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CHAPTER 1

INTRODUCTION

As more and more text data of different languages are collected via millions of websites, it
is in tremendous researchers’ and enterprises’ interests to leverage this data. Among various
attractive applications (terminology extraction, opinion mining, machine translation, question
answering, etc), bilingual phrase alignment is what this thesis studies. With recent advances in
Machine Learning and Natural Language Processing, our work proposes a new unified bilingual
phrase alignment framework in an unsupervised manner.

In the beginning section of this introductory chapter, we briefly discuss the two axes for
bilingual phrase alignment which are the guidelines of this work. The second section presents
the industrial context of our work. In the next section we give and clarify our phrase definition.
Then from the fourth section to the sixth section we progressively describe several key fea-
tures that help us achieve our final objective: unsupervised unified bilingual phrase alignment.
Finally, the manuscript structure will be given at the end of the chapter.

1.1 Bilingual phrase alignment

Bilingual phrase alignment is an essential task for various NLP applications, ranging from
phrase synonymy and phrase similarity to machine translation. Besides, projecting phrases into
a common space can be an attractive feature when integrated in some industrial software. The
objective consists in, given a phrase in source language, extracting the best translation phrase
from the target language corpus.

The task requires two main technology axes: the phrase representation modeling and the
bilingual phrase mapping with the properly learned representations.

The first axe is considered to be the prerequisite of the latter. For many years human has
been trying to understand how the semantics of language sequence are captured. Traditionally,
two complementary principles addressed this problem:

• Compositional principle. Compositionality is defined as the property where “the mean-
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Introduction

ing of the whole is a function of the meaning of the parts” (Keenan and Faltz, 1985). In
Szabó (2017), the authors state that “The meaning of a complex expression is determined
by its structure and the meanings of its constituents”. For example, a frying pan is indeed

a pan used for frying (Morin and Daille, 2012).

• Syntactical principle. The compositional principle would fail when encountering id-
iomatic expressions such as a pain in the neck (refers to something or somebody that is
annoying or difficult to deal with according to Cambridge dictionary 1) or pomme de terre

(lit. apple of earth, meaning: potato) in French. The syntactical principle would like to
complement the compositionality by analysing the sentence sequence which can be di-
vided into clauses, and clauses can be further divided into phrases. Consequently these
less compositional expressions are treated as a whole unit in a syntactical structure, e.g.
a parsing tree.

For the first axis of this thesis, the phrase representation learning, we follow these two
major principles as we desire to propose a unified framework to represent all types of phrases
without length or linguistic constraints. Both compositional and idiomatic phrases are going
to be handled in the same framework with respect to the compositionality and the syntactical
structure.

The second axe is in between the Information Retrieval and the Machine Translation do-
mains. While the task objective is to extract the most likely translation phrase by ranking all
the candidates, it is not a task of generating the most likely translation sequence as in Machine

Translation. Nonetheless, there are still a substantial amount of common points with Machine

Translation. One might actually view the translation task as a sequential/conditional top 1 can-
didate selection process, in other words, the translator ranks all the candidate tokens and selects
the best at each time step t with regard to all the previously generated tokens at time steps
[1, t− 1]. To sum up, the translation objective is to maximise the conditional probability:

arg max
y

Ty

Π
t=1
P (yt|x, y1, y2, ..., yt−1) (1.1)

where yt means the selected best token at step t and x means the initial information. The
factorial part in 1.1 can be also written as:

P (y1, y2, ..., yt|x) = P (y1|x)P (y2|x, y1), ..., P (yt|x, y1, y2, ..., yt−1) (1.2)

1https://dictionary.cambridge.org
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It is worth noting that there is one extreme case where the translation task is equivalent to the
alignment task: when the target sequence length T equals to 1. Some call the word alignment
task bilingual word lexicon induction. Therefore we estimate that the phrase alignment task
is a non sequential translation task in terms of the candidate generative side and a sequence
information retrieval task considering the comparison and selection aspect.

1.2 Industrial context

The thesis is carried out in an industrial context with the CIFRE2 (Convention Industrielle de

Formation par la REcherche, lit. Industrial Conventions Training by Research) convention.
The CIFRE subsidizes any company that hires a PhD student to collaborate with a public labo-
ratory. In our scenario, the collaboration was originally between the company Dictanova 3 and
Laboratoire de Sciences du Numérique de Nantes (LS2N) 4.

Dictanova was a french start-up enterprise as a software editor in SaaS (Software as a
Service) mode who provided semantic analysis for the Customer Relationship Management

(CRM). Created in 2011 by several young researchers from the historical Nantes Atlantique
Computer Science Laboratory (LINA) which later composed LS2N with other laboratories, the
company received a financial aid from the National Competition of the newly founded inno-
vative technology companies in 2012 and then in 2013 it was awarded by the Forum of the
European Language Technologies Industry. The company was imbued with a strong academic
scientific culture, particularly in the field of natural language processing. A use case of its
software is illustrated in the figure below.

Figure 1.1 – A use case of the Dictanova semantic analysis.

2http://www.anrt.asso.fr/en/cifre-7843
3https://apps.dictanova.com/
4https://www.ls2n.fr/
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The main function was to provide aspect based sentiment analysis 5 (ABSA), as shown in
the Figure 1.1, the sentence in the left block is annotated with key phrases (bold), positive sen-
timent (green) and negative sentiment (red). Since the company supported several languages
and the clients were also from different countries (France, Germany, Spain, etc), it was com-
pelling for the company to develop a cross-lingual phrase alignment system. There are two
major benefits:

• Facilitation of the transition from one language to another. Developing or maintaining a
multilingual platform can be smoothed.

• Projection of the terms of different languages in a common space so that an international
client has a better view of what is happening across all regions.

Moreover, recall the first axis of the thesis, the monolingual phrase representation model-
ing, which was also very interesting for the company as it enabled more subtle functions or
manipulations over the phrases such as the automatic thematic clustering or synonym phrase
aggregation.

In 2019, Dictanova was acquired by Easiware 6, who develops a multi-channel application
processing software to enhance customer support service. As pointed out by the co-founder
of Easiware, Brendan Natral, the perspective is to integrate the technology of Dictanova on
the machine learning and the semantic analysis 7. Concerning the thesis, since Easiware has
also an international vision, our objective remains uninterrupted. We are able to continue our
pre-acquisition work without major impact.

However, our industrial context also brings us some practical limits:

• The corpora are noisier compared to the academic ones and they are usually in very
specialised domains. Besides, the size is often modest.

• Start-up enterprises are more product driven, and the less resource the system demands,
the more practical it is for the enterprise to apply. With this perception, we would like to
propose a system that requires as less calculation resources as possible.

• Syntactical information such as the parsing tree are not trivial information as not all the
supported languages have a commercialised parser and in addition, the parsing process

5 https://en.wikipedia.org/wiki/Sentiment_analysis#Feature/aspect-based
6https://www.easiware.com/
7https://www.easiware.com/blog/easiware-acquisition-startup-dictanova
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could cause an excessive pre-processing burden for the relatively light product. Hence a
system without requiring syntactical information becomes our leading choice.

• Parallel data are difficult to obtain for our specialised domain, and the cost of annotating
parallel data is certainly expensive. However, we dispose naturally of comparable corpora
as the clients speak usually of the same topics for a given customer. (The delivery is too

slow. vs Je suis déçu de la livraison. (lit. I am disappointed with the delivery.)) Our final
framework should be unsupervised or quasi unsupervised.

1.3 Phrase definition

Linguistically, the definition of a phrase is “is a group of words (or possibly a single word)
that functions as a constituent in the syntax of a sentence, a single unit within a grammatical
hierarchy”8. However, some argue that a phrase should contain at least two words (Finch,
2000). In our case, we apply the first definition where a phrase is simply a group of words or a
single-word.

Sobin (2010) proposes to use tree structures to represent phrases, which provide schematics
of how the words in a sentence are grouped and relate to each other. Any word combination that
corresponds to a complete subtree can be seen as a phrase. This is in line with the compositional
principle mentioned in 1.1.

Kroeger (2005) states that the meaning of a phrase is often determined by the syntactical
head. For example, blue shoe, very happy and watch TV. This suggests that we should take
the syntactical structure into account when associating phrase components as discussed in the
syntactical principle in 1.1.

1.4 Unified phrase representation

We would like to propose a unified phrase representation for phrases of all syntactical types of
variable length. For instance, this may be observed by a few classes of semantically synony-
mous phrase pairs:

• Length related

– Single-word synonym pair, as in energy - power.

8https://en.wikipedia.org/wiki/Phrase
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– Same length multi-word synonym pair, as in to carry on - to keep going.

– Fertile synonym pair, as in wind generator - aerogenerator.

• POS (part of speech) related

– Same POS synonym pair, as in attitude - morale.

– Different POS synonym pair, as in buy a car - purchase of a car.

With these possible features taken into account, the unified phrase representation should
be versatile and generic enough to allow that semantically close phrases are more similar to
each other no matter how different they may appear on the superficial level, or close in the
representation space, for instance the Euclidean vector space if we represent the phrases with
vectors.

1.5 Bilingual unified phrase alignment

Once we have the unified monolingual phrase representation, the bilingual unified phrase align-
ment can be concluded by what has been mentioned in 1.1 plus the features in 1.4.

• Length related

– Single-word to single-word alignment (sw2sw), as in bag - sac.

– Same multi-word length alignment (n2n), as in wind turbine - turbine éolien.

– Fertile alignment (p2q), as in airflow - flux d’air.

• POS (part of speech) related

– Same POS alignment, as in car - voiture.

– Different POS alignment, as in buy a car - achat d’une voiture.

Because we do not have the POS information during the alignment most of the time, we
focus more on the length criterion when analysing our systems. As for the POS related feature,
we consider that it is automatically included and no further special processing is required for
aligning different POS phrases.
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1.6 Unsupervised alignment

Not only because of the limits mentioned in 1.2, but also the fact that even outside of the
industrial context, parallel data is always costly to build as it requires specialised expertise.
Besides such data is unfortunately often nonexistent for low-resource languages and specialised
domains (Lample, Conneau, et al., 2018). Therefore it is preferred that the alignment system
operates in an unsupervised manner.

More concretely, unsupervised means, in our scenario, that we do not have any access to
cross-lingual information about phrases which in many cases is equal to a phrase mapping table.
In our unsupervised proposal, we tackle this problem by incorporating pre-trained bilingual
word embeddings (BWE) (Mikolov, Quoc V. Le, et al., 2013) and a back-translation mechanism
(Sennrich et al., 2016a). The general idea is to exploit the shared vector space of the bilingual
word embedding in a wider context where a sequence of words can also be projected into the
same shared space.

1.7 Outline of the manuscript

This introductory chapter explains the motivation and the background of our work, which will
be further detailed following the two axes (See 1.1) in a single-word and multi-word perspective.

From Chapter 2 to Chapter 3 we discuss the first axis concerning the phrase representation.
Chapter 2 revises the traditional and neural network based approaches for word-level represen-
tation, in the most common case, it is in the form of word vectors (bag-of-words and word
embeddings) in Euclidean vector space. We also review an effective method for improving the
word vectors (bag-of-words and word embeddings) for corpora in specialised domain. Based
on all these state-of-the art works, we propose our modifications which later improve our results
on bilingual word alignment task. Chapter 3 generalises a substantial body of previous works
on modeling multi-words. Finally, we propose a new structure for homogeneously modeling
single-word and multi-word phrases, which fits better our scenario and allows a unified phrase
representation.

Chapter 4 is focused on the training systems. From the regression based to the prediction
based training system, we discover a new training strategy potentially powerful for many NLP
tasks.

Then from Chapter 5 to Chapter 6, we dive into the second axis which seeks to align single-
words or multi-words of different languages. Chapter 5 presents the word-level alignment. This
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task is widely studied over the past years, we mainly cover the distributional based and the
word embedding based approach as we mentioned in 2. Chapter 6 generalises the word-level
alignment to multi-word level by incorporating a few techniques of the traditional compositional
method and the Machine Translation field, reaching the best results for our task.

Chapter 7 concludes the thesis and opens perspectives for future works.
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CHAPTER 2

WORD LEVEL REPRESENTATION

The compositionality of phrases necessitates meaningful word level representations in order to
compose multi-word representations. In this chapter we first study word representation mod-
eling with two widely applied approaches, the distributional approach and the distributed ap-
proach. Both represent words in n-dimensional Euclidean space Rn. The first one is a more
traditional approach where the word vectors are high dimensional sparse vectors with word co-
occurrence, while the second one is a more recent approach where the word vectors are low
dimensional dense vectors with learned parameters. Following the introduction of the two ap-
proaches, we explore how we can improve these approaches in our scenario where the domain-
specific corpus size is quite modest. As these statistical approaches will often achieve better
performance when larger training data is available, the mindset of the improvement is on how
to efficiently add external data to reinforce the system. Then at the end of this chapter we
explain an application of this improvement on dense word vectors.

2.1 Distributional representation

The distributional representation has been extensively studied in the NLP literature (Dagan et
al., 1994; Lin, 1998; Kotlerman et al., 2010; P. D. Turney and Pantel, 2010; Baroni and Lenci,
2010) (and the references therein). This approach associates each word in a corpus vocabulary
to a high dimensional (equal to the vocabulary size) vector space. A dimension in this space
means a word-context co-occurrence, thus, naturally this kind of word vectors can be directly
extracted from a word co-occurrence matrix. Suppose that each row of the matrix represents a
word vector, then each column is a context to this particular word. We will give more details
in the following section. Moreover, most works using the distributional approach apply an
association measure to the word context vectors in order to smooth the vector values. In the
second section 2.1.2, we review some most popular association measures and discuss their
advantages and disadvantages.
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2.1.1 Explicit vector space: word co-occurrence

The very first step towards the distributional approach is to construct a word co-occurrence
matrix. For instance, each cell represents a word-context co-occurrence and the matrix is sym-
metric. To build such a matrix, we need to decide a window size within which we consider
the proximity of words to be relevant. Typically this hyper parameter varies between one up to
ten. The larger the window size is, the more features it will collect for the central word but also
more likely to collect noisy features, while the smaller the window size is, the less noise it will
retrieve but also the more discriminant information it will miss. For example, considering the
following sentence:

It is the first vehicle in the world in which passengers pay for their ride
upon entering it.

With the vocabulary size d, the co-occurrence matrix will be in Nd∗d. Each word vector
belongs to Nd. The co-occurrence matrix corresponding to the sentence above will be in N16∗16.

It

is

......

entering
.

It is ... ... entering

.

Figure 2.1 – Illustration of the co-occurrence matrix of the example sentence.

If the current central word is passengers, then within a window size of 3 and 5 we have
following data where vpassengers

i means the word vector of passengers at each dimension i.

It is the first vehicle in the world in which passengers pay for their ride
upon entering it.

window size = 3
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vpassengers
i =

1, i ∈ {world, in, which, pay, for, their}

0, otherwise

It is the first vehicle in the world in which passengers pay for their ride
upon entering it.

window size = 5

vpassengers
i =


2, i = in

1, i ∈ {the, world, which, pay, for, their, ride, upon}

0, otherwise

Note that within a window size of 5 we are able to associate the word ride to passengers which
seems semantically relevant. Finally, the obtained word vectors have these properties:

1. High-dimensional. Obviously, as the co-occurrence matrix is in Rd∗d, each word vector
has d dimensions. More concretely, if we look at some famous training corpora such as
Wiki1, Gigaword2, Common Crawl3 or Europarl4 , the vocabulary size is usually between
100,000 to 500,000 even after some filtering.

2. Sparse. Most non functional words only co-occur with a limited number of other non
functional words. Therefore the word vectors are highly sparse.

3. Explicit. The compelling point of the distributional representation is the explicitness of
each dimension. One can simply understand the semantics behind each dimension and
apply linguistic analysis.

2.1.2 Association measures

The raw word co-occurrence is often biased by the frequency of words in the training corpus,
especially for the function words. Imagine that the word in appears 1000 times in an article
and co-occurs 10 times with the word passengers, and the word ride appears only 5 times but

1dumps.wikimedia.org/
2www.ldc.upenn.edu
3commoncrawl.org/
4www.statmt.org
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all these occurrences are within the window of passengers. From the pure word co-occurrence
matrix, the word vector of passengers has a value of 100 at the dimension of in which is far
more important than 5, the value at the dimension of ride. This phenomenon misleads us to a
conclusion that the word passengers is semantically more related to in rather than ride. As a
consequence, people introduce association measures to normalise the co-occurrence value with
regard to the probability of having the relative word-context pair. The association measures
studied are Pointwise Mutual Information (Fano, 1961), Log-likelihood (Dunning, 1993), and
the Discounted Odds-Ratio (Evert, 2005).

Pointwise Mutual Information (PMI). Mutual Information reflects the mutual dependence
between two random variables. For two discrete variables X and Y whose joint probability
distribution is P (x, y), and P (x) , P (y) the marginal distributions, the mutual information
between them, denoted I(X, Y ), is given by Shannon and Weaver (1949):

I(x, y) =
∑
x

∑
y

P (x, y) log P (x, y)
P (x)P (y) (2.1)

The application of Pointwise Mutual information dates back to Fano (1961), he states that
“if two points (words), x and y, have probabilities P(x) and P(y), then their mutual information,
MI(x,y), is defined to be:”

PMI(x, y) = log P (x, y)
P (x)P (y) (2.2)

Many NLP tasks exploited this variant to construct word vectors (Church and Hanks, 1990;
Dagan et al., 1994; P. Turney, 2001). Intuitively, PMI(x, y) approaches +∞ if there is a strong
relation between x and y, and −∞ if x and y are independent. In practice, word probabilities
P (x) and P (y) are estimated by simply counting the number of observations of x and y in the
training corpus and normalizing by N , the size of the corpus. Similarly, joint probabilities,
P (x, y), are estimated by counting how many times x co-occurs with y in the pre-set window,
divided by the corpus size N . So if we take the previous example, let a be the occurrence of the
word passengers:

PMI(passengers, in) = log
10
N

a
N

1000
N

= log N

100a

PMI(passengers, ride) = log
5
N
a
N

5
N

= log N
a

PMI(passengers, ride) > (passengers, in)

(2.3)

With PMI the value for the word context pair (passengers, ride) becomes higher than (pas-
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sengers, in), which seems more logical compared to the raw co-occurrence. However, since
the value of P (x,y)

P (x)P (y) is almost always greater than 1, a problem with this measure is that the
logarithm would overestimate low counts and underestimate high counts (Hazem and Morin,
2016).

Log Likelihood (LL). Likelihood function expresses how likely the parameters (θ) of a
statistical model are while having a certain data (D), it is denoted by L(θ|D). In a real life
scenario, we do not know the parameters θ, it is what we want to learn. If D is a set of discrete
variables, then we have:

L(θ|D) = P (D|θ) (2.4)

SinceD is observable, we can estimate θ by maximizing the probability P (D|θ). Pertaining
to our work, we consider that a word-context pair (x, y) is actually a data observation-parameter
pair. In this way P (x|y) = P (x,y)

P (y) , finally the log likelihood is not very different from PMI:

logL(y|x) = logP (x|y) = log P (x, y)
P (y) (2.5)

Once again if we take our example with passengers, this time the value ofLL(passengers|in
) = log 1

100 and LL(passengers|ride) = log 1, reaching the maximum in our scenario. Com-
pared to PMI, LL’s values range from negative to zero and it ignores the marginal occurrence of
the central word. In addition, with the negative input of the logarithm function, the small counts
would be quickly underestimated.

Discounted Odds-Ratio (DOR). The (logarithmic) odds-ratio can be interpreted by:

odds-ratio(x, y) = log o11o22

o12o21
(2.6)

where o11 means the co-occurrence of the word x and the context y, o12 the times when y occurs
without x, o12 the times when x occurs without y and o22 the total occurrence (words) without
x and y:

o11 = o(x, y)

o12 = o(y)− o11

o21 = o(x)− o11

o22 = N − o12 − o21 − o11

(2.7)

As always, pertaining to the previous example, there is now a problem: the value of o12 is
zero because all the five occurrences of ride co-occurs with passengers. This is also reported by
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Evert (2005), indicating the odds-ratio “assumes an infinite value whenever any of the observed
frequencies is zero (−∞ for o11 = 0 or o22 = 0, +∞ for o12 = 0 or o21 = 0).” Thus a lot of works
apply a discounted version named discounted odds-ratio which avoids the infinitive value by
adding a constant 1

2 :

odds-ratiodisc(x, y) = log
(o11 + 1

2)(o22 + 1
2)

(o12 + 1
2)(o21 + 1

2) (2.8)

Actually we find that OR is nearly equivalent to PMI in pragmatical view:

PMI = log P (x, y)
P (x)P (y)

= log
o(x,y)
N

o(x)
N

o(y)
N

= log o(x, y)N
o(x)o(y)

(2.9)

odds-ratio = log o11o22

o12o21

= log o(x, y)(N − (o(y)− o(x, y))− (o(x)− o(x, y))− o(x, y))
(o(y)− o(x, y))(o(x)− o(x, y))

= log o(x, y)N + o(x, y)(o(x, y)− o(x)− o(y))
o(x)o(y) + o(x, y)(o(x, y)− o(x)− o(y))

let o(x, y)(o(x, y)− o(x)− o(y)) be c:

= log o(x, y)N + c

o(x)o(y) + c

(2.10)

Note that DOR only applies a smoothing on OR so the proportion does not change for non zero
values. We can see that the final forms in 2.9 and 2.10 are quite close, normally the absolute
value of c is much smaller than o(x, y)N and o(x)o(y), therefore DOR and PMI tend to be close
in most cases. Our analysis coincides with the comparison experiments between DOR and PMI
on the bilingual word alignment task conducted by Hazem and Morin (2016).

The results in Figure 2.2 show that DOR and PMI have extremely similar performance
which confirms our intuition. Considering most works exploit PMI and it is theoretically more
steady than LL, we choose to use PMI in our frameworks as the association measure of the
distributional approach. After the association process, the co-occurrence matrix becomes a real
matrix Rd∗d.
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Figure 2.2 – Comparison between DOR and PMI on experiments of Hazem and Morin (2016).
BC (breast cancer), VG (volcanology) and WE (wind energy) are corpora in specialized domain
with roughly 500k, 400k and 300k tokens. Europarl (EP), common crawl (CC) and united
nations (UN) are general domain corpora with roughly 60M, 85M and 380M tokens. For corpus
merging method, we will further explain it in Section 2.3.
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2.2 Distributed representation

Despite the simpleness and the effectiveness of the explicit word vectors, it can always be
tremendously time and space consuming to train a model, especially when the corpus size be-
comes as big as the wiki corpus which is a rather common one for training many NLP models.
Another way of constructing word vectors is by using neural network based approaches, the
generated word vectors are low-dimensional, dense, and the dimensions features are highly gen-
eralised. We call this kind of word vectors word embeddings. In this section we first cover the
basic component of these approaches: the Neural Network. Then we will explain the two most
widely exploited systems: CBOW and Skip-gram (Mikolov, Sutskever, et al., 2013; Mikolov,
K. Chen, et al., 2013), and quickly discuss some other popular word vectors like Glove (Pen-
nington et al., 2014) and fastText (Bojanowski et al., 2017).

2.2.1 Neural Network: sparse to dense vector space

McCulloch and Pitts (1943) proposed to simulate the behaviour of human neurons using a
mathematical model, opening an era of artificial neural network research. However it was not
until the great progress of the machine computing power that the artificial neural network came
to dominate a wide range of machine learning tasks. Thanks to the parallel processing ability
of the GPUs, neural networks or deep neural networks are successfully addressed in reasonable
time. A neural network can take an input vector of any dimension, so sparse high-dimensional
vectors can be transformed to dense low-dimensional vectors.

The basic component of a neural work, like in neuroscience, consists in a neuron. A neuron
can be considered as a perceptron unit (Rosenblatt, 1958) (in other words, a perceptron is a
single neuron). A neuron is called activated or excited when the received information passes
the threshold:

z = wTx+ b

a = f(z)
(2.11)

x ∈ Rn is the input vector, w is a weight matrix in Rn∗d with d the output dimension. f is a
sigmoid function (S-shaped curve) in order to imitate the human neuron. We call it Activation
Function in artifical neural network models. The most popular sigmoid functions are logistic
(σ), tanh, and rectified linear unit (relu) function:

σ(x) = 1
1 + e−x

(2.12)
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Figure 2.3 – Comparison of three different activation functions.

tanh(x) = ex − e−x

ex + e−x
(2.13)

relu(x) = max(0, x) (2.14)

We can plot these functions in a single space to compare them in Figure 2.3. The tanh function
is actually a zoomed and translated version of σ as tanh(x) = 2σ(2x)− 1. The rectified linear

unit is supposed to be more similar to human neurons as it creates sparse representations with
true zeros, which seem remarkably suitable for naturally sparse data (Glorot et al., 2011).

A deep neural network is usually composed of multiple layers where each layer takes the
output of the last layer and generates a new output. Eventually, each layer is connected by
sequentially passing the information. The most common neural network layer is the Fully-
connected layer. A multi-layer fully connected neural network has shown impressive perfor-
mance in transforming information into a more generalized feature space.

As shown in Figure 2.4, a neural network with L fully-connected layers has following key
properties:

• nl. The dimension size at layer l.

• fl. The activation function at layer l.

• W l ∈ Rnl∗nl−1 . The weight matrix for transforming the information from the layer l − 1
to l.
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Figure 2.4 – An illustration of a neural network with multiple fully connected layers.

• bl ∈ Rnl . The bias for the l-th layer.

• zl ∈ Rnl . The state for the neurons in the l-th layer.

• al ∈ Rnl . The activation for the neurons in the l-th layer.

The network transfers information layer by layer following the equation 2.11. Final output
y equals to aL. With a training set sample (x(i), y(i)), 1 6 i 6 N , the objective function of the
network is:

J(W, b) =
N∑
i=1

J(W, b;x(i), y(i)) (2.15)

Our objective is to minimize J(W, b;x(i), y(i)), with gradient descent, we can update the net-
work’s parameters:

W l = W l − α
N∑
i=1

(∂J(W, b;x(i), y(i))
∂W l

)

bl = bl − α
N∑
i=1

(∂J(W, b;x(i), y(i))
∂bl

)
(2.16)

where α is the learning rate. Note that W and b are all the weight matrices and bias vectors in
each layer which can also be denoted by (W 1,W 2, ...,WL) and (b1, b2, ..., bL). The question
consists in how we calculate the partial differentials. For instance, by the chain rule, the partial
differential for the weight matrix W can be written as:

∂J(W, b;x(i), y(i))
∂W l

i,j

= (∂J(W, b;x(i), y(i))
∂zl

)T ∂zl

∂W l
i,j

(2.17)
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For the layer l, we let δl = ∂J(W,b;x(i),y(i))
∂zl ∈ Rnl to represent the partial differential of the final

output about zl. In addition, since zl = W lal−1 + bl, we have:

∂zl

∂W l
i,j

= ∂(W lal−1 + bl)
∂W l

i,j

=



0
.

.

al−1
j

.

.

0


= al−1

j (2.18)

The equation 2.17 can then be written as:

∂J(W, b;x(i), y(i))
∂W l

i,j

= (δl)T ∂zl

∂W l
i,j

=
(
δl0 . . δli . . δlnl

)



0
.

.

al−1
j

.

.

0


= δlia

l−1
j

(2.19)

Therefore we have:
∂J(W, b;x(i), y(i))

∂W l
= δl(al−1)T (2.20)

In the same way:
∂J(W, b;x(i), y(i))

∂bl
= δl (2.21)

Now let’s look at the calculation of δl:

δl = ∂J(W, b;x(i), y(i))
∂zl

= ∂al

∂zl
∂zl+1

∂al
∂J(W, b;x(i), y(i))

∂zl+1

(2.22)
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For each of the three parts, we have:

∂al

∂zl
= ∂fl(zl)

∂zl

= diag(f ′l (zl)) Because every activation fl is an element-wise function.

(2.23)

∂zl+1

∂al
= ∂W l+1al + bl+1

∂al
= (W l+1)T (2.24)

∂J(W, b;x(i), y(i))
∂zl+1 = δl+1 (2.25)

With 2.23, 2.24 and 2.25, the equation 2.22 is equivalent to :

δl = ∂J(W, b;x(i), y(i))
∂zl

= f ′l (zl)� (W l+1)T δl+1
(2.26)

We can see that δ of the layer l can be calculated by the δ of the next layer l + 1. It can be
considered as a product of the gradient of the current activation function and the weighted δ of
the next layer using the weight matrix of the next layer. Therefore in order to calculate the δ of
layer l, we have to begin with obtaining the δ of the previous layer. Recursively, we should start
from the very last layer. This procedure is basically the famous Back propagation algorithm:

Sometimes the Back propagation algorithm will have a gradient vanishing problem with
sigmoid activation functions when there are a lot of layers. Since the differential is always infe-
rior to 1, after several layers the product by a series of value below 1 would become ignorable.
One possible solution is to use the relu as the activation function.

In implementation, it can take a tremendous time to calculate all the differentials in a net-
work graph. Most machine learning libraries use auto-differentiation to solve the gradients 5.
The idea is to convert all functions into several derivative-known mathematical operations such
as +,−,×, /, log, exp, cos, sin, xa, etc. And then apply the chain rule on the computational
graph where each node represents a basic mathematical operation and each leaf an input vari-

5Theano, Tensorflow, Chainer, PyTorch and Deeplearning4j (beta version). Note that Theano and Tensor-
flow use static computational graph which is highly parallelizable but cannot be changed after compilation, while
Chainer and Pytorch use dynamic computational graph which is more space consuming but highly flexible.
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Algorithm 1: Back propagation algorithm.
Data: (x(i), y(i)), 1 6 i 6 N (N training samples)
Result: W, b (the network parameters)
Random initialization of W and b ;
while current epoch 6 max epoch or early stop condition not met do

for i = 1, ..., N do
Forward pass of the entire network to get all z and a of each layer;
Backward pass step 1 : calculate δ for every layer using 2.26;
Backward pass step 2 : calculate the differentials for W and b of each layer :

∂J(W, b;x(i), y(i))
∂W l

= δl(al−1)T

∂J(W, b;x(i), y(i))
∂bl

= δl

Update W and b of each layer with gradient descent:

W l = W l − α
N∑
i=1

(∂J(W, b;x(i), y(i))
∂W l

)

bl = bl − α
N∑
i=1

(∂J(W, b;x(i), y(i))
∂bl

)

end
end
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able or tensor. The final differential can be obtained by simply multiplying the known derivative
of each operation. In case of multiple paths, we sum all the derivatives.

Based on the derivative calculation order, we can do the auto-differentiation in a forward
mode or backward mode. In the forward mode, the derivative is calculated in the same order
as in the computation graph, while in the backward mode, the order is reversed by first calcu-
lating the derivative of the last operation. The backward mode is essentially equivalent to back
propagation.

2.2.2 CBOW

The most successful neural network based word vectors were introduced by Mikolov, Sutskever,
et al. (2013). Two models were presented: Continuous Bag-of-Words (CBOW) and Skip-gram.
We first discuss the CBOW model in this section.

The Continuous Bag-of-Words Model is composed of two fully connected neural network
layers without bias (“biases are not used in the neural network, as no significant improvement
of performance was observed”) and one softmax layer at the end in order to obtain a probability
distribution on the vocabulary with the size of V . The input are one hot vectors x ∈ NV .
Representing a word by a one hot vector means that the value at only the dimension of the word
equals to 1, at other dimensions the values are always 0. A word w is represented by x:

xi, i ∈ [0, V ] =

1 i is the index of w.

0 otherwise
(2.27)

Let’s begin with the simplest case where we consider only one context word wI , we note
the first layer the hidden layer and the second layer the output layer. The weight matrix in the
hidden layer is W1 ∈ RV ∗N and the weight matrix in the output layer is W2 ∈ RN∗V . The input
one hot vector x of the input word wI is transformed to the hidden dense vector h by:

h = W T
1 x = W T

1 [k, :] = vTwI
(2.28)

Since x is a one hot vector, the output vector vwI
is actually one row of the matrix W1. Then

from the hidden layer to the output layer, each word in the vocabulary is associated with a score
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which is stored in the vector u, and each value uj can be obtained by a scalar product:

u = W T
2 h

uj = W2[:, j]Th = sTwj
h

(2.29)

swj
is the j-th column of the matrix W2. Finally, a softmax function is applied to the output

vector to get a probability distribution:

P (wj|wI) = yj = exp(uj)∑V
j′=1 exp(uj′)

(2.30)

The probability of predicting the word wj given the input word wI is also denoted by yj .
According to 2.28 and 2.29, 2.30 can be written as:

P (wj|wI) = yj =
exp(sTwj

vTwI
)∑V

j′=1 exp(sTw′jv
T
wI

) (2.31)

The training objective is to maximize the conditional probability of observing the actual
output word wO (let ĵ be the corresponding index in the vocabulary) given the input context
word wI with regard to the network parameters (weight matrices).

arg max
W1,W2

P (wO|wI) = arg max
W1,W2

yĵ

= arg max
W1,W2

log yĵ

= arg max
W1,W2

uĵ − log
V∑
j′=1

exp(uj′)

= arg min
W1,W2

log
V∑
j′=1

exp(uj′)− uĵ

E = log
V∑
j′=1

exp(uj′)− uĵ

(2.32)

Finally the objective is equivalent to minimize E, in order to update W1 and W2, we use the
back propagation explained in 1. First we should calculate the derivative of E with regard to
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the output vector where uj is the j-th element.

∂E

∂uj
=
∂ log∑V

j′=1 exp(uj′)− uĵ
∂uj

if j 6= ĵ, by chain rule :

=
∂ log∑V

j′=1 exp(uj′)
∂
∑V
j′=1 exp(uj′)

∂
∑V
j′=1 exp(uj′)
∂exp(uj)

∂exp(uj)
∂uj

− 0

= 1∑V
j′=1 exp(uj′)

1 exp(uj)

= yj

similarly, if j = ĵ :
∂E

∂uj
= yj − 1

(2.33)

Next we calculate the derivative of the loss on W2 to obtain the gradient for W2 whose
function is to transform the hidden vectors to the network’s output layer:

∂E

∂W2[i, j] = ∂E

∂uj

∂uj
∂W2[i, j]

=

(yj − 1)hi if j = ĵ

yjhi otherwise
= ejhi(ej denotes the 1 part)

(2.34)

So the update function for W2 is:

W t+1
2 [i, j] = W t

2[i, j]− ηejhi
Or :

st+1
wj

= stwj
− ηejh

(2.35)

where t means the t-th iteration and η the learning rate. swj
is the j-th column of the matrix W2.
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As for the W1, the gradient is calculated by the derivative of the loss E on W1:

∂E

∂W1[k, i] = ∂E

∂hi

∂hi
∂W1[k, i]

=
V∑
j=1

∂E

∂uj

∂uj
∂hi

∂
∑V
k=1W1[k, i]xk
∂W1[k, i]

=
V∑
j=1

ejW2[i, j] xk

= EHixk (EH is an N -dim vector denoting
V∑
j=1

ejW2[i, j])

(2.36)

Note that Equation 2.36 follows Equation 2.26 and Equation 2.20, the first part is essentially
the δ and the second part is the layer input. Vector EH can be intuitively interpreted as the
weight sum of output vectors of all words in vocabulary with regard to their prediction error
ej . Finally the gradient for the weight matrix W1 in the hidden layer can be obtained from
Equation 2.36:

∂E

∂W1
= xEHT ∈ RV ∗N (2.37)

The update function for W1 is:

W t+1
1 = W t

1 − ηxEHT

Or :

vt+1
wI

= vtwI
− ηEHT

(2.38)

where vwI
is one row in W1, the row index is determined by the non-zero element index in x as

x is a one-hot vector. So basically for each update of W1, there is only one row that is updated.

The real input of CBOW model is built on multiple context words, this is not very different
from what we have seen. Instead of taking one single input vector x, the multi-word context
model takes the average of C input vectors [x1, x2, ...xC ], so the only change point is the hidden
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vector h:

h = W T
1

∑C
c=1 x

c

C

=
∑C
c=1 v

T
wc

C

(2.39)

The loss function the same as in 2.32, and the update function for the weight matrix in the
output layer (W2) is also the same as in 2.35. The update function for the weight matrix in the
hidden layer (W1) is:

W t+1
1 = W t

1 − η
∑C
c=1 x

c

C
EHT

Or :

vt+1
wI,c

= vtwI,c
− 1
C
ηEHT , for c ∈ [1, C]

(2.40)

where xc is one input context word one-hot vector, vwI,c
is one row of W1 of the c-th word

in the input context. This time for each update there will be C updated rows.

2.2.3 Skip-gram

Skip-gram (Mikolov, Sutskever, et al., 2013) is the reversed architecture of CBOW. In place of
taking several context words and predicting the central word, the models takes the central word
as input and predicts its C context words. As a consequence the input to hidden transformation
is the same as in Equation 2.28.

On the output layer, instead of outputting one single vector representing the multinomial
distribution, the Skip-gram model outputs C same vectors:

uc = W T
2 h

uc,j = uj = W2[:, j]Th = sTwj
h, c ∈ [1, C]

(2.41)

where uc is one output vector and uc,j is the j-th value of uc. swj
is the j-th column of the

hidden-to-output matrix W2, swj
also represents the word wj in the vocabulary before the soft-

max process. Next with the softmax function we obtain a probability distribution:

P (wc,j|wI) = yc,j = exp(uc,j)∑V
j′=1 exp(uj′)

(2.42)

The training objective is yet again very close to what we have seen in Equation 2.32, this
time we want to maximize the probability of predicting all the actual c output context words
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wO,1, wO,2, ..., wO,C given the input central word wI :

arg max
W1,W2

P (wO,1, wO,2, ..., wO,C |wI) = arg min
W1,W2

− logP (wO,1, wO,2, ..., wO,C |wI)

= arg min
W1,W2

− log
C∏
c=1

exp(uc,ĵc)∑V
j′=1 exp(uj′)

= arg min
W1,W2

C
V∑
j′=1

log exp(uj′)−
C∑
c=1

uc,ĵc

= arg min
W1,W2

C
V∑
j′=1

log exp(uj′)−
C∑
c=1

uĵc

E = C
V∑
j′=1

log exp(uj′)−
C∑
c=1

uĵc

(2.43)

where ĵc is the index of the actual c-th context word in the vocabulary. With the loss function
E, we can calculate the derivative of E on every output vector uc,j following the same logic as
in Equation 2.33:

∂E

∂uc,j
= yc,j − 1(j) = ec,j (2.44)

where 1 = 1 when j = ĵc. We define a V -dimensional vector EI as the sum of prediction
errors over all actual context words:

EIj =
C∑
c=1

ec,j , j ∈ [1, V ] (2.45)

The derivative of the loss E with regard to W2 can be then obtained:

∂E

∂W2[i, j] =
C∑
c=1

∂E

∂uc,j

∂uc,j
∂W2[i, j]

=
C∑
c=1

ec,jhi

= EIjhi

(2.46)

Then the update function for W2 is:

W t+1
2 [i, j] = W t

2[i, j]− ηEIjhi
Or :

St+1
wj

= Stwj
− ηEIjh

(2.47)
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The derivative of the lossE with regard toW1 is the same as in Equation 2.36, only this time
EH is the sum of all the c output vectors’ prediction errors or in other words, ej in Equation
2.36 is replaced by EIj :

∂E

∂W1
= xEHT ∈ RV ∗N

EHi =
V∑
j=1

EIjW2[i, j], , i ∈ [1, N ]
(2.48)

Finally the update function for W1 is the same as in Equation 2.38.

2.2.4 Other popular word embeddings

There are a bunch of other word embeddings (Deerwester et al., 1990; Lebret and Collobert,
2014; Mnih and Kavukcuoglu, 2013; Mikolov, K. Chen, et al., 2013; Mikolov, Sutskever, et al.,
2013; Pennington et al., 2014; Bojanowski et al., 2017) which have been widely applied as the
input of many NLP frameworks. In this section we will review three notable models because
they are the more relevant to our work. The first one is rather a variant or an improvement of the
work of Mikolov, Sutskever, et al. (2013), Negative Sampling, proposed by Mikolov, Sutskever,
et al. (2013) themselves. The second one is GloVe (Pennington et al., 2014) which is a min least
squares model with global learning (vs on-line learning in CBOW and Skip-gram). Finally the
third model, FastText6, is essentially a skip-N-gram model where each word is represented as a
bag of character n-grams.

CBOW and Skip-gram with Negative Sampling
The negative sampling was originally proposed to optimize the computation for both CBOW

and Skip-gram. By observing Equation 2.35 and 2.47, we can tell that updating the hidden-to-
ouput weight matrixW2 requires iterating through every word wj in the vocabulary and running
the whole network with them. One possible solution is to reduce the number of words to go
through.

The actual output word (i.e., positive sample) should not be dropped, so the column in W2

for the positive sample is always going to be updated. In addition, a few negative samples (the
authors state that selecting 5-20 words works well for smaller datasets, and 2-5 words for large
datasets) are randomly selected in order to update other weights in W2. The selection could

6https://fasttext.cc/
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be any probabilistic distribution by empirical tuning. The authors have exploited a unigram
distribution raised to the 3

4 power for the word counts, where more frequent words are more
likely to be selected as negative samples.

P (wi) = #(wi)
3
4∑V

j=1 #(wj)
3
4

(2.49)

where #(wi) means the count of the word wi in the training corpus. If we look at Figure
2.5, the intent of this distribution is to decrease the probability of more frequent words (e.g.,
grammatical words) compared to lexical words.

2 4 6 8 10

5

10

15

20

x1/2
x3/4

x

x4/3

x3/2

x

xa

Figure 2.5 – Comparison of five different power functions.

With the set of negative samples Wneg, the authors argue that a simplified loss function
enables the model to produce high-quality embeddings, which is further elaborated in Goldberg
and O. Levy (2014):

E = − log σ(sTwO
h)−

∑
wk∈Wneg

log σ(−sTwk
h) (2.50)

where swO
is the column in W2 corresponding to the actual output word (positive sample) wO

and h is the output of the hidden layer which is 1
C

∑
c=1Cvwc in the CBOW model and vwI

in
the Skip-gram model.

We first want to obtain the update equation for W2 which is also swj
for wj ∈ wO ∪Wneg .
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The derivative of E with regard to swj
is :

∂E

∂swj

= ∂E

∂sTwj
h

∂sTwj
h

swj

= (σ(sTwj
h)− 1(wj))h

1(wj) =

1 , if wj = wO

0 , if wj ∈ Wneg

(2.51)

Hence the update function for W2 is :

st+1
wj

= stwj
− η(σ(sTwj

h)− 1(wj))h (2.52)

This new update function makes the model consider only a subset of the entire vocabulary,
wj ∈ wO ∪ Wneg, with a much smaller size of 1 + #(Wneg) compared to V . This equation
can be used for both CBOW and the Skip-gram model. For the skip-gram model, we apply this
equation for one actual context word (wO) at a time.

Next to obtain the update function for W1 we need to calculate the derivative of E with
regard to h :

∂E

∂h
=

∑
wj∈wO∪Wneg

∂E

∂sTwj
h

∂sTwj
h

h

=
∑

wj∈wO∪Wneg

(σ(sTwj
h)− 1(wj))swj

In Skip-gram :

=
∑

wO∈Wpos

∑
wj∈wO∪Wneg

(σ(sTwj
h)− 1(wj))swj

(2.53)

This equation is EH in Equation 2.36 and 2.48. Finally for the update function for W1 in
CBOW, we simply replace EH with this new equation, and as for Skip-gram, we calculate the
sum of this equation for each actual context word (positive sample) wO and replace EH with it.

Since the authors of Mikolov, Sutskever, et al. (2013) declare that Skip-gram with negative
sampling has empirically better results, in our work we exploit primarily Skip-gram with nega-
tive sampling as our word embedding vectors.

GloVe: Global vectors
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Unlike CBOW and Skip-gram, Pennington et al. (2014) argue that these “shallow window-
based methods suffer from the disadvantage that they do not operate directly on the co-occurrence
statistics of the corpus. ” They propose to learn word vectors based on the co-ocurrence of
words of the entire training corpus.

The first step consists in constructing a word co-occurrence matrixX . Let
∑
kX[i, k] denote

the number of times any word appears in the context of word i. The training is achieved by
addressing a weighted least squares regression problem with a weight function f :

E =
V∑
i,j

f(X[i, j])(wTi w̃j + bi + b̃j − log(X[i, j]))2 (2.54)

where wi is a word vector for word i and w̃j is a word vector for a word in the context window
of word i. bi and b̃j are scalar bias for the corresponding word. And the weight function f is
manually defined by the authors:

f(x) =

(x/xmax)α if x < xmax

1 otherwise
(2.55)

where the authors have empirically set xmax to 100 for their huge training corpus (>6B tokens),
and a power α of 3

4 is reported to obtain the best results, which is an interesting coincidence with
the power in negative sampling technique of Mikolov, Sutskever, et al., 2013. The objective of
this function is to assign a relatively small weight for frequent co-occurrences and a linear
weight for co-occurrences that are below the threshold xmax, as shown in the figure below.

Figure 2.6 – Weight function in GloVe.
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The gradients are fairly easy to calculate, for instance for wi:

dE
dwTi

= ∂f(X[i, j])(wTi w̃j + bi + b̃j − log(X[i, j]))2

∂wTi

let y = (wTi w̃j + bi + b̃j − log(X[i, j]))2 :

= ∂f(X[i, j])y2

∂y2
∂y2

∂y

∂y

∂wTi

= f(X[i, j]) · 2y · wTj

(2.56)

Following the same logic, we have:

dE
dwj

= f(X[i, j]) · 2y · wi (2.57)

dE
dbi

= dE
dbj

= f(X[i, j]) · 2y (2.58)

Pertaining to our work, we are particularly inspired by the weight function introduced in
GloVe as it is closely related to what we want achieve by penalizing frequent co-occurrences,
we will discuss the details later.

FastText: word embeddings with subword information

Bojanowski et al. (2017) propose to incorporate character-level information into word em-
beddings. Character-level or subword n-gram information is not original in word representation
learning, Lazaridou, Marelli, et al. (2013), Botha and Blunsom (2014), Qiu et al. (2014), and
Wieting et al. (2016) exploit these morphological information with supervised training setting
(they have paraphrase pairs), while Kim et al. (2016), Sennrich et al. (2016b), and Luong and
Christopher D. Manning (2016) model language with subword information with only corpus
texts.

The authors of FastText build their model based on Skip-gram with negative sampling, they
state that the Skip-gram model ignores the internal structure of words using a distinct vector
representation for each word. They represent each word as a bag of character n-gram. They also
include the whole word sequence in the n-gram list and two special n-grams at the beginning
and end of words (begin = <, end = >). For example, the word “where” will have the following
tri-gram representation:

<wh, whe, her, ere, re>, where
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In practice, they extract all the n-grams for n greater or equal to 3 and smaller or equal to
6. In the vector space, for instance, we have a vocabulary of all n-grams G, the vocabulary of
n-grams for a given word w is denoted by Gw. The word vector of w is the sum of the n-gram
vectors in Gw. Therefore, the scalar product of sTwO

h in 2.50 becomes:

sTwO
h =

∑
g∈GwO

sTg h (2.59)

In our experiments, our input word embedding vectors are primarily obtained by FastText as
it is has shown the state-of-the art performance compared to Skip-gram with negative sampling
on word similarity and analogy tasks.

2.3 Data selection for modest corpora with distributional rep-
resentation

All the word vector models mentioned above will work very well on large corpus in open
domain. Nevertheless, in our real life scenario, most of our corpora have a modest size on
specialised domains. This would yield an unreliability of word co-occurrences. Considering
that the statistics of word co-occurrences in a corpus is the primary source of information avail-
able to all unsupervised methods for learning word representations, both the distributional and
distributed approach may possibly deteriorate with these unreliable counts. In this section, we
present a popular solution to improve the reliability of word co-occurrences counts for building
a distributional model.

The basic idea of the solution is to add data from other corpora in general domain because
such corpora are easier to get, which has already been successfully employed in machine trans-

lation (MT) especially with statistical machine translation (SMT) (Moore and Lewis, 2010;
Axelrod et al., 2011; Longyue Wang et al., 2014). This approach is also known as data selec-

tion, which improves the quality of the language and translation models, and hence, increases
the performance of SMT systems. Hazem and Morin (2016) propose to apply this approach
to bilingual lexicon extraction from specialized comparable corpora which is closely related to
our work as the corpora we dispose are naturally specialized comparable corpora as discussed
in 1.2. Their hypothesis is that word co-occurrences learned from a general-domain corpus
for general words (as opposed to the terms of the domain) improve the characterization of the
specific vocabulary of the corpus (the terms of the domain).
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In the work of Hazem and Morin (2016), two data selection techniques have been proposed
to enhance the performance of bilingual lexicon extraction:

The first one is called Global Standard approach which merges the whole external data
into the domain-specific corpus and then constructs the word co-occurrence matrix. It is worth
mentioning that by using this technique, we potentially increase quadratically the word co-
occurrence matrix in memory space. For instance, we note Vs and Vg the vocabulary size for the
domain-specific and open-domain corpora respectively. The size of word co-occurrence matrix
is illustrated in Figure 2.7.

Vs

Vg\(g∩s)

Vs Vg\(g∩s)

Figure 2.7 – GSA co-occurrence matrix.

where Vg\g∩s means the vocabulary size of all the words that appear in the open-domain
corpus but not in the specialized-domain corpus. The original word co-occurrence matrix is
built exclusively on the specialized-domain corpus, its size is Vs ∗ Vs. The merged matrix based
on the merged corpus has a size of (Vg\g∩s + Vs) ∗ (Vg\g∩s + Vs), the number of elements stored
in the matrix is boosted to the square of the increase of the vocabulary. Moreover, normally,
Vg\g∩s >> Vs, the matrix obtained by GSA is far more space consuming than the original
matrix.

The second approach named Selective Standard Approach, is more space efficient, since it
enlarges only linearly the word co-occurrence matrix. The first step is to build independently
the word co-occurrence matrix of the two corpora (specialized and general). The second step
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2.3. Data selection for modest corpora with distributional representation

is composed of merging co-occurrence counts for each word that appears in the two corpora,
which allows to filter open domain words that are not part of the specialized corpus and renders
the selective standard approach much less time consuming than the global standard approach.
The process can be formally concluded as:

∀w ∈ S ∩G,∀c ∈ S ∪G, cooc(w, c) = coocS(w, c) + coocG(w, c) (2.60)

where S and G represents the specialized and open-domain corpus. cooc(w, c) is the word-
context co-occurrence between the word w and the context c. An example of the diagram of
this approach is shown in Figure 2.8.

merge

Ms ∈ N3∗3

Mg ∈ N9∗9

MSSA ∈ N3∗9 The right part re-
tains the same values as in Mg,
the left part stores the summed
values.

a

b

c

a

b

c

d

e

f
g

h

i

a

b

c

a b c d e f g h i

Figure 2.8 – SSA merging process.

Note that the merging process is carried out before applying the association measure men-
tioned in 2.1.2. The final matrix is of size 3 ∗ 9, compared to 9 ∗ 9 which will be the size using
GSA. In this case, SSA is 6 (Vg\g∩s) times more efficient. Since Vg\g∩s is generally much greater
than Vs, this approach could save potentially a huge amount of memory.

The authors evaluate the GSA and SSA approaches on bilingual lexicon extraction task. We
report their results in Figure 2.9.

First, the results confirm the effectiveness of the data selection approaches as they obtain
significant improvements. In addition, since GSA and SSA have very similar performances, and
in many cases SSA shows stronger results, we decide to apply the SSA merging technique when
we want to exploit external data to enhance our data taking the space complexity into account.
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Figure 2.9 – Comparison between only external data (SA), Global data merging (GSA) and
selective data merging (SSA) approach on bilingual lexicon extraction task with distributional
word vectors using PMI as association measure. The x-axis labels represent the training corpora,
the left left part represents the specialized-domain corpus and the right part the open-domain
one. In case of the only external data setting (SA), only the open-domain corpus is used for
constructing distributional word vectors. BC (breast cancer), VG (volcanology) and WE (wind
energy) are corpora in specialized domain with roughly 500k, 400k and 300k tokens. Europarl
(EP), common crawl (CC) and united nations (UN) are general domain corpora with roughly
60M, 85M and 380M tokens.
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2.4 Contribution: Data selection with distributed represen-
tation

We have seen an efficient solution for training word co-occurrence count based word vectors.
One would imagine how external data could be leveraged for distributed word vectors, or rather,
word embeddings. In this section, we present our proposal of leveraging external data for
distributed word vectors.

First, some of the distributed word vectors can directly apply the existing data selection

approaches mentioned in the previous section. For example, GloVe can be easily constructed
from a merged word co-occurrence matrix. While on-line learning models such as CBOW or
Skip-gram which are built on iterating the entire corpus, the overall word co-occurrence do not
play any role in the training. Our proposal concerns essentially these models, the objective is
to reinforce the word embeddings trained on specialized domain corpora with external open-
domain data.

Word embedding systems usually need a large amount of data in order to obtain reliable
word vectors. However the size of domain-specialized comparable corpora is generally very
modest (fewer than one million words for our real life corpora). The word embedding models
trained on our small size specialized corpora are not capable of generalizing meaningful fea-
tures. To overcome this problem, the idea exploited by Hazem and Morin (2016) using external
open-domain data to enrich the training phase could be useful, but it occasionally makes the
specialized word representation biased by the open-domain corpus. This is especially the case
when the specialized corpus contains some infrequent or ambiguous words that have different
meanings in different corpora. Considering these factors, we propose to use a concatenated
vector of the one trained on the specialized corpora and on the open-domain corpora as our new
word vector. More specifically, we want to concatenate a relatively small size word vector from
the specialized corpora and a relatively large size one from the open-domain corpora. The con-
catenated vector will have a dimension size of dims+dimg, where dims and dimg represent the
dimension size of the word embedding vectors trained on the specialized and general domain
corpus. In our experiments, the word vector size for the word embedding model trained on the
specialized corpus is empirically set to be 100 and the size for the model trained on the general
corpus is set to be 300. Hence we preserve the specialized corpus features albeit with less cor-
responding weight features in the transformation matrix. Consequently the new concatenated
word vector carries self-contained information from both corpora. Another advantage is that by
doing the concatenation, it is not necessary to retrain our word embedding models over large
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corpora because we can use existing pre-trained models available. This could save a great deal
of time in practice while improving efficiency.

We evaluate our approach on the word synonymy task which is closely related to our real-
life demands. To this end, we first train our own Skip-gram word embedding model on the
specialized corpora we dispose of (WE-en, WE-fr, BC-en) 7. The negative sampling size is set to
15. After 20 epochs we obtain our 100-dimensional word embeddings carrying specific domain-
related information. Then we concatenate these vectors to the pre-trained 300-dimensional
FastText embeddings, forming our final word embeddings of 400 dimensions. The results are
shown in Table:

Dataset word embeddings
S G S _ G

WE-fr 4.61 4.95 5.48
WE-en 9.02 8.43 22.93
BC-en 23.63 25.02 34.03

Table 2.1 – Word synonynmy results (MAP%) on three datasets of two different languages.
S and G mean that the word embeddings are seperately trained from the specialized and the
general domain corpus. S _ G means that word embeddings are obtained from concatenating
the seperately trained embeddings.

Across all the results, the concatenated embeddings reach the best performances. In parallel,
when comparing the results of the first two columns, we find that it is not always guaranteed
that the embeddings trained on the specialized domain corpus or on the open domain corpus
leads to the better performance. Because it depends on the specificity of the words in the test
list, for example, rotor is more domain related than machine in most situations, it may be more
difficult for the open-domain model to find a closer relation for these two words. However,
when concatenating the two models, we mitigate this problem by “pulling” the domain-related
words together. Additionally, the vectors trained on a much larger corpus will carry relatively
reliable statistics to our concatenated vectors, making them more resilient to the bias due to the
small size of the specialized domain corpus size.

7Details of our data can be found in Appendix A.1.1 and A.1.2
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2.5 Synthesis

In this chapter, we started by reviewing the word co-occurrence count based approach, also
known as distributional approach for generating word vector representations. In summary, the
vectors obtained from this approach are high-dimensional, sparse and explicit.

The integer word vectors are then normalized by an association measure which turns the
co-occurrence matrix into a real matrix (the word vectors are thus real vectors), and mean-
while adjust the co-occurrence values with respect to the total occurrences of the central and
the context word. We have presented three popular association measures: Pointwise Mutual
Information (PMI), Log Likelihood (LL) and Discounted Odds-Ratio (DOR). In our work,
we choose to use PMI because it is more stable than LL and theoretically similar to DOR but
more efficient.

Then we have covered the distributed approaches which, on the contrary to the distribu-
tional approach, generate low-dimensional, generalized and dense word vectors, also known
as word embeddings. We have particulary focused on the neural network based word embed-
dings because nowadays they hold most of the state-of-the-art results.

After revising the prerequisites for learning the parameters of a neural network, the most
widely exploited word embeddings, CBOW and Skip-gram are explained so that we clearly
understand how these embeddings are learned and what each hyper-parameter means exactly.
This will be very useful when we want to train and fine-tune our own models.

Apart from the CBOW and Skip-gram, we have also included several other word embedding
models which are interestingly related to our work. For instance, we would like to incorporate
the negative sampling in order to accelerate our distributed model training, the weight function
of GloVe to improve the performance of the distributional approach and FastText vectors to
take sub-word information into account.

The final part of this chapter addresses the problem of generating relevant word vectors
from modest corpora. We first introduced the data selection proposal which seeks external data
to help training the model. Then at last we propose a new approach of data selection for word
embeddings which has shown strong empirical results in our monolingual word synonymy task.
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CHAPTER 3

MULTI-WORD LEVEL REPRESENTATION :
PHRASE MODELING

Having studied the word level representation, we now move on to the multi-word level repre-
sentation. Recall that the definition of phrase in Section 1.3 is no more than a group of words
(or one single-word), which is basically equivalent to multi-word. Learning multi-word repre-
sentations is a key step towards our final goal. The single-word representation discussed in the
previous chapter plays actually an important role for building multi-word representations be-
cause most multi-word frameworks either use single-word tokens as input or even more simply,
treat multi-words as single-word tokens. This chapter begins with approaches that do not de-
pend on learnable parameters. Thanks to their simplicity and fast applicability, these approaches
are often considered as the baseline approaches. Thereafter, we investigate the approaches that
are based on the same architecture as in the word embedding work of Mikolov, Sutskever, et
al., 2013. In the next section, we review some neural networks which can encode a sequential
input. Note that all these networks use the same back-propagation algorithm to calculate the
gradients for updating the whole network (See 2.2.1). The following section introduces some
recent models for sequence modeling. These models have become the latest state-of-the-art
approaches in 2019 in general natural language understanding tasks 1. Finally, we present our
contributions which are composed of a new dataset for the monolingual phrase synonymy task
and a new neural network architecture dedicated to encoding phrases (short sequences).

3.1 Approaches without learnable parameters

If we agree with “Everything should be made as simple as possible, but not simpler” (Albert
Einstein), we would like to study the simplest approaches which often have already satisfying
performance. We choose three simple approaches. The first one consists in the traditional

1https://gluebenchmark.com/leaderboard/
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compositional stack approach which compares all the possible word combinations, while the
second and the third one generate one single vector representing a multi-word. More concretely,
the second approach is the addition based approach which simply sum up all the word vectors
in a multi-word sequence. The third approach consists in concatenating all word vectors into
one single large vector.

3.1.1 Compositional stack

The compositional stack approach is extremely naive and direct, we simply stack all the words
or word vectors in a list and then compare them one by one. If words are stacked in this way
then the comparison is done with the help of a supervised task-oriented list, for example, a word
synonym list for the phrase synonymy task. Otherwise if it is the word vectors that we stack
then we compare the vector similarity between each word vector in the list and all the candidate
word vectors.

w1 w2 ... wn

[w1, w2, ..., wn]

[ v1 , v2 , ... vn ]

word list

word vector list

word comparison with supervised
information

word vector comparison with
similarity

Figure 3.1 – Compositional stack.
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For a given multi-word sequence w1, w2, ..., wn with n words, the word comparison looks at
each of the words and replace it with a word of the given supervised list, e.g., a synonym. The
word vector comparison replace each word with their corresponding word vector and map each
token to the most similar word according to the vector similarity.

This simple approach may bring decent results if we have exhaustive task-oriented informa-
tion such as a synonym word pair list. Nevertheless, it has several major drawbacks :

• Highly dependent on the task-oriented supervised information. If we do not possess such
data, then the word comparison is inaccessible.

• Length sensitive. Even with the word vector comparison, this approach cannot deal with
the fertility problem. We cannot obtain unified representation with this approach.

• Word inner relation ignored. This approach treats separately each word of a multi-word
sequence, thus the inner relation between them is completely ignored. However we esti-
mate that many multi-word expressions’ meaning is deeply related to the association of
words. This phenomenon is especially obvious when it comes to the idiomatic expres-
sions or the homographs. For example, “a piece of cake” means in general a job, task or

other activity that is easy, which is no more a part of cake. In “full magazine”, the word
“magazine” stands for a store for arms or ammunition, while in “fashion magazine” it
means a periodical publication.

3.1.2 Addition based approach

One may argue that the most common baseline approach is the addition based approach. It is
applicable when we use vector representations. For a given multi-word sequence w1, w2, ..., wn

with n words, and their corresponding word vectors v1, v2, ..., vn, the addition based approach
simply use the sum as the vector representing the whole sequence :

vmw =
n∑
i=1

vi (3.1)

where vmw is the vector for representing the whole multi-word. FastText (Bojanowski et al.,
2017) uses the same idea to obtain the word vectors with subword tokens. Some specify that
this vector should be averaged by the sequence length n:

vmw =

n∑
i=1

vi

n

(3.2)
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In practice, if we use the cosine similarity, for any two non-averaged vector x and y, they
will have the same similarity as for their averaged version x̄ and ȳ:

cos(x̄, ȳ) =

d∑
i=1

xi
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yi

b√
d∑
i=1
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i

= cos(x, y)

(3.3)

where d is the word vector dimension size, a and b are the sequence length for the two multi-
words.

The addition based approach has shown very strong results on sequence classification and
similarity tasks (Mikolov, Sutskever, et al., 2013; Del et al., 2018; Liu et al., 2018). However,
it has still two issues :

• Order ignored. For example, “service department” and “department service” will have
the same representation while they do not have the same semantics.

• Word inner relation ignored. As described in Section 3.1.1.

3.1.3 Concatenation

The concatenation approach (Garten et al., 2015; Goikoetxea et al., 2016) consists in concate-
nating all the word vectors of a multi-word into one single high dimensional vector. If each
word vector is of size d and the length of the multi-word is n, the concatenated vector will have
a dimension size of nd.

The concatenation method does register word order but variable length phrases are no longer
semantically comparable with the cosine similarity even if we pad them. For example the cosine
similarity between “sneaker shoe” and “sneaker”, denoted by cos(v(sneaker, shoe), v(sneaker)) will
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be 1
2 if we pad “sneaker” with zeros. This similarity will be probably lower than :

cos(v(sneaker, shoe), v(sneaker, shop))

However, it is obvious that “sneaker shoe” is semantically synonym of “sneaker”. With this
being said, we think the concatenation approach is not suitable for generating unified sequence
representation even if it generates one single vector.

3.2 Phrase embeddings with CBOW or Skip-gram

Concerning the models with learnable parameters, many would wonder if it is possible that
we simply train a word embedding model using CBOW or Skip-gram if we treat the n-grams
as a single token. The answer is yes, we can indeed train a word embedding model just like
what we do for all the n-grams. However, it ignores compositionality and inner word rela-
tions. Another way of training embedding model for multi-words is the extended Skip-gram
introduced Artetxe, Labaka and Agirre (2018b). which is a generalized skip-gram that learns
n-gram embeddings on-the-fly while keeping the desirable property of unigram invariance to
handle compositional phrases but it still suffers from the sparsity and memory problem. In this
section we will go through these two strategies for training a multi-word embedding model.

3.2.1 One single token processing for non-compositional phrases

Treating n-grams as a single token in a pre-processing step has been explored in the very inspir-
ing work of Mikolov, Sutskever, et al. (2013). But they mainly focused on the phrases whose
meaning is not a simple composition of the meanings of its individual words, such as New York

Times and Toronto Maple Leafs. They proposed to extract some n-grams based on a threshold
score which is defined as :

score(wi, wj) = n(wi, wj)δ
n(wi)n(wj)

(3.4)

where n(w) is the count for the word w and δ is used as a discounting coefficient and prevents
too many phrases consisting of very infrequent words to be formed. The bigrams with score
above the chosen threshold score are extracted and after 2-4 passes over the training data with
decreasing threshold value, they build recursively n-grams longer than 2 tokens.

Clearly, this approach works relatively well on more idiomatic phrases, whereas in our
scenario, most of the phrases are freely combined multi-words. In addition, this approach can
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only handle phrases that have been passed into the model during the training. A new phrase,
even if it is idiomatic, can never have its phrase vector through this approach.

3.2.2 Extended skip-gram with negative sampling

Apart from the more idiomatic phrases extracted by the score of Equation 3.4, to learn the em-
beddings for other n-grams which are generally more compositional phrases, one could simply
merge all n-grams but this would greatly increase the vocabulary size, making the model time
and space too complex. This idea has shown very poor performance in the preliminary exper-
iments of Artetxe, Labaka and Agirre (2018b) while they tried to randomly generate multiple
consistent segmentations for each sentence.

In order to produce relevant phrase embeddings with Skip-gram, Artetxe, Labaka and Agirre
(2018b) propose to extend the Skip-gram with negative sampling model. Recall the loss function
of this model in Equation 2.50, for the ease of the reading, we copy it here :

E = − log σ(sTwO
h)−

∑
wk∈Wneg

log σ(−sTwk
h) (3.5)

where h is the output of the hidden layer for the input word tokenw, s is the output of the hidden
layer for the context c ∈ wO∪Wneg. This can be seen as a logistic regression to predict whether
the word-context pair really co-occurs in the on-line sampled sentence, or the context is one of
the negative samples inWneg. Updating the hidden weight matrix W2 is equal to updating the
word vector w and context vectors c.

In the extended Skip-gram with negative sampling, in addition to the updates based on the
single-word pairs (update the vector of w and all the vectors of c), they also extract all the
possible n-grams phrases, p, within a max length and update all the vectors of p while using the
same context unigrams c.

The positive and negative context vectors in W2 are only updated for single-word pairs (w,
c). The update function is the same as in Equation 2.52 because the positive and negative con-
texts are always unigrams. For each n-gram p, the corresponding embedding vector is directly
updated in W1 using the n-gram and context single-word pairs (except that the vectors in W2

are not updated this time). According to the authors, this allows to naturally learn n-gram em-
beddings based on their co-occurrence patterns as modeled by Skip-gram, without introducing
subtle interactions that affect its fundamental behavior.

In conclusion, this approach learns all the n-grams in a corpus including the compositional
phrases. But it still cannot generate a phrase embedding for phrases that do not appear in the
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training corpus.

3.3 Traditional neural networks for sequential inputs

We have seen the “simple approaches” for modeling multi-word representations. All these
approaches ignore the inner structure of multi-words. In this section we discuss some more
complex approaches using neural networks for sequential inputs. We will first go through three
types of these neural networks : the Convolutional Neural Network (CNN), the Recurrent Neu-

ral Network (RctNN) and its variants such as Long short-term memory (LSTM) and Gated

Recurrent Unit (GRU). Finally, we present the latest application: Embeddings from Language

Models (ELMo) using the bidirectional LSTM as basic unit.

3.3.1 Convolutional Neural Network

The Convolutional Neural Network (CNN) is also a feed forward neural network. Inspired
by the Receptive Field theory in neural science (Hubel and Wiesel, 1968), Fukushima (1980)
introduced the basic layer using the convolution operation.

Convolution is a mathematical operation, denoted by ~, here we only consider the discrete
case. Let f and g be two functions defined on the integers, the 1-d discrete convolution of f and
g is :

(f ~ g)[n] =
inf∑

m=−inf
f [m]g[n−m] (3.6)

and the 2-d discrete convolution:

(f ~ g)[i, j] =
inf∑

k=−inf

inf∑
t=−inf

f [k, t]g[k − i, t− j] (3.7)

In practice, we let our input distribution as one function defined on indices (discrete values),
and a kernel (or filter, containing some weights) as the other function. The idea is to repeatedly
apply the kernel on all the outputs. The convolution output is also called feature map because
the convolution can be seen as a feature extraction process. Usually, the definition domain of
the kernel is much narrower. For the 1-d convolution, we can note the input xi with i ∈ [1, n],
the kernel function fi with i ∈ [1,m] where m << n. The output sequence yi is :

yi =
m∑
k=1

fkxi−k+1 (3.8)
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Figure 3.2 shows an example of the 1-d convolution.

Kernel 3 2 1

Input 1 2 3 4 5 6 7

Output 10 16 22 28 34

Figure 3.2 – 1-d convolution with kernel length m = 3 for an input sequence with length n = 7.
The output sequence length is n−m+ 1.

As for the 2-d convolution which is widely applied in the computer vision domain, we note
the input graph xi,j with i ∈ [1, n], j ∈ [1, q], the kernel fi,j with i ∈ [1,m], j ∈ [1, p] where
m << n and p << q. The output graph yi.j is then :

yi,j =
m∑
u=1

p∑
v=1

fu,vxi−u+1,j−v+1 (3.9)

Figure 3.3 shows an example of the 2-d convolution.

In fact, we can move the kernel by a larger stride, in the illustrated examples the stride is
always 1, the output size after the convolution is n− f + 1 where n is the input size and f the
kernel size at the corresponding dimension. Apart from stride, we can also zero-pad the input.
With the stride and zero-padding into account, the output size is n−f+2padding

stride
+ 1. Note that if

the result is not an integer, then the current convolution does not fit, we should always make
sure that the convolution process can be successfully completed.

Compared to the fully connected neural network, a convolutional neural network can
be considered as a partially connected neural network. In the fully connected network, nl is
the dimension size at layer l, the weight matrix between layer l − 1 and l will have nl × nl−1

parameters. Each neuron in layer l− 1 is connected to nl weights, whereas in the convolutional
network, each neuron in layer l − 1 is only connected to a window of weights. The passage
function between layer l − 1 and l for 1-d convolution is :

al = f(wl ~ al−1 + bl) (3.10)

where wl ∈ Rm is the kernel. We only need m weight parameters for this layer. However,
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Kernel

3 2 1

1 0 1

0 1 2

Input

1 2 3

4 5 6

7 8 9

Output

46

Figure 3.3 – 2-d convolution with a 3× 3 kernel graph and for a 7× 7 input graph. The output
sequence length is (7 − 3 + 1) × (7 − 3 + 1). We only show one output value, the rest can be
calculated by sliding the kernel on the input graph.
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unlike the fully connected layer, the output neuron number of each layer is not configurable. It
is determined by the kernel size m :

nl = nl−1 −m+ 2padding
stride

+ 1 (3.11)

Similarly, for the 2-d convolution, the graphX l−1 in layer l−1 is transformed toX l in layer
l following :

X l = f(W l ~X l−1 +Bl) (3.12)

where W l ∈ Ru∗v is the kernel, X l ∈ Rwl∗hl and X l−1 ∈ Rwl−1∗hl−1 are the graph in layer l and
l − 1. The size of graph X l is :

wl = wl−1 − u+ 2padding
stride

+ 1

hl = hl−1 − u+ 2padding
stride

+ 1
(3.13)

In order to learn multiple aspects from the input, we can apply several different kernels,
the number of kernels is called depth. Usually, we add a pooling or subsampling layer after
obtaining the outputs of each kernel to reduce the final output dimension and thus avoid the
overfitting problem. Pooling layers downsample each feature map independently, reducing the
height and width, keeping the depth intact.

Contrary to the convolution operation, pooling has no weight parameters. We only have
to set the stride and window hyper-parameters. The most common type of pooling is the max

pooling and the average pooling:

poolmax(Rk) =
∑
i∈Rk

max(ai)

poolavg(Rk) = 1
|Rk|

∑
i∈Rk

ai
(3.14)

where Rk is the pooling window and ai the feature map value at position i. Figure 3.4 shows an
example of a max pooling with a stride of 1 and a 2× 2 pooling layer.

We also show an illustration of the famous LeNet-5 for handwritten number recognition
which is built on some convolutional layers (Lecun et al., 1998) with a depth column in each
layer (with multiple kernels) :

The gradients calculation is fairly straightforward with the formula given in 2.26. For the
δ(l,i) which is the error in the layer l for the i-th value of the feature map, if the pooling layer is
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Feature map
max pooling

5 4 8

2 0 3

6 1 7

5 8

6 7

Figure 3.4 – An example of max pooling.

Figure 3.5 – LeNet-5 architecture. Original illustration from Lecun et al. (1998).

the l + 1-th layer, then we have :

δ(l,i) = ∂L(Y, Ŷ )
∂Z(l,i)

= ∂X(l,i)

∂Z(l,i)
∂Z(l+1,i)

∂X(l,i)
∂L(Y, Ŷ )
∂Z(l+1,i)

= f ′l (Z(l,i))� up (δ(l+1,i))

(3.15)

where Y and Ŷ are respectively the output and real label of the network. X l is the final output of
the layer l after activation or the input of the layer l+ 1, Z l is the output of the layer l before the
activation. Since the l + 1-th layer is a pooling layer, Z l+1 is the output of the pooling with the
input X l. The up (upsampling) is the reverse function of the subsampling, for instance, for the
max pooling, up(δ(l+1,i)) will simply associate every value to the maximum value of the feature
map in the previous layer. The rest positions will be 0. While for the average pooling, the
values in δ(l+1,i) will be equally distributed to every position of the feature map in the previous
layer.

Similarly, if the pooling layer is the l-th layer and the l+ 1-th layer is a convolutional layer,
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the i-th feature map for layer l + 1, Z(l+1,i) is :

Z(l+1,i) =
D∑
d=1

W (l+1,i,d) ~X(l,d) + b(l+1,i) (3.16)

where D is the convolution depth. Then the d-th error in the l-th layer δ(l,d) is :

δ(l,d) = ∂L(Y, Ŷ )
∂Z(l,d)

= ∂X(l,d)

∂Z(l,d)
∂L(Y, Ŷ )
∂X(l,d)

= f ′l (Z l)�
∑
i

(rot180(W (l+1,i,d)) ~ ∂L(Y, Ŷ )
∂Z(l+1,i) )

= f ′l (Z l)�
∑
i

(rot180(W (l+1,i,d)) ~ δ(l+1,i))

(3.17)

where rot180 is a rotation of 180 degrees. The detail of the derivative calculation for the con-
volution operation is omitted here.

In our work, we use 1-d convolution with zero-padding to encode our phrases as one of the
baseline approaches.

3.3.2 Recurrent Neural Network

In the feedforward network, the information is transferred in a uni-directional way. The layer
output depends only on the input, this grants the network a quick learning of the parameters but
in many actual tasks, one neuron’s output also depends on the “memory” or previous outputs.
Recurrent neural network (RctNN) is in line with this need, it is capable of memorizing a short
period by taking not only the current input but also the previous output of itself.

Figure 3.6 shows the basic idea of RctNN, for a sequence xt, t ∈ [1, T ], the RctNN transfers
the information by the following formula :

ht = f(ht−1, xt)

ŷt = g(ht)
(3.18)

where ht is the current hidden state and ŷt is the output at the current time step t. f and g are
two non-linear functions, i.e., a feedforward network.

The simple recurrent neural network (SRNN) (Elman, 1990) is a basic recurrent neural
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f

xt

g

ŷt

ht

Figure 3.6 – A basic cell of RctNN.

network architecture with only one hidden layer. Each net input zt2 at time step t of the hidden
layer is calculated based on the current network input xt :

zt = Uht−1 +Wxt + b

ht = f(zt)
(3.19)

where U and W are weight matrices and b the bias vector. If we consider that each time step
is a single layer, then RctNN is actually a multiple layer network with shared weights. We can
unfold in Figure 3.6 :

x1 x2 x3 x4 ... xT

h1 h2 h3 h4 ... hT

ŷ1 ŷ2 ŷ3 ŷ4 ... ŷT

Figure 3.7 – Unfolded RctNN

Now we look at the parameter learning with gradient descent, the loss function at time step

2We refer net input or net activation to the layer output before the activation function
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t is :

Lt = L(yt, g(ht)) (3.20)

The loss function for all time steps is :

L =
T∑
t=1
Lt (3.21)

The gradient for U :
∂L
∂U

=
T∑
t=1

∂Lt
∂U

(3.22)

Since U is the weight matrix related to the previous hidden state, the gradient calculation is
different from the feedforward networks. Typically, we can use the Back propagation through

time (BPTT) (Werbos, 1990) to obtain gradients in a RctNN.

The BPTT treats the RctNN as an unfolded multi-layer feedforward network as shown in
Figure 3.7. In this unfolded multi-layer network, all the layers share the same parameters, so the
gradients are the sum of the gradients in each layer. We begin with the derivative in Equation
3.22. Because the derivative at time step t is related to all the previous net inputs zk, with
k ∈ [1, t], we have:

∂Lt
∂ui,j

=
t∑

k=1

∂zk(U)
∂ui,j

∂Lt
zk

(3.23)

Since zk = Uhk−1 + Wxk + b, the direct derivative of zk with regard to ui,j , denoted by
zk(U) which means that we consider zk as a function on U with hk−1 as a constant :

∂zk(U)
∂ui,j

= Ii(hk−1[j]) (3.24)

where Ii(hk−1[j]) means a vector with the same size as hk−1 with all values set to zero except
for the i-th dimension whose value is equal to hk−1[j].

For the second part in 3.23, again we can define an error δt,k = ∂Lt

∂zk
which is the derivative
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of the network loss at time step t with regard to the net input at time step k.

δt,k = ∂Lt
∂zk

= ∂hk
∂zk

∂zk+1

∂hk

∂Lt
∂zk+1

= diag(f ′(zk))UT δt,k+1

(3.25)

So the formula in 3.23 can be written as:

∂Lt
∂ui,j

=
t∑

k=1
δt,k[i]hk−1[j]

∂Lt
∂U

=
t∑

k=1
δt,kh

T
k−1

(3.26)

So with substitution in 3.22, the gradient for the total loss with regard to U is:

∂L
∂U

=
T∑
t=1

t∑
k=1

δt,kh
T
k−1 (3.27)

For the same reason, the gradients for other parameters are:

∂L
∂W

=
T∑
t=1

t∑
k=1

δt,kx
T
k (3.28)

∂L
∂b

=
T∑
t=1

t∑
k=1

δt,k (3.29)

Figure 3.8 gives an illustration of BPTT.

Another way of calculating the gradients is real-time recurrent learning or RTRL (Williams
and Zipser, 1995) which is a forward procedure similar to the forward mode in auto-differentiation
(See 2.2.1). RTRL follows the same gradient calculation except we calculate each δ in the same
order as the time sequence and update each parameter right after obtaining the corresponding
gradient.

The hidden state at time step t+ 1, ht+1 is:

ht+1 = f(zt+1) = f(Uht +Wxt+1 + b) (3.30)
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xt−2 xt−1 xt

ht−2 ht−1 ht

ŷt−2 ŷt−1 ŷt

yt−2 yt−1 yt

Lt−2 Lt−1 Lt

δt−2,t−2

δt,tδt,t−1δt,t−2
δt−1,t−1δt−1,t−2

Figure 3.8 – Diagram of BPTT. Black lines are the forward pass and dashed lines are the local
backward pass. Gradients are accumulated through time.

The derivative of ht+1 with regard to ui,j is:

∂ht+1

∂ui,j
= ∂zt+1

∂ui,j

∂f(zt+1)
∂zt+1

∂zt+1

∂ui,j
= ∂Uht

∂ui,j
, and because

∂f(x)g(x)
∂x

= f ′(x)g(x) + g′(x)f(x), above line equals to

= ( ∂U
∂ui,j

ht + ∂ht
∂ui,j

UT ) ∂f(zt+1)
∂zt+1

= (Ii(ht[j]) + ∂ht
∂ui,j

UT )diag(f ′(zt+1))

= (Ii(ht[j]) + ∂ht
∂ui,j

UT )� (f ′(zt+1))T

(3.31)

We use Equation 3.31 to calculate ∂h1
∂ui,j

, ∂h2
∂ui,j

, ∂h3
∂ui,j

, ... in a forward order and at each time
step t, the gradient can be obtained simultaneously with the current loss Lt:

∂Lt
∂ui,j

= ∂ht
∂ui,j

∂Lt
∂ht

(3.32)

Note that in RTRL we will update the parameters right after obtaining the gradient at each
step. The update for W and b follows the same way.

In general, as we usually use sigmoid functions as the activation function and its derivative is
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inferior to 1, the sequence product of multiple derivatives of sigmoids functions would approach
0, causing the gradient vanishing problem for Lt

∂hk
where t − k is relatively high3. In other

words, the hidden states hk which are far from the current step t would merely influence the
current gradient Lt

∂U
, the RctNN can only memorize short distance dependencies.

Concerning our work, we also implement RctNN as a baseline approach for phrase repre-
sentation modeling.

3.3.3 LSTM and GRU

To overcome the gradient vanishing problem for long distance dependencies, we could add
linear relation between each time step so there will be both linear and non-linear relations and
it would be less possible for the gradient to vanish. However, there are still problems such as
gradient explosion and limited memory capacity4. In order to solve these problems, some
RctNN variants are proposed with a gate mechanism. We will cover the two most successful
gated RctNN: Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997; Gers
et al., 2000) and Gated Recurrent Unit (GRU) (Cho et al., 2014; Chung et al., 2014).

Long Short-Term Memory
In addition to the hidden state or external state ht in the RctNN, LSTM introduces an inter-

nal state or cell state ct (with a candidate cell c̃t) and three gates whose range is [0, 1] in order
to indicate how much information should pass the “gate”:

• Forget gate ft decides how much information in the previous cell ct−1 should drop:

ft = σ(Wfxt + Ufht−1 + bf ) (3.33)

• Input gate it decides how much information in the current candidate cell c̃t should be
passed:

it = σ(Wixt + Uiht−1 + bi) (3.34)

• Output gate ot decides how much information in the current cell ct should be passed to
the current hidden ht:

ot = σ(Woxt + Uoht−1 + bo) (3.35)

3Similarly, if the derivative is superior to 1, it will cause the gradient explosion problem.
4ht would converge with information accumulated through time. The memory of ht is limited.
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We can see that the three gates are all functions about the current input xt and the previous
hidden state vector ht−1, with a logistic function to obtain values between [0, 1] in order to
control the information passing proportion.

Basically, one LSTM layer passes information with the hidden and cell state:

ct = ft � ct−1 + it � c̃t
ht = ot � tanh (ct)

(3.36)

where the candidate cell c̃t is:

c̃t = tanh (Wcxt + Ucht−1 + bc) (3.37)

The LSTM architecture is shown in Figure 3.9 in a computational graph form, we can con-
sider an LSTM unit as a special RctNN unit, with two input and output states c and h.

xt−1 xt xt+1

ct−2 ct−1 ct ct+1

ht−2 ht−1 ht ht+1

xt

ht−1

ct−1

cat

σ σ tanh σ

ft it c̃t ot

�

� + ct

tanh

�

ht

Figure 3.9 – Diagram of LSTM.
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In practice, we can concatenate the input xt ∈ Ra and the previous hidden ht−1 ∈ Rd, so
we can write one single weight matrix for the matrices in Equation 3.33, 3.34, 3.35 and 3.37:
W ∈ Rd∗(a+d). We usually set relatively high initial values for the parameters in the forget gate
since otherwise most of the previous information would be dropped5.

The network can also be learned by gradient descent and the gradient calculation is not very
different from what we have seen in RctNN. We will not go through all the details for LSTM
and all the advanced network architecture in later sections.

There are also many variants of LSTM, the work of Greff et al. (2017) and Jozefowicz et al.
(2015) has compared a good deal of popular variants and concluded that they are essentially the
same architecture and have similar experimental performance.

In a neural network, long-term memory consists in the network parameters, which covers
all the training period and are updated gradually. In a LSTM network, the cell state c is capable
of storing and transferring information for a short period yet still longer than the hidden state h,
that is why we call the network Long short-term memory.

We will also include LSTM in our work as a baseline approach for encoding phrases.
Gated Recurrent Unit
Gated recurrent unit (GRU) is simpler than LSTM, it does not introduce a new state like the

cell state in LSTM. Still, GRU uses several “gates”: an update gate which is a combination of
the forget and input gates in LSTM and a reset gate which determines the dependency on the
previous hidden state ht−1.

• Update gate zt. It decides how much information should be kept from the previous
hidden ht−1 and meanwhile, how much information should be passed from the current
candidate state h̃t.

zt = σ(Wzxt + Uzht−1 + bz) (3.38)

• Reset gate rt. It decides the degree of the dependency on the previous hidden ht−1 for
the current candidate state h̃t.

rt = σ(Wrxt + Urht−1 + br) (3.39)

The current candidate hidden state h̃t is defined as :

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh) (3.40)

5Generally speaking, the initial values for the parameters in a neural network are quite small, here in LSTM,
we would like to set a high value for the bias vector in the forget gate, for instance bf = 1
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Then the information in the GRU network is passed with the hidden state ht :

ht = zt � ht−1 + (1− zt)� h̃t (3.41)

From 3.41 we can see that when zt = 1, the current hidden state ht is linearly related to
the previous hidden state ht−1, and when zt = 0, ht is related to ht−1 in a non-linear manner
as h̃t is obtained from a sigmoid function tanh. From 3.40 we can see that when rt = 1, the
current candidate hidden state h̃t depends on both the current input xt and the previous hidden
state ht−1, and when rt = 0, h̃t depends on only xt. Combining these observations, when
zt = 0, rt = 1, the GRU network is basically a recurrent neural network. Furthermore, when
zt = 0, rt = 0, the current hidden ht is only related to the current input xt, which is similar to
one separated fully connected layer. Figure 3.10 illustrates how GRU passes information.

xt−1 xt xt+1

ht−2 ht−1 ht ht+1

xt

ht−1

cat
σ σ

cat

tanh

rt zt h̃t

�

�

1−

+

ht

�

Figure 3.10 – Diagram of GRU.

Since GRU has very similar performance with LSTM, we will not include GRU in our
frameworks, one can refer to LSTM to get an approximate performance of GRU.
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3.3.4 Recent applications: ELMo

There are many great works incorporating a recurrent neural network or its variants. Quite
recently, embedding from language models (ELMo) (Peters et al., 2018) has been proposed
which is built on a deep bidirectional LSTM network (BiLSTM) with subword information
encoded by a character convolutional network. The network is first trained on non-supervised
bidirectional language modeling, then the pre-trained model can be applied to some supervised
NLP tasks by adding some other layers on top while freezing the weights in the pre-trained
model6.

Bidirectional language model with LSTMs
Similarly to the translation objective in Equation 1.1, given a sequence of T tokens, xk, k ∈

[1, T ], a forward language model computes the probability of the sequence by modeling the
probability of the current token xk given all the previous tokens (x1, x2, ...xk−1):

P (x1, x2, ..., xT ) =
T

Π
k=1

P (xk|x1, x2, ..., xk−1) (3.42)

Analogously, a backward language model is a reversed version of the forward one :

P (x1, x2, ..., xT ) =
T

Π
k=1

P (xk|xT , xT−1, ..., xk+1) (3.43)

Each token is represented by a vector vk (input embedding), and it is passed to L stacked
layers of forward and backward LSTMs, obtaining

−→
hk,j and

←−
hk,j where j ∈ [1, L] means the j-th

LSTM layer. The top LSTM layer’s outputs
−−→
hk,L and

←−−
hk,L are used to predict the next token

xt+1 with a softmax function.

−→
hk,j = −−−−→LSTMj(vk,

−−−→
hk−1,j)

←−
hk,j =←−−−−LSTMj(vk,

←−−−
hk+1,j)

(3.44)

A bidirectional language model (biLM) maximizes the log likelihood:

T∑
k=1

(logP (xk|x1, x2, ..., xk−1;−→θ ) + logP (xk|xT , xT−1, ..., xk+1;←−θ )) (3.45)

where θ means the network parameters.
Linear combination of biLM
For each token xk, we can conclude that a L-layer biLM contains a set of 2L + 1 vector

6We can conclude this manner as a feature extraction, further discussion can be found in the next chapter.
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Figure 3.11 – Development set performance for SQuAD, SNLI and SRL when including ELMo
at different locations in the supervised model. Extracted from the original paper of Peters et al.
(2018). The data set details can be found in the original paper.

representations:
Rk = {vk,

−→
hk,j,
←−
hk,j|j ∈ [1, L]}

= {vk,
←→
hk,j|j ∈ [1, L]}

(3.46)

where
←→
hk,j means the concatenated vector of [−→hk,j;

←−
hk,j].

In ELMo, the outputs in each layer are collapsed into a single vector ELMok = E(Rk; θ).
For a specific task, ELMo computes different weights for each layer:

ELMotaskk = E(Rk; θtask) = γtask
L∑
j=0

staskj

←→
hk,j (3.47)

where staskj are softmax-normalized weights in terms of layer and task, and γtask is a scalar
parameter which allows the model to scale the ELMo vector. Equation 3.47 can also be seen as
a linear combination of each BiLM layer.

Integration of ELMo

ELMo vectors can be incorporated into other supervised NLP models. Basically, the author
state that ELMo vector can substitute static word embedding vectors such as CBOW, Skip-
gram or GloVe. For instance, to integrate ELMo into a task-specific RctNN model, we can
first freeze the weights of the BiLM and then pass the concatenated vector [vk;ELMotaskk ]
obtained from ELMo vector ELMotaskk and the input vector vk into the RctNN. For some tasks,
authors find that it is beneficial to integrate ELMo vectors at the output layer of a RctNN which
means replacing the hidden state hk with [hk;ELMotaskk ]. Or sometimes, we can make these
modifications at the same time, changing the input and the output of a RctNN. In the ablation
tests, authors have shown some interesting results about different application locations of ELMo
vectors.

Besides, in addition to using all the layers, we can use one particular layer of the biLM.
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Figure 3.12 – Development set performance for SQuAD, SNLI and SRL comparing using all
layers of the biLM (with different choices of regularization strength λ) to just the top layer.
Extracted from the original paper of Peters et al. (2018). The data set details can be found in
the original paper.

Figure 3.13 – Test set comparison of ELMo enhanced neural models with state-of-the-art single
model baselines across six benchmark NLP tasks. The performance metric varies across tasks
– accuracy for SNLI and SST-5; F1 for SQuAD, SRL and NER; average F1 for Coref. The
“increase” column lists both the absolute and relative improvements over the baseline. Extracted
from the original paper of Peters et al. (2018). The data set details can be found in the original
paper.

In Figure 3.12, ablation tests conducted by authors show that using all the layers does help the
model to encode different types of syntactic and semantic information.

Conclusion

We report the main results of ELMo vector in Figure 3.13.

In general, ELMo has strong generalization ability of modeling language, this has been
proven by large improvements when applying ELMo to a broad range of NLP tasks. Therefore,
we would like to not only include ELMo for a comparison with our systems but also make our
systems capable of integrating ELMo as an input layer.
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3.4 Transformers: Multi-Head Attention

The neural networks for processing sequential inputs must have a large memory capacity in
order to stock more information, which requires enlarging the network’s complexity. In this
section, we begin with presenting the attention mechanism which manages to focus on certain
aspects of the input information, reducing the network’s input size. Then we study a recent
attention architecture called multi-head attention (Vaswani et al., 2017) which has constructed
the Transformer architecture, achieving strong empirical results, many new state-of-the-art
architectures are derived from the Transformer.

3.4.1 Attention mechanism

In the past few years, attention mechanisms have brought effective progression to many NLP
tasks. Basically they can be considered as a data/task-driven weighting process for the input
information. For each input in a sequence, the attention applies a weight indicating how much
“attention” we should pay to the input. Bahdanau et al. (2014) use an attention-based model
for neural machine translation with an encoder-decoder architecture, Xu et al. (2015) generalize
attention into soft and hard attention while Luong, Pham, et al. (2015b) further develop them
into global attention and local attention. Ling et al. (2015) employ attention to obtain better
word representations with respect to word contexts.

Generally speaking, attention mechanisms can be split into two steps, the first one consists
in calculating the attention distribution and the second step calculates the weighted mean.

Attention distribution
Given a sequence of input vector vi, i ∈ [1, N ], the attention distribution is obtained by

applying the softmax function on a score on the input and a query vector q.

αi = softmax(s(vi, q))

= exp(s(vi, q))∑N
j exp(s(vi, q))

(3.48)

where αi is the attention distribution for the i-th input vector and s is a score function which
can be obtained by one of the following formulas:

• Addition.

s(vi, q) = sT tanh(Wvi + Uq) (3.49)
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• Dot-product.

s(vi, q) = vTi q (3.50)

• Scaled dot-product.

s(vi, q) = vTi q√
d

(3.51)

• General.

s(vi, q) = vTi Wq (3.52)

where W,U, s are learnable parameters, d is the dimension size of the input vector vi.

Weighted mean

The final attention is actually a weighted mean with the attention distribution αi as the
weight for the i-th vector:

attention(V, q) =
N∑
i=1

αivi (3.53)

Equation 3.53 is also called the soft attention or global attention. The soft attention calcu-
lates its value depending on all the input vectors. In addition to the soft attention, hard attention

also calculates the attention depending only on one input at one step (Xu et al., 2015).

attention(V, q) = vj (3.54)

where we copy one input vj with j the index of the element with the highest probability,
Nargmax
i=1

αi in the first formular of 3.48. The soft attention is smooth and differentiable but

can be very expensive when the input is large. The hard attention is less complex at the infer-
ence time but is non-differentiable and requires more complicated techniques such as variance
reduction or reinforcement learning to train (Luong, Pham, et al., 2015b). Figure 3.14 shows
the comparison between the global and the local attention of Luong, Pham, et al. (2015b).

We can see that the global attention calculates the weights using all the input vectors (h)
while in the right part of the figure, the local attention calculates the weights with only a window
of input vectors plus a position information for the current step pt.
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Figure 3.14 – Global vs local attention. (source: Luong et al. (2015). ) Note h in this figure is
the input for the attention layer which is v in our manuscript.

3.4.2 One head: Scaled Dot-Product Attention

In fact we can generalize attention with key-value pairs, given a sequence a key-value pairs
(ki, vi), i ∈ [1, N ], the attention is:

attention((K,V ), q) =
N∑
i=1

αivi =
N∑
i=1

softmax(s(ki, q))vi

=
N∑
i=1

exp(s(ki, q))∑
j exp(s(kj, q))

vi

(3.55)

where s is the score function. If K = V , this equals to Equation 3.53 with Equation 3.48.
Based on this idea, Vaswani et al. (2017) introduce a scaled dot-product based key-value self-
attention.

Given an input sequence X = [x1, x2, ...xN ] ∈ RN∗dinput and the output dimension doutput,
the query Q, key K and value V matrices are first obtained by three linear transformations with
different learnable parameters WQ, WK and Qv:

Q = XWQ ∈ RN∗dm

K = XWK ∈ RN∗dm

V = XWV ∈ RN∗doutput

(3.56)
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where WQ ∈ Rdinput∗dm , WK ∈ Rdinput∗dm and Qv ∈ Rdinput∗doutput . dm is the intermediate
dimension size for queries and keys. The final attention has a scaled dot-product as the score
function:

attention(Q,K, V ) = softmax(QK
T

√
dm

)V ∈ RN∗doutput (3.57)

where softmax is a column-wise function.

Intuitively, this self-attention can be considered as a fully-connected network with dynamic
weight matrices. Both have the capability of memorizing long dependencies (Compared to
RctNN and CNN). In a fully-connected layer, all inputs are connected to each output with
learnable weights. One input xi is connected or contributes to one output yj, j ∈ [1, J ] with
Wi,jxi + bj where Wi,j reveals actually the transformation direction. The input xi is connected
to the output yj by a weight Wi,j . Once we have set the output size J we can no longer modify
it. In the self-attention, one input xi is first connected to all other inputs xj with i, j ∈ [1, N ],
by QKT , and then multiplied by V to obtain the output whose length is always the same as
the input length N . Thus we consider that the process is “dynamic” and the self-attention can
handle variable length input. This is illustrated in Figure 3.15.

x1 x2 x3 x4

y1 y2 y3 y4

(a) Fully-connected layer connection
x1 x2 x3 x4

q1 q2 q3 q4k1 k2 k3 k4v1 v2 v3 v4

y1 y2 y3 y4

(b) Self-attention layer connection

Figure 3.15 – Comparison between a fully-connected layer and a self-attention layer of Vaswani
et al. (2017). The solid lines represent a linear transformation with learnable parameters and
the dashed lines mean a dot-product which does not require any parameters. We can see that
the self-attention’s is more dymanic since for any input with length N , the network use always
the same parameters to generate a sequence of length N , while in a fully-connected layer, if we
change the input size we will have to change the weight matrix.

In the work of Vaswani et al. (2017), one such attention as in Equation 3.57 is called “one
head” which can be used as an alternative of a recurrent or convolutional neural network in any
architecture.

77



Part , Chapter 3

3.4.3 Multi-Head for multiple semantic aspects

Like in a convolutional neural network, Vaswani et al., 2017 propose to add some “depth” to the
attention layer to capture different aspect information: instead of performing a single attention
function with one set of keys, values and queries, they linearly project the queries, keys and
values h times with different, learned linear projections to dm, dm and doutput dimensions, re-
spectively. Then, they perform the attention function(3.57) in parallel on each of these projected
versions of queries, keys and values, yielding hdoutput dimensional values in total:

MultiHeadAtt(Q,K, V ) = concat(head1, head2, ..., headh)WO ∈ RN∗dfo (3.58)

where the i-th head, headi = attention(QWQ
i , KW

K
i , V W

V
i ) with i ∈ [1, h]. WQ

i ∈ Rdinput∗dm ,
WK
i ∈ Rdinput∗dm and W V

i ∈ Rdinput∗doutput are the weight matrices in the i-th head. WO ∈
Rhdoutput∗dfo where doutput is the output dimension for one head and dfo is the final output
dimension for the multi-head attention.

The relation of one head and multi-head attention is shown in Figure 3.16.

Figure 3.16 – The relation between one head (left) and multi-head attention (right). (Source:
Vaswani et al. (2017))

3.4.4 Positional encodings for order distinction

Since the weight for one input xi in the self-attention Equation 3.57 depends only on the linear
transformation of qi and ki, ignoring completely the position of xi in the input sequence, in
case of using only self-attention layers, we usually add some order information via positional
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encodings. For instance, we can use sine and cosine functions of different frequencies:

PE(pos, 2i) = sin( pos

100002i/do
)

PE(pos, 2i+ 1) = cos( pos

100002i/do
)

(3.59)

where do is the dimension size of the input vector embeddings, for example, do = dinput in
our manuscript. pos represents the input position in the sequence. i is the dimension index
of the positional encoding. Here, each dimension corresponds to a sinusoid. The periodicity
allows the model to easily learn to attend by relative positions because for any fixed offset k,
PE(pos+ k) can be represented as a linear function of PE(pos).

3.4.5 Recent applications: Transformer, Opengpt, BERT, XLNet

Since 2017, the multi-head attention has been integrated in many general sequence modeling
works which have advanced the state-of-the-art results (Vaswani et al., 2017; Devlin et al., 2018;
Radford et al., 2019; Zhilin Yang et al., 2019).

The very first application is the transformer which is proposed in Vaswani et al. (2017)
right after introducing the multi-head attention. The encoder contains 6 layers of multi-head
attentions which combines 8 different heads and output 512 dimensional attention vectors. And
they set dm equal to doutput. Then it is followed by a normalization of (x + MultiHeadAtt(x))
where x is the input, and finally passed to a fully-connected layer with a second normalization
of (x + Dense(x)) where x is the previous output of the multi-head attention layer. The de-
coder uses the similar architecture except that it inserts another multi-head attention sublayer to
connect the encoder’s output and masks the first multi-head attention layer. (See Figure 3.17)

Shortly after, it is extended by Z. Dai et al. (2019), proposing transformer-XL to remove
the fixed-length context limit during the training of language models. In the same line, Rad-
ford et al. (2019) propose their language model GPT-2 pre-trained with an objective of simply
predicting the next word given the previous sequence with transformer units.

All these works train the model with whether unidirection or bidirection but in a separated
manner, Devlin et al. (2018) introduce a pre-trained generic model for a wide range of NLP
tasks with joint bidirection training, Bidirectional Encoder Representations from Transformers

(BERT). A brief comparison between the training of these models is given in Figure 3.18.
Concerning the training objective, apart from the next sentence prediction in many general

language models, they also add a masked language model (masked LM) training objective
which predicts only some randomly masked tokens. This process is very similar to the denoising
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Figure 3.17 – Transformer model architecture. (Source: Vaswani et al. (2017))

Figure 3.18 – Differences in pre-training model architectures. BERT uses a jointly-linked bidi-
rectional Transformer. GPT uses a left-to-right Transformer. ELMo uses the concatenation
of independently trained left-to-right and right-to-left LSTM. models. (Source: Devlin et al.
(2018))
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(Vincent et al., 2008) which will be discussed later, only in masked LM the prediction is only
on the masked words rather than the entire input sequence. The authors state that by doing this
the deep joint bidirectional model can be learned without allowing each word to indirectly “see
itself” in a multi-layer context.

Compared to the previous models, BERT has achieved new state-of-the-art results on mul-
tiple GLUE tasks7:

Figure 3.19 – Glue test results. Note that BERTBASE and OpenGPT have comparable parameter
number while BERTLARGE is not yet publicly available. (Source: Devlin et al. (2018)) The data
set details can be found in the original paper or the Glue official website.

Later, in June 2019, Zhilin Yang et al. (2019) argue that the denoising based training in
BERT neglects dependency between the masked positions and suffers from a pretrain-finetune
discrepancy. Based on the pros and cons of BERT and transformer-XL, they propose a gen-
eralized autoregressive pretraining method, XLNET, which is a autoregressive model whose

objective is to maximize the conditional probability
T

Π
k=1

P (xk|x1, x2, ..., xk−1) just like ELMo
or transformer-XL. In addition, they maximize the probability of all possible permutations of
the factorization order, the idea is to simulate a joint bidirectional model to capture information
from bidirectional contexts like BERT but without introducing noising-denoising processing.
Let Zt be the set of all possible permutations of the T -length input sequence, zt and z<t the
t-th element and the first t − 1 elements of a permutation z ∈ Zt, the training objective is to
maximize the following averaged log likelihood:

Ez∼Zt(
T∑
t=1

logP (xz<t |xz<t)) (3.60)

In our work, due to the heavy computation capacity requirement we have only chosen BERT
as a baseline and an alternative input to the static embedding for our framework.

7https://gluebenchmark.com/leaderboard/
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3.5 Contribution : a new dataset for monolingual phrase syn-
onymy

For the phrase synonymy task, in addition to the dataset of Hazem and Morin (2017), we build a
new dataset on the Breast cancer English corpus (BC-en). To extract the corpus, we crawl from
a scientific website 8 by filtering all the publicly accessible articles and then search the keywords
“breast cancer” for English articles. The final English corpus results from concatenating 168
articles and contains 26,716 sentences and 874,595 tokens. Our corpus crawler script is open
source 9.

Concerning the the gold standard, we manually look for the most frequent terms of the
corpus and then see if they have synonyms which exist simultaneously in the corpus and the
MeSH 2018 thesaurus10. Finally the gold standard contains 108 synonymy phrase pairs.

3.6 Contribution : Tree-free recursive neural network

In previous sections, we have seen simple approaches which ignore the inner structure of tokens
in a sequence. Regarding neural network based sequence modeling, there are various neural
network architectures for inputs of variable length: convolutional, recurrent and self-attention.
However, these architectures are proposed to encode natural sentence sequences which are of-
ten composed of more than 10 tokens, while our objective is to encode short sequences which
are phrases of less than 10 tokens. Besides, RctNN can encode multiple tokens into one single
vector (e.g., the hidden state for the last token) but this vector is biased by the last several words
in a sequence due to the architecture property, and the self-attention only propose to encode a
sequence to a sequence of the same length. Even if we can still choose the last or first token
to represent the whole sequence, this vector is much biased by the last token as it is based on
the linear combination of the key and query of the last step alone(See Figure 3.15). Although
the experimental results in previous works are quite promising with this approach, the tasks are
sentence-level classifications and the results are obtained by a supervised task-specific transfer
learning process which differs from our scenario. With this being said, we propose a new ar-
chitecture called Tree-free recursive neural network (TF-RNN) which is dedicated to encoding
short sequences such as phrases. In this section, we first review the original recursive neural

8https://www.sciencedirect.com
9https://bitbucket.org/stevall/data-crawler.git

10https://meshb.nlm.nih.gov/search
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network and then present our architecture model. Finally, we conduct a series of experiments on
phrase synonymy and similarity, our results show that our proposal outperforms state-of-the-art
results, and on the general domain corpora, the TF-RNN achieved even stronger results when
integrating ELMo or BERT as an alternative input to the static word embedding.

3.6.1 Background: recursive neural network (RNN)

Recursive neural network (RNN) (Goller and Küchler, 1996) is a generalized version of the
recurrent neural network (Elman, 1990) which always applies a left binary tree, where the first
two leaves are combined to form a node, then the node is combined to the next leaf to form the
next level node, etc. The recursive neural network encodes a sequence of word vectors along a
tree structure, e.g. a parse tree, by recursively applying the weight matrices to each node asso-
ciation. This architecture has been successfully exploited in a variety of tasks, Socher, Bauer, et
al. (2013) use an untied weight RNN for the constituent parsing where they use different weight
matrices depending on the constituent syntactic category, P. Le and Zuidema (2014) collect the
context information by adding an outer representation for each node. Their system is used in
a dependency parsing task. Besides, various works (Socher, Perelygin, et al., 2013; Irsoy and
Cardie, 2014; Paulus et al., 2014) apply the RNN to generate sentence level representation for
sentiment analysis using some labelled data.

Wl Wr

Wl

Wr

Wl

Wr

leaf vectors

intermediate node vectors

root vector

v1 v2 v3 v4
Figure 3.20 – Diagram of a recursive neural network.

Figure 3.20 shows an example of a sequence of length four. Suppose we have a parse tree,
each input is a word vector vi ∈ Rd. The network applies a linear function with a weight matrix
Wl ∈ Rd∗d for each left node child and a weight matrix Wr ∈ Rd∗d for each right node child in
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the given tree. So for each non-leaf node η, the corresponding vector xη is calculated as follows:

xη = Wlvl(η) +Wrvr(η) + b (3.61)

where vl(η) and vr(η) mean respectively the left and the right child vector of the node η.

The RNN is particularly interesting for us because short sequences or phrase association
can be traced with the parse tree. By nature, the network distributes association weights for
each element in a phrase. Therefore a phrase representation is not always biased by the last
token like in the RctNN. However, the disadvantage of RNN in our scenario is the need of a tree
structure because not only it is not always available in all languages, but it is also not possible
to retrieve the context sentence for the parsing if we meet a new freely combined phrase that
has never occurred in the corpus. The recurrent neural network or the LSTM does not need a
tree structure but applies a universal left binary tree to all sequences, while the convolutional
neural network with a kernel size of 2 can be considered as a specialised RNN where it adopts
element-wise multiplication rather than matrix multiplication with only one layer by a pooling
operation.

Wxh,Whh Wxh

Whh

Wxh

Whh

Wxh

v1 v2 v3 v4

pooling

vl vrvl vrvl vr

v1 v2 v3 v4

Figure 3.21 – Diagram of recurrent neural network (left) and 2 kernel sized convolutional neural
network (right). For the purpose of clarity, we omit the output layer in the recurrent neural
network.

Figure 3.21 shows how the recurrent and a 2 kernel sized convolutional neural network
model for a sequence of 4 tokens. Wxh ∈ Rh∗d and Whh ∈ Rh∗h are the parameters in a
typical recurrent neural network where h is the hidden dimension, and for the convolutional
network with a kernel size of 2, we can consider the convolution operation as two element-wise
multiplications (dashed line in Figure 3.21) with a left multiplier vl ∈ Rd and a right multiplier
vr ∈ Rd. Stacking vl and vr forms the actual convolution kernel. The final vector is obtained by
a pooling operation such as max or average. Note that the addition based approach (Liu et al.,
2018) can be viewed as a specialised version of CNN where the values in vl and vr are fixed to
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be one and the pooling is an averaging process.

3.6.2 Tree-free recursive neural network (TF-RNN)

In order to encode phrases of variable length without tree structures into a single fixed-length
vector, we propose a new network called tree-free recursive neural network (TF-RNN). We
consider it as a variant of the original recursive neural network because the basic idea is still
to associate each token following a bottom-up structure. This structure is required as input
of the original recursive neural network while in the TF-RNN, we eliminate this requirement
by recursively splitting each node into a left and a right semantic part, then associating the
left part with its right neighbour and the right part with its left neighbour. This is motivated
by our hypothesis that the semantics of a pair of words could be retrieved by combining their
meaning with some position-specific weights, and consequently the semantics of a sequence of
words could be retrieved by recursively combining the semantics of each word pair. In fact, by
doing this we create a pseudo binary tree structure where we associate each adjacent node pair
without parsing it twice. This kind of structure can be seen as an approximation of a generalized
sentence syntax as each language unit is directly associated with its adjacent neighbours and
hierarchically associated with other units eventually yielding the overall semantics of all the
units.

Let [v0
1, v

0
2, v

0
3, ..., v

0
n] with v0

i ∈ Rd be the input word vector sequence with n words, the
TF-RNN outputs a single fixed-length vector vo ∈ Rp by following steps:

vji,l = tanh
(
Wlv

j
i + bl

)
vji−1,r = tanh

(
Wrv

j
i−1 + br

)
vj+1
i = tanh

(
vji,l + vji−1,r

)
...

vo = tanh(Uvn0 + b)

(3.62)

where j indicates the pseudo-tree structure layer level. A phrase with n word components will
have n levels in such a structure. Wl ∈ Rd∗d and Wr ∈ Rd∗d respectively represent the left and
right weight matrices for the extraction of the word semantics; bl ∈ Rd and br ∈ Rd are the
corresponding bias vectors. A node vector in the level j + 1, vj+1

i is calculated in terms of a
pair of adjacent node vectors from the previous level j. Once we reach the final level n, the
final output vector vo can be calculated by a linear layer on top with U ∈ Rp∗d and b ∈ Rp as
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its parameters. A non-linear activation function is applied after each operation. An example of
a sequence of three words (n = 3) is illustrated in Figure 3.22.

Wl Wr Wl Wr Wl Wr

add add

Wl Wr Wl Wr

add

v1 v2 v3

vo

Figure 3.22 – Diagram of the tree-free recursive neural network (TF-RNN).

Clarification about the boundary
With a sequence of n words, each layer 0 <= j < n will have n − j vectors. At layer j,

the leftmost Wl matrix (resp. rightmost Wr matrix) is not included in the calculation for level
j + 1. For single words we apply zero-padding to the left and right, so single-words’ output is
actually the sum of the left and right matrices.

Complexity
We compare the complexity of different neural network layers which can encode sequences

of variable length, the RctNN and self-attention encode the input sequence to another sequence
of equal length while our proposal TF-RNN and CNN with padding and pooling (right part of
Figure 3.21) encode to one fixed-length vector.

We compare mainly two criteria for one layer of each architecture, the first is the compu-
tational complexity which represents how many weight parameters are involved in the linear
transformation; the second is the maximum dependency length which is the length of the paths
forward and backward signals have to traverse in the network. This is critical for learning long-
range dependencies in many sequence transduction tasks. We show the complexity comparison
in Table 3.1.

For the computational complexity, the RctNN has n times linear transformations with ma-
trices in Rd∗d, while the CNN is more expensive than RctNN by a factor of the kernel width k
which can be seen as having k times the weight matrices in a RctNN. The self-attention is faster
for most of cases since usually n < d. Our proposal seems to be the most expensive since the
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RctNN CNN Self-Att TF-RNN

Computational complexity O(n · d2) O(k · n · d2) O(n2 · d) O(n(n−1)
2 · d2)

Dependency length O(n) O(n
k
) O(1) O(n2 )

Table 3.1 – Comparison of complexity. n is the input sequence length, d means the model
dimension where we assume d = dinput = dhidden = doutput for simplifying the comparison. k
is the kernel width for CNN.

complexity is quadratic in terms of input length and model dimension, however, keep in mind
that our objective is to encode phrases which are most of the time n-gram with n ∈ [1, 5]. For
unigrams and bigrams our encoder is less complex than RctNN and CNN. Besides, our encoder
is a one-layer architecture compared to the self-attention which has a “depth” of 8 heads in the
Transformer-base architecture.

The shorter the dependency length is, the easier the model memorizes long dependencies.
Because the self-attention is a dynamic fully-connected layer, it traces each input position with
one linear transformation. As for our proposal, we can see that it is linearly related to the
input length, yet again since our inputs are mostly short sequences, this is not considered as
problematic in our scenario.

3.6.3 Evaluation

We have conducted a set of experiments on the phrase synonymy and similarity tasks. Base-
lines approaches are pre-trained models and context means that we train the corresponding
phrase encoder with an encoder-decoder architecture which will be detailed in the next chapter.
The BERT and ELMo inputs can be categorized as contextualized embeddings considering
their context training properties. Static means either the 400 dimensional static word embed-
ding vectors obtained from concatenating the pre-trained fastText11 vectors and vectors trained
on small specialised domain corpora for the phrase synonymy task (See Section 2.4 for more
details), or the 64-dimensional static word embedding vectors provided by the Semeval 2017
12 dataset for the phrase similarity task. Skip-gram-ext is the extended Skip-gram presented
in Section 3.2.2 (Artetxe, Labaka and Agirre, 2018b). Finally, we have three types of input
embedding:

• Skip-gram-ext. 300 dimensional embeddings trained on the specialized domain corpora

11https://fasttext.cc/
12http://alt.qcri.org/semeval2017/task2/index.php?id=data-and-tools
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where N-gram phrases are considered as one single unit in the embedding look up table.

• Static. The 400 dimensional static word embedding vectors obtained from concatenating
the pre-trained fastText vectors and vectors trained on small specialized domain corpora.

• BERT or ELMo. Pre-trained contextualized embeddings with feature-based usage set-
ting.

In addition, we have explored three different methods to pool a single vector representation
from a vector sequence:

• mean. The addition based approach can be applied to both the static and the contextual-
ized input embeddings.

• reduce. Use an output at one specific step of a sequence to represent the whole input
sequence for the contextualized embeddings. For ELMo we use the last step as in many
standard sequence model while for BERT we use the first step which is the special token
“[CLS]” as it has been used for the classification tasks in Devlin et al. (2018).

• ELMo-Peters et al. (2018). The original pooling method proposed in the work of ELMo.
It concatenates the first and the last step token embeddings to represent a sequence. Note
that for single-words, we simply duplicate the only embedding and concatenate the two
identical vectors.

To compare our proposed TF-RNN encoder with other architectures, we also implemented
several neural networks which do not structured input: RecurrentNN, CNN and Transformer
cell. To conclude, we have four types of phrase encoder:

• CNN (0.4M parameters). The CNN has a kernel size of 2 and a zero-padding to the left
and right of one phrase so that even single-word phrases can be encoded.

• RctNN (0.5M parameters). A regular recurrent neural network which always applies a
left binary tree to generate the final vector.

• Transformer. (5M parameters). In order to be comparable with other architectures in
parameter number, we use a small Transformer encoder with 4 layers and 4 heads, the
hidden dimension size is 2 times the model dimension.

• TF-RNN (0.5M parameters). Our proposed phrase encoder presented above.
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Phrase synonymy
Each dataset of the phrase synonymy task contains phrases of variable lengths and for each

phrase, the reference phrase can be different in length, for example, “wind turbine” and “wind-
mill”. The results are shown in Table 3.2.

Method Synonymy dataset
WE-fr WE-en BC-en

Baselines

Skip-gram-ext <0.5 <0.5 23.30
Static-mean 5.29 12.19 39.65
BERT-reduce 4.07 10.44 26.04
BERT-mean 4.49 16.59 36.58
ELMo-reduce 1.54 4.09 26.23
ELMo-mean 7.37 5.20 29.27
ELMo-Peters et al. (2018) 8.97 9.60 28.28

Context

Static-CNN 7.42 15.71 35.75
Static-RctNN 12.89 20.53 42.60
Static-Transformer 4.62 15.82 35.90
Static-TF-RNN 15.06 33.47 44.84

Table 3.2 – Overall MAP comparison for the phrase synonymy task. We have introduced the
data set for BC-en in Section 3.5. Details for the WE corpus can be found in Appendix A.1.2
and the gold standard for WE is in Appendix A.3.1.

Phrase similarity
The phrase similarity task dataset also contains phrase comparison pairs of variable lengths

such as “Harry Potter” and “wizard”, “window blind” and “curtain”. The results are shown in
Table 3.3.

Discussion
Our approach with concatenated static word embeddings and the TF-RNN as phrase encoder

has the best results in phrase synonymy task. While the Transformer encoder has achieved
the best result for Semeval2013 and the second best result for Semeval2017 phrase similarity
task. The TF-RNN has managed to obtain the third best result for the phrase similarity task
on Semeval2017. Given that the Semeval2013 dataset does not provide any textual data and
the model is trained on the textual corpus of Semeval2017, the results on Semeval2013 for the
context prediction approaches are biased by the data availability. Moreover, even compared
to the approaches with contextualized embedding input, for the most of the time the context
prediction approaches (last four lines) have better results on the datasets that provide a textual
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Method Similarity dataset
Semeval2013† Semeval2017

Baselines

Skip-gram-ext 0.378 76.827
Static-mean 26.910 38.843
BERT-reduce 0.754 12.735
BERT-mean 19.482 36.378
ELMo-reduce 35.112 37.968
ELMo-mean 37.991 36.207
ELMo-Peters et al. (2018) 36.233 31.420

Context

Static-CNN (29.890) 42.245
Static-RctNN (21.720) 42.961
Static-Transformer (39.524) 49.324
Static-TF-RNN (22.003) 44.382

Table 3.3 – Overall comparison of correlation score for the similarity task. The Semeval cor-
relation score is the harmonic mean of Pearson and Spearman scores. A † indicates that the
corresponding corpus for training a neural network is not available. In the case of the context
based approaches, we use the network trained on the Semeval2017 corpus, as it is also a general
domain corpus. Details of the data set can be found in Appendix A.2.2 and A.3.2

.

corpus to train the model. Although the contextualized embedding models capture the inner
relation between each component word in a phrase, it cannot exploit the context information
of the phrase during the test phase or if the phrase is out of the training corpus, while the
encoder-decoder training based approach memorizes and generalizes the context information of
different phrases in the training corpus (See the next chapter). This confirms again the hypoth-
esis of Harris (1954) and that the context information of a phrase is meaningful for learning
the phrase representation. Moreover, if we compare different phrase encoders, our proposed
TF-RNN outperforms the existing neural networks (even the Transformer encoder with signifi-
cantly more parameters) on the synonymy task on every dataset and obtains comparable results
on the similarity tasks. Therefore we believe that carefully representing the phrase following a
relevant syntactical structure can generate better vector representations.

Among the non encoder-decoder training based approaches (the first seven lines), first the
extended Skip-gram works very poorly for the phrase synonymy task. This is because many
phrases during the inference are freely combined so they may not appear in the training cor-
pus. As a consequence, these phrases do not have any representation in the look-up table. This
phenomenon can also be observed on Semeval2013 similarity task. However, it performs sur-
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prisingly well for the similarity task on Semeval2017. The reason probably lies in the fact that
Semeval2017 has a large training corpus and all the phrases in our test are presented in the
training corpus. We also notice that the contextualized embeddings (from the second to the
fifth lines) are not better than the static embeddings for short sequence tasks. In fact the static
embeddings hold the best results on the BC dataset. For the contextualized embedding models,
it seems that the mean of each output vector works better for BERT and each of the three pool-
ing method has its own advantage for ELMo. When comparing the BERT and ELMo models
with mean representation, we can see that the BERT model has relatively decent results on the
English synonymy datasets while the ELMo model is more effective on the French dataset and
the similarity task. Our explanation is that, as the BERT model is a multilingual model mixed
with 104 languages, it is not surprising that the model is biased by the English training corpus.
By contrast, the ELMo French model is a separate model trained only on French data. For
the similarity task, the ELMo model largely outperforms the BERT model on the Semeval2013

dataset although the two models have similar results on the Semeval2017 dataset.

In addition, we provide a qualitative evaluation on the phrase analogy task using the stactic
word embeddings. The phrase analogy task is identical to the word analogy task, we only
replace words by longer linguistic units. We try to address the question a to a’ is like b to

?, formally written as a : a′ :: b : b′, as in the famous example of “man to woman is like
king to queen”, and “king - man + woman” results in a vector very close to “queen” (Mikolov,
Sutskever, et al., 2013). Since we have no available phrase analogy reference, we show 3
representative samples found in the WE corpus to illustrate the properties of the proposed model
compared to the state-of-the-art approaches by exploratory analysis.

The results are shown in Table 3.4. Clearly, our proposed model achieve better results com-
pared to addition based representations. Moreover, our model manages to reduce the penalty
inherited from the word embedding problem reported in other works that b− a+ a′ results ba-
sically in a vector close to b or a′ (Schluter, 2018). This phenomenon can been observed more
easily from the results of the addition based approach, the results are always phrases similar to b
or a′. However our model shows relatively strong relatedness to all the three inputs. If we look
at the results from the additive approach, “wind power tank - wind power capacity + hydrogen
storage” basically leads to a vector close to “hydrogen storage”, thus missing the storage device
meaning that our model is able to retrieve. The same happens to “marine animal - marine mam-
mal + marine epifauna” which leads to “epifauna” while we are able to retrieve “marine fish”.
We also observe that the model is able to capture the key information in the phrases which is
not always the syntactic head, for example it is “safety” not “glass” that should appear in the
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TF-RNN ADDITION

wind power capacity : hydrogen storage :: wind power tank : ?

hydrogen storage device storage of hydrogen
gas storage tank hydrogen storage system
hydrogen storage system hydrogen storage device
hydrogen system gas storage tank
hydrogen solution hydrogen

marine mammal : marine epifauna :: marine animal : ?

marine fish epifauna
marine environment marine
marine site non marine
conservation of marine biodiversity marine fish
marine zone marine environment

safety equipment : safety standard :: safety glass : ?

safety concept glass fibre
safety requirement make of glass
carbon glass carbon glass
make of glass safety
glass fibre occupational safety

Table 3.4 – Top 5 phrases similar to b− a+ a′
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phrase close to “safety glass - safety equipment + safety standard”, the addition model vector
is clearly overwhelmed by the meaning of “glass”. Overall, phrase representation of TF-RNN
improves the rank for highly related phrases for each analogy.

3.7 Synthesis

Modeling sequence representation has been a challenging task. In this chapter we first study
the relatively simple approaches which do not require parameter training. Despite of the
simplicity, the addition approach has always a fairly acceptable performance on many NLP
tasks including our synonymy and similarity tasks. One drawback of these approaches is that
they all ignore the inner relation between phrase components.

Another simple approach to obtain sequence representation is to treat the sequence as one
single token. By doing this we can easily apply single-word representation learning approaches
such as CBOW or Skip-gram. In this line, the work of Artetxe, Labaka and Agirre (2018b)
proposes an extended skip-gram in order to encode phrases. Typically, this approach cannot
handle freely combined phrases that have not been “seen” during training.

In order to take the inner relation of phrase components into account while still being able
to generate a representation for freely combined phrases, we can rely on models that distribute
different weights to each token with regard to their position and association manner of the
phrase. This can be achieved by several neural networks such as the recurrent neural network
(RctNN), the convolutional neural network (CNN) and the popular variants of the recurrent
neural network, e.g, Long short-term memory (LSTM) and gated recurrent unit (GRU).
One of the successful applications is the embedding from language models (ELMo) which
can be seen as a substitution of the static word embeddings such as CBOW and Skip-gram.

More recently, multi-head attention unit based architectures have made significant progress
on a wide range of general NLP tasks. As nearly all of these models incorporate the Trans-
former (Vaswani et al., 2017) layer which contains several multi-head attention layers, we
categorize them as transformers, including the original Transformer, BERT, Open-gpt and
XLNET which is the latest application to date (June 2019). Note that these models encode
sequences of variable lengths into sequences of the same length, while we would like to encode
sequences of variable lengths into one single fixed-length vector. Although we can use the rep-
resentation at one particular step, we assume it is biased by the input at that step by analysing
the computation.

Finally, we propose a new architecture based on the Recursive neural network (RNN)
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which is often used for constituent parsing with a tree structure, and remove the dependency
of a tree structure since it is not a trivial resource for us. We call it the Tree-free recursive
neural network (TF-RNN). The architecture fits quite well our objective of encoding phrases
which are actually short sequences. Our experimental results on specialized-domain corpora
have outperformed state-of-the-art systems. Moreover, this architecture with BERT or ELMo
as input layer has shown promising results on our experiments on general-domain corpora.
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CHAPTER 4

UNSUPERVISED TRAINING

In the previous chapter, we presented plenty of neural networks for encoding sequences. But we
have not seen how these networks can be trained without supervised information. Recall that in
our scenario, we would like to learn phrase representations using only textual information. In
this chapter we will cover two classes of unsupervised training strategies: the Siamese network
and the encoder-decoder language modeling. Next we discuss how we can exploit the pre-
trained models which can be split in two kinds: the feature extraction based approach and fine-
tuning based approach. Finally we propose a new unsupervised training objective for learning
phrase representations. On the phrase synonymy and similarity tasks, the results on comparison
of different training objectives show the effectiveness of our proposal.

4.1 Siamese networks

Siamese networks were introduced by Bromley et al. (1993) and consists of two identical net-
works joined at their output with shared parameters θ. This kind of network can be learned by
back-propagating the distance between the two outputs. The training objective is to minimize
the encoding distance of the two branch networks or maximize the similarity, e.g., the cosine
similarity.

argmin
θ
||BN(x1|θ)− BN(x2|θ)||

argmax
θ

cos(BN(x1|θ),BN(x2|θ))
(4.1)

where BN means one branch network forward pass. This regression model can train a network
to capture common features of similar inputs. It has been successfully applied to many computer
vision works (Koch et al., 2015; Zagoruyko and Komodakis, 2015; Liwei Wang et al., 2016;
Martin et al., 2017). In NLP, Kenter et al. (2016) exploit it in the CBOW model (Mikolov,
Sutskever, et al., 2013) to get word embeddings which have better performance for sentence
representations, while Das et al. (2016) use a deep convolutional Siamese network to retrieve
similar questions. This kind of network is widely used in the computer vision domain. The
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basic idea is shown in Figure 4.1:

input 1 input 2

branch
netw

ork
1

branch
netw

ork
2

distance loss

θ

Figure 4.1 – A Siamese network.

4.1.1 Pseudo-Siamese network

A pseudo-Siamese network is a network with two branches that don’t share the same parameters
(Zagoruyko and Komodakis, 2015; Liwei Wang et al., 2016). Our baseline model with the
pseudo-Siamese network tries to learn the phrase representation by minimizing the distance
between the phrase and the context (the sentence containing the phrase), this is also inspired by
the distributional hypothesis (Harris, 1954), i.e., words in similar contexts tend to have similar

meanings. In Figure 4.1, each branch has its own parameters, denoted by θ1 and θ2.

argmin
θ1,θ2

||BN1(x1|θ1)− BN2(x2|θ2)||

argmax
θ1,θ2

cos(BN1(x1|θ1),BN2(x2|θ2))
(4.2)

In regard to our work, it seems quite suitable to apply a pseudo-Siamese network to train
our phrase encoder. Following the distributional hypothesis, it is logical to assume that a phrase
representation is close to its surrounding contexts. Therefore we use a phrase encoder as a
branch network and a context encoder as the other branch in our pseudo-Siamese network. We
will present the results later in this chapter.
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4.2 Encoder-decoder architecture

The encoder-decoder architecture, also known as seq2seq, is a model that aims to map a fixed
length input with a fixed length output where the length of the input and output may differ.
Introduced by Sutskever et al. (2014), the encoder-decoder architecture has been successfully
applied to an extensive range of fields such as automatic summary and question anwsering. And
in NLP, it is mainly used in neural machine translation, where the encoder network encodes a
source language sentence and the decoder network decodes it into a target language sentence
with a potentially different length. The overview of this architecture is shown in Figure 4.2.

x1 x2 x3 x4

encoder (RctNN)

encoding

decoder (RctNN)

y1 y2 y3

Figure 4.2 – Diagram of a general encoder-decoder architecture. A common framework uses
RctNN or its variants as the encoder and the decoder.

Recall that the attention mechanism described in Section 3.4.1 can be optionally integrated
for the encoder in order to tackle long dependency problems (Bahdanau et al., 2014; Luong,
Pham, et al., 2015b).

As for the encoder and the decoder, the most common architecture is the RctNN and its
variants such as the LSTM and the GRU. Usually, we stack multiple layers in order to capture
more complex relations and use bidirectional layers for the encoder so that both left-to-right and
right-to-left language dependencies affect the sequence encoding, as presented in Figure 4.3.

The stacked RctNN can be concluded as:

hlt = f(U lhlt−1 +W lhl−1
t + bl) (4.3)

where l means the l-th layer and t is the time step. The hidden states for the first layer h0
t equals

to the input xt. Concerning the bidirectional RctNN, the hidden states of each direction are
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x1 x2 x3 x4

l1 l1 l1 l1
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1 h1
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l3 l3 l3 l3
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1 h4
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4

h3,4
1 h3,4

2 h3,4
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4

First biRctNN

Second biRctNN

Figure 4.3 – Diagram of a stacked bidirectional encoder architecture. Solid lines represent the
linear transformation and dash-dotted lines the concatenation.
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concatenated to generate a new double-dimensional hidden vector. There are two sub-layers in
one bidirectional RctNN layer, suppose that the first sub-layer is a left-to-right layer and the
second sub-layer is a right-to-left layer, then for one bidirectional layer we have:

h1
t = f(U1h1

t−1 +W 1xt + bl)

h2
t = f(U2h2

t+1 +W 2xt + b2)

h1,2
t = h1

t ⊕ h2
t

(4.4)

where ⊕ means the concatenation and h1,2
t implies the concatenated vector of h1

t and h2
t , xt is

the current input at time step t. Note that in a stacked bidirectional RctNN scenario, xt = ht.

4.3 Training objectives

In this section, we discuss the training objectives to train a sequence model. These training
objectives are mainly used in an encoder-decoder or autoencoder architecture which can be
seen as a special case of an encoder-decoder architecture where the output has the same length
and is in the same space as the input.

4.3.1 Autoregression: Next word prediction

The most common way of training a sequence model in an unsupervised manner is to use an
autoregressive training objective (A. M. Dai and Quoc V Le, 2015; Peters et al., 2018; Radford
et al., 2019): distributing the probability for the next or previous word given a sequence of words
[x1, x2, ...xT ]. The training objective is to maximize the product of the conditional probabilities
at each time step t:

arg max
x

T

Π
k=1

P (xk|x1, x2, ..., xk−1) In a forward model

arg max
y

T

Π
k=1

P (xk|xT , xT−1, ..., xk+1) In a backward model
(4.5)

This objective allows us to train a sequence model without supervised downstream task data.
All it needs is the text. The decoder, at the inference time, can have two different prediction
behaviours. Let’s see this a little bit more in detail.

Greedy Search
Greedy search is fairly straightforward: at each step of the prediction output, the model
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selects the best candidate according to the current probability distribution. In other words, for
the i-th output, the candidate with the highest probability, ŷi, will be stacked in the output
sequence [ŷ1, ŷ2, ..., ŷi−1, ŷi].

Beam Search
The output sequence of the greedy search algorithm is remarkably impacted if a bad can-

didate is selected at the earlier positions, because once the candidate is selected, it is fixed in
the output sequence and all the next tokens are predicted according to the previous predictions
which contain a false one. The common solution to this problem, instead of considering only
one candidate sequence at each step, considers several alternative sequences that equals to the
beam width, b. Note that these sequences should have the top b probabilities. Consequently, for
the step i, we need to stock b sequences:

[ŷ1
1, ŷ

2
1, ..., ŷ

i−1
1 , ŷi1], [ŷ1

2, ŷ
2
2, ..., ŷ

i−1
2 , ŷi2], ..., [ŷ1

b , ŷ
2
b , ..., ŷ

i−1
b , ŷib]

where ŷik is the prediction for the i-th step of the k-th candidate sequence. Apparently, the
greedy search is a special case of the beam search where the beam width equals to 1. Usually,
beam search improves the prediction quality but also leads to an increase of the time and space
complexity.

In practice, since the sequence length is often very long, the factorization of each probability
tends towards zero, leading to calculation instability. Instead of calculating the factorization
of the probabilities, we use the sum of the logarithm of each probability. This sum is then
normalized by the sequence length:

1
Tα

T∑
k=1

logP (xk|x1, x2, ..., xk−1) (4.6)

where α is a hyper parameter between 0 and 1 which determines the penalty for long sequences.

4.3.2 Denoising: Reconstructing input and Masked language modeling

Aside from the estimative training objective which predicts a probability distribution, another
popular unsupervised training strategy is to reconstruct the input text from its noised or cor-
rupted version. We call this kind of training objective denoising.

Undoubtedly, There are quite a lot of different ways to noise an input text. We present the
state-of-the-art method which is applied in BERT (Devlin et al., 2018). Given an input text
sequence, by the training data generator, a certain portion of tokens (0.15×0.8) are replaced by
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a special symbol [MASK] and some other tokens (0.15× 0.1) are replaced by a random token,
and then the model is trained to recover the original text from the noised version.

Since an autoregressive language model is trained to encode a uni-directional context (either
forward or backward), it is not effective at modeling deep bidirectional contexts. Because the
input inevitably contains the gold tokens in a bidirectional context, the model will be biased
since it has the gold information at each step. The denoising approach, however, can be applied
in an bidirectional architecture as the input does not contain the masked tokens.

The noising approach is also popular in preparing the data for cross-lingual tasks following
the idea of denoising autoencoders (Vincent et al., 2008), in order to truly learn the composi-
tionality of the input text in a language independent manner, Artetxe, Labaka, Agirre and Cho
(2018) alter the word order of the input sentence in a dual training system inspired by He et al.
(2016). The denoising training objective, which only leverages the monolingual information, is
to reconstruct the original version of the input sentence.

4.4 After the pre-training: feature based vs fine tuning

When the training of a model is finished, there are two ways of exploiting the pre-trained model.
The first one, which is fairly straightforward, is simply to run the pre-trained model with the
input and extract the output of some layers to form the features of the input. The second way
consists in fine tuning the pre-trained model with a downstream task such as sequence labeling
or classification. In this section we explain briefly these two strategies.

Feature based approach
The feature based strategy has a long history since the 1990s. The traditional co-occurrence

count based method (Church and Hanks, 1990; Dagan et al., 1994; Niwa and Nitta, 1994; Bul-
linaria and J. P. Levy, 2007; P. D. Turney and Pantel, 2010) represents a word by a sparse
co-occurrence vector and often applies the pointwise mutual information to associate the word
and its context. Neural network based methods Mikolov, Sutskever, et al. (2013) and Penning-
ton et al. (2014) represent a word by a dense embedding vector which has led to significant
improvements in major NLP tasks. These word-level static vectors can be incorporated into
other systems as the basic input units to generate higher level representations.

Fine tuning approach
Contextualized models (Peters et al., 2018; Devlin et al., 2018; Radford et al., 2019) are

sequence-level representations with word-level granularity. In fact, they all exploit word-level
representations as the basic input and output units. Once pre-trained, we can use these models
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in a specific task by stacking for instance some top layers on them. The difference between the
feature based and the fine-tuning based approach lies in whether we freeze the parameters of
these pre-trained models or not when we incorporate them in a task-specific training framework.

Discussion
The feature based approach extracts the output of the pre-tained model and uses this output

as static features of the input by omitting the gradients of the parameters, while the fine-tuning
based approach updates its parameters during the back-propagation of the training. The ad-
vantage of the fine-tuning based approach is that the whole system can be readjusted to the
task-specific training corpus but it is much more time and space consuming compared to the
feature based approach. Moreover, according to Devlin et al. (2018), similar performance can
be obtained (with -0.3 points in F1 CoNLL-2003 NER) using the same BERT model in the
feature and the fine-tuning based settings. This is particularly interesting because fine tuning
a large model with millions of parameters can be exceedingly long while updating only a few
layers is much more efficient.

Pertaining to our work, we choose to apply the feature based approach for the efficiency and
relatively comparable performance.

4.5 Contribution : Wrapped context modeling

In order to learn our phrase encoder in an unsupervised manner, we propose to exploit the
encoder-decoder architecture with a wrapped context prediction training objective.

Similar to the masked language modeling, the wrapped context prediction is a denoising
approach, however, instead of reconstructing the original input text, our proposal aims to pre-
dict the context of the input phrase. This seems to be similar to the continuous bag-of-words

(CBOW) algorithm but CBOW does not take word order into account, while the decoder outputs
each prediction based on previous predictions which is a sequential process.

Still, one disadvantage of predicting only the context is that the syntax of the output se-
quence is misguided by the missing phrase. Since most of the phrases are either nominal or
verbal, we decide to use a single universal random vector to wrap all the tokens of a phrase to
help the generator reconstruct a syntactically complete context during the system training.

As shown in the Figure 4.4, the wrapped context prediction training objective can be seen
as a specialized version of a “conditional CBOW” or “context masked language modeling”. On
one hand, each prediction is obtained by a conditional probability given the previous predic-
tions. On the other hand, the input text is composed of only the phrase span, which means that
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w1 w2 w3 w4 w5 w6 w7 w8

Feature extraction

Phrase encoder

Phrase vector

Decoder

w1 w2 wrap w6 w7 w8

Figure 4.4 – Overview of the proposed framework, wi is the i-th word in a sentence, wrap is the
token represented by the randomly generated vector for filling the phrase blank when generating
the context. In the example [w3, w4, w5] is the phrase sequence.

the context is completely omitted.

Evaluation

For the sake of comparison, we have conducted the same monolingual experiments as in
Section 3.6.3 with different training objective settings. The results are shown in Table 4.1. In
order to prove the effectiveness of the proposed training objective, we evaluate two more models
using two different training objectives with exactly the same experimental settings. The first
one predicts all the sentence tokens, represented by “plain”. The second one predicts only the
context tokens around the phrase without the wrapped phrase token, represented by “context”.

We can clearly see that the wrapped context training objective obtains consistently the best
results compared to other possible objectives in our scenario. Although the context prediction
strategy is fairly close, adding a wrapped token to replace the phrase allows the system to learn
from a syntactically more complete sequence. Predicting all the tokens including the phrase
is worse than the context prediction objective even if it predicts a syntactically complete se-
quence. The reason for this is possibly that predicting the phrase tokens makes the encoder over
related to the specific phrase components rather than the generalized features across different
but similar phrases, eventually it is difficult for the encoder to generate close vectors for these
phrases.
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Task Training objectives
Plain Context Wrapped

WE-fr 9.40 13.35 15.06
WE-en 30.08 32.85 33.47
BC-en 39.48 41.49 44.84

Semeval2013† 16.759 21.376 22.003
Semeval2017 39.223 43.079 44.382

Table 4.1 – Results of our system with the TF-RNN encoder and static embeddings with dif-
ferent training objectives. The BC-en data set is introduced in Section 3.5. The WE data set
information can be found in Appendix A.1.2 and A.3.1. The Semeval data set information is
presented in Appendix A.2.2 and A.3.2.

In addition to the encoder-decoder architecture, we have also evaluated the pseudo-siamese
network. Table 4.2 shows the results.

Task Architecture
pseudo-siamese encoder-decoder

WE-fr 3.84 15.06
WE-en 11.71 33.47
BC-en 32.18 44.84

Semeval2013† 0.345 22.003
Semeval2017 4.164 44.382

Table 4.2 – Comparison of the encoder-decoder framework with a pseudo-siamese network. The
two systems use the TF-RNN as phrase encoder. The WE data set information can be found in
Appendix A.1.2 and A.3.1. The Semeval data set information is presented in Appendix A.2.2
and A.3.2.

We can see that the pseudo-siamese network performs very poorly on all datasets, with
extremely large drops on the similarity. It is somewhat unexpected for us because it seems that
both frameworks follow the same distributional hypothesis (Harris, 1954). This may be due to
the nature of the comparison tasks or the small size of our training samples. It perhaps explains
why the encoder-decoder systems are becoming more popular in recent studies compared to
others.

Given the fact that the siamese network perform poorly in our monolingual experiments, we
only exploit encoder-decoder network in our cross-lingual framework.

Finally, we have also incorporated the pre trained general purpose language models such

104



4.5. Contribution : Wrapped context modeling

as ELMo and BERT as the input of the network. Note that to be fully comparable, we freeze
the pre trained BERT model so that it can be viewed as an alternative to the static embeddings.
We call these embeddings contextualized considering a word can have different corresponding
representation vector based on its context. We show the results in Table 4.3.

Task Embeddings
ELMo BERT Static

WE-fr 9.57 6.47 15.06
WE-en 21.39 26.66 33.47
BC-en 23.61 26.01 44.84

Semeval2013† 24.279 3.262 22.003
Semeval2017 47.703 29.078 44.382

Table 4.3 – Results of our system with the TF-RNN encoder and wrapped context objective with
different embeddings. The pre trained models are presented in Appendix A.5. The WE data set
information can be found in Appendix A.1.2 and A.3.1. The Semeval data set information is
presented in Appendix A.2.2 and A.3.2.

Recall that the static embeddings for the synonymy task are open domain pre-trained vectors
reinforced with specialized domain embeddings, trained on small specialized domain corpora.
This solution has been exploited to generate meaningful embedding vectors on specialized do-
main corpora for bilingual lexicon extraction (Liu et al., 2018; Hazem and Morin, 2017).

The static embeddings concatenated with specialized domain information achieve clearly
better results on the specialized domain datasets (WE and BC). On the contrary, the ELMo
model holds the best results for general domain corpora. This gives us the intuition that the
availability of domain specific information outweighs the choice of a particular word embedding
architecture. For a specialized domain corpus, it is more effective to exploit domain information
to improve the model rather than using more advanced complicated embeddings.

Results with the BERT model are the worst on the French and the Semeval datasets. Yet,
it outperforms the ELMo model on English synonymy datasets. This reveals that the model is
less effective on non-English datasets. As for the similarity task, we assume that increasing the
training size (e.g., 831 phrases in Semeval2017 vs 8,923 in WE-en) would improve the system
because the BERT model use a subword tokenizer that tokenizes often a word into multiple
units. This could make it more difficult to generalize meaningful parameter weights during
training.
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4.6 Synthesis

This chapter completes the the previous chapter on how to train a phrase encoder. We begin
with explaining two popular unsupervised training frameworks, the siamese network and the
encoder-decoder architecture.

The second part of this chapter focuses on the training objectives for the encoder-decoder
architecture as there is a wide variety of suitable training objectives. We present the two most
popular objectives: the autoregression and the denoising approach. To sum up, the autoregres-
sion approach predicts the next token according to the previous text tokens, while the denoising
approach reconstructs the original input tokens given a corrupted version.

Once we have trained our encoder, we can apply it to our task with two exploitation strate-
gies: the feature based and the fine tuning approach. Since the two approaches have compa-
rable performance according to the ablation tests presented in Devlin et al. (2018), and the fine
tuning approach is much more time and space expensive, we decide to use the feature extraction
approach.

Finally, we introduce our proposition, wrapped context prediction, which is a new un-
supervised training method. The proposed training objective fits well our scenario where we
would like to train a phrase encoder with only text information while retaining the syntactic
completeness of the original input sentence. Our evaluation experiments have confirmed this
intuition. Indeed, results on general and specialized domain exhibit a reasonable performance
for the phrase synonymy and similarity tasks.
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BILINGUAL WORD ALIGNMENT

In order to align multi-word phrases of different languages, we have to study word-level align-
ment first. Word-level alignment can be classified into two categories according to the word
representation method. As presented in Chapter 2, we will first look at the word alignment
using the distributional representation which is followed by the presentation of our contribu-
tions to the distributional approach for the bilingual word alignment. Then we address the
distributed representation based word alignment. Finally, we present our proposals to improve
the distributed representation based approach on both general and specialized domains.

5.1 Distributional representation based approach

Distributional word representations obtained from a word co-occurrence matrix have been ap-
plied to word alignment since the 1990s (Fung, 1995; Rapp, 1999). This section introduces
word alignment based on the distributional representation whose detail can be found in section
2.1. This approach to word alignment is often called the standard approach.

5.1.1 Standard approach

The historical context-based projection approach, also known as the standard approach (SA)
has been studied in a variety of works (Fung, 1995; Rapp, 1999; Chiao and Zweigenbaum,
2002; Bouamor et al., 2013; Hazem and Morin, 2016; Jakubina and Langlais, 2017). The first
step consists in building the distributional word representation for each language (see Section
2.1 for details).

Next we do the essential step of the standard approach: project the word vector of the source
language to the target language space by translating each context via a bilingual lexicon. Let
uw be the word vector for the source word w, and vw the projected word vector for the source
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word w in the target language space. The process can be written as:

vwi =
∑

k∈trans(i)

1
Dk

uwk (5.1)

where i is an index of the distribution word vector, which is actually a target word. k represents
a source word which can be translated by i. Since one target word i can be the translation
of multiple source words, the value for i in the projected vector v should be the sum of each
possible translation uk. Moreover, each translation’s value is normalized by the total number of
translations, Dk. Let’s see the example in Figure 5.1:

people

in

pay

ride

ticket

peuple

dans

payer

monter

tour

10

20

10

5

3

10

20

10

2.5

2.5

source word vector upassenger projected vector vpassenger

Figure 5.1 – An example of projecting a source word vector to the target language space.

Here in the example, suppose we project an English word vector to the French vector space,
and we have a vector upassenger for the source word “passenger”. The word “passenger” co-
occurs with 5 words (“ticket”, “ride”, “pay”, “in” and “people”) within the predefined window
in the training corpus. According to the bilingual lexicon we align each non zero value to its
corresponding translations. For instance, vpassengerpeuple = upassengerpeople = 10, and since “ride” has two
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translations that are also in the target corpus, we have vpassengertour = vpassengermonter = 1
2u

passenger
ride =

2.5. It should be pointed out that the translations of “ticket” do not occur in the target corpus,
so it will be ignored in the target space vector.

The final step is a comparison process where we compare the projected word vector with
all the candidate vectors, which most of the time are the word vectors for all the words in the
target corpus vocabulary. Therefore we can rank the candidate words and eventually choose
the target word with the highest score as the translation word. In our work, we have chosen
the cosine similarity as our comparison score because it is the most widely used score and
easy to parallelize because the comparison process with cosine can be calculated by a matrix
multiplication between normalized vectors.

To conclude the procedure, we list the steps to implement the standard approach:

1. Construct and normalize the word-context co-occurrence matrix for both the source and
target languages. (See Section 2.1 for more details.)

2. Map the source co-occurrence matrix to the target language space via a bilingual lexicon.
(See Section 5.1.1 for more details.)

3. Calculate and rank the similarity between mapped source word vectors and target word
vectors.

5.1.2 Standard approach with data selection

The standard approach can also be extended by exploiting external data as discussed in Section
2.3, where motivation and detailed steps are explained. The difference between the standard
approach and the standard approach with external data lies in the word representation construc-
tion. Once the word vectors for the source and the target language are built, we follow the same
process as in the standard approach.

In our work, we have chosen the SSA (selective standard approach) since it has comparable
performance with GSA (global standard approach) and is much more time and space efficient
(Hazem and Morin, 2016). In order to validate the effectiveness of SSA, we have evaluated SA
and SSA on two corpora, the results are shown in Table 5.1. It is obvious that using external
data greatly improves the standard approach for word alignment task.
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SA SSA

BC 25.9 56.5
WE 15.6 44.4

Table 5.1 – Comparison (MAP%) between SA and SSA on BC and WE corpus. Details of the
corpora can be found in Appendix A.1.1 and A.1.2. The gold standard are the same as in the
work of Hazem and Morin (2016) whose details are presented in Appendix A.3.3. We use the
news commentary corpus presented in Appendix A.2.1 as the external data for SSA.

5.2 Contribution: Standard approach with DSC and WPMI

The key step for word alignment is the word vector representation. We propose two improve-
ments for word co-occurrence vectors. The first addresses the problem of long contexts and the
second twist is supposed to fix the over- and under-estimation problem of mutual information.

5.2.1 DSC: distance sensitive co-occurrence

In the standard approach, we note that some context words in the window are not effectively
related to the central word. Usually the further the latter is away from a context word, the less
they are semantically related. This effect is more obvious especially after stop word filtering.
A word originally far from the central word can appear in the context window. This makes the
context vector less relevant as a representation for the central word. To reduce this effect, we
propose a weighted co-occurrence depending on the distance between the two words, denoted
by Distance-Sensitive Co-occurrence (DSC).

DSC(w, c) = g(c|w)× cooc(w, c) where g(c|w) = ∆(w, c)−λ, λ ∈ [0, 1] (5.2)

where w and c respectively denote the central word and the context word, g(c|w) the weight
that is distributed to c as the context of w, ∆ is the distance between the two words and λ a
hyper-parameter that determines the degree of penalization for distant word pairs. Note that λ
= 0 is equivalent to a uniform distribution.

5.2.2 WPMI: weighted point-wise mutual information

Another limitation in the standard approach is that MI overestimates low counts and underesti-
mates high counts (Hazem and Morin, 2016). In order to overcome this drawback, we propose
the weighted mutual information (WMI) inspired by the work of Pennington et al. (2014) where
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they introduce a function to smooth word co-occurrences. The original function is a weight
function which prevents the overestimation of word co-occurrences. We also use it as a weight
function for MI:

WMI(w, c) = f(cooc(w, c))×MI(w, c)

f(x) =

(x/xmax)α, α = 3/4, xmax = 20, if x < xmax

1 otherwise

(5.3)

We have kept the same value for the hyper-parameter α which is 3/4. Concerning the
xmax, since our corpora size is much smaller than the one in their work, we decide to make
it correspondingly smaller (20). By adding the weight function, the output value for low co-
occurrence counts is in fact reduced and the high co-occurrence counts are not impacted because
their weight coefficient is always 1.

5.2.3 Evaluation

We have applied our improvements on both the standard approach (SA) and its variant, the
selective standard approach (SSA). The experiments are always carried out on the same corpora
(BC: breast cancer and WE: wind energy) which have been used for monolingual experiments.
The goal is to verify that our proposals improve the word alignment performance with word
vector projection based approaches with distributional word representation. Our results are
shown in Table 5.2.

We observe in Table 5.2 that WMI alone improves the results compared to those obtained by
Hazem and Morin (2016) with MI but also compared to those when using the Discounted Odds

Ratio (Evert, 2005) as the normalization method, where the MAP is 0.270 for BC and 19.4 for
WE (in Figure 2.2). This shows the interest of penalizing small occurrences to compensate the
overestimation of the original MI. The second observation is that DSC alone also improves the
results. This confirms our intuition that the further a context word is from its central word, the
less relevant it is. Finally, we see that combining both enhancements gives the best result. So
we could consider that the two enhancements are not mutually exclusive. Another observation
is that the improvement of DSC for WE is indeed smaller than for BC, but the tendency is
always improving. So we think our hypothesis above holds true for the WE data. Again we can
see the same tendency when combining WMI. Note that, despite the difference in improvement
between the two datasets, the enhancement that our approach offers is still relevant.

The results in Table 5.2b shows that WMI is less efficient when the data is enriched because
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Standard Approach BC WE

Hazem and Morin (2016)† 25.9 15.6
SA + WMI 28.9 21.4
SA + DSC 27.4 15.8
SA + WMI + DSC 29.5 21.8

(a) Result (MAP%) of standard approaches for
bilingual word alignment

Selective Standard Approach BC WE

Hazem and Morin (2016)† 56.5 44.4
SSA + WMI 55.0 33.9
SSA + DSC 57.3 45.3
SSA + WMI + DSC 55.8 35.7

(b) Result (MAP%) of selective standard approaches
with NC corpus as the external data for bilingual word
alignment

Table 5.2 – Results of the word vector projection based approaches with distributional word
representation on bilingual word alignment. † indicates results obtained by our implementation
of the approach. Details of the corpora can be found in Appendix A.1.1 and A.1.2. The gold
standard are the same as in the work of Hazem and Morin (2016) whose details are presented
in Appendix A.3.3. We use the news commentary corpus (NC) presented in in Appendix A.2.1
as the external data for SSA.

the overestimation of small occurrences is smoothed by the addition of the enlarged overall data
as discussed in Hazem and Morin (2016). Moreover, since some words to be translated are quite
infrequent or even non-existent in the general corpus, it is possible that penalizing all the small
occurrences reduces discriminative features in the general corpus. Besides, although the results
of SSA are different the two corpora share again the same tendency: they both reach their best
when using DSC without WMI. However DSC always improves the results whether it is applied
alone or combined with WMI. As a consequence, it shows that the two enhancements are not
mutually exclusive with external data.

5.3 Bilingual word embedding

Word alignment with distributed representations or word embeddings has attracted a lot of at-
tention recently with respect to distributional representations. We name word alignment with
word embeddings bilingual word embedding. Recall that compared to the distributional word
vectors, word embeddings are much lower in dimension. This allows some mathematical oper-
ations scalable such as the singular value decomposition which is an essential operation for the
most popular bilingual word embedding approach. The first part of this section introduces this
approach, then we present several improvements.

112



5.3. Bilingual word embedding

5.3.1 Language space mapping via a linear transformation matrix

There exists two groups of bilingual word embeddings, the first one relies on some cross-lingual
signals such as document-aligned or label-aligned comparable corpora (Søgaard et al., 2015;
Vulic and Moens, 2016; Mogadala and Rettinger, 2016), or parallel corpora (Gouws et al., 2015;
Luong, Pham, et al., 2015a). We would like to mention that very recently, Lample and Conneau
(2019) proposed pre-trained cross-lingual Transformer-based language models using masked

language modeling like Devlin et al. (2018) and a translation language modeling training ob-
jective with parallel data to further improve the quality of pre-trained cross-lingual embeddings
for languages that share the same alphabet. This is an interesting advancement however the
models are not fully released, we will keep an eye on it for our future work.

The second one, however, leverages monolingual corpora to learn separately word repre-
sentations for each language, and then map the word representations into a common space by a
linear transformation with the help of a small bilingual seed lexicon. This approach is pioneered
by Mikolov, Quoc V. Le, et al. (2013). A large number of works tried since then to improve the
linear transformation method (Lazaridou, Dinu, et al., 2015; Artetxe, Labaka and Agirre, 2016;
Liu et al., 2018). Artetxe, Labaka and Agirre (2018a) compiled a substantial amount of similar
works (Mikolov, Quoc V. Le, et al., 2013; Faruqui and Dyer, 2014; Xing et al., 2015; Shigeto
et al., 2015; Y. Zhang et al., 2016; Artetxe, Labaka and Agirre, 2016; Smith et al., 2017) into a
multi-step bilingual word embedding framework. Since the work of Artetxe, Labaka and Agirre
(2018a) is more versatile and expressive while reaching the state-of-the-art results, we choose
to apply it in our word alignment system. We call it a linear transformation approach.

Data preparation

To implement the linear transformation approach, the first step is to build the word embed-
ding model for both the source and the target language. Then we extract a subset of each model
to build two matrices according to a bilingual seed lexicon, X and Z where each row Xi or Zi
corresponds to a word embedding vector. Let v and d be the size of the bilingual lexicon and d
the dimension size of the word embedding, X,Z ∈ Rv∗d.

Training objective

The original training objective of Mikolov, Quoc V. Le, et al. (2013) is a linear least square
problem:

arg min
W

∑
i

‖XiW − Zi‖2
(5.4)

where W is the transformation matrix which allows the product of XiW to be close to Zi.
Each pair (Xi, Zi) corresponds to the vectors of a translation pair in the bilingual lexicon. In
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the work of Mikolov, Quoc V. Le, et al. (2013) authors use the gradient descent to obtain
the transformation matrix. However, by mathematical analysis, we know that the matrix that
minimize the problem is:

Ŵ = (XTX)−1XTZ (5.5)

Later, Xing et al. (2015) introduced an orthogonal mapping to reduce inconsistencies in
the previous training objective. Artetxe, Labaka and Agirre (2018a) motivated orthogonality
as a way to preserve monolingual invariance, preventing the degradation in monolingual tasks
observed for other techniques. And Smith et al. (2017) underlined the fact that the orthogonality
is necessary for the mapping to be self-consistent.

By constraining the transformation matrix W to be orthogonal, Equation 5.4 can be written
as:

arg min
W

∑
i

(‖XiW‖2 − ‖Zi‖2 − 2XiWZT
i )

= arg max
W

∑
i

XiWZT
i , ‖Xi‖ and ‖Zi‖ are constant and ‖W‖ = I because of the orthogonality.

= arg max
W

Tr(XWZT )

= arg max
W

Tr(ZTXW ) , because Tr(AB) = Tr(BA)
(5.6)

Analytical transformation matrix learning

The optimal solution of Equation 5.6 can be solved analytically if we decompose ZTX with
singlar value decomposition (SVD):

SVD(ZTX) = UΣV T (5.7)

whereU , Σ and V T are intermediate matrices of SVD, and they are all in Rd∗d. Then Tr(ZTXW )
in Equation 5.6 can be written as:

Tr(ZTXW ) = Tr(UΣV TW ) = Tr(ΣV TWU) (5.8)

Since ZTX is a real matrix, U and V are thus orthogonal matrices by the properties of
SVD. Besides, W is also an orthogonal matrix by our constraint. Therefore V TWU is also
orthogonal.

Meanwhile, as Σ is a non-negative real diagonal matrix by the nature of SVD, Tr(ΣV TWU)
will be maximized only if the values in Σ are preserved. This is because each row or column
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in the orthogonal matrix V TWU is a normalized vector by the properties of orthogonality. The
product of a non-negative value and a value of a normalized vector is always inferior or equal to
its original value. Given what we have discussed, the matrix W that maximizes Tr(ΣV TWU)
is the matrix that makes V TWU equal to I . Consequently, we have:

V TWU = I

V V TWUUT = V IUT

W = V UT

(5.9)

where V and U can be obtained by applying SVD on ZTX which is the product of our input
word embeddings of each language.

After obtaining the tranformation matrix W , we can project any source word embedding es
to the target space, obtaining the mapped vector es−>t simply by multiplying it:

es−>t = esW (5.10)

5.3.2 Improvements

There are a substantial body of modifications proposed to improve the linear transformation
approach. We summarize several of them.

Length normalization and mean centering

Word embeddings should be normalized to guarantee that each training instance contribute
equally to the learning process of the transformation matrix. Xing et al. (2015) introduce the
length normalization motivated by the consistency between the Euclidean distance training ob-
jective and the vector comparison score which is the cosine similarity. Artetxe, Labaka and
Agirre (2016) indicate that when constraining the orthogonality and unit length, maximizing
the cosine similarity and minimizing the Euclidean distance are the same training objective.
Naturally the length normalization should be applied before the training.

Another modification to the input word embeddings before the training is the mean center-
ing. A centering matrix Cn is a square matrix in Rn∗n:

Cn = In −
1
n

1n (5.11)

where 1n is an all one matrix in Rn∗n. Suppose we have a matrix X ∈ Rm∗n, the centering
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matrix can be used to subtract the means of rows or columns for X:

CmX = X broadcast minus
(
mc1 mc2 ... mcn

)
= X −


mc1 mc2 ... mcn

mc1 mc2 ... mcn

...

mc1 mc2 ... mcn



XCn = X broadcast minus


mr1

mr2

...

mrn

 = X −


mr1 mr1 ... mr1

mr2 mr2 ... mr2

...

mrn mrn ... mcn



(5.12)

where mci represents the mean for the i-th column and mri the mean for the i-th row of X .

For the linear transformation approach, the goal of the mean centering is to subtract the
mean of each column of X , because two randomly selected word embeddings (rows) are not
similar in any dimension.

Whitening

Matrix whitening is a linear transformation, after which, the covariance matrix of the whitened
matrix is supposed to be identity if the original matrix is mean centered, which means that each
feature is uncorrelated. Let X ∈ Rv∗d be the matrix that we want to whiten which has al-
ready been mean centered by column means, recall that in our case each row represents a word
embedding and each column a feature. The covariance of two columns is:

COV(fp, fq) = E(fpfq)− E(fp)E(fq) (5.13)

where fp and fq are two feature vectors (columns of the matrixX) for any two feature dimension
p and q. Since X is mean centered, E(fp) and E(fq) equals to 0:

COV(fp, fq) = E(fpfq) (5.14)
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Therefore the covariance equals to the correlation. Then we have:

VAR(X) = COV(X,X) =


COV(f1, f1) COV(f1, f2) ... COV(f1, fd)
COV(f2, f1) COV(f2, f2) ... COV(f2, fd)

...

COV(fd, f1) COV(fd, f2) ... COV(fd, fd)


= E(XTX)− E(XT )E(X)

= XTX

(5.15)

For the whitening, by definition, let M be the whitening matrix for X , it satisfies:

VAR(XM) = (XM)TXM = I (5.16)

This also means that the features are uncorrelated and each feature’s variance is 1. Certainly
there exists a bunch of matrices that satisfy this condition, we can simply apply the commonly
used Mahalanobis or ZCA whitening, where M = (XTX)− 1

2 . This whitening matrix can be
calculated using SVD on X:

M = (XTX)− 1
2 = ((USV T )TUSV T )− 1

2

= (V (US)TUSV T )− 1
2

= (V STUTUSV T )− 1
2

= (V S2V T )− 1
2

= V S−1V T

(5.17)

where U , S and V are the intermediate matrices of SVD onX . Since S is a rectangular diagonal
real matrix, S−1 is simply obtained by applying the inverse on each value on the diagonal. In
addition, it is fairly easy to prove Equation 5.16 with M = V S−1V T :

(XM)TXM = (USV TV S−1V T )T (USV TV S−1V T )

= (UV T )TUV T

= V UTUV T = I

(5.18)

Concerning the bilingual word embedding, we apply the whitening transformation on each
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language word embedding matrices after the length normalisation and mean centering:

Xwhitened = XMws

Zwhitened = ZMwt

(5.19)

where X and Z are word embedding matrices of the source and the target language, Mws and
Mwt are respectively the whitening matrix for the source and the target language.

Re-weighting
Re-weighting is applied after the orthogonal mapping, where we map the two word em-

bedding matrices to a common space:

Xmapped = XwhitenedV

Zmapped = ZwhitenedU
(5.20)

where U and V are obtained from SVD(ZT
whitenedXwhitened) = USV T . Note that this is a little

different from Equation 5.6, where we used one single matrix W = V UT to apply on ZTX . In
fact, Equation 5.20 represents the same logic because:

Xmapped = XwhitenedW = XwhitenedV U
T = Zwhitened

XwhitenedV = ZwhitenedU
(5.21)

In addition, when whitening is applied, the cross-covariance is equivalent to the cross-
correlation and corresponds to the singular values in S.

The re-weighting transformation distributes some weights to each component where the
weights correspond to the cross-correlation (S), increasing the relevance of those that best
match across languages (Artetxe, Labaka and Agirre, 2018a). The re-weighting can be applied
to the source word embeddings or the target word embeddings.

Xreweighted = XmappedS if applied to source word embeddings.

Zreweighted = ZmappedS if applied to target word embeddings.
(5.22)

In implementation, we choose to apply the re-weighting to the target word embeddings since it
brings better experimental results.

De-whitening
The de-whitening transformation restores the original variances of a word embedding matrix

for each feature, this can be done with respect to the original variances in the same language or
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to those in the other language since the two matrices are mapped in a common space after the
mapping transformation. In practice, we choose to de-whiten the source word embeddings with
respect to the source language and vice versa. The de-whitening transformation happens after
re-weighting and can be implemented as:

Xdewhitened = XreweightedV
TM−1

ws V

Zdewhitened = zreweightedU
TM−1

wTU
(5.23)

If we put aside the re-weighting which can be seen as a broadcast multiplication with a weight
vector, the above equation is equivalent to:

XMwsV V
TM−1

ws V = XV

ZMwtUU
TM−1

wt U = ZU
(5.24)

Dimension Reduction
Dimension reduction is applied after de-whitening. It keeps the first n features ofXdewhitened

and Zdewhitened. This can be done by multiplying by 0d + In which is a d ∗ d matrix with an
identity sub matrix in n ∗ n. This can also be seen as a special re-weighting because the matrix
0d + In is basically a weight matrix where the weights for the first n features are 1 and 0 for the
rest.

Evaluation
We have tested several combinations of these modifications on the widely used bilingual

word alignment dataset between English and Italian1. We report our results in Table 5.3.

whitening re-weighting de-whitening dimension reduction accuracy

no no no no 39.27
yes no yes no 39.47
yes yes yes no 43.80
yes yes yes 150 43.33
yes yes yes 200 44.07

Table 5.3 – Bilingual alignment results (accuracy) on EN-IT.

We can see that combining all the modifications does bring significant improvements. Note
that the word embeddings are pre-trained 300 dimensional vectors, so we tried several different
parameter settings for the dimension reduction. We only list the best two settings in the table.

1http://clic.cimec.unitn.it/~georgiana.dinu/down/
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We find that the dimension reduction is only beneficial for the task if it is carefully tuned with
the most appropriate parameter. Furthermore, we have different input word vectors in our other
experiments which could lead to some inconsistency of the optimal dimension reduction pa-
rameter. Meanwhile, the gain is quite marginal if we compare lines 3 and 6 (43.80 vs 44.07).
As a consequence, we decide to drop the dimension reduction for our own datasets. Finally, in
our system the pipeline is composed of the following steps:

1. Train separately the word embeddings for both the source and target languages. (See
Section 2.2.3 for more details.)

2. Length normalisation, mean centering and re-normalisation for the word embedding ma-
trix of each language.

3. Whitening on the word embedding matrices of each language.

4. Orthogonal mapping on the sub-matrices where each row corresponds to a word embed-
ding in the bilingual lexicon.

5. Re-weighting on the word embedding matrices of each language.

6. De-whitening on the word embedding matrices of each language.

7. Calculate and rank the similarity between mapped source word vectors and target word
vectors.

5.4 Contribution: Bilingual word embeddings with
re-normalisation and data selection

In the original implementation of Artetxe, Labaka and Agirre (2016), we find that after mean
centering, word embeddings are no longer in unit length. In order to keep the embeddings length
normalized before the mapping, we add a re-normalisation process after the mean centering.
Interestingly, in a subsequent work, Artetxe, Labaka and Agirre (2018a) also re-normalize the
word embeddings right after mean centering. The effectiveness of the re-normalisation is shown
in Table 5.4.

In addition to re-normalisation, following the same idea as in the data selection for the
distributional representation, we also would like to exploit external data to enrich our word
embeddings. Word embedding systems usually need a large amount of data in order to obtain
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Bilingual Word Embedding Approach Accuracy

Mikolov, Quoc V. Le, et al. (2013) † 34.93
Artetxe, Labaka and Agirre (2016) † 39.27
+ Renorm. 39.60

Table 5.4 – Bilingual alignment results (accuracy) on EN-IT with comparison to other ap-
proaches. † indicates that the results are obtained from our our implementation of the original
work.

reliable word vectors. However the size of domain-specialized comparable corpora is generally
very modest (fewer than one million words).

In most of our scenarios, we only have some specialized corpora in small size, which are
often not enough for a neural network to generalize meaningful features. The proposal of Hazem
and Morin (2016) seeks external general data and learns distributional representations from
the sum of all the data. However it occasionally makes the specialized word representation
biased by the general corpus. This is especially the case when the specialized corpus contains
some infrequent or ambiguous words that have different meanings in different corpora. For
instance, the word “farm” in the WE corpus means a site for wind energy production while it
is more like to be related to an agricultural site in other domains. Considering these factors,
we propose to use a concatenated vector of the one trained on the specialized corpora and
on the general corpora as our new word vector. More specifically, we want to concatenate a
relatively small size word vector from the specialized corpora and a relatively large size one
from the general corpora. In our experiments, the word vector size for the word embedding
model trained on the specialized corpus is empirically set to be 100 and the size for the model
trained on the general corpus is set to be 300. Hence we preserve the specialized corpus features
albeit with less corresponding weight features in the transformation matrix. Consequently the
new concatenated word vector carries self-contained information from both corpora (see Figure
5.2). Another advantage is that by doing the concatenation, it is not necessary to retrain our
word embedding models over large corpora because we can use existing pre-trained models
available. This could save a great deal of time in practice while improving efficiency.

We have evaluated our data selection approach on our own datasets with specialized BC and
WE English corpora. We have also tested the re-normalisation on these specialized corpora.
The results are shown in Table 5.5.

It is clearly shown that the data selection improve dramatically the performance. In addi-
tion to that, we confirm again the effectiveness of the re-normalisation by comparing the last
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dimg dims

source vector

transformation matrix

dims

dimg

specialized corpora related features in output target vector

Figure 5.2 – Concatenated word embeddings. Let dimg be the dimension size of the word vector
from general corpora, and dims the size from specialized corpora. The transformation matrix
will have a total number of (dimg+dims)2 weight features. Among these, dimg×(dimg+dims)
will be source or target general corpora related features and only dims× (dimg + dims) source
or target specialized corpora related ones.

Bilingual Word Embedding Approaches BC WE

BWE 27.4 21.8
Hazem and Morin (2017) ‡ 82.3 -
BWE + data selection 82.4 83.1
BWE + data selection + Renorm. 83.2 83.1

Table 5.5 – Result (MAP%) of bilingual word embedding approaches on BC and WE. BWE
means our own implementation of bilingual word embedding with the length normalisation
and mean centering mentioned in Section 5.3.2. ‡ means that the results are reported from the
implementation of the authors, unfortunately it is not publicly available. Details of the corpora
can be found in Appendix A.1.1 and A.1.2. The gold standard are the same as in the work of
Hazem and Morin (2016) whose details are presented in Appendix A.3.3.
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two lines. Our final results in bilingual word alignment on specialized corpora outperform the
previous state-of-the-art results in Hazem and Morin (2017). Including the results in Table 5.4
where the corpora is in general domain, we draw the conclusion that re-normalisation improves
homogeneously bilingual word embedding with linear transformation approaches. Moreover,
combining the re-normalisation and data selection can further improve the performance.

5.5 Synthesis

In this chapter, we reviewed the two major approaches for bilingual word alignment. The ap-
proaches of the first class are based on the distributional representation while the approaches
belonging to the second class exploit the distributed representation.

The distributional representation based approach is often called the standard approach
(SA). To obtain better results in our experiments, we propose the distance sensitive co-occurrence
(DSC) during the construction of the word-context co-occurrence matrix to make the word-
context co-occurrence vectors sensitive to the distance between a central word and one of its
contexts. Then we also propose the weighted point-wise mutual information (WMI) in or-
der to rectify the over- and underestimation problem of the original mutual information. Our
empirical results prove the effectiveness of these improvements over the SA.

The distributed based approach is also called bilingual word embedding (BWE) as word
representations are the embeddings. Among different distributed based approaches, we choose
to use the linear transformation approach which is introduced by Mikolov, Quoc V. Le, et al.
(2013) because it is more flexible and can be more easily extended with out-of-domain data.
We also implement several improvements for BWE which are summarized in Artetxe, Labaka
and Agirre (2018a).

In line with the data selection approach for the distributional approach, we also propose to
enrich the word embeddings by exploiting external data. More concretely, we first separately
train two word embedding models, next we concatenate word embeddings trained on a corpus in
general domain to word embeddings trained on a corpus in specialized domain. The embedding
sizes are for instance empirically set. Besides, the re-normalisation originally proposed to
improve Artetxe, Labaka and Agirre (2016), which is also implemented in Artetxe, Labaka and
Agirre (2018a), has proven to be beneficial for the word alignment and it works harmoniously
with the data selection.

Our experimental results show that the bilingual word embedding approach surpasses the
results obtained by the standard approach. In addition, as for the bilingual word embedding
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approach, the data selection significantly improves the performance: +55 points in MAP for the
BC corpus and +61 points for the WE corpus. Matrix re-normalization brings an extra minor
improvement (on average 0.4 points in MAP). However, it is directly applicable because it does
not require any external data.
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BILINGUAL PHRASE ALIGNMENT

In previous chapters we have covered the word representations, and word-level alignment with
these representations. Besides, we have also introduced the approaches for phrase representa-
tion modeling. With all these prerequisites, we can now proceed to address the bilingual phrase
alignment (BPA). The simplest way to align phrases is by using a bilingual dictionary, however,
this supervised approach eminently depends on the quality of the dictionary. The distributional
representation based aligning approach can optimize the dictionary based approach by lever-
aging the monolingual corpora so that out-of-vocabulary component words can be aligned to a
target word and contribute to the phrase alignment. Finally, the unsupervised neural machine
translation techniques can be potentially applied to our task so that even without a bilingual
dictionary, we can still align phrases of different languages. Besides, with a unified phrase
representation, we can then achieve our final objective of aligning phrases of variable length.

6.1 Supervised bilingual phrase alignment with dictionary
look-up: compositional approach

The dictionary look-up approach is also called the compositional approach (CA) (Grefenstette,
1999; Tanaka, 2002; Robitaille et al., 2006), it is a simple and direct approach that consists in
translating each element of a multi-word via a dictionary and generating all possible combina-
tions and permutations. The ranking of the candidates is done by their frequency in the target
corpus.

To align a phrase X of length l in the source language to one candidate phrase Ŷ in the tar-
get language with N candidate phrases, given a dictionary d where one word x can be mapped
to a set of k words {x1, x2, ..., xk}, CA can be implemented by the Algorithm 2. To be clear,
Xi,k means the k-th possible translation for the i-th component of the phrase X , the total pos-
sible translation number ki depends on both the dictionary entry and the target corpus (all ki
translations must be in the dictionary and the target corpus at the same time).
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Algorithm 2: Compositional approach
Data: X, Y (i), 1 6 i 6 N

d : x 7−→ {x1, x2, ..., xk}, bilingual dictionary
Result: Ŷ
Initialize a placeholder for the list of possible translations for each component of X ,
lcomponents;

for i = 1, ..., l do
Translate the i-th component of X , Xi by d, obtaining a list of possible translations
filtering those not in the target corpus [Xi,1, Xi,2, ..., Xi,ki

];
Stack the list into the list of possible translations for each component lcomponents ;

end
Generate all possible combinations from lcomponents, obtaining c possible combinations ;
Generate all possible permutations from c, obtaining p;
Rank all the permutations by their frequency in the target corpus;
Ŷ equals to the permutation with the highest frequency;

Note that in Algorithm 2, every possible combination c equals to the product of all possible
translations:

c =
l∏
i

|trans(Xi)| (6.1)

where trans(Xi) represents the possible translations for the component Xi.

Moreover, every possible permutation p factorizes again c in terms of the phrase length l:

p = c× P(l, l) = c× l!

=
l∏
i

|trans(Xi)| × l!
(6.2)

As we can see, the time and space complexity of CA is O(ll!) during the alignment. It is
therefore ll! times as complex as a unified representation based approach. And for the permuta-
tion generation phase, the time complexity is O(l2l!), which is also far more complex than the
neural unified representations in Table 3.1. Considering these facts, the compositional approach
is not optimized for calculation efficiency.

The compositional approach can only align phrases of the same length. So for instance,
“airflow” in English can never be aligned with “flux d’air” in French, which is what we expect
in our alignment.

Another remark is that the out-of-vocabulary (OOV) words are not handled by the compo-
sitional approach. When a phrase contains at least one OOV word, it is automatically rejected.
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Overall, the compositional approach is a simple and quick-to-apply approach with some
restraints which prevents us from achieving our final goal in an efficient way. We implement it
as a baseline approach.

6.2 (Semi-) supervised bilingual phrase alignment with dis-
tributional representation

The main limit of the traditional compositional approach is the inability to translate a term when
one of its composing words is not in the dictionary. To solve this problem, Morin and Daille
(2012) propose the compositional approach with context-based projection (CMCBP), where
the objective is to combine the advantages of the standard and compositional approaches by
substituting OOV words with their context vectors obtained by the standard approach. This
approach allows us to align a phrase having one or even each of its components not in the
dictionary. Consequently, the strict need for a fairly complete dictionary is alleviated. We can
consider it as a semi-supervised approach with distributional representation.

6.2.1 Compositionnal method with context based projection (CMCBP)

CMCBP begins by building the co-occurrence matrix as in the standard approach. Then it ap-
plies a direct translation reinforced by context alignment. If a word of a phrase to be translated
is not present in the dictionary, it uses the context vector obtained by the standard approach and
projects it into the target language, otherwise it takes the context vector of the target language
directly. The next step is the generation of all combinations of possible translation representa-
tions for a source language phrase. Finally, the candidate phrases are ranked according to their
similarity with phrases of the same length in the target language, and the final score for each
possible translation is defined by the arithmetic or geometric mean of each similarity score.

The detailed algorithm of CMCBP is given in Algorithm 3, and an alignment example is il-
lustrated in Figure 6.1. The goal of the example is to calculate the similarity between the French
phrase “antécédent familial” as the source phrase and the English phrase “family history” as the
target phrase.

In the example, the source component word “antécédent” is not in the given dictionary.
We apply SA to obtain its context vector in the target language space V ′s1. The other source
component word “familial” has two possible translations according to the dictionary, “familial”
and “family”. We can extract directly the corresponding context vector V ′s21 and V ′s22 from the
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Algorithm 3: CMCBP
Data: X, Y (i), 1 6 i 6 N

d : x 7−→ {x1, x2, ..., xk}, bilingual dictionary
source and target corpus

Result: Ŷ
Build the source and target word co-occurrence matrix from the corresponding corpus;
Initialize a placeholder for the list of possible translations for each component of X ,
lcomponents;

for i = 1, ..., l do
if Xi is in d then

Translate the i-th component of X , Xi by d, obtaining a list of possible
translations filtering those not in the target corpus [Xi,1, Xi,2, ..., Xi,ki

];
Replace the translated words by their corresponding context vectors
[Vi,1, Vi,2, ..., Vi,ki

] by looking up in the word co-occurrence matrix of the target
language;

end
else

Apply the standard approach (SA) to obtain the mapped context vector Vi in the
target language space, we wrap it into a singleton list [Vi];

end
Stack the list into the list of possible translations for each component lcomponents;

end
Generate all possible combinations from lcomponents, obtaining c possible combinations;
Generate all possible permutations from c, obtaining p;
for n = 1, ..., N do

for i = 1, ..., p do
if Y (n) has the same length of the i-th permutation then

Initialize a list of score lscore;
for j = 1, ..., l do

Calculate the score sj , between the j-th component of the i-th possible
permutation and the j-th component of one candidate phrase Y (n);

Stack sj into lscore;
end
Calculate the score between permutation i and Y (n) using lscore. (arithmetic
or geometric mean);

end
else

the score between permutation i and Y (n) is 0;
end

end
end
Ŷ equals to the candidate phrase with the highest score;
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Figure 6.1 – An example diagram of CMCBP. (Source: Morin and Daille (2012))
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target word co-occurrence matrix. Finally, we have 4 possible permutations for “antécédent
familial” for the similarity calculation.

6.2.2 CMCBP with data selection

The main contribution of CMCBP is the capability of mapping out-of-vocabulary words, how-
ever, this requires that the pre-constructed word co-occurrence matrices are complete and reli-
able. In general, such word co-occurrences are difficult to obtain from a modest size corpus in
specialized domain. We can exploit the same data selection strategy as in the selective standard
approach (SSA). To do this, we can build the word co-occurrence matrices with external data as
in SSA. Then in CMCBP, when a component is not found in the dictionary, we apply SSA with
the merged matrices in place of SA. The next steps are the same as in the original CMCBP.

6.3 Contribution : Compositionnal method with word em-
bedding projection (CMWEP)

Following the idea of CMCBP, we propose a to exploit the word embeddings in a compositional
approach. The idea is to substitute the word co-occurrence vectors with the word embeddings
in CMCBP. We call it compositional approach with word embedding projection (CMWEP).

With the word embeddings, we can no longer apply the standard approach to map a source
vector to one in the target language space. Nevertheless, we bridge the gap by the linear trans-
formation approach presented in Section 5.3. This requires that we learn the transformation
matrix before the phrase alignment.

Besides, one major limit of CMCBP is that it aligns only the phrases of the same length. In
order to represent phrases of variable length in a single vector, first we generate all the possible
combinations and save their word embeddings. Next we apply the addition to finally retrieve
a single vector representing the phrase for one possible combination. Moreover, the addition
greatly reduce the complexity of the original CMCBP because we do not have to calculate all the
possible permutations. Note that this modification can also be applied to the original CMCBP.
We will apply it for our experiments as a good amount of our test samples are pairs of phrases
of variable length.

CMWEP can be implemented by Algorithm 4 where we follow the same notation as in
Algorithm 3.
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Algorithm 4: CMWEP
Data: X, Y (i), 1 6 i 6 N

d : x 7−→ {x1, x2, ..., xk}, bilingual dictionary
source and target corpus

Result: Ŷ
Build the source and target word embedding matrix from the corresponding corpus;
Learn the transformation matrix M using the linear transformation approach introduced
in Section 5.3;

Initialize a placeholder for the list of possible translations for each component of X ,
lcomponents;

Build the candidate matrix C with addition, where each row is a phrase vector;
for i = 1, ..., l do

if Xi is in d then
Translate the i-th component of X , Xi by d, obtaining a list of possible
translations filtering those not in the target corpus [Xi,1, Xi,2, ..., Xi,ki

];
Replace the translated words by their corresponding word embeddings
[Ei,1, Ei,2, ..., Ei,ki

] by looking up in the word embedding matrix of the target
language;

end
else

Calculate the mapped embedding by BWE, Ei = Es,iM , and wrap it into a
singleton list [Ei].;

end
Stack the list into the list of possible translations for each component lcomponents. ;

end
Generate all possible combinations from lcomponents, obtaining c possible combinations;
Initialize a placeholder for embeddings of all possible combinations, A ∈ Rc∗d;
for i = 1, ..., c do

Calculate the phrase vector by addition;
Put the phrase vector in the i-th row of A;

end
Calculate the similarity score matrix, S, S = ACT ;
Ŷ equals to the candidate phrase with the highest value in S where the column index
represents candidate phrases;
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An example of generating phrase vectors in CMWEP is illustrated in Figure 6.2. Suppose
we have the English phrase “onshore wind farm” to align to French. The word “onshore” is
not in the given dictionary or the translations are not found in the training corpus. The words
“wind” and “farm” have respectively one and three possible translations found. To generate the
phrase vectors, we apply BWE on “onshore” and extract the corresponding word embedding for
each possible translation of “wind” and “farm”. So each component word vector is mapped to
the target language space. By addition, finally we have 3 phrase vectors representing the input
phrase.

onshore wind farm

ferme

cultiver

exploiteréolien

BWE(onshore)

translations not found
translations

translations

NA éolien ferme

NA éolien cultiver

NA éolien exploiter

translation1

translation2

translation3

BWE(onshore)+vec(éolien)+vec(ferme)
3

BWE(onshore)+vec(éolien)+vec(cultiver)
3

BWE(onshore)+vec(éolien)+vec(exploiter)
3

Figure 6.2 – An example diagram of CMCBP.

Evaluation
We include the original compositional approach (CA) and compositional method with con-

text based projection (CMCBP) in our evaluation on the WE corpus. In addition, we also test
if the data selection and the techniques presented in Sections 5.2 and 5.3.2 always improve
the performance for CMCBP and CMWEP. The results are shown in Table 6.1. Note that we
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sum all the possible combinations for CMCBP and CMWEP to obtain one single vector so that
phrases of variable length can be aligned.

Model Accuracy MAP

CA 59.0 61.5

CMCBP 49.3 61.4
CMCBP + WMI + DSC 46.6 63.2
CMCBP + Data selection 50.7 66.0
CMCBP + Data selection + WMI + DSC 53.4 66.3

CMWEP 52.1 67.8
CMWEP + Data selection 61.6 73.3
CMWEP + Data selection + Re-normalisation 61.6 73.4

Table 6.1 – Accuracy (p@1) and MAP % of different approaches on the WE corpus. Details of
the WE-en-fr corpus and its gold standard can be found in Appendix A.1.2 and A.3.3.

First it is to our surprise that the compositional approach (CA) has better accuracy than
CMCBP This is because the candidates are ranked by their frequency in the target language
corpus while the candidates in CMCBP are ranked by the similarity measure, so theoretically
those translated by CA are also translated by CMCBP but with the same similarity score (1.0).
Therefore, the final rank in CMCBP is to some degree randomized as multiple top candidates
have the same score. However, when using external data, the MAP is considerably improved by
CMCBP, this shows that the CMCBP can effectively find many out-of-vocabulary translations
that can not be found by CA.

The same problem also exists in CMWEP (randomized rank for the candidates with the
same score). Another remarkable point is that unlike the single word bilingual extraction where
WMI degrades the results when using external data, combining WMI and DSC improves the
results in MAP with or without external data.

Our word embedding methods (CMWEP) notably improve the results when using informa-
tion carried by external data by almost 12 points in MAP and 2.6 points in accuracy. Com-
bining the usage of external data and the re-normalization gives the best accuracy and MAP.
The characteristics of the WE corpus determine the fact that for most phrases, each component
word are included in the dictionary. So CA already provides a high result especially for the
accuracy, if we took a less academic or less cleaned corpus for example the Amazon reviews

where there are more out-of-vocabulary words because of spelling mistakes and internet lan-
guages, we expect the result of CA to be much lower while the result of other approaches would
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be less impacted. This is also why the re-normalization improves the result very slightly, since
most of the translations are found by a dictionary look-up process.

6.4 Unsupervised neural machine translation with pre-trained
cross-lingual embeddings

All the previous approaches require a relatively complete dictionary during the alignment, while
such dictionaries are not publicly available and sometimes scarce between certain languages.
This is especially the case when treating corpora in specialized domain. In order to align
phrases with minimal cross-lingual information, we probe a series of unsupervised neural ma-
chine translation systems. Although our objective is not a translation task, we can exploit the
unsupervised neural machine translation architecture to train our phrase encoder. Then after
the training, we can calculate the similarity scores using the phrase vectors generated by the
encoder.

6.4.1 Back translation

Neural Machine Translation (NMT) has achieved tremendous progress and recently become the
dominant paradigm in machine translation. However, most successful NMT systems are pro-
posed in a supervised or semi supervised context. When no parallel data exists between source
and target languages, several works proposed the use of a pivot language (Firat et al., 2016;
Saha et al., 2016; Y. Chen et al., 2017) acting as a bridge between source and target. Following
the same idea, Johnson et al. (2017) proposed a multilingual neural machine translation model
which creates an implicit bridge between language pairs for which no parallel data is used for
training. Whether explicitly or implicitly, all these works still require the use of parallel corpora
between the pivot language and other languages.

A more recent line of works has completely removed the need of parallel corpora (Lample,
Conneau, et al., 2018; Artetxe, Labaka, Agirre and Cho, 2018; Zhen Yang et al., 2018), relying
on pre-trained cross-lingual word embeddings presented in Section 5.3 and language models
presented in Section 4.3.1 built from monolingual corpora. The loss of the denoising process
is:

Ldenoising(θenc, θdec) = −Ex∈Dl
H(x, dec→l(enc(N (x)))) (6.3)

where θenc and θdec respectively means the parameters in the encoder and the decoder, x ∈ Dl
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is a sampled sequence from the monolingual data and dec→l(enc(N (x))) represents a recon-
structed sequence from the noised version of the original sequence x. Apart from the denoising,
they all incorporate a back translation structure to build pseudo-translations between the source
and target language.

Back translation (Sennrich et al., 2016a; J. Zhang and Zong, 2016) has been dominantly
used prior to unsupervised NMT systems. It couples the source-to-target translation model with
a backward target-to-source model and trains the whole system with a reconstruction loss. In
an unsupervised NMT system, the back-translation is activated after a first pass of denoising
autoencoding. The gradients for updating the encoder and decoder are calculated by alterna-
tively applying the source-to-target model to source sentences to generate inputs for training the
target-to-source model (and vice versa):

Lbacktranslation(θenc, θdec) = −Ex∈Dl1H(x, dec→l1(enc(y))),

with y = transl(x) = dec→l2(enc(x))
(6.4)

where Dl1 and Dl2 are the two language corpora, dec→l1 means that the decoder will decoder
the sequence in l1 language (or l2 resp.). Suppose y is the translation of x ∈ Dl1 by applying
the decoder of language l2, dec→l2(enc(x)). Then dec→l1(enc(y)) represents the reconstructed
source sentence from the synthetic translation. The goal is to generate pseudo parallel sentence
pairs to train the models with a reconstruction loss. Overall, the system is composed of a shared
encoder thanks to the pre-trained cross-lingual word embeddings, two specific decoders for the
source and the target language and back translation mechanism.

6.4.2 Extract-Edit, an alternative to back translation

Lately, Wu et al. (2019) argue that the popular back translation suffers from the low-quality
pseudo language pairs. Since the generated pseudo sentence pairs are usually of low quality,
the errors during the back translation training could probably accumulate, leading to a deviation
of the learned target language distribution from the real target distribution.

Extract
Rather than using synthetic translations, the authors propose an alternative strategy which

extracts potential parallel sentences from comparable monolingual corpora. This is done by
simply comparing the sentence encoding generated by the shared encoder. Specifically, for
a given source sentence s, the top-k real sentences from the target language space would be
extracted based on the L2 distance. The set of k potential parallel sentences for s is denoted by
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M :

M = {t|min
1,...,k

(||es − et||), t ∈ T } (6.5)

where t is a sentence among all the target language sentences T , es and et are sentence en-
codings generated by the shared encoder. In fact, the extract can be considered as an alignment
process in our definition.

Edit
The objective of the extract is to provide some pivot sentences for the system training,

however, it is not always guaranteed there the parallel sentence exists in the target corpus. The
edit operation aims to revise the extracted sentences M in terms of the source sentence s. First,
the operation applies a maxpooling layer to reserve the more significant features between the
source sentence embedding es and the extracted sentence embedding et for t ∈ T . Then the
target language decoder will decode it into a new sentence t′, forming a new pivot sentence set
M ′:

M ′ = {t′|t′ ∈ dec(maxpooling(es, et)), t ∈M} (6.6)

Evaluation network
There is another component which consists in an evaluation network R. After a fully con-

nected layer which takes the source and translated sentence encoding es and et̂ as input, it
applies a softmax distibution on the similarity between the source s and all the extract-edited
target sentences t plus the translated sentence t̂ generated by decoding the source sentence en-
coding, dec(enc(s)).

P (t̂|s,M ′) =
exp

(
λ cos

(
s, t̂
))

∑
t∗∈M ′∪t̂

exp(λ cos((s, t∗))) (6.7)

where λ is an inversed temperature of the softmax function.

Training objective
In addition to the denoising loss, there are several other losses we want to minimize during

the training. First the distance of the translated sentence t̂ to the source sentence s compared to
the top-k extract-edited sentences M ′ by a comparative loss.

Lcom(θenc|θR) = E(− logP (t̂|(s,M ′))) (6.8)

where θenc and θR are the parameters of the encoder and evaluation network. Combined with
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the denoising loss, the overall loss for updating the encoder and decoder is given in Equation
6.9

Ls→t(θenc, θdec|θR) = wdenoisingLdenoising + wcomLcom (6.9)

where wdenoising and wcom are the hyper-parameters weighing the importance of the denoising
and the comparative learning. They are both set to 1 in the work of Wu et al. (2019). Besides,
the evaluation network is learned by maximizing the score between the extract-edited sentences
M ′ and the source sentence s. This can be viewed as a “discriminator” in an adversarial training
network (Goodfellow et al., 2014), while the decoder-encoder is served as a “generator” which
generates a translated sentence t̂ with a higher score than the sentences in M ′.

LR(θR|θenc, θdec) = Et′∈M ′(− logP (t′|(s,M ′))) (6.10)

Merging Equations 6.9 and 6.10, the final training objective is:

arg min
θenc,θdec

arg max
θR

L(θenc, θdec, θR) = −LR(θR|θenc, θdec) + Ls→t(θenc, θdec|θR) (6.11)

The whole system is learned by alternatively updating first the evaluation network and then the
translation network (encoder-decoder network). Figure 6.3 shows an overview of the whole
extract-edit system architecture. Since the work is very recently published and the source code

Figure 6.3 – The overview of the extract-edit approach based NMT architecture. (Source: Wu
et al. (2019))

is not yet available, we did not include it in our final system. However, the idea of using a
comparative model to guide the unsupervised training opens an interesting line of future work.
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6.5 Contribution : a new dataset for bilingual phrase align-
ment

For the bilingual phrase alignment task, we use the same Wind Energy (WE) comparable corpus
as in the monolingual tasks. This time we evaluate on the English, French, Spanish and Chi-
nese corpora. Besides, we build a new publicly available Breast Cancer (BC) English-Spanish
comparable corpus by crawling from a scientific website 1. More specifically, we filter all the
publicly accessible articles and then search the keywords “breast cancer” for English articles
and “cáncer de mama” for Spanish articles. The final English corpus results from concatenating
168 articles and the Spanish corpus 141 articles. The data crawler script is publicly available
2. The gold standard is built on the same 108 English phrases as in the monolingual phrase
similarity task and the mapping Spanish phrases are manually selected from the target corpus.

The English BC corpus has 26,716 sentences and the Spanish one has 62,804 sentences.
For the WE corpus, Hazem and Morin (2016) proposed a reference list consisting of 139 single
words for the English-French corpus, while Liu et al. (2018) provided a gold standard with 73
multi-word phrases for the same corpus. Based on the reference list of Liu et al. (2018), we
propose a new gold standard including also single words. Moreover, we extended this gold
standard to other languages while ensuring that all reference lists share the same 90 English
phrases to be aligned. Finally, alignment reference lists were obtained for three languages
pairs: English-French, English-Spanish and English-Chinese. For the sake of comparability,
we also report results on the datasets of Liu et al. (2018) and Hazem and Morin (2016).

For the preprocessing and phrase extraction, we also use the IXA pipes library to tokenize
and lemmatize French and Spanish corpora. It is worth noting that the WE Chinese corpus is
already pre-segmented. We use the Stanford CoreNLP library3 pos-tagger for all languages,
then for the phrase extraction we use the same PKE tool as mentioned in monolingual tasks.
After hapax filtering, each corpus contains roughly 6,000 phrases of maximal length 7.

1https://www.sciencedirect.com
2https://bitbucket.org/stevall/data-crawler.git
3https://stanfordnlp.github.io/
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6.6 Contribution for the unsupervised bilingual phrase align-
ment

In this section, we present our architecture for unsupervised bilingual phrase alignment which
combines the previous techniques. Concretely, the system is an encoder-decoder network with
a context prediction training objective. The encoder is a semi tree-free recursive neural network
based on the TF-RNN introduced in Section 3.6. We train the network using a pseudo back
translation mechanism which grants the ability of being fully unsupervised.

6.6.1 Semi tree-free recursive neural network

To encode phrases of variable length in one single vector, we could have applied the tree-free

recursive neural network (TF-RNN) introduced in Section 3.6. However, the surprising fact is
that in our preliminary experiments, it did not meet our expectation as the synthetic translations
are sometimes of low quality and the accumulated translation errors affect more radically with
the recursivity (Wu et al., 2019). The same phenomenon also occurs in other similar networks
such as the recurrent or LSTM network.

On the other hand, the additive approach (Liu et al., 2018) always successes to hold a decent
performance, therefore we decide to adapt the tree-free recursive neural network to the cross-
lingual context by levelling the network. Consequently the network has more additive features
while being able to distinguish the word order and distribute different weights. More concretely,
there are three layers in the adapted version, in the first we operate the same processing as in
TF-RNN which consists in splitting the semantics of each word by a linear transformation into
two parts: the right side and the left side. Thus the first layer remains a recursive layer. Then we
associate these nodes by concatenation, the left side is supposed to be associated with the right
side of the previous token and vice versa. The second layer is composed of a fully connected
layer that maps the input vectors to output vectors in a specified dimension. Finally the third
layer is an addition based pool layer which sums all intermediate level nodes and outputting
a single fixed-length vector. The sum operation is motivated by the additive characteristics
mentioned in Mikolov, Sutskever, et al. (2013) as the additive approach has showed interesting
results in our preliminary experiments. We name it semi tree-free recursive neural network.
Figure 6.4 shows the schema of the proposed network which is clearly a flat version of the
TF-RNN presented in 3.6.

In our scenario we use pre-trained cross-lingual embeddings as the input vector sequence
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∑

Wl Wr Wl Wr Wl Wr

concat concat

fully connected layer

v1 v2 v3

vo

Figure 6.4 – Diagram of the semi tree-free recursive neural network (STF-RNN).

[v1, v2, v3, ..., vn] with vi ∈ Rd, the output vector vo ∈ Rp is calculated as follows:

vi,l = tanh(Wlvi + bl)

vi−1,r = tanh(Wrvi−1 + br)

vinter,i = tanh(U [vi−1,r; vi,l] + b)

vo =
n∑
i=1

vinter,i

(6.12)

where Wl ∈ Rd∗d and Wr ∈ Rd∗d denote respectively the left and the right weight matrices in
the linear transformation of the semantic association, bl ∈ Rd and br ∈ Rd are the corresponding
bias vectors, U ∈ Rp∗d and b ∈ Rp are the parameters in the fully connected layer with d the
input dimension and p the output vector dimension.

6.6.2 Pseudo back translation

Since we do not have cross-lingual data, a direct link between a phrase in language l1 and one
in language l2 is not feasible. However, synthetic translations of single words can be easily
obtained using bilingual word embeddings (BWE). By using translated single-word phrases
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to train our model, we create stronger links between the two languages. This can be viewed
as pseudo back-translation as we generate synthetic translations by BWE while in NMT sys-
tems the translation is generated by the corresponding decoder (Sennrich et al., 2016a; Artetxe,
Labaka, Agirre and Cho, 2018; Lample, Conneau, et al., 2018; Wu et al., 2019). Concerning
the training objective, recall the context prediction loss introduced in Section 4.5. Because the
encoder never conditions on the context information and the decoder predicts these never seen
contexts, we can harmlessly exploit the bidirectional phrase encoders such as PTF-RNN, CNN
or Transformer without provoking the redundancy problem mentioned in Devlin et al. (2018).
Therefore, the system potentially has four objective loss functions when we alternatively iterate
all phrases in the two languages l1 and l2:

Lcp l1→l1(θenc, θdec→l1) = −Ex∈Dl1H(ws(x), dec→l1(enc(x))), (6.13)

Lcp l2→l1(θenc, θdec→l1) = −Ex∈Dl1H(ws(x), dec→l1(enc(BWE(x)))), (6.14)

Lcp l2→l2(θenc, θdec→l2) = −Ex∈Dl2H(ws(x), dec→l2(enc(x))), (6.15)

Lcp l1→l2(θenc, θdec→l2) = −Ex∈Dl2H(ws(x), dec→l2(enc(BWE(x)))) (6.16)

where Lcp lp→lq means the context prediction loss from an encoded phrase in language lp to
the context of language lq, dec→l(enc(x)) is the reconstructed version of the wrapped sentence,
ws(x) denotes the real wrapped sentence containing the phrase x and BWE(x) is the translated
single-word phrase for x using bilingual word embedding.

6.6.3 System overview

The general encoder-decoder architecture of our method is shown in Figure 6.5. Since the input
sequence is always a phrase, usually much shorter than a sentence, we did not use attention
which is intended to capture long-range dependencies. The LSTM decoders predict the context
surrounding the input phrase from its encoded vector.

As illustrated in Figure 6.5, in addition to our phrase encoder, we incorporate a pseudo
back-translation mechanism for single words based on bilingual word embeddings (Artetxe,
Labaka and Agirre, 2018a; Liu et al., 2018). The decoder consists of a single layer LSTM
and a fully connected layer on top of it. The goal of the decoder is to reconstruct the wrapped
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pre-trained cross-
lingual embeddings,
x ∈ Dl1

phrase encoder

encoded output vo
LSTMs

reconstructed wrapped sentence

LSTMs

reconstructed wrapped sentencex is single-word

synthetic translation
yes

BWE(x) ∈ Dl2
shared encoder for l1 and l2

context decoder for l1

context decoder for l2

Figure 6.5 – Overview of the cross-lingual alignment training architecture. For a phrase x in
language Dl1, we first use the shared tree-free phrase encoder, then the system can be trained
in two subnetworks: the first one is the encoder-decoder system given the original phrase x
w.r.t Dl1, and if x is a single-word phrase, we apply a second encoder-decoder system given
the translated phrase BWE(x) also w.r.t Dl1. We alternatively iterate through all phrases in the
two languages. The objective of the decoder is to reconstruct a wrapped sentence containing x

sentence which contains the current input phrase. The idea of learning phrase representations
based on the context is also studied in Del et al. (2018): instead of an end-to-end system, they
first learn all the phrase embeddings by Skip-gram considering them as a single word, and then
learn the composition function by a regression model which predicts the pre-trained phrase
embeddings from its composing word embeddings. However they limit the phrase length to
2, while we would like to propose a unified end-to-end framework which is able to learn the
phrase composition of variable length and the mapping simultaneously.

The detailed training procedure is described in Algorithm 5. Note that in order to keep the
training unbiased by the distribution of the number of training phrases in different languages,
we build a merged phrase list x with identical phrase number of both the source and the target
language. The phrases of the source language are at even indices while the phrases of the target
language are at odd indices. We set an early stop condition of three consecutive loss increases.

6.6.4 Evaluation

We evaluate our proposed system on the WE and BC with three different language pairs:
English-French, English-Spanish and English-Chinese. The overall results of all test phrases
are shown in Table 6.2. We also apply two baseline approaches: the mean vector approach
and the distributional word representation based approach, CMCBP. Since the distributional ap-
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6.6. Contribution for the unsupervised bilingual phrase alignment

Algorithm 5: Training process of the proposed unsupervised cross-lingual phrase encoder.
Data: pre-trained transformation matrices for BWE.

source and target corpus.
merged source and target phrase list x.

while early stop condition not met and max epoch number not reached do
for xi ∈ x do

if xi is in l1 then
update the system by Equation 6.13
θ ← arg minLcpl1→l1(θ)
if xi is single-word then

update the system by Equation 6.14
θ ← arg minLcpl2→l1(θ)

end
end
else

update the system by Equation 6.15
θ ← arg minLcpl2→l2(θ)
if xi is single-word then

update the system by Equation 6.16
θ ← arg minLcpl1→l2(θ)

end
end

end
end
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proach (Morin and Daille, 2012) does not include the alignment of variable length phrases, we
ignore the corresponding results in the table.

Dataset Method
Corpus Phrases CMCBP Mean RecurrentNN CNN LSTM Proposal

sw (72) 35.72 47.46 46.71 45.12 46.25 47.76
BC n2n (21) 68.73 81.10 28.52 62.10 50.05 86.11

en-es p2q (15) - 42.18 1.11 10.65 7.04 49.11
all (108) - 52.85 36.78 43.04 43.72 55.40

sw (15) 65.56 78.25 77.22 78.33 79.36 79.44
WE n2n (61) 42.09 57.37 6.16 40.84 18.64 62.19
en-fr p2q (14) - 15.83 <0.5 10.07 9.09 37.95

all (90) - 55.77 17.25 43.33 27.42 62.10

sw (15) 63.35 77.92 88.89 75.78 87.18 87.62
WE n2n (61) 35.94 62.68 7.31 40.33 23.07 61.35
en-es p2q (14) - 43.28 <0.5 28.57 17.86 46.21

all (90) - 62.20 19.77 44.41 32.94 63.38

sw (17) - 53.43 70.26 76.47 71.43 66.50
WE n2n (47) - 23.34 17.53 16.55 25.24 23.01

en-zh p2q (26) - 4.97 5.13 7.60 2.37 12.32
all (90) - 22.67 23.91 25.28 27.36 28.13

WE n2n (40) 67.32 78.36 46.07 68.51 44.82 88.01
en-fr p2q (33) - 34.38 2.38 20.01 7.93 41.83

Liu et al. (2018) all (73) - 58.48 26.06 46.59 28.13 67.13

Table 6.2 – Overall MAP % for all phrase alignment. sw, n2n and p2q respectively mean single-
word to single-word, same length multi-word and variable length phrase alignment. We do not
present the results of the distributional approach on the English-Chinese corpus because we do
not have enough resources to build the co-occurrence matrix as in the other language pairs con-
sidering the distributional approach requires a high coverage bilingual dictionary, furthermore if
the dictionary does not use the same Chinese word segmentation approach as in the WE corpus,
it is even harder to find words in it. Details of the WE-en-fr corpus can be found in Appendix
A.1.2. For the gold standard, we use the ours presented in Section 6.5 except the last line which
applies the gold standard in Appendix A.3.3.

It is clearly shown that the proposed method has a better overall performance. Especially
when it comes to different length phrase alignment, the new approach improves significantly
the MAP with an average score of 8.8 points. This proves that the proposed method is able
to produce high-quality alignment for phrases of variable length. Keep in mind that the differ-
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6.6. Contribution for the unsupervised bilingual phrase alignment

ent length distribution represents a small proportion of all test phrases except for the English-
Chinese corpus, so the overall score would be furthermore improved if we have uniform distri-
bution over all kinds of alignment. The second best method on overall results is the addition
approach, previously reported to obtain decent results (Mikolov, Sutskever, et al., 2013; Del
et al., 2018). Besides, in an unsupervised context, the CMWEP 6.3 is actually equivalent to the
addition-based approach. The CNN has some interesting results in same length alignment and
the LSTM is powerful at short phrase alignment but unlike in Del et al. (2018), it falls much
behind on other types. This difference may be explained by the fact that they limit the alignment
to two-word phrases.

The relatively poor results on the English-Chinese corpus may be due to the segmentation
of Chinese words. More concretely, as the input vectors for the Chinese sequences are in word-
level, many words in our gold standard are not segmented in the same way as in the given
corpus which is already pre-segmented. We would like to replace the word-level embeddings
by character-level ones or incorporate sub word tokenizer in our future works.

Concerning the single-word alignment on BC, 25 among the 72 single words are in fact
acronyms which are particularly difficult to align. This would explain why the single-word
alignment has much poorer results than other distributions. Besides, the proposed method ob-
tains strong results for single-word alignment, we believe this happens because the system sees
more single-word alignment samples generated by the pseudo back-translation during training.

In order to show that the proposed method can still hold a reasonable performance on single
words, we present in Table 6.3 the results for single words compared to state-of-the-art work
on bilingual word embedding (Artetxe, Labaka and Agirre, 2018a), including the 139 English-
French single word dataset of Hazem and Morin (2016) (suffixed -HM in the Table 6.3). To be
comparable, we only test on single-word phrases and the candidate list is limited to all single
words in the corpus vocabulary. On our datasets, the source English words are the 15 same as
in the sw line of Table 6.2.

BC WE
Method en-es en-fr en-es en-zh en-fr-HM

(Mikolov, Quoc V. Le, et al., 2013) † 39.96 91.33 87.27 45.88 79.47

(Artetxe, Labaka and Agirre, 2018a) † 49.13 95.56 90.39 73.52 84.01

Our method 45.96 89.44 88.89 58.75 82.23

Table 6.3 – MAP % for single-word phrase alignment. † indicates that the results are obtained
from our our implementation of the original work.
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We can see that in general, compared to Artetxe, Labaka and Agirre (2018a), the proposed
approach does not degrade much the results except for the English-Chinese words. In addition
to that, we succeed to hold a better result with regard to the original transformation matrix
method (Mikolov, Quoc V. Le, et al., 2013) with only one exception on the English-French
wind energy dataset. This shows that our approach is not biased by the compositionality of the
multi-word expressions.

For a better understanding of how the proposed method succeeds or fails to align different
types of phrases, we analyzed some of the alignments proposed by our system.

Dataset Source Addition Our method

BC breast cancer cáncer mamario cáncer de mama
en-es cell death muerte celular muerte

WE blade tip angle des pales côté supérieur de la pale
en-fr Darrieus rotor rotor tripale rotor vertical

WE airflow freno aerodinámico flujo de aire
en-es wind power plant electricidad del viento planta eólica

WE wind vane 偏航 电机 风向标
en-zh electricity power 电力 电力

Table 6.4 – Alignment examples within top 2 candidates ( “ ” is the segmentation point for
Chinese words)

Table 6.4 shows examples extracted from top 2 nearest candidates to the source phrase in
column 2. Again we see that the proposed method is capable of generating better results over
different types of alignment. In the first example, with the proposed approach, the source phrase
breast cancer is aligned to cáncer de mama (lit. “cancer of breast”) which is the expected phrase
in Spanish and is far more idiomatic than cáncer mamario (lit. “cancer mammary”) obtained by
the addition approach. In line 7 we see that the perfect translation for wind vane is found by our
proposal: 风向标, while the additive approach finds偏航 电机 (lit. “yaw electric machine”).
Besides, examples in lines 3, 5, 6, 7 and 8 are all composed of phrases of variable length, the
corresponding reference phrase can be found in the fourth column. Interestingly, we find that
the proposed system find paraphrases referring to fairly domain-specific phrases like blade tip

which is aligned to côté supérieur de la pale (lit. “side top of the blade”). This is also the case
for Darrieus rotor aligned to rotor vertical, which is remarkable since the Darrieus rotor is a
kind of vertical rotor.

Though the proposed method performs generally well on phrases, we observe that it em-
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phasizes occasionally too much the syntactic head in a multi-word phrase. For instance, in the
second example, cell death is aligned to muerte (“death”), while the addition based approach
succeeds to align it to muerte celular (lit. “death cellular”) which is the reference phrase in
Spanish. Undoubtedly, death is the syntactic head for the noun phrase cell death, it is clear
that the proposed method puts more weight on the syntactic information rather than the com-
positional property for this phrase. This also explains why we do not obtain better results on
equal-length phrase alignment on the English-Spanish and English-Chinese wind energy cor-
pora (Table 6.2). This bias could be due to the increased amount of single-word phrase samples
of the pseudo back-translation reinforced learning. This suggests that we could possibly im-
prove the system by adding synthetic translations for multi-word phrases during the training.

6.7 Synthesis

Unsupervised bilingual alignment of variable length phrase, which is also our main goal, is fi-
nally addressed in this chapter. Following the same line of the supervised baseline approach,
compositional approach (CA), Morin and Daille (2012) propose to remove the constraint of
aligning only in-vocabulary words by exploiting the distributional word representation. The
approach is an extended version of CA hence it is called compositional method with context
based projection (CMCBP). With the distributional word representations, CMCBP turns into
a semi-supervised approach. Although it is a step forward towards unsupervised phrase align-
ment, it is not when it comes to the unified phrase alignment because it can only align phrases
of same length.

To align phrases of variable length, we can simply sum all the component word vectors of
a phrase. As discussed in Section 3.1, the addition based approach is a simple yet effective
way to encode multiple word vectors into one single vector, allowing comparisons between
phrases of variable length without introducing any further parameters. Therefore, we apply
the addition approach in CMCBP to make it compatible with all phrases. In addition, we also
propose to substitute the distributional word vectors with word embeddings, which is named
compositional method with word embedding projection. In our experiments we find that
incorporating word embeddings improves the phrase alignment performance by about 7 points
in MAP.

It’s worth mentioning CMWEP in an unsupervised context is identical to a simple similarity
comparison task with addition encoding. In Section 3.3 we point out that the addition approach
ignores the inner structure of multi-words, and the proposed TF-RNN (see Section 3.6) can
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encode phrases according to a certain learned structure without introducing any supervised in-
formation such as the parsing tree. Therefore, we would like to improve the performance by
exploiting the TF-RNN with the context prediction training objective (see Section 4.5). Now
the only barrier which keeps us from reaching our final goal lies in the parallel data. Thanks
to the unsupervised machine translation technique, back translation (Sennrich et al., 2016a;
J. Zhang and Zong, 2016), we can create some synthetic parallel text during the training pro-
cess. Combining all these, we build an encoder-decoder network with TF-RNN as the phrase
encoder, an LSTM layer as the decoder and a back-translation-like mechanism where the syn-
thetic translation is generated by the bilingual word embedding instead of the decoder in an
NMT system. The preliminary experiments have shown very poor results because the training
is biased by the single words and the accumulated translation errors affect more radically with
the recursivity (Wu et al., 2019). We introduce a flatten version of TF-RNN to replace the fully
recursive version because we notice that the additive approach always successes to hold a decent
performance. The idea is to reduce the recursivity of the phrase encoder so the errors produced
by BWE are not propagated to every node.

Finally, our system outperforms the addition approach across all our datasets. And our pro-
posed phrase encoder obtains better results compared to other state-of-the-art architectures such
as CNN and LSTM. The gain is especially significant for the different length phrase alignment
with improvements from about +10 to +40 in MAP.
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CHAPTER 7

CONCLUSION AND PERSPECTIVE

In this final chapter, we first give an overview of what has been studied and proposed. Then we
open up perspectives for the future work based on the observation of our experiments.

7.1 Conclusion

Significant advances have been achieved in bilingual word-level alignment from comparable
corpora, yet the challenge remains for phrase-level alignment. Traditional methods of phrase
alignment can only handle phrases of equal length, while word embedding based approaches
learn phrase embeddings as individual vocabulary entries suffer from a data sparsity problem
and cannot handle out of vocabulary phrases. Our objective in this thesis is the unsupervised
bilingual phrase alignment which is a comparative task where a unified phrase representation
plays a key role.

In order to learn unified phrase representations for variable length phrases, we have stud-
ied the approaches for unified phrase modeling and cross-lingual phrase alignment, ranging
from co-occurrence based models to most recent neural state-of-the-art approaches. Besides,
since our training corpora in specialized domain are modestly sized, we exploit external general
domain data in our framework. After our survey on existing approaches, we propose a new ar-
chitecture called tree-free recursive neural network (TF-RNN) for modeling phrases of variable
length which, combined with a wrapped context prediction training objective, outperforms the
recent state-of-the-art approaches on monolingual phrase synonymy task with only plain text
training information. We attribute the high performance to several points:

• Compositional. Like the addition approach, TF-RNN is also a compositional approach
where component token vectors are associated to form the final phrase vector. Further-
more, by recursively applying weight matrices for each combination pair, the final phrase
vector takes word inner relation into account.

• Sequential. Like RecurrentNN, TF-RNN is also a sequential approach where unlike the
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addition approach, component order counts. However, it is best suited to short sequences
such as phrases. Instead of depending more on the latest parsed words in RecurrentNN,
the final output vector of TF-RNN depends more on the higher level representations of
the phrase, which we think coherent because humans process natural language following
a syntactical tree and the latest words they see are not always those who have the largest
weights.

• Tree-free. Like RNN, TF-RNN also generates the phrase vector following a tree struc-
ture, however, it removes the need of an input tree structure by systematically building a
recursive binary tree.

• Context-aware. Like the extended word embedding approach, we train our TF-RNN by
leveraging the phrase context in order to learn from the information outside the compo-
nents. While the extended word embedding approach considers phrases as one single unit
and suffers from the data sparsity and out-of-vocabulary problems, TF-RNN can still be
applied to new freely combined phrases thanks to its compositional properties.

As for the Transformer based encoder, its low performance in our phrase synonymy experiments
are indeed surprising to us. We assume that the multi-head attention is probably more suitable
for long sequence tasks as the advantage of the attention based models lies in the caption of
long range dependencies.

For the alignment part, we have reviewed supervised and unsupervised training frameworks
with the traditional compositional approaches and the recent neural machine translation sys-
tems. Finally we propose to incorporate an architecture called Tree-free semi recursive neural

network (TF-SRNN) derived from TF-RNN in an encoder-decoder model with a pseudo back
translation mechanism inspired by works on unsupervised neural machine translation. The sys-
tem can be trained without cross-lingual phrase table and different length phrases are encoded
and represented in a homogeneous way. Empirically, our proposition improves significantly
bilingual alignment for phrases of different lengths while achieving state-of-the-art results on
single-word and same length multi-word phrase alignments.

7.2 Operational contributions

During this thesis, our implementations has been partially industrialized as a component of the
company’s software. In the meantime, we have tightly followed the development and road map
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of the framework deeplearning4j. We have made a contribution to this project which added a
new neural network class.

7.2.1 Industrialized implementation

A first part of our work has already been integrated in the product which involves the topic mod-
eling task. More specifically, we exploit the addition based phrase representation of component
word embeddings (Section 3.1.2) along with the concatenation based data selection (Section
2.4). Then, principal component analysis (PCA) can be applied to retrieve the most discrim-
inant features of the mean centered phrase vectors. Finally, the phrases are unsupervisedly
classified into several topics using k-means clustering. These functions are implemented with
the JVM mathematical library Nd4j.

7.2.2 Contribution to the JVM based deep learning framework

We have paid close attention to the roadmap of deeplearning4j which was a first choice for
JVM deep learning. However, when we began with this framework with the previous versions
(<= 0.91), it did not support the popular auto-differentiation so each time we want to make
some custom neural network layer we have to implement it manually. The implementation
includes the initialization of the parameters, the forward pass and the backward pass where the
gradients are manually calculated. We have implemented an element-wise multiplication layer
and contributed it to the project.1

7.3 Future work

This work opens exciting opportunities for future research, as we mentioned through the manuscript
that there are still several aspects with substantial room for improvement. Particularly, we iden-
tify the following future works.

7.3.1 Data selection refinement

We exploit external data to reinforce our word-level representations due to the word co-occurrence
inconsistency caused by the modest size of the training corpora. We show that the best result
is obtained by the concatenated word embeddings. In our experiments, we empirically set the

1 https://github.com/eclipse/deeplearning4j/pull/4255
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dimension for the word embeddings trained from the general and specialized domain corpora.
Although it is true that the training of a neural network can adjust the weights associated to
each word embedding dimension, we still believe that a smarter way of leveraging the external
data would bring further improvement. For instance, some polysemy words have a different
meaning in a specialized domain corpus compared to its most common meaning in a general
domain corpus. If we set the dimension of the general domain embedding higher than the spe-
cialized domain embedding, then we probably will only capture its most common interpretation
which does not correspond to its real meaning for tasks in specialized domain. Otherwise, if the
specialized domain embedding is too important, it will be even worse since most words keep
their most common interpretation in a specialized domain corpus and the embeddings trained
on large size general domain corpus are more reliable and coherent.

Two strategies could be more deeply explored for future work: pre-training corpus merge
and post-training embedding merge. Note that the latter is actually applied in this thesis. The
first strategy investigates the nature and the quality of the corpora and trains the word em-
beddings with one finely merged corpus. The second one trains separately word embeddings
from the general and specialized domain corpora, and then merges these word embeddings with
some operations such as the concatenation incorporated in this thesis. Interestingly, Schuster
et al. (2019) introduced embeddings anchor which exploited contextualized word embeddings
such as the pre-trained ELMo. The goal of the embedding anchor is to generate a context-
independent word embedding from the contextualized models so that the richer information
can be exploited for word alignment and polysemy words can be linked to its different mean-
ings. We would like to study the behavior of using different merging approaches such as the
approach of Schuster et al. (2019), a specific layer related to the merge or multi-task learning
for both separated embeddings.

7.3.2 Synthetic multi-word generation

As a means to train the phrase alignment system, we choose to incorporate back translation in
our framework. The idea is to generate synthetic translations for single-word phrases since the
pre-trained bilingual word-level embedding model produces more accurate word translations.
We could have the decoder generate synthetic translations for multi-word phrases but it would
largely degrade the performance because of the size and the comparability of our training cor-
pora. Nevertheless, the translation errors produced by the bilingual word embedding process
are propagated and hence accumulated through the training samples. Consequently the system
performance is still somewhat distorted by these errors.
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Concerning future works, we would like to further study a recent alternative approach to
back translation, extract-edit (Wu et al., 2019). Based on a similar idea, we could use extracted
and potentially edited phrases as the synthetic translations which would avoid the misleading
caused by the poor generated synthetic translations and fill the blank of synthetic multi-word
translations.

7.3.3 Contextualized cross-lingual input

With the release of the deep contextualized pre-trained cross-lingual language model(Lample
and Conneau, 2019), apart from the pre-trained static cross-lingual embedding, we can also
apply the contextualized cross-lingual embedding as our input. Furthermore, since the contex-
tualized embedding are basically sequential model, we can use it as a shared encoder and fine
tune the whole network. However, this means that all the parameters in the language model
need to be calculated during the backward pass. The training process would take much more
space and time than the feature extraction scenario plus a small network such as the TF-RNN.

7.3.4 Applications beyond phrase alignment

The output of our work can be viewed as a phrase mapping table. Since such resource is crucial
to SMT systems, we hope to leverage our output in an SMT system or other down stream tasks
beyond the phrase synonymy and similarity tasks, with or even without adaptation. Comparing
the performance between our phrase table based SMT system and an unsupervised NMT system
would yield more insight on unsupervised or low-resource training studies.

7.3.5 Model deployment in industrial context

Since our objective is to provide reliable mono- and cross-lingual phrase representations for
real world scenarios, it is once the model is deployed to production that our objective is fully
achieved.

We mentioned above that a part of our work has been incorporated in the product. However,
because our models are initially designed for an experimental usage, two essential functions are
lacking to obtain an ideal machine learning solution:

• On-the-fly inference optimization. For most cases, the model in production should be
optimized for an on-the-fly inference, which includes the interaction with the database,
user request design, etc.
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• Continuous self-learning pipeline with client feedback. User feedback is a precious re-
source for improving the machine learning model as it builds a task-specific supervised
data set without too much extra cost. A pipeline allowing to leverage the feedback is
beneficial to both the service provider and the user.

This line of future work involves a thorough design of the machine learning architecture and
co-working with others. We hope to wrap our models in a continuous self-learning machine
learning pipeline in the future.
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APPENDIX A

RESOURCE AND DATA

A.1 Corpora in specialized domain

In this section, we present specialized domain corpora which existed prior to this thesis, and
that were used by several past studies.

A.1.1 Breast cancer (BC)

This corpus is composed of documents collected from the Elsevier website1. The documents
were taken from the medical domain within the subdomain of breast cancer. There are English
and French comparable corpora where the English corpus has 525,934 tokens and the French
521,262 tokens.

A.1.2 Wind energy (WE)

This corpus has been released by the TTC project. The corpus has been crawled using the
Babouk crawler (Groc, 2011) based on several keywords such as “wind", “energy", “rotor" in
English and their translations in French.2 The whole data set has 6 languages, we only use
the English, French, Spanish and Chinese corpora. They respectively have 313,943, 314,549,
453,953 and 487,286 tokens.

1http://www.elsevier.com
2http://www.lina.univ-nantes.fr/?Reference-Term-Lists-of-TTC.html

155

http://www.elsevier.com
http://www.lina.univ-nantes.fr/?Reference-Term-Lists-of-TTC.html


A.2 Corpora in general domain

A.2.1 New commentary (NC)

This corpus consists of political and economic commentaries crawled from the web3. We use
this corpus as the external data for the distributional approaches in English and French. The
English and French corpora have respectively 5.7M and 4.7M tokens.

A.2.2 Semeval 2017

This English corpus is only used for Semeval 2017 task24, it is extracted from Wikipedia and
has 1.7 B tokens. Note in practice we only use a subset of the corpus where each sentence
contains at least one phrase in the test list.

A.3 Gold standard and candidate list

A.3.1 Phrase synonymy

A list of phrases is extracted using the open source tool PKE5 for the the three phrase synonymy
datasets: WE-English, WE-French and BC-English. Each corresponding candidate list has
8,923, 6,412 and 8,989 phrases. PKE is a symbolic terminology extraction system which gener-
ally extracts three times as many multi-words as single-words in the vocabulary. The terms are
extracted following some pre-defined syntactic patterns, for example the pattern NOUN NOUN

could lead to the extraction of shop assistant. As for WE-English and WE-French, we use the
same gold standard as in Hazem and Daille (2018) with respectively 49 and 14 phrases. The
small gold standard size problem is also mentioned in the original work. For the BC corpus, we
have presented it in Section 3.5.

A.3.2 Phrase similarity

The phrase similarity gold standard is directly obtained from the official website of the Semeval
tasks6. Since most phrase pairs of the gold standard of Semeval 2017 task2 are single-word

3http://opus.lingfil.uu.se
4alt.qcri.org/semeval2017/task2/index.php?id=data-and-tools
5github.com/boudinfl/pke
6alt.qcri.org/semeval
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pairs, we have filtered the list to obtain a gold standard where each phrase pair contains at least
one multi-word phrase. Finally there are 95 of such phrase pairs. The Semeval 2013 task5 gold
standard was originally a binary reference where 7,814 phrase pairs are tagged with “positive”
or “negative” for the similarity. We adapted it to a similarity list with 1 for positive and 0 for
negative.

A.3.3 Phrase alignment

Apart from the new reference list that we have built, the reference lists for single-word phrase
alignment for BC and WE corpora are the same as used in Hazem and Morin (2016) which con-
sist of 248 word pairs for BC and 139 for WE. The reference list for unified multi-word phrase
in WE is built based on the term list provided by the project site. Finally this list contains
73 phrase pairs but each pair has multiple variant translations and in our settings, we consider
them to be also the gold translations7. The list is built based on 277 one-to-one mapping pairs,
but if we use directly this list the results would be biased by those who have multiple transla-
tions, therefore we factorized these pairs and finally obtained a list of 73 one-to-many mapping
pairs. The reference list for the Italian/English task is the same as in Artetxe, Labaka and Agirre
(2016) which contains 1,500 entries.

The candidate list is also extracted from PKE following the same pipeline as in the mono-
lingual tasks. Therefore the WE-English and WE-French corpus has always 8,923 and 6,412
phrases as for the phrase synonymy task. The WE-Spanish and WE-Chinese corpus have re-
spectively 8,323 and 5,747 phrases.

A.4 Bilingual dictionaries

For our French/English experiments, we use the French/English dictionary ELRA-M003378

(243,539 entries). From this dictionary we select a subset of 3,007 entries from the BC corpora
and a subset of 2,745 entries from the WE corpora based on a word frequency threshold of 5.
These two subsets are used as the training data in our word embedding mapping experiments.
For our Italian/English experiments, we only use the same seed lexicon9 as used in Artetxe,
Labaka and Agirre (2016) where 5,000 entries are manually selected.

7The reference list and evaluation software are available here: https://github.com/Dictanova/
term-eval

8http://catalog.elra.info/product_info.php?products_id=666
9https://github.com/artetxem/vecmap
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A.5 Pre-trained models

A.5.1 Word embeddings

We have used pre trained word embeddings in English, French, Spanish and Chinese. They
are all 300-dimensional Fasttext vectors10 pre trained on wiki dump. Regarding the embedding
models of the domain specialized corpora, we use deeplearning4j11 to train domain-specific
100-dimensional word embeddings using the Skip-gram model, with 15 negative samples and
a window size of 5.

A.5.2 Language models

We have incorporated the implementation of BERT12 and ELMo13 because they both have pre-
trained models on multiple languages. The BERT implementation has a multilingual model
which contains 104 languages while the ELMo implementation has 44 separate language mod-
els. All these models are pre-trained on wikidump plus common crawl corpora (1B words for
ELMo and 3.3B for BERT).

10http://github.com/facebookresearch/fastText/blob/master/
pretrained-vectors.md

11deeplearning4j.org
12github.com/huggingface/pytorch-pretrained-BERT
13github.com/HIT-SCIR/ELMoForManyLangs
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APPENDIX B

EXPERIMENT SETTINGS

B.1 Implementation tools

Through our experiments, we have used two major frameworks.

• Deeplearning4j-beta1. The deeplearning4j framework is a JVM based machine learn-
ing tool which has implemented some of the most popular models such as word2vec and
provides a numpy-like tensor library Nd4j in native JVM environment. In our early exper-
iments, we used this framework to learn monolingual and cross-lingual word embeddings
and build the distributional representation based approaches.

• Pytorch-1.22. Pytorch is a dynamic computation graph based neural machine learning
framework in Python. Unlike tensorflow 1.0 or deeplearning4j where we define compu-
tation graphs statically before a model can run (discussed at the end of Section 2.2.1),
Pytorch uses dynamic computational graphs where each run of the graph can be different.
More specifically, for some models we may wish to perform different computations for
each data point. For a dynamic computational graph this can be done using imperative
flow control while in a static graph we have to declare different paths at the graph build
step.

B.2 Distributional representation setting

In the standard approach, the window size is 3 (a total of 7 words are considered), which is the
same as in Hazem and Morin (2016). The distance weight parameter λ in distance-sensitive
co-occurrence is empirically set to be 0.25. For the weighted mutual information, we have
kept the same value for the hyper-parameter α = 3

4 as in the work of Pennington et al. (2014).

1https://deeplearning4j.org/
2https://pytorch.org/
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Concerning xmax, since our corpora size is much smaller than the one in the original work, we
decide to make it correspondingly smaller (20).

B.3 Encoder-decoder network setting

Our models are trained for a maximum of 200 epochs with an early-stop condition of three
consecutive loss increases. We use the Adam algorithm with AMSGrad3 to update the models.
The initial learning rate is 1e−4. One model with static word embeddings takes roughly 2 days
to train on a single Geforce 1080 Ti GPU with Pytorch 1.0 and Cuda 10 on Ubuntu 16.04, while
training with contextualized embeddings (ELMo/BERT) takes about 4 days with the feature
based strategy.

We pad the special token [CLS] to the beginning of every sentence for the models with
BERT. To extract the features from the BERT model, we sum the output vector of the last four
hidden layers (Devlin et al., 2018), this has shown to be the second best method, with only 0.2
F-score point behind concatenating the last four layers which is 4 times less space efficient.
The generated phrase vectors are compared by cosine similarity. For the synonymy task we
simply calculate the cosine of all pre-extracted phrase candidates. We use the evaluation script
provided with the Semeval2017 dataset for the similarity task, and the MAP score (Christoper
D. Manning et al., 2008) to evaluate the synonymy task:

MAP = 1
|W |

|W |∑
1

1
Ranki

(B.1)

where |W | corresponds to the size of the evaluation list, and Ranki corresponds to the ranking
of a correct synonym candidate i. Besides it is also worth noting that the baseline for this task
(Camacho-Collados et al., 2016) uses additional data like a concept net and a different pre-
trained word embedding model, so it is not comparable with systems which only use provided
text data.

3https://openreview.net/forum?id=ryQu7f-RZ
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Titre: Apprentissage de représentations cross-lingue d’expressions de longueur variable

Mot clés : plongement lexical bilingue, alignement d’expressions, apprentissage non-supervisé

Resumé : L’étude de l’extraction de lex-
iques bilingues à partir de corpus compara-
bles a été souvent circonscrite aux mots sim-
ples. Les méthodes classiques ne peuvent
gérer les expressions complexes que si elles
sont de longueur identique, tandis que les
méthodes de plongements de mots modélisent
les expressions comme une seule unité. Ces
dernières nécessitent beaucoup de données, et
ne peuvent pas gérer les expressions hors vo-
cabulaire. Dans cette thèse, nous nous in-
téressons à la modélisation d’expressions de
longueur variable par co-occurrences et par
les méthodes neuronales état de l’art. Nous
étudions aussi l’apprentissage de représenta-
tion d’expressions supervisé et non-supervisé.
Nous proposons deux contributions majeures.

Premièrement, une nouvelle architecture ap-
pelée tree-free recursive neural network (TF-
RNN) pour la modélisation d’expressions in-
dépendamment de leur longueur. En apprenant
à prédire le contexte de l’expression à partir
de son vecteur encodé, nous surpassons les
systèmes état de l’art de synonymie mono-
lingue en utilisant seulement le texte brut pour
l’entraînement. Deuxièmement, pour la mod-
élisation cross-lingue, nous incorporons une
architecture dérivée de TF-RNN dans un mod-
èle encodeur-décodeur avec un mécanisme de
pseudo contre-traduction inspiré de travaux
sur la traduction automatique neurale non-
supervisée. Notre système améliore significa-
tivement l’alignement bilingue des expressions
de longueurs différentes.

Title: Unsupervised cross-lingual representation modeling for variable length phrases

Keywords: bilingual word embedding, bilingual phrase alignment, unsupervised learning

Abstract: Significant advances have been
achieved in bilingual word-level alignment
from comparable corpora, yet the challenge re-
mains for phrase-level alignment. Traditional
methods to phrase alignment can only handle
phrase of equal length, while word embed-
ding based approaches learn phrase embed-
dings as individual vocabulary entries suffer
from the data sparsity and cannot handle out
of vocabulary phrases. Since bilingual align-
ment is a vector comparison task, phrase rep-
resentation plays a key role. In this thesis, we
study the approaches for unified phrase model-
ing and cross-lingual phrase alignment, rang-
ing from co-occurrence models to most re-
cent neural state-of-the-art approaches. We re-
view supervised and unsupervised frameworks

for modeling cross-lingual phrase representa-
tions. Two contributions are proposed in this
work. First, a new architecture called tree-free
recursive neural network (TF-RNN) for mod-
eling phrases of variable length which, com-
bined with a wrapped context prediction train-
ing objective, outperforms the state-of-the-art
approaches on monolingual phrase synonymy
task with only plain text training data. Sec-
ond, for cross-lingual modeling, we propose
to incorporate an architecture derived from
TF-RNN in an encoder-decoder model with a
pseudo back translation mechanism inspired
by unsupervised neural machine translation.
Our proposition improves significantly bilin-
gual alignment of different length phrases.
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