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Abstract

Music is a cultural and creative practice that enables humans to express a variety of
feelings and intentions through sound. Machine learning opens many prospects for
designing human expression in interactive music systems. Yet, as a Computer Science
discipline, machine learning remains mostly studied from an engineering sciences
perspective, which often exclude humans and musical interaction from the loop of
the created systems.

In this dissertation, I argue in favour of designing with machine learning for in-
teractive music systems. I claim that machine learning must be first and foremost
situated in human contexts to be researched and applied to the design of interactive
music systems. I present four interdisciplinary studies that support this claim, using
human-centred methods and model prototypes to design and apply machine learning
to four situated musical tasks: motion-sound mapping, sonic exploration, synthesis
exploration, and collective musical interaction.

Through these studies, I show that model prototyping helps envision designs of
machine learning with human users before engaging in model engineering. I also
show that the final human-centred machine learning systems not only helps humans
create static musical artifacts, but supports dynamic processes of expression between
humans and machines. I call co-expression these processes of musical interaction be-
tween humans—who may have an expressive and creative impetus regardless of their
expertise—and machines—whose learning abilities may be perceived as expressive by
humans.

In addition to these studies, I present five applications of the created model pro-
totypes to the design of interactive music systems, which I publicly demonstrated in
workshops, exhibitions, installations, and performances. Using a reflexive approach,
I argue that the musical contributions enabled by such design practice with machine
learning may ultimately complement the scientific contributions of human-centred
machine learning. I claim that music research can thus be led through dispositif de-
sign, that is, through the technical realization of aesthetically-functioning artifacts
that challenge cultural norms on music and computer science.
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Résumeé

La musique est une pratique culturelle permettant aux étres humains d’exprimer sen-
siblement leurs intentions a travers le son. L’apprentissage machine définit un ensem-
ble de modéles permettant de nouvelles formes d’expression au sein desdits systémes
interactifs musicaux. Cependant, en tant que discipline informatique, ’apprentissage
machine demeure essentiellement appliquée a la musique du point de vue des sci-
ences de I'ingénieur, qui, trés souvent, congoit les modeles d’apprentissage sans tenir
compte des interactions musicales prenant place entre humains et systémes.

Dans cette these, j’envisage la possibilité de mener des pratiques de design avec
lapprentissage machine pour les systemes interactifs musicaux. Je soutiens que
l’apprentissage machine doit avant tout étre situé au sein d’'un contexte humain afin
d’étre congu et appliqué au design de systémes interactifs musicaux. Pour défendre
cette these, je présente quatre études interdisciplinaires, dans lesquelles j'introduis
des modeles intermédiaires d’apprentissage, dits modéles-prototype, au sein de méth-
odes de conception centrées humain, afin d’appliquer I’apprentissage machine a
quatre tiches musicales situées : le mapping mouvement-son, I’exploration sonore,
I'exploration de la synthése, et 'interaction musicale collective.

A travers ces études, je montre que les modeéles-prototype permettent de générer
des idées de design pour 'apprentissage machine en amont de la phase d’ingénierie
desdits modeles, ce en lien étroit avec les utilisateurs potentiels de ces systémes.
Je montre également que les systémes d’apprentissage machine centrés humain ré-
sultant de ce processus de conception rendent possible des processus dynamiques
d’expression entre les humains et les machines, allant au-dela de la création d’artefacts
musicaux statiques. Je propose de nommer co-expression ces processus d’interaction
musicale entre des étres humains—faisant preuve d’un élan expressif et créatif quelque
soit leur expertise musicale—et des machines—dont les capacités d’apprentissage peu-
vent étre percues comme expressives du point de vue de I’humain.

En outre, je présente cinq systémes interactifs musicaux congus avec lesdits
modeles-prototypes, et relate leurs restitutions publiques au sein d’ateliers, exposi-
tions, installations et performances. Par une approche réflexive, je montre que les
contributions musicales apportées par des pratiques de design avec 'apprentissage
machine peuvent, a terme, complémenter les contributions scientifiques apportées
par les méthodes de conception centrées humain. Ainsi, je suggére que la recherche
musicale peut étre menée par le design de dispositifs interactifs musicaux, c’est-a-
dire, par la réalisation technique d’artefacts esthétiquement fonctionnels remettant
en cause les normes culturelles régissant 'informatique et la musique.
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Introduction

Music is a cultural and creative practice that enables humans to express a variety of
feelings and intentions, especially by means of embodied interaction with sound [Le-
man, 2016]. Different types of music instruments were created by humans in different
cultural contexts to support different musical expression [Jorda, 2005]. Acoustic in-
struments have been used for centuries over the world to support the transformation
of human gestures into sound. Electronic instruments were invented over the last
century in Western countries, enabling new forms of sound generation by means of
electronic and digital components. Specifically, interactive music systems were cre-
ated over the last half century by computer music research communities to investi-
gate novel ways to control sound, possibly blending digital software with physical
components. We are interested in designing interactive music systems that takes into
account existing music practices to enable new forms of human expression.

Machine learning opens many prospects for the design of interactive music sys-
tems. The framework supports the computational performance of many different
tasks related to music practice, such as gestural control of sound [Bevilacqua et al.,
2009], sound generation [Esling et al., 2019], or human-machine improvization [As-
sayag et al., 2006]. Machine learning is powerful because it automatically learns to
perform the above-mentioned tasks from example data. For example, imagine that
you could build a custom gestural controller by only recording examples of ges-
tures and without doing any programming. The so-called mapping by demonstra-
tion [Francoise, 2015] is one example of expressive interaction enabled by machine
learning in interactive music systems.

As a Computer Science discipline, machine learning remains mostly designed and
applied to music from an engineering sciences perspective. Much effort is put into
the solving of technical problems related to the non-interactive learning of musical
tasks, such as automatic music analysis and generation. This approach may often
exclude human users from the loop of the created machine learning system [Briot
et al., 2017]. While engineering sciences methods remain essential to the building
of effective machine learning systems, we believe that fully-automated systems may
not always benefit humans in their music practices. Human-centred methods may be
required to balance model engineering with human evaluation to truly foster human



2 1. Introduction

creativity over artificial creativity [Beaudouin-Lafon and Mackay, 2018].

Human-centred machine learning is an interdisciplinary area of work that aims
at rethinking machine learning research and design in terms of human goals [Gillies
et al., 2016, Ramos et al., 2019]. The area borrows many methods from the field of
Human-Computer Interaction to design machine learning systems that include hu-
mans in their loop. For example, rather than fully autonomous, these systems may
let humans parametrize algorithms, or interactively provide example data to adapt
machine learning to their needs. Previous works showed the usefulness of human-
centred machine learning for the design of interactive music systems [Fiebrink,
2011, Francoise, 2015, Scurto, 2016]. Specifically, musicians may twist the initially-
designed machine learning task to fulfill their musical tasks in a customized and cre-
ative way.

We are interested in applying human-centred machine learning to the design of in-
teractive music systems. We expect that this methodology would enable to build a
scientific understanding of the technical requirements of machine learning in rela-
tion to creative practices of music. Alternatively, we also envision to adopt a reverse
approach, which is to practice with machine learning for real-world musical situations.
We hypothesize that such a creative approach would enable to investigate other in-
quiries related to machine learning applied to music, in a way similar to how dispositifs
questions cutting-edge technologies in the fields of art and design [Bianchini and Ver-
hagen, 2016]. Overall, we expect that our joint scientific and practical approach will
help us get a holistic understanding of machine learning in relation to music [Jorda,
2005].

1.1 Thesis Statement

In this dissertation, I argue in favour of designing with machine learning for interac-
tive music systems. I claim that machine learning must be first and foremost situated
in human contexts to be researched and applied to the design of interactive music
systems. I present four interdisciplinary studies that support this claim, using human-
centred methods and model prototypes to design and apply machine learning to four sit-
uated musical tasks: motion-sound mapping, sonic exploration, synthesis exploration,
and collective musical interaction. Through these studies, I show that model proto-
types help envision designs of machine learning with human users before engaging
in engineering. I also show that the final human-centred machine learning systems
not only helps humans create static musical artifacts, but supports dynamic processes
of expression between humans and machines. I call co-expression these processes of
musical interaction between humans—who may have an expressive and creative im-
petus regardless of their expertise—and machines—whose learning abilities may be
perceived as expressive by humans. Using a reflexive approach based on real-world
applications of the models, I argue that the musical contributions enabled by design
practice with machine learning may ultimately complement the scientific contribu-
tions of human-centred machine learning. I claim that music research can thus be
led through dispositif design, that is, through the technical realization of aesthetically-
functioning artifacts that challenge cultural norms on music and computer science.
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1.2 Research Approach

The research approach to human-centred machine learning applied to music con-
sisted in the following loop: (1) focus on one situated music task, (2) rely on model
prototypes to study one machine learning technique, and (3) use one human-centred
method to research and design human interaction with machine learning. We iterated
four times over this loop, each time leveraging a new musical task, machine learning
technique, and human-centred method. In parallel, I also practiced with machine
learning to create interactive dispositifs in real-world musical situations. This pro-
cess enabled me to (4) adopt a reflexive approach to human-centred machine learning
applied to music. In a post-scriptum added at the end of this dissertation, I relate my
personal reflections on applied and practice-based approaches to machine learning
for music, discussing disciplinary frameworks embedded in machine learning as well
as in music.

1.2.1 Situated Musical Tasks

We applied human-centred machine learning to situated musical tasks. By situated,
we mean taking into account the cultural, individual, or industrial context of music,
as an embodied act of human expression [Leman, 2016]. Importantly, a given musical
task may pertain to several music communities or practices. For example, the task
of motion-sound mapping mostly pertains to performers from the NIME community.
Alternatively, the task of sonic exploration may pertain to sound designers and com-
posers from different music practices [Garcia et al., 2012], but also to non-musicians—
e.g., novice users learning to use a new interface [Resnick, 2007]. Situating musical
tasks would not only enable us to take into account differences in music expertise, but
also cultural differences in music practices—supporting the human-centred design of
machine learning [Gillies et al., 2016]. We thus led our research and design process
on four situated musical tasks: motion-sound mapping, sonic exploration, synthesis
exploration, and collective musical interaction (see Fig. 1.1).

motion-sound mapping sonic exploration synthesis exploration collective musical interaction

Figure 1.1: The four situated musical tasks investigated in this thesis.

1.2.2 Model Prototypes

We relied on model prototypes to study machine learning techniques in relation with
the situated musical tasks. Model prototypes may be considered as design artifacts for
machine learning techniques in interactive systems. They enable to test interactive
data workflows with concrete algorithmic implementations before starting the engi-
neering of a final learning model. As such, model prototypes enable to generate new



4 1. Introduction

ideas and envision new designs of machine learning in situation with human users.
This contrasts with engineering sciences approaches to machine learning, which of-
ten consider user interaction only after a model is optimized from a large data set.
The notion of model prototype extend that of software prototype [Beaudouin-
Lafon and Mackay, 2009] to the case of statistical models in machine learning. For
example, one may test several model prototypes—e.g., centroid- or density-based—
to design the machine learning technique of clustering [Murphy, 2012]. Focusing on
model prototyping over model engineering enabled us to study four machine learning
techniques in relation to the four situated musical tasks: unsupervised learning, rein-
forcement learning, deep reinforcement learning, and active learning (see Fig. 1.2).

Engineering D Prototyping D D I:I

Figure 1.2: The four model prototypes of the thesis, respectively designed with unsu-
pervised, reinforcement, deep reinforcement, and active learning.

1.2.3 Human-Centred Methods

We used human-centred methods to research and design our model prototypes in sit-
uated musical tasks. Human-centred methods come from the interdisciplinary field
of Human-Computer Interaction (HCI), which builds interactive systems to observe
human interaction and contribute to a theoretical knowledge of human-computer in-
teraction [Mackay and Fayard, 1997]. Instead of theory, our human-centred methods
will build on the interaction design research notion of strong concepts—an interme-
diate form of knowledge that is more abstracted than particular instances, yet does
not aim at building general theories [Ho6k and Lowgren, 2012]. As such, we relied
on four human-centred methods to iterate between concepts, observation, proto-
typing, and engineering with our model prototypes: design-oriented, experimental,
user-centered, and participatory design methods (see Fig. 1.3).

Engineering EKD Prototyping ?j @:‘

Concepts
Concepts
Concepts
Concepts
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Observation [:L‘Ij

Observation
Observation
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Figure 1.3: The four human-centred methods used in the thesis: design-oriented, ex-
perimental, user-centered, and participatory design methods.
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1.2.4 Reflexive Approach

We adopted a reflexive approach to the application of human-centred machine learn-
ing to interactive music systems [Kldy et al., 2015]. In addition to concepts, design,
observation, and engineering of human-centred methods, we led applications of our
model prototypes in real-world musical situations (see Fig. 1.4). While human-centred
methods have the scientific goal of evaluating the efficiency of a design, applications in
real-world musical situations have the creative goal of sharing the experience and the
conceptual ideas of a system with people and society in general. In this sense, they
helped us adopt a reflexive approach by taking a critical stance on human-centred
methods and explore practice-based approaches to music research.

¥ > @

O i O

Figure 1.4: The real-world applications of our model prototypes, led outside the frame
of the human-centred methods.

1.3 Contributions

The contributions of the thesis situate at four levels: (1) model prototypes, (2) empir-
ical findings, (3) music dispositifs, and (4) theoretical perspectives.

1.3.1 Model Prototypes

Each of our four human-centred studies led to the design of an interactive model
prototype, applying a machine learning technique to a situated musical task:

+ The Online Gaussian Mixture Model model supports the musical task of motion-
sound mapping by implementing unsupervised learning from human motion
observations.

« The Sarsa model supports the musical task of sonic exploration by implement-
ing reinforcement learning from human feedback and machine exploration.

« The Deep TAMER model supports the musical task of synthesis exploration by
implementing deep reinforcement learning from human feedback, control and
machine intrinsically-motivated exploration.

+ The Bayesian Information Gain model supports the musical task of collective
musical interaction by implementing active learning from human individual
performance.
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1.3.2 Empirical Findings

Observing humans interact with our four model prototypes enabled us to harvest
empirical findings related to the musical tasks and situated in music practices:

« Performers projected themselves into imaginary musical situations interacting
with unsupervised learning. This projection was enabled by the online adapta-
tive behaviour of the motion-sound mapping.

« Humans perceive differences between various exploration strategies of rein-
forcement learning agents. These differences depend on environmental factors
related to timbral features of sound.

+ Sound designers partner with deep reinforcement learning agents in synthesis
exploration. These partnerships can be placed along a continuum ranging from
user- to agent-as-leader.

« Non-musicians reacted positively to the collective musical behaviour of active
learning. This reaction was enabled by the expressive audiovisual queries made
by the machine to the humans.

1.3.3 Music Dispositifs

In addition to our model prototypes and observations, we created several music dis-
positifs throughout out work. We propose to borrow the term “dispositif” from the
fields of contemporary art and design [Bianchini and Verhagen, 2016] to consider
broader dimensions of interactive music systems—we will properly introduce it in the
Post-Scriptum. We applied the interactive dispositifs in several real-world musical sit-
uations, ranging from public exhibitions, performances, installations, and workshops.

« The somasticks are augmented drumsticks that use unsupervised learning to
emphasize somatic expression in drumming practice.

« The Co-Explorer is a software that lets humans explore large parameter spaces
by expressing positive or negative feedback to a deep reinforcement learning
agent.

— Riding the Co-Explorers is a single-level game that lets a single player guide
the Co-Explorer in one single sound space.

— Behavioral Matter is an interdisciplinary workshop that applied the Co-
Explorer to the design of robotic objects.

— &go is an improvisational computer music piece with interactive sound

and image for one performer and the Co-Explorer.

« entrain is a public installation that lets humans express collectively in music in
collaboration with an active learning loudspeaker.



1.4. Thesis Overview 7

1.3.4 Theoretical Perspectives

Our human-centred studies and real-world applications enabled us to open theoretical
perspectives on music, machine learning, research, and design.

« The artifacts called model prototypes help envision possible designs of machine
learning in situation with human users before fully engineering them.

« The notions of machine expression and co-expression support the general anal-
ysis of musical interaction between (possibly learning) machines and (possibly
non-musician) humans.

« The concept of interactive music dispositif supports explicit consideration of
the scientific and musical norms that may condition human imagination on
interactive systems.

« The approach of music research through design enables practice-based contri-
butions in music that may complement applicative contributions in computer
science by challenging the norms in interactive music systems.

1.4 Thesis Overview

Chapter 2 relates the context and related work for the thesis. It reviews basic no-
tions on interactive music systems, machine learning, and human-centred machine
learning applied to music.

Chapter 3 presents the first study of the thesis. It uses a design-oriented method to
apply unsupervised learning to the musical task of motion-sound mapping. It de-
scribes the musical and technical concepts surrounding the study, followed by the
design of a model prototype, and the application to the design of a music dispositif,
called somasticks, that was tested by expert performers.

Chapter 4 presents the second study of the thesis. It uses an experimental method to
apply reinforcement learning to the musical task of sonic exploration. It describes the
musical and technical concepts surrounding the study, as well as the design of a model
prototype, and the observation of a group of humans, containing both musicians and
non-musicians, interacting with the model in a controlled setup.

Chapter 5 presents the third study of the thesis. It uses a user-centered design method
to apply unsupervised learning to the musical task of synthesis exploration. It de-
scribes the musical and technical concepts surrounding the study, followed by the it-
erative design of a model prototype, intertwined with observations with expert sound
designers, and ended by the engineering of the model. Lastly, it reports on applica-
tions of the model to the creation of three music dispositifs for real-world situations:
Riding the Co-Explorers, Behavioral Matter, and aego.
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Chapter 6 presents the fourth study of the thesis. It uses a participatory design method
to apply active learning to the musical task of collective musical interaction. It de-
scribes observations made with designers of previous collaborative mobile music-
making systems, followed by the design of a model prototype, and the application
to the design of a music dispositif, called entrain, that was tested by non-musicians.

Chapter 7 discusses the human-centred approach to machine learning applied to mu-
sic adopted in the thesis. It describes the human and machine advantages of situating
machine learning in human contexts to study musical interaction. It introduces the
notions of machine expression and co-expression to describe such diversity of musical
interaction between humans and learning machines. It builds on the latter human-
centred notions to discuss artificial creativity approaches to machine learning applied
to music.

The Post-Scriptum builds on real-world musical situations of practice with machine
learning to reflect on the research led in the thesis. It discusses the balances made be-
tween intersecting perspectives from Computer Science and music. It presents design
projects, led in parallel of the thesis, that challenge the norms of these disciplines. It
finally delineates a music research through design framework, which leverage the the-
oretical notion of interactive music dispositif to foster novel musical practices that are
grounded in their environment.
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Design-Oriented Method

3.1 concepts: motion-sound mapping
3.2 prototyping: unsupervised learning
]
I

3.3 application: somasticks

Experimental Method

4.1 concepts: sonic exploration

4.2 prototyping: reinforcement learning
4.3 observation: controlled experiment

User-Centered Design Method

5.1 concepts: synthesis exploration

\ 5.2 prototyping I: reinforcement learning
)j 5.3 observation I: case studies

5.4 prototyping II: deep reinforcement learning
5.5 engineering Il: co-explorer

| | 5.6 observation II: workshop

5.8, 5.9, 5.10 applications: riding the co-explorers, behavioral matter, aego

Participatory Design Method
6.1 observation: field study
6.2 prototyping: active learning
6.3 application: entrain

[]

Figure 1.5: Graphical outline of the four studies led in the thesis.

Chapter 3

Chapter 5 Chapter 4

Chapter 6
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Context and Related Work

In this chapter, we motivate our research approach by situating it in the context of
related works. We start by contextualizing interactive music systems, situating the
musical values that they may encapsulate, and describing the approaches and tech-
niques used to design them. We then give an overview of machine learning, defining
the technical elements of the framework, and reviewing applications and methods
adopted in the field of music. We finally motivate human-centred machine learning,
as a research approach that explicitly consider humans in the design of machine learn-
ing. We describe the techniques and methods employed, notably for applications to
the field of music.

Part of this work was published and presented as doctoral symposium paper at the
4th International Conference on Movement Computing (MOCO 2017) in London, United
Kingdom [Scurto and Bevilacqua, 2017].

2.1 Interactive Music Systems

Interactive music systems are a broad family of digital systems aimed at supporting
human music practices. These practices may encompass music performance, com-
position, and improvization, as well as listening, pedagogy, or playing. This section
aims at describing the context in which the research and development of interactive
music systems may operate. We first situate interactive music systems among a vari-
ety of musical values, which cannot be dismissed when considering human musical
practices. We then describe the approaches adopted to their design, and the technical
features that have been shown to be central to their functioning.

2.1.1 On Music Practices

As support of human musical practices, interactive music systems always encapsu-
late musical values and signification into their design. In this section, we situate our
approach among a set of musical values. We argue in favour of (1) practical and (2)
embodied dimensions of music, which we do by reviewing related work in musicology
and cognitive science.

11
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Music Is A Practice, Not A Thing

To borrow the expression of Christopher Small, music may be thought of as a prac-
tice, not a thing. According to him, there is no such “thing” called “music”, but an
abstraction of the human “action whose reality vanishes as soon as we examine it too
closely” [Small, 1998]. He introduced the verb “musicking” to highlight the very fact
that music may only exist through practice. For several decades, the signification of
music was mostly assessed by relying on Western music theory—e.g., the formaliza-
tion of tones, harmony, and rhythm in an annotated form. The application of one
single music theory over the variety of music practices tended to fix music as a thing,
as an object that can be talked from an external point of view, without participation
of its subject. Many musicologists also argued in favour of the so-called “performa-
tive turn” in music [Jost, 2013], whether it be acted through listening [Donin, 2004],
or performing [Leman, 2008]. For example, Simon Frith argues that the signification
and value of music may arise from rituals of identification made during listening by
humans—perhars more than from the formal constructs of music [Frith, 1998].

Over the centuries, new forms of music practices were enabled by the introduction
of technology. For example, phonograph records enabled humans to listen to music at
a different place than where it used to be played—as is extended with latest streaming
services. Slit drums enabled humans to perform music by creating complex rhythms
in interaction with other humans—as is extended with latest smartphone applications.
Because of their technological roots, many of these music practices may thus be linked
with the industry [Wikstrém, 2013]. Although rejected by contemporary music in-
stitutions decades ago [Born, 1995], the links between public and private industrial
sectors of music are currently subject to important transformations. Unfortunately,
debating political issues on the industrialization of music remains out of the scope of
this thesis. Yet, our wish was to stress that industry links must be considered when
situating music practice in a societal context.

Music Is Rooted In Embodiment and Expression

The performative aspect of music may be apprehended from a cognitive point of view
through the notion of embodiment. In his seminal book on embodied music cognition,
Marc Leman argues that the human body may act as the main mediator between musi-
cal experience (mind) and sound energy (matter) [Leman, 2008]. Practices such as lis-
tening to music may be understood as an action-oriented phenomenon, which largely
relies on our sensori-motor systems. For example, humans may move along the mu-
sic they are listening to, to help make sense of auditory information [Nymoen et al.,
2011]. Reciprocally, when playing a music instrument, humans may use their body to
encode an idea, or mental representation, into a material or energetic form—i.e., sound
[Godey and Leman, 2010]. The so-called musical gestures may be analysed and clas-
sified in a gesture space depending on their role in music performance—i.e., sound-
producing, sound-accompanying, or communicative gestures [Cadoz and Wanderley,
2000].

Embodied interaction with music is deeply linked with the notion of human
expression [Leman, 2016]. The encoding of gestures into sound may be analysed as the
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metaphorical expression of some human intention [Caramiaux et al., 2014a, Lemaitre
et al., 2017]. Reciprocally, the decoding of sounds into gestures may help interpret
the expression of a musical intention—e.g., a crescendo being perceived as the
acceleration of a human movement [Leman, 2016]. As such, encouraging musical
expression may be crucial to support the social and emotional development of
human beings, be they musicians, or non-musicians. Notions are as diverse as
empathy [Altenmiller et al., 2013], attention [Hannon and Trainor, 2007], adapta-
tion [Schlaug et al., 2005], self-esteem [Henderson, 1983], or creativity [Sawyer, 2014].

Music is an embodied practice that needs situating in a human context. This con-
text may include industrial, cultural, and individual dimensions. Our work will build
on culturally- and individually-situated music practices to design interactive music

systems for human expression.

2.1.2 Design Approaches

In this section, we describe the design approaches that may be adopted to the building
of interactive music systems. We present the corresponding (1) engineering sciences
and (2) crafting approaches by reviewing the related work in computer music.

The Engineering Sciences of Interactive Music Systems

Engineering sciences support the fine-tuned design of individual components of in-
teractive music systems. Focusing on individual components can enable bottom-up
technique discoveries that may support new music practices. For example, many of
the first synthesizers were created by electrical engineers from manipulation of ana-
log electromechanical circuits [Bode, 1984]. Also, it can be used as a way to address
the complexity of both digital and physical components in interactive music systems.
For example, the engineering sciences background of Pierre Schaeffer arguably con-
tributed to the development of his practice of sound and music [Schaeffer, 1966]. In
addition, engineering sciences approaches may go in line with industrial applications
that require system robustness for large-scale music production.

Yet, only relying on engineering sciences can cause harm to music practices. Tak-
ing technical components outside the scope of human interaction may direct the de-
sign of interactive music systems toward machines. While the design of music ma-
chines can be an exciting intellectual avenue [Rowe, 1992], it has been described as
potentially enclosing fields of knowledge related to music [Sterne, 2003]. For exam-
ple, the engineering of interactive systems based on implicit notions of “musical in-
put” may restrict music performance toward practices based on Western music theory
[Jorda, 2005]. The introduction of the computer may potentially increase this gap, by
relying on digital computation over human actions. For example, the engineering
of music recommender systems may direct music listening toward a practice of au-
tomated consumption over that of self-identification [Taylor, 2014]. All in all, the
externalization of the machine from the human may contribute to the thing-ification
of music over human music practices.
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The Crafting of Computers and Materials

On the other hand, crafting supports the holistic design of digital and physical com-
ponents into interactive music systems [Jorda, 2005]. It makes it suitable to some form
of top-down design of interactive music systems, where the discovery of new tech-
niques may be enabled by intuition emerging from musical practices. For example,
Maurice Martenot, the inventor of the ondes Martenot, and also a cellist, was inspired
by the accidental overlaps of tones between military radio oscillators, and wanted to
create an instrument with the expressiveness of the cello [Leipp, 1972]. The practi-
cal aspect of crafting may go beyond the physical to embrace computers and digital
components. Michel Waiswisz’ The Hands may be the most well-known example of
an interactive music system made from crafting with digital technology [Torre et al.,
2016]. Crafting may go in line with creative practices of music that require specific
implementations as a form of human expression.

However, crafting has also its own limits. Even if a source of inspiration for many
humans, crafting’s sole relying on practice over theory may sometimes induce a lack
of transmission [Jorda, 2005]. If not documented with care, many crafted interactive
music systems—and the music practices and repertoire that go with them—may not
subsist to our social history [Herbert, 2012]. The issue of interactive music system
archiving remains contemporary, as today’s fast evolution of computer hardware and
software programming languages adds complexity to documentation [Risset, 2004].

There exists a continuum of approaches to the design of interactive music systems,
ranging from bottom-up engineering sciences to top-down crafting practice. Careful
balancing between the two extremities may be required to avoid respective pitfalls

and fairly benefit humans.

2.1.3 Interaction Techniques

Now that we provided an overview of the approaches incumbent to their design,
we are able to focus on the techniques at stake in interactive music systems. We
propose to review them from the human-centred perspective of musical interaction,
that is, from the new actions they provide humans with in relation to music prac-
tice [Bevilacqua and Schnell, 2016]. Relying on Beaudouin-Lafon’s classification of
human-machine interaction paradigms [Beaudouin-Lafon, 2004], we propose to clas-
sify interaction techniques in three categories: (1) instrumental control, (2) automatic
generation, and (3) collective interaction.

Instrumental Control

Instrumental control originates from acoustic instruments, which essentially provided
humans with one-gesture-to-one-event relationships [Jorda, 2005]. For example, per-
cussive instruments enable humans to trigger short sounds by hitting some kind of
surface with their body or some kind of object. As a widespread technique for music
practice, instrumental control has naturally extended from physical to digital music
instruments. The MIDI protocol, created in the 1980s, proposed a communication
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standard for digital instruments that imitates the note-based control of acoustic in-
struments [Loy, 1985]. This notably enabled the building of tools relying on notation
to create music, which in turn led to the birth of a music practice called computer-
assisted composition [Assayag et al., 1999].

Gestural controllers have been developed to improve instrumental control in dig-
ital music systems, to go beyond mouses and keyboards by extending humans’ physi-
cal abilities to produce sound. While keyboards were largely used following the MIDI
protocol standardization, sensors provided new perspectives for instrumental control
by fully redefining gesture-sound relationships in music systems [Miranda and Wan-
derley, 2006]. The process of “mapping”, which specifies the relationships between
sensor and sound parameters by means of programmation, received a lot of attention
in the last decades [Hunt and Wanderley, 2002]. Unlike acoustic instruments, whose
physics already define a mapping, digital instrument requires the relying on different
strategies to design mappings—e.g., one-to-one, one-to-many, many-to-one, or many-
to-many [Jorda, 2005]. The OSC protocol eased the creation of mappings by extending
MIDI to fully-generic communication between music systems [Wright, 2005].

Automatic Generation

Automatic generation refers to the ability of interactive music systems to create
sounds, or sequences of sounds, based on anthropomorphic means of communica-
tion. It can be a desired feature of interactive music systems for music practices that
take algorithmic composition as a main concept, or for those that may benefit from a
certain degree of delegation to the machine.

While automatic generation remains highly characteristic of digital music sys-
tems, it was already a desired feature for many musicians centuries ago. For example,
Mozart’s Musikalisches Wurfelspiel (“Dice Music”), a musical game which “involved
assembling a number of small musical fragments, and combining them by chance,
piecing together a new piece from randomly chosen part”, was one of the first algo-
rithmic composition systems to date [Alpern, 1995]. Many computer-based interac-
tive music systems made use of similar rules to provide composers with automatic
generation. Lejaren Hiller is often reported to be the first composer to ever use a
computer-generated score for a musical piece [Hiller and Isaacson, 1957], later fol-
lowed, among others, by Iannis Xenakis and his “stochastic” compositions [Xenakis,
1992]. While reviewing artistic practices on automatic generation remains out of the
scope of this thesis, we wish to stress that the notion of “artificial intelligence” was
linked with music way before the advent of machine learning. Specifically, the com-
puter music community introduced the term “intelligent instrument” [Spiegel, 1987]
to describe interactive music systems that automate the control of music in some
range [Chadabe, 1977]. Machine learning will be the matter of Section 2.2.

Alternatively, automatic generation can also be a way to delegate superfluous tasks
to the machine, in a way similar to a human partner. For example, Cartwright et al.
developed an interactive music system that enable querying of sounds using vocal-
ization as human input [Cartwright and Pardo, 2015], thus enabling humans to focus
on creation over search. Also, the delegation of tasks to the machine may enable hu-
mans to be more productive in their musical practice. For example, Deruty proposed
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tools to automate the process of mixing to speed up music production [Deruty, 2016].
Improving music production may be useful for music practices that are connected to
the industry.

Collective Interaction

Collective interaction refers to the ability of interactive music systems to facilitate
interaction between humans. It is a promising avenue for music practices that focus
on situated interaction, as well as creative collaboration, between humans.

Collective interaction is a central feature of many music practices situated in lo-
cation. Whether it be through composition, performance, or listening, music is tied
with social bonds that does not necessarily require an interactive music system to be
mediated [Leman, 2008]. Recently, Matuszewski et al. investigated the use of mobile
phones to create new interactions between humans situated in location [Matuszewski
et al., 2019]. Networking technologies enable new forms of communication between
professional musicians and the public, opening new prospects for collective interac-
tion in a context of music pedagogy [Bell and Matuszewski, 2017].

Collective interaction may also be useful to manage collaboration in music
creation. For example, shared multimodal interfaces enabled the creation of new
collective music practices through the creation of [Jorda, 2005]. Cartwright et al.
created a web interface that allows the crowdsourcing of semantic descriptors in
relation to sound [Cartwright and Pardo, 2013]. Live coding is another example of
collaborative music practice, where humans may collectively write lines of code
to generate sounds and sequences of sound, possibly relying on Web frameworks
[McKinney, 2014]. From a pedagogical point of view, web platforms enabled collabo-
ration between musicians from all across the world by supporting the streaming and
learning of music practices [Ruthmann, 2007].

Interactive music systems may be analysed as tools, partners, or mediums, for instru-
mental control, automatic generation, and collective interaction with music. Design-
ing interactive music systems consists in blending these three techniques in careful

accordance with situated music practices to support new forms of human expression.

2.2 Machine Learning

Machine learning has become one of the most successful techniques of Computer Sci-
ence in the 21% century. Unsurprisingly, interactive music systems have witnessed a
rise in applications of machine learning techniques. In this section, we review how
machine learning was applied to the design of interactive music systems. We start by
giving a formal definition of the notions of technique, data, model, and algorithm, that
are central to machine learning. We then give an overview of the applications of ma-
chine learning to music, using a similar classification than in Section 2.1.3. Finally, we
describe the research methods that have been employed to approach machine learning
applied to music.
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2.2.1 Formal Definitions

Machine learning studies the design of computational algorithms capable of perform-
ing specific tasks by autonomously learning from data. In this section, we provide
formal definitions of the notions of (1) technique, (2) data, (3) model, and (4) algo-
rithm, which are central to understanding applications of machine learning to music.

Technique

Machine learning defines different techniques that enables to perform tasks in an au-
tonomous manner. Typical tasks are classification and regression—e.g., respectively
predicting discrete or continuous output for a new given input. Other typical tasks
relate to optimal decision-making with a long-term reward trade-off.

The definition of a technique is made through the formalization of a learning prob-
lem in relation to a goal. In supervised learning, the goal is to learn a function that
maps inputs to outputs based on example pairs of input-output [Bishop, 2006]. In
unsupervised learning, the goal is to learn a similar function based on example input
only [Murphy, 2012]. In active learning, the goal is similar to that in supervised and
unsupervised learning, instead that learning occurs in interaction with a human la-
beller [Settles, 2010]. In reinforcement learning, the goal is to learn to take actions in
an environment so as to maximize some notion of reward [Sutton and Barto, 2011].
Other learning problems exist, but remain out of the scope of the present thesis.

Data

Machine learning relies on data to perform the tasks defined above. Data is a set of
values supposed to represent some kind of object with respect to qualitative or quan-
titative variables. For example, visual images, which physically emerge from complex
sums of light waves, are often represented by a finite set of pixel data, the latter being
made of red, green, and blue digital values. Data can have many roles in relation to
machine learning techniques. Example data allows to perform supervised, unsuper-
vised, and active learning—e.g., respectively, example input-output, input only, and
output only [Bishop, 2006, Murphy, 2012]. Reward data allows to perform reinforce-
ment learning—e.g., positive or negative reward for a given action [Sutton and Barto,
2011].

Specific features of data may be required to support learning. Feature selection
is often performed to process data in a relevant way with respect to the task being
considered. Based on this, larger data sets may be built to perform supervised, un-
supervised, and active learning. Researchers have created standardized data sets to
provide the machine learning community a common baseline to advance the build-
ing of learning algorithms [Bertin-Mahieux et al., 2011]. In the case of reinforcement
learning, large amounts of data are synthetically created by means of a reward func-
tion. Many techniques for data processing are studied in the machine learning field,
but remain out of the scope of this chapter.
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Model

Models are mathematical functions capable of handling data to perform the machine
learning task. Some models rely on relatively simple architectures, providing con-
crete representations of data—e.g., the Gaussian distributions, for example used in
supervised and unsupervised learning. Some models rely on complex architectures,
providing multiple layers of abstractions—e.g., the neural network models used in
deep learning. Other models are sequential, that is, they provide a sense of the tem-
poral process to be modelled—e.g., the Markov decision process used in reinforcement
learning.

In addition to the task being performed, models are sometimes used to provide
qualitative insight on data. These data-driven models may be used as a complement,
or an alternative, to mechanical models often used in science to describe the world. As
such, the models’ formalism may be carefully chosen depending on the type of data to
be studied. Hybrid models may take advantage of both data-driven and mechanistic
approaches [Alvarez et al., 2009], but remain out of the scope of this thesis.

Algorithm

Algorithms are a set of rules used for the optimization of the model’s parameter in
relation to a data set. Optimization is responsible for the learning aspect of ma-
chine learning, and is what makes machine learning different from statistics as a field
[Bishop, 2006]. The algorithm’s parameters are called hyperparameters, in the sense
that they support the learning of the model’s parameters. Some algorithms require
large amount of data to be able to learn a model—e.g., deep learning algorithms [Good-
fellow et al., 2016]—but as a counterpart, may automatically extract features from data.
Others are designed with the requirement of learning from small amounts of data—
e.g., shallow learning algorithms—, but in turn are highly sensitive to the choice of
data features.

Importantly, learning can be performed offline, as is the case in most supervised
and unsupervised learning—e.g., training over a fixed data set, then performing the
task without learning anymore. Or, it can be performed online, as is the case in most
active and reinforcement learning—e.g., training in an incremental way as new data
feeds into the algorithm. The choice between offline and online learning algorithms
depends on the task to be performed. Computational descriptions of these algorithms
remain out of the scope of this chapter.

Machine learning defines a set of algorithms capable of autonomously learning a
model from example data sets. The learned model may either be used to analyse

the given data set, or to carry a task on newly-seen data.

2.2.2 Musical Applications

Now that we defined the notions that are central to machine learning, we are able
to focus on its musical applications. Similar to Section 2.1.3, we propose to review
them by relying on Beaudouin-Lafon’s classification of human-machine interaction
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paradigms [Beaudouin-Lafon, 2004]: we propose the following classification for inter-
active music systems: (1) audio analysis, (2) music generation, and (3) human-machine
improvization.

Music Information Retrieval: Machine Learning as Tool

Music information retrieval uses machine learning to automate certain tasks related
to music data [Downie, 2003]. For example, track separation aims at automatically ex-
tracting audio tracks of each musical instrument from a musical recording. This may
be formulated as a supervised learning problem, where example data are made of input
audio signals—e.g, a waveform, or a spectrogram—, along with their corresponding
instrument label as output—e.g, bass. Another application is recommender systems,
which aims at automatically creating music playlists by predicting a listener’s mu-
sical tastes [Ricci et al., 2011]. This may be formulated as a reinforcement learning
problem, where the system would learn to provide a listener with optimal rankings of
songs in an online manner, based on reward given by other listeners and the listener

herself.

The goal of music information retrieval is to create tools that may facilitate human
interaction with music. The automation of certain tasks may be useful for professional
creatives that may require a focus on productivity in their work [Deruty, 2016]. The
created tools may be useful for industrial applications that have a focus on music
consumption [Wikstrém, 2013].

Artificial Creativity: Machine Learning as Partner

Artificial creativity uses the models built in machine learning to automatically gen-
erate new sequences of sounds [Boulanger-Lewandowski et al., 2012]. For example,
style modelling employs machine learning to generate music that share stylistic sim-
ilarities with other music [Dubnov et al., 2003]. This may be formulated as a super-
vised learning problem, where style may be computed from specific data features—e.g.,
tempo, harmony—, and generation would be made from a distribution model recreat-
ing data that share similarities with the training set. Instead of automatically creating
sequences of sounds, other approaches to artificial creativity consists in creating new
sound spaces [Esling et al., 2018]. This may be formulated as an unsupervised learn-
ing problem, where sound spaces are first learned from unlabelled audio data sets,
then leveraged from the architecture of the learned models.

The goal of artificial creativity is to create artificial partners that may inspire hu-
mans by generating new musical ideas. However, the human benefits of these artificial
partners remain to be studied on a longer-term before claiming that it augments hu-
man creativity [Roberts et al., 2019]. For example, professional musicians may enjoy
creating music, and as such, may prefer doing it all by themselves rather than relying
on automatically-generated structures. Also, even if these partners may help music
composition be more approachable by non-musicians [Huang et al., 2019], they may
not enable embodied interaction with music.
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Human-Machine Improvization: Machine Learning as Medium

Human-Machine Improvization uses machine learning to adapt music generation to
human musical data in real-time. The goal is to create dynamic processes of interac-
tion between humans and machines. For example, Assayag et al. created a series of
musical improvizers able to play and adapt to a musician’s style of playing by learn-
ing from it in real-time [Assayag et al., 2006, Nika et al., 2017]. Similarly, Pachet et
al. created a musical looper which automatically adapts the generation of a musical
accompaniment depending on what the musician is playing [Pachet et al., 2013]. In
test studies with professional musicians, these machines were not perceived as emo-
tionally intimidating, but rather as musically expressive [Lévy, 2013]. This positive
embodiment of machines by humans may provide new opportunities to play (with)
music.

The task of human-machine improvization may promote machine learning to the
function of reflexive medium. Similarly to the video medium, which is “in constant
movement, circulating between camera and monitor” [Spielmann, 2010], the machine
learning medium may be in constant movement, circulating between human and
music. Rather than static descriptions of reality, the computed models may be
considered as diachronic forms, that is, forms that depict the transformative nature
of reality [Bourganel et al., 2016]. online learning from real-time human data may
enable this accounting for a dynamic nature of reality. All in all, the newly-created
medium may encourage improvizational interaction between humans and machines,
which, just as human-human improvization, may benefit human expression [Wright
and Kanellopoulos, 2010].

Applications of machine learning to music have so far focused on music information
retrieval, music generation, and human-machine improvization, to create new musical
tools, partners, and mediums. The latter task opens new prospects to build interactive
music systems that supports embodied forms of human expression.

2.2.3 On Research Methods

In this section, we give an overview of the research methods used to formalize ma-
chine learning and lead applications in music, in light with the design approaches of
interactive music systems described in Section 2.1.2. We describe (1) the engineering
sciences approach and (2) the thing-ification of music and human creativity at stake
in machine learning.

The Engineering of Machine Learning

As a relatively recent field emerging from Computer Science and Mathematics, most
applications of machine learning to music have been done from an engineering sci-
ences perspective, that is, the solving of a technical problem. The evaluation of ma-
chine learning then consists in measuring the performance of the engineered model
in relation to the technical problem. However, we argue that technical problems may
not always be related to human problems in music practice. Furthermore, these hu-
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man problems may not always be resolved with a technical solution. While engi-
neering sciences may be necessary for the music information retrieval task—which
is by essence quantitative—, it may not always suit the tasks of artificial creativity
and human-machine improvization—which crucially pose qualitative issues regarding
music practices and human interaction [Lévy, 2013]. Including humans in the design
of machine learning may help balance machine engineering with human goals.

Engineering a model is a long and tedious research process. It involves the creation
of a—possibly large—data set, and the optimization of parameters of a model in rela-
tion to this data set. The computational resources needed to fulfill these activities—the
storage of data and the learning of optimal parameters—can become quite high com-
pared to standard computers’ performance. Also, the learning of optimal parameters
on a given data set may not transfer to another data set. As a consequence and despite
the real-world success of some applications, many machine learning applications re-
main not applicable in human situations because of this focusing on machine task
engineering [Wagstaff, 2012].

The Thing-Ification of Music and Human Creativity

Many formalizations of music as a machine learning problem tends to consider music
as a thing, not a practice. While data representations, learning algorithms, and models
remain completely generic from a computational point of view, researchers remain
mostly focused on Western music theory as a benchmark to engineer models—e.g.,
melody, polyphony, accompaniment, counterpoint [Briot et al., 2017], or electronic
dance music [Eigenfeldt and Pasquier, 2013]. Also, while effort is made toward in-
cluding multicultural perspectives on machine learning [Serra, 2017], the creation of
large data sets of music still tends to fix music as a static thing. Yet, as described in
Section 2.1, music is a dynamic practice that is subject to cultural evolutions [Cross,
2001a].

The “thing-ification” of music may also direct the research of machine learning
toward developing artificial creativity over human creativity. The loosely-defined
concept of “artificial intelligence” nurtures the phantasm of creating machines that
are capable of human-level creativity [Colton et al.,, 2012]. While we do not claim
that all machine learning researchers share these views on “artificial intelligence”,
we argue that they do not always clearly take a stance on this issue. Of course,
individual researchers may not become experts in all other disciplines involved in
the notion of “artificial intelligence” within their available resources [Mackay and
Fayard, 1997]. Yet, as many of their predecessors [Wiener, 1988], we believe that
today’s computer scientists should actively include their work as part of our soci-
ety [Latour, 1987]. Interdisciplinary collaborations may enable new reformulations
of complex scientific subjects [Mackay and Fayard, 1997], including machine learning.

Machine learning remains mostly studied from an engineering sciences perspective,
and applied to music without a clear accounting of its practical aspects. Key machine
learning notions must be reformulated through interdisciplinary collaboration to lead
situated applications in music and benefit human expression.
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2.3 Human-Centred Machine Learning

Human-centred machine learning is an interdisciplinary area of work that aims at
rethinking machine learning research and systems in terms of human goals. In this
section, we motivate human-centred machine learning for the design of interactive
music systems. We give an overview of its research approaches, which investigate
machine learning techniques through the lens of human-centred methods. We finally
review musical applications of human-centred machine learning.

2.3.1 Motivation

Human-centred machine learning includes researchers and practitioners from the
fields of (1) human-computer interaction and (2) interactive machine learning. In this
section, we motivate a human-centred approach to the design of machine learning in
interactive music systems by introducing these two areas of work.

Human-Computer Interaction

The field of Human-Computer Interaction (HCI) researches the design and use of new
computer technology by humans. Historically originating from the Engineering Sci-
ences and Computer Science with the aim of designing efficient human-computer in-
terfaces, the field has progressively evolved to study the interaction between humans
and computers [Beaudouin-Lafon, 2004]. Specifically, the last decade saw the rise of
embodied interaction as part of the third wave of HCI, which included aspects such
as experience, emotion, or bodily interaction in the design of computer technology
[Dourish, 2004].

Over the last two decades, the HCI community expanded to study the design of
creativity support tools [Shneiderman, 1999]. The focus of this topic is to under-
stand the creative process of human users to design interactions with computers that
facilitate creativity [Resnick et al., 2005]. Music was in this sense examined as a use
case to design technology that is adapted to composers [Garcia, 2014], or reciprocally,
as an inspiring modality to design new interactions with technology [Ghomi, 2012].
Recently, creativity researchers called for a move to interdisciplinary collaborations
[Frich et al., 2018].

Interactive Machine Learning

The field of interactive machine learning studies the use of machine learning systems
by humans. It originated a decade ago, from the assessment by machine learning re-
searchers that a lot of expert knowledge was required to actually make a machine
learning system work [Domingos, 2012]. Researchers wanted to give “power to the
people” by building machine learning systems able to account for their human users
[Amershi et al., 2014]. For example, studies shown that humans often interacted with
artificial agents in a way that may not suit the underneath machine learning imple-
mentation [Thomaz and Breazeal, 2008]. Machine teaching was introduced as concep-
tual framework that focus on empowering human users [Simard et al., 2017].
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Computer music pioneered interactive approaches to machine learning for
creative applications, with real-time programming environments such as Max/MSP
enabling exploration of models for sound synthesis [Lee and Wessel, 1992, Fels
and Hinton, 1993, Bevilacqua et al., 2005]. More recently, interactive machine
learning was applied to the design of musical design tools [Fiebrink, 2011], with two
complementary human- and machine-centred advantages. First, it enabled to raise
relevant aspects of human creativity in relation to music practice, such as surprise,
unexpectedness, and exploration [Fiebrink et al., 2010]. Second, it supported the
building of better machine learning software used by real-world human users,
enabling the teaching of machine learning to musicians and non-musicians [Fiebrink,
2019].

Human-centred machine learning blends approaches from the field of Human-
Computer Interaction and Interactive Machine Learning. Applications may poten-
tially benefit music practice by taking into account various dimensions of human cre-
ativity in the design of machine learning systems.

2.3.2 Research Approach

This section describes the research approaches in human-centred machine learning,
from (1) interactive, open-ended learning to (2) human-centred, scientific methods.

Interactive, Open-Ended Learning

Human-centred machine learning is essentially concerned with the interactive learn-
ing of a model from user-provided data [Fails and Olsen Jr, 2003]. We use the word user
here to underline the fact that data may not be harvested by engineers or automat-
ically by implicit measures, but actively created by the human users of the machine
learning system. As such, users may iteratively add, delete, or modify example input-
output data in supervised learning to tacitly engineer a new model over a customized
data set. They may also experiment with various algorithm hyperparameters over a
unique data set, for example adjusting error preferences in an unsupervised learning-
based classifier [Kapoor et al., 2010].

Once they trained the model, they may evaluate it in relation to the task it has
been applied to. Rather than the quantitative, goal-oriented criteria used by engi-
neers, human users may use qualitative, open-ended criteria to evaluate the working
of a model. For example, Fiebrink et al. showed that musicians may evaluate a ges-
ture classifier from the sonic output that it may produce, rather than on the actual
recognition rate produced by the model [Fiebrink et al., 2011]. Experiential aspects of
interactive learning may also be important for user evaluation, as several applications
in the field of robotics showed—e.g., not wanting to spend too much time giving re-
ward in reinforcement learning [Thomaz and Breazeal, 2008], or not wanting to be
asked too many queries in active learning [Cakmak et al., 2010].
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Human-Centred, Scientific Methods

Human-centred machine learning essentially relies on methods from the field of
Human-Computer Interaction to deal with user evaluation. Design-oriented methods
focus on individual construction and implementation to create innovative interactive
systems [Consolvo et al., 2009]. Experimental methods assess a clearly-defined hy-
pothesis linking a given machine learning parameter with a user experience aspect
using a controlled setup [Lazar et al., 2017]. User-centred design methods triangulate
between theory, design, and observation to understand the needs of human users,
design new technology, and put it into use by the same users [Mackay and Fayard,
1997]. Participatory design methods put an emphasis on all stakeholders of a project
in the design process of a new technology [Schuler and Namioka, 1993]

While HCI includes aspects of crafting, it cannot be considered as a pure design
discipline in itself, “because it strives to independently verify design decisions and
processes, and borrows many values from scientists” [Mackay and Fayard, 1997]. Pro-
totypes—a concrete representation of part or all of an interactive system—are central
to these design processes and may be considered as design artifacts [Beaudouin-Lafon
and Mackay, 2009], as well as to “the design goal of inspiring users and researchers
to think about technology” [Hutchinson et al., 2003]. Yet, HCI aims at creating and
revising interaction frameworks between users and technology [Mackay and Fayard,
1997]. Thus, most HCI methods share the scientific goal of evaluating the benefits of
a new technology for their users to contribute to a model of interaction [Hutchinson
et al., 2003].

Human-centred machine learning studies the interactive and possibly open-ended
uses of machine learning models by humans. It applies scientific methods to it-
eratively design prototypes, evaluate human interaction, and build frameworks for

human-machine interaction.

2.3.3 Example Musical Applications

In this section, we describe three example musical applications of human-centred ma-
chine learning. We present (1) The Wekinator, (2) Grab-and-play, and (3) CoMo, ap-
plying machine learning to the practice of motion-sound mapping.

The Wekinator

The Wekinator is a software developed by Rebecca Fiebrink and colleagues at Prince-
ton University, which uses interactive machine learning to let humans map any mo-
tion sensor to any sound synthesis engine [Fiebrink et al., 2009]. Specifically, it uses
supervised learning to create a model that links motion input to sound synthesis out-
put. This model is learned from examples of gestures and sounds that human users
may record. They may interactively add, delete, or modify gesture-sound examples,
train a model, and experiment with the newly-created model to build their customized
model. Typical models include gesture classifiers—built with k-nearest neighbour
algorithm—, and sound regression—built with neural network algorithm.
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The software was developed through a user-centered design process with many
expert musicians implied. It was then applied in many real-world contexts of mu-
sic practice, such as music composition [Fiebrink et al., 2010], instrument design and
performance [Fiebrink et al., 2011], but also for music pedagogy [Morris and Fiebrink,
2013, Fiebrink, 2019]. In all cases, humans valued the interactive supervised learning
workflow created by the Wekinator. Specifically, they appreciated the surprise and un-
expectedness enabled by the system, which fostered their creative process. As such,
interactive supervised learning may be seen as a similar task to human-machine im-
provization, where the machine serves as an expressive partner for creation [Fiebrink,
2017].

Many other systems for motion-sound mapping were developed using a simi-
lar interactive supervised learning workflow, but different algorithms enabling other
tasks—e.g., gesture following [Bevilacqua et al., 2009], gesture variation estimation
[Caramiaux et al., 2015], or probabilistic modelling [Francoise et al., 2014].

Grab-and-play

Grab-and-play is an extension to the Wekinator that I developed during a pre-doctoral
research year at Goldsmiths University of London, under the supervision of Rebecca
Fiebrink [Scurto, 2016]. It uses interactive machine learning to enable human users
to literally grab a controller and turn it into a new, playable musical instrument al-
most instantaneously. Specifically, it uses supervised learning to create a motion-
sound model from a very small amount of data communicating some minimal, soft
design constraints—namely, the way the user might want to move while playing. As
a data-driven extension, Grab-and-play leverages the same learning algorithms than
the Wekinator.

The system was developed through a two-step user-centred design process with
composers on the one hand, and disadvantaged children on the other hand. It was
then respectively applied to instrument design [Scurto et al., 2016] and music therapy
[Thompson et al., 2019]. The rapid prototyping enabled by Grab-and-play favoured
ideation in the creative process of composers and performers, as well as a better fo-
cus on the expressive needs of children for music therapists. The diachronic form
supported by Grab-and-play makes it similar to a medium, as depicted by the task of
human-machine improvization.

CoMo

CoMo is a prototype web application developed by the ISMM group of IRCAM,
using interactive machine learning to support movement interaction with sound,
specifically targeting collective interaction using with phones [Matuszewski et al.,
2018]. The functioning is similar to the interactive supervised learning workflow of
Wekinator—human users recording pairs of gesture-sound examples to build custom
models—, except that it works at a distributed scale. Specifically, it enables one hu-
man user to build a custom gesture-sound model, and to share it with other human
users using the web architecture. Typical models include gesture classifiers—built
with gaussian mixture models—and followers—built with hidden markov models.
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The application benefits from extensive participatory design processes implying
many performers and movement practitioners and is still under development. It was
applied to real-world situations in dance and pedagogy [Voillot et al., 2019]. The
space for exploration created by the application benefited the creative practice of
dancers, as well as improved playfulness in pedagogical activities. As a machine
learning-based distributed application, CoMo also shares the qualities of a medium.

Human-centred machine learning applied to music creates reflexive mediums en-
abling new forms of human expression situated in music practices. For now, only
supervised learning and motion-sound mapping have been investigated as machine

task and human practice.

2.4 Summary

This chapter reviewed the context and related work on the design of machine learn-
ing for interactive music systems. We described the cultural and individual aspects
of music practices, which have to be taken into account when designing systems for
human expression and embodied interaction. We discussed how crafting and engi-
neering may be two complementary approaches to designing the related technical
components. We described how the final interactive music systems may be analysed
as providing humans with instrumental control, automatic generation, and collective
interaction with music to foster creativity.

We then defined machine learning as a set of algorithmic techniques that enable
to automatically learn a model between input and output from example data only. We
reviewed musical applications of machine learning and their enabling of new forms
of musical expression, encompassing music information retrieval, music generation,
and human-machine improvisation. We discussed how interdisciplinary collabora-
tion may be necessary to situate the research of machine learning in existing music
practices and support the design of novel interactive music systems.

Finally, we introduced human-centred machine learning as an emerging field
studying Interactive Machine Learning from a Human-Computer Interaction perspec-
tive. We analysed how the field jointly considers qualitative and quantitative aspects
of human interaction in the design and evaluation of machine learning. We described
three example musical applications of human-centred machine learning to motivate
our choice to adopt this research and design approach for this thesis.



Designing With
Unsupervised Learning For
Motion-Sound Mapping

This chapter presents the first study led in the thesis. We decided to focus on the
musical task of motion sound mapping to build on previous applications of human-
centred machine learning to music (see Section 2.3.3 for a review). Our wish was to
generate ideas inside our research group before eventually involving human partic-
ipants in the design process. As such, our method for this study can be described
as design-oriented, where knowledge on both machine learning and the musical task
would only be attained attained through the implementation of a model prototype
[Fallman, 2003]. Figure 3.1 schematizes the three steps resulting from our use of the
method in the study; we describe them below.

Concepts

Engineering Prototyping

Observation |:|

Figure 3.1: The design-oriented method for our first study.
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Section 3.1 describes concepts on motion-sound mapping, covering both human
practices and machine systems. Section 3.2 describes the prototyping of our model
prototype. Finally, Section 3.3 describes the application of the model to the design
of a musical instrument, called somasticks, which we exhibited to expert motion prac-
titioners in a workshop.

This work has been published and presented as paper and poster at the 17th In-
ternational Conference on New Interfaces for Musical Expression (NIME 2017) in Copen-
hagen, Denmark [Scurto et al., 2017]. The musical instrument was showcased at the
movA workshop (March 2019) in Nantes, France.

3.1 Concepts

We start by reviewing the concepts that are relevant to this first study, describing the
related work in the musical task of motion-sound mapping, as well as the machine
learning technique that we proposed.

3.1.1 Musical Task: Motion-Sound Mapping
Situating the Musical Task

Motion-sound mapping is a music practice consisting of programming the relation-
ships between an input device—typically, a motion sensor—and an output device—
typically, a sound synthesis engine [Hunt and Wanderley, 2002]. It is a creative prac-
tice that has long been the specificity of crafters, performers, artists, scientists, and
engineers from computer music communities—especially the NIME community.
Recently, motion-sound mapping has become increasingly accessible through the
use of interactive machine learning. With these technologies, humans can build cus-
tom motion-sound mappings by physically demonstrating examples of gestures for
given sounds—thus relying on corporeal knowledge instead of programming skills.

Human-Centred Approaches

Most interactive approaches to machine learning for designing motion-sound map-
pings have relied on a two-step, iterative design process (see figure 3.2) [Francoise
et al., 2014]. In the first step, called training or design step, users perform gestures
along with pre-defined sounds. In the second step, called performance step, users ex-
periment with the newly-created mapping. For example, they can perform similar
gestures to the ones they recorded during the design step in order to replay, or re-
enact, previously-selected sounds; or, they can perform new gestures in order to ex-
plore, and discover, new sonic forms. Users must then alternate several times between
these two steps in order to succeed in building a subjectively-rewarding mapping.
Several user studies have proven that this iterative design process can support cor-
poreal engagement with sound [Bevilacqua et al., 2009, Fiebrink et al., 2010]. However,
recent works have raised a number of points yet to be improved [Scurto et al., 2016].
For example, some users may have difficulties in designing gestures and evermore to
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fine-tune mapping. Importantly, Scurto et al. found that users might appreciate ma-
chine learning-based mappings that surprise and challenge them through continuous
physical interaction [Scurto et al., 2016].

Research by Fiebrink et al. have shown that machine learning can support human-
centred creative discoveries in musical motion-sound mapping design [Fiebrink et al.,
2011]. For example, criteria such as unexpectedness and accessibility have been
praised by computer musicians when composing an instrument [Fiebrink et al., 2010].
In this spirit, Scurto and Fiebrink proposed new methods for rapid mapping prototyp-
ing which shift users’ focus from designing motion-sound relationships to the em-
bodied exploration of relationships that have been generated partly by the computer
[Scurto et al., 2016].

Machine-Centred Approaches

While most initial research focused on explicit motion-sound relationship program-
ming [Hunt and Wanderley, 2002], using machine learning algorithms for mapping
design have proven very promising in a musical context where notions of expressivity
and generativity are of prime interest [Caramiaux and Tanaka, 2013].

In this context, several supervised algorithms have been studied, depending on the
musical task users would like to achieve. For example, Bevilacqua et al. [Bevilacqua
et al., 2009] focused on gesture following tasks and implemented a Hidden Markov
Model to perform continuous tracking on users’ gestural data. Fiebrink et al. inves-
tigated static mapping building using neural networks for regression tasks and sev-
eral standard algorithms for classification tasks, such as k-nearest neighbors [Fiebrink
et al., 2011]. Francoise et al. proposed four static and/or dynamic models able to per-
form both classification and regression tasks [Francoise et al., 2014]. Finally, Carami-
aux et al. developed a system that recognizes gestures and adapts to performance
variations [Caramiaux et al., 2015].

M OTION
Input along with sounds

Algorithm Training set

SOUND

Settings Design Performance

Figure 3.2: Interactive workflow forMapping-by-Demonstration.

However, to our knowledge, most of these approaches remained focused on a two-
step design process (see figure 3.2), where users alternate between demonstrating ges-
tures along pre-recorded sounds (movement acted from the experience of listening to
a sound) and interacting with newly-created mappings (movement acted as having an
effect on sound). This iterative process might interrupt musical intentionality encod-
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ing, which, as theorized by Leman, necessitates an active, action-oriented, corporeal
engagement of humans with sound [Leman, 2008]. Interestingly, other computational
approaches aimed at providing users with such continuous interactive flows, for ex-
ample using dynamic mapping strategies [Momeni and Henry, 2006] or physics-based
mappings [Schacher et al., 2014].

3.1.2 Proposed Technique: Unsupervised Learning

Inspired by such approaches and other interactive music systems [Jorda, 2005], we
propose to reconsider mapping creation to bridge the gap between design and perfor-
mance steps. We decide to focus on the machine learning category of unsupervised
learning to perform the task of online clustering. Our wish was to allow mappings to
adapt to users in real-time while generating sound, thus merging design and perfor-
mance steps into one fully interactive experience.

Such a task differs from previous interactive supervised learning approaches: in-
stead of demonstrating gestural examples that have been designed and labeled in a
separate step, users physically interact with an adaptive model that constantly gener-
ates sound, depending on both previous and current user movement. Importantly, our
system thus switches from current mapping-by-demonstration supervised paradigms
(where user-provided pairs of gestures and sounds constitute a training set) to an un-
supervised learning paradigm (where the training set consists in unlabeled gestural
data). However, as we will see, users still have the possibility to consciously influence
the learning by performing and correcting the system.

3.2 Prototyping

We describe the model prototype that we designed, in terms of interactive workflow
and algorithmic implementation.

3.2.1 Algorithm: Online Gaussian Mixture Model

We implemented an online, unsupervised version of Gaussian Mixture Model (GMM).
GMMs are very general and versatile probabilistic models for designing motion-sound
relationships, providing with variables for both classification and regression at a rel-
atively low computational cost [Francoise et al., 2014].

A GMM is a learning model that can perform soft clustering, which is identify-
ing groups of similarity in gestural data and computing for a new data point x each
probability that it belongs to each of these clusters. Here, clusters are modelled as
Gaussian distributions V, and the probability p of belonging to the overall model 6 is
given by:

K

p(x|0) = TN (x| pr, 2k) (3.1)
k=1

There are four categories of parameters in GMM (see figure 3.3 and equation 3.1).
The first one is the number of clusters K, which is the number of multivariate Gaus-
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sian distributions used in the mixture model. These clusters can be used for classifi-
cation purposes. Then, each Gaussian distribution has its own mean vector pj, and
covariance matrix Xy, as well as its own weight 7 in the mixture. These parame-
ters can be used for regression purposes. In a standard interactive supervised learning
setup, such parameters are set and learnt offline from custom gesture-sound examples
demonstrated by users. In our paradigm, the learning is online: Gaussian parameters
would evolve in real-time as users supply the model with only gestural data, which
support continuous action-perception workflow as specified in the previous section.

Probability

s U, Uy Motion

Figure 3.3: Graphical outline of a Gaussian Mixture Model with K = 3 cluster com-
ponents for 1-dimensional motion data.

In such an online, unsupervised paradigm, we propose to add entropy H =
— > p(x) Inp(x) as a supplementary parameter for controlling sound synthesis. En-
tropy can be linked to the amount of information produced by some stochastic source
of data [Liu, 2018]. In our case, a human that would always move in the same way
would have a low entropy, as he or she would produce few “novel” information. On
the other hand, a human that would have lots of variation in his or her moves would
produce a higher entropy. Our idea is to report such a high-level measure of the model
to use it as another modality for sound generation.

3.2.2 Human Data: Observation

Our wish is to enable users to design mappings in an online fashion, where design
would be made possible through performance. We propose the following workflow,
which is depicted in figure 3.4.

General workflow

Our system allows users to design machine learning-based motion-sound mappings
while performing with them. More precisely, it enables online multidimensional adap-
tation to users input gestural space by continuously recording input data as the train-
ing set of a machine learning algorithm. Both design and performance steps are thus
supported under the same motion flow. The modelling of the “internal structure" of
users’ gestural space can then drive sound synthesis in several manners, all of them
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being characterized by direct, corporeal interaction with sound and personalized ex-
ploration of motion in relation to sound. We designed our system with a particular
focus on reducing GUI actions taken in-between performances. One level of inter-
action with machine learning still remains available to users: similarly to previous
mapping-by-demonstration tools, the “setting" step allows for configuring a minimal
set of learning parameters as well as input parameters (as described in section 3.2.1).

M OTION
Training set
Algorithm
SOUND
Settings Design through performance

Figure 3.4: Interactive workflow for Design Through Performance.

Interaction modes

From this definition, we designed two interaction modes based on different memory
processes (see Video for an overview). The main concept is to allow users to design
parts of their input space through the metaphor of temporal persistence, where “oc-
cupation time" (as an “accumulation process") is central to the creation of the training
set. There are several other ways to interact online with a machine learning algorithm

through its training set: we will discuss it in section 3.4.

deleted

SHAPING

GUIDING

Probability

Probability

Figure 3.5: Graphical outline of our two interaction modes. Probability clusters are
sampled at 3 discrete times for 1-dimensional gestural data. On left, clusters continu-
ously evolve as users’ gestural data is recorded to the training set with a sliding win-
dow. On right, users continuously modify clusters’ parameters as they successively

add and delete gestural data to the training set.

Guiding The guiding mode (figure 3.5, left) consists in having users adding gestu-
ral data with a sliding temporal window to the training set during the interaction. It
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can be seen as an interactive music system with a constant-size memory, where users
could directly and physically explore sound spaces in order to foster creative discov-
eries. It allows mappings to evolve continuously, focusing in or out of some spaces in
users’ gestural input space in real-time following abstract embodied specifications of
users. A typical situation would involve the creation of clusters in a relatively small
area of the input space by having users stay in this part of the input space, then its
real-time evolution (or guiding) by moving in larger areas of the input space. This
personalized interaction relies on an finite memory process where old data would be
continuously replaced from the training set by new data.

Shaping The shaping mode (figure 3.5, right) consists in having users interactively
adding and/or deleting gestural data to the training set during the interaction. It can
be seen as a continuous extension of previous interactive machine learning systems,
where users could delete and re-add a previously-recorded example in a design step
by clicking on a button in a design step, then see the effect in a performance step.
Here, users can add new examples and delete old ones by (re-)demonstrating them,
while hearing the sonic consequences in real-time. Like using a pencil with eraser,
this would allow rapid, custom, and fine-tuned modification of mappings. A typ-
ical situation would involve the creation of a new cluster for a new gesture, then
its modification (or shaping) by adding or deleting variations of this gesture in the
recorded data. This personalized interaction relies on an (almost-)infinite memory
process where the training set would grow as users successively supply the system
with data.

3.2.3 Implementation: Patch

We implemented a prototypical version of our system as a Max/MSP patch’ that makes
an extensive use of XMM library for learning GMMs [Francoise et al., 2014] and MuBu
objects for storing and editing data [Schnell et al., 2009]. The tool’s GUI provides users
with different capabilities (see figure 3.6):

« Connect any kind of gestural input device, provided its data is sent as an OSC
message.

« Experiment with different kinds of sound synthesis module, provided they re-
ceive OSC messages.

« Modify the training set physically either by adding, deleting, or window stream-
ing gestural data.

« Define the length of the recording window.

« Define the number of Gaussian components in the GMM.

Currently, our tool supports online learning by training and running a GMM at a
sufficiently high rate (every 100 ms) so that it remains perceptually convincing in an
action-perception workflow [Jorda, 2005]. Gestural data is either stored incrementally
or replaced dynamically by making use of overdub and append messages of the MuBu

!http://github.com/hugoscurto/OnlineGMM
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container. The “delete" action is made possible by identifying and deleting the first
nearest neighbour of user live input in the training database. Other implementations
and user interfaces could be imagined; we will discuss them in Section 3.4.

input device (@ ML = output setfings o 12000 [ECTTINNN <

window b;g*uho instantaneous racorded
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Figure 3.6: User interface of our model prototype. On left: Main window allowing
recording gestural data following different interaction modes. On right: Output model
parameters.

3.3 Application: somasticks

We applied our model prototype to the design of a musical instrument, named “so-
masticks”. We led a demonstration at the movA workshop, in Nantes, France, where
expert performers and movement practitioners interacted with the instrument.

3.3.1 Description

somasticks are augmented drumsticks that seek to emphasize the somatic side of
drumming practice. Contrary to standard drumsticks, somasticks do not need to hit
any physical objects to produce sound, but rather leverages on embodied listening to
drive musical performance. Specifically, they may be continuously waved in the air
to trigger recorded drum sounds, and explore various playing modes in reaction to
the internal sensations that the sounds may produce within the player’s body.
somasticks combine unsupervised learning with hardware elements. We used real
drumsticks to create gestural affordances that are naturally related to drumming prac-
tice. We embedded the sticks with wireless sensors to feed the Online Gaussian Mix-
ture Model with drumming motion data. We finally leveraged the online behaviour of
the unsupervised learning model to design interactive drumming sound processes.

3.3.2 Instrument Design
Hardware

We designed hardware for somasticks in collaboration with IRCAM’s Emmanuel Fléty
and Arnaud Recher from the PIP group, and Djellal Chalabi from the S3AM group.

Object We used wooden tip drumsticks as physical controllers for somasticks. At the
time of prototyping, we used Vic Firth AJ5 American Jazz model, which are wooden
tip, lightweight drumsticks designed for standard use. The sticks are 406 millimeters
long, 12 millimeters wide, and weigh 36 grams. Any other drumsticks may be used in
lieu of these in a customisation setting.
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Sensor We equipped each of the sticks with a three-dimensional Inertial Measure-
ment Unit developed in the ISMM team, called R-IoT?. In addition to the embedded
accelerometers, gyroscopes and magnetometers used for motion sensing, we linked
three button-like elements to each R-IoT. One piezoelectric sensor allows for the con-
tinuous control of one given parameter; two push-buttons allows for discrete trigger-
ing of given processes.

Sensor Support We designed a support for linking the sensors to the sticks (see Fig.
3.7). A clippable part allows to fix the R-IoT and its button elements to the body of the
stick, using a screw to adapt to different stick diameters. A sliding part allows to set
the position of the R-IoT battery to adjust the center of mass of the augmented stick.
The model for the support is 3D-printable and thus allows for potential reproduction.

Figure 3.7: Rendering for the 3D-printed support of the somasticks. Left: clippable
part. Right: sliding part.

Software

We designed a Max/MSP patch for somasticks, which converts the sticks” data into
drum sounds.

Motion analysis We used online wavelet analysis, developed by Jules Frangise and
the ISMM team in the frame of the SkKAT-VG® European project, to extract motion fea-
tures and inject them in the unsupervised learning algorithm. Wavelet analysis allows
to measure the frequencies in a given movement, which is relevant as movements in
drumming practice often carry periodicity. We performed one wavelet analysis per
stick over its R-IoT accelerometer data, and took the maximum amplitude bin as the
main frequency feature for a given stick.

Sound synthesis We used concatenative synthesis, developed by Diemo Schwarz
and the ISMM team, to generate new sound patterns from recorded sounds [Schwarz
et al., 2006]. Concatenative synthesis allows to classify sound samples depending on
their spectral content, which is useful for interacting with large corpuses of sound.
We created six sound corpuses related to six percussion elements commonly at stake
in standard drum kits: bass drum (65), snare drum (77), rack toms (82), hi-hat (133),

2http://ismm.ircam.fr/riot/
Shttp://www.skatvg.eu/



36 3. Unsupervised Learning For Motion-Sound Mapping

crash (50), ride (47). The wide number of recorded samples provides a variety of
playing modes on the drum kit elements—e.g., from soft to hard hitting—, which is
easily analysed and manageable using concatenative synthesis.

Interactive mapping We used the Online Gaussian Mixture Model to design the
interactive behaviour of the somasticks (see Fig. 3.8). We used the guiding mode with
a recording window of 10 seconds. The two sticks’ maximum amplitude wavelet bins

serve as two-dimensional data x for the model. Each sound corpus is mapped to one

gaussian component, making our model contain K = 6 cluster components.
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Figure 3.8: Graphical outline of the mapping used in somasticks. Each of the K = 6
clusters of the model (left, in colors) corresponds to one sound corpus (right, with
corresponding colors). The means i and covariances X of the clusters (ellipses) are
mapped to the descriptor spaces of their respective corpuses, defining a region from
which samples would be played. All clusters evolve online based on the performer’s
motion. In the current figure, the performer is in a motion state corresponding to the
instantaneous class of snare drums: somasticks will thus play snare drum sounds, with
synthesis qualities defined by both instantaneous and recorded model parameters.

Instantaneous model parameters handle low-level behaviour of the mapping. The
model probability p sets the period at which new samples are played: the higher the
probability is, the faster the samples would be played. The instantaneous class K
defines the sound corpus from which samples would be played. The Gaussian prob-
abilities A set the respective gains at which samples from the K classes would be
played. Our intention was that the performer would have to produce stable quality
movements in terms of frequency to be able to control the somasticks’ sound output.
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Recorded model parameters handle high-level behaviour of the mapping. The
weights 7 set a random variation in the temporal moment where a sample would be
played: the more weighted a cluster is the more regular the playing of its samples
would be. The means p and covariances X define the region of the sound corpus in
which samples would be searched, using a k-nearest neighbor algorithm. We used two
descriptors from concatenative synthesis (FrequencyMean and LoudnessMean) to set
the searched sound space, and scaled them over the clusters’ mean values. We com-
puted the two eigen values from the covariance matrix and used their mean value as a
mean radius for the k-NN. Entropy was tested in a series of preliminary experiments,
but was not used in the latest version of the instrument due to issues in implementa-
tion.

Additionnal controls Lastly, the buttons enable direct, non-autonomous control
of sound synthesis. The two piezoelectric sensors respectively control the period
range over which samples are played using p, and a resampling variation for the
samples played. The four push-buttons respectively control: activation of the gain
scales set by N, setting of a short, absolute duration (10 ms) for all played samples,
activation of online training, and activation of sound.

3.3.3 Demonstration in Workshop

We demonstrated somasticks at the movA workshop, in Nantes, France, during which
six expert movement practitioners tried and interacted with them. Our aim was to
harvest reactions on the interactive behaviour of the sticks, understanding how its
online implementation may be felt by different movement experts.

Figure 3.9: Picture of a performer playing with somasticks in the movA workshop.
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Procedure

Participants were asked to spend time interacting with the somasticks. They were told
to follow the following feedback loop: listen to the produced drum sounds, focus on
their own corporeal sensations, and move freely with the sticks and their interactive
sonic feedback. We only told them that the sticks were responsive to their movements’
dynamics, and did not explain the sticks’s internal functioning. Participants spent
between 5 and 20 minutes exploring the system.

Reactions

Discovering the sticks All participants started interaction by exploring the inter-
active behaviour of the sticks. While this exploration was meant to understand the
functioning of the software mapping, it was hugely influenced by the hardware affor-
dances provided by the sticks: “the sticks, really, define their very own geometry, so I
focused a lot on the trajectories defined by the lines [of the sticks]”, one participant said.

Reflecting on the sticks

The need for time After discovering the sticks, four of the six total participants
took time to reflect on their functioning. One of them, who was a dancer, spent twenty
minutes without realizing it. She reflected: “One need this time, really [...]. Because it
was very loud from the very beginning. At the time when I put the headphones on, there
is already sound and stuff, and as I must adapt to the system, it is as if  was already late,
I needed to understand it quickly”. Another one, who had experience in drumming,
inquired his own sense of control with the sticks: “Tt took me time, I took actions, but
when I stopped, I've started to question: Was it just an illusion?”, he said.

Adapting one’s motion Beyond reflecting on the system, the sticks had the
four participants reflect on their own movement practice. The grasping affordances
of the sticks had two participants feel an assymetry in their motion: ‘It was really
interesting to move with the sticks. [...] I rapidly realized that I was very lateralized,
in the sense that my right hand dominates, and I am not trained in drumming”, one
participant analysed. A third participant also modified its movement exploration, this
time in relation to the act of drumming: “As soon as I saw it, I thought that I can play
[the drums]. Thus, I begin to sit down”, she commented.

Appropriating the sonic mapping Three of the four participants appropri-
ated interaction with the somasticks in relation to the sounds that they produced. “For
me, there is something very attractive in the fact that there are moments of synchrony
and moments of autonomy. And in its autonomy, there were lots of variation still, so it
was always interesting to listen to, and move along with”, one expert reported about the
interactive mapping. Another one seemed to understand the windowed implemen-
tation of the unsupervised learning mapping: ‘T understood that there was a reaction
at this level. [...] I understood that there was a delay. This meant that if I am doing
the same thing during three seconds, the totality [sic] will come after”, she said. The
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last one of the three was first “in quest of silence” trying not to move, then seemed to
gain control over the wavelet-based implementation of the sticks: “There is a kind of
obstacle course that appeared. [...] It was when I made small movements that I managed
to refocus on what I was doing, and to take back control over the system”, she said.

Link with Expertise Despite the playful moment of interacting with the sticks,
the two remaining participants did not manage to understand the sticks’ functioning,.
One of them related this by his lack of expertise in drumming: ‘T do not know all
these sensations [of drumming], so it was a bit harder for me to find the good movement
qualities”, he analysed. The other was rather disturbed by the physicality of the sticks,
which had him want to play them on an actual drum: T think it could be great, even to
refine the system in a kind of design process, to play it with something, you know, just,
like an augmented instrument”, he said.

3.4 Discussion

In this section, we discuss challenges related to machine learning implementation, as
well as insight for general human-machine interaction.

3.4.1 Challenges in Implementation

Our current system relies on one learning model (GMM) and a slider-based GUL Fu-
ture work may implement an online expectation-maximization algorithm for contin-
uous, optimized learning and inferring, and investigate interactive visualizations of
Gaussian distributions to let users interact in an audiovisual augmented reality setup.
Information-theoretic measures such as entropy may be better formalized and imple-
mented to enable alternative mapping explorations.

Also and importantly, we would like to prototype other unsupervised learning
models, allowing for even more diverse musical uses. For example, a current limitation
of the Gaussian Mixture Model is that it considers each new input as independent from
previously-observed data points. Such a property might not be suitable to human
movement, as dynamics are deemed of prime importance when dealing with qualities
of corporeal expressiveness [Leman, 2016]. Therefore, modelling dynamic patterns in
gestural data could be a promising approach for generating sequential musical output
that would be stylistically coherent with users’ bodily expression. Future work may
study adaptive dynamical systems to both model user-specific movement qualities and
to generate continuous navigation trajectories [Kulic et al., 2007]. Another approach
would be to study a reactive factor oracle [Chemla et al., 2015] to let users either
shape a training set of movement patterns, or guide a discrete navigation through
this training set.

Finally, our current implementation does not provide humans with a completely
continuous way to interact with machine learning. If the number of GUI actions has
been reduced from previous interactive supervised learning systems, users still have
to specify whether they would like to record, delete, or window stream data during
their performance. Other memory processes may be investigated to allow automatic
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recognition of physical actions taken by users [Kulic et al., 2007], thus mediating
embodied musical interactions more fluidly.

3.4.2 Designing for Human Exploration

Observations harvested during the demonstration of the somasticks suggest that the
design through performance workflow importantly rely on listening abilities in rela-
tion to motion. Such an online listening workflow helped expert performers explore
a variety of musical situations, which inspired their creative practice. As such, design
through performance may be analysed as a workflow aimed at improving flow in
creative practice [Csikszentmihalyi, 1997]. Future work may investigate interaction
over longer periods of time to study how somasticks support flow states in relation to
appropriation and learning time.

While the somasticks only relied on the “guiding” interaction mode to provide such
flow, the “shaping"” mode remains implemented under the same experiential workflow
(action-perception loops emerging from physical interaction with sound. This could
enable alternative exploratory uses by performers. For example, one could add data
to the training set indefinitely to create a mapping that would progressively “freeze"
once having recorded enough data. Also and perhaps surprisingly, the “Delete" action
actually produces sound: one could imagine a performance where “Delete" gestures
would act as control mechanisms for sonic events. Several new interaction styles
could thus be explored with our tool, each of them placing corporeal engagement
with sound as the main point of focus.

In the context of this thesis, we decided not to go deeper in the study of motion-
sound mapping to reflect on the broader idea of supporting flow with machine learn-
ing. Specifically, we became interested in the concept of supporting human explo-
ration. This new strong concept [Hook and Lowgren, 2012] emerged from the design
of our model prototype aimed at movement-based human performance. As a matter
of fact, the online adaptation of our model prototype enabled human exploration of
various motion-sound mappings, as well as of various movement strategies in rela-
tion to sound. We were interested in researching other applications of human-centred
machine learning that could address the issue of human exploration for other musical
tasks. This will be the theme of the two next chapters.
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Designing With
Reinforcement Learning For
Sonic Exploration

This chapter presents the second study led in the thesis. Based on the insight har-
vested in our study of motion-sound mapping, we decided to focus on the musical
task of sonic exploration. Sonic exploration consists in listening to many different
sound designs to converge to a final sound design. Our idea is to use machine learn-
ing to enable autonomous sonic exploration in close partnership with humans.

Sonic exploration is a multimodal task that involves both sound listening and in-
terface actioning from humans. We decided to address these two modalities through
two separate studies. In this chapter, we adopted an experimental method [Lazar
et al., 2017] to study how humans perceive autonomous machine exploration through
sound listening only. Figure 4.1 schematizes the three steps of our study. The issue of
interface actioning in sonic exploration will be addressed in Chapter 5.

Concepts

Engineering Prototyping

Observation

Figure 4.1: The experimental method for our second study.

41
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Section 4.1 describes concepts on sonic exploration, covering musical context
along with our proposed machine learning technique. Section 4.2 describes the model
prototyping step of our design process. Section 4.3 reports on observations led
in a controlled setup, studying human perception of our model in the task of sonic
exploration.

This work was published and presented as paper and presentation at the 15th
Sound and Music Computing Conference (SMC 2018) in Limassol, Cyprus [Scurto et al.,
2018a]. Concepts were published and presented as paper and presentation at the
Journées d’Informatique Musicale (JIM 2018) in Amiens, France [Scurto and Bevilac-
qua, 2018].

4.1 Concepts

The introduction of the computer in music has brought a wealth of novel practices
around sound and music. Cutting-edge technologies have been developed for sound
synthesis, processing, analysis, and control, enabling the emergence of new music
works, practices, notations, and performances.

However, such new technologies remain hard for people to appropriate. While
music computing is now taught in many music institutions, it still suffers from its
apparent complexity. As a consequence, many musicians stay attached to their classi-
cal practices and resign to appropriate music computing, while many musicians-to-be
never take a chance to explore music computing systems. This is paradoxical as com-
puting has become ubiquitous in the last ten years. Can we think of a computer tool
that would facilitate exploration and appropriation of music computing systems? We
focus on a particular use case of music computing appropriation. The use case refers
to the situation where a user makes use of a music computing system on his or her
own, outside educational institutions—e.g., amateur music practices led in a home
studio. In this situation, appropriation issues arise during the first uses of the music
computing system.

Appropriation in Music Computing

Starting using a system generally requires gathering information on it—in a passive
learning setup. Information on a system can be found in various media, from the most
straightforward (e.g., a text or video tutorial) to the most technical (e.g., a research
paper), as well as through online discussion (e.g., an Internet forum). These activities
are often time-consuming: users first have to find relevant information (which can be
hard for obsolescent systems), then to filter it (i.e., find what is useful for a specific
goal), supposed that they have a specific goal in mind. Overall, time spent on passively
learning hinders users to interact with sound and music directly, which might drive
them away from experimenting with the system.

Another option, which could be combined with the first, consists in starting in-
teracting with the system’s interface from scratch—in an active learning setup. Inter-
acting with the interface implies trying many different actions directly to understand
the functioning of the system (in a trial-and-error fashion), and eventually to achieve
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a specific goal. In our case of music computing, these activities are crucial as it is im-
portant for users to actively control sound so as to strengthen action-perception loops
[Leman, 2008]. Yet, it is also possible that users get discouraged in interacting with
the interface if they get too much error during their trials. Notions of appropriation
[Zappi and McPherson, 2014] and novice to expert transition [Cockburn et al., 2015]
are thus crucial in the design of interactions at stake in a given interface.

Human-Computer Interaction in Music Computing Systems

We identify two drawbacks of current music computing systems in the context of
appropriation. First, most music computing systems’ interfaces can look quite intim-
idating for completely novice users. Some of them directly derive from their analog
ancestors (e.g., sound synthesis engines, see Figure 4.2, or spatialization tools [Carpen-
tier et al., 2015]): they are thus designed for expert users, not to facilitate interaction
for novice users. There do have been attempts to improve interface accessibility of
these systems [Cartwright et al., 2014, Cartwright and Pardo, 2014, Schwarz et al.,
2006]. Yet, these interface simplifications are often done to the detriment of the sys-
tem’s abilities: after having appropriated some tasks, humans become limited by the
interface’s lack of sophistication.
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Figure 4.2: Example user interface of a music computing system (here, the u-he Bazille
VSTY).

The second drawback is that music computing systems often rely on complex
models and representations that are not directly linked to sound. For example, im-
provisational systems [Assayag et al., 2006] require humans to have knowledge on
mathematical models, as well as on musical representations, to understand how pa-
rameters relate to sound. Similarly, musical environemnts such as Max or PureData

!http://www.u-he.com/cms/bazille
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require to learn new representations as well as programming to start interacting. This
drawback also concerns expert musicians—who might know a certain amount of mu-
sical parameters, but do not know how they relate to new mathematical parameters—,
and constitutes a major issue for music pedagogy—as such music computing systems
have been shown promising for instrument learning [Cont, 2008] and embodied prac-
tice [Bevilacqua et al., 2007].

4.1.1 Musical Task: Sonic Exploration

We believe that designing for exploration could be a way to improve appropriation of
these interfaces and representations. Exploration is the early phase of learning during
which a human iteratively acts on an interface and receives feedback information,
allowing him or her to gradually grasp the system’s functioning and qualities. As
discussed previously, it is a crucial phase in appropriation regarding learning and skill
development, as good or bad initial experience will determine the future degree of
motivation and involvement of a learner term for a given task [Cockburn et al., 2015].
By supporting exploration phase, our wish is to lower the threshold for learners to
directly interact with the system and sense its abilities, paving the way for further
understandings of how the system actually works.

Situating the Musical Task

Exploration of music computing systems is a multimodal task. One may distinguish
between sonic exploration and interface exploration. Sonic exploration consists in lis-
tening to several features of a sound to learn what qualities the created sound should
possess. Interface exploration consists in acting on the parameters of an interface
to learn how to create this sound. While the two modalities are intertwined, we de-
cided to first focus on the sonic exploration task only'. Our wish was to test whether
listening could be used by non-musicians as an expressive modality to explore and
appropriate musical interfaces [Leman, 2016].

As a remark, sonic exploration tasks also concern a wide variety of expert musi-
cians. For example, composers explore various sketches of their musical ideas to write
a final score; performers explore different playing modes to shape an instrument’s
tone; sound designers explore several digital audio parameters to create unheard-of
sounds [Monache et al., 2010, Delle Monache et al., 2018]. Our interest lies in de-
signing techniques that may support sonic exploration for both musicians and non-
musicians. Specifically, we are interested in developing interaction modalities that
may allow humans to leverage their listening perceptive abilities to explore sounds.

Machine-Centred Approaches

In the last decade, the field of Interactive Machine Learning has enabled exploration of
music computing systems by emphasizing embodied interaction with sound. Super-
vised learning is the technique that has been mainly investigated in interactive ma-
chine learning, especially for motion-sound mapping [Francoise et al., 2014, Carami-

1We address the musical task of interface exploration in Chapter 5.
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aux and Tanaka, 2013]. Human interaction with supervised learning consists in
demonstrating example gestures to the learning algorithm so that it can learn to rec-
ognize them on the fly. Exploration within supervised learning either takes place
during the training phase (where humans can experiment with several examples of
different gestures), or during the running phase (where they can explore interpola-
tions between given examples) [Fiebrink et al., 2010]. This two-phase workflow has
been shown useful for a number of tasks; however, it has been shown limiting in some
cases, for example when humans want to slightly modify a given design [Scurto et al.,
2016].

Sequential adaptation have been investigated for interacting with autonomous
agents [Assayag, 2014], in a design through performance fashion [Scurto et al., 2017].
Human interaction with autonomous agents consists in generating example musical
content for guiding agents’ musical behavior. Exploration within autonomous agents
mainly consists in continuous musical improvization with the agent [Nika et al., 2017].
This online learning workflow has been shown useful for performance cases (which
require continuous generation and reactivity) [Assayag et al., 2006, Pachet, 2003] but
may not be fully adapted to more general, “offline” design cases. Crucially, it still co-
erces humans into demonstrating expert musical examples to explore new behaviors,
which might prevent non-musicians from interacting with these systems.

Human-Centred Approaches

From a pedagogical point of view, the potential of interactive machine learning sys-
tems has been identified, yet little exploited. For gestural control of sound, they have
been cited as allowing "learners to experience components of higher-level creativity
and social interaction even before developing the prerequisite sensorimotor skills or
academic knowledge" [Morris and Fiebrink, 2013]. Interestingly, novel application do-
mains, such as music therapy and musical expression for people with disabilities, have
also emerged [Scurto et al., 2016]. We believe extending interactive machine learn-
ing approaches to other music computing systems could constitute an opportunity to
widen the reach of more music computing practices to more people.

Many expert musicians reported that interactive supervised learning systems of-
fered space for exploration [Fiebrink et al., 2010], often personifying them as collab-
orative partners because of their ability to learn implicit musical properties similarly
to a human musical collaborator [Fiebrink and Caramiaux, 2016, Pachet, 2003]. Re-
cently, new interactions with supervised learning algorithms have been investigated
to support exploration for both novice and expert users. Scurto et al. implemented a
machine learning tool able to generate many alternative user-adapted mappings from
only one motion stream [Scurto et al., 2016]. This workflow avoided users to reflect on
what examples they should demonstrate for reaching a goal: rather, it enabled them to
focus only on subjective, evaluative exploration of many prototypes. Users valued the
space for exploration offered by such autonomous generation abilities. However, they
expressed a lack of control over the system, as generation remained fully autonomous
and not adaptive—neither sequentially, nor subjectively.
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4.1.2 Proposed Technique: Reinforcement Learning

To assist sonic exploration, we find it relevant to use the metaphor of transmission of
knowledge between humans. Consider a human that has an idea but does not know
how to convert it in a concrete realization. Usually, the human will ask assistance to a
second human to realize this conversion—we call it the assistant. Iterative interaction
between the two humans takes place, during which the assistant takes actions on
the system and the human gives feedback on it—until converging to a final design.
Our idea is to have a machine learning agent take the role of the assistant: the agent
acts on the system, upon which the human gives feedback. The agent thus explores
design possibilities in collaboration with the human, letting the human focus solely
on aligning their conceptual space with the perceptual space offered by the agent—
postponing the sensorimotor and/or academic learning phase to a later phase.

Reinforcement Learning

We propose to investigate the interactive use of a specific category of machine learn-
ing, called reinforcement learning. Reinforcement learning defines a formal frame-
work for the interaction between a learning agent and an environment in terms of
states, actions, and rewards [Sutton and Barto, 2011]. At time ¢, an agent senses its
environment through an observation called state .S; (typically, a vector of discrete
parameters), and on that basis takes an action A; on it (typically, a set of discrete
modifications on these parameters). At time ¢ + 1, in response to its action, the agent
receives a reward R from the environment, as well as a new state Sy 1. From this
information, the agent iterates interaction, progressively learning how to optimize
interaction with the environment so as to maximize the total amount of reward it
receives over the long run.

Reinforcement learning differ from supervised (and unsupervised) learning cate-
gories. For the latters, learning typically occurs offline on the basis of a static training
dataset, which is a set of labeled (or unlabeled) examples we would like the system
to generalize behaviour from. In reinforcement learning, the agent learns online by
directly interacting with its environment. As a result, a reinforcement learning agent
must always balance between exploration and exploitation to improve its learning —
exploration meaning trying new actions to discover which ones yield the most re-
ward, and exploitation meaning choosing the best actions in terms of reward at the
time of computation.

Proposed Workflow

We are interested in interactive approaches to reinforcement learning, such as shown
in Figure 4.3. In this approach, the reinforcement learning agent receives the reward
signal directly from the human feedback. Research in other fields such as robotics
[Thomaz and Breazeal, 2008] and computer science [Knox and Stone, 2009, Chris-
tiano et al., 2017] have made huge progress toward the development of interactive
agents capable of learning specific tasks from human feedback. These agents support
sequential adaptation without needing example demonstrations, but only by receiving
human feedback as subjective evaluations of the autonomously-generated behaviors.
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Figure 4.3: Graphical outline of an Interactive Reinforcement Learning framework. In-
teraction between the human and the music computing system is mediated by a learn-
ing agent (in blue). At time ¢, the agent acts directly on the system’s parameters. At
time £+ 1, the system generates a new state (for example, a sound), that is subjectively
evaluated by the human through feedback. By iterating the loop, the agent learns how
to explore.

There is still relatively few works investigating reinforcement learning in the field
of music computing [Fiebrink and Caramiaux, 2016]. Derbinsky et al. [Derbinsky
and Essl, 2012] proposed to apply reinforcement learning to rhythm modelling, in
a goal-oriented task. Our approach differs from these works, in the sense that we
focus on interactive agent teaching from the human point of view (how it is "effi-
cient" for the human, not necessarily for the agent). Also, it extends research in other
fields on interactive reinforcement learning in the sense that the open-ended task of
sonic exploration may have different properties than the goal-oriented tasks usually
investigated—such as learning how to play Tetris [Knox and Stone, 2009].

We propose to conceptualize the application of interactive reinforcement learn-
ing to human exploration as "co-exploration" (see Figure 4.4). We are inspired by
prior work studying phenomenons of co-adaptation between humans and machines,
which were shown to reduce the human’s cognitive overload during the carrying of
a task [Mackay, 2000]. Here, co-exploration stands for collaborative human-agent
exploration of a given music computing system. The human explores the sonic possi-
bilities offered by the system (progressively learning aesthetic qualities in the system),
while the agent explores the computational parameterizations of the system (progres-
sively learning which system parameters are relevant for the human). Design through
co-exploration encapsulates the possibility for a (possibly novice) human to create a
musical artifact from a (possibly unknown) computer system by collaborating with
a learning agent in the exploration of design possibilities. A typical scenario would
imply the agent generate an initial random solution to the human, who would pro-
gressively shape it through her preferences. As we saw it, human interaction with
the music computing system is mediated by an agent. Concretely, this means that the
human does not interact with the system’s interface: an agent does it instead. Instead,
the human focuses on giving evaluative feedback on the agent’s actions, judging the
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system’s output on a perceptual level. Potentially, this feedback could be of any type—
be it text-based, demonstration-based, or physiological.

Co-Exploration

Human Exploration
uoypuo|dx3 jusby

AN N

Figure 4.4: The Co-Exploration workflow. In a standard situation (behind), a human
explores a system by iteratively acting on it. In co-exploration (front), a learning agent
explores a system in parallel to the human.

4.2 Prototyping

In this section, we describe the model prototype that we implemented to apply inter-
active reinforcement learning to the musical task of sonic exploration.

4.2.1 Human Data: Feedback

Our initial wish is to allow humans to explore sound by only communicating positive
or negative feedback data. Advantages are threefold. First, it could encapsulate sev-
eral kinds of feedback in one unique format, such as general advice (e.g. "this is good",
"this is bad"), implicit knowledge (e.g. "do it more like this", "don’t go that way"), as
well as explicit specification (e.g. "this is exactly what I want", "never show me this
again"). Second, it could be expressed relatively easily (compared to text-based feed-
back, which forces users to create a concrete verbalization of what they want). Third,
it could give a sense of agency to the human (compared to physiological feedback,
which most humans do not control). Overall, we hypothesize that communicating
such high-level feedback could facilitate musical exploration of a system compared to
specifying its low-level parameters.

To implement interaction with such agents, we must modify the formal framework
defined above. We propose, along with previous works [Thomaz and Breazeal, 2008,
Knox and Stone, 2009, Christiano et al., 2017], that a human would be responsible for
giving reward to the agent (see Figure 4.3). Our hypotheses are that the numerical
reward may constitute a feedback channel from the human to the agent (respectively
giving positive, zero, or negative reward for positive, neutral, or negative feedback),
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and that interactively communicating feedback toward the environment following the
agent’s exploration path may support human exploration.

4.2.2 Algorithm: Sarsa

We implemented Sarsa, which is a standard algorithm to learn how to act in many
different environment states [Sutton and Barto, 2011]. It differs from multi-armed
bandits, which learns how to act in one unique environment state [Lomas et al.,
2016]. Formally, the environment is constituted by the parameters of some sound
synthesis engine, and the agent iteratively acts on them. Computationally, we con-
sidered the state space S = {S} constituted by all possible parameter configurations
S = (s1, ..., Sn ), with n being the number of parameters, and s; € [Spmin, Smax) being
the value of the i‘" parameter living in some bounded numerical range (for example,
s; can control the level of noise normalized between 0 and 1). We defined the corre-
sponding action space A(S) = {A} as moving up or down one of the n parameters
by one step a;, except when the selected parameter equals one boundary value:

+a; fors; G]Smm, Smam[
A(S) = { +a; for s; = Smin (4.1)

—a; for s; = Syax

An e-greedy method defines the autonomous exploration behaviour policy of the
agent—how it may act by exploiting its accumulated feedback while still exploring
new unvisited states [Sutton and Barto, 2011]. It consists in having the agent take an
optimal action with probability ¢, and reciprocally, take a random action with prob-
ability 1 — e. For example, ¢ = 1 would configure an always exploiting agent—i.e.,
always taking the best actions based on accumulated feedback—, while ¢ = 0 would
configure an always exploring agent—i.e., never taking into account the received feed-

back.

4.3 Observation

As a first step toward co-exploration, we led a controlled experiment with human par-
ticipants. Our aims were to: Test how humans perceive interaction with a reinforce-
ment learning agent for sonic exploration; Understand how reinforcement learning
elements may influence humans leading sonic exploration.

4.3.1 Setup: Controlled Experiment
Participants

We recruited 12 participants (average of 26.9 years old, 0 = 7.44, 5 Female and 7
Male). Half of them were music computing practitioners. The other half did not have
training in music computing, nor other sound-related creative practice. All of them
reported normal hearing.
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Task

The basic task of the study was to guide an agent through a sound space, from the
lowest to the brightest sound. At each step of the task, the agent would generate a
new sound. If the new sound was brighter than the previously generated one, partic-
ipants had to give positive feedback to the agent. In any other cases (lower or similar
brightness), participants had to give negative feedback to the agent. The task auto-
matically ended in two cases: either the brightest sound was reached, or it was not
reached after a maximum number of steps (we set it to 150).

At the end of the task, participants were asked to rate their perception of the
agent according to three aspects related to collaboration. The first aspect was the de-
gree of agency provided by the agent through feedback (‘did the agent seem to take
into account your feedback in a reactive manner, or did it seem to act completely inde-
pendently?”). The second aspect was the degree of assistance provided by the agent
throughout the task (“did the agent seem to generate sounds that were brighter, or did
it seem not to be of any help in going in this direction?”). The third and last aspect was
the degree of easiness of the task (“overall, did the task seem to be very easy, or very

difficult?”).

Agents

Three types of agents were evaluated: “random”, “balance”, and “exploit”. These cor-
respond to three different degrees of exploration (¢ = 0: the agent only takes random
actions; € = 0.5: the agent balances random action selection with feedback-based best
action selection with probability 0.5; ¢ = 1: the agent only selects the best actions as
indicated by user feedback). Other agent parameters were fixed so that exploration
would be the sole varying factor.

Musical Environments

Sounds were generated through a FM synthesis? engine (implemented in Max/MSP),
with two discretized parameters. The first parameter, called modulation index, could
take ten values ranging from 3 to 70; the second parameter, called harmonicity ratio,
could take three values ranging from 0.98 to 1.02. The resulting sound space thus
had 30 possible states, corresponding to 30 static sounds. As previously explained,
the agent’s possible actions consist in moving up or down one of the two parameters.
For the sake of the experiment, we normalized sound loudness empirically so they
perceptually appear of equal intensity, and we set sound duration to 500 ms.

Based on this sound space, we designed two environment models in close rela-
tionship with the task’s goal: “unobstrucked”, and “obstrucked” (see Figure 4.5). In
the unobstrucked environment, brightness increases linearly with modulation index:
highest brightness thus corresponds to highest index value. We expect “balance” and
“exploit” agents to be more collaborative than “random” agents through their ability
to learn and select the best actions.

2Frequency Modulation synthesis (a classic algorithmic method for sound synthesis [Chowning, 1973]).
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Goal States
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Figure 4.5: The two environment models designed for our experiment. Top: Unob-
strucked environment, where brightness varies linearly. Bottom: Obstrucked envi-
ronment, where brightness varies nonlinearly.

In the obstrucked environment, brightness varies nonlinearly with modulation in-
dex: highest brightness still corresponds to highest index value, but a local maximum
lives at one third of the scale. Our hypothesis is that “exploit” agents would remain
stuck in this local maximum, whereas “balance” agents would overcome it through
their ability to explore. We thus expect “balance” agents to be more collaborative
than “random” and “exploit” agents.

Procedure

The experimental session consisted of a familiarization phase and an experimental
phase.

Participants first had to read the task’s instruction and could ask the experimenter
for clarification if necessary. Then, they had two test tasks in the unobstrucked en-
vironment with two types of agents (one “exploit”, then one “random”) to familiarize
with the range of sounds and agent behaviors at stake. Sounds were presented as pairs
to participants (using headphones), so as to facilitate brightness comparison between
the previously-generated sound and the new one. Participants could listen to a pair of
sounds as many time as they wanted to (using a keyboard key) before giving positive
or negative feedback to the agent (using left or right arrow keys). Once a task was
over, participants had to rate the agent’s behavior for each of the three previously-
described aspects on 9-point Likert scales (using the mouse and interactive sliders).
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Figure 4.6: Results for synthetic trial data.

We asked participants to use the full scales as much as they could.

Once this phase was over, participants could start the experimental phase. The
first stage only concerned the unobstrucked environment: participants were asked to
guide and evaluate each of the three types of agents within it. For improving con-
sistency, participants made three trials with each of the three agents. A stage thus
consisted in nine tasks that were randomized in order. Finally, the second stage only
concerned the obstrucked environment: similarly, participants guided and evaluated
the three types of agents three times each, in a random order. Participants were al-
lowed to take a break at any time during the session, which lasted one hour on average.

4.3.2 Results: Statistical Analysis

For each participant, we recorded step-by-step data (time, states, actions, feedback
and ratings), as well as audiovisual data of users. Prior to analysing them, we report
on synthetic data generated before the actual experiment.

Synthetic Trial Data

We programmed synthetic feedback users of same number as participants to generate
a benchmark on how agents should ideally behave in our two environment models.
This case corresponds to participants giving perfectly consistent feedback.

We measured the percentage of successful trials (which reflects the probability
of reaching the goal), as well as the mean number of steps taken in a trial (which
reflects a trial’s duration), for each type of agent and in each of the two environ-



4.3. Observation 53

Unobstrucked Environment
< 100 150
= &
= >
2 100 S
S 50 I*
(8] c
a3 50 ©
52 =
m o Random Balance Exploit 0
Obstrucked Environment

ﬁ L e 150 "
= &
32 100 2
a )
¢ 50 1
(8]

A 50 §
N =
m o Random Balance Exploit 0

Figure 4.7: Results for participants’ trial data.

ments (see Figure 4.6). For each environment, we submitted each measure to a
one-way ANOVA with agent exploration as the within-subject factor. In the un-
obstrucked environment, the effect of exploration was significant for both percent-
age of successful trials [F(2,22) = 8.83,p < 0.001] and mean number of steps
[F(2,22) = 91.3,p < 0.001]. Planned contrasts showed that both measures signifi-
cantly differed for “balance” and “exploit” agents compared to “random” agents.
Likewise, in the obstrucked environment, the effect of exploration was significant
for number of successful trials [F'(2,22) = 44.7,p < 0.001] and mean number of
steps [F'(2,22) = 26.3,p < 0.001]. Planned contrasts showed that both measures
significantly differed for “balance” agents compared to “random” and “exploit” agents.

Participants’ Trial Data

We first measured participants’ feedback behavior. In the unobstrucked environment,
participants gave a mean of 393 feedback every 1.91 s, with 96.3% being correct. In
the obstrucked environment, participants gave a mean of 879 feedback every 1.84 s,
with 98.0% being correct.

Similarly to synthetic users, we measured the percentage of successful trials, as
well as the mean number of steps taken by each of the three agent types, in each
of the two environments (see Figure 4.7). We used the mean of all trials in each
condition for each participant. For both environments, we submitted both mea-
sures to a one-way ANOVA with agent exploration as the within-subject factor. In
the unobstrucked environment, the effect of exploration was significant for percent-
age of successful trials [F(2,22) = 6.49,p < 0.005] and mean number of steps
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Figure 4.8: Results for participants’ evaluation data. In blue: agency. In orange: assis-
tance. In green: easiness.

[F(2,22) = 130.3,p < 0.001]. Planned contrasts showed that both measures signif-
icantly differed for “balance” and “exploit” agents compared to “random” agents.
Likewise, in the obstrucked environment, the effect of exploration was significant
for percentage of successful trials [F(2,22) = 8.16,p < 0.002] and mean number
of steps [F'(2,22) = 3.62,p < 0.03]. Planned contrasts showed that both measures
significantly differed for “balance” agents compared to “random” and “exploit” agents.

Participants’ Evaluation Data

We computed the standard score (also called z-score) for each evaluation ratings in
each environment to compare participants on the same scale (see Figure 4.8).

For each environment, we submitted each z-score to a one-way ANOVA with
agent exploration as the within-subject factor. In the unobstrucked environment,
the effect of exploration was significant for all three perceptual aspects ([F(2,22) =
429.3,p < 0.001] for agency; [F(2,22) = 767.3,p < 0.001] for assistance; and
[F(2,22) = 335.2,p < 0.001] for easiness). Planned contrasts showed that all three
perceptual ratings were significantly higher for “balance” and “exploit” agents than
for “random” agents.

Likewise, in the obstrucked environment, the effect of exploration was signifi-
cant for for all three perceptual aspects ([F(2,22) = 8.32,p < 0.002] for agency;
[F(2,22) = 4.53,p < 0.02] for assistance; and [F'(2,22) = 5.26,p < 0.02] for eas-
iness). Planned contrasts showed that all three perceptual ratings were significantly
higher for “balance” agents than for “random” and “exploit” agents.
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Figure 4.9: Results for participants’ ratings versus task parameters.

Finally and as shown in Figure 4.9, we measured that participants’ perception of
task easiness was correlated with the total number of steps taken by all types of agents,
in both environments.

4.4 Discussion

In this section, we discuss our experiment’s results and extract implications for future
investigations of interactive reinforcement learning applied to sonic exploration.

4.4.1 The Usefulness of Balancing Exploitation with Explo-
ration

Synthetic trial data

We first look at synthetic trial data to analyse agents’ ability to reach a goal in a
non-interactive setup. In the unobstrucked environment, as expected, all agents that
took into account feedback (“balance” and “exploit”) always succeeded in reaching the
goal, with “exploit” agents being the fastests as they took the best action at each step;
“random” agents reported the worst performance, succeeding only two thirds of the
time with lower speed. In the obstrucked environment, conversely, “exploit” agents
never succeeded in reaching the goal. As expected, they remained stuck in the local
maximum that we designed. In this case where an obstacle blocks the way to the goal,
“balance” agents remarkably outperformed other agents in both speed and number of
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success. This proves that agents’ balance between exploitation and exploration may
be useful for reaching a goal in environments of varying complexities.

Participants’ trial data

Participants’ trial data differ from synthetic trial data because of imperfect feedback
occasionally given by users. Despite this difference, agents took exploration paths
that were similar to those generated with synthetic users in five out of six agent-
environment cases, as shown in Figure 4.7. In the remaining case of “exploit” agents
exploring the obstrucked environment, one third of the trials were successful, which
means that agents unexpectedly managed to overcome the obstacle that we designed
to reach the goal. This proves that agents can take different paths in an interactive
setup where users make feedback mistakes.

4.4.2 The Influence of Exploration Path on User Perception
Perceiving collaboration

We now analyse participants’ subjective evaluations to better understand how explo-
ration might be perceived by users. First, we observe that participants’ ratings had
more variability in the obstrucked environment than in the unobstrucked environ-
ment. This suggests that an environment’s complexity may strongly influence how
humans perceive agent exploration. Second, we noticed that participants rated down
“exploit” agents in the obstrucked environment, even if one third of them succeeded
in reaching the goal, as we previously discussed. This proves that the path taken
by agents during exploration may be more critical to how collaborative agents are
perceived by users than the actual fact of reaching the goal.

Looking more in detail to participants’ ratings, we can see that “balance” agents
were the only type of agents that were perceived as being the most assistive in both
environments, thus reflecting their quantitative usefulness. As expected, “random”
agents were perceived as providing the less agency in the unobstrucked environment:
this suggests that participants may be able to perceive when an agent learns along its
path—in other words, there was no “placebo effect” toward agents’ artificial intelli-
gence. Finally, even if “exploit” agents formally take the best action at every step
as defined by participants’ feedback, this may not be perceived by participants, as
their ratings of agency shows (see Figure 4.8, bottom). This confirms that an agent’s
internal functioning may not be properly perceived by humans, whose perception
might be more influenced by the path taken by agents in a given environment. Re-
sults shown on Figure 4.9 seem to confirm this statement, as one of the evaluation
ratings correlates with one of the task parameters, regardless of the type of agent at
stake.

Personifying agents

Interestingly, audiovisual recordings show that all participants personified agents de-
pending on their perceived collaboration. For example, agents that took relatively di-
rect paths to the goal provoked positive reactions (such as “it understood right away”)
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and adjectives (e.g., “nice”, or “careful”). On the other hand, agents that took more
complex paths—such as “random” agents, or “exploit” agents that remained stuck in
the obstacle—inherited depreciative reactions (e.g., “it doesn’t listen to me”, or “it seems
light-headed”) and adjectives (e.g., “idiot”). This might be a first clue—to some extent—
for stating that feedback-based interaction may encourage users to perceive agents as
embodied partners—in some cases able to act as collaborators.

4.4.3 Towards Co-Exploration
The issue of human moving goals

In our experiment, we forced participants to follow a fixed feedback strategy: this
might limit the reach of our experiment’s results. Indeed, such feedback constraint
might not be realistic in real-world exploration, mainly for two points: (1) users might
change their feedback strategy, and (2) their goals might evolve over time. These situ-
ations are typical of real-world scenarios, where users may push systems in limit con-
ditions [Jorda, 2005], or may want to explore several alternative strategies [Fiebrink
etal, 2010]. Investigating these points constitute next steps toward turning our inter-
active reinforcement learning system (where the goal to be learned was fixed) into a
co-exploration system (where the goal to be learned might evolve as the human uses
the system).

Improving algorithms or interactions?

We identify two main directions for addressing these points—stressing that these di-
rections should be complementary. The first option corresponds to investigate other
reinforcement learning algorithms. As said, our current prototype implements the
Sarsa algorithm, which is a standard method for reinforcement learning. Other ap-
proaches to learning may be better adapted to our co-exploration use case. For exam-
ple, one may investigate methods that are robust to non-stationary feedback [Knox
and Stone, 2009]. Alternatively, one may also investigate approximate policy learn-
ing algorithms [Sutton and Barto, 2011, Christiano et al., 2017] for learning relevant
representations of an environment without having to explore it in its entirety.

The second option corresponds to design new interactions that may better fit in-
teractive uses of reinforcement learning algorithms. As shown in our study, humans
may not always perceive how a learning system internally works. In order to give
more control to the human, one could imagine allowing humans to modify agent
parameters during interaction, for example by actively choosing the degree of explo-
ration they may need. Also, one could allow humans to go backwards in the agent’s
learning process, or to restart learning at any time, so as to give space for iterative,
flexible exploration patterns [Resnick et al., 2005]. Again, all these developments are
not contradictory, and we believe that both directions should be considered in future
research.
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Connecting agents to real-world systems and situations

Finally, our experiment focused on models of musical environments whose dimen-
sionalities may not fully reflect those of standard music computing systems to be
explored by users. Yet, we argue that investigating such models have provided useful
insights on how agents would take exploration paths in real-world music systems.

In the context of this thesis, we decided to continue the application of reinforce-
ment learning to sonic exploration with real-world VSTs, hoping to harvest comple-
mentary insights on our use case and pushing further the formalization of environ-
ments at stake in our co-exploration agents. Such studies might be an opportunity to
investigate other qualitative methods for evaluating agents. Indeed, our experiment’s
results suggested that participants did not really differentiate each of the three per-
ceptual aspects they had to rate, which in turn suggest that they may have a much
global appreciation of how an agent interact with them. Borrowing approaches and
methods from the field of Human-Computer Interaction (such as user-centered design
through case studies and workshops) [Resnick et al., 2005, Fiebrink et al., 2011] might
be essential for grasping such experiential aspects among humans and for leading
such situated studies with agents.



Designing With
Deep Reinforcement Learning
For Synthesis Exploration

This chapter presents the third study led in the thesis. It follows on from our previous
study in Chapter 4 by applying reinforcement learning to the musical task of “syn-
thesis exploration”. Synthesis exploration is the multimodal task of acting on a sound
synthesis interface to lead sonic exploration.

We adopted a user-centered design method to iterate the design of reinforcement
learning with humans [Beaudouin-Lafon and Mackay, 2009]. We decided to work with
expert sound designers to get a specialized understanding of synthesis exploration
parallel to design iterations. This enabled us to cover qualitative feedback in our
model design process, which went through an engineering step to implement a deep
reinforcement learning model (as shown in Fig. 5.1).

Concepts

Engineering Prototyping

Observation

Figure 5.1: The user-centered design method for our third study.

59
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Section 5.1 describes concepts, covering musical background on interface explo-
ration, along with our proposed machine learning technique. Section 5.2 describes
the first model prototyping iteration of our design process. Section 5.3 reports on
observations led in a pilot study, respectively investigating expert users exploring
VST interfaces and using our model prototype. Section 5.4 describes the second model
prototyping iteration of our design process. Section 5.5 describes the model engi-
neering led for our final software, called Co-Explorer. Section 5.6 reports on obser-
vations led in a creative workshop with our software.

Finally, we report on three applications of our model. Section 5.8 describes the
application of the model to the design of a video game, called Riding the Co-Explorers,
that we used as a demonstrator in a conference. Section 5.9 describes the application
of the model to the design of a robotic object in a workshop, called Behavioral Matter.
Finally, Section 5.10 describes the application of our model to the design of a computer
music performance, called ago.

This work was submitted as journal paper for ACM Transactions on Computer-
Human Interaction (TOCHI) [Scurto et al., 2019b]. Engineering was done in the con-
text of Bavo Van Kerrebroeck’s Master’s Thesis, supervised by Frédéric Bevilacqua
and myself [Van Kerrebroeck, 2018]. The game was showcased as installation at the
19th International Society for Music Information Retrieval Conference in Paris, France
[Scurto et al., 2018b]. The robotic object was designed at the Behavioral Matter work-
shop in Paris, France. The computer music performance was published and presented
as paper and piece at the 14th International Symposium on Computer Music Multidis-
ciplinary Research (CMMR 2019) in Marseille, France [Scurto and Chemla, 2019].

5.1 Concepts

Reinforcement learning defines a computational framework for the interaction be-
tween a learning agent and its environment [Niv, 2009]. The framework provides a
basis for algorithms that learn an optimal behaviour in relation to the goal of a task
[Sutton and Barto, 2011]. For example, reinforcement learning was recently used to
learn to play the game of Go, simulating thousands of agent self-play games based
on human expert games [Silver et al., 2016]. The algorithm, called deep reinforcement
learning, leveraged advances in deep neural networks to tackle learning of a behaviour
in high-dimensional spaces [Mnih et al., 2015]. The autonomous abilities of deep re-
inforcement learning agents let machine learning researchers foresee prominent ap-
plications in domains, such as transportation, healthcare, or finance [Li, 2018].

Yet, one important current challenge for real-world applications is the ability for
reinforcement learning agents to learn from interaction with human users. The so-
called interactive reinforcement learning framework has been shown to hold great
potential to build autonomous systems that are centered on human users [Amershi
et al., 2014], such as teachable and social robots [Thomaz and Breazeal, 2008], or assis-
tive search engines [Athukorala et al., 2016a]. From a machine learning perspective,
the main challenge lies in learning an optimal behaviour from small, non-stationary
amounts of human data [Knox and Stone, 2009]. From a human-computer interac-
tion perspective, an important challenge consists in supporting human appropriation
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of algorithms’ autonomous behaviours in relation to complex human tasks [Stumpf
et al., 2009].

Our interest lies in investigating interactive reinforcement learning for human
creative tasks, where a goal might not be well-defined by human users a priori
[Resnick et al., 2005]. One such case of a human creative task is exploration [Hart
et al., 2017]. Exploration consists in trying different solutions to address a problem,
encouraging the co-evolution of the solution and the problem itself [Dorst and Cross,
2001]. For example, designers may produce several sketches of a product to ideate
the features of its final design, or test several parameter combinations of a software
tool to create alternative designs in the case where the product has a digital form. The
creative, human-centred, use case of exploration fundamentally differs from standard,
machine-centred, reinforcement learning use cases, where a problem is implicitly de-
fined as a goal behaviour, before the agent actually learns to find a solution as optimal
behaviour [Sutton and Barto, 2011]. It thus stands as an exemplary use case to study
human interaction with reinforcement learning agents.

In this study, we aim at designing an interactive reinforcement learning system
supporting human creative exploration. This question is addressed in the application
domain of sound design, where expert practitioners typically face the challenge of
exploring high-dimensional, parametric sound spaces. We propose a user-centred
design approach with expert sound designers to steer the design of such a system and
better conceptualize exploration within this context.

5.1.1 Musical Task: Synthesis Exploration

Sound design is an exemplary application domain for studying exploration—taking
iterative actions and multiple steps to move from an ill-formed idea to a concrete
realization [Garcia et al., 2012]. Sonic exploration tasks can take myriad of forms:
for example, composers explore various sketches of their musical ideas to write a
final score; musicians explore different playing modes to shape an instrument’s tone;
sound designers explore several digital audio parameters to create unheard-of sounds
[Monache et al., 2010, Delle Monache et al., 2018].

Situating the Musical Task

Most of today’s digital commercial tools for sound synthesis, named Virtual Studio
Technology (VST, see Fig. 5.2), still rely on complex interfaces using tens of techni-
cal parameters as inputs. These parameters often relate to the underlying algorithms
that support sound synthesis, preventing users from establishing a direct perceptual
relationship with the sound output. To that one may add the exponential number of
parameter combinations, called presets, that eventually correspond to given sound de-
signs. It is arguable that these interfaces may not be the best to support human explo-
ration: as the perceptual outcome of acting on a given parameter may rapidly become
unpredictable, they may hinder user appropriation [Resnick et al., 2005, Shneiderman,
2007].

As such, synthesis exploration is a general task that concern expert musicians—
which explore parameters of computer devices to make sound—as well as non-
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Figure 5.2: A typical VST interface for sound design, containing many technical pa-
rameters.

musicians—which explore parameters of any kind of interfaces when appropriating
interaction. We are interested in investigating expert musicians’ strategies to explore
parametric interfaces. Our wish is that studying expert users will help us create new
interaction techniques that may benefit non-expert users.

Human-Centred Approaches

Creativity support tools have long focused on exploration as a central task to human
creative work [Shneiderman, 2007]. Design guidelines for supporting exploration
were developed, which include aiming at simple interfaces for appropriating the tool
and getting into sophisticated interaction more easily [Dix, 2007]. Flexible interaction
modalities that can adapt to users’ very own styles of thinking and creating may also
be required [Resnick et al., 2005]. In particular, parameter space exploration remains
a current challenge for HCI research [Cartwright et al., 2014]. Recently, creativity-
oriented HCI researchers underlined the need to move toward interdisciplinary re-
search collaborations [Frich et al., 2018].

Machine learning was in this sense examined for its implications in design [Koch,
2017] and identified as an opportunity for user experience [Dove et al., 2017, Yang
et al., 2018a, Yang et al., 2018b]. Yet, a large body of work in the machine learn-
ing research community has so far focused on constructing autonomous algorithms
learning creative behaviour from large amounts of impersonal data—falling under the
name of computational creativity [Wiggins, 2006]. While this have allowed the build-
ing of powerful tools and models for creation, one may be concerned in the question of
how to include human users in the design of such models to support human-computer
co-creation [Kantosalo et al., 2014].

Davis et al. proposed a model of creativity that explicitly considers the computer
as an enactive entity [Davis et al., 2014]. They notably stressed the potential of com-
bining creativity support tools with computational creativity to enrich a collabora-
tive process between the user and the computer [Davis et al., 2014]. The Drawing
Apprentice, a co-creative agent that improvizes in real-time with users as they draw,
illustrates their approach [Davis et al., 2016]. While their user study confirms the
conceptual potential of building such artistic computer colleagues, its technical im-
plementation remains specific to the use case at stake—e.g., drawing. We propose
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to jointly design a conceptual and technical framework that could be could easily
be transferrable to other application domains—potentially realizing general mixed-
initiative co-creativity [Horvitz, 1999, Yannakakis et al., 2014].

Machine-Centred Approaches

Interactive machine learning [Fails and Olsen Jr, 2003] allows human users to build
customized models by providing their own data examples—typically a few of them.
Not only users can customize training examples, but they are also allowed to directly
manipulate algorithm parameters [Kapoor et al., 2010, Wong et al., 2011], as well as
to receive information on the model’s internal state [Amershi et al., 2015, Patel et al.,
2011]. Applications in HCI cover a wide range of tasks, such as handwriting analysis
[Shilman et al., 2006], recommender systems [Amershi et al., 2012], or prioritising
notifications [Amershi et al., 2011]. Interactive machine learning mainly builds on
supervised learning, which defines a computational framework for the learning of
complex input-output models based on example input-output pairs. The “human-in-
the-loop” approach to supervised learning critically differs from the computational
creativity approach, which typically relies on huge, impersonal databases to learn
models [Gillies et al., 2016].

Interactive machine learning is one such example of a generic framework for
human-computer co-creation [Amershi et al., 2014]. The technical framework was
successfully applied across several creative domains, such as movement interaction
design [Zamborlin et al., 2014, Francoise and Bevilacqua, 2018, Gillies, 2019], web page
design [Kumar et al., 2011] or video games [Kleinsmith and Gillies, 2013]. Specifically,
research studying users building customized gestural controllers for music brought
insight on the creative benefits of interacting with machine learning [Fiebrink et al.,
2011]. Not only were users able to accomplish their design goal—e.g., demonstrat-
ing a given gesture input for controlling a given sound parameter output—, but they
also managed to explore and rapidly prototype alternative designs by structuring and
changing training examples [Fiebrink et al., 2010]. These patterns were reproduced by
novice users who gained accessibility using examples rather than raw parameters as
input [Katan et al., 2015]. The algorithms’ sometimes surprising and unexpected out-
comes favoured creative thinking and sense of partnership in human users [Fiebrink
and Caramiaux, 2016].

Typical workflows in interactive machine learning tend to iterate on designing
training examples that are built from a priori representative features of the input space
to support exploration. Yet, in some creative tasks where a problem definition may be
found only by arriving at a solution [Dorst and Cross, 2001, Rittel, 1972], it might be
unfeasible for users to define, a priori, such representative features of the final design
[Katan et al., 2015]. Other approaches proposed methods to release such contraints,
for example by exploring alternative machine learning designs by only defining the
limits of some parameter space [Scurto et al., 2016]. We propose to further inves-
tigate machine learning frameworks able to iteratively learn from other user input
modalities, and explicitly considering mixed-initiative workflows, where systems au-
tonomously adapt to users [Deterding et al., 2017]. As reviewed in the next section,
using interactive reinforcement learning offers such perspectives.
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5.1.2 Proposed Technique: Deep Reinforcement Learning

Interactive reinforcement learning defines a computational framework for the inter-
action between a learning agent, a human user, and an environment [Amershi et al.,
2014]. Specifically, users can communicate positive or negative feedback to the agent,
in the form of a numerical reward signal, to teach it which action to take when in
a certain environment state. The agent is thus able to adapt its behaviour to users,
while remaining capable of behaving autonomously in its environment. Interactive
reinforcement learning has been recently applied in HCI [Ruotsalo et al., 2014], with
promising applications in exploratory search [Glowacka et al., 2013, Athukorala et al.,
2016b] and adaptive environments [Frenoy et al., 2016, Rajaonarivo et al., 2017]. Inte-
grating user feedback in reinforcement learning algorithms is computationally feasi-
ble [Stumpf et al., 2007], helps agents learn better [Knox and Stone, 2009], can make
data-driven design more accessible [Lomas et al., 2016], and holds potential for rich
human-computer collaboration [Stumpf et al., 2009]. Applications in Human-Robot
Interaction informed on how humans may give feedback to learning agents [Thomaz
and Breazeal, 2008], and showed potential for enabling human-robot co-creativity
[Fitzgerald et al., 2017].

Deep Reinforcement Learning

Recently, reinforcement learning has witnessed a rise in popularity thanks to ad-
vances in deep neural networks [Mnih et al., 2015]. Powerful models including user
feedback have been developed for high-dimensional parameter spaces [Christiano
et al., 2017, Warnell et al,, 2017]. Design researchers have identified reinforcement
learning as a promising prospective technique to improve human-machine “joint cog-
nitive and creative capacity” [Koch and Oulasvirta, 2018]. We believe that interactive
reinforcement learning—especially deep reinforcement learning—holds great poten-
tial for supporting creative tasks—especially exploration of high-dimensional VST
parameter spaces. First, its computational framework, constituted by environment
states, agent actions, and user feedback, remains fully generic [Sutton and Barto,
2011], and thus potentially allow the design of generic interaction modalities trans-
ferrable to different application domains. Second, the autonomous behaviour intrin-
sic to reinforcement learning algorithms may be exploited to build a novel creative
mixed-initiative paradigm, where the user and the agent would cooperate by taking
actions that are “neither fully aligned nor fully in conflict” [Crandall et al., 2018]. Fi-
nally, we consider that user feedback could be a relevant input modality in the case
of exploration, notably for expressing on-the-fly, arbitrary preferences toward im-
minent modifications, as opposed to representative examples. As previously stated,
this requires investigating a somewhat unconventional use of reinforcement learn-
ing: if previous works employed user feedback to teach agents a “correct” behavior
in relation to a task’s goal, it is less obvious whether such a correct behavior may be
well-defined—or even exists—for human users performing exploration.
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Method

We adopted a user-centered approach to lead joint conceptual and technical work on
interactive reinforcement learning for synthesis exploration. Two design iterations—
a pilot study and an evaluation workshop—were conducted over the course of our
research. Two prototypes were designed and developed—one initial reinforcement
learning prototype, and the Co-Explorer, our final deep reinforcement learning proto-
type. The process thus includes sequentially:

« Prototype 1: Implementing a reinforcement learning algorithm that learns to
explore VST parameter spaces from binary human feedback

« Pilot study: Observing and interviewing participants exploring sound spaces,
first using standard parametric interfaces, then using our initial reinforcement
learning prototype

« Prototype 2: Designing deep reinforcement learning in response to design ideas
suggested by our pilot study

« Evaluation workshop: Observing and discussing with participants using and
appropriating the Co-Explorer, our final prototype, in two creative tasks related
to exploration

We worked with a total of 14 users (5 women, 9 men; all French) through the series
of activities. From the 14 total, there were 2 who took part in all of the activities listed
below, to testify of our prototype’s improvements. Our users covered different areas
of expertise in sound design and ranged from sound designers, composers, musicians,
and artists to music researchers and teachers. Thus, they were not all constrained to
one working methodology, one sonic practice or one application domain. Our motiva-
tion was to sample diverse approaches to exploration that sound design may provoke,
in order to design a flexible reinforcement learning algorithm that may suit a variety
of users’ working styles [Resnick et al., 2005].

5.2 Prototyping I

By formalizing synthesis exploration as an interactive reinforcement learning prob-
lem, we seek to tackle both issues at once. First, human navigation in high-
dimensional parameter spaces may be facilitated by the reinforcement learning com-
putational framework, made of sequences of states, actions, and rewards. Second,
human creativity may be stimulated by the autonomous behaviour of reinforcement
learning algorithms, suggesting other directions or design solutions to users along
exploration.

5.2.1 Algorithm: Sarsa

We used the same model prototype than that in Chapter 4, this time calling it “RL
agent” for concision purposes. For the readers’ convenience, we describe again its
principles below.
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The prototype lets users navigate through different sounds by only communicat-
ing positive or negative feedback to a reinforcement learning agent. The agent learns
from feedback how to act on the underlying synthesis parameters in lieu of users
(see Fig. 5.3). Formally, the environment is constituted by the VST parameters, and
the agent iteratively acts on them. Computationally, we considered the state space
S = {S} constituted by all possible parameter configurations S = (sy, ..., S ), with
n being the number of parameters, and s; € [Symin, Smaz] being the value of the ith
parameter living in some bounded numerical range (for example, s; can control the
level of noise normalized between 0 and 1). We defined the corresponding action
space A(S) = {A} as moving up or down one of the n parameters by one step a;,
except when the selected parameter equals one boundary value:

+a; fors; G]Smm, Smam[
A(S) = ¢ +a; for s; = Spmin (5.1)
—a; for Si = Smax

We implemented Sarsa, which is a standard algorithm to learn how to act in many
different environment state, i.e., for each given parameter configuration [Sutton and
Barto, 2011]. It differs from multi-armed bandits, which learns how to act in one
unique environment state [Lomas et al., 2016]. Importantly, as evoked in Section 5.1,
Sarsa was designed to learn an optimal behaviour in relation to the goal of a task. Our
purpose in this study was to scope the pros and cons of such a standard reinforcement
learning algorithm for human exploration tasks, judging how it may influence user
experience, and framing how it may be engineered with regard to this.
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Figure 5.3: Graphical outline of our RL agent prototype. Users can only provide feed-
back to the agent, which acts on hidden VST parameters.

We used a VST-based 12-parameter space (n = 12) as the environment of our
prototype. Because Sarsa is defined on discrete state spaces, each parameter range
was discretized in three normalized levels (s; € {0,0.5,1},a; = 0.5;0 < i < n).
Although this would have been a design flaw in a perceptual experiment on typical
VSTs, this allowed for obvious perceptual changes, which was required to investigate
feedback-based interaction with a large variety of sounds.

An e-greedy method defines the autonomous exploration behaviour policy of the
agent—how it may act by exploiting its accumulated feedback while still exploring
new unvisited states [Sutton and Barto, 2011]. It consists in having the agent take an
optimal action with probability €, and reciprocally, take a random action with prob-
ability 1 — ¢. For example, ¢ = 1 would configure an always exploiting agent—i.e.,
always taking the best actions based on accumulated feedback—, while ¢ = 0 would
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configure an always exploring agent—i.e.,, never taking into account the received
feedback. Our purpose in this study was to examine whether different exploration-
exploitation trade-offs could map to different user approaches to exploration.

5.2.2 Human Data: Feedback

Finally, we propose that the user would be responsible for generating feedback. We
directly mapped user feedback to the environmental reward signal R associated with
a given state-action pair (S, A). The resulting formalization—where an agent takes
actions that modifies the environment’s state and learn from feedback received from
a user—defines a generic interactive reinforcement learning problem.

5.3 Observation I

We organized a one-day pilot study with four of our expert participants. The aims
of this pilot study were to: Observe approaches to exploration in standard VST in-
terfaces; Identify problems users experience; Introduce the reinforcement learning
technology in the form of a prototype; Brainstorm ideas and possible breakdowns.

5.3.1 Setup: Pilot Study

The pilot study was divided in two parts: (1) parametric interface exploration, then
(2) interactive reinforcement learning-based exploration. We conducted individual
semi-structured interviews at the end of each part, having each participant do the
study one by one. This structure was intended to bring each participant to become
aware of their subjective experience of exploration [Petitmengin, 2006]. Our intention
was to open up discussions and let participants suggest design ideas about interac-
tive reinforcement learning, rather than testing different algorithmic conditions in a
controlled, experimental setup. We spent an average of 2 hours with each of our four
participants, who covered different expertise in sound design (composition, sound
design, interaction design, research).

5.3.2 Results: VST Interfaces, Qualitative Analysis
Procedure

In the first part of the study, participants were asked to find and create a sound preset
of their choice using three different parametric interfaces with different number of
parameters (respectively 2, 6, and 12, see Fig. 5.4). No reinforcement learning agent
was used. We linked each interface to a different sound synthesis engine (respectively
using FM synthesis’, and one commercial VST from which we selected 6, then 12, pa-
rameters). Sound was synthesized continuously; participants’ actions were limited
to move the knobs using the mouse to explore the design space offered by all possi-
ble combinations. Knobs’ technical names were hidden to test the generic effect of
parameter dimensionality in interface exploration, and avoid any biases due to user

1 Frequency Modulation synthesis (a classic algorithmic method for sound synthesis [Chowning, 1973]).
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knowledge of parameter function (which typically occur with labelled knobs). Inter-
face order was randomized; we let participants spend as much time as they wanted
on each interface to let them explore the spaces freely.

FM VST VST
synth A A

Figure 5.4: Graphical outline of the three parametric interfaces of our study.

Analysis

We were interested in observing potential user strategies in synthesis exploration.
We thus logged parameter temporal evolution during the task. It consists in an n-
dimensional vector, with n being the number of parameters (respectively 2, 6, then
12). Sample rate was set to 100 ms, which is a standard value for interaction with
sound and musical interfaces [Jorda, 2005]. We used Max/MSP? and the MuBu® library
to track user actions on parameters and record their evolutions. We used structured
observation to study participants’ interviews. This method was meant to provide a
thorough qualitative analysis on user exploration strategies.

Observations

Qualitative analysis of parameter temporal evolution let us observe a continuum of
approaches to parametric interface exploration. We call the first extremity of this
continuum analytical exploration: this involves actioning each of the knobs one
after the other over their full range. The second is called spontaneous exploration:
this involves making random actions on the knobs. Figure 5.5 shows examples for
each of these two approaches. One participant was consistently analytical over the
three interfaces; one was consistently spontaneous over the three. The two others
combined both approaches over the three interfaces.

Interview analysis let us map these approaches to different subgoals in explo-
ration. The analytical approach concerns exploration of the interface at a parameter
level: “The strategy is to test [each knob] one by one to try to grasp what they do”, one
participant said. The goal of exploration is then related to building a mental map of
the parameters to learn how to navigate in the design space. The spontaneous ap-
proach concerns exploration of the design space at a creative level: ‘T moved the knobs
more brutally and as a result of serendipity I came across into something different, that I
preferred for other reasons...”, another participant said. The goal of exploration is then
related to discovering new parameter states leading to inspiring parts of the design
space.

Discovery is critical to synthesis exploration. “Once [the knobs] are isolated, you
let yourself wander a bit more...”, one participant analysed. Surprise is also important:

2https://cycling74.com/products/max/
3https://forum.ircam.fr/projects/detail/mubu/
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Figure 5.5: Two user exploration strategies with a 12-dimensional parametric inter-
face: Analytical (top) vs. spontaneous (bottom).

“To explore is to be in a mental state in which you do not aim at something precise”,
one participant said. Interestingly, we observed that participants often used words
related to perceptual aspects rather than technical parameters. ‘T like when you can
get a sound that is... um... Consistent, like, coherent. And at the same time, being able to
twist in many different ways. This stimulates imagination, often”, one participant said.
Two participants mentioned that forgetting the parametric interface may be enjoyable
in this sense: ‘T appreciate an interface that does not indicate [...], that has you go back
into sound, so that you are not here reading things, looking at symbols...”, one participant
said.

All participants reported being hindered in their exploration by the parameter
inputs of the three interfaces. As expected, the more parameters the interface con-
tained, the larger the design space was, and the harder it was to learn the interface.
“For me, the most important difficulty is to manage to effectively organise all things to
be able to re-use them.”, one participant said. Time must be spent to first understand,
then to memorize the role of parameters, taking into account that their role might
change along the path of exploration. This hampers participants’ motivation, often
restraining themselves to a subspace of the whole design space offered by the tool:
“after a while I was fed up, so I threw out some parameters”, one participant said about
the 12-knob interface.

Participants discussed the limitations encountered in the study in light of their
real-world practice with commercial interfaces. Two participants mentioned using
automation functions to support synthesis exploration. Such functions include ran-
domizing parameter values, automating parameter modification over time, or creating
new control parameters that “speak more to your sensibility, to your ears, than to what
happens in the algorithm”, to cite one of the participants. Two participants also use
factory presets to start exploration: I think that in some interfaces they are pretty well
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conceived for giving you the basis of a design space. Then it’s up to you to find what
parameters to move”, one participant said. Two participants said that the graphical
user interfaces, including parameter names, knob disposition, and visual feedback on
sound, may help them manage to lead exploration of large parameter spaces.

5.3.3 Results: RL Agent Prototype, Qualitative Analysis

Results in first part let us identify different user approaches to VST interface ex-
ploration, as well as different problems encountered in high-dimensional parameter
spaces. In the second part, we were interested in having participants test the reinforce-
ment learning technology in order to scope design ideas and possible breakthroughs
in relation to exploration.

Procedure

Our participants were asked to find and create a sound preset of their choice by com-
municating feedback to three different agents with different exploration behaviours
(respectively ¢ = 0; ¢ = 1; and ¢ = 0.5). Sound was synthesized continuously,
in a sequential workflow driven by the agents’ algorithmic functioning. At step ¢,
participants could listen to a synthesized sound, and give positive or negative feed-
back by clicking on a two-button interface (Fig. 5.6). This would have the agent take
an action on hidden VST parameters, modify the environment’s state, and synthe-
size a new sound at step ¢ 4 1. Participants were only told to give positive feedback
when the agent gets closer to a sound that they enjoy, and negative feedback when
it moves away from it. They were not explained the agent’s internal functioning, nor
the differences between the three agents. The starting state for ¢ = 0 was randomly
selected. Agent order was randomized; we asked participants to spend between 5 and
10 minutes with each.

Feedback

Figure 5.6: One of our four participants using a two-button interface to communicate
binary feedback to the RL agent prototype in the pilot study.



5.3. Observation I 71

Analysis

We logged all participant actions in the graphical user interface. It consisted in timed
onsets for positive feedback on the one hand, and negative feedback on the other
hand. We also logged parameter temporal evolution to observe how the RL agent
would act on parameters following user feedback. We used structured observation to
study participants’ interviews and discussions led at the end of the pilot study.

Reactions

All participants reported forgetting synthesis parameters to focus on the generated
sound. The simplicity and straightforwardness of the new interface benefited their
exploration. “There’s always this sensation that finally you are more focused on listening
to the sound itself rather than trying to understand the technology that you have under
your hands, which is really great, yeah, this is really great”, one participant said.

The computational framework defined by reinforcement learning was well un-
derstood by all participants. “There’s somewhat a good exploration design [sic], because
it does a bit what you do [with the parametric interface], you move a thing, you move
another thing...”, one participant said. All participants enjoyed following agents’ ex-
ploration behaviours, mentioning a playful aspect that may be useful for serendipity.
Three participants in turn adapted their exploration to that of the agent: “you convince
yourself that the machine helps you, maybe you convince yourself that it is better... and
after you go on exploring in relation to this”, one participant said. Interestingly, one
participant that was skeptical about partnering with a computer changed his mind
interacting with the RL agent: “We are all different, so are they”, he commented, not
without a touch of humor.

Uses of Feedback

Descriptive statistics informed on how participants used the feedback channel. Three
participants gave feedback every 2.6 seconds on average (o = 0.4), globally balancing
positive with negative (average of 44.8% positive, o = 0.02). The fourth participant
gave feedback every 0.9 seconds on average (0 = 0.07) which was mostly negative
(average of 17.2% positive, o = 0.02). All participants reappropriated the feedback
channel, quickly transgressing the task’s instructions toward the two-button interface
to fulfill their purposes. One participant used feedback to explore agents’ possible be-
haviors: “Sometimes you click on the other button, like, to see if it will change something,
[...] without any justification at all”, he commented. Another used the ‘-’ button to tell
the agent to “change sound”. Two participants also noticed the difference between
feedback on sound itself, and feedback on the agent’s behavior: “there’s the T don’t
like’ compared to the sound generated before, and the Tdon’t like it at all’, you see”, one
of them said.

Breakdowns

Rapidly, though, participants got frustrated interacting with the RL agent. All partic-
ipants judged that agents did not always reacted properly to their feedback, and were
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leading exploration at the expense of them: “sometimes you tell T don’t like’, T don’t
like’, Tdon’t like’, but it keeps straight into it! (laughs)”, one participant said. Contrary
to what we expected, participants did not expressed a strong preference for any of
the three tested agents. Only one participant noticed the randomness of the explor-
ing agent, while the three other participants could not distinguish the three agents.
This may be caused by the fact that the Sarsa algorithm was not designed for the inter-
active task of human exploration. Reciprocally, this may be induced by experiential
factors due to the restricted interaction of our RL agent prototype, e.g., preventing
users to undo their last actions. Finally, two participants also complained about the
lack of precision of the agent toward the generated sounds. This was induced by the
Sarsa algorithm, which required to discretize the VST parameter space.

Design Implications

Participants jointly expressed the wish to lead agent exploration. They suggested
different improvements toward our RL agent prototype:

« Express richer feedback to the agent (e.g., differentiating ‘T like” from ‘T really
like”)

« Control agent path more directly (e.g., commanding the agent to go back to a
previous state, or to some new unvisited state in the parameter space)

« Improve agent algorithm (e.g., acting more precisely on parameters, reacting
more accurately to feedback)

Integrate agent in standard workspace (e.g., directly manipulating knobs at
times in lieu of the agent)

Interestingly, one participant suggested moving from current sequential workflow
(where the agent waits for user feedback to take an action on the environment’s state)
to an autonomous exploration workflow (where the agent would continuously take
actions on the environment’s state, based on both accumulated and instantaneous
user feedback). Three participants envision that such an improved RL agent could be
useful in their practice, potentially allowing for more creative partnerships between
users and agents.

5.4 Prototyping II

Our pilot study led us to the design of a final prototype, called Co-Explorer. We decided
to first design new generic interaction modalities with RL agents, based on users’
reactions with both parametric interfaces and our initial prototype.

5.4.1 Human Data: Feedback + Controls

Our initial prototype only employed user feedback as its unique interaction modal-
ity. This limited our participants, who suggested a variety of new agent controls to
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support exploration. We translated these suggestions into new interaction modali-
ties that we conceptualized under three generic categories: (1) user feedback, (2) state
commands, and (2) direct manipulations (as shown in Fig. 5.7).
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User Guiding - + State Direct Modify params
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Feedback | Zone -+ Command Manipulation | Reset memory
Go Backward
Y
AGENT ¥y Y VST
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Figure 5.7: Interactive workflow of the Co-Explorer.
User Feedback

Our design intention is to support deeper user customization of the VST parame-
ter space, while also allowing richer user contribution to agent learning. We thus
propose to enhance user feedback as defined in our initial prototype, distinguishing
between guiding and zone feedback. Guiding feedback corresponds to users giving
binary guidance toward the agent’s instantaneous trajectory in the parameter space.
Users can give either positive—i.e., “keep going in that direction”—or negative guid-
ance feedback—i.e., “avoid going in that direction”. Zone feedback corresponds to
users putting binary preference labels on given zones in the parameter space. It can
either be positive—i.e., “this zone interests me”—or negative—i.e., “this zone does not
interest me”. Zone feedback would be used for making assertive customization choices
in the design space, while guiding feedback would be used for communicating on-the-
fly advice to the learning agent.

State Commands

Additionally, our design intention is to support an active user understanding of agent
actions in the VST parameter space. We propose to define an additional type of inter-
action modality—we call them “state commands”. State commands enable direct con-
trol of agent exploration in the parameter space, without contributing to its learning.
We first allow users to command the agent to go backward to some previously-visited
state. We also enable users to command the agent to change zone in the parame-
ter space, which corresponds to the agent making an abrupt jump to an unexplored
parameter configuration. Last but not least, we propose to let users start/stop an au-
tonomous exploration mode. Starting autonomous exploration corresponds to letting
the agent continuously act on parameters, possibly giving feedback throughout its
course to influence its behaviour. Stopping autonomous exploration corresponds to
going back to the sequential workflow implemented in our initial prototype, where
the agent waits for user feedback before taking a new action on parameters.
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Direct Manipulation

Lastly, our design intention is to augment, rather than replace, VST interfaces with
interactive reinforcement learning, leveraging users expertise with these interfaces
and providing them with additional modalities that they could solicit when they may
need it. We thus propose to add “direct manipulations” to support direct parameter
modification through a standard parametric interface. It lets users explore the space
on their own by only manipulating parameters without using the agent at all. It can
also be used to take the agent to a given point in the VST parameter space—i.e., “start
exploration from this state”—, or to define by hand certain zones of interest using
a zone feedback—i.e.,, “this example preset interests me”. Inversely, the parametric
interface also allows to visualize agent exploration in real-time by observing how it
acts on parameters.

A last, global interaction modality consists in resetting agent memory. This en-
ables users to start exploration from scratch by having the agent forget accumulated
feedback. Other modalities were considered, such as modifying the agent’s speed
and precision. Preliminary tests pushed us to decide not to integrate them in the
Co-Explorer.

5.4.2 Algorithm: Deep TAMER

Based on our observations in the pilot study, we developed our reinforcement learning
agent at two intertwined technical levels: (1) feedback formalization and (2) learning
algorithm. This work was done in the context of Bavo Van Kerrebroeck’s Master’s
Thesis, supervised by Frédéric Bevilacqua and myself [Van Kerrebroeck, 2018].

Feedback Formalization

One challenge consisted in addressing the non-stationarity of user feedback data
along their exploration. We implemented Deep TAMER, a reinforcement learning al-
gorithm suited for human interaction [Warnell et al., 2017]. Deep TAMER leverages a
feedback formalization that distinguishes between the environmental reward signal—
i.e., named R in the Sarsa algorithm of our initial prototype—and the human reinforce-
ment signal—e.g., feedback provided by a human user. This technique, implemented
in the TAMER algorithm [Knox and Stone, 2009], was shown to reduce sample com-
plexity over standard reinforcement learning agents, while also allowing human users
to teach agents a variety of behaviours. We detail the differences between standard
RL algorithms and (deep) TAMER in Appendix A.

Learning Algorithm

Another challenge was to tackle learning in high-dimensional parametric spaces that
are typical of our use case. Deep TAMER employs function approximation [Sutton and
Barto, 2011] to generalize user feedback given on a subset of state-action pairs to un-
visited state-action pairs. Specifically, a deep neural network is used to learn the best
actions to take in a given environment state, by predicting the amount of user feed-
back it will receive [Mnih et al., 2015, Warnell et al., 2017]. The resulting algorithm can
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learn in high-dimensional state spaces S = {5} and is robust to changes in discretiza-
tion a; of the space. For our application in sound design, we engineered the algorithm
for n = 10 parameters. We normalized all parameters and set the agent’s precision
by discretizing the space in one hundred levels (s; € [0,1],a; = 0.01;0 < i < n).

A last challenge was to learn quickly from the small amounts of data provided
by users during interaction. Deep TAMER uses a replay memory, which consists in
storing the received human feedback in a buffer D, and sampling repeatedly from
this buffer with replacement [Warnell et al., 2017]. This was shown to improve the
learning of the deep neural network in high-dimensional parameter spaces in the
relatively short amount of time devoted to human interaction. We set the parameters
of the the deep neural network by performing a parameter sweep and leading sanity
checks with the algorithm.

5.5 Engineering II

We then engineered our model prototype by (1) improving exploration behaviour, (2)
processing user feedback and controls, and (3) implementing a new specific interface
for sound design. This work was done in the context of Bavo Van Kerrebroeck’s Mas-
ter’s Thesis, supervised by Frédéric Bevilacqua and myself [Van Kerrebroeck, 2018].

5.5.1 Algorithm: Improving Parameter Exploration

We developed a novel exploration method for autonomous exploration behaviour. It
builds on an intrinsic motivation method, which pushes the agent to “explore what
surprises it” [Bellemare et al., 2016]. Specifically, it has the agent direct its exploratory
actions toward uncharted parts of the space, rather than simply making random
moves—as in the e-greedy approach implemented in our initial prototype. It does
so by building a density model of the parameter space based on all visited states.
We used tile coding, a specific feature representation extensively used in the rein-
forcement learning literature to efficiently compute and update the density model in
high-dimensional spaces [Sutton and Barto, 2011]. We parameterized ¢ with an ex-
ponential decay in such a way that its initial value would slowly decrease along user
exploration. For our application in sound design, agent speed in continuous explo-
ration mode was set to one action by tenths of a second.

5.5.2 Human Data: Processing Feedback and Controls

To fully realize our interaction design, we integrated the modalities defined in Section
5.4.1 within the reinforcement learning framework defined in Section 5.4.2.

User Feedback

We developed generic methods corresponding to user feedback modalities defined in
Section 5.4.1 that we used in the feedback formalization of Section 5.4.2. For guiding
feedback, we assigned user positive or negative feedback value over the p last state-
action pairs taken by the agent (see Fig. 5.9, left), with a decreasing credit given
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Autonomous mode

Figure 5.8: Graphical outline of machine exploration methods. The color scale depicts
the density model all states. Left: Changing zone has the agent jump to the state with
lowest density. Right: Autonomous exploration has the agent take successive actions
leading to the state with lowest density.

Guiding Zone

Figure 5.9: Graphical outline of human feedback computation methods. Here, positive
feedback is given in some state situated at the center of the square. Left: Guiding feed-
back is distributed over the p lastly-visited state-action pairs. Right: Zone feedback
impacts all state-action pairs potentially leading to the labelled state.

by a Gamma distribution [Knox and Stone, 2009]. For zone feedback, we computed
all possible state-action pairs leading to the state being labelled and impacted them
with positive or negative feedback received (see Fig. 5.9, right). This enables to build
attractive and repulsive zones for the agent in the parameter space. Finally, we added
a reward bonus to user feedback to enhance the agent’s learning relatively to the
novelty of a state. This reward bonus is computed using the density model described
in Section 5.5.1.

State Commands

We developed generic methods corresponding to state commands defined in Section
5.4.1 using the exploration behaviour defined in Section 5.5.1. Changing zone has the
agent randomly sampling the density distribution and jump to the state with lowest
density (see Fig. 5.8, left). Autonomous exploration mode has the agent take ex-
ploratory actions that lead to the nearest state with lowest density with probability e
(see Fig. 5.8, right).

Direct Manipulation

We integrated direct manipulations as defined in Section 5.4.1 by leveraging the learn-
ing algorithm defined in Section 5.4.2. When parameters are modified by the user, the
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reinforcement learning agent converts all parameters’ numerical values as a state rep-
resentation, taking advantage of the algorithm’s robustness in changes of discretiza-
tion. Reseting agent memory has the reinforcement learning algorithm erase all stored
user feedback and trajectory, and load a new model.

5.5.3 Implementation: Co-Explorer

We implemented all interaction modalities described above in the Co-Explorer soft-
ware (see Video for an overview).

Agent

We implemented the Co-Explorer as a Python library*. It allows to connect the deep
reinforcement learning agent to any external input device and output software, us-
ing the OSC protocol for message communication [Wright, 2005]. This was done to
enable future applications outside the sound design domain. Each of the features de-
scribed in Section 5.4.2 are implemented as parameterized functions, which supports
experimentation of interactive reinforcement learning with various parameter val-
ues as well as order of function calls. The current version relies on TensorFlow for
deep neural network computations. The complete algorithm implementation and all
learning parameters are shown in the Appendix.

User Feedback poramdin Direct Manipulation
W and C: Guiding - + (\ (\ (\ ﬁ Mouse: Modify params
Qand D: Zone - + Mouse: Reset memory
State Commands ( ( ( (
Z: Change zone

Space: Autonomous mode
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Figure 5.10: User interface of the Co-Explorer.

Interface

We implemented an interactive interface for our application in sound design (Fig.
5.10), which integrates all interaction modalities defined in Section 5.4.1. It builds
on Max/MSP, a visual programming environment for real-time sound synthesis and
processing. Standard parametric knobs enable users to directly manipulate parame-
ters, as well as to see the agent act on it in real-time. An interactive history allows
users to command the agent to go to a previously-visited state, be they affected by
user feedback (red for negative, green for positive) or simply passed through (grey).
Keyboard inputs support user feedback communication, as well as state commands
that control agent exploration (changing zone, and start/stop continuous exploration
mode). Lastly, a clickable button enables users to reset agent memory.

“https://github.com/Ircam-RnD/coexplorer
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5.6 Observation II

We evaluated interaction with the Co-Explorer in a workshop with a total of 12 pro-
fessional users (5 female, 7 male). The aims of the workshop were to: Evaluate each
interaction modality at stake in the Co-Explorer; understand how expert users may
appropriate the agent to support synthesis exploration.

5.6.1 Setup: Workshop

The workshop was divided in two tasks: (1) explore to discover, and (2) explore to cre-
ate. This structure was intended to test the Co-Explorer in two different creative tasks
(described in Section 5.6.2 and 5.6.3, respectively). Participants ranged from sound
designers, composers, musicians, and artists to music researchers and teachers. They
were introduced to the agent’s interactive modalities and its internal functioning at
the beginning of the workshop. In each part, they were asked to report their observa-
tions by filling a browser-based individual journal. Group discussion was carried on
at the end of the workshop to let participants exchange views over synthesis explo-
ration. The workshop lasted approximately three hours each.

Figure 5.11: Picture of sound designers using the Co-Explorer in our workshop.

5.6.2 Results: Discovery Task, Qualitative Analysis
Procedure

In the first part of the workshop, participants were presented with one VST (see Fig.
5.11). They were asked to use the Co-Explorer to explore and discover the sound space
at stake. Specifically, we asked them to find and select five presets to constitute a rep-
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resentative sample of the space. We defined the parameter space by selecting ten pa-
rameters from a commercial VST. Participants were encouraged to explore the space
thoroughly. The task took place after a 10-minute familiarizing session: individual ex-
ploration lasted 25 minutes, followed by 5 minutes of sample selection, and 20 minutes
of group discussion.

Analysis

All participant’s actions were logged into a file. These contained timed onsets for
user feedback—i.e., binary guiding and zone feedback—, state commands—i.e., back-
ward commands in the history, changing zone commands, and autonomous explo-
ration starting/stopping—, and direct manipulations—i.e., parameter temporal evolu-
tions. We also logged timed onsets for preset selection in relation to the task, but did
not include the five presets themselves into our analysis. Our motivation was to focus
on the process of exploration in cooperation with the Co-Explorer, rather than on the
output of it. We used structured observation to extract information from individual
journals and group discussion.

Results

We first looked at how users employed state commands. Specifically, the autonomous
exploration mode, which consisted in letting the agent act cotinuously on parameters
on its own, was an important new feature compared to our sequentiam initial RL agent
prototype. Participants spent more than half of the task using the Co-Explorer in this
mode (total of 13 minutes on average, ¢ = 4.7). Ten participants used autonomous
exploration over several short time slices (average of 50 seconds, o = 25s), while the
two remaining participants used it over one single long period (respectively 9 and 21
minutes). P5 commented about the experience: ‘Tt created beautiful moments during
which I really felt that I could anticipate what it was doing. That was when I really
understood the collaborative side of artificial intelligence”.

The changing zone command, which enabled to jump to an unexplored zone in the
parameter space, was judged efficient by all participants to find diverse sounds within
the design space. It was used between 14 and 90 times, either to start a new exploration
(P1: “Every time I used it, I found myself in a zone that was sufficiently diametrically
opposed to feel that I could explore something relatively new”), or to rapidly seize the
design space in the context of the task (P12: T felt it was easy to manage to touch the
edges of all opposite textures”). Interestingly, P2 noticed that the intrisic motivation
method used for agent exploration behaviour “brought something more than a simple
random function that is often very frustrating”.

We then looked at how users employed feedback. Guiding feedback was effec-
tively used in conjunction with autonomous exploration by all participants, balanc-
ing positive with negative (55% positive on average, ¢ = 17%). Participants gave
various amounts of guiding feedback (between 54 and 1489 times). These strategies
were reflected by different reactions toward the Co-Explorer. For example, one par-
ticipant was uncertain in controlling the agent through feedback: “if the agent goes in
the right direction, I feel like I should take time to see where it goes”, he commented. On
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the contrary, P1 was radical in his controlling the agent, stating that he is “just looking
for another direction”, and that he uses feedback “without any value judgement”. This
reflects the results described in Section 5.3.3 using our initial RL agent prototype.

Zone feedback, enabling customization of the space with binary labels, was mostly
given as positive by participants (72%, o = 18%). Two participants found the concept
of negative zones to be counter-intuitive. ‘T was a bit afraid that if I label a zone as
negative, I could not explore a certain part of the space”, P8 coined. This goes in line
with previous results on applying interactive reinforcement learning in the field of
robotics [Thomaz and Breazeal, 2008]. All participants agreed on the practicality of
combining positive zone feedback with backward state commands in the history to
complete the task. “Ilabeled a whole bunch of presets that I found interesting [...] to after
go back in the trajectory to compare how different the sounds were, and after continue
going in other zones. I found it very practical”, P8 reported. Overall, zone feedback was
less times used than guiding feedback (between 10 and 233 times).

Finally, direct manipulation was deemed efficient by participants in certain zones
of the design space. “When I manage to hear that there is too much of something,
it is quicker to parametrize sound by hand than to wait for the agent to find it itself,
or to learn to detect it”, P4 analyzed. P10 used them after giving a backward state
command, saying she “found it great in cases where one is frustrated not to manage to
guide the agent”. P11 added that she directly manipulate parameters to “adjust the little
sounds that [she] selected”. P1 suggested that watching parameters move as the agent
manipulates them could help learn the interface: “From a pedagogical point of view,
[the agent] allows to access to the parameters’ functioning and to the interaction between
these parameters more easily [than without]”. This supports the fact that machine
learning visualizations may be primordial in human-centred applications to enable
interpretability of models [Amershi et al., 2014].

Relevance to Task

Three participants complained that the Co-Explorer did not react sufficiently quickly
to feedback in relation to the task: ‘T would really like to feel the contribution of the
agent, but I couldn’t”, P12 said. Also, P3 highlighted the difficulties to give evaluative
feedback in the considered task: “without a context, I find it hard”, he analysed. Despite
this, all participants wished to spend more time teaching the Co-Explorer, by carefully
customizing the parameter space with user feedback. For example, five participants
wanted to slow the speed of the agent during autonomous exploration to be able
to give more precise guidance feedback. Also, three participants wanted to express
sound-related feedback: “There, I am going to guide you about the color of the spectrum.
[...] There, I'm going to guide you about, I don’t know, the harmonic richness of the sound,
that kind of stuff...”, P4 imagined.
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5.6.3 Results: Creation Task, Qualitative Analysis
Procedure

In the second part of the workshop, participants were presented with four pictures
(Fig. 5.12). For each of these four pictures, they were asked to explore and create
two sounds that subjectively depict the atmosphere of the picture. In this part, we
encouraged participants to appropriate interaction with the Co-Explorer and feel free
to work as they see fit. We used a new sound design space for this second part, which
we designed by selecting another ten parameters from a commercial VST. Individual
exploration and sound selection lasted 30 minutes, followed by 20 minutes of group
discussion and 10 minutes of closing discussion.

Figure 5.12: The four pictures framing the creation task of the workshop.

Analysis

All participant actions were logged into a file, along with timed parameter presets
selected for the four pictures. Again, we focused our analysis on the process of explo-
ration rather than on the output of it. Specifically, for this open-ended, creative task,
we did not aim at analysing how each agent interaction modality individually relates
to a specific user intention. Rather, we were interested in observing how users may
appropriate the mixed-initiative workflow at stake in the Co-Explorer.

We used Principal Component Analysis (PCA [Jolliffe, 2011]), a dimensionality re-
duction method, to visualize how users switched parameter manipulation with agents.
We first concatenated all participants’ parameter evolution data as an n-dimensional
vector to compute the two first principal components. We then projected each partic-
ipant data onto these two components to support analysis of each user trajectory on
a common basis. By doing this, relatively distant points would correspond to abrupt
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changes made in parameters (i.e., to moments when the user takes the lead on explo-
ration). Continuous lines would correspond to step-by-step changes in parameters
(i.e., to moments when the Co-Explorer explores autonomously). PCA had a stronger
effect in the second part of our workshop. We interpret this as a support to the two-
part structure that we designed for the workshop, and thus did not include analysis
of the first part. Finally, we used structured observation to extract information from
individual journals and group discussion.

Exploration Strategies

All participants globally expressed more ease interacting with the Co-Explorer in this
second task. T felt that the agent was more adapted to such a creative, subjective... also
more abstract task, where you have to illustrate. It’s less quantitative than the first task”,
P9 analysed. User feedback was also reported to be more intuitive when related to a
creative goal: “all parameters took their sense in a creative context. [...] I quickly found
a way to work with it that was very efficient and enjoyable”, P5 commented. Figure 5.13
illustrates the PCA for two different users interacting with the Co-Explorer.

2nd component
2nd component

1st component 1st component

Figure 5.13: Two types of co-exploration partnerships shown in PCA visualizations
of parameter evolution: User-as-leader (P9, left) and agent-as-leader (P7, right). Rel-
atively distant points correspond to abrupt changes made in parameters (i.e., to mo-
ments when the user takes the lead). Continuous lines correspond to step-by-step
changes in parameters (i.e., to moments when the Co-Explorer takes the lead).

Qualitative analysis of PCAs let us conceptualize a continuum of partnerships be-
tween our participants and the Co-Explorer. These could be placed anywhere between
the two following endpoints:

+ User-as-leader: This typically involves users first building a map of the design
space (iteratively using changing zone and positive zone feedback), then gen-
erating variations of these presets (either through direct manipulation or short
autonomous explorations).

« Agent-as-leader: This typically involves letting the Co-Explorer lead param-
eter manipulation (using autonomous exploration and guiding feedback), first
setting some starting point in the design space (either using changing zone or
direct manipulation).
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Our interpretation is as follows. User-as-leader partnership may correspond to
user profiles that approach creative work as a goal-oriented task, where efficacy and
control are crucial (P10: ‘T am accustomed... Where I work, if you prefer, we have to get
as quick as possible to the thing that works the best, say, and I cannot spend so much time
listening to the agent wandering around”). Reciprocally, agent-as-leader partnership
may correspond to user profiles that approach creative work as an open-ended task,
where serendipity is essential for inspiration (P5: ‘T did not try to look for the sound
that would work the best. I rather let myself be pushed around, even a bit more than in
my own practice”). Some participants did not stabilize into one single partnership, but
rather enjoyed the flexibility of the agent. ‘It was quite fun to be able to let the agent
explore, then stop, modulate a bit some parameters by hand, let it go and guide it again,
changing zones too, then going back in the history... Globally, I have the impression of
shaping, somewhat... I found it interesting”, P11 coined.

Agent memory was handled with relevance to various creative processes toward

I3

the pictures. Seven participants disposed all four pictures in front of them (P7: “to
always have them in mind. Then, depending on the agent’s exploration, I told myself ‘hey,
this sound might correspond to this picture’). Three participants focused on one picture
at a time, “without looking at the others”. Four participants never reset the memory
(P11: “my question was, rather, in this given sonic landscape, how can I handle these
four pictures, and reciprocally”), and three participants reset agent memory for each
of the different atmospheres shared by the pictures. Overall, participants benefited
from partnering with the Co-Explorer in synthesis exploration: “It’s a mix of both. I
easily managed to project a sound on the picture at first glance, then depending on what

was proposed, it gave birth to many ideas”, one participant said.

Toward Real-World Usages

All participants were able to describe additional features for the Co-Explorer to be us-
able in their real-world professional work environments—examples are, among oth-
ers, connection to other sound spaces, memory transfer from one space to another,
multiple agent memory management, or data exportation. They also anticipated cre-
ative uses for which the Co-Explorer were not initially designed. Half of the partici-
pants were enthusiastic about exploiting the temporal trajectories as actual artifacts
of their creation (P6: “What I would find super interesting is to be able to select the se-
quences corresponding to certain parameter evolution, or playing modes. [...] It would
be super great to select and memorize this evolution, rather than just a small sonic frag-
ment”). Finally, two participants further imagined the Co-Explorer to be used as mu-
sical colleagues—either as improvisers with which one could “play with both hands”
(P2), or as “piece generators” (P6) themselves.

5.7 Discussion
Our process of research, design, and development led to contributions at three dif-

ferent levels: (1) conceptual insight on human exploration; (2) technical insight on
reinforcement learning; and (3) joint conceptual and technical design guidelines on
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machine learning for creative applications.

5.7.1 Conceptual Insight
From Exploration to Co-Exploration

Our work with interactive reinforcement learning allowed for observing and charac-
terizing user approaches to synthesis exploration, and supported it. While manipu-
lating unlabelled parametric knobs of sound synthesizers, participants alternated be-
tween an analytical approach—attempting to understand the individual role of each
parameter—and a spontaneous approach that could lead to combinations in the pa-
rameter space that might not be guessed with the analytical approach. While inter-
acting with a reinforcement learning agent, participants tended to alternate the lead
in new types of mixed-initiative workflows [Horvitz, 1999] that we propose to call
co-exploration workflows. User-as-leader workflow was used for gaining control over
each parameter of the design space. Agent-as-leader workflow allowed to relax users’
control and provoke discoveries through the specific paths autonomously taken by
the agent in the parameter space. Importantly, the benefit of interactive reinforce-
ment learning for co-exploring sound spaces was dependent on the task. We found
that this co-exploration workflow were more relevant to human exploration tasks that
have a focus on creativity, such as in our workshop’s second task, rather than discov-
ery. Therefore, we believe that this workflow is well-suited in cases where exploration
is somehow holistic (as in the creative task) rather than analytic (as in the discovery
task where the goal is to understand the sound space to find new sounds).

Methodology

Our user-centered approach to exploration with interactive reinforcement learning
allowed us to rapidly evaluate flexible interaction designs without focusing on usabil-
ity. This process let us discover innovative machine learning uses that we may not
have anticipated if we had started our study with an engineering phase. The simple,
flexible, and adaptable designs tested in our first pilot study (parametric vs. RL) could
in this sense be thought as technology probes [Hutchinson et al., 2003]. Working
with professional users of different background and practices—from creative coders
to artists less versed in technology—was crucial to include diverse user feedback in the
design process. Our results support this, as many user styles were supported by the
Co-Explorer. That said, user-driven design arguably conveys inherent biases of users.
This is particularly true when promoting Al in interactive technology [Amershi et al.,
2019, Caramiaux et al., 2019]. As a matter of fact, alongside a general enthusiasm, we
did observe a certain ease among our professional users for expressing tough critiques,
at times being skeptical on using Al especially when the perception of the algorithm
choice would contradict their spontaneous choice. Yet, the two professional users
that took part to both our pilot study and workshop found the use of Al as welcome,
testifying of its improvement along the development process.
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Evaluation

Lastly, evaluation of reinforcement learning tools for creativity remains to be investi-
gated more deeply. While our qualitative approach allowed us to harvest thoughtful
user feedback on our prototypes’ interaction modalities, it is still hard to account for
direct links between agent computations and user creative goals. Using question-
naire methods, such as the Creativity Support Index [Cherry and Latulipe, 2014], may
enable to measure different dimensions of human creativity in relation to different
algorithm implementations. Also, focusing on a specific user category could also al-
low more precise evaluation in relationship to a situated set of creative practices and
uses. Alternatively, one could aim at developing new reinforcement learning criteria
that extends standard measures—such as convergence or learning time [Sutton and
Barto, 2011]—to the qualitative case of human exploration. Research on interactive
supervised learning has shown that criteria usually employed in the field of Machine
Learning may not be adapted to users leading creative work [Fiebrink et al., 2011]. We
believe that both HCI and ML approaches may be required and combined to produce
sound scientific knowledge on creativity support evaluation.

5.7.2 Technical Insight
Computational Framework

Our two working prototypes confirmed that interactive reinforcement learning may
stand as a generic technical framework for synthesis exploration. The computational
framework that we proposed in Section 5.2.1, leveraging states, actions, and rewards,
strongly characterized the mixed-initiative co-exploration workflows observed in Sec-
tion 5.6.3—e.g., making small steps and continuous trajectories in the parameter space.
Other interactive behaviours could have been implemented—e.g., allowing the agent
to act on many parameters in only one action, or using different a; values for differ-
ent action sizes—to allow for more diverse mixed-initiative behaviours. Alternatively,
we envision that domain-specific representations may be a promising approach for
extending co-exploration. In the case of sound design, one could engineer high-level
state features based on audio descriptors [Schwarz and Schnell, 2009] instead of us-
ing raw parameters. This could allow RL agents to learn state-action representations
that would be independent from the parameter space explored—potentially allowing
memory transfer from one parameter state space to another. This could also enable
agent adaptation of action speed and precision based on perceptual features of the
parameter space—potentially avoiding abrupt jumps in sound spaces.

Learning Algorithm

Reinforcement learning algorithmic functioning, enabling agents to learn actions over
states, was of interest for our users, who were enthusiastic in teaching an artifi-
cial agent by feedback. Our deep reinforcement learning agent is a novel contribu-
tion to HCI research compared to multi-armed bandits (which explore actions over
one unique state [Lomas et al., 2016]), contextual bandits (which explore in lower-
dimensional state spaces [Koch et al., 2019]), and bayesian optimization (which ex-
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plores at implicit scales [Shahriari et al., 2016]). We purposely implemented heteroge-
neous ways of teaching with feedback based on our observations of users’ approaches
to synthesis exploration, which extends previous implementations such as those in
the Drawing Apprentice [Davis et al., 2016]. Yet, rich computational models of user
feedback for exploration tasks remain a challenge. Our observations indeed suggested
that exploring users may not generate a goal-oriented feedback signal, but may rather
have several sub-optimal goals. They may also make feedback mistakes, act socially
toward agents, or even try to trigger surprising agent behaviours over time. Deep
TAMER was adapted to the interactive of user feedback (as opposed to Sarsa); yet,
it still made the assumption that users will generate a stationary and always correct
feedback signal [Warnell et al., 2017]. Previous works investigating how users give
feedback to machine learning [Stumpf et al., 2009] may need to be extended to include
such creative use cases.

Exploration Behaviours

The exploration behaviours of reinforcement learning agents were shown promising
for fostering creativity in our users. Both e-greedy and intrisic method were adapted
to the interactive case of a user leading exploration. One of our users felt that intrisic
motivation had agents behave better than random. Yet, users’ perception of agent
exploration behaviours remains to be investigated more deeply. In a complementary
work [Scurto et al., 2018a], we confirmed that users perceived the difference between
a random parameter exploration and a RL agent exploration. Yet, they might not per-
ceive the difference between various implementations of agent exploration; what they
perceive may be more related to the agent’s global effect in exploring the parameter
space. Future work may study co-exploration partnerships over longer periods of
time to inquire co-adaptation between users and agents [Mackay, 1990]. On the one
hand, users could be expected to learn to provide better feedback to RL agents to fulfill
their creative goals—as it was shown in interactive approaches to supervised learning
[Fiebrink et al., 2011]. On the other hand, agents could be expected to act more in line
with users by exploiting larger amounts of accumulated feedback data—as it is typi-
cal with interactive reinforcement learning agents [Sutton and Barto, 2011]. A more
pragmatic option would be to give users full control over agent epsilon values—e.g.,
using an interactive slider [Koch et al., 2019]—to improve partnership in this sense.

5.7.3 Guidelines for Designing Machine Learning for Human
Creativity

Based on our work with reinforcement learning, we identified a set of design chal-
lenges for leading joint conceptual and technical development of other machine learn-
ing frameworks for creative HCI applications. We purposely put back quotes from our
participants in this section to inspire readers with insights on Al from users outside
our design team.
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Engage Users with Machine Learning

The Co-Explorer enabled users to fully engage with reinforcement learning compu-
tational framework. Users could explore as many states, provide as much feedback,
and generate as many agent actions as they wanted to. They also had access to agent
memory, be it by navigating in the interactive history, or by reseting the learned be-
haviour. In this sense, they had full control over the algorithmic learning process of
the agent. This is well articulated by a participant, whose quote can be reported here:
‘I did not feel as being an adversary to, or manipulated, by the system. A situation that
can happen with certain audio software that currently use machine learning, where it is
clear that one tries to put you on a given path, which I find frustrating—but this was not
the case here”.

These observations suggest that user engagement at different levels of machine
learning processes may be essential to create partnering flows [Pachet et al., 2013].
That is, users should be provided with interactive controls and simple information on
learning to actively direct co-creation. This goes in line with previous works study-
ing user interaction with supervised learning in creative tasks [Amershi et al., 2014],
which showed how users can build better partnerships by spending time engaging
with algorithms [Fiebrink et al., 2011]. Careful interaction design must be considered
to balance full automation with full user control and aim at creating flow states among
people [Csikszentmihalyi, 1997]. Aiming at such user engagement may also consti-
tute a design opportunity to demystify Al systems, notably by having users learn from
experience how algorithms work with data [Fiebrink, 2019].

Foster Diverse Creative Processes

Our work showed that the Co-Explorer supported a wide diversity of creative user
processes. Users could get involved in open-ended, agent-led exploration, or decide
to focus on precise, user-led parameter modification. Importantly, none of these part-
nerships were clearly conceptualized at the beginning of our development process.
Our main focus was to build a reinforcement learning agent able to learn from user
feedback and to be easily controllable by users. In this sense, the Co-Explorer was
jointly designed and engineered to ensure a dynamic human process rather than a
static media outcome. As a matter of fact, we report one participant’s own reflection,
which we believe illustrate our point: “What am I actually sampling [from the param-
eter space]? Is is some kind of climate that is going to direct my creation afterwards? [...]
Or am I already creating?”.

This suggests that supporting the process of user appropriation may be crucial
for building creative Al partnerships. Many creative tools based on machine learning
often focus on engineering one model to ensure high performance for a given task.
While these tools may be useful for creative tasks that have a focus on high produc-
tivity, it is arguable whether they may be suited to creative work that has a focus
on exploration as a way to build expression. For the latter case, creative Al develop-
ment should not focus on one given user task, but should rather focus on providing
users with a dynamic space for expression allowing many styles of creation [Resnick
et al., 2005]. The massive training datasets, which are usually employed in the Ma-
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chine Learning community to build computational creativity tools, may also convey
representational and historical biases among end users [Suresh and Guttag, 2019]. In-
teractive approaches to machine learning directly address this issue by allowing users
to intervene in real-time in the learning process [Fiebrink and Caramiaux, 2016].

Steer Users Outside Comfort Zones

The Co-Explorer actively exposed the exploration behaviour of reinforcement learning
to users. This goes in opposition with standard uses of these algorithms [Brockman
et al., 2016], and may provoke moments where agents behaviours may not align with
users creative drive [Crandall et al., 2018]. Yet, it managed to build “playful” and
“funny” partnerships that led some users to reconsider their approach to creativity,
as one participant confessed: “At times, the agent forced me to try and hear sounds that
I liked less—but at least, this allowed me to visit unusual spaces and imagine new possi-
bilities. This, as a process that I barely perform in my own creative practice, eventually
appeared as appealing to me”.

This suggests that Al may be used beyond customisation aspects to steer users
outside their comfort zones in a positive way. That is, designers should exploit non-
optimal algorithmic behaviours in machine learning methods to surprise, obstruct, or
even challenge users inside their creative process. Data-driven user adaptation may
be taken from an opposite side to inspire users from radical opposition and avoid
hyper-personalization [Andersen and Knees, 2016]. Such an anti-solutionist [Blythe
et al., 2016] approach to machine learning may encourage innovative developments
that fundamentally reconsider the underlying notion of universal performance
commonly at stake in the field of Machine Learning and arguably not adapted to
the human users studied in the field of Human-Computer Interaction. It may also
allow the building of imperfect Al colleagues, in opposion to “heroic” Al colleagues
[d’Inverno and McCormack, 2015]: being impressed by the creative qualities of
an abstract artificial entity may not be the best alternative to help people develop
as creative thinkers [Resnick, 2007]. The Co-Explorer fairly leans toward such an
unconventional design approach, which, in default of fitting every user, surely forms
one of its distinctive characteristics.

Several machine learning frameworks remains to be investigated under the light
of these human-centred challenges. Evolutionary computation methods [Fogel, 2006]
may be fertile ground for supporting user exploration and automated refinement of
example designs. Active learning methods [Settles, 2010] may enable communica-
tion flows between agents and users that go beyond positive or negative feedback.
Dimensionality reduction methods for interactive visualization [Maaten and Hinton,
2008] may improve intelligibility of agent actions in large parameter spaces and al-
low for more trustable partnerships. Ultimately, combining reinforcement learning
with supervised learning could offer users with the best of both worlds by supporting
both example and feedback inputs. Inverse reinforcement learning [Abbeel and Ng,
2004] may stand as a technical framework supporting example input projection and
transformation into reward functions in a parameter space.
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5.8 Application I: Riding the Co-Explorers

We demonstrated the Co-Explorer at the 19th International Society for Music Infor-
mation Retrieval Conference, in Paris, France [Scurto et al., 2018b]. We designed an
interactive exhibition stand in the form of a video game, that we called “Riding the
Co-Explorers”.

5.8.1 Description

“Riding the Co-Explorers” is a single-player game that exists in a single-level form: it
lets players guide the agent in one single sound space. The player’s goal is to find
a sound that they like. Thus, the video game possesses a free form: it does not aim
at directing the player toward specific paths or locations in the level. This decision
was specifically intended for the conference: we wanted our players to focus on the
Co-Explorer more than on the video game itself, and thus uses the video game as a
way to enhance immersion (see Video for an overview).

Guide the Agent in High-Dimensional Sound Spaces
using Positive or Feedback!

A

bonad|
o000

Fig. 1: User-Agent Co-Exploration Workflow. . 2: The Agent’s Architecture.

Riding the Co-Explorers
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Scurt6, H., Van Kerrebroeck, B., Garamiaux, B., & Bevilacqua, F., Designing Human-Al Partnérships
for Parameter Space Exploration in Sound Design (submitted).

Figure 5.14: Visual theme for Riding the Co-Explorers.

The verb “Riding” aims at emphasizing the experiential aspect of interaction with
the agent over the standard, task-related interaction paradigm that we tested in our
previous study. In this sense, we reformulated the instruction given to users in
standard interaction as a catchy storyline for the game: “Guide the agent in high-
dimensional sound spaces using positive or negative feedback!”

“Riding”, as it is used in horse riding, or motorcycle ride, also embodies the part-
nership that takes place between the human and the agent during sound space ex-
ploration. In this sense, we wanted to make the trajectory taken by the agent in
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high-dimensional spaces visible to its human user. We opted for an abstract, three-
dimensional representation of the agent and its environment, with aesthetic refer-
ences to retrofuturistic video games (see Fig. 5.14). Specifically, we took the 