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Music is a cultural and creative practice that enables humans to express a variety of feelings and intentions through sound. Machine learning opens many prospects for designing human expression in interactive music systems. Yet, as a Computer Science discipline, machine learning remains mostly studied from an engineering sciences perspective, which often exclude humans and musical interaction from the loop of the created systems.

In this dissertation, I argue in favour of designing with machine learning for interactive music systems. I claim that machine learning must be rst and foremost situated in human contexts to be researched and applied to the design of interactive music systems. I present four interdisciplinary studies that support this claim, using human-centred methods and model prototypes to design and apply machine learning to four situated musical tasks: motion-sound mapping, sonic exploration, synthesis exploration, and collective musical interaction.

Through these studies, I show that model prototyping helps envision designs of machine learning with human users before engaging in model engineering. I also show that the nal human-centred machine learning systems not only helps humans create static musical artifacts, but supports dynamic processes of expression between humans and machines. I call co-expression these processes of musical interaction between humans-who may have an expressive and creative impetus regardless of their expertise-and machines-whose learning abilities may be perceived as expressive by humans.

In addition to these studies, I present ve applications of the created model prototypes to the design of interactive music systems, which I publicly demonstrated in workshops, exhibitions, installations, and performances. Using a re exive approach, I argue that the musical contributions enabled by such design practice with machine learning may ultimately complement the scienti c contributions of human-centred machine learning. I claim that music research can thus be led through dispositif design, that is, through the technical realization of aesthetically-functioning artifacts that challenge cultural norms on music and computer science.

iii To my mentor Frédéric Bevilacqua, for genuinely tuning in to my creative impetus, and breathing harmonious lessons into the way-thank you for allowing me, To artists and researchers I mixed with at Goldsmiths University of London, especially Rebecca Fiebrink, for being a source of inspiration for the time at work and beyond,

Résumé

La musique est une pratique culturelle permettant aux êtres humains d'exprimer sensiblement leurs intentions à travers le son. L'apprentissage machine dé nit un ensemble de modèles permettant de nouvelles formes d'expression au sein desdits systèmes interactifs musicaux. Cependant, en tant que discipline informatique, l'apprentissage machine demeure essentiellement appliquée à la musique du point de vue des sciences de l'ingénieur, qui, très souvent, conçoit les modèles d'apprentissage sans tenir compte des interactions musicales prenant place entre humains et systèmes.

Dans cette thèse, j'envisage la possibilité de mener des pratiques de design avec l'apprentissage machine pour les systèmes interactifs musicaux. Je soutiens que l'apprentissage machine doit avant tout être situé au sein d'un contexte humain a n d'être conçu et appliqué au design de systèmes interactifs musicaux. Pour défendre cette thèse, je présente quatre études interdisciplinaires, dans lesquelles j'introduis des modèles intermédiaires d'apprentissage, dits modèles-prototype, au sein de méthodes de conception centrées humain, a n d'appliquer l'apprentissage machine à quatre tâches musicales situées : le mapping mouvement-son, l'exploration sonore, l'exploration de la synthèse, et l'interaction musicale collective.

À travers ces études, je montre que les modèles-prototype permettent de générer des idées de design pour l'apprentissage machine en amont de la phase d'ingénierie desdits modèles, ce en lien étroit avec les utilisateurs potentiels de ces systèmes. Je montre également que les systèmes d'apprentissage machine centrés humain résultant de ce processus de conception rendent possible des processus dynamiques d'expression entre les humains et les machines, allant au-delà de la création d'artefacts musicaux statiques. Je propose de nommer co-expression ces processus d'interaction musicale entre des êtres humains-faisant preuve d'un élan expressif et créatif quelque soit leur expertise musicale-et des machines-dont les capacités d'apprentissage peuvent être perçues comme expressives du point de vue de l'humain.

En outre, je présente cinq systèmes interactifs musicaux conçus avec lesdits modèles-prototypes, et relate leurs restitutions publiques au sein d'ateliers, expositions, installations et performances. Par une approche ré exive, je montre que les contributions musicales apportées par des pratiques de design avec l'apprentissage machine peuvent, à terme, complémenter les contributions scienti ques apportées par les méthodes de conception centrées humain. Ainsi, je suggère que la recherche musicale peut être menée par le design de dispositifs interactifs musicaux, c'est-àdire, par la réalisation technique d'artefacts esthétiquement fonctionnels remettant en cause les normes culturelles régissant l'informatique et la musique.
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Introduction

Music is a cultural and creative practice that enables humans to express a variety of feelings and intentions, especially by means of embodied interaction with sound [ Leman, 2016]. Di erent types of music instruments were created by humans in di erent cultural contexts to support di erent musical expression [Jorda, 2005]. Acoustic instruments have been used for centuries over the world to support the transformation of human gestures into sound. Electronic instruments were invented over the last century in Western countries, enabling new forms of sound generation by means of electronic and digital components. Speci cally, interactive music systems were created over the last half century by computer music research communities to investigate novel ways to control sound, possibly blending digital software with physical components. We are interested in designing interactive music systems that takes into account existing music practices to enable new forms of human expression.

Machine learning opens many prospects for the design of interactive music systems. The framework supports the computational performance of many di erent tasks related to music practice, such as gestural control of sound [START_REF] Bevilacqua | Continuous realtime gesture following and recognition[END_REF], sound generation [START_REF] Esling | Universal audio synthesizer control with normalizing ows[END_REF], or human-machine improvization [START_REF] Assayag | Omax brothers: a dynamic topology of agents for improvization learning[END_REF]. Machine learning is powerful because it automatically learns to perform the above-mentioned tasks from example data. For example, imagine that you could build a custom gestural controller by only recording examples of gestures and without doing any programming. The so-called mapping by demonstration [Françoise, 2015] is one example of expressive interaction enabled by machine learning in interactive music systems.

As a Computer Science discipline, machine learning remains mostly designed and applied to music from an engineering sciences perspective. Much e ort is put into the solving of technical problems related to the non-interactive learning of musical tasks, such as automatic music analysis and generation. This approach may often exclude human users from the loop of the created machine learning system [START_REF] Briot | Deep learning techniques for music generation-a survey[END_REF]. While engineering sciences methods remain essential to the building of e ective machine learning systems, we believe that fully-automated systems may not always bene t humans in their music practices. Human-centred methods may be required to balance model engineering with human evaluation to truly foster human 1. Introduction creativity over arti cial creativity [Beaudouin-Lafon and Mackay, 2018].

Human-centred machine learning is an interdisciplinary area of work that aims at rethinking machine learning research and design in terms of human goals [START_REF] Gillies | Humancentred machine learning[END_REF], Ramos et al., 2019]. The area borrows many methods from the eld of Human-Computer Interaction to design machine learning systems that include humans in their loop. For example, rather than fully autonomous, these systems may let humans parametrize algorithms, or interactively provide example data to adapt machine learning to their needs. Previous works showed the usefulness of humancentred machine learning for the design of interactive music systems [Fiebrink, 2011, Françoise, 2015, Scurto, 2016]. Speci cally, musicians may twist the initiallydesigned machine learning task to ful ll their musical tasks in a customized and creative way.

We are interested in applying human-centred machine learning to the design of interactive music systems. We expect that this methodology would enable to build a scienti c understanding of the technical requirements of machine learning in relation to creative practices of music. Alternatively, we also envision to adopt a reverse approach, which is to practice with machine learning for real-world musical situations.

We hypothesize that such a creative approach would enable to investigate other inquiries related to machine learning applied to music, in a way similar to how dispositifs questions cutting-edge technologies in the elds of art and design [START_REF] Bianchini | Practicable: From participation to interaction in contemporary art[END_REF]. Overall, we expect that our joint scienti c and practical approach will help us get a holistic understanding of machine learning in relation to music [Jorda, 2005].

Thesis Statement

In this dissertation, I argue in favour of designing with machine learning for interactive music systems. I claim that machine learning must be rst and foremost situated in human contexts to be researched and applied to the design of interactive music systems. I present four interdisciplinary studies that support this claim, using humancentred methods and model prototypes to design and apply machine learning to four situated musical tasks: motion-sound mapping, sonic exploration, synthesis exploration, and collective musical interaction. Through these studies, I show that model prototypes help envision designs of machine learning with human users before engaging in engineering. I also show that the nal human-centred machine learning systems not only helps humans create static musical artifacts, but supports dynamic processes of expression between humans and machines. I call co-expression these processes of musical interaction between humans-who may have an expressive and creative impetus regardless of their expertise-and machines-whose learning abilities may be perceived as expressive by humans. Using a re exive approach based on real-world applications of the models, I argue that the musical contributions enabled by design practice with machine learning may ultimately complement the scienti c contributions of human-centred machine learning. I claim that music research can thus be led through dispositif design, that is, through the technical realization of aestheticallyfunctioning artifacts that challenge cultural norms on music and computer science.

Research Approach

The research approach to human-centred machine learning applied to music consisted in the following loop: (1) focus on one situated music task, (2) rely on model prototypes to study one machine learning technique, and (3) use one human-centred method to research and design human interaction with machine learning. We iterated four times over this loop, each time leveraging a new musical task, machine learning technique, and human-centred method. In parallel, I also practiced with machine learning to create interactive dispositifs in real-world musical situations. This process enabled me to (4) adopt a re exive approach to human-centred machine learning applied to music. In a post-scriptum added at the end of this dissertation, I relate my personal re ections on applied and practice-based approaches to machine learning for music, discussing disciplinary frameworks embedded in machine learning as well as in music.

Situated Musical Tasks

We applied human-centred machine learning to situated musical tasks. By situated, we mean taking into account the cultural, individual, or industrial context of music, as an embodied act of human expression [Leman, 2016]. Importantly, a given musical task may pertain to several music communities or practices. For example, the task of motion-sound mapping mostly pertains to performers from the NIME community.

Alternatively, the task of sonic exploration may pertain to sound designers and composers from di erent music practices [START_REF] Garcia | Interactive paper substrates to support musical creation[END_REF], but also to non-musicianse.g., novice users learning to use a new interface [Resnick, 2007]. Situating musical tasks would not only enable us to take into account di erences in music expertise, but also cultural di erences in music practices-supporting the human-centred design of machine learning [START_REF] Gillies | Humancentred machine learning[END_REF]. We thus led our research and design process on four situated musical tasks: motion-sound mapping, sonic exploration, synthesis exploration, and collective musical interaction (see Fig. 1.1).

Figure 1.1: The four situated musical tasks investigated in this thesis.

Model Prototypes

We relied on model prototypes to study machine learning techniques in relation with the situated musical tasks. Model prototypes may be considered as design artifacts for machine learning techniques in interactive systems. They enable to test interactive data work ows with concrete algorithmic implementations before starting the engineering of a nal learning model. As such, model prototypes enable to generate new 1. Introduction ideas and envision new designs of machine learning in situation with human users. This contrasts with engineering sciences approaches to machine learning, which often consider user interaction only after a model is optimized from a large data set.

The notion of model prototype extend that of software prototype [Beaudouin-Lafon and Mackay, 2009] to the case of statistical models in machine learning. For example, one may test several model prototypes-e.g., centroid-or density-basedto design the machine learning technique of clustering [Murphy, 2012]. Focusing on model prototyping over model engineering enabled us to study four machine learning techniques in relation to the four situated musical tasks: unsupervised learning, reinforcement learning, deep reinforcement learning, and active learning (see Fig. 1.2).

Figure 1.2: The four model prototypes of the thesis, respectively designed with unsupervised, reinforcement, deep reinforcement, and active learning.

Human-Centred Methods

We used human-centred methods to research and design our model prototypes in situated musical tasks. Human-centred methods come from the interdisciplinary eld of Human-Computer Interaction (HCI), which builds interactive systems to observe human interaction and contribute to a theoretical knowledge of human-computer interaction [START_REF] Mackay | Hci, natural science and design: a framework for triangulation across disciplines[END_REF]. Instead of theory, our human-centred methods will build on the interaction design research notion of strong concepts-an intermediate form of knowledge that is more abstracted than particular instances, yet does not aim at building general theories [START_REF] Höök | Strong concepts: Intermediate-level knowledge in interaction design research[END_REF]. As such, we relied on four human-centred methods to iterate between concepts, observation, prototyping, and engineering with our model prototypes: design-oriented, experimental, user-centered, and participatory design methods (see Fig. 1.3).

Figure 1.3: The four human-centred methods used in the thesis: design-oriented, experimental, user-centered, and participatory design methods.

Re exive Approach

We adopted a re exive approach to the application of human-centred machine learning to interactive music systems [START_REF] Kläy | Rethinking science for sustainable development: Re exive interaction for a paradigm transformation[END_REF]. In addition to concepts, design, observation, and engineering of human-centred methods, we led applications of our model prototypes in real-world musical situations (see Fig. 1.4). While human-centred methods have the scienti c goal of evaluating the e ciency of a design, applications in real-world musical situations have the creative goal of sharing the experience and the conceptual ideas of a system with people and society in general. In this sense, they helped us adopt a re exive approach by taking a critical stance on human-centred methods and explore practice-based approaches to music research.

Figure 1.4: The real-world applications of our model prototypes, led outside the frame of the human-centred methods.

Contributions

The contributions of the thesis situate at four levels: (1) model prototypes, (2) empirical ndings, (3) music dispositifs, and (4) theoretical perspectives.

Model Prototypes

Each of our four human-centred studies led to the design of an interactive model prototype, applying a machine learning technique to a situated musical task:

• The Online Gaussian Mixture Model model supports the musical task of motionsound mapping by implementing unsupervised learning from human motion observations.

• The Sarsa model supports the musical task of sonic exploration by implementing reinforcement learning from human feedback and machine exploration.

• The Deep TAMER model supports the musical task of synthesis exploration by implementing deep reinforcement learning from human feedback, control and machine intrinsically-motivated exploration.

• The Bayesian Information Gain model supports the musical task of collective musical interaction by implementing active learning from human individual performance.

Empirical Findings

Observing humans interact with our four model prototypes enabled us to harvest empirical ndings related to the musical tasks and situated in music practices:

• Performers projected themselves into imaginary musical situations interacting with unsupervised learning. This projection was enabled by the online adaptative behaviour of the motion-sound mapping.

• Humans perceive di erences between various exploration strategies of reinforcement learning agents. These di erences depend on environmental factors related to timbral features of sound.

• Sound designers partner with deep reinforcement learning agents in synthesis exploration. These partnerships can be placed along a continuum ranging from user-to agent-as-leader.

• Non-musicians reacted positively to the collective musical behaviour of active learning. This reaction was enabled by the expressive audiovisual queries made by the machine to the humans.

Music Dispositifs

In addition to our model prototypes and observations, we created several music dispositifs throughout out work. We propose to borrow the term "dispositif" from the elds of contemporary art and design [START_REF] Bianchini | Practicable: From participation to interaction in contemporary art[END_REF] to consider broader dimensions of interactive music systems-we will properly introduce it in the Post-Scriptum. We applied the interactive dispositifs in several real-world musical situations, ranging from public exhibitions, performances, installations, and workshops.

• The somasticks are augmented drumsticks that use unsupervised learning to emphasize somatic expression in drumming practice.

• The Co-Explorer is a software that lets humans explore large parameter spaces by expressing positive or negative feedback to a deep reinforcement learning agent.

-Riding the Co-Explorers is a single-level game that lets a single player guide the Co-Explorer in one single sound space.

-Behavioral Matter is an interdisciplinary workshop that applied the Co-Explorer to the design of robotic objects.

aego is an improvisational computer music piece with interactive sound and image for one performer and the Co-Explorer.

• entrain is a public installation that lets humans express collectively in music in collaboration with an active learning loudspeaker.

Theoretical Perspectives

Our human-centred studies and real-world applications enabled us to open theoretical perspectives on music, machine learning, research, and design.

• The artifacts called model prototypes help envision possible designs of machine learning in situation with human users before fully engineering them.

• The notions of machine expression and co-expression support the general analysis of musical interaction between (possibly learning) machines and (possibly non-musician) humans.

• The concept of interactive music dispositif supports explicit consideration of the scienti c and musical norms that may condition human imagination on interactive systems.

• The approach of music research through design enables practice-based contributions in music that may complement applicative contributions in computer science by challenging the norms in interactive music systems.

Thesis Overview

Chapter 2 relates the context and related work for the thesis. It reviews basic notions on interactive music systems, machine learning, and human-centred machine learning applied to music.

Chapter 3 presents the rst study of the thesis. It uses a design-oriented method to apply unsupervised learning to the musical task of motion-sound mapping. It describes the musical and technical concepts surrounding the study, followed by the design of a model prototype, and the application to the design of a music dispositif, called somasticks, that was tested by expert performers.

Chapter 4 presents the second study of the thesis. It uses an experimental method to apply reinforcement learning to the musical task of sonic exploration. It describes the musical and technical concepts surrounding the study, as well as the design of a model prototype, and the observation of a group of humans, containing both musicians and non-musicians, interacting with the model in a controlled setup.

Chapter 5 presents the third study of the thesis. It uses a user-centered design method to apply unsupervised learning to the musical task of synthesis exploration. It describes the musical and technical concepts surrounding the study, followed by the iterative design of a model prototype, intertwined with observations with expert sound designers, and ended by the engineering of the model. Lastly, it reports on applications of the model to the creation of three music dispositifs for real-world situations:

Riding the Co-Explorers, Behavioral Matter, and aego.

Introduction

Chapter 6 presents the fourth study of the thesis. It uses a participatory design method to apply active learning to the musical task of collective musical interaction. It describes observations made with designers of previous collaborative mobile musicmaking systems, followed by the design of a model prototype, and the application to the design of a music dispositif, called entrain, that was tested by non-musicians.

Chapter 7 discusses the human-centred approach to machine learning applied to music adopted in the thesis. It describes the human and machine advantages of situating machine learning in human contexts to study musical interaction. It introduces the notions of machine expression and co-expression to describe such diversity of musical interaction between humans and learning machines. It builds on the latter humancentred notions to discuss arti cial creativity approaches to machine learning applied to music.

The Post-Scriptum builds on real-world musical situations of practice with machine learning to re ect on the research led in the thesis. It discusses the balances made between intersecting perspectives from Computer Science and music. It presents design projects, led in parallel of the thesis, that challenge the norms of these disciplines. It nally delineates a music research through design framework, which leverage the theoretical notion of interactive music dispositif to foster novel musical practices that are grounded in their environment. 

Context and Related Work

In this chapter, we motivate our research approach by situating it in the context of related works. We start by contextualizing interactive music systems, situating the musical values that they may encapsulate, and describing the approaches and techniques used to design them. We then give an overview of machine learning, de ning the technical elements of the framework, and reviewing applications and methods adopted in the eld of music. We nally motivate human-centred machine learning, as a research approach that explicitly consider humans in the design of machine learning. We describe the techniques and methods employed, notably for applications to the eld of music.

Part of this work was published and presented as doctoral symposium paper at the 4th International Conference on Movement Computing (MOCO 2017) in London, United Kingdom [Scurto and Bevilacqua, 2017].

Interactive Music Systems

Interactive music systems are a broad family of digital systems aimed at supporting human music practices. These practices may encompass music performance, composition, and improvization, as well as listening, pedagogy, or playing. This section aims at describing the context in which the research and development of interactive music systems may operate. We rst situate interactive music systems among a variety of musical values, which cannot be dismissed when considering human musical practices. We then describe the approaches adopted to their design, and the technical features that have been shown to be central to their functioning.

On Music Practices

As support of human musical practices, interactive music systems always encapsulate musical values and signi cation into their design. In this section, we situate our approach among a set of musical values. We argue in favour of (1) practical and (2) embodied dimensions of music, which we do by reviewing related work in musicology and cognitive science.
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Music Is A Practice, Not A Thing

To borrow the expression of Christopher Small, music may be thought of as a practice, not a thing. According to him, there is no such "thing" called "music", but an abstraction of the human "action whose reality vanishes as soon as we examine it too closely" [Small, 1998]. He introduced the verb "musicking" to highlight the very fact that music may only exist through practice. For several decades, the signi cation of music was mostly assessed by relying on Western music theory-e.g., the formalization of tones, harmony, and rhythm in an annotated form. The application of one single music theory over the variety of music practices tended to x music as a thing, as an object that can be talked from an external point of view, without participation of its subject. Many musicologists also argued in favour of the so-called "performative turn" in music [Jost, 2013], whether it be acted through listening [Donin, 2004],

or performing [Leman, 2008]. For example, Simon Frith argues that the signi cation and value of music may arise from rituals of identi cation made during listening by humans-perhars more than from the formal constructs of music [Frith, 1998].

Over the centuries, new forms of music practices were enabled by the introduction of technology. For example, phonograph records enabled humans to listen to music at a di erent place than where it used to be played-as is extended with latest streaming services. Slit drums enabled humans to perform music by creating complex rhythms in interaction with other humans-as is extended with latest smartphone applications. Because of their technological roots, many of these music practices may thus be linked with the industry [Wikström, 2013]. Although rejected by contemporary music institutions decades ago [Born, 1995], the links between public and private industrial sectors of music are currently subject to important transformations. Unfortunately, debating political issues on the industrialization of music remains out of the scope of this thesis. Yet, our wish was to stress that industry links must be considered when situating music practice in a societal context.

Music Is Rooted In Embodiment and Expression

The performative aspect of music may be apprehended from a cognitive point of view through the notion of embodiment. In his seminal book on embodied music cognition, Marc Leman argues that the human body may act as the main mediator between musical experience (mind) and sound energy (matter) [Leman, 2008]. Practices such as listening to music may be understood as an action-oriented phenomenon, which largely relies on our sensori-motor systems. For example, humans may move along the music they are listening to, to help make sense of auditory information [START_REF] Nymoen | Analyzing sound tracings: a multimodal approach to music information retrieval[END_REF]. Reciprocally, when playing a music instrument, humans may use their body to encode an idea, or mental representation, into a material or energetic form-i.e., sound [START_REF] Godøy | Musical gestures: Sound, movement, and meaning[END_REF]. The so-called musical gestures may be analysed and classi ed in a gesture space depending on their role in music performance-i.e., soundproducing, sound-accompanying, or communicative gestures [START_REF] Cadoz | Gesture-music[END_REF].

Embodied interaction with music is deeply linked with the notion of human expression [Leman, 2016]. The encoding of gestures into sound may be analysed as the metaphorical expression of some human intention [Caramiaux et al., 2014a, Lemaitre et al., 2017]. Reciprocally, the decoding of sounds into gestures may help interpret the expression of a musical intention-e.g., a crescendo being perceived as the acceleration of a human movement [Leman, 2016]. As such, encouraging musical expression may be crucial to support the social and emotional development of human beings, be they musicians, or non-musicians. Notions are as diverse as empathy [START_REF] Altenmüller | The evolution of emotional communication: From sounds in nonhuman mammals to speech and music in man[END_REF], attention [START_REF] Hannon | Music acquisition: e ects of enculturation and formal training on development[END_REF], adaptation [START_REF] Schlaug | Effects of music training on the child's brain and cognitive development[END_REF], self-esteem [Henderson, 1983], or creativity [Sawyer, 2014].

Music is an embodied practice that needs situating in a human context. This context may include industrial, cultural, and individual dimensions. Our work will build on culturally-and individually-situated music practices to design interactive music systems for human expression.

Design Approaches

In this section, we describe the design approaches that may be adopted to the building of interactive music systems. We present the corresponding (1) engineering sciences and (2) crafting approaches by reviewing the related work in computer music.

The Engineering Sciences of Interactive Music Systems

Engineering sciences support the ne-tuned design of individual components of interactive music systems. Focusing on individual components can enable bottom-up technique discoveries that may support new music practices. For example, many of the rst synthesizers were created by electrical engineers from manipulation of analog electromechanical circuits [Bode, 1984]. Also, it can be used as a way to address the complexity of both digital and physical components in interactive music systems. For example, the engineering sciences background of Pierre Schae er arguably contributed to the development of his practice of sound and music [Schae er, 1966]. In addition, engineering sciences approaches may go in line with industrial applications that require system robustness for large-scale music production. Yet, only relying on engineering sciences can cause harm to music practices. Taking technical components outside the scope of human interaction may direct the design of interactive music systems toward machines. While the design of music machines can be an exciting intellectual avenue [Rowe, 1992], it has been described as potentially enclosing elds of knowledge related to music [Sterne, 2003]. For example, the engineering of interactive systems based on implicit notions of "musical input" may restrict music performance toward practices based on Western music theory [Jorda, 2005]. The introduction of the computer may potentially increase this gap, by relying on digital computation over human actions. For example, the engineering of music recommender systems may direct music listening toward a practice of automated consumption over that of self-identi cation [Taylor, 2014]. All in all, the externalization of the machine from the human may contribute to the thing-i cation of music over human music practices.
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The Crafting of Computers and Materials

On the other hand, crafting supports the holistic design of digital and physical components into interactive music systems [Jorda, 2005]. It makes it suitable to some form of top-down design of interactive music systems, where the discovery of new techniques may be enabled by intuition emerging from musical practices. For example, Maurice Martenot, the inventor of the ondes Martenot, and also a cellist, was inspired by the accidental overlaps of tones between military radio oscillators, and wanted to create an instrument with the expressiveness of the cello [Leipp, 1972]. The practical aspect of crafting may go beyond the physical to embrace computers and digital components. Michel Waiswisz' The Hands may be the most well-known example of an interactive music system made from crafting with digital technology [START_REF] Torre | The hands: The making of a digital musical instrument[END_REF]. Crafting may go in line with creative practices of music that require speci c implementations as a form of human expression.

However, crafting has also its own limits. Even if a source of inspiration for many humans, crafting's sole relying on practice over theory may sometimes induce a lack of transmission [Jorda, 2005]. If not documented with care, many crafted interactive music systems-and the music practices and repertoire that go with them-may not subsist to our social history [Herbert, 2012]. The issue of interactive music system archiving remains contemporary, as today's fast evolution of computer hardware and software programming languages adds complexity to documentation [Risset, 2004].

There exists a continuum of approaches to the design of interactive music systems, ranging from bottom-up engineering sciences to top-down crafting practice. Careful balancing between the two extremities may be required to avoid respective pitfalls and fairly bene t humans.

Interaction Techniques

Now that we provided an overview of the approaches incumbent to their design, we are able to focus on the techniques at stake in interactive music systems. We propose to review them from the human-centred perspective of musical interaction, that is, from the new actions they provide humans with in relation to music practice [START_REF] Bevilacqua | From musical interfaces to musical interactions, in human computer con uence: Transforming human experience through symbiotic technologies[END_REF]. Relying on Beaudouin-Lafon's classi cation of human-machine interaction paradigms [Beaudouin-Lafon, 2004], we propose to classify interaction techniques in three categories: (1) instrumental control, (2) automatic generation, and (3) collective interaction.

Instrumental Control

Instrumental control originates from acoustic instruments, which essentially provided humans with one-gesture-to-one-event relationships [Jorda, 2005]. For example, percussive instruments enable humans to trigger short sounds by hitting some kind of surface with their body or some kind of object. As a widespread technique for music practice, instrumental control has naturally extended from physical to digital music instruments. The MIDI protocol, created in the 1980s, proposed a communication standard for digital instruments that imitates the note-based control of acoustic instruments [Loy, 1985]. This notably enabled the building of tools relying on notation to create music, which in turn led to the birth of a music practice called computerassisted composition [START_REF] Assayag | Computer-assisted composition at ircam: From patchwork to openmusic[END_REF].

Gestural controllers have been developed to improve instrumental control in digital music systems, to go beyond mouses and keyboards by extending humans' physical abilities to produce sound. While keyboards were largely used following the MIDI protocol standardization, sensors provided new perspectives for instrumental control by fully rede ning gesture-sound relationships in music systems [START_REF] Miranda | New digital musical instruments: control and interaction beyond the keyboard[END_REF]. The process of "mapping", which speci es the relationships between sensor and sound parameters by means of programmation, received a lot of attention in the last decades [START_REF] Hunt | Mapping performer parameters to synthesis engines[END_REF]. Unlike acoustic instruments, whose physics already de ne a mapping, digital instrument requires the relying on di erent strategies to design mappings-e.g., one-to-one, one-to-many, many-to-one, or manyto-many [Jorda, 2005]. The OSC protocol eased the creation of mappings by extending MIDI to fully-generic communication between music systems [Wright, 2005].

Automatic Generation

Automatic generation refers to the ability of interactive music systems to create sounds, or sequences of sounds, based on anthropomorphic means of communication. It can be a desired feature of interactive music systems for music practices that take algorithmic composition as a main concept, or for those that may bene t from a certain degree of delegation to the machine.

While automatic generation remains highly characteristic of digital music systems, it was already a desired feature for many musicians centuries ago. For example, Mozart's Musikalisches Wurfelspiel ("Dice Music"), a musical game which "involved assembling a number of small musical fragments, and combining them by chance, piecing together a new piece from randomly chosen part", was one of the rst algorithmic composition systems to date [Alpern, 1995]. Many computer-based interactive music systems made use of similar rules to provide composers with automatic generation. Lejaren Hiller is often reported to be the rst composer to ever use a computer-generated score for a musical piece [START_REF] Hiller | Illiac suite, for string quartet[END_REF], later followed, among others, by Iannis Xenakis and his "stochastic" compositions [Xenakis, 1992]. While reviewing artistic practices on automatic generation remains out of the scope of this thesis, we wish to stress that the notion of "arti cial intelligence" was linked with music way before the advent of machine learning. Speci cally, the computer music community introduced the term "intelligent instrument" [Spiegel, 1987] to describe interactive music systems that automate the control of music in some range [Chadabe, 1977]. Machine learning will be the matter of Section 2.2.

Alternatively, automatic generation can also be a way to delegate super uous tasks to the machine, in a way similar to a human partner. For example, Cartwright et al. developed an interactive music system that enable querying of sounds using vocalization as human input [START_REF] Cartwright | Vocalsketch: Vocally imitating audio concepts[END_REF], thus enabling humans to focus on creation over search. Also, the delegation of tasks to the machine may enable humans to be more productive in their musical practice. For example, Deruty proposed
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tools to automate the process of mixing to speed up music production [Deruty, 2016]. Improving music production may be useful for music practices that are connected to the industry.

Collective Interaction

Collective interaction refers to the ability of interactive music systems to facilitate interaction between humans. It is a promising avenue for music practices that focus on situated interaction, as well as creative collaboration, between humans.

Collective interaction is a central feature of many music practices situated in location. Whether it be through composition, performance, or listening, music is tied with social bonds that does not necessarily require an interactive music system to be mediated [Leman, 2008]. Recently, Matuszewski et al. investigated the use of mobile phones to create new interactions between humans situated in location [START_REF] Matuszewski | Interaction topologies in mobile-based situated networked music systems[END_REF]. Networking technologies enable new forms of communication between professional musicians and the public, opening new prospects for collective interaction in a context of music pedagogy [START_REF] Bell | Smartvox-a webbased distributed media player as notation tool for choral practices[END_REF].

Collective interaction may also be useful to manage collaboration in music creation. For example, shared multimodal interfaces enabled the creation of new collective music practices through the creation of [Jorda, 2005]. Cartwright et al. created a web interface that allows the crowdsourcing of semantic descriptors in relation to sound [START_REF] Cartwright | Social-eq: Crowdsourcing an equalization descriptor map[END_REF]. Live coding is another example of collaborative music practice, where humans may collectively write lines of code to generate sounds and sequences of sound, possibly relying on Web frameworks [McKinney, 2014]. From a pedagogical point of view, web platforms enabled collaboration between musicians from all across the world by supporting the streaming and learning of music practices [Ruthmann, 2007].

Interactive music systems may be analysed as tools, partners, or mediums, for instrumental control, automatic generation, and collective interaction with music. Designing interactive music systems consists in blending these three techniques in careful accordance with situated music practices to support new forms of human expression.

Machine Learning

Machine learning has become one of the most successful techniques of Computer Science in the 21 st century. Unsurprisingly, interactive music systems have witnessed a rise in applications of machine learning techniques. In this section, we review how machine learning was applied to the design of interactive music systems. We start by giving a formal de nition of the notions of technique, data, model, and algorithm, that are central to machine learning. We then give an overview of the applications of machine learning to music, using a similar classi cation than in Section 2.1.3. Finally, we describe the research methods that have been employed to approach machine learning applied to music.

Formal De nitions

Machine learning studies the design of computational algorithms capable of performing speci c tasks by autonomously learning from data. In this section, we provide formal de nitions of the notions of (1) technique, (2) data, (3) model, and (4) algorithm, which are central to understanding applications of machine learning to music.

Technique

Machine learning de nes di erent techniques that enables to perform tasks in an autonomous manner. Typical tasks are classi cation and regression-e.g., respectively predicting discrete or continuous output for a new given input. Other typical tasks relate to optimal decision-making with a long-term reward trade-o .

The de nition of a technique is made through the formalization of a learning problem in relation to a goal. In supervised learning, the goal is to learn a function that maps inputs to outputs based on example pairs of input-output [Bishop, 2006]. In unsupervised learning, the goal is to learn a similar function based on example input only [Murphy, 2012]. In active learning, the goal is similar to that in supervised and unsupervised learning, instead that learning occurs in interaction with a human labeller [Settles, 2010]. In reinforcement learning, the goal is to learn to take actions in an environment so as to maximize some notion of reward [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. Other learning problems exist, but remain out of the scope of the present thesis.

Data

Machine learning relies on data to perform the tasks de ned above. Data is a set of values supposed to represent some kind of object with respect to qualitative or quantitative variables. For example, visual images, which physically emerge from complex sums of light waves, are often represented by a nite set of pixel data, the latter being made of red, green, and blue digital values. Data can have many roles in relation to machine learning techniques. Example data allows to perform supervised, unsupervised, and active learning-e.g., respectively, example input-output, input only, and output only [Bishop, 2006, Murphy, 2012]. Reward data allows to perform reinforcement learning-e.g., positive or negative reward for a given action [START_REF] Sutton | Reinforcement learning: An introduction[END_REF].

Speci c features of data may be required to support learning. Feature selection is often performed to process data in a relevant way with respect to the task being considered. Based on this, larger data sets may be built to perform supervised, unsupervised, and active learning. Researchers have created standardized data sets to provide the machine learning community a common baseline to advance the building of learning algorithms [START_REF] Bertin-Mahieux | The million song dataset[END_REF]. In the case of reinforcement learning, large amounts of data are synthetically created by means of a reward function. Many techniques for data processing are studied in the machine learning eld, but remain out of the scope of this chapter.
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Model

Models are mathematical functions capable of handling data to perform the machine learning task. Some models rely on relatively simple architectures, providing concrete representations of data-e.g., the Gaussian distributions, for example used in supervised and unsupervised learning. Some models rely on complex architectures, providing multiple layers of abstractions-e.g., the neural network models used in deep learning. Other models are sequential, that is, they provide a sense of the temporal process to be modelled-e.g., the Markov decision process used in reinforcement learning.

In addition to the task being performed, models are sometimes used to provide qualitative insight on data. These data-driven models may be used as a complement, or an alternative, to mechanical models often used in science to describe the world. As such, the models' formalism may be carefully chosen depending on the type of data to be studied. Hybrid models may take advantage of both data-driven and mechanistic approaches [START_REF] Alvarez | Latent force models[END_REF], but remain out of the scope of this thesis.

Algorithm

Algorithms are a set of rules used for the optimization of the model's parameter in relation to a data set. Optimization is responsible for the learning aspect of machine learning, and is what makes machine learning di erent from statistics as a eld [Bishop, 2006]. The algorithm's parameters are called hyperparameters, in the sense that they support the learning of the model's parameters. Some algorithms require large amount of data to be able to learn a model-e.g., deep learning algorithms [START_REF] Goodfellow | Deep learning[END_REF]-but as a counterpart, may automatically extract features from data. Others are designed with the requirement of learning from small amounts of datae.g., shallow learning algorithms-, but in turn are highly sensitive to the choice of data features.

Importantly, learning can be performed o ine, as is the case in most supervised and unsupervised learning-e.g., training over a xed data set, then performing the task without learning anymore. Or, it can be performed online, as is the case in most active and reinforcement learning-e.g., training in an incremental way as new data feeds into the algorithm. The choice between o ine and online learning algorithms depends on the task to be performed. Computational descriptions of these algorithms remain out of the scope of this chapter.

Machine learning de nes a set of algorithms capable of autonomously learning a model from example data sets. The learned model may either be used to analyse the given data set, or to carry a task on newly-seen data.

Musical Applications

Now that we de ned the notions that are central to machine learning, we are able to focus on its musical applications. Similar to Section 2.1.3, we propose to review them by relying on Beaudouin-Lafon's classi cation of human-machine interaction paradigms [Beaudouin-Lafon, 2004]: we propose the following classi cation for interactive music systems: (1) audio analysis, (2) music generation, and (3) human-machine improvization.

Music Information Retrieval: Machine Learning as Tool

Music information retrieval uses machine learning to automate certain tasks related to music data [Downie, 2003]. For example, track separation aims at automatically extracting audio tracks of each musical instrument from a musical recording. This may be formulated as a supervised learning problem, where example data are made of input audio signals-e.g, a waveform, or a spectrogram-, along with their corresponding instrument label as output-e.g, bass. Another application is recommender systems, which aims at automatically creating music playlists by predicting a listener's musical tastes [START_REF] Ricci | Introduction to recommender systems handbook[END_REF]. This may be formulated as a reinforcement learning problem, where the system would learn to provide a listener with optimal rankings of songs in an online manner, based on reward given by other listeners and the listener herself.

The goal of music information retrieval is to create tools that may facilitate human interaction with music. The automation of certain tasks may be useful for professional creatives that may require a focus on productivity in their work [Deruty, 2016]. The created tools may be useful for industrial applications that have a focus on music consumption [Wikström, 2013].

Arti cial Creativity: Machine Learning as Partner

Arti cial creativity uses the models built in machine learning to automatically generate new sequences of sounds [START_REF] Boulanger-Lewandowski | Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription[END_REF]. For example, style modelling employs machine learning to generate music that share stylistic similarities with other music [START_REF] Dubnov | Using machine-learning methods for musical style modeling[END_REF]. This may be formulated as a supervised learning problem, where style may be computed from speci c data features-e.g., tempo, harmony-, and generation would be made from a distribution model recreating data that share similarities with the training set. Instead of automatically creating sequences of sounds, other approaches to arti cial creativity consists in creating new sound spaces [START_REF] Esling | Bridging audio analysis, perception and synthesis with perceptually-regularized variational timbre spaces[END_REF]. This may be formulated as an unsupervised learning problem, where sound spaces are rst learned from unlabelled audio data sets, then leveraged from the architecture of the learned models.

The goal of arti cial creativity is to create arti cial partners that may inspire humans by generating new musical ideas. However, the human bene ts of these arti cial partners remain to be studied on a longer-term before claiming that it augments human creativity [START_REF] Roberts | Magenta studio: Augmenting creativity with deep learning in ableton live[END_REF]. For example, professional musicians may enjoy creating music, and as such, may prefer doing it all by themselves rather than relying on automatically-generated structures. Also, even if these partners may help music composition be more approachable by non-musicians [START_REF] Huang | The bach doodle: Approachable music composition with machine learning at scale[END_REF], they may not enable embodied interaction with music.
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Human-Machine Improvization: Machine Learning as Medium Human-Machine Improvization uses machine learning to adapt music generation to human musical data in real-time. The goal is to create dynamic processes of interaction between humans and machines. For example, Assayag et al. created a series of musical improvizers able to play and adapt to a musician's style of playing by learning from it in real-time [START_REF] Assayag | Omax brothers: a dynamic topology of agents for improvization learning[END_REF], Nika et al., 2017]. Similarly, Pachet et al. created a musical looper which automatically adapts the generation of a musical accompaniment depending on what the musician is playing [START_REF] Pachet | Re exive loopers for solo musical improvisation[END_REF]. In test studies with professional musicians, these machines were not perceived as emotionally intimidating, but rather as musically expressive [Lévy, 2013]. This positive embodiment of machines by humans may provide new opportunities to play (with) music.

The task of human-machine improvization may promote machine learning to the function of re exive medium. Similarly to the video medium, which is "in constant movement, circulating between camera and monitor" [Spielmann, 2010], the machine learning medium may be in constant movement, circulating between human and music. Rather than static descriptions of reality, the computed models may be considered as diachronic forms, that is, forms that depict the transformative nature of reality [START_REF] Bourganel | Algorithmes, formes diachroniques et métadesign[END_REF]. online learning from real-time human data may enable this accounting for a dynamic nature of reality. All in all, the newly-created medium may encourage improvizational interaction between humans and machines, which, just as human-human improvization, may bene t human expression [START_REF] Wright | Informal music learning, improvisation and teacher education[END_REF].

Applications of machine learning to music have so far focused on music information retrieval, music generation, and human-machine improvization, to create new musical tools, partners, and mediums. The latter task opens new prospects to build interactive music systems that supports embodied forms of human expression.

On Research Methods

In this section, we give an overview of the research methods used to formalize machine learning and lead applications in music, in light with the design approaches of interactive music systems described in Section 2.1.2. We describe (1) the engineering sciences approach and (2) the thing-i cation of music and human creativity at stake in machine learning.

The Engineering of Machine Learning

As a relatively recent eld emerging from Computer Science and Mathematics, most applications of machine learning to music have been done from an engineering sciences perspective, that is, the solving of a technical problem. The evaluation of machine learning then consists in measuring the performance of the engineered model in relation to the technical problem. However, we argue that technical problems may not always be related to human problems in music practice. Furthermore, these hu-man problems may not always be resolved with a technical solution. While engineering sciences may be necessary for the music information retrieval task-which is by essence quantitative-, it may not always suit the tasks of arti cial creativity and human-machine improvization-which crucially pose qualitative issues regarding music practices and human interaction [Lévy, 2013]. Including humans in the design of machine learning may help balance machine engineering with human goals.

Engineering a model is a long and tedious research process. It involves the creation of a-possibly large-data set, and the optimization of parameters of a model in relation to this data set. The computational resources needed to ful ll these activities-the storage of data and the learning of optimal parameters-can become quite high compared to standard computers' performance. Also, the learning of optimal parameters on a given data set may not transfer to another data set. As a consequence and despite the real-world success of some applications, many machine learning applications remain not applicable in human situations because of this focusing on machine task engineering [Wagsta , 2012].

The Thing-I cation of Music and Human Creativity

Many formalizations of music as a machine learning problem tends to consider music as a thing, not a practice. While data representations, learning algorithms, and models remain completely generic from a computational point of view, researchers remain mostly focused on Western music theory as a benchmark to engineer models-e.g., melody, polyphony, accompaniment, counterpoint [START_REF] Briot | Deep learning techniques for music generation-a survey[END_REF], or electronic dance music [START_REF] Eigenfeldt | Evolving structures for electronic dance music[END_REF]. Also, while e ort is made toward including multicultural perspectives on machine learning [Serra, 2017], the creation of large data sets of music still tends to x music as a static thing. Yet, as described in Section 2.1, music is a dynamic practice that is subject to cultural evolutions [Cross, 2001a].

The "thing-i cation" of music may also direct the research of machine learning toward developing arti cial creativity over human creativity. The loosely-de ned concept of "arti cial intelligence" nurtures the phantasm of creating machines that are capable of human-level creativity [START_REF] Colton | Computational creativity: The nal frontier? In Ecai[END_REF]. While we do not claim that all machine learning researchers share these views on "arti cial intelligence", we argue that they do not always clearly take a stance on this issue. Of course, individual researchers may not become experts in all other disciplines involved in the notion of "arti cial intelligence" within their available resources [START_REF] Mackay | Hci, natural science and design: a framework for triangulation across disciplines[END_REF]]. Yet, as many of their predecessors [Wiener, 1988], we believe that today's computer scientists should actively include their work as part of our society [Latour, 1987]. Interdisciplinary collaborations may enable new reformulations of complex scienti c subjects [START_REF] Mackay | Hci, natural science and design: a framework for triangulation across disciplines[END_REF], including machine learning.

Machine learning remains mostly studied from an engineering sciences perspective, and applied to music without a clear accounting of its practical aspects. Key machine learning notions must be reformulated through interdisciplinary collaboration to lead situated applications in music and bene t human expression.

Human-Centred Machine Learning

Human-centred machine learning is an interdisciplinary area of work that aims at rethinking machine learning research and systems in terms of human goals. In this section, we motivate human-centred machine learning for the design of interactive music systems. We give an overview of its research approaches, which investigate machine learning techniques through the lens of human-centred methods. We nally review musical applications of human-centred machine learning.

Motivation

Human-centred machine learning includes researchers and practitioners from the elds of (1) human-computer interaction and (2) interactive machine learning. In this section, we motivate a human-centred approach to the design of machine learning in interactive music systems by introducing these two areas of work.

Human-Computer Interaction

The eld of Human-Computer Interaction (HCI) researches the design and use of new computer technology by humans. Historically originating from the Engineering Sciences and Computer Science with the aim of designing e cient human-computer interfaces, the eld has progressively evolved to study the interaction between humans and computers [Beaudouin-Lafon, 2004]. Speci cally, the last decade saw the rise of embodied interaction as part of the third wave of HCI, which included aspects such as experience, emotion, or bodily interaction in the design of computer technology [Dourish, 2004].

Over the last two decades, the HCI community expanded to study the design of creativity support tools [Shneiderman, 1999]. The focus of this topic is to understand the creative process of human users to design interactions with computers that facilitate creativity [START_REF] Resnick | Design principles for tools to support creative thinking[END_REF]. Music was in this sense examined as a use case to design technology that is adapted to composers [Garcia, 2014], or reciprocally, as an inspiring modality to design new interactions with technology [Ghomi, 2012]. Recently, creativity researchers called for a move to interdisciplinary collaborations [START_REF] Frich | Twenty years of creativity research in human-computer interaction: Current state and future directions[END_REF].

Interactive Machine Learning

The eld of interactive machine learning studies the use of machine learning systems by humans. It originated a decade ago, from the assessment by machine learning researchers that a lot of expert knowledge was required to actually make a machine learning system work [Domingos, 2012]. Researchers wanted to give "power to the people" by building machine learning systems able to account for their human users [START_REF] Amershi | Power to the people: The role of humans in interactive machine learning[END_REF]. For example, studies shown that humans often interacted with arti cial agents in a way that may not suit the underneath machine learning implementation [START_REF] Thomaz | Teachable robots: Understanding human teaching behavior to build more e ective robot learners[END_REF]. Machine teaching was introduced as conceptual framework that focus on empowering human users [START_REF] Simard | Machine teaching: A new paradigm for building machine learning systems[END_REF].

Computer music pioneered interactive approaches to machine learning for creative applications, with real-time programming environments such as Max/MSP enabling exploration of models for sound synthesis [START_REF] Lee | Connectionist models for realtime control of synthesis and compositional algorithms[END_REF], Fels and Hinton, 1993, Bevilacqua et al., 2005]. More recently, interactive machine learning was applied to the design of musical design tools [Fiebrink, 2011], with two complementary human-and machine-centred advantages. First, it enabled to raise relevant aspects of human creativity in relation to music practice, such as surprise, unexpectedness, and exploration [START_REF] Fiebrink | Toward understanding human-computer interaction in composing the instrument[END_REF]. Second, it supported the building of better machine learning software used by real-world human users, enabling the teaching of machine learning to musicians and non-musicians [Fiebrink, 2019].

Human-centred machine learning blends approaches from the eld of Human-Computer Interaction and Interactive Machine Learning. Applications may potentially bene t music practice by taking into account various dimensions of human creativity in the design of machine learning systems.

Research Approach

This section describes the research approaches in human-centred machine learning, from ( 1) interactive, open-ended learning to (2) human-centred, scienti c methods.

Interactive, Open-Ended Learning

Human-centred machine learning is essentially concerned with the interactive learning of a model from user-provided data [START_REF] Fails | Interactive machine learning[END_REF]. We use the word user here to underline the fact that data may not be harvested by engineers or automatically by implicit measures, but actively created by the human users of the machine learning system. As such, users may iteratively add, delete, or modify example inputoutput data in supervised learning to tacitly engineer a new model over a customized data set. They may also experiment with various algorithm hyperparameters over a unique data set, for example adjusting error preferences in an unsupervised learningbased classi er [START_REF] Kapoor | Interactive optimization for steering machine classi cation[END_REF].

Once they trained the model, they may evaluate it in relation to the task it has been applied to. Rather than the quantitative, goal-oriented criteria used by engineers, human users may use qualitative, open-ended criteria to evaluate the working of a model. For example, Fiebrink et al. showed that musicians may evaluate a gesture classi er from the sonic output that it may produce, rather than on the actual recognition rate produced by the model [START_REF] Fiebrink | Human model evaluation in interactive supervised learning[END_REF]. Experiential aspects of interactive learning may also be important for user evaluation, as several applications in the eld of robotics showed-e.g., not wanting to spend too much time giving reward in reinforcement learning [START_REF] Thomaz | Teachable robots: Understanding human teaching behavior to build more e ective robot learners[END_REF], or not wanting to be asked too many queries in active learning [START_REF] Cakmak | Designing interactions for robot active learners[END_REF].
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Human-Centred, Scienti c Methods Human-centred machine learning essentially relies on methods from the eld of Human-Computer Interaction to deal with user evaluation. Design-oriented methods focus on individual construction and implementation to create innovative interactive systems [START_REF] Consolvo | Theory-driven design strategies for technologies that support behavior change in everyday life[END_REF]. Experimental methods assess a clearly-de ned hypothesis linking a given machine learning parameter with a user experience aspect using a controlled setup [START_REF] Lazar | Research methods in human-computer interaction[END_REF]. User-centred design methods triangulate between theory, design, and observation to understand the needs of human users, design new technology, and put it into use by the same users [START_REF] Mackay | Hci, natural science and design: a framework for triangulation across disciplines[END_REF]. Participatory design methods put an emphasis on all stakeholders of a project in the design process of a new technology [START_REF] Schuler | Participatory design: Principles and practices[END_REF] While HCI includes aspects of crafting, it cannot be considered as a pure design discipline in itself, "because it strives to independently verify design decisions and processes, and borrows many values from scientists" [START_REF] Mackay | Hci, natural science and design: a framework for triangulation across disciplines[END_REF]. Prototypes-a concrete representation of part or all of an interactive system-are central to these design processes and may be considered as design artifacts [Beaudouin-Lafon and Mackay, 2009], as well as to "the design goal of inspiring users and researchers to think about technology" [START_REF] Hutchinson | Technology probes: inspiring design for and with families[END_REF]]. Yet, HCI aims at creating and revising interaction frameworks between users and technology [START_REF] Mackay | Hci, natural science and design: a framework for triangulation across disciplines[END_REF]. Thus, most HCI methods share the scienti c goal of evaluating the bene ts of a new technology for their users to contribute to a model of interaction [START_REF] Hutchinson | Technology probes: inspiring design for and with families[END_REF].

Human-centred machine learning studies the interactive and possibly open-ended uses of machine learning models by humans. It applies scienti c methods to iteratively design prototypes, evaluate human interaction, and build frameworks for human-machine interaction.

Example Musical Applications

In this section, we describe three example musical applications of human-centred machine learning. We present (1) The Wekinator, (2) Grab-and-play, and (3) CoMo, applying machine learning to the practice of motion-sound mapping.

The Wekinator

The Wekinator is a software developed by Rebecca Fiebrink and colleagues at Princeton University, which uses interactive machine learning to let humans map any motion sensor to any sound synthesis engine [START_REF] Fiebrink | A metainstrument for interactive, on-the-y machine learning[END_REF]. Speci cally, it uses supervised learning to create a model that links motion input to sound synthesis output. This model is learned from examples of gestures and sounds that human users may record. They may interactively add, delete, or modify gesture-sound examples, train a model, and experiment with the newly-created model to build their customized model. Typical models include gesture classi ers-built with k-nearest neighbour algorithm-, and sound regression-built with neural network algorithm.

The software was developed through a user-centered design process with many expert musicians implied. It was then applied in many real-world contexts of music practice, such as music composition [START_REF] Fiebrink | Toward understanding human-computer interaction in composing the instrument[END_REF], instrument design and performance [START_REF] Fiebrink | Human model evaluation in interactive supervised learning[END_REF], but also for music pedagogy [START_REF] Morris | [END_REF]Fiebrink, 2013, Fiebrink, 2019]. In all cases, humans valued the interactive supervised learning work ow created by the Wekinator. Speci cally, they appreciated the surprise and unexpectedness enabled by the system, which fostered their creative process. As such, interactive supervised learning may be seen as a similar task to human-machine improvization, where the machine serves as an expressive partner for creation [Fiebrink, 2017].

Many other systems for motion-sound mapping were developed using a similar interactive supervised learning work ow, but di erent algorithms enabling other tasks-e.g., gesture following [START_REF] Bevilacqua | Continuous realtime gesture following and recognition[END_REF], gesture variation estimation [START_REF] Caramiaux | Adaptive gesture recognition with variation estimation for interactive systems[END_REF], or probabilistic modelling [START_REF] Françoise | Probabilistic models for designing motion and sound relationships[END_REF].

Grab-and-play

Grab-and-play is an extension to the Wekinator that I developed during a pre-doctoral research year at Goldsmiths University of London, under the supervision of Rebecca Fiebrink [Scurto, 2016]. It uses interactive machine learning to enable human users to literally grab a controller and turn it into a new, playable musical instrument almost instantaneously. Speci cally, it uses supervised learning to create a motionsound model from a very small amount of data communicating some minimal, soft design constraints-namely, the way the user might want to move while playing. As a data-driven extension, Grab-and-play leverages the same learning algorithms than the Wekinator.

The system was developed through a two-step user-centred design process with composers on the one hand, and disadvantaged children on the other hand. It was then respectively applied to instrument design [Scurto et al., 2016] and music therapy [START_REF] Thompson | Sound control: Supporting custom musical interface design for children with disabilities[END_REF]. The rapid prototyping enabled by Grab-and-play favoured ideation in the creative process of composers and performers, as well as a better focus on the expressive needs of children for music therapists. The diachronic form supported by Grab-and-play makes it similar to a medium, as depicted by the task of human-machine improvization.

CoMo

CoMo is a prototype web application developed by the ISMM group of IRCAM, using interactive machine learning to support movement interaction with sound, speci cally targeting collective interaction using with phones [START_REF] Matuszewski | Designing movement driven audio applications using a web-based interactive machine learning toolkit[END_REF]. The functioning is similar to the interactive supervised learning work ow of Wekinator-human users recording pairs of gesture-sound examples to build custom models-, except that it works at a distributed scale. Speci cally, it enables one human user to build a custom gesture-sound model, and to share it with other human users using the web architecture. Typical models include gesture classi ers-built with gaussian mixture models-and followers-built with hidden markov models.

The application bene ts from extensive participatory design processes implying many performers and movement practitioners and is still under development. It was applied to real-world situations in dance and pedagogy [START_REF] Voillot | Exploring embodied learning for early childhood education[END_REF]. The space for exploration created by the application bene ted the creative practice of dancers, as well as improved playfulness in pedagogical activities. As a machine learning-based distributed application, CoMo also shares the qualities of a medium.

Human-centred machine learning applied to music creates re exive mediums enabling new forms of human expression situated in music practices. For now, only supervised learning and motion-sound mapping have been investigated as machine task and human practice.

Summary

This chapter reviewed the context and related work on the design of machine learning for interactive music systems. We described the cultural and individual aspects of music practices, which have to be taken into account when designing systems for human expression and embodied interaction. We discussed how crafting and engineering may be two complementary approaches to designing the related technical components. We described how the nal interactive music systems may be analysed as providing humans with instrumental control, automatic generation, and collective interaction with music to foster creativity.

We then de ned machine learning as a set of algorithmic techniques that enable to automatically learn a model between input and output from example data only. We reviewed musical applications of machine learning and their enabling of new forms of musical expression, encompassing music information retrieval, music generation, and human-machine improvisation. We discussed how interdisciplinary collaboration may be necessary to situate the research of machine learning in existing music practices and support the design of novel interactive music systems.

Finally, we introduced human-centred machine learning as an emerging eld studying Interactive Machine Learning from a Human-Computer Interaction perspective. We analysed how the eld jointly considers qualitative and quantitative aspects of human interaction in the design and evaluation of machine learning. We described three example musical applications of human-centred machine learning to motivate our choice to adopt this research and design approach for this thesis.

Designing With Unsupervised Learning For Motion-Sound Mapping

This chapter presents the rst study led in the thesis. We decided to focus on the musical task of motion sound mapping to build on previous applications of humancentred machine learning to music (see Section 2.3.3 for a review). Our wish was to generate ideas inside our research group before eventually involving human participants in the design process. As such, our method for this study can be described as design-oriented, where knowledge on both machine learning and the musical task would only be attained attained through the implementation of a model prototype [Fallman, 2003]. Figure 3.1 schematizes the three steps resulting from our use of the method in the study; we describe them below.

Figure 3.1: The design-oriented method for our rst study.

Unsupervised Learning For Motion-Sound Mapping

Section 3.1 describes concepts on motion-sound mapping, covering both human practices and machine systems. Section 3.2 describes the prototyping of our model prototype. Finally, Section 3.3 describes the application of the model to the design of a musical instrument, called somasticks, which we exhibited to expert motion practitioners in a workshop.

This work has been published and presented as paper and poster at the 17th International Conference on New Interfaces for Musical Expression (NIME 2017) in Copenhagen, Denmark [Scurto et al., 2017]. The musical instrument was showcased at the movA workshop (March 2019) in Nantes, France.

Concepts

We start by reviewing the concepts that are relevant to this rst study, describing the related work in the musical task of motion-sound mapping, as well as the machine learning technique that we proposed.

Musical Task: Motion-Sound Mapping

Situating the Musical Task

Motion-sound mapping is a music practice consisting of programming the relationships between an input device-typically, a motion sensor-and an output devicetypically, a sound synthesis engine [START_REF] Hunt | Mapping performer parameters to synthesis engines[END_REF]. It is a creative practice that has long been the speci city of crafters, performers, artists, scientists, and engineers from computer music communities-especially the NIME community.

Recently, motion-sound mapping has become increasingly accessible through the use of interactive machine learning. With these technologies, humans can build custom motion-sound mappings by physically demonstrating examples of gestures for given sounds-thus relying on corporeal knowledge instead of programming skills.

Human-Centred Approaches

Most interactive approaches to machine learning for designing motion-sound mappings have relied on a two-step, iterative design process (see gure 3.2) [START_REF] Françoise | Probabilistic models for designing motion and sound relationships[END_REF]. In the rst step, called training or design step, users perform gestures along with pre-de ned sounds. In the second step, called performance step, users experiment with the newly-created mapping. For example, they can perform similar gestures to the ones they recorded during the design step in order to replay, or reenact, previously-selected sounds; or, they can perform new gestures in order to explore, and discover, new sonic forms. Users must then alternate several times between these two steps in order to succeed in building a subjectively-rewarding mapping.

Several user studies have proven that this iterative design process can support corporeal engagement with sound [START_REF] Bevilacqua | Continuous realtime gesture following and recognition[END_REF], Fiebrink et al., 2010]. However, recent works have raised a number of points yet to be improved [Scurto et al., 2016]. For example, some users may have di culties in designing gestures and evermore to ne-tune mapping. Importantly, Scurto et al. found that users might appreciate machine learning-based mappings that surprise and challenge them through continuous physical interaction [Scurto et al., 2016].

Research by Fiebrink et al. have shown that machine learning can support humancentred creative discoveries in musical motion-sound mapping design [START_REF] Fiebrink | Human model evaluation in interactive supervised learning[END_REF]. For example, criteria such as unexpectedness and accessibility have been praised by computer musicians when composing an instrument [START_REF] Fiebrink | Toward understanding human-computer interaction in composing the instrument[END_REF]. In this spirit, Scurto and Fiebrink proposed new methods for rapid mapping prototyping which shift users' focus from designing motion-sound relationships to the embodied exploration of relationships that have been generated partly by the computer [Scurto et al., 2016].

Machine-Centred Approaches

While most initial research focused on explicit motion-sound relationship programming [START_REF] Hunt | Mapping performer parameters to synthesis engines[END_REF], using machine learning algorithms for mapping design have proven very promising in a musical context where notions of expressivity and generativity are of prime interest [START_REF] Caramiaux | Machine learning of musical gestures[END_REF].

In this context, several supervised algorithms have been studied, depending on the musical task users would like to achieve. For example, Bevilacqua et al. [START_REF] Bevilacqua | Continuous realtime gesture following and recognition[END_REF] focused on gesture following tasks and implemented a Hidden Markov Model to perform continuous tracking on users' gestural data. Fiebrink et al. investigated static mapping building using neural networks for regression tasks and several standard algorithms for classi cation tasks, such as k-nearest neighbors [START_REF] Fiebrink | Human model evaluation in interactive supervised learning[END_REF]. Françoise et al. proposed four static and/or dynamic models able to perform both classi cation and regression tasks [START_REF] Françoise | Probabilistic models for designing motion and sound relationships[END_REF]. Finally, Caramiaux et al. developed a system that recognizes gestures and adapts to performance variations [START_REF] Caramiaux | Adaptive gesture recognition with variation estimation for interactive systems[END_REF]. However, to our knowledge, most of these approaches remained focused on a twostep design process (see gure 3.2), where users alternate between demonstrating gestures along pre-recorded sounds (movement acted from the experience of listening to a sound) and interacting with newly-created mappings (movement acted as having an e ect on sound). This iterative process might interrupt musical intentionality encod-3. Unsupervised Learning For Motion-Sound Mapping ing, which, as theorized by Leman, necessitates an active, action-oriented, corporeal engagement of humans with sound [Leman, 2008]. Interestingly, other computational approaches aimed at providing users with such continuous interactive ows, for example using dynamic mapping strategies [START_REF] Momeni | Dynamic independent mapping layers for concurrent control of audio and video synthesis[END_REF] or physics-based mappings [START_REF] Schacher | The map and the ock: Emergence in mapping with swarm algorithms[END_REF].

Proposed Technique: Unsupervised Learning

Inspired by such approaches and other interactive music systems [Jorda, 2005], we propose to reconsider mapping creation to bridge the gap between design and performance steps. We decide to focus on the machine learning category of unsupervised learning to perform the task of online clustering. Our wish was to allow mappings to adapt to users in real-time while generating sound, thus merging design and performance steps into one fully interactive experience.

Such a task di ers from previous interactive supervised learning approaches: instead of demonstrating gestural examples that have been designed and labeled in a separate step, users physically interact with an adaptive model that constantly generates sound, depending on both previous and current user movement. Importantly, our system thus switches from current mapping-by-demonstration supervised paradigms (where user-provided pairs of gestures and sounds constitute a training set) to an unsupervised learning paradigm (where the training set consists in unlabeled gestural data). However, as we will see, users still have the possibility to consciously in uence the learning by performing and correcting the system.

Prototyping

We describe the model prototype that we designed, in terms of interactive work ow and algorithmic implementation.

Algorithm: Online Gaussian Mixture Model

We implemented an online, unsupervised version of Gaussian Mixture Model (GMM). GMMs are very general and versatile probabilistic models for designing motion-sound relationships, providing with variables for both classi cation and regression at a relatively low computational cost [START_REF] Françoise | Probabilistic models for designing motion and sound relationships[END_REF].

A GMM is a learning model that can perform soft clustering, which is identifying groups of similarity in gestural data and computing for a new data point x each probability that it belongs to each of these clusters. Here, clusters are modelled as Gaussian distributions N , and the probability p of belonging to the overall model θ is given by:

p(x|θ) = K k=1 π k N (x|µ k , Σ k ) (3.1)
There are four categories of parameters in GMM (see gure 3.3 and equation 3.1). The rst one is the number of clusters K, which is the number of multivariate Gaus-sian distributions used in the mixture model. These clusters can be used for classication purposes. Then, each Gaussian distribution has its own mean vector µ k and covariance matrix Σ k , as well as its own weight π k in the mixture. These parameters can be used for regression purposes. In a standard interactive supervised learning setup, such parameters are set and learnt o ine from custom gesture-sound examples demonstrated by users. In our paradigm, the learning is online: Gaussian parameters would evolve in real-time as users supply the model with only gestural data, which support continuous action-perception work ow as speci ed in the previous section.
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.3: Graphical outline of a Gaussian Mixture Model with K = 3 cluster components for 1-dimensional motion data.

In such an online, unsupervised paradigm, we propose to add entropy H = -p(x) ln p(x) as a supplementary parameter for controlling sound synthesis. Entropy can be linked to the amount of information produced by some stochastic source of data [Liu, 2018]. In our case, a human that would always move in the same way would have a low entropy, as he or she would produce few "novel" information. On the other hand, a human that would have lots of variation in his or her moves would produce a higher entropy. Our idea is to report such a high-level measure of the model to use it as another modality for sound generation.

Human Data: Observation

Our wish is to enable users to design mappings in an online fashion, where design would be made possible through performance. We propose the following work ow, which is depicted in gure 3.4.

General work ow

Our system allows users to design machine learning-based motion-sound mappings while performing with them. More precisely, it enables online multidimensional adaptation to users input gestural space by continuously recording input data as the training set of a machine learning algorithm. Both design and performance steps are thus supported under the same motion ow. The modelling of the "internal structure" of users' gestural space can then drive sound synthesis in several manners, all of them being characterized by direct, corporeal interaction with sound and personalized exploration of motion in relation to sound. We designed our system with a particular focus on reducing GUI actions taken in-between performances. One level of interaction with machine learning still remains available to users: similarly to previous mapping-by-demonstration tools, the "setting" step allows for con guring a minimal set of learning parameters as well as input parameters (as described in section 3.2.1). 

Interaction modes

From this de nition, we designed two interaction modes based on di erent memory processes (see Video for an overview). The main concept is to allow users to design parts of their input space through the metaphor of temporal persistence, where "occupation time" (as an "accumulation process") is central to the creation of the training set. There are several other ways to interact online with a machine learning algorithm through its training set: we will discuss it in section 3.4. Guiding The guiding mode ( gure 3.5, left) consists in having users adding gestural data with a sliding temporal window to the training set during the interaction. It can be seen as an interactive music system with a constant-size memory, where users could directly and physically explore sound spaces in order to foster creative discoveries. It allows mappings to evolve continuously, focusing in or out of some spaces in users' gestural input space in real-time following abstract embodied speci cations of users. A typical situation would involve the creation of clusters in a relatively small area of the input space by having users stay in this part of the input space, then its real-time evolution (or guiding) by moving in larger areas of the input space. This personalized interaction relies on an nite memory process where old data would be continuously replaced from the training set by new data.

Shaping The shaping mode ( gure 3.5, right) consists in having users interactively adding and/or deleting gestural data to the training set during the interaction. It can be seen as a continuous extension of previous interactive machine learning systems, where users could delete and re-add a previously-recorded example in a design step by clicking on a button in a design step, then see the e ect in a performance step.

Here, users can add new examples and delete old ones by (re-)demonstrating them, while hearing the sonic consequences in real-time. Like using a pencil with eraser, this would allow rapid, custom, and ne-tuned modi cation of mappings. A typical situation would involve the creation of a new cluster for a new gesture, then its modi cation (or shaping) by adding or deleting variations of this gesture in the recorded data. This personalized interaction relies on an (almost-)in nite memory process where the training set would grow as users successively supply the system with data.

Implementation: Patch

We implemented a prototypical version of our system as a Max/MSP patch1 that makes an extensive use of XMM library for learning GMMs [START_REF] Françoise | Probabilistic models for designing motion and sound relationships[END_REF] and MuBu objects for storing and editing data [START_REF] Schnell | MuBu and friends-Assembling tools for content based real-time interactive audio processing in Max/MSP[END_REF]. The tool's GUI provides users with di erent capabilities (see gure 3.6):

• Connect any kind of gestural input device, provided its data is sent as an OSC message.

• Experiment with di erent kinds of sound synthesis module, provided they receive OSC messages.

• Modify the training set physically either by adding, deleting, or window streaming gestural data.

• De ne the length of the recording window.

• De ne the number of Gaussian components in the GMM.

Currently, our tool supports online learning by training and running a GMM at a su ciently high rate (every 100 ms) so that it remains perceptually convincing in an action-perception work ow [Jorda, 2005]. Gestural data is either stored incrementally or replaced dynamically by making use of overdub and append messages of the MuBu container. The "delete" action is made possible by identifying and deleting the rst nearest neighbour of user live input in the training database. Other implementations and user interfaces could be imagined; we will discuss them in Section 3.4. 

Application: somasticks

We applied our model prototype to the design of a musical instrument, named "somasticks". We led a demonstration at the movA workshop, in Nantes, France, where expert performers and movement practitioners interacted with the instrument.

Description

somasticks are augmented drumsticks that seek to emphasize the somatic side of drumming practice. Contrary to standard drumsticks, somasticks do not need to hit any physical objects to produce sound, but rather leverages on embodied listening to drive musical performance. Speci cally, they may be continuously waved in the air to trigger recorded drum sounds, and explore various playing modes in reaction to the internal sensations that the sounds may produce within the player's body.

somasticks combine unsupervised learning with hardware elements. We used real drumsticks to create gestural a ordances that are naturally related to drumming practice. We embedded the sticks with wireless sensors to feed the Online Gaussian Mixture Model with drumming motion data. We nally leveraged the online behaviour of the unsupervised learning model to design interactive drumming sound processes.

Instrument Design

Hardware

We designed hardware for somasticks in collaboration with IRCAM's Emmanuel Fléty and Arnaud Recher from the PIP group, and Djellal Chalabi from the S3AM group.

Object We used wooden tip drumsticks as physical controllers for somasticks. At the time of prototyping, we used Vic Firth AJ5 American Jazz model, which are wooden tip, lightweight drumsticks designed for standard use. The sticks are 406 millimeters long, 12 millimeters wide, and weigh 36 grams. Any other drumsticks may be used in lieu of these in a customisation setting.

Sensor We equipped each of the sticks with a three-dimensional Inertial Measurement Unit developed in the ISMM team, called R-IoT2 . In addition to the embedded accelerometers, gyroscopes and magnetometers used for motion sensing, we linked three button-like elements to each R-IoT. One piezoelectric sensor allows for the continuous control of one given parameter; two push-buttons allows for discrete triggering of given processes.

Sensor Support We designed a support for linking the sensors to the sticks (see Fig. 3.7). A clippable part allows to x the R-IoT and its button elements to the body of the stick, using a screw to adapt to di erent stick diameters. A sliding part allows to set the position of the R-IoT battery to adjust the center of mass of the augmented stick. The model for the support is 3D-printable and thus allows for potential reproduction. 

Software

We designed a Max/MSP patch for somasticks, which converts the sticks' data into drum sounds.

Motion analysis

We used online wavelet analysis, developed by Jules Frano ¸ise and the ISMM team in the frame of the SkAT-VG3 European project, to extract motion features and inject them in the unsupervised learning algorithm. Wavelet analysis allows to measure the frequencies in a given movement, which is relevant as movements in drumming practice often carry periodicity. We performed one wavelet analysis per stick over its R-IoT accelerometer data, and took the maximum amplitude bin as the main frequency feature for a given stick.

Sound synthesis

We used concatenative synthesis, developed by Diemo Schwarz and the ISMM team, to generate new sound patterns from recorded sounds [START_REF] Schwarz | Real-time corpus-based concatenative synthesis with catart[END_REF]. Concatenative synthesis allows to classify sound samples depending on their spectral content, which is useful for interacting with large corpuses of sound. We created six sound corpuses related to six percussion elements commonly at stake in standard drum kits: bass drum (65), snare drum (77), rack toms (82), hi-hat (133), crash (50), ride (47). The wide number of recorded samples provides a variety of playing modes on the drum kit elements-e.g., from soft to hard hitting-, which is easily analysed and manageable using concatenative synthesis.

Interactive mapping We used the Online Gaussian Mixture Model to design the interactive behaviour of the somasticks (see Fig. 3.8). We used the guiding mode with a recording window of 10 seconds. The two sticks' maximum amplitude wavelet bins serve as two-dimensional data x for the model. Each sound corpus is mapped to one gaussian component, making our model contain K = 6 cluster components.

Figure 3.8: Graphical outline of the mapping used in somasticks. Each of the K = 6 clusters of the model (left, in colors) corresponds to one sound corpus (right, with corresponding colors). The means µ and covariances Σ of the clusters (ellipses) are mapped to the descriptor spaces of their respective corpuses, de ning a region from which samples would be played. All clusters evolve online based on the performer's motion. In the current gure, the performer is in a motion state corresponding to the instantaneous class of snare drums: somasticks will thus play snare drum sounds, with synthesis qualities de ned by both instantaneous and recorded model parameters.

Instantaneous model parameters handle low-level behaviour of the mapping. The model probability p sets the period at which new samples are played: the higher the probability is, the faster the samples would be played. The instantaneous class K de nes the sound corpus from which samples would be played. The Gaussian probabilities N set the respective gains at which samples from the K classes would be played. Our intention was that the performer would have to produce stable quality movements in terms of frequency to be able to control the somasticks' sound output.

Recorded model parameters handle high-level behaviour of the mapping. The weights π set a random variation in the temporal moment where a sample would be played: the more weighted a cluster is the more regular the playing of its samples would be. The means µ and covariances Σ de ne the region of the sound corpus in which samples would be searched, using a k-nearest neighbor algorithm. We used two descriptors from concatenative synthesis (FrequencyMean and LoudnessMean) to set the searched sound space, and scaled them over the clusters' mean values. We computed the two eigen values from the covariance matrix and used their mean value as a mean radius for the k-NN. Entropy was tested in a series of preliminary experiments, but was not used in the latest version of the instrument due to issues in implementation.

Additionnal controls Lastly, the buttons enable direct, non-autonomous control of sound synthesis. The two piezoelectric sensors respectively control the period range over which samples are played using p, and a resampling variation for the samples played. The four push-buttons respectively control: activation of the gain scales set by N , setting of a short, absolute duration (10 ms) for all played samples, activation of online training, and activation of sound.

Demonstration in Workshop

We demonstrated somasticks at the movA workshop, in Nantes, France, during which six expert movement practitioners tried and interacted with them. Our aim was to harvest reactions on the interactive behaviour of the sticks, understanding how its online implementation may be felt by di erent movement experts. Figure 3.9: Picture of a performer playing with somasticks in the movA workshop.

Procedure

Participants were asked to spend time interacting with the somasticks. They were told to follow the following feedback loop: listen to the produced drum sounds, focus on their own corporeal sensations, and move freely with the sticks and their interactive sonic feedback. We only told them that the sticks were responsive to their movements' dynamics, and did not explain the sticks's internal functioning. Participants spent between 5 and 20 minutes exploring the system.

Reactions

Discovering the sticks All participants started interaction by exploring the interactive behaviour of the sticks. While this exploration was meant to understand the functioning of the software mapping, it was hugely in uenced by the hardware a ordances provided by the sticks: "the sticks, really, de ne their very own geometry, so I focused a lot on the trajectories de ned by the lines [of the sticks]", one participant said.

Re ecting on the sticks

The need for time After discovering the sticks, four of the six total participants took time to re ect on their functioning. One of them, who was a dancer, spent twenty minutes without realizing it. She re ected: "One need this time, really [...]. Because it was very loud from the very beginning. At the time when I put the headphones on, there is already sound and stu , and as I must adapt to the system, it is as if I was already late, I needed to understand it quickly". Another one, who had experience in drumming, inquired his own sense of control with the sticks: "It took me time, I took actions, but when I stopped, I've started to question: Was it just an illusion?", he said.

Adapting one's motion

Beyond re ecting on the system, the sticks had the four participants re ect on their own movement practice. The grasping a ordances of the sticks had two participants feel an assymetry in their motion: "It was really interesting to move with the sticks. [...] I rapidly realized that I was very lateralized, in the sense that my right hand dominates, and I am not trained in drumming", one participant analysed. A third participant also modi ed its movement exploration, this time in relation to the act of drumming: "As soon as I saw it, I thought that I can play [the drums]. Thus, I begin to sit down", she commented.

Appropriating the sonic mapping Three of the four participants appropriated interaction with the somasticks in relation to the sounds that they produced. "For me, there is something very attractive in the fact that there are moments of synchrony and moments of autonomy. And in its autonomy, there were lots of variation still, so it was always interesting to listen to, and move along with", one expert reported about the interactive mapping. Another one seemed to understand the windowed implementation of the unsupervised learning mapping: "I understood that there was a reaction at this level. [...] I understood that there was a delay. This meant that if I am doing the same thing during three seconds, the totality [sic] will come after", she said. The last one of the three was rst "in quest of silence" trying not to move, then seemed to gain control over the wavelet-based implementation of the sticks: "There is a kind of obstacle course that appeared. [...] It was when I made small movements that I managed to refocus on what I was doing, and to take back control over the system", she said.

Link with Expertise Despite the playful moment of interacting with the sticks, the two remaining participants did not manage to understand the sticks' functioning. One of them related this by his lack of expertise in drumming: "I do not know all these sensations [of drumming], so it was a bit harder for me to nd the good movement qualities", he analysed. The other was rather disturbed by the physicality of the sticks, which had him want to play them on an actual drum: "I think it could be great, even to re ne the system in a kind of design process, to play it with something, you know, just, like an augmented instrument", he said.

Discussion

In this section, we discuss challenges related to machine learning implementation, as well as insight for general human-machine interaction.

Challenges in Implementation

Our current system relies on one learning model (GMM) and a slider-based GUI. Future work may implement an online expectation-maximization algorithm for continuous, optimized learning and inferring, and investigate interactive visualizations of Gaussian distributions to let users interact in an audiovisual augmented reality setup. Information-theoretic measures such as entropy may be better formalized and implemented to enable alternative mapping explorations.

Also and importantly, we would like to prototype other unsupervised learning models, allowing for even more diverse musical uses. For example, a current limitation of the Gaussian Mixture Model is that it considers each new input as independent from previously-observed data points. Such a property might not be suitable to human movement, as dynamics are deemed of prime importance when dealing with qualities of corporeal expressiveness [Leman, 2016]. Therefore, modelling dynamic patterns in gestural data could be a promising approach for generating sequential musical output that would be stylistically coherent with users' bodily expression. Future work may study adaptive dynamical systems to both model user-speci c movement qualities and to generate continuous navigation trajectories [START_REF] Kulic | Incremental learning of full body motions via adaptive factorial hidden markov models[END_REF]. Another approach would be to study a reactive factor oracle [Chemla et al., 2015] to let users either shape a training set of movement patterns, or guide a discrete navigation through this training set.

Finally, our current implementation does not provide humans with a completely continuous way to interact with machine learning. If the number of GUI actions has been reduced from previous interactive supervised learning systems, users still have to specify whether they would like to record, delete, or window stream data during their performance. Other memory processes may be investigated to allow automatic recognition of physical actions taken by users [START_REF] Kulic | Incremental learning of full body motions via adaptive factorial hidden markov models[END_REF], thus mediating embodied musical interactions more uidly.

Designing for Human Exploration

Observations harvested during the demonstration of the somasticks suggest that the design through performance work ow importantly rely on listening abilities in relation to motion. Such an online listening work ow helped expert performers explore a variety of musical situations, which inspired their creative practice. As such, design through performance may be analysed as a work ow aimed at improving ow in creative practice [Csikszentmihalyi, 1997]. Future work may investigate interaction over longer periods of time to study how somasticks support ow states in relation to appropriation and learning time.

While the somasticks only relied on the "guiding" interaction mode to provide such ow, the "shaping" mode remains implemented under the same experiential work ow (action-perception loops emerging from physical interaction with sound. This could enable alternative exploratory uses by performers. For example, one could add data to the training set inde nitely to create a mapping that would progressively "freeze" once having recorded enough data. Also and perhaps surprisingly, the "Delete" action actually produces sound: one could imagine a performance where "Delete" gestures would act as control mechanisms for sonic events. Several new interaction styles could thus be explored with our tool, each of them placing corporeal engagement with sound as the main point of focus.

In the context of this thesis, we decided not to go deeper in the study of motionsound mapping to re ect on the broader idea of supporting ow with machine learning. Speci cally, we became interested in the concept of supporting human exploration. This new strong concept [START_REF] Höök | Strong concepts: Intermediate-level knowledge in interaction design research[END_REF] emerged from the design of our model prototype aimed at movement-based human performance. As a matter of fact, the online adaptation of our model prototype enabled human exploration of various motion-sound mappings, as well as of various movement strategies in relation to sound. We were interested in researching other applications of human-centred machine learning that could address the issue of human exploration for other musical tasks. This will be the theme of the two next chapters.

Designing With Reinforcement Learning For Sonic Exploration

This chapter presents the second study led in the thesis. Based on the insight harvested in our study of motion-sound mapping, we decided to focus on the musical task of sonic exploration. Sonic exploration consists in listening to many di erent sound designs to converge to a nal sound design. Our idea is to use machine learning to enable autonomous sonic exploration in close partnership with humans.

Sonic exploration is a multimodal task that involves both sound listening and interface actioning from humans. We decided to address these two modalities through two separate studies. In this chapter, we adopted an experimental method [START_REF] Lazar | Research methods in human-computer interaction[END_REF] to study how humans perceive autonomous machine exploration through sound listening only. Figure 4.1 schematizes the three steps of our study. The issue of interface actioning in sonic exploration will be addressed in Chapter 5. Section 4.1 describes concepts on sonic exploration, covering musical context along with our proposed machine learning technique. Section 4.2 describes the model prototyping step of our design process. Section 4.3 reports on observations led in a controlled setup, studying human perception of our model in the task of sonic exploration.

This work was published and presented as paper and presentation at the 15th Sound and Music Computing Conference (SMC 2018) in Limassol, Cyprus [Scurto et al., 2018a]. Concepts were published and presented as paper and presentation at the Journées d'Informatique Musicale (JIM 2018) in Amiens, France [Scurto and Bevilacqua, 2018].

Concepts

The introduction of the computer in music has brought a wealth of novel practices around sound and music. Cutting-edge technologies have been developed for sound synthesis, processing, analysis, and control, enabling the emergence of new music works, practices, notations, and performances. However, such new technologies remain hard for people to appropriate. While music computing is now taught in many music institutions, it still su ers from its apparent complexity. As a consequence, many musicians stay attached to their classical practices and resign to appropriate music computing, while many musicians-to-be never take a chance to explore music computing systems. This is paradoxical as computing has become ubiquitous in the last ten years. Can we think of a computer tool that would facilitate exploration and appropriation of music computing systems? We focus on a particular use case of music computing appropriation. The use case refers to the situation where a user makes use of a music computing system on his or her own, outside educational institutions-e.g., amateur music practices led in a home studio. In this situation, appropriation issues arise during the rst uses of the music computing system.

Appropriation in Music Computing

Starting using a system generally requires gathering information on it-in a passive learning setup. Information on a system can be found in various media, from the most straightforward (e.g., a text or video tutorial) to the most technical (e.g., a research paper), as well as through online discussion (e.g., an Internet forum). These activities are often time-consuming: users rst have to nd relevant information (which can be hard for obsolescent systems), then to lter it (i.e., nd what is useful for a speci c goal), supposed that they have a speci c goal in mind. Overall, time spent on passively learning hinders users to interact with sound and music directly, which might drive them away from experimenting with the system.

Another option, which could be combined with the rst, consists in starting interacting with the system's interface from scratch-in an active learning setup. Interacting with the interface implies trying many di erent actions directly to understand the functioning of the system (in a trial-and-error fashion), and eventually to achieve a speci c goal. In our case of music computing, these activities are crucial as it is important for users to actively control sound so as to strengthen action-perception loops [Leman, 2008]. Yet, it is also possible that users get discouraged in interacting with the interface if they get too much error during their trials. Notions of appropriation [START_REF] Zappi | Dimensionality and appropriation in digital musical instrument design[END_REF] and novice to expert transition [START_REF] Cockburn | Supporting novice to expert transitions in user interfaces[END_REF] are thus crucial in the design of interactions at stake in a given interface.

Human-Computer Interaction in Music Computing Systems

We identify two drawbacks of current music computing systems in the context of appropriation. First, most music computing systems' interfaces can look quite intimidating for completely novice users. Some of them directly derive from their analog ancestors (e.g., sound synthesis engines, see Figure 4.2, or spatialization tools [START_REF] Carpentier | Twenty years of ircam spat: looking back, looking forward[END_REF]): they are thus designed for expert users, not to facilitate interaction for novice users. There do have been attempts to improve interface accessibility of these systems [Cartwright et al., 2014, Cartwright and Pardo, 2014, Schwarz et al., 2006]. Yet, these interface simpli cations are often done to the detriment of the system's abilities: after having appropriated some tasks, humans become limited by the interface's lack of sophistication. The second drawback is that music computing systems often rely on complex models and representations that are not directly linked to sound. For example, improvisational systems [START_REF] Assayag | Omax brothers: a dynamic topology of agents for improvization learning[END_REF] require humans to have knowledge on mathematical models, as well as on musical representations, to understand how parameters relate to sound. Similarly, musical environemnts such as Max or PureData require to learn new representations as well as programming to start interacting. This drawback also concerns expert musicians-who might know a certain amount of musical parameters, but do not know how they relate to new mathematical parameters-, and constitutes a major issue for music pedagogy-as such music computing systems have been shown promising for instrument learning [START_REF] Cont | Antescofo: Anticipatory synchronization and control of interactive parameters in computer music[END_REF] and embodied practice [START_REF] Bevilacqua | Wireless sensor interface and gesture-follower for music pedagogy[END_REF].

Musical Task: Sonic Exploration

We believe that designing for exploration could be a way to improve appropriation of these interfaces and representations. Exploration is the early phase of learning during which a human iteratively acts on an interface and receives feedback information, allowing him or her to gradually grasp the system's functioning and qualities. As discussed previously, it is a crucial phase in appropriation regarding learning and skill development, as good or bad initial experience will determine the future degree of motivation and involvement of a learner term for a given task [START_REF] Cockburn | Supporting novice to expert transitions in user interfaces[END_REF]. By supporting exploration phase, our wish is to lower the threshold for learners to directly interact with the system and sense its abilities, paving the way for further understandings of how the system actually works.

Situating the Musical Task

Exploration of music computing systems is a multimodal task. One may distinguish between sonic exploration and interface exploration. Sonic exploration consists in listening to several features of a sound to learn what qualities the created sound should possess. Interface exploration consists in acting on the parameters of an interface to learn how to create this sound. While the two modalities are intertwined, we decided to rst focus on the sonic exploration task only1 . Our wish was to test whether listening could be used by non-musicians as an expressive modality to explore and appropriate musical interfaces [Leman, 2016].

As a remark, sonic exploration tasks also concern a wide variety of expert musicians. For example, composers explore various sketches of their musical ideas to write a nal score; performers explore di erent playing modes to shape an instrument's tone; sound designers explore several digital audio parameters to create unheard-of sounds [START_REF] Monache | A toolkit for explorations in sonic interaction design[END_REF], Delle Monache et al., 2018]. Our interest lies in designing techniques that may support sonic exploration for both musicians and nonmusicians. Speci cally, we are interested in developing interaction modalities that may allow humans to leverage their listening perceptive abilities to explore sounds.

Machine-Centred Approaches

In the last decade, the eld of Interactive Machine Learning has enabled exploration of music computing systems by emphasizing embodied interaction with sound. Supervised learning is the technique that has been mainly investigated in interactive machine learning, especially for motion-sound mapping [Françoise et al., 2014, Carami-aux andTanaka, 2013]. Human interaction with supervised learning consists in demonstrating example gestures to the learning algorithm so that it can learn to recognize them on the y. Exploration within supervised learning either takes place during the training phase (where humans can experiment with several examples of di erent gestures), or during the running phase (where they can explore interpolations between given examples) [START_REF] Fiebrink | Toward understanding human-computer interaction in composing the instrument[END_REF]. This two-phase work ow has been shown useful for a number of tasks; however, it has been shown limiting in some cases, for example when humans want to slightly modify a given design [Scurto et al., 2016].

Sequential adaptation have been investigated for interacting with autonomous agents [Assayag, 2014], in a design through performance fashion [Scurto et al., 2017]. Human interaction with autonomous agents consists in generating example musical content for guiding agents' musical behavior. Exploration within autonomous agents mainly consists in continuous musical improvization with the agent [START_REF] Nika | Dyci2 agents: merging the" free", " reactive", and" scenario-based" music generation paradigms[END_REF]. This online learning work ow has been shown useful for performance cases (which require continuous generation and reactivity) [START_REF] Assayag | Omax brothers: a dynamic topology of agents for improvization learning[END_REF], Pachet, 2003] but may not be fully adapted to more general, "o ine" design cases. Crucially, it still coerces humans into demonstrating expert musical examples to explore new behaviors, which might prevent non-musicians from interacting with these systems.

Human-Centred Approaches

From a pedagogical point of view, the potential of interactive machine learning systems has been identi ed, yet little exploited. For gestural control of sound, they have been cited as allowing "learners to experience components of higher-level creativity and social interaction even before developing the prerequisite sensorimotor skills or academic knowledge" [START_REF] Morris | Using machine learning to support pedagogy in the arts[END_REF]. Interestingly, novel application domains, such as music therapy and musical expression for people with disabilities, have also emerged [Scurto et al., 2016]. We believe extending interactive machine learning approaches to other music computing systems could constitute an opportunity to widen the reach of more music computing practices to more people.

Many expert musicians reported that interactive supervised learning systems offered space for exploration [START_REF] Fiebrink | Toward understanding human-computer interaction in composing the instrument[END_REF], often personifying them as collaborative partners because of their ability to learn implicit musical properties similarly to a human musical collaborator [Fiebrink andCaramiaux, 2016, Pachet, 2003]. Recently, new interactions with supervised learning algorithms have been investigated to support exploration for both novice and expert users. Scurto et al. implemented a machine learning tool able to generate many alternative user-adapted mappings from only one motion stream [Scurto et al., 2016]. This work ow avoided users to re ect on what examples they should demonstrate for reaching a goal: rather, it enabled them to focus only on subjective, evaluative exploration of many prototypes. Users valued the space for exploration o ered by such autonomous generation abilities. However, they expressed a lack of control over the system, as generation remained fully autonomous and not adaptive-neither sequentially, nor subjectively.

Proposed Technique: Reinforcement Learning

To assist sonic exploration, we nd it relevant to use the metaphor of transmission of knowledge between humans. Consider a human that has an idea but does not know how to convert it in a concrete realization. Usually, the human will ask assistance to a second human to realize this conversion-we call it the assistant. Iterative interaction between the two humans takes place, during which the assistant takes actions on the system and the human gives feedback on it-until converging to a nal design. Our idea is to have a machine learning agent take the role of the assistant: the agent acts on the system, upon which the human gives feedback. The agent thus explores design possibilities in collaboration with the human, letting the human focus solely on aligning their conceptual space with the perceptual space o ered by the agentpostponing the sensorimotor and/or academic learning phase to a later phase.

Reinforcement Learning

We propose to investigate the interactive use of a speci c category of machine learning, called reinforcement learning. Reinforcement learning de nes a formal framework for the interaction between a learning agent and an environment in terms of states, actions, and rewards [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. At time t, an agent senses its environment through an observation called state S t (typically, a vector of discrete parameters), and on that basis takes an action A t on it (typically, a set of discrete modi cations on these parameters). At time t + 1, in response to its action, the agent receives a reward R t+1 from the environment, as well as a new state S t+1 . From this information, the agent iterates interaction, progressively learning how to optimize interaction with the environment so as to maximize the total amount of reward it receives over the long run.

Reinforcement learning di er from supervised (and unsupervised) learning categories. For the latters, learning typically occurs o ine on the basis of a static training dataset, which is a set of labeled (or unlabeled) examples we would like the system to generalize behaviour from. In reinforcement learning, the agent learns online by directly interacting with its environment. As a result, a reinforcement learning agent must always balance between exploration and exploitation to improve its learningexploration meaning trying new actions to discover which ones yield the most reward, and exploitation meaning choosing the best actions in terms of reward at the time of computation.

Proposed Work ow

We are interested in interactive approaches to reinforcement learning, such as shown in Figure 4.3. In this approach, the reinforcement learning agent receives the reward signal directly from the human feedback. Research in other elds such as robotics [START_REF] Thomaz | Teachable robots: Understanding human teaching behavior to build more e ective robot learners[END_REF] and computer science [Knox andStone, 2009, Christiano et al., 2017] have made huge progress toward the development of interactive agents capable of learning speci c tasks from human feedback. These agents support sequential adaptation without needing example demonstrations, but only by receiving human feedback as subjective evaluations of the autonomously-generated behaviors. Interaction between the human and the music computing system is mediated by a learning agent (in blue). At time t, the agent acts directly on the system's parameters. At time t+1, the system generates a new state (for example, a sound), that is subjectively evaluated by the human through feedback. By iterating the loop, the agent learns how to explore.

There is still relatively few works investigating reinforcement learning in the eld of music computing [START_REF] Fiebrink | The machine learning algorithm as creative musical tool[END_REF]. [START_REF] Derbinsky | Exploring reinforcement learning for mobile percussive collaboration[END_REF] proposed to apply reinforcement learning to rhythm modelling, in a goal-oriented task. Our approach di ers from these works, in the sense that we focus on interactive agent teaching from the human point of view (how it is "ecient" for the human, not necessarily for the agent). Also, it extends research in other elds on interactive reinforcement learning in the sense that the open-ended task of sonic exploration may have di erent properties than the goal-oriented tasks usually investigated-such as learning how to play Tetris [START_REF] Knox | Interactively shaping agents via human reinforcement: The tamer framework[END_REF].

We propose to conceptualize the application of interactive reinforcement learning to human exploration as "co-exploration" (see Figure 4.4). We are inspired by prior work studying phenomenons of co-adaptation between humans and machines, which were shown to reduce the human's cognitive overload during the carrying of a task [Mackay, 2000]. Here, co-exploration stands for collaborative human-agent exploration of a given music computing system. The human explores the sonic possibilities o ered by the system (progressively learning aesthetic qualities in the system), while the agent explores the computational parameterizations of the system (progressively learning which system parameters are relevant for the human). Design through co-exploration encapsulates the possibility for a (possibly novice) human to create a musical artifact from a (possibly unknown) computer system by collaborating with a learning agent in the exploration of design possibilities. A typical scenario would imply the agent generate an initial random solution to the human, who would progressively shape it through her preferences. As we saw it, human interaction with the music computing system is mediated by an agent. Concretely, this means that the human does not interact with the system's interface: an agent does it instead. Instead, the human focuses on giving evaluative feedback on the agent's actions, judging the system's output on a perceptual level. Potentially, this feedback could be of any typebe it text-based, demonstration-based, or physiological.

Human Exploration Agent Exploration

Co-Exploration In a standard situation (behind), a human explores a system by iteratively acting on it. In co-exploration (front), a learning agent explores a system in parallel to the human.

Prototyping

In this section, we describe the model prototype that we implemented to apply interactive reinforcement learning to the musical task of sonic exploration.

Human Data: Feedback

Our initial wish is to allow humans to explore sound by only communicating positive or negative feedback data. Advantages are threefold. First, it could encapsulate several kinds of feedback in one unique format, such as general advice (e.g. "this is good", "this is bad"), implicit knowledge (e.g. "do it more like this", "don't go that way"), as well as explicit speci cation (e.g. "this is exactly what I want", "never show me this again"). Second, it could be expressed relatively easily (compared to text-based feedback, which forces users to create a concrete verbalization of what they want). Third, it could give a sense of agency to the human (compared to physiological feedback, which most humans do not control). Overall, we hypothesize that communicating such high-level feedback could facilitate musical exploration of a system compared to specifying its low-level parameters.

To implement interaction with such agents, we must modify the formal framework de ned above. We propose, along with previous works [START_REF] Thomaz | Teachable robots: Understanding human teaching behavior to build more e ective robot learners[END_REF], Knox and Stone, 2009, Christiano et al., 2017], that a human would be responsible for giving reward to the agent (see Figure 4.3). Our hypotheses are that the numerical reward may constitute a feedback channel from the human to the agent (respectively giving positive, zero, or negative reward for positive, neutral, or negative feedback), and that interactively communicating feedback toward the environment following the agent's exploration path may support human exploration.

Algorithm: Sarsa

We implemented Sarsa, which is a standard algorithm to learn how to act in many di erent environment states [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. It di ers from multi-armed bandits, which learns how to act in one unique environment state [START_REF] Lomas | Interface design optimization as a multi-armed bandit problem[END_REF]. Formally, the environment is constituted by the parameters of some sound synthesis engine, and the agent iteratively acts on them. Computationally, we considered the state space S = {S} constituted by all possible parameter con gurations S = (s 1 , ..., s n ), with n being the number of parameters, and s i ∈ [s min , s max ] being the value of the i th parameter living in some bounded numerical range (for example, s i can control the level of noise normalized between 0 and 1). We de ned the corresponding action space A(S) = {A} as moving up or down one of the n parameters by one step a i , except when the selected parameter equals one boundary value:

A(S) =        ±a i for s i ∈]s min , s max [ +a i for s i = s min -a i for s i = s max (4.1)
An ε-greedy method de nes the autonomous exploration behaviour policy of the agent-how it may act by exploiting its accumulated feedback while still exploring new unvisited states [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. It consists in having the agent take an optimal action with probability ε, and reciprocally, take a random action with probability 1 -ε. For example, ε = 1 would con gure an always exploiting agent-i.e., always taking the best actions based on accumulated feedback-, while ε = 0 would con gure an always exploring agent-i.e., never taking into account the received feedback.

Observation

As a rst step toward co-exploration, we led a controlled experiment with human participants. Our aims were to: Test how humans perceive interaction with a reinforcement learning agent for sonic exploration; Understand how reinforcement learning elements may in uence humans leading sonic exploration.

Setup: Controlled Experiment Participants

We recruited 12 participants (average of 26.9 years old, σ = 7.44, 5 Female and 7 Male). Half of them were music computing practitioners. The other half did not have training in music computing, nor other sound-related creative practice. All of them reported normal hearing.

Task

The basic task of the study was to guide an agent through a sound space, from the lowest to the brightest sound. At each step of the task, the agent would generate a new sound. If the new sound was brighter than the previously generated one, participants had to give positive feedback to the agent. In any other cases (lower or similar brightness), participants had to give negative feedback to the agent. The task automatically ended in two cases: either the brightest sound was reached, or it was not reached after a maximum number of steps (we set it to 150).

At the end of the task, participants were asked to rate their perception of the agent according to three aspects related to collaboration. The rst aspect was the degree of agency provided by the agent through feedback ("did the agent seem to take into account your feedback in a reactive manner, or did it seem to act completely independently?"). The second aspect was the degree of assistance provided by the agent throughout the task ("did the agent seem to generate sounds that were brighter, or did it seem not to be of any help in going in this direction?"). The third and last aspect was the degree of easiness of the task ("overall, did the task seem to be very easy, or very di cult?").

Agents

Three types of agents were evaluated: "random", "balance", and "exploit". These correspond to three di erent degrees of exploration (ε = 0: the agent only takes random actions; ε = 0.5: the agent balances random action selection with feedback-based best action selection with probability 0.5; ε = 1: the agent only selects the best actions as indicated by user feedback). Other agent parameters were xed so that exploration would be the sole varying factor.

Musical Environments

Sounds were generated through a FM synthesis2 engine (implemented in Max/MSP), with two discretized parameters. The rst parameter, called modulation index, could take ten values ranging from 3 to 70; the second parameter, called harmonicity ratio, could take three values ranging from 0.98 to 1.02. The resulting sound space thus had 30 possible states, corresponding to 30 static sounds. As previously explained, the agent's possible actions consist in moving up or down one of the two parameters. For the sake of the experiment, we normalized sound loudness empirically so they perceptually appear of equal intensity, and we set sound duration to 500 ms.

Based on this sound space, we designed two environment models in close relationship with the task's goal: "unobstrucked", and "obstrucked" (see Figure 4.5). In the unobstrucked environment, brightness increases linearly with modulation index: highest brightness thus corresponds to highest index value. We expect "balance" and "exploit" agents to be more collaborative than "random" agents through their ability to learn and select the best actions.

Unobstrucked Environment

Obstrucked Environment In the obstrucked environment, brightness varies nonlinearly with modulation index: highest brightness still corresponds to highest index value, but a local maximum lives at one third of the scale. Our hypothesis is that "exploit" agents would remain stuck in this local maximum, whereas "balance" agents would overcome it through their ability to explore. We thus expect "balance" agents to be more collaborative than "random" and "exploit" agents.

Procedure

The experimental session consisted of a familiarization phase and an experimental phase.

Participants rst had to read the task's instruction and could ask the experimenter for clari cation if necessary. Then, they had two test tasks in the unobstrucked environment with two types of agents (one "exploit", then one "random") to familiarize with the range of sounds and agent behaviors at stake. Sounds were presented as pairs to participants (using headphones), so as to facilitate brightness comparison between the previously-generated sound and the new one. Participants could listen to a pair of sounds as many time as they wanted to (using a keyboard key) before giving positive or negative feedback to the agent (using left or right arrow keys). Once a task was over, participants had to rate the agent's behavior for each of the three previouslydescribed aspects on 9-point Likert scales (using the mouse and interactive sliders). We asked participants to use the full scales as much as they could.

Once this phase was over, participants could start the experimental phase. The rst stage only concerned the unobstrucked environment: participants were asked to guide and evaluate each of the three types of agents within it. For improving consistency, participants made three trials with each of the three agents. A stage thus consisted in nine tasks that were randomized in order. Finally, the second stage only concerned the obstrucked environment: similarly, participants guided and evaluated the three types of agents three times each, in a random order. Participants were allowed to take a break at any time during the session, which lasted one hour on average.

Results: Statistical Analysis

For each participant, we recorded step-by-step data (time, states, actions, feedback and ratings), as well as audiovisual data of users. Prior to analysing them, we report on synthetic data generated before the actual experiment.

Synthetic Trial Data

We programmed synthetic feedback users of same number as participants to generate a benchmark on how agents should ideally behave in our two environment models. This case corresponds to participants giving perfectly consistent feedback.

We measured the percentage of successful trials (which re ects the probability of reaching the goal), as well as the mean number of steps taken in a trial (which re ects a trial's duration), for each type of agent and in each of the two environ- Planned contrasts showed that both measures signicantly di ered for "balance" and "exploit" agents compared to "random" agents. Likewise, in the obstrucked environment, the e ect of exploration was signi cant for number of successful trials [F (2, 22) = 44.7, p < 0.001] and mean number of steps [F (2, 22) = 26.3, p < 0.001]. Planned contrasts showed that both measures signi cantly di ered for "balance" agents compared to "random" and "exploit" agents.

Participants' Trial Data

We rst measured participants' feedback behavior. In the unobstrucked environment, participants gave a mean of 393 feedback every 1.91 s, with 96.3% being correct. In the obstrucked environment, participants gave a mean of 879 feedback every 1.84 s, with 98.0% being correct.

Similarly to synthetic users, we measured the percentage of successful trials, as well as the mean number of steps taken by each of the three agent types, in each of the two environments (see Figure 4.7). We used the mean of all trials in each condition for each participant. For both environments, we submitted both measures to a one-way ANOVA with agent exploration as the within-subject factor. In the unobstrucked environment, the e ect of exploration was signi cant for percentage of successful trials [F (2, 22) = 6.49, p < 0.005] and mean number of steps Planned contrasts showed that both measures signi cantly di ered for "balance" agents compared to "random" and "exploit" agents.

Participants' Evaluation Data

We computed the standard score (also called z-score) for each evaluation ratings in each environment to compare participants on the same scale (see Figure 4.8).

For each environment, we submitted each z-score to a one-way ANOVA with agent exploration as the within-subject factor. In the unobstrucked environment, the e ect of exploration was signi cant for all three perceptual aspects ([F (2, 22) = 429.3, p < 0.001] for agency; [F (2, 22) = 767.3, p < 0.001] for assistance; and [F (2, 22) = 335.2, p < 0.001] for easiness). Planned contrasts showed that all three perceptual ratings were signi cantly higher for "balance" and "exploit" agents than for "random" agents.

Likewise, in the obstrucked environment, the e ect of exploration was signicant for for all three perceptual aspects ([F (2, 22) = 8.32, p < 0.002] for agency; [F (2, 22) = 4.53, p < 0.02] for assistance; and [F (2, 22) = 5.26, p < 0.02] for easiness). Planned contrasts showed that all three perceptual ratings were signi cantly higher for "balance" agents than for "random" and "exploit" agents. Finally and as shown in Figure 4.9, we measured that participants' perception of task easiness was correlated with the total number of steps taken by all types of agents, in both environments.

Discussion

In this section, we discuss our experiment's results and extract implications for future investigations of interactive reinforcement learning applied to sonic exploration.

The Usefulness of Balancing Exploitation with Exploration Synthetic trial data

We rst look at synthetic trial data to analyse agents' ability to reach a goal in a non-interactive setup. In the unobstrucked environment, as expected, all agents that took into account feedback ("balance" and "exploit") always succeeded in reaching the goal, with "exploit" agents being the fastests as they took the best action at each step; "random" agents reported the worst performance, succeeding only two thirds of the time with lower speed. In the obstrucked environment, conversely, "exploit" agents never succeeded in reaching the goal. As expected, they remained stuck in the local maximum that we designed. In this case where an obstacle blocks the way to the goal, "balance" agents remarkably outperformed other agents in both speed and number of success. This proves that agents' balance between exploitation and exploration may be useful for reaching a goal in environments of varying complexities.

Participants' trial data

Participants' trial data di er from synthetic trial data because of imperfect feedback occasionally given by users. Despite this di erence, agents took exploration paths that were similar to those generated with synthetic users in ve out of six agentenvironment cases, as shown in Figure 4.7. In the remaining case of "exploit" agents exploring the obstrucked environment, one third of the trials were successful, which means that agents unexpectedly managed to overcome the obstacle that we designed to reach the goal. This proves that agents can take di erent paths in an interactive setup where users make feedback mistakes.

The In uence of Exploration Path on User Perception Perceiving collaboration

We now analyse participants' subjective evaluations to better understand how exploration might be perceived by users. First, we observe that participants' ratings had more variability in the obstrucked environment than in the unobstrucked environment. This suggests that an environment's complexity may strongly in uence how humans perceive agent exploration. Second, we noticed that participants rated down "exploit" agents in the obstrucked environment, even if one third of them succeeded in reaching the goal, as we previously discussed. This proves that the path taken by agents during exploration may be more critical to how collaborative agents are perceived by users than the actual fact of reaching the goal.

Looking more in detail to participants' ratings, we can see that "balance" agents were the only type of agents that were perceived as being the most assistive in both environments, thus re ecting their quantitative usefulness. As expected, "random" agents were perceived as providing the less agency in the unobstrucked environment: this suggests that participants may be able to perceive when an agent learns along its path-in other words, there was no "placebo e ect" toward agents' arti cial intelligence. Finally, even if "exploit" agents formally take the best action at every step as de ned by participants' feedback, this may not be perceived by participants, as their ratings of agency shows (see Figure 4.8, bottom). This con rms that an agent's internal functioning may not be properly perceived by humans, whose perception might be more in uenced by the path taken by agents in a given environment. Results shown on Figure 4.9 seem to con rm this statement, as one of the evaluation ratings correlates with one of the task parameters, regardless of the type of agent at stake.

Personifying agents

Interestingly, audiovisual recordings show that all participants personi ed agents depending on their perceived collaboration. For example, agents that took relatively direct paths to the goal provoked positive reactions (such as "it understood right away") and adjectives (e.g., "nice", or "careful"). On the other hand, agents that took more complex paths-such as "random" agents, or "exploit" agents that remained stuck in the obstacle-inherited depreciative reactions (e.g., "it doesn't listen to me", or "it seems light-headed") and adjectives (e.g., "idiot"). This might be a rst clue-to some extentfor stating that feedback-based interaction may encourage users to perceive agents as embodied partners-in some cases able to act as collaborators.

Towards Co-Exploration

The issue of human moving goals

In our experiment, we forced participants to follow a xed feedback strategy: this might limit the reach of our experiment's results. Indeed, such feedback constraint might not be realistic in real-world exploration, mainly for two points: (1) users might change their feedback strategy, and (2) their goals might evolve over time. These situations are typical of real-world scenarios, where users may push systems in limit conditions [Jorda, 2005], or may want to explore several alternative strategies [START_REF] Fiebrink | Toward understanding human-computer interaction in composing the instrument[END_REF]. Investigating these points constitute next steps toward turning our interactive reinforcement learning system (where the goal to be learned was xed) into a co-exploration system (where the goal to be learned might evolve as the human uses the system).

Improving algorithms or interactions?

We identify two main directions for addressing these points-stressing that these directions should be complementary. The rst option corresponds to investigate other reinforcement learning algorithms. As said, our current prototype implements the Sarsa algorithm, which is a standard method for reinforcement learning. Other approaches to learning may be better adapted to our co-exploration use case. For example, one may investigate methods that are robust to non-stationary feedback [START_REF] Knox | Interactively shaping agents via human reinforcement: The tamer framework[END_REF]. Alternatively, one may also investigate approximate policy learning algorithms [START_REF] Sutton | [END_REF]Barto, 2011, Christiano et al., 2017] for learning relevant representations of an environment without having to explore it in its entirety.

The second option corresponds to design new interactions that may better t interactive uses of reinforcement learning algorithms. As shown in our study, humans may not always perceive how a learning system internally works. In order to give more control to the human, one could imagine allowing humans to modify agent parameters during interaction, for example by actively choosing the degree of exploration they may need. Also, one could allow humans to go backwards in the agent's learning process, or to restart learning at any time, so as to give space for iterative, exible exploration patterns [START_REF] Resnick | Design principles for tools to support creative thinking[END_REF]. Again, all these developments are not contradictory, and we believe that both directions should be considered in future research.

Connecting agents to real-world systems and situations

Finally, our experiment focused on models of musical environments whose dimensionalities may not fully re ect those of standard music computing systems to be explored by users. Yet, we argue that investigating such models have provided useful insights on how agents would take exploration paths in real-world music systems.

In the context of this thesis, we decided to continue the application of reinforcement learning to sonic exploration with real-world VSTs, hoping to harvest complementary insights on our use case and pushing further the formalization of environments at stake in our co-exploration agents. Such studies might be an opportunity to investigate other qualitative methods for evaluating agents. Indeed, our experiment's results suggested that participants did not really di erentiate each of the three perceptual aspects they had to rate, which in turn suggest that they may have a much global appreciation of how an agent interact with them. Borrowing approaches and methods from the eld of Human-Computer Interaction (such as user-centered design through case studies and workshops) [START_REF] Resnick | Design principles for tools to support creative thinking[END_REF], Fiebrink et al., 2011] might be essential for grasping such experiential aspects among humans and for leading such situated studies with agents.

Designing With Deep Reinforcement Learning For Synthesis Exploration

This chapter presents the third study led in the thesis. It follows on from our previous study in Chapter 4 by applying reinforcement learning to the musical task of "synthesis exploration". Synthesis exploration is the multimodal task of acting on a sound synthesis interface to lead sonic exploration. We adopted a user-centered design method to iterate the design of reinforcement learning with humans [Beaudouin-Lafon and Mackay, 2009]. We decided to work with expert sound designers to get a specialized understanding of synthesis exploration parallel to design iterations. This enabled us to cover qualitative feedback in our model design process, which went through an engineering step to implement a deep reinforcement learning model (as shown in Fig. 5.1).

Figure 5.1: The user-centered design method for our third study. 59 Section 5.1 describes concepts, covering musical background on interface exploration, along with our proposed machine learning technique. Section 5.2 describes the rst model prototyping iteration of our design process. Section 5.3 reports on observations led in a pilot study, respectively investigating expert users exploring VST interfaces and using our model prototype. Section 5.4 describes the second model prototyping iteration of our design process. Section 5.5 describes the model engineering led for our nal software, called Co-Explorer. Section 5.6 reports on observations led in a creative workshop with our software.

Finally, we report on three applications of our model. Section 5.8 describes the application of the model to the design of a video game, called Riding the Co-Explorers, that we used as a demonstrator in a conference. Section 5.9 describes the application of the model to the design of a robotic object in a workshop, called Behavioral Matter. Finally, Section 5.10 describes the application of our model to the design of a computer music performance, called aego.

This work was submitted as journal paper for ACM Transactions on Computer-Human Interaction (TOCHI) [START_REF] Scurto | Designing deep reinforcement learning for human parameter exploration[END_REF] 

Concepts

Reinforcement learning de nes a computational framework for the interaction between a learning agent and its environment [Niv, 2009]. The framework provides a basis for algorithms that learn an optimal behaviour in relation to the goal of a task [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. For example, reinforcement learning was recently used to learn to play the game of Go, simulating thousands of agent self-play games based on human expert games [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF]. The algorithm, called deep reinforcement learning, leveraged advances in deep neural networks to tackle learning of a behaviour in high-dimensional spaces [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF]. The autonomous abilities of deep reinforcement learning agents let machine learning researchers foresee prominent applications in domains, such as transportation, healthcare, or nance [Li, 2018]. Yet, one important current challenge for real-world applications is the ability for reinforcement learning agents to learn from interaction with human users. The socalled interactive reinforcement learning framework has been shown to hold great potential to build autonomous systems that are centered on human users [START_REF] Amershi | Power to the people: The role of humans in interactive machine learning[END_REF], such as teachable and social robots [START_REF] Thomaz | Teachable robots: Understanding human teaching behavior to build more e ective robot learners[END_REF], or assistive search engines [Athukorala et al., 2016a]. From a machine learning perspective, the main challenge lies in learning an optimal behaviour from small, non-stationary amounts of human data [START_REF] Knox | Interactively shaping agents via human reinforcement: The tamer framework[END_REF]. From a human-computer interaction perspective, an important challenge consists in supporting human appropriation of algorithms' autonomous behaviours in relation to complex human tasks [START_REF] Stumpf | Interacting meaningfully with machine learning systems: Three experiments[END_REF].

Our interest lies in investigating interactive reinforcement learning for human creative tasks, where a goal might not be well-de ned by human users a priori [START_REF] Resnick | Design principles for tools to support creative thinking[END_REF]. One such case of a human creative task is exploration [START_REF] Hart | Creative foraging: An experimental paradigm for studying exploration and discovery[END_REF]. Exploration consists in trying di erent solutions to address a problem, encouraging the co-evolution of the solution and the problem itself [START_REF] Dorst | Creativity in the design process: co-evolution of problem-solution[END_REF]. For example, designers may produce several sketches of a product to ideate the features of its nal design, or test several parameter combinations of a software tool to create alternative designs in the case where the product has a digital form. The creative, human-centred, use case of exploration fundamentally di ers from standard, machine-centred, reinforcement learning use cases, where a problem is implicitly dened as a goal behaviour, before the agent actually learns to nd a solution as optimal behaviour [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. It thus stands as an exemplary use case to study human interaction with reinforcement learning agents.

In this study, we aim at designing an interactive reinforcement learning system supporting human creative exploration. This question is addressed in the application domain of sound design, where expert practitioners typically face the challenge of exploring high-dimensional, parametric sound spaces. We propose a user-centred design approach with expert sound designers to steer the design of such a system and better conceptualize exploration within this context.

Musical Task: Synthesis Exploration

Sound design is an exemplary application domain for studying exploration-taking iterative actions and multiple steps to move from an ill-formed idea to a concrete realization [START_REF] Garcia | Interactive paper substrates to support musical creation[END_REF]. Sonic exploration tasks can take myriad of forms: for example, composers explore various sketches of their musical ideas to write a nal score; musicians explore di erent playing modes to shape an instrument's tone; sound designers explore several digital audio parameters to create unheard-of sounds [START_REF] Monache | A toolkit for explorations in sonic interaction design[END_REF], Delle Monache et al., 2018].

Situating the Musical Task

Most of today's digital commercial tools for sound synthesis, named Virtual Studio Technology (VST, see Fig. 5.2), still rely on complex interfaces using tens of technical parameters as inputs. These parameters often relate to the underlying algorithms that support sound synthesis, preventing users from establishing a direct perceptual relationship with the sound output. To that one may add the exponential number of parameter combinations, called presets, that eventually correspond to given sound designs. It is arguable that these interfaces may not be the best to support human exploration: as the perceptual outcome of acting on a given parameter may rapidly become unpredictable, they may hinder user appropriation [START_REF] Resnick | Design principles for tools to support creative thinking[END_REF], Shneiderman, 2007].

As such, synthesis exploration is a general task that concern expert musicianswhich explore parameters of computer devices to make sound-as well as non- musicians-which explore parameters of any kind of interfaces when appropriating interaction. We are interested in investigating expert musicians' strategies to explore parametric interfaces. Our wish is that studying expert users will help us create new interaction techniques that may bene t non-expert users.

Human-Centred Approaches

Creativity support tools have long focused on exploration as a central task to human creative work [Shneiderman, 2007]. Design guidelines for supporting exploration were developed, which include aiming at simple interfaces for appropriating the tool and getting into sophisticated interaction more easily [Dix, 2007]. Flexible interaction modalities that can adapt to users' very own styles of thinking and creating may also be required [START_REF] Resnick | Design principles for tools to support creative thinking[END_REF]. In particular, parameter space exploration remains a current challenge for HCI research [Cartwright et al., 2014]. Recently, creativityoriented HCI researchers underlined the need to move toward interdisciplinary research collaborations [START_REF] Frich | Twenty years of creativity research in human-computer interaction: Current state and future directions[END_REF].

Machine learning was in this sense examined for its implications in design [Koch, 2017] and identi ed as an opportunity for user experience [START_REF] Dove | Ux design innovation: Challenges for working with machine learning as a design material[END_REF], Yang et al., 2018a[START_REF]Investigating how experienced ux designers e ectively work with machine learning[END_REF]]. Yet, a large body of work in the machine learning research community has so far focused on constructing autonomous algorithms learning creative behaviour from large amounts of impersonal data-falling under the name of computational creativity [Wiggins, 2006]. While this have allowed the building of powerful tools and models for creation, one may be concerned in the question of how to include human users in the design of such models to support human-computer co-creation [START_REF] Kantosalo | From isolation to involvement: Adapting machine creativity software to support human-computer co-creation[END_REF]. Davis et al. proposed a model of creativity that explicitly considers the computer as an enactive entity [START_REF] Davis | Building artistic computer colleagues with an enactive model of creativity[END_REF]. They notably stressed the potential of combining creativity support tools with computational creativity to enrich a collaborative process between the user and the computer [START_REF] Davis | Building artistic computer colleagues with an enactive model of creativity[END_REF]. The Drawing Apprentice, a co-creative agent that improvizes in real-time with users as they draw, illustrates their approach [START_REF] Davis | Empirically studying participatory sense-making in abstract drawing with a co-creative cognitive agent[END_REF]. While their user study con rms the conceptual potential of building such artistic computer colleagues, its technical implementation remains speci c to the use case at stake-e.g., drawing. We propose to jointly design a conceptual and technical framework that could be could easily be transferrable to other application domains-potentially realizing general mixedinitiative co-creativity [Horvitz, 1999, Yannakakis et al., 2014].

Machine-Centred Approaches

Interactive machine learning [START_REF] Fails | Interactive machine learning[END_REF] allows human users to build customized models by providing their own data examples-typically a few of them. Not only users can customize training examples, but they are also allowed to directly manipulate algorithm parameters [START_REF] Kapoor | Interactive optimization for steering machine classi cation[END_REF], Wong et al., 2011], as well as to receive information on the model's internal state [START_REF] Amershi | Modeltracker: Redesigning performance analysis tools for machine learning[END_REF], Patel et al., 2011]. Applications in HCI cover a wide range of tasks, such as handwriting analysis [START_REF] Shilman | Cuetip: a mixedinitiative interface for correcting handwriting errors[END_REF], recommender systems [START_REF] Amershi | Regroup: Interactive machine learning for on-demand group creation in social networks[END_REF], or prioritising noti cations [START_REF] Amershi | Cuet: human-guided fast and accurate network alarm triage[END_REF]. Interactive machine learning mainly builds on supervised learning, which de nes a computational framework for the learning of complex input-output models based on example input-output pairs. The "human-inthe-loop" approach to supervised learning critically di ers from the computational creativity approach, which typically relies on huge, impersonal databases to learn models [START_REF] Gillies | Humancentred machine learning[END_REF].

Interactive machine learning is one such example of a generic framework for human-computer co-creation [START_REF] Amershi | Power to the people: The role of humans in interactive machine learning[END_REF]. The technical framework was successfully applied across several creative domains, such as movement interaction design [START_REF] Zamborlin | Fluid gesture interaction design: Applications of continuous recognition for the design of modern gestural interfaces[END_REF], Francoise and Bevilacqua, 2018, Gillies, 2019], web page design [START_REF] Kumar | Bricolage: example-based retargeting for web design[END_REF] or video games [START_REF] Kleinsmith | Customizing by doing for responsive video game characters[END_REF]. Speci cally, research studying users building customized gestural controllers for music brought insight on the creative bene ts of interacting with machine learning [START_REF] Fiebrink | Human model evaluation in interactive supervised learning[END_REF]. Not only were users able to accomplish their design goal-e.g., demonstrating a given gesture input for controlling a given sound parameter output-, but they also managed to explore and rapidly prototype alternative designs by structuring and changing training examples [START_REF] Fiebrink | Toward understanding human-computer interaction in composing the instrument[END_REF]. These patterns were reproduced by novice users who gained accessibility using examples rather than raw parameters as input [START_REF] Katan | Using interactive machine learning to support interface development through workshops with disabled people[END_REF]. The algorithms' sometimes surprising and unexpected outcomes favoured creative thinking and sense of partnership in human users [START_REF] Fiebrink | The machine learning algorithm as creative musical tool[END_REF].

Typical work ows in interactive machine learning tend to iterate on designing training examples that are built from a priori representative features of the input space to support exploration. Yet, in some creative tasks where a problem de nition may be found only by arriving at a solution [Dorst andCross, 2001, Rittel, 1972], it might be unfeasible for users to de ne, a priori, such representative features of the nal design [START_REF] Katan | Using interactive machine learning to support interface development through workshops with disabled people[END_REF]. Other approaches proposed methods to release such contraints, for example by exploring alternative machine learning designs by only de ning the limits of some parameter space [Scurto et al., 2016]. We propose to further investigate machine learning frameworks able to iteratively learn from other user input modalities, and explicitly considering mixed-initiative work ows, where systems autonomously adapt to users [START_REF] Deterding | Mixed-initiative creative interfaces[END_REF]. As reviewed in the next section, using interactive reinforcement learning o ers such perspectives.

Proposed Technique: Deep Reinforcement Learning

Interactive reinforcement learning de nes a computational framework for the interaction between a learning agent, a human user, and an environment [START_REF] Amershi | Power to the people: The role of humans in interactive machine learning[END_REF]. Speci cally, users can communicate positive or negative feedback to the agent, in the form of a numerical reward signal, to teach it which action to take when in a certain environment state. The agent is thus able to adapt its behaviour to users, while remaining capable of behaving autonomously in its environment. Interactive reinforcement learning has been recently applied in HCI [START_REF] Ruotsalo | Interactive intent modeling: Information discovery beyond search[END_REF], with promising applications in exploratory search [START_REF] Glowacka | Directing exploratory search: Reinforcement learning from user interactions with keywords[END_REF][START_REF] Athukorala | Beyond relevance: Adapting exploration/exploitation in information retrieval[END_REF] and adaptive environments [START_REF] Frenoy | Adaptive training environment without prior knowledge: Modeling feedback selection as a multi-armed bandit problem[END_REF], Rajaonarivo et al., 2017]. Integrating user feedback in reinforcement learning algorithms is computationally feasible [START_REF] Stumpf | Toward harnessing user feedback for machine learning[END_REF], helps agents learn better [START_REF] Knox | Interactively shaping agents via human reinforcement: The tamer framework[END_REF], can make data-driven design more accessible [START_REF] Lomas | Interface design optimization as a multi-armed bandit problem[END_REF], and holds potential for rich human-computer collaboration [START_REF] Stumpf | Interacting meaningfully with machine learning systems: Three experiments[END_REF]. Applications in Human-Robot Interaction informed on how humans may give feedback to learning agents [START_REF] Thomaz | Teachable robots: Understanding human teaching behavior to build more e ective robot learners[END_REF], and showed potential for enabling human-robot co-creativity [START_REF] Fitzgerald | Humanrobot co-creativity: Task transfer on a spectrum of similarity[END_REF].

Deep Reinforcement Learning

Recently, reinforcement learning has witnessed a rise in popularity thanks to advances in deep neural networks [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF]. Powerful models including user feedback have been developed for high-dimensional parameter spaces [START_REF] Christiano | Deep reinforcement learning from human preferences[END_REF], Warnell et al., 2017]. Design researchers have identi ed reinforcement learning as a promising prospective technique to improve human-machine "joint cognitive and creative capacity" [START_REF] Koch | Group cognition and collaborative ai[END_REF]. We believe that interactive reinforcement learning-especially deep reinforcement learning-holds great potential for supporting creative tasks-especially exploration of high-dimensional VST parameter spaces. First, its computational framework, constituted by environment states, agent actions, and user feedback, remains fully generic [START_REF] Sutton | Reinforcement learning: An introduction[END_REF], and thus potentially allow the design of generic interaction modalities transferrable to di erent application domains. Second, the autonomous behaviour intrinsic to reinforcement learning algorithms may be exploited to build a novel creative mixed-initiative paradigm, where the user and the agent would cooperate by taking actions that are "neither fully aligned nor fully in con ict" [START_REF] Crandall | Cooperating with machines[END_REF]. Finally, we consider that user feedback could be a relevant input modality in the case of exploration, notably for expressing on-the-y, arbitrary preferences toward imminent modi cations, as opposed to representative examples. As previously stated, this requires investigating a somewhat unconventional use of reinforcement learning: if previous works employed user feedback to teach agents a "correct" behavior in relation to a task's goal, it is less obvious whether such a correct behavior may be well-de ned-or even exists-for human users performing exploration.

Method

We adopted a user-centered approach to lead joint conceptual and technical work on interactive reinforcement learning for synthesis exploration. Two design iterationsa pilot study and an evaluation workshop-were conducted over the course of our research. Two prototypes were designed and developed-one initial reinforcement learning prototype, and the Co-Explorer, our nal deep reinforcement learning prototype. The process thus includes sequentially:

• Prototype 1: Implementing a reinforcement learning algorithm that learns to explore VST parameter spaces from binary human feedback

• Pilot study: Observing and interviewing participants exploring sound spaces, rst using standard parametric interfaces, then using our initial reinforcement learning prototype

• Prototype 2: Designing deep reinforcement learning in response to design ideas suggested by our pilot study

• Evaluation workshop: Observing and discussing with participants using and appropriating the Co-Explorer, our nal prototype, in two creative tasks related to exploration

We worked with a total of 14 users (5 women, 9 men; all French) through the series of activities. From the 14 total, there were 2 who took part in all of the activities listed below, to testify of our prototype's improvements. Our users covered di erent areas of expertise in sound design and ranged from sound designers, composers, musicians, and artists to music researchers and teachers. Thus, they were not all constrained to one working methodology, one sonic practice or one application domain. Our motivation was to sample diverse approaches to exploration that sound design may provoke, in order to design a exible reinforcement learning algorithm that may suit a variety of users' working styles [START_REF] Resnick | Design principles for tools to support creative thinking[END_REF].

Prototyping I

By formalizing synthesis exploration as an interactive reinforcement learning problem, we seek to tackle both issues at once. First, human navigation in highdimensional parameter spaces may be facilitated by the reinforcement learning computational framework, made of sequences of states, actions, and rewards. Second, human creativity may be stimulated by the autonomous behaviour of reinforcement learning algorithms, suggesting other directions or design solutions to users along exploration.

Algorithm: Sarsa

We used the same model prototype than that in Chapter 4, this time calling it "RL agent" for concision purposes. For the readers' convenience, we describe again its principles below.

The prototype lets users navigate through di erent sounds by only communicating positive or negative feedback to a reinforcement learning agent. The agent learns from feedback how to act on the underlying synthesis parameters in lieu of users (see Fig. 5.3). Formally, the environment is constituted by the VST parameters, and the agent iteratively acts on them. Computationally, we considered the state space S = {S} constituted by all possible parameter con gurations S = (s 1 , ..., s n ), with n being the number of parameters, and s i ∈ [s min , s max ] being the value of the i th parameter living in some bounded numerical range (for example, s i can control the level of noise normalized between 0 and 1). We de ned the corresponding action space A(S) = {A} as moving up or down one of the n parameters by one step a i , except when the selected parameter equals one boundary value:

A(S) =        ±a i for s i ∈]s min , s max [ +a i for s i = s min -a i for s i = s max (5.1)
We implemented Sarsa, which is a standard algorithm to learn how to act in many di erent environment state, i.e., for each given parameter con guration [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. It di ers from multi-armed bandits, which learns how to act in one unique environment state [START_REF] Lomas | Interface design optimization as a multi-armed bandit problem[END_REF]. Importantly, as evoked in Section 5.1, Sarsa was designed to learn an optimal behaviour in relation to the goal of a task. Our purpose in this study was to scope the pros and cons of such a standard reinforcement learning algorithm for human exploration tasks, judging how it may in uence user experience, and framing how it may be engineered with regard to this. We used a VST-based 12-parameter space (n = 12) as the environment of our prototype. Because Sarsa is de ned on discrete state spaces, each parameter range was discretized in three normalized levels (s i ∈ {0, 0.5, 1}, a i = 0.5; 0 ≤ i ≤ n). Although this would have been a design aw in a perceptual experiment on typical VSTs, this allowed for obvious perceptual changes, which was required to investigate feedback-based interaction with a large variety of sounds.

An ε-greedy method de nes the autonomous exploration behaviour policy of the agent-how it may act by exploiting its accumulated feedback while still exploring new unvisited states [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. It consists in having the agent take an optimal action with probability ε, and reciprocally, take a random action with probability 1 -ε. For example, ε = 1 would con gure an always exploiting agent-i.e., always taking the best actions based on accumulated feedback-, while ε = 0 would con gure an always exploring agent-i.e., never taking into account the received feedback. Our purpose in this study was to examine whether di erent explorationexploitation trade-o s could map to di erent user approaches to exploration.

Human Data: Feedback

Finally, we propose that the user would be responsible for generating feedback. We directly mapped user feedback to the environmental reward signal R associated with a given state-action pair (S, A). The resulting formalization-where an agent takes actions that modi es the environment's state and learn from feedback received from a user-de nes a generic interactive reinforcement learning problem.

Observation I

We organized a one-day pilot study with four of our expert participants. The aims of this pilot study were to: Observe approaches to exploration in standard VST interfaces; Identify problems users experience; Introduce the reinforcement learning technology in the form of a prototype; Brainstorm ideas and possible breakdowns.

Setup: Pilot Study

The pilot study was divided in two parts: (1) parametric interface exploration, then (2) interactive reinforcement learning-based exploration. We conducted individual semi-structured interviews at the end of each part, having each participant do the study one by one. This structure was intended to bring each participant to become aware of their subjective experience of exploration [Petitmengin, 2006]. Our intention was to open up discussions and let participants suggest design ideas about interactive reinforcement learning, rather than testing di erent algorithmic conditions in a controlled, experimental setup. We spent an average of 2 hours with each of our four participants, who covered di erent expertise in sound design (composition, sound design, interaction design, research).

Results: VST Interfaces, Qualitative Analysis

Procedure

In the rst part of the study, participants were asked to nd and create a sound preset of their choice using three di erent parametric interfaces with di erent number of parameters (respectively 2, 6, and 12, see Fig. 5.4). No reinforcement learning agent was used. We linked each interface to a di erent sound synthesis engine (respectively using FM synthesis 1 , and one commercial VST from which we selected 6, then 12, parameters). Sound was synthesized continuously; participants' actions were limited to move the knobs using the mouse to explore the design space o ered by all possible combinations. Knobs' technical names were hidden to test the generic e ect of parameter dimensionality in interface exploration, and avoid any biases due to user knowledge of parameter function (which typically occur with labelled knobs). Interface order was randomized; we let participants spend as much time as they wanted on each interface to let them explore the spaces freely. 

Analysis

We were interested in observing potential user strategies in synthesis exploration. We thus logged parameter temporal evolution during the task. It consists in an ndimensional vector, with n being the number of parameters (respectively 2, 6, then 12). Sample rate was set to 100 ms, which is a standard value for interaction with sound and musical interfaces [Jorda, 2005]. We used Max/MSP2 and the MuBu3 library to track user actions on parameters and record their evolutions. We used structured observation to study participants' interviews. This method was meant to provide a thorough qualitative analysis on user exploration strategies.

Observations

Qualitative analysis of parameter temporal evolution let us observe a continuum of approaches to parametric interface exploration. We call the rst extremity of this continuum analytical exploration: this involves actioning each of the knobs one after the other over their full range. The second is called spontaneous exploration: this involves making random actions on the knobs. Figure 5.5 shows examples for each of these two approaches. One participant was consistently analytical over the three interfaces; one was consistently spontaneous over the three. The two others combined both approaches over the three interfaces.

Interview analysis let us map these approaches to di erent subgoals in exploration. The analytical approach concerns exploration of the interface at a parameter level: "The strategy is to test [each knob] one by one to try to grasp what they do", one participant said. The goal of exploration is then related to building a mental map of the parameters to learn how to navigate in the design space. The spontaneous approach concerns exploration of the design space at a creative level: "I moved the knobs more brutally and as a result of serendipity I came across into something di erent, that I preferred for other reasons... ", another participant said. The goal of exploration is then related to discovering new parameter states leading to inspiring parts of the design space.

Discovery is critical to synthesis exploration. "Once [the knobs] are isolated, you let yourself wander a bit more... ", one participant analysed. Surprise is also important: "To explore is to be in a mental state in which you do not aim at something precise", one participant said. Interestingly, we observed that participants often used words related to perceptual aspects rather than technical parameters. "I like when you can get a sound that is... um... Consistent, like, coherent. And at the same time, being able to twist in many di erent ways. This stimulates imagination, often", one participant said. Two participants mentioned that forgetting the parametric interface may be enjoyable in this sense: "I appreciate an interface that does not indicate [...], that has you go back into sound, so that you are not here reading things, looking at symbols... ", one participant said.

All participants reported being hindered in their exploration by the parameter inputs of the three interfaces. As expected, the more parameters the interface contained, the larger the design space was, and the harder it was to learn the interface.

"For me, the most important di culty is to manage to e ectively organise all things to be able to re-use them. ", one participant said. Time must be spent to rst understand, then to memorize the role of parameters, taking into account that their role might change along the path of exploration. This hampers participants' motivation, often restraining themselves to a subspace of the whole design space o ered by the tool: "after a while I was fed up, so I threw out some parameters", one participant said about the 12-knob interface.

Participants discussed the limitations encountered in the study in light of their real-world practice with commercial interfaces. Two participants mentioned using automation functions to support synthesis exploration. Such functions include randomizing parameter values, automating parameter modi cation over time, or creating new control parameters that "speak more to your sensibility, to your ears, than to what happens in the algorithm", to cite one of the participants. Two participants also use factory presets to start exploration: "I think that in some interfaces they are pretty well conceived for giving you the basis of a design space. Then it's up to you to nd what parameters to move", one participant said. Two participants said that the graphical user interfaces, including parameter names, knob disposition, and visual feedback on sound, may help them manage to lead exploration of large parameter spaces.

Results: RL Agent Prototype, Qualitative Analysis

Results in rst part let us identify di erent user approaches to VST interface exploration, as well as di erent problems encountered in high-dimensional parameter spaces. In the second part, we were interested in having participants test the reinforcement learning technology in order to scope design ideas and possible breakthroughs in relation to exploration.

Procedure

Our participants were asked to nd and create a sound preset of their choice by communicating feedback to three di erent agents with di erent exploration behaviours (respectively ε = 0; ε = 1; and ε = 0.5). Sound was synthesized continuously, in a sequential work ow driven by the agents' algorithmic functioning. At step t, participants could listen to a synthesized sound, and give positive or negative feedback by clicking on a two-button interface (Fig. 5.6). This would have the agent take an action on hidden VST parameters, modify the environment's state, and synthesize a new sound at step t + 1. Participants were only told to give positive feedback when the agent gets closer to a sound that they enjoy, and negative feedback when it moves away from it. They were not explained the agent's internal functioning, nor the di erences between the three agents. The starting state for t = 0 was randomly selected. Agent order was randomized; we asked participants to spend between 5 and 10 minutes with each.

Figure 5.6: One of our four participants using a two-button interface to communicate binary feedback to the RL agent prototype in the pilot study.

Analysis

We logged all participant actions in the graphical user interface. It consisted in timed onsets for positive feedback on the one hand, and negative feedback on the other hand. We also logged parameter temporal evolution to observe how the RL agent would act on parameters following user feedback. We used structured observation to study participants' interviews and discussions led at the end of the pilot study.

Reactions

All participants reported forgetting synthesis parameters to focus on the generated sound. The simplicity and straightforwardness of the new interface bene ted their exploration. "There's always this sensation that nally you are more focused on listening to the sound itself rather than trying to understand the technology that you have under your hands, which is really great, yeah, this is really great", one participant said.

The computational framework de ned by reinforcement learning was well understood by all participants. "There's somewhat a good exploration design [sic], because it does a bit what you do [with the parametric interface], you move a thing, you move another thing... ", one participant said. All participants enjoyed following agents' exploration behaviours, mentioning a playful aspect that may be useful for serendipity. Three participants in turn adapted their exploration to that of the agent: "you convince yourself that the machine helps you, maybe you convince yourself that it is better... and after you go on exploring in relation to this", one participant said. Interestingly, one participant that was skeptical about partnering with a computer changed his mind interacting with the RL agent: "We are all di erent, so are they", he commented, not without a touch of humor.

Uses of Feedback

Descriptive statistics informed on how participants used the feedback channel. Three participants gave feedback every 2.6 seconds on average (σ = 0.4), globally balancing positive with negative (average of 44.8% positive, σ = 0.02). The fourth participant gave feedback every 0.9 seconds on average (σ = 0.07) which was mostly negative (average of 17.2% positive, σ = 0.02). All participants reappropriated the feedback channel, quickly transgressing the task's instructions toward the two-button interface to ful ll their purposes. One participant used feedback to explore agents' possible behaviors: "Sometimes you click on the other button, like, to see if it will change something, [...] without any justi cation at all", he commented. Another used the '-' button to tell the agent to "change sound". Two participants also noticed the di erence between feedback on sound itself, and feedback on the agent's behavior: "there's the 'I don't like' compared to the sound generated before, and the 'I don't like it at all', you see", one of them said.

Breakdowns

Rapidly, though, participants got frustrated interacting with the RL agent. All participants judged that agents did not always reacted properly to their feedback, and were leading exploration at the expense of them: "sometimes you tell 'I don't like', 'I don't like', 'I don't like', but it keeps straight into it! (laughs)", one participant said. Contrary to what we expected, participants did not expressed a strong preference for any of the three tested agents. Only one participant noticed the randomness of the exploring agent, while the three other participants could not distinguish the three agents. This may be caused by the fact that the Sarsa algorithm was not designed for the interactive task of human exploration. Reciprocally, this may be induced by experiential factors due to the restricted interaction of our RL agent prototype, e.g., preventing users to undo their last actions. Finally, two participants also complained about the lack of precision of the agent toward the generated sounds. This was induced by the Sarsa algorithm, which required to discretize the VST parameter space.

Design Implications

Participants jointly expressed the wish to lead agent exploration. They suggested di erent improvements toward our RL agent prototype:

• Express richer feedback to the agent (e.g., di erentiating "I like" from "I really like")

• Control agent path more directly (e.g., commanding the agent to go back to a previous state, or to some new unvisited state in the parameter space)

• Improve agent algorithm (e.g., acting more precisely on parameters, reacting more accurately to feedback)

• Integrate agent in standard workspace (e.g., directly manipulating knobs at times in lieu of the agent)

Interestingly, one participant suggested moving from current sequential work ow (where the agent waits for user feedback to take an action on the environment's state) to an autonomous exploration work ow (where the agent would continuously take actions on the environment's state, based on both accumulated and instantaneous user feedback). Three participants envision that such an improved RL agent could be useful in their practice, potentially allowing for more creative partnerships between users and agents.

Prototyping II

Our pilot study led us to the design of a nal prototype, called Co-Explorer. We decided to rst design new generic interaction modalities with RL agents, based on users' reactions with both parametric interfaces and our initial prototype.

Human Data: Feedback + Controls

Our initial prototype only employed user feedback as its unique interaction modality. This limited our participants, who suggested a variety of new agent controls to support exploration. We translated these suggestions into new interaction modalities that we conceptualized under three generic categories: (1) user feedback, (2) state commands, and (2) direct manipulations (as shown in Fig. 5.7). 

User Feedback

Our design intention is to support deeper user customization of the VST parameter space, while also allowing richer user contribution to agent learning. We thus propose to enhance user feedback as de ned in our initial prototype, distinguishing between guiding and zone feedback. Guiding feedback corresponds to users giving binary guidance toward the agent's instantaneous trajectory in the parameter space. Users can give either positive-i.e., "keep going in that direction"-or negative guidance feedback-i.e., "avoid going in that direction". Zone feedback corresponds to users putting binary preference labels on given zones in the parameter space. It can either be positive-i.e., "this zone interests me"-or negative-i.e., "this zone does not interest me". Zone feedback would be used for making assertive customization choices in the design space, while guiding feedback would be used for communicating on-they advice to the learning agent.

State Commands

Additionally, our design intention is to support an active user understanding of agent actions in the VST parameter space. We propose to de ne an additional type of interaction modality-we call them "state commands". State commands enable direct control of agent exploration in the parameter space, without contributing to its learning. We rst allow users to command the agent to go backward to some previously-visited state. We also enable users to command the agent to change zone in the parameter space, which corresponds to the agent making an abrupt jump to an unexplored parameter con guration. Last but not least, we propose to let users start/stop an autonomous exploration mode. Starting autonomous exploration corresponds to letting the agent continuously act on parameters, possibly giving feedback throughout its course to in uence its behaviour. Stopping autonomous exploration corresponds to going back to the sequential work ow implemented in our initial prototype, where the agent waits for user feedback before taking a new action on parameters.

Direct Manipulation

Lastly, our design intention is to augment, rather than replace, VST interfaces with interactive reinforcement learning, leveraging users expertise with these interfaces and providing them with additional modalities that they could solicit when they may need it. We thus propose to add "direct manipulations" to support direct parameter modi cation through a standard parametric interface. It lets users explore the space on their own by only manipulating parameters without using the agent at all. It can also be used to take the agent to a given point in the VST parameter space-i.e., "start exploration from this state"-, or to de ne by hand certain zones of interest using a zone feedback-i.e., "this example preset interests me". Inversely, the parametric interface also allows to visualize agent exploration in real-time by observing how it acts on parameters.

A last, global interaction modality consists in resetting agent memory. This enables users to start exploration from scratch by having the agent forget accumulated feedback. Other modalities were considered, such as modifying the agent's speed and precision. Preliminary tests pushed us to decide not to integrate them in the Co-Explorer.

Algorithm: Deep TAMER

Based on our observations in the pilot study, we developed our reinforcement learning agent at two intertwined technical levels: (1) feedback formalization and (2) learning algorithm. This work was done in the context of Bavo Van Kerrebroeck's Master's Thesis, supervised by Frédéric Bevilacqua and myself [Van Kerrebroeck, 2018].

Feedback Formalization

One challenge consisted in addressing the non-stationarity of user feedback data along their exploration. We implemented Deep TAMER, a reinforcement learning algorithm suited for human interaction [START_REF] Warnell | Deep tamer: Interactive agent shaping in high-dimensional state spaces[END_REF]. Deep TAMER leverages a feedback formalization that distinguishes between the environmental reward signali.e., named R in the Sarsa algorithm of our initial prototype-and the human reinforcement signal-e.g., feedback provided by a human user. This technique, implemented in the TAMER algorithm [START_REF] Knox | Interactively shaping agents via human reinforcement: The tamer framework[END_REF], was shown to reduce sample complexity over standard reinforcement learning agents, while also allowing human users to teach agents a variety of behaviours. We detail the di erences between standard RL algorithms and (deep) TAMER in Appendix A.

Learning Algorithm

Another challenge was to tackle learning in high-dimensional parametric spaces that are typical of our use case. Deep TAMER employs function approximation [START_REF] Sutton | Reinforcement learning: An introduction[END_REF] to generalize user feedback given on a subset of state-action pairs to unvisited state-action pairs. Speci cally, a deep neural network is used to learn the best actions to take in a given environment state, by predicting the amount of user feedback it will receive [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF], Warnell et al., 2017]. The resulting algorithm can learn in high-dimensional state spaces S = {S} and is robust to changes in discretization a i of the space. For our application in sound design, we engineered the algorithm for n = 10 parameters. We normalized all parameters and set the agent's precision by discretizing the space in one hundred levels (s i ∈ [0, 1], a i = 0.01; 0 ≤ i ≤ n).

A last challenge was to learn quickly from the small amounts of data provided by users during interaction. Deep TAMER uses a replay memory, which consists in storing the received human feedback in a bu er D, and sampling repeatedly from this bu er with replacement [START_REF] Warnell | Deep tamer: Interactive agent shaping in high-dimensional state spaces[END_REF]. This was shown to improve the learning of the deep neural network in high-dimensional parameter spaces in the relatively short amount of time devoted to human interaction. We set the parameters of the the deep neural network by performing a parameter sweep and leading sanity checks with the algorithm.

Engineering II

We then engineered our model prototype by (1) improving exploration behaviour, (2) processing user feedback and controls, and (3) implementing a new speci c interface for sound design. This work was done in the context of Bavo Van Kerrebroeck's Master's Thesis, supervised by Frédéric Bevilacqua and myself [Van Kerrebroeck, 2018].

Algorithm: Improving Parameter Exploration

We developed a novel exploration method for autonomous exploration behaviour. It builds on an intrinsic motivation method, which pushes the agent to "explore what surprises it" [START_REF] Bellemare | Unifying count-based exploration and intrinsic motivation[END_REF]. Speci cally, it has the agent direct its exploratory actions toward uncharted parts of the space, rather than simply making random moves-as in the ε-greedy approach implemented in our initial prototype. It does so by building a density model of the parameter space based on all visited states. We used tile coding, a speci c feature representation extensively used in the reinforcement learning literature to e ciently compute and update the density model in high-dimensional spaces [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. We parameterized ε with an exponential decay in such a way that its initial value would slowly decrease along user exploration. For our application in sound design, agent speed in continuous exploration mode was set to one action by tenths of a second.

Human Data: Processing Feedback and Controls

To fully realize our interaction design, we integrated the modalities de ned in Section 5.4.1 within the reinforcement learning framework de ned in Section 5.4.2.

User Feedback

We developed generic methods corresponding to user feedback modalities de ned in Section 5.4.1 that we used in the feedback formalization of Section 5.4.2. For guiding feedback, we assigned user positive or negative feedback value over the p last stateaction pairs taken by the agent (see Fig. 5.9, left), with a decreasing credit given by a Gamma distribution [START_REF] Knox | Interactively shaping agents via human reinforcement: The tamer framework[END_REF]. For zone feedback, we computed all possible state-action pairs leading to the state being labelled and impacted them with positive or negative feedback received (see Fig. 5.9, right). This enables to build attractive and repulsive zones for the agent in the parameter space. Finally, we added a reward bonus to user feedback to enhance the agent's learning relatively to the novelty of a state. This reward bonus is computed using the density model described in Section 5.5.1.

State Commands

We developed generic methods corresponding to state commands de ned in Section 5.4.1 using the exploration behaviour de ned in Section 5.5.1. Changing zone has the agent randomly sampling the density distribution and jump to the state with lowest density (see Fig. 5.8,left). Autonomous exploration mode has the agent take exploratory actions that lead to the nearest state with lowest density with probability ε (see Fig. 5.8,right).

Direct Manipulation

We integrated direct manipulations as de ned in Section 5.4.1 by leveraging the learning algorithm de ned in Section 5.4.2. When parameters are modi ed by the user, the reinforcement learning agent converts all parameters' numerical values as a state representation, taking advantage of the algorithm's robustness in changes of discretization. Reseting agent memory has the reinforcement learning algorithm erase all stored user feedback and trajectory, and load a new model.

Implementation: Co-Explorer

We implemented all interaction modalities described above in the Co-Explorer software (see Video for an overview).

Agent

We implemented the Co-Explorer as a Python library4 . It allows to connect the deep reinforcement learning agent to any external input device and output software, using the OSC protocol for message communication [Wright, 2005]. This was done to enable future applications outside the sound design domain. Each of the features described in Section 5.4.2 are implemented as parameterized functions, which supports experimentation of interactive reinforcement learning with various parameter values as well as order of function calls. The current version relies on TensorFlow for deep neural network computations. The complete algorithm implementation and all learning parameters are shown in the Appendix. 

Interface

We implemented an interactive interface for our application in sound design (Fig. 5.10), which integrates all interaction modalities de ned in Section 5.4.1. It builds on Max/MSP, a visual programming environment for real-time sound synthesis and processing. Standard parametric knobs enable users to directly manipulate parameters, as well as to see the agent act on it in real-time. An interactive history allows users to command the agent to go to a previously-visited state, be they a ected by user feedback (red for negative, green for positive) or simply passed through (grey). Keyboard inputs support user feedback communication, as well as state commands that control agent exploration (changing zone, and start/stop continuous exploration mode). Lastly, a clickable button enables users to reset agent memory.

Observation II

We evaluated interaction with the Co-Explorer in a workshop with a total of 12 professional users (5 female, 7 male). The aims of the workshop were to: Evaluate each interaction modality at stake in the Co-Explorer; understand how expert users may appropriate the agent to support synthesis exploration.

Setup: Workshop

The workshop was divided in two tasks: (1) explore to discover, and (2) explore to create. This structure was intended to test the Co-Explorer in two di erent creative tasks (described in Section 5.6.2 and 5.6.3, respectively). Participants ranged from sound designers, composers, musicians, and artists to music researchers and teachers. They were introduced to the agent's interactive modalities and its internal functioning at the beginning of the workshop. In each part, they were asked to report their observations by lling a browser-based individual journal. Group discussion was carried on at the end of the workshop to let participants exchange views over synthesis exploration. The workshop lasted approximately three hours each. 5.11). They were asked to use the Co-Explorer to explore and discover the sound space at stake. Speci cally, we asked them to nd and select ve presets to constitute a rep-resentative sample of the space. We de ned the parameter space by selecting ten parameters from a commercial VST. Participants were encouraged to explore the space thoroughly. The task took place after a 10-minute familiarizing session: individual exploration lasted 25 minutes, followed by 5 minutes of sample selection, and 20 minutes of group discussion.

Analysis

All participant's actions were logged into a le. These contained timed onsets for user feedback-i.e., binary guiding and zone feedback-, state commands-i.e., backward commands in the history, changing zone commands, and autonomous exploration starting/stopping-, and direct manipulations-i.e., parameter temporal evolutions. We also logged timed onsets for preset selection in relation to the task, but did not include the ve presets themselves into our analysis. Our motivation was to focus on the process of exploration in cooperation with the Co-Explorer, rather than on the output of it. We used structured observation to extract information from individual journals and group discussion.

Results

We rst looked at how users employed state commands. Speci cally, the autonomous exploration mode, which consisted in letting the agent act cotinuously on parameters on its own, was an important new feature compared to our sequentiam initial RL agent prototype. Participants spent more than half of the task using the Co-Explorer in this mode (total of 13 minutes on average, σ = 4.7). Ten participants used autonomous exploration over several short time slices (average of 50 seconds, σ = 25s), while the two remaining participants used it over one single long period (respectively 9 and 21 minutes). P5 commented about the experience: "It created beautiful moments during which I really felt that I could anticipate what it was doing. That was when I really understood the collaborative side of arti cial intelligence".

The changing zone command, which enabled to jump to an unexplored zone in the parameter space, was judged e cient by all participants to nd diverse sounds within the design space. It was used between 14 and 90 times, either to start a new exploration (P1: "Every time I used it, I found myself in a zone that was su ciently diametrically opposed to feel that I could explore something relatively new"), or to rapidly seize the design space in the context of the task (P12: "I felt it was easy to manage to touch the edges of all opposite textures"). Interestingly, P2 noticed that the intrisic motivation method used for agent exploration behaviour "brought something more than a simple random function that is often very frustrating".

We then looked at how users employed feedback. Guiding feedback was e ectively used in conjunction with autonomous exploration by all participants, balancing positive with negative (55% positive on average, σ = 17%). Participants gave various amounts of guiding feedback (between 54 and 1489 times). These strategies were re ected by di erent reactions toward the Co-Explorer. For example, one participant was uncertain in controlling the agent through feedback: "if the agent goes in the right direction, I feel like I should take time to see where it goes", he commented. On the contrary, P1 was radical in his controlling the agent, stating that he is "just looking for another direction", and that he uses feedback "without any value judgement". This re ects the results described in Section 5.3.3 using our initial RL agent prototype.

Zone feedback, enabling customization of the space with binary labels, was mostly given as positive by participants (72%, σ = 18%). Two participants found the concept of negative zones to be counter-intuitive. "I was a bit afraid that if I label a zone as negative, I could not explore a certain part of the space", P8 coined. This goes in line with previous results on applying interactive reinforcement learning in the eld of robotics [START_REF] Thomaz | Teachable robots: Understanding human teaching behavior to build more e ective robot learners[END_REF]. All participants agreed on the practicality of combining positive zone feedback with backward state commands in the history to complete the task. "I labeled a whole bunch of presets that I found interesting [...] to after go back in the trajectory to compare how di erent the sounds were, and after continue going in other zones. I found it very practical", P8 reported. Overall, zone feedback was less times used than guiding feedback (between 10 and 233 times).

Finally, direct manipulation was deemed e cient by participants in certain zones of the design space. "When I manage to hear that there is too much of something, it is quicker to parametrize sound by hand than to wait for the agent to nd it itself, or to learn to detect it", P4 analyzed. P10 used them after giving a backward state command, saying she "found it great in cases where one is frustrated not to manage to guide the agent". P11 added that she directly manipulate parameters to "adjust the little sounds that [she] selected". P1 suggested that watching parameters move as the agent manipulates them could help learn the interface: "From a pedagogical point of view, [the agent] allows to access to the parameters' functioning and to the interaction between these parameters more easily [than without]". This supports the fact that machine learning visualizations may be primordial in human-centred applications to enable interpretability of models [START_REF] Amershi | Power to the people: The role of humans in interactive machine learning[END_REF].

Relevance to Task

Three participants complained that the Co-Explorer did not react su ciently quickly to feedback in relation to the task: "I would really like to feel the contribution of the agent, but I couldn't", P12 said. Also, P3 highlighted the di culties to give evaluative feedback in the considered task: "without a context, I nd it hard", he analysed. Despite this, all participants wished to spend more time teaching the Co-Explorer, by carefully customizing the parameter space with user feedback. For example, ve participants wanted to slow the speed of the agent during autonomous exploration to be able to give more precise guidance feedback. Also, three participants wanted to express sound-related feedback: "There, I am going to guide you about the color of the spectrum.

[...] There, I'm going to guide you about, I don't know, the harmonic richness of the sound, that kind of stu ... ", P4 imagined.

Results: Creation Task, Qualitative Analysis

Procedure

In the second part of the workshop, participants were presented with four pictures (Fig. 5.12). For each of these four pictures, they were asked to explore and create two sounds that subjectively depict the atmosphere of the picture. In this part, we encouraged participants to appropriate interaction with the Co-Explorer and feel free to work as they see t. We used a new sound design space for this second part, which we designed by selecting another ten parameters from a commercial VST. Individual exploration and sound selection lasted 30 minutes, followed by 20 minutes of group discussion and 10 minutes of closing discussion.

Figure 5.12: The four pictures framing the creation task of the workshop.

Analysis

All participant actions were logged into a le, along with timed parameter presets selected for the four pictures. Again, we focused our analysis on the process of exploration rather than on the output of it. Speci cally, for this open-ended, creative task, we did not aim at analysing how each agent interaction modality individually relates to a speci c user intention. Rather, we were interested in observing how users may appropriate the mixed-initiative work ow at stake in the Co-Explorer.

We used Principal Component Analysis (PCA [Jolli e, 2011]), a dimensionality reduction method, to visualize how users switched parameter manipulation with agents. We rst concatenated all participants' parameter evolution data as an n-dimensional vector to compute the two rst principal components. We then projected each participant data onto these two components to support analysis of each user trajectory on a common basis. By doing this, relatively distant points would correspond to abrupt changes made in parameters (i.e., to moments when the user takes the lead on exploration). Continuous lines would correspond to step-by-step changes in parameters (i.e., to moments when the Co-Explorer explores autonomously). PCA had a stronger e ect in the second part of our workshop. We interpret this as a support to the twopart structure that we designed for the workshop, and thus did not include analysis of the rst part. Finally, we used structured observation to extract information from individual journals and group discussion.

Exploration Strategies

All participants globally expressed more ease interacting with the Co-Explorer in this second task. "I felt that the agent was more adapted to such a creative, subjective... also more abstract task, where you have to illustrate. It's less quantitative than the rst task", P9 analysed. User feedback was also reported to be more intuitive when related to a creative goal: "all parameters took their sense in a creative context. [...] I quickly found a way to work with it that was very e cient and enjoyable", P5 commented. Figure 5.13 illustrates the PCA for two di erent users interacting with the Co-Explorer.

Figure 5.13: Two types of co-exploration partnerships shown in PCA visualizations of parameter evolution: User-as-leader (P9, left) and agent-as-leader (P7, right). Relatively distant points correspond to abrupt changes made in parameters (i.e., to moments when the user takes the lead). Continuous lines correspond to step-by-step changes in parameters (i.e., to moments when the Co-Explorer takes the lead).

Qualitative analysis of PCAs let us conceptualize a continuum of partnerships between our participants and the Co-Explorer. These could be placed anywhere between the two following endpoints:

• User-as-leader: This typically involves users rst building a map of the design space (iteratively using changing zone and positive zone feedback), then generating variations of these presets (either through direct manipulation or short autonomous explorations).

• Agent-as-leader: This typically involves letting the Co-Explorer lead parameter manipulation (using autonomous exploration and guiding feedback), rst setting some starting point in the design space (either using changing zone or direct manipulation).

Our interpretation is as follows. User-as-leader partnership may correspond to user pro les that approach creative work as a goal-oriented task, where e cacy and control are crucial (P10: "I am accustomed... Where I work, if you prefer, we have to get as quick as possible to the thing that works the best, say, and I cannot spend so much time listening to the agent wandering around"). Reciprocally, agent-as-leader partnership may correspond to user pro les that approach creative work as an open-ended task, where serendipity is essential for inspiration (P5: "I did not try to look for the sound that would work the best. I rather let myself be pushed around, even a bit more than in my own practice"). Some participants did not stabilize into one single partnership, but rather enjoyed the exibility of the agent. "It was quite fun to be able to let the agent explore, then stop, modulate a bit some parameters by hand, let it go and guide it again, changing zones too, then going back in the history... Globally, I have the impression of shaping, somewhat... I found it interesting", P11 coined.

Agent memory was handled with relevance to various creative processes toward the pictures. Seven participants disposed all four pictures in front of them (P7: "to always have them in mind. Then, depending on the agent's exploration, I told myself 'hey, this sound might correspond to this picture"'). Three participants focused on one picture at a time, "without looking at the others". Four participants never reset the memory (P11: "my question was, rather, in this given sonic landscape, how can I handle these four pictures, and reciprocally"), and three participants reset agent memory for each of the di erent atmospheres shared by the pictures. Overall, participants bene ted from partnering with the Co-Explorer in synthesis exploration: "It's a mix of both. I easily managed to project a sound on the picture at rst glance, then depending on what was proposed, it gave birth to many ideas", one participant said.

Toward Real-World Usages

All participants were able to describe additional features for the Co-Explorer to be usable in their real-world professional work environments-examples are, among others, connection to other sound spaces, memory transfer from one space to another, multiple agent memory management, or data exportation. They also anticipated creative uses for which the Co-Explorer were not initially designed. Half of the participants were enthusiastic about exploiting the temporal trajectories as actual artifacts of their creation (P6: "What I would nd super interesting is to be able to select the sequences corresponding to certain parameter evolution, or playing modes. [...] It would be super great to select and memorize this evolution, rather than just a small sonic fragment"). Finally, two participants further imagined the Co-Explorer to be used as musical colleagues-either as improvisers with which one could "play with both hands" (P2), or as "piece generators" (P6) themselves.

Discussion

Our process of research, design, and development led to contributions at three different levels: (1) conceptual insight on human exploration; (2) technical insight on reinforcement learning; and (3) joint conceptual and technical design guidelines on machine learning for creative applications.

Conceptual Insight

From Exploration to Co-Exploration Our work with interactive reinforcement learning allowed for observing and characterizing user approaches to synthesis exploration, and supported it. While manipulating unlabelled parametric knobs of sound synthesizers, participants alternated between an analytical approach-attempting to understand the individual role of each parameter-and a spontaneous approach that could lead to combinations in the parameter space that might not be guessed with the analytical approach. While interacting with a reinforcement learning agent, participants tended to alternate the lead in new types of mixed-initiative work ows [Horvitz, 1999] that we propose to call co-exploration work ows. User-as-leader work ow was used for gaining control over each parameter of the design space. Agent-as-leader work ow allowed to relax users' control and provoke discoveries through the speci c paths autonomously taken by the agent in the parameter space. Importantly, the bene t of interactive reinforcement learning for co-exploring sound spaces was dependent on the task. We found that this co-exploration work ow were more relevant to human exploration tasks that have a focus on creativity, such as in our workshop's second task, rather than discovery. Therefore, we believe that this work ow is well-suited in cases where exploration is somehow holistic (as in the creative task) rather than analytic (as in the discovery task where the goal is to understand the sound space to nd new sounds).

Methodology

Our user-centered approach to exploration with interactive reinforcement learning allowed us to rapidly evaluate exible interaction designs without focusing on usability. This process let us discover innovative machine learning uses that we may not have anticipated if we had started our study with an engineering phase. The simple, exible, and adaptable designs tested in our rst pilot study (parametric vs. RL) could in this sense be thought as technology probes [START_REF] Hutchinson | Technology probes: inspiring design for and with families[END_REF]. Working with professional users of di erent background and practices-from creative coders to artists less versed in technology-was crucial to include diverse user feedback in the design process. Our results support this, as many user styles were supported by the Co-Explorer. That said, user-driven design arguably conveys inherent biases of users. This is particularly true when promoting AI in interactive technology [START_REF] Amershi | Guidelines for human-ai interaction[END_REF], Caramiaux et al., 2019]. As a matter of fact, alongside a general enthusiasm, we did observe a certain ease among our professional users for expressing tough critiques, at times being skeptical on using AI, especially when the perception of the algorithm choice would contradict their spontaneous choice. Yet, the two professional users that took part to both our pilot study and workshop found the use of AI as welcome, testifying of its improvement along the development process.

Evaluation

Lastly, evaluation of reinforcement learning tools for creativity remains to be investigated more deeply. While our qualitative approach allowed us to harvest thoughtful user feedback on our prototypes' interaction modalities, it is still hard to account for direct links between agent computations and user creative goals. Using questionnaire methods, such as the Creativity Support Index [START_REF] Cherry | Quantifying the creativity support of digital tools through the creativity support index[END_REF], may enable to measure di erent dimensions of human creativity in relation to di erent algorithm implementations. Also, focusing on a speci c user category could also allow more precise evaluation in relationship to a situated set of creative practices and uses. Alternatively, one could aim at developing new reinforcement learning criteria that extends standard measures-such as convergence or learning time [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]-to the qualitative case of human exploration. Research on interactive supervised learning has shown that criteria usually employed in the eld of Machine Learning may not be adapted to users leading creative work [START_REF] Fiebrink | Human model evaluation in interactive supervised learning[END_REF]. We believe that both HCI and ML approaches may be required and combined to produce sound scienti c knowledge on creativity support evaluation.

Technical Insight Computational Framework

Our two working prototypes con rmed that interactive reinforcement learning may stand as a generic technical framework for synthesis exploration. The computational framework that we proposed in Section 5.2.1, leveraging states, actions, and rewards, strongly characterized the mixed-initiative co-exploration work ows observed in Section 5.6.3-e.g., making small steps and continuous trajectories in the parameter space. Other interactive behaviours could have been implemented-e.g., allowing the agent to act on many parameters in only one action, or using di erent a i values for di erent action sizes-to allow for more diverse mixed-initiative behaviours. Alternatively, we envision that domain-speci c representations may be a promising approach for extending co-exploration. In the case of sound design, one could engineer high-level state features based on audio descriptors [START_REF] Schwarz | Sound search by content-based navigation in large databases[END_REF]] instead of using raw parameters. This could allow RL agents to learn state-action representations that would be independent from the parameter space explored-potentially allowing memory transfer from one parameter state space to another. This could also enable agent adaptation of action speed and precision based on perceptual features of the parameter space-potentially avoiding abrupt jumps in sound spaces.

Learning Algorithm

Reinforcement learning algorithmic functioning, enabling agents to learn actions over states, was of interest for our users, who were enthusiastic in teaching an articial agent by feedback. Our deep reinforcement learning agent is a novel contribution to HCI research compared to multi-armed bandits (which explore actions over one unique state [START_REF] Lomas | Interface design optimization as a multi-armed bandit problem[END_REF]), contextual bandits (which explore in lowerdimensional state spaces [START_REF] Koch | May ai?: Design ideation with cooperative contextual bandits[END_REF]), and bayesian optimization (which ex-plores at implicit scales [START_REF] Shahriari | Taking the human out of the loop: A review of bayesian optimization[END_REF]). We purposely implemented heterogeneous ways of teaching with feedback based on our observations of users' approaches to synthesis exploration, which extends previous implementations such as those in the Drawing Apprentice [START_REF] Davis | Empirically studying participatory sense-making in abstract drawing with a co-creative cognitive agent[END_REF]]. Yet, rich computational models of user feedback for exploration tasks remain a challenge. Our observations indeed suggested that exploring users may not generate a goal-oriented feedback signal, but may rather have several sub-optimal goals. They may also make feedback mistakes, act socially toward agents, or even try to trigger surprising agent behaviours over time. Deep TAMER was adapted to the interactive of user feedback (as opposed to Sarsa); yet, it still made the assumption that users will generate a stationary and always correct feedback signal [START_REF] Warnell | Deep tamer: Interactive agent shaping in high-dimensional state spaces[END_REF]. Previous works investigating how users give feedback to machine learning [START_REF] Stumpf | Interacting meaningfully with machine learning systems: Three experiments[END_REF]] may need to be extended to include such creative use cases.

Exploration Behaviours

The exploration behaviours of reinforcement learning agents were shown promising for fostering creativity in our users. Both ε-greedy and intrisic method were adapted to the interactive case of a user leading exploration. One of our users felt that intrisic motivation had agents behave better than random. Yet, users' perception of agent exploration behaviours remains to be investigated more deeply. In a complementary work [Scurto et al., 2018a], we con rmed that users perceived the di erence between a random parameter exploration and a RL agent exploration. Yet, they might not perceive the di erence between various implementations of agent exploration; what they perceive may be more related to the agent's global e ect in exploring the parameter space. Future work may study co-exploration partnerships over longer periods of time to inquire co-adaptation between users and agents [Mackay, 1990]. On the one hand, users could be expected to learn to provide better feedback to RL agents to ful ll their creative goals-as it was shown in interactive approaches to supervised learning [START_REF] Fiebrink | Human model evaluation in interactive supervised learning[END_REF]. On the other hand, agents could be expected to act more in line with users by exploiting larger amounts of accumulated feedback data-as it is typical with interactive reinforcement learning agents [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. A more pragmatic option would be to give users full control over agent epsilon values-e.g., using an interactive slider [START_REF] Koch | May ai?: Design ideation with cooperative contextual bandits[END_REF]-to improve partnership in this sense.

Guidelines for Designing Machine Learning for Human Creativity

Based on our work with reinforcement learning, we identi ed a set of design challenges for leading joint conceptual and technical development of other machine learning frameworks for creative HCI applications. We purposely put back quotes from our participants in this section to inspire readers with insights on AI from users outside our design team.

Engage Users with Machine Learning

The Co-Explorer enabled users to fully engage with reinforcement learning computational framework. Users could explore as many states, provide as much feedback, and generate as many agent actions as they wanted to. They also had access to agent memory, be it by navigating in the interactive history, or by reseting the learned behaviour. In this sense, they had full control over the algorithmic learning process of the agent. This is well articulated by a participant, whose quote can be reported here:

"I did not feel as being an adversary to, or manipulated, by the system. A situation that can happen with certain audio software that currently use machine learning, where it is clear that one tries to put you on a given path, which I nd frustrating-but this was not the case here". These observations suggest that user engagement at di erent levels of machine learning processes may be essential to create partnering ows [START_REF] Pachet | Re exive loopers for solo musical improvisation[END_REF]. That is, users should be provided with interactive controls and simple information on learning to actively direct co-creation. This goes in line with previous works studying user interaction with supervised learning in creative tasks [START_REF] Amershi | Power to the people: The role of humans in interactive machine learning[END_REF], which showed how users can build better partnerships by spending time engaging with algorithms [START_REF] Fiebrink | Human model evaluation in interactive supervised learning[END_REF]. Careful interaction design must be considered to balance full automation with full user control and aim at creating ow states among people [Csikszentmihalyi, 1997]. Aiming at such user engagement may also constitute a design opportunity to demystify AI systems, notably by having users learn from experience how algorithms work with data [Fiebrink, 2019].

Foster Diverse Creative Processes

Our work showed that the Co-Explorer supported a wide diversity of creative user processes. Users could get involved in open-ended, agent-led exploration, or decide to focus on precise, user-led parameter modi cation. Importantly, none of these partnerships were clearly conceptualized at the beginning of our development process. Our main focus was to build a reinforcement learning agent able to learn from user feedback and to be easily controllable by users. In this sense, the Co-Explorer was jointly designed and engineered to ensure a dynamic human process rather than a static media outcome. As a matter of fact, we report one participant's own re ection, which we believe illustrate our point: "What am I actually sampling [from the parameter space]? Is is some kind of climate that is going to direct my creation afterwards? [...] Or am I already creating?".

This suggests that supporting the process of user appropriation may be crucial for building creative AI partnerships. Many creative tools based on machine learning often focus on engineering one model to ensure high performance for a given task. While these tools may be useful for creative tasks that have a focus on high productivity, it is arguable whether they may be suited to creative work that has a focus on exploration as a way to build expression. For the latter case, creative AI development should not focus on one given user task, but should rather focus on providing users with a dynamic space for expression allowing many styles of creation [START_REF] Resnick | Design principles for tools to support creative thinking[END_REF]. The massive training datasets, which are usually employed in the Ma-chine Learning community to build computational creativity tools, may also convey representational and historical biases among end users [START_REF] Suresh | A framework for understanding unintended consequences of machine learning[END_REF]. Interactive approaches to machine learning directly address this issue by allowing users to intervene in real-time in the learning process [START_REF] Fiebrink | The machine learning algorithm as creative musical tool[END_REF].

Steer Users Outside Comfort Zones

The Co-Explorer actively exposed the exploration behaviour of reinforcement learning to users. This goes in opposition with standard uses of these algorithms [START_REF] Brockman | Openai gym[END_REF], and may provoke moments where agents behaviours may not align with users creative drive [START_REF] Crandall | Cooperating with machines[END_REF]]. Yet, it managed to build "playful" and "funny" partnerships that led some users to reconsider their approach to creativity, as one participant confessed: "At times, the agent forced me to try and hear sounds that I liked less-but at least, this allowed me to visit unusual spaces and imagine new possibilities. This, as a process that I barely perform in my own creative practice, eventually appeared as appealing to me".

This suggests that AI may be used beyond customisation aspects to steer users outside their comfort zones in a positive way. That is, designers should exploit nonoptimal algorithmic behaviours in machine learning methods to surprise, obstruct, or even challenge users inside their creative process. Data-driven user adaptation may be taken from an opposite side to inspire users from radical opposition and avoid hyper-personalization [START_REF] Andersen | Conversations with expert users in music retrieval and research challenges for creative mir[END_REF]. Such an anti-solutionist [START_REF] Blythe | Antisolutionist strategies: Seriously silly design ction[END_REF] approach to machine learning may encourage innovative developments that fundamentally reconsider the underlying notion of universal performance commonly at stake in the eld of Machine Learning and arguably not adapted to the human users studied in the eld of Human-Computer Interaction. It may also allow the building of imperfect AI colleagues, in opposion to "heroic" AI colleagues [START_REF] Mccormack ; Inverno | Heroic versus collaborative ai for the arts[END_REF]: being impressed by the creative qualities of an abstract arti cial entity may not be the best alternative to help people develop as creative thinkers [Resnick, 2007]. The Co-Explorer fairly leans toward such an unconventional design approach, which, in default of tting every user, surely forms one of its distinctive characteristics.

Several machine learning frameworks remains to be investigated under the light of these human-centred challenges. Evolutionary computation methods [Fogel, 2006] may be fertile ground for supporting user exploration and automated re nement of example designs. Active learning methods [Settles, 2010] may enable communication ows between agents and users that go beyond positive or negative feedback. Dimensionality reduction methods for interactive visualization [START_REF] Maaten | Visualizing data using t-sne[END_REF] may improve intelligibility of agent actions in large parameter spaces and allow for more trustable partnerships. Ultimately, combining reinforcement learning with supervised learning could o er users with the best of both worlds by supporting both example and feedback inputs. Inverse reinforcement learning [START_REF] Abbeel | Apprenticeship learning via inverse reinforcement learning[END_REF] may stand as a technical framework supporting example input projection and transformation into reward functions in a parameter space.

Application I: Riding the Co-Explorers

We demonstrated the Co-Explorer at the 19th International Society for Music Information Retrieval Conference, in Paris, France [START_REF] Scurto | Riding the co-explorers[END_REF]. We designed an interactive exhibition stand in the form of a video game, that we called "Riding the Co-Explorers".

Description

"Riding the Co-Explorers" is a single-player game that exists in a single-level form: it lets players guide the agent in one single sound space. The player's goal is to nd a sound that they like. Thus, the video game possesses a free form: it does not aim at directing the player toward speci c paths or locations in the level. This decision was speci cally intended for the conference: we wanted our players to focus on the Co-Explorer more than on the video game itself, and thus uses the video game as a way to enhance immersion (see Video for an overview). The verb "Riding" aims at emphasizing the experiential aspect of interaction with the agent over the standard, task-related interaction paradigm that we tested in our previous study. In this sense, we reformulated the instruction given to users in standard interaction as a catchy storyline for the game: "Guide the agent in highdimensional sound spaces using positive or negative feedback!" "Riding", as it is used in horse riding, or motorcycle ride, also embodies the partnership that takes place between the human and the agent during sound space exploration. In this sense, we wanted to make the trajectory taken by the agent in high-dimensional spaces visible to its human user. We opted for an abstract, threedimensional representation of the agent and its environment, with aesthetic references to retrofuturistic video games (see Fig. 5.14). Speci cally, we took the decision to let all past players' trajectories visible in the environment, to give a sense of diversity in the trajectories taken, and feedback given, by the players.

Game Design Level

We selected ten parameters from a commercial VST to build a sonic space that would correspond to the agent's environment. We used the same parameterization of the Co-Explorer than we used in our previous study. As mentioned, agent memory consists in all players' trajectories and feedback given. This multi-user feedback context makes agent learning and behaviour much more complex than in the single-user use case previously investigated.

Graphics

We used Jitter to realize the graphics of the agent in its environment (see Fig. 5.15). We used Principal Component Analysis (PCA) to reduce the dimensionality of the agent's trajectory in the sound parameter space. We took the three rst components of the PCA to project the agent in a virtual three-dimensional environment. We used the OSC protocol to send the PCA coordinates in real-time from the Python Script to the Jitter patch. 

User Interface

The user interface combines tangible and screen-based elements (see Fig. 5.16). An iPad allows players to communicate instructions to the agent. We used Mira to implement the iPad interface. Four buttons support guiding and zone feedback communi-cation (red for negative, green for positive); a yellow button supports changing zone state command; a grey button allow players to reset agent memory; a white button enables players to start or stop autonomous exploration mode. Finally, a 20-inch screen enables real-time visualization of the agent's trajectory in the designed environment. 

Application in Exhibition

We exhibited Riding the Co-Explorers during three days at the ISMIR conference.

Stand

The exhibition stand consists in a minimalist space, typical of those used for demos in conferences (see Fig. 5.17). We put the user interface along with the screen and a pair of headphones on a table that was furnished by the conference. We printed the visual theme and hanged it behind the table to promote the game. The space required for the installation corresponds to approximately 3 meters long, 1 meter wide, and 2 meters high.

Attendees can spend as much time riding the Co-Explorer as they want to. They could use the installation with the help of a supervisor as well as without any supervision. When nobody was playing the game, we let the Co-Explorer behave in autonomous exploration mode to draw the attendee's attention toward our stand.

Reactions

Approximately eighty attendees played the game over the three days of the conference, trying to ride the Co-Explorer. The creative retrofuturistic visual theme worked well in catching the attention of the scienti c and industrial attendees of the conference. Attendees spent between 1 and 5 minutes playing the game, ranging from standing random button pushing to seated immersed co-exploration.

As expected, our qualitative discussions with the attendees were more technologyoriented than game-oriented, which validates the one-level design of the game. Over the short period of time consacred to discussion, we were able to observe the same categories of users than during our previous study. Some players were user-as-leader Figure 5.17: Picture of the exhibition stand used at ISMIR'18.

(skeptical about not always understanding what the agent does), some others were agent-as-leader (taking a ride on the Co-Explorer as it goes).

The visualization provoked mitigated reactions. Some attendees that were much focused on the sound produced by the agent took the visualization as a metaphorical representation of where the agent was in the space. Some others that were much focused on the technology in the agent were disrupted by the visualization, as they were trying to map the three-dimensional PCA position of the agent with the highdimensional deep reinforcement learning architecture of the Co-Explorer.

We harvested quantitative interaction data along the three days of the conference. Unfortunately, it is hardly possible to extract any relevant information from it, as we were not able to witness agent learning along the three days of the conference. The reason is that most attendees needed to reset agent memory when starting interaction with the agent for the sake of clarity. Agent behaviour in a multi-user feedback interaction remains to be investigated more deeply, and could lead to interesting insight from both machine and human points of view.

Application II: Behavioral Ma er

We applied the Co-Explorer to the design of robotic objects in a workshop called Behavioral Matter, held at Centre Pompidou, Paris, from 15th to 17th March 2019.

Description

Behavioral Matter, created and produced with the Centre Pompidou in the framework of the exhibition La Fabrique du Vivant (Mutations/Créations 3), was a multidisciplinary, international, and public research-creation workshop. It intended to question and test the notion of behavior in relation to matter and materials, objects and techniques, as well as to living or semi-living systems. The workshop stems from the "Behavioral Objects" project developed by the Re ective Interaction group of En-sadLab (the research lab of the École nationale supérieure des Arts Décoratifs -En-sAD, Université PSL, Paris) in partnership with the cluster "Matters of Activity. Image Space Material" from the Humboldt-Universität zu Berlin.

Over 70 artists, designers, researchers, student-researchers, students, and engineers from many di erent countries (Germany, Australia, Canada, Spain, the United States, France, Italy, Great Britain. . . ) worked together during three days in the Forum, the main lobby of the Centre Pompidou (see Video for an overview). Twelve modules were designed to include all these actors, and to facilitate collaboration. With four other participants, I joined the module called Learning to Move, coordinated by So an Audry. The module explored machine learning applied to the development of the behaviors of objects. We were two doctoral researchers in the area of machine learning, one artist and teacher-researcher in the area of arti cial intelligence, one teacher-researcher in the area of computational creativity, one teacher-researcher in the area of digital arts, and one student in the area of ne arts. My proposition was to apply the Co-Explorer outside the sound design domain by testing it on robot parameters to create movement behaviors.

Object Design Process

The goal of the workshop was to test and open perspectives at the crossroads of several disciplines to develop works of art and design. The only requirement for the end of the workshop was to produce a public presentation of what was done in the module. We thus adopted an experimental and collaborative approach, and set the agenda collectively to coordinate our e orts.

The rst day started by each actor making a short presentation of his or her work to the module, so that all members could better know each others with their expertise. We then familiarized with the MisB Kit 6 , an open source building blocks kit that allows to quickly build and animate physical objects without requiring any previous experience in engineering, coding or robotics. The second day was consacred to prototyping. We worked in teams of two on speci c topics to tackle several points in parallel. Half of the module worked on supervised learning using the Wekinator7 ; the other half worked on reinforcement learning using the Co-Explorer. Moments were taken to give short tutorials to members that were not familiar to machine learning to try to balance expertise within the module.

The third day was consacred to documentation of the workshop and nalization of the created prototypes. We encountered wireless network issues with the robotic kit, which hindered communication between learning algorithms and robotic objects, and slowed the prototyping process a lot. We nally prepared a short speech and scenario for the public presentation, which took place in the end of the day.

Prototype object

We prototyped one robotic object using the Co-Explorer (see Fig. 5.19). It consists in a small, abstract object that learns to nd its own equilibrium. The robotic thus exhibits a learning movement, rather than actually trying to learn to move.

It consists in one actuator, a servo motor, which can produce a rotational movement. We put one structural element, a shelf bracket, on the rotating surface of the actuator, using velcro. We fastened one exible velcro bar to the structural element, on which we taped a piezoelectric sensor for exion. Because of the gravitational eld, the velcro bar will be subject to a bending. The goal of the robotic object is to learn which actuator angle would yield the less bending to the bar.

We used the Co-Explorer to learn the relationship between the actuator angle and the bar exion. We modelled the angular position as the normalized state of the deep reinforcement learning agent (S = s ∈ [0, 1]). We de ned the corresponding action space as making an angular movement up or down by one step a i = 0.01, except when the state equals one boundary value.

We crafted a reward function by hand that is proportional to minus the square of the piezoelectric sensor (R ∝ -M 2 ). The more the bar bends, the more the reward will be negative-the more the agent should change its angular position. We also tried a linear reward function (R ∝ -M ) that yields similar behaviour. We used the OSC protocol for communication between the Co-Explorer and the MisB Kit.

Application in Workshop Results

Starting from either a bending or non-bending angular state, the robotic object manages to reach and converge to its goal state in a few minutes. The movement that we observed directly translates the reinforcement learning formalization that we adopted-i.e., making small angular movements up or down. We thus built a selflearning object able to get a sense of its physics by means of computation.

We made another try after the robotic object learned to converge in its goal state. We held the velcro bar in a horizontal position to have the object believe that gravity now exerts its force horizontally rather than vertically. After tenths of seconds, the object left its goal state to explore other angular state, until nally converging to the new maximum-reward angular state. We also successfully tried to teach the object the good angular state by sending it human reward, as we did in the sound design application domain.

Insights

Even if quite limited from a robotic point of view, our results showed that the Co-Explorer supported adaptation to other parameter spaces than sound spaces. Its building on OSC protocol enabled rapid prototyping of small robotic objects using the MisB Kit. Its generic state-action parametric formalization supported learning in other spaces than sound, and from other reward signals programmable by hand or given from human trainers.

Future work may investigate whether the Co-Explorer yields relevant results on robotic objects that have more degrees of freedom-e.g., possessing more than one actuator, and/or more than one sensor. One could also study dynamic state features instead of static angular state to observe di erent dynamic movements yielded by a reinforcement learning agent. Finally, working with non-expert users remains to be investigated more deeply, going beyond explaining its basis to fully get novice users work with it in an adapted pedagogical workshop structure.

Application III: aego

We leveraged the Co-Explorer in a computer music piece, named aego. The piece was designed through a research and creation process, in joint collaboration with Axel Chemla-Romeu-Santos. Our wish was to gather personal re ections from practice with machine learning to propose conceptual insight for future multidisciplinary inquiries in the realm of computer music. This work has been published and presented as paper and piece at the 14th International Symposium on Computer Music Multidisciplinary Research (CMMR 2019) in Marseille, France [Scurto and Chemla, 2019].

Motivation

For this study, we were interested in adopting a joint scienti c and musical approach to machine learning research. We are inspired by the computer music pioneer Jean-Claude Risset [Risset et al., 2007], whose research and creation approach to computer science enabled new scienti c understandings of sound as a physical and perceptual phenomenon, jointly with an artistic commitment toward the computed aesthetics. His work and personal approach gave insight to both scientists-ranging from formal to social science-, and artists-ranging from composers and performers to instrument designers. Our wish is to perpetuate his multidisciplinary impetus toward contemporary computer music issues related to machine learning.

The work that we present here is a step toward this direction. We led a scienti c investigation of two machine learning models that jointly frame new data-driven approaches to sound synthesis. We then adopted a musical approach toward these models, leveraging their interactive learning abilities to design a musical instrument, which we employed to create an improvisational piece. Rather than seeking general abstractions or universal concepts, our wish was to test these models through a practical case study to engage a personal re ection on the musical representations and behaviors that they may encode. Our hope is that our idiosyncratic research and creation process will help open multidisciplinary perspectives on machine learning for computer music.

The section is structured as follows. We start by the scienti c foundations of our work, describing the two models that we developed for two musical issues-sound analysis-synthesis, and sonic exploration. Next, we present the design of our musical instrument, by describing its work ow and implementation with a focus on embodied musical interaction. We then describe aego, an improvisational piece with interactive sound and image for one performer, which we wrote for our instrument. Finally, we discuss our research and creation process to draw conceptual insight on machine learning for computer music from crossed science, design, and art perspectives.

Scienti c Modelling

In this section, we describe our two machine learning models, based on unsupervised learning and reinforcement learning, from a computer science perspective. We explain how they respectively address two speci c musical issues: sound synthesis-analysis and sonic exploration.

Unsupervised Learning for Sound Analysis and Synthesis

Musical Issue Most sound analysis-synthesis techniques, such as phase vocoder [START_REF] Rodet | Speech analysis and synthesis methods based on spectral envelopes and voiced/unvoiced functions[END_REF] or wavelet transform [Kronland-Martinet, 1988], are based on invertible transforms that are independent of the analyzed sounds. Such transforms provide frameworks that can be applied regardless to the nature of the signal, but in return impose a determined structure such that the extracted features are not corpusdependant. Conversely, could we think about a method retrieving continuous parameters from a given set of sounds, but rather aiming to recover its underlying structure? Figure 5.20: Unsupervised learning for sound analysis and synthesis. The variational auto-encoder (VAE) encodes a sound dataset into a high-dimensional latent space, which can be parametrically controlled to synthesize new sounds through a decoder.

Deep Reinforcement Learning For Synthesis Exploration

Model The recent raise of unsupervised generative models can provide a new approach to sound analysis-synthesis, by considering each item of a given audio dataset {x n } n∈1...D , in our case a collection of spectral frames, as draws from an underlying probability distribution p(x) that we aim to recover. The introduction of latent variables z allows us to control a synthesis process by modelling the joint distribution p(x, z) = p(x|z)p(z), such that these variable act as parameters for the generative process p(x|z). The full inference process, that would here correspond to the analysis part, leverages the Bayes' rule p(z|x) = p(x|z)p(z) p(x)

to recover the distribution p(z|x), called the posterior.

To improve expressivity of inference and generation, we propose to investigate variational learning, a framework approximating the true posterior p(z|x) by a distribution q(z|x), such that both inference and generative process can be freely and separately designed, with arbitrary complexity. The variational auto-encoder (VAE) is representative of such methods [START_REF] Kingma | Auto-encoding variational bayes[END_REF]. In this model (Fig. 5.20), inference and generation processes are held by two jointly trained separated networks, respectively the encoder and the decoder, each modelling respectively the distributions q(z|x) and p(x|z). The inherent Bayesian nature of variational learning forces the smoothness of the latent space, a high-dimensional, non-linear sonic space, whose parametric dimensions can be freely explored in the manner of a synthesizer.

In related work, we show how this latent space can be regularized according to di erent criterions, such as enforcing perceptual constraints related to timbre [START_REF] Esling | Bridging audio analysis, perception and synthesis with perceptually-regularized variational timbre spaces[END_REF]. We report the reader to the latter paper for technical details on the model and quantitative evaluation on standard sound spectrum datasets.

Reinforcement Learning for Sonic Exploration

Musical Issue Sonic exploration is a central task in music creation [START_REF] Ystad | Timbre from sound synthesis and high-level control perspectives[END_REF]. Speci cally, exploration of digital sound synthesis consists in taking multiple steps and iterative actions through a large number of technical parameters to move from an initial idea to a nal outcome. Yet, the mutually-dependent technical functions of parameters, as well as the exponential number of combinations, often hinder interaction with the underlying sound space. Could we imagine a tool that would help musicians explore high-dimensional parameter spaces? Figure 5.21: Reinforcement learning for sonic exploration. The agent learns which actions to take on a sound synthesis environment based on reward given by the musician. The agent implements an exploration method to foster discovery along interaction.

Model We propose to investigate reinforcement learning to support exploration of large sound synthesis spaces. Reinforcement learning de nes a statistical framework for the interaction between a learning agent and its environment [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. The agent can learn how to act in its environment by iteratively receiving some representation of the environment's state S, taking an action A on it, and receiving a numerical reward R. The agent's goal, roughly speaking, is to maximize the cumulative amount of reward that it will receive from its environment.

For our case of sonic exploration, we propose that the musician would listen to the agent exploring the space, and teach it how to explore by giving reward data (Fig. 5.21). Formally, the environment's state is constituted by the numerical values of all synthesis parameters. The agent's actions are to move one of the parameters up or down at constant frequency. Finally, the musician communicates positive or negative reward to the agent as a subjective feedback to agent actions. We implemented a deep reinforcement learning model to support learning from human reward signal in high-dimensional parametric spaces [START_REF] Warnell | Deep tamer: Interactive agent shaping in high-dimensional state spaces[END_REF].

A crucial requirement for reinforcement learning agents is to autonomously explore their environment, to keep on discovering which actions would yield the most reward. We developed a statistical method, based on intrinsic motivation, which pushes the agent to "explore what surprises it". The resulting interactive learning work ow was found to be useful to relax musicians' control over all synthesis parameters, while also provoking discoveries by exploring uncharted parts of the sound space. We report the reader to [Scurto et al., 2018a, Van Kerrebroeck, 2018] for technical details on the tool and qualitative evaluation from expert sound designers.

Instrument Design

In this section, we present our musical instrument that combines our two models and leverages their learning capabilities from a design perspective. We describe how interaction design was framed in joint coordination with hardware and software engineering to support embodied musical interaction.

Interaction design

Motivation Our main design motivation was to use our reinforcement learning agent to support musical exploration of high-dimensional latent sound spaces built by our unsupervised learning model. Speci cally, our aim was to exploit the exploration behaviour of our reinforcement learning agent to support non-symbolic improvisation inside the spaces. Instead of acting as a tool, we used machine learning as an expressive partner [START_REF] Assayag | Omax brothers: a dynamic topology of agents for improvization learning[END_REF] that would be playable by musicians using positive or negative feedback.

A complementary aim was to employ the generative abilities of our unsupervised learning model to support customization of sound synthesis spaces. Instead of accurately modelling sounds, we used machine learning as a creative interface [START_REF] Fiebrink | The machine learning algorithm as creative musical tool[END_REF] that lets musicians experiment with the nonlinearities of the latent spaces. The setup phase allows musicians to con gure the instrument. They can create a customized sound dataset for the unsupervised learning model, experiment with various training parameters, or also load a previously-built latent sound space. They can also change dimensionality of the reinforcement learning agent to explore speci c dimensions of the latent sound space, as well as the frequency at which it would take actions inside the latent space.

The playing phase allows musicians to improvise with the agent by means of feedback. The agent produces a continuous layer of sound from the spectrum output of the VAE. Musicians can either cooperate with its learning by giving consistent feedback data to attain a sonic goal. Or, they can obstruct its learning by giving inconsistent feedback data to improvise through sonic exploration.

Engineering

Implementation Technically (see Fig. 5.23), the reinforcement learning agent receives a representation of the environment's state S as a position in the latent space z. Then, it takes an action A corresponding to a displacement along some dimension of the latent space. The resulting position has the unsupervised learning model generate a sound spectrum x. Based on the sound, the musician would communicate reward R to the agent. The latter would progressively learn to explore the latent space in relation to the musician's feedback data. Hardware We designed a hardware prototype to support embodied musical interaction (see Fig. 5.23,left). It consists in two velcro rings, each of them equipped with a wireless inertial measurement unit8 . We took each unit angular rotation about each forearm axis and summed them to compute a single, normalized numerical reward signal. This, combined with the lightweight, nonintrusive velcro rings, lets musicians experiment with a wide range of gesture vocabulary [START_REF] Tanaka | The body as musical instrument. The Oxford Handbook of Music and the Body[END_REF] to communicate positive or negative feedback to the agent.

Software We implemented our two machine learning models as Python libraries 910 . We developed a Max/MSP patch to implement a user interface for the setup phase, as well as a hardware data converter for the playing phase. We leveraged the OSC protocol to bridge hardware data, reinforcement learning agent, unsupervised latent space, and sound spectra together into the patch.

Musical Artwork

In this section, we present aego, an improvisational piece that we wrote for our musical instrument (see Video for an overview). The piece was premiered at the 14th International Symposium on Computer Music Multidisciplinary Research (CMMR 2019) in Marseille, France. We describe the intended aesthetics of sound, image and body, and detail how composition and performance were approached in relation to the learning abilities of our instrument.

Aesthetics

Motivation Our artistic motivation for the piece was to show and share an encounter between a learning machine and a human being with the audience. The learning machine possesses a latent sound space, as well as a distinctive musical behaviour, that are both originally unknown to the human being. Through improvisation, the human and the machine will learn to interact with each other-on an embodied level for the human, and on a computational level for the machine.

This mutual exploration is designed to be heard, seen, and experienced by the audience. The piece divides in two successive scenes (additive and physical), corresponding to two latent sound spaces learned by the machine. The performer will expressively negotiate control of these space with the machine, communicating positive or negative feedback using motion sensors placed in both hands. The slowly-evolving spectromorphologies, synthesized and projected in real-time on stage, intends to open a sensitive re ection on what is actually learned on a musical level, both by the human and its arti cial alter ego-the machine.

Intentions The piece's aesthetic intentions toward machine learning lie at three intertwined levels: sound, image, and body (see Fig. 5.24).

One of our intentions was to reveal the sound representations learned by the unsupervised learning model to the audience. We thus built latent sound spaces using sound data that was commonly used and produced in pioneering works of computer Figure 5.24: Pictures taken from the aego artwork. music. In addition, we projected the generated sound spectrums on stage to provide the audience with a visual representation that accentuate, not disrupt, the sonic perception of the piece.

Another intention was to display the exploration behaviour of the reinforcement learning agent in front of the audience. To do this, we wanted to challenge the skills and abilities usually at stake in performance, by summoning an ecological approach and evoking a sense of reciprocal interaction between the human and the machine. In this sense, rather than using it for control purposes, we used the body of the performer to convey kinesthetic information about how machine exploration may be internally experienced by a human. In parallel, we added raw textual information about the machine's internal state at top left of the image projection to emphasize the machine's encoded perception of the performer.

Writing Composition

The piece was composed at three temporal scales (see Fig. 5.25).

The rst scale is that of exploration. It consists in the improvisational paths taken by the reinforcement learning agent following the performer's feedback data. We set the frequency of agent actions between 30 and 100 milliseconds. This choice allowed for slow, continuous evolution of spectromorphologies, which enables to grasp the behaviour of the agent inside the latent spaces. The second scale is that of latent space dimensionality. It consists in de ning the axis of the latent spaces that the reinforcement learning agent will explore. We set the dimensions to 1, 2, 4, and 8, respectively. This allows to write a speci c kind of musical form inside the latent space: the more dimensions we open to the agent, the more sonic variance the performer and audience members will experience.

The third scale is that of latent space itself. It consists in connecting the reinforcement learning agent to another type of latent space. We used two latent spaces, respectively built from additive synthesis sounds and physical instruments recordings ( ute, saxophone, piano, violin, bassoon [Ballet et al., 1999]). This enables to write form within di erent soundscapes, allowing the building of a narrative (here, going from elementary sinusoidal spectra to richer instrumental timbres).

Performance. While the piece is intended to be improvised, our sole instruction toward the stage performer is that he or she globally performs with the machine with an overall sense of attentiveness. We propose that the performer would start the piece facing the audience, relaxed, using the instrument with small forearm rotations only. As the piece would unfold over time, the performer would be free to adapt its gestures in response to the slowly evolving complexity of the explored spaces, focusing on embodied interaction with the machine.

A second contributor is required to manage the two remaining temporal scales of the piece-i.e., changing dimensionalities, and switching latent spaces.

Discussion

In this section, we take a critical look at the output of our case study by discussing our research and creation process. We then expose our personal re ections emerging from practice with machine learning, and propose conceptual insight for future multidisciplinary inquiries in the realm of computer music.

Case study

Process The work presented here relates a practical case study with machine learning in the frame of computer music. We leveraged both conceptual and technical aspects of machine learning to jointly produce scienti c knowledge with our two models for sound synthesis, as well as musical creations through the design of our instrument and the writing of our musical piece. In this sense, our work emerged from a research and creation process, in which we closely articulated a research methodology with a creation project.

We followed a sequential disciplinary agenda (see Fig. 5.26, solid lines and arrows). We started by the scienti c modelling of sonic exploration and sound synthesis, which took us two years to date. We then planned a one-month period to conceive the instrument, write and practice the musical piece. This research and creation agenda was mainly required by our work occupation focusing on computer science research without necessarily addressing music creation.

While many researchers of our laboratory were involved in scienti c modelling, we (the two coauthors) managed instrument design and musical piece as a pair. Importantly, we both followed a dual training in science and music, and were doctoral students in the domain of machine learning applied to computer music at the time of writing. In addition, both of us have professional experience in music composition and performance. These dual skills were central to individually work, as well as to effectively collaborate, on conceptual and technical aspects related to machine learning throughout the process.

Output The relatively short period dedicated to musical creation pushed us to take pragmatic decisions about the form of outputs, notably by relinquishing certain technical developments. For example, using the unsupervised learning model to learn temporal features of sound spectrums could have improved the timbre richness of the generated sounds, as well as supported other musical forms than slow spectromorphology evolution. Also, other agent commands than feedback data could have been designed to support expressive human control over the reinforcement learning agent exploration. Finally, many other musical forms could have been conceived, using other sound datasets-e.g., voice corpora or environmental sounds-and investigating other temporal writings for dimensionality and exploration. Future continuation of our work may consider addressing these research questions to evolve the generated outputs.

Authors' re ections on machine learning for computer music Conceptual insight Beyond the created outputs, our process of practice with the two machine learning models let us re ect on conceptual issues, which feed back into many di erent disciplines (see Fig. 5.26, dashed lines and arrows). On the one hand, composing with the sonic aesthetics produced by the unsupervised learning model let us re ect on epistemological issues that span both formal and social science (Fig. 5.26, upper and lower dashed arrows). Should machine learning be considered as a modelling tool for sound data, or rather as a framework for sound synthesis that remains to be crafted? Our insight leans toward the latter option. Rather than imposing deterministic rules to de ne a sound space [Chowning, 1973], probabilistic methods propose heuristics that aim to inverse this methods by retrieving structure directly from the data. More speci cally, Bayesian approaches ltrates the "space of everything possible" to get closer from the data structure, thus providing interesting generalization abilities in addition to structural information, from the point of view of formal science. Conversely, adopting an artistic approach to the learned representations also provides an alternative way of evaluating these models, completing existing machine learning-focused evaluations methods of such unsupervised learning systems. However, such evaluations have to deal with musicological approaches in the realm of the social sciences, and remains still an underrated eld of research.

On the other hand, performing with a reinforcement learning-based musical instrument o ers new design and scienti c views on interactivity (Fig. 5.26, middle dashed arrows). How should we approach an arti cial musical partner that learns to behave from our sole feedback data? Alternatively, should exploration be analysed as an expressive musical behaviour? Our insight is that the data-agnostic framework of machine learning may support the development of new modalities for humanmachine interaction, which may originate from the social sciences. In the musical domain, machine learning may be used to enhance modes of communication that already exist between musicians. Feedback, for example, is a broad communication channel that concern all types of living or nonliving systems [Wiener, 1965]. By designing interactions with machine learning that rely on feedback data, we may create more accessible musical partners and in turn instigate analytical views on these embodied notions-as it has been the case with machine learning-based gesture modelling tools [START_REF] Bevilacqua | Continuous realtime gesture following and recognition[END_REF]. Exploration, as a performative and improvisational practice, remains to be investigated more deeply in that sense.

Toward intrinsic approaches

In this paper our approach was to study the artistic possibilities emerging from the encounter of our two models, rather than to evaluate them separately on their respective tasks. Precisely, our experience in practicing such models revealed to us two distinctive approaches: an extrinsic approach, where machine learning models are designed towards a speci c task and used faithfully to this end-such as in music information retrieval-, and an intrinsic approach, where these models are exploited for themselves and taken as objects that can be explored, hacked, and manipulated-such as in gesture modelling, or improvisational systems. While the rst approach has so far been the most common, as machine learning was originally created to tackle complex issues that preceding techniques fell short with, we think that the second may unfold new creative opportunities for computer music, just as Jean-Claude Risset's joint scienti c and musical approach to computing did [START_REF] Risset | Exploration of timbre by analysis and synthesis[END_REF]. We hope that the present case study stands in favour of this argument.

While we built on our joint machine learning and music training to lead our case study, it may require more time to manage collaboration between machine learning experts and researchers, engineers, musicians, artists, musicologists, scientists, designers, or epistemologists, toward shared musical goals. We believe that multidisciplinary collaboration is key to lead intrinsic examination of machine learning, and that the latter may be crucial to go beyond suspicions and actively negotiate the place of the human artist in upcoming AI music systems.

Designing With Active Learning For Collective Musical Interaction

This chapter presents the fourth and last study led in the thesis. We decided to go beyond individual musical tasks studied in Chapters 3, 4, and 5 to investigate collective musical interaction. Our wish was to explore how machine learning could foster new types of collective musical interaction, possibly mediated by mobile technology. We adopted a participatory design method to involve stakeholders at all stages of the design process [START_REF] Schuler | Participatory design: Principles and practices[END_REF]. Speci cally, we started with an observation step to brainstorm interaction scenarios with stakeholders before deciding on the machine learning technique to be studied (see Fig. 6.1). This enabled us to frame active learning as a relevant technique for collective musical interaction. Yet, as we will see, only a reduced prototype was implemented in the context of this study. Figure 6.1: The participatory design method for our fourth study. 107 6. Active Learning For Collective Musical Interaction Section 6.1 reports on observations led in a eld study, describing the musical task of collective musical interaction and interviewing designers of previous systems dedicated to this task. Section 6.2 describes the design of our model prototype. Finally, Section 6.3 describes the application of our model to the design of a public installation, called entrain, that we showcased at a ve-day international conference.

The installation was published and presented as installation at the ACM SIG-GRAPH Studio 2019 (SIGGRAPH'19) in Los Angeles, California [Scurto et al., 2019a].

Observation

We started our study with an observation step with designers of interactive music systems for collective musical interaction, especially, the Coloop system. Our wish was to focus on this system and brainstorm with our stakeholders how machine learning techniques could foster collective musical interaction.

Musical Task: Collective Musical Interaction

Before relating our study, we situate the musical task of collective musical interaction in the frame of contemporary music practices. We then present Coloop, the system on which our study will build on.

Situating the Musical Task

Collective musical interaction is a music task consisting in leveraging audio and visual cues to communicate expressive intentions to other people [Leman, 2008]. While a great skill of expert performers and music improvisers, collective musical interaction is also accessible to non-musicians [Leman, 2016]. For example, non-musicians may involve in collective music interaction when experimenting live music concerts.

The expressive qualities of music enables musicians to communicate intention to non-musicians, and reciprocally. Yet, collective interaction is a complex human phenomenon, which remains hardly understood from a cognitive point of view.

In recent years, the CoSiMa project1 adopted a design approach to investigate such collective music interactions by creating audiovisual experiences based on networking technologies. Crucially, one of the aims of CoSiMa was to leverage networking technologies-which were essentially addressed to expert composers and performers from computer music communities-to include a broader audience in music-making. In particular, the project build on web technologies to enable co-located audiovisual experiences based on mobile smartphones. Mobile technologies were shown to support the engagement of both musicians and non-musicians in collective musical interaction [START_REF] Matuszewski | Interaction topologies in mobile-based situated networked music systems[END_REF].

As such, networked collective musical interaction may happen in public contexts, ranging form artistic installations to interactive experiences for urban services. It may relate to a di erent form of engagement than the three previously-investigated musical tasks, emphasizing expressive and experiential aspects of interaction over expert creative usages. Our wish is to study how machine learning may help people engage in a music practice without necessarily wanting to engage in a use.

Coloop

Collective Loops [START_REF] Schnell | Collective loops: multimodal interactions through co-located mobile devices and synchronized audiovisual rendering based on web standards[END_REF] and Coloop2 are examples of these collective music-making systems in public spaces. Coloop allows up to eight persons to collaborate in the creation of rhythmic drum loops. To do so, each person's mobile phone is provided an instrument corresponding to a part of a drum set-i.e., bass drum, snare drum, hihat, tom, or cymbal. Each phone's screen allows to ll a sequence of 16 beats with sounds corresponding to the instrument (see Fig. 6.2). The resulting rhythmic drum loop would thus consists in the addition of all eight persons' sequences synchronized in time. A 3D-printed loudspeaker equipped with LEDs renders the musical outcome in real-time, which enable participants to reassemble together in a shared place. Thus, Coloop intends to encourage participants to collaborate in the creation of danceable, or aesthetically-enjoyable rhythms. Coloop is a relevant use case to study collective musical interaction. First, from a human-centred point of view, it was one of the most successful audiovisual experience built during the CoSiMa project, as the installation was awarded a national design prize3 . Second, from a machine point of view, its design remains quite generic in terms of implementation and musical a ordances, which allows for easy incremental design actions. We thus decided to focus on Coloop to investigate machine learning applied to collective musical interaction.

Setup: Field Study

We led a eld study with two participants that worked with the Coloop installation. The goal was to: Understand the strengths and weaknesses of the installation; Brain-storm ideas for possible design breawdowns.

The eld study took the form of a joint semi-structured interview of the two participants. Our wish was to harvest personal re ections of the participants about the installation, while at the same time fostering collective discussion and having them exchange viewpoints. The rst participant was a researcher and developer who actively contributed to the implementation of the installation. The second participant was a researcher and designer who had experience in supervising its functioning with the public. We logged the audio recording of the joint interview, who approximatively lasted one hour and a half.

Results: Qualitative Analysis On Coloop

The rst questions of the interview aim at asking participants about their previous experience observing the public interacting with Coloop.

Previous supervision. P1 and P2 respectively supervised the Coloop installation ve and two times each. The public that engaged with the installation was essentially non-musician, young people. Contexts of interaction ranged from technology fairs to cultural evenings and art exhibits. Di erent sound designs were available within the installation; yet, the TR-808 and TR-909 designs were the most used by P1 and P2, as they were those that fostered the more interesting interactions.

The usefulness of a simple interface. When asked on the strengths of the installation, P1 and P2 jointly mentioned the simplicity of the smartphone-based individual interface. The non-musician public enjoyed creating rhythmic loops by only lling some of the sixteen blanks of the interface with sounds. As a matter of fact, three additional buttons that were implemented to generate automatic llings (respectively, random, preset, or clear buttons) were almost never used by the public, who preferred lling their loop with their own beats. P2 said that this simplicity sometimes let nonmusicians create "very beautiful things. [...] It's not necessarily those that make techno music, that know what a drum machine is, etc. It's those that experiment with this very simple thing".

The lack of human learning. As a result of its simplicity, the installation did not really encourage the public to get a better understanding of its working. P1 evoked the fact that it is common place in public installations: "Most people don't necessarily want to learn the system. So they may want to use it in its most straightforward version", P2 commented. As a consequence, there were many times where the eight public participants ended up lling all the blanks of the eight interface, which had the consequence of having one of the supervisor use a clear button ("The most important button of the installation!", P1 joked) to restart the installation from scratch. While this lling could be analysed as a speci c form of collective musical behaviour, one may argue that it digresses from Coloop original aim, which is making music collectively, without the help of a human supervisor.

On possible improvements

The rest of the interview progressively evolved in the form of a joint discussion to brainstorm possible algorithmic improvements for the installation.

Suggesting adapted loops within user interface. To encourage the public not to ll all the blanks, a rst idea was to suggest speci c llings to users through their individual interface. While this idea may help guide the public to play di erent rhythms, P1 and P2 jointly agree that it would add too much complexity to Coloop, and have it lose its attractive simplicity. P1 inquired: "It's less a matter of algorithmic complexity than of interface complexity. Imagine you being happy with the loop that you created, then something telling you 'hey I give you this'. How is the public supposed to listen to the suggested loop, while remembering its previously-created loop, and re ect on which one he would prefer?" Adding an adaptive, arti cial player. To guide the public toward di erent rhythms, a second idea was to add an arti cial player that would generate an additional loop that adapts to the eight loops played by the public. P1 noticed that such an adaptive behaviour would allow the installation to be usable by single persons, which could be helpful in cases where it would be exhibited in a hardly busy place. P2 underlined that this added adaptation would have the installation change its denition: "I think that people must be informed about it, so that they may try to play with it, or even break it, or push it to play something. This would be better understood by the public [than suggestions], I think. "

Structuring the rhythm of interaction. A third idea was to structure the rhythm of interaction to clarify which of the arti cial or human players would be responsible for generating loops. I suggested a simple question-and-answer format, where human players would play together during four measures to create some musical question, then listen to the arti cial player during four measures generating an adapted musical answer-leveraging standard 4-measure structures at stake in electronic music. P1 and P2 disagree with this suggestion, saying that this would interrupt the public's appropriation of the installation, and that it may confuse non-musicians not aware of the 4-measure structure.

Reward the public with audio e ects. A fourth idea was to reward the public with audio e ects depending on some musical criteria determined by an adaptive agent. This rewarding would create a collective behaviour where all public participants would play in the form of a competitive game to be in possession of the audio e ect. P1 and P2 both welcomed the idea of augmenting the actual human player's performance by an e ect, instead of adding a supplemental rhythmic loop to the already rich musical output. Yet, P1 warned about the use of an objective criteria to rule musical interaction: "Ethically, you are socially rewarded if you accept to be rei ed by a technological system. Well, if you present it as an artistic premise, why not... "

Cultivating magic of the music installation. To counteract the biased concept of optimal performance applied to music, both participants gave the insight of cultivating magic in the music installation. P1 highlighted the interests of focusing on the interval between full artistic abstraction and full technical explanation for the non-musician public: "We as musicians should accept the idea that the public may not understand everything, and that this is not a problem. This is the whole thing of interactive art. If you do not understand a thing, then it is boring. If you understand everything, then it becomes technical, which is not the same kind of object. In the interval lies magic, which can be exciting for the public. " P2 considered the possibility of using the technical adaptivity of machine learning to evoke a sense of ghostly presence of all previous public members.

Prototyping

Our observations enabled us to start designing a model prototype. In this section, we describe the active learning task, that we chose based on the design ideas suggested in our eld study. We then present our model prototype, starting by the processing of human data to measure user performance within Coloop, and describing the Bayesian information Gain algorithm that was adapted to our active learning task. We nally describe its implementation as a web-based application.

Proposed Technique: Active Learning

We propose to frame the design opportunity in Coloop as an active learning task. In active learning, an algorithm sequentially query the user about the data it is processing [Settles, 2010]. These querying strategies have been shown to support more e cient learning in certain situations where human users possess expert knowledge on the task being learned. Our intuition was that these queryings may be adapted to the Coloop system to actively steer human users to make music collectively-e.g., adding an arti cial participant in addition to human participants. As previously mentioned, with respect to our participatory design method, we had not decided on the machine learning task to be investigated prior to interact with Coloop stakeholders.

Human Data: Performance

A rst requirement for the active learning task to be realized is to de ne the data on which it may operate. Based on our eld study, our wish was to build on the simple and successful interface of Coloop, allowing each human participant to control a 16-bit sequence (see Fig. 6.2). We thus designed two features aimed at extracting information on participants' performance with respect to our observations in our eld study (see Fig. 6.3). Importantly, our approach remains general; one may use other features-and more than two-to describe a user's state in other collective use cases.

Our rst design intention was to account for how participants may focus on their individual interface. We propose to measure user activity as the rst feature of our model. User activity is based on the number of changes made by the user in the sequence in each loop. A completely passive user would have null activity, while an overactive user would have maximum activity. The feature is computed at the end of each loop, which supports dynamic accounting of a user's state as he/she interacts with the system.

Our second design intention was to account for the lling of participants' sequences. We propose to measure rhythmic periodicity as the second feature of our model. Rhythmic periodicity is based on the autocorrelation4 of the user's sequence. A fully-lled sequence would have minimum periodicity, while a large-spaced sequence would have maximum periodicity. Again, the feature is computed at the end of each loop, which supports dynamic accounting of a user's state as he/she interacts with the system.

Algorithm: Bayesian Information Gain

To prototype the active learning task, we used the framework of Bayesian Information Gain (BIG) [START_REF] Liu | Bignav: Bayesian information gain for guiding multiscale navigation[END_REF]. Based on our eld study, the general idea is to manage model adaptation to participants' behaviour. BIG allows to adapt a probabilistic model of user behavior p(Θ = θ) by actively sending some feedback X = x to users and sensing participants' subsequent input Y = y (see Fig. 6.3). The framework remains generic and thus potentially allows the machine to send any kind of feedback to participants-which may support the sending of audio e ects. For our model prototype, we modi ed the framework to model the user state feature space. p(Θ = θ) corresponds to the probability that a given user activity and rhythmic periodicity may correspond to the predicted user behavior. It is possible to de ne prior knowledge if we want the agent to have a positive bias toward a certain user behaviour-e.g., medium activity with high rhythmic periodicity.

After some time of interaction, the agent may update its knowledge on users behaviour. The update is done by measuring users' move in the feature space, which corresponds to Y in the BIG framework. The agent updates its probabilistic model of user behavior and generates a new temporary feedback X . Importantly, the algorithm chooses X based on an information theory criteria. Speci cally, it generates a feedback that may maximize the information gained from participants moves Y with respect to the probabilistic model p(Θ = θ). We hypothesize that such a criteria may be hard to decipher for participants, and as such may cultivate some sense of magic within the installation.

Implementation: Web-based Application

We implemented our model prototype as a web-based application 5 , building on the JavaScript implementation of Coloop. Human data processing and algorithmic computations are run on the server side. All mobile phones are registered as clients and share a unique clock, building on the Collective Soundworks framework for collective mobile web interaction. The resulting musical outcome-i.e., the sum of all participants' rhythmic loops-exists as a client named "barrel". To start the application, one has to run a local server-e.g., using NodeJS and a router. Then, all clients may be opened by accessing a web page-e.g., using mobile devices for sequences, and a computer device as barrel.

Application: entrain

We applied our model prototype to the design of a musical installation, named "entrain". We exhibited the installation at ACM SIGGRAPH Studio (SIGGRAPH 2019), in Los Angeles, California [Scurto et al., 2019a].

Description

entrain is a musical installation that lets participants make music together in collaboration with an adaptive agent (see Video for an overview). Participants may ll circular sequences to generate rhythmic loops-identically to the Coloop installation. Depending on their behaviour, an arti cial agent may designate speci c participants to steer collective music-making. entrain is inspired by the notion of musical entrainment, which refers to the human phenomenon of rhythmic synchronization that may occur when listening or playing music [START_REF] Varni | A system for mobile active music listening based on social interaction and embodiment[END_REF].

entrain combines active learning with hardware elements. Participants may use their own mobile phones to create their own rhythmic loops. A connected loudspeaker support sound generation, while also allowing participants to gather around a common physical place. A small single-board computer, placed inside the loudspeaker, support active learning from participants' behaviour to the adaptive agent.

The adaptive agent designates particular participants by sending audiovisual feedback in the form of audio e ects and ashing lights. The audiovisual feedback may encourage social interaction between human participants and foster musical entrainment.

Installation Design

Hardware

For entrain, we collaborated with the design studio Nodesign.net to design hardware under the form of a connected loudspeaker and an embedded system (see Fig. Embedded system. While the previous version relied on the bluetooth protocol to send audio information from a server to the loudspeaker, Coloop mini integrates a computer device at its basis, which is considered as an additionnal client to participants' mobile phones. A Raspberry Pi runs the web application as well as the "barrel" web page in real-time, and is directly connected to the loudspeaker with an audio jack. An Arduino Nano was programmed to have the barrel control the eight LEDs put over the loudspeaker.

Software entrain leverages our model prototype to design the adaptive agent, by implementing speci c musical structure and audiovisual e ects.

Model update. We used a musical structure to update our model prototype in relation to agent's intervention. At the starting of interaction, the model prototype sets a feedback state X. The agent may update its knowledge on user behaviour every sixteen loops. The update is done by measuring participants' move in the feature space, which corresponds to Y in the BIG framework. The agent updates its probabilistic model of user optimal behavior p(Θ = θ) and generates a new temporary target state X that will be active for the next sixteen loops.

Audiovisual e ects. The arti cial agent intervenes in collective music-making by designating speci c participants using audiovisual e ects. We combined a delay with a pitch shifting e ect to augment the designated participant's rhythmic loop. The delay was xed at a ternary period to enhance the loop's musicality. We ashed the color of the designated participant using the LEDs of the loudspeaker, with rhythm corresponding to the participant's loop.

In the case where a participant gets into the feedback state during the sixteenloop structure, the agent may make a "highlight" intervention by designating him or her with an audiovisual e ect. This may act as a social incentive for participants: it encourages the designated participant to continue performing at the same level, while motivating other participants to play along with him/her to bene t from the same e ect.

In the case where no user gets into the feedback state during these sixteen loops, the agent will make a "solo" intervention. First, it will stop interaction during four loops and designate the only participant that is closest to the temporary feedback state. This is aimed at switching participants' attention from their individual interfaces to the collective outcome. Second, it will slightly adjust user states toward the temporary target state. This may enable participants to start a new round with the installation, bene ting from additional motivation as provided by the arti cial agent.

Application in Exhibition

We exhibited entrain at the ACM SIGGRAPH Studio 2019, in Los Angeles, California. Our aim was to harvest reactions on the interactive behaviour of the agent, understanding how its active learning may be perceived by di erent participants.

Setup

Participants. Approximately 500 participants interacted with the installation over the ve full days or exhibition. As the conference's theme was Computer Graphics, few participants had experience or expertise with embodied interaction with sound. Actually, from our discussions and observations, apart from a few exceptions, most participants were non-musicians. We were thus interested in testing how nonmusician people would react to our installation.

Con guration. Participants were presented with the installation as shown in Figure 6.5. To facilitate interaction, we provided them with mobile devices, that we displayed around the Coloop mini. To arouse participants' interest toward it, we made the installation produce sound by pre-lling four mobile devices with loops. Then, the presentation setup varied depending on the number of participants that got involved at time of presentation. In most cases, participants came alone by the installation: either they had to play alone, or with us, or with unknown participants. Other participants came as a group to the installation and thus already knew each other before collaborating in music-making. When needed or asked, we introduced the functioning of the mobile devices' interface. Participants spent between one and ve minutes interacting with the installation. 

Reactions

Participants in space. A rst observation toward participants is the importance of spatial arrangement in relation to collective behaviours. For example, we left the mobile devices on the table to let participants use them. Hardly any participant ended up taking the device in the hand, which was our expected way of interacting with the installation. Also, once participants had chosen their mobile device, they stayed xed to their initial position and did not move around the installation. This had us display the mobile devices all around the loudspeaker to encourage participants to enclose the loudspeaker and better perceive its sound and visual e ects.

Participants' expectations. A second obsevation toward participants is the in uence of their expectations in relation to their engagement with the installation. Participants' engagement at SIGGRAPH conference could be roughly classi ed in three levels. The rst level corresponds to participants interested in understanding the technical functioning of the system. They typically asked about the model responsible for adaptation, as well as the web implementation and the realization of the loudspeaker, and did not really experience the installation as it was conceived for. The second level corresponds to participants interested in hands-on trying and playing with the installation to try to make music out of it. Some of them were alone and constructed rhythms by gathering all mobile devices in front of them. Others collaborated with their colleagues or strangers to make music. The third and last level corresponds to participants in-between the two previous categories. They were not speci cally interested in the technical speci cities, nor the musical experiences of the installation, and thus had short experiences with the installation.

Presenters' in uence over participants. A third observation toward participants relates to the in uence of the presenters over participants. We noticed di erent participant behaviours depending on our interactions with the latters. For example, the simple fact of coming close to the installation when participants used it seemed to bias their behaviour. This may be explained by the fact that presenters may represent a form of authority in relation to the installation. Also, presenters' wording may completely change the reception of the installation by participants. For example, we began using the word "intelligent" to rapidly qualify the agent implemented in the installation. This seemed to hinder participants in experimenting with the system. Alternatively, using the phrasing "playing with you" to qualify the agent seemed to motivate our participants and foster their curiosity. We thus stuck to this phrase to complement the introduction of the installation.

Agent's functioning. Having all these factors in mind, we now report on participants' reactions toward the active learning agent.

First, the sixteen-loop update structure was rather good to create sequences of interaction that were not too short, and not too long. Participants had su cient time to delve into individual sequence customization, while being stopped by the agent in case they did not enter the feedback state.

Second, the audiovisual e ects triggered various reactions depending on participants' expectations. Most of the time, it fostered participants' curiosity toward the collective outcome of the installation. The "solo" interventions were appreciated by most participants, who imagined that the system reseted to allow a new series of collaborative music-making-in this sense, hardly any participant noticed that their sequence was being modi ed by the agent after this. Others that enjoyed the music outcome of the installation were entrained by it, in turn designating the participant designated by the agent. In case where participants were mostly focused on their individual interface, the "solo" intervention was perceived as a bug, as it stopped interaction with the screens. "Highlight" interventions were too quick to let participants identify which participant was being highlighted; as such, they were not looked after by participants, which were much more focused on creating their individual rhythmic sequence.

Third and last, agent adaptation generated di erent reactions among participants. First, no participant reported that they understood the adaptation mechanism in relation to collective music-making. This may validate our choice of information gain as machine criterion that may be hard for human participants to decipher. Second, active learning was successful in generating form during collective music-making. The algorithm often changed its feedback state after "highlight" interventions, which had participants being designated not being designated anymore in a few seconds. Third, our model prototype converged quite quickly to some learned optimal user behaviour, which had us often reset its probability distribution by hand. This may pave the way for future improvements of the model in relation to collective human behaviours.

Discussion

Our application in exhibition showed that entrain created new collective musical interactions between essentially non-musician participants. The active learning implementation enabled to steer participants toward new musical con gurations, while being su ciently complex to appear as a black-box to them-which we believe was of interest for such an installation. The physicality of the loudspeaker helped participants situate themselves in collective interaction, as well as situating the agent in this con guration.

Future work may apply entrain in other contexts than that of conference to harvest situated feedback on the agent-e.g., cultural events, club venues. Also, the model prototype may be improved to augment its robustness to user behaviour. Alternatively, other sound designs may be tested to generate variations in the collective musical outcome. For example, other audio e ects may be used by the agent as a way to produce form during interaction.

On Human-Centred Machine Learning Applied to Music

In this chapter, we re ect on human-centred machine learning applied to music by analysing the four studies led during the thesis. We rst analyse the harnessing of human musical goals and values that a human-centred approach to machine learning brings. We then assess the switching of machine learning tasks for general interaction techniques, as enabled by our introduction of model prototypes. We nally introduce the notions of machine expression and co-expression to examine the human-machine work ows designed with machine learning along our studies.

Harnessing Human Musical Goals and Values

The human-centred approach to machine learning allowed us to harness human musical goals in situated musical practices, as well as values considering the sociotechnical aspects of learning algorithms.

Human Feedback on Musical Tasks

The rst advantage lies in the harnessing of situated human feedback in the design process. By situated, we mean feedback harvested in di erent human contexts, relating to (1) existing musical practices, (2) degrees of musical expertise, and (3) designer.

Feedback from Expert Music Practitioners

Designing with musical practitioners helped us include useful feedback in the model design process. Music practitioners are an extreme category of users [Garcia, 2014]: they accumulate hours of practice related to their art, which provides them with deep and speci c expertise on it.

Deep, because they may know general dimensions that may be relevant to the practice of speci c elements. For example, the expert movement practitioners with which we worked in the design of unsupervised learning for motion-sound mapping 121 (Chapter 3) leveraged their embodied knowledge to assess a novel interactive situation linking their gestures to sound. Including this feedback may provide high-level insight on a given musical practice, which in turn helps to generate ideas for the interactive a ordances of a model prototype.

Speci c, because they may exhibit a unique style in the execution of a given task. For example, the sound designers with which we collaborated in the design of deep reinforcement learning for synthesis exploration (Chapter 5) all had speci c strategies for exploring sound spaces with standard parametric interfaces. Including this feedback provides low-level insight on the various steps of execution of a given musical task-for example, the spontaneous exploration of parameters-, which in turn helps to explore various high-level features of a model prototype-for example, the exploration strategy of the deep reinforcement learning agent.

Feedback from Non-Musicians

Perhaps counter-intuitively, non-musicians may be extremely useful to provide alternative feedback in the model design process. Even if they are not practitioners, non-musicians may experience music on a more or less regular basis, for example during listening, or in live venues [Leman, 2008], which provides them with general and diverse views on it.

General, because they may provide feedback related to more common issues related to music, rather than on practice. For example, the participants that we observed interacting with reinforcement learning for sonic exploration (Chapter 4) enabled us to gain an understanding of how humans may perceive agent exploration. Including this feedback may enable the selection of given alternatives in the design space, for example by excluding features that are not perceivable by humans.

Diverse, because they may witness novel feedback that may not originate from the state-of-the-art, nor from expert practitioners. For example, the non-musicians that we observed testing active learning for collective musical interaction (Chapter 6) witnessed a higher sensibility to contextual factors-such as system's expectation or presenters' in uence-than expert musicians-who may have extensive experience with testing music systems.

Feedback from Designers

Designers of interactive music systems, as diverse as they may be (as described in Section 2.1.2) may provide valuable feedback in the design of a model prototype. This might seem obvious at rst glance, as designers often implicitly discuss with, of sometimes belong to, the research and development group that carry the work. Yet, explicitly including them in the design process may bene t the process itself, but also the research community in its entirety.

The process, because designers may provide feedback that encompass conceptual and technical dimensions related to an element of a music practice. For example, the designers with which we discussed to design active learning for collective musical interaction (Chapter 6) were able to identify the key conceptual issues related to the building of collective music patterns between participants, along with the technical challenges related to measuring participants' behaviour.

The research community, because most of the time, designers may be in the position of the observer, not of the observed. As a consequence, this feedback may not always be transcribed in most scienti c publications, which prevents other researchers and designers to bene t from it. For example, the designers with which we discussed to design active learning for collective musical interaction (Chapter 6) were able to elicit the actual design aws at stake in their own interactive music systems, perhaps a bit more than in scholarly publications.

Music Practices and Machine Learning

The second advantage lies in the sociotechnical consideration of machine learning in relation to music practices. By sociotechnical, we mean three aspects: (1) the relevance of automation in relation to expert music practitioners, (1) the biases that humans may have toward technology and "arti cial intelligence", and (3) sustainable music practices.

Automation and Expert Music Practitioners

Machine learning has the potential automate several musical tasks (as we saw in Section 2.2). Yet, automating musical tasks cannot be considered without considering expert music practitioners that actually carry these tasks. The latters' practices may have conceptual and cultural speci cities when apprehending automation.

Expert music practitioners have long expressed di erent opinions on automation. On the one hand, some expressed the wish to create machines that automatically create music [Hiller Jr and Isaacson, 1958], which is nowadays perpetuated in elds such as Computational Creativity, or even Musical Metacreation [START_REF] Pasquier | An introduction to musical metacreation[END_REF]. On the other hand, perhaps by a fear of automation in relation to composition [START_REF] Dubnov | Delegating creativity: Use of musical algorithms in machine listening and composition[END_REF], other composers expressed the wish to rely on rule-based programming to build machines able to assist the act of composition, such as with the OpenMusic software [START_REF] Bresson | Openmusic: visual programming environment for music composition, analysis and research[END_REF]. This polarization was witnessed in our study of deep reinforcement learning for synthesis exploration (Chapter 5), where professional composers led creative tasks by positioning between an agentas-leader-corresponding to automation-oriented composers-and a user-as-leadercorresponding to rule-oriented composers-work ow.

Having this conceptual framing in mind, cultural factors also have to be taken into account. Expert music practitioners often rely on embodied knowledge along their creative processes, leveraging speci c strategies and values to explore the space of possibilities [START_REF] Andersen | Conversations with expert users in music retrieval and research challenges for creative mir[END_REF]. It is important to stress that this embodied knowledge may be highly shaped by cultural elements-such as historical background on computer music-, and as such, may not be shared by all expert music practitioners. Automation in machine learning should thus be designed with care to account as much as possible for a diversity of cultural processes, which are the signature of human creativity. For example, our study of deep reinforcement learning for synthesis exploration (Chapter 5) showed that automation was appropriated by human users to provide exible paths to explore the design space, as opposed to simply replace them with one single automated path.

"Arti cial Intelligence Technology" and People

The idea of automation may also be perceived di erently by non-musician people, which may not have the same background than musicians when approaching technology and "arti cial intelligence technology" in relation to music.

People may have biases on the notion of technology. Some of them may perceive technical objects from an ontological point of view, that is, objects that extend their natural abilities [Simondon, 1958]. Others may express fear toward technology, based on the belief that it has the power of changing the world [Haynes, 2003]. These cultural distinctions in perception continue to take place with the renewed rise of "arti cial intelligence technology". The notion, being spread though science-ction centuries ago [Buchanan, 2005], and investigated by scientists around half a century ago [Minsky, 1974], perhaps strengthen the division between technology-suspicious people, and technology believers [Geraci, 2012]. In both cases, this may have consequences on the perception of new technology by human users. For example, our study of deep reinforcement learning for synthesis exploration (Chapter 5) showed that our participants perceived the Co-Explorer as being not that "intelligent", which may suggest that they have important expectations toward the behaviour of the system. These expectations should be taken into account when designing technology that use machine learning.

Despite these biases in perception, some aspects of interaction may be shared by a greater majority of people, even non-musicians, notably in relation to creativity and ow [Csikszentmihalyi, 1997]. The music cognition eld o ers a great description of how expressive dynamic processes and feedback loops may actively arouse motivation and ow states in musicians [Leman, 2016]. In this sense, automation may be used to design a sense of play to foster human creativity instead of focusing on productiveness. This consideration backs the notion of improvization, as it was described in Section 2.2.2. As an example, the somasticks, designed from our study of unsupervised learning for motion-sound mapping (Chapter 3), provided with a degree of automated interactivity that seemed to be enjoyed by creative practitioners.

The Challenge of Sustainable Music Practices

A third and following sociotechnical aspect relates to the sustainability of the created music practices. Here, "sustainable" is meant to evoke the longer-term acceptance of machine learning technology by musicians and non-musicians. While not investigated in the context of this thesis, we stress the importance to lead longitudinal studies to assess the impact of machine learning on both mainstream and niche musical communities.

Mainstream, because machine learning has received considerable attention from the academic communities as well as the music industry. While these communities both consider the creation of new musical uses, they may have a tendency to do so through the prism of human productivity, whether it be at an individual scale-e.g., creativity support tools for music production [Deruty, 2016]-, or at a larger scalee.g., recommender systems for mass music consumption [START_REF] Montecchio | The skipping behavior of users of music streaming services and its relation to musical structure[END_REF]. While partly motivated by scienti c evidence, one can suggest that this drawing of attention may also be encouraged by sociopolitical pressures toward applying articial intelligence [START_REF] Caramiaux | Ai in the media and creative industries[END_REF]. Research may be essential to study machine learning at the scale of mainstream music production, to identify which of the new musical practices may remain sustainable in such a highly-disrupted context.

Niche, because the attention of machine learning for mainstream music communities may harm smaller niche music communities. From a sociological point of view, music practices always inscribe within a cultural context, which manifests itself through shared knowledge and expectations on the sonic aesthetics [McLeod, 2001], as well as shared know-how and appraisal on compositional and performative techniques [Frith, 1998]. To sustain the diversity of music practices implies accounting for a diversity of human users in the design of machine learning. Data-driven techniques investigated in this thesis may go in this sense, but remains to be investigated on a longer term to demonstrate their impact.

Switching Machine Learning Tasks for Interaction Techniques

The human-centred approach to machine learning allowed us to switch machine learning tasks for general interaction techniques to be designed [Beaudouin-Lafon, 2004]. We detail how model prototypes helped such switching by generating new design ideas, and how the reassignment of model engineering in the design process allowed the concretization of these ideas.

Model Prototypes as Design Artifacts

The rst advantage lies in the use of model prototypes as actual artifacts of the design process [Beaudouin-Lafon and Mackay, 2009]. This enables to frame new computations at three levels: (1) exploring new machine learning tasks, (2) expanding data types, and (3) generating new algorithms.

Exploring Open-Ended Music Tasks in Machine Learning

Leveraging model prototypes helped us explore new machine learning tasks in relation to their musical application. Machine learning models are often aimed at realizing a goal-oriented task with the highest performance in a given software application. In addition to these goal-oriented tasks, prototypes enable to explore open-ended tasks, which can be of interest for the creative domain of music. Goal-oriented tasks are the main point of focus in machine learning literature, which developed optimization algorithms to add to the basic statistical models aimed at identifying patterns in raw data. The decision that the model should take from these identi ed patterns-i.e., the machine learning task-remains quite exible to design, computationally speaking [Bishop, 2006]. Most of the time, machine learning tasks are goal-oriented as a logical continuation of their statistical modelling origin: examples are classi cation or recognition. This type of task can be useful in a musical application: for example, our study of reinforcement learning for sonic exploration (Chapter 4) showed that an agent having the goal-oriented task of maximizing feedback helped human users to e ectively attain a musical goal. As they constitute the majority of machine learning literature, experimentation outside these remain quite rare.

Open-ended tasks, on the contrary, constitute a minority of the machine learning literature. They consist in taking decisions from patterns identi ed in data that go beyond optimizing some given measure to potentially discover novel patterns or generate novel behaviors. Using model prototypes allows to explore such open-ended tasks in the early stages of the design process, by assuming the possibly non-optimal behaviour of the model. For example, our model prototype used in our study of active learning for collective musical interaction (Chapter 6) allowed us to consider the open-ended task of stimulating dynamic music processes among human players. This kind of task may be promising for music, as well as for any other creative application domain, which, as discussed above, may often rely on dynamic, open-ended processes, than on static, goal-oriented outcomes.

Scaling Models and Data to Music

Using model prototypes also enable to scale models and data to musical applications. Most of current applications in the machine learning literature focus on using deep models on well-established data bases. By looking at model prototypes, we may investigate shallow models, while also witnessing new data modelling opportunities.

Model architecture is central to the development of machine learning. Specically, most recent breakthroughs of arti cial intelligence have built on complex, deep models trained on huge databases [START_REF] Briot | Deep learning techniques for music generation-a survey[END_REF]. Alternatively, model prototyping encourages investigation of shallow models able to learn from small scales of data. These small scales are of main interest for music, where customization is of prime interest for creators [START_REF] Fiebrink | The machine learning algorithm as creative musical tool[END_REF]. The unsupervised learning model that we designed for motion-sound mapping (Chapter 3) may be the most representative example of such shallow model, as it leveraged a few seconds of human motion observation to create expressive musical interactions in the somasticks. Reciprocally, model prototypes can also be used to hijack deep models with a small data set approach, as we did in our study of deep reinforcement learning for synthesis exploration (Chapter 5).

Data at stake in machine learning can pertain to di erent signal categories. Some disciplines, such as Music Information Retrieval, may focus on a given categories of data-e.g., data from audio signals-to do machine learning research. While it may sound like an obvious statement for other disciplines, we recall that many machine learning applications could be discovered if one considers new types of data and investigate them. Discovering and studying such new types of data could be an opportunity for music applications of machine learning to go from lab-based setups to real-world domains [Wagsta , 2012]. For example, using a model prototype in our study of reinforcement learning for sonic exploration (Chapter 4) allowed us to con-sider non-stationary reward signals through human feedback data, which is barely studied in the reinforcement learning literature.

Balancing Model Performance with Musical Features

Model prototypes enable to rapidly experiment interaction between machine learning systems and humans. As such, they enable to better balance model performance with the musical behaviour provided to humans in music activities. While the latter is the speci city of crafting in interactive music systems [Jorda, 2005], the former constitutes most of the focus of machine learning research.

Performance is how well a machine learning model performs a given task after being trained on a given data set. It is one of the main criteria for assessing the relevance of a model on a given machine learning task [Murphy, 2012]. Yet, this notion may not always be relevant for applications in music. The notion of interactivity was introduced in interactive music systems to go beyond the reactivity of standard, taskoriented interfaces [Paine, 2002]. One could think of a similar analogy in interactive machine learning applied to music. Our study of deep reinforcement learning for synthesis exploration (Chapter 5) showed that an arti cial agent may be useful for a musical task even if not performing the learning task one hundred percent accurately. Performance also links with the notion automation in relation to music practices, as discussed in Section 7.1.2.

In addition to interactivity, explainability may be a relevant notion to the design of machine learning for music. Explainability is how interpretable the decisions a of a machine learning algorithm are for humans [START_REF] Ramos | Emerging perspectives in human-centered machine learning[END_REF]. It may be crucial to build trust in humans involved with technology in creative activities. For example, our study of deep reinforcement learning for synthesis exploration (Chapter 5) showed that relying on interactive visualizations-in this case, interface parameters and navigation history-allowed humans users to better understand the behaviour of the algorithm, and to better exert human control over algorithm performance. The use of model prototypes enabled us to switch from a performance-oriented to a humantrustable model design process.

Reassigning Model Engineering In The Design Process

The second advantage of a human-centred approach lies in the reassigning of engineering toward the end of the music design process, as opposed to standard engineering of machine learning (see Section 2.2.3). This enables to: (1) move from prototype to nal models, (2) better seize engineering in relation to musical behaviour, and (3) move toward machine learning design patterns.

Centering Model Engineering On Humans

The human-centered approach enables to center the engineering machine learning on human musical practices. Both training and tuning of the models are done by including human users in the loop.

Training consists in collecting and labelling data sets from which the machine learning algorithm would learn a model. Often, these data sets are constituted by the researchers or designers of machine learning systems themselves, with the aim of providing a representative sample of the phenomenon to be modelled. As a consequence, the resulting big data sets are often impersonal, and potentially reproduce biases already present in the real-world. The human-centered approach allows to explicitly take into account the training process by directly having end-users build their own data sets interactively. For example, our study of deep reinforcement learning for synthesis exploration (Chapter 5) showed human users provide feedback labels to train di erent agents for di erent creative tasks. Customization may be essential in musical applications, as each musician may exhibit di erent creative processes and, as such, be considered as a unique phenomenon.

Tuning consists in adjusting the hyperparameters of a machine learning model before the training process. Often, it is done with the aim of optimizing the model behaviour in relation to the loss function of a given goal-oriented task. Yet, as discussed above, open-ended tasks, where a loss function may not be easily de ned, may also be of interest for musical applications. The human-centered approach enables to explicitly consider the tuning process, either by choosing hyperparameter values from feedback-driven heuristics, or by directly having end-users choose their values. For example, our design of unsupervised learning for motion-sound mapping (Chapter 3) let human users choose the number of Gaussian components of their machine learning model, as well as the temporal duration corresponding to the batch size. Altogether, training and tuning allows end-users to appropriate the engineering of machine learning and use it for their creative purposes.

Model Engineering and Musical Behaviour

Despite our focusing on model prototyping, it is important to recall that model engineering still has consequences on the musical behaviour of a model. To analyse these consequences, one may distinguish between end-user and feature engineering.

End-user engineering refers to the interactive training and/or tuning of the machine learning model by the end-users of a system. It is the approach that we decided to focus on in this thesis, inspired by the eld of interactive machine learning [START_REF] Amershi | Power to the people: The role of humans in interactive machine learning[END_REF]. End-user engineering may be central to the musical behaviour of a model. By allowing humans to customize a model and explore the space of possibilities, end-user engineering may be essential for humans' creative process in openended tasks. For example, our design of deep reinforcement learning for synthesis exploration (Chapter 5) let human users experiment with various training and tuning con gurations to explore and discover new sound designs.

Feature engineering refers to the de nitive training and/or tuning of the machine learning model by developers of a system. It is the step that we decided to jump over in our research methodology, except in our study of deep reinforcement learning for synthesis exploration (Chapter 5). Yet, feature engineering importantly in uences the musical behaviour of a model. By providing humans with e cient interaction techniques and automation, feature engineering may be crucial to improve human productivity in goal-oriented tasks. Future work may push the design of our four machine learning models further by leading feature engineering based on the observations harvested, while keeping in mind the sociotechnical factors related to machine learning and productivity raised in Section 7.1.2.

Toward Music Design Processes for Machine Learning

To frame new machine learnings for music requires considering both end-user and feature engineering processes in joint relation with situated human feedback and realworld applications. Design processes that explicitly take into account the time needed for conceptual and technical framing should be conceived.

Conceptual framing supports the formulation of a music practice as a machine learning task. This formulation includes de ning a machine learning task, choosing a learning algorithm, and delimiting human data. Many possible strategies could be conceived for such reformulations. Theory provides state-of-the-art considerations toward the musical practices, and also the use of certain machine learning techniques. The human-centred approach integrates human users in the design process by having them discuss and test potential formulation in the form of model prototypes. Alternatively, our study of active learning for collective musical interaction (Chapter 6) involved human users in all aspects of conceptual framing. In the latter, human users were able to understand and formulate machine learning tasks in relation with the musical practice-even if not experts of machine learning. This suggests that human users can be included from the beginning of the design process for machine learning.

Technical framing enables to assess the working of the machine learning system. This assessment includes the testing of end-users engineering in interactive setups, as well as the feature engineering of the machine learning model in non-interactive setups. While the former only requires programming to be e ective, the latter often takes a lot of time due to the big data needed to train and tune the machine learning model. These big data scales often slows the design process of the model, as constituting such big databases is actually a research contribution in itself. Using model prototypes enables to reduce this time by directly evaluating the learning requirements of the machine learning model in relation to the musical practice. Alternatively, teamwork is a reliable option to make conceptual and technical framing parallel. Our study of deep reinforcement learning for synthesis exploration (Chapter 5) stands as an example of such task assignment, having one researcher lead conceptual framing and another leading technical framing.

Creating Co-Expressive Human-Machine Practices

Having discussed the advantages of human-centred machine learning applied to music, we now analyse the musical interactions that it created. To do so, we propose to adapt Leman's notion of expression-which was essentially developed to describe interaction between humans and music [Leman, 2016]-to the case of human-machine interaction-speci cally, where the machine learns to produce musical output from interaction with humans. We introduce the notion of machine expression to account for the perceived musical behaviour of learning machines in relation to humans. We then analyse co-expression, as the dynamic process of musical expression between learning machines and humans. We nally leverage these notions to discuss arti cial creativity from the point of view of human expression and music.

Machine Expression

The notion of expression is not new in the eld of computer music. Some researchers even focused on expressiveness as an essential feature of interactive music systems [Jorda, 2005], notably through the spreading of NIMEs-acronym for New Interfaces for Musical Expression [START_REF] Dobrian | The'e'in nime: musical expression with new computer interfaces[END_REF]]. Yet, we believe that the "E" in NIME has mainly been considered for members of its computer music communitye.g., expressiveness for expert performers, or for expert audience members. We are interested in including more people in the notion of musical expression, especially through the design of interactive music systems. The notion of machine expression aims at describing interaction with interactive music systems from a human-centred point of view-be they musicians, or nonmusicians. Machine expression pragmatically addresses the fact that humans may perceive expression in machines, regardless of machines' abilities to express by themselves. As such, machine expression may help support a wider range of human creative processes in the design of interactive music systems. In this section, we (1) situate machine expression in standard interactive music systems, describing the expressive a ordances of computer devices and music itself as perceived by humans. We then (2) analyse machine expression in the context of machine learning, where the notion of arti cial creativity has driven much of the research on interactive music systems. We argue that the notion of machine expression enables to design more inclusive machine learning for human creativity support in music.

Situating Machine Expression In Music Dispositifs

Marc Leman de nes expression as "quality of human movement that is meant to provoke an expressive response, so that an expressive interaction can be established between sender and receiver" [Leman, 2016]. Here, we explain how machines may be perceived as senders of expressive signals by human receivers, considering the embodied qualities of computer devices and music in relation to human sensory-motor state (as depicted in Fig. 7.1). Computer devices may be described as possessing embodied qualities related to their dynamic attributes and a ordances. On the one hand, dynamic attributes refer to the exhibition of a movement behaviour from a computer device. It may apply to software in the case where the user interface exhibit autonomous dynamic behaviour. For example, our design of deep reinforcement learning for synthesis exploration (Chapter 5) expressed dynamic attributes in the user interface in the form of an agent moving parameters autonomously. It may also apply to hardware if the device is capable of robotic behaviour. On the other hand, a ordances are what both software and hardware elements may o er to the individual [Gibson, 1977, Gaver, 1991]. They have been greatly investigated in computer devices through the wave of embodied interaction [Dourish, 2004]. For example, our study of active learning for collective motion-sound mapping (Chapter 6) leveraged smartphone devices that jointly express interface-and object-based a ordances.

Music may be described as possessing embodied qualities related to its sonic forms and a ordances [START_REF] Caramiaux | Mapping through listening[END_REF]]. On the one hand, sonic forms refer to the spectral qualities of sound organized in time-e.g., rhythm, melody, timbre, or harmony. They have been shown to be associated with expressive gestures by humans, notably through the theory of embodied music cognition [Leman, 2008]. For example, our study of unsupervised learning for motion-sound mapping (Chapter 3) shows how drumming sounds express embodied qualities related to human movements to human players. On the other hand, a ordances refer to the ability of music to trigger speci c movements in humans. They have been used to align the rhythm of human movement on the music rhythm, notably through the notion of entrainment [Leman, 2016]. For example, our study of active learning for collective motion-sound mapping (Chapter 6) used rhythmic loops to express accessible musical a ordances to human players. Other works in the eld of sonic interaction design extended the notion of music a ordance to that of sonic a ordance, that is, a ordance exhibited by sound itself, regardless of musical qualities [START_REF] Altavilla | Towards gestural sonic a ordances[END_REF]. We will only mention that one may consider either sound or music a ordances in machine expression, depending on their eld of work.

Analysing Machine Expression From Human Perspectives

As a general notion, machine expression may be analysed in a wide variety of existing interactive music systems (including the reactive tools, partners, and mediums described in Section 2.1.3). In the context of this thesis, our interest lies in analysing machine expression from a human-centred perspective. That is, our wish is to account for humans' perception of expression in machines regardless of their musical expertise. Such an analysis may enable to include more people in the design of interactive music systems. Here, we leverage the biosocial and cultural dimensions of expression [Leman, 2016] to analyse how machines may be perceived as expressive by humans-be they musicians or non-musicians. We depict the resulting concepts in Figure 7.2.

Biosocial signals originate from sensorimotor re exes, triggered by sound perception, a ecting the cognitive state of humans and animals. The most basic example of biosocial signal may be described through the notion of entrainment. Entrainment is the process of rhythmic coordination that can take place between a living organism and an external stimulus [Phillips- Silver et al., 2010]. In the case of a sonic stimulus, coordination between the organism's movement and sound may take place, as a byproduct of pre-existing biological adaptations. In the case where the stimulus originate from another entity, coordination between the organism's movement and the entity may take place, as a byproduct of embodied associations and social feedback loops. Importantly, biosocial signals may not necessarily require the sender to have the intention of conveying an information; rather, they may be only based on the receiver's dispositions to sensorimotor responses. As such, machines may be analysed as emitting biosocial signals from the perspective of humans. For example, our study of deep reinforcement learning for synthesis exploration (Chapter 5) showed that humans made biomorphic associations toward the agent's actions on the VST.

Cultural signals involve some form of human learning toward biosocial expressive signals [Leman, 2016]. They may relate to the evolution of human cognition toward sound, for example regarding its intentional use as a communication modality, especially through the invention of language, of which music may be thought as being part of [Levitin, 2006]. Cultural signals may also relate to the development of human norms toward music, for example regarding the assessment of its value, which heavily depend on its situation in the communities to which it pertains [Small, 1998]. Machines may bene t from a similar analysis. Cultural signals in machines may relate to human codi cations of average intelligence abilities for machines, whether it be fuelled by myths commonly at stake in science-ction, or by trends currently related by the media [Haynes, 2003]. For example, our study of reinforcement learning for sonic exploration (Chapter 4) showed that humans perceived the agent as "light-headed", which accounts for cultural expectations on the expressive abilities of a machine.

Human-Machine Co-Expression

The blending of human expression with machine expression can create patterns of musical interaction that we propose to name co-expression. Of course, co-expression already happen during human performance with standard music instruments and interactive music systems [Jorda, 2005]. In line with our position, we believe that the notion of performance conveys too much of a bias toward expert performers from computer music communities. Co-expression, on the other hand, intends to provide a more general description of interaction between machines and (possibly nonmusician) humans, in a way similar to human-machine co-adaptation [Mackay, 1990].

In this section, we discuss how co-expression may occur in human-machine music practice. We rst (1) analyse interactive work ows designed in this thesis under the light of co-expression. We then (2) analyse how human-centred machine learning may speci cally enable to learn machine expression from human expression. We argue that the framework of co-expression may help design more inclusive interactive music systems in terms of musical values and expertise.

Co-Expression as Emergent Cooperation, Competition, or Cohesion

In the course of this thesis, three interactive work ows were created: design through performance (Chapter 3), co-exploration (Chapters 4 & 5), and collective musical interaction mediated by an active learning machine (Chapter 6). We argue that each may be respectively analysed as emerging forms of co-expression: cooperation, competition, and cohesion. In the following paragraphs, we describe these emerging forms as strong concepts that could guide the design of human-machine co-expression with machine learning [START_REF] Höök | Strong concepts: Intermediate-level knowledge in interaction design research[END_REF].

Cooperation occurs when two or more entities act together for a common objective. In music, cooperative acts between musicians may occur during compositione.g., discussion of musical ideas-and performance-e.g., embodied communication of musical intention. In co-expression, cooperation may occur when the human perceives machine expression as jointly aligned with his or her musical expression. For example, our study of deep reinforcement learning for synthesis exploration (Chapter 5) related the emergence of co-exploration work ows that could be analysed as cooperative, where the machine takes actions on some VST with the goal of maximizing human feedback. Cooperation may be characterized in humans by the emergence of pleasant a ective states due to the alignment of human and machine expression.

Competition arises when two or more entities strive for an objective that may not be shared. In music, competition may be analysed from the viewpoint of tension and resolution, which claims that emotion in music may be provoked by embodied evocations of divergent sonic states eventually coming to an agreement [START_REF] Steinbeis | Shared neural resources between music and language indicate semantic processing of musical tension-resolution patterns[END_REF]. In co-expression, competition may occur when the human attributes a divergent intention to the machine, that is, when local aspects of machine expression does not align with the global human expression. For example, our study of unsupervised learning for motion-sound mapping (Chapter 3) related the emergence of design through performance work ows that could be analysed as competitive, where performers strive to move di erently to get speci c sounds from the machine. Competition may be characterized in humans by a ective states combining short-term unpleasantness with sustained arousal due to the challenging aspects of machine expression.

Cohesion occurs when bonds link entities of a group to one another and together. In music, cohesion may exist between diverse members of a speci c musical community that share common cultural codes and a vision on music. In co-expression, cohesion may occur when the machine gently entrains the human to express in a certain way, without necessarily expressing through the same embodied quality, nor having a speci c aim. It could be argued that cooperation and competition may be thought of as speci c forms of cohesion between the human and the machine. Yet, cohesion may be considered as a particular form of co-expression, due to its open-endedness in comparison with the two latters. For example, our study of active learning for collective musical interaction (Chapter 6) shows how the machine and humans form a cohesive group, which communicate through sound and visuals, yet do not share the same representational space nor having a speci c musical aim. Cohesion may be characterized in humans by the emergence of positive emotion and mood due to the form of homeostasis [Leman, 2016] maintained by human and machine co-expression.

Learning Machine Expression From Human Expression

Machine learning techniques were central to the emergence of such co-expression work ows observed in this thesis. In the following paragraphs, we discuss how machine learning may actually learn to modulate human expression by creating models prone to adaptation, surprise, and incentive (see Fig. 7.3). We build on Leman's notions of human agency, prediction, and reward to describe human action data in terms of expression and support our claim [Leman, 2016]. Agency is the capacity of an entity to act in a given environment. Music has been shown a sense of agency to humans in relation to their movement, for example when musical tempo aligns with human locomotion [Leman, 2016]. Machine learning have potential to augment human agency by creating a model that adapts in realtime to human data. For example, our design of unsupervised learning for motionsound mapping (Chapter 3) created such space for agency by automatically adapting to human motion data to control sound synthesis. More generally, adaptation remains one of the main feature of machine learning techniques, which are designed to learn operational rules from example data [Bishop, 2006].

Prediction refers to the ability of a cognitive system to forecast a future event. It is often described as a key element in music interaction, where humans apply their own predictive sensorimotor model to the temporal unfolding of a given song to, for example, anticipate dancing movements [Leman, 2016]. Machine learning can potentially learn to manipulate such human predictive coding by purposely introducing musical events that surprise human expectations. For example, our design of deep reinforcement learning for synthesis exploration (Chapter 5) enabled such predictive coding manipulation by taking exploratory actions on the basis of a human preference model learned from feedback data. Other algorithmic methods for surprise may be designed with machine learning, for example, by tweaking Bayesian inference to explicitly opt for unlikely decisions [Murphy, 2012].

Reward is the positive property that an entity ascribes to an event or an action. It is essential in the cognitive-motivational loop of humans and animals, notably to learn associations between events. Music listening, as well as music performance can be highly rewarding for humans [Leman, 2016]. Machine learning can potentially learn to manipulate rewarding associations between input and musical output to incentivize humans to rediscover the rewarding associations. For example, our design of active learning for collective musical interaction (Chapter 6) constantly manipulated the human reward model-corresponding to the association of a musical state with an audio e ect-on the basis of collective performance data, so as to incentivize humans to play together. Incentive may be designed with other machine learning techniques that draw from rewarding mechanisms to learn models-e.g., reinforcement learning [START_REF] Sutton | Reinforcement learning: An introduction[END_REF].

On Human Expression, Music, and Arti cial Creativity

The notions of machine expression and co-expression enables to understand interaction in music systems from the perspective of human expression. As reported in Section 2.1.1, human expression, especially through embodied interaction with music, is central to the social and emotional development of human beings [START_REF] Altenmüller | The evolution of emotional communication: From sounds in nonhuman mammals to speech and music in man[END_REF]. Thus, supporting personal expression in interactive music systems may enable the development of creativity in humans [START_REF] Frich | Twenty years of creativity research in human-computer interaction: Current state and future directions[END_REF]. Creativity is a general skill that may operate beyond artistic practice to a variety of activities, including scienti c inquiry and technology design [START_REF] Hart | Creative foraging: An experimental paradigm for studying exploration and discovery[END_REF]. It may be supposed that the dynamic nature of co-expression, reinforced by the adaptive abilities of machine learning, may support creative processes characteristic of human music practices.

Many researchers, musicians, scientists, and designers have emphasized the fact that music is a practice, not a thing [Small, 1998]. As described in Section 2.1.1, music practices are necessarily of a dynamic nature, due to their situation in human, cultural, and societal contexts. To let new music practices thrive implies fostering the dynamic and improvisational nature of the creative process in humans [Canonne, 2012]. From a human-centred perspective, this means considering all possible dimensions of human interaction with music systems, encompassing technical as well as expressive elements-such as accounted with our strong concepts for co-expression. From a machine-centred perspective, this means designing technology that provide space for expression of possible solutions, rather than providing direct solutions-such as depicted by "metadesign" approaches to human-machine systems [START_REF] Giaccardi | Creativity and evolution: a metadesign perspective[END_REF]. It is arguable that our human-centred approach to machine learning provided such space for expression, and as such, managed to take root in existing music practices.

In this sense, we prefer to use the notion of machine expression instead of that of arti cial creativity when discussing machine learning applied to music practice. As described in Section 2.2.3, arti cial creativity focuses on the building of autonomous machines capable of human-level creativity. We believe that such arti cially-creative machines may drive the yearning to express one's creativity away from people. First, the autonomous abilities of these machines reduce human expression to a few parameters, thus hindering the emergence of co-expressive patterns of interaction. Second, the static generative behaviour of these machines go against the dynamic nature of creative processes at the core of existing music practices. We do believe that many researchers and developers in machine learning applied to music actually aim at designing musically-expressive, rather than arti cially-creative, machines [Assayag, 2014, Esling et al., 2019]. Yet, we argue that their talking about "arti cial creativity" creates an ambiguity regarding the scienti c and musical values that they defend, especially toward fully-automated machines, typical of the latter approach.

Take the example of an arti cial creativity machine able to automatically generate original orchestral symphonies by imitating the writing style of some famous composer. The biosocial signals expressed by such a machine arguably convey an embodied sense of superhuman performance, which relates to the instantaneous writing of a complete symphony. This may have expert musicians feel dispossessed of their hardearned creativity [START_REF] Surges | Feature selection and composition using pyoracle[END_REF], while also hindering non-musicians engaging in embodied interaction with music. On the other hand, the cultural signals expressed by such a machine arguably foster the notion of "arti cial intelligence" and its related drawbacks, as discussed in Section 7.1.2. Whether resulting from personal or industrial motivations related to machine learning, or from a decent lack of contextualising, this happens to the detriment of alternative music communities-whose practitioners are disrupted by the introduction of such powerful technology-and for the bene t of mainstream music culture-whose members use, possess, and develop such arti cially-creative machines. These points will be developed in the Post-Scriptum.

We believe that situated acts of creation can subvert such automated systems and techniques in favour of human expression and music practices. For example, humancentred approaches to machine learning enable to design expressive machines that balance human-level automation with human-level control, while accounting for the situated nature of the concerned music practices. Music practice supports situated appropriation of machine learning by members of given music communities, thus encouraging the development of other notions than arti cial creativity to discuss machine learning [Assayag, 2014]. Artistic approaches to machine learning enable to nourish imagination on music to be made by such arti cially-creative machines, especially by distorting their intended engineering [Williams, 2016]. Research, design, and applications led in this thesis clearly situates among the latter scienti c and musical values.

Conclusion 8.1 Summary and Contributions

This thesis aimed at defending the approach of designing with machine learning for interactive music systems. To do so, it applied human-centred approaches to the design of machine learning, in contrast with engineering sciences approaches traditionally applied to machine learning. It investigated four musical tasks by situating them in their respective music practice contexts. It leveraged model prototyping to generate new interactive machine learning work ows with the concerned human users before engineering a nal model. It applied four human-centred methods to research and design the musical interactions that took place between learning machines and humans. It adopted a re exive approach to analyse the work done in the thesis and argue for the necessity to situate machine learning in human contexts to foster existing music practices.

Model Prototypes

We designed four model prototypes respectively corresponding to the four musical tasks investigated. Each of them implemented a machine learning technique in a human interaction setup, allowing to test novel interactive learning work ows with di erent types of data. Speci cally, we applied the Online Gaussian Mixture Model to the musical task of motion-sound mapping by implementing unsupervised learning from human motion observations. We applied the Sarsa model to the musical task of sonic exploration by implementing reinforcement learning from human feedback and machine exploration. We applied the Deep TAMER model to the musical task of synthesis exploration by implementing deep reinforcement learning from human feedback, control, and intrinsically-motivated machine exploration. We applied the Bayesian Inforation Gain model to the musical task of collective musical interaction by implementing active learning from individual human performances.

Empirical Findings

We harvested empirical ndings corresponding to the evaluation of human interaction with the respective four prototype models. The nature of these empirical ndings related to that of the human-centred method employed to study interaction. Specically, we found that performers projected themselves into imaginary situations interacting with unsupervised learning for motion-sound mapping. We found that humans were able to perceive di erences in agent's behaviour with reinforcement learning for sonic exploration. We found that sound designers switched the lead with deep reinforcement learning agents for synthesis exploration under speci c types of partnerships. We found that non-musicians reacted positively to the expressive behaviour enabled by active learning in collective musical interaction.

Music Dispositifs

We applied our four prototype models to the creation of several music dispositifs that we displayed in various public settings. The created dispositifs enabled to inquire machine learning applications to music in another type of situation than the lab-based studies of human-centred methods. Speci cally, the somasticks are augmented drumsticks that use unsupervised learning to emphasize somatic expression in drumming practice. Riding the Co-Explorers is a single-level game that lets a single player guide the Co-Explorer in one single sound space. Behavioral Matter is an interdisciplinary workshop that applied the Co-Explorer to the design of robotic objects. aego is an improvisational computer music piece with interactive sound and image for one performer and the Co-Explorer. entrain is a public installation that lets humans express collectively in music in collaboration with an active learning loudspeaker.

Theoretical Perspectives

We reported on theoretical perspectives on machine learning applied to music by adopting a re exive approach on our work. These perspectives enable to rethink machine learning applied to music in terms of human goals and values. Speci cally, the artifacts called model prototypes help envision possible designs of machine learning in situation with human users before fully engineering them. notion of machine expression supports the general description of human perception of machines in music practice, regardless of humans' expertise in music. The notion of co-expression enables to conceptualize the emergence of musical interaction between (possibly non-musician) humans and (possibly learning) machines. Overall, the notions provide actionable alternatives to arti cial creativity approaches to the engineering of machine learning, which currently drive most of machine learning applications in music.

Directions for Future Work

While our interdisciplinary approach enabled original contributions, it also left several research questions open. We conclude the present dissertation by outlining human-centred, machine-centred, and musical perspectives for future work to be done.

Human-Centred Perspectives

Designing with machine learning for interactive music systems had us explore four situated music tasks instead of focusing on one sole music practice. This choice let many questions open related to the studied human users, be they musicians or nonmusician people.

On Musicians

Two of our studies-Chapters 3 and 5-situated the research and design of machine learning in speci c music practices-motion-sound mapping and synthesis exploration, respectively. Yet, more time could have been spent working closely with the corresponding expert musicians to get a better understanding of their practicesperformance and sound design, respectively. This understanding could notably enable to better evaluate the creative process of musicians in the appropriation of machine learning [START_REF] Fiebrink | Human model evaluation in interactive supervised learning[END_REF]. Concretely, longitudinal studies could be led with sound designers, individually using our deep reinforcement learning model prototype over longer periods of time, to observe interaction with machine learning more precisely. Also, eld studies could be led with performers, observing them interacting with existing interactive music systems in their own creative environment, to get an understanding of their musical practice that go beyond the designed machine learning artifacts.

On Non-Musician People

The two remaining studies-Chapters 4 and 6-situated the research and design of machine learning in more general music practices-sonic exploration and collective musical interaction, respectively. Yet, more time could have been spent studying how non-musician people can develop their creativity through music practice. These studies could in turn enable the design of machine learning that support education and inclusion purposes [START_REF] Thompson | Sound control: Supporting custom musical interface design for children with disabilities[END_REF]. One of the paths suggested by this dissertation would be to study interaction between humans and machines from the perspective of co-expression. Longitudinal studies could be led, investigating processes of expressive interaction between non-musicians and machines, to observe the development and crystallizing of strategies in relation to some musical task-such as sonic exploration. Alternatively, qualitative studies could be led in public settings to better understand how non-musicians perceive machine expression in open-ended musical activities-such as collective musical interaction.

Machine-Centred Perspectives

Designing with machine learning for interactive music systems had us explore four machine learning techniques instead of focusing on one sole machine learning model. This choice let many questions open related to the studied techniques, notably regarding the engineering of models, and the quanti cation of machine expression.

From Model Prototyping To Model Engineering

Our four studies built on model prototyping to ideate applications of machine learning with human users. Only one-Chapter 5-bene ted from model engineering to ne-tune the design of machine learning for the corresponding musical task-namely, synthesis exploration. Yet, further iterations in the design processes could have been done to go beyond one-step prototyping to reach model engineering in all four studies. Such reachings may enable the creation of design patterns that explicitly consider the speci cities of machine learning in human interaction contexts [Beaudouin-Lafon and Mackay, 2009]. For example, several model prototypes could be explored in parallel to assess their suitability to human interaction. Larger data bases of human interaction could be built to support the pre-engineering of models through o ine learning. Human-centred optimization criteria may be developed to engineer the nal models in relation to some situated musical task-such as the intrinsically-motivated exploration criteria in Chapter 5.

Designing Machine Expression

Re exive approach on our four studies-in Chapter 7-enabled to frame machine expression as a qualitative notion that describes musical interaction between (possibly non-musician) humans and (possibly learning) machines. Future work could explore a reverse approach consisting in designing machine expression in interactive music systems. Such an approach may combine qualitative and quantitative descriptions of expression to design machines that go beyond the false divide between the digital and the physical [START_REF] Bianchini | Practicable: From participation to interaction in contemporary art[END_REF]. Other types of data could be investigated to support expression in interactive music systems. For example, physiological data could be studied to sense, or even measure, musical expression in humans. Complex environmental data could be leveraged to support arti cial implementation of expressive features in machines. Machine learning could be used to explicitly model expression in humans and machines, as well as to support algorithmic description of co-expression.

Musical Perspectives

Designing with machine learning for interactive music systems had us apply four human-centred methods and lead ve applications in real-world musical situations instead of focusing on one sole methodology. This choice opens many perspectives related to the methods to be used for, and the nature of, music research.

On Human-Centred Methods

Our four studies used human-centred methods to build scienti c knowledge on musical interaction. These four methods allowed us to somehow synthesize perspectives from the many disciplines involved in the work, such as Human-Computer Interaction, Machine Learning, or Music. Yet, further investigations could be led to better understand how these human-centred methods actually in uenced the design of machine learning for the situated musical tasks. These understandings could enable to frame new methodologies for the application of Human-Computer Interaction methods to the eld of Music [START_REF] Wanderley | Hci, music and art: an interview with wendy mackay[END_REF]. For example, the design-oriented method used in Chapter 3 created an "idiosyncratic" formalization of unsupervised learning for motion-sound mapping, which could have been framed di erently by other designers and performers of interactive music systems. Alternatively, the experimental method used in Chapter 4 directed the formalization of reinforcement learning toward a "cartesian" form to enable the controlling of the many environmental factors of the experiment.

From Applied Research to Practice-Based Research

Our ve applications in real-world musical situations let us share the experience and the conceptual ideas of our interactive music systems with people and society in general. These creative applications somehow complemented the scienti c ndings leveraged through our human-centred studies. On another note, more e ort could be put to go beyond such applied approaches to embrace practice-based research in music. Such an approach could enable to situate inquiries of machine learning from other research communities delineated by real-world music practices, as it has recently been done by composers of contemporary music [Ghisi, 2017] and experimental music [Williams, 2016]. For example, our improvisational piece aego-presented at the end of Chapter 5-could bene t from longer processes of research and creation to eventually exist as actual artwork outside the scienti c research community. We believe that such situated, practical, and sensible approaches to music research should never be disregarded when studying, designing, or evaluating interactive music systems.

Post-Scriptum: Music Research Through Dispositif Design

In this chapter, I present my personal re ections on the research approach adopted in the thesis. In accordance with my advisor, I chose a post-scriptum format, which allows me to discuss ideas in a less formal setting, using references and a rst-person narrative to support my personal statement rather than a general analysis. Rather than discrediting possible research approaches, my wish is to make my perception of the eld audible as doctoral student, with the hope to discuss a common ground for music research to be done in a near future. I hope to hear back from other computer music researchers, practitioners, and students about it.

Doctoral Research in Science Applied to Music

The present dissertation was written in the frame of a doctoral research in Computer Science applied to music. As in most formal science disciplines, Computer Science doctoral schools create pressure for ending the doctorate in three years. This relatively short period of time creates a situation where doctoral students are pushed toward being productive in the activity of research. The productive impetus materializes into an urge to rapidly publish in academic journals and conferences. Even if not explicitly stated in doctoral schools decrees1 , publications are an important modality of evaluation for theses in the academic community. For example, it is a common practice to seize the quality of a thesis by having a look at the list of published papers. Alternatively, the impact factor gained from publications remains one of the main criteria for the pursuit of an academic career, be it at a national or international scale.

Publishing in academic journals and conferences almost always implies adopting scienti c methods. Methods create a common framework to discuss empirical observations between peers, and have thus characterized the development of science for centuries. Recently, human-centred methods were object to critiques [START_REF] Vandenberghe | Designing for others, and the trap of hci methods & practices[END_REF]. The key point is that simply involving humans in the loop does not account for the resulting design to be the right for the studied "users". In our case, the relying on human-centred methods encouraged the application of computer science to music. That is, they supported the application of scienti c processes to solve practical problems in music. For example, in Chapter 5, we used a user-centered design method to adapt the design of reinforcement learning to the musical task of synthesis exploration. Yet, we did not discussed our initial choice of reinforcement learning with the studied expert sound designers. It is possible that a completely di erent technique would have emerged if we let sound designers discuss the initial design problem with us-if there were any real problem to solve.

Methods focus on creating substantial accounts of knowledge, relying on standardized languages to communicate results to peers. As stated, a rst language is that of problem speci cation. Specifying a problem enables to frame a research question in relation to a research method, and to look for a solution. A second language is that of measurement. Quanti cation-most of the time materialized into mathematic computation-constitute the main modality of measurement to assess the e ciency of some solution in the frame of some method. A third language is that of wording. Most academic journals and conferences rely on English to communicate knowledge, as well as on templates that standardize the structure and format of knowledge. The dissertation format of the Computer Science thesis also highly constrain the way to relate musical research. To sum up, substantial accounts may optimize the production of knowledge in Computer Science, but in turn, may tend to undermine form as sensible component of musical knowledge.

I suggest that the "substance over form" paradigm may originate from the disciplinary educational establishment provided in France. Obtaining a scholarship to do doctoral research in Computer Science almost inevitably requires having a Master's Degree in a formal science discipline-e.g., mathematics, engineering, computer science, or physics. I argue that such trainings push doctoral students to be productive in their research within the norms of the scienti c approach. Reciprocally, the academic status of music in France reinforces the disciplinary framework for research. For example, the recently-created doctorate in Music2 is intended to "highlevel composers"-e.g., already having professional experience in music-, and focus on one formal music practice-i.e., composition. I claim that this academic context may not encourage scienti cally-trained doctoral students to go beyond applied research to explore practical and sensible approaches to music research. In the following paragraphs, I explain why I believe that research through design approaches may support the negotiation of these scienti c and musical norms in doctoral research.

Music Research Through Design

Design is a creative activity that focuses on the crafting of systems adapted to humans. Design as a conceptive activity eld borrows techniques from many scienti c disciplines such as engineering sciences, computer science, psychology, or biology. Yet, as Nigel Cross put it, design should be not be considered as a science, but rather as a discipline in itself, characterized by "designerly ways of knowing" [START_REF] Cross ; Cross | Designerly ways of knowing: Design discipline versus design science[END_REF]. This speci c way of knowing of designers may be clari ed by Alain Findeli's notion of project [Findeli, 2004]. While scientists tend to consider the world as an object that they study-dissociating them from the world as subjects-, designers tend to consider the world as a project-i.e., they situate themselves as subjects in the process of studying an object. Design approaches may thus be suited to music, which is, as we described in Chapter 2, a socially-and culturally-situated process.

Practice generally prevails over method in design. While scienti c methods aim at validating results and guaranteeing their reproduction, design practice does not, or should not, be repeatable, as a situated act of creation [START_REF] Cross ; Cross | Designerly ways of knowing: Design discipline versus design science[END_REF]. As such, design practice is e cient to solve "wicked problems", which, as Horst Rittel coined it, are socially-rooted problems that are better suited to iterative reframing than to methodical reasoning [Rittel, 1972]. The practical aspect of design makes it close to music, which is also de ned by its practical and action-oriented processes [Leman, 2008].

Form may be as important as substance in design practice. The created artifacts may rely on aesthetics, composition, or style to exert their intended functions. These subjective and creative dimensions of artifacts may add to their objective and scienti c dimensions, such as their technical structure and organization [Archer, 1979]. Crucially, evaluation of the form component cannot be reduced to the measurement of a numerical variable in a controlled setup. Rather, it is the cultural or industrial applications that may testify of the success of a given design in a given real-world context. Design may thus be suited to the building of interactive music systems, which similarly rely on technical structures to create sonic forms that are to be interacted with by humans in real-world musical situations.

Design research may have as many materializations as there are of design communities [Vial, 2015]. For example, the eld of design science aims at "scientizing" the knowledge of design, typically by building design methods as well as publication venues to standardize the design discipline in a way similar to science [START_REF] Cross ; Cross | Designerly ways of knowing: Design discipline versus design science[END_REF]. Yet, many designers consider that design research must include elements of practice-based research, in a way similar to artistic research [Candy, 2006]. For example, speculative design uses design artifacts to anticipate technological deviations and harness public reactions toward it [Auger, 2013]. Critical design use design as an artistic medium to research the process of design by inquiring designers on their own practice [START_REF] Bardzell | What is critical about critical design?[END_REF]. In parallel, Francophone communities have essentially focused on industrial and aesthetic applications of design, arguably because of a lack of an appropriate context for academic research [Monjou, 2014]. To borrow from Annie Gentès [Gentes, 2017], this indisciplinarity of design may be another trait of similarity with music, which is also praised for its indisciplinary in Francophone computer music communities [START_REF] Sèdes | Informatique et musique : éloge de l'indisciplinarité[END_REF].

I argue that carrying music research through design may provide opportunities to reconsider both scienti c and musical norms in interactive music systems. Research through design is a practice-based approach to design research, consisting in (1) making projects in real-world situations, and (2) relate on the framing of the problem itself-e.g., the balance that was made between the intersecting and possibly con ict-ing perspectives [START_REF] Zimmerman | Research through design as a method for interaction design research in hci[END_REF]. I argue that the practice-based contributions enabled by research through design approaches may complement the applicative contributions of human-centred approaches in the research on interactive music systems. I believe that the re ective practice of translating tacit design knowledge into words may globally bene t music research [Schön, 2017]. In the next section, I introduce the concept of interactive music dispositif to frame such music research through design approach.

From Interactive Music Systems to Interactive Music Dispositifs

The term "dispositif", originally introduced by French philosopher Michel Foucault, names the set of normative elements that may condition a given human activity [Agamben, 2009]. Dispositifs include both endogenous and exogenous aspects of interactive music systems. That is, they encompass technical knowledge on their internal implementation, along with the imaginary aspects that they may be transmitted to their external environment. While "system" could also be used for a similar de nition [Burnham, 1968], I claim that the term conveys too much of a technical meaning in music communities (see Chapter 2 for an overview). Although popular in the elds of art and design [START_REF] Bianchini | Practicable: From participation to interaction in contemporary art[END_REF], dispositifs remain under-exploited in the eld of music, with a few recent exceptions in the eld of sound art [Sinclair, 2018].

I introduce the notion of interactive music dispositif to explicitly consider the scienti c and musical norms that may condition human knowledge, actions, and feelings toward interactive systems. I argue that music research can be led through dispositif design, that is, through the technical realization of aesthetically-functioning artifacts that challenge these cultural norms. In the next two sections, I provide a critical assessment on the scienti c and musical norms that may determine interactive music dispositifs, focusing on machine learning as a scienti c discipline. Rather than offering a generic baseline for dispositif design, my wish is to share personal thoughts based on the practical experience I gained through real-world applications of the dispositifs created in my doctoral research. I hope that this initiative may engage a more global re ection with other music researchers.

Norms in Music

As a culturally-learned practice, music may encapsulate several norms. In the next sections, I propose a description of these normative elements, which I grouped in terms of musical (1) knowledge, (2) action, and (3) feeling (see Figure A).

Musical Knowledge

Language conveys norms related to the description of music. Notation may perpetuate cultural knowledge on structures and grammars of music, potentially restraining sound-oriented musicians and non-musicians from interacting with a music dispositif [ Magnusson, 2019]. Also, technical terms, such as parameters' names of synthesizers, may act as a disincentive for non-musicians to appropriate music systems, as our conceptual map showed (Chapter 4).

The human body conveys norms on the training required to practice music. Physical techniques related to music practice are known to require considerable time to be learned and mastered by humans [Palmer, 1997]. Skeuomorphism tend to perpetuate nonlinguistic elements related to physical techniques in the digital domain [Lindh, 2018]. The somasticks (Chapter 3) are an example of dispositif that conveyed assumptions on the bodily techniques required to play with it.

Musical Actions

Sound conveys norms on the actions to be taken by performers and listeners of a dispositif. First, the range of timbres of an interactive music dispositif may condition human actions in music making. For example, the entrain dispositif (Chapter 6) only enabled humans to play a restrained set of prerecorded drum samples. Second, the expressive qualities of sound may condition human actions in music listening [Leman, 2016]. For example, the rhythmic loops generated by the entrain dispositif may leverage cultural norms on the way one should act when listening to it.

Interfaces of dispositifs reinforce norms on the musical forms to be created with sound. First, the appearance of interfaces may orient human actions in music making, as made famous by the notion of a ordance [Gibson, 1977]. Second, the technical implementation of dispositifs may restrain human control over the processing of sound in time. For example, interactive music dispositifs dedicated to music production, such as Ableton Live, highly encourage humans to create aesthetically-con ned music-e.g., the MIDI-based implementation combined with the clip functionality. On the other hand, the Riding the Co-Explorers dispositif (Section 5.8) managed to appropriate the norms in music interfaces through the use of video game.

Musical Feelings

Aesthetics tend to standardize human feelings related to the perception of music. For example, human interaction with a synthesizer may be implicitly in uenced by aesthetic elements assessing the good and bad usages of some parameters. Music institutions have an active role in de ning the aesthetic elements of interactive music dispositifs. Depending on the will of institutions, some aesthetics or music genres may be criticized to base a dominant norm in relation to one given music practice [Born, 1995]. Or, they may be valued to sustain change and favour the emergence of diverse music practices [Dryhurst, 2019].

Ownership tends to determine human feelings on the right to make music. In the frame of the thesis, we made an e ort to spread our interactive music dispositifs for free using many di erent public dispositifs-e.g., educational workshops, open source projects, or public exhibitions. In a more general frame, individual ownership of techniques related to music may create elite art forms, partly de ned through socioeconomic privilege to use technology [Hyde, 2010]. Alternatively, industrial ownership may displace the value of music from that of a cultural to a monetary object [Wikström, 2013].

Norms in Machine Learning

In the frame of my doctoral work, I now describe the norms encapsulated by machine learning in relation to Computer Science. I attempt to describe these normative elements by grouping them in terms of human (1) knowledge, (2) action, and (3) feeling (see Figure B).

Human Knowledge

Data conveys norms on the way humans may create knowledge of the world. Measuring data implies possessing a dispositif capable of detecting a phenomenon in the world with su cient accuracy. Then, collecting and reporting data implies one or several humans leading observations in the world to measure phenomena. Thus, data is far from being a neutral element of knowledge, but rather a situated, partial, and constitutive one. Researchers in the Humanities proposed to rename it capta (from the Latin capere, "to take") to emphasize the fact that data has been taken from a phenomenon by an observer using some measurement dispositif [Drucker, 2011].

Data sets may reinforce the norms encoded in data at larger scales of knowledge. For example, data sets built from popular music [START_REF] Bertin-Mahieux | The million song dataset[END_REF] may reinforce the power relationships between musical genres, notably by enabling largescale comparisons only based on a few musical features. On the other hand, humancentred machine learning approaches leverage small-scale data sets [START_REF] Gillies | Humancentred machine learning[END_REF]. These approaches enabled us to switch data sets from normative to evolutive technical components [START_REF] Giaccardi | Creativity and evolution: a metadesign perspective[END_REF]. This evolutivity was witnessed in the Behavioral Matter workshop (Section 5.9), where small data sets were shown to support robotic object design as well as human synthesis exploration.

Human Actions

Computation encapsulates norms on the machine learning actions of creating, and reasoning about, data knowledge. First, many machine learning computations rely on inferential statistics, which produce probable, yet inevitably uncertain new knowledge [START_REF] Mittelstadt | The ethics of algorithms: Mapping the debate[END_REF]. Second, computation may enable correlations between two variables, but may be insu cient to prove a causal relationship [START_REF] Illari | Causality in the Sciences[END_REF]. Explainability of machine learning is still subject for research to address the increasing complexity of computations-e.g., in the many layers of deep neural networks [START_REF] Richardson | Dirty data, bad predictions: How civil rights violations impact police data, predictive policing systems, and justice[END_REF].

Algorithms create new norms that condition human actions at the scale of society. First, machine learning algorithms enable automatic de nition of decision-making rules. For example, a classi er may learn to order data in terms of categories to which they belong, but may also produce new categories based on its mathematical construct [Domingos, 2012]. Second, algorithms can have a transformative e ect on the way humans conceptualize the world [START_REF] Mittelstadt | The ethics of algorithms: Mapping the debate[END_REF]. The most basic algorithmic processes-e.g., gathering data and using algorithms to classify entities-thus determine new human actions that may not have been thought of without such dispositifs. The improvisational performance aego (Section 5.10) aimed at illustrating such directing of human actions by machine learning algorithms.

Human Feelings

Disciplinarity of public scienti c institutions tends to standardize the way machine learning is taught and researched on. The last decade has witnessed a wave of strategic and political plans related to "Arti cial Intelligence" all over the world [START_REF] Cath | Arti cial intelligence and the 'good society': the us, eu, and uk approach[END_REF], Villani et al., 2018]. Public universities, research organizations, institutes, and laboratories are allocated funding grants to research and develop "Arti cial Intelligence". This governmental impetus may create pressures on academics from the engineering sciences as well as the humanities to apply machine learning to their work, letting few space for critical re ection. The current thesis work, I believe, have remained critical toward this normative wave, by adopting an interdisciplinary approach to the design of machine learning.

Society tends to determine human feelings on machine learning and computer science in general. "Arti cial Intelligence", as the last intensi cation of the digitization phenomenon, o ers tremendous opportunities to market goods and services to the world [START_REF] Crawford | Anatomy of an ai system[END_REF]. Machine learning applications thus grapple with capitalism, and the globalized and privatized system that goes with it [Deleuze, 1995]. These elements may in uence how people think about machine learning, as we witnessed in Chapter 7. Along with other academics [START_REF] Caramiaux | Ai in the media and creative industries[END_REF], I believe that the upcoming prevailing of private industries in creative elds should be addressed by public research communities, which include music research communities.

All norms stated above re ect my critical assessment of endogenous and exogenous aspects of interactive music systems. I invite other researchers to re ect on their own practice to contribute to a more general de nition of interactive music dispositifs.

Example Projects

In this section, I show how dispositif design enables to challenge each of these normative elements. I rely on three example projects of practice with music and machine learning, led in parallel of my doctoral research, to illustrate this claim:

• Sound Control was an action research project started in 2016, led by Rebecca Fiebrink, in which I participated as pre-doctoral researcher at Goldsmiths University of London [Scurto, 2016].

• Paroles d'Exil was a research and creation project ended in 2017, led by the composer Mélanie Egger at GMEM-CNCM / Friche la Belle de Mai, on which I worked two years as computer music designer.

• {Lutheries} 2 was an outreach project carried in 2018, initiated by Lutherie Urbaine, that I directed during a one-year volunteering as education assistant on science and music. 

Sound Control

The Sound Control project was initiated by Simon Steptoe, together with Louise Tyrrell, who runs the Musical Inclusion Programme for the Northamptonshire Music and Performing Arts Trust (NMPAT). They notably collaborated with the researcher Rebecca Fiebrink, along with music educators and music therapists associated with a community music centre's Musical Inclusion programme. Programme members were interested in more exibly customise digital instruments for disadvantaged children they worked with-including but not limited to children with physical and learning disabilities. All had experience supporting youths' acoustic music-making (e.g., singing, using simple percussion instruments) and using simple switch-based controllers to trigger pre-recorded samples. They were interested in how they might use bespoke sensor-based instruments with youth in their programmes. Our team led eight workshops (approximately 1-3 hours each) with Musical Inclusion programme personnel and other music therapists and educators from the local community (see Fig. C). Early workshops showed participants demonstrations and videos of existing approaches to creating bespoke musical instruments (e.g., the British Paraorchestra, Wekinator4 ), then engaged participants in brainstorming activities. In later workshops, we taught participants to use prototype technologies developed for the project, such as Grab-and-play [Scurto et al., 2016], then elicited feedback about them. In parallel, our team attended seven classroom and workshop sessions in which two practitioners from the programme worked with children with disabilities in a school ( ve sessions) or community centre (two sessions). A typical session involved one teacher or therapist working one-on-one with 3-6 children for 10-30 minutes each, with members of our team helping with technology as needed. Additionally, the two practitioners began using the Sound Control software5 independently after the fourth of these sessions, and they sent us bug reports, feature requests, and updates on their usage by email.

Sound Control enabled (1) sonic expression of non-musician people through machine learning computations, and (2) accessibility of embodied music-making using sensor data (see Fig. [START_REF] Thompson | Sound control: Supporting custom musical interface design for children with disabilities[END_REF]).

let us learn new insight on the requirements needed for musical expression with machine learning. Human criteria-such as recognizing and exercising agency, encouraging moving and listening, and supporting social aims-were elicited by the design team, which pushed us to opt for simple sonic interactions realized by straightforward machine learning computations. Rather than building adapted body-based interfaces, the resulting music dispositif helped carers create diachronic forms, that is, shortlived data con gurations re ecting the current state of interaction at an experiential level [START_REF] Bourganel | Algorithmes, formes diachroniques et métadesign[END_REF]. Second, the process of collaboration with music therapists, teachers, and children improved accessibility of music and machine learning. Using interactive supervised learning enables to create new sensor-and vision-based musical interfaces based on data examples of motion and sound, making interface building fast and accessible to people without programming or engineering expertise. The fact that Sound Control continues to support the therapists and teachers in their workshops, and enabled the children with disabilities to take part in public music performances, let us think that co-design may be a promising approach to frame machine learning for music. thus harvested a corpus of sounds from radiophonic emmissions with corresponding dates and location. Then, the highly-recursive process of collaboration included: discussion to become acquainted with Mélanie's musical concerns, demonstrations to show the technical possibilities o ered by IRCAM's tools, interpretation of their scienti c basis for Mélanie to grasp theoretical links between the tools' technical manipulation of sound material with her personal re exions, creation of sonic excerpts to grasp experiential aspects in relation to the intended aesthetics of the piece, and nal design of the music dispositifs during the residency. In close link with her memoir, we converged on a music installation format in three parts-Histoire, Mémoire, and Oubli-, each comprising a music dispositif treating archival voices in an appropriate manner. The second dispositif, Mémoire, leveraged machine learning as a central conceptual and technical element of its design.

Paroles d'Exil

Mémoire continually generates sequences of syllables through loudspeakers fragmented in location. The syllables, originally extracted from a corpus of archival voices dated from the Algerian War period, are reorganized as sequences in real-time by a machine learning algorithm, who creates new narratives through the recorded voices. Concatenative synthesis is used to decompose original sound recordings into separated syllables based on their spectral content (see Fig. F, left). A factor oracle is used to create a sequence model that relates su x and a x probabilities of transition based on the spectral similarities of syllables originally presented in the corpus. Navigation in the sequence model is made autonomous by the oracle. Remembrance is imposed on us as a split, selective, hardly decipherable entity, in a constantly-evolving present.

Paroles d'Exil enabled (1) appropriation of machine learning algorithms to create a new interface between humans and sound, and (2) re ection on design as a creative discipline that contributes to musical aesthetics (see Figure I, upper right). First, the development of the Mémoire dispositif led to a creative use of machine learning. The algorithm that we used, namely CatOracle [START_REF] Einbond | Introducing catoracle: Corpus-based concatenative improvisation with the audio oracle algorithm[END_REF], was originally designed for human-computer improvization. Recursive developments and discussion with Mélanie enabled us to transform this algorithm as a new music interface-e.g., as an autonomous music installation-, appropriating its technical a ordances to the music artwork. Second, the process of collaboration between Mélanie-the composerand myself-the designer-let her re ect on the creative role that a designer may have in relation to music. After these two years of collaboration, she eventually considered {Lutheries} 2 is an exhibition conceived with Lutherie Urbaine and Laurent Le Gall (see Fig. G). It was intended to introduce people of all ages to the relationships between science and music through interaction with acoustic, electronic, and digital music dispositifs. The visit tour consisted in seven areas. A rst area-History-introduced the links between technique, science, and technology by recounting the evolution of lutheries. The following areas recounted this historical course through the discussion of several notions linking science with music-Harmony, Acoustics, Timbre, Electronics, and Digitalities. The tour nally came out on an area dedicated to play-Rhythm. Illustrated, easy-to-follow panels were displayed along the interactive journey to elaborate on the technical functioning of the instruments. An educational kit accompanied the exhibition and described several fun activities conceived for each of the notions developed in the areas.

As diverse as the free-to-play music dispositifs of the exhibition were, their common feature was their being made of recycled objects. The Lutherie Urbaine association indeed accumulated twenty years of experience in the recovery of waste material to craft unique music dispositifs. Examples of waste included materials-e.g., plastic tubes, wood boards, metallic barrels, glass bottles, or electronic circuits-but also everyday objects-e.g., tennis rackets, beverage bottles, or electronic toys. These music dispositifs were often crafted in the context of musical artworks, during which they may stand as central to the narrative. Through these artworks, Lutherie Urbaine wished to sensitize the public to sustainable development. Many musicians and luthiers that pertained to the association led education outreach activities in public elemetary and secodary schools, sharing their unique crafts to a diversity of pupils, who could bring their own abandoned objects and bring them back to life in music. For the Digitalities area, we conceived a new dispositif, based on CataRT (see Fig. H). The dispositif presents the public with several recycled objects put on a table. Behind the table, a screen and a loudspeaker stand still, but are not accessible to use by the public. As soon as the public attempts to manipulate the recycled objects, the digital dispositif may react by generating sound along with a screen animation. Sounds are created on the basis on the frictions made by the object on the table. A piezoelectric sensor is put at the surface of the table, converting the diversity of vibrations made by material objects into digital data. This data signal is sent to a shallow machine learning algorithm-k-nearest neighbor-, which computes the similarity between the object's vibration and a data set of environmental sounds recorded in various locations-represented as points on the screen. The most similar sounds are then played by the dispositif, who accounts for the expressive cues encoded in the materiality of the objects, jointly with the physical manipulations made by the public. {Lutheries} 2 enabled (1) diversity of musical languages through an environmental data set, and (2) sustainability of machine learning through a public music dispositif (see Fig. I, upper left). First, the development of the dispositif in the Digitalities area led to the creation of a data set made with environmental sounds, rather than instrumantal sounds, or music songs. This creates a diversity of languages for music, linked with the idea of matter through their sonic a ordances, and echoing approaches from thing-centered design [START_REF] Giaccardi | Creativity and evolution: a metadesign perspective[END_REF] as alternative to human-centred approaches. Second, the outreach collaboration with Lutherie Urbaine encouraged sustainable views on machine learning and music. Rather than using deep architectures, our dispositif relied on a shallow machine learning algorithm. Not only was it cheaper in terms of computational cost, but it also promotes alternative uses of machine learning that may di er with those commonly thought of in society. Also, the context of public exhibition let people freely experience with the dispositif and the original sonic interactions that it fostered in relation to the recycled objects. Sustainable computers, speakers, and sensors may be used in next versions of the dispositif.

Music (or) Design Practice?

The projects related above open questions related to the nature of the practice on interactive music dispositifs. A rst option would be to consider them as being part of a music practice. Yet, they were not led through the prism of composition, which is, as mentioned in the beginning of this post-scriptum, the main modality of music practice in the French academic music community. Sound art may be a more legitimate category, as a relatively recent artistic practice traditionally not associated with music [Wishart, 1996]. Yet, I believe that interactive music dispositifs should remain attached to music as a central eld of work, for example by having other protagonists such as computer music designers, performers, authors, or teachers, to be recognized as equivalent to composers [START_REF] Zattra | A questionnaire-based investigation of the skills and roles of computer music designers[END_REF].

On the other hand, recognizing the projects as sound design practice is incorrect to my mind. Sound design focuses on the use of sound to e ectively ful ll some functions, representations, or signalling [Misdariis, 2018]. Yet, the three projects, as well as the notion of dispositif, put a stronger emphasis on human interaction to realize these functions than on sound itself. Sonic interaction design may be an alternative path to characterize the practice [START_REF] Franinović | Sonic interaction design[END_REF]]. Yet, the emerging eld lacks the musical dimensions of interaction, which directly deals with the cultural roots of music, and that I wished to emphasize with the notion of interactive music dispositif.

To borrow the expression of Norbert Schnell6 , I would like to call music design the act of conception and reception of interactive music dispositifs that supports musical communication. Music design values the social and cultural dimensions of music [Small, 1998, Frith, 1998, Herbert, 2012] over the practice of music composition. Beyond sound or embodied interaction, music design is concerned with musical communication supported by dispositifs [START_REF] Miell | Musical communication[END_REF], Leman, 2008]. Musical com-munication is the process of expressive interaction that take place between entities that share an acoustic environment-be they humans, machines, animals, or things [START_REF] Altenmüller | The evolution of emotional communication: From sounds in nonhuman mammals to speech and music in man[END_REF], Leman, 2016]. In this way, the practice of music design may tend to shift the norms with which we listen and interact with our shared environments, in a current context of technofetishism [Latour, 1996]. The three above example projects and the corresponding dispositifs may support such music design practice, focusing on communication between humans and diverse elements of their environment-encompassing people with disabilities, cultural memories, materials and living things.

Overall, I believe that the practice of music design may in turn greatly bene t music research. Similar to other design elds, music design may enable original research contributions in the elds of Engineering Science and the Humanities, but also in other elds such as Health and Natural Science. Also, music design may pave the way for a diversity of new music practices that will bene t from the situated characteristics of design acts. Eventually, music design may be a suitable practice to assist computer science students in the exploration of more sensible approaches to music research. As a conclusive statement, I would like to emphasize that this post-scriptum was not intended to discredit other research approaches to music-especially the applied science approach, which was at the core of the present dissertation. Rather, it was meant to make my perception of the current landscape audible, in the hope of setting a common ground for music research. I hope to hear back from other people about it. 
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 32 Figure 3.2: Interactive work ow forMapping-by-Demonstration.
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 35 Figure 3.5: Graphical outline of our two interaction modes. Probability clusters are sampled at 3 discrete times for 1-dimensional gestural data. On left, clusters continuously evolve as users' gestural data is recorded to the training set with a sliding window. On right, users continuously modify clusters' parameters as they successively add and delete gestural data to the training set.
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 36 Figure 3.6: User interface of our model prototype. On left: Main window allowing recording gestural data following di erent interaction modes. On right: Output model parameters.

Figure 3 . 7 :

 37 Figure 3.7: Rendering for the 3D-printed support of the somasticks. Left: clippable part. Right: sliding part.
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 4 Figure 4.1: The experimental method for our second study.
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 42 Figure 4.2: Example user interface of a music computing system (here, the u-he Bazille VST 1 ).
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 4 Figure 4.3: Graphical outline of an Interactive Reinforcement Learning framework.Interaction between the human and the music computing system is mediated by a learning agent (in blue). At time t, the agent acts directly on the system's parameters. At time t+1, the system generates a new state (for example, a sound), that is subjectively evaluated by the human through feedback. By iterating the loop, the agent learns how to explore.
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 4 Figure 4.4: The Co-Exploration work ow.In a standard situation (behind), a human explores a system by iteratively acting on it. In co-exploration (front), a learning agent explores a system in parallel to the human.
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 45 Figure 4.5: The two environment models designed for our experiment. Top: Unobstrucked environment, where brightness varies linearly. Bottom: Obstrucked environment, where brightness varies nonlinearly.
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 46 Figure 4.6: Results for synthetic trial data.
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 4 Figure 4.7: Results for participants' trial data.
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 4 Figure 4.8: Results for participants' evaluation data. In blue: agency. In orange: assistance. In green: easiness.
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 4 Figure 4.9: Results for participants' ratings versus task parameters.
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 5 Figure 5.2: A typical VST interface for sound design, containing many technical parameters.
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 5 Figure 5.3: Graphical outline of our RL agent prototype. Users can only provide feedback to the agent, which acts on hidden VST parameters.
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 5 Figure 5.4: Graphical outline of the three parametric interfaces of our study.
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 55 Figure 5.5: Two user exploration strategies with a 12-dimensional parametric interface: Analytical (top) vs. spontaneous (bottom).
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 5 Figure 5.7: Interactive work ow of the Co-Explorer.
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 5 Figure 5.8: Graphical outline of machine exploration methods. The color scale depicts the density model all states. Left: Changing zone has the agent jump to the state with lowest density. Right: Autonomous exploration has the agent take successive actions leading to the state with lowest density.
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 5 Figure 5.9: Graphical outline of human feedback computation methods. Here, positive feedback is given in some state situated at the center of the square. Left: Guiding feedback is distributed over the p lastly-visited state-action pairs. Right: Zone feedback impacts all state-action pairs potentially leading to the labelled state.
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 5 Figure 5.10: User interface of the Co-Explorer.
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 5 Figure 5.11: Picture of sound designers using the Co-Explorer in our workshop.

5. 6 .

 6 2 Results: Discovery Task, Qualitative Analysis Procedure In the rst part of the workshop, participants were presented with one VST (see Fig.
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 5 Figure 5.14: Visual theme for Riding the Co-Explorers.
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 5 Figure 5.15: Screenshot taken from Riding the Co-Explorers.
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 5 Figure 5.16: User interface implemented as an iPad-based tangible element.
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 5 Figure 5.18: Picture 5 of the Behavioral Matter workshop at Centre Pompidou.
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 5 Figure 5.19: Picture of the robotic object.

Figure 5 .

 5 Figure 5.22: The interactive work ow that we designed for our instrument.
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 5 Figure 5.23: Graphical outline for the engineering of our instrument.
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 5 Figure 5.25: Temporal structure composed for the piece.
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 5 Figure 5.26: Our case study. Solid arrows: The sequential research and creation process that we took to scienti cally investigate our models, and musically create our instrument and artwork. Dashed arrows: The personal conceptual insight gathered along our process.
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 6 Figure 6.2: User interfaces for the Coloop mobile web application.
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 63 Figure 6.3: Bayesian Information Gain implementation. The two axes corresponds to user state features. The 4 dots represent the state of 4 di erent users. P (Θ), X, and Y correspond to the parameters in the BIG framework for adaptation.

  6.4). Object. Nodesign.net designed a new loudspeaker, called Coloop mini. It reproduces the visual aspect of the previous Coloop loudspeaker with smaller dimensions. It was built using 3D-printing techniques. The upper part contains a white silicon patch, under which are placed eight LEDs.
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 6 Figure 6.4: Picture of the Coloop mini loudspeaker designed by Nodesign.net.
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 65 Figure 6.5: Picture of the entrain installation at SIGGRAPH'19.
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 71 Figure 7.1: The embodied qualities of music devices support the sending of expressive signals from machines to humans (as will be detailed in Figures 7.2 and 7.3).
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 72 Figure 7.2: Machine expression considers the biosocial and cultural dimensions of music dispositifs to include diverse human perspectives on their perceived behaviour.
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 73 Figure 7.3: The strong concept of co-expression enables to qualitatively describe how learning from human data may enable machines to generate expressive musical behaviors based on human expression.
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 A Figure A: Normative elements related to music.
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 B Figure B: Normative elements related to machine learning.

Figure I schematizes how

  Figure I schematizes how the three projects respectively injected human values in the above-mentioned scienti c and musical norms.
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 C Figure C: Picture of an inclusive ensemble 3 performing with Sound Control.

  I, bottom). First, the development of the Sound Control software

Figure D :

 D Figure D: User interface for the Sound Control dispositif (taken from[START_REF] Thompson | Sound control: Supporting custom musical interface design for children with disabilities[END_REF]).

  Paroles d'Exil (2017) is a music installation co-created with Mélanie Egger during a residency at the GMEM-CNCM / Friche la Belle de Mai, Marseille, France, in collaboration with the Sound Music Movement Interaction group of IRCAM (see Figure E). The residency was led in the context of a Master program in Music from Aix-Marseille Université. Mélanie is a composer and pianist who took this two-year program to carry a research and creation project, named Remembrance Fragments and Documentary Music. Her project, supervised by Christine Esclapez, crossed historical facts, philosophical writings, musical and contemporary artworks to nurture a personal reection on the human notion of time. Its realization took two forms: a Master's thesis on the one hand, and a musical artwork on the other hand, named Paroles d'Exil, for which she kindly asked me for a collaboration. For this artwork, Mélanie primarily wished to work with archival voices of the Algerian War period-in relation with her personal history. Prior to collaborating, she
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 E Figure E: Pictures taken during the restitution of Paroles d'Exil.
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 F Figure F: Control interface for the Mémoire dispositif (built on CatOracle).
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 G Figure G: Pictures of the {Lutheries} 2 exhibition at Bagnolet, France.
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 H Figure H: Picture of the music dispositif designed for the Digitalities area.
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 I Figure I: The three example projects used design practice to shift the normative elements of music and machine learning toward openness, empowerment, and change.
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We address the musical task of interface exploration in Chapter 5.

Frequency Modulation synthesis (a classic algorithmic method for sound synthesis[Chowning, 1973]).
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Norbert recently created a Master program in MusicDesign: https://www.hs-furtwangen. de/en/programmes/musicdesign-master/
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