314.13 2 1839.07

6-30-30
60 13052.10 5633.39 4,5,6 306.87 12878.50 5271.05 4,5,6 1798.98
90 11973.20 5797.83 2,6 411.62 11965.40 5576.79 4,6 2838.03
165 11401.80 6448.21 2 338.96 11528.30 6314.13 2 4647.24

10-30-30
60 12952.60 5589.60 2,6,7 653.84 12852.50 5344.25 4,6,8 5604.37
90 11987.10 5903.78 4,6 847.83 11957.70 5522.70 2,6 8033.56
165 11384.40 6366.22 8 773.67 11391.40 6154.92 8 12915.20
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TABLE 7.19 : Results comparison between the single-objective MA of minimizing cost and the bi-objective
MA (large instances)

Instance Hub Single-objective MA-minimum cost Bi-objective MA-smallest cost
|H|-|I|-|J | capacity Zbest (cost) CO2 (kg) Open hub Ttotal (s) Zbest (cost) CO2 (kg) Open hub Ttotal (s)

3-35-35
60 15303.30 6952.16 1,2,3 97.10 14587.10 6246.41 1,2,3 212.60
90 12704.90 6057.36 1,2 178.36 12623.80 5952.05 1,2 1358.98
180 11895.80 6798.79 1 209.94 12168.90 6612.14 1 3641.68

6-35-35
60 13486.80 5661.56 1,4,6 364.61 13392.30 5446.99 1,4,6 3604.13
90 12747.70 6138.95 1,6 301.76 12625.00 5879.15 2,6 4711.90
180 11997.80 6659.17 6 500.38 12071.10 6533.25 6 7952.50

10-35-35
60 13579.80 5662.71 1,4,6 552.54 13506.30 5715.40 1,2,6 11788.30
90 12655.50 5966.00 1,2 1116.98 12705.90 5732.97 1,4 15813.90
180 11975.80 6809.31 6 1246.83 12051.80 6639.90 6 24082.00

3-40-40
75 16172.60 7255.45 1,2,3 200.44 16066.00 6962.21 1,2,3 325.58
105 15233.90 7556.42 2,3 295.92 15206.70 7435.66 1,2 982.89
210 13442.10 7730.36 2 280.27 13417.50 7428.76 2 3048.44

6-40-40
75 15257.80 6521.68 3,4,5 324.14 15328.20 6344.15 3,4,5 4782.40
105 14317.30 7015.38 4,5 507.60 13885.90 6649.84 4,5 6902.36
210 13296.30 7500.93 5 736.69 13282.20 7321.81 5 11451.80

10-40-40
75 14586.30 6310.51 2,7,10 1355.50 14612.70 6014.34 2,5,10 18576.50
105 13838.00 6755.55 2,10 2591.37 13687.30 6431.53 2,10 23834.90
210 13267.60 7639.78 4 2021.55 13165.70 7405.01 5 37141.50

3-45-45
75 14364.90 6573.51 1,2,3 698.43 14294.10 6336.42 1,2,3 626.66
105 13282.50 6951.06 1,3 582.82 13353.00 6380.85 1,3 2414.79
195 12165.40 7044.28 1 483.29 12047.10 6744.57 1 4985.50

6-45-45
75 13808.20 5923.65 1,2,5 839.39 13925.80 5912.93 2,3,5 8130.60
105 12808.70 6224.91 1,5 1153.75 12823.70 6076.64 1,5 5910.32
195 12158.20 7017.83 1 1067.82 12162.70 6803.82 1 7837.90

10-45-45
75 13486.70 5637.81 3,5,9 2630.10 13209.30 5519.39 3,5,9 31991.30
105 12557.00 5908.19 8,9 2471.17 12428.40 5746.30 8,9 38676.10
195 12134.90 6999.14 1 3025.74 12111.30 6815.60 1 50243.80

3-50-50
75 17242.60 8032.10 1,2,3 219.58 17043.40 7642.11 1,2,3 926.05
120 16324.10 8377.90 1,2 723.49 16099.70 7984.76 1,2 3074.31
225 14848.40 8559.91 2 375.73 14777.90 8283.47 2 8429.92

6-50-50
75 16669.30 7408.02 2,3,5 2175.56 16556.20 6450.02 1,2,3,5 5293.64
120 15564.30 7932.25 2,5 2558.65 15501.00 7796.98 2,5 8532.99
225 14719.20 8547.17 2 1231.40 14826.80 8292.34 2 5209.28

10-50-50
75 16441.56 7607.38 2,5,10 2953.06 16423.40 7327.94 2,5,10 19480.90
120 15471.72 7814.64 8,10 5645.03 15272.70 7456.37 8,10 29069.90
225 14712.64 8363.55 8 4960.14 14291.30 7954.63 8 44201.00
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TABLE 7.20 : Results comparison between the single-objective MA of minimizing CO2 and the bi-objective
MA (small and medium instances)

Instance Hub Single-objective MA-minimum CO2 Bi-objective MA-smallest CO2
|H|-|I|-|J | capacity Zbest (CO2) Cost Open hub Ttotal (s) Zbest (CO2) Cost Open hub Ttotal (s)

3-10-10
10 1537.20 5878.51 1,2,3 23.61 1498.74 5844.76 1,2,3 128.60
15 1287.37 5480.75 1,2,3 27.99 1274.68 5458.71 1,2,3 100.00
30 1295.05 5517.07 1,2,3 56.61 1262.78 5421.24 1,2,3 469.05

6-10-10
10 1074.18 8656.48 1,2,3,4,5,6 28.82 1103.36 8714.84 1,2,3,4,5,6 361.46
15 1058.97 8503.08 1,2,3,4,5,6 49.97 1082.03 7560.33 2,3,4,5,6 488.27
30 1063.32 8650.77 1,2,3,4,5,6 85.97 1098.55 8704.95 1,2,3,4,5,6 647.18

10-10-10

10 757.04 12652.70 1,2,3,4,5, 53.66 813.63 12636.40 1,2,3,4,5, 743.98
6,7,8,9,10 6,7,8,9,10

15 776.92 12681.30 1,2,3,4,5, 101.46 752.61 12544.50 1,2,3,4,5, 901.93
6,7,8,9,10 6,7,8,9,10

30 757.04 12652.70 1,2,3,4,5, 99.59 751.69 12520.50 1,2,3,4,5, 1085.86
6,7,8,9,10 6,7,8,9,10

3-15-15
30 3521.44 9502.91 1,2,3 21.01 3417.68 9139.52 1,2,3 234.71
45 3099.14 8689.43 1,2,3 80.44 3087.26 8578.73 1,2,3 500.24
90 2939.81 8364.55 1,2,3 145.91 2939.81 8364.55 1,2,3 753.31

6-15-15
30 2385.74 10891.20 1,2,3,4,5,6 28.62 2362.88 10891.20 1,2,3,4,5,6 226.26
45 2385.74 10891.20 1,2,3,4,5,6 54.82 2362.88 10891.20 1,2,3,4,5,6 396.99
90 2395.77 10891.20 1,2,3,4,5,6 58.07 2362.88 10891.20 1,2,3,4,5,6 653.52

10-15-15

30 2122.72 15130.30 1,2,3,4,5, 161.90 2104.68 14990.60 1,2,3,4,5, 1200.26
6,7,8,9,10 6,7,8,9,10

45 2089.62 15177.00 1,2,3,4,5, 194.25 15153.90 2142.01 1,2,3,4,5, 1314.55
6,7,8,9,10 6,7,8,9,10

90 2100.35 15203.50 1,2,3,4,5, 179.39 2095.77 13843.90 1,2,4,5,6, 1660.11
6,7,8,9,10 7,8,9,10

3-20-20
45 3768.34 10115.00 1,2,3 167.43 3754.40 10066.50 1,2,3 356.51
60 3747.02 10011.90 1,2,3 177.43 3674.49 10086.30 1,2,3 994.91
120 3687.69 9792.54 1,2,3 76.28 3689.35 10072.50 1,2,3 1510.81

6-20-20
45 3275.85 12939.60 1,2,3,4,5,6 141.46 3291.17 11892.20 1,2,4,5,6 716.77
60 3322.85 12914.00 1,2,3,4,5,6 154.20 3371.53 10891.80 2,4,5,6 850.54
120 3320.60 13006.40 1,2,3,4,5,6 161.74 3291.17 11892.20 1,2,4,5,6 1331.47

10-20-20

45 2727.02 16498.40 1,2,3,4,5, 386.34 2786.51 15481.50 2,3,4,5,6, 2117.74
6,7,8,9,10 7,8,9,10

60 2727.02 16498.40 1,2,3,4,5, 457.40 2743.64 15510.90 1,2,4,5, 2477.12
6,7,8,9,10 6,7,8,9,10

120 2749.15 16499.80 1,2,3,4,5, 437.16 2733.03 16416.00 1,2,3,4,5 3267.60
6,7,8,9,10 ,6,7,8,9,10

3-25-25
45 4767.00 11735.10 1,2,3 30.49 4770.93 11734.90 1,2,3 111.31
60 4756.17 11789.10 1,2,3 54.81 4653.72 11288.80 1,2,3 309.58
120 4675.86 11620.00 1,2,3 58.19 4570.93 11227.70 1,2,3 819.69

6-25-25
45 3881.58 13856.20 1,2,3,4,5,6 224.15 3834.22 13656.30 1,2,3,4,5,6 1323.36
60 3865.66 13844.70 1,2,3,4,5,6 235.29 3854.10 13710.60 1,2,3,4,5,6 1686.92
120 3854.80 13710.80 1,2,3,4,5,6 228.92 3854.80 13710.80 1,2,3,4,5,6 3380.92

10-25-25

45 3363.93 17810.10 1,2,3,4,5, 804.52 3362.46 17647.40 1,2,3,4,5, 4071.30
6,7,8,9,10 6,7,8,9,10

60 3360.95 17755.50 1,2,3,4,5, 793.12 3423.05 16829.10 1,2,3,5, 5063.18
6,7,8,9,10 6,7,8,9,10

120 3391.20 17792.80 1,2,3,4,5, 721.73 3392.94 17661.50 1,2,3,4,5, 6393.38
6,7,8,9,10 6,7,8,9,10

3-30-30
60 6392.83 14955.90 1,2,3 49.78 6240.27 14611.40 1,2,3 123.57
90 5608.15 13744.00 1,2,3 100.50 5618.24 13749.40 1,2,3 226.73
165 5464.48 13386.10 1,2,3 131.74 5372.74 13065.30 1,2,3 1839.07

6-30-30
60 4686.81 15740.40 1,2,3,4,5,6 449.87 4647.83 15588.60 1,2,3,4,5,6 1798.98
90 4628.17 15659.60 1,2,3,4,5,6 597.96 4640.85 15720.50 1,2,3,4,5,6 2838.03
165 4672.60 15659.10 1,2,3,4,5,6 603.34 4638.17 15729.70 1,2,3,4,5,6 4647.24

10-30-30

60 4091.23 18437.80 1,2,4,5,6, 2256.56 4088.57 18435.00 1,2,4,5,6, 5604.37
7,8,9,10 7,8,9,10

90 4028.19 18222.90 1,2,3,4,5, 2741.47 4064.15 19487.80 1,2,3,4,5, 8033.56
6,7,8,10 6,7,8,9,10

165 4057.87 19415.00 1,2,3,4,5, 2353.13 4069.25 18427.60 1,2,4,5,6, 12915.20
6,7,8,9,10 7,8,9,10
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TABLE 7.21 : Results comparison between the single-objective MA of minimizing CO2 and the bi-objective
MA (large instances)

Instance Hub Single-objective MA-minimum CO2 Bi-objective MA-smallest CO2

|H|-|I|-|J | capacity Zbest (CO2) Cost Open hub Ttotal (s) Zbest (CO2) Cost Open hub Ttotal (s)

3-35-35
60 6680.11 15459.70 1,2,3 51.20 6241.53 14603.90 1,2,3 212.60
90 5589.18 13820.00 1,2,3 152.92 5603.89 13765.50 1,2,3 1358.98
180 5637.21 13627.10 1,2,3 207.26 5608.56 13435.40 1,2,3 3641.68

6-35-35
60 4649.98 16140.20 1,2,3,4,5,6 753.39 4654.08 16111.90 1,2,3,4,5,6 3604.13
90 4662.20 16158.90 1,2,3,4,5,6 924.47 4653.46 16149.10 1,2,3,4,5,6 4711.90
180 4645.24 16111.40 1,2,3,4,5,6 1004.74 4655.60 16149.10 1,2,3,4,5,6 7952.50

10-35-35

60 4027.92 19724.80 1,2,3,4,5, 3915.41 4111.02 18725.50 1,2,3,4,5, 11788.30
6,7,8,9,10 6,7,8,10

90 4053.30 18719.30 1,2,3,4,5, 3911.19 4051.28 19779.10 1,2,3,4,5, 15813.90
6,7,8,10 6,7,8,9,10

180 4032.45 19724.80 1,2,3,4,5, 4120.48 4111.79 18740.70 1,2,3,4,5, 24082.00
6,7,8,9,10 6,7,8,10

3-40-40
75 6985.67 16412.40 1,2,3 100.51 6853.72 16197.00 1,2,3 325.58
105 6795.02 16193.70 1,2,3 227.19 6553.53 15637.50 1,2,3 982.89
210 6770.84 15912.80 1,2,3 464.01 6670.78 15724.40 1,2,3 3048.44

6-40-40
75 5363.58 17558.10 1,2,3,4,5,6 631.12 5316.80 17472.10 1,2,3,4,5,6 4782.40
105 5370.49 17644.70 1,2,3,4,5,6 1613.69 5340.61 17529.10 1,2,3,4,5,6 6902.36
210 5383.74 17559.80 1,2,3,4,5,6 1888.00 5353.70 17663.90 1,2,3,4,5,6 11451.80

10-40-40

75 4599.43 21075.10 1,2,3,4,5, 6401.30 4612.24 20007.70 1,3,4,5,6, 18576.50
6,7,8,9,10 7,8,9,10

105 4582.81 21173.70 1,2,3,4,5, 6711.77 4588.83 19987.80 1,3,4,5,6 23834.90
6,7,8,9,10 ,7,8,9,10

210 4581.85 21022.00 1,2,3,4,5, 7081.08 4584.12 20178.70 1,3,4,5,6, 37141.50
6,7,8,9,10 7,8,9,10

3-45-45
75 6374.80 14728.80 1,2,3 448.65 6204.08 14519.60 1,2,3 626.66
105 6337.08 14794.30 1,2,3 465.07 6319.74 14600.00 1,2,3 2414.79
195 6310.66 14265.20 1,2,3 590.70 6176.04 14083.10 1,2,3 4985.50

6-45-45
75 5516.60 16879.70 1,2,3,4,5,6 2472.15 5481.92 16828.20 1,2,3,4,5,6 8130.60
105 5510.75 16972.70 1,2,3,4,5,6 2818.80 5513.80 15853.30 1,2,4,5,6 5910.32
195 5530.65 16913.80 1,2,3,4,5,6 2925.16 5511.05 16856.80 1,2,3,4,5,6 7837.90

10-45-45

75 4733.79 20285.50 1,2,3,4,5, 9782.53 4711.60 20297.90 1,2,3,4,5, 31991.30
6,7,8,9,10 6,7,8,9,10

105 4744.25 20400.30 1,2,3,4,5, 9153.33 4665.70 19317.10 2,3,4,5,6, 38676.10
6,7,8,9,10 7,8,9,10

195 4787.63 20487.10 1,2,3,4,5, 11016.85 4669.68 20410.00 1,2,3,4,5, 50243.80
6,7,8,9,10 6,7,8,9,10

3-50-50
75 7773.70 17610.60 1,2,3 112.08 7588.11 17157.50 1,2,3 926.05
120 7223.56 16793.70 1,2,3 332.52 6961.95 16542.90 1,2,3 3074.31
225 6853.09 16270.40 1,2,3 908.80 6691.41 16097.20 1,2,3 8429.92

6-50-50
75 6039.66 18647.30 1,2,3,4,5,6 1208.74 5953.01 18670.40 1,2,3,4,5,6 293.64
120 6018.28 18633.50 1,2,3,4,5,6 3564.22 6068.97 18675.60 1,2,3,4,5,6 8532.99
225 6060.07 18871.80 1,2,3,4,5,6 3846.23 6097.73 17647.40 1,2,3,4,5 5209.28

10-50-50

75 5026.33 22044.80 1,2,3,4,5, 15082.76 5076.42 22155.30 1,2,3,4,5, 19480.90
6,7,8,9,10 6,7,8,9,10

120 5048.59 22257.20 1,2,3,4,5, 15516.89 5117.58 20960.60 2,3,4,5,6, 29069.90
6,7,8,9,10 7,8,9,10

225 5022.16 22051.40 1,2,3,4,5, 14768.26 5136.84 21208.50 1,2,3,4,5, 44201.00
6,7,8,9,10 7,8,9,10



IV
Two-phase methods for the single-objective

HLRP

127





8
Two-phase model and memetic algorithm

As discussed in Chapter 5, the global model of the single-objective HLRP can find optimal solutions for
small instances. However it has difficulty solving large problems and consumes a large computing time.
The proposed MA is able to solve small problems optimally and find feasible solutions for the medium and
large problem instances with limited gaps compared to the lower bounds of CPLEX within a reasonable
computing time. The sensitivity analysis of the MA (Section 5.5, Chapter 5) also shows its robust stability.
Since the difficulty of solving the HLRP, the CPLEX solver can only find solutions with a large gap for the
large instances. Considering that it is necessary to take further investigation on the performance of the MA
for solving large problems, we propose a two-phase method by means of decomposing the global HLRP into
two simpler problems, the HLP and the VRP, and solve them separately to obtain the solutions of the HLRP.
The results are then investigated by being compared to those obtained by the global method. Notice that,
the two-phase method is inspired based on the previously proposed global method for the single-objective
HLRP by doing simple decomposition of the global mathematical model and the MA. The main purpose of
proposing the two-phase model and the MA lies in providing another way to solve the global problem and
evaluate the performance of the proposed MA.

Section 8.1 presents the mathematical formulations of the HLP and the VRP for separate collection and
delivery process which are based on the formulations in Chapter 3. In Section 8.2, the Memetic Algorithm
(MA) proposed in Chapter 4 is adapted to solve the HLRP by two steps : in the first phase, the MA aims
to solve the HLP while in the second phase, the local search operators are implemented to search for the
collection and delivery routes.

8.1 Two-phase model for minimizing cost
The main idea of our two-phase approach is to decompose complex HLRP into two simpler relevant pro-
blems (HLP and VRP) and solving them separately. The hub location problems and the vehicle routing
problems have been abundantly researched. Regarding the HLPs, we refer the reader to the relevant re-
views : Campbell [1994] gave the first survey of the discrete HLP, Alumur and Kara [2008] provided a
comprehensive review of the HLP covering the period from 1987 to 2007, Campbell and O’Kelly [2012]
presented the origins and motivations of 25 years of HLP research, and Farahani et al. [2013] highlighted
the aspects of HLP published after 2007 and current trends. A state-of-the art of the HLPs also can be found
in Chapter 2. Regarding the VPRs, we refer the reader to the reviews of Laporte [1992], Toth and Vigo
[2002], Laporte [2007], Golden et al. [2008] and Koç and Laporte [2017].

The model of the HLP in the first phase adapts the hub location constraints of the single-objective
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model of the HLRP in Chapter 3 (Formula (3.2)-(3.7)) which is mainly derived from the model in Ernst and
Krishnamoorthy [1999]. It takes into consideration the fixed hub location cost, the freight handling cost, the
inter-hub transfer cost and the allocation cost between the hubs and non-hub nodes. In the second phase, it
assumes that the hub location and allocation scheme are pre-determined and taken from the solution in the
first phase. The classic Vehicle Routing Problem (VRP) is tackled, scheduling the distinct collection and
delivery routes for every open hub (collection VRP and delivery VRP). The two models of the collection
VRP and the delivery VRP are based on the collection routing and delivery routing constraints which are
inspired by Toth and Vigo [2014] (Formula (3.8)-(3.18), Formula (3.19)-(3.29), Chapter 3), accordingly.
The second phase aims at minimizing the collection and delivery routing costs for each open hub.

Figure 8.1 presents the schematic illustration of the two-phase approach. Given the set of potential hubs
H , the supplier set I and client set J , we assume that variable Y i

kl is the fraction of flow shipped from
supplier i via hubs k to l, l ∈ H , k 6= l and i ∈ I . zik represent the 0-1 allocation variable of a node i to a
hub k ; zkk= 1 indicates that hub k is opened. xij are the 0-1 routing variables and fij represent the vehicle
load variables. The HLRP is decomposed to solve a CSAHLP at first, obtaining the set of open hubs which
we defined as H ′, the supplier set Ik in which supplier i, i ∈ Ik, is allocated to hub k, , k ∈ H ′, and the
client set Jk in which client j, j ∈ Jk, is allocated to hub k, k ∈ H ′. When it comes to the second phase, for
each open hub k ∈ H ′, zkk=1 ; for the suppliers allocated to hub k, zik=1, i ∈ Ik ; for the clients allocated
to hub k, zjk=1, j ∈ Jk. The collection routes and delivery routes for each open hub k are then scheduled
in separate process by means of solving the collection VRP and delivery VRP.

After solving the models in two phases, the open hubs, the inter-hub flow transfer and allocation scheme
are generated by the first phase. Based on the hub location and allocation scheme, the collection and delivery
routes, as well as the number of vehicles used, are scheduled by the second phase. These decisions from
the HLP and the two VRPs constitute the solution of the HLRP. Accordingly, we obtain the fixed cost of
locating hubs, the inter-hub transfer cost and the freight handling cost from the first phase (we do not retain
the allocation cost) ; we obtain the collection and delivery routing cost and the cost of using vehicles in the
second phase. At last, the sum of these costs constitutes the total cost of the HLRP ( Figure 8.1).

FIGURE 8.1 : Schematic illustration of building the two-phase models
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8.1.1 First phase of the model : CSAHLP

As previously stated, the first phase deals with the Capacitated Single Allocation Hub Location Problem
(CSAHLP), tackling the location of hub facilities and the assignment of customers to the hubs. It assumes
that the demand of suppliers and clients has to be served by only one open hub with a capacity and a
fixed opening cost. The freight can be transfered between at most two hubs before being delivered from the
suppliers to the clients. The hubs and the suppliers/clients are fully connected. Direct transportation is orga-
nized between the hubs and suppliers/clients, and no local tours are considered. The model of the CSAHLP
is based on the hub location constraints of the single-objective model of the HLRP (Constraints (3.2) to
(3.7), Chapter 3) which is derived from the model of Ernst and Krishnamoorthy [1999]. This problem is
defined on a complete graph G = (N,A), in which N is the set of n nodes and A is the set of arcs. The sets
and parameters are explained as follows (similar to the model of the single-objective HLRP) :

Sets

H – Set of hub nodes, H = {k | k = 1, 2, ..., h} ;
I – Set of supplier nodes, I = {i | i = h+ 1, h+ 2, ..., h+m} ;
J –Set of client nodes, J = {j | j = h+m+ 1, h+m+ 2, ..., h+m+ n} ;
N –Set of all nodes, N = H ∪ I ∪ J ;
A1 – Set of arcs in collection routing, A1 = {(i, j) : i, j ∈ I ∪H} ;
A2 –Set of arcs in delivery routing, A2 = {(i, j) : i, j ∈ J ∪H} ;
A – Set of all arcs, A = {(i, j) : i, j ∈ N}

Parameters

Fk–Fixed cost of operating hub k ;
Γk–Capacity of hub k ;
ck – Handling cost to operate one unit product in hub k , k ∈ H ;
C – Fixed cost of a vehicle ;
Q– Capacity of a vehicle ;
qij –Flow quantity from supplier i ∈ I to client j ∈ J ;
dij– Distance between two nodes i and j, arc (i, j) ∈ A ;
α – Unit cost parameter for the inter-hub transport ;
β– Unit cost parameter for the collection tour ;
γ– Unit cost parameter for the delivery tour ;
Oi– Total quantity of flow originating at supplier i, Oi =

∑
j∈J

qij ;

Dj– Total quantity of flow for client j, Dj =
∑
i∈I
qij .

The proposed model in this phase is named CSAHLP-COST. The objective function (8.1) of the model
constitutes of the fixed open hub cost, the inter-hub transfer cost, the allocation cost of collection and
delivery, and the freight handling cost in hubs. Constraints (8.2) to (8.7) are hub location constraints mainly
derived from the model in Ernst and Krishnamoorthy [1999] (the same as Constraints (3.2) to (3.7) of the
global model of the HLRP). Constraints (8.8) and (8.9) define the domain of the decision variable zik and
Y i
kl. The main differences of the model from that of Ernst and Krishnamoorthy [1999] is that we consider

two sets of customers (suppliers and clients) and limit the total collection and delivery load on hubs in two
separate constraints (Constraints (8.4) and (8.5)). We also include the freight handling cost which Ernst
and Krishnamoorthy [1999] did not consider. Besides, the valid inequalities (8.10) are added to ensure the
minimum number of open hubs.
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Phase 1 : CSAHLP-COST

min
∑
k∈H

Fkzkk +
∑
i∈I

∑
k∈H

∑
l∈H

αdklOiY
i
kl +

∑
i∈I

∑
k∈H

βdikzik +
∑
j∈J

∑
k∈H

γdjkzjk

+
∑
i∈I

∑
k∈H

ckOizik +
∑
i∈I

∑
(k,l)∈A3

clOiY
i
kl

(8.1)

Subject to

zik ≤ zkk ∀i ∈ N,∀k ∈ H (8.2)∑
k∈H

zik = 1 ∀i ∈ I ∪ J (8.3)∑
i∈I

Oizik ≤ Γkzkk ∀k ∈ H (8.4)∑
j∈J

Djzjl ≤ Γlzll ∀l ∈ H (8.5)∑
l∈H

Y i
kl = zik ∀i ∈ I,∀k ∈ H (8.6)∑

l∈H

Y i
lkOi =

∑
j∈J

qijzjk ∀i ∈ I,∀k ∈ H (8.7)

zik ∈ {0, 1} ∀i ∈ N,∀k ∈ H (8.8)

0 ≤ Y i
kl ≤ 1 ∀i ∈ I,∀k, l ∈ H (8.9)∑

k∈H

∑
i∈I

xki ≥ d
∑

i∈I Oi

Q
e (8.10)

8.1.2 Second phase of the model : CVRP

Following the hub location and allocation scheme for each open hub from phase 1, the second phase de-
termines the collection and delivery routes and minimize the routing costs for every open hub by means
of solving distinct collection VRP and delivery VRP. There is thus for each open hub one collection VRP
model and one delivery VRP model. The model of the two VRPs are based on the collection routing and
delivery routing constraints of the global MILP model of the HLRP which are inspired by Kara et al. [2007]
and Toth and Vigo [2014].

Since the collection VRP and delivery VRP for each open hub are solved separately and the models are
similar, only the model of the collection VRP is presented. It is assumed that H ′ is the set of open hubs, Ik
is the set of suppliers allocated to hub k, k ∈ H ′, which means that zik (i ∈ Ik, k ∈ H ′) is always equal to
1. For a given open hub k, k ∈ H ′, and the set of suppliers Ik, we describe the collection VRP model :

Phase 2 : Collection VRP-COST

min
∑

i,j∈Ik∪k

βdijxij +
∑
i∈Ik

Cxki (8.11)
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Subject to ∑
j∈Ik∪k

xij = 1 ∀i ∈ Ik (8.12)∑
i∈Ik∪k

xij −
∑
i∈Ik∪k

xji = 0 ∀j ∈ Ik ∪ k (8.13)∑
j∈Ik∪k

fij −
∑
j∈Ik∪k

fji = Oi ∀i ∈ Ik (8.14)∑
i∈Ik

fik =
∑
i∈Ik

Oi (8.15)

fij ≤ (Q−Oj)xij ∀i ∈ Ik ∪ k,∀j ∈ Ik (8.16)
Oixij ≤ fij ∀i ∈ Ik,∀j ∈ Ik ∪ k (8.17)∑
i∈Ik

fki = 0 (8.18)

fik ≤ Qxik ∀i ∈ Ik (8.19)
xij ∈ {0, 1} ∀i, j ∈ Ik ∪ k (8.20)
fij ≥ 0 ∀i, j ∈ Ik ∪ k (8.21)
xij + xji ≤ 1 ∀i, j ∈ Ik (8.22)∑
i∈Ik

xki ≥ d
∑

i∈Ik Oi

Q
e (8.23)

The objective function (8.11) minimizes the collection routing cost for the hub k and the cost of using
vehicles. Constraint (8.12) to (8.19) are inspired by the VRP constraints proposed in Kara et al. [2007] and
Toth and Vigo [2014] and are the same as the collection routing constraints of the global model of the HLRP
(Constraints (3.8) and (3.9), (3.13) to (3.18), Chapter 3). Constraints (8.20) and (8.21) define the domain of
the collection flow variable fij and the 0-1 routing variable xij . Valid inequality (8.22) eliminate sub-tours.
Valid inequalities (8.23) provide a lower bound of the total number of vehicles required.

Since for each open hub, two VRP models are built and experimented separately, the total routing cost
of one open hub is the sum of the collection cost and delivery cost obtained from the two models. The
models are experimented on all the open hubs from phase 1. At last, the collection and delivery routes for
all the open hubs are generated and the total cost of collection and delivery are calculated.

8.2 Two-phase MA for minimizing cost
In addition to the proposition of the two-phase model for solving the single-objective HLRP, in this section,
a two-phase MA is presented, solving the HLP and VRP continuously to obtain the solutions of the HLRP.
As previously discussed in Chapter 2 and Chapter 4, many researches have applied the MA to solve the
HLPs and the VRPs due to its characteristics of being able to hybridized with other methods flexibly. For
more details, one can refer to the reviews of the HLP by Alumur and Kara [2008] and of the VPR by Potvin
[2007]. In this section, we propose the two-phase MA based on the single-objective MA of the HRLP in
Chapter 4.

Figure 8.2 presents the general framework of the two-phase MA. In the first phase (Figure 8.2.(a)), a
CSAHLP is solved to locate hubs and allocate the suppliers and clients to the open hubs. The objective of
the problem is to minimize the total cost of the HLP (the sum of the fixed hub cost, inter-hub transfer cost,
handling cost and allocation cost). Adopting the same deigning method of the global MA proposed in Chap-
ter 4, the two-phase MA firstly generates an initial population with heuristic and random individuals. Each
individual is evaluated by a fitness function based on the objective function (8.1) of the CSAHLP presented
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in Section 8.1. The genetic operators (selection, crossover, mutation) (Fortin and Parizeau [2013]) and the
local searches (Manzour-al Ajdad et al. [2012]) from the global MA are adapted to generate offsprings. The
process iterates until the stopping criteria are satisfied.

The second phase deals with the collection VRP and delivery VRP for each open hub. We limit the two
VRPs to a local search derived from that in Chapter 4 which is inspired by Manzour-al Ajdad et al. [2012].
The procedure of the local search on the collection routing is presented in Figure 8.2.(b) which is also the
applied on the delivery routing. After the chromosome representing the solution of the HLP is generated in
the first phase, with aims of minimizing the total collection cost (Equation (8.11)) for each open hub from
the first phase, the local search operators are applied by means of changing the sequence of the suppliers
which are allocated to the open hub on the chromosome. At the same time, for the clients assigned to the
hub, the local searches are also applied by similar procedure. The following sections describe the main
phases of the two-phase MA in detail.

FIGURE 8.2 : Schematic illustration of the two-phase MA

8.2.1 First phase of the MA : CSAHLP

This section introduces the process of the MA solving the CSAHLP. Since all the procedures are derived
from the global MA of the HLRP, the main idea for each operation of the MA is presented and more details
can be found in Chapter 4.

(1) Chromosome and fitness function
The individuals in the MA are represented by chromosomes shown in Figure 8.3. Chromosome P (x)

includes a hub location vector H(x) = {h1, h2, ...hn} and a non-hub nodes vector A(x) = {a1, a2, ...an}
(Prins et al. [2006b]). As one supplier/client must be served by only one hub, vector A(x) does not contain
duplicates. For every position i (i = {1, 2, ...n}), if ai = j and hi = k, the non-hub node j is assigned to
hub k. Consider a problem scale : 3 potential hubs numbered 1, 2 and 3 ; five suppliers numbered from 4 to
8 (grey boxes in Figure 8.3) ; 5 clients numbered from 9 to 13 (white boxes in Figure 8.3). Figure 8.3 shows
a chromosome P (x) that hub 1 and 3 are selected open in vector H(x). According to the relevant positions,
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suppliers 4, 5, clients 9, 12, 13 are allocated to hub 1 ; suppliers 6, 7, 8 and clients 10, 11 are allocated to
hub 3.

The fitness function Feva(x) to evaluate each individual is defined as

F ′eva(x) = ObjV alue(x) + Penalty(x) (8.24)

Penalty(x) = σ
∑
k∈H

max{0,
∑
i∈I

zikOi − Γk}+ σ
∑
k∈H

max{0,
∑
j∈J

zjkDj − Γk} (8.25)

where ObjV alue(x) denotes the objective value of solution x calculated by Equation (8.1). σ is the
penalty parameter with a large value,

∑
i∈I zikOi and

∑
j∈J zjkDj are the total demand of suppliers and

clients allocated to an open hub k, Γk is the capacity of hub k. Thus if the collection or delivery quantities
for one open hub violate the hub capacity, the violation demand is multiplied by σ. The total sum of the
violation demand multiplying σ for all the open hubs constitutes the penalty cost Penalty(x) for solution
x.

FIGURE 8.3 : Solution representation of the HLP

(2) Initial population
Similar to the single-objective MA of the HLRP, the initial population of the HLP includes both heuristic

and random solutions. The method to generate heuristic solutions is inspired from the Extended Clarke and
Wright Algorithm (ECWA) proposed by Karaoglan and Altiparmak [2015]. At first, the minimum number

of hubs MinH needed are calculated by the formulation of MinH ←
⌊
D

Γ

⌋
, where D is the total demand

and Γ is hub capacity. Then hubs are selected open randomly with the number of at least MinH . For each
supplier node, the first and second nearest open hubs are searched and the saving (distance differences)
is calculated. The supplier node with the largest saving is allocated to the nearest hub and the capacity
of the hub is updated. After that, the supplier with the second largest saving is allocated. The process
continues until all the supplier nodes are assigned to a hub. When some suppliers cannot be allocated to
their nearest hub, their saving is recalculated. Furthermore, random new hubs may be opened if there are
still suppliers left because the remaining capacity of the open hubs is not enough to serve them. Depots
without suppliers are closed. Notice that the process of allocating the suppliers and clients are independent.
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The same procedure is implemented to allocate clients to the hubs. More details of the algorithm can be
found in Algorithm 3 in Chapter 4. Due to the limited number of open hub combinations, the heuristic
procedure may fail to reach the required population size. The remaining solutions are randomly produced.

(3) Genetic operators
The genetic operators (selection, crossover and mutation) of the global MA are adapted to the chromo-

somes of the HLP to generate offsprings (Chapter 4). On current generation of the MA, solutions are se-
lected by a unique fitness binary tournament selection (Fortin and Parizeau [2013]) which defines a unique
fitness set storing the fitnesses of the individuals from current generation without repeating values. Each
time, two fitnesses in the unique fitness set are randomly compared and the best fitness is selected. One
of the individuals in current generation sharing the same best fitness is randomly selected to survive. The
selection process continues until the number of the selected individuals meets the population size.

In the next step, the selected individuals are arranged randomly in pairs and a one-point crossover with
a probability is applied on the parent pairs. Figure 8.4 illustrates the crossover procedure on chromosomes.
Two crossover points PL and PR are defined for the location part and the non-hub nodes part, respectively.
On the hub location vector H(x), a new offspring combines the code of Parent 1 before crossover point PL
and the code of Parent 2 after PL ; on the non-hub nodes vector A(x), the new offspring takes the code of
Parent 1 before PR as the first part. The second part sequentially copies the code of A(x) of Parent 2 except
for the nodes that have been copied from Parent 1.

FIGURE 8.4 : The crossover operator of the two-phase MA

Followed by the crossover, a mutation operator mutates the chromosome with a probability. As shown
in Figure 8.5. In the location section H(x), random positions are replaced by another hub. In the non-hub
nodes section A(x), the random locations of two points are exchanged.

FIGURE 8.5 : The mutation operator of the two-phase MA

(4) Local search
The same local searches of the global MA of the HLRP are applied on both the non-hub node part A(x)

and the hub location partH(x) of the chromosome. On setA(x), two random non-hub nodes exchange their
positions while other nodes remain unchanged. Next, one random non-hub node is selected to be inserted
into a random position ofA(x). On setH(x), four local search neighbourhood are used : (1) when not all the
potential hubs are open, random previously closed hub is opened to replace the position of a current open
hub ; (2) the position of one open hub is replaced by another open hub randomly ; (3) several positions are
randomly chosen and a new potential hub is opened to the hubs on the selected positions ; (4) two random
hubs exchange their positions.
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8.2.2 Second phase of the MA : CVRP
In the second phase, the local searches based on that of the global MA (Chapter 4) are applied to explore
the distinct collection and delivery routes. After the first phase of the MA, a chromosome representing the
final solution of the HLP is generated. The hub location set is denoted as H ′. For each open hub k, k ∈ H ′,
there are two sets of customers that are allocated to hub k : supplier set Ik and client set Jk. The initial
collection route scheme of hub k is obtained based on the permutation order of the suppliers i, i ∈ Ik, in
the chromosome. The vehicle capacity constraint is checked by each decoding procedure. Once the vehicle
capacity is violated by the insertion of a new supplier to current route, this supplier is assigned to a new
collection route. The initial route scheme of delivery also follows these steps. For example, assume that
one problem scales is with 3 hubs, 20 suppliers and 20 clients. After Phase 1, hub 3 is one of the hubs
selected to open. Suppliers 4 to 8 and client 9 to 13 are allocated to hub 3. Figure (8.6.(a)) shows the part
of the chromosome presenting hub 3 and the suppliers and clients assigned to it. Firstly, the suppliers are
arranged together according to the sequence on the chromosome, as well as the clients (8.6.(b)). The initial
collection and delivery routes are built separately according to the supplier and the client sequences of
the chromosome without violating vehicle capacity (8.6.(c)). The value of collection cost is calculated by
Equation (8.11). The value of delivery cost is calculated by a similar equation.

FIGURE 8.6 : Initial collection and delivery routes after Phase 1

Next step, on the level of collection, two local searches are applied on the supplier sequence (Figure
(8.7)) : swapping the positions of two supplier nodes (Figure (8.7.(b))) ; inserting one supplier into a random
position (Figure (8.7.(c))). Each time the offspring is generated, the value of collection cost is computed.
If the solution is improved (reducing collection cost), the offspring replaces its parent and the local search
operator is applied on the offspring. The process iterated until the stopping criteria are satisfied. The same
procedure is also implemented to explore delivery routes and compute the delivery routing cost.

At last, the sum of the fixed cost of opening hubs, the inter-hub transfer cost and the freight handling
cost from phase 1, along with the collection cost and deliver cost from phase 2 constitutes the total cost of
the HLRP.
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FIGURE 8.7 : Local searches on collection routing in phase 2

8.3 Conclusion
This chapter proposes another approach to solve the HLRP by splitting the complex problem into two sub-
problems : one sub-problem of HLP; one sub-problem of collection VRP and delivery VRP. It is obvious
that the two sub-problems are simpler due to the reduction of the decision variables and constraints. We
limit the research on the two-phase method by directly decomposing and adapting the global model and the
MA for the HLRP proposed in chapters 3 and 4. In the following chapter, the computational experiments
of the two-phase method are conducted and the results are analysed. Furthermore, the performance of the
global model and MA of the HLRP is also investigated by means of comparing their results with those
obtained by the two-phase method.
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Computational experiments for the two-phase
method

In this chapter, the computational experiments on both the two-phase model and the MA are conducted
with the objective of minimizing cost. In order to compare the solutions of the two phase approaches with
that of the global single-objective method from Chapter 5, the computational experiments are carried on
the same platforms (the computer and the versions of CPLEX/C++) and based on the same instances as the
single-objective HLRP.

Section 9.1 describes the data sets and parameters used for the experiments. Section 9.2 shows the results
of the two-phase model with CPLEX solver. Section 9.3 presents the results obtained by the two-phase MA
and compares them with the CPLEX results of the two-phase model, as well as the results of the global
single-objective MA.

9.1 Data and parameters
We have generated the data set for solving the global problem on the basis of the AP data set (Ernst and
Krishnamoorthy [1999]) (Chapter 5). The data set contains 27 instances with three hub types for each. Our
computational experiments on the two-phase method are also conducted based on the generated data set. We
select 18 instances including 6 instances for each small, medium and large problem scale (Table 9.1). The
names of the instances |H|-|I|-|J |-|Γ| stands for the number of potential hubs, the number of supplier and
client nodes, the capacity of hubs, correspondingly. The candidate hub number set |H|∈ {3, 6, 10}. The sets
of supplier and client nodes |I|=|J |∈ {10, 15, 20, 30, 40, 50}. Γ stands for the hub type with integer capacity
corresponding to 1/2 of the total demand of each instance problem. The fixed cost and unit transportation
cost of vehicles are from the logistics data of the French Comité National Routier CNR1 data base. The unit
cost of handling freight in hubs was communicated by a French logistic company (see Section 5.1, Chapter
5).

The models of the HLP, the collection VRP and the delivery VRP proposed are coded in Visual studio
C++ 2012 and solved with CPLEX 12.6.1.. The two-phase MA is implemented in Visual studio C++ 2012
on PCs with 3.07 GHz and 8 GB RAM memory.

The general notations of the tables in the following sections are explained below :

• UB : best objective value of CPLEX in three hours for each experiment ;

1http ://www.cnr.fr/en
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• LB : lower bound found by CPLEX in three hours ;

• Gap (%) : deviation in % between the best objective found by CPLEX and the lower bound found by

CPLEX for each experiment, %Gap =
UB − LB

UB
× 100% ;

• Zbest : best objective value found by the MA in 10 runs for each instance ;

• CPU time (s) : total CPU time of CPLEX in seconds to obtain the best objective ;

• GapMA (%) : deviation in % between the best objective found by MA and the lower bound found by

CPLEX for each instance, %GapMA =
Zbest − LB

Zbest
× 100% ;

• Ttotal (s) : total computing time of the MA (10 runs) ;

• Open hub : hub location scheme of the best solution ;

• Route numbers : total number of collection and delivery routes of the best solution which also indicate
the number of vehicles used for collection and delivery.

TABLE 9.1 : Data structures for computational experiments
Size Notation |H|-|I|-|J | Hub capacity |Γ|

Small
3/6/10-10-10 15

3/6/10-15-15 45

Medium
3/6/10-20-20 60

3/6/10-30-30 90

Large
3/6/10-40-40 105

3/6/10-50-50 120

9.2 CPLEX results of the two-phase model
In this section, the models of the HLP (phase 1), the collection VRPs and delivery VRPs (phase 2) are
solved by CPLEX. In order to be comparable to the results of the global model, the maximum running time
of the CPLEX is restricted to 3 hours and the limitation of the tree memory is 1500MB for each model. The
CPLEX parameter “MIPEmphasis” is set to 2 and “Probe” is set to 3.

CPLEX results of the HLP (phase 1)

The model of the HLP in the first phase minimizes the total cost of the fixed hub cost, the inter-hub transfer
cost, the freight handling cost and the allocation cost of collections and deliveries. Tables 9.2 gives the
details of the CPLEX results regarding the hub location scheme, the upper bound, the gap, the values of
different cost components and the CPU times. It reveals that the CPLEX solver is able to solve all the
instances to optimality with up to 10 hubs and 100 non-hub nodes in a very fast computing time. The
average CPU time for solving all the instances is 2.76 seconds. Observe the values of the different cost
components for each instance, the allocation cost and the hub location cost account for more than 80%
of the total cost. Finally, regarding the instance problems with the same number of non-hub nodes, the
solutions are improved, reaching lower costs, when there are more choices of potential hubs.



9.2. CPLEX RESULTS OF THE TWO-PHASE MODEL 141

TABLE 9.2 : CPLEX results of the first phase (HLP)
Instance Hub Open UB Gap Cost of Inter-hub Allocation cost Handling CPU

|H|-|I|-|J | capacity hub (Cost) (%) open hub cost Collection Delivery cost time (s)

3-10-10 15 1,3 3854.04 0.00 2000 172.91 747.96 860.55 72.62 0.23
6-10-10 15 3,4 3833.58 0.00 2000 123.53 771.42 869.71 68.92 0.27

10-10-10 15 4,8 3778.09 0.00 2000 109.87 958.21 640.22 69.79 0.94

3-15-15 45 1,3 5889.24 0.00 2000 454.01 1643.95 1597.67 193.61 0.22
6-15-15 45 4,5 5444.12 0.00 2000 253.27 1288.23 1708.96 193.66 0.33

10-15-15 45 7,10 5196.12 0.00 2000 285.30 1180.92 1537.57 192.33 0.42

3-20-20 60 2,3 6562.01 0.00 2000 429.41 2336.72 1517.22 278.66 0.31
6-20-20 60 2,5 6539.69 0.00 2000 526.80 2244.55 1489.68 278.66 26.23

10-20-20 60 2,8 6442.93 0.00 2000 466.35 2239.55 1458.37 278.66 3.11

3-30-30 90 1,2 9507.39 0.00 2000 995.98 2868.94 3246.42 396.05 0.63
6-30-30 90 4,6 8611.68 0.00 2000 634.84 2590.81 2986.88 399.15 0.64

10-30-30 90 4,6 8611.68 0.00 2000 634.84 2590.81 2986.88 399.15 2.16

3-40-40 105 1,2,3 12343.66 0.00 3000 1453.00 3429.96 3928.97 513.74 0.84
6-40-40 105 4,5 11108.51 0.00 2000 511.41 3783.69 4315.57 497.83 0.89

10-40-40 105 2,10 10577.83 0.00 2000 749.02 3467.83 3849.30 511.68 5.77

3-50-50 120 1,2,3 13616.69 0.00 3000 1367.47 4474.37 4183.00 591.85 0.45
6-50-50 120 2,3,5 13236.22 0.00 3000 1074.99 4337.94 4208.07 615.22 1.16

10-50-50 120 2,3,10 13086.26 0.00 3000 1148.19 4290.22 4049.66 598.19 5.13

CPLEX results of the collection VRP and the delivery VRP (phase 2)

The second phase of the proposed model deals with several collection VRPs and delivery VRPs. Based on
the hub location and allocation scheme from the first phase, the distinct collection VRP and delivery VRP
are solved for each open hub, minimizing the routing cost and the cost of using vehicles. Tables 9.3 and 9.4
present the results of the separate collection VRPs and delivery VRPs. Table 9.5 shows the general results
for each problem instance based on Tables 9.3 and 9.4. It records the total routing cost, the total number of
routes numbers, and the total computing time of the collection VRP and the delivery VRP. The column of∑
UB and

∑
LB represent the total value of the upper bounds and lower bounds of all the collection and

delivery VRPs (see Tables 9.3 and 9.4). The column of Gap′ records the deviation of the
∑
UB and

∑
LB

where Gap′ = (
∑
UB −

∑
LB)/

∑
UB × 100%. The optimal solutions for all the small and medium

size instances can be found by CPLEX with a short computing time. High quality solutions of all the large
instances can be found with a small gap which, however, consumes a big computing time.

Results comparison with the global model of the HLRP

As mentioned in Chapter 8, the total network cost includes : the hub location cost, the inter-hub cost and
the handling cost during the first phase ; the collection cost, the delivery cost and the cost of using vehicles
during the second phase. Table 9.6 compares the CPLEX results by the global model in Chapter 5 and
the two-phase model in terms of the total cost, the gap, the location scheme, the route numbers and the
computing times. Here the column of Gap1 records the gaps of the HLP model while the column of Gap2

presents the general gaps of the VRP models taking the values of the Gap′ in Table 9.5. The column of
Total time sums the CPU time of the first and second phase. Since it is difficult for the CPLEX solver to
solve large instances for the global model which yields a large gap, only the results of the small and medium
instances are compared in Table 9.6. The results of large problem instances of the two-phase method can be
found in Table 9.9.

According to the results, the two-phase model solves all the small and medium instances to optimality
with a quite short computing time, while the global model of the HLRP can only solve small instances to
optimality. It finds feasible solutions for medium instances with a computing time of 3 hours (Table 9.6).
Regarding the solutions of the small instances obtained by the HLRP model, the results are better than
which obtained by the two-phase model even if the solutions are optimal in both phases. It is obvious that



142 CHAPITRE 9. COMPUTATIONAL EXPERIMENTS FOR THE TWO-PHASE METHOD

TABLE 9.3 : CPLEX results of the collection VRP
Instance Hub Open UB LB Gap CPU Route

|H|-|I|-|J | capacity hub (Cost) (Cost) (%) time (s) numbers

3-10-10 15
1 585.45 585.45 0.00 0.03 1
3 631.25 631.25 0.00 0.06 1

6-10-10 15
3 512.98 512.98 0.00 0.08 1
4 637.25 637.25 0.00 0.03 1

10-10-10 15
4 451.40 451.40 0.00 0.05 1
8 832.03 832.03 0.00 0.05 1

3-15-15 45
1 1577.93 1577.93 0.00 0.06 2
3 1010.66 1010.66 0.00 10.00 4

6-15-15 45
4 576.67 576.67 0.00 0.22 3
5 1699.09 1699.09 0.00 0.52 3

10-15-15 45
7 809.10 809.10 0.00 0.23 3

10 1264.55 1264.55 0.00 0.06 3

3-20-20 60
2 2251.14 2251.14 0.00 1.05 4
3 1394.19 1394.19 0.00 0.20 4

6-20-20 60
2 2251.14 2251.14 0.00 1.13 4
5 1341.03 1341.03 0.00 0.13 4

10-20-20 60
2 2251.14 2251.14 0.00 1.00 4
8 1314.97 1314.97 0.00 0.14 4

3-30-30 90
1 2731.86 2731.86 0.00 0.50 5
2 1951.16 1951.14 0.00 621.83 7

6-30-30 90
4 1712.68 1712.67 0.00 44.20 6
6 2685.78 2685.78 0.00 0.33 5

10-30-30 90
4 1712.68 1712.67 0.00 43.81 6
6 2685.78 2685.78 0.00 0.31 5

3-40-40 105
1 1425.93 1425.93 0.00 0.91 4
2 2547.75 2532.77 0.59 10806.55 8
3 992.39 992.39 0.00 0.16 3

6-40-40 105
4 2909.31 2871.27 1.31 10806.97 7
5 2614.78 2496.60 4.52 2109.70 8

10-40-40 105
2 3028.62 3028.59 0.00 674.17 8

10 2139.47 2079.75 2.79 7155.92 7

3-50-50 120
1 1443.67 1443.66 0.00 3.15 4
2 2789.64 2721.88 2.43 4738.75 9
3 1630.02 1630.02 0.00 1.11 4

6-50-50 120
2 2244.04 2244.02 0.00 33.67 6
3 1092.73 1092.73 0.00 0.05 3
5 2229.07 2229.04 0.00 883.20 7

10-50-50 120
2 2921.79 2860.40 2.10 3562.27 9
3 1092.73 1092.73 0.00 0.09 3

10 1507.09 1507.08 0.00 36.19 4
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TABLE 9.4 : CPLEX results of the delivery VRP
Instance Hub Open UB LB Gap CPU Route

|H|-|I|-|J | capacity hub (Cost) (Cost) (%) time (s) numbers

3-10-10 15
1 507.49 507.49 0.00 0.08 1
3 608.53 608.53 0.00 0.02 1

6-10-10 15
3 772.01 772.01 0.00 0.03 1
4 497.11 497.11 0.00 0.05 1

10-10-10 15
4 425.00 425.00 0.00 0.02 1
8 755.56 755.56 0.00 0.03 1

3-15-15 45
1 1172.78 1172.78 0.00 0.05 3
3 1229.36 1229.36 0.00 0.36 3

6-15-15 45
4 704.73 704.73 0.00 0.05 2
5 1724.79 1724.79 0.00 3.41 4

10-15-15 45
7 1113.64 1113.64 0.00 0.08 3
10 1287.45 1287.45 0.00 0.16 3

3-20-20 60
2 1321.66 1321.66 0.00 0.41 4
3 1508.43 1508.42 0.00 2.92 5

6-20-20 60
2 1321.66 1321.66 0.00 0.31 4
5 1457.22 1457.22 0.00 2.20 5

10-20-20 60
2 1321.66 1321.66 0.00 0.38 4
8 1430.89 1430.89 0.00 1.66 5

3-30-30 90
1 2577.86 2577.86 0.00 0.48 5
2 2364.96 2364.94 0.00 225.69 7

6-30-30 90
4 1969.22 1969.22 0.00 5.15 6
6 2652.07 2652.07 0.00 8.14 6

10-30-30 90
4 1969.22 1969.22 0.00 5.10 6
6 2652.07 2652.07 0.00 8.16 6

3-40-40 105
1 1033.47 1033.47 0.00 0.05 3
2 3067.06 3013.17 1.76 3507.99 8
3 1466.10 1466.10 0.00 0.34 4

6-40-40 105
4 3149.65 3149.61 0.00 675.08 7
5 2674.08 2621.85 1.95 3113.94 7

10-40-40 105
2 2775.43 2775.40 0.00 542.49 7
10 2497.90 2448.25 1.99 2204.20 8

3-50-50 120
1 1414.71 1414.69 0.00 4026.40 5
2 2692.72 2617.58 2.79 5592.06 9
3 1225.44 1225.44 0.00 0.31 3

6-50-50 120
2 1799.47 1799.45 0.00 52.65 6
3 1356.18 1356.18 0.00 0.14 3
5 2277.85 2228.99 2.14 2385.32 7

10-50-50 120
2 2458.83 2458.81 0.00 122.85 8
3 1225.44 1225.44 0.00 0.28 3
10 1523.21 1523.21 0.00 22.81 5
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TABLE 9.5 : General CPLEX results of the second phase (VRP)
Instance Hub Open

∑
UB

∑
LB Gap′ Total route Total

capacity hub (cost) (cost) (%) numbers time (s)

3-10-10 15 1,3 2332.72 2332.72 0.00 4 0.19

6-10-10 15 3,4 2419.35 2419.35 0.00 4 0.19

10-10-10 15 4,8 2463.99 2463.99 0.00 4 0.15

3-15-15 45 1,3 4990.73 4990.73 0.00 12 10.47

6-15-15 45 4,5 4705.28 4705.28 0.00 12 4.20

10-15-15 45 7,10 4474.74 4474.74 0.00 12 0.53

3-20-20 60 2,3 6475.42 6475.42 0.00 17 4.58

6-20-20 60 2,5 6371.05 6371.05 0.00 17 3.77

10-20-20 60 2,8 6318.66 6318.66 0.00 17 3.18

3-30-30 90 1,2 9625.84 9625.84 0.00 24 848.50

6-30-30 90 4,6 9019.75 9019.75 0.00 23 57.82

10-30-30 90 4,6 9019.75 9019.75 0.00 23 57.38

3-40-40 105 1,2,3 10532.70 10463.83 0.65 30 14316.00

6-40-40 105 4,5 11347.82 11139.33 1.84 29 16705.69

10-40-40 105 2,10 10441.42 10331.99 1.05 30 10576.78

3-50-50 120 1,2,3 11196.20 11053.27 1.28 34 14361.78

6-50-50 120 2,3,5 10999.34 10950.41 0.44 32 3355.03

10-50-50 120 2,3,10 10729.09 10667.67 0.57 32 3744.49

the two-phase model leads to sub-optimal results. Since the HLRP model is hard to solve by means of
CPLEX solver, the results subjects to a big gap for the medium instances while the two-phase model is able
to yield optimal solutions in a short computing time.

TABLE 9.6 : Results comparison between the global model of the HLRP and the two-phase model
Global model of the HLRP (CPLEX) Two-phase model (CPLEX)

Instance Hub Total Gap Open Route CPU Total Gap1 Gap2 Open Route Total

|H|-|I|-|J | capacity cost (%) hub numbers Time (s) cost (%) (HLP) (%) (VRP) hub numbers Time (s)

3-10-10 15 4269.15 0.00 1,2 4 217.22 4578.26 0.00 0.00 1,3 4 0.42
6-10-10 15 4269.15 2.07 1,2 4 10800.00 4611.80 0.00 0.00 3,4 4 0.46

10-10-10 15 4363.80 4.45 8,10 4 10800.20 4643.65 0.00 0.00 4,8 4 1.09
3-15-15 45 7584.04 3.15 1,3 12 10536.69 7638.35 0.00 0.00 1,3 12 10.69
6-15-15 45 7107.65 3.56 3,5 12 10800.15 7152.21 0.00 0.00 4,5 12 4.53

10-15-15 45 7013.07 9.72 7,10 12 10800.11 6952.37 0.00 0.00 7,10 12 0.95
3-20-20 60 8825.23 1.75 2,3 16 10800.09 9183.49 0.00 0.00 2,3 17 4.89
6-20-20 60 9257.22 11.60 4,5 16 10800.23 9176.50 0.00 0.00 2,5 17 30.00

10-20-20 60 9520.10 19.98 5,9 17 10800.30 9063.67 0.00 0.00 2,8 17 6.29
3-30-30 90 12945.40 9.71 1,2 24 10800.20 13017.87 0.00 0.00 1,2 24 849.13
6-30-30 90 13838.80 24.40 2,6 27 10800.90 12053.74 0.00 0.00 4,6 23 58.46

10-30-30 90 15289.90 32.63 4,5,8 27 10800.70 12053.74 0.00 0.00 4,6 23 59.54

9.3 MA results of the two-phase method

Similar to the parameter settings of the global MA in Chapter 5, the two-phase MA runs 10 times and keeps
the best solution. In the first phase of the CSAHLP, the population of the generation is 200. The probability
of crossover and mutation are set to 0.8 and 0.7, respectively. The local search in the first phase is called
after every 10 iterations of the genetic part. In the second phase, the local search stops when it has been
called on all the supplier and client nodes. Two stopping criteria were set for each run of the MA : the
iterations were stopped whenever no improvement was obtained every 100 iterations or the total iteration
reaches 200.
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The first phase of the MA solves the hub location problems and the results are compared with that
obtained by CPLEX in Table 9.7. The MA finds the optimal solutions for the small instances and is able
to find feasible solutions for the medium and large instances with a small gap. In all cases, the numbers of
open hubs are identical for CPLEX and the MA and only four out of the eighteen instances open different
hubs.

The second phase of the MA deals with several collection VRPs and delivery VRPs by calling the local
searches. The general results of the VPRs are shown in Table 9.8 and are compared with the results of the
two-phase model. In most cases, the model of the VPRs is able to find better solutions than the MA but
with a longer computing time in solving large instances. For some instances, the MA can find the solutions
that are better than the optimal solutions of the model of the VPRs. The reason is that scheduling of the
collection and delivery routes is based on the location and allocation in the firs phase. Opening different
hubs or allocating different suppliers or clients to the same hub will greatly influence the solutions of the
second phase.

Table 9.9 shows the final results of the two-phase model and the MA. Since most of the solutions by
CPLEX are optimal in both phases of the CSAHLP and CVRP, CPLEX performs better than the MA in
most cases. On the other hand, the MA is able to find feasible solutions in a shorter computing time than
CPLEX for solving the medium and large instances. However, for all the instances, the results of the global
MA are better than the two-phase MA with a slightly longer computing time (Table 9.10).

TABLE 9.7 : Results comparison between the model and the MA of the first phase (HLP)
The model of HLP (CPLEX) Phase 1 of the MA (HLP)

Instance Hub UB Gap Open CPU Zbest GapMA Open CPU

|H|-|I|-|J | capacity (Cost) (%) hub time (s) (Cost) (%) hub time (s)

3-10-10 15 3854.04 0.00 1,3 0.23 3854.04 0.00 1,3 1.16
6-10-10 15 3833.58 0.00 3,4 0.27 3833.58 0.00 3,4 1.57
10-10-10 15 3778.09 0.00 4,8 0.94 3810.67 0.85 1,10 2.05

3-15-15 45 5889.24 0.00 1,3 0.22 5889.24 0.00 1,3 1.68
6-15-15 45 5444.12 0.00 4,5 0.33 5444.12 0.00 4,5 2.25
10-15-15 45 5196.12 0.00 7,10 0.42 5227.25 0.60 9,10 4.39

3-20-20 60 6562.01 0.00 2,3 0.31 6584.72 0.34 2,3 2.63
6-20-20 60 6539.69 0.00 2,5 26.23 6550.50 0.17 3,4 4.58
10-20-20 60 6442.93 0.00 2,8 3.11 6509.57 1.02 2,8 14.01

3-30-30 90 9507.39 0.00 1,2 0.63 9558.45 0.53 1,2 4.10
6-30-30 90 8611.68 0.00 4,6 0.64 8645.20 0.39 4,6 22.58
10-30-30 90 8611.68 0.00 4,6 2.16 8662.85 0.59 2,6 36.25

3-40-40 105 12343.66 0.00 1,2,3 0.84 12446.11 0.82 1,2,3 8.17
6-40-40 105 11108.51 0.00 4,5 0.89 11147.99 0.35 4,5 35.45
10-40-40 105 10577.83 0.00 2,10 5.77 10596.33 0.17 2,10 175.46

3-50-50 120 13616.69 0.00 1,2,3 0.45 13639.32 0.17 1,2,3 11.55
6-50-50 120 13236.22 0.00 2,3,5 1.16 13249.07 0.10 2,3,5 219.81
10-50-50 120 13086.26 0.00 2,3,10 5.13 13105.70 0.15 2,3,10 335.96

In order to assess the performance of the two-phase MA, we computed the coefficient of relative standard

deviation (RSD) for 10 runs, RSD =
SD

Z̄
× 100%. SD is the standard deviation between the average cost

value Z̄ in 10 runs and the best value Zi found by the MA for the ith run, SD =

√∑10
i=1 (Z̄ − Zi)2

10
. Figure

9.1 gives an insight of the RSD value for different problem scales. Most of the RSD values are below
2% and the curves show relatively smooth evolution, which proves the stability of the two-phase MA for
decision-makings.
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TABLE 9.8 : Results comparison between the model and the MA of the second phase (VRP)
Two-phase model-VRP Two-phase MA-VRP

Instance Hub Open
∑
UB

∑
LB Gap′ Routes Total Open Routing Routes Total

|H|-|I|-|J | capacity hub (cost) (cost) (%) numbers time (s) hub cost numbers time (s)

3-10-10 15 1,3 2332.72 2332.72 0.00 4 0.19 1,3 2332.72 4 10.03

6-10-10 15 3,4 2419.35 2419.35 0.00 4 0.19 3,4 2419.35 4 12.51

10-10-10 15 4,8 2463.99 2463.99 0.00 4 0.15 1,10 2354.41 4 25.67

3-15-15 45 1,3 4990.73 4990.73 0.00 12 10.47 1,3 5005.85 12 13.90

6-15-15 45 4,5 4705.28 4705.28 0.00 12 4.20 4,5 4749.66 12 21.36

10-15-15 45 7,10 4474.74 4474.74 0.00 12 0.53 9,10 4608.48 12 62.64

3-20-20 60 2,3 6475.42 6475.42 0.00 17 4.58 2,3 6466.41 16 27.99

6-20-20 60 2,5 6371.05 6371.05 0.00 17 3.77 3,4 6400.58 17 48.65

10-20-20 60 2,8 6318.66 6318.66 0.00 17 3.18 7,8 6285.88 18 124.12

3-30-30 90 1,2 9625.84 9625.84 0.00 24 848.50 1,2 9770.02 24 44.90
6-30-30 90 4,6 9019.75 9019.75 0.00 23 57.82 4,6 9385.50 25 171.43

10-30-30 90 4,6 9019.75 9019.75 0.00 23 57.38 2,6 9456.10 24 532.87

3-40-40 105 1,2,3 10532.70 10463.83 0.65 30 14316.00 1,2,3 11215.94 30 84.12
6-40-40 105 4,5 11347.82 11139.33 1.84 29 16705.69 4,5 11865.65 30 377.53

10-40-40 105 2,10 10441.42 10331.99 1.05 30 10576.78 2,10 11214.13 30 1851.97
3-50-50 120 1,2,3 11196.20 11053.27 1.28 34 14361.78 1,2,3 12250.97 32 97.21
6-50-50 120 2,3,5 10999.34 10950.41 0.44 32 3355.03 2,3,5 11945.54 32 2014.74

10-50-50 120 2,3,10 10729.09 10667.67 0.57 32 3744.49 2,3,10 11596.89 34 5254.44

TABLE 9.9 : Results comparison between the two-phase model and the two-phase MA
Two-phase model (MA) Two-phase model (CPLEX)

Instance Hub Total Open Routes CPU Total Gap1 Gap2 Open Routes Total

|H|-|I|-|J | capacity cost hub number time (s) cost (%) (HLP) (%) (VRP) hub number time (s)

3-10-10 15 4578.26 1,3 4 11.10 4578.26 0.00 0.00 1,3 4 0.42
6-10-10 15 4611.80 3,4 4 13.37 4611.80 0.00 0.00 3,4 4 0.46

10-10-10 15 4515.46 1,10 4 26.54 4643.65 0.00 0.00 4,8 4 1.09
3-15-15 45 7653.46 1,3 12 16.08 7638.35 0.00 0.00 1,3 12 10.69
6-15-15 45 7196.60 4,5 12 23.34 7152.21 0.00 0.00 4,5 12 4.53

10-15-15 45 7156.23 9,10 12 64.67 6952.37 0.00 0.00 7,10 12 0.95
3-20-20 60 9201.86 2,3 16 31.40 9183.49 0.00 0.00 2,3 17 4.89
6-20-20 60 9142.46 3,4 17 52.06 9176.50 0.00 0.00 2,5 17 30.00

10-20-20 60 9137.27 2,8 18 127.85 9063.67 0.00 0.00 2,8 17 6.29
3-30-30 90 13274.77 1,2 24 46.88 13017.87 0.00 0.00 1,2 24 849.13
6-30-30 90 12479.14 4,6 25 179.56 12053.74 0.00 0.00 4,6 23 58.46

10-30-30 90 12464.06 2,6 24 542.20 12053.74 0.00 0.00 4,6 23 59.54
3-40-40 105 16308.54 1,2,3 30 98.36 15517.44 0.00 0.39 1,2,3 30 14316.00
6-40-40 105 14965.79 4,5 30 394.27 14408.83 0.00 1.95 4,5 29 16705.69

10-40-40 105 14492.03 2,10 30 1868.14 13747.41 0.00 1.20 2,10 30 10576.78
3-50-50 120 17322.89 1,2,3 32 136.67 16210.13 0.00 0.87 1,2,3 34 14361.78
6-50-50 120 16693.08 2,3,5 32 2037.77 15689.55 0.00 0.36 2,3,5 32 3355.03

10-50-50 120 16406.31 2,3,10 34 5277.73 15483.41 0.00 0.35 2,3,10 32 3744.49
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TABLE 9.10 : Results comparison between the global MA and the two-phase MA
HLRP model (MA) Two-phase model (MA)

Instance Hub Total Open Routes CPU Total Open Routes CPU

|H|-|I|-|J | capacity cost hub number time (s) cost hub number time (s)

3-10-10 15 4269.15 1,2 4 12.60 4578.26 1,3 4 11.10
6-10-10 15 4269.15 1,2 4 59.04 4611.80 3,4 4 13.37
10-10-10 15 4258.45 2,10 4 82.25 4515.46 1,10 4 26.54
3-15-15 45 7638.35 1,3 12 34.19 7653.46 1,3 12 16.08
6-15-15 45 7107.65 3,5 12 40.88 7196.60 4,5 12 23.34
10-15-15 45 6861.88 7,10 12 131.45 7156.23 9,10 12 64.67
3-20-20 60 9048.58 2,3 17 82.64 9201.86 2,3 16 31.40
6-20-20 60 9022.21 3,4 17 116.44 9142.46 3,4 17 52.06
10-20-20 60 8725.87 7,8 17 244.04 9137.27 2,8 18 127.85
3-30-30 90 12994.00 1,2 24 164.00 13274.77 1,2 24 46.88
6-30-30 90 11973.20 2,6 24 411.62 12479.14 4,6 25 179.56
10-30-30 90 11987.10 4,6 22 847.83 12464.06 2,6 24 542.20
3-40-40 105 15233.90 2,3 29 295.92 16308.54 1,2,3 30 98.36
6-40-40 105 14317.30 4,5 30 507.60 14965.79 4,5 30 394.27
10-40-40 105 13838.00 2,10 29 2591.37 14492.03 2,10 30 1868.14
3-50-50 120 16324.10 1,2 32 723.49 17322.89 1,2,3 32 136.67
6-50-50 120 15564.30 2,5 32 2558.65 16693.08 2,3,5 32 2037.77
10-50-50 120 15471.72 8,10 32 5645.03 16406.31 2,3,10 34 5277.73

FIGURE 9.1 : RSD indicator with different numbers of instance nodes (the two-phase MA)

9.4 Conclusion
In this chapter we investigated experimental results of a proposed two-phase method for solving the HLRP
by solving an HLP and two VRPs in sequence for each selected hub. We solved the corresponding MILP
models with CPLEX as well as with our adapted memetic algorithm in order to assess the performance of
this two phase method. To that purpose, the same data set and parameters were adopted as we used for the
single-objective HLRP in Chapter 5. Eighteen instances ranging from 20 to 100 nodes have been used for
these experiments.

According to the results, the CPLEX solver is able to obtain optimal solutions of the HLP for all the
instances with up to 100 nodes in a quite short computing time. It also solves all the small and medium
problem instances of the VRP’s to optimality while finding high quality solutions for large instances with
a small gap. In comparison, solving the global HLRP model performs better than the two-phase model in
solving small instances even if the solutions of the two-phase method are optimal. This was to be expected.
On the other hand, solving the two-phase model yields better solutions than the global model in solving
medium instances because the solutions of the global model are subject to a big gap.

The proposed global MA is capable to be adapted to solve the HLP, finding the optimal solutions for
the small instances and high quality feasible solutions for the medium and large instances with a small gap
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(the average gap for all the instances is 0.35%). However, since we implemented simple local searches for
solving the routing schemes, the final solutions of the two-phase MA are inferior to those of the global
MA for solving the HLRP. Sensitivity analyses of the two-phase MA shows its stability and robust in a
decision-making process. Regarding computing times, the two-phase MA is slightly faster than the global
MA in obtaining solutions for all the test instances. The two-phase model is faster than the two-phase MA in
solving small and medium instances while it needs clearly higher running times to solve the large instances.

These results validate the interest of using this two-phase method for solving large instances of the
HLRP in a reasonable computing time. In this chapter, we limited the research to straightforward adap-
tations of our MILP model and memetic algorithm to investigate the two phase method. The validation
obtained would encourage to test efficient specialized algorithms for the HLP and the VRP to solve the
two-phase method.
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General conclusions and prospects

In this thesis, we addressed the Capacitated Single Allocation Hub Location-Routing Problem (CSAHLRP)
when collection and delivery routes to and from the hubs are organized separately for logistical reasons.
After a comprehensive state of art of the HLRP and related problems, we first addressed the single objective
problem aimed at the hub network design and optimization for minimum total cost. We proposed and
experimented a MILP formulation as well as a memetic algorithm (MA) to solve the problem. Then we
extended the formulation and MA solution technique to address the bi-objective green HLRP in order to
exhibit efficient solutions for the joint minimization of costs and CO2 emissions from transport. Finally, we
proposed a two-step procedure in order to solve the single objective problems by combining the solutions
of the corresponding Hub Location Problem (HLP) and the associated Vehicle Routing Problems (VRP).
Solutions of all these models and algorithms were experimented and compared on the basis of a set of
realistic instances of different sizes and characteristics which we have developed. While the MILP models
could only solve small to medium size problems, our Memetic Algorithms proved to be able to find high
quality solution for all instances in a reasonable computing time.

Four major contributions were made in this thesis. The first contribution was to provide a state-of-the-
art of the HLRP where we compared all variations of this class of problems addressed so far. Reviews of
related problems, the Hub Location Problem (HLP) and the Location and Routing Problem (LRP), were
also presented supplemented by recent works. The models and solution methods for the HLP have been
summarized and analyzed in several review papers. The latest published survey paper covers the research
on this problem conducted before the year 2012 (Farahani et al. [2013]). We discussed the main criteria
for classifying the HLPs and presented some fundamental mathematical models. Further, the articles on the
HLPs published after the year 2012 were reviewed to bridge the gap until now. Regarding the LRP, we focu-
sed on the standard Capacitated Location-routing Problem (CLRP). The problem definition, mathematical
models and solution methods to solve this problem were summarized. Furthermore, reviews of the CLRP
from the year of 2002 to 2017 were discussed. We also highlighted the main differences between the HRLP,
the HLP and the LRP. The published models and solution techniques for the HLRP were reviewed. Finally,
we discussed environmental aspects and modelling techniques for evaluating the CO2 emissions from trans-
port and some corresponding works on the VRP. The main goal of surveying the literature was to identify
research directions that would be promising for addressing the HLRP in terms of problem modelling and
solution methods.

The second contribution was the proposition of a single-objective mathematical model of the Capacita-
ted Single Allocation Hub Location-Routing Problem (CSAHLRP) and a memetic metaheuristic to solve
large-size problems. Our HLRP model combines a classical HLP formulation with recent flow formulations
that have been proposed for the vehicle routing and location-routing problems. Our proposed MA combines
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a heuristic for the generation of the initial population, a specifically designed genetic algorithm and several
local searches on the location and routing parts of the problem. To generate the solutions of least total cost,
extensive comparative experiments were conducted with the CPLEX solver and with the MA on the basis
of the set of instances which we have generated. Even with specially tuned parameters, CPLEX could solve
the model to optimality only for small instances and found feasible solutions for larger instances with a gap,
whose size grows with that of the instances. The MA was able to find feasible solutions to all types of test
instances in a reasonable computing time and with limited gaps compared to the lower bounds of CPLEX.

Our third contribution was to address the green HLRP and develop a bi-objective MILP model and me-
metic algorithm to solve the CSAHLRP in order to jointly minimize total cost and the CO2 emissions from
transport. In order to do so, we combined our single-objective MA with a fast elitist Non-dominated Sor-
ting Genetic Algorithm (NSGAII). This enabled us to sort the solutions of the initial generation according
to different non-dominance levels. Each time one offspring was generated by the GA operators (selection,
crossover and mutation) and local searches, an efficient non-domination level update (ENLU) method was
employed to add a new individual and delete a previously selected one, on the basis of a crowded compari-
son operator. The bi-objective MA captures the trade-off between minimizing total cost and CO2 emissions
and exhibits approximations of the Pareto front in a reasonable computing time. Computational experiments
were conducted and the results were favorably compared with those obtained by solving our bi-objective
MILP model with an epsilon constraint method.

Our fourth contribution was to propose a two-phase methods to solve the single objective HLRP, with the
goal of comparing the efficiency of this approach with that of our previously developed global approach. In
the first phase, the HLRP was reduced to a classical Capacitated Single Allocation Hub Location Problem
(CSAHLP). This problem dealt with the location of hubs and direct allocation of suppliers and clients
to the open hubs, as well as the determination of the inter-hub flows. In the second phase, based on the
solution of the first phase, two classical Vehicle Routing Problem (VRP) remained to be solved for each
selected hub, for the determination of the collection and delivery routes each open hub. Corresponding
MILP models were proposed on the basis of our initial global model and our global single-objective MA
was adapted to sequentially solve the HLP in the first phase and then the VRP with separate collection
and delivery processes in the second phase. Experimental results showed that the two-phase method could
solve the problem to optimality with a short computing time while the solutions were inferior to the optimal
solutions obtained by the global model for small instances, but this could provide an alternative way to
determine good approximate solutions to very large problems. This work also showed the flexibility and
applicability of our proposed MA , that could be adapted to solve other related problems.

Pursuing the research conducted for this thesis, several further research directions could be considered.
Regarding the exact solution method, our MILP modeling for the single objective HLRP was solved directly
using the CPLEX solver. One could study different formulations and more efficient solution techniques such
as adding efficient valid inequalities or developing a branch and cut algorithm.

Another straightforward future research direction would be to study other cases of the HLRP, such as
the HLRP with simultaneous pickup and delivery (HLRPSPD). A major focus of our research has been
on the HLRP for freight transport where the collections and deliveries are separated, which corresponds to
realistic cases for some classes of logistical problems of goods transportation. In other cases, pick up and
deliveries can be handled in the same tours. This is for example the case for postal services where mail or
small parcels are simultaneously delivered and collected to and from the same entities and where all nodes
may be hub candidates. In another area, beverage companies tend to deliver beverages to clients and collect
the empty bottles at the same time (Karaoglan et al. [2012]). Our models and solution techniques could be
adapted to handle such situations of pick-up and delivery.

Thirdly, recall that we adapted our single objective procedure in a straightforward manner to the two
phases procedure, separating the HLP part and the VRP part. The procedure might be enhanced by using
more efficient or exact algorithms to solve the HLP problem of phase one and the VRP problems of phase
two.

Another future research direction would be to pursue the study of the green HLRP by improving the
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efficiency of our algorithms or adopting another bio-objective method.
Finally, it would be challenging to apply our model and solution techniques to the solution of a real

industrial case.
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capacitated location-routing problem. In Logistics (LOGISTIQUA), 2011 4th International Conference
on, pages 514–519. IEEE, 2011. 38, 39

H. Derbel, B. Jarboui, S. Hanafi, and H. Chabchoub. Genetic algorithm with iterated local search for solving
a location-routing problem. Expert Systems with Applications, 39(3) :2865–2871, 2012. 55, 57, 58, 97

M. Drexl and M. Schneider. A survey of variants and extensions of the location-routing problem. European
Journal of Operational Research, 241(2) :283–308, 2015. 29, 32, 33

C. Duhamel, P. Lacomme, C. Prins, and C. Prodhon. A memetic approach for the capacitated location
routing problem. In Proceedings of the 9th EU/Meeting on Metaheuristics for Logistics and Vehicle
Routing, Troyes, France, 2008. 38, 39

C. Duhamel, P. Lacomme, C. Prins, and C. Prodhon. A grasp× els approach for the capacitated location-
routing problem. Computers & Operations Research, 37(11) :1912–1923, 2010. 38, 39



BIBLIOGRAPHY 159

O. Dukkanci and B. Y. Kara. Routing and scheduling decisions in the hierarchical hub location problem.
Computers & Operations Research, 85 :45–57, 2017. 30

A. Ebrahimi Zade and M. Lotfi. Stochastic facility and transfer point covering problem with a soft capacity
constraint. International Transactions in Operational Research, 2015. 25

A. Ebrahimi-Zade, H. Hosseini-Nasab, A. Zahmatkesh, et al. Multi-period hub set covering problems with
flexible radius : A modified genetic solution. Applied Mathematical Modelling, 40(4) :2968–2982, 2016.
27, 30

A. T. Ernst and M. Krishnamoorthy. Efficient algorithms for the uncapacitated single allocation p-hub
median problem. Location science, 4(3) :139–154, 1996. 26

A. T. Ernst and M. Krishnamoorthy. Solution algorithms for the capacitated single allocation hub location
problem. Annals of Operations Research, 86 :141–159, 1999. 25, 27, 49, 53, 69, 96, 107, 130, 131, 139

A. T. Ernst, H. Hamacher, H. Jiang, M. Krishnamoorthy, and G. Woeginger. Uncapacitated single and
multiple allocation p-hub center problems. Computers & Operations Research, 36(7) :2230–2241, 2009.
24

J. W. Escobar, R. Linfati, and P. Toth. A two-phase hybrid heuristic algorithm for the capacitated location-
routing problem. Computers & Operations Research, 40(1) :70–79, 2013. 37, 39

J. W. Escobar, R. Linfati, M. G. Baldoquin, and P. Toth. A granular variable tabu neighborhood search
for the capacitated location-routing problem. Transportation Research Part B : Methodological, 67 :
344–356, 2014. 38, 39

R. Z. Farahani, M. Hekmatfar, A. B. Arabani, and E. Nikbakhsh. Hub location problems : A review of
models, classification, solution techniques, and applications. Computers & Industrial Engineering, 64
(4) :1096–1109, 2013. 15, 19, 20, 129, 151

H. Farrokhi-Asl, R. Tavakkoli-Moghaddam, B. Asgarian, and E. Sangari. Metaheuristics for a bi-objective
location-routing-problem in waste collection management. Journal of Industrial and Production Engi-
neering, 34(4) :239–252, 2017. 41

F. Forouzanfar and R. Tavakkoli-Moghaddam. Using a genetic algorithm to optimize the total cost for a
location-routing-inventory problem in a supply chain with risk pooling. Journal of Applied Operational
Research, 4(1) :2–13, 2012. 57, 58

F.-A. Fortin and M. Parizeau. Revisiting the NSGA-II crowding-distance computation. In Proceedings of
the 15th annual conference on Genetic and evolutionary computation, pages 623–630. ACM, 2013. 63,
64, 100, 134, 136

Y. Gao and Z. Qin. A chance constrained programming approach for uncertain p-hub center location
problem. Computers & Industrial Engineering, 102 :10–20, 2016. 31

A. Ghodratnama, R. Tavakkoli-Moghaddam, and A. Azaron. Robust and fuzzy goal programming optimi-
zation approaches for a novel multi-objective hub location-allocation problem : A supply chain overview.
Applied Soft Computing, 37 :255–276, 2015. 25, 31

F. W. Glover and G. A. Kochenberger. Handbook of metaheuristics, volume 57. Springer Science &
Business Media, 2006. 55

B. L. Golden, S. Raghavan, and E. A. Wasil. The vehicle routing problem : latest advances and new
challenges, volume 43. Springer Science & Business Media, 2008. 129



160 BIBLIOGRAPHY

J. Gonzalez-Feliu, G. Perboli, R. Tadei, and D. Vigo. The two-echelon capacitated vehicle routing problem.
Technical report, Politecnico di Torino, Italy, 2008. 34

K. Govindan, A. Jafarian, R. Khodaverdi, and K. Devika. Two-echelon multiple-vehicle location–routing
problem with time windows for optimization of sustainable supply chain network of perishable food.
International Journal of Production Economics, 152 :9–28, 2014. 40

V. C. Guzmáan, A. D. Masegosa, D. A. Pelta, and J. L. Verdegay. Fuzzy models and resolution methods for
covering location problems : an annotated bibliography. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 24(04) :561–591, 2016. 28

T. Harks, F. G. König, and J. Matuschke. Approximation algorithms for capacitated location routing. Trans-
portation Science, 47(1) :3–22, 2013. 34

Y. He, T. Wu, C. Zhang, and Z. Liang. An improved mip heuristic for the intermodal hub location problem.
Omega, 57 :203–211, 2015. 30

J. Hickman, D. Hassel, R. Joumard, Z. Samaras, and S. Sorenson. Meet-methodology for calculating trans-
port emissions and energy consumption. Technical report, European Commission, DGVII. ISBN 92-828-
6785-4, Luxembourg, 362 p. www. inrets. fr/infos/cost319, 1999. 45, 93

W. Ho, G. T. Ho, P. Ji, and H. C. Lau. A hybrid genetic algorithm for the multi-depot vehicle routing
problem. Engineering Applications of Artificial Intelligence, 21(4) :548–557, 2008. 58

A. Hoff, J. Peiró, Á. Corberán, and R. Martí. Heuristics for the capacitated modular hub location problem.
Computers & Operations Research, 86 :94–109, 2017. 30

M. Jabal-Ameli, M. Aryanezhad, and N. Ghaffari-Nasab. A variable neighborhood descent based heuris-
tic to solve the capacitated location-routing problem. International Journal of Industrial Engineering
Computations, 2(1) :141–154, 2011. 38, 39

R. Jamshidi, S. F. Ghomi, and B. Karimi. Multi-objective green supply chain optimization with a new
hybrid memetic algorithm using the taguchi method. Scientia Iranica, 19(6) :1876–1886, 2012. 96

A. Jokar and R. Sahraeian. An iterative two phase search based heuristic to solve the capacitated location-
routing problem. Australian Journal of Basic and Applied Sciences, 5(12) :1613–1621, 2011. 39

A. Jokar and R. Sahraeian. A heuristic based approach to solve a capacitated location-routing problem.
Journal of Management and Sustainability, 2(2) :219, 2012. 39

B. Y. Kara and B. C. Tansel. On the single-assignment p-hub center problem. European Journal of Opera-
tional Research, 125(3) :648–655, 2000. 24

I. Kara, B. Kara, and M. Yetis. Energy minimizing vehicle routing problem. Combinatorial optimization
and applications, pages 62–71, 2007. 49, 132, 133

I. Karaoglan and F. Altiparmak. A hybrid genetic algorithm for the location-routing problem with simul-
taneous pickup and delivery. In Computers and Industrial Engineering (CIE), 2010 40th International
Conference on, pages 1–6. IEEE, 2010. 56, 57, 58

I. Karaoglan and F. Altiparmak. A memetic algorithm for the capacitated location-routing problem with
mixed backhauls. Computers & Operations Research, 55 :200–216, 2015. 53, 57, 58, 61, 92, 96, 98, 135

I. Karaoglan, F. Altiparmak, I. Kara, and B. Dengiz. A branch and cut algorithm for the location-routing
problem with simultaneous pickup and delivery. European Journal of Operational Research, 211(2) :
318–332, 2011. 33, 34



BIBLIOGRAPHY 161

I. Karaoglan, F. Altiparmak, I. Kara, and B. Dengiz. The location-routing problem with simultaneous pickup
and delivery : Formulations and a heuristic approach. Omega, 40(4) :465–477, 2012. 152

M. Karimi, A. Eydi, and E. Korani. Modeling of the capacitated single allocation hub location problem
with a hierarchical approach. International Journal of Engineering, 27(4) :573–586, 2014. 25, 49

L. Kechmane, B. Nsiri, and A. Baalal. A memetic algorithm for the capacitated location-routing problem.
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 7(6) :
219–226, 2016. 39

J. G. Klincewicz. Hub location in backbone/tributary network design : A review. Location Science, 6(1) :
307–335, 1998. 15, 19

A. Klose and A. Drexl. Facility location models for distribution system design. European journal of
operational research, 162(1) :4–29, 2005. 15, 19

Ç. Koç and G. Laporte. Vehicle routing with backhauls : Review and research perspectives. Computers &
Operations Research, 2017. 129

R. Kramer, A. Subramanian, T. Vidal, and F. C. Lucídio dos Anjos. A matheuristic approach for the
pollution-routing problem. European Journal of Operational Research, 243(2) :523–539, 2015. 15,
44, 49

J. Kratica. An electromagnetism-like metaheuristic for the uncapacitated multiple allocation p-hub median
problem. Computers & Industrial Engineering, 66(4) :1015–1024, 2013. 27, 30
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Z. Stanimirović. A genetic algorithm approach for the capacitated single allocation p-hub median problem.
Computing and Informatics, 29(1) :117–132, 2012. 58
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Le problème de Localisation de Hubs et Routage
dans le contexte de logistique verte

Green hub location-routing problem
for LTL transport

Résumé
Le problème de localisation de hubs et tournées combinées (Hub
Location-Routing Problem, HLRP), concerne la conception d’un
réseau de transport performant entre de nombreuses origines
(fournisseurs) et destinations (clients). Ce système est basé sur la
localisation de plates formes (hubs) permettant de concentrer les
flux et l’organisation de tournées pour la collecte des marchandises
des fournisseurs et la distribution vers les clients. Nous étudions le
cas spécifique du HLRP à capacités et allocations uniques
(CSAHLRP) et de processus de tournées de collecte et distribution
séparés. Nous proposons un modèle de programmation linéaire
mixte (MILP) et un Algorithme Mémétique (MA) pour ce problème
en vue de la minimisation du coût total du réseau de transport. De
plus, nous étendons le modèle MILP pour le cas bi-objectif afin de
minimiser à la fois le coût total et les émissions de CO2 du
transport. Notre algorithme Mémétique (MA) et adapté et combiné à
un algorithme génétique de tri non-dominé élitiste rapide (NSGAII)
afin de déterminer des approximations du front de Pareto. Enfin,
nous proposons une procédure en deux phases pour résoudre le
HLRP mono objectif, comportant la résolution du problème de
localisation des hubs (HLP) suivi pour chaque hub de la résolution
de deux problèmes de tournées relatifs à la collecte et la livraison.
Notre modèle MILP mono objectif est décomposé et notre MA est
adapté pour résoudre le problème suivant ces deux étapes. Un
ensemble d’instances de différents tailles et caractéristiques a été
développée afin de conduire des expérimentations et de valider nos
approches de résolution de ces différents problèmes.

Abstract
We study the Hub Location-Routing Problem (HLRP) aiming at the
design of an efficient freight transportation network for LTL
(less-than-truck) transport between many origins (suppliers) and
destinations (clients). Such a network relies on the location of
consolidation hubs, the organization of routings for the
collection/distribution of freight from suppliers to hubs and from
hubs to clients, as well as direct shipment of consolidated freight
between hubs. We focus on the Capacitated Single Allocation Hub
Location-Routing Problem (CSAHLRP) in the case of distinct
collection and delivery processes. We propose mixed integer linear
programming (MILP) model and a Memetic Algorithm (MA) to solve
the problem for minimizing the total cost of the network. Then we
extend the model into a bi-objective model for minimizing both the
total cost and CO2 emissions of transport. A modified memetic
algorithm (MA) combined with a fast elitist non-dominated sorting
genetic algorithm (NSGAII) is developed to capture the trade-off
between minimizing total cost and CO2 emissions and exhibit
approximations of the Pareto front. At last, a two step procedure is
proposed to solve the single-objective HLRP based on a hub
location problem (HLP) and two distinct vehicle routing problems for
suppliers and clients allocated to each hub by the first step. Our
single objective MILP model is decomposed accordingly and our
MA is adapted to solve the HLRP following these two steps. A data
base of instances of different sizes and characteristics has been
developed in order to conduct extensive experiments for solving all
these problems using the different solution techniques and validate
our approaches.

Mots clés
Problème de localisation de hubs et tournées, logistique verte,
transport de fret, modèle bi-objectif, algorithme mémétique.

Key Words
Hub Location-routing Problem, MILP, green logistics, LTL transport,
bi-objective model, memetic algorithm.
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