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Abstract

Music is a cultural and creative practice that enables humans to express a variety of
feelings and intentions through sound. Machine learning opens many prospects for
designing human expression in interactive music systems. Yet, as a Computer Science
discipline, machine learning remains mostly studied from an engineering sciences
perspective, which often exclude humans and musical interaction from the loop of
the created systems.

In this dissertation, I argue in favour of designing with machine learning for in-
teractive music systems. I claim that machine learning must be �rst and foremost
situated in human contexts to be researched and applied to the design of interactive
music systems. I present four interdisciplinary studies that support this claim, using
human-centred methods and model prototypes to design and apply machine learning
to four situated musical tasks: motion-sound mapping, sonic exploration, synthesis
exploration, and collective musical interaction.

Through these studies, I show that model prototyping helps envision designs of
machine learning with human users before engaging in model engineering. I also
show that the �nal human-centred machine learning systems not only helps humans
create static musical artifacts, but supports dynamic processes of expression between
humans and machines. I call co-expression these processes of musical interaction be-
tween humans—who may have an expressive and creative impetus regardless of their
expertise—and machines—whose learning abilities may be perceived as expressive by
humans.

In addition to these studies, I present �ve applications of the created model pro-
totypes to the design of interactive music systems, which I publicly demonstrated in
workshops, exhibitions, installations, and performances. Using a re�exive approach,
I argue that the musical contributions enabled by such design practice with machine
learning may ultimately complement the scienti�c contributions of human-centred
machine learning. I claim that music research can thus be led through dispositif de-
sign, that is, through the technical realization of aesthetically-functioning artifacts
that challenge cultural norms on music and computer science.
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Résumé

La musique est une pratique culturelle permettant aux êtres humains d’exprimer sen-
siblement leurs intentions à travers le son. L’apprentissage machine dé�nit un ensem-
ble de modèles permettant de nouvelles formes d’expression au sein desdits systèmes
interactifs musicaux. Cependant, en tant que discipline informatique, l’apprentissage
machine demeure essentiellement appliquée à la musique du point de vue des sci-
ences de l’ingénieur, qui, très souvent, conçoit les modèles d’apprentissage sans tenir
compte des interactions musicales prenant place entre humains et systèmes.

Dans cette thèse, j’envisage la possibilité de mener des pratiques de design avec
l’apprentissage machine pour les systèmes interactifs musicaux. Je soutiens que
l’apprentissage machine doit avant tout être situé au sein d’un contexte humain a�n
d’être conçu et appliqué au design de systèmes interactifs musicaux. Pour défendre
cette thèse, je présente quatre études interdisciplinaires, dans lesquelles j’introduis
des modèles intermédiaires d’apprentissage, dits modèles-prototype, au sein de méth-
odes de conception centrées humain, a�n d’appliquer l’apprentissage machine à
quatre tâches musicales situées : le mapping mouvement-son, l’exploration sonore,
l’exploration de la synthèse, et l’interaction musicale collective.

À travers ces études, je montre que les modèles-prototype permettent de générer
des idées de design pour l’apprentissage machine en amont de la phase d’ingénierie
desdits modèles, ce en lien étroit avec les utilisateurs potentiels de ces systèmes.
Je montre également que les systèmes d’apprentissage machine centrés humain ré-
sultant de ce processus de conception rendent possible des processus dynamiques
d’expression entre les humains et les machines, allant au-delà de la création d’artefacts
musicaux statiques. Je propose de nommer co-expression ces processus d’interaction
musicale entre des êtres humains—faisant preuve d’un élan expressif et créatif quelque
soit leur expertise musicale—et des machines—dont les capacités d’apprentissage peu-
vent être perçues comme expressives du point de vue de l’humain.

En outre, je présente cinq systèmes interactifs musicaux conçus avec lesdits
modèles-prototypes, et relate leurs restitutions publiques au sein d’ateliers, exposi-
tions, installations et performances. Par une approche ré�exive, je montre que les
contributions musicales apportées par des pratiques de design avec l’apprentissage
machine peuvent, à terme, complémenter les contributions scienti�ques apportées
par les méthodes de conception centrées humain. Ainsi, je suggère que la recherche
musicale peut être menée par le design de dispositifs interactifs musicaux, c’est-à-
dire, par la réalisation technique d’artefacts esthétiquement fonctionnels remettant
en cause les normes culturelles régissant l’informatique et la musique.
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Introduction

Music is a cultural and creative practice that enables humans to express a variety of
feelings and intentions, especially by means of embodied interaction with sound [Le-
man, 2016]. Di�erent types of music instruments were created by humans in di�erent
cultural contexts to support di�erent musical expression [Jorda, 2005]. Acoustic in-
struments have been used for centuries over the world to support the transformation
of human gestures into sound. Electronic instruments were invented over the last
century in Western countries, enabling new forms of sound generation by means of
electronic and digital components. Speci�cally, interactive music systems were cre-
ated over the last half century by computer music research communities to investi-
gate novel ways to control sound, possibly blending digital software with physical
components. We are interested in designing interactive music systems that takes into
account existing music practices to enable new forms of human expression.

Machine learning opens many prospects for the design of interactive music sys-
tems. The framework supports the computational performance of many di�erent
tasks related to music practice, such as gestural control of sound [Bevilacqua et al.,
2009], sound generation [Esling et al., 2019], or human-machine improvization [As-
sayag et al., 2006]. Machine learning is powerful because it automatically learns to
perform the above-mentioned tasks from example data. For example, imagine that
you could build a custom gestural controller by only recording examples of ges-
tures and without doing any programming. The so-called mapping by demonstra-
tion [Françoise, 2015] is one example of expressive interaction enabled by machine
learning in interactive music systems.

As a Computer Science discipline, machine learning remains mostly designed and
applied to music from an engineering sciences perspective. Much e�ort is put into
the solving of technical problems related to the non-interactive learning of musical
tasks, such as automatic music analysis and generation. This approach may often
exclude human users from the loop of the created machine learning system [Briot
et al., 2017]. While engineering sciences methods remain essential to the building
of e�ective machine learning systems, we believe that fully-automated systems may
not always bene�t humans in their music practices. Human-centred methods may be
required to balance model engineering with human evaluation to truly foster human

1
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creativity over arti�cial creativity [Beaudouin-Lafon and Mackay, 2018].
Human-centred machine learning is an interdisciplinary area of work that aims

at rethinking machine learning research and design in terms of human goals [Gillies
et al., 2016, Ramos et al., 2019]. The area borrows many methods from the �eld of
Human-Computer Interaction to design machine learning systems that include hu-
mans in their loop. For example, rather than fully autonomous, these systems may
let humans parametrize algorithms, or interactively provide example data to adapt
machine learning to their needs. Previous works showed the usefulness of human-
centred machine learning for the design of interactive music systems [Fiebrink,
2011, Françoise, 2015, Scurto, 2016]. Speci�cally, musicians may twist the initially-
designed machine learning task to ful�ll their musical tasks in a customized and cre-
ative way.

We are interested in applying human-centred machine learning to the design of in-
teractive music systems. We expect that this methodology would enable to build a
scienti�c understanding of the technical requirements of machine learning in rela-
tion to creative practices of music. Alternatively, we also envision to adopt a reverse
approach, which is to practice with machine learning for real-world musical situations.
We hypothesize that such a creative approach would enable to investigate other in-
quiries related to machine learning applied to music, in a way similar to how dispositifs
questions cutting-edge technologies in the �elds of art and design [Bianchini and Ver-
hagen, 2016]. Overall, we expect that our joint scienti�c and practical approach will
help us get a holistic understanding of machine learning in relation to music [Jorda,
2005].

1.1 Thesis Statement
In this dissertation, I argue in favour of designing with machine learning for interac-
tive music systems. I claim that machine learning must be �rst and foremost situated
in human contexts to be researched and applied to the design of interactive music
systems. I present four interdisciplinary studies that support this claim, using human-
centredmethods andmodel prototypes to design and apply machine learning to four sit-
uated musical tasks: motion-sound mapping, sonic exploration, synthesis exploration,
and collective musical interaction. Through these studies, I show that model proto-
types help envision designs of machine learning with human users before engaging
in engineering. I also show that the �nal human-centred machine learning systems
not only helps humans create static musical artifacts, but supports dynamic processes
of expression between humans and machines. I call co-expression these processes of
musical interaction between humans—who may have an expressive and creative im-
petus regardless of their expertise—and machines—whose learning abilities may be
perceived as expressive by humans. Using a re�exive approach based on real-world
applications of the models, I argue that the musical contributions enabled by design
practice with machine learning may ultimately complement the scienti�c contribu-
tions of human-centred machine learning. I claim that music research can thus be
led through dispositif design, that is, through the technical realization of aesthetically-
functioning artifacts that challenge cultural norms on music and computer science.
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1.2 Research Approach
The research approach to human-centred machine learning applied to music con-
sisted in the following loop: (1) focus on one situated music task, (2) rely on model
prototypes to study one machine learning technique, and (3) use one human-centred
method to research and design human interaction with machine learning. We iterated
four times over this loop, each time leveraging a new musical task, machine learning
technique, and human-centred method. In parallel, I also practiced with machine
learning to create interactive dispositifs in real-world musical situations. This pro-
cess enabled me to (4) adopt a re�exive approach to human-centred machine learning
applied to music. In a post-scriptum added at the end of this dissertation, I relate my
personal re�ections on applied and practice-based approaches to machine learning
for music, discussing disciplinary frameworks embedded in machine learning as well
as in music.

1.2.1 Situated Musical Tasks

We applied human-centred machine learning to situated musical tasks. By situated,
we mean taking into account the cultural, individual, or industrial context of music,
as an embodied act of human expression [Leman, 2016]. Importantly, a given musical
task may pertain to several music communities or practices. For example, the task
of motion-sound mapping mostly pertains to performers from the NIME community.
Alternatively, the task of sonic exploration may pertain to sound designers and com-
posers from di�erent music practices [Garcia et al., 2012], but also to non-musicians—
e.g., novice users learning to use a new interface [Resnick, 2007]. Situating musical
tasks would not only enable us to take into account di�erences in music expertise, but
also cultural di�erences in music practices—supporting the human-centred design of
machine learning [Gillies et al., 2016]. We thus led our research and design process
on four situated musical tasks: motion-sound mapping, sonic exploration, synthesis
exploration, and collective musical interaction (see Fig. 1.1).

Figure 1.1: The four situated musical tasks investigated in this thesis.

1.2.2 Model Prototypes

We relied on model prototypes to study machine learning techniques in relation with
the situated musical tasks. Model prototypes may be considered as design artifacts for
machine learning techniques in interactive systems. They enable to test interactive
data work�ows with concrete algorithmic implementations before starting the engi-
neering of a �nal learning model. As such, model prototypes enable to generate new
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ideas and envision new designs of machine learning in situation with human users.
This contrasts with engineering sciences approaches to machine learning, which of-
ten consider user interaction only after a model is optimized from a large data set.

The notion of model prototype extend that of software prototype [Beaudouin-
Lafon and Mackay, 2009] to the case of statistical models in machine learning. For
example, one may test several model prototypes—e.g., centroid- or density-based—
to design the machine learning technique of clustering [Murphy, 2012]. Focusing on
model prototyping over model engineering enabled us to study four machine learning
techniques in relation to the four situated musical tasks: unsupervised learning, rein-
forcement learning, deep reinforcement learning, and active learning (see Fig. 1.2).

Figure 1.2: The four model prototypes of the thesis, respectively designed with unsu-
pervised, reinforcement, deep reinforcement, and active learning.

1.2.3 Human-Centred Methods
We used human-centred methods to research and design our model prototypes in sit-
uated musical tasks. Human-centred methods come from the interdisciplinary �eld
of Human-Computer Interaction (HCI), which builds interactive systems to observe
human interaction and contribute to a theoretical knowledge of human-computer in-
teraction [Mackay and Fayard, 1997]. Instead of theory, our human-centred methods
will build on the interaction design research notion of strong concepts—an interme-
diate form of knowledge that is more abstracted than particular instances, yet does
not aim at building general theories [Höök and Löwgren, 2012]. As such, we relied
on four human-centred methods to iterate between concepts, observation, proto-
typing, and engineering with our model prototypes: design-oriented, experimental,
user-centered, and participatory design methods (see Fig. 1.3).

Figure 1.3: The four human-centred methods used in the thesis: design-oriented, ex-
perimental, user-centered, and participatory design methods.
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1.2.4 Re�exive Approach

We adopted a re�exive approach to the application of human-centred machine learn-
ing to interactive music systems [Kläy et al., 2015]. In addition to concepts, design,
observation, and engineering of human-centred methods, we led applications of our
model prototypes in real-world musical situations (see Fig. 1.4). While human-centred
methods have the scienti�c goal of evaluating the e�ciency of a design, applications in
real-world musical situations have the creative goal of sharing the experience and the
conceptual ideas of a system with people and society in general. In this sense, they
helped us adopt a re�exive approach by taking a critical stance on human-centred
methods and explore practice-based approaches to music research.

Figure 1.4: The real-world applications of our model prototypes, led outside the frame
of the human-centred methods.

1.3 Contributions

The contributions of the thesis situate at four levels: (1) model prototypes, (2) empir-
ical �ndings, (3) music dispositifs, and (4) theoretical perspectives.

1.3.1 Model Prototypes

Each of our four human-centred studies led to the design of an interactive model
prototype, applying a machine learning technique to a situated musical task:

• The Online Gaussian Mixture Model model supports the musical task of motion-
sound mapping by implementing unsupervised learning from human motion
observations.

• The Sarsa model supports the musical task of sonic exploration by implement-
ing reinforcement learning from human feedback and machine exploration.

• The Deep TAMER model supports the musical task of synthesis exploration by
implementing deep reinforcement learning from human feedback, control and
machine intrinsically-motivated exploration.

• The Bayesian Information Gain model supports the musical task of collective
musical interaction by implementing active learning from human individual
performance.
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1.3.2 Empirical Findings

Observing humans interact with our four model prototypes enabled us to harvest
empirical �ndings related to the musical tasks and situated in music practices:

• Performers projected themselves into imaginary musical situations interacting
with unsupervised learning. This projection was enabled by the online adapta-
tive behaviour of the motion-sound mapping.

• Humans perceive di�erences between various exploration strategies of rein-
forcement learning agents. These di�erences depend on environmental factors
related to timbral features of sound.

• Sound designers partner with deep reinforcement learning agents in synthesis
exploration. These partnerships can be placed along a continuum ranging from
user- to agent-as-leader.

• Non-musicians reacted positively to the collective musical behaviour of active
learning. This reaction was enabled by the expressive audiovisual queries made
by the machine to the humans.

1.3.3 Music Dispositifs

In addition to our model prototypes and observations, we created several music dis-
positifs throughout out work. We propose to borrow the term “dispositif” from the
�elds of contemporary art and design [Bianchini and Verhagen, 2016] to consider
broader dimensions of interactive music systems—we will properly introduce it in the
Post-Scriptum. We applied the interactive dispositifs in several real-world musical sit-
uations, ranging from public exhibitions, performances, installations, and workshops.

• The somasticks are augmented drumsticks that use unsupervised learning to
emphasize somatic expression in drumming practice.

• The Co-Explorer is a software that lets humans explore large parameter spaces
by expressing positive or negative feedback to a deep reinforcement learning
agent.

– Riding the Co-Explorers is a single-level game that lets a single player guide
the Co-Explorer in one single sound space.

– Behavioral Matter is an interdisciplinary workshop that applied the Co-
Explorer to the design of robotic objects.

– ægo is an improvisational computer music piece with interactive sound
and image for one performer and the Co-Explorer.

• entrain is a public installation that lets humans express collectively in music in
collaboration with an active learning loudspeaker.
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1.3.4 Theoretical Perspectives

Our human-centred studies and real-world applications enabled us to open theoretical
perspectives on music, machine learning, research, and design.

• The artifacts called model prototypes help envision possible designs of machine
learning in situation with human users before fully engineering them.

• The notions of machine expression and co-expression support the general anal-
ysis of musical interaction between (possibly learning) machines and (possibly
non-musician) humans.

• The concept of interactive music dispositif supports explicit consideration of
the scienti�c and musical norms that may condition human imagination on
interactive systems.

• The approach of music research through design enables practice-based contri-
butions in music that may complement applicative contributions in computer
science by challenging the norms in interactive music systems.

1.4 Thesis Overview

Chapter 2 relates the context and related work for the thesis. It reviews basic no-
tions on interactive music systems, machine learning, and human-centred machine
learning applied to music.

Chapter 3 presents the �rst study of the thesis. It uses a design-oriented method to
apply unsupervised learning to the musical task of motion-sound mapping. It de-
scribes the musical and technical concepts surrounding the study, followed by the
design of a model prototype, and the application to the design of a music dispositif,
called somasticks, that was tested by expert performers.

Chapter 4 presents the second study of the thesis. It uses an experimental method to
apply reinforcement learning to the musical task of sonic exploration. It describes the
musical and technical concepts surrounding the study, as well as the design of a model
prototype, and the observation of a group of humans, containing both musicians and
non-musicians, interacting with the model in a controlled setup.

Chapter 5 presents the third study of the thesis. It uses a user-centered design method
to apply unsupervised learning to the musical task of synthesis exploration. It de-
scribes the musical and technical concepts surrounding the study, followed by the it-
erative design of a model prototype, intertwined with observations with expert sound
designers, and ended by the engineering of the model. Lastly, it reports on applica-
tions of the model to the creation of three music dispositifs for real-world situations:
Riding the Co-Explorers, Behavioral Matter, and ægo.
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Chapter 6 presents the fourth study of the thesis. It uses a participatory design method
to apply active learning to the musical task of collective musical interaction. It de-
scribes observations made with designers of previous collaborative mobile music-
making systems, followed by the design of a model prototype, and the application
to the design of a music dispositif, called entrain, that was tested by non-musicians.

Chapter 7 discusses the human-centred approach to machine learning applied to mu-
sic adopted in the thesis. It describes the human and machine advantages of situating
machine learning in human contexts to study musical interaction. It introduces the
notions of machine expression and co-expression to describe such diversity of musical
interaction between humans and learning machines. It builds on the latter human-
centred notions to discuss arti�cial creativity approaches to machine learning applied
to music.

The Post-Scriptum builds on real-world musical situations of practice with machine
learning to re�ect on the research led in the thesis. It discusses the balances made be-
tween intersecting perspectives from Computer Science and music. It presents design
projects, led in parallel of the thesis, that challenge the norms of these disciplines. It
�nally delineates a music research through design framework, which leverage the the-
oretical notion of interactive music dispositif to foster novel musical practices that are
grounded in their environment.
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Figure 1.5: Graphical outline of the four studies led in the thesis.
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Context and Related Work

In this chapter, we motivate our research approach by situating it in the context of
related works. We start by contextualizing interactive music systems, situating the
musical values that they may encapsulate, and describing the approaches and tech-
niques used to design them. We then give an overview of machine learning, de�ning
the technical elements of the framework, and reviewing applications and methods
adopted in the �eld of music. We �nally motivate human-centred machine learning,
as a research approach that explicitly consider humans in the design of machine learn-
ing. We describe the techniques and methods employed, notably for applications to
the �eld of music.

Part of this work was published and presented as doctoral symposium paper at the
4th International Conference on Movement Computing (MOCO 2017) in London, United
Kingdom [Scurto and Bevilacqua, 2017].

2.1 Interactive Music Systems
Interactive music systems are a broad family of digital systems aimed at supporting
human music practices. These practices may encompass music performance, com-
position, and improvization, as well as listening, pedagogy, or playing. This section
aims at describing the context in which the research and development of interactive
music systems may operate. We �rst situate interactive music systems among a vari-
ety of musical values, which cannot be dismissed when considering human musical
practices. We then describe the approaches adopted to their design, and the technical
features that have been shown to be central to their functioning.

2.1.1 On Music Practices

As support of human musical practices, interactive music systems always encapsu-
late musical values and signi�cation into their design. In this section, we situate our
approach among a set of musical values. We argue in favour of (1) practical and (2)
embodied dimensions of music, which we do by reviewing related work in musicology
and cognitive science.

11
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Music Is A Practice, Not A Thing

To borrow the expression of Christopher Small, music may be thought of as a prac-
tice, not a thing. According to him, there is no such “thing” called “music”, but an
abstraction of the human “action whose reality vanishes as soon as we examine it too
closely” [Small, 1998]. He introduced the verb “musicking” to highlight the very fact
that music may only exist through practice. For several decades, the signi�cation of
music was mostly assessed by relying on Western music theory—e.g., the formaliza-
tion of tones, harmony, and rhythm in an annotated form. The application of one
single music theory over the variety of music practices tended to �x music as a thing,
as an object that can be talked from an external point of view, without participation
of its subject. Many musicologists also argued in favour of the so-called “performa-
tive turn” in music [Jost, 2013], whether it be acted through listening [Donin, 2004],
or performing [Leman, 2008]. For example, Simon Frith argues that the signi�cation
and value of music may arise from rituals of identi�cation made during listening by
humans—perhars more than from the formal constructs of music [Frith, 1998].

Over the centuries, new forms of music practices were enabled by the introduction
of technology. For example, phonograph records enabled humans to listen to music at
a di�erent place than where it used to be played—as is extended with latest streaming
services. Slit drums enabled humans to perform music by creating complex rhythms
in interaction with other humans—as is extended with latest smartphone applications.
Because of their technological roots, many of these music practices may thus be linked
with the industry [Wikström, 2013]. Although rejected by contemporary music in-
stitutions decades ago [Born, 1995], the links between public and private industrial
sectors of music are currently subject to important transformations. Unfortunately,
debating political issues on the industrialization of music remains out of the scope of
this thesis. Yet, our wish was to stress that industry links must be considered when
situating music practice in a societal context.

Music Is Rooted In Embodiment and Expression

The performative aspect of music may be apprehended from a cognitive point of view
through the notion of embodiment. In his seminal book on embodied music cognition,
Marc Leman argues that the human body may act as the main mediator between musi-
cal experience (mind) and sound energy (matter) [Leman, 2008]. Practices such as lis-
tening to music may be understood as an action-oriented phenomenon, which largely
relies on our sensori-motor systems. For example, humans may move along the mu-
sic they are listening to, to help make sense of auditory information [Nymoen et al.,
2011]. Reciprocally, when playing a music instrument, humans may use their body to
encode an idea, or mental representation, into a material or energetic form—i.e., sound
[Godøy and Leman, 2010]. The so-called musical gestures may be analysed and clas-
si�ed in a gesture space depending on their role in music performance—i.e., sound-
producing, sound-accompanying, or communicative gestures [Cadoz and Wanderley,
2000].

Embodied interaction with music is deeply linked with the notion of human
expression [Leman, 2016]. The encoding of gestures into sound may be analysed as the
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metaphorical expression of some human intention [Caramiaux et al., 2014a, Lemaitre
et al., 2017]. Reciprocally, the decoding of sounds into gestures may help interpret
the expression of a musical intention—e.g., a crescendo being perceived as the
acceleration of a human movement [Leman, 2016]. As such, encouraging musical
expression may be crucial to support the social and emotional development of
human beings, be they musicians, or non-musicians. Notions are as diverse as
empathy [Altenmüller et al., 2013], attention [Hannon and Trainor, 2007], adapta-
tion [Schlaug et al., 2005], self-esteem [Henderson, 1983], or creativity [Sawyer, 2014].

Music is an embodied practice that needs situating in a human context. This con-
text may include industrial, cultural, and individual dimensions. Our work will build
on culturally- and individually-situated music practices to design interactive music
systems for human expression.

2.1.2 Design Approaches

In this section, we describe the design approaches that may be adopted to the building
of interactive music systems. We present the corresponding (1) engineering sciences
and (2) crafting approaches by reviewing the related work in computer music.

The Engineering Sciences of Interactive Music Systems

Engineering sciences support the �ne-tuned design of individual components of in-
teractive music systems. Focusing on individual components can enable bottom-up
technique discoveries that may support new music practices. For example, many of
the �rst synthesizers were created by electrical engineers from manipulation of ana-
log electromechanical circuits [Bode, 1984]. Also, it can be used as a way to address
the complexity of both digital and physical components in interactive music systems.
For example, the engineering sciences background of Pierre Schae�er arguably con-
tributed to the development of his practice of sound and music [Schae�er, 1966]. In
addition, engineering sciences approaches may go in line with industrial applications
that require system robustness for large-scale music production.

Yet, only relying on engineering sciences can cause harm to music practices. Tak-
ing technical components outside the scope of human interaction may direct the de-
sign of interactive music systems toward machines. While the design of music ma-
chines can be an exciting intellectual avenue [Rowe, 1992], it has been described as
potentially enclosing �elds of knowledge related to music [Sterne, 2003]. For exam-
ple, the engineering of interactive systems based on implicit notions of “musical in-
put” may restrict music performance toward practices based on Western music theory
[Jorda, 2005]. The introduction of the computer may potentially increase this gap, by
relying on digital computation over human actions. For example, the engineering
of music recommender systems may direct music listening toward a practice of au-
tomated consumption over that of self-identi�cation [Taylor, 2014]. All in all, the
externalization of the machine from the human may contribute to the thing-i�cation
of music over human music practices.
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The Crafting of Computers and Materials

On the other hand, crafting supports the holistic design of digital and physical com-
ponents into interactive music systems [Jorda, 2005]. It makes it suitable to some form
of top-down design of interactive music systems, where the discovery of new tech-
niques may be enabled by intuition emerging from musical practices. For example,
Maurice Martenot, the inventor of the ondes Martenot, and also a cellist, was inspired
by the accidental overlaps of tones between military radio oscillators, and wanted to
create an instrument with the expressiveness of the cello [Leipp, 1972]. The practi-
cal aspect of crafting may go beyond the physical to embrace computers and digital
components. Michel Waiswisz’ The Hands may be the most well-known example of
an interactive music system made from crafting with digital technology [Torre et al.,
2016]. Crafting may go in line with creative practices of music that require speci�c
implementations as a form of human expression.

However, crafting has also its own limits. Even if a source of inspiration for many
humans, crafting’s sole relying on practice over theory may sometimes induce a lack
of transmission [Jorda, 2005]. If not documented with care, many crafted interactive
music systems—and the music practices and repertoire that go with them—may not
subsist to our social history [Herbert, 2012]. The issue of interactive music system
archiving remains contemporary, as today’s fast evolution of computer hardware and
software programming languages adds complexity to documentation [Risset, 2004].

There exists a continuum of approaches to the design of interactive music systems,
ranging from bottom-up engineering sciences to top-down crafting practice. Careful
balancing between the two extremities may be required to avoid respective pitfalls
and fairly bene�t humans.

2.1.3 Interaction Techniques

Now that we provided an overview of the approaches incumbent to their design,
we are able to focus on the techniques at stake in interactive music systems. We
propose to review them from the human-centred perspective of musical interaction,
that is, from the new actions they provide humans with in relation to music prac-
tice [Bevilacqua and Schnell, 2016]. Relying on Beaudouin-Lafon’s classi�cation of
human-machine interaction paradigms [Beaudouin-Lafon, 2004], we propose to clas-
sify interaction techniques in three categories: (1) instrumental control, (2) automatic
generation, and (3) collective interaction.

Instrumental Control

Instrumental control originates from acoustic instruments, which essentially provided
humans with one-gesture-to-one-event relationships [Jorda, 2005]. For example, per-
cussive instruments enable humans to trigger short sounds by hitting some kind of
surface with their body or some kind of object. As a widespread technique for music
practice, instrumental control has naturally extended from physical to digital music
instruments. The MIDI protocol, created in the 1980s, proposed a communication
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standard for digital instruments that imitates the note-based control of acoustic in-
struments [Loy, 1985]. This notably enabled the building of tools relying on notation
to create music, which in turn led to the birth of a music practice called computer-
assisted composition [Assayag et al., 1999].

Gestural controllers have been developed to improve instrumental control in dig-
ital music systems, to go beyond mouses and keyboards by extending humans’ physi-
cal abilities to produce sound. While keyboards were largely used following the MIDI
protocol standardization, sensors provided new perspectives for instrumental control
by fully rede�ning gesture-sound relationships in music systems [Miranda and Wan-
derley, 2006]. The process of “mapping”, which speci�es the relationships between
sensor and sound parameters by means of programmation, received a lot of attention
in the last decades [Hunt and Wanderley, 2002]. Unlike acoustic instruments, whose
physics already de�ne a mapping, digital instrument requires the relying on di�erent
strategies to design mappings—e.g., one-to-one, one-to-many, many-to-one, or many-
to-many [Jorda, 2005]. The OSC protocol eased the creation of mappings by extending
MIDI to fully-generic communication between music systems [Wright, 2005].

Automatic Generation

Automatic generation refers to the ability of interactive music systems to create
sounds, or sequences of sounds, based on anthropomorphic means of communica-
tion. It can be a desired feature of interactive music systems for music practices that
take algorithmic composition as a main concept, or for those that may bene�t from a
certain degree of delegation to the machine.

While automatic generation remains highly characteristic of digital music sys-
tems, it was already a desired feature for many musicians centuries ago. For example,
Mozart’s Musikalisches Wurfelspiel (“Dice Music”), a musical game which “involved
assembling a number of small musical fragments, and combining them by chance,
piecing together a new piece from randomly chosen part”, was one of the �rst algo-
rithmic composition systems to date [Alpern, 1995]. Many computer-based interac-
tive music systems made use of similar rules to provide composers with automatic
generation. Lejaren Hiller is often reported to be the �rst composer to ever use a
computer-generated score for a musical piece [Hiller and Isaacson, 1957], later fol-
lowed, among others, by Iannis Xenakis and his “stochastic” compositions [Xenakis,
1992]. While reviewing artistic practices on automatic generation remains out of the
scope of this thesis, we wish to stress that the notion of “arti�cial intelligence” was
linked with music way before the advent of machine learning. Speci�cally, the com-
puter music community introduced the term “intelligent instrument” [Spiegel, 1987]
to describe interactive music systems that automate the control of music in some
range [Chadabe, 1977]. Machine learning will be the matter of Section 2.2.

Alternatively, automatic generation can also be a way to delegate super�uous tasks
to the machine, in a way similar to a human partner. For example, Cartwright et al.
developed an interactive music system that enable querying of sounds using vocal-
ization as human input [Cartwright and Pardo, 2015], thus enabling humans to focus
on creation over search. Also, the delegation of tasks to the machine may enable hu-
mans to be more productive in their musical practice. For example, Deruty proposed
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tools to automate the process of mixing to speed up music production [Deruty, 2016].
Improving music production may be useful for music practices that are connected to
the industry.

Collective Interaction

Collective interaction refers to the ability of interactive music systems to facilitate
interaction between humans. It is a promising avenue for music practices that focus
on situated interaction, as well as creative collaboration, between humans.

Collective interaction is a central feature of many music practices situated in lo-
cation. Whether it be through composition, performance, or listening, music is tied
with social bonds that does not necessarily require an interactive music system to be
mediated [Leman, 2008]. Recently, Matuszewski et al. investigated the use of mobile
phones to create new interactions between humans situated in location [Matuszewski
et al., 2019]. Networking technologies enable new forms of communication between
professional musicians and the public, opening new prospects for collective interac-
tion in a context of music pedagogy [Bell and Matuszewski, 2017].

Collective interaction may also be useful to manage collaboration in music
creation. For example, shared multimodal interfaces enabled the creation of new
collective music practices through the creation of [Jorda, 2005]. Cartwright et al.
created a web interface that allows the crowdsourcing of semantic descriptors in
relation to sound [Cartwright and Pardo, 2013]. Live coding is another example of
collaborative music practice, where humans may collectively write lines of code
to generate sounds and sequences of sound, possibly relying on Web frameworks
[McKinney, 2014]. From a pedagogical point of view, web platforms enabled collabo-
ration between musicians from all across the world by supporting the streaming and
learning of music practices [Ruthmann, 2007].

Interactive music systems may be analysed as tools, partners, or mediums, for instru-
mental control, automatic generation, and collective interaction with music. Design-
ing interactive music systems consists in blending these three techniques in careful
accordance with situated music practices to support new forms of human expression.

2.2 Machine Learning

Machine learning has become one of the most successful techniques of Computer Sci-
ence in the 21st century. Unsurprisingly, interactive music systems have witnessed a
rise in applications of machine learning techniques. In this section, we review how
machine learning was applied to the design of interactive music systems. We start by
giving a formal de�nition of the notions of technique, data, model, and algorithm, that
are central to machine learning. We then give an overview of the applications of ma-
chine learning to music, using a similar classi�cation than in Section 2.1.3. Finally, we
describe the research methods that have been employed to approach machine learning
applied to music.
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2.2.1 Formal De�nitions

Machine learning studies the design of computational algorithms capable of perform-
ing speci�c tasks by autonomously learning from data. In this section, we provide
formal de�nitions of the notions of (1) technique, (2) data, (3) model, and (4) algo-
rithm, which are central to understanding applications of machine learning to music.

Technique

Machine learning de�nes di�erent techniques that enables to perform tasks in an au-
tonomous manner. Typical tasks are classi�cation and regression—e.g., respectively
predicting discrete or continuous output for a new given input. Other typical tasks
relate to optimal decision-making with a long-term reward trade-o�.

The de�nition of a technique is made through the formalization of a learning prob-
lem in relation to a goal. In supervised learning, the goal is to learn a function that
maps inputs to outputs based on example pairs of input-output [Bishop, 2006]. In
unsupervised learning, the goal is to learn a similar function based on example input
only [Murphy, 2012]. In active learning, the goal is similar to that in supervised and
unsupervised learning, instead that learning occurs in interaction with a human la-
beller [Settles, 2010]. In reinforcement learning, the goal is to learn to take actions in
an environment so as to maximize some notion of reward [Sutton and Barto, 2011].
Other learning problems exist, but remain out of the scope of the present thesis.

Data

Machine learning relies on data to perform the tasks de�ned above. Data is a set of
values supposed to represent some kind of object with respect to qualitative or quan-
titative variables. For example, visual images, which physically emerge from complex
sums of light waves, are often represented by a �nite set of pixel data, the latter being
made of red, green, and blue digital values. Data can have many roles in relation to
machine learning techniques. Example data allows to perform supervised, unsuper-
vised, and active learning—e.g., respectively, example input-output, input only, and
output only [Bishop, 2006, Murphy, 2012]. Reward data allows to perform reinforce-
ment learning—e.g., positive or negative reward for a given action [Sutton and Barto,
2011].

Speci�c features of data may be required to support learning. Feature selection
is often performed to process data in a relevant way with respect to the task being
considered. Based on this, larger data sets may be built to perform supervised, un-
supervised, and active learning. Researchers have created standardized data sets to
provide the machine learning community a common baseline to advance the build-
ing of learning algorithms [Bertin-Mahieux et al., 2011]. In the case of reinforcement
learning, large amounts of data are synthetically created by means of a reward func-
tion. Many techniques for data processing are studied in the machine learning �eld,
but remain out of the scope of this chapter.
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Model

Models are mathematical functions capable of handling data to perform the machine
learning task. Some models rely on relatively simple architectures, providing con-
crete representations of data—e.g., the Gaussian distributions, for example used in
supervised and unsupervised learning. Some models rely on complex architectures,
providing multiple layers of abstractions—e.g., the neural network models used in
deep learning. Other models are sequential, that is, they provide a sense of the tem-
poral process to be modelled—e.g., the Markov decision process used in reinforcement
learning.

In addition to the task being performed, models are sometimes used to provide
qualitative insight on data. These data-driven models may be used as a complement,
or an alternative, to mechanical models often used in science to describe the world. As
such, the models’ formalism may be carefully chosen depending on the type of data to
be studied. Hybrid models may take advantage of both data-driven and mechanistic
approaches [Alvarez et al., 2009], but remain out of the scope of this thesis.

Algorithm

Algorithms are a set of rules used for the optimization of the model’s parameter in
relation to a data set. Optimization is responsible for the learning aspect of ma-
chine learning, and is what makes machine learning di�erent from statistics as a �eld
[Bishop, 2006]. The algorithm’s parameters are called hyperparameters, in the sense
that they support the learning of the model’s parameters. Some algorithms require
large amount of data to be able to learn a model—e.g., deep learning algorithms [Good-
fellow et al., 2016]—but as a counterpart, may automatically extract features from data.
Others are designed with the requirement of learning from small amounts of data—
e.g., shallow learning algorithms—, but in turn are highly sensitive to the choice of
data features.

Importantly, learning can be performed o�ine, as is the case in most supervised
and unsupervised learning—e.g., training over a �xed data set, then performing the
task without learning anymore. Or, it can be performed online, as is the case in most
active and reinforcement learning—e.g., training in an incremental way as new data
feeds into the algorithm. The choice between o�ine and online learning algorithms
depends on the task to be performed. Computational descriptions of these algorithms
remain out of the scope of this chapter.

Machine learning de�nes a set of algorithms capable of autonomously learning a
model from example data sets. The learned model may either be used to analyse
the given data set, or to carry a task on newly-seen data.

2.2.2 Musical Applications

Now that we de�ned the notions that are central to machine learning, we are able
to focus on its musical applications. Similar to Section 2.1.3, we propose to review
them by relying on Beaudouin-Lafon’s classi�cation of human-machine interaction
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paradigms [Beaudouin-Lafon, 2004]: we propose the following classi�cation for inter-
active music systems: (1) audio analysis, (2) music generation, and (3) human-machine
improvization.

Music Information Retrieval: Machine Learning as Tool

Music information retrieval uses machine learning to automate certain tasks related
to music data [Downie, 2003]. For example, track separation aims at automatically ex-
tracting audio tracks of each musical instrument from a musical recording. This may
be formulated as a supervised learning problem, where example data are made of input
audio signals—e.g, a waveform, or a spectrogram—, along with their corresponding
instrument label as output—e.g, bass. Another application is recommender systems,
which aims at automatically creating music playlists by predicting a listener’s mu-
sical tastes [Ricci et al., 2011]. This may be formulated as a reinforcement learning
problem, where the system would learn to provide a listener with optimal rankings of
songs in an online manner, based on reward given by other listeners and the listener
herself.

The goal of music information retrieval is to create tools that may facilitate human
interaction with music. The automation of certain tasks may be useful for professional
creatives that may require a focus on productivity in their work [Deruty, 2016]. The
created tools may be useful for industrial applications that have a focus on music
consumption [Wikström, 2013].

Arti�cial Creativity: Machine Learning as Partner

Arti�cial creativity uses the models built in machine learning to automatically gen-
erate new sequences of sounds [Boulanger-Lewandowski et al., 2012]. For example,
style modelling employs machine learning to generate music that share stylistic sim-
ilarities with other music [Dubnov et al., 2003]. This may be formulated as a super-
vised learning problem, where style may be computed from speci�c data features—e.g.,
tempo, harmony—, and generation would be made from a distribution model recreat-
ing data that share similarities with the training set. Instead of automatically creating
sequences of sounds, other approaches to arti�cial creativity consists in creating new
sound spaces [Esling et al., 2018]. This may be formulated as an unsupervised learn-
ing problem, where sound spaces are �rst learned from unlabelled audio data sets,
then leveraged from the architecture of the learned models.

The goal of arti�cial creativity is to create arti�cial partners that may inspire hu-
mans by generating new musical ideas. However, the human bene�ts of these arti�cial
partners remain to be studied on a longer-term before claiming that it augments hu-
man creativity [Roberts et al., 2019]. For example, professional musicians may enjoy
creating music, and as such, may prefer doing it all by themselves rather than relying
on automatically-generated structures. Also, even if these partners may help music
composition be more approachable by non-musicians [Huang et al., 2019], they may
not enable embodied interaction with music.
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Human-Machine Improvization: Machine Learning as Medium

Human-Machine Improvization uses machine learning to adapt music generation to
human musical data in real-time. The goal is to create dynamic processes of interac-
tion between humans and machines. For example, Assayag et al. created a series of
musical improvizers able to play and adapt to a musician’s style of playing by learn-
ing from it in real-time [Assayag et al., 2006, Nika et al., 2017]. Similarly, Pachet et
al. created a musical looper which automatically adapts the generation of a musical
accompaniment depending on what the musician is playing [Pachet et al., 2013]. In
test studies with professional musicians, these machines were not perceived as emo-
tionally intimidating, but rather as musically expressive [Lévy, 2013]. This positive
embodiment of machines by humans may provide new opportunities to play (with)
music.

The task of human-machine improvization may promote machine learning to the
function of re�exive medium. Similarly to the video medium, which is “in constant
movement, circulating between camera and monitor” [Spielmann, 2010], the machine
learning medium may be in constant movement, circulating between human and
music. Rather than static descriptions of reality, the computed models may be
considered as diachronic forms, that is, forms that depict the transformative nature
of reality [Bourganel et al., 2016]. online learning from real-time human data may
enable this accounting for a dynamic nature of reality. All in all, the newly-created
medium may encourage improvizational interaction between humans and machines,
which, just as human-human improvization, may bene�t human expression [Wright
and Kanellopoulos, 2010].

Applications of machine learning to music have so far focused on music information
retrieval, music generation, and human-machine improvization, to create new musical
tools, partners, and mediums. The latter task opens new prospects to build interactive
music systems that supports embodied forms of human expression.

2.2.3 On Research Methods

In this section, we give an overview of the research methods used to formalize ma-
chine learning and lead applications in music, in light with the design approaches of
interactive music systems described in Section 2.1.2. We describe (1) the engineering
sciences approach and (2) the thing-i�cation of music and human creativity at stake
in machine learning.

The Engineering of Machine Learning

As a relatively recent �eld emerging from Computer Science and Mathematics, most
applications of machine learning to music have been done from an engineering sci-
ences perspective, that is, the solving of a technical problem. The evaluation of ma-
chine learning then consists in measuring the performance of the engineered model
in relation to the technical problem. However, we argue that technical problems may
not always be related to human problems in music practice. Furthermore, these hu-
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man problems may not always be resolved with a technical solution. While engi-
neering sciences may be necessary for the music information retrieval task—which
is by essence quantitative—, it may not always suit the tasks of arti�cial creativity
and human-machine improvization—which crucially pose qualitative issues regarding
music practices and human interaction [Lévy, 2013]. Including humans in the design
of machine learning may help balance machine engineering with human goals.

Engineering a model is a long and tedious research process. It involves the creation
of a—possibly large—data set, and the optimization of parameters of a model in rela-
tion to this data set. The computational resources needed to ful�ll these activities—the
storage of data and the learning of optimal parameters—can become quite high com-
pared to standard computers’ performance. Also, the learning of optimal parameters
on a given data set may not transfer to another data set. As a consequence and despite
the real-world success of some applications, many machine learning applications re-
main not applicable in human situations because of this focusing on machine task
engineering [Wagsta�, 2012].

The Thing-I�cation of Music and Human Creativity

Many formalizations of music as a machine learning problem tends to consider music
as a thing, not a practice. While data representations, learning algorithms, and models
remain completely generic from a computational point of view, researchers remain
mostly focused on Western music theory as a benchmark to engineer models—e.g.,
melody, polyphony, accompaniment, counterpoint [Briot et al., 2017], or electronic
dance music [Eigenfeldt and Pasquier, 2013]. Also, while e�ort is made toward in-
cluding multicultural perspectives on machine learning [Serra, 2017], the creation of
large data sets of music still tends to �x music as a static thing. Yet, as described in
Section 2.1, music is a dynamic practice that is subject to cultural evolutions [Cross,
2001a].

The “thing-i�cation” of music may also direct the research of machine learning
toward developing arti�cial creativity over human creativity. The loosely-de�ned
concept of “arti�cial intelligence” nurtures the phantasm of creating machines that
are capable of human-level creativity [Colton et al., 2012]. While we do not claim
that all machine learning researchers share these views on “arti�cial intelligence”,
we argue that they do not always clearly take a stance on this issue. Of course,
individual researchers may not become experts in all other disciplines involved in
the notion of “arti�cial intelligence” within their available resources [Mackay and
Fayard, 1997]. Yet, as many of their predecessors [Wiener, 1988], we believe that
today’s computer scientists should actively include their work as part of our soci-
ety [Latour, 1987]. Interdisciplinary collaborations may enable new reformulations
of complex scienti�c subjects [Mackay and Fayard, 1997], including machine learning.

Machine learning remains mostly studied from an engineering sciences perspective,
and applied to music without a clear accounting of its practical aspects. Key machine
learning notions must be reformulated through interdisciplinary collaboration to lead
situated applications in music and bene�t human expression.
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2.3 Human-Centred Machine Learning
Human-centred machine learning is an interdisciplinary area of work that aims at
rethinking machine learning research and systems in terms of human goals. In this
section, we motivate human-centred machine learning for the design of interactive
music systems. We give an overview of its research approaches, which investigate
machine learning techniques through the lens of human-centred methods. We �nally
review musical applications of human-centred machine learning.

2.3.1 Motivation

Human-centred machine learning includes researchers and practitioners from the
�elds of (1) human-computer interaction and (2) interactive machine learning. In this
section, we motivate a human-centred approach to the design of machine learning in
interactive music systems by introducing these two areas of work.

Human-Computer Interaction

The �eld of Human-Computer Interaction (HCI) researches the design and use of new
computer technology by humans. Historically originating from the Engineering Sci-
ences and Computer Science with the aim of designing e�cient human-computer in-
terfaces, the �eld has progressively evolved to study the interaction between humans
and computers [Beaudouin-Lafon, 2004]. Speci�cally, the last decade saw the rise of
embodied interaction as part of the third wave of HCI, which included aspects such
as experience, emotion, or bodily interaction in the design of computer technology
[Dourish, 2004].

Over the last two decades, the HCI community expanded to study the design of
creativity support tools [Shneiderman, 1999]. The focus of this topic is to under-
stand the creative process of human users to design interactions with computers that
facilitate creativity [Resnick et al., 2005]. Music was in this sense examined as a use
case to design technology that is adapted to composers [Garcia, 2014], or reciprocally,
as an inspiring modality to design new interactions with technology [Ghomi, 2012].
Recently, creativity researchers called for a move to interdisciplinary collaborations
[Frich et al., 2018].

Interactive Machine Learning

The �eld of interactive machine learning studies the use of machine learning systems
by humans. It originated a decade ago, from the assessment by machine learning re-
searchers that a lot of expert knowledge was required to actually make a machine
learning system work [Domingos, 2012]. Researchers wanted to give “power to the
people” by building machine learning systems able to account for their human users
[Amershi et al., 2014]. For example, studies shown that humans often interacted with
arti�cial agents in a way that may not suit the underneath machine learning imple-
mentation [Thomaz and Breazeal, 2008]. Machine teaching was introduced as concep-
tual framework that focus on empowering human users [Simard et al., 2017].
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Computer music pioneered interactive approaches to machine learning for
creative applications, with real-time programming environments such as Max/MSP
enabling exploration of models for sound synthesis [Lee and Wessel, 1992, Fels
and Hinton, 1993, Bevilacqua et al., 2005]. More recently, interactive machine
learning was applied to the design of musical design tools [Fiebrink, 2011], with two
complementary human- and machine-centred advantages. First, it enabled to raise
relevant aspects of human creativity in relation to music practice, such as surprise,
unexpectedness, and exploration [Fiebrink et al., 2010]. Second, it supported the
building of better machine learning software used by real-world human users,
enabling the teaching of machine learning to musicians and non-musicians [Fiebrink,
2019].

Human-centred machine learning blends approaches from the �eld of Human-
Computer Interaction and Interactive Machine Learning. Applications may poten-
tially bene�t music practice by taking into account various dimensions of human cre-
ativity in the design of machine learning systems.

2.3.2 Research Approach

This section describes the research approaches in human-centred machine learning,
from (1) interactive, open-ended learning to (2) human-centred, scienti�c methods.

Interactive, Open-Ended Learning

Human-centred machine learning is essentially concerned with the interactive learn-
ing of a model from user-provided data [Fails and Olsen Jr, 2003]. We use the word user
here to underline the fact that data may not be harvested by engineers or automat-
ically by implicit measures, but actively created by the human users of the machine
learning system. As such, users may iteratively add, delete, or modify example input-
output data in supervised learning to tacitly engineer a new model over a customized
data set. They may also experiment with various algorithm hyperparameters over a
unique data set, for example adjusting error preferences in an unsupervised learning-
based classi�er [Kapoor et al., 2010].

Once they trained the model, they may evaluate it in relation to the task it has
been applied to. Rather than the quantitative, goal-oriented criteria used by engi-
neers, human users may use qualitative, open-ended criteria to evaluate the working
of a model. For example, Fiebrink et al. showed that musicians may evaluate a ges-
ture classi�er from the sonic output that it may produce, rather than on the actual
recognition rate produced by the model [Fiebrink et al., 2011]. Experiential aspects of
interactive learning may also be important for user evaluation, as several applications
in the �eld of robotics showed—e.g., not wanting to spend too much time giving re-
ward in reinforcement learning [Thomaz and Breazeal, 2008], or not wanting to be
asked too many queries in active learning [Cakmak et al., 2010].
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Human-Centred, Scienti�c Methods

Human-centred machine learning essentially relies on methods from the �eld of
Human-Computer Interaction to deal with user evaluation. Design-oriented methods
focus on individual construction and implementation to create innovative interactive
systems [Consolvo et al., 2009]. Experimental methods assess a clearly-de�ned hy-
pothesis linking a given machine learning parameter with a user experience aspect
using a controlled setup [Lazar et al., 2017]. User-centred design methods triangulate
between theory, design, and observation to understand the needs of human users,
design new technology, and put it into use by the same users [Mackay and Fayard,
1997]. Participatory design methods put an emphasis on all stakeholders of a project
in the design process of a new technology [Schuler and Namioka, 1993]

While HCI includes aspects of crafting, it cannot be considered as a pure design
discipline in itself, “because it strives to independently verify design decisions and
processes, and borrows many values from scientists” [Mackay and Fayard, 1997]. Pro-
totypes—a concrete representation of part or all of an interactive system—are central
to these design processes and may be considered as design artifacts [Beaudouin-Lafon
and Mackay, 2009], as well as to “the design goal of inspiring users and researchers
to think about technology” [Hutchinson et al., 2003]. Yet, HCI aims at creating and
revising interaction frameworks between users and technology [Mackay and Fayard,
1997]. Thus, most HCI methods share the scienti�c goal of evaluating the bene�ts of
a new technology for their users to contribute to a model of interaction [Hutchinson
et al., 2003].

Human-centred machine learning studies the interactive and possibly open-ended
uses of machine learning models by humans. It applies scienti�c methods to it-
eratively design prototypes, evaluate human interaction, and build frameworks for
human-machine interaction.

2.3.3 Example Musical Applications

In this section, we describe three example musical applications of human-centred ma-
chine learning. We present (1) The Wekinator, (2) Grab-and-play, and (3) CoMo, ap-
plying machine learning to the practice of motion-sound mapping.

The Wekinator

The Wekinator is a software developed by Rebecca Fiebrink and colleagues at Prince-
ton University, which uses interactive machine learning to let humans map any mo-
tion sensor to any sound synthesis engine [Fiebrink et al., 2009]. Speci�cally, it uses
supervised learning to create a model that links motion input to sound synthesis out-
put. This model is learned from examples of gestures and sounds that human users
may record. They may interactively add, delete, or modify gesture-sound examples,
train a model, and experiment with the newly-created model to build their customized
model. Typical models include gesture classi�ers—built with k-nearest neighbour
algorithm—, and sound regression—built with neural network algorithm.
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The software was developed through a user-centered design process with many
expert musicians implied. It was then applied in many real-world contexts of mu-
sic practice, such as music composition [Fiebrink et al., 2010], instrument design and
performance [Fiebrink et al., 2011], but also for music pedagogy [Morris and Fiebrink,
2013, Fiebrink, 2019]. In all cases, humans valued the interactive supervised learning
work�ow created by the Wekinator. Speci�cally, they appreciated the surprise and un-
expectedness enabled by the system, which fostered their creative process. As such,
interactive supervised learning may be seen as a similar task to human-machine im-
provization, where the machine serves as an expressive partner for creation [Fiebrink,
2017].

Many other systems for motion-sound mapping were developed using a simi-
lar interactive supervised learning work�ow, but di�erent algorithms enabling other
tasks—e.g., gesture following [Bevilacqua et al., 2009], gesture variation estimation
[Caramiaux et al., 2015], or probabilistic modelling [Françoise et al., 2014].

Grab-and-play

Grab-and-play is an extension to the Wekinator that I developed during a pre-doctoral
research year at Goldsmiths University of London, under the supervision of Rebecca
Fiebrink [Scurto, 2016]. It uses interactive machine learning to enable human users
to literally grab a controller and turn it into a new, playable musical instrument al-
most instantaneously. Speci�cally, it uses supervised learning to create a motion-
sound model from a very small amount of data communicating some minimal, soft
design constraints—namely, the way the user might want to move while playing. As
a data-driven extension, Grab-and-play leverages the same learning algorithms than
the Wekinator.

The system was developed through a two-step user-centred design process with
composers on the one hand, and disadvantaged children on the other hand. It was
then respectively applied to instrument design [Scurto et al., 2016] and music therapy
[Thompson et al., 2019]. The rapid prototyping enabled by Grab-and-play favoured
ideation in the creative process of composers and performers, as well as a better fo-
cus on the expressive needs of children for music therapists. The diachronic form
supported by Grab-and-play makes it similar to a medium, as depicted by the task of
human-machine improvization.

CoMo

CoMo is a prototype web application developed by the ISMM group of IRCAM,
using interactive machine learning to support movement interaction with sound,
speci�cally targeting collective interaction using with phones [Matuszewski et al.,
2018]. The functioning is similar to the interactive supervised learning work�ow of
Wekinator—human users recording pairs of gesture-sound examples to build custom
models—, except that it works at a distributed scale. Speci�cally, it enables one hu-
man user to build a custom gesture-sound model, and to share it with other human
users using the web architecture. Typical models include gesture classi�ers—built
with gaussian mixture models—and followers—built with hidden markov models.
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The application bene�ts from extensive participatory design processes implying
many performers and movement practitioners and is still under development. It was
applied to real-world situations in dance and pedagogy [Voillot et al., 2019]. The
space for exploration created by the application bene�ted the creative practice of
dancers, as well as improved playfulness in pedagogical activities. As a machine
learning-based distributed application, CoMo also shares the qualities of a medium.

Human-centred machine learning applied to music creates re�exive mediums en-
abling new forms of human expression situated in music practices. For now, only
supervised learning and motion-sound mapping have been investigated as machine
task and human practice.

2.4 Summary
This chapter reviewed the context and related work on the design of machine learn-
ing for interactive music systems. We described the cultural and individual aspects
of music practices, which have to be taken into account when designing systems for
human expression and embodied interaction. We discussed how crafting and engi-
neering may be two complementary approaches to designing the related technical
components. We described how the �nal interactive music systems may be analysed
as providing humans with instrumental control, automatic generation, and collective
interaction with music to foster creativity.

We then de�ned machine learning as a set of algorithmic techniques that enable
to automatically learn a model between input and output from example data only. We
reviewed musical applications of machine learning and their enabling of new forms
of musical expression, encompassing music information retrieval, music generation,
and human-machine improvisation. We discussed how interdisciplinary collabora-
tion may be necessary to situate the research of machine learning in existing music
practices and support the design of novel interactive music systems.

Finally, we introduced human-centred machine learning as an emerging �eld
studying Interactive Machine Learning from a Human-Computer Interaction perspec-
tive. We analysed how the �eld jointly considers qualitative and quantitative aspects
of human interaction in the design and evaluation of machine learning. We described
three example musical applications of human-centred machine learning to motivate
our choice to adopt this research and design approach for this thesis.
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Designing With
Unsupervised Learning For
Motion-Sound Mapping

This chapter presents the �rst study led in the thesis. We decided to focus on the
musical task of motion sound mapping to build on previous applications of human-
centred machine learning to music (see Section 2.3.3 for a review). Our wish was to
generate ideas inside our research group before eventually involving human partic-
ipants in the design process. As such, our method for this study can be described
as design-oriented, where knowledge on both machine learning and the musical task
would only be attained attained through the implementation of a model prototype
[Fallman, 2003]. Figure 3.1 schematizes the three steps resulting from our use of the
method in the study; we describe them below.

Figure 3.1: The design-oriented method for our �rst study.

27
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Section 3.1 describes concepts on motion-sound mapping, covering both human
practices and machine systems. Section 3.2 describes the prototyping of our model
prototype. Finally, Section 3.3 describes the application of the model to the design
of a musical instrument, called somasticks, which we exhibited to expert motion prac-
titioners in a workshop.

This work has been published and presented as paper and poster at the 17th In-
ternational Conference on New Interfaces for Musical Expression (NIME 2017) in Copen-
hagen, Denmark [Scurto et al., 2017]. The musical instrument was showcased at the
movA workshop (March 2019) in Nantes, France.

3.1 Concepts

We start by reviewing the concepts that are relevant to this �rst study, describing the
related work in the musical task of motion-sound mapping, as well as the machine
learning technique that we proposed.

3.1.1 Musical Task: Motion-Sound Mapping

Situating the Musical Task

Motion-sound mapping is a music practice consisting of programming the relation-
ships between an input device—typically, a motion sensor—and an output device—
typically, a sound synthesis engine [Hunt and Wanderley, 2002]. It is a creative prac-
tice that has long been the speci�city of crafters, performers, artists, scientists, and
engineers from computer music communities—especially the NIME community.

Recently, motion-sound mapping has become increasingly accessible through the
use of interactive machine learning. With these technologies, humans can build cus-
tom motion-sound mappings by physically demonstrating examples of gestures for
given sounds—thus relying on corporeal knowledge instead of programming skills.

Human-Centred Approaches

Most interactive approaches to machine learning for designing motion-sound map-
pings have relied on a two-step, iterative design process (see �gure 3.2) [Françoise
et al., 2014]. In the �rst step, called training or design step, users perform gestures
along with pre-de�ned sounds. In the second step, called performance step, users ex-
periment with the newly-created mapping. For example, they can perform similar
gestures to the ones they recorded during the design step in order to replay, or re-
enact, previously-selected sounds; or, they can perform new gestures in order to ex-
plore, and discover, new sonic forms. Users must then alternate several times between
these two steps in order to succeed in building a subjectively-rewarding mapping.

Several user studies have proven that this iterative design process can support cor-
poreal engagement with sound [Bevilacqua et al., 2009, Fiebrink et al., 2010]. However,
recent works have raised a number of points yet to be improved [Scurto et al., 2016].
For example, some users may have di�culties in designing gestures and evermore to
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�ne-tune mapping. Importantly, Scurto et al. found that users might appreciate ma-
chine learning-based mappings that surprise and challenge them through continuous
physical interaction [Scurto et al., 2016].

Research by Fiebrink et al. have shown that machine learning can support human-
centred creative discoveries in musical motion-sound mapping design [Fiebrink et al.,
2011]. For example, criteria such as unexpectedness and accessibility have been
praised by computer musicians when composing an instrument [Fiebrink et al., 2010].
In this spirit, Scurto and Fiebrink proposed new methods for rapid mapping prototyp-
ing which shift users’ focus from designing motion-sound relationships to the em-
bodied exploration of relationships that have been generated partly by the computer
[Scurto et al., 2016].

Machine-Centred Approaches

While most initial research focused on explicit motion-sound relationship program-
ming [Hunt and Wanderley, 2002], using machine learning algorithms for mapping
design have proven very promising in a musical context where notions of expressivity
and generativity are of prime interest [Caramiaux and Tanaka, 2013].

In this context, several supervised algorithms have been studied, depending on the
musical task users would like to achieve. For example, Bevilacqua et al. [Bevilacqua
et al., 2009] focused on gesture following tasks and implemented a Hidden Markov
Model to perform continuous tracking on users’ gestural data. Fiebrink et al. inves-
tigated static mapping building using neural networks for regression tasks and sev-
eral standard algorithms for classi�cation tasks, such as k-nearest neighbors [Fiebrink
et al., 2011]. Françoise et al. proposed four static and/or dynamic models able to per-
form both classi�cation and regression tasks [Françoise et al., 2014]. Finally, Carami-
aux et al. developed a system that recognizes gestures and adapts to performance
variations [Caramiaux et al., 2015].
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Figure 3.2: Interactive work�ow forMapping-by-Demonstration.

However, to our knowledge, most of these approaches remained focused on a two-
step design process (see �gure 3.2), where users alternate between demonstrating ges-
tures along pre-recorded sounds (movement acted from the experience of listening to
a sound) and interacting with newly-created mappings (movement acted as having an
e�ect on sound). This iterative process might interrupt musical intentionality encod-
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ing, which, as theorized by Leman, necessitates an active, action-oriented, corporeal
engagement of humans with sound [Leman, 2008]. Interestingly, other computational
approaches aimed at providing users with such continuous interactive �ows, for ex-
ample using dynamic mapping strategies [Momeni and Henry, 2006] or physics-based
mappings [Schacher et al., 2014].

3.1.2 Proposed Technique: Unsupervised Learning
Inspired by such approaches and other interactive music systems [Jorda, 2005], we
propose to reconsider mapping creation to bridge the gap between design and perfor-
mance steps. We decide to focus on the machine learning category of unsupervised
learning to perform the task of online clustering. Our wish was to allow mappings to
adapt to users in real-time while generating sound, thus merging design and perfor-
mance steps into one fully interactive experience.

Such a task di�ers from previous interactive supervised learning approaches: in-
stead of demonstrating gestural examples that have been designed and labeled in a
separate step, users physically interact with an adaptive model that constantly gener-
ates sound, depending on both previous and current user movement. Importantly, our
system thus switches from current mapping-by-demonstration supervised paradigms
(where user-provided pairs of gestures and sounds constitute a training set) to an un-
supervised learning paradigm (where the training set consists in unlabeled gestural
data). However, as we will see, users still have the possibility to consciously in�uence
the learning by performing and correcting the system.

3.2 Prototyping
We describe the model prototype that we designed, in terms of interactive work�ow
and algorithmic implementation.

3.2.1 Algorithm: Online Gaussian Mixture Model

We implemented an online, unsupervised version of Gaussian Mixture Model (GMM).
GMMs are very general and versatile probabilistic models for designing motion-sound
relationships, providing with variables for both classi�cation and regression at a rel-
atively low computational cost [Françoise et al., 2014].

A GMM is a learning model that can perform soft clustering, which is identify-
ing groups of similarity in gestural data and computing for a new data point x each
probability that it belongs to each of these clusters. Here, clusters are modelled as
Gaussian distributionsN , and the probability p of belonging to the overall model θ is
given by:

p(x|θ) =

K∑
k=1

πkN (x|µk,Σk) (3.1)

There are four categories of parameters in GMM (see �gure 3.3 and equation 3.1).
The �rst one is the number of clusters K , which is the number of multivariate Gaus-
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sian distributions used in the mixture model. These clusters can be used for classi�-
cation purposes. Then, each Gaussian distribution has its own mean vector µk and
covariance matrix Σk , as well as its own weight πk in the mixture. These parame-
ters can be used for regression purposes. In a standard interactive supervised learning
setup, such parameters are set and learnt o�ine from custom gesture-sound examples
demonstrated by users. In our paradigm, the learning is online: Gaussian parameters
would evolve in real-time as users supply the model with only gestural data, which
support continuous action-perception work�ow as speci�ed in the previous section.
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Figure 3.3: Graphical outline of a Gaussian Mixture Model with K = 3 cluster com-
ponents for 1-dimensional motion data.

In such an online, unsupervised paradigm, we propose to add entropy H =

−
∑
p(x) ln p(x) as a supplementary parameter for controlling sound synthesis. En-

tropy can be linked to the amount of information produced by some stochastic source
of data [Liu, 2018]. In our case, a human that would always move in the same way
would have a low entropy, as he or she would produce few “novel” information. On
the other hand, a human that would have lots of variation in his or her moves would
produce a higher entropy. Our idea is to report such a high-level measure of the model
to use it as another modality for sound generation.

3.2.2 Human Data: Observation

Our wish is to enable users to design mappings in an online fashion, where design
would be made possible through performance. We propose the following work�ow,
which is depicted in �gure 3.4.

General work�ow

Our system allows users to design machine learning-based motion-sound mappings
while performing with them. More precisely, it enables online multidimensional adap-
tation to users input gestural space by continuously recording input data as the train-
ing set of a machine learning algorithm. Both design and performance steps are thus
supported under the same motion �ow. The modelling of the “internal structure" of
users’ gestural space can then drive sound synthesis in several manners, all of them
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being characterized by direct, corporeal interaction with sound and personalized ex-
ploration of motion in relation to sound. We designed our system with a particular
focus on reducing GUI actions taken in-between performances. One level of inter-
action with machine learning still remains available to users: similarly to previous
mapping-by-demonstration tools, the “setting" step allows for con�guring a minimal
set of learning parameters as well as input parameters (as described in section 3.2.1).
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Figure 3.4: Interactive work�ow for Design Through Performance.

Interaction modes

From this de�nition, we designed two interaction modes based on di�erent memory
processes (see Video for an overview). The main concept is to allow users to design
parts of their input space through the metaphor of temporal persistence, where “oc-
cupation time" (as an “accumulation process") is central to the creation of the training
set. There are several other ways to interact online with a machine learning algorithm
through its training set: we will discuss it in section 3.4.
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Figure 3.5: Graphical outline of our two interaction modes. Probability clusters are
sampled at 3 discrete times for 1-dimensional gestural data. On left, clusters continu-
ously evolve as users’ gestural data is recorded to the training set with a sliding win-
dow. On right, users continuously modify clusters’ parameters as they successively
add and delete gestural data to the training set.

Guiding The guiding mode (�gure 3.5, left) consists in having users adding gestu-
ral data with a sliding temporal window to the training set during the interaction. It
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can be seen as an interactive music system with a constant-size memory, where users
could directly and physically explore sound spaces in order to foster creative discov-
eries. It allows mappings to evolve continuously, focusing in or out of some spaces in
users’ gestural input space in real-time following abstract embodied speci�cations of
users. A typical situation would involve the creation of clusters in a relatively small
area of the input space by having users stay in this part of the input space, then its
real-time evolution (or guiding) by moving in larger areas of the input space. This
personalized interaction relies on an �nite memory process where old data would be
continuously replaced from the training set by new data.

Shaping The shaping mode (�gure 3.5, right) consists in having users interactively
adding and/or deleting gestural data to the training set during the interaction. It can
be seen as a continuous extension of previous interactive machine learning systems,
where users could delete and re-add a previously-recorded example in a design step
by clicking on a button in a design step, then see the e�ect in a performance step.
Here, users can add new examples and delete old ones by (re-)demonstrating them,
while hearing the sonic consequences in real-time. Like using a pencil with eraser,
this would allow rapid, custom, and �ne-tuned modi�cation of mappings. A typ-
ical situation would involve the creation of a new cluster for a new gesture, then
its modi�cation (or shaping) by adding or deleting variations of this gesture in the
recorded data. This personalized interaction relies on an (almost-)in�nite memory
process where the training set would grow as users successively supply the system
with data.

3.2.3 Implementation: Patch
We implemented a prototypical version of our system as a Max/MSP patch1 that makes
an extensive use of XMM library for learning GMMs [Françoise et al., 2014] and MuBu
objects for storing and editing data [Schnell et al., 2009]. The tool’s GUI provides users
with di�erent capabilities (see �gure 3.6):

• Connect any kind of gestural input device, provided its data is sent as an OSC
message.

• Experiment with di�erent kinds of sound synthesis module, provided they re-
ceive OSC messages.

• Modify the training set physically either by adding, deleting, or window stream-
ing gestural data.

• De�ne the length of the recording window.
• De�ne the number of Gaussian components in the GMM.

Currently, our tool supports online learning by training and running a GMM at a
su�ciently high rate (every 100 ms) so that it remains perceptually convincing in an
action-perception work�ow [Jorda, 2005]. Gestural data is either stored incrementally
or replaced dynamically by making use of overdub and append messages of the MuBu

1http://github.com/hugoscurto/OnlineGMM
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container. The “delete" action is made possible by identifying and deleting the �rst
nearest neighbour of user live input in the training database. Other implementations
and user interfaces could be imagined; we will discuss them in Section 3.4.

Figure 3.6: User interface of our model prototype. On left: Main window allowing
recording gestural data following di�erent interaction modes. On right: Output model
parameters.

3.3 Application: somasticks

We applied our model prototype to the design of a musical instrument, named “so-
masticks”. We led a demonstration at the movA workshop, in Nantes, France, where
expert performers and movement practitioners interacted with the instrument.

3.3.1 Description
somasticks are augmented drumsticks that seek to emphasize the somatic side of
drumming practice. Contrary to standard drumsticks, somasticks do not need to hit
any physical objects to produce sound, but rather leverages on embodied listening to
drive musical performance. Speci�cally, they may be continuously waved in the air
to trigger recorded drum sounds, and explore various playing modes in reaction to
the internal sensations that the sounds may produce within the player’s body.

somasticks combine unsupervised learning with hardware elements. We used real
drumsticks to create gestural a�ordances that are naturally related to drumming prac-
tice. We embedded the sticks with wireless sensors to feed the Online Gaussian Mix-
ture Model with drumming motion data. We �nally leveraged the online behaviour of
the unsupervised learning model to design interactive drumming sound processes.

3.3.2 Instrument Design
Hardware

We designed hardware for somasticks in collaboration with IRCAM’s Emmanuel Fléty
and Arnaud Recher from the PIP group, and Djellal Chalabi from the S3AM group.

Object We used wooden tip drumsticks as physical controllers for somasticks. At the
time of prototyping, we used Vic Firth AJ5 American Jazz model, which are wooden
tip, lightweight drumsticks designed for standard use. The sticks are 406 millimeters
long, 12 millimeters wide, and weigh 36 grams. Any other drumsticks may be used in
lieu of these in a customisation setting.
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Sensor We equipped each of the sticks with a three-dimensional Inertial Measure-
ment Unit developed in the ISMM team, called R-IoT2. In addition to the embedded
accelerometers, gyroscopes and magnetometers used for motion sensing, we linked
three button-like elements to each R-IoT. One piezoelectric sensor allows for the con-
tinuous control of one given parameter; two push-buttons allows for discrete trigger-
ing of given processes.

Sensor Support We designed a support for linking the sensors to the sticks (see Fig.
3.7). A clippable part allows to �x the R-IoT and its button elements to the body of the
stick, using a screw to adapt to di�erent stick diameters. A sliding part allows to set
the position of the R-IoT battery to adjust the center of mass of the augmented stick.
The model for the support is 3D-printable and thus allows for potential reproduction.

Figure 3.7: Rendering for the 3D-printed support of the somasticks. Left: clippable
part. Right: sliding part.

Software

We designed a Max/MSP patch for somasticks, which converts the sticks’ data into
drum sounds.

Motion analysis We used online wavelet analysis, developed by Jules Frano̧ise and
the ISMM team in the frame of the SkAT-VG3 European project, to extract motion fea-
tures and inject them in the unsupervised learning algorithm. Wavelet analysis allows
to measure the frequencies in a given movement, which is relevant as movements in
drumming practice often carry periodicity. We performed one wavelet analysis per
stick over its R-IoT accelerometer data, and took the maximum amplitude bin as the
main frequency feature for a given stick.

Sound synthesis We used concatenative synthesis, developed by Diemo Schwarz
and the ISMM team, to generate new sound patterns from recorded sounds [Schwarz
et al., 2006]. Concatenative synthesis allows to classify sound samples depending on
their spectral content, which is useful for interacting with large corpuses of sound.
We created six sound corpuses related to six percussion elements commonly at stake
in standard drum kits: bass drum (65), snare drum (77), rack toms (82), hi-hat (133),

2http://ismm.ircam.fr/riot/
3http://www.skatvg.eu/
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crash (50), ride (47). The wide number of recorded samples provides a variety of
playing modes on the drum kit elements—e.g., from soft to hard hitting—, which is
easily analysed and manageable using concatenative synthesis.

Interactive mapping We used the Online Gaussian Mixture Model to design the
interactive behaviour of the somasticks (see Fig. 3.8). We used the guiding mode with
a recording window of 10 seconds. The two sticks’ maximum amplitude wavelet bins
serve as two-dimensional data x for the model. Each sound corpus is mapped to one
gaussian component, making our model contain K = 6 cluster components.

Figure 3.8: Graphical outline of the mapping used in somasticks. Each of the K = 6

clusters of the model (left, in colors) corresponds to one sound corpus (right, with
corresponding colors). The means µ and covariances Σ of the clusters (ellipses) are
mapped to the descriptor spaces of their respective corpuses, de�ning a region from
which samples would be played. All clusters evolve online based on the performer’s
motion. In the current �gure, the performer is in a motion state corresponding to the
instantaneous class of snare drums: somasticks will thus play snare drum sounds, with
synthesis qualities de�ned by both instantaneous and recorded model parameters.

Instantaneous model parameters handle low-level behaviour of the mapping. The
model probability p sets the period at which new samples are played: the higher the
probability is, the faster the samples would be played. The instantaneous class K
de�nes the sound corpus from which samples would be played. The Gaussian prob-
abilities N set the respective gains at which samples from the K classes would be
played. Our intention was that the performer would have to produce stable quality
movements in terms of frequency to be able to control the somasticks’ sound output.
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Recorded model parameters handle high-level behaviour of the mapping. The
weights π set a random variation in the temporal moment where a sample would be
played: the more weighted a cluster is the more regular the playing of its samples
would be. The means µ and covariances Σ de�ne the region of the sound corpus in
which samples would be searched, using a k-nearest neighbor algorithm. We used two
descriptors from concatenative synthesis (FrequencyMean and LoudnessMean) to set
the searched sound space, and scaled them over the clusters’ mean values. We com-
puted the two eigen values from the covariance matrix and used their mean value as a
mean radius for the k-NN. Entropy was tested in a series of preliminary experiments,
but was not used in the latest version of the instrument due to issues in implementa-
tion.

Additionnal controls Lastly, the buttons enable direct, non-autonomous control
of sound synthesis. The two piezoelectric sensors respectively control the period
range over which samples are played using p, and a resampling variation for the
samples played. The four push-buttons respectively control: activation of the gain
scales set by N , setting of a short, absolute duration (10 ms) for all played samples,
activation of online training, and activation of sound.

3.3.3 Demonstration in Workshop

We demonstrated somasticks at the movA workshop, in Nantes, France, during which
six expert movement practitioners tried and interacted with them. Our aim was to
harvest reactions on the interactive behaviour of the sticks, understanding how its
online implementation may be felt by di�erent movement experts.

Figure 3.9: Picture of a performer playing with somasticks in the movA workshop.
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Procedure

Participants were asked to spend time interacting with the somasticks. They were told
to follow the following feedback loop: listen to the produced drum sounds, focus on
their own corporeal sensations, and move freely with the sticks and their interactive
sonic feedback. We only told them that the sticks were responsive to their movements’
dynamics, and did not explain the sticks’s internal functioning. Participants spent
between 5 and 20 minutes exploring the system.

Reactions

Discovering the sticks All participants started interaction by exploring the inter-
active behaviour of the sticks. While this exploration was meant to understand the
functioning of the software mapping, it was hugely in�uenced by the hardware a�or-
dances provided by the sticks: “the sticks, really, de�ne their very own geometry, so I
focused a lot on the trajectories de�ned by the lines [of the sticks]”, one participant said.

Re�ecting on the sticks

The need for time After discovering the sticks, four of the six total participants
took time to re�ect on their functioning. One of them, who was a dancer, spent twenty
minutes without realizing it. She re�ected: “One need this time, really [...]. Because it
was very loud from the very beginning. At the time when I put the headphones on, there
is already sound and stu�, and as I must adapt to the system, it is as if I was already late,
I needed to understand it quickly”. Another one, who had experience in drumming,
inquired his own sense of control with the sticks: “It took me time, I took actions, but
when I stopped, I’ve started to question: Was it just an illusion?”, he said.

Adapting one’s motion Beyond re�ecting on the system, the sticks had the
four participants re�ect on their own movement practice. The grasping a�ordances
of the sticks had two participants feel an assymetry in their motion: “It was really
interesting to move with the sticks. [...] I rapidly realized that I was very lateralized,
in the sense that my right hand dominates, and I am not trained in drumming”, one
participant analysed. A third participant also modi�ed its movement exploration, this
time in relation to the act of drumming: “As soon as I saw it, I thought that I can play
[the drums]. Thus, I begin to sit down”, she commented.

Appropriating the sonic mapping Three of the four participants appropri-
ated interaction with the somasticks in relation to the sounds that they produced. “For
me, there is something very attractive in the fact that there are moments of synchrony
and moments of autonomy. And in its autonomy, there were lots of variation still, so it
was always interesting to listen to, and move along with”, one expert reported about the
interactive mapping. Another one seemed to understand the windowed implemen-
tation of the unsupervised learning mapping: “I understood that there was a reaction
at this level. [...] I understood that there was a delay. This meant that if I am doing
the same thing during three seconds, the totality [sic] will come after”, she said. The
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last one of the three was �rst “in quest of silence” trying not to move, then seemed to
gain control over the wavelet-based implementation of the sticks: “There is a kind of
obstacle course that appeared. [...] It was when I made small movements that I managed
to refocus on what I was doing, and to take back control over the system”, she said.

Link with Expertise Despite the playful moment of interacting with the sticks,
the two remaining participants did not manage to understand the sticks’ functioning.
One of them related this by his lack of expertise in drumming: “I do not know all
these sensations [of drumming], so it was a bit harder for me to �nd the good movement
qualities”, he analysed. The other was rather disturbed by the physicality of the sticks,
which had him want to play them on an actual drum: “I think it could be great, even to
re�ne the system in a kind of design process, to play it with something, you know, just,
like an augmented instrument”, he said.

3.4 Discussion
In this section, we discuss challenges related to machine learning implementation, as
well as insight for general human-machine interaction.

3.4.1 Challenges in Implementation
Our current system relies on one learning model (GMM) and a slider-based GUI. Fu-
ture work may implement an online expectation-maximization algorithm for contin-
uous, optimized learning and inferring, and investigate interactive visualizations of
Gaussian distributions to let users interact in an audiovisual augmented reality setup.
Information-theoretic measures such as entropy may be better formalized and imple-
mented to enable alternative mapping explorations.

Also and importantly, we would like to prototype other unsupervised learning
models, allowing for even more diverse musical uses. For example, a current limitation
of the Gaussian Mixture Model is that it considers each new input as independent from
previously-observed data points. Such a property might not be suitable to human
movement, as dynamics are deemed of prime importance when dealing with qualities
of corporeal expressiveness [Leman, 2016]. Therefore, modelling dynamic patterns in
gestural data could be a promising approach for generating sequential musical output
that would be stylistically coherent with users’ bodily expression. Future work may
study adaptive dynamical systems to both model user-speci�c movement qualities and
to generate continuous navigation trajectories [Kulic et al., 2007]. Another approach
would be to study a reactive factor oracle [Chemla et al., 2015] to let users either
shape a training set of movement patterns, or guide a discrete navigation through
this training set.

Finally, our current implementation does not provide humans with a completely
continuous way to interact with machine learning. If the number of GUI actions has
been reduced from previous interactive supervised learning systems, users still have
to specify whether they would like to record, delete, or window stream data during
their performance. Other memory processes may be investigated to allow automatic



40 3. Unsupervised Learning For Motion-Sound Mapping

recognition of physical actions taken by users [Kulic et al., 2007], thus mediating
embodied musical interactions more �uidly.

3.4.2 Designing for Human Exploration
Observations harvested during the demonstration of the somasticks suggest that the
design through performance work�ow importantly rely on listening abilities in rela-
tion to motion. Such an online listening work�ow helped expert performers explore
a variety of musical situations, which inspired their creative practice. As such, design
through performance may be analysed as a work�ow aimed at improving �ow in
creative practice [Csikszentmihalyi, 1997]. Future work may investigate interaction
over longer periods of time to study how somasticks support �ow states in relation to
appropriation and learning time.

While the somasticks only relied on the “guiding" interaction mode to provide such
�ow, the “shaping" mode remains implemented under the same experiential work�ow
(action-perception loops emerging from physical interaction with sound. This could
enable alternative exploratory uses by performers. For example, one could add data
to the training set inde�nitely to create a mapping that would progressively “freeze"
once having recorded enough data. Also and perhaps surprisingly, the “Delete" action
actually produces sound: one could imagine a performance where “Delete" gestures
would act as control mechanisms for sonic events. Several new interaction styles
could thus be explored with our tool, each of them placing corporeal engagement
with sound as the main point of focus.

In the context of this thesis, we decided not to go deeper in the study of motion-
sound mapping to re�ect on the broader idea of supporting �ow with machine learn-
ing. Speci�cally, we became interested in the concept of supporting human explo-
ration. This new strong concept [Höök and Löwgren, 2012] emerged from the design
of our model prototype aimed at movement-based human performance. As a matter
of fact, the online adaptation of our model prototype enabled human exploration of
various motion-sound mappings, as well as of various movement strategies in rela-
tion to sound. We were interested in researching other applications of human-centred
machine learning that could address the issue of human exploration for other musical
tasks. This will be the theme of the two next chapters.
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Designing With
Reinforcement Learning For
Sonic Exploration

This chapter presents the second study led in the thesis. Based on the insight har-
vested in our study of motion-sound mapping, we decided to focus on the musical
task of sonic exploration. Sonic exploration consists in listening to many di�erent
sound designs to converge to a �nal sound design. Our idea is to use machine learn-
ing to enable autonomous sonic exploration in close partnership with humans.

Sonic exploration is a multimodal task that involves both sound listening and in-
terface actioning from humans. We decided to address these two modalities through
two separate studies. In this chapter, we adopted an experimental method [Lazar
et al., 2017] to study how humans perceive autonomous machine exploration through
sound listening only. Figure 4.1 schematizes the three steps of our study. The issue of
interface actioning in sonic exploration will be addressed in Chapter 5.

Figure 4.1: The experimental method for our second study.

41
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Section 4.1 describes concepts on sonic exploration, covering musical context
along with our proposed machine learning technique. Section 4.2 describes the model
prototyping step of our design process. Section 4.3 reports on observations led
in a controlled setup, studying human perception of our model in the task of sonic
exploration.

This work was published and presented as paper and presentation at the 15th
Sound and Music Computing Conference (SMC 2018) in Limassol, Cyprus [Scurto et al.,
2018a]. Concepts were published and presented as paper and presentation at the
Journées d’Informatique Musicale (JIM 2018) in Amiens, France [Scurto and Bevilac-
qua, 2018].

4.1 Concepts
The introduction of the computer in music has brought a wealth of novel practices
around sound and music. Cutting-edge technologies have been developed for sound
synthesis, processing, analysis, and control, enabling the emergence of new music
works, practices, notations, and performances.

However, such new technologies remain hard for people to appropriate. While
music computing is now taught in many music institutions, it still su�ers from its
apparent complexity. As a consequence, many musicians stay attached to their classi-
cal practices and resign to appropriate music computing, while many musicians-to-be
never take a chance to explore music computing systems. This is paradoxical as com-
puting has become ubiquitous in the last ten years. Can we think of a computer tool
that would facilitate exploration and appropriation of music computing systems? We
focus on a particular use case of music computing appropriation. The use case refers
to the situation where a user makes use of a music computing system on his or her
own, outside educational institutions—e.g., amateur music practices led in a home
studio. In this situation, appropriation issues arise during the �rst uses of the music
computing system.

Appropriation in Music Computing

Starting using a system generally requires gathering information on it—in a passive
learning setup. Information on a system can be found in various media, from the most
straightforward (e.g., a text or video tutorial) to the most technical (e.g., a research
paper), as well as through online discussion (e.g., an Internet forum). These activities
are often time-consuming: users �rst have to �nd relevant information (which can be
hard for obsolescent systems), then to �lter it (i.e., �nd what is useful for a speci�c
goal), supposed that they have a speci�c goal in mind. Overall, time spent on passively
learning hinders users to interact with sound and music directly, which might drive
them away from experimenting with the system.

Another option, which could be combined with the �rst, consists in starting in-
teracting with the system’s interface from scratch—in an active learning setup. Inter-
acting with the interface implies trying many di�erent actions directly to understand
the functioning of the system (in a trial-and-error fashion), and eventually to achieve
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a speci�c goal. In our case of music computing, these activities are crucial as it is im-
portant for users to actively control sound so as to strengthen action-perception loops
[Leman, 2008]. Yet, it is also possible that users get discouraged in interacting with
the interface if they get too much error during their trials. Notions of appropriation
[Zappi and McPherson, 2014] and novice to expert transition [Cockburn et al., 2015]
are thus crucial in the design of interactions at stake in a given interface.

Human-Computer Interaction in Music Computing Systems

We identify two drawbacks of current music computing systems in the context of
appropriation. First, most music computing systems’ interfaces can look quite intim-
idating for completely novice users. Some of them directly derive from their analog
ancestors (e.g., sound synthesis engines, see Figure 4.2, or spatialization tools [Carpen-
tier et al., 2015]): they are thus designed for expert users, not to facilitate interaction
for novice users. There do have been attempts to improve interface accessibility of
these systems [Cartwright et al., 2014, Cartwright and Pardo, 2014, Schwarz et al.,
2006]. Yet, these interface simpli�cations are often done to the detriment of the sys-
tem’s abilities: after having appropriated some tasks, humans become limited by the
interface’s lack of sophistication.

Figure 4.2: Example user interface of a music computing system (here, the u-he Bazille
VST1).

The second drawback is that music computing systems often rely on complex
models and representations that are not directly linked to sound. For example, im-
provisational systems [Assayag et al., 2006] require humans to have knowledge on
mathematical models, as well as on musical representations, to understand how pa-
rameters relate to sound. Similarly, musical environemnts such as Max or PureData

1http://www.u-he.com/cms/bazille
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require to learn new representations as well as programming to start interacting. This
drawback also concerns expert musicians—who might know a certain amount of mu-
sical parameters, but do not know how they relate to new mathematical parameters—,
and constitutes a major issue for music pedagogy—as such music computing systems
have been shown promising for instrument learning [Cont, 2008] and embodied prac-
tice [Bevilacqua et al., 2007].

4.1.1 Musical Task: Sonic Exploration
We believe that designing for exploration could be a way to improve appropriation of
these interfaces and representations. Exploration is the early phase of learning during
which a human iteratively acts on an interface and receives feedback information,
allowing him or her to gradually grasp the system’s functioning and qualities. As
discussed previously, it is a crucial phase in appropriation regarding learning and skill
development, as good or bad initial experience will determine the future degree of
motivation and involvement of a learner term for a given task [Cockburn et al., 2015].
By supporting exploration phase, our wish is to lower the threshold for learners to
directly interact with the system and sense its abilities, paving the way for further
understandings of how the system actually works.

Situating the Musical Task

Exploration of music computing systems is a multimodal task. One may distinguish
between sonic exploration and interface exploration. Sonic exploration consists in lis-
tening to several features of a sound to learn what qualities the created sound should
possess. Interface exploration consists in acting on the parameters of an interface
to learn how to create this sound. While the two modalities are intertwined, we de-
cided to �rst focus on the sonic exploration task only1. Our wish was to test whether
listening could be used by non-musicians as an expressive modality to explore and
appropriate musical interfaces [Leman, 2016].

As a remark, sonic exploration tasks also concern a wide variety of expert musi-
cians. For example, composers explore various sketches of their musical ideas to write
a �nal score; performers explore di�erent playing modes to shape an instrument’s
tone; sound designers explore several digital audio parameters to create unheard-of
sounds [Monache et al., 2010, Delle Monache et al., 2018]. Our interest lies in de-
signing techniques that may support sonic exploration for both musicians and non-
musicians. Speci�cally, we are interested in developing interaction modalities that
may allow humans to leverage their listening perceptive abilities to explore sounds.

Machine-Centred Approaches

In the last decade, the �eld of Interactive Machine Learning has enabled exploration of
music computing systems by emphasizing embodied interaction with sound. Super-
vised learning is the technique that has been mainly investigated in interactive ma-
chine learning, especially for motion-sound mapping [Françoise et al., 2014, Carami-

1We address the musical task of interface exploration in Chapter 5.
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aux and Tanaka, 2013]. Human interaction with supervised learning consists in
demonstrating example gestures to the learning algorithm so that it can learn to rec-
ognize them on the �y. Exploration within supervised learning either takes place
during the training phase (where humans can experiment with several examples of
di�erent gestures), or during the running phase (where they can explore interpola-
tions between given examples) [Fiebrink et al., 2010]. This two-phase work�ow has
been shown useful for a number of tasks; however, it has been shown limiting in some
cases, for example when humans want to slightly modify a given design [Scurto et al.,
2016].

Sequential adaptation have been investigated for interacting with autonomous
agents [Assayag, 2014], in a design through performance fashion [Scurto et al., 2017].
Human interaction with autonomous agents consists in generating example musical
content for guiding agents’ musical behavior. Exploration within autonomous agents
mainly consists in continuous musical improvization with the agent [Nika et al., 2017].
This online learning work�ow has been shown useful for performance cases (which
require continuous generation and reactivity) [Assayag et al., 2006, Pachet, 2003] but
may not be fully adapted to more general, “o�ine” design cases. Crucially, it still co-
erces humans into demonstrating expert musical examples to explore new behaviors,
which might prevent non-musicians from interacting with these systems.

Human-Centred Approaches

From a pedagogical point of view, the potential of interactive machine learning sys-
tems has been identi�ed, yet little exploited. For gestural control of sound, they have
been cited as allowing "learners to experience components of higher-level creativity
and social interaction even before developing the prerequisite sensorimotor skills or
academic knowledge" [Morris and Fiebrink, 2013]. Interestingly, novel application do-
mains, such as music therapy and musical expression for people with disabilities, have
also emerged [Scurto et al., 2016]. We believe extending interactive machine learn-
ing approaches to other music computing systems could constitute an opportunity to
widen the reach of more music computing practices to more people.

Many expert musicians reported that interactive supervised learning systems of-
fered space for exploration [Fiebrink et al., 2010], often personifying them as collab-
orative partners because of their ability to learn implicit musical properties similarly
to a human musical collaborator [Fiebrink and Caramiaux, 2016, Pachet, 2003]. Re-
cently, new interactions with supervised learning algorithms have been investigated
to support exploration for both novice and expert users. Scurto et al. implemented a
machine learning tool able to generate many alternative user-adapted mappings from
only one motion stream [Scurto et al., 2016]. This work�ow avoided users to re�ect on
what examples they should demonstrate for reaching a goal: rather, it enabled them to
focus only on subjective, evaluative exploration of many prototypes. Users valued the
space for exploration o�ered by such autonomous generation abilities. However, they
expressed a lack of control over the system, as generation remained fully autonomous
and not adaptive—neither sequentially, nor subjectively.
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4.1.2 Proposed Technique: Reinforcement Learning
To assist sonic exploration, we �nd it relevant to use the metaphor of transmission of
knowledge between humans. Consider a human that has an idea but does not know
how to convert it in a concrete realization. Usually, the human will ask assistance to a
second human to realize this conversion—we call it the assistant. Iterative interaction
between the two humans takes place, during which the assistant takes actions on
the system and the human gives feedback on it—until converging to a �nal design.
Our idea is to have a machine learning agent take the role of the assistant: the agent
acts on the system, upon which the human gives feedback. The agent thus explores
design possibilities in collaboration with the human, letting the human focus solely
on aligning their conceptual space with the perceptual space o�ered by the agent—
postponing the sensorimotor and/or academic learning phase to a later phase.

Reinforcement Learning

We propose to investigate the interactive use of a speci�c category of machine learn-
ing, called reinforcement learning. Reinforcement learning de�nes a formal frame-
work for the interaction between a learning agent and an environment in terms of
states, actions, and rewards [Sutton and Barto, 2011]. At time t, an agent senses its
environment through an observation called state St (typically, a vector of discrete
parameters), and on that basis takes an action At on it (typically, a set of discrete
modi�cations on these parameters). At time t+ 1, in response to its action, the agent
receives a reward Rt+1 from the environment, as well as a new state St+1. From this
information, the agent iterates interaction, progressively learning how to optimize
interaction with the environment so as to maximize the total amount of reward it
receives over the long run.

Reinforcement learning di�er from supervised (and unsupervised) learning cate-
gories. For the latters, learning typically occurs o�ine on the basis of a static training
dataset, which is a set of labeled (or unlabeled) examples we would like the system
to generalize behaviour from. In reinforcement learning, the agent learns online by
directly interacting with its environment. As a result, a reinforcement learning agent
must always balance between exploration and exploitation to improve its learning –
exploration meaning trying new actions to discover which ones yield the most re-
ward, and exploitation meaning choosing the best actions in terms of reward at the
time of computation.

Proposed Work�ow

We are interested in interactive approaches to reinforcement learning, such as shown
in Figure 4.3. In this approach, the reinforcement learning agent receives the reward
signal directly from the human feedback. Research in other �elds such as robotics
[Thomaz and Breazeal, 2008] and computer science [Knox and Stone, 2009, Chris-
tiano et al., 2017] have made huge progress toward the development of interactive
agents capable of learning speci�c tasks from human feedback. These agents support
sequential adaptation without needing example demonstrations, but only by receiving
human feedback as subjective evaluations of the autonomously-generated behaviors.
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Figure 4.3: Graphical outline of an Interactive Reinforcement Learning framework. In-
teraction between the human and the music computing system is mediated by a learn-
ing agent (in blue). At time t, the agent acts directly on the system’s parameters. At
time t+1, the system generates a new state (for example, a sound), that is subjectively
evaluated by the human through feedback. By iterating the loop, the agent learns how
to explore.

There is still relatively few works investigating reinforcement learning in the �eld
of music computing [Fiebrink and Caramiaux, 2016]. Derbinsky et al. [Derbinsky
and Essl, 2012] proposed to apply reinforcement learning to rhythm modelling, in
a goal-oriented task. Our approach di�ers from these works, in the sense that we
focus on interactive agent teaching from the human point of view (how it is "e�-
cient" for the human, not necessarily for the agent). Also, it extends research in other
�elds on interactive reinforcement learning in the sense that the open-ended task of
sonic exploration may have di�erent properties than the goal-oriented tasks usually
investigated—such as learning how to play Tetris [Knox and Stone, 2009].

We propose to conceptualize the application of interactive reinforcement learn-
ing to human exploration as "co-exploration" (see Figure 4.4). We are inspired by
prior work studying phenomenons of co-adaptation between humans and machines,
which were shown to reduce the human’s cognitive overload during the carrying of
a task [Mackay, 2000]. Here, co-exploration stands for collaborative human-agent
exploration of a given music computing system. The human explores the sonic possi-
bilities o�ered by the system (progressively learning aesthetic qualities in the system),
while the agent explores the computational parameterizations of the system (progres-
sively learning which system parameters are relevant for the human). Design through
co-exploration encapsulates the possibility for a (possibly novice) human to create a
musical artifact from a (possibly unknown) computer system by collaborating with
a learning agent in the exploration of design possibilities. A typical scenario would
imply the agent generate an initial random solution to the human, who would pro-
gressively shape it through her preferences. As we saw it, human interaction with
the music computing system is mediated by an agent. Concretely, this means that the
human does not interact with the system’s interface: an agent does it instead. Instead,
the human focuses on giving evaluative feedback on the agent’s actions, judging the



48 4. Reinforcement Learning For Sonic Exploration

system’s output on a perceptual level. Potentially, this feedback could be of any type—
be it text-based, demonstration-based, or physiological.

H
um
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 E
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ra
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n A
gent Exploration

Co-Exploration

Figure 4.4: The Co-Exploration work�ow. In a standard situation (behind), a human
explores a system by iteratively acting on it. In co-exploration (front), a learning agent
explores a system in parallel to the human.

4.2 Prototyping

In this section, we describe the model prototype that we implemented to apply inter-
active reinforcement learning to the musical task of sonic exploration.

4.2.1 Human Data: Feedback

Our initial wish is to allow humans to explore sound by only communicating positive
or negative feedback data. Advantages are threefold. First, it could encapsulate sev-
eral kinds of feedback in one unique format, such as general advice (e.g. "this is good",
"this is bad"), implicit knowledge (e.g. "do it more like this", "don’t go that way"), as
well as explicit speci�cation (e.g. "this is exactly what I want", "never show me this
again"). Second, it could be expressed relatively easily (compared to text-based feed-
back, which forces users to create a concrete verbalization of what they want). Third,
it could give a sense of agency to the human (compared to physiological feedback,
which most humans do not control). Overall, we hypothesize that communicating
such high-level feedback could facilitate musical exploration of a system compared to
specifying its low-level parameters.

To implement interaction with such agents, we must modify the formal framework
de�ned above. We propose, along with previous works [Thomaz and Breazeal, 2008,
Knox and Stone, 2009, Christiano et al., 2017], that a human would be responsible for
giving reward to the agent (see Figure 4.3). Our hypotheses are that the numerical
reward may constitute a feedback channel from the human to the agent (respectively
giving positive, zero, or negative reward for positive, neutral, or negative feedback),
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and that interactively communicating feedback toward the environment following the
agent’s exploration path may support human exploration.

4.2.2 Algorithm: Sarsa

We implemented Sarsa, which is a standard algorithm to learn how to act in many
di�erent environment states [Sutton and Barto, 2011]. It di�ers from multi-armed
bandits, which learns how to act in one unique environment state [Lomas et al.,
2016]. Formally, the environment is constituted by the parameters of some sound
synthesis engine, and the agent iteratively acts on them. Computationally, we con-
sidered the state space S = {S} constituted by all possible parameter con�gurations
S = (s1, ..., sn), with n being the number of parameters, and si ∈ [smin, smax] being
the value of the ith parameter living in some bounded numerical range (for example,
si can control the level of noise normalized between 0 and 1). We de�ned the corre-
sponding action space A(S) = {A} as moving up or down one of the n parameters
by one step ai, except when the selected parameter equals one boundary value:

A(S) =


±ai for si ∈]smin, smax[

+ai for si = smin

−ai for si = smax

(4.1)

An ε-greedy method de�nes the autonomous exploration behaviour policy of the
agent—how it may act by exploiting its accumulated feedback while still exploring
new unvisited states [Sutton and Barto, 2011]. It consists in having the agent take an
optimal action with probability ε, and reciprocally, take a random action with prob-
ability 1 − ε. For example, ε = 1 would con�gure an always exploiting agent—i.e.,
always taking the best actions based on accumulated feedback—, while ε = 0 would
con�gure an always exploring agent—i.e., never taking into account the received feed-
back.

4.3 Observation

As a �rst step toward co-exploration, we led a controlled experiment with human par-
ticipants. Our aims were to: Test how humans perceive interaction with a reinforce-
ment learning agent for sonic exploration; Understand how reinforcement learning
elements may in�uence humans leading sonic exploration.

4.3.1 Setup: Controlled Experiment

Participants

We recruited 12 participants (average of 26.9 years old, σ = 7.44, 5 Female and 7
Male). Half of them were music computing practitioners. The other half did not have
training in music computing, nor other sound-related creative practice. All of them
reported normal hearing.
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Task

The basic task of the study was to guide an agent through a sound space, from the
lowest to the brightest sound. At each step of the task, the agent would generate a
new sound. If the new sound was brighter than the previously generated one, partic-
ipants had to give positive feedback to the agent. In any other cases (lower or similar
brightness), participants had to give negative feedback to the agent. The task auto-
matically ended in two cases: either the brightest sound was reached, or it was not
reached after a maximum number of steps (we set it to 150).

At the end of the task, participants were asked to rate their perception of the
agent according to three aspects related to collaboration. The �rst aspect was the de-
gree of agency provided by the agent through feedback (“did the agent seem to take
into account your feedback in a reactive manner, or did it seem to act completely inde-
pendently?” ). The second aspect was the degree of assistance provided by the agent
throughout the task (“did the agent seem to generate sounds that were brighter, or did
it seem not to be of any help in going in this direction?” ). The third and last aspect was
the degree of easiness of the task (“overall, did the task seem to be very easy, or very
di�cult?” ).

Agents

Three types of agents were evaluated: “random”, “balance”, and “exploit”. These cor-
respond to three di�erent degrees of exploration (ε = 0: the agent only takes random
actions; ε = 0.5: the agent balances random action selection with feedback-based best
action selection with probability 0.5; ε = 1: the agent only selects the best actions as
indicated by user feedback). Other agent parameters were �xed so that exploration
would be the sole varying factor.

Musical Environments

Sounds were generated through a FM synthesis2 engine (implemented in Max/MSP),
with two discretized parameters. The �rst parameter, called modulation index, could
take ten values ranging from 3 to 70; the second parameter, called harmonicity ratio,
could take three values ranging from 0.98 to 1.02. The resulting sound space thus
had 30 possible states, corresponding to 30 static sounds. As previously explained,
the agent’s possible actions consist in moving up or down one of the two parameters.
For the sake of the experiment, we normalized sound loudness empirically so they
perceptually appear of equal intensity, and we set sound duration to 500 ms.

Based on this sound space, we designed two environment models in close rela-
tionship with the task’s goal: “unobstrucked”, and “obstrucked” (see Figure 4.5). In
the unobstrucked environment, brightness increases linearly with modulation index:
highest brightness thus corresponds to highest index value. We expect “balance” and
“exploit” agents to be more collaborative than “random” agents through their ability
to learn and select the best actions.

2Frequency Modulation synthesis (a classic algorithmic method for sound synthesis [Chowning, 1973]).
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Figure 4.5: The two environment models designed for our experiment. Top: Unob-
strucked environment, where brightness varies linearly. Bottom: Obstrucked envi-
ronment, where brightness varies nonlinearly.

In the obstrucked environment, brightness varies nonlinearly with modulation in-
dex: highest brightness still corresponds to highest index value, but a local maximum
lives at one third of the scale. Our hypothesis is that “exploit” agents would remain
stuck in this local maximum, whereas “balance” agents would overcome it through
their ability to explore. We thus expect “balance” agents to be more collaborative
than “random” and “exploit” agents.

Procedure

The experimental session consisted of a familiarization phase and an experimental
phase.

Participants �rst had to read the task’s instruction and could ask the experimenter
for clari�cation if necessary. Then, they had two test tasks in the unobstrucked en-
vironment with two types of agents (one “exploit”, then one “random”) to familiarize
with the range of sounds and agent behaviors at stake. Sounds were presented as pairs
to participants (using headphones), so as to facilitate brightness comparison between
the previously-generated sound and the new one. Participants could listen to a pair of
sounds as many time as they wanted to (using a keyboard key) before giving positive
or negative feedback to the agent (using left or right arrow keys). Once a task was
over, participants had to rate the agent’s behavior for each of the three previously-
described aspects on 9-point Likert scales (using the mouse and interactive sliders).
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Figure 4.6: Results for synthetic trial data.

We asked participants to use the full scales as much as they could.
Once this phase was over, participants could start the experimental phase. The

�rst stage only concerned the unobstrucked environment: participants were asked to
guide and evaluate each of the three types of agents within it. For improving con-
sistency, participants made three trials with each of the three agents. A stage thus
consisted in nine tasks that were randomized in order. Finally, the second stage only
concerned the obstrucked environment: similarly, participants guided and evaluated
the three types of agents three times each, in a random order. Participants were al-
lowed to take a break at any time during the session, which lasted one hour on average.

4.3.2 Results: Statistical Analysis

For each participant, we recorded step-by-step data (time, states, actions, feedback
and ratings), as well as audiovisual data of users. Prior to analysing them, we report
on synthetic data generated before the actual experiment.

Synthetic Trial Data

We programmed synthetic feedback users of same number as participants to generate
a benchmark on how agents should ideally behave in our two environment models.
This case corresponds to participants giving perfectly consistent feedback.

We measured the percentage of successful trials (which re�ects the probability
of reaching the goal), as well as the mean number of steps taken in a trial (which
re�ects a trial’s duration), for each type of agent and in each of the two environ-
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Figure 4.7: Results for participants’ trial data.

ments (see Figure 4.6). For each environment, we submitted each measure to a
one-way ANOVA with agent exploration as the within-subject factor. In the un-
obstrucked environment, the e�ect of exploration was signi�cant for both percent-
age of successful trials [F (2, 22) = 8.83, p < 0.001] and mean number of steps
[F (2, 22) = 91.3, p < 0.001]. Planned contrasts showed that both measures signi�-
cantly di�ered for “balance” and “exploit” agents compared to “random” agents.

Likewise, in the obstrucked environment, the e�ect of exploration was signi�cant
for number of successful trials [F (2, 22) = 44.7, p < 0.001] and mean number of
steps [F (2, 22) = 26.3, p < 0.001]. Planned contrasts showed that both measures
signi�cantly di�ered for “balance” agents compared to “random” and “exploit” agents.

Participants’ Trial Data

We �rst measured participants’ feedback behavior. In the unobstrucked environment,
participants gave a mean of 393 feedback every 1.91 s, with 96.3% being correct. In
the obstrucked environment, participants gave a mean of 879 feedback every 1.84 s,
with 98.0% being correct.

Similarly to synthetic users, we measured the percentage of successful trials, as
well as the mean number of steps taken by each of the three agent types, in each
of the two environments (see Figure 4.7). We used the mean of all trials in each
condition for each participant. For both environments, we submitted both mea-
sures to a one-way ANOVA with agent exploration as the within-subject factor. In
the unobstrucked environment, the e�ect of exploration was signi�cant for percent-
age of successful trials [F (2, 22) = 6.49, p < 0.005] and mean number of steps
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Figure 4.8: Results for participants’ evaluation data. In blue: agency. In orange: assis-
tance. In green: easiness.

[F (2, 22) = 130.3, p < 0.001]. Planned contrasts showed that both measures signif-
icantly di�ered for “balance” and “exploit” agents compared to “random” agents.

Likewise, in the obstrucked environment, the e�ect of exploration was signi�cant
for percentage of successful trials [F (2, 22) = 8.16, p < 0.002] and mean number
of steps [F (2, 22) = 3.62, p < 0.03]. Planned contrasts showed that both measures
signi�cantly di�ered for “balance” agents compared to “random” and “exploit” agents.

Participants’ Evaluation Data

We computed the standard score (also called z-score) for each evaluation ratings in
each environment to compare participants on the same scale (see Figure 4.8).

For each environment, we submitted each z-score to a one-way ANOVA with
agent exploration as the within-subject factor. In the unobstrucked environment,
the e�ect of exploration was signi�cant for all three perceptual aspects ([F (2, 22) =

429.3, p < 0.001] for agency; [F (2, 22) = 767.3, p < 0.001] for assistance; and
[F (2, 22) = 335.2, p < 0.001] for easiness). Planned contrasts showed that all three
perceptual ratings were signi�cantly higher for “balance” and “exploit” agents than
for “random” agents.

Likewise, in the obstrucked environment, the e�ect of exploration was signi�-
cant for for all three perceptual aspects ([F (2, 22) = 8.32, p < 0.002] for agency;
[F (2, 22) = 4.53, p < 0.02] for assistance; and [F (2, 22) = 5.26, p < 0.02] for eas-
iness). Planned contrasts showed that all three perceptual ratings were signi�cantly
higher for “balance” agents than for “random” and “exploit” agents.
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Figure 4.9: Results for participants’ ratings versus task parameters.

Finally and as shown in Figure 4.9, we measured that participants’ perception of
task easiness was correlated with the total number of steps taken by all types of agents,
in both environments.

4.4 Discussion

In this section, we discuss our experiment’s results and extract implications for future
investigations of interactive reinforcement learning applied to sonic exploration.

4.4.1 The Usefulness of Balancing Exploitation with Explo-
ration

Synthetic trial data

We �rst look at synthetic trial data to analyse agents’ ability to reach a goal in a
non-interactive setup. In the unobstrucked environment, as expected, all agents that
took into account feedback (“balance” and “exploit”) always succeeded in reaching the
goal, with “exploit” agents being the fastests as they took the best action at each step;
“random” agents reported the worst performance, succeeding only two thirds of the
time with lower speed. In the obstrucked environment, conversely, “exploit” agents
never succeeded in reaching the goal. As expected, they remained stuck in the local
maximum that we designed. In this case where an obstacle blocks the way to the goal,
“balance” agents remarkably outperformed other agents in both speed and number of
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success. This proves that agents’ balance between exploitation and exploration may
be useful for reaching a goal in environments of varying complexities.

Participants’ trial data

Participants’ trial data di�er from synthetic trial data because of imperfect feedback
occasionally given by users. Despite this di�erence, agents took exploration paths
that were similar to those generated with synthetic users in �ve out of six agent-
environment cases, as shown in Figure 4.7. In the remaining case of “exploit” agents
exploring the obstrucked environment, one third of the trials were successful, which
means that agents unexpectedly managed to overcome the obstacle that we designed
to reach the goal. This proves that agents can take di�erent paths in an interactive
setup where users make feedback mistakes.

4.4.2 The In�uence of Exploration Path on User Perception
Perceiving collaboration

We now analyse participants’ subjective evaluations to better understand how explo-
ration might be perceived by users. First, we observe that participants’ ratings had
more variability in the obstrucked environment than in the unobstrucked environ-
ment. This suggests that an environment’s complexity may strongly in�uence how
humans perceive agent exploration. Second, we noticed that participants rated down
“exploit” agents in the obstrucked environment, even if one third of them succeeded
in reaching the goal, as we previously discussed. This proves that the path taken
by agents during exploration may be more critical to how collaborative agents are
perceived by users than the actual fact of reaching the goal.

Looking more in detail to participants’ ratings, we can see that “balance” agents
were the only type of agents that were perceived as being the most assistive in both
environments, thus re�ecting their quantitative usefulness. As expected, “random”
agents were perceived as providing the less agency in the unobstrucked environment:
this suggests that participants may be able to perceive when an agent learns along its
path—in other words, there was no “placebo e�ect” toward agents’ arti�cial intelli-
gence. Finally, even if “exploit” agents formally take the best action at every step
as de�ned by participants’ feedback, this may not be perceived by participants, as
their ratings of agency shows (see Figure 4.8, bottom). This con�rms that an agent’s
internal functioning may not be properly perceived by humans, whose perception
might be more in�uenced by the path taken by agents in a given environment. Re-
sults shown on Figure 4.9 seem to con�rm this statement, as one of the evaluation
ratings correlates with one of the task parameters, regardless of the type of agent at
stake.

Personifying agents

Interestingly, audiovisual recordings show that all participants personi�ed agents de-
pending on their perceived collaboration. For example, agents that took relatively di-
rect paths to the goal provoked positive reactions (such as “it understood right away” )
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and adjectives (e.g., “nice”, or “careful” ). On the other hand, agents that took more
complex paths—such as “random” agents, or “exploit” agents that remained stuck in
the obstacle—inherited depreciative reactions (e.g., “it doesn’t listen to me”, or “it seems
light-headed” ) and adjectives (e.g., “idiot” ). This might be a �rst clue—to some extent—
for stating that feedback-based interaction may encourage users to perceive agents as
embodied partners—in some cases able to act as collaborators.

4.4.3 Towards Co-Exploration

The issue of human moving goals

In our experiment, we forced participants to follow a �xed feedback strategy: this
might limit the reach of our experiment’s results. Indeed, such feedback constraint
might not be realistic in real-world exploration, mainly for two points: (1) users might
change their feedback strategy, and (2) their goals might evolve over time. These situ-
ations are typical of real-world scenarios, where users may push systems in limit con-
ditions [Jorda, 2005], or may want to explore several alternative strategies [Fiebrink
et al., 2010]. Investigating these points constitute next steps toward turning our inter-
active reinforcement learning system (where the goal to be learned was �xed) into a
co-exploration system (where the goal to be learned might evolve as the human uses
the system).

Improving algorithms or interactions?

We identify two main directions for addressing these points—stressing that these di-
rections should be complementary. The �rst option corresponds to investigate other
reinforcement learning algorithms. As said, our current prototype implements the
Sarsa algorithm, which is a standard method for reinforcement learning. Other ap-
proaches to learning may be better adapted to our co-exploration use case. For exam-
ple, one may investigate methods that are robust to non-stationary feedback [Knox
and Stone, 2009]. Alternatively, one may also investigate approximate policy learn-
ing algorithms [Sutton and Barto, 2011, Christiano et al., 2017] for learning relevant
representations of an environment without having to explore it in its entirety.

The second option corresponds to design new interactions that may better �t in-
teractive uses of reinforcement learning algorithms. As shown in our study, humans
may not always perceive how a learning system internally works. In order to give
more control to the human, one could imagine allowing humans to modify agent
parameters during interaction, for example by actively choosing the degree of explo-
ration they may need. Also, one could allow humans to go backwards in the agent’s
learning process, or to restart learning at any time, so as to give space for iterative,
�exible exploration patterns [Resnick et al., 2005]. Again, all these developments are
not contradictory, and we believe that both directions should be considered in future
research.
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Connecting agents to real-world systems and situations

Finally, our experiment focused on models of musical environments whose dimen-
sionalities may not fully re�ect those of standard music computing systems to be
explored by users. Yet, we argue that investigating such models have provided useful
insights on how agents would take exploration paths in real-world music systems.

In the context of this thesis, we decided to continue the application of reinforce-
ment learning to sonic exploration with real-world VSTs, hoping to harvest comple-
mentary insights on our use case and pushing further the formalization of environ-
ments at stake in our co-exploration agents. Such studies might be an opportunity to
investigate other qualitative methods for evaluating agents. Indeed, our experiment’s
results suggested that participants did not really di�erentiate each of the three per-
ceptual aspects they had to rate, which in turn suggest that they may have a much
global appreciation of how an agent interact with them. Borrowing approaches and
methods from the �eld of Human-Computer Interaction (such as user-centered design
through case studies and workshops) [Resnick et al., 2005, Fiebrink et al., 2011] might
be essential for grasping such experiential aspects among humans and for leading
such situated studies with agents.



5

Designing With
Deep Reinforcement Learning
For Synthesis Exploration

This chapter presents the third study led in the thesis. It follows on from our previous
study in Chapter 4 by applying reinforcement learning to the musical task of “syn-
thesis exploration”. Synthesis exploration is the multimodal task of acting on a sound
synthesis interface to lead sonic exploration.

We adopted a user-centered design method to iterate the design of reinforcement
learning with humans [Beaudouin-Lafon and Mackay, 2009]. We decided to work with
expert sound designers to get a specialized understanding of synthesis exploration
parallel to design iterations. This enabled us to cover qualitative feedback in our
model design process, which went through an engineering step to implement a deep
reinforcement learning model (as shown in Fig. 5.1).

Figure 5.1: The user-centered design method for our third study.
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Section 5.1 describes concepts, covering musical background on interface explo-
ration, along with our proposed machine learning technique. Section 5.2 describes
the �rst model prototyping iteration of our design process. Section 5.3 reports on
observations led in a pilot study, respectively investigating expert users exploring
VST interfaces and using our model prototype. Section 5.4 describes the second model
prototyping iteration of our design process. Section 5.5 describes the model engi-
neering led for our �nal software, called Co-Explorer. Section 5.6 reports on obser-
vations led in a creative workshop with our software.

Finally, we report on three applications of our model. Section 5.8 describes the
application of the model to the design of a video game, called Riding the Co-Explorers,
that we used as a demonstrator in a conference. Section 5.9 describes the application
of the model to the design of a robotic object in a workshop, called Behavioral Matter.
Finally, Section 5.10 describes the application of our model to the design of a computer
music performance, called ægo.

This work was submitted as journal paper for ACM Transactions on Computer-
Human Interaction (TOCHI) [Scurto et al., 2019b]. Engineering was done in the con-
text of Bavo Van Kerrebroeck’s Master’s Thesis, supervised by Frédéric Bevilacqua
and myself [Van Kerrebroeck, 2018]. The game was showcased as installation at the
19th International Society for Music Information Retrieval Conference in Paris, France
[Scurto et al., 2018b]. The robotic object was designed at the Behavioral Matter work-
shop in Paris, France. The computer music performance was published and presented
as paper and piece at the 14th International Symposium on Computer Music Multidis-
ciplinary Research (CMMR 2019) in Marseille, France [Scurto and Chemla, 2019].

5.1 Concepts
Reinforcement learning de�nes a computational framework for the interaction be-
tween a learning agent and its environment [Niv, 2009]. The framework provides a
basis for algorithms that learn an optimal behaviour in relation to the goal of a task
[Sutton and Barto, 2011]. For example, reinforcement learning was recently used to
learn to play the game of Go, simulating thousands of agent self-play games based
on human expert games [Silver et al., 2016]. The algorithm, called deep reinforcement
learning, leveraged advances in deep neural networks to tackle learning of a behaviour
in high-dimensional spaces [Mnih et al., 2015]. The autonomous abilities of deep re-
inforcement learning agents let machine learning researchers foresee prominent ap-
plications in domains, such as transportation, healthcare, or �nance [Li, 2018].

Yet, one important current challenge for real-world applications is the ability for
reinforcement learning agents to learn from interaction with human users. The so-
called interactive reinforcement learning framework has been shown to hold great
potential to build autonomous systems that are centered on human users [Amershi
et al., 2014], such as teachable and social robots [Thomaz and Breazeal, 2008], or assis-
tive search engines [Athukorala et al., 2016a]. From a machine learning perspective,
the main challenge lies in learning an optimal behaviour from small, non-stationary
amounts of human data [Knox and Stone, 2009]. From a human-computer interac-
tion perspective, an important challenge consists in supporting human appropriation
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of algorithms’ autonomous behaviours in relation to complex human tasks [Stumpf
et al., 2009].

Our interest lies in investigating interactive reinforcement learning for human
creative tasks, where a goal might not be well-de�ned by human users a priori
[Resnick et al., 2005]. One such case of a human creative task is exploration [Hart
et al., 2017]. Exploration consists in trying di�erent solutions to address a problem,
encouraging the co-evolution of the solution and the problem itself [Dorst and Cross,
2001]. For example, designers may produce several sketches of a product to ideate
the features of its �nal design, or test several parameter combinations of a software
tool to create alternative designs in the case where the product has a digital form. The
creative, human-centred, use case of exploration fundamentally di�ers from standard,
machine-centred, reinforcement learning use cases, where a problem is implicitly de-
�ned as a goal behaviour, before the agent actually learns to �nd a solution as optimal
behaviour [Sutton and Barto, 2011]. It thus stands as an exemplary use case to study
human interaction with reinforcement learning agents.

In this study, we aim at designing an interactive reinforcement learning system
supporting human creative exploration. This question is addressed in the application
domain of sound design, where expert practitioners typically face the challenge of
exploring high-dimensional, parametric sound spaces. We propose a user-centred
design approach with expert sound designers to steer the design of such a system and
better conceptualize exploration within this context.

5.1.1 Musical Task: Synthesis Exploration
Sound design is an exemplary application domain for studying exploration—taking
iterative actions and multiple steps to move from an ill-formed idea to a concrete
realization [Garcia et al., 2012]. Sonic exploration tasks can take myriad of forms:
for example, composers explore various sketches of their musical ideas to write a
�nal score; musicians explore di�erent playing modes to shape an instrument’s tone;
sound designers explore several digital audio parameters to create unheard-of sounds
[Monache et al., 2010, Delle Monache et al., 2018].

Situating the Musical Task

Most of today’s digital commercial tools for sound synthesis, named Virtual Studio
Technology (VST, see Fig. 5.2), still rely on complex interfaces using tens of techni-
cal parameters as inputs. These parameters often relate to the underlying algorithms
that support sound synthesis, preventing users from establishing a direct perceptual
relationship with the sound output. To that one may add the exponential number of
parameter combinations, called presets, that eventually correspond to given sound de-
signs. It is arguable that these interfaces may not be the best to support human explo-
ration: as the perceptual outcome of acting on a given parameter may rapidly become
unpredictable, they may hinder user appropriation [Resnick et al., 2005, Shneiderman,
2007].

As such, synthesis exploration is a general task that concern expert musicians—
which explore parameters of computer devices to make sound—as well as non-
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Figure 5.2: A typical VST interface for sound design, containing many technical pa-
rameters.

musicians—which explore parameters of any kind of interfaces when appropriating
interaction. We are interested in investigating expert musicians’ strategies to explore
parametric interfaces. Our wish is that studying expert users will help us create new
interaction techniques that may bene�t non-expert users.

Human-Centred Approaches

Creativity support tools have long focused on exploration as a central task to human
creative work [Shneiderman, 2007]. Design guidelines for supporting exploration
were developed, which include aiming at simple interfaces for appropriating the tool
and getting into sophisticated interaction more easily [Dix, 2007]. Flexible interaction
modalities that can adapt to users’ very own styles of thinking and creating may also
be required [Resnick et al., 2005]. In particular, parameter space exploration remains
a current challenge for HCI research [Cartwright et al., 2014]. Recently, creativity-
oriented HCI researchers underlined the need to move toward interdisciplinary re-
search collaborations [Frich et al., 2018].

Machine learning was in this sense examined for its implications in design [Koch,
2017] and identi�ed as an opportunity for user experience [Dove et al., 2017, Yang
et al., 2018a, Yang et al., 2018b]. Yet, a large body of work in the machine learn-
ing research community has so far focused on constructing autonomous algorithms
learning creative behaviour from large amounts of impersonal data—falling under the
name of computational creativity [Wiggins, 2006]. While this have allowed the build-
ing of powerful tools and models for creation, one may be concerned in the question of
how to include human users in the design of such models to support human-computer
co-creation [Kantosalo et al., 2014].

Davis et al. proposed a model of creativity that explicitly considers the computer
as an enactive entity [Davis et al., 2014]. They notably stressed the potential of com-
bining creativity support tools with computational creativity to enrich a collabora-
tive process between the user and the computer [Davis et al., 2014]. The Drawing
Apprentice, a co-creative agent that improvizes in real-time with users as they draw,
illustrates their approach [Davis et al., 2016]. While their user study con�rms the
conceptual potential of building such artistic computer colleagues, its technical im-
plementation remains speci�c to the use case at stake—e.g., drawing. We propose
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to jointly design a conceptual and technical framework that could be could easily
be transferrable to other application domains—potentially realizing general mixed-
initiative co-creativity [Horvitz, 1999, Yannakakis et al., 2014].

Machine-Centred Approaches

Interactive machine learning [Fails and Olsen Jr, 2003] allows human users to build
customized models by providing their own data examples—typically a few of them.
Not only users can customize training examples, but they are also allowed to directly
manipulate algorithm parameters [Kapoor et al., 2010, Wong et al., 2011], as well as
to receive information on the model’s internal state [Amershi et al., 2015, Patel et al.,
2011]. Applications in HCI cover a wide range of tasks, such as handwriting analysis
[Shilman et al., 2006], recommender systems [Amershi et al., 2012], or prioritising
noti�cations [Amershi et al., 2011]. Interactive machine learning mainly builds on
supervised learning, which de�nes a computational framework for the learning of
complex input-output models based on example input-output pairs. The “human-in-
the-loop” approach to supervised learning critically di�ers from the computational
creativity approach, which typically relies on huge, impersonal databases to learn
models [Gillies et al., 2016].

Interactive machine learning is one such example of a generic framework for
human-computer co-creation [Amershi et al., 2014]. The technical framework was
successfully applied across several creative domains, such as movement interaction
design [Zamborlin et al., 2014, Francoise and Bevilacqua, 2018, Gillies, 2019], web page
design [Kumar et al., 2011] or video games [Kleinsmith and Gillies, 2013]. Speci�cally,
research studying users building customized gestural controllers for music brought
insight on the creative bene�ts of interacting with machine learning [Fiebrink et al.,
2011]. Not only were users able to accomplish their design goal—e.g., demonstrat-
ing a given gesture input for controlling a given sound parameter output—, but they
also managed to explore and rapidly prototype alternative designs by structuring and
changing training examples [Fiebrink et al., 2010]. These patterns were reproduced by
novice users who gained accessibility using examples rather than raw parameters as
input [Katan et al., 2015]. The algorithms’ sometimes surprising and unexpected out-
comes favoured creative thinking and sense of partnership in human users [Fiebrink
and Caramiaux, 2016].

Typical work�ows in interactive machine learning tend to iterate on designing
training examples that are built from a priori representative features of the input space
to support exploration. Yet, in some creative tasks where a problem de�nition may be
found only by arriving at a solution [Dorst and Cross, 2001, Rittel, 1972], it might be
unfeasible for users to de�ne, a priori, such representative features of the �nal design
[Katan et al., 2015]. Other approaches proposed methods to release such contraints,
for example by exploring alternative machine learning designs by only de�ning the
limits of some parameter space [Scurto et al., 2016]. We propose to further inves-
tigate machine learning frameworks able to iteratively learn from other user input
modalities, and explicitly considering mixed-initiative work�ows, where systems au-
tonomously adapt to users [Deterding et al., 2017]. As reviewed in the next section,
using interactive reinforcement learning o�ers such perspectives.
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5.1.2 Proposed Technique: Deep Reinforcement Learning

Interactive reinforcement learning de�nes a computational framework for the inter-
action between a learning agent, a human user, and an environment [Amershi et al.,
2014]. Speci�cally, users can communicate positive or negative feedback to the agent,
in the form of a numerical reward signal, to teach it which action to take when in
a certain environment state. The agent is thus able to adapt its behaviour to users,
while remaining capable of behaving autonomously in its environment. Interactive
reinforcement learning has been recently applied in HCI [Ruotsalo et al., 2014], with
promising applications in exploratory search [Glowacka et al., 2013, Athukorala et al.,
2016b] and adaptive environments [Frenoy et al., 2016, Rajaonarivo et al., 2017]. Inte-
grating user feedback in reinforcement learning algorithms is computationally feasi-
ble [Stumpf et al., 2007], helps agents learn better [Knox and Stone, 2009], can make
data-driven design more accessible [Lomas et al., 2016], and holds potential for rich
human-computer collaboration [Stumpf et al., 2009]. Applications in Human-Robot
Interaction informed on how humans may give feedback to learning agents [Thomaz
and Breazeal, 2008], and showed potential for enabling human-robot co-creativity
[Fitzgerald et al., 2017].

Deep Reinforcement Learning

Recently, reinforcement learning has witnessed a rise in popularity thanks to ad-
vances in deep neural networks [Mnih et al., 2015]. Powerful models including user
feedback have been developed for high-dimensional parameter spaces [Christiano
et al., 2017, Warnell et al., 2017]. Design researchers have identi�ed reinforcement
learning as a promising prospective technique to improve human-machine “joint cog-
nitive and creative capacity” [Koch and Oulasvirta, 2018]. We believe that interactive
reinforcement learning—especially deep reinforcement learning—holds great poten-
tial for supporting creative tasks—especially exploration of high-dimensional VST
parameter spaces. First, its computational framework, constituted by environment
states, agent actions, and user feedback, remains fully generic [Sutton and Barto,
2011], and thus potentially allow the design of generic interaction modalities trans-
ferrable to di�erent application domains. Second, the autonomous behaviour intrin-
sic to reinforcement learning algorithms may be exploited to build a novel creative
mixed-initiative paradigm, where the user and the agent would cooperate by taking
actions that are “neither fully aligned nor fully in con�ict” [Crandall et al., 2018]. Fi-
nally, we consider that user feedback could be a relevant input modality in the case
of exploration, notably for expressing on-the-�y, arbitrary preferences toward im-
minent modi�cations, as opposed to representative examples. As previously stated,
this requires investigating a somewhat unconventional use of reinforcement learn-
ing: if previous works employed user feedback to teach agents a “correct” behavior
in relation to a task’s goal, it is less obvious whether such a correct behavior may be
well-de�ned—or even exists—for human users performing exploration.
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Method

We adopted a user-centered approach to lead joint conceptual and technical work on
interactive reinforcement learning for synthesis exploration. Two design iterations—
a pilot study and an evaluation workshop—were conducted over the course of our
research. Two prototypes were designed and developed—one initial reinforcement
learning prototype, and the Co-Explorer, our �nal deep reinforcement learning proto-
type. The process thus includes sequentially:

• Prototype 1: Implementing a reinforcement learning algorithm that learns to
explore VST parameter spaces from binary human feedback

• Pilot study: Observing and interviewing participants exploring sound spaces,
�rst using standard parametric interfaces, then using our initial reinforcement
learning prototype

• Prototype 2: Designing deep reinforcement learning in response to design ideas
suggested by our pilot study

• Evaluation workshop: Observing and discussing with participants using and
appropriating the Co-Explorer, our �nal prototype, in two creative tasks related
to exploration

We worked with a total of 14 users (5 women, 9 men; all French) through the series
of activities. From the 14 total, there were 2 who took part in all of the activities listed
below, to testify of our prototype’s improvements. Our users covered di�erent areas
of expertise in sound design and ranged from sound designers, composers, musicians,
and artists to music researchers and teachers. Thus, they were not all constrained to
one working methodology, one sonic practice or one application domain. Our motiva-
tion was to sample diverse approaches to exploration that sound design may provoke,
in order to design a �exible reinforcement learning algorithm that may suit a variety
of users’ working styles [Resnick et al., 2005].

5.2 Prototyping I
By formalizing synthesis exploration as an interactive reinforcement learning prob-
lem, we seek to tackle both issues at once. First, human navigation in high-
dimensional parameter spaces may be facilitated by the reinforcement learning com-
putational framework, made of sequences of states, actions, and rewards. Second,
human creativity may be stimulated by the autonomous behaviour of reinforcement
learning algorithms, suggesting other directions or design solutions to users along
exploration.

5.2.1 Algorithm: Sarsa
We used the same model prototype than that in Chapter 4, this time calling it “RL
agent” for concision purposes. For the readers’ convenience, we describe again its
principles below.
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The prototype lets users navigate through di�erent sounds by only communicat-
ing positive or negative feedback to a reinforcement learning agent. The agent learns
from feedback how to act on the underlying synthesis parameters in lieu of users
(see Fig. 5.3). Formally, the environment is constituted by the VST parameters, and
the agent iteratively acts on them. Computationally, we considered the state space
S = {S} constituted by all possible parameter con�gurations S = (s1, ..., sn), with
n being the number of parameters, and si ∈ [smin, smax] being the value of the ith
parameter living in some bounded numerical range (for example, si can control the
level of noise normalized between 0 and 1). We de�ned the corresponding action
space A(S) = {A} as moving up or down one of the n parameters by one step ai,
except when the selected parameter equals one boundary value:

A(S) =


±ai for si ∈]smin, smax[

+ai for si = smin

−ai for si = smax

(5.1)

We implemented Sarsa, which is a standard algorithm to learn how to act in many
di�erent environment state, i.e., for each given parameter con�guration [Sutton and
Barto, 2011]. It di�ers from multi-armed bandits, which learns how to act in one
unique environment state [Lomas et al., 2016]. Importantly, as evoked in Section 5.1,
Sarsa was designed to learn an optimal behaviour in relation to the goal of a task. Our
purpose in this study was to scope the pros and cons of such a standard reinforcement
learning algorithm for human exploration tasks, judging how it may in�uence user
experience, and framing how it may be engineered with regard to this.

Figure 5.3: Graphical outline of our RL agent prototype. Users can only provide feed-
back to the agent, which acts on hidden VST parameters.

We used a VST-based 12-parameter space (n = 12) as the environment of our
prototype. Because Sarsa is de�ned on discrete state spaces, each parameter range
was discretized in three normalized levels (si ∈ {0, 0.5, 1}, ai = 0.5; 0 ≤ i ≤ n).
Although this would have been a design �aw in a perceptual experiment on typical
VSTs, this allowed for obvious perceptual changes, which was required to investigate
feedback-based interaction with a large variety of sounds.

An ε-greedy method de�nes the autonomous exploration behaviour policy of the
agent—how it may act by exploiting its accumulated feedback while still exploring
new unvisited states [Sutton and Barto, 2011]. It consists in having the agent take an
optimal action with probability ε, and reciprocally, take a random action with prob-
ability 1 − ε. For example, ε = 1 would con�gure an always exploiting agent—i.e.,
always taking the best actions based on accumulated feedback—, while ε = 0 would
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con�gure an always exploring agent—i.e., never taking into account the received
feedback. Our purpose in this study was to examine whether di�erent exploration-
exploitation trade-o�s could map to di�erent user approaches to exploration.

5.2.2 Human Data: Feedback
Finally, we propose that the user would be responsible for generating feedback. We
directly mapped user feedback to the environmental reward signal R associated with
a given state-action pair (S,A). The resulting formalization—where an agent takes
actions that modi�es the environment’s state and learn from feedback received from
a user—de�nes a generic interactive reinforcement learning problem.

5.3 Observation I
We organized a one-day pilot study with four of our expert participants. The aims
of this pilot study were to: Observe approaches to exploration in standard VST in-
terfaces; Identify problems users experience; Introduce the reinforcement learning
technology in the form of a prototype; Brainstorm ideas and possible breakdowns.

5.3.1 Setup: Pilot Study
The pilot study was divided in two parts: (1) parametric interface exploration, then
(2) interactive reinforcement learning-based exploration. We conducted individual
semi-structured interviews at the end of each part, having each participant do the
study one by one. This structure was intended to bring each participant to become
aware of their subjective experience of exploration [Petitmengin, 2006]. Our intention
was to open up discussions and let participants suggest design ideas about interac-
tive reinforcement learning, rather than testing di�erent algorithmic conditions in a
controlled, experimental setup. We spent an average of 2 hours with each of our four
participants, who covered di�erent expertise in sound design (composition, sound
design, interaction design, research).

5.3.2 Results: VST Interfaces, Qualitative Analysis
Procedure

In the �rst part of the study, participants were asked to �nd and create a sound preset
of their choice using three di�erent parametric interfaces with di�erent number of
parameters (respectively 2, 6, and 12, see Fig. 5.4). No reinforcement learning agent
was used. We linked each interface to a di�erent sound synthesis engine (respectively
using FM synthesis1, and one commercial VST from which we selected 6, then 12, pa-
rameters). Sound was synthesized continuously; participants’ actions were limited
to move the knobs using the mouse to explore the design space o�ered by all possi-
ble combinations. Knobs’ technical names were hidden to test the generic e�ect of
parameter dimensionality in interface exploration, and avoid any biases due to user

1Frequency Modulation synthesis (a classic algorithmic method for sound synthesis [Chowning, 1973]).
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knowledge of parameter function (which typically occur with labelled knobs). Inter-
face order was randomized; we let participants spend as much time as they wanted
on each interface to let them explore the spaces freely.

Figure 5.4: Graphical outline of the three parametric interfaces of our study.

Analysis

We were interested in observing potential user strategies in synthesis exploration.
We thus logged parameter temporal evolution during the task. It consists in an n-
dimensional vector, with n being the number of parameters (respectively 2, 6, then
12). Sample rate was set to 100 ms, which is a standard value for interaction with
sound and musical interfaces [Jorda, 2005]. We used Max/MSP2 and the MuBu3 library
to track user actions on parameters and record their evolutions. We used structured
observation to study participants’ interviews. This method was meant to provide a
thorough qualitative analysis on user exploration strategies.

Observations

Qualitative analysis of parameter temporal evolution let us observe a continuum of
approaches to parametric interface exploration. We call the �rst extremity of this
continuum analytical exploration: this involves actioning each of the knobs one
after the other over their full range. The second is called spontaneous exploration:
this involves making random actions on the knobs. Figure 5.5 shows examples for
each of these two approaches. One participant was consistently analytical over the
three interfaces; one was consistently spontaneous over the three. The two others
combined both approaches over the three interfaces.

Interview analysis let us map these approaches to di�erent subgoals in explo-
ration. The analytical approach concerns exploration of the interface at a parameter
level: “The strategy is to test [each knob] one by one to try to grasp what they do”, one
participant said. The goal of exploration is then related to building a mental map of
the parameters to learn how to navigate in the design space. The spontaneous ap-
proach concerns exploration of the design space at a creative level: “I moved the knobs
more brutally and as a result of serendipity I came across into something di�erent, that I
preferred for other reasons...”, another participant said. The goal of exploration is then
related to discovering new parameter states leading to inspiring parts of the design
space.

Discovery is critical to synthesis exploration. “Once [the knobs] are isolated, you
let yourself wander a bit more...”, one participant analysed. Surprise is also important:

2https://cycling74.com/products/max/
3https://forum.ircam.fr/projects/detail/mubu/
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Figure 5.5: Two user exploration strategies with a 12-dimensional parametric inter-
face: Analytical (top) vs. spontaneous (bottom).

“To explore is to be in a mental state in which you do not aim at something precise”,
one participant said. Interestingly, we observed that participants often used words
related to perceptual aspects rather than technical parameters. “I like when you can
get a sound that is... um... Consistent, like, coherent. And at the same time, being able to
twist in many di�erent ways. This stimulates imagination, often”, one participant said.
Two participants mentioned that forgetting the parametric interface may be enjoyable
in this sense: “I appreciate an interface that does not indicate [...], that has you go back
into sound, so that you are not here reading things, looking at symbols...”, one participant
said.

All participants reported being hindered in their exploration by the parameter
inputs of the three interfaces. As expected, the more parameters the interface con-
tained, the larger the design space was, and the harder it was to learn the interface.
“For me, the most important di�culty is to manage to e�ectively organise all things to
be able to re-use them.”, one participant said. Time must be spent to �rst understand,
then to memorize the role of parameters, taking into account that their role might
change along the path of exploration. This hampers participants’ motivation, often
restraining themselves to a subspace of the whole design space o�ered by the tool:
“after a while I was fed up, so I threw out some parameters”, one participant said about
the 12-knob interface.

Participants discussed the limitations encountered in the study in light of their
real-world practice with commercial interfaces. Two participants mentioned using
automation functions to support synthesis exploration. Such functions include ran-
domizing parameter values, automating parameter modi�cation over time, or creating
new control parameters that “speak more to your sensibility, to your ears, than to what
happens in the algorithm”, to cite one of the participants. Two participants also use
factory presets to start exploration: “I think that in some interfaces they are pretty well
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conceived for giving you the basis of a design space. Then it’s up to you to �nd what
parameters to move”, one participant said. Two participants said that the graphical
user interfaces, including parameter names, knob disposition, and visual feedback on
sound, may help them manage to lead exploration of large parameter spaces.

5.3.3 Results: RL Agent Prototype, Qualitative Analysis

Results in �rst part let us identify di�erent user approaches to VST interface ex-
ploration, as well as di�erent problems encountered in high-dimensional parameter
spaces. In the second part, we were interested in having participants test the reinforce-
ment learning technology in order to scope design ideas and possible breakthroughs
in relation to exploration.

Procedure

Our participants were asked to �nd and create a sound preset of their choice by com-
municating feedback to three di�erent agents with di�erent exploration behaviours
(respectively ε = 0; ε = 1; and ε = 0.5). Sound was synthesized continuously,
in a sequential work�ow driven by the agents’ algorithmic functioning. At step t,
participants could listen to a synthesized sound, and give positive or negative feed-
back by clicking on a two-button interface (Fig. 5.6). This would have the agent take
an action on hidden VST parameters, modify the environment’s state, and synthe-
size a new sound at step t + 1. Participants were only told to give positive feedback
when the agent gets closer to a sound that they enjoy, and negative feedback when
it moves away from it. They were not explained the agent’s internal functioning, nor
the di�erences between the three agents. The starting state for t = 0 was randomly
selected. Agent order was randomized; we asked participants to spend between 5 and
10 minutes with each.

Figure 5.6: One of our four participants using a two-button interface to communicate
binary feedback to the RL agent prototype in the pilot study.
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Analysis

We logged all participant actions in the graphical user interface. It consisted in timed
onsets for positive feedback on the one hand, and negative feedback on the other
hand. We also logged parameter temporal evolution to observe how the RL agent
would act on parameters following user feedback. We used structured observation to
study participants’ interviews and discussions led at the end of the pilot study.

Reactions

All participants reported forgetting synthesis parameters to focus on the generated
sound. The simplicity and straightforwardness of the new interface bene�ted their
exploration. “There’s always this sensation that �nally you are more focused on listening
to the sound itself rather than trying to understand the technology that you have under
your hands, which is really great, yeah, this is really great”, one participant said.

The computational framework de�ned by reinforcement learning was well un-
derstood by all participants. “There’s somewhat a good exploration design [sic], because
it does a bit what you do [with the parametric interface], you move a thing, you move
another thing...”, one participant said. All participants enjoyed following agents’ ex-
ploration behaviours, mentioning a playful aspect that may be useful for serendipity.
Three participants in turn adapted their exploration to that of the agent: “you convince
yourself that the machine helps you, maybe you convince yourself that it is better... and
after you go on exploring in relation to this”, one participant said. Interestingly, one
participant that was skeptical about partnering with a computer changed his mind
interacting with the RL agent: “We are all di�erent, so are they”, he commented, not
without a touch of humor.

Uses of Feedback

Descriptive statistics informed on how participants used the feedback channel. Three
participants gave feedback every 2.6 seconds on average (σ = 0.4), globally balancing
positive with negative (average of 44.8% positive, σ = 0.02). The fourth participant
gave feedback every 0.9 seconds on average (σ = 0.07) which was mostly negative
(average of 17.2% positive, σ = 0.02). All participants reappropriated the feedback
channel, quickly transgressing the task’s instructions toward the two-button interface
to ful�ll their purposes. One participant used feedback to explore agents’ possible be-
haviors: “Sometimes you click on the other button, like, to see if it will change something,
[...] without any justi�cation at all”, he commented. Another used the ‘-’ button to tell
the agent to “change sound”. Two participants also noticed the di�erence between
feedback on sound itself, and feedback on the agent’s behavior: “there’s the ‘I don’t
like’ compared to the sound generated before, and the ‘I don’t like it at all’, you see”, one
of them said.

Breakdowns

Rapidly, though, participants got frustrated interacting with the RL agent. All partic-
ipants judged that agents did not always reacted properly to their feedback, and were
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leading exploration at the expense of them: “sometimes you tell ‘I don’t like’, ‘I don’t
like’, ‘I don’t like’, but it keeps straight into it! (laughs)”, one participant said. Contrary
to what we expected, participants did not expressed a strong preference for any of
the three tested agents. Only one participant noticed the randomness of the explor-
ing agent, while the three other participants could not distinguish the three agents.
This may be caused by the fact that the Sarsa algorithm was not designed for the inter-
active task of human exploration. Reciprocally, this may be induced by experiential
factors due to the restricted interaction of our RL agent prototype, e.g., preventing
users to undo their last actions. Finally, two participants also complained about the
lack of precision of the agent toward the generated sounds. This was induced by the
Sarsa algorithm, which required to discretize the VST parameter space.

Design Implications

Participants jointly expressed the wish to lead agent exploration. They suggested
di�erent improvements toward our RL agent prototype:

• Express richer feedback to the agent (e.g., di�erentiating “I like” from “I really
like” )

• Control agent path more directly (e.g., commanding the agent to go back to a
previous state, or to some new unvisited state in the parameter space)

• Improve agent algorithm (e.g., acting more precisely on parameters, reacting
more accurately to feedback)

• Integrate agent in standard workspace (e.g., directly manipulating knobs at
times in lieu of the agent)

Interestingly, one participant suggested moving from current sequential work�ow
(where the agent waits for user feedback to take an action on the environment’s state)
to an autonomous exploration work�ow (where the agent would continuously take
actions on the environment’s state, based on both accumulated and instantaneous
user feedback). Three participants envision that such an improved RL agent could be
useful in their practice, potentially allowing for more creative partnerships between
users and agents.

5.4 Prototyping II
Our pilot study led us to the design of a �nal prototype, calledCo-Explorer. We decided
to �rst design new generic interaction modalities with RL agents, based on users’
reactions with both parametric interfaces and our initial prototype.

5.4.1 Human Data: Feedback + Controls
Our initial prototype only employed user feedback as its unique interaction modal-
ity. This limited our participants, who suggested a variety of new agent controls to
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support exploration. We translated these suggestions into new interaction modali-
ties that we conceptualized under three generic categories: (1) user feedback, (2) state
commands, and (2) direct manipulations (as shown in Fig. 5.7).

Figure 5.7: Interactive work�ow of the Co-Explorer.

User Feedback

Our design intention is to support deeper user customization of the VST parame-
ter space, while also allowing richer user contribution to agent learning. We thus
propose to enhance user feedback as de�ned in our initial prototype, distinguishing
between guiding and zone feedback. Guiding feedback corresponds to users giving
binary guidance toward the agent’s instantaneous trajectory in the parameter space.
Users can give either positive—i.e., “keep going in that direction”—or negative guid-
ance feedback—i.e., “avoid going in that direction”. Zone feedback corresponds to
users putting binary preference labels on given zones in the parameter space. It can
either be positive—i.e., “this zone interests me”—or negative—i.e., “this zone does not
interest me”. Zone feedback would be used for making assertive customization choices
in the design space, while guiding feedback would be used for communicating on-the-
�y advice to the learning agent.

State Commands

Additionally, our design intention is to support an active user understanding of agent
actions in the VST parameter space. We propose to de�ne an additional type of inter-
action modality—we call them “state commands”. State commands enable direct con-
trol of agent exploration in the parameter space, without contributing to its learning.
We �rst allow users to command the agent to go backward to some previously-visited
state. We also enable users to command the agent to change zone in the parame-
ter space, which corresponds to the agent making an abrupt jump to an unexplored
parameter con�guration. Last but not least, we propose to let users start/stop an au-
tonomous exploration mode. Starting autonomous exploration corresponds to letting
the agent continuously act on parameters, possibly giving feedback throughout its
course to in�uence its behaviour. Stopping autonomous exploration corresponds to
going back to the sequential work�ow implemented in our initial prototype, where
the agent waits for user feedback before taking a new action on parameters.
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Direct Manipulation

Lastly, our design intention is to augment, rather than replace, VST interfaces with
interactive reinforcement learning, leveraging users expertise with these interfaces
and providing them with additional modalities that they could solicit when they may
need it. We thus propose to add “direct manipulations” to support direct parameter
modi�cation through a standard parametric interface. It lets users explore the space
on their own by only manipulating parameters without using the agent at all. It can
also be used to take the agent to a given point in the VST parameter space—i.e., “start
exploration from this state”—, or to de�ne by hand certain zones of interest using
a zone feedback—i.e., “this example preset interests me”. Inversely, the parametric
interface also allows to visualize agent exploration in real-time by observing how it
acts on parameters.

A last, global interaction modality consists in resetting agent memory. This en-
ables users to start exploration from scratch by having the agent forget accumulated
feedback. Other modalities were considered, such as modifying the agent’s speed
and precision. Preliminary tests pushed us to decide not to integrate them in the
Co-Explorer.

5.4.2 Algorithm: Deep TAMER

Based on our observations in the pilot study, we developed our reinforcement learning
agent at two intertwined technical levels: (1) feedback formalization and (2) learning
algorithm. This work was done in the context of Bavo Van Kerrebroeck’s Master’s
Thesis, supervised by Frédéric Bevilacqua and myself [Van Kerrebroeck, 2018].

Feedback Formalization

One challenge consisted in addressing the non-stationarity of user feedback data
along their exploration. We implemented Deep TAMER, a reinforcement learning al-
gorithm suited for human interaction [Warnell et al., 2017]. Deep TAMER leverages a
feedback formalization that distinguishes between the environmental reward signal—
i.e., namedR in the Sarsa algorithm of our initial prototype—and the human reinforce-
ment signal—e.g., feedback provided by a human user. This technique, implemented
in the TAMER algorithm [Knox and Stone, 2009], was shown to reduce sample com-
plexity over standard reinforcement learning agents, while also allowing human users
to teach agents a variety of behaviours. We detail the di�erences between standard
RL algorithms and (deep) TAMER in Appendix A.

Learning Algorithm

Another challenge was to tackle learning in high-dimensional parametric spaces that
are typical of our use case. Deep TAMER employs function approximation [Sutton and
Barto, 2011] to generalize user feedback given on a subset of state-action pairs to un-
visited state-action pairs. Speci�cally, a deep neural network is used to learn the best
actions to take in a given environment state, by predicting the amount of user feed-
back it will receive [Mnih et al., 2015, Warnell et al., 2017]. The resulting algorithm can
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learn in high-dimensional state spaces S = {S} and is robust to changes in discretiza-
tion ai of the space. For our application in sound design, we engineered the algorithm
for n = 10 parameters. We normalized all parameters and set the agent’s precision
by discretizing the space in one hundred levels (si ∈ [0, 1], ai = 0.01; 0 ≤ i ≤ n).

A last challenge was to learn quickly from the small amounts of data provided
by users during interaction. Deep TAMER uses a replay memory, which consists in
storing the received human feedback in a bu�er D, and sampling repeatedly from
this bu�er with replacement [Warnell et al., 2017]. This was shown to improve the
learning of the deep neural network in high-dimensional parameter spaces in the
relatively short amount of time devoted to human interaction. We set the parameters
of the the deep neural network by performing a parameter sweep and leading sanity
checks with the algorithm.

5.5 Engineering II
We then engineered our model prototype by (1) improving exploration behaviour, (2)
processing user feedback and controls, and (3) implementing a new speci�c interface
for sound design. This work was done in the context of Bavo Van Kerrebroeck’s Mas-
ter’s Thesis, supervised by Frédéric Bevilacqua and myself [Van Kerrebroeck, 2018].

5.5.1 Algorithm: Improving Parameter Exploration
We developed a novel exploration method for autonomous exploration behaviour. It
builds on an intrinsic motivation method, which pushes the agent to “explore what
surprises it” [Bellemare et al., 2016]. Speci�cally, it has the agent direct its exploratory
actions toward uncharted parts of the space, rather than simply making random
moves—as in the ε-greedy approach implemented in our initial prototype. It does
so by building a density model of the parameter space based on all visited states.
We used tile coding, a speci�c feature representation extensively used in the rein-
forcement learning literature to e�ciently compute and update the density model in
high-dimensional spaces [Sutton and Barto, 2011]. We parameterized ε with an ex-
ponential decay in such a way that its initial value would slowly decrease along user
exploration. For our application in sound design, agent speed in continuous explo-
ration mode was set to one action by tenths of a second.

5.5.2 Human Data: Processing Feedback and Controls
To fully realize our interaction design, we integrated the modalities de�ned in Section
5.4.1 within the reinforcement learning framework de�ned in Section 5.4.2.

User Feedback

We developed generic methods corresponding to user feedback modalities de�ned in
Section 5.4.1 that we used in the feedback formalization of Section 5.4.2. For guiding
feedback, we assigned user positive or negative feedback value over the p last state-
action pairs taken by the agent (see Fig. 5.9, left), with a decreasing credit given
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Figure 5.8: Graphical outline of machine exploration methods. The color scale depicts
the density model all states. Left: Changing zone has the agent jump to the state with
lowest density. Right: Autonomous exploration has the agent take successive actions
leading to the state with lowest density.

Figure 5.9: Graphical outline of human feedback computation methods. Here, positive
feedback is given in some state situated at the center of the square. Left: Guiding feed-
back is distributed over the p lastly-visited state-action pairs. Right: Zone feedback
impacts all state-action pairs potentially leading to the labelled state.

by a Gamma distribution [Knox and Stone, 2009]. For zone feedback, we computed
all possible state-action pairs leading to the state being labelled and impacted them
with positive or negative feedback received (see Fig. 5.9, right). This enables to build
attractive and repulsive zones for the agent in the parameter space. Finally, we added
a reward bonus to user feedback to enhance the agent’s learning relatively to the
novelty of a state. This reward bonus is computed using the density model described
in Section 5.5.1.

State Commands

We developed generic methods corresponding to state commands de�ned in Section
5.4.1 using the exploration behaviour de�ned in Section 5.5.1. Changing zone has the
agent randomly sampling the density distribution and jump to the state with lowest
density (see Fig. 5.8, left). Autonomous exploration mode has the agent take ex-
ploratory actions that lead to the nearest state with lowest density with probability ε
(see Fig. 5.8, right).

Direct Manipulation

We integrated direct manipulations as de�ned in Section 5.4.1 by leveraging the learn-
ing algorithm de�ned in Section 5.4.2. When parameters are modi�ed by the user, the
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reinforcement learning agent converts all parameters’ numerical values as a state rep-
resentation, taking advantage of the algorithm’s robustness in changes of discretiza-
tion. Reseting agent memory has the reinforcement learning algorithm erase all stored
user feedback and trajectory, and load a new model.

5.5.3 Implementation: Co-Explorer
We implemented all interaction modalities described above in the Co-Explorer soft-
ware (see Video for an overview).

Agent

We implemented the Co-Explorer as a Python library4. It allows to connect the deep
reinforcement learning agent to any external input device and output software, us-
ing the OSC protocol for message communication [Wright, 2005]. This was done to
enable future applications outside the sound design domain. Each of the features de-
scribed in Section 5.4.2 are implemented as parameterized functions, which supports
experimentation of interactive reinforcement learning with various parameter val-
ues as well as order of function calls. The current version relies on TensorFlow for
deep neural network computations. The complete algorithm implementation and all
learning parameters are shown in the Appendix.

Figure 5.10: User interface of the Co-Explorer.

Interface

We implemented an interactive interface for our application in sound design (Fig.
5.10), which integrates all interaction modalities de�ned in Section 5.4.1. It builds
on Max/MSP, a visual programming environment for real-time sound synthesis and
processing. Standard parametric knobs enable users to directly manipulate parame-
ters, as well as to see the agent act on it in real-time. An interactive history allows
users to command the agent to go to a previously-visited state, be they a�ected by
user feedback (red for negative, green for positive) or simply passed through (grey).
Keyboard inputs support user feedback communication, as well as state commands
that control agent exploration (changing zone, and start/stop continuous exploration
mode). Lastly, a clickable button enables users to reset agent memory.

4https://github.com/Ircam-RnD/coexplorer
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5.6 Observation II
We evaluated interaction with the Co-Explorer in a workshop with a total of 12 pro-
fessional users (5 female, 7 male). The aims of the workshop were to: Evaluate each
interaction modality at stake in the Co-Explorer ; understand how expert users may
appropriate the agent to support synthesis exploration.

5.6.1 Setup: Workshop

The workshop was divided in two tasks: (1) explore to discover, and (2) explore to cre-
ate. This structure was intended to test the Co-Explorer in two di�erent creative tasks
(described in Section 5.6.2 and 5.6.3, respectively). Participants ranged from sound
designers, composers, musicians, and artists to music researchers and teachers. They
were introduced to the agent’s interactive modalities and its internal functioning at
the beginning of the workshop. In each part, they were asked to report their observa-
tions by �lling a browser-based individual journal. Group discussion was carried on
at the end of the workshop to let participants exchange views over synthesis explo-
ration. The workshop lasted approximately three hours each.

Figure 5.11: Picture of sound designers using the Co-Explorer in our workshop.

5.6.2 Results: Discovery Task, Qualitative Analysis

Procedure

In the �rst part of the workshop, participants were presented with one VST (see Fig.
5.11). They were asked to use the Co-Explorer to explore and discover the sound space
at stake. Speci�cally, we asked them to �nd and select �ve presets to constitute a rep-
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resentative sample of the space. We de�ned the parameter space by selecting ten pa-
rameters from a commercial VST. Participants were encouraged to explore the space
thoroughly. The task took place after a 10-minute familiarizing session: individual ex-
ploration lasted 25 minutes, followed by 5 minutes of sample selection, and 20 minutes
of group discussion.

Analysis

All participant’s actions were logged into a �le. These contained timed onsets for
user feedback—i.e., binary guiding and zone feedback—, state commands—i.e., back-
ward commands in the history, changing zone commands, and autonomous explo-
ration starting/stopping—, and direct manipulations—i.e., parameter temporal evolu-
tions. We also logged timed onsets for preset selection in relation to the task, but did
not include the �ve presets themselves into our analysis. Our motivation was to focus
on the process of exploration in cooperation with the Co-Explorer, rather than on the
output of it. We used structured observation to extract information from individual
journals and group discussion.

Results

We �rst looked at how users employed state commands. Speci�cally, the autonomous
exploration mode, which consisted in letting the agent act cotinuously on parameters
on its own, was an important new feature compared to our sequentiam initial RL agent
prototype. Participants spent more than half of the task using the Co-Explorer in this
mode (total of 13 minutes on average, σ = 4.7). Ten participants used autonomous
exploration over several short time slices (average of 50 seconds, σ = 25s), while the
two remaining participants used it over one single long period (respectively 9 and 21
minutes). P5 commented about the experience: “It created beautiful moments during
which I really felt that I could anticipate what it was doing. That was when I really
understood the collaborative side of arti�cial intelligence”.

The changing zone command, which enabled to jump to an unexplored zone in the
parameter space, was judged e�cient by all participants to �nd diverse sounds within
the design space. It was used between 14 and 90 times, either to start a new exploration
(P1: “Every time I used it, I found myself in a zone that was su�ciently diametrically
opposed to feel that I could explore something relatively new” ), or to rapidly seize the
design space in the context of the task (P12: “I felt it was easy to manage to touch the
edges of all opposite textures” ). Interestingly, P2 noticed that the intrisic motivation
method used for agent exploration behaviour “brought something more than a simple
random function that is often very frustrating”.

We then looked at how users employed feedback. Guiding feedback was e�ec-
tively used in conjunction with autonomous exploration by all participants, balanc-
ing positive with negative (55% positive on average, σ = 17%). Participants gave
various amounts of guiding feedback (between 54 and 1489 times). These strategies
were re�ected by di�erent reactions toward the Co-Explorer. For example, one par-
ticipant was uncertain in controlling the agent through feedback: “if the agent goes in
the right direction, I feel like I should take time to see where it goes”, he commented. On
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the contrary, P1 was radical in his controlling the agent, stating that he is “just looking
for another direction”, and that he uses feedback “without any value judgement”. This
re�ects the results described in Section 5.3.3 using our initial RL agent prototype.

Zone feedback, enabling customization of the space with binary labels, was mostly
given as positive by participants (72%, σ = 18%). Two participants found the concept
of negative zones to be counter-intuitive. “I was a bit afraid that if I label a zone as
negative, I could not explore a certain part of the space”, P8 coined. This goes in line
with previous results on applying interactive reinforcement learning in the �eld of
robotics [Thomaz and Breazeal, 2008]. All participants agreed on the practicality of
combining positive zone feedback with backward state commands in the history to
complete the task. “I labeled a whole bunch of presets that I found interesting [...] to after
go back in the trajectory to compare how di�erent the sounds were, and after continue
going in other zones. I found it very practical”, P8 reported. Overall, zone feedback was
less times used than guiding feedback (between 10 and 233 times).

Finally, direct manipulation was deemed e�cient by participants in certain zones
of the design space. “When I manage to hear that there is too much of something,
it is quicker to parametrize sound by hand than to wait for the agent to �nd it itself,
or to learn to detect it”, P4 analyzed. P10 used them after giving a backward state
command, saying she “found it great in cases where one is frustrated not to manage to
guide the agent”. P11 added that she directly manipulate parameters to “adjust the little
sounds that [she] selected”. P1 suggested that watching parameters move as the agent
manipulates them could help learn the interface: “From a pedagogical point of view,
[the agent] allows to access to the parameters’ functioning and to the interaction between
these parameters more easily [than without]”. This supports the fact that machine
learning visualizations may be primordial in human-centred applications to enable
interpretability of models [Amershi et al., 2014].

Relevance to Task

Three participants complained that the Co-Explorer did not react su�ciently quickly
to feedback in relation to the task: “I would really like to feel the contribution of the
agent, but I couldn’t”, P12 said. Also, P3 highlighted the di�culties to give evaluative
feedback in the considered task: “without a context, I �nd it hard”, he analysed. Despite
this, all participants wished to spend more time teaching the Co-Explorer, by carefully
customizing the parameter space with user feedback. For example, �ve participants
wanted to slow the speed of the agent during autonomous exploration to be able
to give more precise guidance feedback. Also, three participants wanted to express
sound-related feedback: “There, I am going to guide you about the color of the spectrum.
[...] There, I’m going to guide you about, I don’t know, the harmonic richness of the sound,
that kind of stu�...”, P4 imagined.
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5.6.3 Results: Creation Task, Qualitative Analysis
Procedure

In the second part of the workshop, participants were presented with four pictures
(Fig. 5.12). For each of these four pictures, they were asked to explore and create
two sounds that subjectively depict the atmosphere of the picture. In this part, we
encouraged participants to appropriate interaction with the Co-Explorer and feel free
to work as they see �t. We used a new sound design space for this second part, which
we designed by selecting another ten parameters from a commercial VST. Individual
exploration and sound selection lasted 30 minutes, followed by 20 minutes of group
discussion and 10 minutes of closing discussion.

Figure 5.12: The four pictures framing the creation task of the workshop.

Analysis

All participant actions were logged into a �le, along with timed parameter presets
selected for the four pictures. Again, we focused our analysis on the process of explo-
ration rather than on the output of it. Speci�cally, for this open-ended, creative task,
we did not aim at analysing how each agent interaction modality individually relates
to a speci�c user intention. Rather, we were interested in observing how users may
appropriate the mixed-initiative work�ow at stake in the Co-Explorer.

We used Principal Component Analysis (PCA [Jolli�e, 2011]), a dimensionality re-
duction method, to visualize how users switched parameter manipulation with agents.
We �rst concatenated all participants’ parameter evolution data as an n-dimensional
vector to compute the two �rst principal components. We then projected each partic-
ipant data onto these two components to support analysis of each user trajectory on
a common basis. By doing this, relatively distant points would correspond to abrupt
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changes made in parameters (i.e., to moments when the user takes the lead on explo-
ration). Continuous lines would correspond to step-by-step changes in parameters
(i.e., to moments when the Co-Explorer explores autonomously). PCA had a stronger
e�ect in the second part of our workshop. We interpret this as a support to the two-
part structure that we designed for the workshop, and thus did not include analysis
of the �rst part. Finally, we used structured observation to extract information from
individual journals and group discussion.

Exploration Strategies

All participants globally expressed more ease interacting with the Co-Explorer in this
second task. “I felt that the agent was more adapted to such a creative, subjective... also
more abstract task, where you have to illustrate. It’s less quantitative than the �rst task”,
P9 analysed. User feedback was also reported to be more intuitive when related to a
creative goal: “all parameters took their sense in a creative context. [...] I quickly found
a way to work with it that was very e�cient and enjoyable”, P5 commented. Figure 5.13
illustrates the PCA for two di�erent users interacting with the Co-Explorer.

Figure 5.13: Two types of co-exploration partnerships shown in PCA visualizations
of parameter evolution: User-as-leader (P9, left) and agent-as-leader (P7, right). Rel-
atively distant points correspond to abrupt changes made in parameters (i.e., to mo-
ments when the user takes the lead). Continuous lines correspond to step-by-step
changes in parameters (i.e., to moments when the Co-Explorer takes the lead).

Qualitative analysis of PCAs let us conceptualize a continuum of partnerships be-
tween our participants and the Co-Explorer. These could be placed anywhere between
the two following endpoints:

• User-as-leader: This typically involves users �rst building a map of the design
space (iteratively using changing zone and positive zone feedback), then gen-
erating variations of these presets (either through direct manipulation or short
autonomous explorations).

• Agent-as-leader: This typically involves letting the Co-Explorer lead param-
eter manipulation (using autonomous exploration and guiding feedback), �rst
setting some starting point in the design space (either using changing zone or
direct manipulation).
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Our interpretation is as follows. User-as-leader partnership may correspond to
user pro�les that approach creative work as a goal-oriented task, where e�cacy and
control are crucial (P10: “I am accustomed... Where I work, if you prefer, we have to get
as quick as possible to the thing that works the best, say, and I cannot spend so much time
listening to the agent wandering around” ). Reciprocally, agent-as-leader partnership
may correspond to user pro�les that approach creative work as an open-ended task,
where serendipity is essential for inspiration (P5: “I did not try to look for the sound
that would work the best. I rather let myself be pushed around, even a bit more than in
my own practice” ). Some participants did not stabilize into one single partnership, but
rather enjoyed the �exibility of the agent. “It was quite fun to be able to let the agent
explore, then stop, modulate a bit some parameters by hand, let it go and guide it again,
changing zones too, then going back in the history... Globally, I have the impression of
shaping, somewhat... I found it interesting”, P11 coined.

Agent memory was handled with relevance to various creative processes toward
the pictures. Seven participants disposed all four pictures in front of them (P7: “to
always have them inmind. Then, depending on the agent’s exploration, I toldmyself ‘hey,
this soundmight correspond to this picture”’). Three participants focused on one picture
at a time, “without looking at the others”. Four participants never reset the memory
(P11: “my question was, rather, in this given sonic landscape, how can I handle these
four pictures, and reciprocally” ), and three participants reset agent memory for each
of the di�erent atmospheres shared by the pictures. Overall, participants bene�ted
from partnering with the Co-Explorer in synthesis exploration: “It’s a mix of both. I
easily managed to project a sound on the picture at �rst glance, then depending on what
was proposed, it gave birth to many ideas”, one participant said.

Toward Real-World Usages

All participants were able to describe additional features for the Co-Explorer to be us-
able in their real-world professional work environments—examples are, among oth-
ers, connection to other sound spaces, memory transfer from one space to another,
multiple agent memory management, or data exportation. They also anticipated cre-
ative uses for which the Co-Explorer were not initially designed. Half of the partici-
pants were enthusiastic about exploiting the temporal trajectories as actual artifacts
of their creation (P6: “What I would �nd super interesting is to be able to select the se-
quences corresponding to certain parameter evolution, or playing modes. [...] It would
be super great to select and memorize this evolution, rather than just a small sonic frag-
ment” ). Finally, two participants further imagined the Co-Explorer to be used as mu-
sical colleagues—either as improvisers with which one could “play with both hands”
(P2), or as “piece generators” (P6) themselves.

5.7 Discussion
Our process of research, design, and development led to contributions at three dif-
ferent levels: (1) conceptual insight on human exploration; (2) technical insight on
reinforcement learning; and (3) joint conceptual and technical design guidelines on
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machine learning for creative applications.

5.7.1 Conceptual Insight

From Exploration to Co-Exploration

Our work with interactive reinforcement learning allowed for observing and charac-
terizing user approaches to synthesis exploration, and supported it. While manipu-
lating unlabelled parametric knobs of sound synthesizers, participants alternated be-
tween an analytical approach—attempting to understand the individual role of each
parameter—and a spontaneous approach that could lead to combinations in the pa-
rameter space that might not be guessed with the analytical approach. While inter-
acting with a reinforcement learning agent, participants tended to alternate the lead
in new types of mixed-initiative work�ows [Horvitz, 1999] that we propose to call
co-exploration work�ows. User-as-leader work�ow was used for gaining control over
each parameter of the design space. Agent-as-leader work�ow allowed to relax users’
control and provoke discoveries through the speci�c paths autonomously taken by
the agent in the parameter space. Importantly, the bene�t of interactive reinforce-
ment learning for co-exploring sound spaces was dependent on the task. We found
that this co-exploration work�ow were more relevant to human exploration tasks that
have a focus on creativity, such as in our workshop’s second task, rather than discov-
ery. Therefore, we believe that this work�ow is well-suited in cases where exploration
is somehow holistic (as in the creative task) rather than analytic (as in the discovery
task where the goal is to understand the sound space to �nd new sounds).

Methodology

Our user-centered approach to exploration with interactive reinforcement learning
allowed us to rapidly evaluate �exible interaction designs without focusing on usabil-
ity. This process let us discover innovative machine learning uses that we may not
have anticipated if we had started our study with an engineering phase. The simple,
�exible, and adaptable designs tested in our �rst pilot study (parametric vs. RL) could
in this sense be thought as technology probes [Hutchinson et al., 2003]. Working
with professional users of di�erent background and practices—from creative coders
to artists less versed in technology—was crucial to include diverse user feedback in the
design process. Our results support this, as many user styles were supported by the
Co-Explorer. That said, user-driven design arguably conveys inherent biases of users.
This is particularly true when promoting AI in interactive technology [Amershi et al.,
2019, Caramiaux et al., 2019]. As a matter of fact, alongside a general enthusiasm, we
did observe a certain ease among our professional users for expressing tough critiques,
at times being skeptical on using AI, especially when the perception of the algorithm
choice would contradict their spontaneous choice. Yet, the two professional users
that took part to both our pilot study and workshop found the use of AI as welcome,
testifying of its improvement along the development process.
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Evaluation

Lastly, evaluation of reinforcement learning tools for creativity remains to be investi-
gated more deeply. While our qualitative approach allowed us to harvest thoughtful
user feedback on our prototypes’ interaction modalities, it is still hard to account for
direct links between agent computations and user creative goals. Using question-
naire methods, such as the Creativity Support Index [Cherry and Latulipe, 2014], may
enable to measure di�erent dimensions of human creativity in relation to di�erent
algorithm implementations. Also, focusing on a speci�c user category could also al-
low more precise evaluation in relationship to a situated set of creative practices and
uses. Alternatively, one could aim at developing new reinforcement learning criteria
that extends standard measures—such as convergence or learning time [Sutton and
Barto, 2011]—to the qualitative case of human exploration. Research on interactive
supervised learning has shown that criteria usually employed in the �eld of Machine
Learning may not be adapted to users leading creative work [Fiebrink et al., 2011]. We
believe that both HCI and ML approaches may be required and combined to produce
sound scienti�c knowledge on creativity support evaluation.

5.7.2 Technical Insight
Computational Framework

Our two working prototypes con�rmed that interactive reinforcement learning may
stand as a generic technical framework for synthesis exploration. The computational
framework that we proposed in Section 5.2.1, leveraging states, actions, and rewards,
strongly characterized the mixed-initiative co-exploration work�ows observed in Sec-
tion 5.6.3—e.g., making small steps and continuous trajectories in the parameter space.
Other interactive behaviours could have been implemented—e.g., allowing the agent
to act on many parameters in only one action, or using di�erent ai values for di�er-
ent action sizes—to allow for more diverse mixed-initiative behaviours. Alternatively,
we envision that domain-speci�c representations may be a promising approach for
extending co-exploration. In the case of sound design, one could engineer high-level
state features based on audio descriptors [Schwarz and Schnell, 2009] instead of us-
ing raw parameters. This could allow RL agents to learn state-action representations
that would be independent from the parameter space explored—potentially allowing
memory transfer from one parameter state space to another. This could also enable
agent adaptation of action speed and precision based on perceptual features of the
parameter space—potentially avoiding abrupt jumps in sound spaces.

Learning Algorithm

Reinforcement learning algorithmic functioning, enabling agents to learn actions over
states, was of interest for our users, who were enthusiastic in teaching an arti�-
cial agent by feedback. Our deep reinforcement learning agent is a novel contribu-
tion to HCI research compared to multi-armed bandits (which explore actions over
one unique state [Lomas et al., 2016]), contextual bandits (which explore in lower-
dimensional state spaces [Koch et al., 2019]), and bayesian optimization (which ex-
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plores at implicit scales [Shahriari et al., 2016]). We purposely implemented heteroge-
neous ways of teaching with feedback based on our observations of users’ approaches
to synthesis exploration, which extends previous implementations such as those in
the Drawing Apprentice [Davis et al., 2016]. Yet, rich computational models of user
feedback for exploration tasks remain a challenge. Our observations indeed suggested
that exploring users may not generate a goal-oriented feedback signal, but may rather
have several sub-optimal goals. They may also make feedback mistakes, act socially
toward agents, or even try to trigger surprising agent behaviours over time. Deep
TAMER was adapted to the interactive of user feedback (as opposed to Sarsa); yet,
it still made the assumption that users will generate a stationary and always correct
feedback signal [Warnell et al., 2017]. Previous works investigating how users give
feedback to machine learning [Stumpf et al., 2009] may need to be extended to include
such creative use cases.

Exploration Behaviours

The exploration behaviours of reinforcement learning agents were shown promising
for fostering creativity in our users. Both ε-greedy and intrisic method were adapted
to the interactive case of a user leading exploration. One of our users felt that intrisic
motivation had agents behave better than random. Yet, users’ perception of agent
exploration behaviours remains to be investigated more deeply. In a complementary
work [Scurto et al., 2018a], we con�rmed that users perceived the di�erence between
a random parameter exploration and a RL agent exploration. Yet, they might not per-
ceive the di�erence between various implementations of agent exploration; what they
perceive may be more related to the agent’s global e�ect in exploring the parameter
space. Future work may study co-exploration partnerships over longer periods of
time to inquire co-adaptation between users and agents [Mackay, 1990]. On the one
hand, users could be expected to learn to provide better feedback to RL agents to ful�ll
their creative goals—as it was shown in interactive approaches to supervised learning
[Fiebrink et al., 2011]. On the other hand, agents could be expected to act more in line
with users by exploiting larger amounts of accumulated feedback data—as it is typi-
cal with interactive reinforcement learning agents [Sutton and Barto, 2011]. A more
pragmatic option would be to give users full control over agent epsilon values—e.g.,
using an interactive slider [Koch et al., 2019]—to improve partnership in this sense.

5.7.3 Guidelines for Designing Machine Learning for Human
Creativity

Based on our work with reinforcement learning, we identi�ed a set of design chal-
lenges for leading joint conceptual and technical development of other machine learn-
ing frameworks for creative HCI applications. We purposely put back quotes from our
participants in this section to inspire readers with insights on AI from users outside
our design team.
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Engage Users with Machine Learning

The Co-Explorer enabled users to fully engage with reinforcement learning compu-
tational framework. Users could explore as many states, provide as much feedback,
and generate as many agent actions as they wanted to. They also had access to agent
memory, be it by navigating in the interactive history, or by reseting the learned be-
haviour. In this sense, they had full control over the algorithmic learning process of
the agent. This is well articulated by a participant, whose quote can be reported here:
“I did not feel as being an adversary to, or manipulated, by the system. A situation that
can happen with certain audio software that currently use machine learning, where it is
clear that one tries to put you on a given path, which I �nd frustrating—but this was not
the case here”.

These observations suggest that user engagement at di�erent levels of machine
learning processes may be essential to create partnering �ows [Pachet et al., 2013].
That is, users should be provided with interactive controls and simple information on
learning to actively direct co-creation. This goes in line with previous works study-
ing user interaction with supervised learning in creative tasks [Amershi et al., 2014],
which showed how users can build better partnerships by spending time engaging
with algorithms [Fiebrink et al., 2011]. Careful interaction design must be considered
to balance full automation with full user control and aim at creating �ow states among
people [Csikszentmihalyi, 1997]. Aiming at such user engagement may also consti-
tute a design opportunity to demystify AI systems, notably by having users learn from
experience how algorithms work with data [Fiebrink, 2019].

Foster Diverse Creative Processes

Our work showed that the Co-Explorer supported a wide diversity of creative user
processes. Users could get involved in open-ended, agent-led exploration, or decide
to focus on precise, user-led parameter modi�cation. Importantly, none of these part-
nerships were clearly conceptualized at the beginning of our development process.
Our main focus was to build a reinforcement learning agent able to learn from user
feedback and to be easily controllable by users. In this sense, the Co-Explorer was
jointly designed and engineered to ensure a dynamic human process rather than a
static media outcome. As a matter of fact, we report one participant’s own re�ection,
which we believe illustrate our point: “What am I actually sampling [from the param-
eter space]? Is is some kind of climate that is going to direct my creation afterwards? [...]
Or am I already creating?”.

This suggests that supporting the process of user appropriation may be crucial
for building creative AI partnerships. Many creative tools based on machine learning
often focus on engineering one model to ensure high performance for a given task.
While these tools may be useful for creative tasks that have a focus on high produc-
tivity, it is arguable whether they may be suited to creative work that has a focus
on exploration as a way to build expression. For the latter case, creative AI develop-
ment should not focus on one given user task, but should rather focus on providing
users with a dynamic space for expression allowing many styles of creation [Resnick
et al., 2005]. The massive training datasets, which are usually employed in the Ma-
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chine Learning community to build computational creativity tools, may also convey
representational and historical biases among end users [Suresh and Guttag, 2019]. In-
teractive approaches to machine learning directly address this issue by allowing users
to intervene in real-time in the learning process [Fiebrink and Caramiaux, 2016].

Steer Users Outside Comfort Zones

TheCo-Explorer actively exposed the exploration behaviour of reinforcement learning
to users. This goes in opposition with standard uses of these algorithms [Brockman
et al., 2016], and may provoke moments where agents behaviours may not align with
users creative drive [Crandall et al., 2018]. Yet, it managed to build “playful” and
“funny” partnerships that led some users to reconsider their approach to creativity,
as one participant confessed: “At times, the agent forced me to try and hear sounds that
I liked less—but at least, this allowed me to visit unusual spaces and imagine new possi-
bilities. This, as a process that I barely perform in my own creative practice, eventually
appeared as appealing to me”.

This suggests that AI may be used beyond customisation aspects to steer users
outside their comfort zones in a positive way. That is, designers should exploit non-
optimal algorithmic behaviours in machine learning methods to surprise, obstruct, or
even challenge users inside their creative process. Data-driven user adaptation may
be taken from an opposite side to inspire users from radical opposition and avoid
hyper-personalization [Andersen and Knees, 2016]. Such an anti-solutionist [Blythe
et al., 2016] approach to machine learning may encourage innovative developments
that fundamentally reconsider the underlying notion of universal performance
commonly at stake in the �eld of Machine Learning and arguably not adapted to
the human users studied in the �eld of Human-Computer Interaction. It may also
allow the building of imperfect AI colleagues, in opposion to “heroic” AI colleagues
[d’Inverno and McCormack, 2015]: being impressed by the creative qualities of
an abstract arti�cial entity may not be the best alternative to help people develop
as creative thinkers [Resnick, 2007]. The Co-Explorer fairly leans toward such an
unconventional design approach, which, in default of �tting every user, surely forms
one of its distinctive characteristics.

Several machine learning frameworks remains to be investigated under the light
of these human-centred challenges. Evolutionary computation methods [Fogel, 2006]
may be fertile ground for supporting user exploration and automated re�nement of
example designs. Active learning methods [Settles, 2010] may enable communica-
tion �ows between agents and users that go beyond positive or negative feedback.
Dimensionality reduction methods for interactive visualization [Maaten and Hinton,
2008] may improve intelligibility of agent actions in large parameter spaces and al-
low for more trustable partnerships. Ultimately, combining reinforcement learning
with supervised learning could o�er users with the best of both worlds by supporting
both example and feedback inputs. Inverse reinforcement learning [Abbeel and Ng,
2004] may stand as a technical framework supporting example input projection and
transformation into reward functions in a parameter space.
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5.8 Application I: Riding the Co-Explorers
We demonstrated the Co-Explorer at the 19th International Society for Music Infor-
mation Retrieval Conference, in Paris, France [Scurto et al., 2018b]. We designed an
interactive exhibition stand in the form of a video game, that we called “Riding the
Co-Explorers”.

5.8.1 Description
“Riding the Co-Explorers” is a single-player game that exists in a single-level form: it
lets players guide the agent in one single sound space. The player’s goal is to �nd
a sound that they like. Thus, the video game possesses a free form: it does not aim
at directing the player toward speci�c paths or locations in the level. This decision
was speci�cally intended for the conference: we wanted our players to focus on the
Co-Explorer more than on the video game itself, and thus uses the video game as a
way to enhance immersion (see Video for an overview).

Figure 5.14: Visual theme for Riding the Co-Explorers.

The verb “Riding” aims at emphasizing the experiential aspect of interaction with
the agent over the standard, task-related interaction paradigm that we tested in our
previous study. In this sense, we reformulated the instruction given to users in
standard interaction as a catchy storyline for the game: “Guide the agent in high-
dimensional sound spaces using positive or negative feedback!”

“Riding”, as it is used in horse riding, or motorcycle ride, also embodies the part-
nership that takes place between the human and the agent during sound space ex-
ploration. In this sense, we wanted to make the trajectory taken by the agent in
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high-dimensional spaces visible to its human user. We opted for an abstract, three-
dimensional representation of the agent and its environment, with aesthetic refer-
ences to retrofuturistic video games (see Fig. 5.14). Speci�cally, we took the decision
to let all past players’ trajectories visible in the environment, to give a sense of diver-
sity in the trajectories taken, and feedback given, by the players.

5.8.2 Game Design
Level

We selected ten parameters from a commercial VST to build a sonic space that would
correspond to the agent’s environment. We used the same parameterization of the Co-
Explorer than we used in our previous study. As mentioned, agent memory consists in
all players’ trajectories and feedback given. This multi-user feedback context makes
agent learning and behaviour much more complex than in the single-user use case
previously investigated.

Graphics

We used Jitter to realize the graphics of the agent in its environment (see Fig. 5.15).
We used Principal Component Analysis (PCA) to reduce the dimensionality of the
agent’s trajectory in the sound parameter space. We took the three �rst components
of the PCA to project the agent in a virtual three-dimensional environment. We used
the OSC protocol to send the PCA coordinates in real-time from the Python Script to
the Jitter patch.

Figure 5.15: Screenshot taken from Riding the Co-Explorers.

User Interface

The user interface combines tangible and screen-based elements (see Fig. 5.16). An
iPad allows players to communicate instructions to the agent. We used Mira to imple-
ment the iPad interface. Four buttons support guiding and zone feedback communi-
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cation (red for negative, green for positive); a yellow button supports changing zone
state command; a grey button allow players to reset agent memory; a white button en-
ables players to start or stop autonomous exploration mode. Finally, a 20-inch screen
enables real-time visualization of the agent’s trajectory in the designed environment.

Figure 5.16: User interface implemented as an iPad-based tangible element.

5.8.3 Application in Exhibition

We exhibited Riding the Co-Explorers during three days at the ISMIR conference.

Stand

The exhibition stand consists in a minimalist space, typical of those used for demos
in conferences (see Fig. 5.17). We put the user interface along with the screen and a
pair of headphones on a table that was furnished by the conference. We printed the
visual theme and hanged it behind the table to promote the game. The space required
for the installation corresponds to approximately 3 meters long, 1 meter wide, and 2
meters high.

Attendees can spend as much time riding the Co-Explorer as they want to. They
could use the installation with the help of a supervisor as well as without any su-
pervision. When nobody was playing the game, we let the Co-Explorer behave in
autonomous exploration mode to draw the attendee’s attention toward our stand.

Reactions

Approximately eighty attendees played the game over the three days of the confer-
ence, trying to ride the Co-Explorer. The creative retrofuturistic visual theme worked
well in catching the attention of the scienti�c and industrial attendees of the con-
ference. Attendees spent between 1 and 5 minutes playing the game, ranging from
standing random button pushing to seated immersed co-exploration.

As expected, our qualitative discussions with the attendees were more technology-
oriented than game-oriented, which validates the one-level design of the game. Over
the short period of time consacred to discussion, we were able to observe the same
categories of users than during our previous study. Some players were user-as-leader
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Figure 5.17: Picture of the exhibition stand used at ISMIR’18.

(skeptical about not always understanding what the agent does), some others were
agent-as-leader (taking a ride on the Co-Explorer as it goes).

The visualization provoked mitigated reactions. Some attendees that were much
focused on the sound produced by the agent took the visualization as a metaphorical
representation of where the agent was in the space. Some others that were much
focused on the technology in the agent were disrupted by the visualization, as they
were trying to map the three-dimensional PCA position of the agent with the high-
dimensional deep reinforcement learning architecture of the Co-Explorer.

We harvested quantitative interaction data along the three days of the conference.
Unfortunately, it is hardly possible to extract any relevant information from it, as we
were not able to witness agent learning along the three days of the conference. The
reason is that most attendees needed to reset agent memory when starting interaction
with the agent for the sake of clarity. Agent behaviour in a multi-user feedback inter-
action remains to be investigated more deeply, and could lead to interesting insight
from both machine and human points of view.
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5.9 Application II: Behavioral Ma�er

We applied the Co-Explorer to the design of robotic objects in a workshop called Be-
havioral Matter, held at Centre Pompidou, Paris, from 15th to 17th March 2019.

5.9.1 Description

Behavioral Matter, created and produced with the Centre Pompidou in the frame-
work of the exhibition La Fabrique du Vivant (Mutations/Créations 3), was a multi-
disciplinary, international, and public research-creation workshop. It intended to
question and test the notion of behavior in relation to matter and materials, objects
and techniques, as well as to living or semi-living systems. The workshop stems from
the “Behavioral Objects” project developed by the Re�ective Interaction group of En-
sadLab (the research lab of the École nationale supérieure des Arts Décoratifs - En-
sAD, Université PSL, Paris) in partnership with the cluster “Matters of Activity. Image
Space Material” from the Humboldt-Universität zu Berlin.

Over 70 artists, designers, researchers, student-researchers, students, and engi-
neers from many di�erent countries (Germany, Australia, Canada, Spain, the United
States, France, Italy, Great Britain. . . ) worked together during three days in the Fo-
rum, the main lobby of the Centre Pompidou (see Video for an overview). Twelve
modules were designed to include all these actors, and to facilitate collaboration. With
four other participants, I joined the module called Learning to Move, coordinated by
So�an Audry. The module explored machine learning applied to the development of
the behaviors of objects. We were two doctoral researchers in the area of machine
learning, one artist and teacher-researcher in the area of arti�cial intelligence, one
teacher-researcher in the area of computational creativity, one teacher-researcher in
the area of digital arts, and one student in the area of �ne arts. My proposition was
to apply the Co-Explorer outside the sound design domain by testing it on robot pa-
rameters to create movement behaviors.

5.9.2 Object Design

Process

The goal of the workshop was to test and open perspectives at the crossroads of sev-
eral disciplines to develop works of art and design. The only requirement for the end
of the workshop was to produce a public presentation of what was done in the mod-
ule. We thus adopted an experimental and collaborative approach, and set the agenda
collectively to coordinate our e�orts.

The �rst day started by each actor making a short presentation of his or her work
to the module, so that all members could better know each others with their exper-
tise. We then familiarized with the MisB Kit6, an open source building blocks kit that
allows to quickly build and animate physical objects without requiring any previous
experience in engineering, coding or robotics.

6http://misbkit.ensadlab.fr/
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Figure 5.18: Picture5 of the Behavioral Matter workshop at Centre Pompidou.

The second day was consacred to prototyping. We worked in teams of two on spe-
ci�c topics to tackle several points in parallel. Half of the module worked on super-
vised learning using the Wekinator7; the other half worked on reinforcement learning
using the Co-Explorer. Moments were taken to give short tutorials to members that
were not familiar to machine learning to try to balance expertise within the module.

The third day was consacred to documentation of the workshop and �nalization
of the created prototypes. We encountered wireless network issues with the robotic
kit, which hindered communication between learning algorithms and robotic objects,
and slowed the prototyping process a lot. We �nally prepared a short speech and
scenario for the public presentation, which took place in the end of the day.

Prototype object

We prototyped one robotic object using the Co-Explorer (see Fig. 5.19). It consists in a
small, abstract object that learns to �nd its own equilibrium. The robotic thus exhibits
a learning movement, rather than actually trying to learn to move.

It consists in one actuator, a servo motor, which can produce a rotational move-
ment. We put one structural element, a shelf bracket, on the rotating surface of the
actuator, using velcro. We fastened one �exible velcro bar to the structural element,
on which we taped a piezoelectric sensor for �exion. Because of the gravitational
�eld, the velcro bar will be subject to a bending. The goal of the robotic object is to
learn which actuator angle would yield the less bending to the bar.

We used the Co-Explorer to learn the relationship between the actuator angle and
7http://www.wekinator.org/
7Taken from http://reflectiveinteraction.ensadlab.fr/.

http://reflectiveinteraction.ensadlab.fr/
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Figure 5.19: Picture of the robotic object.

the bar �exion. We modelled the angular position as the normalized state of the deep
reinforcement learning agent (S = s ∈ [0, 1]). We de�ned the corresponding action
space as making an angular movement up or down by one step ai = 0.01, except
when the state equals one boundary value.

We crafted a reward function by hand that is proportional to minus the square of
the piezoelectric sensor (R ∝ −M2). The more the bar bends, the more the reward
will be negative—the more the agent should change its angular position. We also tried
a linear reward function (R ∝ −M ) that yields similar behaviour. We used the OSC
protocol for communication between the Co-Explorer and the MisB Kit.

5.9.3 Application in Workshop

Results

Starting from either a bending or non-bending angular state, the robotic object man-
ages to reach and converge to its goal state in a few minutes. The movement that
we observed directly translates the reinforcement learning formalization that we
adopted—i.e., making small angular movements up or down. We thus built a self-
learning object able to get a sense of its physics by means of computation.
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We made another try after the robotic object learned to converge in its goal state.
We held the velcro bar in a horizontal position to have the object believe that gravity
now exerts its force horizontally rather than vertically. After tenths of seconds, the
object left its goal state to explore other angular state, until �nally converging to the
new maximum-reward angular state. We also successfully tried to teach the object
the good angular state by sending it human reward, as we did in the sound design
application domain.

Insights

Even if quite limited from a robotic point of view, our results showed that the Co-
Explorer supported adaptation to other parameter spaces than sound spaces. Its build-
ing on OSC protocol enabled rapid prototyping of small robotic objects using the MisB
Kit. Its generic state-action parametric formalization supported learning in other
spaces than sound, and from other reward signals programmable by hand or given
from human trainers.

Future work may investigate whether the Co-Explorer yields relevant results on
robotic objects that have more degrees of freedom—e.g., possessing more than one
actuator, and/or more than one sensor. One could also study dynamic state features
instead of static angular state to observe di�erent dynamic movements yielded by a
reinforcement learning agent. Finally, working with non-expert users remains to be
investigated more deeply, going beyond explaining its basis to fully get novice users
work with it in an adapted pedagogical workshop structure.

5.10 Application III: ægo
We leveraged the Co-Explorer in a computer music piece, named ægo. The piece was
designed through a research and creation process, in joint collaboration with Axel
Chemla–Romeu-Santos. Our wish was to gather personal re�ections from practice
with machine learning to propose conceptual insight for future multidisciplinary in-
quiries in the realm of computer music. This work has been published and presented
as paper and piece at the 14th International Symposium on Computer Music Multidis-
ciplinary Research (CMMR 2019) in Marseille, France [Scurto and Chemla, 2019].

5.10.1 Motivation

For this study, we were interested in adopting a joint scienti�c and musical approach
to machine learning research. We are inspired by the computer music pioneer Jean-
Claude Risset [Risset et al., 2007], whose research and creation approach to computer
science enabled new scienti�c understandings of sound as a physical and perceptual
phenomenon, jointly with an artistic commitment toward the computed aesthetics.
His work and personal approach gave insight to both scientists—ranging from formal
to social science—, and artists—ranging from composers and performers to instrument
designers. Our wish is to perpetuate his multidisciplinary impetus toward contempo-
rary computer music issues related to machine learning.
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The work that we present here is a step toward this direction. We led a scien-
ti�c investigation of two machine learning models that jointly frame new data-driven
approaches to sound synthesis. We then adopted a musical approach toward these
models, leveraging their interactive learning abilities to design a musical instrument,
which we employed to create an improvisational piece. Rather than seeking general
abstractions or universal concepts, our wish was to test these models through a prac-
tical case study to engage a personal re�ection on the musical representations and
behaviors that they may encode. Our hope is that our idiosyncratic research and cre-
ation process will help open multidisciplinary perspectives on machine learning for
computer music.

The section is structured as follows. We start by the scienti�c foundations of our
work, describing the two models that we developed for two musical issues—sound
analysis-synthesis, and sonic exploration. Next, we present the design of our musical
instrument, by describing its work�ow and implementation with a focus on embodied
musical interaction. We then describe ægo, an improvisational piece with interactive
sound and image for one performer, which we wrote for our instrument. Finally,
we discuss our research and creation process to draw conceptual insight on machine
learning for computer music from crossed science, design, and art perspectives.

5.10.2 Scienti�c Modelling

In this section, we describe our two machine learning models, based on unsupervised
learning and reinforcement learning, from a computer science perspective. We explain
how they respectively address two speci�c musical issues: sound synthesis-analysis
and sonic exploration.

Unsupervised Learning for Sound Analysis and Synthesis

Musical Issue Most sound analysis-synthesis techniques, such as phase vocoder
[Rodet et al., 1987] or wavelet transform [Kronland-Martinet, 1988], are based on in-
vertible transforms that are independent of the analyzed sounds. Such transforms
provide frameworks that can be applied regardless to the nature of the signal, but in
return impose a determined structure such that the extracted features are not corpus-
dependant. Conversely, could we think about a method retrieving continuous param-
eters from a given set of sounds, but rather aiming to recover its underlying structure?

Figure 5.20: Unsupervised learning for sound analysis and synthesis. The variational
auto-encoder (VAE) encodes a sound dataset into a high-dimensional latent space,
which can be parametrically controlled to synthesize new sounds through a decoder.
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Model The recent raise of unsupervised generative models can provide a new ap-
proach to sound analysis-synthesis, by considering each item of a given audio dataset
{xn}n∈1...D , in our case a collection of spectral frames, as draws from an underly-
ing probability distribution p(x) that we aim to recover. The introduction of latent
variables z allows us to control a synthesis process by modelling the joint distribution
p(x, z) = p(x|z)p(z), such that these variable act as parameters for the generative
process p(x|z). The full inference process, that would here correspond to the analysis
part, leverages the Bayes’ rule p(z|x) = p(x|z)p(z)

p(x) to recover the distribution p(z|x),
called the posterior.

To improve expressivity of inference and generation, we propose to investigate
variational learning, a framework approximating the true posterior p(z|x) by a dis-
tribution q(z|x), such that both inference and generative process can be freely and
separately designed, with arbitrary complexity. The variational auto-encoder (VAE)
is representative of such methods [Kingma and Welling, 2013]. In this model (Fig.
5.20), inference and generation processes are held by two jointly trained separated
networks, respectively the encoder and the decoder, each modelling respectively the
distributions q(z|x) and p(x|z). The inherent Bayesian nature of variational learning
forces the smoothness of the latent space, a high-dimensional, non-linear sonic space,
whose parametric dimensions can be freely explored in the manner of a synthesizer.

In related work, we show how this latent space can be regularized according to
di�erent criterions, such as enforcing perceptual constraints related to timbre [Esling
et al., 2018]. We report the reader to the latter paper for technical details on the model
and quantitative evaluation on standard sound spectrum datasets.

Reinforcement Learning for Sonic Exploration

Musical Issue Sonic exploration is a central task in music creation [Ystad et al.,
2019]. Speci�cally, exploration of digital sound synthesis consists in taking multiple
steps and iterative actions through a large number of technical parameters to move
from an initial idea to a �nal outcome. Yet, the mutually-dependent technical func-
tions of parameters, as well as the exponential number of combinations, often hinder
interaction with the underlying sound space. Could we imagine a tool that would
help musicians explore high-dimensional parameter spaces?

Figure 5.21: Reinforcement learning for sonic exploration. The agent learns which
actions to take on a sound synthesis environment based on reward given by the mu-
sician. The agent implements an exploration method to foster discovery along inter-
action.
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Model We propose to investigate reinforcement learning to support exploration of
large sound synthesis spaces. Reinforcement learning de�nes a statistical framework
for the interaction between a learning agent and its environment [Sutton and Barto,
2011]. The agent can learn how to act in its environment by iteratively receiving
some representation of the environment’s state S, taking an action A on it, and re-
ceiving a numerical rewardR. The agent’s goal, roughly speaking, is to maximize the
cumulative amount of reward that it will receive from its environment.

For our case of sonic exploration, we propose that the musician would listen to
the agent exploring the space, and teach it how to explore by giving reward data (Fig.
5.21). Formally, the environment’s state is constituted by the numerical values of all
synthesis parameters. The agent’s actions are to move one of the parameters up or
down at constant frequency. Finally, the musician communicates positive or negative
reward to the agent as a subjective feedback to agent actions. We implemented a
deep reinforcement learning model to support learning from human reward signal in
high-dimensional parametric spaces [Warnell et al., 2017].

A crucial requirement for reinforcement learning agents is to autonomously ex-
plore their environment, to keep on discovering which actions would yield the most re-
ward. We developed a statistical method, based on intrinsic motivation, which pushes
the agent to “explore what surprises it”. The resulting interactive learning work�ow
was found to be useful to relax musicians’ control over all synthesis parameters, while
also provoking discoveries by exploring uncharted parts of the sound space. We re-
port the reader to [Scurto et al., 2018a, Van Kerrebroeck, 2018] for technical details on
the tool and qualitative evaluation from expert sound designers.

5.10.3 Instrument Design

In this section, we present our musical instrument that combines our two models
and leverages their learning capabilities from a design perspective. We describe how
interaction design was framed in joint coordination with hardware and software en-
gineering to support embodied musical interaction.

Interaction design

Motivation Our main design motivation was to use our reinforcement learning
agent to support musical exploration of high-dimensional latent sound spaces built
by our unsupervised learning model.

Speci�cally, our aim was to exploit the exploration behaviour of our reinforcement
learning agent to support non-symbolic improvisation inside the spaces. Instead of
acting as a tool, we used machine learning as an expressive partner [Assayag et al.,
2006] that would be playable by musicians using positive or negative feedback.

A complementary aim was to employ the generative abilities of our unsupervised
learning model to support customization of sound synthesis spaces. Instead of accu-
rately modelling sounds, we used machine learning as a creative interface [Fiebrink
and Caramiaux, 2016] that lets musicians experiment with the nonlinearities of the
latent spaces.
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Figure 5.22: The interactive work�ow that we designed for our instrument.

Work�ow We designed a two-phase interactive work�ow, shown in Fig. 5.22.
The setup phase allows musicians to con�gure the instrument. They can create

a customized sound dataset for the unsupervised learning model, experiment with
various training parameters, or also load a previously-built latent sound space. They
can also change dimensionality of the reinforcement learning agent to explore speci�c
dimensions of the latent sound space, as well as the frequency at which it would take
actions inside the latent space.

The playing phase allows musicians to improvise with the agent by means of feed-
back. The agent produces a continuous layer of sound from the spectrum output of the
VAE. Musicians can either cooperate with its learning by giving consistent feedback
data to attain a sonic goal. Or, they can obstruct its learning by giving inconsistent
feedback data to improvise through sonic exploration.

Engineering

Implementation Technically (see Fig. 5.23), the reinforcement learning agent re-
ceives a representation of the environment’s state S as a position in the latent space z.
Then, it takes an action A corresponding to a displacement along some dimension of
the latent space. The resulting position has the unsupervised learning model generate
a sound spectrum x. Based on the sound, the musician would communicate reward
R to the agent. The latter would progressively learn to explore the latent space in
relation to the musician’s feedback data.

Figure 5.23: Graphical outline for the engineering of our instrument.

Hardware We designed a hardware prototype to support embodied musical inter-
action (see Fig. 5.23, left). It consists in two velcro rings, each of them equipped with
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a wireless inertial measurement unit8. We took each unit angular rotation about each
forearm axis and summed them to compute a single, normalized numerical reward
signal. This, combined with the lightweight, nonintrusive velcro rings, lets musicians
experiment with a wide range of gesture vocabulary [Tanaka and Donnarumma, 2019]
to communicate positive or negative feedback to the agent.

Software We implemented our two machine learning models as Python libraries910.
We developed a Max/MSP patch to implement a user interface for the setup phase,
as well as a hardware data converter for the playing phase. We leveraged the OSC
protocol to bridge hardware data, reinforcement learning agent, unsupervised latent
space, and sound spectra together into the patch.

5.10.4 Musical Artwork
In this section, we presentægo, an improvisational piece that we wrote for our musical
instrument (see Video for an overview). The piece was premiered at the 14th Inter-
national Symposium on Computer Music Multidisciplinary Research (CMMR 2019) in
Marseille, France. We describe the intended aesthetics of sound, image and body, and
detail how composition and performance were approached in relation to the learning
abilities of our instrument.

Aesthetics

Motivation Our artistic motivation for the piece was to show and share an en-
counter between a learning machine and a human being with the audience. The learn-
ing machine possesses a latent sound space, as well as a distinctive musical behaviour,
that are both originally unknown to the human being. Through improvisation, the hu-
man and the machine will learn to interact with each other—on an embodied level for
the human, and on a computational level for the machine.

This mutual exploration is designed to be heard, seen, and experienced by the
audience. The piece divides in two successive scenes (additive and physical), corre-
sponding to two latent sound spaces learned by the machine. The performer will ex-
pressively negotiate control of these space with the machine, communicating positive
or negative feedback using motion sensors placed in both hands. The slowly-evolving
spectromorphologies, synthesized and projected in real-time on stage, intends to open
a sensitive re�ection on what is actually learned on a musical level, both by the human
and its arti�cial alter ego—the machine.

Intentions The piece’s aesthetic intentions toward machine learning lie at three
intertwined levels: sound, image, and body (see Fig. 5.24).

One of our intentions was to reveal the sound representations learned by the un-
supervised learning model to the audience. We thus built latent sound spaces using
sound data that was commonly used and produced in pioneering works of computer

8http://ismm.ircam.fr/riot/
9https://github.com/acids-ircam/variational-timbre

10https://github.com/Ircam-RnD/coexplorer

http://ismm.ircam.fr/riot/
https://github.com/acids-ircam/variational-timbre
https://github.com/Ircam-RnD/coexplorer
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Figure 5.24: Pictures taken from the ægo artwork.

music. In addition, we projected the generated sound spectrums on stage to provide
the audience with a visual representation that accentuate, not disrupt, the sonic per-
ception of the piece.

Another intention was to display the exploration behaviour of the reinforcement
learning agent in front of the audience. To do this, we wanted to challenge the skills
and abilities usually at stake in performance, by summoning an ecological approach
and evoking a sense of reciprocal interaction between the human and the machine. In
this sense, rather than using it for control purposes, we used the body of the performer
to convey kinesthetic information about how machine exploration may be internally
experienced by a human. In parallel, we added raw textual information about the
machine’s internal state at top left of the image projection to emphasize the machine’s
encoded perception of the performer.

Writing

Composition The piece was composed at three temporal scales (see Fig. 5.25).
The �rst scale is that of exploration. It consists in the improvisational paths taken

by the reinforcement learning agent following the performer’s feedback data. We set
the frequency of agent actions between 30 and 100 milliseconds. This choice allowed
for slow, continuous evolution of spectromorphologies, which enables to grasp the
behaviour of the agent inside the latent spaces.

Figure 5.25: Temporal structure composed for the piece.

The second scale is that of latent space dimensionality. It consists in de�ning the
axis of the latent spaces that the reinforcement learning agent will explore. We set
the dimensions to 1, 2, 4, and 8, respectively. This allows to write a speci�c kind of
musical form inside the latent space: the more dimensions we open to the agent, the
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more sonic variance the performer and audience members will experience.
The third scale is that of latent space itself. It consists in connecting the rein-

forcement learning agent to another type of latent space. We used two latent spaces,
respectively built from additive synthesis sounds and physical instruments record-
ings (�ute, saxophone, piano, violin, bassoon [Ballet et al., 1999]). This enables to
write form within di�erent soundscapes, allowing the building of a narrative (here,
going from elementary sinusoidal spectra to richer instrumental timbres).

Performance. While the piece is intended to be improvised, our sole instruction
toward the stage performer is that he or she globally performs with the machine with
an overall sense of attentiveness. We propose that the performer would start the piece
facing the audience, relaxed, using the instrument with small forearm rotations only.
As the piece would unfold over time, the performer would be free to adapt its gestures
in response to the slowly evolving complexity of the explored spaces, focusing on
embodied interaction with the machine.

A second contributor is required to manage the two remaining temporal scales of
the piece—i.e., changing dimensionalities, and switching latent spaces.

5.10.5 Discussion

In this section, we take a critical look at the output of our case study by discussing
our research and creation process. We then expose our personal re�ections emerg-
ing from practice with machine learning, and propose conceptual insight for future
multidisciplinary inquiries in the realm of computer music.

Case study

Process The work presented here relates a practical case study with machine learn-
ing in the frame of computer music. We leveraged both conceptual and technical as-
pects of machine learning to jointly produce scienti�c knowledge with our two models
for sound synthesis, as well as musical creations through the design of our instrument
and the writing of our musical piece. In this sense, our work emerged from a research
and creation process, in which we closely articulated a research methodology with a
creation project.

We followed a sequential disciplinary agenda (see Fig. 5.26, solid lines and arrows).
We started by the scienti�c modelling of sonic exploration and sound synthesis, which
took us two years to date. We then planned a one-month period to conceive the
instrument, write and practice the musical piece. This research and creation agenda
was mainly required by our work occupation focusing on computer science research
without necessarily addressing music creation.

While many researchers of our laboratory were involved in scienti�c modelling,
we (the two coauthors) managed instrument design and musical piece as a pair. Im-
portantly, we both followed a dual training in science and music, and were doctoral
students in the domain of machine learning applied to computer music at the time of
writing. In addition, both of us have professional experience in music composition



104 5. Deep Reinforcement Learning For Synthesis Exploration

and performance. These dual skills were central to individually work, as well as to ef-
fectively collaborate, on conceptual and technical aspects related to machine learning
throughout the process.

Output The relatively short period dedicated to musical creation pushed us to take
pragmatic decisions about the form of outputs, notably by relinquishing certain tech-
nical developments. For example, using the unsupervised learning model to learn
temporal features of sound spectrums could have improved the timbre richness of the
generated sounds, as well as supported other musical forms than slow spectromor-
phology evolution. Also, other agent commands than feedback data could have been
designed to support expressive human control over the reinforcement learning agent
exploration. Finally, many other musical forms could have been conceived, using
other sound datasets—e.g., voice corpora or environmental sounds—and investigating
other temporal writings for dimensionality and exploration. Future continuation of
our work may consider addressing these research questions to evolve the generated
outputs.

Authors’ re�ections on machine learning for computer music

Conceptual insight Beyond the created outputs, our process of practice with the
two machine learning models let us re�ect on conceptual issues, which feed back into
many di�erent disciplines (see Fig. 5.26, dashed lines and arrows).

Figure 5.26: Our case study. Solid arrows: The sequential research and creation pro-
cess that we took to scienti�cally investigate our models, and musically create our
instrument and artwork. Dashed arrows: The personal conceptual insight gathered
along our process.

On the one hand, composing with the sonic aesthetics produced by the unsuper-
vised learning model let us re�ect on epistemological issues that span both formal and
social science (Fig. 5.26, upper and lower dashed arrows). Should machine learning be
considered as a modelling tool for sound data, or rather as a framework for sound syn-
thesis that remains to be crafted? Our insight leans toward the latter option. Rather
than imposing deterministic rules to de�ne a sound space [Chowning, 1973], prob-
abilistic methods propose heuristics that aim to inverse this methods by retrieving
structure directly from the data. More speci�cally, Bayesian approaches �ltrates the
“space of everything possible” to get closer from the data structure, thus providing in-
teresting generalization abilities in addition to structural information, from the point
of view of formal science. Conversely, adopting an artistic approach to the learned rep-
resentations also provides an alternative way of evaluating these models, completing
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existing machine learning-focused evaluations methods of such unsupervised learn-
ing systems. However, such evaluations have to deal with musicological approaches
in the realm of the social sciences, and remains still an underrated �eld of research.

On the other hand, performing with a reinforcement learning-based musical in-
strument o�ers new design and scienti�c views on interactivity (Fig. 5.26, middle
dashed arrows). How should we approach an arti�cial musical partner that learns to
behave from our sole feedback data? Alternatively, should exploration be analysed as
an expressive musical behaviour? Our insight is that the data-agnostic framework
of machine learning may support the development of new modalities for human-
machine interaction, which may originate from the social sciences. In the musical do-
main, machine learning may be used to enhance modes of communication that already
exist between musicians. Feedback, for example, is a broad communication channel
that concern all types of living or nonliving systems [Wiener, 1965]. By designing
interactions with machine learning that rely on feedback data, we may create more
accessible musical partners and in turn instigate analytical views on these embodied
notions—as it has been the case with machine learning-based gesture modelling tools
[Bevilacqua et al., 2009]. Exploration, as a performative and improvisational practice,
remains to be investigated more deeply in that sense.

Toward intrinsic approaches

In this paper our approach was to study the artistic possibilities emerging from the
encounter of our two models, rather than to evaluate them separately on their re-
spective tasks. Precisely, our experience in practicing such models revealed to us two
distinctive approaches: an extrinsic approach, where machine learning models are
designed towards a speci�c task and used faithfully to this end—such as in music in-
formation retrieval—, and an intrinsic approach, where these models are exploited for
themselves and taken as objects that can be explored, hacked, and manipulated—such
as in gesture modelling, or improvisational systems. While the �rst approach has so
far been the most common, as machine learning was originally created to tackle com-
plex issues that preceding techniques fell short with, we think that the second may
unfold new creative opportunities for computer music, just as Jean-Claude Risset’s
joint scienti�c and musical approach to computing did [Risset and Wessel, 1999]. We
hope that the present case study stands in favour of this argument.

While we built on our joint machine learning and music training to lead our case
study, it may require more time to manage collaboration between machine learning
experts and researchers, engineers, musicians, artists, musicologists, scientists, de-
signers, or epistemologists, toward shared musical goals. We believe that multidis-
ciplinary collaboration is key to lead intrinsic examination of machine learning, and
that the latter may be crucial to go beyond suspicions and actively negotiate the place
of the human artist in upcoming AI music systems.
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6

Designing With
Active Learning For
Collective Musical Interaction

This chapter presents the fourth and last study led in the thesis. We decided to go
beyond individual musical tasks studied in Chapters 3, 4, and 5 to investigate collective
musical interaction. Our wish was to explore how machine learning could foster new
types of collective musical interaction, possibly mediated by mobile technology.

We adopted a participatory design method to involve stakeholders at all stages
of the design process [Schuler and Namioka, 1993]. Speci�cally, we started with an
observation step to brainstorm interaction scenarios with stakeholders before decid-
ing on the machine learning technique to be studied (see Fig. 6.1). This enabled us to
frame active learning as a relevant technique for collective musical interaction. Yet,
as we will see, only a reduced prototype was implemented in the context of this study.

Figure 6.1: The participatory design method for our fourth study.
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Section 6.1 reports on observations led in a �eld study, describing the musical
task of collective musical interaction and interviewing designers of previous systems
dedicated to this task. Section 6.2 describes the design of our model prototype. Fi-
nally, Section 6.3 describes the application of our model to the design of a public
installation, called entrain, that we showcased at a �ve-day international conference.

The installation was published and presented as installation at the ACM SIG-
GRAPH Studio 2019 (SIGGRAPH’19) in Los Angeles, California [Scurto et al., 2019a].

6.1 Observation
We started our study with an observation step with designers of interactive music
systems for collective musical interaction, especially, theColoop system. Our wish was
to focus on this system and brainstorm with our stakeholders how machine learning
techniques could foster collective musical interaction.

6.1.1 Musical Task: Collective Musical Interaction
Before relating our study, we situate the musical task of collective musical interaction
in the frame of contemporary music practices. We then present Coloop, the system on
which our study will build on.

Situating the Musical Task

Collective musical interaction is a music task consisting in leveraging audio and vi-
sual cues to communicate expressive intentions to other people [Leman, 2008]. While
a great skill of expert performers and music improvisers, collective musical interac-
tion is also accessible to non-musicians [Leman, 2016]. For example, non-musicians
may involve in collective music interaction when experimenting live music concerts.
The expressive qualities of music enables musicians to communicate intention to
non-musicians, and reciprocally. Yet, collective interaction is a complex human phe-
nomenon, which remains hardly understood from a cognitive point of view.

In recent years, the CoSiMa project1 adopted a design approach to investigate such
collective music interactions by creating audiovisual experiences based on network-
ing technologies. Crucially, one of the aims of CoSiMa was to leverage networking
technologies—which were essentially addressed to expert composers and performers
from computer music communities—to include a broader audience in music-making.
In particular, the project build on web technologies to enable co-located audiovisual
experiences based on mobile smartphones. Mobile technologies were shown to sup-
port the engagement of both musicians and non-musicians in collective musical in-
teraction [Matuszewski et al., 2019].

As such, networked collective musical interaction may happen in public contexts,
ranging form artistic installations to interactive experiences for urban services. It
may relate to a di�erent form of engagement than the three previously-investigated
musical tasks, emphasizing expressive and experiential aspects of interaction over

1http://cosima.ircam.fr

http://cosima.ircam.fr
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expert creative usages. Our wish is to study how machine learning may help people
engage in a music practice without necessarily wanting to engage in a use.

Coloop

Collective Loops [Schnell et al., 2017] and Coloop2 are examples of these collective
music-making systems in public spaces. Coloop allows up to eight persons to collabo-
rate in the creation of rhythmic drum loops. To do so, each person’s mobile phone is
provided an instrument corresponding to a part of a drum set—i.e., bass drum, snare
drum, hihat, tom, or cymbal. Each phone’s screen allows to �ll a sequence of 16 beats
with sounds corresponding to the instrument (see Fig. 6.2). The resulting rhythmic
drum loop would thus consists in the addition of all eight persons’ sequences syn-
chronized in time. A 3D-printed loudspeaker equipped with LEDs renders the musi-
cal outcome in real-time, which enable participants to reassemble together in a shared
place. Thus, Coloop intends to encourage participants to collaborate in the creation
of danceable, or aesthetically-enjoyable rhythms.

Figure 6.2: User interfaces for the Coloop mobile web application.

Coloop is a relevant use case to study collective musical interaction. First, from a
human-centred point of view, it was one of the most successful audiovisual experience
built during the CoSiMa project, as the installation was awarded a national design
prize3. Second, from a machine point of view, its design remains quite generic in
terms of implementation and musical a�ordances, which allows for easy incremental
design actions. We thus decided to focus on Coloop to investigate machine learning
applied to collective musical interaction.

6.1.2 Setup: Field Study
We led a �eld study with two participants that worked with the Coloop installation.
The goal was to: Understand the strengths and weaknesses of the installation; Brain-

2https://www.nodesign.net/en/portfolio/coloop
3http://observeurdudesign2018.fr/labels/65-coloop-sequenceur-musical-collectif-connecte

https://www.nodesign.net/en/portfolio/coloop
http://observeurdudesign2018.fr/labels/65-coloop-sequenceur-musical-collectif-connecte
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storm ideas for possible design breawdowns.
The �eld study took the form of a joint semi-structured interview of the two par-

ticipants. Our wish was to harvest personal re�ections of the participants about the
installation, while at the same time fostering collective discussion and having them
exchange viewpoints. The �rst participant was a researcher and developer who ac-
tively contributed to the implementation of the installation. The second participant
was a researcher and designer who had experience in supervising its functioning with
the public. We logged the audio recording of the joint interview, who approximatively
lasted one hour and a half.

6.1.3 Results: Qualitative Analysis
On Coloop

The �rst questions of the interview aim at asking participants about their previous
experience observing the public interacting with Coloop.

Previous supervision. P1 and P2 respectively supervised the Coloop installation
�ve and two times each. The public that engaged with the installation was essentially
non-musician, young people. Contexts of interaction ranged from technology fairs to
cultural evenings and art exhibits. Di�erent sound designs were available within the
installation; yet, the TR-808 and TR-909 designs were the most used by P1 and P2, as
they were those that fostered the more interesting interactions.

The usefulness of a simple interface. When asked on the strengths of the instal-
lation, P1 and P2 jointly mentioned the simplicity of the smartphone-based individual
interface. The non-musician public enjoyed creating rhythmic loops by only �lling
some of the sixteen blanks of the interface with sounds. As a matter of fact, three ad-
ditional buttons that were implemented to generate automatic �llings (respectively,
random, preset, or clear buttons) were almost never used by the public, who preferred
�lling their loop with their own beats. P2 said that this simplicity sometimes let non-
musicians create “very beautiful things. [...] It’s not necessarily those that make techno
music, that know what a drum machine is, etc. It’s those that experiment with this very
simple thing”.

The lack of human learning. As a result of its simplicity, the installation did not
really encourage the public to get a better understanding of its working. P1 evoked
the fact that it is common place in public installations: “Most people don’t necessar-
ily want to learn the system. So they may want to use it in its most straightforward
version”, P2 commented. As a consequence, there were many times where the eight
public participants ended up �lling all the blanks of the eight interface, which had the
consequence of having one of the supervisor use a clear button (“The most important
button of the installation!”, P1 joked) to restart the installation from scratch. While this
�lling could be analysed as a speci�c form of collective musical behaviour, one may
argue that it digresses from Coloop original aim, which is making music collectively,
without the help of a human supervisor.
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On possible improvements

The rest of the interview progressively evolved in the form of a joint discussion to
brainstorm possible algorithmic improvements for the installation.

Suggesting adapted loops within user interface. To encourage the public not to
�ll all the blanks, a �rst idea was to suggest speci�c �llings to users through their indi-
vidual interface. While this idea may help guide the public to play di�erent rhythms,
P1 and P2 jointly agree that it would add too much complexity to Coloop, and have it
lose its attractive simplicity. P1 inquired: “It’s less a matter of algorithmic complexity
than of interface complexity. Imagine you being happy with the loop that you created,
then something telling you ’hey I give you this’. How is the public supposed to listen to
the suggested loop, while remembering its previously-created loop, and re�ect on which
one he would prefer?”

Adding an adaptive, arti�cial player. To guide the public toward di�erent
rhythms, a second idea was to add an arti�cial player that would generate an ad-
ditional loop that adapts to the eight loops played by the public. P1 noticed that such
an adaptive behaviour would allow the installation to be usable by single persons,
which could be helpful in cases where it would be exhibited in a hardly busy place.
P2 underlined that this added adaptation would have the installation change its de�-
nition: “I think that people must be informed about it, so that they may try to play with
it, or even break it, or push it to play something. This would be better understood by the
public [than suggestions], I think.”

Structuring the rhythm of interaction. A third idea was to structure the rhythm
of interaction to clarify which of the arti�cial or human players would be responsible
for generating loops. I suggested a simple question-and-answer format, where human
players would play together during four measures to create some musical question,
then listen to the arti�cial player during four measures generating an adapted musical
answer—leveraging standard 4-measure structures at stake in electronic music. P1
and P2 disagree with this suggestion, saying that this would interrupt the public’s
appropriation of the installation, and that it may confuse non-musicians not aware of
the 4-measure structure.

Reward the public with audio e�ects. A fourth idea was to reward the public
with audio e�ects depending on some musical criteria determined by an adaptive
agent. This rewarding would create a collective behaviour where all public partici-
pants would play in the form of a competitive game to be in possession of the audio
e�ect. P1 and P2 both welcomed the idea of augmenting the actual human player’s
performance by an e�ect, instead of adding a supplemental rhythmic loop to the al-
ready rich musical output. Yet, P1 warned about the use of an objective criteria to rule
musical interaction: “Ethically, you are socially rewarded if you accept to be rei�ed by
a technological system. Well, if you present it as an artistic premise, why not...”
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Cultivating magic of the music installation. To counteract the biased concept
of optimal performance applied to music, both participants gave the insight of cul-
tivating magic in the music installation. P1 highlighted the interests of focusing on
the interval between full artistic abstraction and full technical explanation for the
non-musician public: “We as musicians should accept the idea that the public may not
understand everything, and that this is not a problem. This is the whole thing of interac-
tive art. If you do not understand a thing, then it is boring. If you understand everything,
then it becomes technical, which is not the same kind of object. In the interval lies magic,
which can be exciting for the public.” P2 considered the possibility of using the techni-
cal adaptivity of machine learning to evoke a sense of ghostly presence of all previous
public members.

6.2 Prototyping
Our observations enabled us to start designing a model prototype. In this section, we
describe the active learning task, that we chose based on the design ideas suggested
in our �eld study. We then present our model prototype, starting by the processing of
human data to measure user performance within Coloop, and describing the Bayesian
information Gain algorithm that was adapted to our active learning task. We �nally
describe its implementation as a web-based application.

6.2.1 Proposed Technique: Active Learning

We propose to frame the design opportunity inColoop as an active learning task. In ac-
tive learning, an algorithm sequentially query the user about the data it is processing
[Settles, 2010]. These querying strategies have been shown to support more e�cient
learning in certain situations where human users possess expert knowledge on the
task being learned. Our intuition was that these queryings may be adapted to the
Coloop system to actively steer human users to make music collectively—e.g., adding
an arti�cial participant in addition to human participants. As previously mentioned,
with respect to our participatory design method, we had not decided on the machine
learning task to be investigated prior to interact with Coloop stakeholders.

6.2.2 Human Data: Performance

A �rst requirement for the active learning task to be realized is to de�ne the data
on which it may operate. Based on our �eld study, our wish was to build on the
simple and successful interface of Coloop, allowing each human participant to control
a 16-bit sequence (see Fig. 6.2). We thus designed two features aimed at extracting
information on participants’ performance with respect to our observations in our �eld
study (see Fig. 6.3). Importantly, our approach remains general; one may use other
features—and more than two—to describe a user’s state in other collective use cases.

Our �rst design intention was to account for how participants may focus on their
individual interface. We propose to measure user activity as the �rst feature of our
model. User activity is based on the number of changes made by the user in the
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sequence in each loop. A completely passive user would have null activity, while an
overactive user would have maximum activity. The feature is computed at the end
of each loop, which supports dynamic accounting of a user’s state as he/she interacts
with the system.

Our second design intention was to account for the �lling of participants’ se-
quences. We propose to measure rhythmic periodicity as the second feature of our
model. Rhythmic periodicity is based on the autocorrelation4 of the user’s sequence.
A fully-�lled sequence would have minimum periodicity, while a large-spaced se-
quence would have maximum periodicity. Again, the feature is computed at the end
of each loop, which supports dynamic accounting of a user’s state as he/she interacts
with the system.

6.2.3 Algorithm: Bayesian Information Gain

To prototype the active learning task, we used the framework of Bayesian Information
Gain (BIG) [Liu et al., 2017]. Based on our �eld study, the general idea is to manage
model adaptation to participants’ behaviour.

Figure 6.3: Bayesian Information Gain implementation. The two axes corresponds to
user state features. The 4 dots represent the state of 4 di�erent users. P (Θ), X , and
Y correspond to the parameters in the BIG framework for adaptation.

BIG allows to adapt a probabilistic model of user behavior p(Θ = θ) by actively
sending some feedback X = x to users and sensing participants’ subsequent input
Y = y (see Fig. 6.3). The framework remains generic and thus potentially allows the
machine to send any kind of feedback to participants—which may support the sending
of audio e�ects. For our model prototype, we modi�ed the framework to model the
user state feature space. p(Θ = θ) corresponds to the probability that a given user
activity and rhythmic periodicity may correspond to the predicted user behavior. It is

4https://en.wikipedia.org/wiki/Autocorrelation

https://en.wikipedia.org/wiki/Autocorrelation
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possible to de�ne prior knowledge if we want the agent to have a positive bias toward
a certain user behaviour—e.g., medium activity with high rhythmic periodicity.

After some time of interaction, the agent may update its knowledge on users be-
haviour. The update is done by measuring users’ move in the feature space, which
corresponds to Y in the BIG framework. The agent updates its probabilistic model
of user behavior and generates a new temporary feedback X ′ . Importantly, the algo-
rithm chooses X based on an information theory criteria. Speci�cally, it generates a
feedback that may maximize the information gained from participants moves Y with
respect to the probabilistic model p(Θ = θ). We hypothesize that such a criteria may
be hard to decipher for participants, and as such may cultivate some sense of magic
within the installation.

6.2.4 Implementation: Web-based Application
We implemented our model prototype as a web-based application5, building on the
JavaScript implementation of Coloop. Human data processing and algorithmic com-
putations are run on the server side. All mobile phones are registered as clients and
share a unique clock, building on the Collective Soundworks framework for collective
mobile web interaction. The resulting musical outcome—i.e., the sum of all partic-
ipants’ rhythmic loops—exists as a client named “barrel”. To start the application,
one has to run a local server—e.g., using NodeJS and a router. Then, all clients may
be opened by accessing a web page—e.g., using mobile devices for sequences, and a
computer device as barrel.

6.3 Application: entrain
We applied our model prototype to the design of a musical installation, named “en-
train”. We exhibited the installation at ACM SIGGRAPH Studio (SIGGRAPH 2019), in
Los Angeles, California [Scurto et al., 2019a].

6.3.1 Description
entrain is a musical installation that lets participants make music together in col-
laboration with an adaptive agent (see Video for an overview). Participants may �ll
circular sequences to generate rhythmic loops—identically to the Coloop installation.
Depending on their behaviour, an arti�cial agent may designate speci�c participants
to steer collective music-making. entrain is inspired by the notion of musical entrain-
ment, which refers to the human phenomenon of rhythmic synchronization that may
occur when listening or playing music [Varni et al., 2011].

entrain combines active learning with hardware elements. Participants may use
their own mobile phones to create their own rhythmic loops. A connected loud-
speaker support sound generation, while also allowing participants to gather around
a common physical place. A small single-board computer, placed inside the loud-
speaker, support active learning from participants’ behaviour to the adaptive agent.

5https://github.com/hugoscurto/entrain

https://github.com/hugoscurto/entrain
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The adaptive agent designates particular participants by sending audiovisual feed-
back in the form of audio e�ects and �ashing lights. The audiovisual feedback may
encourage social interaction between human participants and foster musical entrain-
ment.

6.3.2 Installation Design
Hardware

For entrain, we collaborated with the design studio Nodesign.net to design hardware
under the form of a connected loudspeaker and an embedded system (see Fig. 6.4).

Object. Nodesign.net designed a new loudspeaker, called Coloop mini. It reproduces
the visual aspect of the previous Coloop loudspeaker with smaller dimensions. It was
built using 3D-printing techniques. The upper part contains a white silicon patch,
under which are placed eight LEDs.

Figure 6.4: Picture of the Coloop mini loudspeaker designed by Nodesign.net.

Embedded system. While the previous version relied on the bluetooth protocol
to send audio information from a server to the loudspeaker, Coloop mini integrates a
computer device at its basis, which is considered as an additionnal client to partici-
pants’ mobile phones. A Raspberry Pi runs the web application as well as the “barrel”
web page in real-time, and is directly connected to the loudspeaker with an audio
jack. An Arduino Nano was programmed to have the barrel control the eight LEDs
put over the loudspeaker.

Software

entrain leverages our model prototype to design the adaptive agent, by implementing
speci�c musical structure and audiovisual e�ects.
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Model update. We used a musical structure to update our model prototype in rela-
tion to agent’s intervention. At the starting of interaction, the model prototype sets a
feedback state X . The agent may update its knowledge on user behaviour every six-
teen loops. The update is done by measuring participants’ move in the feature space,
which corresponds to Y in the BIG framework. The agent updates its probabilistic
model of user optimal behavior p(Θ = θ) and generates a new temporary target state
X

′ that will be active for the next sixteen loops.

Audiovisual e�ects. The arti�cial agent intervenes in collective music-making by
designating speci�c participants using audiovisual e�ects. We combined a delay with
a pitch shifting e�ect to augment the designated participant’s rhythmic loop. The
delay was �xed at a ternary period to enhance the loop’s musicality. We �ashed the
color of the designated participant using the LEDs of the loudspeaker, with rhythm
corresponding to the participant’s loop.

In the case where a participant gets into the feedback state during the sixteen-
loop structure, the agent may make a “highlight” intervention by designating him or
her with an audiovisual e�ect. This may act as a social incentive for participants:
it encourages the designated participant to continue performing at the same level,
while motivating other participants to play along with him/her to bene�t from the
same e�ect.

In the case where no user gets into the feedback state during these sixteen loops,
the agent will make a “solo” intervention. First, it will stop interaction during four
loops and designate the only participant that is closest to the temporary feedback
state. This is aimed at switching participants’ attention from their individual inter-
faces to the collective outcome. Second, it will slightly adjust user states toward the
temporary target state. This may enable participants to start a new round with the
installation, bene�ting from additional motivation as provided by the arti�cial agent.

6.3.3 Application in Exhibition
We exhibited entrain at the ACM SIGGRAPH Studio 2019, in Los Angeles, California.
Our aim was to harvest reactions on the interactive behaviour of the agent, under-
standing how its active learning may be perceived by di�erent participants.

Setup

Participants. Approximately 500 participants interacted with the installation over
the �ve full days or exhibition. As the conference’s theme was Computer Graph-
ics, few participants had experience or expertise with embodied interaction with
sound. Actually, from our discussions and observations, apart from a few exceptions,
most participants were non-musicians. We were thus interested in testing how non-
musician people would react to our installation.

Con�guration. Participants were presented with the installation as shown in Fig-
ure 6.5. To facilitate interaction, we provided them with mobile devices, that we dis-
played around the Coloop mini. To arouse participants’ interest toward it, we made
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the installation produce sound by pre-�lling four mobile devices with loops. Then, the
presentation setup varied depending on the number of participants that got involved
at time of presentation. In most cases, participants came alone by the installation:
either they had to play alone, or with us, or with unknown participants. Other par-
ticipants came as a group to the installation and thus already knew each other before
collaborating in music-making. When needed or asked, we introduced the function-
ing of the mobile devices’ interface. Participants spent between one and �ve minutes
interacting with the installation.

Figure 6.5: Picture of the entrain installation at SIGGRAPH’19.

Reactions

Participants in space. A �rst observation toward participants is the importance
of spatial arrangement in relation to collective behaviours. For example, we left the
mobile devices on the table to let participants use them. Hardly any participant ended
up taking the device in the hand, which was our expected way of interacting with the
installation. Also, once participants had chosen their mobile device, they stayed �xed
to their initial position and did not move around the installation. This had us display
the mobile devices all around the loudspeaker to encourage participants to enclose
the loudspeaker and better perceive its sound and visual e�ects.

Participants’ expectations. A second obsevation toward participants is the in�u-
ence of their expectations in relation to their engagement with the installation. Par-
ticipants’ engagement at SIGGRAPH conference could be roughly classi�ed in three
levels. The �rst level corresponds to participants interested in understanding the tech-
nical functioning of the system. They typically asked about the model responsible for
adaptation, as well as the web implementation and the realization of the loudspeaker,
and did not really experience the installation as it was conceived for. The second
level corresponds to participants interested in hands-on trying and playing with the



118 6. Active Learning For Collective Musical Interaction

installation to try to make music out of it. Some of them were alone and constructed
rhythms by gathering all mobile devices in front of them. Others collaborated with
their colleagues or strangers to make music. The third and last level corresponds to
participants in-between the two previous categories. They were not speci�cally in-
terested in the technical speci�cities, nor the musical experiences of the installation,
and thus had short experiences with the installation.

Presenters’ in�uence over participants. A third observation toward participants
relates to the in�uence of the presenters over participants. We noticed di�erent par-
ticipant behaviours depending on our interactions with the latters. For example, the
simple fact of coming close to the installation when participants used it seemed to
bias their behaviour. This may be explained by the fact that presenters may repre-
sent a form of authority in relation to the installation. Also, presenters’ wording may
completely change the reception of the installation by participants. For example, we
began using the word “intelligent” to rapidly qualify the agent implemented in the
installation. This seemed to hinder participants in experimenting with the system.
Alternatively, using the phrasing “playing with you” to qualify the agent seemed to
motivate our participants and foster their curiosity. We thus stuck to this phrase to
complement the introduction of the installation.

Agent’s functioning. Having all these factors in mind, we now report on partici-
pants’ reactions toward the active learning agent.

First, the sixteen-loop update structure was rather good to create sequences of
interaction that were not too short, and not too long. Participants had su�cient time
to delve into individual sequence customization, while being stopped by the agent in
case they did not enter the feedback state.

Second, the audiovisual e�ects triggered various reactions depending on partic-
ipants’ expectations. Most of the time, it fostered participants’ curiosity toward the
collective outcome of the installation. The “solo” interventions were appreciated by
most participants, who imagined that the system reseted to allow a new series of
collaborative music-making—in this sense, hardly any participant noticed that their
sequence was being modi�ed by the agent after this. Others that enjoyed the music
outcome of the installation were entrained by it, in turn designating the participant
designated by the agent. In case where participants were mostly focused on their
individual interface, the “solo” intervention was perceived as a bug, as it stopped in-
teraction with the screens. “Highlight” interventions were too quick to let participants
identify which participant was being highlighted; as such, they were not looked after
by participants, which were much more focused on creating their individual rhythmic
sequence.

Third and last, agent adaptation generated di�erent reactions among participants.
First, no participant reported that they understood the adaptation mechanism in rela-
tion to collective music-making. This may validate our choice of information gain as
machine criterion that may be hard for human participants to decipher. Second, ac-
tive learning was successful in generating form during collective music-making. The
algorithm often changed its feedback state after “highlight” interventions, which had
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participants being designated not being designated anymore in a few seconds. Third,
our model prototype converged quite quickly to some learned optimal user behaviour,
which had us often reset its probability distribution by hand. This may pave the way
for future improvements of the model in relation to collective human behaviours.

Discussion

Our application in exhibition showed that entrain created new collective musical in-
teractions between essentially non-musician participants. The active learning imple-
mentation enabled to steer participants toward new musical con�gurations, while
being su�ciently complex to appear as a black-box to them—which we believe was
of interest for such an installation. The physicality of the loudspeaker helped partici-
pants situate themselves in collective interaction, as well as situating the agent in this
con�guration.

Future work may apply entrain in other contexts than that of conference to harvest
situated feedback on the agent—e.g., cultural events, club venues. Also, the model pro-
totype may be improved to augment its robustness to user behaviour. Alternatively,
other sound designs may be tested to generate variations in the collective musical out-
come. For example, other audio e�ects may be used by the agent as a way to produce
form during interaction.
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7

On Human-Centred Machine
Learning Applied to Music

In this chapter, we re�ect on human-centred machine learning applied to music by
analysing the four studies led during the thesis. We �rst analyse the harnessing of
human musical goals and values that a human-centred approach to machine learning
brings. We then assess the switching of machine learning tasks for general interaction
techniques, as enabled by our introduction of model prototypes. We �nally introduce
the notions of machine expression and co-expression to examine the human-machine
work�ows designed with machine learning along our studies.

7.1 Harnessing Human Musical Goals and Values
The human-centred approach to machine learning allowed us to harness human musi-
cal goals in situated musical practices, as well as values considering the sociotechnical
aspects of learning algorithms.

7.1.1 Human Feedback on Musical Tasks
The �rst advantage lies in the harnessing of situated human feedback in the design
process. By situated, we mean feedback harvested in di�erent human contexts, relat-
ing to (1) existing musical practices, (2) degrees of musical expertise, and (3) designer.

Feedback from Expert Music Practitioners

Designing with musical practitioners helped us include useful feedback in the model
design process. Music practitioners are an extreme category of users [Garcia, 2014]:
they accumulate hours of practice related to their art, which provides them with deep
and speci�c expertise on it.

Deep, because they may know general dimensions that may be relevant to the
practice of speci�c elements. For example, the expert movement practitioners with
which we worked in the design of unsupervised learning for motion-sound mapping
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(Chapter 3) leveraged their embodied knowledge to assess a novel interactive situation
linking their gestures to sound. Including this feedback may provide high-level insight
on a given musical practice, which in turn helps to generate ideas for the interactive
a�ordances of a model prototype.

Speci�c, because they may exhibit a unique style in the execution of a given task.
For example, the sound designers with which we collaborated in the design of deep
reinforcement learning for synthesis exploration (Chapter 5) all had speci�c strate-
gies for exploring sound spaces with standard parametric interfaces. Including this
feedback provides low-level insight on the various steps of execution of a given mu-
sical task—for example, the spontaneous exploration of parameters—, which in turn
helps to explore various high-level features of a model prototype—for example, the
exploration strategy of the deep reinforcement learning agent.

Feedback from Non-Musicians

Perhaps counter-intuitively, non-musicians may be extremely useful to provide al-
ternative feedback in the model design process. Even if they are not practitioners,
non-musicians may experience music on a more or less regular basis, for example
during listening, or in live venues [Leman, 2008], which provides them with general
and diverse views on it.

General, because they may provide feedback related to more common issues re-
lated to music, rather than on practice. For example, the participants that we observed
interacting with reinforcement learning for sonic exploration (Chapter 4) enabled us
to gain an understanding of how humans may perceive agent exploration. Including
this feedback may enable the selection of given alternatives in the design space, for
example by excluding features that are not perceivable by humans.

Diverse, because they may witness novel feedback that may not originate from
the state-of-the-art, nor from expert practitioners. For example, the non-musicians
that we observed testing active learning for collective musical interaction (Chapter
6) witnessed a higher sensibility to contextual factors—such as system’s expectation
or presenters’ in�uence—than expert musicians—who may have extensive experience
with testing music systems.

Feedback from Designers

Designers of interactive music systems, as diverse as they may be (as described in
Section 2.1.2) may provide valuable feedback in the design of a model prototype. This
might seem obvious at �rst glance, as designers often implicitly discuss with, of some-
times belong to, the research and development group that carry the work. Yet, explic-
itly including them in the design process may bene�t the process itself, but also the
research community in its entirety.

The process, because designers may provide feedback that encompass conceptual
and technical dimensions related to an element of a music practice. For example, the
designers with which we discussed to design active learning for collective musical
interaction (Chapter 6) were able to identify the key conceptual issues related to the
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building of collective music patterns between participants, along with the technical
challenges related to measuring participants’ behaviour.

The research community, because most of the time, designers may be in the posi-
tion of the observer, not of the observed. As a consequence, this feedback may not al-
ways be transcribed in most scienti�c publications, which prevents other researchers
and designers to bene�t from it. For example, the designers with which we discussed
to design active learning for collective musical interaction (Chapter 6) were able to
elicit the actual design �aws at stake in their own interactive music systems, perhaps
a bit more than in scholarly publications.

7.1.2 Music Practices and Machine Learning
The second advantage lies in the sociotechnical consideration of machine learning
in relation to music practices. By sociotechnical, we mean three aspects: (1) the rel-
evance of automation in relation to expert music practitioners, (1) the biases that
humans may have toward technology and “arti�cial intelligence”, and (3) sustainable
music practices.

Automation and Expert Music Practitioners

Machine learning has the potential automate several musical tasks (as we saw in Sec-
tion 2.2). Yet, automating musical tasks cannot be considered without considering
expert music practitioners that actually carry these tasks. The latters’ practices may
have conceptual and cultural speci�cities when apprehending automation.

Expert music practitioners have long expressed di�erent opinions on automa-
tion. On the one hand, some expressed the wish to create machines that automat-
ically create music [Hiller Jr and Isaacson, 1958], which is nowadays perpetuated
in �elds such as Computational Creativity, or even Musical Metacreation [Pasquier
et al., 2016]. On the other hand, perhaps by a fear of automation in relation to com-
position [Dubnov and Surges, 2014], other composers expressed the wish to rely on
rule-based programming to build machines able to assist the act of composition, such
as with the OpenMusic software [Bresson et al., 2011]. This polarization was wit-
nessed in our study of deep reinforcement learning for synthesis exploration (Chapter
5), where professional composers led creative tasks by positioning between an agent-
as-leader—corresponding to automation-oriented composers—and a user-as-leader—
corresponding to rule-oriented composers—work�ow.

Having this conceptual framing in mind, cultural factors also have to be taken
into account. Expert music practitioners often rely on embodied knowledge along
their creative processes, leveraging speci�c strategies and values to explore the space
of possibilities [Andersen and Knees, 2016]. It is important to stress that this embodied
knowledge may be highly shaped by cultural elements—such as historical background
on computer music—, and as such, may not be shared by all expert music practition-
ers. Automation in machine learning should thus be designed with care to account as
much as possible for a diversity of cultural processes, which are the signature of hu-
man creativity. For example, our study of deep reinforcement learning for synthesis
exploration (Chapter 5) showed that automation was appropriated by human users to
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provide �exible paths to explore the design space, as opposed to simply replace them
with one single automated path.

“Arti�cial Intelligence Technology” and People

The idea of automation may also be perceived di�erently by non-musician people,
which may not have the same background than musicians when approaching tech-
nology and “arti�cial intelligence technology” in relation to music.

People may have biases on the notion of technology. Some of them may per-
ceive technical objects from an ontological point of view, that is, objects that extend
their natural abilities [Simondon, 1958]. Others may express fear toward technology,
based on the belief that it has the power of changing the world [Haynes, 2003]. These
cultural distinctions in perception continue to take place with the renewed rise of
“arti�cial intelligence technology”. The notion, being spread though science-�ction
centuries ago [Buchanan, 2005], and investigated by scientists around half a century
ago [Minsky, 1974], perhaps strengthen the division between technology-suspicious
people, and technology believers [Geraci, 2012]. In both cases, this may have con-
sequences on the perception of new technology by human users. For example, our
study of deep reinforcement learning for synthesis exploration (Chapter 5) showed
that our participants perceived the Co-Explorer as being not that “intelligent”, which
may suggest that they have important expectations toward the behaviour of the sys-
tem. These expectations should be taken into account when designing technology
that use machine learning.

Despite these biases in perception, some aspects of interaction may be shared by a
greater majority of people, even non-musicians, notably in relation to creativity and
�ow [Csikszentmihalyi, 1997]. The music cognition �eld o�ers a great description
of how expressive dynamic processes and feedback loops may actively arouse mo-
tivation and �ow states in musicians [Leman, 2016]. In this sense, automation may
be used to design a sense of play to foster human creativity instead of focusing on
productiveness. This consideration backs the notion of improvization, as it was de-
scribed in Section 2.2.2. As an example, the somasticks, designed from our study of
unsupervised learning for motion-sound mapping (Chapter 3), provided with a degree
of automated interactivity that seemed to be enjoyed by creative practitioners.

The Challenge of Sustainable Music Practices

A third and following sociotechnical aspect relates to the sustainability of the created
music practices. Here, “sustainable” is meant to evoke the longer-term acceptance
of machine learning technology by musicians and non-musicians. While not investi-
gated in the context of this thesis, we stress the importance to lead longitudinal stud-
ies to assess the impact of machine learning on both mainstream and niche musical
communities.

Mainstream, because machine learning has received considerable attention from
the academic communities as well as the music industry. While these communities
both consider the creation of new musical uses, they may have a tendency to do so
through the prism of human productivity, whether it be at an individual scale—e.g.,
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creativity support tools for music production [Deruty, 2016]—, or at a larger scale—
e.g., recommender systems for mass music consumption [Montecchio et al., 2019].
While partly motivated by scienti�c evidence, one can suggest that this drawing of
attention may also be encouraged by sociopolitical pressures toward applying arti�-
cial intelligence [Caramiaux et al., 2019]. Research may be essential to study machine
learning at the scale of mainstream music production, to identify which of the new
musical practices may remain sustainable in such a highly-disrupted context.

Niche, because the attention of machine learning for mainstream music com-
munities may harm smaller niche music communities. From a sociological point of
view, music practices always inscribe within a cultural context, which manifests itself
through shared knowledge and expectations on the sonic aesthetics [McLeod, 2001],
as well as shared know-how and appraisal on compositional and performative tech-
niques [Frith, 1998]. To sustain the diversity of music practices implies accounting for
a diversity of human users in the design of machine learning. Data-driven techniques
investigated in this thesis may go in this sense, but remains to be investigated on a
longer term to demonstrate their impact.

7.2 Switching Machine Learning Tasks for Interac-
tion Techniques

The human-centred approach to machine learning allowed us to switch machine
learning tasks for general interaction techniques to be designed [Beaudouin-Lafon,
2004]. We detail how model prototypes helped such switching by generating new
design ideas, and how the reassignment of model engineering in the design process
allowed the concretization of these ideas.

7.2.1 Model Prototypes as Design Artifacts
The �rst advantage lies in the use of model prototypes as actual artifacts of the design
process [Beaudouin-Lafon and Mackay, 2009]. This enables to frame new computa-
tions at three levels: (1) exploring new machine learning tasks, (2) expanding data
types, and (3) generating new algorithms.

Exploring Open-Ended Music Tasks in Machine Learning

Leveraging model prototypes helped us explore new machine learning tasks in rela-
tion to their musical application. Machine learning models are often aimed at realizing
a goal-oriented task with the highest performance in a given software application. In
addition to these goal-oriented tasks, prototypes enable to explore open-ended tasks,
which can be of interest for the creative domain of music.

Goal-oriented tasks are the main point of focus in machine learning literature,
which developed optimization algorithms to add to the basic statistical models aimed
at identifying patterns in raw data. The decision that the model should take from
these identi�ed patterns—i.e., the machine learning task—remains quite �exible to de-
sign, computationally speaking [Bishop, 2006]. Most of the time, machine learning
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tasks are goal-oriented as a logical continuation of their statistical modelling origin:
examples are classi�cation or recognition. This type of task can be useful in a musical
application: for example, our study of reinforcement learning for sonic exploration
(Chapter 4) showed that an agent having the goal-oriented task of maximizing feed-
back helped human users to e�ectively attain a musical goal. As they constitute the
majority of machine learning literature, experimentation outside these remain quite
rare.

Open-ended tasks, on the contrary, constitute a minority of the machine learn-
ing literature. They consist in taking decisions from patterns identi�ed in data that
go beyond optimizing some given measure to potentially discover novel patterns or
generate novel behaviors. Using model prototypes allows to explore such open-ended
tasks in the early stages of the design process, by assuming the possibly non-optimal
behaviour of the model. For example, our model prototype used in our study of ac-
tive learning for collective musical interaction (Chapter 6) allowed us to consider the
open-ended task of stimulating dynamic music processes among human players. This
kind of task may be promising for music, as well as for any other creative application
domain, which, as discussed above, may often rely on dynamic, open-ended processes,
than on static, goal-oriented outcomes.

Scaling Models and Data to Music

Using model prototypes also enable to scale models and data to musical applications.
Most of current applications in the machine learning literature focus on using deep
models on well-established data bases. By looking at model prototypes, we may in-
vestigate shallow models, while also witnessing new data modelling opportunities.

Model architecture is central to the development of machine learning. Speci�-
cally, most recent breakthroughs of arti�cial intelligence have built on complex, deep
models trained on huge databases [Briot et al., 2017]. Alternatively, model proto-
typing encourages investigation of shallow models able to learn from small scales of
data. These small scales are of main interest for music, where customization is of
prime interest for creators [Fiebrink and Caramiaux, 2016]. The unsupervised learn-
ing model that we designed for motion-sound mapping (Chapter 3) may be the most
representative example of such shallow model, as it leveraged a few seconds of hu-
man motion observation to create expressive musical interactions in the somasticks.
Reciprocally, model prototypes can also be used to hijack deep models with a small
data set approach, as we did in our study of deep reinforcement learning for synthesis
exploration (Chapter 5).

Data at stake in machine learning can pertain to di�erent signal categories. Some
disciplines, such as Music Information Retrieval, may focus on a given categories of
data—e.g., data from audio signals—to do machine learning research. While it may
sound like an obvious statement for other disciplines, we recall that many machine
learning applications could be discovered if one considers new types of data and in-
vestigate them. Discovering and studying such new types of data could be an op-
portunity for music applications of machine learning to go from lab-based setups to
real-world domains [Wagsta�, 2012]. For example, using a model prototype in our
study of reinforcement learning for sonic exploration (Chapter 4) allowed us to con-
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sider non-stationary reward signals through human feedback data, which is barely
studied in the reinforcement learning literature.

Balancing Model Performance with Musical Features

Model prototypes enable to rapidly experiment interaction between machine learn-
ing systems and humans. As such, they enable to better balance model performance
with the musical behaviour provided to humans in music activities. While the lat-
ter is the speci�city of crafting in interactive music systems [Jorda, 2005], the former
constitutes most of the focus of machine learning research.

Performance is how well a machine learning model performs a given task after
being trained on a given data set. It is one of the main criteria for assessing the rele-
vance of a model on a given machine learning task [Murphy, 2012]. Yet, this notion
may not always be relevant for applications in music. The notion of interactivity was
introduced in interactive music systems to go beyond the reactivity of standard, task-
oriented interfaces [Paine, 2002]. One could think of a similar analogy in interactive
machine learning applied to music. Our study of deep reinforcement learning for
synthesis exploration (Chapter 5) showed that an arti�cial agent may be useful for a
musical task even if not performing the learning task one hundred percent accurately.
Performance also links with the notion automation in relation to music practices, as
discussed in Section 7.1.2.

In addition to interactivity, explainability may be a relevant notion to the design
of machine learning for music. Explainability is how interpretable the decisions a of
a machine learning algorithm are for humans [Ramos et al., 2019]. It may be crucial
to build trust in humans involved with technology in creative activities. For exam-
ple, our study of deep reinforcement learning for synthesis exploration (Chapter 5)
showed that relying on interactive visualizations—in this case, interface parameters
and navigation history—allowed humans users to better understand the behaviour of
the algorithm, and to better exert human control over algorithm performance. The use
of model prototypes enabled us to switch from a performance-oriented to a human-
trustable model design process.

7.2.2 Reassigning Model Engineering In The Design Process

The second advantage of a human-centred approach lies in the reassigning of engi-
neering toward the end of the music design process, as opposed to standard engineer-
ing of machine learning (see Section 2.2.3). This enables to: (1) move from prototype
to �nal models, (2) better seize engineering in relation to musical behaviour, and (3)
move toward machine learning design patterns.

Centering Model Engineering On Humans

The human-centered approach enables to center the engineering machine learning
on human musical practices. Both training and tuning of the models are done by
including human users in the loop.
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Training consists in collecting and labelling data sets from which the machine
learning algorithm would learn a model. Often, these data sets are constituted by
the researchers or designers of machine learning systems themselves, with the aim
of providing a representative sample of the phenomenon to be modelled. As a con-
sequence, the resulting big data sets are often impersonal, and potentially reproduce
biases already present in the real-world. The human-centered approach allows to ex-
plicitly take into account the training process by directly having end-users build their
own data sets interactively. For example, our study of deep reinforcement learning
for synthesis exploration (Chapter 5) showed human users provide feedback labels to
train di�erent agents for di�erent creative tasks. Customization may be essential in
musical applications, as each musician may exhibit di�erent creative processes and,
as such, be considered as a unique phenomenon.

Tuning consists in adjusting the hyperparameters of a machine learning model
before the training process. Often, it is done with the aim of optimizing the model
behaviour in relation to the loss function of a given goal-oriented task. Yet, as dis-
cussed above, open-ended tasks, where a loss function may not be easily de�ned,
may also be of interest for musical applications. The human-centered approach en-
ables to explicitly consider the tuning process, either by choosing hyperparameter
values from feedback-driven heuristics, or by directly having end-users choose their
values. For example, our design of unsupervised learning for motion-sound mapping
(Chapter 3) let human users choose the number of Gaussian components of their ma-
chine learning model, as well as the temporal duration corresponding to the batch
size. Altogether, training and tuning allows end-users to appropriate the engineering
of machine learning and use it for their creative purposes.

Model Engineering and Musical Behaviour

Despite our focusing on model prototyping, it is important to recall that model engi-
neering still has consequences on the musical behaviour of a model. To analyse these
consequences, one may distinguish between end-user and feature engineering.

End-user engineering refers to the interactive training and/or tuning of the ma-
chine learning model by the end-users of a system. It is the approach that we decided
to focus on in this thesis, inspired by the �eld of interactive machine learning [Amer-
shi et al., 2014]. End-user engineering may be central to the musical behaviour of a
model. By allowing humans to customize a model and explore the space of possibil-
ities, end-user engineering may be essential for humans’ creative process in open-
ended tasks. For example, our design of deep reinforcement learning for synthesis
exploration (Chapter 5) let human users experiment with various training and tuning
con�gurations to explore and discover new sound designs.

Feature engineering refers to the de�nitive training and/or tuning of the machine
learning model by developers of a system. It is the step that we decided to jump over
in our research methodology, except in our study of deep reinforcement learning for
synthesis exploration (Chapter 5). Yet, feature engineering importantly in�uences
the musical behaviour of a model. By providing humans with e�cient interaction
techniques and automation, feature engineering may be crucial to improve human
productivity in goal-oriented tasks. Future work may push the design of our four
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machine learning models further by leading feature engineering based on the obser-
vations harvested, while keeping in mind the sociotechnical factors related to machine
learning and productivity raised in Section 7.1.2.

Toward Music Design Processes for Machine Learning

To frame new machine learnings for music requires considering both end-user and
feature engineering processes in joint relation with situated human feedback and real-
world applications. Design processes that explicitly take into account the time needed
for conceptual and technical framing should be conceived.

Conceptual framing supports the formulation of a music practice as a machine
learning task. This formulation includes de�ning a machine learning task, choosing
a learning algorithm, and delimiting human data. Many possible strategies could be
conceived for such reformulations. Theory provides state-of-the-art considerations
toward the musical practices, and also the use of certain machine learning techniques.
The human-centred approach integrates human users in the design process by having
them discuss and test potential formulation in the form of model prototypes. Alter-
natively, our study of active learning for collective musical interaction (Chapter 6)
involved human users in all aspects of conceptual framing. In the latter, human users
were able to understand and formulate machine learning tasks in relation with the
musical practice—even if not experts of machine learning. This suggests that human
users can be included from the beginning of the design process for machine learning.

Technical framing enables to assess the working of the machine learning system.
This assessment includes the testing of end-users engineering in interactive setups,
as well as the feature engineering of the machine learning model in non-interactive
setups. While the former only requires programming to be e�ective, the latter often
takes a lot of time due to the big data needed to train and tune the machine learning
model. These big data scales often slows the design process of the model, as consti-
tuting such big databases is actually a research contribution in itself. Using model
prototypes enables to reduce this time by directly evaluating the learning require-
ments of the machine learning model in relation to the musical practice. Alternatively,
teamwork is a reliable option to make conceptual and technical framing parallel. Our
study of deep reinforcement learning for synthesis exploration (Chapter 5) stands as
an example of such task assignment, having one researcher lead conceptual framing
and another leading technical framing.

7.3 Creating Co-Expressive Human-Machine Prac-
tices

Having discussed the advantages of human-centred machine learning applied to mu-
sic, we now analyse the musical interactions that it created. To do so, we propose to
adapt Leman’s notion of expression—which was essentially developed to describe in-
teraction between humans and music [Leman, 2016]—to the case of human-machine
interaction—speci�cally, where the machine learns to produce musical output from
interaction with humans. We introduce the notion of machine expression to account
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for the perceived musical behaviour of learning machines in relation to humans. We
then analyse co-expression, as the dynamic process of musical expression between
learning machines and humans. We �nally leverage these notions to discuss arti�cial
creativity from the point of view of human expression and music.

7.3.1 Machine Expression

The notion of expression is not new in the �eld of computer music. Some researchers
even focused on expressiveness as an essential feature of interactive music systems
[Jorda, 2005], notably through the spreading of NIMEs—acronym for New Interfaces
for Musical Expression [Dobrian and Koppelman, 2006]. Yet, we believe that the “E” in
NIME has mainly been considered for members of its computer music community—
e.g., expressiveness for expert performers, or for expert audience members. We are
interested in including more people in the notion of musical expression, especially
through the design of interactive music systems.

The notion of machine expression aims at describing interaction with interactive
music systems from a human-centred point of view—be they musicians, or non-
musicians. Machine expression pragmatically addresses the fact that humans may
perceive expression in machines, regardless of machines’ abilities to express by them-
selves. As such, machine expression may help support a wider range of human cre-
ative processes in the design of interactive music systems. In this section, we (1)
situate machine expression in standard interactive music systems, describing the ex-
pressive a�ordances of computer devices and music itself as perceived by humans.
We then (2) analyse machine expression in the context of machine learning, where
the notion of arti�cial creativity has driven much of the research on interactive mu-
sic systems. We argue that the notion of machine expression enables to design more
inclusive machine learning for human creativity support in music.

Situating Machine Expression In Music Dispositifs

Marc Leman de�nes expression as “quality of human movement that is meant to pro-
voke an expressive response, so that an expressive interaction can be established be-
tween sender and receiver” [Leman, 2016]. Here, we explain how machines may be
perceived as senders of expressive signals by human receivers, considering the em-
bodied qualities of computer devices and music in relation to human sensory-motor
state (as depicted in Fig. 7.1).

Figure 7.1: The embodied qualities of music devices support the sending of expressive
signals from machines to humans (as will be detailed in Figures 7.2 and 7.3).
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Computer devices may be described as possessing embodied qualities related to
their dynamic attributes and a�ordances. On the one hand, dynamic attributes re-
fer to the exhibition of a movement behaviour from a computer device. It may ap-
ply to software in the case where the user interface exhibit autonomous dynamic
behaviour. For example, our design of deep reinforcement learning for synthesis ex-
ploration (Chapter 5) expressed dynamic attributes in the user interface in the form
of an agent moving parameters autonomously. It may also apply to hardware if the
device is capable of robotic behaviour. On the other hand, a�ordances are what both
software and hardware elements may o�er to the individual [Gibson, 1977, Gaver,
1991]. They have been greatly investigated in computer devices through the wave
of embodied interaction [Dourish, 2004]. For example, our study of active learning
for collective motion-sound mapping (Chapter 6) leveraged smartphone devices that
jointly express interface- and object-based a�ordances.

Music may be described as possessing embodied qualities related to its sonic forms
and a�ordances [Caramiaux et al., 2014b]. On the one hand, sonic forms refer to the
spectral qualities of sound organized in time—e.g., rhythm, melody, timbre, or har-
mony. They have been shown to be associated with expressive gestures by humans,
notably through the theory of embodied music cognition [Leman, 2008]. For exam-
ple, our study of unsupervised learning for motion-sound mapping (Chapter 3) shows
how drumming sounds express embodied qualities related to human movements to
human players. On the other hand, a�ordances refer to the ability of music to trigger
speci�c movements in humans. They have been used to align the rhythm of human
movement on the music rhythm, notably through the notion of entrainment [Leman,
2016]. For example, our study of active learning for collective motion-sound mapping
(Chapter 6) used rhythmic loops to express accessible musical a�ordances to human
players. Other works in the �eld of sonic interaction design extended the notion of
music a�ordance to that of sonic a�ordance, that is, a�ordance exhibited by sound
itself, regardless of musical qualities [Altavilla et al., 2013]. We will only mention that
one may consider either sound or music a�ordances in machine expression, depend-
ing on their �eld of work.

Analysing Machine Expression From Human Perspectives

As a general notion, machine expression may be analysed in a wide variety of ex-
isting interactive music systems (including the reactive tools, partners, and mediums
described in Section 2.1.3). In the context of this thesis, our interest lies in analysing
machine expression from a human-centred perspective. That is, our wish is to ac-
count for humans’ perception of expression in machines regardless of their musical
expertise. Such an analysis may enable to include more people in the design of in-
teractive music systems. Here, we leverage the biosocial and cultural dimensions of
expression [Leman, 2016] to analyse how machines may be perceived as expressive
by humans—be they musicians or non-musicians. We depict the resulting concepts in
Figure 7.2.

Biosocial signals originate from sensorimotor re�exes, triggered by sound percep-
tion, a�ecting the cognitive state of humans and animals. The most basic example of
biosocial signal may be described through the notion of entrainment. Entrainment is
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Figure 7.2: Machine expression considers the biosocial and cultural dimensions of
music dispositifs to include diverse human perspectives on their perceived behaviour.

the process of rhythmic coordination that can take place between a living organism
and an external stimulus [Phillips-Silver et al., 2010]. In the case of a sonic stimu-
lus, coordination between the organism’s movement and sound may take place, as a
byproduct of pre-existing biological adaptations. In the case where the stimulus orig-
inate from another entity, coordination between the organism’s movement and the
entity may take place, as a byproduct of embodied associations and social feedback
loops. Importantly, biosocial signals may not necessarily require the sender to have
the intention of conveying an information; rather, they may be only based on the
receiver’s dispositions to sensorimotor responses. As such, machines may be anal-
ysed as emitting biosocial signals from the perspective of humans. For example, our
study of deep reinforcement learning for synthesis exploration (Chapter 5) showed
that humans made biomorphic associations toward the agent’s actions on the VST.

Cultural signals involve some form of human learning toward biosocial expressive
signals [Leman, 2016]. They may relate to the evolution of human cognition toward
sound, for example regarding its intentional use as a communication modality, espe-
cially through the invention of language, of which music may be thought as being
part of [Levitin, 2006]. Cultural signals may also relate to the development of hu-
man norms toward music, for example regarding the assessment of its value, which
heavily depend on its situation in the communities to which it pertains [Small, 1998].
Machines may bene�t from a similar analysis. Cultural signals in machines may relate
to human codi�cations of average intelligence abilities for machines, whether it be fu-
elled by myths commonly at stake in science-�ction, or by trends currently related by
the media [Haynes, 2003]. For example, our study of reinforcement learning for sonic
exploration (Chapter 4) showed that humans perceived the agent as “light-headed”,
which accounts for cultural expectations on the expressive abilities of a machine.

7.3.2 Human-Machine Co-Expression

The blending of human expression with machine expression can create patterns of
musical interaction that we propose to name co-expression. Of course, co-expression
already happen during human performance with standard music instruments and in-
teractive music systems [Jorda, 2005]. In line with our position, we believe that the
notion of performance conveys too much of a bias toward expert performers from
computer music communities. Co-expression, on the other hand, intends to pro-
vide a more general description of interaction between machines and (possibly non-
musician) humans, in a way similar to human-machine co-adaptation [Mackay, 1990].
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In this section, we discuss how co-expression may occur in human-machine music
practice. We �rst (1) analyse interactive work�ows designed in this thesis under the
light of co-expression. We then (2) analyse how human-centred machine learning may
speci�cally enable to learn machine expression from human expression. We argue
that the framework of co-expression may help design more inclusive interactive music
systems in terms of musical values and expertise.

Co-Expression as Emergent Cooperation, Competition, or Cohesion

In the course of this thesis, three interactive work�ows were created: design through
performance (Chapter 3), co-exploration (Chapters 4 & 5), and collective musical in-
teraction mediated by an active learning machine (Chapter 6). We argue that each may
be respectively analysed as emerging forms of co-expression: cooperation, competi-
tion, and cohesion. In the following paragraphs, we describe these emerging forms
as strong concepts that could guide the design of human-machine co-expression with
machine learning [Höök and Löwgren, 2012].

Cooperation occurs when two or more entities act together for a common objec-
tive. In music, cooperative acts between musicians may occur during composition—
e.g., discussion of musical ideas—and performance—e.g., embodied communication of
musical intention. In co-expression, cooperation may occur when the human per-
ceives machine expression as jointly aligned with his or her musical expression. For
example, our study of deep reinforcement learning for synthesis exploration (Chapter
5) related the emergence of co-exploration work�ows that could be analysed as coop-
erative, where the machine takes actions on some VST with the goal of maximizing
human feedback. Cooperation may be characterized in humans by the emergence of
pleasant a�ective states due to the alignment of human and machine expression.

Competition arises when two or more entities strive for an objective that may
not be shared. In music, competition may be analysed from the viewpoint of tension
and resolution, which claims that emotion in music may be provoked by embodied
evocations of divergent sonic states eventually coming to an agreement [Steinbeis and
Koelsch, 2007]. In co-expression, competition may occur when the human attributes a
divergent intention to the machine, that is, when local aspects of machine expression
does not align with the global human expression. For example, our study of unsu-
pervised learning for motion-sound mapping (Chapter 3) related the emergence of
design through performance work�ows that could be analysed as competitive, where
performers strive to move di�erently to get speci�c sounds from the machine. Com-
petition may be characterized in humans by a�ective states combining short-term
unpleasantness with sustained arousal due to the challenging aspects of machine ex-
pression.

Cohesion occurs when bonds link entities of a group to one another and together.
In music, cohesion may exist between diverse members of a speci�c musical commu-
nity that share common cultural codes and a vision on music. In co-expression, cohe-
sion may occur when the machine gently entrains the human to express in a certain
way, without necessarily expressing through the same embodied quality, nor having
a speci�c aim. It could be argued that cooperation and competition may be thought
of as speci�c forms of cohesion between the human and the machine. Yet, cohesion
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may be considered as a particular form of co-expression, due to its open-endedness
in comparison with the two latters. For example, our study of active learning for
collective musical interaction (Chapter 6) shows how the machine and humans form
a cohesive group, which communicate through sound and visuals, yet do not share
the same representational space nor having a speci�c musical aim. Cohesion may be
characterized in humans by the emergence of positive emotion and mood due to the
form of homeostasis [Leman, 2016] maintained by human and machine co-expression.

Learning Machine Expression From Human Expression

Machine learning techniques were central to the emergence of such co-expression
work�ows observed in this thesis. In the following paragraphs, we discuss how ma-
chine learning may actually learn to modulate human expression by creating models
prone to adaptation, surprise, and incentive (see Fig. 7.3). We build on Leman’s no-
tions of human agency, prediction, and reward to describe human action data in terms
of expression and support our claim [Leman, 2016].

Figure 7.3: The strong concept of co-expression enables to qualitatively describe how
learning from human data may enable machines to generate expressive musical be-
haviors based on human expression.

Agency is the capacity of an entity to act in a given environment. Music has
been shown a sense of agency to humans in relation to their movement, for example
when musical tempo aligns with human locomotion [Leman, 2016]. Machine learning
have potential to augment human agency by creating a model that adapts in real-
time to human data. For example, our design of unsupervised learning for motion-
sound mapping (Chapter 3) created such space for agency by automatically adapting
to human motion data to control sound synthesis. More generally, adaptation remains
one of the main feature of machine learning techniques, which are designed to learn
operational rules from example data [Bishop, 2006].

Prediction refers to the ability of a cognitive system to forecast a future event. It is
often described as a key element in music interaction, where humans apply their own
predictive sensorimotor model to the temporal unfolding of a given song to, for exam-
ple, anticipate dancing movements [Leman, 2016]. Machine learning can potentially
learn to manipulate such human predictive coding by purposely introducing musical
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events that surprise human expectations. For example, our design of deep reinforce-
ment learning for synthesis exploration (Chapter 5) enabled such predictive coding
manipulation by taking exploratory actions on the basis of a human preference model
learned from feedback data. Other algorithmic methods for surprise may be designed
with machine learning, for example, by tweaking Bayesian inference to explicitly opt
for unlikely decisions [Murphy, 2012].

Reward is the positive property that an entity ascribes to an event or an action.
It is essential in the cognitive-motivational loop of humans and animals, notably to
learn associations between events. Music listening, as well as music performance can
be highly rewarding for humans [Leman, 2016]. Machine learning can potentially
learn to manipulate rewarding associations between input and musical output to in-
centivize humans to rediscover the rewarding associations. For example, our design of
active learning for collective musical interaction (Chapter 6) constantly manipulated
the human reward model—corresponding to the association of a musical state with an
audio e�ect—on the basis of collective performance data, so as to incentivize humans
to play together. Incentive may be designed with other machine learning techniques
that draw from rewarding mechanisms to learn models—e.g., reinforcement learning
[Sutton and Barto, 2011].

7.3.3 On Human Expression, Music, and Arti�cial Creativity

The notions of machine expression and co-expression enables to understand interaction
in music systems from the perspective of human expression. As reported in Section
2.1.1, human expression, especially through embodied interaction with music, is cen-
tral to the social and emotional development of human beings [Altenmüller et al.,
2013]. Thus, supporting personal expression in interactive music systems may enable
the development of creativity in humans [Frich et al., 2018]. Creativity is a general
skill that may operate beyond artistic practice to a variety of activities, including sci-
enti�c inquiry and technology design [Hart et al., 2017]. It may be supposed that
the dynamic nature of co-expression, reinforced by the adaptive abilities of machine
learning, may support creative processes characteristic of human music practices.

Many researchers, musicians, scientists, and designers have emphasized the fact
that music is a practice, not a thing [Small, 1998]. As described in Section 2.1.1, mu-
sic practices are necessarily of a dynamic nature, due to their situation in human,
cultural, and societal contexts. To let new music practices thrive implies fostering
the dynamic and improvisational nature of the creative process in humans [Canonne,
2012]. From a human-centred perspective, this means considering all possible dimen-
sions of human interaction with music systems, encompassing technical as well as
expressive elements—such as accounted with our strong concepts for co-expression.
From a machine-centred perspective, this means designing technology that provide
space for expression of possible solutions, rather than providing direct solutions—such
as depicted by “metadesign” approaches to human-machine systems [Giaccardi and
Fischer, 2008]. It is arguable that our human-centred approach to machine learning
provided such space for expression, and as such, managed to take root in existing
music practices.
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In this sense, we prefer to use the notion of machine expression instead of that of
arti�cial creativity when discussing machine learning applied to music practice. As
described in Section 2.2.3, arti�cial creativity focuses on the building of autonomous
machines capable of human-level creativity. We believe that such arti�cially-creative
machines may drive the yearning to express one’s creativity away from people. First,
the autonomous abilities of these machines reduce human expression to a few pa-
rameters, thus hindering the emergence of co-expressive patterns of interaction. Sec-
ond, the static generative behaviour of these machines go against the dynamic na-
ture of creative processes at the core of existing music practices. We do believe that
many researchers and developers in machine learning applied to music actually aim at
designing musically-expressive, rather than arti�cially-creative, machines [Assayag,
2014, Esling et al., 2019]. Yet, we argue that their talking about “arti�cial creativity”
creates an ambiguity regarding the scienti�c and musical values that they defend,
especially toward fully-automated machines, typical of the latter approach.

Take the example of an arti�cial creativity machine able to automatically generate
original orchestral symphonies by imitating the writing style of some famous com-
poser. The biosocial signals expressed by such a machine arguably convey an embod-
ied sense of superhuman performance, which relates to the instantaneous writing of a
complete symphony. This may have expert musicians feel dispossessed of their hard-
earned creativity [Surges and Dubnov, 2013], while also hindering non-musicians en-
gaging in embodied interaction with music. On the other hand, the cultural signals ex-
pressed by such a machine arguably foster the notion of “arti�cial intelligence” and its
related drawbacks, as discussed in Section 7.1.2. Whether resulting from personal or
industrial motivations related to machine learning, or from a decent lack of contextu-
alising, this happens to the detriment of alternative music communities—whose prac-
titioners are disrupted by the introduction of such powerful technology—and for the
bene�t of mainstream music culture—whose members use, possess, and develop such
arti�cially-creative machines. These points will be developed in the Post-Scriptum.

We believe that situated acts of creation can subvert such automated systems and
techniques in favour of human expression and music practices. For example, human-
centred approaches to machine learning enable to design expressive machines that
balance human-level automation with human-level control, while accounting for the
situated nature of the concerned music practices. Music practice supports situated
appropriation of machine learning by members of given music communities, thus
encouraging the development of other notions than arti�cial creativity to discuss ma-
chine learning [Assayag, 2014]. Artistic approaches to machine learning enable to
nourish imagination on music to be made by such arti�cially-creative machines, es-
pecially by distorting their intended engineering [Williams, 2016]. Research, design,
and applications led in this thesis clearly situates among the latter scienti�c and mu-
sical values.



8

Conclusion

8.1 Summary and Contributions

This thesis aimed at defending the approach of designing with machine learning for
interactive music systems. To do so, it applied human-centred approaches to the de-
sign of machine learning, in contrast with engineering sciences approaches tradition-
ally applied to machine learning. It investigated four musical tasks by situating them
in their respective music practice contexts. It leveraged model prototyping to gen-
erate new interactive machine learning work�ows with the concerned human users
before engineering a �nal model. It applied four human-centred methods to research
and design the musical interactions that took place between learning machines and
humans. It adopted a re�exive approach to analyse the work done in the thesis and ar-
gue for the necessity to situate machine learning in human contexts to foster existing
music practices.

Model Prototypes

We designed four model prototypes respectively corresponding to the four musical
tasks investigated. Each of them implemented a machine learning technique in a
human interaction setup, allowing to test novel interactive learning work�ows with
di�erent types of data. Speci�cally, we applied the Online Gaussian Mixture Model to
the musical task of motion-sound mapping by implementing unsupervised learning
from human motion observations. We applied the Sarsa model to the musical task
of sonic exploration by implementing reinforcement learning from human feedback
and machine exploration. We applied the Deep TAMER model to the musical task
of synthesis exploration by implementing deep reinforcement learning from human
feedback, control, and intrinsically-motivated machine exploration. We applied the
Bayesian Inforation Gain model to the musical task of collective musical interaction
by implementing active learning from individual human performances.
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Empirical Findings

We harvested empirical �ndings corresponding to the evaluation of human interac-
tion with the respective four prototype models. The nature of these empirical �ndings
related to that of the human-centred method employed to study interaction. Speci�-
cally, we found that performers projected themselves into imaginary situations inter-
acting with unsupervised learning for motion-sound mapping. We found that humans
were able to perceive di�erences in agent’s behaviour with reinforcement learning
for sonic exploration. We found that sound designers switched the lead with deep
reinforcement learning agents for synthesis exploration under speci�c types of part-
nerships. We found that non-musicians reacted positively to the expressive behaviour
enabled by active learning in collective musical interaction.

Music Dispositifs

We applied our four prototype models to the creation of several music dispositifs that
we displayed in various public settings. The created dispositifs enabled to inquire ma-
chine learning applications to music in another type of situation than the lab-based
studies of human-centred methods. Speci�cally, the somasticks are augmented drum-
sticks that use unsupervised learning to emphasize somatic expression in drumming
practice. Riding the Co-Explorers is a single-level game that lets a single player guide
the Co-Explorer in one single sound space. Behavioral Matter is an interdisciplinary
workshop that applied the Co-Explorer to the design of robotic objects. ægo is an
improvisational computer music piece with interactive sound and image for one per-
former and the Co-Explorer. entrain is a public installation that lets humans express
collectively in music in collaboration with an active learning loudspeaker.

Theoretical Perspectives

We reported on theoretical perspectives on machine learning applied to music by
adopting a re�exive approach on our work. These perspectives enable to rethink ma-
chine learning applied to music in terms of human goals and values. Speci�cally, the
artifacts called model prototypes help envision possible designs of machine learning in
situation with human users before fully engineering them. notion of machine expres-
sion supports the general description of human perception of machines in music prac-
tice, regardless of humans’ expertise in music. The notion of co-expression enables to
conceptualize the emergence of musical interaction between (possibly non-musician)
humans and (possibly learning) machines. Overall, the notions provide actionable al-
ternatives to arti�cial creativity approaches to the engineering of machine learning,
which currently drive most of machine learning applications in music.

8.2 Directions for Future Work

While our interdisciplinary approach enabled original contributions, it also left sev-
eral research questions open. We conclude the present dissertation by outlining
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human-centred, machine-centred, and musical perspectives for future work to be
done.

8.2.1 Human-Centred Perspectives

Designing with machine learning for interactive music systems had us explore four
situated music tasks instead of focusing on one sole music practice. This choice let
many questions open related to the studied human users, be they musicians or non-
musician people.

On Musicians

Two of our studies—Chapters 3 and 5—situated the research and design of machine
learning in speci�c music practices—motion-sound mapping and synthesis explo-
ration, respectively. Yet, more time could have been spent working closely with
the corresponding expert musicians to get a better understanding of their practices—
performance and sound design, respectively. This understanding could notably enable
to better evaluate the creative process of musicians in the appropriation of machine
learning [Fiebrink et al., 2011]. Concretely, longitudinal studies could be led with
sound designers, individually using our deep reinforcement learning model proto-
type over longer periods of time, to observe interaction with machine learning more
precisely. Also, �eld studies could be led with performers, observing them interacting
with existing interactive music systems in their own creative environment, to get an
understanding of their musical practice that go beyond the designed machine learning
artifacts.

On Non-Musician People

The two remaining studies—Chapters 4 and 6—situated the research and design of
machine learning in more general music practices—sonic exploration and collective
musical interaction, respectively. Yet, more time could have been spent studying how
non-musician people can develop their creativity through music practice. These stud-
ies could in turn enable the design of machine learning that support education and
inclusion purposes [Thompson et al., 2019]. One of the paths suggested by this dis-
sertation would be to study interaction between humans and machines from the per-
spective of co-expression. Longitudinal studies could be led, investigating processes
of expressive interaction between non-musicians and machines, to observe the devel-
opment and crystallizing of strategies in relation to some musical task—such as sonic
exploration. Alternatively, qualitative studies could be led in public settings to better
understand how non-musicians perceive machine expression in open-ended musical
activities—such as collective musical interaction.

8.2.2 Machine-Centred Perspectives

Designing with machine learning for interactive music systems had us explore four
machine learning techniques instead of focusing on one sole machine learning model.
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This choice let many questions open related to the studied techniques, notably regard-
ing the engineering of models, and the quanti�cation of machine expression.

From Model Prototyping To Model Engineering

Our four studies built on model prototyping to ideate applications of machine learn-
ing with human users. Only one—Chapter 5—bene�ted from model engineering to
�ne-tune the design of machine learning for the corresponding musical task—namely,
synthesis exploration. Yet, further iterations in the design processes could have been
done to go beyond one-step prototyping to reach model engineering in all four studies.
Such reachings may enable the creation of design patterns that explicitly consider the
speci�cities of machine learning in human interaction contexts [Beaudouin-Lafon and
Mackay, 2009]. For example, several model prototypes could be explored in parallel
to assess their suitability to human interaction. Larger data bases of human interac-
tion could be built to support the pre-engineering of models through o�ine learning.
Human-centred optimization criteria may be developed to engineer the �nal models
in relation to some situated musical task—such as the intrinsically-motivated explo-
ration criteria in Chapter 5.

Designing Machine Expression

Re�exive approach on our four studies—in Chapter 7—enabled to frame machine ex-
pression as a qualitative notion that describes musical interaction between (possibly
non-musician) humans and (possibly learning) machines. Future work could explore
a reverse approach consisting in designing machine expression in interactive music
systems. Such an approach may combine qualitative and quantitative descriptions
of expression to design machines that go beyond the false divide between the digital
and the physical [Bianchini and Verhagen, 2016]. Other types of data could be investi-
gated to support expression in interactive music systems. For example, physiological
data could be studied to sense, or even measure, musical expression in humans. Com-
plex environmental data could be leveraged to support arti�cial implementation of
expressive features in machines. Machine learning could be used to explicitly model
expression in humans and machines, as well as to support algorithmic description of
co-expression.

8.2.3 Musical Perspectives

Designing with machine learning for interactive music systems had us apply four
human-centred methods and lead �ve applications in real-world musical situations
instead of focusing on one sole methodology. This choice opens many perspectives
related to the methods to be used for, and the nature of, music research.

On Human-Centred Methods

Our four studies used human-centred methods to build scienti�c knowledge on mu-
sical interaction. These four methods allowed us to somehow synthesize perspectives
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from the many disciplines involved in the work, such as Human-Computer Interac-
tion, Machine Learning, or Music. Yet, further investigations could be led to better un-
derstand how these human-centred methods actually in�uenced the design of machine
learning for the situated musical tasks. These understandings could enable to frame
new methodologies for the application of Human-Computer Interaction methods to
the �eld of Music [Wanderley and Mackay, 2019]. For example, the design-oriented
method used in Chapter 3 created an “idiosyncratic” formalization of unsupervised
learning for motion-sound mapping, which could have been framed di�erently by
other designers and performers of interactive music systems. Alternatively, the exper-
imental method used in Chapter 4 directed the formalization of reinforcement learn-
ing toward a “cartesian” form to enable the controlling of the many environmental
factors of the experiment.

From Applied Research to Practice-Based Research

Our �ve applications in real-world musical situations let us share the experience and
the conceptual ideas of our interactive music systems with people and society in gen-
eral. These creative applications somehow complemented the scienti�c �ndings lever-
aged through our human-centred studies. On another note, more e�ort could be put to
go beyond such applied approaches to embrace practice-based research in music. Such
an approach could enable to situate inquiries of machine learning from other research
communities delineated by real-world music practices, as it has recently been done by
composers of contemporary music [Ghisi, 2017] and experimental music [Williams,
2016]. For example, our improvisational piece ægo—presented at the end of Chapter
5—could bene�t from longer processes of research and creation to eventually exist as
actual artwork outside the scienti�c research community. We believe that such situ-
ated, practical, and sensible approaches to music research should never be disregarded
when studying, designing, or evaluating interactive music systems.
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Post-Scriptum:
Music Research Through
Dispositif Design

In this chapter, I present my personal re�ections on the research approach adopted
in the thesis. In accordance with my advisor, I chose a post-scriptum format, which
allows me to discuss ideas in a less formal setting, using references and a �rst-person
narrative to support my personal statement rather than a general analysis. Rather
than discrediting possible research approaches, my wish is to make my perception of
the �eld audible as doctoral student, with the hope to discuss a common ground for
music research to be done in a near future. I hope to hear back from other computer
music researchers, practitioners, and students about it.

Doctoral Research in Science Applied to Music

The present dissertation was written in the frame of a doctoral research in Computer
Science applied to music. As in most formal science disciplines, Computer Science
doctoral schools create pressure for ending the doctorate in three years. This rel-
atively short period of time creates a situation where doctoral students are pushed
toward being productive in the activity of research. The productive impetus material-
izes into an urge to rapidly publish in academic journals and conferences. Even if not
explicitly stated in doctoral schools decrees1, publications are an important modality
of evaluation for theses in the academic community. For example, it is a common
practice to seize the quality of a thesis by having a look at the list of published papers.
Alternatively, the impact factor gained from publications remains one of the main
criteria for the pursuit of an academic career, be it at a national or international scale.

Publishing in academic journals and conferences almost always implies adopting
scienti�c methods. Methods create a common framework to discuss empirical obser-
vations between peers, and have thus characterized the development of science for
centuries. Recently, human-centred methods were object to critiques [Vandenberghe
and Slegers, 2016]. The key point is that simply involving humans in the loop does not

1https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=
JORFTEXT000032587086&categorieLien=id
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account for the resulting design to be the right for the studied “users”. In our case, the
relying on human-centred methods encouraged the application of computer science to
music. That is, they supported the application of scienti�c processes to solve practical
problems in music. For example, in Chapter 5, we used a user-centered design method
to adapt the design of reinforcement learning to the musical task of synthesis explo-
ration. Yet, we did not discussed our initial choice of reinforcement learning with the
studied expert sound designers. It is possible that a completely di�erent technique
would have emerged if we let sound designers discuss the initial design problem with
us—if there were any real problem to solve.

Methods focus on creating substantial accounts of knowledge, relying on stan-
dardized languages to communicate results to peers. As stated, a �rst language is that
of problem speci�cation. Specifying a problem enables to frame a research question
in relation to a research method, and to look for a solution. A second language is
that of measurement. Quanti�cation—most of the time materialized into mathematic
computation—constitute the main modality of measurement to assess the e�ciency
of some solution in the frame of some method. A third language is that of wording.
Most academic journals and conferences rely on English to communicate knowledge,
as well as on templates that standardize the structure and format of knowledge. The
dissertation format of the Computer Science thesis also highly constrain the way to
relate musical research. To sum up, substantial accounts may optimize the produc-
tion of knowledge in Computer Science, but in turn, may tend to undermine form as
sensible component of musical knowledge.

I suggest that the “substance over form” paradigm may originate from the dis-
ciplinary educational establishment provided in France. Obtaining a scholarship to
do doctoral research in Computer Science almost inevitably requires having a Mas-
ter’s Degree in a formal science discipline—e.g., mathematics, engineering, computer
science, or physics. I argue that such trainings push doctoral students to be pro-
ductive in their research within the norms of the scienti�c approach. Reciprocally,
the academic status of music in France reinforces the disciplinary framework for re-
search. For example, the recently-created doctorate in Music2 is intended to “high-
level composers”—e.g., already having professional experience in music—, and focus
on one formal music practice—i.e., composition. I claim that this academic context
may not encourage scienti�cally-trained doctoral students to go beyond applied re-
search to explore practical and sensible approaches to music research. In the follow-
ing paragraphs, I explain why I believe that research through design approaches may
support the negotiation of these scienti�c and musical norms in doctoral research.

Music Research Through Design
Design is a creative activity that focuses on the crafting of systems adapted to hu-
mans. Design as a conceptive activity �eld borrows techniques from many scienti�c
disciplines such as engineering sciences, computer science, psychology, or biology.
Yet, as Nigel Cross put it, design should be not be considered as a science, but rather

2https://www.ircam.fr/transmission/formations-superieures/
doctorat-de-musique/

https://www.ircam.fr/transmission/formations-superieures/doctorat-de-musique/
https://www.ircam.fr/transmission/formations-superieures/doctorat-de-musique/
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as a discipline in itself, characterized by “designerly ways of knowing” [Cross, 2001b].
This speci�c way of knowing of designers may be clari�ed by Alain Findeli’s notion
of project [Findeli, 2004]. While scientists tend to consider the world as an object that
they study—dissociating them from the world as subjects—, designers tend to con-
sider the world as a project—i.e., they situate themselves as subjects in the process of
studying an object. Design approaches may thus be suited to music, which is, as we
described in Chapter 2, a socially- and culturally-situated process.

Practice generally prevails over method in design. While scienti�c methods aim
at validating results and guaranteeing their reproduction, design practice does not,
or should not, be repeatable, as a situated act of creation [Cross, 2001b]. As such,
design practice is e�cient to solve “wicked problems”, which, as Horst Rittel coined
it, are socially-rooted problems that are better suited to iterative reframing than to
methodical reasoning [Rittel, 1972]. The practical aspect of design makes it close to
music, which is also de�ned by its practical and action-oriented processes [Leman,
2008].

Form may be as important as substance in design practice. The created artifacts
may rely on aesthetics, composition, or style to exert their intended functions. These
subjective and creative dimensions of artifacts may add to their objective and scienti�c
dimensions, such as their technical structure and organization [Archer, 1979]. Cru-
cially, evaluation of the form component cannot be reduced to the measurement of a
numerical variable in a controlled setup. Rather, it is the cultural or industrial appli-
cations that may testify of the success of a given design in a given real-world context.
Design may thus be suited to the building of interactive music systems, which simi-
larly rely on technical structures to create sonic forms that are to be interacted with
by humans in real-world musical situations.

Design research may have as many materializations as there are of design com-
munities [Vial, 2015]. For example, the �eld of design science aims at “scientizing”
the knowledge of design, typically by building design methods as well as publica-
tion venues to standardize the design discipline in a way similar to science [Cross,
2001b]. Yet, many designers consider that design research must include elements of
practice-based research, in a way similar to artistic research [Candy, 2006]. For ex-
ample, speculative design uses design artifacts to anticipate technological deviations
and harness public reactions toward it [Auger, 2013]. Critical design use design as an
artistic medium to research the process of design by inquiring designers on their own
practice [Bardzell and Bardzell, 2013]. In parallel, Francophone communities have es-
sentially focused on industrial and aesthetic applications of design, arguably because
of a lack of an appropriate context for academic research [Monjou, 2014]. To borrow
from Annie Gentès [Gentes, 2017], this indisciplinarity of design may be another trait
of similarity with music, which is also praised for its indisciplinary in Francophone
computer music communities [Sèdes et al., 2019].

I argue that carrying music research through design may provide opportunities to
reconsider both scienti�c and musical norms in interactive music systems. Research
through design is a practice-based approach to design research, consisting in (1) mak-
ing projects in real-world situations, and (2) relate on the framing of the problem
itself—e.g., the balance that was made between the intersecting and possibly con�ict-
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ing perspectives [Zimmerman et al., 2007]. I argue that the practice-based contribu-
tions enabled by research through design approaches may complement the applicative
contributions of human-centred approaches in the research on interactive music sys-
tems. I believe that the re�ective practice of translating tacit design knowledge into
words may globally bene�t music research [Schön, 2017]. In the next section, I intro-
duce the concept of interactive music dispositif to frame such music research through
design approach.

From Interactive Music Systems to Interactive Music
Dispositifs

The term “dispositif”, originally introduced by French philosopher Michel Foucault,
names the set of normative elements that may condition a given human activity
[Agamben, 2009]. Dispositifs include both endogenous and exogenous aspects of inter-
active music systems. That is, they encompass technical knowledge on their internal
implementation, along with the imaginary aspects that they may be transmitted to
their external environment. While “system” could also be used for a similar de�nition
[Burnham, 1968], I claim that the term conveys too much of a technical meaning in
music communities (see Chapter 2 for an overview). Although popular in the �elds
of art and design [Bianchini and Verhagen, 2016], dispositifs remain under-exploited
in the �eld of music, with a few recent exceptions in the �eld of sound art [Sinclair,
2018].

I introduce the notion of interactive music dispositif to explicitly consider the sci-
enti�c and musical norms that may condition human knowledge, actions, and feelings
toward interactive systems. I argue that music research can be led through dispositif
design, that is, through the technical realization of aesthetically-functioning artifacts
that challenge these cultural norms. In the next two sections, I provide a critical as-
sessment on the scienti�c and musical norms that may determine interactive music
dispositifs, focusing on machine learning as a scienti�c discipline. Rather than of-
fering a generic baseline for dispositif design, my wish is to share personal thoughts
based on the practical experience I gained through real-world applications of the dis-
positifs created in my doctoral research. I hope that this initiative may engage a more
global re�ection with other music researchers.

Norms in Music
As a culturally-learned practice, music may encapsulate several norms. In the next
sections, I propose a description of these normative elements, which I grouped in
terms of musical (1) knowledge, (2) action, and (3) feeling (see Figure A).

Musical Knowledge

Language conveys norms related to the description of music. Notation may perpetu-
ate cultural knowledge on structures and grammars of music, potentially restraining
sound-oriented musicians and non-musicians from interacting with a music dispositif
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Figure A: Normative elements related to music.

[Magnusson, 2019]. Also, technical terms, such as parameters’ names of synthesiz-
ers, may act as a disincentive for non-musicians to appropriate music systems, as our
conceptual map showed (Chapter 4).

The human body conveys norms on the training required to practice music. Phys-
ical techniques related to music practice are known to require considerable time to be
learned and mastered by humans [Palmer, 1997]. Skeuomorphism tend to perpetuate
nonlinguistic elements related to physical techniques in the digital domain [Lindh,
2018]. The somasticks (Chapter 3) are an example of dispositif that conveyed assump-
tions on the bodily techniques required to play with it.

Musical Actions

Sound conveys norms on the actions to be taken by performers and listeners of a dis-
positif. First, the range of timbres of an interactive music dispositif may condition
human actions in music making. For example, the entrain dispositif (Chapter 6) only
enabled humans to play a restrained set of prerecorded drum samples. Second, the
expressive qualities of sound may condition human actions in music listening [Le-
man, 2016]. For example, the rhythmic loops generated by the entrain dispositif may
leverage cultural norms on the way one should act when listening to it.

Interfaces of dispositifs reinforce norms on the musical forms to be created with
sound. First, the appearance of interfaces may orient human actions in music mak-
ing, as made famous by the notion of a�ordance [Gibson, 1977]. Second, the techni-
cal implementation of dispositifs may restrain human control over the processing of
sound in time. For example, interactive music dispositifs dedicated to music produc-
tion, such as Ableton Live, highly encourage humans to create aesthetically-con�ned
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music—e.g., the MIDI-based implementation combined with the clip functionality. On
the other hand, the Riding the Co-Explorers dispositif (Section 5.8) managed to appro-
priate the norms in music interfaces through the use of video game.

Musical Feelings

Aesthetics tend to standardize human feelings related to the perception of music. For
example, human interaction with a synthesizer may be implicitly in�uenced by aes-
thetic elements assessing the good and bad usages of some parameters. Music in-
stitutions have an active role in de�ning the aesthetic elements of interactive music
dispositifs. Depending on the will of institutions, some aesthetics or music genres
may be criticized to base a dominant norm in relation to one given music practice
[Born, 1995]. Or, they may be valued to sustain change and favour the emergence of
diverse music practices [Dryhurst, 2019].

Ownership tends to determine human feelings on the right to make music. In the
frame of the thesis, we made an e�ort to spread our interactive music dispositifs for
free using many di�erent public dispositifs—e.g., educational workshops, open source
projects, or public exhibitions. In a more general frame, individual ownership of tech-
niques related to music may create elite art forms, partly de�ned through socioeco-
nomic privilege to use technology [Hyde, 2010]. Alternatively, industrial ownership
may displace the value of music from that of a cultural to a monetary object [Wik-
ström, 2013].

Norms in Machine Learning

In the frame of my doctoral work, I now describe the norms encapsulated by machine
learning in relation to Computer Science. I attempt to describe these normative ele-
ments by grouping them in terms of human (1) knowledge, (2) action, and (3) feeling
(see Figure B).

Human Knowledge

Data conveys norms on the way humans may create knowledge of the world. Mea-
suring data implies possessing a dispositif capable of detecting a phenomenon in the
world with su�cient accuracy. Then, collecting and reporting data implies one or
several humans leading observations in the world to measure phenomena. Thus, data
is far from being a neutral element of knowledge, but rather a situated, partial, and
constitutive one. Researchers in the Humanities proposed to rename it capta (from
the Latin capere, “to take”) to emphasize the fact that data has been taken from a
phenomenon by an observer using some measurement dispositif [Drucker, 2011].

Data sets may reinforce the norms encoded in data at larger scales of knowledge.
For example, data sets built from popular music [Bertin-Mahieux et al., 2011] may
reinforce the power relationships between musical genres, notably by enabling large-
scale comparisons only based on a few musical features. On the other hand, human-
centred machine learning approaches leverage small-scale data sets [Gillies et al.,
2016]. These approaches enabled us to switch data sets from normative to evolutive
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Figure B: Normative elements related to machine learning.

technical components [Giaccardi and Fischer, 2008]. This evolutivity was witnessed
in the Behavioral Matter workshop (Section 5.9), where small data sets were shown to
support robotic object design as well as human synthesis exploration.

Human Actions

Computation encapsulates norms on the machine learning actions of creating, and
reasoning about, data knowledge. First, many machine learning computations rely
on inferential statistics, which produce probable, yet inevitably uncertain new knowl-
edge [Mittelstadt et al., 2016]. Second, computation may enable correlations between
two variables, but may be insu�cient to prove a causal relationship [Illari et al., 2011].
Explainability of machine learning is still subject for research to address the increas-
ing complexity of computations—e.g., in the many layers of deep neural networks
[Richardson et al., 2019].

Algorithms create new norms that condition human actions at the scale of society.
First, machine learning algorithms enable automatic de�nition of decision-making
rules. For example, a classi�er may learn to order data in terms of categories to which
they belong, but may also produce new categories based on its mathematical construct
[Domingos, 2012]. Second, algorithms can have a transformative e�ect on the way
humans conceptualize the world [Mittelstadt et al., 2016]. The most basic algorithmic
processes—e.g., gathering data and using algorithms to classify entities—thus deter-
mine new human actions that may not have been thought of without such dispositifs.
The improvisational performance ægo (Section 5.10) aimed at illustrating such direct-
ing of human actions by machine learning algorithms.
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Human Feelings

Disciplinarity of public scienti�c institutions tends to standardize the way machine
learning is taught and researched on. The last decade has witnessed a wave of strate-
gic and political plans related to “Arti�cial Intelligence” all over the world [Cath et al.,
2018, Villani et al., 2018]. Public universities, research organizations, institutes, and
laboratories are allocated funding grants to research and develop “Arti�cial Intel-
ligence”. This governmental impetus may create pressures on academics from the
engineering sciences as well as the humanities to apply machine learning to their
work, letting few space for critical re�ection. The current thesis work, I believe, have
remained critical toward this normative wave, by adopting an interdisciplinary ap-
proach to the design of machine learning.

Society tends to determine human feelings on machine learning and computer
science in general. “Arti�cial Intelligence”, as the last intensi�cation of the digitiza-
tion phenomenon, o�ers tremendous opportunities to market goods and services to
the world [Crawford and Joler, 2018]. Machine learning applications thus grapple
with capitalism, and the globalized and privatized system that goes with it [Deleuze,
1995]. These elements may in�uence how people think about machine learning,
as we witnessed in Chapter 7. Along with other academics [Caramiaux et al.,
2019], I believe that the upcoming prevailing of private industries in creative �elds
should be addressed by public research communities, which include music research
communities.

All norms stated above re�ect my critical assessment of endogenous and exogenous
aspects of interactive music systems. I invite other researchers to re�ect on their own
practice to contribute to a more general de�nition of interactive music dispositifs.

Example Projects
In this section, I show how dispositif design enables to challenge each of these nor-
mative elements. I rely on three example projects of practice with music and machine
learning, led in parallel of my doctoral research, to illustrate this claim:

• Sound Control was an action research project started in 2016, led by Rebecca
Fiebrink, in which I participated as pre-doctoral researcher at Goldsmiths Uni-
versity of London [Scurto, 2016].

• Paroles d’Exil was a research and creation project ended in 2017, led by the
composer Mélanie Egger at GMEM-CNCM / Friche la Belle de Mai, on which I
worked two years as computer music designer.

• {Lutheries}2 was an outreach project carried in 2018, initiated by Lutherie Ur-
baine, that I directed during a one-year volunteering as education assistant on
science and music.

Figure I schematizes how the three projects respectively injected human values in the
above-mentioned scienti�c and musical norms.
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Sound Control

The Sound Control project was initiated by Simon Steptoe, together with Louise
Tyrrell, who runs the Musical Inclusion Programme for the Northamptonshire Music
and Performing Arts Trust (NMPAT). They notably collaborated with the researcher
Rebecca Fiebrink, along with music educators and music therapists associated with a
community music centre’s Musical Inclusion programme. Programme members were
interested in more �exibly customise digital instruments for disadvantaged children
they worked with—including but not limited to children with physical and learn-
ing disabilities. All had experience supporting youths’ acoustic music-making (e.g.,
singing, using simple percussion instruments) and using simple switch-based con-
trollers to trigger pre-recorded samples. They were interested in how they might use
bespoke sensor-based instruments with youth in their programmes.

Figure C: Picture of an inclusive ensemble3 performing with Sound Control.

Our team led eight workshops (approximately 1-3 hours each) with Musical In-
clusion programme personnel and other music therapists and educators from the lo-
cal community (see Fig. C). Early workshops showed participants demonstrations
and videos of existing approaches to creating bespoke musical instruments (e.g., the
British Paraorchestra, Wekinator4), then engaged participants in brainstorming ac-
tivities. In later workshops, we taught participants to use prototype technologies
developed for the project, such as Grab-and-play [Scurto et al., 2016], then elicited
feedback about them. In parallel, our team attended seven classroom and workshop
sessions in which two practitioners from the programme worked with children with
disabilities in a school (�ve sessions) or community centre (two sessions). A typical
session involved one teacher or therapist working one-on-one with 3-6 children for
10-30 minutes each, with members of our team helping with technology as needed.
Additionally, the two practitioners began using the Sound Control software5 indepen-
dently after the fourth of these sessions, and they sent us bug reports, feature requests,
and updates on their usage by email.

Sound Control enabled (1) sonic expression of non-musician people through ma-
chine learning computations, and (2) accessibility of embodied music-making using
sensor data (see Fig. I, bottom). First, the development of the Sound Control software

3https://network.youthmusic.org.uk/nmpat-our-digital-ensemble-pilot-session
4http://www.wekinator.org/
5http://soundcontrolsoftware.com/
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Figure D: User interface for the Sound Control dispositif (taken from [Thompson et al.,
2019]).

let us learn new insight on the requirements needed for musical expression with ma-
chine learning. Human criteria—such as recognizing and exercising agency, encour-
aging moving and listening, and supporting social aims—were elicited by the design
team, which pushed us to opt for simple sonic interactions realized by straightforward
machine learning computations. Rather than building adapted body-based interfaces,
the resulting music dispositif helped carers create diachronic forms, that is, short-
lived data con�gurations re�ecting the current state of interaction at an experiential
level [Bourganel et al., 2016]. Second, the process of collaboration with music ther-
apists, teachers, and children improved accessibility of music and machine learning.
Using interactive supervised learning enables to create new sensor- and vision-based
musical interfaces based on data examples of motion and sound, making interface
building fast and accessible to people without programming or engineering expertise.
The fact that Sound Control continues to support the therapists and teachers in their
workshops, and enabled the children with disabilities to take part in public music per-
formances, let us think that co-design may be a promising approach to frame machine
learning for music.

Paroles d’Exil

Paroles d’Exil (2017) is a music installation co-created with Mélanie Egger during a
residency at the GMEM-CNCM / Friche la Belle de Mai, Marseille, France, in collabora-
tion with the Sound Music Movement Interaction group of IRCAM (see Figure E). The
residency was led in the context of a Master program in Music from Aix-Marseille
Université. Mélanie is a composer and pianist who took this two-year program to
carry a research and creation project, named Remembrance Fragments and Documen-
tary Music. Her project, supervised by Christine Esclapez, crossed historical facts,
philosophical writings, musical and contemporary artworks to nurture a personal re-
�ection on the human notion of time. Its realization took two forms: a Master’s thesis
on the one hand, and a musical artwork on the other hand, named Paroles d’Exil, for
which she kindly asked me for a collaboration.

For this artwork, Mélanie primarily wished to work with archival voices of the Al-
gerian War period—in relation with her personal history. Prior to collaborating, she
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Figure E: Pictures taken during the restitution of Paroles d’Exil.

thus harvested a corpus of sounds from radiophonic emmissions with correspond-
ing dates and location. Then, the highly-recursive process of collaboration included:
discussion to become acquainted with Mélanie’s musical concerns, demonstrations
to show the technical possibilities o�ered by IRCAM’s tools, interpretation of their
scienti�c basis for Mélanie to grasp theoretical links between the tools’ technical ma-
nipulation of sound material with her personal re�exions, creation of sonic excerpts to
grasp experiential aspects in relation to the intended aesthetics of the piece, and �nal
design of the music dispositifs during the residency. In close link with her memoir,
we converged on a music installation format in three parts—Histoire, Mémoire, and
Oubli—, each comprising a music dispositif treating archival voices in an appropri-
ate manner. The second dispositif, Mémoire, leveraged machine learning as a central
conceptual and technical element of its design.

Mémoire continually generates sequences of syllables through loudspeakers frag-
mented in location. The syllables, originally extracted from a corpus of archival voices
dated from the Algerian War period, are reorganized as sequences in real-time by a
machine learning algorithm, who creates new narratives through the recorded voices.
Concatenative synthesis is used to decompose original sound recordings into sepa-
rated syllables based on their spectral content (see Fig. F, left). A factor oracle is used
to create a sequence model that relates su�x and a�x probabilities of transition based
on the spectral similarities of syllables originally presented in the corpus. Navigation
in the sequence model is made autonomous by the oracle. Remembrance is imposed
on us as a split, selective, hardly decipherable entity, in a constantly-evolving present.

Paroles d’Exil enabled (1) appropriation of machine learning algorithms to create
a new interface between humans and sound, and (2) re�ection on design as a creative
discipline that contributes to musical aesthetics (see Figure I, upper right). First, the
development of the Mémoire dispositif led to a creative use of machine learning. The
algorithm that we used, namely CatOracle [Einbond et al., 2016], was originally de-
signed for human-computer improvization. Recursive developments and discussion
with Mélanie enabled us to transform this algorithm as a new music interface—e.g., as
an autonomous music installation—, appropriating its technical a�ordances to the mu-
sic artwork. Second, the process of collaboration between Mélanie—the composer—
and myself—the designer—let her re�ect on the creative role that a designer may have
in relation to music. After these two years of collaboration, she eventually considered
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Figure F: Control interface for the Mémoire dispositif (built on CatOracle).

myself to be credited as artistic co-creator for the music installation, as the technical
realization had a deep link with her theoretical and aesthetic re�ections.

{Lutheries}2

{Lutheries}2 is an exhibition conceived with Lutherie Urbaine and Laurent Le Gall (see
Fig. G). It was intended to introduce people of all ages to the relationships between
science and music through interaction with acoustic, electronic, and digital music
dispositifs. The visit tour consisted in seven areas. A �rst area—History—introduced
the links between technique, science, and technology by recounting the evolution of
lutheries. The following areas recounted this historical course through the discussion
of several notions linking science with music—Harmony, Acoustics, Timbre, Electron-
ics, and Digitalities. The tour �nally came out on an area dedicated to play—Rhythm.
Illustrated, easy-to-follow panels were displayed along the interactive journey to elab-
orate on the technical functioning of the instruments. An educational kit accompanied
the exhibition and described several fun activities conceived for each of the notions
developed in the areas.

As diverse as the free-to-play music dispositifs of the exhibition were, their com-
mon feature was their being made of recycled objects. The Lutherie Urbaine associ-
ation indeed accumulated twenty years of experience in the recovery of waste ma-
terial to craft unique music dispositifs. Examples of waste included materials—e.g.,
plastic tubes, wood boards, metallic barrels, glass bottles, or electronic circuits—but
also everyday objects—e.g., tennis rackets, beverage bottles, or electronic toys. These
music dispositifs were often crafted in the context of musical artworks, during which
they may stand as central to the narrative. Through these artworks, Lutherie Ur-
baine wished to sensitize the public to sustainable development. Many musicians and
luthiers that pertained to the association led education outreach activities in public
elemetary and secodary schools, sharing their unique crafts to a diversity of pupils,
who could bring their own abandoned objects and bring them back to life in music.
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Figure G: Pictures of the {Lutheries}2 exhibition at Bagnolet, France.

For the Digitalities area, we conceived a new dispositif, based on CataRT (see Fig.
H). The dispositif presents the public with several recycled objects put on a table. Be-
hind the table, a screen and a loudspeaker stand still, but are not accessible to use
by the public. As soon as the public attempts to manipulate the recycled objects,
the digital dispositif may react by generating sound along with a screen animation.
Sounds are created on the basis on the frictions made by the object on the table. A
piezoelectric sensor is put at the surface of the table, converting the diversity of vi-
brations made by material objects into digital data. This data signal is sent to a shal-
low machine learning algorithm—k-nearest neighbor—, which computes the similar-
ity between the object’s vibration and a data set of environmental sounds recorded
in various locations—represented as points on the screen. The most similar sounds
are then played by the dispositif, who accounts for the expressive cues encoded in the
materiality of the objects, jointly with the physical manipulations made by the public.

Figure H: Picture of the music dispositif designed for the Digitalities area.
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{Lutheries}2 enabled (1) diversity of musical languages through an environmental
data set, and (2) sustainability of machine learning through a public music dispositif
(see Fig. I, upper left). First, the development of the dispositif in the Digitalities area
led to the creation of a data set made with environmental sounds, rather than instru-
mantal sounds, or music songs. This creates a diversity of languages for music, linked
with the idea of matter through their sonic a�ordances, and echoing approaches from
thing-centered design [Giaccardi and Fischer, 2008] as alternative to human-centred
approaches. Second, the outreach collaboration with Lutherie Urbaine encouraged
sustainable views on machine learning and music. Rather than using deep architec-
tures, our dispositif relied on a shallow machine learning algorithm. Not only was it
cheaper in terms of computational cost, but it also promotes alternative uses of ma-
chine learning that may di�er with those commonly thought of in society. Also, the
context of public exhibition let people freely experience with the dispositif and the
original sonic interactions that it fostered in relation to the recycled objects. Sustain-
able computers, speakers, and sensors may be used in next versions of the dispositif.

Music (or) Design Practice?
The projects related above open questions related to the nature of the practice on in-
teractive music dispositifs. A �rst option would be to consider them as being part
of a music practice. Yet, they were not led through the prism of composition, which
is, as mentioned in the beginning of this post-scriptum, the main modality of music
practice in the French academic music community. Sound art may be a more legiti-
mate category, as a relatively recent artistic practice traditionally not associated with
music [Wishart, 1996]. Yet, I believe that interactive music dispositifs should remain
attached to music as a central �eld of work, for example by having other protagonists
such as computer music designers, performers, authors, or teachers, to be recognized
as equivalent to composers [Zattra and Donin, 2016].

On the other hand, recognizing the projects as sound design practice is incorrect
to my mind. Sound design focuses on the use of sound to e�ectively ful�ll some func-
tions, representations, or signalling [Misdariis, 2018]. Yet, the three projects, as well
as the notion of dispositif, put a stronger emphasis on human interaction to realize
these functions than on sound itself. Sonic interaction design may be an alternative
path to characterize the practice [Franinović and Sera�n, 2013]. Yet, the emerging
�eld lacks the musical dimensions of interaction, which directly deals with the cul-
tural roots of music, and that I wished to emphasize with the notion of interactive
music dispositif.

To borrow the expression of Norbert Schnell6, I would like to call music design the
act of conception and reception of interactive music dispositifs that supports musi-
cal communication. Music design values the social and cultural dimensions of mu-
sic [Small, 1998, Frith, 1998, Herbert, 2012] over the practice of music composition.
Beyond sound or embodied interaction, music design is concerned with musical com-
munication supported by dispositifs [Miell et al., 2005, Leman, 2008]. Musical com-

6Norbert recently created a Master program in MusicDesign: https://www.hs-furtwangen.
de/en/programmes/musicdesign-master/

https://www.hs-furtwangen.de/en/programmes/musicdesign-master/
https://www.hs-furtwangen.de/en/programmes/musicdesign-master/
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munication is the process of expressive interaction that take place between entities
that share an acoustic environment—be they humans, machines, animals, or things
[Altenmüller et al., 2013, Leman, 2016]. In this way, the practice of music design
may tend to shift the norms with which we listen and interact with our shared en-
vironments, in a current context of technofetishism [Latour, 1996]. The three above
example projects and the corresponding dispositifs may support such music design
practice, focusing on communication between humans and diverse elements of their
environment—encompassing people with disabilities, cultural memories, materials
and living things.

Overall, I believe that the practice of music design may in turn greatly bene�t
music research. Similar to other design �elds, music design may enable original re-
search contributions in the �elds of Engineering Science and the Humanities, but also
in other �elds such as Health and Natural Science. Also, music design may pave the
way for a diversity of new music practices that will bene�t from the situated charac-
teristics of design acts. Eventually, music design may be a suitable practice to assist
computer science students in the exploration of more sensible approaches to music
research. As a conclusive statement, I would like to emphasize that this post-scriptum
was not intended to discredit other research approaches to music—especially the ap-
plied science approach, which was at the core of the present dissertation. Rather, it
was meant to make my perception of the current landscape audible, in the hope of
setting a common ground for music research. I hope to hear back from other people
about it.
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Figure I: The three example projects used design practice to shift the normative ele-
ments of music and machine learning toward openness, empowerment, and change.
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