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Abstract

Future networks will become more dense and heterogeneous due to the inevitable
increase in the number of communicated devices and the coexistence of numerous
independent networks. One of the consequences is the significant increase in inter-
ference. Many studies have shown the impulsive nature of such an interference that
is characterized by the presence of high amplitudes during short time durations. In
fact, this undesirable phenomenon cannot be captured by the Gaussian model but
more properly by heavy-tailed distributions. Beyond networks, impulsive noises are
also found in other contexts. They can be generated naturally or be man-made.
Systems lose their robustness when the environment changes, as the design takes
too much into account the specificities of the model. The problem is that most of
the communication systems implemented are based on the Gaussian assumption.

Several techniques have been developed to limit the impact of interference, such
as interference alignment at the physical layer or simultaneous transmission avoid-
ance techniques like CSMA at the MAC layer. Finally, other methods try to suppress
them effectively at the receiver as the successive interference cancellation (SIC).
However, all these techniques cannot completely cancel interference. This is all the
more true since we are heading towards dense networks such as LoRa, Sigfox, 5G
or in general the internet of things (IoT) networks without centralized control or
access to the radio resources or emission powers. Therefore, taking into account
the presence of interference at the receiver level becomes a necessity, or even an
obligation.

Robust communication is necessary and making a decision at the receiver requires
an evaluation of the log-likelihood ratio (LLR), whose derivation depends on the
noise distribution. In the presence of additive white Gaussian noise (AWGN) the
performance of digital communication schemes has been widely studied, optimized
and simply implemented thanks to the linear-based receiver. In impulsive noise, the
LLR is not linear anymore and it is computationally prohibitive or even impossible
when the noise distribution is not known. Besides, the traditional linear behaviour
of the optimal receiver exhibits a significant performance loss. In this study, we
focus on designing a simple, adaptive and robust receiver that exhibits a near-
optimal performance over Gaussian and non-Gaussian environments. The receiver
must strive for universality by adapting automatically and without assistance in real
conditions.

We prove in this thesis that a simple module between the channel output and the
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decoder input allows effectively to combat the noise and interference that disrupt
point-to-point (P2P) communications in a network. This module can be used as
a front end of any LLR-based decoder and it does not require the knowledge of
the noise distribution including both thermal noise and interference. This module
consists of a LLR approximation selected in a parametric family of functions, flexible
enough to be able to represent many communication contexts (Gaussian or non-
Gaussian). Then, the judicious use of an information theory criterion allows to
search effectively for the LLR approximation function that matches the channel
state. Two different methods are proposed and investigated for this search, either
using supervised learning or with an unsupervised approach. We show that it is even
possible to use such a scheme for short packet communications with a performance
close to the true LLR, which is computationally prohibitive. Overall, we believe that
our findings can significantly contribute to many communication scenarios and will
be desired in different networks wireless or wired, point to point or dense networks.

Index terms— Impulsive noise, coding theory, information theory, statisti-
cal learning and inference, receiver design, detection, soft channel decoding, Log-
likelihood ratio (LLR) estimation, supervised learning, unsupervised learning.
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Résumé

Le nombre croissant des appareils communicants et la coexistence de réseaux indépen-
dants toujours plus abondants en augmenteront dans le futur la densité et l’hétérogén-
éité avec pour conséquence une accentuation des interférences. De nombreuses études
ont montré leur nature impulsive qui se caractérise par des événements de fortes in-
tensités sur de courtes périodes. Toutefois, ces phénomènes ne sont pas correctement
capturés par un modèle gaussien et nécessitent plutôt le recours à des distribu-
tions à queues lourdes. Ces bruits impulsifs ne sont pas l’apanage des réseaux et
se retrouvent aussi dans d’autres contextes d’origines naturelles ou humaines. Les
systèmes perdent leur robustesse lorsque leur environnement se modifie et lorsqu’ils
reposent trop fortement sur les spécificités de leur modèle. La plupart des systèmes
de communications étant basés sur le modèle gaussien souffrent de tels problèmes
en milieu impulsif.

Plusieurs techniques ont été développées pour limiter l’impact des interférences
comme l’alignement d’interférences au niveau de la couche physique ou par des
techniques d’évitement de transmissions simultanées comme le CSMA au niveau de
la couche MAC. Enfin, d’autres méthodes essaient de les supprimer efficacement au
niveau du récepteur à l’instar de l’annulation successives d’interférences. Toutes ces
techniques ne peuvent parfaitement annuler toutes les interférences ; d’autant plus
que nous nous dirigeons vers des réseaux denses comme LoRa, Sigfox, la 5G ou en
général l’Internet des objets sans contrôle centralisé ni d’accès à la ressource radio
ni aux puissances des émissions. Par conséquent, prendre en compte la présence des
interférences au niveau du récepteur devient une nécessité, voire une obligation.

La robustesse des communications est nécessaire et prendre de bonnes décisions
au niveau du récepteur requiert l’évaluation du log rapport de vraisemblance (LLR)
qui dépend de la distribution du bruit. Le cas du bruit blanc gaussien additif
est bien connu avec son récepteur linéaire et ses performances bien étudiées. Les
non-linéarités apparaissent avec le bruit impulsif et le LLR devient alors difficile-
ment calculable lorsque la distribution de bruit n’est pas parfaitement connue. Mal-
heureusement, dans cette situation, les récepteurs classiques montrent des pertes
de performances significatives. Nous nous concentrons ici sur la conception d’un
récepteur adaptatif simple et robuste qui affiche des performances proches de l’opti-
mum sous bruit gaussien ou non. Ce récepteur aspire à être suffisamment générique
pour s’adapter automatiquement en situation réel.

Nous montrons par nos travaux qu’un simple module entre la sortie du canal et
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le décodeur de canal permet de combattre efficacement le bruit impulsif et améliore
grandement les performances globales du système. Ce module approche le LLR par
une fonction adéquate sélectionnée parmi une famille paramétrée qui reflète suffi-
samment de conditions réelles du canal allant du cas gaussien au cas sévèrement
impulsif. Deux méthodes de sélection sont proposées et étudiées : la première utilise
une séquence d’apprentissage, la seconde consiste en un apprentissage non super-
visé. Nous montrons que notre solution reste viable même pour des communications
en paquets courts tout en restant très efficace en terme de coût de calcul. Nos
contributions peuvent être amenées à être appliquées à d’autres domaine que les
communications numériques.

Index terms— Bruit impulsif, détection, rapport de vraisemblance, apprentis-
sage supervisé, apprentissage non-supervisé, décodage de canal souple.



v CONTENTS

Contents

Acknowledgements

Abstract i
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Chapter 1
Introduction

1.1 Introduction

D
igital communication systems are one of the major technology revolutions of
the last few decades. In our current societies these systems have to be more

and more efficient in different terms: maximizing the spectrum efficiency, quality of
service (QoS), mobility, energy consumption... in order to address the needs of many
applications that facilitate our livings. These modern applications invaded almost
the vast majority of disciplines, the list is too long to go through for instance: med-
ical and healthcare, agriculture, environmental monitoring, security, smart cities,
transportation, energy management, commercial usage, city infrastructure, public
utilities, oil and gas extraction, artificial intelligence, etc. In short, mobile data com-
munications will include any device, not only those carried by humans. This opens
the appetite for many prestigious companies that realize this potential and start
rolling to invest in this field, for instance, AT&T, Verizon, Huawei, Google, Apple,
Orange, IBM, etc. But also creates many opportunities for startups to engage.

Hence, in the coming few years an extraordinary number of connected devices is
expected. The number of these devices will be multiplied by more than 100 com-
pared to nowadays reaching 50 billion by 2020 according to Ericsson’s former CEO
Hans Vestburg [Ahm19]. Due to the proliferation of these devices, it gives rise in
future scenarios to situations where a large number of devices are located in physi-
cal proximity, creating hybrid products with large independent traffic quantities and
different requirements that share the same radio resources simultaneously. In such
situations, the number of competitors for radio resources can be much higher than
those manageable by conventional wireless architectures, protocols, and procedures.
Thus, radio access networks must evolve towards new paradigms in order to adapt
to such contemporary scenarios.

The architecture of radio small cells has gained attention due to the high data
capacity that can be realized and the ability to meet users QoS requirements while
keeping the end devices costs low [AWM14]. To increase the cell coverage and
capacity, small cells include femtocells, picocells, metrocells, and microcells [HM12],
that is different area coverage provided by different Base Stations (BS). These areas
are becoming more dense and heterogeneous due to the continuous increase of users.
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Under the constraint of limited resources at each BS, the interference will increase
putting a limit on the development of such techniques.

To capitalize on the knowledge acquired by small cells, Device to Device (D2D)
communications need to be within small ranges where they communicate directly
without traversing the BS or core network [AWM14]. Differently from the traditional
systems where all communications must go through the BS. D2D communications
can be classified into two categories inband and outband, where the former occurs
on the cellular frequencies and the latter uses an unlicensed spectrum. However, a
major issue in the inband D2D communication is the power control and interference
management between D2D and cellular users [AWM14]. In outband D2D the inter-
ference level is uncontrollable, therefore, QoS cannot be guaranteed in such highly
saturated wireless areas making it a challenging task.

In addition to cellular networks, IoT devices are employed in the unlicensed
industrial, scientific and medical (ISM) bands. The most two common connectivity
technologies for IoT devices being deployed in these bands are Sigfox [NGK16] and
long range (LoRa) [SYH17]. In fact, these bands suffer from the spectrum scarcity
problem and are shared by many technologies that may overlap over frequency
spectrum. As an example, at 2.4 GHz, we can mention different standards: IEEE
802.15.1 (Bluetooth), IEEE 802.11b (Wi-Fi), 6LoWPAN which is the acronym of
IPv6 over low-power wireless personal area networks, IEEE 802.15.4 (e.g. ZigBee),
etc, leading to a contracted band. As a consequence, this will load the networks
with different data traffic patterns and leads to a significant increase in the impact
of dynamic interference. This poses a challenge for the way that interference can
be handled, either by considering it as noise or by the enhancement of interference
mitigation techniques.

Nevertheless, interference will become a fundamental limit in many communi-
cation systems due to the densification of communicating devices and the scarcity
of available spectrum resources. If we consider the interference as noise, this poses
a question about the interference characteristics and the models that can represent
it. Is the traditional Gaussian model suitable to represent the statistical nature of
this interference? It was shown that the interference observed in these networks is
not Gaussian but have an impulsive characteristics [PW10a,ZEC+19]. That means
high amplitude interference is significantly more likely than in Gaussian models.
The problem is that most of the conventional communication systems implemented
nowadays are based on the Gaussian assumption which will be undermined by the
impulsive interference phenomena.

Beyond networks, impulsive noises are also found in other contexts. Impul-
sive noise can be generated naturally or by man-made noise, which is observed
in many other different scenarios including: underwater acoustic noise [CPH04],
indoor wireless communication systems [BRB93], the background noise of power
line communications (PLC) [MGC05], multiple access interference (MAI) in ultra-
wideband (UWB) systems [BY09], digital subsrciber line (DSL) transmission [KG95,
NMLD02], ad hoc networks [HEg07,Car10], in multi-user systems [ZB02], molecular
communications [FGCE15], radio frequency interference (RFI) for radars [GSY09],
atmospheric noise [HH-56], electromagnetic interference (EMI) [Mid72b, Mid77],
multi-path noise in satellite transmission [Nah09], etc.
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We focus on this thesis on impulsive noise which is a fundamental limit in many
communication systems as aforementioned. The impulsive nature must be taken
into account if reliable communications are to be established. While this observa-
tion is widely shared, little work has been done on ”robust” coded systems in this
type of environment. This is the subject of this work which studies solutions to
make communications more reliable when the channel state (here the interference
distribution) is not precisely known. What strategies, both in terms of coding and
decoding, can ensure the reliability of the communications regardless of the level of
impulsivity encountered?

1.2 Motivation and challenges

A major consequence of the massive increase in wireless transmissions is heteroge-
neous systems and the wide variability of environments is the impact of interference.
Future networks will face two challenges: robustness and adaptability, with high en-
ergy and lifetime constraints.

I Interference: increasing the number of objects without more available fre-
quency bands inevitably implies stricter spatial reuse of radio resources. If we
try to limit interference (interference alignment [JG12]) or to consider them
as a signal (Network Coding [BMR+13]), high complexity arises because of
the timing and knowledge of the channel which is needed. Moreover, trying
to create systems without interference is a sub-optimal strategy [Cos83]. Al-
ternatively, the optimal approach is to consider the interference as noise and
create codes that take advantage of it [Cos83]. However, if they are considered
as noise, their statistical nature depends strongly on the environment and they
are often not Gaussian but have impulsive characteristics [PW10a,GCA+10].
The problem is that most of the communication systems implemented are
based on Gaussian assumption: the capacity is well studied with additive
Gaussian noise, but less with impulsive interference; the conventional linear
receiver under the Gaussian noise assumption is not suited anymore and new
strategies have to be implemented; even the SNR (Signal to Noise Ratio) is not
sufficient to represent the link quality and another criterion must be defined.

I Adaptability: communicating systems need to be robust against the change
in a wide variety of environments (dense or not, static or mobile ...), supporting
heterogeneous radio interfaces and different quality of service. This implies, in
particular, adapting to different types of noise, more or less impulsive. Systems
lose their robustness when the environment changes, as the design takes too
much into account the specificities of the model. As a motivation let’s take the
example of a receiver that receives two versions r1 and r2 of the same sample x
that takes either +1 or −1 values. The usual receiver, based on the Gaussian
noise model assumption is resulting in the decision regions shown in case (a)
in Figure 1.1 where a linear boundary differentiates a +1 from a −1. However,
the performance of such a receiver will significantly degrade in the impulsive
case where non-linear separations of the decision regions will arise (case (b)).
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Fig. 1.1. Decision regions when the transmitted bit is repeated twice; in black
areas, the best decision is −1 while in white areas, it is +1. Case (a) corresponds
to additive white Gaussian additive noise and we can see a linear separation of the
regions whereas in (b) the noise is impulsive and non-linear region separation will
appear.

This visual analysis is confirmed in many papers [GCA+10, BY09] and this is also
verified when error-correcting codes are used but not adapted to the noise distribu-
tion [GC12, MGCG10a]. If the observation of non-Gaussian interference has been
made in many papers, fewer studies are available on error-correcting codes in im-
pulsive environments that are of interest in our study.

The impulsive behavior study was founded in Middleton’s work [SM77] and more
recently in the results of stochastic geometry and the α-stable distributions [GCA+10].
These works often lead to interference distributions that are difficult to handle in
receivers. Indeed the probability density function is sometimes expressed as an
infinite series (Middleton) or has no closed-form expression (α-stable). Receivers
frequently need the evaluation of the likelihood of the received sequence, which can-
not be evaluated simply with such distributions. In literature, different approaches
have been considered to overcome these issues. Nevertheless, the approaches are
designed for a specific noise model and their robustness against a model mismatch
is not ensured [GC12, Chu05, FC09]. The choice of a more universal solution that
can be used for various impulsive noise is thus salutary.

Eventually, we have to take into account that in IoT networks, simple end de-
vices have only a limited amount of data to transmit. Due to their limited energy
resources, it is important to avoid adding data to be transferred that are not infor-
mation. This leads to short packets, short training sequence or even, if possible, no
training sequence at all.

1.3 Aims, objectives and contributions

In this thesis we aim to design a robust receiver that exhibits a near-optimal per-
formance over Gaussian and non-Gaussian environments without relying on the in-
terference plus noise statistical properties knowledge. We propose to select the LLR
in a parametric family of functions, flexible enough to be able to represent many
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different communication contexts and to estimate it directly. The great advantage of
this approach is that it does not require the knowledge of the noise (including both
thermal noise and interference) distribution nor the knowledge of its parameters but
only the estimation of the LLR approximation parameters.

We aim to construct an adaptive robust receiver in a way that can be used at
the front end of any LLR-based decoder which will be of great advantage as it can
be migrated to any LLR-based decoder like LDPC or turbo, thus capitalizing on
the knowledge acquired by the development of such types of decoders. The receiver
must strive for universality by adapting automatically and without assistance in real
conditions. We aim to select efficiently the LLR parameters’ with low computational
complexity in order to be implemented online. We propose to perform the LLR
parameter estimation under an information theory criterion based on the capacity
of the Memoryless Binary Input Symmetric Output (MBISO) channel, which can
be expressed as a function of the LLR [RU08]. The LLR parameter estimation
method will be performed in both supervised and unsupervised manner under long
and short block length regimes. This study is attractive for many communication
networks either wireless networks or power line communications, point to point or
dense networks. For instance, having an unsupervised receiver where the parameters
can be estimated efficiently under the short block length regime will be highly desired
in the case of IoT networks with short length packets where the receiver in this
context must cope with the impact of dynamic interference.

1.3.1 Main contributions of this thesis

The contributions of this thesis brought into focus on how to design a robust receiver
that strives for universality without relying on the noise plus interference knowledge.
The novelty of this thesis is described as follows

In Chapter 3, we proposed a new framework for robust receiver design directed
towards a realization of universal receiver promised by information theory.

I To avoid relying on a noise distribution assumption, we propose to directly
estimate a LLR approximation. In doing so, our solution can be used with
any LLR-based decoder (LDPC, turbo, convolutional, etc).

I To adapt to many different types of noises, we approximate the LLR by a
function chosen in a parametric family. Besides, we consider a family defined
by a limited number of parameters and easy to implement, thus, both the
estimation and implementation complexities are reduced.

I To adapt to interference that may change in time and space, we propose an
online real-time parameter estimation method, which is based on maximizing
the mutual information between the channel input and channel output. Fur-
thermore, we demonstrate the rationale behind this approach to obtain the
LLR approximation and why it is expected to be efficient and robust.

In Chapter 4, we introduce a supervised online estimation approach where a
learning sequence is used to maximize the mutual information.
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I To assess the optimal performance that can be achieved using the supervised
framework we studied it first under the long blocklength regime, we show an
indirect relation between the optimization problem and minimizing the bit
error rate.

I We study the robustness of the supervised approach under different noise mod-
els. It is shown to be efficient for a large variety of noise distribution. Further-
more, there is no need for a detection step to distinguish between Gaussian
and impulsive situations.

I We propose a new LLR approximation that requires the estimation of three pa-
rameters. Numerical simulations show that the performance achieved matches
the one obtained with the true LLR and outperforms the one obtained with
previously proposed solutions.

I We propose to evaluate the quality of the approximation by a mean squared er-
ror and ascertain that this criterion is sufficient to identify the approximations
that will be efficient instead of using the extensive Monte Carlo simulations.

I We study the effect of shortening the learning sequence and introduce the
mismatch risk, meaning that the learning sequence may not match the real
condition of the message.

In Chapter 5 we introduce an unsupervised online real-time estimation. It avoids
the need of training data that reduces the useful information rate. It also allows
taking benefit from the whole data sequence to improve the accuracy of the estima-
tion.

I We study the robustness of the unsupervised approach under a long block-
length regime for different noise models, it exhibits a near-optimal performance
in a large variety of noises and it is even better than the supervised approach
if the training sequence is not sufficiently long.

I We investigate the impact of reducing the length of the packet on the Bit
Error Rate (BER) when the LLR approximation parameters’ estimation is
unsupervised.

I We analyze the reasons for the degradation that we observed compared to a
longer packet case and derive an analytical tool to assess the risk of estimation
failure.

I We propose solutions to keep a robust scheme with shorter packets by increas-
ing the diversity in the noise sequence extracted from the received packet and
adding a regularization term.



Chapter 2
Theoretical background

With the denser deployment of wireless networks, the induced interference becomes
the main system performance limitation, due to the collection of undesired signals
broadcasted by other transmitters. If the thermal noise caused by receiver equipment
is well modeled by Gaussian distribution, it has been shown in many works that
interference exhibits an impulsive behavior [PW10a, GCA+10, SAC04, ECdF+17] as
it does not represent the impulsive nature of the interference. In this context, other
models must therefore be considered. The study of such models is important for
two major reasons. First, from a fundamental point of view, it brings a better
understanding of the phenomena. Then, from a practical point of view, it guides the
design of communication systems and the choice of communication strategies. This
chapter presents noise/interference models often seen in the literature and introduces
the dynamic interference characterization. In particular, α-stable model and its
properties are studied as well as their interests to model impulsive processes. This is
followed by LDPC codes review which will be considered in the rest of this manuscript
and a brief of some useful information theory elements.

2.1 Impulsive interference

W
ith the denser deployment of wireless networks, the induced noise and interfer-
ence becomes the main system performance’s limitation on capacity, coverage,

etc. By definition, noise is an unsought signal that implicates unpredictable pertur-
bations that degrade the desired information. Its source can be separated in many
categories [Vas00], for instance, acoustic noise, electronic noise, electrostatic noise,
quantization noise, and communication channel, etc. Interference represents the
collection of undesired signals broadcasted by other transmitters and added to the
desired one. It is created when multiple uncoordinated links share a common com-
munication medium, hence, it is featured as being a special case of artificial noise
generated by other signals. In the cellular communication context, the frequency
planning is used in the sake of improving the spectral efficiency and the system
capacity, however, it will induce inevitable interference.

Limiting the impact of interference either by avoiding it or by mitigating it
[CAG08, Gol05, CLCC11] is tackled in several works, in the sake of improving the
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Fig. 2.1. Character of Impulse noise.

system capacity, the node coverage in heterogeneous networks, or any other fea-
tures in the interest of system designer. Several techniques are proposed to reduce
the effect of interference: interference alignment at the physical layer [EPH13], suc-
cessive interference cancellation [WAYd07, And05], carrier sensing and many other
useful techniques at the MAC layer [YV05,JHMB05] that try to avoid simultaneous
transmissions, attributing orthogonal resource blocks to different users. However,
orthogonal schemes imply coordination in the network, which is not always feasible.
For this reason, several techniques have been proposed as utilizing the same time-
frequency resource or spatial separation [CBV+09] or the Non-Orthogonal Multiple
Access (NOMA) technique.

Creating systems with no interference is an optimal strategy, but in fact, the
indispensable increase of transmitting devices may burden such an approach. An-
other approach can be achieved by designing codes that benefit from the interfer-
ence. This motivates the researchers to understand the fundamental characteristics
in transmissions containing interference.

Understanding the main characteristics of the noise and interference is essential
to evaluate its effect on transmission systems. A Gaussian random variable (r.v.)
choice is a fundamental model justified by the Central Limit Theorem (CLT). This
model is attractive due to the stability property and its simplicity and its analytical
tractability. Furthermore, the optimal receiver is linear and easy to implement. Nev-
ertheless, it has been shown in many works that interference exhibits an impulsive
behavior [PW10a, GCA+10, SAC04]. The receiver based on the Gaussian assump-
tion exhibit a dramatic performance degradation [PW10a] in such cases. During the
last years, many new models have been investigated in various scenarios to handle
the interference phenomenon.

Impulsive noise consists of irregular pulses of short duration and high amplitude
and may occur in bursts or discrete impulses, as shown in Figure 2.1. Impulsive
noise is measured by the number of impulses above a certain threshold over a time
interval [KTH95]. It is worth mentioning that each spike has a broad spectral
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Fig. 2.2. Time and frequency sketches of (a) ideal impulse, (b) and (c) two different
short duration pulses.

Fig. 2.3. Illustration of variation of the impulse response of a non-linear system
with increasing amplitude of the impulse.

content. Figure 2.2 shows two examples of short-duration pulses with their respective
spectra, where m indicates the discrete-time index and f indicates the frequency. In
a communication system, at a certain point in space and time the impulsive noise
will be generated, and then propagates to the receiver through the channel.

The channel will shape the received noise which can be seen as the channel im-
pulse response. Generally, the communication channel characteristics may be vari-
ant or invariant, linear or non-linear. Moreover, the response to a large-amplitude
impulse in many communication systems will exhibit a nonlinear characteristic as
shown in Figure 2.3. This gives a glance behind the effect of large amplitude impulses
from a signal processing aspects and allows better understanding. One can define
the impulsive behavior as a random variable having a heavy-tailed probability den-
sity function (PDF). From a probability theory aspect, heavy-tailed distributions
are probability distributions whose tails are not exponentially bounded, in other
words, they have heavier tails compared to exponential distributions.

In Figure 2.4 we show the ambient noise detected by an underwater acoustic
receiver operating in shallow waters of the coast of Singapore. The collected data
was taken from the National University of Singapore [KTMP03] during sea-trials by
the Acoustic Research Laboratory. Obviously, the ambient noise exhibits impulsive
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Fig. 2.4. Realization of the ambient noise in Singapore shallow coastal waters.

behavior. As such, in order to establish reliable and efficient communications, one
needs to take into account this impulsive nature while designing the receivers. Var-
ious models have been proposed for such noises as will be detailed in the following
section.

2.2 Impulsive interference models

Some classical noise models encountered in the literature are reviewed in this sec-
tion. The Gaussian noise model represents accurately the thermal noise in the
receiver. However, dealing with dense and heterogeneous networks, i.e. 5G net-
works, the interference may exhibit impulsive behavior [PW10b, Car10, ECdF+17],
and the Gaussian assumption is no longer suited. Thus, several models have been
proposed to better take into account the impulsive behavior; we can identify some
approaches as:

I Theoretical approaches: several works try to derive the interference dis-
tribution which can be found mainly in Middleton’s work [SM77] and more
recently in the results of stochastic geometry [WA12, WPS09]. This last ap-
proach, under some assumptions, can lead to the important α-stable distribu-
tions [GCA+10, PW10a] that will be considered mainly in this thesis. These
works allow a better understanding of the physical underlying phenomena and
its link to the model parameters. However, these works often lead to inter-
ference distributions that might be difficult to handle in receivers. Indeed
the probability density function is sometimes expressed as an infinite series
(Middleton) or has no closed-form expression (α-stable).

I Mixture model approaches: Due to the difficulties raised by the theo-
retical approaches, other solutions are proposed based on some mixtures of
distributions like the Gaussian-mixture model, generalized Gaussian model,
ε-contaminated model, etc. Most of these models can be seen as limiting
the series in Middleton’s work at its main terms (ε-contaminated, Gaussian-
mixture). The main idea is to have some components of the mixture that will
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increase the heaviness of the tails. Mixture models may have good attributes,
mainly the closed-form PDF and the existence of the 1st and 2nd order mo-
ments. However, they may not truly portray the noise characteristic at the
tails [Leg09] and lack the stability property, thus, restricting arguments must
be considered in order to characterize the resulting distribution.

I Empirical approaches: they are often based on practical choices of a distri-
bution that allow a good fit with generally simulated data, for instance, Pareto
model [K60], T-student model [Hal66], etc.

One can note that the aforementioned models cover the main solutions and are not
an extensive list of the different impulsive models. In the following of this section,
we will detail some of the most commonly used models.

2.2.1 Gaussian

The Gaussian distribution is the most common noise model used in wireless systems
[Vas06,BSE10], it is characterized by two parameters: the mean µ and the variance
σ2. Essentially, it appears from external environment sources and the vibration of
atoms in conductors, known as the thermal noise. An important theorem, often
justifying the good adequacy of this model, is the CLT [Fel70, Dur10]: the noise is
obtained by the superposition of a large number of independent contributions. And
by the CLT given below tends to be Gaussian.

Theorem 1. (Classical CLT) Let X1, X2, ..., XN be a sequence of random vari-
ables independently and identically distributed (i.i.d) and let the mean µ = E [X1]
and finite variance σ2 = E [(X1 − µ)2] <∞, then

1

σ
√
n

(
n∑
j=1

Xj − nµ

)
d−−−→

n→∞
Z ∼ N (0, 1), (2.1)

To match the following notation, this can be rewritten as

an(X1 + . . .+Xn)− bn
d−−−→

n→∞
Z ∼ N (0, 1), (2.2)

where an = 1/(σ
√
n) and bn =

√
nµ/σ.

Conceptually, the CLT explains the Gaussian nature of the processes that are
generated by the superposition of a very large number of small independent random
causes and which present identical probability distributions. For instance, this is
the case of the thermal noise, which is generated by the superposition of a large
number of independent random interactions at the molecular level. In summary,
the CLT imposes that regardless of the Xj distribution, as n → ∞ the sum tends
to a Gaussian random variable if Xj are i.i.d. and have a finite variance.

Formally, for a continuous Gaussian random variable X the Gaussian noise PDF
is given by

fG(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (2.3)
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where µ is the mean and σ is the standard deviation. On the other hand, the
characteristic function is represented by

φG(θ) = eiµθe−
1
2

(σθ)2 . (2.4)

The analytical and tractable forms of the Gaussian model make it a convenient
model. Indeed, this model appears as a universal model because of adapting to
many situations. Most of the conventional signal processing researches use this
model. Among these situations, we find the field of communication theory where
many algorithms assume that the studied signals obey a Gaussian law or add to
Gaussian noise. This hypothesis generally makes it possible to obtain compact and
fast analytical solutions, but it is restrictive.

One limitation is that it is difficult to take into account a large variability in the
data. This is due to the fast tail decay of the PDF that can be quantified as

Proposition 1. Let X ∼ N (µ, σ2) then

Pr(|X − µ|> t) ≤
√

2

π

σ

t
e−

t2

2σ2 , t > 0, (2.5)

meaning that the probability of large samples decays exponentially. As such, the
probability of having large values that appear in the interference depicted by samples
far from the mean µ are not predicted by the Gaussian model. However, in the field of
telecommunications, many phenomena encountered have this important variability
impulsive by nature. Examples include noises encountered during transmission on
the power grid [ZD02], digital subscriber lines [Coo93], UWB systems [PCG+06],
interference in ad hoc networks [IH98a], interference in wireless multi-user systems
[Sou92a], etc.

In the following, we illustrate main approaches that have lead to impulsive mod-
els: analytical approaches, for instance, Middleton class A, B, C models or under
some assumptions α-stable model and other empirical approaches based on Gaussian
mixtures or mixture of distributions.

2.2.2 Middleton model

One of the first significant models in communication can be seen in Middleton’s
work who described the phenomenon of impulsive noise [Mid96], where he gave a
model for impulsive noise in communications systems.

The nature, the origins, the measurement, and the prediction of the general elec-
tromagnetic (EM) interference environment are a major concern of any adequate
spectral management program. Middleton divided the origin of impulse noise in
two main categories: (1) man-made, which is caused by other devices connected in
a communications network and (2) naturally occurring, for instance, due to thun-
derstorms, and atmospheric phenomena, etc. Nevertheless, most man-made and
natural electromagnetic interference are highly non-Gaussian random processes.

General EM noise environments can be conveniently classified into three broad
categories vis-à-vis any narrow-band receiver [Mid77]: Middleton class A, class B,
and class C.
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I Class A interference (represents narrowband noise:) originally defined so
that the bandwidth of the noise is comparable to, or less than, the bandwidth of
the receiving system [Mid72b], now modified to include all noise pulses that do
not produce transients in the front end of the receiver [Mid72a]. In particular,
class A noise describes the type of electromagnetic interference (EMI) often
encountered in telecommunication applications, where this ambient noise is
largely due to other, “intelligent”1 telecommunication operations.

I Class B interference (represents broadband noise:) the bandwidth of the
noise is greater than the bandwidth of the receiving system, i.e., the noise
pulses produce transients in the receiver. So that transient effects, both in the
build-up and decay, occur, with the latter predominating. Usually, ambient
Class B noise represents man-made or natural “non intelligent”2 and is highly
impulsive.

I Class C interference: a combination of Class A and Class B.

Spaulding and Middleton have studied optimum reception of signals in Class A
and B noise [SM77,Spa81].

Middleton Class A noise model is one of the most famous models which has
been extensively studied and utilized in the literature to become widely accepted
to model the effects of impulse noise in communications systems. Moreover, it has
been shown that Class A noise accurately model electromagnetic interference (EMI)
and background noise, for instance, in Power line Communications (PLC) [AP10],
Orthogonal Frequency-Division Multiplexing (OFDM) [III07] and Multiple Input
Multiple Output (MIMO) [CGE+09].

Due to its success, we will use this model to evaluate our proposals so that we
dedicate space in the following to describe the Class A noise model. The PDF of
Middleton Class A model is a Gaussian Mixture Model (GMM) with an infinite
number of components

fM(nk) =
∞∑
m=0

PmN (nk; 0;σ2
m), (2.6)

where N (xk;µ;σ2
m) represents a Gaussian PDF with mean µ and variance σ2, and

Pm =
Ame−A

m!
; (2.7)

σ2
m = σ2

m
A

+ Γ

1 + Γ
= σ2

I

m

A
+ σ2

G = σ2
G

( m
AΓ

+ 1
)
. (2.8)

The noise variance is σ2 which can be decomposed into two parts, σ2 = σ2
G +σ2

I ,
where σ2

G is the thermal noise power and σ2
I is the impulsive noise power. The

1Intelligent noise or interference [Mid72b]: is man-made and intended to convey a message or
information of some sort;

2Non-Intelligent noise or interference [Mid72b]: may be attributable to natural phenomena, e.g.,
receiver noise or atmospheric noise, for example, or may be man-made, but conveys no intended
communication, such as automobile ignition, or radiation from power lines, etc.
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Fig. 2.5. Example of Impulsive index: (a) Impulsive index (density) of η impulses,
each with width (duration) τ , occupying a given time period T0 and (b) impulsive
index (density) of 3 impulses, each with width (duration) τ , occupying a given time
period T0 = 1.

parameter Γ = σ2
G/σ

2
I is the ratio between them, which gives the Gaussian to impulse

noise power. The parameter A denotes the impulsive index or more recently it is
denoted as the overlap index and used to control the impulsiveness as A > 0. It
is related to the average number of emission ”events” that collide at the receiver
times the mean duration of a typical interfering source emission [Mid77]. In other
words, it represents the density of impulses (of a certain width) in an observation
period. Therefore, A = ητ/T0, where η is the average number of impulses per second
and T0 = 1, which is unit time. The parameter τ , is the average duration of each
impulse, where all impulses are taken to have the same duration. Therefore, instead
of talking about the number of impulses we use the density of impulses as shown in
(2.7) where we have the density of impulse noise occurring according to a Poisson
distribution.

The impulsive index A is rarely well explained in the literature, so we will give
some details to enhance its understanding. First note that A ≤ 1, this follows from
the definition of the impulsive index being a fraction of impulses in a given period
T0. Therefore, for ητ > T0, no matter how large ητ is in the observation period
T0, the impulsive index is capped at 1. Moreover, no matter if the impulses occur
whether in bursts (next to each other) or not, the calculation of the impulsive index
follows the same procedure. To clarify that we show in Figure 2.5 both scenarios. In
Figure 2.5 (a) we present η impulses each of duration τ that occur next to each other
which is defined as bursts. On the other hand, in Figure 2.5 (b) we present η = 3
impulses that do not necessarily occur in bursts each of duration τ , we show the
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Fig. 2.6. PDF comparison of Middleton Class A noise with different impulsive
index A, different Gaussian to impulsive noise power ratio Γ and compared to the
normal PDF with σ2

G = 1.

Fig. 2.7. Samples generated from a Middleton class A noise with different A, Γ
and σ2

G = 1.
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Fig. 2.8. Probability density of a Generalized Gaussian distribution with different
β values.

usual case, in the sense that impulsive noise is sporadic by nature, the calculation of
A where spread over an observation period T0 = 1. Eventually, one can note from
Figure 2.5 that whether the impulses occur in bursts or not, the impulsive index
calculation follows the same procedure.

Figure 2.6 compares the PDF of the Middleton Class A with different parameters’
to the Normal PDF. The y-axis is given in logarithmic scale to highlight the heaviness
of the tail distribution as a function of parameters. The smaller values of A produce
impulses with high amplitude samples noise as the tail of the distribution becomes
heavier, thus, the probability to have severe impulses increases. Remark that despite
the fact that A = 0 degenerates into purely Gaussian (see (2.6)), conversely, as A
increases the noise tends towards the Gaussian noise.

In Figure 2.7 we generate 2000 samples from a Middleton Class A noise with
different values of A and Γ. Figure 2.7 show that as A decreases (except for the
special case A = 0) the probability to receive extremely large values will increase,
however, as Γ increases the Gaussian noise will become dominant compared to the
impulsive one.

2.2.3 Generalized Gaussian distribution

The generalized Gaussian distribution (GGD) distribution has been used in several
areas such as multiple access interference in UWB systems [BY09], ad hoc networks
[HEg07], in multi-user systems [ZB02], etc. This distribution is described in several
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Fig. 2.9. Probability density of a Gaussian mixture distribution

forms [VA89], but we will use the following PDF form

f(x) =
β

2αΓ(1/β)
exp

(
−
∣∣∣∣x− µα

∣∣∣∣β
)

(2.9)

where µ ∈ R represents the location parameter, β ∈ R+ is the shape parameter
or characteristic exponent, α ∈ R+ is a scaling parameter and Γ(·) is the Gamma
function. This family includes different types of distributions: Gaussian (β = 2),
Laplace (β = 1) and uniform law (β →∞) as shown in Figure 2.8.

One can note that the nature of this distribution depends essentially on the
value of the characteristic exponent β. They allow either heavier (β < 2) or lighter
(β > 2) tails compared to the Gaussian case. Due to this flexibility, they become
very useful to model the impulsive noise, however, they remain empirical without
any theoretical justifications. In addition, when β < 1, this distribution inherits the
pointed shape or peaky shape of the Laplace distribution. Furthermore, when β > 1
the tails of the generalized Gaussian distributions are characterized by exponential
decay, in contrast to the heavy tails that appear in practice [NS95,WTS88].

2.2.4 Gaussian mixture model

The Gaussian mixture [MT76,Kas88] is a statistical model represented by a density
of probability seen as a weighted combination of several weighted Gaussian. We can
write it as follows:

f(x) =
K∑
k=1

λkN (x|µk, σk), (2.10)

where N (x|µk, σk) is a Gaussian density described by a vector of averages µk and a
variance σk and the weighting is given by the coefficient λk that satisfies

∑K
k=1 λk =
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1. Figure 2.9 shows the construction of this probability density from four compo-
nents.

This distribution was used to model the impulsive processes that appear in
the transmission systems such as noise due to multi-path in satellite transmis-
sion [Nah09], multi-user interference that occurs in UWB systems [ECD08]. The
Gaussian mixture is a very flexible distribution. It can represent different situa-
tions, symmetric or not, and if a large number of components is accepted the tail
can be very precisely controlled. However, this model has some drawbacks, in par-
ticular, it requires the estimation of the parameters µk, σk and λk, which can be
complex [APDR77].

2.2.5 ε-contaminated model

Middleton models have been proven to be difficult to work with in many practical
scenarios, due to the infinite series nature as shown in (2.6). For that reason, many
approximation models have been proposed such as ε-contaminated noise [AB07,
DYZB03, AALM17a], Gaussian mixture [GDK06]. Mainly, such approximations
consider the most significant terms in (2.6). To obtain a good approximation of
Middleton model it is claimed in [Vas84] that two or three terms are sufficient. As a
consequence, by taking two terms we can obtain the ε-contaminated noise. The main
idea of such approximation is to mix two Gaussian models with different weight and
standard deviation but the same mean. An ε-contaminated mixture PDF is given
as:

f(x) = (1− ε)N (x; 0, σ2) + εN (x; 0, kσ2), (2.11)

where ε represents the probability of impulsive occurrence or the contamination
level and k represents the impulsive strength. The first term of (2.11) represents
the PDF of Gaussian thermal noise with zero mean and variance σ2. The second
term represents the impulsive part with zero mean and larger variance kσ2. Hence,
we can adjust the impulsiveness of the model by adjusting the weight of the part
with largest standard deviation. For instance, as ε increases more often large values
will appear.

Figure 2.10 compares the density function of ε-contaminated distribution with
different parameters to the Gaussian distribution. We notice that the y-axis is given
in logarithmic scale in order to highlight the effect of the parameters in the tail
of the distribution. Figure 2.10 show that the ε-contaminated distribution has a
heavier tail compared to the Gaussian distribution. Moreover, the tail becomes
much heavier as ε and k increases which means that it is more likely to receive
extremely large values. Figure 2.11 present different sample realizations generated
from ε-contaminated noise, we can see that as ε and k increases the probability to
have impulsive samples will increase.

In the next section, we present the α-stable distribution that becomes in the
literature a cornerstone to model the impulsive noise.
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Fig. 2.10. Comparison of the density function of ε-contaminated distribution with
different ε, K and σ2 = 1 to Gaussian distribution (µ = 0, σ2 = 1).

Fig. 2.11. Samples generated from an ε-contaminated noise with different values
of ε and k with σ2 = 1.
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2.2.6 α-stable distributions

Stable distributions also called α-stable distributions, were introduced by Paul Lévy
in the 1920’s. They form a very rich class of probability distributions capable of
representing skewness, heavy tails and have many fascinating mathematical prop-
erties. As a consequence, they are considered to be an important class that models
impulsive noise.

This family distribution is used in many areas such as telecommunications [CTB98],
finance [BEK98], computer science [KH01], biomedical... Several books are avail-
able devoted to them: Zolotarev [Zol86] studied the α-stable laws in the uni-varied
context; Samorodnitsky and Taqqu [ST94] have studied in depth several properties
of these laws in the univariate case as well as the multivariate case. Nikias and
Shao [NS95] applied these laws in the signal processing, such as signal detection and
classification, development of optimal and sub-optimal receivers in the presence of
impulsive signals and the estimation of the parameters of an α-stable distribution.

One may adopt the α-stable distributions to describe a system essentially for
three reasons:

I The existence of theoretical justifications for the adequacy of this model.
The recent work by Pinto and Win [PW10a, PW10b] are a good illustra-
tion of these justifications, moreover, there are so many in the literature
Nolan [Nol97, Sou92b, NS95, ST94]. One can note that, when the radius of
the network is large with no guard zones and the active interferer set changes
rapidly, the induced true interference can efficiently be approximated by stable
distributions [GEAT10, IH98b].

I The Generalized Central limit Theorem (GCLT) which states that the only
possible non-trivial limit of normalized sums of i.i.d terms (with or without
finite variance) is stable. It is argued that a stable model should be used to
describe systems from which the observed quantities are results from the sum
of many small terms (i.e. the noise in a communication system, the price of
stock, ..., etc).

I The third argument to adopt the stable models is empirical: many large data
sets exhibit skewness and heavy tails, combining these features with the GCLT
is used by many in the literature to justify the use of stable models. Examples
in communication systems which are our concern can be seen by Stuck and
Kleiner [SK74], Zolotarev [Zol86], Nikias and Shao [NS95]. Using a Gaussian
model, such data sets are poorly described, however, using a stable distribution
they can be well described.

The major drawback and challenges to the use of stable distributions is the
lack of closed formulas for the densities and distribution functions except for few
stable distributions such as Gaussian, Cauchy, Lévy. However, reliable computer
programs nowadays allow us to compute densities numerically, distribution functions
and quantiles. With such programs, a variety of practical problems can be solved
using stable models.
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α-stable definitions and properties

One main property of a normal random variable is that the sum of two of them will
lead to a normal random variable. Consequently, if X is normal, then for X1 and
X2 independent copies of it and any a, b ∈ R>0,

aX1 + bX2
d
= cX + d, (2.12)

holds for some positive c ∈ R>0 and a real number d ∈ R. The symbol
d
= means

that both right and left expressions have the same probability law (equality in
distribution).

Similarly stable random variables are defined

Definition 1. A stable random variable X is said to have a stable distribution or
it follows a stable law if for X1 and X2 independent copies of X all positive real
numbers a, b ∈ R>0, (2.12) holds for some positive c ∈ R>0 and a real number
d ∈ R. Particularly, if (2.12) holds with d = 0 for all choices of a and b then X is

strictly stable. If X is stable and symmetrically distributed around 0, e.g. X
d
= −X

then it is symmetric stable.

One can note that the term stable is used because the shape is stable or preserved
up to potential shift and scaling under sums of the type (2.12). In fact, there are
other equivalent definitions of stable random variables. We will state two of them
in the following.

Definition 1 can be extended to a sum of n random variables.

Definition 2. A non-degenerate Z is stable iff X1, . . . , Xn are i.i.d copies of Z and
there exist constants cn > 0 and dn ∈ R such that

X1 + . . .+Xn
d
= cnZ + dn. (2.13)

Lemma 1. In [P.N18, Section 3.1] it is shown that Definition 2 holds only if the
scaling constants is cn = n1/α for some α ∈ (0, 2].

Putting it differently will state what is called the Generalized Central Limit
Theorem.

Theorem 2. Generalized Central Limit Theorem (GCLT) for some 0 <
α ≤ 2, a nondegenerate random variable Z is stable iff there is an i.i.d sequence
{Xi}i∈N, and constants cn > 0 and dn ∈ R such that

1

cn

(
n∑
i=1

Xi − dn

)
d−−−→

n→∞
Z (2.14)

or, equivalently,

lim
n→∞

Pr

{
1

cn

(
n∑
i=1

Xi − dn

)
< x

}
= G(x) (2.15)

where for all continuity points x of G, G(x) denotes a non-degenerate random vari-
able Z, in other words, a limiting distribution [Nol97].
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Theorem 2 says that the only possible non-degenerate distributions with a do-
main of attraction are stable. In other words, this theorem states that if the nor-
malized sum of i.i.d. random variables with or without finite variance converge to
a distribution by increasing the number of variables, the limit distribution must
belong to the family of stable laws. In particular, having a finite variance gives the
CLT and the Gaussian limit distribution.

Both Definition 1 and Definition 2 use distributional properties of X or dis-
tributional characterization of GCLT. While useful, these conditions do not give
a concrete way of parameterizing stable distributions. However, another way to
describe stable distributions is done with the characteristic function (CF) [CL97]
φX(t) = E[eitX ] =

∫∞
−∞ e

itxdF (x), where X is a random variable with a distribution
F (X).

Definition 3. A random variable X is stable iff X
d
= γZ + δ, where γ 6= 0, δ ∈ R

and Z is a random variable with CF

E[eitX ] =

{
exp(−|γt|α[1− iβ tan πα

2
(sign(t))] + iδt) if α 6= 1

exp(−|γt|[1 + iβ 2
π
(sign(t)) log |t|] + iδt) if α = 1.

(2.16)

where 0 < α ≤ 2, −1 ≤ β ≤ 1 and sign(t) defined as

sign(t) =


1 if t > 0

0 if t = 0

−1 if t < 0.

(2.17)

When β = 0 and δ = 0, these distributions are symmetric around zero and

denoted by SαS for which X
d
= −X. In that case, the CF reduced to a simpler form

φ(t) = e−|γt|
α

, t ∈ R. (2.18)

Except for three different cases (Normal, Cauchy, and Lévy distributions), the
density cannot be written in closed form. In practice, this appears to doom the use
of stable models.

Parameterizations of stable laws

Definition 3 introduces the four parameters α, β, γ, and δ that characterize a general
stable distribution:

I The characteristic exponent or index of stability α: it characterizes the thick-
ness of the distribution tail. For instance, as α increases the probability of
observing values far from the central position is interpreted as rare events or
impulses decreases. In the wireless context, α is directly associated with the
path loss exponent of the radio channel [RSU01a]. By letting α = 0.5, 1 and
2, we obtain three special cases: Lévy, Cauchy and Gaussian distributions,
respectively.
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Parameter Name Range

α characteristic exponent (0,2]
β skew parameter [-1, +1]
γ scale parameter (0, +∞)
δ location parameter (−∞, +∞)

Table 2.1 – Parameter description for Stable Distributions

I Skewness parameter β: it measures the skewness of the probability density. If
β = −1, the distribution is totally skewed to the left. If β = 1, the distribution
is totally skewed to the right. For β = 0, the distribution is symmetric. One
can note that when α = 2, β has no effect on the distribution (the Gaussian
distribution cannot be skewed).

I Dispersion or scale parameter γ: it measures the spread of the noise and is
considered as a scale parameter, similarly to the variance for Gaussian distri-
bution, which is a special case with α = 2 and γ = σ/

√
2.

I Location parameter δ: determines the shift of the distribution. Thus, for a
given distribution most of the samples are concentrated around this value. For
symmetric distributions when 1 < α ≤ 2 it is equal to the mean and to the
median when 0 < α < 1.

A summary of these parameters and their restricted ranges is listed in Table 2.1.

In literature, the notation X ∼ Sα(γ, β, δ) is used to represent an α-stable ran-
dom variable. Particularly, when dealing with symmetric α-stable (β = 0) the
notation is SαS(γ, δ).

Figure 2.12 illustrates the effect of the characteristic exponent parameter α on
the α-stable PDF by varying α = 0.5, 1.0, 1.4, 2 and for δ = 0, γ = 1 and β = 0.
The y-axis is given in a logarithmic scale to highlight the heaviness of the tails for
each α. Obviously, as α decreases the tail becomes heavier which delineates a higher
probability to receive samples far from the origin. Moreover, for the special case
α = 2 the tail decreases exponentially. Furthermore, in Figure 2.13, 1000 samples
are generated from a standard SαS distribution with different values of α, showing
the impulsiveness behavior as α decreases and the special case of when α = 2
representing the Gaussian noise.

Figure 2.14 highlights the effect of the skewness parameter β. A standard α-
stable PDF is presented, with α = 1.4, δ = 0, γ = 1 and the three main skewness
values. First, when β = −1, it depicts a totally left-skewed distribution and con-
sequently, increases the heaviness of the tail for the negative values. Second, when
β = 0 a symmetric distribution is observed. Third when β = 1, a totally right-
skewed distribution increases the tail heaviness for the positive values.

As such, in Figure 2.15 we highlight the effect of γ. The increase in the value of
γ increases the variability around the central value.
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Fig. 2.12. Effect of the characteristic exponent parameter α on the α-stable PDF
with δ = 0, γ = 1 and β = 0 and varying α = 0.5, 1.0, 1.4, 2.

Fig. 2.13. Effect of the characteristic exponent parameter α on the noise Samples
generated by an α-stable noise with δ = 0, γ = 1 and β = 0 and varying α =
0.5, 1.0, 1.5, 2.
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Fig. 2.14. Effect of the symmetry parameter β on the α-stable PDF for α =
1.1, γ = 1, δ = 0 and varying the skewness β = −1, 0, 1.

Fig. 2.15. Effect of the dispersion parameter γ on the α-stable PDF for α =
1.4, δ = 0, β = 0 and varying the dispersion β = 0.2, 0.4, 0.6, 0.8.
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c P (X > c)
Normal Cauchy Lévy

0 0.5 0.5 1.0
1 0.1587 0.25 0.6827
2 0.228 0.1476 0.5205
3 0.001347 0.1024 0.4363
4 0.00003467 0.0780 0.3829
5 0.0000002866 0.0628 0.3453

Table 2.2 – Comparison for the tail probabilities of Gaussian, Cauchy and Lévy
distributions [P.N18].

Probability density function

As mentioned before that there are three special cases where one can write a closed-
form expressions for the PDF:

Example 1. Normal or Gaussian distribution. X ∼ S2(γ, 0, δ)
d
= S2S(γ, δ) if it has

density

f(x) =
1√
2πγ

exp

(
−(x− δ)2

4γ2

)
, −∞ < x <∞. (2.19)

Therefore the normal distribution N (µ, σ2) can be obtained by adjusting the disper-
sion as X ∼ S2S(σ/

√
2, µ), thus the density will become

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, −∞ < x <∞. (2.20)

and CF becomes

φ(t) = exp

(
−σ

2

2
t2 + iµt

)
(2.21)

Example 2. Cauchy distribution. X ∼ S1(γ, 0, δ)
d
= S1S(γ, δ) if it has density

f(x) =
1

π

γ

γ2 + (x− δ)2
, −∞ < x <∞. (2.22)

with CF as
φ(t) = exp (−γ|t|+iδt) (2.23)

Example 3. Lévy distribution. X ∼ Lévy(γ, δ)
d
= S1/2(γ, 1, δ) if it has density

f(x) =

√
γ

2π

1

(x− δ)3/2
exp

(
− γ

2(x− δ)

)
, δ < x <∞. (2.24)

Table 2.2 compares the tail probabilities for the three aforementioned examples.
One can note that the probability is very small above 3 for the normal distribution,
but significant for the other two distributions. In particular, there will be approxi-
mately on average 100 times more values above 3 in the Cauchy case compared to
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the Gaussian. Which illustrates the reason behind calling the stable distributions
as heavy-tailed. Moreover, both normal and Cauchy distributions are symmetric,
while the Lévy distribution is totally skewed to the right with all the probability
concentrated on x > 0.

For α-stable random variables, there is no explicit expression of the probability
density in the general case. However, we can obtain an expression in the form of
the inverse Fourier transform of the characteristic function as

fX(x) =
1

2π

∫ ∞
−∞

exp(−itx)φX(t)dt. (2.25)

If X is symmetric,

fX(x) =
1

2π

∫ ∞
−∞

e−itxe−γ
α|t|αdt.

=
1

π

∫ ∞
0

e−γ
α|t|α cos(xt)dt. (2.26)

Nikias and Shao presented a simple asymptotic expansion that may well ap-
proximate the probability density function fX of stable variables with unitary scale
parameter [NS95].

Proposition 2. (Asymptotic Expansion). Let X ∼ Sα(1, 0, 0), the correspond-
ing probability density function fX can be approximated as

fX(x) =
n∑
k=1

bk
|x|αk+1

+O
(
|x|−α(n+1)−1

)
, (2.27)

Corollary 1. Suppose that X ∼ Sα(1, 0, 0) with a probability density function fX(x),
for x large enough, fX(x) can be written as

fX(x) ∝ |x|−(α+1) (2.28)

where (2.28) is based on the first term of (2.27) (see [NS95] for more details).

Tails and moments

The asymptotic tail properties for the normal distribution (α = 2) is well under-
stood. A brief discussion is given in the following about the tails of non-Gaussian
(α < 2) stable laws. When α < 1 and β = ±1, stable distributions will have one
tail, while for all other cases it will have both tails, these tails are asymptotically
power laws with heavy tails.

Proposition 3. Let X ∼ Sα(γ, β, δ) with 0 < α < 2, then{
limx→∞ x

α Pr(X > x) = γαCα
1+β

2
right tail,

limx→∞ x
α Pr(X < −x) = γαCα

1−β
2

left tail.
(2.29)

where the constant Cα depends on α and is given as
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Cα =

(∫ ∞
0

x−α sinxdx

)−1

=

{
1−α

Γ(2−α)cos(πα/2)
if α 6= 1,

2
π

if α = 1.
(2.30)

and Γ(·) is the Gamma function defined as

Γ(z) =

∫ ∞
0

tz−1e−xdx, R(z) > 0. (2.31)

We refer the reader to [ST94][Property 1.2.15] for more details. Obviously, (2.29)
show that α-stable densities have heavy tails or inverse power (i.e. algebraic) tails,
in contrast, the Gaussian distribution has exponential tails. Polynomial expressions
have a slower decay than exponential ones. This proves that the tail of stable laws for
α < 2 are heavier than those of the Gaussian distribution, moreover, as α decreases
the tails become thicker. Formally, heavy tails can be defined as

Definition 4. (Heavy Tail). Let’s consider a distribution with a right heavy tail,
then X will follow this distribution iff the tail probability Pr(X > x) decay slower
than any exponential distribution, such that

lim
x→∞

eλx Pr(X > x) =∞, ∀λ > 0. (2.32)

One consequence of heavy tails is that not all moments exist. In stable case,
second order moment is infinite (except for α = 2). In most statistical problems,
integer moments (IM) like the first and second moments are used to describe a
distribution. Instead, sometimes it is useful to use fractional lower-order moments
(FLOMs), where they represent all moments of order less than α and do exist:
E|X|p =

∫∞
−∞ |x|

pf(x)dx, where p is any real number.

Proposition 4. Let X be an α-stable random variable. If 0 < α < 2, then

E|X|p =∞, if p ≥ α (2.33)

and
E|X|p <∞, if 0 ≤ p < α, (2.34)

however, if α = 2, then
E|X|p <∞, ∀ p ≥ 0. (2.35)

Hence, the first and higher-order moments do not exist for 0 < α ≤ 1; on the
other hand, 1 < α < 2, the first-order moment exists, moreover, all the fractional
moments of order p with p < α exist as well. Besides, all the non-Gaussian stable
distributions have infinite variance. From α and γ, one can find the FLOM’s of a
SαS random variable as follows.

Theorem 3. Let X be a SαS(γ, 0) then the FLOMs will have the form

E|X|p = C(p, α)γ
p
α for 0 < p < α, (2.36)

where

C(p, α) =
2p+1Γ(p+1

2
)Γ(−p/α)

α
√
πΓ(−p/2)

(2.37)

depends only on α and p not on X, and Γ(·) function is given in (2.31).
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Fig. 2.16. FLOM’s for a SαS random variable with different values of α.

Proof. We refer the reader to [SN93] for details. �

Figure 2.16 shows the moments of order p for different α values corresponding
to the (2.36) and (2.37) in Theorem 3.

Many author’s [NS95, ST94, Zol86], have investigated the fractional moments
to represent in different contexts the density of univariate and bivariate random
variables. Indeed, they are important when the density of the random variable has
inverse power-law tails and, consequently, it lacks integer order moments. Moreover,
FLOMs can be used as a measure of the dispersion of a stable distribution, and are
used in some estimation schemes.

Nevertheless, FLOMs has some limitations as they do not provide a universal
framework for the characterization of algebraic tail processes: when p ≥ α, the mo-
ments become infinite and the statistical characterization is then no longer possible;
In order to overcome this difficulty Gonzalez proposed in [GPA06, Gon97] another
approach based on zero order statistics (ZOS) which use logarithmic moments. The
latter makes it possible to introduce new parameters that allow characterizing the
impulsive processes with an infinite variance which is based on so-called logarithmic
process classes [Zol86].

Remark 1. In the case of an impulsive environment with α < 2, the second-order
moment of a stable variable is infinite as shown before, making the conventional
noise power measurement infinite. However, this does not mean that there are no
other adequate measures of variability of stable random variables. Accordingly, in the
rest of this thesis, we present our simulation results as a function of the dispersion
of a stable random variable γ, which is used as a measurement of the strength of the
α-stable noise and plays an analogous role of the variance [BSF08, Theorem 3].
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Parameter estimation

The knowledge of the parameters plays a significant role in the performance of the
receiver. In the literature, several approaches exist to estimate them. Due to the
lack of analytical expressions most of the methods are based on the law of large
numbers and rely on the observed samples at the receiver side. Classical parameter
estimation techniques for SαS random variables can be categorized into six main
categories [WLGM15]; 1- Fractional lower order moment (FLOM) method [BMA10],
2- Method of log-cumulant (MoLC) [HSSL11], 3- Extreme value method (EVM),
4- Maximum likelihood (ML) [DuM73], 5- Quantile method (QM), 6- Empirical
characteristics function (ECF). We discuss the latter three methods.

I The maximum likelihood (ML) method: It is known that the ML ap-
proach is widely favored due to its generality and asymptotic efficiency [Yu04].
DuMouchel [DuM73] proposed this method and under the assumption of δ =
0, β = 0 he obtained a ML estimation of α and γ. He showed that the estima-
tion of the parameters is asymptotically normal and consistent after approxi-
mating the likelihood function by multinomial.

I Quantiles method: Fama and Roll originate the quantile method in [FR71].
They gave an approximation of the dispersion γ using the sample quantiles
properties of the SαS variable. Thereafter, they used the tail property of
the α-stable distributions to estimate the parameter α. Later, the work of
McCulloch [McC86a] makes the quantile method much more desired after its
extension to include asymmetric distributions and for cases where α ∈ [0.6, 2],
unlike the former approach that restricts it to α ≥ 1.

I Empirical characteristic function (ECF): This method was discussed in
[Yu04]. Although the likelihood function can be unbounded or not be in a
closed-form, its Fourier transform, which gives the CF hence the name of this
method, is always bounded and has a closed form expression. The ECF real
and imaginary parts will provide estimates of the parameters through given
expressions. One can note that such a method provides an alternative way to
envision the regression estimation method.

Nolan [Nol97] provides a useful software package that can be used to estimate
the parameters of the stable distributions. Extensively, Zolotarev [Zol86] discussed
a more theoretical approach to the statistical estimation of the parameters of stable
laws. Readers interested in how to simulate stable process can refer to two excellent
works of literature, Weron [WW95] and Zolotarev [Zol86].

Among the known techniques for parameter estimation, only QM, FLOM and
MoLC yield to a closed form expression [WLGM15, WLF14]. However, it is worth
mentioning that they are computationally expensive as they require either tables
obtained through linear interpolation as for the QM, or for ECF method one needs
Monte-Carlo approach to approximate the CF. Eventually, the burden of these meth-
ods is too expensive in terms of time and number of computations or under short
sequences the variances of their estimates are high. As a result, they are inconvenient
for online estimation, in other words, for applications that require low latency.
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In this thesis, we propose a solution to design a robust receiver that does not rely
on noise knowledge. Hence, it allows us to overpass the need of the noise distribution
parameters estimation which is a considerable advantage. Furthermore, it shows a
good performance even with a few number of samples.

Properties and further definitions

Property 1. (Stability property). let X1, X2 be independent stable r.v. with
the same characteristic exponent α as X1 ∼ Sα(γ1, β1, δ1) and X2 ∼ Sα(γ2, β2, δ2).
Then, by adding the two r.v’s X3 = X1 + X2 we get a new stable r.v. X3 ∼
Sα(γ3, β3, δ3) with(

γ3 = (γα1 + γα2 )
1
α ; β3 =

β1γ
α
1 + β1γ

α
1

γα1 + γα2
; δ3 = δ1 + δ2

)
. (2.38)

Corollary 2. Let Xi ∼ Sα(γi, 0, 0), i = 1, 2, . . . , K, then
∑K

i=1Xi ∼ Sα(γ, 0, 0)

where γ = (
∑K

i=1 γ
α
i )

1
α .

Property 2. (Scaling property). Suppose X ∼ Sα(γ, β, δ), then scaling X by a
non null constant b ∈ R 6=0 will give

bX ∼ Sα (|b|γ, sign(b)β, bδ) , if α 6= 1

bX ∼ S1 (|b|γ, sign(b)β, bδ − 2/πγβb(ln |b|) , if α = 1 (2.39)

Corollary 3. Suppose X ∼ Sα(γ, β, δ) where 1 < α < 2, then multiplying X by a
real positive constant b ∈ R+ gives

bX ∼ Sα(bγ, β, bδ). (2.40)

The following property concerns the asymptotic behavior of the probability den-
sity function of a SαS distributions as presented by Samorodnitsky and Taqqu
[ST94].

Property 3. (Asymptotic behavior). Let X ∼ Sα(γ, 0, δ)} then the probability
density function fX(x) satisfies

fX(x) =
α(1− α)γα

Γ(2− α) cos(απ
2

)
|x|−α−1 as |x| → ∞. (2.41)

2.3 Physical mechanism that leads to α-stable model

We claimed before that one of the main reasons to adopt the α-stable model is the
theoretical justifications behind it. In this section, we will demonstrate that an α-
stable model may arise from a realistic physical mechanism under some reasonable
assumptions and conditions. The transmission in a common band between networks
with different protocols, multiple applications, etc, will end up with different data
type and different symbol durations, these types of networks are known as hetero-
geneous networks [AGM+15]. In particular, the network heterogeneity comes out in
ad-hoc networks and small-cells due to the variations in transmit power constraints
and the varied placement of the base stations.

Two key physical mechanisms can create dynamic interference:
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Fig. 2.17. Coexistence of technologies in the 2.4-GHz ban. Measurements made
by the National Instruments USRP [Per06].

I Dynamic interference can be a consequence of the rapid change in time of
the active set of transmitting devices. This rapid change depicts protocols
with non-contiguous transmitted data blocks, meaning that interferers do not
transmit data continuously. A good example is a machine to machine (M2M)
communications which transmit rare and short packets [Dig09]. In addition,
the coexisting of different PHY and MAC layer protocols will arise hetero-
geneous networks, for instance, several protocols rely on the new ALOHA
approach as Sigfox [VLN+17]. Besides, the non-orthogonal multiple access
(NOMA) technique which is the most promising radio access technique in
the next-generation of wireless communications [SKB+13]. Therefore, when
considering the change at the symbol level in these networks a non-Gaussian
interference will be induced [ECZ+18].

I Another mechanism that creates dynamic interference arises when multiple
coexisting communication systems share the same band, for instance, the ISM
band. The uncoordinated access between the different networks and even in
some networks like Sigfox and LoRa (using ALOHA) arises a collision between
the frames. For example, the Wi-Fi frame on-air time is 42.07 µs (fixed 34
bytes header; 250 bytes of payload; data rate of 54 Mbps); while the Zigbee
frame on-air time is 1.28 ms (40 bytes with a data rate 250 kbps). Further-
more, the Bluetooth utilizes frequency-hopping and for a very short time, it
appears in the 802.15 bands. Figure 2.17 illustrates the second mechanism
where an experimental study with the coexisting Wi-fi, Bluetooth and Zigbee
transmissions is presented. Due to the low data rate of the Zigbee technol-
ogy, a considerable on-air time for the Zigbee packet is observed followed by
a small Wi-fi packet. A Bluetooth packet interferes with the Zigbee packet
and corrupt it even if it is much smaller. Thus, a re-transmission is required
for the corrupted packet we refer the interested reader to [Per06] where a de-
tailed explanation can be found. The short time presence of the Wi-Fi and
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Bluetooth interferers compared to Zigbee transmissions will result in dynamic
interference which means independent in time.

By considering a large scale wireless communication networks composed of K
access points and K devices, where each device transmit data to a unique access
point. Several works assert that the channel is characterized by a memoryless addi-
tive isotropic α-stable noise (AIαSN) [PW10a,PW10b,ECdF+17].

2.4 Low-Density Parity-Check codes

The aim of channel coding is to make the noisy channel behave like a noiseless
channel. The main idea behind forward error correction (FEC) or channel coding
is to increase the message length with deliberately introduced repetition, by adding
extra check bits to produce a codeword for the message. In other words, the check
bits are added on purpose of having distinct codewords, thus, any corrupted bits
within a codeword induced by noisy channel can be inferred correctly at the receiver
side.

2.4.1 History and definitions

Low-Density Parity-Check (LDPC) codes first proposed in the PhD dissertation
of Gallager in 1960 and then published in [Gal63] are FEC codes. LDPC codes
were mostly ignored for a long time over 35 years, due to the computational limi-
tation of the hardware. More precisely, the computational demands of simulations
in an era when vacuum tubes were only just being replaced by the first transistors.
Meanwhile, the development of Reed-Solomon codes in addition to highly struc-
tured algebraic block and convolutional codes dominate the field of forward error
correction. Despite the huge practical success of these codes, their performance fell
way far from the theoretical achievable limits set down by Shannon in his seminal
1948 paper [Sha48]. One can note that by the late 1980s, most of the researchers
resigned to this seemingly insurmountable theory, despite decades of attempts. In
1981, Tanner [Tan81] proposed a graphical representation of the LDPC codes known
as Tanner graphs.

Berrou, Glavieux, and Thitimajshima transformed thoroughly the relative qui-
escence of the coding field by introducing ”turbo codes” in 1993. Turbo-codes are
based on two concepts: the concatenation of two sub-codes and decoding using
feedback. Thereafter, all the main components of successful error-correcting codes
were replaced: turbo codes focus on average rather than worst-case performance,
employ iterative, distributed algorithms, rely on soft information extracted from the
channel. Using such decoders with manageable complexity, the gap to the Shannon
limit was all but eliminated. Eventually, turbo-codes paved the way for corrective
codes to approach the Shannon limit with manageable length codes and decoding
that can be implemented effectively. As researchers struggled just to understand
the successfulness of turbo codes through the 1990s, MacKay and Neal, introduced
a new class of block codes in 1996 [MN96] where most of the turbo code features
are possessed. In fact, it was recognized that such block codes are just a rediscovery
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Fig. 2.18. Illustration of a parity check matrix and tanner graph representation.

of the LDPC codes developed by Gallager [Gal63]. Indeed, the decoding algorithm
for turbo codes was shown to be a special case of the decoding algorithm for LDPC
codes.

Subsequently, irregular LDPC codes were introduced which easily outperform
the best turbo codes and they can be seen as a generalization of the regular LDPC
codes. Moreover, they offer some practical advantages and a disputable cleaner
setup for theoretical results. MacKay proposed Non-Binary (NB) LDPC codes over
finite fields [DM98]. It was shown that NB-LDPC codes outperform the binary
LDPC codes, but with a higher decoding complexity. Consequently, many works are
proposed to reduce such complexity [GCGD07,PFD08,BD03,WSM04,DF07,Sav08].
Nowadays, several design techniques for LDPC codes exist which gives the power to
construct codes that approach within hundredths of a decibel to Shannon’s capacity
[SFRU01].

In addition to the strong theoretical interest in LDPC codes, such codes are
widely used in various applications and standards due to: their superior decoding
performance [SFRU01,RSU01b]; power efficiency [MS02,PCZ+11]; high-throughput
capabilities [KC04,ZHW11]; their advantages related to hardware implementations,
such as low-cost [BALE+07,DHB06]. Consequently, these codes are gradually replac-
ing other well-established FEC schemes [RCS+11]. One can mention Satellite-based
digital video broadcasting 2nd generation (DVB-S2/T2/C2), ITU-T standard for
networking over power lines, phone lines and coaxial cable (G.hn/ G.9960), in IEEE
wireless local area network standards like Wi-Fi Standard (802.11n-2009), WiMAX
(802.16e), etc. Moreover, LDPC codes have been proposed as a potential candidate
for 5G cellular system [Mau16].

An LDPC code is a linear block code defined by a (M,N) sparse parity-check
matrix denoted by H. The M rows and N columns corresponds to the parity check
equations and the coded bits, respectively. A vector v = (v1, . . . , vN) ∈ {0, 1}N is a
codeword iff:

HvT = 0 mod 2. (2.42)
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By assuming a full rank matrix H and systematic code, any codeword of length N
is comprised of K = N −M information bits and M parity bits. The coding rate
of the code is given by R = K/N which characterizes the amount of redundancy.
Figure 2.18 depicts a miniature example of H with an illustration of its Tanner
graph representation also known as a bipartite graph. It consists of two sets of
nodes: variable-nodes represent H columns (coded bits); check-nodes represent rows
of H (parity-check equations). The edges connecting both sets correspond to the
1’s entries of H.

2.4.2 Construction of LDPC codes

Normally, two ways can be used to construct a LDPC code: algebraic construction
and random construction [Joh08]. The latter gives a good performance when large
code lengths LDPC codes are considered since they avoid short cycles in the Tanner
graph. However such cycles are highly probable when constructing short length
LDPC codes and for an irregular LDPC ensemble, the minimum distance becomes
a critical issue as it is related to the level of error floor phenomenon. On the other
hand, a famous construction method called the Progressive Edge-Growth (PEG)
algorithm was proposed in [XEA05] which can effectively construct LDPC codes
with medium or short length. PEG algorithm allows constructing the tanner graph
with a large girth by progressively establishing edges between variable and check
nodes. Two main advantages result by using the PEG algorithm: first, it is very
flexible in the sense that it can be used to construct codes for any code length and
code rate, furthermore, linear time encoding is feasible under certain modifications.
Second, the simplicity to construct LDPC codes with a good girth property.

2.4.3 Decoding

The majority of LDPC codes cannot be decoded algebraically due to their length
and the limited structure of their parity matrix. Thus the decoding algorithms are
based, like turbo codes, on an iterative process. These algorithms are not optimal
for MAP decoding but allow to approach the Shannon boundary on simple channels.
The non-optimality is explained by the fact that the graph representing LDPC codes
has cycles. Authors in [ETV99] show that cycle-free Tanner graphs cannot support
good codes, moreover, the 4-cycle are inevitable for many classical binary linear
block codes as shown in [HGC06]. The minimum distance of LDPC codes that have
a representation without cycles is low regardless of the performance. The use of
iterative decoding in Turbo and LDPC codes is an important element to achieve a
good performance. For LDPC codes, the iterative message-passing algorithm has
shown a close performance compared to the maximum likelihood method with very
low complexity.

The advantage of LDPC codes over other codes is that they have relevant de-
coding whose complexity only varies linearly with the length of the code. This
important aspect is mainly due to the low density of the parity matrix. To decode
LDPC codes, a class of algorithms based on message passing along the edges of
the tanner graph which is so-called message passing algorithms. Two types can
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Fig. 2.19. Illustration of three regions characterizing the performance of an LDPC
code.

be identified by observing the messages passing through the graph: hard decision
and soft decision. The former corresponds to binary messages such as bit flipping
algorithms [Gal63] (Gallager A and B) and the latter corresponds to probabilities
or log-likelihood ratios (LLRs) such as sum-product algorithm (SPA).

The Belief Propagation (BP) and Min-Sum algorithms are the most important
decoding algorithms. One can note that implementing the BP algorithm is complex
due to the calculation products, and evaluating hyperbolic trigonometric functions
at the check node. Even if these functions are tabulated, the number of evaluations
remains important. At high signal-to-noise ratio, few messages are erroneous, in
this case, the magnitudes of the messages from check node to variable node are
large and their hyperbolic tangent will be close to +1 or −1. As a result, during
the Check-Pass only the message of lower magnitude will be taken into account in
the product and that’s where the Min-sum algorithm name came from. Hence these
remarks make it possible to greatly simplify the complexity of decoding.

Using advanced coding techniques, the evolution of the code performance in
function of the signal-to-noise ratio can be divided into three regions as shown in
Figure 2.19. The first corresponds to a behaviour where the decoding does not
converge (non-convergence region), the decoding then tends to degrade performance
compared to an uncoded system. From a certain signal-to-noise ratio, called the
convergence threshold or decoding threshold, the decoding enters a phase known as
the waterfall region where the probability of error decreases very quickly with the
signal to noise ratio. Finally, the error floor region where the probability of error
decreases less rapidly than the waterfall region. The coding gain corresponds to
the difference between two systems in terms of the required energy per useful bit to
achieve a given error rate.
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2.4.4 Analyzing tools

One can mention three different techniques to analyze the iterative decoding, in
particular, the asymptotic performance of LDPC codes: Density evolution, Gaussian
Approximation, and EXIT charts.

I Density Evolution (DE): such a method is used to analyze the asymp-
totic performance of iterative decoders [RU01]. A main objective of using DE
for LDPC codes with Message-Passing decoding is to find the SNR decoding
threshold (convergence threshold) of a specific LDPC ensemble whose length
tends to infinity, by tracking the messages transmitting information on emit-
ted codeword back and forth on the bipartite graph. Extending the DE to
irregular LDPC ensembles will allow designing it by enabling optimization of
the degree distribution [RSU01b]. Nevertheless, the large amounts of numeri-
cal calculations required by the DE will arise with instability and complexity,
in particular, when tracking the messages from check to variable nodes. For
such a reason, authors in [SFRU01] proposed the quantized density evolution
(QDE) method and showed that with only 11-bit quantization one can avoid
the instability and reduce the complexity.

I Gaussian Approximation (GA): another solution to reduce the complex-
ity and implement the DE was proposed in [SUR00] denoted as Gaussian ap-
proximation (GA). This method was proposed for binary-input additive white
Gaussian noise (BI-AWGN) channels. The GA method assumes that the mes-
sage passed through iterative decoders is Gaussian or Gaussian mixtures. The
algorithm tracks the parameters of the message distributions instead of track-
ing whole densities in the decoding process. Thus, a huge reduction in the
complexity will be gained as one needs to track only the messages’ density
mean and variance.

I EXIT charts: the extrinsic information transfer (EXIT) chart was proposed
as an alternative method compared to DE and GA. It was proposed in first
to track the exchange of intrinsic information between component decoders
[ten01, Hag04]. Then it was extended to LDPC codes [tKA04] as a tool to
design good codes and to find the decoding threshold SNR by reducing it to
a curve-fitting problem.

Nevertheless, the DE, GA and EXIT chart assumes that the LDPC codes are
infinite codeword length and cycle-free. Moreover, both GA and EXIT charts rely on
the assumption that the channel is Gaussian, thus, they cannot be applied directly
when a non-Gaussian noise has to be considered. However, DE can be applied to
any binary memory-less symmetric output (MBISO) channels including Gaussian
and non-Gaussian i.e SαS noise.

LDPC code design is out of the scope of this thesis. Because we focus on designing
an estimation of the LLR without relying on the interference plus noise knowledge
such that it can adapt for Gaussian or impulsive noise. Thus, one can use any
type of LLR based decoders (i.e LDPC, turbo codes, ..., etc) over any Gaussian or
non-Gaussian channel type and still observe an improvement compared to the linear
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receiver designed only for Gaussian noise. Furthermore, having such a solution is
of great advantage and it is considered inevitable when it comes to designing codes
for a specific channel because it solves the problem of mismatch decoding that has
a significant influence in the receiver performance.

2.5 Elements of Information theory

In this section, we outline the machinery to measure the information that passes
through the channel. We introduce some notions and definitions that will be useful
in our study.

Definition 5. (Discrete channel.) A discrete channel is a statistical model with
an input X and an output Y . During each signaling interval (symbol period), the
channel accepts an input symbol from X, and in response, it generates an output
symbol from Y , generally a noisy version of X. The channel is discrete when the
alphabets of X and Y are both finite.

Definition 6. (Memoryless channel.) A channel, characterized by its transition
probability p(y|x), is said to be memoryless3 if when we transmit a sequence x =
{x1, x2, . . . , xN} and observe a sequence of output symbols y = {y1, y2, . . . , yN},

p(y|x) =
N∏
n=1

p(yn|xn), (2.43)

in other words, the current output symbol depends only on the current input symbol
and not on any of the previous input symbols which means that there is no Inter-
Symbol Interference.

Definition 7. (Symmetric channel.) Assume a random variable Y that takes
on a possible value in R. We say that a binary memoryless is symmetric4 (more
precisely, output-symmetric) if

p(y|x = +1) = p(−y|x = −1), (2.44)

or as defined by Gallager (1968), if the set of outputs can be partitioned into subsets
in such a way that for each subset the matrix of transition probabilities has the
property that each row (if more than 1) is a permutation of each other row and each
column is a permutation of each other column.

Definition 8. (Ensemble X). An ensemble X is a triple (x,AX ,PX), where the
outcome x is the random variable value, which takes on one of a set possible values,
AX = {a1, a2, . . . , aI}, having probabilities PX = {p1, p2, . . . , pI}, with P (x = ai) =
pi, pi ≥ 0 and

∑
ai∈AX P (x = ai) = 1.

3The above definition is adequate if we restrict ourselves to channels without feedback.
4It is a consequence of the definition of the symmetric channel that H(Y |X) is independent of

the input distribution p(x), and depends only on the channel probabilities p(yj |xi).
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Fig. 2.20. Information distribution over a simple communication scheme.

Definition 9. (Joint Ensemble XY ). A joint ensemble XY is an ensemble in
which each outcome is an ordered pair x, y with x ∈ AX = {a1, a2, . . . , aI} and
y ∈ AY = {b1, b2, . . . , bJ}.

We denote p(x, y) as the joint probability of x and y which can be defined as
p(x, y) = p(y|x)p(x), and represents the joint probability of transmitting xi and
receiving yj; p(y|x) is the transition probabilities that describe a channel.

The question that we raise now is how to measure the information content of a
random variable?

One can classify the measures into three different cases:

I discrete which contains countable values,

I continuous, when p(X = x) = 0,

I a mixed version of both discrete and continuous.

In the following, we start by considering the information content of discrete
probability distributions over finite sets AX ,AY .

Discrete Information

In the context of communicating over a noisy channel, one has to consider a joint
ensemble in which the random variables are dependent. It would be impossible to
communicate over the channel if they were independent as will be shown shortly.
Figure 2.20 depicts a simple point to point (P2P) communication scheme where:
Alice wants to transmit a message x over a noisy channel; the output of the channel
y is received by Bob; one can define the following

Definition 10. (Entropy5). The average Shannon information content of an out-
come is defined as the entropy of the ensemble X

H(X) =
∑
x∈AX

p(x) log2

1

p(x)
. (2.45)

5Also referred to as marginal entropy, it is used to contrast it with the conditional entropy.
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It’s a sensible measure of the ensemble’s average information content, in other words,
it is a measure of Bob’s uncertainty about the channel input X before observing the
channel output Y and measured in bits.

Definition 11. (Joint entropy). The joint entropy of X, Y is:

H(X, Y ) =
∑

xy∈AXAY

p(x, y) log2

1

p(x, y)
. (2.46)

where entropy is additive for independent random variables H(X, Y ) = H(X) +
H(Y ) if and only if p(x, y) = p(x)p(y).

Definition 12. (Conditional entropy.) The conditional entropy of X given Y ,
is the average, over y, of the conditional of X given y,

H(X|Y ) =
∑
y∈AY

p(y)

(∑
x∈AX

p(x|y) log2

1

p(x|y)

)
, (2.47)

this measures the average residual uncertainty about x when y is known; representing
the information that goes into the channel by Alice but does not received by Bob
(information loss).

The conditional entropy of Y given X is the average, over x, of the conditional
of Y given x,

H(Y |X) =
∑
x∈AX

p(x)

(∑
y∈AY

p(y|x) log2

1

p(y|x)

)
, (2.48)

this measures the average residual uncertainty about y when x is known; representing
the information that came out of the channel (by a noise source) but was not sent
by Alice.

Definition 13. (Mutual information). The mutual information between X and
Y is

I(X;Y ) = H(X)−H(X|Y ), (2.49)

Mutual information is symmetric and non-negative, i.e., I(X;Y ) = I(Y ;X) ≥ 0. It
measures the average reduction in uncertainty about x that is resolved by observing
the value of y; or vice versa, the average amount of information that x conveys about
y. Thus, the mutual information is a good measure of the amount of information
that goes through the channel between Alice and Bob.

In Figure 2.21 illustrates the following useful relationship between joint informa-
tion, marginal entropy, conditional entropy and mutual entropy

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X)+H(Y )−H(X, Y ). (2.50)

After presenting the discrete definitions of entropy with discrete measures, the
extension continuous information measurement will be tackled in the following.
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Fig. 2.21. The relationship between joint information, marginal entropy, condi-
tional entropy and mutual entropy.

Continuous Information

One may ask, what if the signals or messages we wish to transfer are a continuous
variable. Indeed, many practical channels have real, rather than discrete, inputs
and outputs;

From the discrete case we can obtain the results for the continuous case as a
limiting process. Consider a random variable X with an outcome xk = kδx for {k =
0,±1,±2, . . .} having probability p(xk)δx, where p(xk) represents the probability
density function that satisfy

∑
k p(xk)δx=1.

By taking the limit of the discrete entropy formula of H(X) given in (2.45) we
obtain

H(X) = lim
δx→0

∑
k

p(xk)δx log2

(
1

p(xk)δx

)

= lim
δx→0

[∑
k

p(xk) log2

(
1

p(xk)

)
δx− log2(δx)

∑
k

p(xk)δx

]

=

∫ ∞
−∞

p(xk) log2

(
1

p(x)

)
dx−

(
lim
δx→0

log2(δx)
)
×
∫ ∞
−∞

p(x)dx

= h(X)− lim
δx→0

log2(δx) (2.51)

This is rather worrying as the second term does not exist. However, as we are
often interested in the differences between entropies in the consideration of mutual
entropy or capacity we define the problem by using the first term only as a measure
of differential entropy6.

Hence, we can now define also the joint and conditional entropies for continuous

6Differential entropy is not a measure of the average amount of information contained in a
continuous random variable (in general, it contains an infinite amount of information).
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distributions:

h(X, Y ) =

∫
Y

∫
X

p(x, y) log2

(
1

p(x, y)

)
dxdy (2.52)

h(X|Y ) =

∫
Y

∫
X

p(x, y) log2

(
p(y)

p(x, y)

)
dxdy (2.53)

h(Y |X) =

∫
Y

∫
X

p(x, y) log2

(
p(x)

p(x, y)

)
dxdy (2.54)

with:

p(x) =

∫
Y

p(x, y)dy (2.55)

p(y) =

∫
X

p(x, y)dx (2.56)

Eventually, the mutual information between two continuous random variable X and
Y is defined as

I(X, Y ) =

∫
Y

∫
X

p(x, y) log2

(
p(x|y)

p(x)

)
dxdy (2.57)

Channel capacity

The mutual information relies on both the channel characteristics (represented by
the conditional probability distribution) and the input probability distribution,
which is clearly independent of the channel7. Therefore, by changing the input
probability distribution, the average mutual information will change. Let us assume
that we want to maximize the mutual information that goes through the channel by
choosing the best possible input ensemble, one can note that it is possible to find
multiple optimal input distributions achieving the same value of I(X;Y ). We can
define the channel capacity to be its maximum mutual information

C = sup
PX

I(X;Y ). (2.58)

Under the input average power constraint the r.v. X satisfies E[X2
i ] ≤ P . The

capacity is determined by the intrinsic properties of the channel and is independent
of the content of the transmitted information and the way it is encoded.

For any binary memory less symmetric channels one can compute the capacity
as a function of LLR’s [RU08].

Lemma 2. (Capacity MBISO channels.) Let f be the density associated with
a MBISO channel. Then the capacity of this channel in bits per channel use is

C = 1− E
[
log2

(
1 + e−XΛ(Y )

)]
(2.59)

7let p(y|x) be the conditional probability distribution of y given x, which is an inherent fixed
property of the communication channel. Then the choice of the marginal distribution p(x) com-
pletely determines the joint distribution p(x, y) due to the identity p(x, y) = p(y|x)p(x) which, in
turn induces a mutual information.
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Proof.

C = H(Y )−H(Y |X)

=

∫
Y

P (y) log2

(
1

P (y)

)
dy −

∑
x=±1

P (x)

(∫
Y

P (y|x) log2

(
1

P (y|x)

)
dy

)
=

∫
Y

1

2

∑
x=±1

P (y|x) log2

(
2P (y|x)

P (y|1) + P (y| − 1)

)
dy

=

∫
Y

P (y|1) log2

(
2P (y|1)

P (y|1) + P (y| − 1)

)
dy (2.60)

where for the transition to the fourth line we have used Definition 7 (page 38) for a
symmetric channel P (y|1) = P (−y| − 1).

Let f(y) be the probability density at the channel output y when x = 1 is
transmitted. Then, P (y|1) = f(y) and P (y| − 1) = f(−y). The logarithm of the
likelihood ratio LLR8 Λ(y) then takes the following particular expression:

Λ(y) = log
P (y|+ 1)

P (y| − 1)
= log

f(y)

f(−y)
(2.61)

from (2.61) we can obtain f(−y) = f(y)e−Λ(y), replacing it in (2.60) gives

C =

∫
Y

f(y) log2

(
2f(y)

f(y) + f(−y)

)
dy

=

∫
Y

f(y) log2

(
2

1 + e−Λ(y)

)
dy

=

∫
Y

f(y)dy −
∫
Y

f(y) log2

(
1 + e−Λ(y)

)
dy

= 1− EY
[
log2

(
1 + e−Λ(Y )

)]
. (2.62)

By considering the two possible input values +1 or −1, (2.62) becomes

C = 1− EY
[
log2

(
1 + e−XΛ(Y )

)]
. (2.63)

�

2.6 Capacity for MBISO channels

The channel capacity is an extremely important quantity since it is possible to
transmit information through a channel at any rate less than the channel capacity
with an arbitrarily small probability of error; completely reliable transmission is not

8The LLR is a prime tool in information theory as it constitutes a sufficient statistic relative
to the channel input [RU08]; in other words, knowing Λ(Y ) or Y is equivalent for the decoding
process.
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Fig. 2.22. Numerical computation of the α-stable noise capacity with different
values of α as a function of the dispersion γ.

possible if the information processed is greater than the channel capacity. However,
in general, the calculation of the channel capacity is a difficult problem.

For the class of discrete memoryless channels, the capacity is now well understood
[Sha48]. However, generalizing to continuous channels has proven to be non-trivial,
with the important exception of the linear additive white Gaussian noise (AWGN)
channel subject to a power constraint [Sha48, Theorem 18]. Due to the difficulty in
deriving closed-form expressions for the capacity and the optimal input distribution
of continuous channels, the focus has shifted to determining structural properties
of the optimal input distribution, as well as bounds and numerical methods to
compute the capacity. Hence, we will adopt such an approach to compute the
capacity numerically in this manuscript for different noise models which will be
used as a benchmark in order to assess the impact of dynamic interference on long
block length codes.

We rely on Monte Carlo calculations to estimate the capacity by replacing the
expectation of (2.63) by an empirical average, hence, the capacity can be obtained
as

C = 1− lim
K→∞

(
1

K

K∑
k=1

log2

(
1 + e−xkΛ(yk)

))
(2.64)

Figure 2.22, Figure 2.23, Figure 2.24 will be used to assess the impact of dy-
namic interference on long block length codes in α-stable, Middleton class A and
ε-contaminated noises, respectively.

2.7 Conclusion

To have a better understanding of the interference or impulsive noise that appears in
many modern communication systems, different models were depicted. We started
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Fig. 2.23. Numerical computation of the Middleton class A noise with different
values of A and Γ as a function of Eb/N0.

Fig. 2.24. Numerical computation of the ε-contaminated noise with different values
of ε and K as a function of Eb/N0.
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by the Gaussian distribution, however, this model is unable to represent the large
variability in the data that arises by an impulsive environment due to the exponential
decay tail behavior. Next, we introduce non-Gaussian models and classify them
into three different categories: theoretical approaches; mixture model approaches;
empirical approaches. In the first step, we present the different Middleton classes
and show their physical perspectives and the difficulty to use in practical systems.
Then, we present several mixture models, mainly Gaussian mixtures, which can be
seen as a reduced version of Middleton classes in order to reduce its complexity.
However, they may not truly portray the noise characteristic at the tails and lack
the stability property. Thereafter we focus on the α-stable family as it is suggested
as an accurate solution in the class of heavy-tailed distributions to model impulsive
noise. Moreover, we presented the motivation behind using the α- family to model
the dynamic impulsive interference phenomena. Then, we introduced LDPC codes
and we present some elements of information theory that are needed in the rest of
this thesis. Finally, we computed numerically the capacity of different noise models
and different channels, in order to be used as a benchmark in the long blocklength
regime.



Chapter 3
Robust Receiver Design

Establishing reliable and efficient communications require to take into account the
impulsive nature while designing the receivers. The interference modeling question
was answered in the aforementioned part; it exhibits in many situations an impul-
sive behavior. Without being exhaustive we presented several approaches adapted to
specific situations. However, designing a specific receiver for each situation is not
efficient as the interference characteristics can highly vary in time and space. Thus,
having a receiver able to cope with a large set of different interference models (impul-
sive or not) and with different degrees of impulsiveness is highly desired. This is the
main challenge we address in this manuscript. For this purpose, we start by clarify-
ing the impact of impulsive interference on the optimal decision regions. Then, we
classify the different receiver design approaches seen in the literature. Thereafter, we
introduce the system scenario and propose a new framework inspired by information
theory for the sake of designing a robust receiver.

3.1 Impact of impulsive interference on optimal

decision regions

A
n efficient way to characterize and understand the influence of impulsive noise is
to visualize the noise impact on the optimal receiver by representing the decision

regions. This was proposed by Saaifan and Henkel [SH13] for the Middleton class
A case and by Shehat et al. [SME10] and by Saleh et al. [SME12] for the α-stable
case.

We represent in Figure 3.1 six different examples of noise realizations from im-
pulsive noise models. We follow the framework proposed in [SME12] and use the
same parameters defined in Figure 3.1: the received vector Y is composed of two
received samples (two dimensions, Y = [y1, y2]), and we consider two possible trans-
mitted values x ∈ Ω = {−1, 1}. Then we show in Figure 3.2 the decision regions r
that the optimal receiver must produce in a binary case under different interference
models, i.e., the regions that maximize the probability of having transmitted x when
Y = (y1, y2) = (x+n1, x+n2) is received with two i.i.d. impulsive noise realizations
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Fig. 3.1. Example realizations for each different sub-exponential impulsive noise
processes. The following parameters were used in each case: Gaussian case (µ = 0
and σ2 = 1); generalized Gaussian case (α = 1 and β = 0.2); ε-contaminated case
(ε = 0.1, k = 10, σ2 = 1); Gaussian mixture case (P = 3;λ1 = 0.1, µ1 = −0.1, σ2

1 =
1;λ2 = 0.8, µ2 = 0, σ2

2 = 0.1;λ3 = 0.1, µ3 = 0.1, σ2
3 = 1; sum of Gaussian and

α-stable in a moderately impulsive case (α = 1.5, γ = 1 and σ2 = 0.25); sum of
Gaussian and α-stable in a highly impulsive case (α = 1.2, γ = 1 and σ2 = 0.1)

Fig. 3.2. Optimal decision regions for the different noise processes.
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Fig. 3.3. Effect of mismatch decoding, where the linear receiver is used in an
impulsive environment (Middleton Class A).

n1, n2,

r = argmax
x∈Ω

p(y1, y2|x). (3.1)

The black and white regions shown in Figure 3.2 represent the −1 and +1 sym-
bol decision, respectively. The Generalized Gaussian distribution, when the shape
parameter is less than 1, is sub-exponential in nature. The Mixture of Gaussians,
including the ε-contaminated, are not strictly sub-exponential. However, as noted
in [KFR98] one can approximate for instance an α-stable sub-exponential interfer-
ence model to an arbitrary accuracy over any tail probabilities with enough Gaussian
mixture components.

Notably, under interference with exponential tail decay, i.e. the Gaussian case
shown is in Figure 3.2, the optimal decision regions are linearly separated. However,
the optimal decision regions under heavy-tailed sub-exponential interference produce
non-linear frontiers and disjoint regions. In each impulsive case, two operating
regions can be identified: for small received values y1, y2, the boundaries are linear.
However, when at least one of the values becomes larger, the linear boundaries
completely fail to recover the most likely transmitted symbol. It is worth mentioning
that the point at which this non-linearity appears in the decision regions depicts the
beginning of the heavy-tailed distribution dominance over the Gaussian noise.

3.2 Different approaches for receiver design

Regarding the receiver design in the impulsive case, several observations can be
noted. Firstly, the significant performance degradation obtained by the linear re-
ceiver (optimal for Gaussian noise and simple to implement) is due to the model
mismatch as shown in Figure 3.3. Second, the construction of an optimal receiver,
which assumes to have knowledge of the channel is complicated for several reasons:
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1- the various interference models proposed in the literature will raise several ques-
tions when it comes to design a receiver for instance, which model must be selected
and is it robust against environment changes? 2- when theoretical impulsive mod-
els are considered, it is difficult to implement the receiver. Moreover, if empirical
models are chosen to offer analytical solutions, their ability to adapt to different
contexts is to be proven. In the following, we do not try to be exhaustive about the
existing receiver strategies but we propose to classify the different receiver design
approaches into four categories.

3.2.1 Optimal approach

To implement the soft iterative codes we first encode the channel outputs into log-
likelihood ratios. The channels we are interested in are memoryless, binary input,
and symmetric output. It means that the symbols of the input X are +1 and −1.
Due to the symmetry of the output Y , we have p(y|x = +1) = p(−y|x = −1).
Under MBISO channel, the capacity achieving distribution of the input is uniform
(that is p(+1) = p(−1) = 1

2
), because of the symmetry of the output. In this case,

the LLR is given equivalently by

Λ(y) = log
p(y|x = +1)

p(y|x = −1)
= log

p(x = +1|y)

p(x = −1|y)
. (3.2)

Notably because of uniform prior, the LLR Λ(y) is a rewrite of the posterior
probability p(x|y) = 1/(1 + e−xΛ(y)). The LLR is a prime tool in information theory
as it constitutes a sufficient statistic relative to the channel input [RU08]; in other
words, knowing Λ(Y ) or Y is equivalent for the decoding process. Moreover, in
practice, the LLR provides also a lingua-franca to represent the input of most soft
decoder algorithms such as the BP algorithm.

This is very attractive when noise is Gaussian because it leads to a linear receiver,
straightforward to implement. However, with impulsive noise, the LLR becomes a
non-linear function. Its implementation is complex and highly depends on the noise
distribution either because of the lack of a closed-form expression such as for α-
stable noise, or because it needs high computational burden such as for Middleton
noise. Consequently, the extraction of a simple metric based on the noise PDF in
the decoding algorithm is prevented. It is worth mentioning that under the α-stable
assumption the LLR can still be computed numerically, for instance, by numerical
integration of the inverse Fourier transform of the characteristic function as shown
in (2.25). However, the integral in (2.25), induces a prohibitive computation and
the evaluation of the LLR requires the knowledge of the noise parameters. Hence,
a sub-optimal receiver is then salutary to reduce complexity.

3.2.2 Noise distribution approximation

The main idea behind this approach is to find a distribution that well approximates
the true noise plus interference PDF, with an analytical expression and parame-
ters that can be estimated in a simple manner. For UWB communications and in
this context one can find a review in [BY09]. For instance, Erseghe et al. used a
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Gaussian mixture [ECD08]; a receiver adapted to Multi-User interference based on a
generalized Gaussian distribution approximation was proposed by Fiorina in [Fio06].
Nammi et al. [NBST06] studied the impact of impulsive noise on Parity Check Codes
by using ε-contaminated distribution. Beaulieu and Niranjayan [BN10] considered
a mixture of Laplacian and Gaussian noise. El-Ghannudi et al. [GCA+10] proposed
the Cauchy receiver based on Cauchy distributions, which are a special case of SαS
distributions with α = 1. An improved version of the Cauchy receiver called Myr-
iad receiver was proposed in [NB08], which is based on the Cauchy distribution
but with a modified dispersion parameter to improve the adaptability to different
impulsive degrees. The Normal Inverse Gaussian (NIG) distribution was proposed
in [GPC+12] to study cooperative communications, it is a flexible family of distri-
butions that includes Gaussian and Cauchy distributions.

A significant performance improvement has been shown for each solution in their
specific context compared to the linear approach. However, in the case of a model
mismatch, we can wonder how robust they will be. Moreover, the estimation of the
parameters can become in these situations significantly important. For instance, the
Cauchy receiver is suitable solely for highly impulsive noise, but the performance
will be limited when the impulsiveness decreases ranging from moderately impulsive
to purely Gaussian noise. Furthermore, the Cauchy receiver is highly influenced
by the model mismatch i.e. Middleton Class A. The Myriad and NIG receiver will
show better immunity against the model mismatch but they show poor performance
under less impulsive and purely Gaussian noises. Furthermore, the computation of
the LLR is complicated when the NIG distribution is considered as it requires more
complex function, including Bessel function.

3.2.3 Different metric measures

An alternative way to interpret detection is to consider that the likelihood measures
the distance between all the received signals and the possible transmitted signals.
For the Gaussian case, the optimal distance is the Euclidean one which is not suitable
for the impulsive case. For this purpose and to be less specific on a noise model,
several papers proposed different metrics, e.g. a robust metric mixing euclidean
distance and erasure [FC09], Hubber metric [Chu05], p-norm [GC12], ..., etc. The
p-norm is a distance measurement in the α-stable case with p < α, see [GC12], as
the α-norm can be estimated via:

‖X − Y ‖α =


[
E|X − Y |p/C(α, p)

]1/p

, 1 ≤ α ≤ 2[
E|X − Y |p/C(α, p)

]α/p
, 0 ≤ α < 1

(3.3)

where

C(α, p) =
2p+1Γ((p+ 1)/2)Γ(−p/α)

α
√
π Γ(−p/2)

(3.4)

and Γ(·) is the Gamma function given in (2.31).

In [SD99], the Lp-norm was proposed instead of the standard Least Mean square
as an interference suppression scheme for DS/CDMA in the presence of SαS interfer-
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ence. The decision statistic for the p-norm metric is given without the normalization
constant by

L(y) = |y − 1|p − |y + 1|p. (3.5)

Attractively, only a rough knowledge of α is needed and there is no need for any
distribution parameter estimation. However, the estimation of the p value will play
a significant role in terms of performance.

3.2.4 Direct LLR approximation

Linear approximation: evaluating the LLR with a Gaussian noise assumption
results in a linear operation for detection and is denoted as the linear receiver. We
primarily consider this choice for its simple implementation structure and also as a
reference to show the gain achieved by using other approaches, though it is known to
perform poorly in impulsive situations. The LLR for the Gaussian noise is expressed
by:

ΛG(y) = log
fN(y − 1)

fN(y + 1)
,

= log
e−(y−1)2/2σ2

e−(y+1)2/2σ2 =
2y

σ2
. (3.6)

where fN(·) denotes the PDF (2.3) of the noise N and σ is the standard deviation.
Using only a linear scaling whose slope depends on the additive noise variance

leads to severe performance loss as soon as noise is impulsive. This performance
loss occurs because with this linear scaling, large values in Y result into large LLR.
However, under impulsive noise, large values in Y are more likely due to an impulsive
event (meaning a less reliable sample) so that the LLR should be small.

Non-linear LLR approximation: under impulsive noise, the LLR is computa-
tionally prohibitive as discussed in Section 3.2.1, consequently, we consider para-
metric approximation Lθ of the LLR Λ(y). The family of functions Lθ is chosen for
its simplicity and for its flexibility to represent the LLR of different channel types.
Besides, if we consider a family defined by a limited number of parameters and
easy to be implemented, both the estimation and implementation complexities are
reduced. Hence, to narrow down the search space and to have an easy to implement
approximation, we assume that the estimated LLR Lθ is an odd piece-wise function
of the optimization parameter θ. More precisely, we are interested in functions that
can be represented as

Lθ(y) = sign(y) min {θ1φ1(|y|), θ2φ2(|y|), . . . , θnφn(|y|)} , (3.7)

where sign(x) is defined as sign(x) = x/ |x|; φi(|y|) are functions depending solely
on the channel output |y| but not necessarily linear in |y|; the parameter θ, given
as θ = [θ1, θ2, . . . , θn] ∈ Rn

+, is the the optimization parameter that needs to be
estimated. This formulation includes the linear case. The family of function is then
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Fig. 3.4. LLR demapper for α = 1.4, γ = 0.5, and its approximation.

simply Lθ(y) = ay, this is called thereafter the La receiver. The formulation (3.7)
allows us to take into account asymptotical approximations of the LLR.

Figure 3.4 lightens the non-linearity of the LLR function for the channel output
Y when the noise is α-stable. At a first look, two different parts in the LLR can be
observed: a first one when y is close to zero and another one when y becomes large
enough. When y is close to zero, the LLR is almost linear, whereas when y is large
enough, the LLR presents a power-law decrease. When the noise is Gaussian, the
linear region spreads with the decrease of the noise impulsiveness until reaching the
limit (only the linear part exists).

Remark 2. Even if Figure 3.4 delineates a specific noise model (α-stable), the
overall appearance of the LLR exhibits a similar behavior for other impulsive models.

The presence of these two parts has been used in the literature to propose several
LLR approximations [DGCG14, AIH94, MGCG13, SMET12, MSG+18] and justifies
the proposed piece-wise affine set for the LLRs approximation. Firstly, several
approximations cope with impulses by limiting the received values such as soft limiter
and hole-puncher [AIH94]. In [MGCG13], a variant of the soft limiter was proposed
called the clipper, where the LLR equation is:

Lclipp(y) =

{
py if −h/p < y < h/p

h sign(y) otherwise,
(3.8)

where p represents the signal amplitude and the impulse clipping level is represented
by h, using the density evolution they obtain both parameters. The clipper demap-
per also falls into the formulation (3.7). In order to match the parametric notation
defined in (3.7), the clipper demapper can be rewritten as:

Lclip(y) = sgn(y) min
(
a|y|,

√
ab
)

=

{
ay if |y| <

√
b/a,√

ab otherwise,
(3.9)
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Fig. 3.5. The demapper scheme.

where a represent the slope of the linear part and
√
ab represent the clipping thresh-

old.
Despite the performance improvement seen in the clipping receiver compared to

the linear one, we expect that approximating the optimal LLR might give a near-
optimal performance. Indeed, recently the approximated LLR receiver [DGCG14]
which will be called thereafter Lab was proposed. The Lab demapper decomposes
the LLR into two parts: a linear part and an asymptotic part. The linear part
is proportional to the received signal and is related to the noise dispersion γ and
the asymptotic part is derived from the asymptotic expansion approximation of
the density function of stable variable proposition 2 (page 27) and it reflects the
heaviness of the tail. Hence, the Lab demapper is given by

Lab(y) = sgn(y) min
(
a|y|, b/|y|

)
=

{
ay if |y| <

√
b/a,

b/y otherwise,
(3.10)

where a =
√

2/γ and b = 2(α + 1). Remark that, the demapper may be directly
parameterized by a and b instead of α and γ.

Recently, we proposed [MSG+19c] a new approximation based on three param-
eters which will be called thereafter Labc, expecting to have an approximation that
fits the true LLR to a high degree without adding much complexity. Consequently,
near-optimum performance can be achieved. Hence, the Labc demapper is given by

Labc(y) = sgn(y) min
(
a|y|, b/|y|, c

)
=


ay if |y| < c/a,

c if c/a < |y| > bc,

b/y if |y| > bc,

(3.11)

where a represents the slope of the linear part (for small values of y), b represents
the degree of decay of the asymptotic part (for large values of y) and c represents a
saturation level. The Labc demapper will be further detailed in Section 4.2.3.

This thesis mainly deals with this transformation between channel output and
decoder input. This transformation is called thereafter demapping as shown in
Figure 3.5. Attractively, constructing an adaptive robust receiver in a way that can
be used at the front end of any LLR-based decoder will be of great advantage as it
can be migrated to any LLR-based decoder like LDPC, turbo, etc.

The main question arising after having chosen the parametric function Lθ, is
how to estimate θ in order to minimize the BER or the Frame Error Rate (FER)?
For this purpose, we study in the following different methods.
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3.3 Different parameter optimization methods

The approximated LLRs require the knowledge of the parameter θ in order to be
tuned and match the channel state. The first idea to estimate these parameters is
to compute them directly from noise samples—which may be obtained by a training
sequence. We can mention three methods to estimate these parameters:

I direct estimation of the noise model parameters α and γ and then taking
a =
√

2/γ and b = 2(α + 1). This is equivalent to considering that the noise
distribution follows an α-stable law. Two different methods are used to esti-
mate the parameters of the stable distribution: the first is based on quantiles
proposed by McCulloch [McC86b] and the second use regression type estima-
tion method based on the characteristic function proposed by Koutrouvelis
in [Kou81]. Apparently, the performance in terms of BER of such methods
will be degraded as the environment changes due to the noise model mismatch
effect.

I direct noise distribution estimation: in this case, a kernel density estimation
is used followed by fitting the estimated LLR (L̂(x)) with the approximation
Lab: first the noise PDF will be estimated using some classical kernel-based
approaches. Thereafter, by using the density estimation, the LLR is estimated
directly by computing (3.2). Unfortunately, L̂(x) is difficult to use as an on-
line real-time likelihood approximation. This is essentially due to missing
samples which results in the appearance of zeros in the density estimation.
Consequently, the two parameters a and b will be estimated from L̂(x) by

considering its maximum (xm): a = L̂(xm)/xm and b = ax2
m. It is worth

mentioning that such a method will be degenerated under some extreme situ-
ations, for instance, when the noise magnitude is too small or when the noise
samples are too large.

I maximization of the mutual information between the source and the output of
the approximated LLR: this approach is attractive since it does not assume a
particular noise-plus-interference model. It is inspired by the work of Yazdani
and Ardakani in [YA09]. In order to find the best slope of the linear receiver,
they used the maximization of mutual information between the source and the
receiver output. Nevertheless, this approach can be adjusted easily in order to
fit our estimation problem, in general, to find the optimal parameter θ∗ that
will tune the demapper Lθ∗ and thus match the channel state. The receiver
parameter θ∗ is now given by

θ∗ = argmax
θ

I(X;Lθ(Y )). (3.12)

This method will be studied in more detail in the rest of the manuscript.

3.4 Proposed framework and system scenario

Source: we use a LDPC code associated with a BP-decoding algorithm. This case
is well-suited to our proposal because the LLR has to be estimated and fed to the
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BP algorithm. Nevertheless, our solution is not limited to these codes but could
be applied to any code families whose decoding relies on the LLR, as for instance
convolutional codes or turbo-codes.

In the following, we study the proposed framework with two different block
lengths, long and short. We assume that the binary message X is encoded using a
regular (3,6) LDPC code of length 20000 and 408, respectively. We did the same
study over different LDPC codes, but the conclusions are the same.

Channel: the channels we are interested in are memoryless, binary input, and
symmetric output (MBISO). A large number of channels fall into this class such as
the Binary Symmetric Channel (BSC), the Binary Erasure Channel (BEC) or the
Additive White Gaussian Noise (AWGN) Channel. A wide range of situations can be
dealt with rather straightforwardly once we have mastered MBISO channels [RU08].
More generally, channels defined by Y = X +N , whose inputs X are perturbed by
an additive noise N belong to the MBISO family as long as the additive pertur-
bations are symmetric and independent from the input. The noise may represent
thermal noise but also impulsive interference. In the latter, N can be modeled,
for instance, by a Middleton class A distribution [Mid77] or a symmetric α-stable
distribution [PW10a], etc. In particular, we will focus on Symmetric α stable (SαS)
distributions. Nevertheless, we also want to check the robustness against different
noise models. Consequently, we will study the behavior of our approach with other
classical noise models: Gaussian, Middleton class A and ε−contaminated.

Receiver: thereafter, we will adopt the Lab demapper for further study and
analysis since it outperforms the most used LLR approximations [HLZ14,MJLC15].
This work can be extended with more or less efforts to other approximations or to
higher modulation schemes.

Parameter optimization method: we aim at the smallest BER and FER; but
this criterion is not within reach in practice. Moreover, we constraint ourselves to
have a criterion that can be used directly at the receiver (to achieve online real-time
parameter estimation) which requires: simple implementation and fast learning (on
the fly) in order to match practical receiver implementation. We propose to estimate
the LLR approximation parameters by maximizing the mutual information between
the source and the channel output (3.14). This does not rely on the knowledge of the
noise distribution. We consequently expect robustness of this approach in different
interference contexts. The justification of such an approach will be tackled in the
following.

3.5 Online real-time parameter estimation method

The LLR approximations depend on several parameters, grouped here under the
variable θ, which must be optimized to make the approximation as close as possible
to the LLR.

3.5.1 LLR approximation as an optimization problem

We propose to perform the estimation under an information theory criterion based
on the capacity of MBISO channel, which can be expressed as a function of the
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LLR [RU08]. Recall that the capacity of such a channel is given as

CΛ =H(X)−H(X|Y )=1−E
[
log2

(
1+e−XΛ(Y )

)]
, (3.13)

where E[·] denotes the expectation operator over the pair of random variables X, Y .
Under the approximated LLR Lθ, one does not have access to (3.13) but to the lower
bound

ĈLθ =H(X)−Ĥ(X|Y )=1−E
[
log2

(
1+e−XLθ(Y )

)]
. (3.14)

In order to evaluate the accuracy of this approximation, we follow the work of [YA09].
Approximating the LLR is equivalent to approximate p(x|y) = 1/(1 + e−xΛ(y)) by

q(x|y) = 1/(1 + e−xLθ(y)) and thus H(X|Y ) by Ĥ(X|Y ) = E
[
log2

(
1 + e−XLθ(Y )

)]
.

Whereas (3.14) is only a heuristic, it appears to be a good criterion. Indeed the
difference between the true (3.13) and the approximated (3.14) capacities is directly
related to the Kullback-Leibler divergence between the densities p(X|Y ) and q(X|Y )
as

CΛ − ĈLθ = H(X|Y )− Ĥ(X|Y )

= E [log2 p(X|Y )]− E [log2 q(X|Y )]

= E
[
log2

p(X|Y )

q(X|Y )

]
= DKL ( p || q ) (3.15)

whereDKL(p‖q) is the Kullback-Leibler divergence between densities p and q [CT06].
We draw several facts from (3.15): the non-negativity of the divergence implies that
our criterion is lower bounded, and the bound is reached when q(x|y) = p(x|y).

In other words, ĈLθ = CΛ for Lθ = Λ if the LLR Λ belongs to the parametric
family Lθ. Consequently, our objective is to minimize the distance between both
conditional entropies by bringing both densities closer, and thus, maximizing (3.14).
Equivalently, our optimization problem writes as:

θ∗=arg min
θ
Ĥ(X|Y )=arg min

θ
E
[
log2

(
1 + e−XLθ(Y )

)]
(3.16)

However, in our setting, the approximated conditional entropy Ĥ(X|Y ) is not
available directly, since the expectation operator depends on the noise distribution
that we assume unknown. We thus use a Monte Carlo approach to estimate it,
replacing the expectation by an empirical average ĤK(X|Y ). Hence Ĥ(X|Y ) can
be obtained as

Ĥ(X|Y ) ≈ ĤK(X|Y ) =
1

K

K∑
k=1

log2

(
1 + e−xk Lθ(yk)

)
, (3.17)

where xk and yk are samples that represent the input and output of the channel
respectively.

Our objective is to minimize ĤK in (3.17) over the possible choices of θ. This
will allow us to find an approximation of the LLR in the considered family that
should be a good choice for our decoding algorithm. Our optimization problem is
therefore given as



3.5. Online real-time parameter estimation method 58

θ∗ = arg min
θ
ĤK(X|Y )

= arg min
θ

1

K

K∑
k=1

log2

(
1 + e−xkLθ(yk)

)
= arg min

θ

1

K

K∑
n=1

log2

(
1 + e−Lθ(xkyk)

)
,

(3.18)

where the last equality holds since Lθ(·) is an odd function and since xn belongs to
±1.

Finally, one can rewrite the objective function as

ĤK(X|Y ) =
1

K

K∑
k=1

xkyk≥0

log2

(
1 + e−Lθ(xkyk)

)

+
1

K

K∑
k=1

xkyk<0

log2

(
1 + e−Lθ(xkyk)

)
.

(3.19)

The proposed learning criterion is attractive because the optimum is achieved if
the a posteriori is well approximated. Even without knowing the LLR, it is possible
to approach it by learning. The obtained performance will show that such a model is
efficient. The complexity study of the estimation step is out of the scope of this the-
sis. Nevertheless, the used simplex method based on Nelder Mead-algorithm [NM65]
converges within 10 iterations, which is suitable for our application. Other optimiza-
tion methods could be used such as Newton’s descent, but as we will see shortly,
the obtained value with the simplex method falls within the region of small BER.

Note that various LLR approximations can fit into this affine framework as we
proposed some in Section 3.2.4. Nevertheless, other approximations that do not
belong to our considered piece-wise affine function can be found in the literature, as
for instance the Hole puncher demapper [SN93] or non-linear approximation like in
[HLZ14]. However, the proposed framework remains valid but attention has to be
paid to the optimization algorithm that will be used.

3.5.2 Analysis of the optimization problem

The authors in [YA11], proved the convexity of (3.18) by considering piecewise
linear (in y) LLR approximations with fixed boundary regions assumption under
Gaussian noise. However, our proposal does not assume linearity in y (only in θ)
and boundaries are not fixed.

For clarity reasons, let us rewrite the odd piece-wise function given in (3.7) by
taking into account the sign of the product xkyk, which will be

Lθ(xkyk) =

{
min {θ1φ1(xkyk), θ2φ2(xkyk), . . . , θnφn(xkyk)} if xkyk > 0

max {θ1φ1(xkyk), θ2φ2(xkyk), . . . , θnφn(xkyk)} if xkyk < 0
(3.20)
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In order to minimize (3.19), one needs to minimize a sum of terms, which can
be treated separately according to the sign of xkyk. Let fθ = log2(1 + e−Lθ(xkyk)),
hence, on one hand, if xkyk > 0 then

f(θ) = log2

(
1 + e−min{θ1φ1(xkyk),...,θnφn(xkyk)})

= log2

(
1 + max

{
e−θ1φ1(xkyk), . . . , e−θnφn(xkyk)

})
= max

i

{
log2(1 + e−θiφi(xkyk))

}
. (3.21)

Consequently, in order to minimize (3.21), one needs to increase the parameters θi,
because the term inside max{·} decrease with θi. On the other hand, if xkyk < 0,
then

f(θ) = log2

(
1 + e−max{θ1φ1(xkyk),...,θnφn(xkyk)})

= log2

(
1 + min

{
e−θ1φ1(xkyk), . . . , e−θnφn(xkyk)

})
= min

i

{
log2(1 + e−θiφi(xkyk))

}
. (3.22)

In order to minimize (3.22), one thus needs to decrease the parameters θi. Thus,

minimizing ĤK(X|Y ) results in a compromise between minimizing each of the two
parts, one of it tends to increase the value of the parameters while the other tends
to decrease it.

Unfortunately, based on this study, the optimization problem we are considering
is not convex: indeed, if xy > 0, one can show that the objective function is convex
in θ, but this does not hold in the case xy < 0. Despite the non-convexity of the
problem, we will use a simplex method based algorithm [NM65] to obtain at least a
local minimum. The use of an algorithm adapted to non-convex methods does not
result in any significant gain. It could, however, be different for other approximation
families, for instance, the non-linear approximation [HLZ14]. However, the best
optimization method, as well as its complexity study, remains out of the scope of
this thesis.

In the following chapters, we are going to investigate and study the behavior of
our framework. Under long and short block length regimes the parameter optimiza-
tion will be tackled in two different ways: using supervised learning and unsupervised
learning as will be handled in Chapter 4 and Chapter 5, respectively.

3.6 Conclusion

Establishing reliable and efficient communications require to take into account the
impulsive nature of interference while designing the receivers. To understand the
impact of impulsive noise we started by visualizing the noise impact on the opti-
mal receiver by representing the decision regions. Under the Gaussian case, the
optimal decision regions are linearly separated, however, in the presence of impul-
sive noise these regions are non-linearly separated. Then, we presented different
approaches to design a robust receiver: optimal approach; noise distribution ap-
proximation approach; different metric measures approach and the LLR inspired
approach. We show that the optimal receiver cannot be achieved as the LLR is
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computationally prohibitive and it relies on the noise-plus-interference knowledge,
thus, sub-optimal receivers are salutary. We show that the aforementioned second
and third approaches may be well suited to a specific noise context, but, their per-
formance is subject to channel estimation accuracy. Designing a specific receiver for
each situation is not as efficient as the interference characteristics can highly vary
due to many situations. Thus, having a receiver able to cope with a large set of
different interference models (impulsive or not) and with different degrees of im-
pulsiveness is highly desired. For this reason, we proposed to directly estimate the
LLR, without relying on the interference plus noise statistics knowledge. We chose a
LLR approximation function fθ in a parametric family, flexible enough to represent
many different communication contexts. Furthermore, we proposed a new method
to estimate θ. This method is inspired by information theory where the parameter θ
is estimated by maximizing the mutual information between the channel input and
the channel output. The justifications behind this method are illustrated as well.



Chapter 4
A supervised LLR estimation with
unknown noise distribution

In this chapter, we will study in detail the novel supervised-learning framework to
perform estimation of the LLR approximation parameters, without relying on the
interference plus noise knowledge, that we introduced in the previous chapter. We
demonstrate the supervised learning in long and short block length regime. More-
over, we propose a near-optimal demapper which features an easy implementation.
The estimation method is shown to be efficient in a large variety of noises and the
receiver exhibits a near-optimal performance. In addition, we propose a simple met-
ric that is based on a simple distance calculation to evaluate the performance of an
approximation instead of using intensive Monte Carlo simulations to evaluate error
rates. Eventually, we show that supervised learning suffers from significant perfor-
mance degradation when the training sequence is shortened and present the reason
behind this loss.

𝜽∗

𝑪𝑳𝜽[𝑿;𝑳𝜽(𝐘)] 

Noise   Channel 
N = noise + 

Interference

YX ෡𝑿
Decoder

Approximated LLR 
Estimator

𝐿𝜽∗ (Y)

Fig. 4.1. Supervised LLR scheme.
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4.1 Supervised scheme

I
f the optimization of the criterion ĤK(X|Y ) (3.18) is performed in a supervised
manner, the value of the parameter θ∗ is triggered after receiving the channel

output Y as shown in Figure 4.1. As we rely on Monte Carlo calculation to estimate
(3.18), we need a known sequence of channel inputs, thanks to the learning sequence
x1, . . . , xK and the corresponding outputs y1, . . . , yK . Once the optimal parameter θ∗

is obtained over the designed channel, it is used to build the approximated demapper
for the rest of the block as Lθ∗(Y ).

We investigate the accuracy of the supervised process with long block length
performance analysis in Section 4.2, thereafter, we study the effect of shortening
the training sequence in Section 4.3. For clarity reasons we first focus on SαS noise
distributions, while we extend to other noise models with high and low impulsive
cases, in particular, Middleton, ε−contaminated and Gaussian to investigate the
robustness and the ability to adapt to different contexts. In order to assess the
optimal performance of the supervised approach, we use a large learning sequence
of 20000 samples to estimate a and b. This allows having a good grasp of the results
with high estimation accuracy. To evaluate the performance of the proposed scheme
we will use Lab (3.10) and present the BER curves using LDPC codes.

4.2 Supervised learning with long block length

regime

In this section, we investigate the accuracy of the supervised parameters estimation.

4.2.1 Parameter estimation performance analysis

The performance of the estimation process is evaluated over different noise models.
To perform so, we compare the LLR shape obtained by the tuned θ∗ with the true
LLR. In order to be efficient, we can expect that the approximated demapper Lab is
close to the true one.

Estimation over impulsive SαS additive noise

Figure 4.2 and Figure 4.3 illustrates the LLR behavior of a SαS channel output for
fixed value of α and by varying γ. First note, we can see that in all cases linear and
asymptotic regions appear, as described in Section 3.2.4. Second, for each channel
state realization depicted by the couple α, γ, different LLR shapes are observed,
thus, to match the channel state it is important to estimate correctly the LLR
parameters. Third, by comparing the asymptotic part behavior between Figure 4.3
and Figure 4.2 we can see that as the environment becomes more impulsive (by
decreasing α) the LLR asymptotic part will be almost the same in spite of varying
γ. Consequently, we can expect that the LLR approximation in high impulsive
environments will be less sensitive to parameters’ variations.

Figure 4.4 compares the evolution of the mean of the estimated parameters a and
b, as a function of the dispersion γ of a SαS noise with α = 1.4 for the supervised
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Fig. 4.2. Behavior of the LLR according to the output of the SαS channel for a
fixed α = 1.8 and different values of γ.

Fig. 4.3. Behavior of the LLR according to the output of the SαS channel for a
fixed α = 1.4 and different values of γ.
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Fig. 4.4. Comparison of the mean and standard deviation evolution for parameter a
and b as a function of the dispersion γ of a SαS noise with α = 1.4 for the supervised
optimization.

Fig. 4.5. Comparison of the LLR shapes Lab approximation with the LLR obtained
by numerical integration. Under the effect of the estimated a and b parameters with
γ = 0.45 and α = 1.4.
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Fig. 4.6. Comparison of the mean evolution for parameter a as a function of Eb/N0,
under the Gaussian noise, the supervised optimization and the optimal receiver.

optimization. Remark that the same behaviors can be obtained for other values of α
between 0 and 2. For each channel state, a and b are resultant of 5000 experiments.
We notice that the variability in the estimated values is very small.

Figure 4.5 compares the LLR shapes of Lab obtained under supervised optimiza-
tion with the true LLR obtained by numerical integration. For this comparison
we select from Figure 4.4 γ = 0.45 (depicts the waterfall region) the estimated pa-
rameters a = 3.6 and b = 5.1 that will be used to tune the Lab demapper. This
comparison shows the good fit between the approximated demapper Lab and the
true LLR. Accordingly, we can expect a good BER performance.

Estimation over Gaussian noise

It is an essential feature that our proposal does not degrade the performance of
communication when no impulsiveness is present. Figure 4.6 compares the evolution
of the mean of the optimized parameter a and b obtained under the supervised
approach to the optimal slope in the linear receiver aLLR. For each noise variance,
we ran 5000 experiments. Recall that with our proposed demapper, the decreasing
part starts at ±

√
b/a. If this value becomes large enough, the power-law part will

not impact the receiver. For Gaussian noise, large received samples are very rare,
so that all samples fall into the linear part of the demapper. Numerically, when
simulating AWGN channel, we obtained values bigger than 49 for b as shown in
Figure 4.6 which are larger than the one obtained for a, showing that only the linear
part impacts the receiver1. The decreasing part has consequently a negligible impact.
The linear part is given by the optimal slope as a = 2/σ2. This comparison shows

1As Eb/N0 increases the noise standard deviation σ will decrease, making thus all the received
samples well-framed around the mean, that is the amplitude are mostly within 3σ of the mean.
Consequently, all the received samples fall between ±

√
b/a values and thus effected solely by the

linear part.
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Fig. 4.7. Behavior study of the ĤK function, as a function of parameters a and b
for different values of γ, under highly impulsive SαS noise with α = 1.4.

clearly the good fit between the slopes, proving thus the strength of the supervised
optimization of the demapping function Lab over the AWGN channel.

4.2.2 Performance evaluation

Indirect link between the optimization method and minimizing BER

In a first step, we investigate the shape of the function ĤK (3.18) according to
θ = (a, b). We present the obtained results for a highly impulsive noise when α = 1.4,
but similar observations and conclusions would be made for other choices.

In Figure 4.7, we represent a 3D plot of the function ĤK for three values of γ,
namely γ = 0.35, γ = 0.45 and γ = 0.55, representing the levels of ĤK under the
supervised criterion using a learning sequence of length 20000. The white contour
in the middle figure delineates the area where the ĤK is less than 0.3 and this value
decreases as γ decrease. The values of γ are selected in a way to represent the shape
of the function ĤK before, within and after the waterfall region, respectively, as will
be seen later in Section 4.2.1. First note that ĤK is quite flat around its minimum
value. As a consequence, it may be quite sensitive to noise and thus to the length
of the training sequence.

In Figure 4.8, we illustrate the link between the function ĤK and the obtained
BER. The contour plot delineates different BER values, ranging from 10−5 to 10−1,
whereas the white contour delineates the set of a and b values yielding the smallest
values of ĤK as shown in the middle figure of Figure 4.7. Note that the regions
match in the sense that the set of optimal values for a and b allows the decoder to
achieve a BER below 10−5.

Indeed, as shown in Figure 4.8 when γ = 0.45, both a and b estimated mean
values under the supervised optimization shown in Figure 4.4 fall in the small BER
region. Besides, the small variance of the estimated θ∗ ensures that the estimated
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Fig. 4.8. BER comparison as a function of a and b parameters with γ = 0.45 and
α = 1.4 under the supervised approximation.

values will fall in the region yielding the smallest BER.

The sensitivity to errors due to the flatness of the landscape of ĤK is thus
lessened by the flatness of the BER region.

BER performance under SαS noise

Once our demapper is tuned with the estimated value θ∗, it is used as a front-end
to the 20000 bits long regular (3,6) LDPC decoder using the BP algorithm. We test
this scheme first over an additive impulsive SαS noise.

In this case, we study a highly impulsive situation with α = 1.4 and a less
impulsive case with α = 1.8. Figure 4.9 and Figure 4.10 present the BER for
α = 1.4 and α = 1.8 respectively, as a function of the dispersion γ of the α-stable
noise2. In both cases, we compare the BER obtained via the demapping function
in a supervised manner, to the BER obtained with the true LLR computed via
numerical integration.

First, we note that in both cases, the estimation with such a long training se-
quence gives performance close to the optimal LLR which shows the good behavior
of our solution. Secondly, we can figure out the ability to adapt to different impulsive
states from low impulsive up to highly impulsive.

In order to stress the need of good LLR shape design, we also optimized with
our solution a linear approximation La. This receiver shows very poor performance
behavior in all impulsive cases. Thus, the impulsive nature must be tackled with a
decreasing part of the LLR approximation such as with Lab.

2Recall that in case of an impulsive environment with α < 2, the second-order moment of a
stable variable is infinite [BSF08, Theorem 3], making the conventional noise power measurement
infinite. Accordingly, we present our simulation results as a function of the dispersion parameter
γ, which is used as a measurement of the strength of the α-stable noise.
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Fig. 4.9. Evolution comparison of the BER as a function of the dispersion γ of
a SαS noise in low impulsive environment with α = 1.8, between the supervised,
linear LLR approximations and the LLR obtained by numerical integration.

Fig. 4.10. Evolution comparison of the BER as a function of the dispersion γ of
a SαS noise in highly impulsive environment with α = 1.4, between the supervised,
linear LLR approximations and the LLR obtained by numerical integration.
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Fig. 4.11. BER comparison as a function of Eb/N0 between the supervised approx-
imation and the optimal LLR in AWGN channel.

Investigation of the robustness and adaptability of the proposed frame-
work

In order to further show the robustness of our proposed demapper Lθ, we investigate
in the following its performance when instead of suffering from a SαS noise, the
channel exhibits an impulsive nature modeled by Middleton Class A [SM77] or ε-
contaminated noises [AALM17b] or non-impulsive like the Gaussian case. We keep
the linear approximation La and the proposed LLR approximation Lab and test them
under different configurations:

I additive Gaussian noise, in Figure 4.11;

I low impulsive ε-contaminated (ε = 0.01, K = 10), in Figure 4.13;

I high impulsive ε-contaminated (ε = 0.1, K = 10), in Figure 4.12;

I high impulsive Middleton class A (A = 0.01,Γ = 0.01), in Figure 4.14;

I moderate impulsive Middleton class A (A = 0.1,Γ = 0.1), in Figure 4.15.

Note that in these cases, one can compute the noise variance, thus the error rates
can be given as a function of Eb/N0. For each scenario, we compare our proposal
based on Lab with the true LLR, obtained via numerical integration, and the linear
demapper La. For each channel set, in the supervised case, a learning sequence of
length 20000 is used to optimize θ. For each case, we studied the evolution of the
BER as a function of the Eb/N0.

The high robustness and the adaptability of our demapper can be seen through
the close performance obtained between the supervised case and the true LLR.
Moreover, the ability to adapt to different noise type scenarios in spite of the change
of the impulsiveness degree.
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Fig. 4.12. BER comparison as a function of Eb/N0 between the supervised, linear
LLR approximations and the LLR obtained by numerical integration, in high ε-
contaminated with ε = 0.1 and K = 10.

Fig. 4.13. BER comparison as a function of Eb/N0 between the supervised, linear
LLR approximations and the LLR obtained by numerical integration, in low ε-
contaminated with ε = 0.01 and K = 10.
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Fig. 4.14. BER comparison as a function of Eb/N0 between the supervised, linear
LLR approximations and the LLR obtained by numerical integration, in highly
impulsive Middleton Class A noise with A = 0.01 and Γ = 0.01.

Fig. 4.15. BER comparison as a function of Eb/N0 between the supervised, linear
LLR approximations and the LLR obtained by numerical integration, in moderately
impulsive Middleton Class A noise with A = 0.1 and Γ = 0.1.
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Analysis and discussion: these numerical simulations illustrate the universality
of the supervised approach framework. The LLR family has to be wide enough to
encompass the linear behavior of exponential-tail noises like the Gaussian and the
non-linear behavior of sub-exponential distributions of the impulsive noises. The
estimation of the LLR approximation parameter relies on an information theory
criteria that does not depend on any noise assumption. Consequently, this allows
our supervised framework to adapt to different noise models with different impulsive
degrees.

The gap between the supervised optimization and the true LLR is small in all the
studied examples. We extended this study to other noises parameters or a mixture
of distributions, for instance, the Gaussian plus stable noise and obtained similar
conclusions. In impulsive situations, the gap between the non-linear LLR approx-
imation Lθ and the linear receiver La is huge. It proves the influence of handling
correctly the impulses that arise due to the presence of interference. Moreover, our
demapper function does not impact the performance when noise is not impulsive so
that we do not need a detection step to distinguish between Gaussian and impulsive
situations.

In the aforementioned study, we used a long learning sequence of 20000 samples
to estimate a and b. Consequently, the performance of the decoder depends only
on the quality of the LLR approximation and not on estimation errors. Thus, the
existing gap compared to the true LLR in the BER figures especially when the
impulsiveness increases is relevant to the approximated LLR by itself. In the sake of
completeness, we deal with this loss by proposing in the next section a new demapper
with an added parameter which allows to significantly reduce the gap.

4.2.3 A robust and simple LLR approximation for receiver
design

Note that the approximated LLR receiver Lab will remain one reference as it gives the
best performance compared to other proposed approximations [HLZ14], [MJLC15].

The main problem behind Lab is the rough transition between the linear part
and the asymptotic part, where one can note, see Figure 4.16, a large gap between
the true LLR and the approximated one. The purple curve (or dots) denoted by the
PDF of the received samples, represents the conditional probabilities Pr(Y |X = +1),
respectively Pr(Y |X = −1). One can note that a large proportion of the received
samples fall in the transition part, where the gap to the true LLR is the largest.
Consequently, we propose a new approximation as represented in Figure 4.16. The
third parameter corresponds to a saturation of the approximated LLR in the tran-
sition part, allowing to decrease the gap to the true LLR. This new approximation
is detailed in the following.

Proposed Approximation

We call the new demapper Labc. It decomposes the LLR into three regions:

I First, when the channel output y is small the linear approximation of the LLR
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Fig. 4.16. Comparison of the LLR shapes under the effect of the estimated a and
b parameters with γ = 0.45 and α = 1.4, in the Lab and Labc approximations with
the LLR obtained by numerical integration.

around zero is given by:

LLR(y) = log
f(y − 1)

f(y + 1)

= log
f(−1) + f ′(−1)y +O(y2)

f(1) + f ′(1)y +O(y2)

= −2
f ′(1)

f(1)
y +O(y3) ≈ ay.

(4.1)

I Second, using Proposition 2, a simple asymptotic expansion may well approx-
imate the probability density function fα of stable variables with unitary scale
parameter [NS95],

fα(y) =
n∑
k=1

bk
|y|αk+1

+O
(
|y|−α(n+1)−1

)
. (4.2)

Using such asymptotic expansion of α-stable distribution provides a very sim-
ple LLR approximation based on the first term fα(y) ∝ |y|−(α+1) for large
values of the channel output y,
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LLR(y) = log
f(y−1

γ
)

f(y+1
γ

)

≈ log
(y − 1)−(α+1)

(y + 1)−(α+1)
, for large values of y,

≈ −(α + 1) log
y − 1

y + 1
≈ 2

α + 1

y
.

(4.3)

I The third part makes the transition between the linear and the asymptotic
parts. As shown in Figure 4.16, the true LLR behaves smoothly in this region,
whereas with Lab demapper, the transition is rather sharp. Moreover, the green
shaded part illustrates the advantage of introducing a constant term to improve
the approximation. In order to keep the simplicity and easy implementation
of our demapper, we propose to introduce a new parameter c that saturate
the LLR at this part.

The three aforementioned points lead to the demapping function

Labc(y) = sgn(y) min
(
a|y|, b/|y|, c

)
=


ay if |y| < c/a,

c if c/a < |y| > bc,

b/y if |y| > bc.

(4.4)

Discussion and Analysis

To match the channel situation, the receiver must be tuned by the optimized pa-
rameters θ∗ = (a; b; c) using the same framework as for Lab in previous sections.

Figure 4.16 compares the LLR shapes for Lab (a = 3.64; b = 5.19) and Labc
(a = 3.86; b = 5.5; c = 3.31) to the true LLR obtained via numerical integration for
a SαS noise of parameters α = 1.4 and γ = 0.45, where this specific γ represents
the waterfall region for such α and code. This comparison shows the convergence
between the Labc and the true LLR, and clearly shows the improvement in terms of
LLR shapes compared to the demapper Lab. Moreover, Figure 4.16 shows that the
majority of samples will fall in the transition part as can be seen from the PDF of
the received samples, for instance, for α = 1.4 and γ = 0.45 the percentage error
is (44± 4), we mean by percentage error the percentage of samples that fall in the
transition phase where the gap to the true LLR is the largest. This percentage
error is able to increase for different γ. In Figure 4.17, we present the frequency of
receiving a sample within each region Sa (linear part), Sb (asymptotic part), or Sc
(saturated part) obtained numerically using 1000 frames. For our simulation, we use
low impulsive SαS noise where α = 1.8. Figure 4.17 shows that receiving a sample
that falls within the transition phase depicted by the c parameter is highly probable
for a large range of noise scale γ. Furthermore, those samples highly influence the
selection of the optimized parameters as well as the decoder performance in terms
of BER.

Figure 4.18, respectively Figure 4.19, compares the evolution of the mean and
variance of the optimized parameters θ∗ = (a; b; c) as a function of the dispersion γ,
for less or more impulsive SαS noise, respectively. For each channel state, we ran
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Fig. 4.17. Comparison of the mean evolution of the probability to fall within the
a; b and c regions, as a function of the dispersion γ of a SαS noise with α = 1.8 for
the Labc.

Fig. 4.18. Comparison of the mean and standard deviation evolution for parameter
a; b and c as a function of the dispersion γ of a SαS noise with α = 1.8 for the
demapper Labc.
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Fig. 4.19. Comparison of the mean and standard deviation evolution for parameter
a; b and c as a function of the dispersion γ of a SαS noise with α = 1.4 for the
demapper Labc.

10000 experiments. The error bars indicate the small impact of different realizations
in which we can infer the robustness of the parameter estimation method.

Figure 4.20 compares the shape of the true LLR, and the one obtained with the
demapper Lab and Labc. The third parameter c allows a better fit to the true LLR.
Moreover, even in the linear and asymptotic parts, the fitting to the true LLR is
better when three optimization parameters are used instead of only two. This can
be explained by the fact that the new approximation suppresses the dependence be-
tween a and b which implies a compromise. These two parameters can be optimally
chosen for their own region, without really impacting each other.

Performance Investigation

In Figure 4.21 and Figure 4.22 we present the BER and FER performance of different
receivers for α = 1.8 and α = 1.4 which represent less and more impulsive channels,
respectively. For each γ, the demapping functions Lab and Labc are compared with
the optimal receiver. Our proposed solution improves the performance over the
Lab demapping function and matches the performance of the optimum receiver in
both less and more impulsive channels, as it was expected, since the shape of the
demapping function Labc is really close to the shape of the true LLR. It should
be mentioned that similar conclusions are observed for other values of α or other
impulsive environment types, as for instance, Middleton Class A, ε-contaminated or
Gaussian Noise.

This approximation is designed for additive impulsive noise channels, neverthe-
less, it is not computationally demanding and it remains easy to implement. It
requires the estimation of three parameters and our proposed scheme is shown to be
efficient. Moreover, in terms of performance, our solution is barely discernible from
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Fig. 4.20. Comparison of the LLR shapes obtained by numerical integration (true
LLR) or with the approximation Lab and Labc under an SαS noise with γ = 0.4,
α = 1.4.

Fig. 4.21. Comparison of the BER and FER as a function of the dispersion γ of
a SαS noise in less impulsive environment with α = 1.8, between Lab, Labc and the
LLR obtained by numerical integration.
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Fig. 4.22. Comparison of the BER and FER as a function of the dispersion γ of a
SαS noise in highly impulsive environment with α = 1.4, between Lab, Labc and the
LLR obtained by numerical integration.

the optimal receiver which is computationally prohibitive.

4.3 Shortening the training sequence.

So far we considered a learning sequence of the size of the LDPC code, which allows
to evaluate the LLR approximation without considering any performance impact
induced by the estimation step. However, in a practical setting, such a long training
sequence is not reasonable and additional errors can be expected as the length of
the learning sequence decreases.

In this section we will study the effect of the estimation when shortening the
learning sequence size.

We present in Table 4.1 the influence of the training sequence length. In this
table, the mean and the variance of the estimation of the parameters a and b are
collected for 20000, 1200 and 900 bits training sequences under moderate and less
impulsive SαS noise with α = 1.4 and α = 1.8. The mean value of a is only
slightly affected by the learning sequence length even for short or moderate length
sequences. However, the standard deviation of the estimation significantly increases.
On another hand, parameter b is more volatile and the mean of its estimation varies
significantly with the training sequence length. Such variability will affect the per-
formance of the system and degrade the BER, asking for a trade-off between the
targeted BER and the sequence length.

Note that one can expect a performance degradation in terms of BER by project-
ing the estimated values from Table 4.1 in Figure 4.7. Furthermore, in Figure 4.23
we compare the LLR shapes of the Lab approximations obtained in the case of an
α-stable noise with parameters α = 1.8 and γ = 0.55 for LS = 20000 and LS = 900
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µa σa µb σb

α = 1.4

γ = 0.43
SupLS=20000 3.73 0.07 5.10 0.12
SupLS=1200 3.77 0.35 5.18 0.58
SupLS=900 3.77 0.40 5.28 0.71

γ = 0.45
SupLS=20000 3.57 0.07 5.06 0.13
SupLS=1200 3.60 0.32 5.15 0.58
SupLS=900 3.61 0.37 5.16 0.66

α = 1.8

γ = 0.53
SupLS=20000 3.25 0.05 7.59 0.28
SupLS=1200 3.27 0.24 8.50 14.48
SupLS=900 3.27 0.27 11.72 46.15

γ = 0.55
SupLS=20000 3.05 0.05 7.62 0.28
SupLS=1200 3.07 0.22 7.97 1.54
SupLS=900 3.07 0.26 10.73 30.41

Table 4.1 – Comparison of the mean and standard deviation evolution for the pa-
rameters (a, b) as a function of the dispersion γ of a SαS noise with α = 1.4 and
α = 1.8 for the supervised with different learning sequence sizes.

Fig. 4.23. Comparison of the Lab approximations obtained in the case α-stable
noise with parameters α = 1.8 and γ = 0.55 for different LS sizes with the True
LLR obtained using numerical calculations.

with the true LLR using the mean of the estimated parameters in Table 4.1. Ob-
viously, the LLR shape obtained by the estimated parameters of LS = 900 is far
from the LLR shape. While the LLR shape obtained by the estimated parameters of
LS = 20000 is close to the true LLR shape. This degradation in the LLR shape will
result in a bad matching of the actual channel output Y and eventually a degraded
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Fig. 4.24. Showing the mismatch.

performance in terms of BER and FER.

We also (note even if it is counter-intuitive) that the estimated parameters are
degraded as α increases and γ decreases, in other words, when the channel becomes
less impulsive. However, the intuitive way of thinking is that the more the channel
becomes impulsive the most difficult the estimation is, which is shown to be wrong.

In fact, when the channel becomes less impulsive the probability to observe rare
events (impulses) in the short training sequence (for instance LS=900) becomes
smaller. However, this probability remains important in the whole message (20000).
Thus, one can define a mismatch between what is learned from the LS and the real
condition of the whole message. To have a better understanding we demonstrate
the existence of such a phenomenon in the following.

Mismatch between training phase and decoding phase: the estimation step
can be tricky with impulsive noises because the most significant events are rare. The
risk is that what we learn from the learning sequence may not match the condition
of the message, leading to severe performance degradation.

Figure 4.24 shows three different impulsive states with SαS noise: less (α =
1.8), medium (α = 1.4) and highly (α = 1.1) impulsive. The learning sequence
(highlighted in the blue box) is chosen to be small (816 in our illustrative example).
In each case, we compare the LS window to the up next 2000 received samples.

First, in Figure 4.24, α = 1.8 case, bottom plot, no impulse is observed in the
training sequence and noise looks Gaussian. Consequently, the estimation will result
in a linear demapper which is perfect in such a case. However, some impulses with
high amplitudes do appear outside the LS window. Due to the linear effect, they
will have a high likelihood and fool the receiver.

Second, in Figure 4.24, α = 1.4 case, few impulses fall in the LS window when
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Fig. 4.25. Comparison of the BER in a less impulsive environment (α = 1.8)
obtained for the approximation Lab where the estimated parameters are effected by
the supervised design using different LS sizes.

compared to the data samples. It is not clear how the estimator can deal with that
but the risk of mismatch is certainly present.

Third, for (α = 1.1), the noise statistics in the LS window looks to a certain
extent similar to that in the data sequence and consequently, the mismatch risk
should decrease.

BER simulation results and analysis: for our simulation results, a SαS noise
is considered of parameter α = 1.1, α = 1.4 and α = 1.8. For each channel state, we
used different LS sizes (816, 1008, 1200, 3000, 20000) to optimize the parameters of
the Lab approximation. The long training sequence (20000) allows us to assess the
best performance of the supervised estimation, and as the LS is shortened it allows
us to evaluate the loss due to estimation errors.

The obtained BER curves are presented as a function of γ,

I For low impulsive environment α = 1.8 in Figure 4.25.

I For high impulsive environment α = 1.4 in Figure 4.26.

I For extremely high impulsive environment α = 1.1 in Figure 4.27.

We can confirm the previous analysis and the counter-intuitive results. As ob-
viously, for α = 1.8 and LS=(816, 1008 and 1200) the performance is significantly
degraded in terms of BER as it is highly influenced by the mismatch. As α decreases
the probability of mismatch decreases as can be seen via Figure 4.25 to Figure 4.27,
and the performance shows a reduced loss when the LS length is shortened.

As a conclusion, in order to be adaptive enough, the length of the training
sequence should be defined in low impulsiveness. The question, however, remains
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Fig. 4.26. Comparison of the BER in a moderately impulsive environment (α =
1.4) obtained for the approximation Lab where the estimated parameters are effected
by the supervised design using different LS sizes.

Fig. 4.27. Comparison of the BER in a highly impulsive environment (α = 1.1)
obtained for the approximation Lab where the estimated parameters are effected by
the supervised design using different LS sizes.
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complex and has also to account for the packet length. Quantifying the mismatch
risk in a simple way could be a solution to adjust the TS length.

But up to now we mainly rely on BER or FER to assess the performance of
the system. Because we encompass a large number of noise models, analytical
tractability is complex to implement. We will in the next section introduce a metric,
easier to handle than BER, to evaluate the performance of a LLR approximation
function. This could be used in future work to design receivers and assess their
performance in a more efficient way.

4.4 Indirect performance measurement of the LLR

approximations

In literature, different methods can be applied to evaluate the quality of different
approximations (Lclip, Lab, ...) in a given channel. The most trivial method is the
direct exhaustive search using Monte Carlo simulation which can be done for various
choices of LLR approximations for a given code. Then, the LLR approximation
which gives rise to the best BER curve is chosen. However, this approach of finding
the best LLR approximation becomes rapidly too complex and long. In the previous
section and for estimation purposes, we used an indirect way of measuring the LLR
fit with the capacity criterion (3.13). A capacity loss could be introduced to evaluate
a LLR approximation.

Another way to measure the accuracy is the minimum mean square error (MMSE)
between the true LLR and its approximation Lθ. In our study we consider three
different approximations, however, any approximation can fit the proposed frame-
work. The three different approximations are: the clipping demapper Lclip(y) =

sgn(y) min
(
a|y|,

√
ab
)
; the approximated LLR Lab(y) = sgn(y) min

(
a|y|, b/|y|

)
; our

previously proposed solution Labc(y) = sgn(y) min
(
a|y|, b/|y|, c

)
.

Figure 4.28 compares these different approximations and the true LLR obtained
numerically for an α-stable noise with α = 1.4 and a scale factor γ = 0.4. If the
parameters are selected correctly, the simple functions Lclip, Lab and Labc are rather
close to the LLR, at least in the linear region. In superimposition, the figure also
displays the density of the output Y knowing the input X; clearly, all regions of the
various approximations are likely to be used.

The LLR approximation should be directly comparable to each other in order
to choose the best compromise between simplicity and performance. We propose to
use the following criterion to rank the approximations

MSE =

∫ ∞
−∞

[Λ(y)− Lθ(y)]2 p(y) dy = Ey [Λ(y)− Lθ(y)]2 . (4.5)

This metric is justified by the need for an approximation to get close to the true
likelihood of Λ(y). However, all regions must be weighted differently because this
approximation must be better for the most likely y values, hence the p(y) factor.

More formally, it is possible to find two constants K and K ′ to frame the integral
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Fig. 4.28. Comparison of the LLR and different approximations in the case α-
stable noise with parameters α = 1.4 and γ = 0.4. For Lab, the parameters used are
(a = 3.64; b = 5.19) and for Labc (a = 3.86; b = 5.5; c = 3.31)

on x of (3.15)

KEy
[
Λ(y)−Lθ(y)

]2≤∫ log
q(x |y)

p(x |y)
p(x |y) dxdy≤K ′Ey

[
Λ(y)−Lθ(y)

]2
, (4.6)

which shows a strong link between the Kullback-Leibler distance and the MSE cri-
terion,

K MSE ≤ D
(
q(x | y)‖p(x | y)

)
≤ K ′ MSE. (4.7)

Thus, comparing receivers according to the MSE criterion is a first coherent approach
and makes it possible to quickly select the best proposals.

Performance investigation and discussion: To study the performance of our
approach, we use regular LDPC codes (3, 6) with a length of 20000 bits. The results
will be presented according to the dispersion parameter γ.

First we calculate the distance (4.5) for different approximations according to
the dispersion value γ. We see in Figure 4.29, for α = 1.8, the significant distance
reduction from clipping Lclip to Lab then to Labc. The results are similar in a more
impulsive environment with α = 1.4 as shown in the Figure 4.30. However, the
difference between clipping and other approximations is more significant.

To confirm that the chosen metric is relevant, we then study the performance of
the three approximations in terms of BER. Figure 4.31 and Figure 4.32 present the
results, respectively for α = 1.8 and α = 1.4.

As predicted by MSE calculations, clipping is significantly less efficient than
the other two LLR approximations and the gap is much more significant when α
decreases. The Labc function also offers a gain over La,b as predicted by the MSE
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Fig. 4.29. MSE between Lclip, Lab, Labc and LLR depending on the dispersion γ in
a moderately impulsive environment (α = 1.8).

Fig. 4.30. MSE between Lclip, Lab, Labc and LLR depending on the dispersion γ in
a highly impulsive environment (α = 1.4).

criterion. Classically in model selection, weighted by the number of parameters
could be introduced to find a compromise between complexity and accuracy.
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Fig. 4.31. Comparison of the BER for a moderately impulsive environment (α =
1.8) obtained for the approximations Lclip, Lab, Labc and LLR.

Fig. 4.32. Comparison of the BER for a highly impulsive environment (α = 1.4)
obtained for the approximations Lclip, Lab, Labc and LLR.
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4.5 conclusion

The presence of interference or impulsive noise makes it difficult to calculate the
LLRs required for decoding. We proposed in this chapter a flexible receiver design
based on a LLR approximation function fθ in a parametric family. The parameter
θ is estimated through the maximization of the mutual information between the
channel input and the demapping of the channel output. A supervised estimation
is proposed where first we test our framework using long sequence size. Our results
show that the supervised receiver design is efficient and robust in a large variety of
noises and allows to reach performance close to the optimal.

In addition, we proposed a new LLR demapper based on a parameterized ap-
proximation function with three optimization parameters. Numerical simulations
show that the performance achieved match the one obtained with the true LLR.

Furthermore, to evaluate the performance of an approximation, we show that it
is not necessary to use intensive Monte Carlo simulations but that a simple distance
calculation gives a precise idea of its performance. This makes it possible to work
on the quality of the approximations and their adaptability to various contexts.
Consequently, we evaluate the quality of the approximation by a mean squared
error and ascertain that this criterion is sufficient to identify the approximations
that will be efficient.

All the obtained performances are investigated in a first approach by the use
of a training sequence of the size of the codeword, in other words, assuming a
very accurate estimation of the channel state. This is not realistic in real settings,
for such, we evaluated the impact of shortening the training sequence. The task is
especially difficult with impulsive noise that makes the estimation step more complex
and requires longer training sequence to observe enough rare events. In such a
case, a risk of mismatch arises: the risk that what we learned from the learning
sequence may not match the condition of the message, leading to severe performance
degradation. Indeed, the learning sequence has to be long enough to guarantee the
presence of the expected rare events. If this is not ensured, the estimation of θ won’t
lead to a good LLR estimation.

A major drawback of the supervised approach relies on the necessity of the
learning sequence. As a consequence, it induces an increase in signaling and a
decrease in the useful rate. Moreover, we show the LS has to be quite long to
avoid the mismatch effect. For this reason, we propose in the following chapter an
unsupervised estimation of θ, which focuses directly on the output of the channel,
without any prior on the input.
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Chapter 5
An unsupervised LLR estimation
with unknown noise distribution

In this chapter, we propose an unsupervised estimation of θ∗, avoiding the need of a
training sequence. The performance of our estimation method is first analyzed with
long codewords. It is shown to be efficient in a large variety of noises and the receiver
exhibits a near-optimal performance. Next, this estimation is performed with short
codewords, rending the estimation very error-sensitive. We analyze what conditions
lead to the estimation failure, derive an analytical tool to assess the probability of
failure and then propose to jointly use two mechanisms that prevent the aforemen-
tioned failures. Our estimation is shown to be efficient and the receiver exhibits a
near-optimal performance under various noisy environment types, ranging from very
impulsive one to Gaussian.

5.1 Online parameter estimation and unsupervised

optimization

T
o ease the reading we recall that our optimization problem writes as:

θ∗=arg min
θ
Ĥ(X|Y )=arg min

θ
E
[
log2

(
1 + e−XLθ(Y )

)]
(5.1)

and can be solved using data samples as

θ∗ = arg min
θ

1

K

K∑
k=1

log2

(
1 + e−xkLθ(yk)

)
, (5.2)

where K is the number of samples, xk and yk represent the input and the output of
the channel, respectively. For more details see Section 3.5.1.

5.2 Unsupervised optimization

To solve (5.2), one needs a received sequence yk as well as the corresponding trans-
mitted one xk. This is usually obtained thanks to the supervised approach where
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Fig. 5.1. Unsupervised LLR demapper scheme.

a training sequence is used as discusses in the previous chapter. However, this in-
duces an increase in signaling and a decrease in the useful data rate. Unsupervised
optimization is thus attractive since it does not imply any overload. Besides, a good
aspect of having such an unsupervised approach is that we optimize the approxi-
mation function directly from the sequence that we are going to decode. In other
words, the noise impacting the training phase and the decoding phase will be the
same ensuring the best knowledge of the actual channel state and the mismatch
discussed in Section 4.3 becomes irrelevant.

Since one needs the sent sequence X as well as the corresponding channel output
Y , we propose [MSG+19d,MSG+18] to extract a noise sequence Ñ directly from the
received channel output Y and to simulate at the receiver side the transmission of
a known sequence X̃. The corresponding channel output is build as Ỹ = X̃ + Ñ , as
depicted in Figure 5.1. To do so, we propose to use a sign-detector yielding

Ñ = Y − sign(Y ). (5.3)

The simulated channel input is an i.i.d. BPSK random variable, independent of Ñ .
Due to this independence, the input sequence can be chosen as a sequence of +1’s,
so that the new channel output is Ỹ = +1 + Ñ . The optimization parameter θ can
be estimated based on (5.2) but with the newly generated input and output as

θ∗ = arg min
θ
Ĥ(X̃|Ỹ )

= arg min
θ

1

K

K∑
k=1

log2

(
1 + e−x̃kLθ(ỹk)

)
= arg min

θ

1

K

K∑
k=1

log2

(
1 + e−Lθ(ỹk)

)
,

(5.4)

where the last transition comes from the fact that we use X̃ = +1. Once θ∗ is
obtained, the LLR is approximated by Lθ∗(Y ), where Y is the true received sequence
over the MBISO channel.

In order to investigate the performance of the unsupervised approach, we are
going to compare it in the following to the best achieved performance of the su-
pervised approach (LS=20000). In the next section, we propose to apply our blind
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LLR approximation optimization to LDPC coding where the noise exhibits either
impulsive or a Gaussian nature.

For our simulations, once our demapper is tuned with the estimated value θ∗,
it is used as a front-end to the 20000 bits long regular (3,6) LDPC decoder when
long block length regime analysis is considered and the 408 bits long regular (3,6)
LDPC decoder when short block length regime analysis is considered using the BP
algorithm.

5.3 Unsupervised learning with long block length

regime

5.3.1 Parameter estimation

Estimation over impulsive SαS additive noise

In a first step, we compare the obtained θ∗ under blind optimization with the one
obtained under a supervised approach. In this section, we only present the obtained
results for a highly impulsive noise when α = 1.4, but similar observations and
conclusions can be made for other choices.

Figure 5.2, respectively 5.3, compares the evolution of the mean and variance
of the estimated parameter a, respectively b, as a function of the dispersion γ. For
each noise dispersion, we ran 5000 experiments.

We can see from Figure 5.2 that the gap between the obtained values for pa-
rameter a under supervised and unsupervised optimization keeps very small. But
unfortunately, as shown in Figure 5.3, the one obtained for b is significantly larger.
This difference can be explained since b mainly depends on large noise samples which
are rare events; consequently, its estimation is more difficult.

In Figure 4.7, we represent a 3D plot of the function ĤK (5.2). We show that ĤK

is quite flat around its minimum value. As a consequence, it may be quite sensitive
to errors and thus to the length of the training sequence. Using the whole data set
in an unsupervised approach can then be a source of robustness. We illustrate the
link between the function ĤK and the obtained BER. The contour plot delineates
different BER values, ranging from 10−5 to 10−1.

In Figure 5.4, we project the two white crosses correspond to the mean value of
the optimization parameters a and b obtained under supervised and unsupervised
optimization, as provided on Figure 5.2 and Figure 5.3, respectively. Furthermore,
the white contour delineates the set of a and b values yielding the smallest values
of ĤK within a small precision error. First note that the obtained mean values of
a and b under both types of optimization fall within the set of points achieving a
BER less than 10−5; the small variance of the estimated θ∗ under both cases ensures
that most of the estimated values will fall in the region yielding the smallest BER.
Thus, we can expect that the error on b will have a limited impact in terms of
BER performance. Through intensive simulations, we noticed that the connection
between ĤK and the BER is always assessed, irrespective of the noise model and
noise parameters value.
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Fig. 5.2. Comparison of the mean and standard deviation evolution for parameter
a as a function of the dispersion γ of a SαS noise with α = 1.4 for the supervised
and unsupervised optimization.

Fig. 5.3. Comparison of the mean and standard deviation evolution for the param-
eter b as a function of the dispersion γ of a SαS noise with α = 1.4 for the supervised
and unsupervised optimization.
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Fig. 5.4. BER comparison as a function of a and b parameters with γ = 0.45 and
α = 1.4 under the supervised approximation.

µa σa µb σb

α = 1.8

γ = 0.53

Unsupervised 3.43 0.06 5.73 0.15
SupLS=20000 3.25 0.05 7.59 0.28
SupLS=1200 3.27 0.24 8.50 14.48
SupLS=900 3.27 0.27 11.72 46.15

γ = 0.55

Unsupervised 3.23 0.05 5.61 0.14
SupLS=20000 3.05 0.05 7.62 0.28
SupLS=1200 3.07 0.22 7.97 1.54
SupLS=900 3.07 0.26 10.73 30.41

Table 5.1 – Parameter Estimation. Comparison of the mean and standard deviation
evolution for the parameters (a, b) as a function of the dispersion γ of a SαS noise
with α = 1.8 for the supervised with different learning sequences and unsupervised
optimization.
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Fig. 5.5. Comparison of the LLR shapes under the effect of the estimated a and
b parameters with γ = 0.55 and α = 1.8, in the supervised LLR approximation
different learning sequences, the unsupervised LLR approximation and with LLR
obtained by numerical integration.

To complete the study we present in Table 5.1 the estimated θ∗ obtained under
both approaches unsupervised and supervised with different LS sizes. Table 5.1 high-
lights the performed gain when the whole data set under the unsupervised approach
is used and compared to shortening the LS used under the supervised approach. In
this table, the mean and the variance of the estimation of the parameters a and
b are collected for 20000, 1200 and 900 bits long learning sequences. The mean
value of a is only slightly affected by the learning sequence length even for short
or moderate length sequences. However, the standard deviation of the estimation
shows a higher error. On another hand, the estimated b parameter slightly changes
under the unsupervised approach while shortening the learning sequence under the
supervised approach will induce large error values, which indicate the significant
impact of different realizations being more likely to fall outside the optimal BER
region.

Nevertheless, the induced large error values will effect the shape of the demapper.
To show that, we compare in Figure 5.5 the LLR shapes obtained under supervised
optimization with learning sequence (900, 20000) and unsupervised optimization
to the true LLR obtained via numerical integration for a SαS noise of parameters
α = 1.8 and γ = 0.55. Figure 5.5 compares the LLR shapes under the worst
case estimation by taking the sum of the mean and standard deviation of both
parameters a and b. This comparison shows clearly the fitting between the LLR
shapes, except for the supervised with short training sequence, which induces a
significant number of received samples treated incorrectly. Consequently, we can
expect that the approximated demapper under unsupervised optimization performs
close to the true LLR and even better than supervised when the learning sequence
is shortened.
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Fig. 5.6. Comparison of the mean and standard deviation evolution for param-
eter a as a function of Eb/N0, under the Gaussian noise, for the supervised and
unsupervised optimization to the optimal receiver.

Estimation over Gaussian noise

Recall that with our proposed demapper, the decreasing part starts at ±
√
b/a. If

this value becomes large enough, the power-law part will not impact the receiver.
For Gaussian noise, large received samples are very rare, so that all samples fall into
the linear part of the demapper. Numerically, when simulating AWGN channel, we
obtained values bigger than 49 for b see Section 4.2.1 which are significantly larger
than the one obtained for a, showing that the non-linear part of the demapper will
rarely be used and will have a very small impact on the performance. The linear
part is given by the optimal slope as a = 2/σ2.

Figure 5.6 compares the evolution of the mean and variance of the optimized
parameter a, under the supervised (LS=20000) and unsupervised approaches to the
optimal slope. For each noise variance, we ran 5000 experiments.

This comparison shows clearly the convergence between the slopes, proving thus
the strength of both the supervised and unsupervised optimization of the demapping
function Lab over the AWGN channel. The error bars indicate the small impact of
different realizations. In the previous chapter, we demonstrated the robust perfor-
mance of the supervised approach in terms of BER and thus we can expect the same
behavior for the unsupervised approach.

5.3.2 Performance evaluation

BER performance under SαS additive noise

Figure 5.7 and Figure 5.8 present the obtained BER for α = 1.4 and α = 1.8, respec-
tively, as a function of the dispersion parameter γ. which is used as a measurement
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Fig. 5.7. Evolution comparison of the BER as a function of the dispersion γ of
a SαS noise in poorly impulsive environment with α = 1.8, between the super-
vised with different learning sequence sizes, unsupervised, Gaussian designed LLR
approximations and the LLR obtained by numerical integration.

Fig. 5.8. Evolution comparison of the BER as a function of the dispersion γ of
a SαS noise in highly impulsive environment with α = 1.4, between the super-
vised with different learning sequence sizes, unsupervised, Gaussian designed LLR
approximations and the LLR obtained by numerical integration.
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of the strength of the α-stable noise. In both cases, we compare the BER obtained
via the demapping function Lab, either in an unsupervised or supervised manner,
to the BER obtained with the true LLR computed via numerical integration. For
each channel set, we use a learning sequence of length 1200 or 20000 samples to
optimize θ in the supervised case; the long training sequence (20000) allows to as-
sess the optimal performance of the supervised estimation, the shorter one (1200)
allows to evaluate the loss due to estimation with more realistic training sequences.
The unsupervised approach does not perform as well as the supervised one with
a long training sequence but the gap is restrained. However, in comparison to a
linear receiver gain is huge. Moreover, when the training sequence is shortened, the
supervised estimation degrades and the performance of the unsupervised approach
is then much better.

In order to show the robustness of our proposed unsupervised framework, we in-
vestigate in the following its performance when the channel exhibits either an impul-
sive nature modeled by: Middleton Class A [SM77] noise, ε-contaminated [AALM17b]
noise or simply a Gaussian noise.

BER over Gaussian and other impulsive noises

The different configurations

I Gaussian noise in Figure 5.9

I high impulsive Middleton environment with A = 0.01 and Γ = 0.01 in Fig-
ure 5.10

I moderate impulsive Middleton environment with A = 0.1 and Γ = 0.1 in
Figure 5.11

I low impulsive ε−contaminated environment with ε = 0.01 and K = 10 in
Figure 5.12.

I high impulsive ε−contaminated environment with ε = 0.1 and K = 10 in
Figure 5.13.

For each scenario, we compare the true LLR, obtained via numerical integration
to the LLR approximations under supervised with 20000 long learning sequence,
unsupervised parameter estimation and Gaussian designed demapper La.

In Figure 5.9 (Gaussian noise) all curves are almost superposed, with a small
performance loss under the unsupervised optimization. Our proposed approach Lθ
does not degrade the decoding performance in a purely Gaussian case under the
unsupervised estimation.

In Figure 5.10 to Figure 5.13, the high robustness and adaptability of our receiver
can be seen through the close performance obtained between the unsupervised and
supervised case from one side, and between the approximations and the true LLR
from the other side in spite of the change of the type of noise and the degree of
impulsiveness in all scenarios.
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Fig. 5.9. BER comparison as a function of Eb/N0 between the supervised, un-
supervised LLR approximations and the optimal LLR in Additive Gaussian noise
channel.

Fig. 5.10. BER comparison as a function of Eb/N0 between the supervised, un-
supervised, Gaussian designed LLR approximations and the LLR obtained by nu-
merical integration, in high impulsive Middleton Class A noise with (A = 0.01 and
Γ = 0.01).
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Fig. 5.11. BER comparison as a function of Eb/N0 between the supervised, unsu-
pervised, Gaussian designed LLR approximations and the LLR obtained by numer-
ical integration, in moderately impulsive Middleton Class A noise with A = 0.1 and
Γ = 0.1.

Fig. 5.12. BER comparison as a function of Eb/N0 between the supervised, unsu-
pervised, Gaussian designed LLR approximations and the LLR obtained by numer-
ical integration, in low impulsive ε−contaminated noise with ε = 0.01 and K = 10.
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Fig. 5.13. BER comparison as a function of Eb/N0 between the supervised, un-
supervised, Gaussian designed LLR approximations and the LLR obtained by nu-
merical integration, in highly impulsive ε−contaminated noise with ε = 0.10 and
K = 10.

Analysis and discussion: these numerical simulations illustrate the universality
of the unsupervised framework which is proposed to benefit from the whole received
sequence to avoid the mismatch problem raised by the supervised case, but also to
increase the useful data rate. The approximation family has to be wide enough to
encompass the linear behavior of exponential-tail noises like the Gaussian and the
non-linear behavior of sub-exponential distributions of the impulsive noises. The
estimation of the LLR approximation parameter relies on an information theory
criteria that does not depend on any noise assumption. Our results show that the
receiver design is efficient in a large variety of noises and that the blind estimation
allows to reach performance close to the optimal and even better than the supervised
approach if the training sequence is not sufficiently long.

In the following section, we are going to investigate the performance of the
unsupervised framework influenced by short packets.

5.4 Unsupervised learning with short block length

regime

In this section, we consider the case where the transmitted packets contain a limited
number of information bits sent over an impulsive channel, in which it simulates
for instance the IoT networks [MSG+19b]. The use of a training sequence, in that
case, will significantly impact the useful throughput of the communication, and
it increases the mismatch risk probability between the training sequence and the
payload 4.3. Besides, impulsive noises are used to model rare events and estimation
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Fig. 5.14. BER Comparison as a function of the dispersion γ of SαS noise in low
impulsive environment with α = 1.8, between GAD, our previously proposed USD
and the optimal decoder where the LLR obtained by numerical integration when
K = 408.

becomes difficult so that more samples are needed in the training set. The question
we raise is: can we use an unsupervised approach to evaluate the LLR approximation
parameters that will remain robust with short packets?

The main contributions of this section are the following:

1. first, we investigate the impact of reducing the length of the packet on the bit
error rate when the LLR approximation parameters’ estimation is unsuper-
vised.

2. we then analyze the reasons of the significant degradation that we observed
compared to a longer packet case.

3. we derive an analytical tool to assess the probability of failure.

4. finally, we propose solutions to keep a robust scheme with shorter packets
by increasing the diversity in the noise sequence extracted from the received
packet and adding a regularization term.

In order to distinguish the unsupervised learning to the LLR approximation, we
introduce the genie aided decoder (GAD), which uses the true input xk to infer the

approximation parameter θ∗ from our criterion ĤK .
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Fig. 5.15. Evolution study of a and b parameters as a function of the number of
samples for SαS noises with α = 1.8.

5.4.1 Estimation with short sequences

Problem Statement

In the aforementioned results, we performed the optimization of θ in both a su-
pervised and unsupervised manner under a large number of training samples K =
20000. The resulting BER curves under both the supervised and unsupervised
optimization were close to each other and moreover close the one obtained with
numerically computed true LLR, showing thus the efficiency of our proposed LLR
approximation under large codewords. However, reducing the available number of
samples available to solve (5.2) has a large impact in terms of BER as can be seen
in Figure 5.14, where we shorten n to 408 and used the whole received sequence
for the unsupervised estimation, meaning K = n. One can indeed notice a large
degradation of the BER obtained under the unsupervised optimization (USD), com-
pared to the one obtained either with the GAD or with the true LLR (optimal). A
bump can even be noticed and the BER is not a monotonic function of the noise
dispersion anymore. Nevertheless, this performance loss is not due to the form of
the LLR approximation Lθ, since the BER curves obtained under the GAD and with
the true LLR still match, but solely to the estimation step yielding wrong values of
θ∗.

To investigate the causes of the performance loss, we compare in Figure 5.15
the evolution of the mean and variance of the optimized parameters a and b as
a function of the number of samples for an SαS noise of parameter α = 1.8 and
γ ∈ {0.1, 0.2, 0.4, 0.5}. We see that the variance of the estimated parameters are
extremely large when packets are short, especially for low values of γ where the BER
degradation is the strongest in Figure 5.14. In fact, the optimization step sometimes
outputs extremely large parameter values. Consequently, the BP algorithm input
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Fig. 5.16. Illustration of the LLR approximation with the four regions influencing
the shape of Lθ.

does not match the LLR, leading to poor BER. The same conclusion can be made
for other values of α.

In the rest of this section, we are going to (a) analyze in depth the reasons why
the estimation fails and (b) propose solutions to improve the robustness of this step.
Thereafter we will call degeneration the fact that the optimization step outputs a
very large value for parameters a or b, resulting in a bad tuning of Lθ∗ that does not
match the real state.

Problem exploration

Let Z denote Z = XY . Z is an interesting way to present the following derivation
because z > 0 means that x and y have the same sign (this bit detection would not
be in error) when z < 0 means that the noise modifies the sign of the transmitted
bit. Since LLRs are odd functions, one can rewrite xΛ(y), respectively xLθ(y), as
Λ(z) and Lθ(z). Further, let fab denote fab(z) = log2(1 + e−Lab(z)). Based on the
two optimization parameters a and b and on the Lab approximation, one can define
four regions that influence the shape of Lθ as depicted in Figure 5.16:

B− =
[
−∞,−

√
b/a
]

;A− =
[
−
√
b/a, 0

]
;A+ =

[
0,
√
b/a
]

;B+ =
[√

b/a,+∞
]
.

(5.5)

Using these four regions, one can rewrite (3.19) as

Ĥ(X|Y )∝
∑

zi∈B−∪B+

log2(1+e
− b
zi ) +

∑
zi∈A−∪A+

log2(1+e−azi). (5.6)

In each of these regions, only one of the two optimization parameters influences
the shape of Lθ: samples falling in B− and B+ are only impacting the optimization
parameter b, while samples falling in A− and A+ are only impacting the optimization
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parameter a. However, due to different exponent signs, minimizing Ĥ(X|Y ) requires
reverse optimization tendencies in the regions B+ and B−, respectively, A+ and A−.
Indeed, samples zi in B− tend to decrease the value of b in order to minimize fab(zi)
since b > 0 and zi < 0, whereas samples in B+ tend to increase the value of b, since
zi > 0. The optimal value of b results thus from a compromise between the two sets
B+ and B−. The same analysis holds for the parameter a and one can conclude that
if one of these regions is empty, the minimization problem will converge towards an
approximated LLR far away from the true one.

Having empty A+ or empty B+ region is very unlikely since it would require all
the training samples to be decoded in error, or in other words to only have large
noise samples of the opposite sign than the input sequence. Hence only two cases
remain that trigger the optimization failure:

1. empty B− region and populated B+ region: the samples in B+ will make b
parameter goes to infinity in order to minimize fab. As a consequence, the
threshold

√
|b/a| will increase and tend to infinity and thus the B− region

will still remain empty. This case, however, is not necessarily an optimization
failure since under Gaussian noise, the optimal receiver is a linear one with
b∗ → ∞. Under the GAD approach, such a case can also occur when no
negative z is received with a large amplitude.

2. empty A− region and populated A+ region: the terms in A+ will make a
parameter goes to infinity in order to minimize fab. As a consequence, the
threshold

√
|b/a| will decrease and tend to zero and thus the A− region will

remain empty. Under weak noise, the sign detector only extracts small noise
samples and thus the probability of having zero samples in A− becomes non
negligible, leading thus to a very large value of a. The fact that it happens
more when the dispersion of the noise decreases explains the bump shape
observed in Figure 5.14.

To conclude, the optimization step will fail when at least one of the aforemen-
tioned regions is empty, which is more likely with short training sequences since
the extracted noise does not represent its whole statistics. Indeed, impulsive noises
are characterized by large, but rare, events and their probability to appear several
times during the training sequence decreases when its length decreases. This can also
happen in the unsupervised case, especially when the noise strength is low or/and
when the impulsiveness is low. In fact, the sign detector will tend to generate noise
samples with values less than one.

Quantifying the risk of bad estimation

We will quantify the risk of optimization failure by assessing the probability of having
zero samples falling in the regions A− and B−. However, these two regions being
delimited by a non-fixed boundary, we will relax the studied problem and consider
the case A− ∪B− = ∅, i.e. no negative samples z are obtained, which will be called
degeneration.



105 CHAPTER 5. UNSUPERVISED ESTIMATION

The degeneration risk η is the probability that the sequence Z1, . . . , ZK has only
positive elements:

ηk = P (Z > 0, ∀k ∈ {1, ..., K}) . (5.7)

Let Qα denote the right tail of the probability function for a SαS random variable
as Qα(x) =

∫ +∞
x

fα(u)du, where fα is the probability density function of the SαS
distribution with dispersion parameter γ = 1.

Assuming K identically distributed and independent noise realizations, we have

η =
K∏
k=1

(1− P (Z ≤ 0)) = (1− P (Z ≤ 0))K . (5.8)

In the next Proposition, we will provide the degeneration risk under both the
GAD and the unsupervised approach.

Proposition 5. Under the Genie-aided decoder, the degeneration risk is given as

ηK,GAD =

[
1−Qα

(
1

γ

)]K
= (η1,GAD)K , (5.9)

whereas under the unsupervised optimization, it is given as

ηK,USD =

[
1− 1

2
Qα

(
3

γ

)
− 1

2
Qα

(
1

γ

)]K
=(η1,USD)K . (5.10)

Proof. Let us consider the two cases separately.
Under the GAD, X ∈ {−1, 1} and Y = X + N , so that Z = XY is negative if

X = +1 and N < −1 or if X = −1 and N > 1. Thus,

P (Z < 0) =
1

2
P (N < −1|x = +1) +

1

2
P (N > 1|x = −1)

=
1

2

(∫ −1

−∞
fα(u)du+

∫ +∞

1

fα(u)du

)
= Qα

(
1

γ

)
, (5.11)

and ηK,GAD =

[
1−Qα

(
1
γ

)]K
= (η1,GAD)K .

It should be emphasized that, due to the full access to a genie-aided provided
bits X, the estimation failure will be triggered only when no negative sample exists
which translates in this case as an error-free received codeword. Thus, the BER
performance will not be influenced in spite of a badly tuned LLR approximation.

Under unsupervised optimization, the training sequence only consists of X̃ = +1s
and Ỹ = +1 + Ñ . As a consequence, the probability to have a negative Z̃ = X̃Ỹ is

P
(
Z̃ < 0

)
= P

(
Ñ < −1

)
= P (Y − sign (Y ) < −1) .
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Fig. 5.17. Degeneration risk for K = 1 and α = 1.4 or 1.8 for the USD and
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explaining the gap between the BER obtained with USD and the one obtained with
GAD.

Necessarily, sign (Y ) = −1 since sign (Y ) = 1 would lead to Y < 0 which is in
contradiction. Thus,

P
(
Z̃ < 0

)
= P (X +N < −2)

=
1

2
P (N < −3|X = 1) +

1

2
P (N < −1|X = −1)

=
1

2

[
Qα

(
3

γ

)
+Qα

(
1

γ

)]
. (5.12)

Finally, we have ηK,USD=

[
1− 1

2
Qα

(
3
γ

)
− 1

2
Qα

(
1
γ

)]K
=(η1,USD)K . �

Discussion

In Figure 5.17, we represent the degeneration risk for K = 1 for the genie-aided
decoder as well as for the unsupervised decoder (USD) as given in Proposition 5.
Note that the degeneration risk is only a qualitative measure which gives an idea of
the probability of badly estimating a and b: when the value of this risk decreases, it
indicates that region A− ∪B− has a higher probability to contain samples and thus
the estimation to converge.

Based on this numerical simulation, three conclusions can be made:

1. The degeneration risk under USD is significantly higher than under GAD,
which shows that the estimation will be more difficult in the unsupervised
setting and explains the BER degradation observed in Figure 5.14.
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2. The degeneration risk increases when γ decreases. The dispersion γ is a scale
parameter that measures the spread of the samples around the mean, similarly
to the variance in the Gaussian case. Figure 5.17 shows that an estimation
failure (ηK tends to 1) is inevitable when the noise dispersion is small, making

all samples falling close to the mean (in our case X̃ = 1). Thus, it is less
likely to have samples in A− ∪B−. The consequence is most significant in the
medium and low γ regions. That consequence explains the bump observed in
Figure 5.14.

3. The degeneration risk decreases as α becomes smaller (more impulsive). In-
deed, the smaller the value of α, the heavier the tail of the probability density
function, which increases the likelihood of having impulses with large ampli-
tudes and far from the central location. Thus, it is more likely to have samples
in A− ∪B−.

These aspects are not intuitive because they suggest that the reduction of the
packet length will be more detrimental when noise is less impulsive and with a
smaller strength. However, If the noise strength is low, its impact will be very low
and even if the estimation is not accurate, the decoding should succeed. Neverthe-
less, the most impacting regime is the medium noise strength regime, in which the
bump can be observed on the BER curves.

In the following, we propose a new training sequence Ỹ design to reduce the
degeneration risk under the unsupervised optimization.

5.4.2 Proposed solution for the estimation with short block
length

We now provide two mechanisms in order to decrease the degeneration risk obtained
under unsupervised optimization: one regularization term in order to prevent the
parameter a to tend to infinity and one algorithm to increase the diversity in the
extracted noise sequence, such that the convergence of the parameter b is improved.

I Parameter a: the value of a defines the slope of the linear part for low values
of the received signal y. Thus, if this parameter tends toward infinity, the
approximated LLR would tend towards b/y which gives the highest likelihood
in samples around 0, which obviously is not efficient. To overcome this issue,
we propose to add a regularization term to (5.6) such that reasonable values
for a are obtained even if A− is empty. The new objective function writes as

Ĥ(X|Y )New = Ĥ(X|Y ) + log2(1 + eaε), (5.13)

where ε is a small value. The regularization term corresponds to an artifi-
cial small negative sample of amplitude ε in the A− region. It prevents an
empty A− region that causes degeneration. With small ε, this term could be
approximated by a linear regularization log2(1 + eaε) ≈ aε/(2 log 2).
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Fig. 5.18. Modification of the training sequence generated in the unsupervised
way: the objective is to increase the probability of having Y values that result in
a negative Z̃. In the original sign detector, we see that only the Y values smaller
than −2 result in negative Z̃. In the concatenation sequence (step 1) the red curve

corresponds to the opposite versions of Ñ . Y samples smaller than −2 but also
larger than 2 result in negative Z̃. In step 2, We force all Y values larger than 2
and smaller than −2 to give only negative Z̃.

I Parameter b: the value of b defines the presence of the large samples. One
important fact is that the optimization parameter b can go to infinity when
the noise is Gaussian in order to have a fully linear receiver, which is known
to be optimal. For this reason, we do not want to include a regularization
term on b. Our objective is thus to increase the diversity in the extracted
noise sequence and in turn to tune Ỹ in order to reduce the degeneration
risk, which is performed in Algorithm 1. As a result of this algorithm, the
received samples Z̃ are obtained. The principle of the algorithm is illustrated
in Figure 5.18. In the first step of the proposed algorithm, we concatenate the
extracted noise Ñ with its opposite version (−Ñ), yielding a new sequence

Ñc. Figure 5.18, middle plot, exemplifies the effect of this first step, where one
can see that Ñc is symmetric and that the number of negative samples Z̃ has
increased.

In the second step of the algorithm, we consider the generation of the Z̃
sequence. In order to have a sample that falls in the B+ region, the noise
must be of the same sign than X̃ and such that |Ñc| ≥

√
b/a− 1, whereas to

fall in B− the noise sample must be of opposite sign than X̃ and such that
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Data: Channel output Y
Result: Z̃
/* Step-1 */

Ñ = Y − sign(Y )

Ñc = −Ñ ||Ñ % Concatenate N and −N into Ñc; /* Step-2 */

for k=1 to length(Ñc) do

if Ñc(k) ≥ 1 then

Z̃(k) = +1− Ñc(k)
else

Z̃(k) = +1 + Ñc(k)
end

end

Algorithm 1: Generating the training sequence Z̃ = +1.Ỹ

|Ñc| ≥
√
b/a+1. The probability of this second event is much smaller than the

probability of the first: having samples in B+ is highly probable but having
an empty B− has also a high probability. To reduce this last probability, we
force a negative Z̃ when |Ñc| > 1.

The next proposition states the degeneration risk of our new training design, allowing
thus to evaluate its benefits.

Proposition 6. Under the new training sequence design with unsupervised opti-

mization, the degeneration risk is given as ηK,NUSD =

[
1−Qα

(
3
γ

)
−Qα

(
1
γ

)]K
=

(η1,NUSD)K .

Proof. under this new design, Z̃ is given either as Z̃ = 1 ± Ñc, depending on the
value of Ñc, thus

P (Z̃ < 0) = P (Z̃ < 0, Ñ ≥ 1) + P (Z̃ < 0, Ñ ≤ −1)

+ P (Z̃ < 0,−1 ≤ Ñ ≤ 1)

= P (Z̃ < 0, Ñ ≥ 1) + P (Z̃ < 0, Ñ ≤ −1)

= P (Ñ ≥ 1) + P (Ñ ≤ −1)

= 2
(
P (Ñ < −1)

)
= Qα

(
3

γ

)
+Qα

(
1

γ

)
(5.14)

and ηK,NUSD =

[
1−Qα

(
3
γ

)
−Qα

(
1
γ

)]K
= (η1,NUSD)K . �

Discussion

Figure 5.19 compares the degeneration risk ηK of the GAD and USD as a function
of γ under an additive impulsive SαS noise with α ∈ {1.8; 1.4} representing low
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Fig. 5.19. Comparison of the degeneration risk ηK for GAD, the simple sign
detector USD or the new unsupervised case NUSD as a function of γ, under SαS
noise with α = 1.8 and α = 1.4 representing less and high impulsive environments,
respectively and with K = 408.

and high impulsive environments respectively. The block size considered is 408
which depicts short codewords. The new unsupervised approach, which improves
the diversity in the generated Z̃ sequence, allows to significantly decrease ηK , which
gets even smaller than the one under the GAD. Nevertheless, this does not guarantee
better BER performance but only that the estimation should be more robust from
one packet to another.

In Figure 5.20, we provide the evolution of the mean and the variance of the
optimization parameters a and b under our proposed approach, which can be com-
pared to the one obtained in Figure 5.15 without the two mechanisms allowing the
degeneration risk decrease. One can note that under our proposed method, the op-
timization parameters do converge for all values of the noise strength. Even if the
parameter b still exhibits some variability, it is significantly reduced: the variations
around the mean values are much more confined compared to the previous method
and will not result in catastrophic values. The threshold

√
|b/a| remains stable so

that the shape of the LLR remains similar whatever the training set. It should
be mentioned that similar conclusions are observed for other values of α or other
impulsive environment types, as for instance, Middleton Class A, ε-contaminated or
Gaussian noise.

In the following, we present some numerical simulations showing the performance
of our new designed training sequence under blind optimization.
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Fig. 5.20. Evolution study of a and b parameters using the proposed solution as a
function of the number of samples for SαS noise with α = 1.8.

5.4.3 Numerical results using LDPC codes

Simulation Setup

We assume that the input sequence is encoded using a regular (3,6) LDPC code of
size n = 408. Consequently, the available number of samples to solve (3.14) is set
to K = 408, allowing to assess the performance gain of the new training sequence
design in the short codeword regime. In order to assess the robustness of our method,
we will consider the five following noisy environments:

I low impulsive SαS environment with α = 1.8 in Figure 5.21;

I high impulsive SαS environment with α = 1.4 in Figure 5.22;

I Gaussian noise in Figure 5.23;

I moderate impulsive Middleton environment with A = 0.1 and Γ = 0.1 in
Figure 5.25.

I high impulsive Middleton environment with A = 0.01 and Γ = 0.01 in Fig-
ure 5.24.

I low impulsive ε−contaminated environment with ε = 0.01 and K = 10 in
Figure 5.26.

I high impulsive ε−contaminated environment with ε = 0.1 and K = 10 in
Figure 5.27.

Under all noise types, we provide the BER curves obtained with the GAD,
with the unsupervised optimization with our previously proposed training sequence
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Fig. 5.21. BER evolution as a function of γ under a low impulsive SαS noise with
α = 1.8
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Fig. 5.22. BER evolution as a function of γ under a high impulsive SαS noise with
α = 1.4
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Fig. 5.23. BER evolution as a function of Eb/N0 under a Gaussian noise

design [MSG+18,MSG+19d] (USD old) as well as with the newly proposed training
sequence (USD new). We furthermore provide the BER curves obtained with the
numerically obtained true LLR to represent the best possible case with the given
code and BP. Under SαS noises, we present the BER curves as a function of the
dispersion γ; whereas under the Gaussian, Middleton and ε-contaminated cases, we
present the BER curves a function of the signal-to-noise ration Eb/N0.

Discussion

Under all types of noises, impulsive or not, the GAD reaches the optimum, proving
the validity of the LLR approximation choice Lθ under the short packet assumption.
It seems unnecessary in that case to use a more accurate approximation, as Labc that
was proposed in Section 4.2.3. Moreover, under the old training sequence design, the
BER curve is not monotonic and exhibits a bump due to the degeneration explained
in Section 5.4.1, whereas the BER curve obtained under the new training sequence
design is close to the one obtained with GAD. The new training sequence improves
the performance of the optimization step under short codewords for all types of ad-
ditive noise, impulsive or not, without requiring the noise model knowledge at the
receiver. Furthermore, our method does not decrease the performance under Gaus-
sian noise, where the optimal b parameter should be infinite. Thus, our proposed
method allows to achieve almost optimal BER performance for noises ranging from
highly impulsive, moderately impulsive to Gaussian, with a low implementation
complexity without the knowledge of the noise model, even with a small available
number of data samples to perform the LLR approximation optimization.



5.4. Unsupervised learning with short block length regime 114

Fig. 5.24. BER evolution as a function of Eb/N0 under a high impulsive Middleton
noise with A = 0.01 and Γ = 0.01.

Fig. 5.25. BER evolution as a function of Eb/N0 under a moderate impulsive
Middleton noise with A = 0.1 and Γ = 0.1.
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Fig. 5.26. BER evolution as a function of Eb/N0 under an ε-contaminated noise
with ε = 0.01 and K = 10.

Fig. 5.27. BER evolution as a function of Eb/N0 under an ε-contaminated noise
with ε = 0.1 and K = 10.
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5.5 Conclusion

Many decoding schemes rely on the log-likelihood ratio, whose derivation depends
on the noise distribution. Unfortunately, in various dense and heterogeneous net-
works, this knowledge is missing and the noise plus interference term exhibits an
impulsive nature, under which the LLR is not linear anymore and computationally
prohibitive. We proposed an unsupervised universal receiver design. We choose a
LLR approximation function fθ in a parametric family. The parameters θ are esti-
mated through the maximization of mutual information. An unsupervised solution
is proposed in order to benefit from the whole received sequence but also to increase
the useful data rate. We studied the performance of the unsupervised estimation in
the asymptotic and finite block length regime.

However, in the short block length regime, we show that if the simulated trans-
mission is designed by simply adding the extracted noise to the all one-codeword,
the BER is non-monotonic and exhibits a severe performance loss compared to a
genie-aided approach. We first analytically derived a metric to measure the proba-
bility of this performance loss to occur. Based on this analysis, we proposed a new
design for the simulated transmission as well as adding a regularization term in the
optimization problem so that the unsupervised LLR approximation achieves almost
the same performance as the genie-aided decoder even under short codewords for a
wide range of noise types while exhibiting a limited implementation complexity.



Chapter 6
Conclusion and perspectives

T
his thesis focused on designing a robust receiver that exhibits a near-optimal
performance over Gaussian and non-Gaussian environments without relying on

the knowledge of interference plus noise statistical properties. This receiver strives
for universality by adapting automatically to a large variety of different conditions.
Such receivers can play an important role in future networks that will face two
crucial challenges, robustness and adaptability, in a highly interfering environment
and with strict energy and lifetime constraints.

We have shown in our work that a simple module between the channel output
and the decoder input allows to combat effectively the noise and interference that
disrupt point-to-point communications in a network. This module can be used as
a front end of any LLR-based decoder. It consists of a function approximating the
calculation of the likelihood ratio, which is rarely accessible and that requires the
knowledge of the channel status. However, thanks to a judicious criterion, it is
possible to search for this approximation function effectively either by supervised
learning or by an unsupervised one. We show that it is even possible to use such a
scheme for short packet communications without performance losses.

The perspectives of our work are many. To start with we can give some issues
that have not been really discussed in the thesis but would deserve some attention.
For instance, the complexity issues are not properly addressed and if we think that
our demapper would not significantly increase the decoding complexity, it should be
carefully analyzed. In the short term, it is relevant to extend our results for higher
order modulations such as quadrature amplitude modulations (QAM). In this case,
the likelihood ratios depend on the position of the bits in the binary coding of the
symbols. It is, therefore, necessary to propose families of functions that take into
account this position. Our preliminary works show that it is possible to return to a
mixture of our functions Lab to limit the size of the parameters or even to use the
Labc. Figure 6.1 shows an example of a gray coded 16-QAM constellation as shown
in plot (a) and the corresponding LLR for the first and second most significant bits
shown in plot (b), where the received samples Y is influenced by a SαS noise. For
instance, the LLR of the first bit Lb1 can be approximated as

Lb1 = max {Lab(y), Lab(y − 2)} ,
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Fig. 6.1. Example of a LLR-computation for higher-order constellations (16-QAM)

or perhaps simply by using Labc.
Another promising perspective is to integrate the LLR approximation to the code

design. The LLR may uniformize the distribution of the messages coming from the
channel outputs for several impulsive noises. Looking for a good code candidate
will reduce the gap between the performances and channel capacity, which, as we
have shown, is sometimes rather large. Of course, the asymptotic limit should be
replaced by the short block length regime bound proposed by Polyanskiy [PPV10]
to have a better insight on the gain that can be reached (section 5.4.3), this is an
on-going work.

In the longer term, since the proposed criterion is close to a variational approach
to learning, it may be appropriate to integrate it directly into channel decoding so
that there is an exchange of information between the code and the LLR calculation.
This is all the more relevant as in the unsupervised case, limiting the number of
decision errors improves the quality of the noise samples obtained and therefore the
estimation of the parameters. A simple joint coupling between channel decoding and
LLR approximation has already been tested but we did not observe any significant
improvement. However, it deserves more detailed analysis, for example by using
a coupling of factor graphs between that of the LDPC code and that of the LLR
approximation.

Besides, we have always considered approximations that belong to a certain fam-
ily built a priori. Since the criterion comes from information theory, it would be
beneficial to make the approach even more generic by choosing a function accord-
ing to Jaynes [Jay03] maximum entropy approach and combining it with channel
decoding directly to make a decoder based on the principle of maximum entropy.

Also, it has been shown that interference can exhibit a non-trivial dependence
structure, especially some tail dependence [ZEC+19]. How to account for this depen-
dence is an interesting open question that could significantly impact the robustness
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Annexe A
Résumé détaillé en français

A.1 Introduction

A.1.1 Contexte

Lors de communications filaires, l’agitation thermique au niveau du récepteur ex-
plique en grande partie les bruits perturbant les signaux porteurs d’information.
Le théorème central limite sert alors de justification à leur modélisation par undis-
tribution gaussienne centrée. En effet, l’agitation thermique consiste en un grand
nombre de fluctuations centrées indépendantes et de puissance finie qui correspond
aux prémisses du théorème.

Les communications sans fils et en réseau subissent en plus du bruit thermique
des interférences avec les communications voisines qui ne peuvent pas être considérées
comme du bruit indépendant et gaussien. Plusieurs techniques ont été développées
pour les limiter comme l’alignement d’interférences au niveau de la couche phy-
sique [EPH13] ou des techniques d’évitement de transmissions simultanées comme
le CSMA au niveau de la couche MAC [YV05,JHMB05]. Enfin, d’autres méthodes
essaient de les supprimer efficacement au niveau du récepteur comme l’annulation
successives d’interférences (SIC) [WAYd07,And05].

Toutes ces techniques ne peuvent parfaitement annuler les et divers. Cela se
vérifie d’autant plus que nous nous dirigeons vers des réseaux denses comme LoRa,
Sigfox, la 5G ou en général l’IoT sans contrôle centralisé ni d’accès à la ressource
radio ni aux puissances des émissions.

Par conséquent, prendre en compte la présence des interférences au niveau du
récepteur devient une nécessité, voire une obligation. Une modélisation fine et pra-
tique des interférences s’avère alors un prérequis pour concevoir la châıne de réception.
Plusieurs approches ont été envisagées dans la littérature pour construire ces modèles.
La première, tournée vers la théorie, consiste à utiliser les outils mathématiques
comme la géométrie aléatoire [WA12,WPS09] avec des hypothèses sur la conception
et l’utilisation du réseau pour en déduire des modèles pertinents. Ces travaux mènent
par exemple aux modèles alpha-stables [PW10a,GCA+10] ou aux différentes classes
des modèles de Middleton [Mid77]. Le second type d’approche est plus pragmatique :
il s’agit de trouver des familles de lois de probabilité qui soient simples d’utilisation
et qui correspondent aux aspects impulsifs des interférences. Ces lois doivent avoir



A.2. Description du système 122

une queue lourde pour modéliser les événements impulsifs qui se caractérisent par
des valeurs de forte amplitude. Parmi ces modèles nous retrouvons les gaussiennes
généralisées ou les mélanges de gaussiennes.

Nous avons concentré particulièrement nos travaux sur les distributions alpha-
stables symétriques et centrées comme modèle des interférences même si d’autres
modèles ont été utilisés pour tester nos solutions.

A.1.2 Objectifs et contributions

L’objectif principal de nos travaux consiste à développer un récepteur simple, adap-
tatif et performant qui prenne en compte le caractère impulsif des interférences vues
comme un bruit additif. Simplicité signifie ici une mise en œuvre peu coûteuse en
temps de calcul et en mémoire. Le caractère adaptatif nécessite de prendre en compte
l’état réel du canal sans le connâıtre par ailleurs ; pour cela un apprentissage devient
nécessaire. Enfin, les performances ne doivent pas s’écarter de l’optimum fourni par
le log rapport de vraisemblance.

Nous avons répondu à ces objectifs par nos contributions qui sont

I l’ajout d’une approximation directe du rapport de vraisemblance entre la sortie
du canal et le décodeur de canal ;

I la proposition d’un critère pertinent pour l’adaptation de cette approximation
selon le type de bruit et d’interférence ;

I l’utilisation de ce critère pour le développement d’un algorithme d’adaptation
supervisé, c’est-à-dire basé sur une séquence d’apprentissage ;

I l’analyse de cet algorithme sur les critères de performances et de robustesse
selon la longueur de la séquence d’apprentissage ;

I l’extension de cet algorithme à un apprentissage non supervisé et son étude ;

I l’amélioration de l’apprentissage non supervisé dans le cadre des communica-
tions à paquets courts.

À cela s’ajoute la proposition d’une nouvelle famille de fonctions d’approximation
à trois paramètres plus performantes mais restant toujours simples et la proposition
d’un critère plus simple reliant la divergence de Kullback-Leibler avec la norme L2

pour comparer les récepteurs.

A.2 Description du système

Nos travaux reposent sur un bruit modélisé par les distributions alpha-stables et
sur un système qui utilise les codes LDPC. Ces deux points sont discutés dans cette
section pour finir par la spécification du modèle de canal considéré.
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Fig. A.1. Exemple de réalisations de bruit alpha-stable.

A.2.1 Distributions alpha-stables

Les distributions alpha-stables sont les distributions limites des sommes de variables
aléatoires normalisées et centrées lorsqu’elles existent [GH97]. Nous nous limiterons
par la suite aux versions symétriques, et, dans cette situation, ces distributions
limites se décrivent par leur fonction caractéristique

φ(t) = e−|γ t|
α

, (A.1)

paramétrée par leur exposant caractéristique α et leur facteur d’échelle γ. Parmi ces
distributions se trouvent les lois normales avec α = 2 et γ = σ/

√
2 et les distributions

de Cauchy avec α = 1 et γ = 1/a.

Quelques réalisations de bruits selon les distributions alpha-stables sont représentées
sur la figure A.1. Il est visible que le paramètre α caractérise l’impulsivité du bruit :
plus α est faible plus la probabilité d’avoir des échantillons de forte amplitude aug-
mente ainsi que la valeur de ces amplitudes.

Des densités de probabilité de lois alpha-stables pour différentes valeurs de α
sont tracées sur la figure A.2. Elle illustre bien le caractère “queues lourdes” de ces
modèles qui permet de prendre en compte le caractère impulsif des interférences. Le
cas gaussien α = 2 se particularise vraiment car la probabilité des grandes ampli-
tudes décrôıt exponentiellement et non plus selon une loi inverse comme pour les
autres α.

Bien qu’attrayantes les distributions stables souffrent de deux défauts impor-
tants. Le premier concerne leur variance qui est infinie lorsque α < 2. Par conséquent,
la notion de rapport sur bruit devient inopérante et c’est pourquoi, pour indiquer
l’intensité des interférences nous utiliserons plutôt le facteur d’échelle γ. Le second
défaut est l’absence d’expression simple de la densité de probabilité en général ; pour
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Fig. A.2. Densité de probabilité de lois alpha-stables.

la calculer il faut avoir recours à des intégrations numériques approchées calculant
la transformée de Fourier inverse de la fonction caractéristique (A.1).

A.2.2 Codes LDPC

Nos travaux permettent de transformer la sortie du canal perturbée par des in-
terférents et du bruit pour qu’elle soit utilisable pour la suite de la réception. Pour
pouvoir mesurer les performances obtenues, il est nécessaire de recourir à un code
correcteur d’erreurs. Le choix s’est naturellement porté vers les codes LDPC pour
plusieurs raisons : ils forment une famille simple à décrire et performante pour une
large gamme de longueurs de mots de code. L’algorithme de propagation de croyance
appelé Sum Product Algorithm permet une mise en œuvre générique qui utilise di-
rectement en entrée les log rapports de vraisemblance (LLR) de la sortie du canal.
Ainsi, nos travaux s’implémentent comme un élément de la châıne entre la sortie du
canal sous la forme du signal et du bruit et le décodeur LDPC sous la forme d’un
LLR.

Les performances d’une châıne avec un code LDPC suivent généralement le tracé
de la figure A.3. La région de décroissance rapide du taux d’erreur s’appelle la région
du waterfall qui est suivie par une stagnation de cette décroissance, la région du
plancher d’erreur (error floor).

La suite du manuscrit ne concerne pas spécifiquement les codes LDPC et nous
ne nous étendrons pas sur ce point. Toutefois, nous utiliserons dans nos simulations
les codes régulier (3, 6) de MacKay de longueur 20000 et de longueur 408 construit
par l’algorithme du PEG [XEA05].
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Fig. A.3. Regions caractéristiques des performances d’un code LDPC.

A.2.3 Modèle du système considéré

Le canal considéré ici est un canal binaire sans mémoire à sortie réelle symétrique —
MBISO en anglais pour Memoryless Binary Input Symmetric Output [RU08]. Le
canal additif sera le plus utilisé,

Y = X +N, (A.2)

où l’entrée X est une variable aléatoire valant +1 ou −1 à l’instar d’une mo-
dulation bipolaire BPSK et N le bruit et l’interférence modélisés par une distri-
bution symétrique, principalement de type alpha-stable. Ces deux variables sont
indépendantes l’une de l’autre.

La sortie du canal est ensuite convertie en un rapport de vraisemblance ou une
approximation de ce dernier

Λ(y) = log
Pr[Y = y|X = +1]

Pr[Y = y|X = −1]
, (A.3)

pour ensuite être décodée par le code LDPC grâce à l’algorithme de propagation de
croyance.

A.3 Conception de récepteurs robustes

Le récepteur est un organe essentiel dans un environnement impulsif car il permet
ensuite de prendre une décision sur des mesures pertinentes. La difficulté de sa
conception vient de l’impulsivité qui détruit l’isotropie d’un vecteur de bruit.
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Fig. A.4. Régions de décision optimale pour différents type de bruit.

A.3.1 Régions de décision et impulsivité

Considérons la réception d’un signal valant +1 ou −1 et dont on récupère la valeur
deux fois y1 et y2 mais bruitée par deux réalisations indépendantes de bruit impulsif.

La figure A.4 montre les régions de décision en fonction des valeurs mesurées y1 et
y2 pour différents types de bruit. La région blanche indique une décision pour l’envoi
de +1 et la région noire pour −1. Lorsque le bruit est gaussien, vignette en haut
à gauche, les régions sont particulièrement simples car séparées par la médiatrice
des points (+1,+1) et (−1,−1). Par contre, en présence d’impulsivité, les régions
de décision ne sont plus nécessairement connexe comme en témoignent les autres
vignettes où le bruit est soit un mélange de gaussiennes, soit la somme d’un bruit
alpha-stable et d’un bruit gaussien. Dans ces cas, contrairement au cas gaussien, la
distance aux points (+1,+1) et (−1,−1) n’est plus suffisante pour décider, il faut
ajouter une information sur la direction des valeurs reçues. En ce sens, la brisure
d’isotropie du vecteur bruit déconnecte les régions de décision.

A.3.2 Conception de récepteur

Pour répondre aux difficultés de détection en environnement impulsif, il est nécessaire
de revenir au rapport de vraisemblance qui est une statistique suffisante [CT06]. Au-
trement dit, l’objectif du récepteur, encore appelé parfois demappeur, est de calculer
le LLR Λ(y) donné par (A.3).

Dans le cas d’un canal MBISO, ce LLR représente à la fois le rapport de vraisem-
blance mais aussi le rapport des probabilités a posteriori car l’a priori est uniforme,

Λ(y) = log
Pr[Y = y|X = +1]

Pr[Y = y|X = −1]
= log

Pr[X = +1|Y = y]

Pr[X = −1|Y = y]
, (A.4)

et comme X est binaire et uniforme, la donnée du LLR est équivalente à celle de l’a
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posteriori

Pr[X = x|Y = y] =
1

1 + e−x Λ(y)
. (A.5)

Malheureusement, pour évaluer Λ(y), il est nécessaire de connâıtre la distribution
du bruit affectant le canal. En effet, pour un bruit additif, le LLR s’écrit Λ(y) =
log
[
p(y− 1)/p(y+ 1)

]
où p(·) est la densité de probabilité du bruit. Or cette densité

est inconnue du récepteur.
Plusieurs stratégies sont envisageables pour calculer le LLR. La première consiste

à présupposer un modèle de bruit, par exemple gaussien ou alpha-stable, paramétré
par des coefficients qui seront estimés à partir de la sortie du canal. Par exemple,
dans le cas gaussien, il est nécessaire d’estimer la puissance du bruit et dans le
cas alpha-stable l’exposant caractéristique et le facteur d’échelle doivent être ob-
tenus par ailleurs. Cette stratégie est limitée d’une part par la difficulté d’obtenir
des estimations des paramètres suffisamment fiables notamment dans un environ-
nement impulsif et d’autre part par une mauvaise modélisation du bruit du canal.
Par exemple, utiliser un modèle gaussien dans un environnement impulsif s’avère
désastreux en terme de performances [MGCG10a, MGCG13]. Enfin, lorsque l’ex-
pression de la densité de probabilité du bruit n’est pas une expression simple, le
calcul du LLR s’avère soit coûteuse en temps soit en espace pour mettre en place
des un système pré-calcul par table de correspondance. Cette situation malheureuse
se présente par exemple lorsque le bruit se modélise par une distribution alpha-stable
ou une distributions de Middleton qui nécessite alors le calcul d’une série.

Une seconde stratégie est de travailler plus près du décodage en modifiant direc-
tement la métrique utilisée, par exemple les métriques de branches dans l’algorithme
de Viterbi pour les codes convolutifs. Citons par exemple les normes p [GC12] ou
la métrique de Huber [Chu05]. Il reste alors à déterminer la bonne valeur des pa-
ramètres selon l’état du canal. Cette approche est simple avec une mise en œuvre
peu coûteuse mais ne permet pas de dissocier clairement le décodage du récepteur.

Enfin, l’approximation directe de la fonction Λ(y) du LLR fournit la dernière
stratégie. Ces approximations sont bien sûr paramétrées mais ces coefficients sont
directement estimés sans recourir à un modèle particulier même si la famille des
fonctions approchantes sous-entend un modèle.

Plusieurs familles ont été proposées dans la littérature pour limiter les impulsi-
vités du bruit comme le récepteur linéaire avec saturation [MGCG13], les récepteurs
de Cauchy ou logistique [MGCG10a] ou encore le Hole-puncher [MGCG10b].

Dans la suite, nous utiliserons surtout l’approximation Lab(y) proposée dans
[DGCG14] et définie par

Lab(y) =

{
ay si −

√
b/a < y <

√
b/a,

b/y sinon.
(A.6)

Initialement, cette approximation est la conséquence de l’étude du LLR pour les
bruits de type alpha-stable pour les valeurs de y proche de 0 et pour celles tendant
vers l’infini. Les graphes du LLR pour un canal à bruit alpha-stable pour α = 1.4
et des approximations linéaires et asymptotiques sont tracés sur la figure A.5. La
correspondance est visuellement pertinente et prend bien en compte l’impulsivité en
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Fig. A.5. LLR pour un bruit alpha-stable α = 1.4 et approximation.

faisant décrôıtre le LLR pour de grande valeur de y. De plus seulement 2 paramètres
a et b sont nécessaires pour caractériser une approximation.

Nos travaux ne présupposent pas une approximation de la forme Lab(y). Certaine
partie de ce manuscrit étend les résultats à des formes plus génériques ; mais dans
la plupart des cas, nos résultats se généralisent sans difficulté.

A.3.3 Critères de sélection

Une fois la famille de fonctions approchant le LLR Λ(y) choisie, reste-t-il encore
à sélectionner la meilleure fonction en fonction de la sortie du canal ou du bruit.
Naturellement, l’introduction du terme “meilleure” nécessite un critère permettant
d’ordonner les différentes fonctions candidates.

Le premier critère est naturellement celui de minimisation du taux d’erreur de
la châıne de communication, par exemple à la sortie du décodeur du code LDPC.
Mais celui-ci demeure hors de portée en pratique car il nécessite la connaissance
parfaite de la distribution du bruit et demande une puissance de calcul importante.
Toutefois ce critère servira à comparer par simulation les différentes solutions et les
différentes familles d’approximations.

Autre critère, une distance entre le LLR et l’approximation permettrait de mesu-
rer l’adéquation entre les deux courbes avec pour attente des performances équivalentes
en terme de taux d’erreur. La norme L2 entre le LLR Λ(y) et une fonction Lθ(y)
dépendante des paramètres θ pourrait servir pour sélectionner la meilleure approxi-
mation par l’optimisation

θ∗ = arg min
θ

∫
R

∣∣Λ(y)− Lθ(y)
∣∣2 dy. (A.7)

Une approche plus intéressante serait de pondérer cette norme L2 par la densité
de probabilité pour que l’approximation Lθ(y) soit d’autant plus proche du LLR sur
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les domaines fréquents de la sortie du canal, c’est-à-dire,

θ∗ = arg min
θ

∫
R

∣∣Λ(y)− Lθ(y)
∣∣2 p(y) dy. (A.8)

Nous avons montré dans [MSG+19a] que ce critère permet de borner la divergence
de Kullback-Leibler entre l’a posteriori Pr[X = x|Y = y] et son approximation
Prθ[X = x|Y = y] obtenue en remplaçant Λ(y) par Lθ(y) dans (A.5),

KEQM ≤ D
(

Prθ[X = x|Y = y]
∥∥∥Pr[X = x|Y = y]

)
≤ K ′EQM, (A.9)

où sont EQM, pour erreur quadratique moyenne, est la norme pondérée ou (A.8) et
où K et K ′ deux constantes. Ainsi la sélection par le critère EQM est proche en un
certain sens d’une sélection par une recherche de probabilité la plus proche de l’a
posteriori. selon une approche variationnelle.

Le dernier critère qui est à la base de l’approche que nous développerons par
la suite repose sur la théorie de l’information et notamment sur l’idée présentée
dans [YA09]. La capacité d’un canal MBISO s’écrit comme C = H(X) −H(X|Y ).
Or, d’une part, par équiprobabilité de l’entrée binaire, H(X) = 1 et comme d’autre
part, la loi de X|Y est donnée par (A.5),

C = 1− E log2

(
1 + e−XΛ(Y )

)
. (A.10)

Il est possible de borner inférieurement la capacité C par une valeur approchée
Cθ obtenue en remplaçant comme ci-dessus le LLR Λ(y) par une fonction approchée
Lθ(y),

C ≥ Cθ = 1− E log2

(
1 + e−XLθ(Y )

)
. (A.11)

Le critère de sélection devient ici

θ∗ = arg max
θ

1− E log2

(
1 + e−XLθ(Y )

)
, (A.12)

ou, de façon équivalente,

θ∗ = arg min
θ
Hθ(X|Y ) avec Hθ(X|Y ) = E log2

(
1 + e−XLθ(Y )

)
. (A.13)

Le critère (A.13) est pertinent car l’écart entre C et Cθ vaut la divergence
de Kullback-Leibler entre l’a posteriori Pr θ[X = x|Y = y] et son approximation
Prθ[X = x|Y = y].

A.4 Apprentissage supervisé du LLR

Le critère de sélection d’une fonction approchant le LLR dans une famille paramétrée
est maintenant fourni par (A.13). Il n’est pas utilisable tel quel car il fait intervenir
l’espérance mathématique sur X et sur Y . Nous proposons et étudions par la suite
une méthode d’optimisation de ce critère utilisable dans une châıne de communica-
tions.
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Fig. A.6. Synoptique de l’apprentissage supervisé.

A.4.1 Schéma de l’apprentissage supervisé

Dans le cadre de l’apprentissage supervisé, l’émetteur transmet au récepteur une
séquence binaire connue des deux extrémités. Grâce à cette séquence dite d’ap-
prentissage, le récepteur adapte l’approximation du LLR en optimisant le critère
précédent. Le synopsis de cette construction est représenté sur la figure A.6. L’ap-
prentissage terminé, le système utilise alors l’approximation apprise pour décoder
les autres symboles binaires émis.

Naturellement, l’application du critère (A.13) nécessite d’être remaniée en utili-
sant la loi des grands nombres qui permet de remplacer l’espérance mathématique
par une moyenne empirique

θ∗ = arg min
θ
Ĥθ(x1:K |y1:K), (A.14)

où

Ĥθ(x1:K |y1:K) =
1

K

K∑
i=1

log2

(
1 + e−xkLθ(yk)

)
, (A.15)

en notant x1:K les K symboles de la séquence d’apprentissage et y1:K les K sorties
de canal correspondantes.

La taille de la séquence d’apprentissage devient alors un paramètre important
pour la bonne estimation des paramètres de la fonction d’approximation du LLR.
La prochaine section s’intéresse au cas ou cette longueur est suffisante pour analyser
la pertinence du critère et de l’approche sans pour autant s’encombrer des difficultés
de l’estimation par la loi des grands nombres. La section suivante sera dédiée à la
situation lorsque la taille de la séquence d’apprentissage diminue.

A.4.2 Cas de séquences d’apprentissage longues

La figure A.7 montre le résultat de l’optimisation de (A.14) lorsque la famille d’ap-
proximations Lab donnée par (A.6) est utilisée sur un canal à bruit additif alpha-
stable de paramètres α = 1.4 et γ = 0.45. La séquence d’apprentissage est de 20000
symboles binaires. Sur cette même figure apparâıt le graphe du LLR obtenu par
intégration numérique et en utilisant les paramètres du canal.
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Fig. A.7. LLR et approximation par apprentissage supervisé avec une longue
séquence pour un canal alpha-stable de paramètres α = 1.4 et γ = 0.45.

Il est remarquable de constater à quel point les deux courbes sont similaires.
Cette adéquation conforte la pertinence de l’approche. Des résultats similaires sont
obtenus pour d’autres valeurs de α et γ.

Lorsque les conditions du canal sont apprises, la fonction d’approximation trouvée
sert à faire le décodage. Sur la figure A.8, le taux d’erreur binaire finalement ob-
tenu est tracé en fonction du facteur d’échelle γ. Le paramètre α du canal reste fixé
à 1.4. Pour comparaison, les performances obtenues en utilisant le LLR calculé par
intégration numérique avec les valeurs exactes des paramètres du canal sont aussi
tracées en ligne pleine. L’écart entre l’approximation et le LLR est particulièrement
faible. La solution proposée est attractive du fait de sa faible complexité de mise en
œuvre et de ses performances. Enfin, la prise en compte de l’impulsivité du canal
est nécessaire car si un récepteur linéaire était utilisé avec la méthode d’appren-
tissage supervisé présentée précédemment, les performances seraient dégradées. En
effet dans ce cas, le taux d’erreur binaire ne descend pas en dessous de 10 % comme
l’illustre la courbe associé de la figure A.8 en trait pointillé.

Des conclusions similaires peuvent être tirées de simulations effectuées sur d’autres
types de canaux, pour lesquels les écarts entre l’approximation et le LLR diffèrent
mais reste limités.

Pour analyser plus précisément le lien entre le taux d’erreur binaire et le critère
d’apprentissage, nous avons superposé sur la figure A.9 les contours du taux d’erreur
pour le canal alpha-stable avec α = 1.4 et γ = 0.45 en fonction des paramètres a
et b de l’approximation Lab et l’optimum du critère Ĥθ signalé par la croix blanche.
Comme le confirme cette figure, l’optimum est bien dans la région de faible taux
d’erreur. De plus en traçant en blanc le bord de la région pour laquelle le critère
Ĥθ reste proche de son optimum, nous constatons une certaine robustesse sur la
recherche du minimum. En effet cette région de faible critère reste dans la région de
faible taux d’erreur.
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Fig. A.8. Taux d’erreur après décodage utilisant l’approximation du LLR, le LLR
ou une approximation linéaire avec un canal alpha-stable d’exposant caractéristique
α = 1.4.
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Fig. A.9. Taux d’erreur binaire et critère Ĥθ.
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Fig. A.10. Comparaison des familles Lab et Labc.

A.4.3 Une nouvelle famille d’approximations

Une analyse détaillée de l’approximation Lab nous a amené à ajouter un nouveau
paramètre c pour modéliser le passage de la partie linéaire à la partie asymptotique.
La nouvelle famille Labc d’approximations est définie par

Labc(y) =


ay si −c/a < y < c/a,

c si c/a < y < bc,

b/y sinon.

(A.16)

La figure A.10 permet de comparer visuellement l’adéquation entre le LLR, la
meilleure fonction de type Lab et la meilleure de type Labc. L’ajout de ce paramètre
c permet de mieux prendre en compte la transition entre les deux régimes linéaire
et asymptotique. Cela est particulièrement important car cette zone représentent
environ 40 % des sorties du canal qui sont par conséquent mal pris en compte par
l’approximation — la densité de la sortie du canal est aussi représentée sur cette
figure.

Comme le montre la figure A.11, l’écart de performance entre le LLR et l’op-
timum des familles Lab est réduit par l’introduction de ce paramètre c aussi bien
pour le taux d’erreur binaire que pour le taux d’erreur paquet. Les conditions sont
identiques aux simulations de la figure A.8.

Nous resterons malgré cela sur la famille Lab par la suite pour rester sur une
optimisation sur deux paramètres.

A.4.4 Cas de séquence d’apprentissage courtes

Lorsque la séquence d’apprentissage devient plus courte, deux phénomènes appa-
raissent. Le premier concerne l’estimation de Hθ par Ĥθ qui devient moins précise
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Fig. A.11. Taux d’erreur pour les familles d’approximations Lab et Labc.

car reposant sur une moyenne sur un plus petit nombre de termes. Il y a donc une
certaine volatilité des paramètres θ obtenus par optimisation comme l’indique le
tableau A.1. On remarque que la moyenne de a sur l’ensemble des tests est peu
affectée mais qu’elle subit une grande variabilité lorsque la séquence d’apprentissage
est courte. Le cas du paramètre b est pire : et la moyenne et la variabilité sont sujetes
à la taille de la séquence.

Le deuxième phénomène est lié à l’apprentissage supervisé dans un environne-
ment impulsif. Il est possible que la séquence d’apprentissage ne soit pas affectée
par des impulsions de bruit alors que le paquet suivant le soit ou inversement. Il y
a donc une mauvaise correspondance entre l’état du canal appris par le récepteur
et l’état du canal lors de la transmission du mot de code. Ce phénomène se produit
d’autant plus souvent que la séquence d’apprentissage est courte. De plus, et cela
peut parâıtre contre-intuitif, ce phénomène apparâıt aussi plus souvent lorsque le
bruit est peu impulsif, c’est-à-dire dans le cas alpha-stable lorsque α est plus proche
de 2 que de 1.

En prenant en compte ces deux phénomènes, les performances du système pour
les courtes séquences d’apprentissage sont fortement dégradées comme le montre la
figure A.12. Les simulations se font dans les même conditions que précédemment
mais la longueur est réduite. Nous remarquons qu’ici, la longueur 1200 semble être
un seuil, en dessus de celui-ci, le décodage subit plus tôt un plancher d’erreur.

A.5 Apprentissage non-supervisé du LLR

L’apprentissage non supervisé permet de répondre au problème de l’inadéquation
entre le canal appris et le canal réel qui a été soulevé précédemment. De plus, en sup-
primant la nécessité d’une séquence d’apprentissage, le débit s’en trouve augmenté.
Nous proposons un tel schéma dans cette partie.
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µa σa µb σb

α = 1.4

γ = 0.43
SupLS=20000 3.73 0.07 5.10 0.12
SupLS=1200 3.77 0.35 5.18 0.58
SupLS=900 3.77 0.40 5.28 0.71

γ = 0.45
SupLS=20000 3.57 0.07 5.06 0.13
SupLS=1200 3.60 0.32 5.15 0.58
SupLS=900 3.61 0.37 5.16 0.66

α = 1.8

γ = 0.53
SupLS=20000 3.25 0.05 7.59 0.28
SupLS=1200 3.27 0.24 8.50 14.48
SupLS=900 3.27 0.27 11.72 46.15

γ = 0.55
SupLS=20000 3.05 0.05 7.62 0.28
SupLS=1200 3.07 0.22 7.97 1.54
SupLS=900 3.07 0.26 10.73 30.41

Table A.1 – Variabilité des paramètres a et b en fonction de la longueur de la
séquence d’apprentissage.

Fig. A.12. Performances de l’apprentissage supervisé pour différentes longueurs de
séquences d’apprentissage.
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Fig. A.13. Synopsis de l’apprentissage non-supervisé.

A.5.1 Schéma de l’apprentissage non-supervisé

Notre méthode cherche à reconstruire un canal équivalent avec une source connue du
récepteur. Pour cela, le schéma de la figure A.13 est utilisé. Des échantillons de bruit
sont d’abord extraits grâce à une détection par le signe. Ensuite, ces échantillons
de bruit sont injectés dans un canal simulé dont la pseudo-source est générée par
le récepteur. Grâce à cela, la méthode précédente dite supervisée est utilisée pour
estimer les paramètres θ de l’approximation du LLR.

Même si certaines décisions sont erronées, l’estimation obtenue pour a et b
peuvent être suffisamment proche de l’optimum pour permettre un décodage per-
formant. Deux cas sont à considérer : soit les codes sont longs soit ils sont courts.
Les parties suivantes développent ces cas.

A.5.2 Cas des paquets longs

La figure A.14 compare les paramètres a et b dans le cadre d’un apprentissage
supervisé et d’un apprentissage non-supervisé avec une taille de séquence ou de mot
de code de 20000. Le paramètre a est peu affecté par les erreurs de décision du
schéma non-supervisé contrairement au second paramètre b. Toutefois les ordres de
grandeurs de ce paramètre ne sont pas aberrants ce qui présage d’une dégradation
limitée des performances.

Comme le montre la figure A.15, en reprenant les mêmes paramètres de simu-
lations que pour le cas supervisé, les performances de notre système non supervisé
restent proches du système supervisé sur de longues séquences de taille 20000. On
remarque que ces performances sont même supérieures à un système supervisé avec
une séquence d’apprentissage de longueur 1200. Naturellement, l’écart de perfor-
mance entre le supervisé et le non-supervisé dépend du canal mais reste cependant
limité.

A.5.3 Cas des paquets courts

Le cas des paquets courts en non-supervisé est plus complexe à étudier car plu-
sieurs phénomènes interviennent. Comme le montre la courbe légendée ” USD ”
de la figure A.16, l’apprentissage ne parvient pas à approcher correctement le LLR
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Fig. A.14. Estimation des paramètres en supervisé et non-supervisé.

Fig. A.15. Performances du schéma non-supervisé avec des paquets longs de 20000
bits pour le canal alpha-stable avec α = 1.8.
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Fig. A.16. Performances du schéma non-supervisé avec des paquets courts de 408
bits sur un canal alpha-stable de paramètre α = 1.8.

représentée par la courbe légendée ” Optimal”. De plus, un sursaut d’erreurs ap-
parâıt quand bien même le bruit est plus faible.

Pour comprendre les raisons de ce comportement, un schéma qualifié de GAD
pour Genie Aided Decoder est utilisé. Il utilise le même schéma que l’apprentissage
non-supervisé mais où l’entrée estimée X̃ est remplacée par les bits réellement émis
X. Les performances du schéma GAD sont quasiment indiscernables de l’optimal.

Une étude fine permet de constater que les paramètres a et b deviennent hau-
tement variables en fonction des conditions du canal. Par conséquent, le LLR est
rarement correctement approché par la fonction Lab. Cette variabilité s’explique par
une dégénérescence du processus optimisation. En effet, le critère (A.15) exprime
un compromis entre quatre termes : l’un tend à faire augmenter le paramètre a tan-
dis que l’autre tend à l’annuler, les deux autres termes jouent des rôles identiques
avec le paramètre b. Il y a dégénérescence si l’un de ces quatre termes disparâıt
faute d’échantillon de bruit associé. Dans ce cas, l’un des paramètres a ou b devient
soit infini soit nul ce que rend l’approximation du LLR inopérante et explique la
dégradation des performances.

Nous avons quantifié théoriquement le risque d’apparition d’une dégénérescence.
La figure A.17 en trace les valeurs. L’apprentissage non-supervisé présente un risque
accru de dégénérescence par rapport au GAD. Et cette différence est la plus grande
justement dans la zone de bruit où un sursaut d’erreur est observée dans la fi-
gure A.16.

Pour corriger ces problèmes de l’apprentissage non-supervisé pour les paquets
courts, nous avons alors proposé une solution simple. Le résultat se retrouve sur la
figure A.18 sous la légende USDnew. La solution proposée permet de retrouver des
performances proche de l’optimum du LLR.

Cette correction consiste à symétriser la distribution des échantillons de bruit
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Fig. A.18. Performances de l’apprentissage supervisée corrigé.
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reconstitués puis à introduire un terme de régulation sur le paramètre a critère Ĥθ

qui est équivalent à ajouter un échantillon de bruit faible est négatif. Cette solution
a quasiment aucun coût de calcul supplémentaire par rapport à la version originale
et pourtant ses performances sont satisfaisantes.

A.5.4 Conclusion et perspectives

Nous avons montré dans nos travaux qu’un simple module entre la sortie du canal
et l’entrée du décodeur de canal permet de combattre efficacement le bruit et les
interférences qui perturbent les communications point à point dans un réseau. Ce
module consiste en un fonction approchant le calcul du rapport de vraisemblance
qui est rarement accessible et qui nécessite la connaissance de l’état du canal. Or,
grâce à un critère judicieux, il est possible de chercher cette fonction d’approximation
efficacement soit par un apprentissage supervisé soit par une approche non-supervisé.
Nous avons montré qu’il devient même possible d’utiliser un tel schéma pour des
communications par paquets courts sans pertes rédhibitoires de performances.

Les perspectives de nos travaux sont nombreux. La première, à court terme,
consiste à étendre nos résultats pour des modulations d’ordre supérieur comme les
modulations d’amplitude en quadrature. Dans ce cas les rapports de vraisemblances
dépendent de la position des bits dans le codage binaire des symboles. Il faut donc
proposer des familles de fonctions approchantes qui prennent en compte cette po-
sition. Toutefois, nos travaux préliminaires montrent qu’il est possible de revenir à
un mélange de nos fonctions Lab pour limiter la taille des paramètres.

À plus long terme, comme le critère proposé est très proche d’une approche
variationnelle de l’apprentissage, il peut être judicieux de l’intégrer directement dans
le décodage canal pour qu’il y ait un échange d’information entre le code et le calcul
du LLR. Cela est d’autant plus pertinent que dans le cas non-supervisé, la limitation
du nombre d’erreurs de décision améliore la qualité des échantillons de bruit obtenus
et donc de l’estimation des paramètres. Un couplage simple entre le décodage de
canal et l’approximation a déjà été testé sans résultat significatif ce qui incite à
rechercher une approche plus fine, par exemple par l’utilisation d’un couplage de
graphes factoriels entre celui du code LDPC et celui de l’approximation du LLR.

Enfin, nous avons toujours considéré des approximations qui appartiennent à une
certaine famille construite a priori. Le critère étant issu de la théorie de l’information,
il serait profitable de rendre l’approche encore plus générique en choisissant une
fonction selon une approche par maximum d’entropie à la Jaynes [Jay03] et en la
combinant avec le décodage de canal directement pour faire un décodeur basé sur le
principe du maximum d’entropie.
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systèmes de navigation par satellite : Contribution à l’amélioration de
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