
HAL Id: tel-02931831
https://hal.science/tel-02931831v2

Submitted on 18 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Management in a Cloud Federation
Trung Dung Le, Ecole Doctorale, Karine Zeitouni

To cite this version:
Trung Dung Le, Ecole Doctorale, Karine Zeitouni. Data Management in a Cloud Federation. Com-
puter Science [cs]. Rennes 1, 2019. English. �NNT : �. �tel-02931831v2�

https://hal.science/tel-02931831v2
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITE DE RENNES 1
COMUE UNIVERSITE BRETAGNE LOIRE

Ecole Doctorale N°601
Mathèmatique et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

« Trung-Dung LE »
« Gestion de masses de données dans une fédération

de nuages informatiques »
Thèse présentée et soutenue à LANNION , le 11 juillet 2019
Unité de recherche : IRISA

Rapporteurs avant soutenance :

Abdelkader Hameurlain Professeur à Université Paul Sabatier, IRIT
Dimitris Kotzinos Professeur à Université de Cergy-Pontoise, ENSEA, CNRS
Composition du jury :

Président :
Examinateurs : Karine Zeitouni Professeur à University of Versailles St Quentin, DAVID Lab

Tassadit Bouadi Maître de Conférences à Université de Rennes 1, CNRS, IRISA
Abdelkader Hameurlain Professeur à Université Paul Sabatier, IRIT
Dimitris Kotzinos Professeur à Université de Cergy-Pontoise, ENSEA, CNRS

Dir. de thèse : Laurent d’Orazio Professeur à l’Université de Rennes 1, CNRS, IRISA

Co-dir. de thèse : Verena Kantere Professeur à l’Université de Ottawa



AUTHOR

Trung-Dung LE - Ph.D. student.
Email : trung-dung.le@irisa.fr

dunglt@wru.vn

Trung-Dung LE was born in Hanoi, Vietnam in 1980. He graduated his B.S degree
in Electrical Engineering at Hanoi University of Science and Technology, Vietnam in
2003. In 2005, he received his M.S degree in the same university. At the end of 2005,
he started to begin teaching at Thuy Loi University in the Electrical Engineering depart-
ment. He started his Ph.D. degree in Computer Science at CNRS, LIMOS UMR 6158,
Clermont Auvergne University, France In September of 2015. In November of 2016, he
changed to the Doctorate School of Bretagne University. His research interests include
Cloud Computing, Multi-Objective Optimization, Database System, Big Data, and Ma-
chine Learning.

II



DEDICATION

To Mom and Dad, there is no word adequately to thank you for everything you’ve
done for me.

When I was young, Mom always showed as a big friend, listening and giving me
helpful advice. She is the first person opening the sky of knowledge which is my pas-
sion. Dad protected, loved and raised me with the infinite love.

For all of my love who gave beautiful memories, my grandmother Hong and my
sister Chung.

And to Quang Minh, Nam Phong, Quoc Trung, Hoang Anh, Hong Truong, Quoc
Khanh, Le Cuong, Tuan Khanh, Quoc Thinh, Viet Ha, Hoang Linh, Duong Hung, class
9A - Ngo Quyen school, class 12A - Thang Long school, thanks for all of the beautiful
memories of growing up, and for your continued support and encouragement.

For all of my loved ones who’ve gone on to a better life, especially my mother and
father in law, my grandfather, grandmother - you are always close in heart.

And to my Ph.D. friends, Cong Danh, Sy Dat, Anh Duy, Van Dung, Van Giang, Mai
Thanh, Hugues especial Xuan Chien, my very first reader for all my publications, thank
you for all of the feedback.

Finally, this dedication would not be complete without an exceptional thank you to
Binh, my wife, and Dat, An, my children who are always loving, living beside me.

God bless you !

III



DECLARATION

This thesis has been completed by Trung-Dung LE under the supervision of Prof.
Laurent d’Orazio and Prof. Verena Kantere. It has not been submitted for any other
degree or professional qualification. I declare that the work presented in this thesis is
entirely my own except where indicated by full references.

SIGNATURE

IV



ACKNOWLEDGEMENTS

First of all, I would like to thank the Ministry of Education and Training of Vietnam
for offering me an International Postgraduate Research Scholarship (Project 911) to
support my doctoral program in France. I would also like to express my gratitude to
Thuy Loi University for allowing me to receive and retain this scholarship. Besides, I
would like to thank all the financial support from IRISA laboratory and technical help
from Shaman team in Lannion.

I would like to show deep gratitude to my Ph.D. supervisors, Prof. Laurent d’Orazio
and Prof. Verena Kantere for their guidance and advice. Prof. Laurent d’Orazio always
beside me to discuss and show me the excellent knowledge of cloud computing and
database research. He often showed the new level of research we should deal with.
The new problem and the direction are often opened through our discussion. Many
thanks to Prof. Verena Kantere for her supervision. In every meeting, she supported
the idea and the implementation so much. She helped the research and provided many
valuable advice on the works. Once again, I would like to thank all of my supervisors
who supported, guided, advised and reviewed my job through all of the phases.

Also, I would like to thank Frédéric Gaudet for providing a private cloud in Galactica
platform in ISIMA laboratory.

Living and studying in a foreign country is not easy. The challenges are met through
day by day. Many thanks to Cong-Danh Nguyen in Blaise Pascal University - Clermont
II for providing valuable DICOM dataset.

Finally, I would like to thank my big family for always loving, living beside me in
difficult moments and motivating me.

Lannion, 2019

Trung-Dung Le





RESUMÉ

Les fédérations de nuages (cloud federations) peuvent être considérées comme
une avancée majeure de l’informatique en nuage (cloud computing), en particulier pour
le domaine médical. En effet, le partage de données médicales permet d’améliorer la
qualité des soins. La fédération de ressources rend possible l’accès à toutes les infor-
mations, même sur une personne mobile, avec des données hospitalières distribuées
sur différents établissements. De plus, le volume d’information disponible étant plus
important et sur de plus nombreux patients, les statistiques obtenus sont alors plus
précises.

Les données médicales sont généralement conformes à la norme DICOM (Digital
Imaging and Communications in Medicine). Les fichiers DICOM peuvent être stockés
sur différentes plates-formes, telles qu’Amazon, Microsoft, Google Cloud, etc. La ges-
tion des fichiers, y compris le partage et le traitement, sur ces plates-formes, suit un
modèle de paiement à l’utilisation, selon des modèles de prix distincts et en s’ap-
puyant sur divers systèmes de gestion de données (systèmes de gestion de données
relationnelles ou SGBD ou systèmes NoSQL). En outre, les données DICOM peuvent
être structurées en lignes ou colonnes [125, 19, 134, 132] ou selon une approche hy-
bride (ligne-colonne) [63, 46, 101]. En conséquence, la gestion des données médicales
dans des fédérations de nuages soulève des problèmes d’optimisation multi-objectifs
(MOOP - Multi-Objective Optimization Problems) pour (1) le traitement des requêtes et
(2) le stockage des données, selon les préférences des utilisateurs, telles que le temps
de réponse, le coût monétaire, la qualités, etc. Ces problèmes sont complexes à traiter
en raison de la variabilité de l’environnement (liée à la virtualisation, aux communica-
tions à grande échelle, etc.).

Les données médicales distribuées dans les fédérations de nuage amènent à in-
tégrer des données de divers systèmes, tels que Hive Data Warehouse [128], Post-
greSQL [133], etc. Il existe différents outils pour gérer les données dans plusieurs mo-
teurs de base de données [83, 109, 144, 42]. De tels outils prennent en compte l’op-
timisation mais se concentrent sur un problème d’optimisation mono-objectif (SOOP
- Single- Objective Optimization Problem), tel que la minimisation des transferts de

VII



données. L’outil de gestion Intelligent Resource Scheduler (IReS) [42] constitue une
exception à cette règle. Cette plate-forme de sources libres aborde le MOOP dans di-
vers systèmes en combinant plusieurs objectifs en une valeur scalaire. Ce problème
d’optimisation à objectif unique ne peut néanmoins pas représenter correctement les
problèmes d’optimisation multi-objectifs [60]. Dans ce contexte, la construction d’un
système de gestion des données médicales reposant sur le protocole MOOP dans
une fédération de nuages constitue un problème majeur.

De plus, dans un environnement variable comme une fédération de nuages avec
plusieurs systèmes de gestion de données, il est nécessaire de proposer une approche
pour estimer les coûts considérés au sein du MOOP, tels que le temps de réponse, le
coût monétaire, les transferts de données, la qualité, etc. en fonction des machines
physiques, de la charge et des communications à grande échelle par exemple. Il existe
deux classes de techniques de modélisation des coûts : avec et sans algorithmes d’ap-
prentissage automatique. La première classe est limitée d’une part à des systèmes
spécifiques, tels que MapReduce [36], PostgreSQL [153], Spark [135], etc., et d’autre
part à un seul objectif, le temps d’exécution. La seconde classe nécessite souvent l’en-
semble de l’historique des données pour construire un modèle de coût [154, 141, 4,
55]. Cela peut entraîner l’utilisation d’informations périmées. Dans ce contexte, le pro-
blème est de savoir comment estimer des valeurs précises pour un MOOP en utilisant
des historiques de données pertinents dans une fédération de nuages.

De plus, les MOOPs peuvent être abordés à la fois pour le traitement des re-
quêtes et le stockage des données de la gestion des données médicales dans une
fédération de nuages. Un MOOP peut être résolu à l’aide d’algorithmes d’optimisation
multi-objectifs ou du modèle de somme pondérée (WSM) [67] ou par la conversion en
un problème SOOP (Single-Object Optimization Problem). Cependant, les SOOP ne
peuvent pas représenter correctement les problèmes d’optimisation multi-objectifs [60].
De plus, les algorithmes d’optimisation multi-objectifs peuvent être sélectionnés en rai-
son de leurs avantages par rapport à WSM. La solution optimale du WSM pourrait ne
pas être acceptable, en raison d’une mauvaise définition des coefficients [50]. Les re-
cherches effectuées [75] prouvent qu’un léger changement des poids peut entraîner
des changements importants dans les vecteurs objectifs et que des poids très diffé-
rents peuvent produire des vecteurs objectifs presque similaires. De plus, si le WSM
change, un nouveau processus d’optimisation sera requis. Les MOOPs conduisent
également à la recherche de solutions par des techniques de dominance de Pareto.

VIII



Cependant, il est souvent impossible de générer un front de Pareto optimal [160]. Cela
conduit à trouver une solution approximative optimale par les techniques de domi-
nance de Pareto. EMO (Evolutionary Multi-Objective Optimization) est une approche
bien connue pour résoudre la grande complexité d’un MOOP. Parmi les approches
EMO, les algorithmes NSGA (Nondominated Sorting Algorithms) [40, 37] ont une com-
plexité de calcul inférieure à celle des autres approches EMO [40]. Ils garantissent le
maintien de la diversité des solutions. Certains algorithmes génétiques multi-objectifs,
NSGA-II [40] et SPEA-II [161] utilisent des distances d’encombrement pour maintenir
la diversité. Le maintien de la diversité est une question essentielle, car les algorithmes
évolutionnistes doivent pouvoir agrandir autant de régions que possible. Cependant, la
complexité reste élevée, alors que la diversité ne peut être préservée avec plus de
deux objectifs [76]. Zhang et Li [158] ont proposé MOEA/D pour maintenir la diver-
sité avec plus de trois objectifs. MOEA/D utilise une approche de décomposition pour
diviser plusieurs objectifs en divers sous-problèmes d’optimisation à objectif unique
et résoudre jusqu’à quatre objectifs [118]. En outre, Deb et Jain [39] ont proposé la
NSGA-III, qui utilise un ensemble de directions de référence pour guider le processus
de recherche. Cependant, cet algorithme présente toujours une complexité de calcul
élevée.

En outre, des travaux récents sur le stockage de données ont été proposés pour
stocker les données afin d’optimiser la configuration des données hybrides. Cepen-
dant, HYRISE [63] et SAP HANA [46] ne tiennent pas compte du volume élevé et
du caractère clairsemé des données DICOM. En outre, le modèle de paiement à la
consommation mène à un MOOP pour trouver une configuration du stockage des don-
nées en fonction des préférences des utilisateurs en matière de temps de réponse,
de coût monétaire, de qualité, etc. De plus, une approche automatique produisant des
configurations de stockage de données pour les données DICOM dans [97] soulève un
problème de MOOP dans les nuages. Les auteurs ont affirmé que le nombre de solu-
tions candidates dans le MOOP était important, mais ils n’ont donné aucune méthode
pour trouver les configurations de données hybrides optimales. Dans le contexte de
MOOP, tant dans l’optimisation du traitement des requêtes que dans la configuration
des données DICOM dans une fédération de nuages, le problème est de savoir com-
ment optimiser un problème à objectifs multiples avec un algorithme à faible complexité
de calcul.

Nos travaux se portent sur les fédérations de nuage dans le domaine médical.

IX



Cette fédération comprend divers sites qui stockent, gèrent et partagent des données
médicales. Dans chaque site, les données peuvent être stockées dans une variété de
systèmes de gestion de données, tels que les systèmes en lignes, les systèmes en co-
lonnes, les systèmes lignes et colonnes, et gérées par différents SGBD, tels que Hive,
PostgreSQL, Spark, etc. Par conséquent, la fédération de nuages doit fonctionner avec
divers moteurs de base de données et pour différentes structurations. En outre, la va-
riabilité au sein d’une fédération en raison de la virtualisation, des communications à
grande échelle, etc., nécessite l’utilisation efficace des historiques de données dans
la construction du modèle de coût de construction. En outre, la gestion des données
médicales dans des fédérations de nuages soulève également des problèmes d’op-
timisation multi-objectifs (MOOP) pour le traitement des requêtes et le stockage des
données. Les MOOPs conduisent à la recherche de solutions par des techniques de
domination de Pareto. Cependant, il est souvent impossible de générer un front de
Pareto optimal en raison de sa grande complexité. Ainsi, l’important espace de can-
didats aux MOOPs conduit à la nécessité de trouver un ensemble approximatif de
solutions de Pareto optimales. Par conséquent, une approche alternative pour trouver
l’ensemble de optimal de Pareto, cherchant des approximations (ensemble de solu-
tions proches du front optimal) est souvent utilisée. En conséquence, les MOOPs dans
une fédération de cloud nécessitent une approche puissante pour trouver un ensemble
approximatif de Pareto optimal.

Pour résoudre ces problèmes, nous proposons MIDAS (MedIcal system on clouD
federAtionS), un système médical sur les fédérations de groupes. Un aperçu de MIDAS
est présenté à la figure 1. Nous proposons un algorithme d’estimation des valeurs de
coût dans au sein d’une fédération, appelé algorithme de régression multiple linéaire
dynamique (DREAM). Cette approche permet de s’adapter à la variabilité de l’environ-
nement en modifiant la taille des données et afin d’éviter d’utiliser des informations ex-
pirées. La figure 2 montre comment utiliser les données historiques de DREAM dans
notre système. Nous proposons ensuite un algorithme génétique de tri non dominé
pour résoudre le problème de la recherche et de l’optimisation de MOOPs dans un
nuage informatique. Cet algorithme est appelé NSGA-G (Non-dominated Sorting Ge-
netic Algorithm based Grid partitioning). NSGA-G est appliqué à un optimiseur Multi-
Objectif, comme illustré par la figure 3. Troisièmement, les algorithmes ci-dessus sont
appliqués à des MOOPs dans une fédération, notamment pour exécuter des requêtes
et rechercher une configuration de données DICOM. Plus particulièrement, NSGA-G

X



Interface

User query
policy

Modelling

Generate
QEP

Hive
engine

Multi-Objective
Optimizer

Hive 

A Query Workload
and data

Generate data
configuration

Multi-Objective
Optimizer

User data
policy

PostgreSQL
engine

PostgreSQL

Spark
engine

Spark

Amazon Web Services

Microsoft Azure Google Cloud
Platform

MIDAS

FIGURE 1 – Un aperçu de MIDAS.

Training set DREAM

coefficient of
determination 

New training
set Modelling

FIGURE 2 – Utiliser DREAM pour construire des modèles de coûts.

XI



Initial
Population

Objective
values

Fitness
Distribution

Genetic
Operation

Insert Parent

Satisfied
Termination
Criteria?

Termination
Population

Weighted Sum
Model Values

Comparing
Scalar Value

The best
candidate

Multi-Objecitve Optimization based
on NSGA-G

FIGURE 3 – Vue d’ensemble de l’optimisation multi-objectifs basée sur NSGA-G.

est utilisé pour trouver la meilleure structuration des données.
Les expériences réalisées valident DREAM, NSGA-G avec divers problèmes de test

et jeux de données. DREAM est comparé selon la précision de l’estimation des valeurs
de coût par rapport à d’autres algorithmes d’apprentissage automatique. Dans ces
expériences, nous utilisons notamment un jeu de données de référence TPC-H pour
valider DREAM. La qualité de la NSGA-G est comparée à celle des autres NSGAs pré-
sentant de nombreux problèmes dans le cadre du MOEA. Dans l’expérience NSGA-G,
nous utilisons les problèmes DTLZ et WFG pour comparer la qualité de divers algo-
rithmes génétiques à objectifs multiples. Le jeu de données DICOM est également
expérimenté par NSGA-G dans le test de solution optimale. Enfin, MIDAS est validé
à l’aide d’un nuage privé, la plate-forme Galactica, avec certains moteurs de base de
données, tels que Hive, PostgreSQL, Spark. Les résultats expérimentaux montrent les
bonnes qualités de nos solutions d’estimation et d’optimisation des MOOPs dans une
fédération de nuages. De plus, notre algorithme trouve la solution optimale approxima-
tive dans un problème de configuration de données DICOM hybride.

XII



TABLE OF CONTENTS

List of Abbreviations XVIII

List of Figures XX

List of Tables XXII

1 Introduction 1

1.1 Context and problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 MIDAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I State of the art about cloud federation 11

2 Cloud Federations 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Big data Management System . . . . . . . . . . . . . . . . . . . 15

2.2.3 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Cloud Federation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Homogeneous system . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Heterogeneous systems . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

XIII



TABLE OF CONTENTS

3 Optimization of medical data management 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Medical Data management . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 DICOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Hybrid data storage configuration . . . . . . . . . . . . . . . . . . 34

3.2.4 Vertical Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Search and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Single Objective Optimization . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Multiple Objective Optimization . . . . . . . . . . . . . . . . . . . 44

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Multi-Objective Optimization 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Pareto set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . 53

4.4 Non-dominated Sorting Genetic Algorithm . . . . . . . . . . . . . . . . . 57

4.4.1 NSGA process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

II Techniques for cloud federation 63

5 Dynamic Regression Algorithm 64

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 DREAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 Coefficient of determination . . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Cost Value Estmation . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

XIV



TABLE OF CONTENTS

6 Non-dominated Sorting Genetic Algorithm based on Grid partitioning 75
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 NSGA-G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 Main process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.2 Non-Dominated Sorting . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.3 Filter front process . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.2 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.3 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Selecting the size of grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4.1 Simple front group . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4.2 Max front group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Hybrid data storage configuration in cloud federation 85
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Medical system on cloud federation . . . . . . . . . . . . . . . . . . . . . 86

7.2.1 MIDAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.2 IRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.3 Hybrid data storage configuration . . . . . . . . . . . . . . . . . . 87
7.2.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Hybrid data storage configuration . . . . . . . . . . . . . . . . . . . . . . 90
7.3.1 Two phases of generating data storage configuration . . . . . . . 90
7.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4 Optimizing data storage configuration . . . . . . . . . . . . . . . . . . . 104
7.4.1 Finding Pareto configuration set . . . . . . . . . . . . . . . . . . 104
7.4.2 Finding the best configuration . . . . . . . . . . . . . . . . . . . . 104

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

III Implementation of proposals and validations 107

8 Performance validation 108
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

XV



TABLE OF CONTENTS

8.2 A medical cloud federation . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2.1 DICOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.3 DREAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.4 NSGA-G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.4.1 Validation on DTLZ test problems . . . . . . . . . . . . . . . . . . 113
8.4.2 Hybrid data storage configuration . . . . . . . . . . . . . . . . . . 127

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9 Conclusion and Future work 137
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2.1 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.2.2 Estimating in Multi-Objective Optimization Problem . . . . . . . . 139
9.2.3 Multi-Objective Evolutionary Algorithm . . . . . . . . . . . . . . . 140
9.2.4 Optimizing medical data storage configuration . . . . . . . . . . 140

9.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.3.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.3.2 Searching and optimization . . . . . . . . . . . . . . . . . . . . . 141
9.3.3 Hybrid data storage configuration . . . . . . . . . . . . . . . . . . 142

Bibliography 145

XVI



LIST OF ABBREVIATIONS

AASM Attribute Access Similarity Matrix

ADSM Attribute Density Similarity Matrix

Amazon RDS Amazon Relational Database Service

API Application Programming Interface

AUM Attribute Usage Matrix

BigDAWG Big Data Analytics Working Group

CloudMdsQL Cloud Multidatastore Query Language

DBMS Database Management System

DICOM Digital Imaging and Communications in Medicine

DREAM Dynamic Regression Algorithm

EA Evolutionary Algorithm

EAs Evolutionary Algorithms

EC Evolutionary Computation

EMO Evolutionary Multi-Objective Optimization

GICTF Global Inter-Cloud Technology Forum

HDFS Hadoop Distributed File System

HSM Hybrid Similarity Matrix

IReS Intelligent Resource Scheduler

JDBC Java Database Connectivity

MO Multi-Objective

MOEA Multiple Objective Evolutionary Algorithm

MOO Multi-Objective Optimization

MOOP Multi-Objective Optimization Problem

XVII



List of Abbreviations

MOP Multi-Objective Problem

MOQO Multi-Objective Query Optimization

MOQP Multi-Objective Query Processing

MuSQLE Distributed SQL Query Execution Over Multiple Engine Environments

NoSQL Non Structured Query Language

NSGA Non-dominated Sorting Genetic Algorithm

NSGA-G Non-dominated Sorting Genetic Algorithm based on Grid Partitioning

ODBC Open Database Connectivity

OLAP Online analytical processing

OLTP Online transaction processing

PAES Pareto Archived Evolution Strategy

QEP Query Execution Plan

R2 Coefficient of Determination

RDBMS Relational DataBase Management System

SA Simulated Annealing

SO Single-Objective

SOOP Single-Objective Optimization Problem

SOP Single-Objective Problem

SPEA Strength Pareto Evolutionary Algorithm

SQL Structured Query Language

XVIII



LIST OF FIGURES

1 Un aperçu de MIDAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI
2 Utiliser DREAM pour construire des modèles de coûts. . . . . . . . . . . XI
3 Vue d’ensemble de l’optimisation multi-objectifs basée sur NSGA-G. . . XII

1.1 An overview of MIDAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Using DREAM to build cost models. . . . . . . . . . . . . . . . . . . . . 6
1.3 An overview of Multi-Objective Optimization based on NSGA-G. . . . . 7

2.1 Motivating Example on using cloud federation. . . . . . . . . . . . . . . 14
2.2 A simple cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 FORWARD Query Processing [109]. . . . . . . . . . . . . . . . . . . . . 26
2.4 BigDAWG Architecture [45]. . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 MuSQLE system architecture [57]. . . . . . . . . . . . . . . . . . . . . . 27
2.6 Architecture of IReS [42]. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Difference configurations of the table T. . . . . . . . . . . . . . . . . . . 33
3.2 HYRISE architecture [63]. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 NSGA-II and NSGA-III procedure [40, 39]. . . . . . . . . . . . . . . . . 57
4.2 An example of using the crowing distance in NSGA-II. . . . . . . . . . . 59

5.1 DREAM module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Comparing two MOQP approaches . . . . . . . . . . . . . . . . . . . . . 71

6.1 An example of using Grid points. . . . . . . . . . . . . . . . . . . . . . . 78
6.2 A simple front group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 A max front group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.1 An example of MIDAS system . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 The horizontal table T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1 Implementation of MIDAS, DREAM and Multi-Objective Optimizer. . . . 111
8.2 Inverted Generational Distance of 4 algorithms with DTLZ3_8. . . . . . 125

XIX



List of Figures

8.3 Execution time of 4 algorithms with DTLZ3_8. . . . . . . . . . . . . . . . 126

XX



LIST OF TABLES

2.1 Example of instances pricing. . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Multiple Objectives for Query Execution Plans . . . . . . . . . . . . . . . 15
2.3 Advantage and disadvantage of recent researches. . . . . . . . . . . . . 25

3.1 Example of real DICOM data set [97]. . . . . . . . . . . . . . . . . . . . 31
3.2 Example of extracted DICOM data set [97]. . . . . . . . . . . . . . . . . 31
3.3 Frequency of Queries in Workload W. . . . . . . . . . . . . . . . . . . . 32

4.1 Multiple Objectives for Query Execution Plans . . . . . . . . . . . . . . . 49

5.1 Using MLR in different size of dataset. . . . . . . . . . . . . . . . . . . . 68

7.1 AUM and frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 AUM and frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.1 Comparison of mean relative error with 100MiB TPC-H dataset. . . . . . 112
8.2 Comparison of mean relative error with 1GiB TPC-H dataset. . . . . . . 113
8.3 Generational Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.4 Average compute time (seconds) in Generational Distance experiment . 116
8.5 Inverted Generational Distance . . . . . . . . . . . . . . . . . . . . . . . 116
8.6 Average compute time (seconds) in Inverted Generational Distance ex-

periment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.7 Maximum Pareto Front Error . . . . . . . . . . . . . . . . . . . . . . . . 117
8.8 Average compute time (seconds) in Maximum Pareto Front Error exper-

iment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.9 Generational Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.10 Average compute time in Generational Distance experiment . . . . . . . 120
8.11 Inverted Generational Distance . . . . . . . . . . . . . . . . . . . . . . . 121
8.12 Average compute time in Inverted Generational Distance experiment . . 122
8.13 Maximum Pareto Front Error . . . . . . . . . . . . . . . . . . . . . . . . 123
8.14 Average compute time in Maximum Pareto Front Error experiment . . . 124

XXI



List of Tables

8.15 Example of real DICOM data set. . . . . . . . . . . . . . . . . . . . . . . 127
8.16 Example of extracted DICOM data set. . . . . . . . . . . . . . . . . . . . 127
8.17 Frequency of Queries in Workload WP. . . . . . . . . . . . . . . . . . . 129
8.18 Attribute Usage Matrix of Patient table. . . . . . . . . . . . . . . . . . . . 130
8.19 Frequency of Queries in Workload WS. . . . . . . . . . . . . . . . . . . 131
8.20 Attribute Usage Matrix of Study table. . . . . . . . . . . . . . . . . . . . 131
8.21 Frequency of Queries in Workload WGe. . . . . . . . . . . . . . . . . . . 132
8.22 Attribute Usage Matrix of GeneralInfoTable. . . . . . . . . . . . . . . . . 132
8.23 Frequency of Queries in Workload WSeq. . . . . . . . . . . . . . . . . . . 133
8.24 Attribute Usage Matrix of SequenceAttributes. . . . . . . . . . . . . . . . 133
8.25 Generational Distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.26 Inverted Generational Distance. . . . . . . . . . . . . . . . . . . . . . . . 134
8.27 Maximum Pareto Front Error . . . . . . . . . . . . . . . . . . . . . . . . 134
8.28 The execution time of NSGAs with DICOM. . . . . . . . . . . . . . . . . 134

XXII



CHAPTER 1

INTRODUCTION

1.1 Context and problems

Cloud federations can be seen as major progress in cloud computing, in particular
in the medical domain. Indeed, sharing medical data would improve healthcare. Fed-
erating resources in cloud federations make it possible to access distributed hospital
data on several sites of a patient. Besides, it enables us to consider larger volumes of
data on more patients and thus provide finer statistics.

Medical data usually conform to the Digital Imaging and Communications in Medicine
(DICOM) standard. DICOM has been widely used by medical institutions, hospitals,
diagnostic centers and analysis laboratories. DICOM files can be stored on different
cloud platforms, such as Amazon, Microsoft, Google Cloud, etc. The management of
the files, including sharing and processing, on such platforms, follows the pay-as-you-
go model, according to distinct pricing models and relying on various systems. In addi-
tion, DICOM data can be structured following traditional (row or column) [125, 19, 134,
132] or hybrid (row-column) [63, 46, 101] data storages. As a consequence, medical
data management in cloud federations raises Multi-Objective Optimization Problems
(MOOPs) for (1) query processing and (2) data storage, according to users prefer-
ences, related to various measures, such as response time, monetary cost, qualities,
etc. These problems are complex to address because of the variability of the environ-
ment (due to virtualization, large-scale communications, etc.).

First, distributed medical data in cloud federations leads to integrate data from
various systems, such as Hive data warehouse [128], PostgreSQL [133], etc. There
are various tools for managing data in multiple database engines [83, 109, 144, 42].
Such tools perform optimization but focus on a Single-Objective Optimization Prob-
lem (SOOP), such as minimizing data transfers. An exception to this is the manage-
ment tool Intelligent Resource Scheduler (IReS) [42]. This open-source platform solves
Multi-Objective Optimization Problem (MOOP) in various systems by combining multi-

1



Introduction

ple objectives into a scalar value. This Single-Objective Optimization Problem cannot
adequately represent Multi-Objective Optimization Problems [60]. In this context, the
first challenging problem is how to build a medical data management system relying on
MOOP in a cloud federation.

Second, in a variable environment like a cloud federation with various database
systems, we should build a model to estimate the objective values of the cost model
for the MOOP. It also depends on the variety of physical machines, load, and wide-
range communications. There are two classes of cost modeling, without and with ma-
chine learning algorithms. The first class is limited into a the specific system, such as
MapReduce [36], PostgreSQL [153], Spark [135], etc., and a Single-Objective, i.e the
execution time. The second class often requires the entire historical data to build a
cost model [154, 141, 4, 55]. It may lead to the use of the expired information. In this
context, the second challenging problem is how to estimate accurate values for MOOP
by using efficient historical data in a cloud federation.

Third, MOOP could be solved by Multi-Objective Optimization algorithms or the
Weighted Sum Model (WSM) [67] or converting to a SOOP. However, SOOPs can-
not adequately represent Multi-Objective Optimization Problems [60]. Besides, Multi-
Objective Optimization algorithms may be selected thanks to their advantages when
comparing with WSM. The optimal solution of WSM could be not acceptable, because
of an inappropriate setting of the coefficients [50]. The research in [75] proves that a
small change in weights may result in significant changes in the objective vectors and
significantly different weights may produce nearly similar objective vectors. Moreover,
if WSM changes, a new optimization process will be required. Furthermore, MOOPs
leads to find solutions by Pareto dominance techniques. However, generating a Pareto-
optimal front is often infeasible due to high complexity [160]. It leads to finding an ap-
proximate optimal solution by Pareto dominance techniques. A well known approach to
solve the high complexity of MOOP is Evolutionary Multi-Objective Optimization (EMO).
Among EMO approaches, Non-dominated Sorting Genetic Algorithms (NSGAs) [40,
37] have lower computational complexity than other EMO approaches [40]. However,
this algorithm still has high computational complexity.

In addition, some recent works [63, 46, 97, 101] on data storage have been pro-
posed to optimize the hybrid data storage configuration. However, they do not consider
the high volume and sparsity of DICOM data [63, 46], or do not give any method to
find the optimal hybrid data storage configurations [97, 101] in MOOP. In the context of

2



Introduction 1.2. Related work

MOOP in both optimizing query processing and DICOM data storage configuration in
a cloud federation, a challenging problem is how to optimize a Multi-Objective Problem
with a low computational complexity Multi-Objective Optimization algorithm.

In conclusion, in the context of the variable environment, MOOPs in both find query
processing and data storage, and heterogeneous database environment in a cloud fed-
eration, challenging problems are how to optimize query processing and data storage
of medical data in a cloud federation.

1.2 Related work

In a cloud federation, the solutions in [83, 109] provide various tools to manage het-
erogeneous data with multiple database engines. Authors in [83] proposed a functional
SQL-like language that is capable of querying multiple heterogeneous data stores and
optimizes query performance by minimizing data transfers, but it does not reduce the
query execution time, monetary or other cost metrics. Besides, [109] showed a method
to process a query which integrates data in PostgreSQL and MongoDB. It used the syn-
tax and semantics of SQL++, which is unifying semi-structured data model and query
language that is designed to encompass the data model and provide the capabilities
of NoSQL, New SQL, etc. In their paper, they stated not to discuss cost optimiza-
tion. While [144] focused on MOQP in a homogeneous database, Intelligent Resource
Scheduler (IReS) [42] solved MOQP in heterogeneous systems by a specified policy
which combined multiple objectives to a scalar value, not optimizing MOQP by building
a Pareto plan set as other Multi-objective query optimization algorithms [144, 143]. This
approach may significantly change the problem of nature. In some cases, the problem
becomes harder to solve, or certain optimal solutions are not found anymore [60].

In addition, cost modeling solutions may be quite complicated with the variability
characteristic. In the first class of cost modeling solutions, cost models introduced to
build an optimal group of queries [103] are limited to MapReduce [36]. Besides, Post-
greSQL cost model [153] aims to predict query execution time for this specific relational
Data Base Management system. Moreover, OptEx [120] provides estimated job com-
pletion times for Spark [135] with respect to the size of the input dataset, the number
of iterations, the number of nodes composing the underlying cloud. However, these
papers only mention the estimation of execution time for a job, not for other metrics,
such as monetary cost. Meanwhile, various machine learning techniques are applied

3



Introduction

to estimate execution time in recent research [154, 141, 4, 55]. They predict the exe-
cution time by many machine learning algorithms. They treated the database system
as a black box and tried to learn a query running time prediction model using the total
information for training and testing in the model building process. It may lead to the
use of expired information. In addition, most of these solutions solve the optimization
problem with a scalar cost value and do not consider multi-objective problems.

Furthermore, to solve MOOP, the problems are often solved by turning the problem
into a SOOP first and then solving that problem. However, Single-Objective Optimiza-
tion Problems cannot adequately represent multi-objective problems [60]. Moreover, a
large space of candidates leads to the necessity of finding a Pareto set of data storage
configurations in MOOP. Besides, generating a Pareto-optimal front is often infeasible
due to high complexity [160].

Meanwhile, Evolutionary Algorithms (EAs), an alternative to the Pareto-optimal,
look for approximations (set of solutions close to the optimal front). For example, EMO
approaches [72, 81, 161, 40, 39, 122] have been developed based on Pareto domi-
nance techniques [72], Pareto Archived Evolution Strategy (PAES) [81], Strength Pareto
Evolutionary Algorithm (SPEA) [161]. EMO often focused on both convergence and di-
versity [118]. In particular, Non-dominated Sorting Genetic Algorithms (NSGAs) [40,
37] aim to reduce the computational complexity while maintaining the diversity among
solutions. NSGA-II [40] and SPEA-II [161] use crowding distances to maintain diversity.
However, the computational complexity is still high, while the diversity cannot be pre-
served with more than two objectives [76]. Zhang and Li [158] proposed MOEA/D to
maintain diversity with more than three objectives problem. MOEA/D uses a decompo-
sition approach to divide multiple objectives into various single objective optimization
sub-problems and solves up to four objectives [118]. Besides, Deb and Jain [39] pro-
posed NSGA-III, which uses a set of reference directions to guide the search process.
However, these algorithms still have a high computational complexity.

Moreover, recent works [63, 46, 97] have been proposed to optimize the hybrid data
storage configuration. However, HYRISE [63] and SAP HANA [46] do not consider the
high volume and sparsity of DICOM data. Although [97] provides an automatic ap-
proach producing data storage configurations for DICOM data, authors claimed that
the space of candidate solutions in MOOP is large, but did not give any method to find
the optimal hybrid data storage configurations. It needs a method to find an approxi-
mate optimal solution for DICOM data storage.

4



Introduction 1.3. MIDAS

In conclusion, to the best of our knowledge, the existing solutions do not address
all the problem of medical data management in cloud federation with Multi-Objective
Optimization Problems (MOOPs) for (1) query processing and (2) data storage.

1.3 MIDAS

Medical data management in a cloud federation leverage a solution of MOOP in
variability, heterogeneous cloud environment. The variability characteristic of a cloud
federation raises an issue of accurate estimation. Besides, MOOPs in both of query
processing and data storage optimization problem need an alternative solution to find
a Pareto-optimal. As a consequence, all solutions of medical data management should
be integrated into the heterogeneous database systems. Therefore, our motivation is
to solve MOOPs of query processing and data storage configuration of a medical data
management in a cloud federation.

First, we propose a MedIcal system on clouD federAtionS (MIDAS). Our system is
a cloud federation for medical data organizing and management. The system can man-
age the tremendous growth of medical data volume in the heterogeneous environment.
Among various solutions of a heterogeneous system, IReS platform has advantages
and could be extensible for more algorithms and tools. Hence, we extend IReS platform
to manage and integrate our solutions in the various database engines environment.
An overview of MIDAS is shown in Figure 1.1.

Second, we propose an algorithm for estimating of cost values in a cloud environ-
ment, called Dynamic REgression AlgorithM (DREAM) to avoid entire historical data
and inefficient processing for estimating cost values based on machine learning. This
approach adapts the variability of cloud environment by changing the size of data for
training and testing process to avoid using the expired information of the systems. Fig-
ure 1.2 shows the way of using historical data of DREAM in our system, where the
entire historical data is Training set for DREAM and the new training set is the output
of DREAM. This training set is used to build a cost model in Modelling module.

Third, we introduce Non-dominated Sorting Genetic Algorithm based on Grid parti-
tioning (NSGA-G) to solve the problem of high computation complexity NSGAs. MOOPs
often have a large candidate space, and leverage an alternative approach, NSGAs, in
finding an approximate optimal in a cloud federation is often used. However, the qual-
ities of NSGAs need to be improved, and they still have high computation complexity.

5



Introduction

Interface

User query
policy

Modelling

Generate
QEP

Hive
engine

Multi-Objective
Optimizer

Hive 

A Query Workload
and data

Generate data
configuration

Multi-Objective
Optimizer

User data
policy

PostgreSQL
engine

PostgreSQL

Spark
engine

Spark

Amazon Web Services

Microsoft Azure Google Cloud
Platform

MIDAS

Figure 1.1 – An overview of MIDAS

Training set DREAM

coefficient of
determination 

New training
set Modelling

Figure 1.2 – Using DREAM to build cost models.

6



Introduction 1.3. MIDAS

Initial
Population

Objective
values

Fitness
Distribution

Genetic
Operation

Insert Parent

Satisfied
Termination
Criteria?

Termination
Population

Weighted Sum
Model Values

Comparing
Scalar Value

The best
candidate

Multi-Objecitve Optimization based
on NSGA-G

Figure 1.3 – An overview of Multi-Objective Optimization based on NSGA-G.

NSGA-G not only has low computation complexity but also improves the qualities of
NSGAs. The algorithm is applied to Multi-Objective Optimizer in our system, as shown
in Figure 1.3.

Finally, the algorithms above can be applied to MOOP in the cloud environment,
including finding data storage configuration for DICOM in a cloud federation. We pro-
pose to use NSGA-G to find an approximate optimal solution for DICOM data storage
configuration.

The contributions of this thesis are as follows,

— Introducing a medical system on a cloud federation called MIDAS. It is based
on the Intelligent Resource Scheduler (IReS) [42], an open source platform for
complex analytics workflows executed over multi-engine environments.

— Presenting Dynamic REgression AlgorithM (DREAM) to provide accurate es-
timation with the low computational cost. DREAM focuses on the increasing
accuracy estimation and reducing computational cost in the variability of cloud
federations.

— Presenting Non-dominated Sorting Genetic Algorithm based on Grid Partitioning

7



Introduction

(NSGA-G) to improve both quality and computational efficiency of NSGAs, and
also provides an alternative Pareto-optimal for MOOP of DICOM hybrid store.
NSGA-G maintains the diversity by randomly selecting solutions in a Pareto set
in multiple groups, which are divided by a Grid Partitioning in the space of so-
lutions. A solution is selected by comparing members in a group, instead of all
members in a Pareto set. NSGA-G does not only inherit the superior character-
istics of NSGAs in computational complexity but also improve both quality and
computation time to solve MOOP.

— The project Java code and experimental data can be found at the following URL
+ https://gitlab.inria.fr/trle/IReS-Platform. MIDAS is presented as an extension

of IReS platform. MIDAS is validated in a private cloud, Galactica platform,
with some database engines, such as Hive, PostgreSQL, Spark. Besides,
DREAM and NSGA-G are also integrated in this project in both query pro-
cessing and data storage configuration. DREAM is compared to the accuracy
of estimating cost values to other machine learning algorithms. In the exper-
iment, we use the TPC-H benchmark dataset and a variability environment
to validate DREAM. Furthermore, DICOM dataset is also experimented by
NSGA-G in the finding optimal solution test.

+ https://gitlab.inria.fr/trle/moea. NSGA-G algorithm is integrated into the MOEA
framework as an algorithm. The running example is also provided to com-
pare qualities among multi-objective optimization algorithms. The qualities of
NSGA-G is compared to other NSGAs with many problems in MOEA frame-
work. In NSGA-G experiment, we use DTLZ and WFG problems in compar-
ing the quality of various Multi-Objective Genetic algorithms.

1.4 Outline

This thesis is organized as follows.
— Chapter 2 introduces an overview of cloud federations.
— Chapter 3 presents an overview of medical data management on clouds.
— Chapter 4 shows the MOOP and NSGAs solutions.
— In Chapter 5, we introduce an algorithm of accurate estimation with low compu-

tation cost for the variability environment of clouds.
— A Non-dominated Sorting Genetic Algorithm based on Grid Partitioning is pre-

8



Introduction 1.4. Outline

sented Chapter 6.
— An approach of finding an optimal data storage configuration for a medical data

system is introduced in Chapter 7.
— Experiments of DREAM and NSGA-G are shown in Chapter 8.
— The conclusion, future work is presented in Chapter 9.

9





PART I

State of the art about cloud federation

11



CHAPTER 2

CLOUD FEDERATIONS

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Big data Management System . . . . . . . . . . . . . . . . . . 15

2.2.3 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Cloud Federation . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Homogeneous system . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Heterogeneous systems . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Introduction

The main goal of this chapter is to introduce the background and the existing solu-
tions in clouds and cloud federations. First, we give a motivating example and the defi-
nitions in Section 2.2. Then, we discuss the different ways of resource management in
Section 2.3. Finally, data management approaches are represented in Section 2.4.

12



Cloud Federation 2.2. Definitions

2.2 Definitions

This section shows the motivating example and the definition and related tech-
niques. First, medical data has the 3Vs characteristic of big data, such as high volume,
high variety, and high velocity. Hence, medical data should use big data management
system to organize a huge set of medical data. Second, cloud computing technology
enables to build and access resources which helps processing and storing data in a
public cloud, instead of local servers. Third, we present a concept of interconnecting
the cloud environments of more than one service providers for multiple purposes of
commercial, service quality, and user's requirements which is called cloud federation.

2.2.1 Motivating Example

In general, cloud federation may lead to query data across different clouds. For ex-
ample, federating resources makes it possible to access any information on a person
with distributed hospital data on various sites. Various big data management system
could be used to manage the medical data, which has the 3Vs characteristics of Big
Data: high volume, high variety, and high velocity. The data stores that belong in differ-
ent clouds are shown in Figure 2.1. This example shows that the data can be stored in
three different clouds, such as Amazon Web Services, Microsoft Azure, Google Cloud
Platform. Each of them can be managed by different database engines, i.e., Hive, Post-
greSQL. Hence, a cloud federation is thus a critical issue in terms of multi-engine en-
vironment.

Cloud computing [5, 8] allows resources (e.g., CPU and storage) to be provided
as a service through the Internet by users’ demand. According to the pay-as-you-go
model, customers only pay for resources (storage and computing) that they use. Cloud
Service Providers (CSP) supply a pool of resources, development platforms, and ser-
vices. There are many CSPs on the market, such as Amazon, Google, and Microsoft,
etc., with different services and pricing models. For example, Table 2.1 shows the pric-
ing of instances in two cloud providers. The price of Amazon instances is lower than the
price of Microsoft instances, but the price of Amazon is without storage. Of course, this
is only a small example of a pricing scheme in Amazon and Microsoft cloud service.
There are many other pricing schemes depending on the kinds of instance, storage,
location of servers. Hence, depending on the demand of a query, the monetary cost is

13



Cloud Federation

Hive
engine

Hive 

PostgreSQL
engine

PostgreSQL

Spark
engine

Spark

Amazon Web Services

Microsoft Azure Google Cloud Platform

Data DataClinic

Hospital

Laboratory of Medical
Analysis

Data

Figure 2.1 – Motivating Example on using cloud federation.

lower or higher at a specific provider. Besides, the response time of query processing is
different in various instance configurations. The objectives in a cloud federation may be
contradictory. For instance, the monetary cost is proportional to the execution time in
the same virtual machine configuration in a cloud. However, the power virtual machine
has high pricing will process a given query in a shorter time than the weak one which
has low pricing. Hence, the execution time and the monetary cost are contradicting ob-
jectives. For example, there is a query Q in the medical domain. This query is optimized
and transformed into a Query Execution Plan (QEP) which respects the infrastructure
and its configuration. A various QEPs are generated with respect to the number of
nodes, their capacity in terms of CPU, memory and disk and the pricing model. Ta-
ble 2.2 presents an example of possible QEPs for Q. Choosing an execution plan is
a trade-off between the minimization of the response time and the monetary cost. As
a consequence, a cloud federation is thus a critical issue in terms of Multi-Objective
Optimization Problem.

14



Cloud Federation 2.2. Definitions

Table 2.1 – Example of instances pricing.

Provider Machine vCPU Memory (GiB) Storage (GiB) Price
Amazon a1.medium 1 2 EBS-Only $0.0049/hour

a1.large 2 4 EBS-Only $0.0098/hour
a1.xlarge 4 8 EBS-Only $0.0197/hour

a1.2xlarge 8 16 EBS-Only $0.0394/hour
a1.4xlarge 16 32 EBS-Only $0.0788/hour

Microsoft B1S 1 1 2 $0.011/hour
B1MS 1 2 4 $0.021/hour
B2S 2 4 8 $0.042/hour

B2MS 2 8 16 $0.084/hour
B4MS 4 16 32 $0.166/hour
B8MS 8 32 64 $0.333/hour

Table 2.2 – Multiple Objectives for Query Execution Plans

QEP Vms Price ($/60min) Time (min) Monetary ($)
QEP1 10 0.02 60 0.2
QEP2 40 0.02 22 0.29
QEP3 30 0.02 26 0.26

2.2.2 Big data Management System

As the motivating example in the previous section mentioned that the 3Vs char-
acteristics of medical data are leverage using big data management systems. In this
section, we describe the database technology which addresses the big data manage-
ment system.

There are two main classifications of database technology, relational databases,
and non-relational databases. Relational databased uses structured data and the struc-
tured query language, SQL, while non-relational databases implement document-oriented
and non-structured query languages. For example, Amazon Relational Database Ser-
vice (Amazon RDS) provides various relational database engines, including Amazon
Aurora, PostgreSQL, MySQL, MariaDB, Oracle Database, and SQL Server, and non-
relational databases, such as Amazon DynamoDB, Amazon DocumentDB.

A database management system often use effectively structured database. These
databases are widely used and supported. Some examples of relational databases are
the following:

— MySQL. A popular open-source Structured Query Language (SQL) database.

15



Cloud Federation

— Oracle. A C++ based object-relational Database Management System (DBMS).
— IBM DB2. An IBM big data analytics product.
— Sybase. A relational database, the first enterprise-level DBMS for Linux.
— MS SQL Server. A relational database is developed by Microsoft. It supports

both SQL and Non Structured Query Language (NoSQL) database.
— MariaDB. A version of MySQL.
— PostgreSQL. Another object-relational.
However, the massive volume of data which has grown too big to be managed and

analyzed by traditional data processing tools [104]. The relational database manage-
ment systems were developed for a long time ago when the hardware, the storage, and
resources were very different than they are today [124]. The relational databases are
developed for structured data, so they do not work well with unstructured data. Non-
relational databases, called NoSQL, are generated to store, manage and analyze this
unstructured data. While Relational DataBase Management System (RDBMS) might
not scale out easily on commodity clusters, NoSQL databases expand easily to take
advantage of new nodes. Non-structured data includes many kinds of data, such as
text, images, social media data, video, etc. They cannot be organized in tables like
structured data. Some kind of NoSQL are:

— Key-value model. The model use indexed keys and values to store data. For
example, LevelDB [89], and Riak [114].

— Column store. The tables are stored in columns. This method allows the system
has better scalability and performance. For example, Apache Cassandra [7],
BigTable [16], HBase [64], HyperTable [70].

— Document database. Unique keys and data are used to present documents. For
example, CouchDB [32], MongoDB [96].

— Graph database. The data connections are presented by a graph. For example,
Neo4J [100].

Large scale data processing

Additional, there are many frameworks supporting large scale data analytics [149].
In particular, MapReduce [152], Spark [135] and Hadoop [128] are popular open source
frameworks for large scale data analytics [119]. Various researches efforts investi-
gate to improve performance of data management in the cloud, i.e., Spark SQL [10],
Hive [139, 140].

16



Cloud Federation 2.2. Definitions

Spark SQL [10] is a module in Spark. It is integrated relational processing with the
functional programming Application Programming Interface (API) of Spark. Spark SQL
includes a DataFrame API for relational operations on both external data sources and
built-in distributed collections and Catalyst, an extensible optimizer. The Catalyst Op-
timizer is designed as a new extensible optimizer based on functional programming
constructs in Scala. Catalyst provides rule-based and cost-based optimization. The
optimization process goes through four phases: (1) analyzing a logical plan, (2) logical
plan optimization, (3) physical planning, and (4) code generation. In the physical plan-
ning phase, multiple plans are generated and compared based on cost. The rule-based
is used in other phases. However, the cost-based optimizer is built on a single objective
optimization problem, and the plan cost is depended on the prefix cluster configuration
before the optimization process.

Hive [139, 140] is an open source data warehousing solution built on top of Hadoop.
In this open source, Hive process queries in a SQL-like declarative language, which is
compiled into MapReduce jobs executed on Hadoop. Hive stores data in tables as the
traditional databases with different formats. Hive support different file formats such as
TextFile, SequenceFile, RCFile, AVRO, ORC, and Parquet. Hive is designed for the
scalable analysis on large data sets. They are enhancing the Java Database Connec-
tivity (JDBC) and Open Database Connectivity (ODBC) drivers for Hive for integration
with commercial BI tools.

In conclusion, the above methods provide different data managements in the cloud
environment. However, various hospitals maybe use different systems. As a conse-
quence, medical data management in the cloud environment needs to consider het-
erogeneous systems.

2.2.3 Cloud Computing

While big data management systems represent techniques to organize huge sets of
data, cloud computing provides the platform to share computer facilities. In this section,
we describe the cloud computing technology which is used to process, store data, in a
network of remote servers.

Cloud computing appeared in Compaq internal document [1] in 1996. Till 2006, the
term “cloud computing” was popularized with Amazon [6]. Cloud computing [5, 8, 9]
is a large-scale model for demanding resources as a service over the Internet, such

17



Cloud Federation

as computing, storage, networks, platforms, and applications. The evolution of cloud
providers in virtualization, the high-speed Internet raises the development of cloud
computing, one of the fastest growing fields in IT industry [5]. The most attractive prop-
erties of cloud computing are efficiency and flexibility which enables to build and access
resources without the installation and management. The users can pay and have the
system at any time on a pay-as-go-go model.

To get full benefits of cloud computing, users should know the advantages and
limitations of this technology. The main aspects of cloud computing are presented as
follows:

— On-demand self-service. The cloud providers provide on-demand self-service
to automatically provision cloud resources on demand whenever users require
them. The users can access cloud services through a web-based management
interface.

— Broad network access. The users can remotely access cloud resources over the
network with heterogeneous client platform such as different operating systems,
mobile devices, workstations.

— Resource pooling. The resource pooling is built by cloud providers to serve cus-
tomers using techniques based on virtualization technologies. The resources
are dynamically used and reused by consumers without knowledge about phys-
ical resources.

— Measured service. The cloud providers present multiple services to monitor,
control, account and transparent resources to enable using the pay-as-you-go
model.

2.2.4 Cloud Federation

As defined in [29], cloud federation is a concept of service aggregation charac-
terized by interoperability features. This definition addresses the economic problems
of vendor lock-in and provider integration. Besides, the Inter-Cloud is defined by the
Global Inter-Cloud Technology Forum (GICTF) [51]: “A cloud model that, for the pur-
pose of guaranteeing service quality, such as the performance and availability of each
service, allows on-demand reassignment of resources and transfer of workload through
a interworking of cloud systems of different cloud providers based on coordination of
each consumer's requirements for service quality with each provider's SLA and use of

18



Cloud Federation 2.3. Resource Management

standard interfaces”. This thesis suggests a definition of the term Cloud Federation, a
concept of interconnecting the cloud environments of more than one service providers
for multiple purposes of commercial, service quality, and user's requirements.

Based on our context, there are various aspects of a cloud federation, including
resource management, data management in the heterogeneous environment. The next
sections present the state of the art of these aspects, such as resource management
and data management in the cloud federation.

2.3 Resource Management

Resource management is the process of organizing resources: planning, schedul-
ing, allocating. Thus this is of major interest for users to find a good solution for their
business.

2.3.1 Virtualization

Virtualization is a solution to replace some physical component with Virtual Ma-
chines (VMs). This technology allows to reduce the amount of hardware in use. Cloud
computing technology uses the pay-as-you-go model to leverage virtualization and pro-
vide on-demand resource provisioning over the Internet [13]. Users can decrease the
costs of maintenance of their hardware on the computing environment.

Minimizing resource utilization when deploying query plans on multi-core machines
is studied in [59]. They propose an algorithm to optimally assign relational operators
to physical cores. The system is built on top of SharedDB [58] and can be applied to
other shared work systems. The method focuses on physical resources, such as CPU,
memory. Hence, the system is suitable for a specific shared work system.

Depending on the workload, AGILE [102] uses dynamic Virtual Machine cloning to
reduce application startup times. It also predicts demands to provide a medium-term
resource. Among different prediction algorithms, they use a simple Markov model to
minimize the prediction error. However, the model predicts the demanding CPU only.
The configuration of Virtual Machine should consider other resources such as memory,
network bandwidth and disk I/O.

ElasTraS [34] provides an elastic, scalable and self-managing transactional database
tool for the cloud. They consider Online transaction processing (OLTP) queries. The

19



Cloud Federation

Machine 2Machine 1

CPU CPU

DiskDiskDisk

Figure 2.2 – A simple cluster.

system uses many metrics, including service unavailability, number of failed requests,
impact on response time, and data transfer overhead. However, they do not propose an
algorithm for MOOPs. Besides, authors state that the system should improve prediction
accuracy, better workload consolidation, and partition assignments.

In conclusion, recent resource management publications show the way to optimize
the virtual machine configuration in the cloud environment. However, users consider
more than one metric, such as the execution time, the monetary cost, etc. Hence, the
resource management should consider MOOP in the cloud federation.

2.3.2 Partitioning

Partitioning is a strategy to enable load balancing on several nodes. In a hetero-
geneous cluster, the uniform data partitioning method may overload some weak ma-
chines and underutilize the strong machines. For example, a cluster consisting of two
machines is illustrated by Figure 2.2. The disks of the first machine are 50% slower
than that of the second machine. Suppose that a query needs to scan a table and
count the number of tuples in the table. The query completes when both machines
finish their processing. If 50 % data are assigned to each machine, the second one
will finish the job before the first machine does. To minimize the total execution time,
it is easy to assign the best partitioning scheme with 33% of data to the first machine
and 67% of data to the second machine. As a consequence, the workload has similar
response times in both machines.

For a given workload in heterogeneous environments, [90] is developed to quantify
performance differences among machines. They use the static and dynamic data par-
titioning strategy to improve workloads on heterogeneous clusters. In the optimization

20



Cloud Federation 2.4. Data Management

problem, they try to minimize execution time with a given budget by selecting the most
suitable computing resources for building a cluster. However, in the cloud federation,
we should consider the transfer data between clouds because the price of data in/out
is different in various cloud providers. Two machines may be are in two clouds with dif-
ferent pricing scheme. Hence, the monetary cost of the second scheme is higher than
the first one.

2.4 Data Management

Data management is a process including acquiring, validating, storing, protecting,
and processing data. Data management encompasses various techniques. This sec-
tion classifies them into two classes: homogeneous and heterogeneous.

2.4.1 Homogeneous system

In homogeneous database systems, all distributed clusters have identical data man-
agement systems. Following researches studied the homogeneous database system.

A stochastic metaheuristics [20] method is considered to the problem of data dis-
tribution in the cluster. Besides, a data redistribution for optimization of load-balancing
quality is also considered in [20]. The experiments show that the database control sys-
tem can use the load-balancing quality metrics and stochastic meta-heuristics method
to optimize data management in clouds. This system does not concern the heteroge-
neous database system in a cloud federation.

Lookahead Information Passing (LIP) is introduced to collapse the space of left-
deep query plans for star schema warehouse down to a single point near the optimal
plan [159]. To avoid a poor join order from the optimizer, they pass succinct filter data
structures from the outer relations in all the joins to the inner relation. They implement
the LIP technique in the RDBMS.

An efficient multidimensional subspace skyline computation [87] uses point-based
space partitioning to improve the execution time. They compare their proposed algo-
rithm to the existing skycube algorithms. The experiment shows that the proposed
algorithms are significantly faster than the state-of-the-art algorithms.

An effective parallel algorithm for probabilistic skyline queries is introduced in [110].
The uncertain data models including discrete and continuous are considered.

21



Cloud Federation

Three papers show the way to generate query plans in the left-deep or skyline
methods. All of them focus on a specific system. The following section describes more
complex systems in designing and managing, heterogeneous database system.

2.4.2 Heterogeneous systems

Cloud federation model needs to integrate cloud services from multiple cloud providers.
It raises an important issue in terms of heterogeneous database engines in various
clouds. This section presents the federated database engines and the limitation in
cloud federations.

Proteus

Supporting heterogeneous data formats and minimizing query execution times are
also the concern of Proteus [73]. Proteus is a query engine which supports queries over
CSV, JSON, and relational binary data. Proteus adapts data caches to the workload
trends. However, Proteus optimizes query on execution times, and focuses on the mono
objective problem.

Polystore Query Rewriting

Polystore Query Rewriting [109] designs a mediator, i.e., FORWARD Middleware to
evaluate queries over different databases. This model is designed to encompass the
data model and query language capabilities of NoSQL, and SQL. Figure 2.3 show an
example of FORWARD query processing. To integrate data stored in NoSQL database
and SQL database, a query is rewritten into a plan, which includes PostgreSQL and
MongoDB subqueries. The subqueries are processed in the appropriate database en-
gines. However, they stated that they do not discuss cost optimization and Polystore de-
sign. The sub-queries are optimized on a specific database based on its own optimize
with a single objective problem. Hence, this model is not suitable for cloud federation.

BigDAWG Polystore System

The Big Data Analytics Working Group (BigDAWG) [45] project is built on federated
databases over multiple data models [52, 91], specialized storage engines [123], and

22



Cloud Federation 2.4. Data Management

visualizations for Big Data [98]. Figure 2.4 shows the architecture of BigDAWG [45]
project. They call their architecture a polystore to distinguish it from previous federation
efforts that used only the relational model. To enable users to enjoy the performance
advantages of multiple vertically-integrated systems, they implement island of infor-
mation, including shim for interacting. BigDAWG uses CAST operators to move data
between engines. However, it is developed based on integrating multiple database en-
gines. Hence, they optimize a query by the engine database optimizer, not MOOP in
the cloud federation.

CloudMdsQL

Cloud Multidatastore Query Language (CloudMdsQL) [82] [83] is a functional SQL-
like language, which can exploit the full power of local data stores. The query optimizer
in CloudMdsQL rewrite queries and optimize them by using cost functions or database
statistics, simple cost model. Hence, they do not consider the Multi-Objective problems
in the optimization process.

MuSQLE

Distributed SQL Query Execution Over Multiple Engine Environments (MuSQLE) [57]
is a system for SQL-based analytics over multi-engine environments, as shown in
Figure 2.5. The framework develops a novel API-based strategy. MuSQLE engine
API is integrated with a state-of-the-art query optimizer, adding support for location-
based, multi-engine query optimization and letting individual run-times perform sub-
query physical optimization. The derived multi-engine plans are executed using the
Spark distributed execution framework [135]. In particular, they integrate PostgreSQL [133],
MemSQL [131] and SparkSQL [136] under MuSQLE and demonstrate its ability to ac-
curately choose the most suitable engine. Although MuSQLE can process a query in
a distributed environment and heterogeneous database system, it optimizes queries
based on a single objective optimizer in each engine. Besides, the configuration of
MuSQLE is predefined. Hence, the optimizer estimates the cost values and gives the
optimization solution based on this constant configuration. In a cloud federation, a given
job can generate many solutions which their metric values are depended on the differ-
ent configurations.

23



Cloud Federation

MISO

MISO [86] is designed to reduce the amount of data movement during query pro-
cessing. The big data analytic framework is integrated with traditional RDBMS to allow
a query accessing data and computing in both row and column stores. However, they
optimize a query on a single objective problem and do not consider the monetary cost
in the pay-as-you-go model in the cloud environment.

Polybase

Polybase [35] is presented to allow managing and querying data stored in a Hadoop
cluster using the standard SQL query language. Both structured data in a relational
DBMS and unstructured data in Hadoop can be used to execute queries. Polybase
optimizes queries on a cost-based query optimizer. It is a mono objective optimization
problem. Besides, how to optimize storing data is not addressed in the system.

Estocada

Estocada [23] is an architecture for heterogeneous datasets based on different data
stores. The query is optimized by local-as-view integration and view-based rewriting.
However, authors do not consider the multiple objective problems and the variability of
the cloud environment.

IReS

IReS [42] is an open source platform for managing, executing and monitoring com-
plex analytics workflows. IReS provides an optimizing cost-based workflows method. A
customizable resource management of diverse execution and various storage engines
are also presented. Interface is the first module which is designed to receive informa-
tion on data and operators, as shown in Figure 2.6. Modelling module is used to predict
the execution time by a model chosen by comparing machine learning algorithms. For
example, Least squared regression [115], Bagging predictors [22], Multilayer Percep-
tron in WEKA framework [138] are used to build the cost model in Modelling module.
Model DB optimizes a work flow based in the cost model. Planner generates an exe-
cution plan. Finally, the job is run on multiple engines, as shown in Figure 2.6.

24



Cloud Federation 2.5. Conclusion

Table 2.3 – Advantage and disadvantage of recent researches.

Research Heterogeneous MOOP
Proteus ×

Polystore Query rewriting ×
BigDAWG Polystore System ×

ClooudMdsQL ×
MuSQLE ×

MISO ×
Polybase ×

Estoscada ×
IReS

In conclusion, the advantage and disadvantage of heterogeneous database sys-
tems are described in Table 2.3. As can be seen in Table 2.3, only IReS platform
considers both heterogeneous systems and MOOP in clouds. The optimizer in IReS
uses machine learning approaches to estimate the cost values of candidates of work-
flow based on the historic data and the configuration of clusters. However, they often
use all of the historic data to train and build the model. It may lead to use expired infor-
mation. Hence, this thesis aims to integrate our proposal into IReS platform to improve
the accuracy of estimated values, while limiting computational cost.

2.5 Conclusion

This chapter presents works on two main aspects of cloud computing, i.e., resource
and data management. Most of them do not consider MOOPs. Only IReS platform
considers the problems of cloud environment, but expired information in historic data
may affect the estimation cost values during the optimization process. Hence, the thesis
proposes an algorithm to improve the accuracy of the estimation process. Also, to
solve the heterogeneous problem, the thesis reuses the open source platform, IReS,
to evaluate the proposed approach. Besides, another aspect of the cloud environment
is the data storage configuration. How to configure data also affects the quality of the
query processing. The next chapter will address optimization in general, and the case
of medical data storage configuration in particular.

25



Client

SELECT coord_to_state(s.lat,s.lng), AVG(m.temp) AS avg_temp
FROM sensors AS s JOIN measurements AS m ON s.id = m.id
WHERE (s.lat>32.6) AND s.lat<32.9 AND s.lng>-117.0 AND s.lng<-117.3
GROUP BY s.id, s.lat, s.lng

SQL++ Query Processor

SELECT
s.id, s.lat, s.lng
FROM sensors
WHERE s.lat>32.6 AND s.lat<32.9
AND s.lng>-117.0 AND s.lng<-117.3

FORWARD Middleware

SQL++ Virtual Database

PostgreSQL MongoDB

sensors: {{ 
  {id: 1, lat: 32.8, lng: -117.1}, 
  {id: 2, lat: 32.7, lng: -117.2} 
}}

measurement: [ 
  {sid: 1, temp: 200, smg:
"calib. err."}, 
  {sid: 2, temp: 70.1} 
  {sid: 2, temp: 70.2}]

db.measurements
.aggregate(
{$match:{sid:@id}}, 
 {$group: {
_id: "$id", 
avg: {$avg: "$temp"}}})

sensors: measurement: [ 
  {sid: 1, temp: 200,  
    smg: "calib. err."}, 
  {sid: 2, temp: 70.1} 
  {sid: 2, temp: 70.2}]

id
1
2

lat
32.8
32.7

lng
-117.1
-117.2

V1 V2

Q

Q1 Q2

Figure 2.3 – FORWARD Query Processing [109].



Client Visualizations Streams Apps

Visualizations

Array Island Relational Island Island X 

Array
DBMS RDBMS X RDBMS Y Streaming

CAST CAST CAST

SHIM SHIMSHIM SHIM

Figure 2.4 – BigDAWG Architecture [45].

SQL Parser

SQL Parser

Spark

Engine API

Metastore

SQL

Execution Plan

Query graph

Estimate  
Cost/Statistics

Locations

Validate

PostgreSQL memsql SparkSQL

...

Multi-Engine query

User

Figure 2.5 – MuSQLE system architecture [57].



Job Parsing

Enforcer

IReS platform

A Query User policy

Modelling

Planner

data stores

O
pt

im
iz

er

Decision
Maker

Model
refinement

processing
engines

Profiling

Model
DB

IReS DB

m
onitoring

In
te

rfa
ce

 
Ex

ec
ut

or
 

Figure 2.6 – Architecture of IReS [42].



CHAPTER 3

OPTIMIZATION OF MEDICAL DATA

MANAGEMENT

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Medical Data management . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 DICOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Hybrid data storage configuration . . . . . . . . . . . . . . . . . 34

3.2.4 Vertical Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Search and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Single Objective Optimization . . . . . . . . . . . . . . . . . . . 41

3.3.2 Multiple Objective Optimization . . . . . . . . . . . . . . . . . . 44

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Introduction

Chapter 2 introduces the background and existing solutions in clouds and cloud
federations. This chapter focuses on a specific use case, that is to say healthcare. It
discusses opportunities and challenges in terms of data storage and possible layout
configurations. We first describe the DICOM standard and then present medical data
management using this format in Section 3.2. Also, hybrid data storage configuration
approaches to optimize data storage are introduced. Next, we present the searching
and optimizing approaches in Section 3.3. Finally, we conclude with Section 3.4.

29



Optimization of medical data management

3.2 Medical Data management

This section describes an overview of DICOM data and then presents the back
ground of data storage configuration based on the data storage and query processing
strategy.

3.2.1 DICOM

The international standard of medical data, DICOM [33], to transfer, store and dis-
play medical imaging information was first released in 1980 to allow interoperability
among different manufacturers. DICOM applications are constructed and encoded the
Data Set information following the Information Objects and Services Classes.

Information Object Definitions

DICOM Standard specifies the set of Information Object Definitions (IODs). A num-
ber of Information Object Classes provides the abstract definition of entities applicable
to the communication of digital medical images and related information, such as wave-
forms, structured reports, radiation therapy dose, etc., in DICOM standard.

Service Class Specifications

A number of Service Classes is also defined in the DICOM standard. Information
Objects are associated with Service Classes. For example, some Service Classes are
shown as follows:

— Storage Service Class
— Query/Retrieve Service Class
— Basic Worklist Management Service Class
— Print Management Service Class.

Data Structure and Semantics

Various standard image compression techniques are supported in DICOM stan-
dard, e.g., JPEG lossless and lossy. The dataset containing the DICOM files in the
white paper by Oracle [105] is created by six different digital imaging modalities. Its

30



Optimization of medical data management 3.2. Medical Data management

Table 3.1 – Example of real DICOM data set [97].

Datasets DICOM files AttributiesTuples Metadata Total size
CTColonography 98,737 86 7.76 GB 48.6 GB
Dclunie 541 86 86.0 MB 45.7 GB
Idoimaging 1,111 86 53.9 MB 369 MB
LungCancer 174,316 86 1.17 GB 76.0 GB
CIAD 3,763,894 86 61.5 GB 1.61 TB

Table 3.2 – Example of extracted DICOM data set [97].

Table Number of Tuples Size
Patient 120,306 20.788 MB
Study 120,306 19.183 MB
GeneralInfoTable 16,226,762 4,845,042 MB
SequenceAttributes 4,149,395 389.433 MB

total size is about 2 terabytes, including 2.4 million images of 20,080 studies. In partic-
ular, DICOM text files are used in [97], as shown in Table 3.2. They are extracted from
real DICOM dataset, as shown in Table 3.1.

Characteristics of DICOM Data and workloads

Besides of the definitions above, DICOM specifies other standards, such as Data
Dictionary, Message Exchange, Network Communication Support For Message Ex-
change, etc.

Some characteristics of DICOM [97] data are presented as follows:
— High Complexity,
— High Variety,
— High and Ever-increasing Volume,
— High Velocity.
The workloads in DBMSs can be divided into OLTP and Online analytical process-

ing (OLAP). In general, OLTP systems focus on optimizing write operations, such as
insert, delete, update, etc. The aim of OLTP systems is the very fast query process-
ing. Row-oriented databases are often designed for OLTP applications. While, OLAP
is characterized by a relatively low volume of transactions. OLAP systems focus on
optimizing read operations, such as analyzing data. The aims of OLAP system is the
response time. Column-oriented databases are often designed for OLAP applications.

31



Optimization of medical data management

Table 3.3 – Frequency of Queries in Workload W.

Queries Detail a1 a2 a3 a4
Q1 SELECT * FROM T 1 1 1 1
Q2 SELECT a1, count(a4) FROM T GROUP BY

a1
1 0 0 1

Q3 SELECT UID, a3 FROM T WHERE a3 =
’Modality’

0 0 1 0

Q4 SELECT UID, a2 FROM T WHERE a2 = ’DA’ 0 1 0 0

Having characteristics of the Big Data paradigm, DICOM data has been accessed
by various OLTP, OLAP and mixed workloads. For example, table T, including 4 at-
tributes: a1, a2, a3, a4, is often accessed by a workload W as Table 3.3 shown.

As a consequence, how to design data storage for DICOM data is an issue for the
medical system. The next section describes the different approaches in data storage
configuration for OLTP, OLAP, and mixed workloads.

3.2.2 Data Model

For data management in general, and medical data in particular, there are two kinds
of traditional storage for data model, row, and column data. Row stores store all at-
tribute values in a row together. This kind of traditional data storage supports adding/-
modifying a row easily. It also helps efficiently reading many columns of a single row
at the same moment. This strategy is suitable for OLTP workload, but wastes I/O costs
for a query which requires few attributes of a table [66]. In contrast, column stores (e.g.
MonetDB [19] and C-Store [125]) organize data by column. A column contains data for
a single attribute of a tuple and stores sequentially on disk. The column stores allow
to read only relevant attributes and efficiently aggregating over many rows, but only
for a few attributes. Although the column stores are suitable for read-intensive (OLAP)
workloads, their tuple reconstruction cost in OLTP workloads is higher than row stores.

Following sections show the strategies to optimize the data storage configuration. It
is defined as a set of pairs consisting of (1) a group of attributes and (2) an associated
data layout.

Data Storage Strategy

The first strategy in [97] aims to optimize query performance and storage space
over a mixed OLTP and OLAP workload by extracting from the original DICOM files,

32



Optimization of medical data management 3.2. Medical Data management

UID a1 a2 a3
01
02
03

a4 UID a1

a3

a2
03

a4

UID
01

01
UID UID

02
03

UID a2 a3
01

(a) Single table (b) Four single-attribute tables (c) Two tables

: Null value : Non-null value

UID a1
02
03

a4

02 02

Figure 3.1 – Difference configurations of the table T.

organizing and storing data in a manner to reduce space, tuple construction and I/O
cost. The data are organized into entity tables. The tables are decomposed into mul-
tiple sub-tables, which are stored in row or column stores of the hybrid store. A group
of attributes classified as frequently-accessed-together attributes can be stored in a
row table. Other groups are classified as optional attributes and stored in a column
store. Each attribute belongs to one group except that it is used to join the tables to-
gether. This strategy removes the null rows in tables. For example, a given table T has
four attributes as Figure 3.1(a) shown. Figure 3.1 presents three different data storage
configurations, H1, H2, H3, of the table T : (a) the entire T is stored in a single a row
store, H1={{UID,a1,a2,a3,a4}, row store}; (b) the entire T is decomposed into 4 verti-
cally partition tables, stored in a column store, H2={{{UID,a1},column store},{{UID,a2},
column store},{{UID,a3},column store},{{UID,a4}, column store}}; (c) the entire T is de-
composed into 2 vertically partition tables, stored in a row store H3={{{UID,a1,a4}, row
store},{{UID,a2,a3}, row store}}. If all the attributes of T are stored in a single row ta-
ble, as Figure 3.1(a) shown, the number of data cells is 15. If table T is decomposed
into four single-attribute tables, the number of data cells is 12. If T is divided into two
tables, including attributed are often accessed together, Figure 3.1(c) shown, stored in
row stores, the number of data cells is 12.

Query Processing Strategy

To improve performance of query processing in a distributed environment [97], the
hybrid storage model of row and column stores needs to modify sub-tables to reduce
the left-outer joins and irrelevant tuples in the input tables of join operations. The query
performance is negatively impacted if the query execution needs attributes by joining

33



Optimization of medical data management

many tables. This query in hybrid stores [97] needs to reconstruct result tuples, and
the storage space will increase to store surrogate attributes. For example, the table T
in Figure 3.1 is often access by two queries, Q1 and Q2. Where Q1 often accesses to
attributes a2, a3, and a1, a4 are often accessed by Q2. Hence, the data storage configu-
ration in Figure 3.1(c) is more recommended than other one in Figure 3.1(b).

In general, based on a given workload and data specific information, a large num-
ber of candidates of data storage configuration can be created for a given table. The
number of candidates depends on the attributes, null values in tables, the number of
database engines, etc.

3.2.3 Hybrid data storage configuration

To improve performances of storing and querying in OLAP, OLTP, and mixed work-
loads, DICOM data needs to be stored in a row-column store, called hybrid data stor-
age. The next section presents previous works in hybrid data storage.

Column-Group Storage Models

Column-group storage models are built by organizing column groups in either row-
oriented, column-oriented storage or both row/column-oriented storage to improve the
performance of mix workloads.

In addition, the performance of modern databases are affected not only by the num-
ber of disk I/O operations but also by the main memory. The cost of main memory is
decreasing, so some researches consider the modern database systems storing a
large amount of data in main memory [27, 14]. However, the access latency between
the processor and the main memory leakages another performance bottleneck. The
modern database systems should use a cache memory between them to reduce that
bottleneck [3]. If appropriate data is on the cache memory, the speed of processing
data will increase, otherwise the processor should load the data from the main mem-
ory which reduces the speed of processing data. Hence, the cache often loads the
frequently-used data to speed up data processing.

34



Optimization of medical data management 3.2. Medical Data management

MemSQL

MemSQL [27] is a distributed SQL database. It is designed to exploit memory-
optimized DBMS. In MemSQL, data can be stored in rows or columns. The first format
is stored in a memory store and the second one is in a disk store. This model takes
advantages of row, column data format on memory and disk data, respectively. It does
not take advantage of the hybrid data format (row/column) on both memory and disk
stores. MemSQL optimizes a query on a single objective problem (execution time).

HYRISE

HYRISE [63] is a main memory hybrid database system, as shown in Figure 3.2.
The approach automatically partitions tables into vertical partitions of varying widths
depending on how frequent columns in the original table are accessed in the original
table. The mixed workload environment including OLAP and OLTP queries is analyzed
to predict the layout performance on a hybrid row/column database. In particular, the
tool prefers to suggest narrow partitions for OLAP queries and wide vertical partitions
for OLTP queries. HYRISE uses an in-memory column-oriented database system. Fre-
quently accessed together attributes are grouped in a vertical partition, called container
allocated in main memory.

HYRISE provides an automated database design tool for given a schema, a query
workload by using analytical model. However, the disadvantage of HYRISE is a main
memory database system. It may store a small dataset depending on the size of the
physical available memory. Hence, HYRISE maybe not suitable for a high demanding
of ever-growing volumes of data such as DICOM data.

SAP HANA database

SAP HANA database [46, 47] is an in-memory row/column-oriented database sys-
tem. Based on a same system, it optimizes data storage configuration depending on
both OLAP and OLTP workloads with different characteristics of data, such as struc-
tured, semi and unstructured data. The system use multiple database engines. SAP
HANA use the main memory to organize as much as possible based on frequently
assessed data. The less frequently accessed data is stored in disks.

The advantage of SAP HANA is the size of data may be larger than the size of

35



Optimization of medical data management

Q
ue

ry
 P

ro
ce

ss
or

In-Memory Storage Manager

Layouter Workload
Data

Layout Manager
Attribute
Groups

Attribute
Groups

Data Container

Figure 3.2 – HYRISE architecture [63].

physical memory. However, SAP HANA is limited to handle the high and ever-growing
volume of data, such as DICOM data. Moreover, the disadvantage of it is lacking the
automatic determining the row or column oriented data layout of a new table. It requires
manually determine at definition time by the system administrator.

HYTORMO

HYTORMO is a hybrid layout relational system. It takes into account both storage
and processing to optimize the layout of tables. The system uses both data storage
and query processing strategy to optimize the layout of tables. In addition, the system
applies Bloom filters [17] to reduce network I/O cost during query processing in cloud
environment. HYTORMO is built on top of Spark and aims to be deployed on large
scale environments.

An advantage of the tool is that it automatically designs the data storage configu-
ration of hybrid data store based on four parameters following: the weight of similarity,
clustering threshold, merging threshold and data layout threshold. However, the author
states that the space of data storage configuration is too large. Hence, it is necessary
to find an optimal data storage configuration in this data storage configuration space.

3.2.4 Vertical Partitioning

Vertical partitioning is a schema design technique to improve query processing per-
formances, aiming to reduce I/O cost, and data storage. This technique is often used
to reduce workload execution time and storage space size for sparse datasets. Verti-

36



Optimization of medical data management 3.3. Search and Optimization

cal partitioning algorithms are usually classified into two approaches: (1) cost-based or
affinity-based and (2) top-down or bottom-up.

Cost-based vs. Affinity-based Approaches

Cost-based algorithms, such as [53], need an objective function to minimize the
total workload execution cost of a given system. However, it is hard to build cost func-
tions expressing complex execution mechanisms of query optimizers/engines of the
current systems [108]. In contrast, affinity-based algorithms, such as [107], are based
on attribute affinity (which shows how often attributes are simultaneously accessed
by the same queries in a given workload) to cluster the attributes into clusters. How-
ever, the measured affinity is usually independent of the execution of the corresponding
query optimizers or query engines of current systems. Hence, Thus, the target systems
should further validate the result clusters [108]

Top-down vs. Bottom-up Approaches

Top-down algorithms, such as [2], usually decompose a schema containing all at-
tributes into two smaller schemas. This decomposition is repeated similarly for each
resulting schema until the given objective function cannot be further improved. In con-
trast to top-down algorithms, bottom-up algorithms, such as [65], begin with a set of
minimally small vertical partitions. Each vertical partition may contain either a single
attribute or a subset of attributes. For each step, a pair of vertical partitions are merged
into a larger vertical partition. The step is repeated until the objective function cannot
be further improved.

3.3 Search and Optimization

Managing medical data in a cloud federation requires to consider many metrics,
such as, response time, monetary cost. It raises an issue of Multi-Objective Opti-
mization Problem (MOOP). For example, MOOP compares query plans with various
cost values, e.g., execution time, monetary cost. MOOP needs to optimize by Multi-
Objective Optimization (MOO) approaches. The goal of MOO techniques is then to find
the set of Pareto-optimal solutions, i.e. the query plans realizing optimal cost trade-offs

37



Optimization of medical data management

for a given query, the hybrid data storage configuration optimal cost trade-offs for a
given workload and data set.

Besides, vertical partitioning approaches, including affinity-based algorithms [107],
are widely used in a traditional databases. They use Attribute Usage Matrix and Fre-
quencies matrices to optimize data in distributed database systems. HYTORMO [97]
considers more about data specific information, a matrix containing the null values of
the given table. This information did not appear in the traditional system.

In addition, most of recent hybrid data storage configuration provides the way to
improve the performance of query processing, e.g., HYRISE, SAP HANA. However,
they do not consider the high volume and sparsity of DICOM data (the null values).
While HYTORMO consider the high volume and sparsity of DICOM data and mixed
OLTP/OLAP workloads in the automatic generating hybrid data storage configuration.
A problem with HYTORMO is that is does not provide the best solution in the space of
parameters, such as data storage strategy (α, β ∈ [0, 1]) and query processing strategy
(θ, λ ∈ [0, 1]). It needs to search and optimize the hybrid data storage configuration
based on Multi-Objective Problem (MOP).

Both of hybrid data storage configuration and query processing in cloud federation
requires a search and optimization techniques to find an optimal solution. This section
describes the methods for both problems.

In MOO, general search and optimization techniques are classified into three cate-
gories: enumerative, deterministic, and stochastic [31] as follows:

— Enumerative,
— Deterministic,

— Greedy,
— Hill-Climbing,
— Branch and Bound,
— Depth-First,
— Breadth-First,
— Best-First (A*,Z*,...),
— Calculus-Based,

— Stochastic,
— Random Search,
— Simulated Annealing,
— Monte Carlo,

38



Optimization of medical data management 3.3. Search and Optimization

— Tabu Search,
— Evolutionary Computation.

The simplest search strategy is enumerative. The possible solution is evaluated in
some predefined search space. However, it is inefficient when the space is large. In
particular, a limiting search space should be implemented to find solutions in limited
time [94].

The second class is a deterministic strategy. Deterministic algorithms try to in-
tegrate the knowledge of the problem in searching for solutions. There are several
approaches in this class. Firstly, Greedy algorithms optimize solutions locally [21].
So, these algorithms fail in searching for global optimization. Hill-climbing algorithms
search solutions in the direction of the best cost from the current position. However, the
algorithm effectiveness is decreased in the problem of having local optima, plateaus,
or ridges in the fitness (search) landscape [116]. Greedy and hill-climbing strategies
are good in many cases. From a point, algorithms examine all directions to find the
best step. Branch and bound strategies need decision algorithms to limit the search
space [56]. The bounds are computed at a given point. After that, several points are
compared and the most promising branch is determined [99]. Depth-first algorithms do
not need searching for information. It generates all the possible successors, expands a
successor, and so on. If the search is terminated, it restarts from the deepest node left
behind [111]. If the node is unpromising, the backtracking is used to return the node’s
parent [99]. Breadth-first search is similar to depth-first. The difference between them
is the actions after the node is generated. At the expansion node, breath-first explores
more one layer [111]. Heuristic information is used to place values on an expanding
node in best-first search. The best node is examined first [111]. The popular best-first
search versions are A *, Z*, and others. They select a node to expand using the over-
all cost to get that node. Finally, calculus-based search algorithms use the minimum
calculation to get optimal value [31].

Above algorithms are enumerative and deterministic methods. They are widely used
in various problems [21, 99, 56, 111]. However, many MOPs are high dimensional or
NP-Complete [31]. Deterministic algorithms are not suitable in NP-Complete or high
dimensional problems [94, 56, 62].

The third class search algorithm includes Simulated Annealing (SA) [78], Monte
Carlo methods [106], Tabu search [61], and Evolutionary Computation (EC) [62]. They
are developed as alternative approaches for solving MOPs. Stochastic strategies need

39



Optimization of medical data management

a function to fitness values of solutions and a mapping mechanism between the prob-
lem and algorithm domain. This strategy does not guarantee an optimal solution. They
provide a wider range of optimization problems, comparing to traditional deterministic
search algorithms [62].

The simplest stochastic search strategy is Random search [31]. A given number of
randomly selected solutions is evaluated simply. From a starting point, the next solution
is evaluated randomly, called as a random walk [151]. Similar to enumeration methods,
the algorithms are not suitable for MOPs. They do not integrate the knowledge into
the problems. Random searches may generate no better result than enumerative algo-
rithms [62].

An annealing analogy is used in the SA algorithm. While the hill-climbing selects
the best move from a node, SA chooses a random step. If the current optimum is not
improved by this moving, it would made some probability p < 1, else it is executed.
This probability quickly decreases either by time or with the number of steps which the
current optimum is declined [116].

Monte Carlo strategies are also stochastic methods. The random search of each
step is independent of previous search [106, 117]. The comparator stores the current
good solution and all the decision values. Tabu search is a strategy which helps to
fall to local optima. It stores a record of solutions and the path reaching them. This
strategy avoids the choice of solution to stuck on local optima. Tabu search is often
implemented with other optimization algorithms [61, 117].

EC algorithms are stochastic search algorithms which simulate the natural evo-
lutionary process. The key technique of EC are genetic algorithms (GAs), evolution
strategies (ESs) and evolutionary programming (EP), as known as (EAs) [49]. These
algorithms simulate the Darwinian concept of “Survival of Fittest” [62]. The common
characteristic is a reproduction, random variation, competition and selection of individ-
uals in the population [49]. An Evolutionary Algorithm (EA) has a population, a set of
operators and some fitness functions to evaluate solutions. The fitness functions are
used to determine the solutions are survived in the next generation.

The methods of deterministic or stochastic can be grouped into a group of mathe-
matical programming. In this aspect, Linear programming is designed to solve problems
in which all the relations are linear [68]. Non-linear programming methods are used to
solve MOPs with convex constraint functions [117]. Stochastic programming methods
use random parameters to solve MOPs. There are various methods depending on the

40



Optimization of medical data management 3.3. Search and Optimization

type of variables in the problems, such as discrete, integer, binary, mixed-integer pro-
gramming [117]. As the classification of search and optimization techniques above, the
following section presents the state-of-the-art of optimization problem in cloud environ-
ment.

3.3.1 Single Objective Optimization

In cloud computing, decision-making problems require several objectives: minimize
monetary fees, maximize profit, minimize response time, space size of data, moving
data between clouds, etc. The aim of Single-Objective (SO) optimization is to find the
best solution which achieves the minimum or maximum value of a single objective
function.

Many researches focus on Single-Objective Problem only. In particular, the execu-
tion time is the most considered metric in many systems. In this optimization problem,
users have only one metric value to compare a candidate to another. However, in cloud
federation, there are many metrics that users concern, e.g, the execution, the mone-
tary, size of data storage, etc.

Some foundation results [26] show an overview of query optimization in relational
systems. The cost estimation depends on statistical summaries of data and CPU, I/O,
communication costs. The paper also shows the design of effective and correct SQL
transformations is hard and building an extensible enumeration architecture is a signif-
icant undertaking. Besides, the limitations are that the optimization problems are SO
problems and single system.

PIXIDA [80] provides a schedule to minimize data movement across multiple data
centers. They integrate their algorithm in Spark and show that PIXIDA achieves a sig-
nificant traffic reduction. The optimization problem they are concerned is a single ob-
jective optimization.

The heterogeneous database system [42] supports various database engines. The
system could be built to store and optimize queries for the heterogeneous data sys-
tems. However, they use the single-objective model to optimize queries, not using
MOQP algorithms for optimization and search problems.

OtterTune [147] is an automatic tuning method for DBMS configuration. The ma-
chine learning algorithms in Google TensorFlow [162] and Python scikit-learn [112] are
used in the system. The target of the optimization problem is the total execution time

41



Optimization of medical data management

for OLAP and the latency for OLTP workload.

Non-Invasive Progressive Optimization for In-Memory Databases [157] introduces
an approach to improve runtime, up to a factor of 4.5 compared to the worst case
runtime. The method is able to exploit more properties than just the cardinality to re-
optimize query plans and do not require any statistics over the data. However, they
should integrate other relational operators into their optimization approach.

Lookahead Information Passing (LIP), a query execution strategy, is introduced to
collapse the space of left-deep query plans for star schema warehouse down to a
single point near the optimal plan [159]. To avoid a poor join order from the optimizer,
they pass succinct filter data structures from the outer relations in all the joins to the
inner relation. They implement the LIP technique in the RDBMS.

The join caching optimization is present in [24]. They show CJOIN, a new design for
large-scale data analytics systems processing many concurrent join queries. They im-
plement CJOIN as an extension to the PostgreSQL DBMS. CJOIN shares the common
parts of the queries execution plans across multiple queries. However, they focus on a
single system and mono objective optimization. It is not suitable for a heterogeneous
database system and cloud federation.

Sharing the cost among users in the optimization process [146] is provided as
Mechanism Design. Multiple users accessing the service for the same time period is
the target of the system. They built a series of mechanisms to share pricing in either an
off-line or an on-line game. The solution is especially good in the case that many users
derive significant value from an optimization during the same time-slot. However, they
do not consider MOOPs.

Cost modeling can be built without machine learning algorithms. For example, a
cost model in [153] is introduced to build an optimal group of queries in PostgreSQL.
This cost model aims to predict query execution time for this specific relational Data
Base Management system. However, in a cloud federation with variability and different
systems, cost functions may be quite complex.

The investigation of query performance [88] shows that the impact of the cost model
is less influential than the cardinality estimation. They focus on the technique to improve
performances despite the sub-optimal cardinality estimation. However, their method
focus on a specific DBMS, such as PostgreSQL, and the cost models are limited in
these database engines.

However, SO optimization does not solve the problem of multiple objectives. Most

42



Optimization of medical data management 3.3. Search and Optimization

of the recent research often solve by turning MOP into a single-objective problem first
and then solving it. The following section shows the method researches use to optimize
a MOP.

Weighted Sum Model

Weighted Sum Model is useful as a tool which should provide decision makers with
insights into the nature of the problem. Some recent researches use Weighted Sum
Model in query processing and optimization process.

The R-skyline [28] operators generalize and unify skyline and ranking queries. They
focus on choosing weights for a scoring function. Their experiments show that non-
dominated and potentially optimal are very effective in focusing on tuples of interest.
However, the application is only for MOOP in a single database system.

A homogeneous cloud environment is considered in a MOP [92]. The system is de-
signed in a scenario of multisite clouds, a cloud with multiple data centers in different
locations. Two cost models including execution time and monetary costs are used to es-
timate the cost of executing scientific workflows. The MOOP is solved by grouping two
cost metric into a scalar value by the weights for execution time and monetary costs.
However, the system does not consider the cloud federation and variability of cloud
environment. Besides, MOOP is converted to a weighted sum model [67]. The estima-
tion of weights corresponding to different objectives in this model is also a MOOP. In
addition, the objectives may be contradictory. For example, Kllapi [79] stated that cloud
providers lease computing resources that are typically charged based on a per time
quantum pricing scheme. The solutions represent trade-offs between time and money.
Hence the execution time and the monetary cost cannot be homogeneous.

Furthermore, Multi-Objective Optimization algorithms may be selected thanks to
their advantages when comparing with WSM. The optimal solution of WSM could be
not acceptable, because of an inappropriate setting of the coefficients [50]. The re-
search in [75] proves that a small change in weights may result in significant changes
in the objective vectors and significantly different weights may produce nearly simi-
lar objective vectors. Moreover, if WSM changes, a new optimization process will be
required. As a consequence, MOOPs lead to find solutions by Pareto dominance tech-
niques.

43



Optimization of medical data management

3.3.2 Multiple Objective Optimization

As the comment in [60], SO problems cannot adequately represent Multi-Objective
(MO). This approach may significantly change the problem of nature. In some cases,
the problem becomes harder to solve, or certain optimal solutions are not found any-
more [60]. In general, MO Optimization problem is more complex than SO Optimization
problem. Moreover, the large space of candidates leads to the necessity of finding a
Pareto set of a solution in MOOP. Besides, generating Pareto-optimal front is often
infeasible due to high complexity [160]. The next section shows various methods in
finding a near optimal or approximations.

Near Optimal

The first paper [145] experiments the multiple query optimization problems on a
quantum computer published in the database community. The quantum annealer is
produced by the Canadian company D-Wave. They compare many MOO algorithms,
such as integer linear programming [43], genetic algorithm [12] and iterated hill climb-
ing [44] in the experiments. The papers show that the genetic algorithm is better than
the hill climbing algorithm and the hill climbing algorithm often produces slightly better
solutions than the linear solver. Besides, experiments show that the quantum annealer
finds near-optimal faster than various classical optimization approaches.

The group-based Skyline (G-Skyline) [156] is a good option for finding a group
solution for the multiple objective problem. Their method is built to find G-Skyline groups
using DSG (Directed Skyline Graph). However, a user is often concerned the optimal
point in a Pareto set of solutions. Hence, the group with k-level in this method has many
solutions he does not consider.

Meanwhile, Evolutionary Algorithms, an alternative to the Pareto-optimal, look for
approximations (set of solutions close to the optimal front). For example, Evolutionary
Multi-objective Optimization (EMO) approaches [72, 81, 161, 40, 39, 122] have been
developed based on Pareto dominance techniques.

Among EMO approaches, [40, 37] proposed Non-dominated Sorting Genetic Al-
gorithms (NSGAs) to decrease the computational complexity while maintaining the di-
versity among solutions. The crowding distance operators are used to maintain the
diversity in NSGA-II [40] and SPEA-II [161]. However, the crowding distance operators
need to be replaced because of high complexity and not suitability for the problems of

44



Optimization of medical data management 3.4. Conclusion

more than two objectives [76]. Furthermore, MOEA/D maintains the diversity with more
than three objectives problem [158]. This algorithm uses an approach based on decom-
position, a basic strategy in traditional multi-objective optimization, to divide a multiple
objectives problem into various single objective optimization sub-problems. Neverthe-
less, MOEA/D can only solve up to four objectives [118]. Meanwhile, Deb and Jain [39]
proposed a set of reference directions to guide the search process in NSGA-III. In spite
of good quality, NSGA-III has the highest computational complexity among NSGAs.

NSGA-II is often applied to MOP in cloud environment. In particular, the framework
Flower [77] collects information from multiple monitoring systems of the cluster at dif-
ferent layers. After that, the control system takes them as input the history of the sensor
values. The desired values are estimated at a specific time. Flower finds an optimized
solution by a multi-objective genetic algorithm, NSGA-II [40], to efficiently search the
provisioning plan space.

As a consequence, EMOs are appropriated for finding alternative Pareto-optimal
and NSGAs show advantage among Evolutionary Multi-Objective Algorithms class.
Although NSGAs are used in many research works to find an approximate optimal
solution for MOOP, NSGAs still need to be improve their quality.

3.4 Conclusion

Medical data in cloud federations are required to face challenges in data man-
agement in terms of Multi-Objective Optimization in hybrid data storage configuration,
query processing, heterogeneous database engines.

Therefore, the main goals of our study are to propose a solution for the ever-
increasing size, high velocity and variety of medical data. In particular, our solution
provides an efficient approach to find a DICOM optimal data layout in terms of both
data storage and query processing strategy for OLTP and OLAP queries. Besides,
we also propose a model of cloud federation to organize the data in heterogeneous
database engines in a cloud environment.

45





CHAPTER 4

MULTI-OBJECTIVE OPTIMIZATION

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Pareto set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . 53

4.4 Non-dominated Sorting Genetic Algorithm . . . . . . . . . . . . . . 57

4.4.1 NSGA process . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Introduction

As we recommended in Chapter 2, most of solutions for clouds do not consider
MOOP. Only the IReS open source platform considers heterogeneous data bases, the
variability of the cloud environment, but all the information in historic data is used for
the estimation cost values during the optimization process. They may have expired at
the moment of optimization processing. Besides, medical data management in cloud
environment, as described in Chapter 3, needs an efficient MOO algorithm to optimize
data storage configuration in clouds.

Among Multi-Objective Optimization algorithm classes, EMO shows their advan-
tages in searching and optimizing for the MOP. Non-dominated Sorting Genetic Algo-
rithms (NSGAs) are often used to decrease the computational complexity while main-
taining the diversity among solutions [39, 142], but their quality should be improved.
This chapter will present the background of the estimation using machine learning ap-
proach and NSGAs. We first show the definition of Pareto set in Section 4.2. Next, in

47



Multi-Objective Optimization

Section 4.3, we introduce the background of our estimation approach using machine
learning algorithms. In Section 4.4, we introduce the process of NSGAs. Finally, we
conclude with Section 4.5.

4.2 Pareto set

Pareto dominance techniques are often used in MOO algorithms, such as EMO [72,
81, 161, 40, 39, 122, 158]. In the vast space of solution candidates of MOO approach,
a candidate may be not better than another one because of trade-off between various
objective values. Pareto sets are used in this situation to optimize a MOP.

In particular, in a query processing problem, let a query q be an information request
from databases, presented by a set Q of tables. A Query Execution Plan (QEP) in-
cludes an ordered set of operators (select, project, join, etc.). The set of QEPs p of
q is denoted by symbol P. The set of operators is denoted by O. A plan p can be di-
vided into two sub-plans p1 and p2 if p is the result of function Combine(p1, p2, o), where
o ∈ O.

The execution cost of a QEP depends on parameters. Their values are not known at
the optimization time. A vector x denotes parameters value and the parameter space
X is the set of all possible parameter vectors x. In Multi-Objective Query Processing
(MOQP), N denotes the set of n cost metrics. We can compare QEPs according to
n cost metrics which are processed with respect to the parameter vector x and cost
functions cn(p,x). Let C be denoted as the set of cost function c.

Let p1, p2 ∈ P, p1 dominates p2 if the cost values according to each cost metric of
plan p1 is less than or equal to the corresponding values of plan p2 in all the space of
parameter X . That is to say:

C(p1,X ) � C(p2,X ) | ∀n ∈ N,∀x ∈ X : cn(p1, x) ≤ cn(p2, x). (4.1)

The function Dom(p1, p2) ⊆ X yields the parameter space region where p1 dominates
p2 [144]:

Dom(p1, p2) = {x ∈ X | ∀n ∈ N : cn(p1, x) ≤ cn(p2, x)}. (4.2)

Assume that in the area x ∈ A,A ⊆ X , p1 dominates p2, C(p1,A) � C(p2,A),
Dom(p1, p2) = A ⊆ X . p1 strictly dominates p2 if all values for the cost functions

48



Multi-Objective Optimization 4.3. Multiple Linear Regression

of p1 are less than the corresponding values for p2 [144], i.e.

StriDom(p1, p2) = {x ∈ X | ∀n ∈ N : cn(p1, x) < cn(p2, x)}. (4.3)

A Pareto region of a plan is a sub-space of plans. There is no alternative plan in the
rest of the plans which is not better than the plans in the Pareto region [144]:

PaReg(p) = X \ (
⋃

p∗∈P
StriDom(p∗, p)). (4.4)

For example, three query plans (QEPs) with their costs for monetary costs, execution
time of query Q are shown in Table 4.1. All three QEPs are in Pareto plan set of Q.
QEP3 is not the best plan neither Time or Monetary cost, but QEP1 and QEP2 are not
dominated QEP3 in both of objectives. Hence, QEP3 belongs to the Pareto plan set of
Q.

Table 4.1 – Multiple Objectives for Query Execution Plans

QEP Vms Price ($/60min) Time (min) Monetary ($)
QEP1 10 0.02 60 0.2
QEP2 40 0.02 22 0.29
QEP3 30 0.02 26 0.26

4.3 Multiple Linear Regression

In many database management systems, predicting cost values is useful in opti-
mization process [153]. Recent research has been exploring the statistical machine
learning approaches to build predictive models for this task. They often use historical
data to train and test the cost model as a Single-Objective Problem (SOP). Besides,
Linear Regression is an useful class of models in science and engineering [121]. In
this chapter, we describe the background of this model.

This model is used in the situation in which a cost value, c, is a function of one
or more independent variables x1, x2, ..., and xL. For example, execution time c is a
function of data size x1 of first element in a join operator and data size x2 of second
element in that join operator.

49



Multi-Objective Optimization

Given a sample of c values with their associated values of xi, i = 1, 2, ..., L. We focus
in the estimation the relationship between c and the independent variables x1, x2, ...,

and xL based on this sample. The following sections introduce the simple defined cases
above.

4.3.1 Linear Regression

Assuming that a variable c is a function of an independent variable and the rela-
tionship between them is linear. The relationship means that the mean of c is, E{c}, is
known to be linear function of x, that is,

E{c} = β0 + β1x, (4.5)

The intercept β0 and slope β1 constants are unknown. They are estimated from a sam-
ple of c values with their associated values of x. Random variable c is a function of x.
Defining a random variable E by

E = c− (β0 + β1x), (4.6)

the equation becomes
c = β0 + β1x− E, (4.7)

where E has mean 0 and variance σ2, which is identical to the variance of c. The value
of σ2 is not known and not a function of x.

The simple linear regression model is shown in Equation 4.7. The unknown pa-
rameters β0, β1 are regression coefficients. The random variable E presents the mean
deviation of c.

Least square method of estimation

The target of this estimation approach is how the sum of the square of the dif-
ferences between observed sample values ci and the estimated expected value of c,
β̂0 + β̂1x, where β̂0, β̂1 are the estimation of the regression parameter β0, β1, respec-
tively. The difference between a sample and an estimated expected value is calculated
as follows:

ei = ci − (β̂0 + β̂1xi). (4.8)

50



Multi-Objective Optimization 4.3. Multiple Linear Regression

The least-square estimates β̂0, β̂1 are defined by minimizing

Q =
m∑

i=1
e2

i =
m∑

i=1
(ci − (β̂0 + β̂1xi))2. (4.9)

Assuming that we have the observed sample values (x1, c1), (x2, c2), ..., (xm, cm), the
observed regression equation is

ci = β0 + β1xi + ei; i = 1, ...,m. (4.10)

Let denote

A =



1 x1

1 x2

. .

. .

1 xm


, (4.11)

C =



c1

c2

.

.

cm


, (4.12)

E =



e1

e2

.

.

em


, (4.13)

B =
β0

β1

 . (4.14)

The matrix version of Equation 4.10 is

C = AB + E. (4.15)

51



Multi-Objective Optimization

The sum of squared residuals of Equation 4.9 is rewritten

Q = ETE = (C − AB)T (C − AB). (4.16)

Setting δQ = 0, the solution for B̂ is obtained from normal equation

δQ = −δBTAT (C − AB)− (C − AB)TAδB = 0

δQ = −2δBTAT (C − AB) = 0,

or
ATAB = ATC. (4.17)

Hence, the solution for B̂ is
B̂ = (ATA)−1ATC. (4.18)

Coefficient determination

Assuming that the fitted value ĉi = β̂0 + β̂1xi, i = 1, ...,m, the coefficient of determi-
nation [74, 113] is defined by

R2 = 1− SSE

SST
, (4.19)

where SSE is the sum of squared errors and SST is the total sum of squares following

SSE =
m∑

i=1
(ci − ĉi)2, (4.20)

SST =
m∑

i=1
(ci − µc)2, (4.21)

and the mean of observed value is

µc =
∑m

i=1 ci

m
. (4.22)

The coefficient of determination is always between 0 and 1. R2 represents the propor-
tion of total variation in the response variable. For example, the model c = β̂0 + β̂1x give
R2 = 0.75, it can be concluded that 3/4 of variation in fitted value can be explained by
the linear relationship between the input variables and fitted values.

52



Multi-Objective Optimization 4.3. Multiple Linear Regression

4.3.2 Multiple Linear Regression

The Linear Regression above is used to estimate a cost value. In MOOP, we need
to extend this approach to estimate various cost functions. Multiple Linear Regression
is used in this situation to estimate multiple cost values.

A cost function of Multiple Linear Regression (MLR) model [121] is defined as fol-
lows:

c = β0 + β1x1 + ...+ βLxL + e, (4.23)

where βl, l = 0, ..., L, are unknown coefficients, xl, l = 1, ..., L, are the variables, e.g.,
size of data, computer configuration, etc., c is cost function values and e is random
error following normal distribution N (0, σ2) with zero mean and variance σ2. The fitted
equation is defined by:

ĉ = β̂0 + β̂1x1 + ...+ β̂LxL. (4.24)

Example 4.3.1 A query Q could be expressed as follows:

SELECT p . Pat ientSex , i . GeneralNames
FROM Pa t i en t p , Genera l In fo i WHERE p . UID = i . UID

where Patient table is stored in cloud A and uses Hive database engine [129], while
GeneralInfo table is in cloud B with PostgreSQL database engine [133]. This scenario
leads to consider two metrics of monetary cost and execution time cost. We can use the
cost functions which depend on the size of tables of Patient and GeneralInfo. Besides,
the configuration and pricing of virtual machines cloud A and B are different. Hence,
the cost functions depend on the size of tables and the number of virtual machines in
cloud A and B.

ĉti = β̂t0 + β̂t1xP a + β̂t2xGe + β̂t3xnodeA + β̂t4xnodeB

ĉmo = β̂m0 + β̂m1xP a + β̂m2xGe + β̂m3xnodeA + β̂m4xnodeB

where ĉti, ĉmo are execution time and monetary cost function; xP a, xGe are the size of
Patient and GeneralInfo tables, respectively, and xnodeA, xnodeB are the number of virtual
machines created to run query Q.

There are M previous data, each of them associates with a response cm, the system

53



Multi-Objective Optimization

has observed regression equations:

C = β0 + β1x1 + ...+ βLxL + E, (4.25)

where xl is a set value of variable xlm, l = 1, ..., L, m = 1, ...,M , C is a set value of
observed value cm,m = 1, ...,M , and E is the random error, with mean 0 and variance
σ2.

Least squares method of estimation

The target of this method is estimating the regression coefficients. Given observed
sample value sets (x1i, x2i, ..., xmi, ci), i = 1, ...,M , the system of observed regression
equations is

cm = β0 + β1x1m + ...+ βLxLm + em;m = 1, ...,M. (4.26)

Let denote

A =



1 x11 x21 ... xL1

1 x12 x22 ... xL2

. . . . .

. . . . .

1 x1M x2M ... xLM


, (4.27)

C =



c1

c2

.

.

cM


, (4.28)

E =



e1

e2

.

.

eM


, (4.29)

54



Multi-Objective Optimization 4.3. Multiple Linear Regression

B =



β0

β1

.

.

βL


. (4.30)

To minimize the Sum Square Error (SSE), defined by:

SSE =
M∑

m=1
(cm − ĉm)2, (4.31)

The matrix version of Equation 4.26 is

C = AB + E. (4.32)

The sum of squared residuals of Equation 4.31 is rewritten

Q = ETE = (C − AB)T (C − AB). (4.33)

Setting δQ = 0, the solution for B̂ is obtained from normal equation

δQ = −δBTAT (C − AB)− (C − AB)TAδB = 0

δQ = −2δBTAT (C − AB) = 0,

or
ATAB = ATC. (4.34)

Hence, the solution for B̂ is retrieved by

B̂ = (ATA)−1ATC. (4.35)

Other regression models

The multiple linear regression approach can be extended to build regression models
which are nonlinear in the independent variables. Following equations show examples

55



Multi-Objective Optimization

of nonlinear regression models

c = β0 + β1x
2 + β2x

3 + e, (4.36)

c = β0 + β1x
2
1 + β2x

2
2 + β3x1x2 + e, (4.37)

c = β0 + β1sin(x) + e, (4.38)

c = β0 + β1exp(x) + e, (4.39)

c = β0 + β1log(x) + e, (4.40)

Equation 4.36 and Equation 4.37 are polynomial models. They are still the linear in the
unknown parameters, β0, β1, β2, ..., etc.. The multiple linear regression can be applied to
the models. In particular, let x1 = x2, and x2 = x3 in Equation 4.36, the model becomes
a multiple linear regression model with two independent variables. Equation 4.37 can
be a multiple linear regression with four independent variables by the same method in
Equation 4.36. Other models can be converted to a linear regression model, such as,
4.39, 4.38, 4.40 with letting x1 = sin(x), or x1 = exp(x), or x1 = log(x).

Multiple Linear Regression is the basic model we use to develop our estimation
method for estimating cost value of each candidate of a MOOP in the cloud feder-
ations. Besides of estimation process, MOOPs also need to use a MOO algorithm
to select an appropriate candidate. It leads to finding solutions by Pareto dominance
techniques. Because of high complexity [160], MOOP leads to finding an approximate
optimal solution by Pareto dominance techniques. A well known approach to solve the
high complexity of MOOP is EMO. Among EMO approaches, Non-dominated Sorting
Genetic Algorithms (NSGAs) [40, 37] have lower computational complexity than other
EMO approaches [40]. The next section describes the basic principle of NSGAs.

56



Multi-Objective Optimization 4.4. Non-dominated Sorting Genetic Algorithm

Non-dominated Sorting Filter Front

P t

Qt

F1
F2

F3

F4

F3

Pt+1

Rt

Figure 4.1 – NSGA-II and NSGA-III procedure [40, 39].

4.4 Non-dominated Sorting Genetic Algorithm

Among MOO algorithm classes, as described in Chapter 3, EMO shows their ad-
vantages in searching and optimizing for the MOP. Among EMO approaches, Non-
dominated Sorting Genetic Algorithms provide low computational complexity of non-
dominated sorting, O(MN2) of NSGAs comparing to O(MN3) of other EMO, where M
is the number of objectives and N is the population size.

4.4.1 NSGA process

Initially, NSGAs start with a population P0 consisting of N solutions. In the hybrid
data optimization problem, a population represents a set of candidates of hybrid data
storage configuration. The size of P0 is smaller than the space of all candidates. Each
solution is on a specific rank or non-domination level (any solution in level 1 is not
dominated, any solution in level 2 is dominated by one or more solutions in level 1 and
so on). At first, the offspring population Q0 containing N solutions, is created by the
binary tournament selection and mutation operators [38], where the binary tournament
selection is a method of selecting an individual from a population of individuals in a
genetic algorithm, and the mutation operation is a method to choose a neighboring
individual in the locality of the current individual. Secondly, a population R0 = P0 ∪ Q0

57



Multi-Objective Optimization

Algorithm 1 Generation t of NSGA-II and NSGA-III [40, 39].
1: function EVALUATION(Pt,N )
2: St = 0, i = 1
3: Qt = Recombineation + Mutation(Pt)
4: Rt = Pt ∪Qt

5: F1,F2, ... = Non− diminated− sort(Rt)
6: while | St |≤ N do
7: St = St ∪ Fi

8: i + +
9: end while

10: Last front is Fl

11: if | St |= N then
12: Pt+1 = St

13: break
14: else
15: select N −

∑j=l−1
j=1 | Fj | solutions in Fl

16: end if
17: return Pt+1
18: end function

with the size of 2N will be divided into subpopulations based on the order of Pareto
dominance. The appropriate N members from R0 will be chosen for the next genera-
tion. The non-dominated sorting based on the usual domination principle [25] is first
used, which classifies R0 into different non-domination levels (F1, F2 and so on). After
that, a parent population of next-generation P1 is selected in R0 from level 1 to level k
so that the size of P1 = N and so on.

NSGA-II [40] and NSGA-III [39] follow the same process, illustrated by Algorithm 1.
The procedure is illustrated in Figure 4.1. Assume that the process is at the tth genera-
tion. A combined population Rt = Pt∪Qt is formed. The population Rt is sorted in level
F1,F2, etc. Solutions in the best non-dominated F1 are good solutions in Rt. If the size
of F1 is smaller than N , all members of F1 are selected to Pt+1. Thus, solutions in F2

are chosen next and so on. This process continues until no more level can be fitted in
pt+1. The last level Fl cannot fill in Pt+1, i.e.

∑l
j=1 | Fj |> N .

The difference among NSGA-II, NSGA-III and other NSGAs is the way to select
members in the last level Fl. To keep the diversity, NSGA-II [40] and SPEA-II [161] use
crowding distance among solutions in their selection. NSGA-II procedure is not suitable
for MOO problems and the crowding distance operator needs to be replaced for better
performance [84, 71]. Hence, when the population has a high-density area, higher than

58



Multi-Objective Optimization 4.4. Non-dominated Sorting Genetic Algorithm

0.25 0.5 0.75 1.00.0

0.25

0.5

0.75

1.0

Time

Monetary

QEP1

QEP2

Figure 4.2 – An example of using the crowing distance in NSGA-II.

others, NSGA-II prefers the solution which is located in a less crowded region. For
example, when the size of the population is 10, NSGA-II rejects four solutions which
are near to point (1.0,0.0), as illustrated in Figure 4.2.

On the other hand, MOEA/D [158] decomposes a multiple objectives problem into
various scalar optimization subproblems. The diversity of solutions depends on the
scalar objectives. However, the number of neighborhoods needs to be declared be-
fore running the algorithm. In addition, the estimation of the good neighborhood is not
mentioned. The diversity is considered as the selected solution associated with these
different sub-problems. Experimental results in [39] show various versions of MOEA/D
approaches which fail to maintain a good distribution of points.

An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based
Non-Dominated Sorting Approach [39] (NSGA-III) uses different directions to maintain
the diversity of solutions. NSGA-III replaces the crowding distance operator by com-
paring solutions. Each solution is associated to a reference point [39], which impacts
the execution time to built the reference points in each generation. The diversity of
NSGA-III is better than the others, but the execution time is very high. For instance,
with two objectives and two divisions, three reference points will be created, (0.0,1.0),
(1.0,0.0) and (0.5,0.5), as shown in Figure 4.2. After selection process, the diversity of
population is better than NSGA-II with solutions close to three reference points. How-

59



Multi-Objective Optimization

ever, comparing all solutions to each reference point makes the computation time of
NSGA-III very high.

In addition, NSGAs often compare all solutions to choose good solutions in Fl.
Therefore, when the number of solutions or objectives is significant, the time for calcu-
lating and comparing is considerable.

4.4.2 Application

In some cases, some objectives are homogeneous. In the reason of the homo-
geneity between the multi-objectives functions, removing an objective do not affect to
the final results of MOO problem. In other cases, the objectives may be contradictory.
For example, the monetary is proportional to the execution time in the same virtual
machine configuration in a cloud. However, cloud providers usually leases computing
resources that are typically charged based on a per time quantum pricing scheme [79].
The solutions represent the trade-offs between time and money. Hence, the execution
time and the monetary cost cannot be homogeneous.

As a consequence, the multi-objective problem cannot be reduced to a single-
objective problem. Moreover, if we want to reduce the MOOP to a SOOP, we should
have a policy to group all objectives by the Weighted Sum Model (WSM) [67]. How-
ever, estimating the weights corresponding to different objectives in this model is also
a multi-objective problem.

In addition, MOOPs could be solved by MOO algorithms or WSM [67]. However,
MOO algorithms are selected thanks to their advantages when comparing with WSM.
The optimal solution of WSM could be unacceptable, because of an inappropriate
setting of the coefficients [50]. Furthermore, the research in [75] proves that a small
change in weights may result in significant changes in the objective vectors and sig-
nificantly different weights may produce nearly similar objective vectors. Moreover, if
WSM changes, a new optimization process will be required. Hence, our system ap-
plies a Multi-objective Optimization algorithm to find a Pareto-optimal solution.

In conclusion, MOOP leads to using Pareto dominance techniques. A pareto-optimal
front is often infeasible [160]. NSGAs show the advantage in searching a Pareto solu-
tion for MOOP in less computational complexity than other EMO [40]. However, they
should be improved the quality of solving MOP when the number of objectives is sig-
nificant.

60



Multi-Objective Optimization 4.5. Conclusion

4.5 Conclusion

This chapter concludes the MOOP background we use to solve the MOP in a cloud
environment. First, Pareto set aspect is also presented for the MOOP. After that Mul-
tiple Linear Regression is introduced to build a cost model for estimating multiple cost
values in MOP. This technique is widely used in science and engineering [72, 81, 161,
40, 39, 122, 158]. Finally, we focus on the process of a good technique in EMO class.
In particular, NSGAs show their advantage in EMO algorithms. However, the charac-
teristics of NSGAs should be improved to have better performance, such as diversity,
convergence.

Recent research shows all their advantages and disadvantage in various areas in
cloud environment. Chapter 2 presents solutions for clouds, however only IReS open
source platform consider the heterogeneous problem and can be extended to optimize
solve MOP. Chapter 3 presents various approaches to optimize data storage config-
uration of medical data. However, only [97] consider the characteristic of sparse and
workload of DICOM data. Nevertheless, the authors do not provide an optimal solu-
tion for hybrid data storage configuration of DICOM. Chapter 4 describes the recent
research in estimation cost value and optimization approaches for MOP. The historical
information should be used efficiently in machine learning approaches. Besides, NS-
GAs should be improved quality for MOP, when the number of objectives is significant.

The next chapters will show our approaches to solve the problem of medical data in
cloud federations. First, the heterogeneity should be solved when the system connects
data from various database engines in the clouds. Second, the variability of cloud en-
vironment requires the estimation process to be more efficient. Third, searching and
optimizing a solution in MOOP should be solved by an efficient MOO algorithm. This
will make possible not only to process queries but also to find an optimal solution of
hybrid data storage configuration.

Key Points
• We introduced the background and the existing solutions in clouds and

cloud federations.
• We presented an overview of medical data management on clouds.

Search and optimization techniques are also described as the state-of-the-
art of optimization problem in cloud environment.
• We showed the background of the estimation using machine learning

approach and Non-dominated Sorting Genetic Algorithms solutions.

61





PART II

Techniques for cloud federation

63



CHAPTER 5

DYNAMIC REGRESSION ALGORITHM

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 DREAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 Coefficient of determination . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Cost Value Estmation . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Introduction

The aspects and background related to our problem in the cloud federation are intro-
duced in previous chapters, including Multiple Linear Regression, Non-dominated Sort-
ing Genetic Algorithm, Hybrid data configuration, heterogeneous database engines,
Multi-Objective Problems and cloud environment.

This chapter presents the first contribution, which is the estimation of accurate cost
values in the variable environment of a cloud federation. We first show in Section 5.2
the problem of estimation. Next, our algorithm is proposed in Section 5.3. Finally, we
conclude with Section 5.4.

5.2 Problem

Most cost models [103, 153, 48] depend on the size of data. In particular, cost
function and fitted value of Multiple Linear Regression model are previously defined in

64



Dynamic Regression Algorithm 5.2. Problem

Equation 4.24. To remind the definition, a cost function of Multiple Linear Regression
model [121] is defined as follows:

c = β0 + β1x1 + ...+ βLxL + e, (5.1)

where βl, l = 0, ..., L, are unknown coefficients, xl, l = 1, ..., L, are the variables, e.g.,
size of data, computer configuration, etc., c is cost function values and e is random
error following normal distribution N (0, σ2) with zero mean and variance σ2. The fitted
value is defined by:

ĉ = β̂0 + β̂1x1 + ...+ β̂LxL. (5.2)

There are M data samples, each of them associated with a response cm. The system
has observed regression equations:

C = β0 + β1x1 + ...+ βLxL + E, (5.3)

where xl is a set value of variable xlm, l = 1, ..., L, m = 1, ...,M , C is a set value of
observed value cm,m = 1, ...,M , and E is the random error, with mean 0 and variance
σ2.

Let us denote

A =



1 x11 x21 ... xL1

1 x12 x22 ... xL2

. . . . .

. . . . .

1 x1M x2M ... xLM


, (5.4)

C =



c1

c2

.

.

cM


, (5.5)

E =



e1

e2

.

.

eM


, (5.6)

65



Dynamic Regression Algorithm

B =



β0

β1

.

.

βL


. (5.7)

The solution for B̂ in [121] is retrieved by

B̂ = (ATA)−1ATC. (5.8)

The bigger M for sets {cm, xlm} is, the more accurate MLR model usually is. However,
the computers is slowing down when M is too big.

Example 5.2.1 Assuming that a query is processed on Amazon EC2. If the pool of
resources includes 70 vCPU, 260GB of memory, the minimum of memory for a con-
figuration is 1GB and the memory size is a multiple of 1GB, the number of different
configurations to execute this query is thus 70 x 260 = 18,200. Hence, the system can
generate 18,200 equivalent QEPs from a given execution plan.

Example 5.2.1 shows that a query execution plan can generate multiple equivalent
QEPs in cloud environment. The smaller M for sets {cm, xlm} is, the faster the estima-
tion cost process of Multi-Objective Query Processing for a QEP is. In Example 5.2.1,
even a small reduction in the computation cost for the estimation of a single QEP can
result in a high reduction of the cost for the estimation of hundreds or thousands of
similar/equivalent QEP.

Furthermore, the target of Multi-Objective Query Processing is MOOP [158], which
is defined by:

minimize(F (x) = (f1(x), f2(x)..., fK(x))T ), (5.9)

where x = (x1, ..., xL)T ∈ Ω ⊆ RL is an L-dimensional vector of decision variables, Ω is
the decision (variable) space and F is the objective vector function, which contains K
real value functions.

In general, there is no point in Ω that minimizes all the objectives together. As men-
tioned in Chapter 4, Pareto optimality is defined by trade-offs among the objectives. If
there is no point x ∈ Ω such that F (x) dominates F (x∗), x∗ ∈ Ω, x∗ is called Pareto
optimal and F (x∗) is called a Pareto optimal vector. Set of all Pareto optimal points is

66



Dynamic Regression Algorithm 5.3. DREAM

the Pareto set. A Pareto front is a set of all Pareto optimal objective vectors. Generating
the Pareto-optimal front can be computationally expensive [11]. In cloud environment,
the number of equivalent query execution plans is multiplied.

5.3 DREAM

Machine learning algorithms often use entire historic datasets in training and testing
cost models. However, the could federation is such a variable environment that even
small changes in the data, cluster configurations, or network will make a difference in
cost models. The entire historic datasets does not reflect the updated characteristic of
the systems. The expired data maybe affect to the accuracy of cost models using the
entire historic datasets. For example, the old cluster with 5 instances (each instance
has 1 vCPU and 2GB of memory) is replaced by a new one with 10 instances (each
instance has 4 vCPU and 8 GB of memory). The information of the cluster should be
updated and the old data is expired.

5.3.1 Coefficient of determination

The most important idea in our algorithm is to estimate MLR quality by using the
coefficient of determination. The coefficient of determination [121] is defined by:

R2 = 1− SSE/SST, (5.10)

where SSE is the sum of squared errors and SST represents the amount of total vari-
ation corresponding to the predictor variable X. Hence, R2 shows the proportion of
variance accounted for using the Multiple Linear Regression model and variable X.
For example, if the model gives R2 = 0.75 of response time cost, we can conclude that
3/4 of the variation in response time values can be explained by the linear relationship
between the input variables and response time cost. Table 5.1 presents MLR with dif-
ferent number of measurements. The smallest dataset is M = L + 2 = 4 [121], where
M is the size of previous data and L is the number of variables in (4.23). In general,
R2 increases proportionally with M . However, if the model requires R2

require should be
greater than 0.8 to provide a sufficient quality of service level. As a consequence, M
should be greater than or equal to 6 to provide enough accuracy.

67



Dynamic Regression Algorithm

Table 5.1 – Using MLR in different size of dataset.

Cost x1 x2 M R2

20.640 0.4916 0.2977
15.557 0.6313 0.0482
20.971 0.9481 0.8232
24.878 0.4855 2.7056 4 0.7571
23.274 0.0125 2.7268 5 0.7705
30.216 0.9029 2.6456 6 0.8371
29.978 0.7233 3.0640 7 0.8788
31.702 0.8749 4.2847 8 0.8876
20.860 0.3354 2.1082 9 0.8751
32.836 0.8521 4.8217 10 0.8945

In some cases, the system requires the minimum values of R2 is equal to 0.8,
M > 7 is not recommended because of the large size of historical datasets. In general,
R2 still rises up when M goes up. Therefore, we need to determine the model which is
sufficient suitable by the coefficient of determination.

Training set DREAM

coefficient of
determination 

New training
set Modelling

Figure 5.1 – DREAM module.

Our motivation is to provide accurate estimation while reducing the size of historical
datasets based on R2. We thus propose DREAM as a solution for cloud federation and
their inherent variance, as shown in Figure 5.1. DREAM uses the training set to test the
size of new training dataset. It depends on the predefined coefficient of determination.
The new training set is generated in order to have the updated value and avoid using
the expired information. With the new training set, Modelling uses less data in building
model process than the original approach.

68



Dynamic Regression Algorithm 5.3. DREAM

5.3.2 Cost Value Estmation

Our algorithm uses the size of data as variables of DREAM. In (4.24), ĉ is the cost
value, which needs to be estimated in MOQP, and x1, x2, etc. are the characteristics of
system, such as size of input data, the number of nodes, the type of virtual machines.

The sufficient quality of a model is determined by the datasets. However, the coef-
ficient of determination is defined by trade-offs between the high value of R2 and the
small size of dataset. Hence, the coefficient of determination should be predefined by
users. If R2 ≥ R2

require, where R2
requires is predefined by users, the model is reliable.

In contrast, it is necessary to increase the number of set value. Algorithm 2 shows a
scheme as an example of increasing value set: m = m+ 1.

Algorithm 2 Calculate the predict value of multi-cost function

1: function ESTIMATECOSTVALUE(R2
require, X,Mmax)

2: for n = 1 to N do
3: R2

n ← ∅ //with all cost function
4: end for
5: m = L+ 2 //at least m = L+ 2
6: while (any R2

n < R2
n−require) and m < Mmax do

7: for ĉn(p) ⊆ ĉN(p) do
8: β̂n = (An

TAn)−1An
TCn //estimate unknown coefficient

9: R2
n = 1− SSE/SST

10: ĉn = β̂n0 + β̂n1x1 + ...+ β̂nLxL

11: end for
12: m = m+ 1
13: end while
14: return ĉN(p)
15: end function

First, EstimateCostValue function requires the coefficient of determination R2
require,

historic data X, and the maximum value of observation window Mmax. Normally, Mmax

is equal to the size of X. At initial step in line 2, the algorithm resets all the value of R2,
and the size of data is starts at the value of L+2 as the smallest dataset [121], as shown
in line 5. The while loop from line 6 to line 13 show that the matrix of coefficient β̂n, cost
function ĉn, and the coefficient of determination R2

n are determined continuously until
all R2

n are bigger than or equal to R2
n−require, where R2

n−require is predefined by users for
the cost function ĉn. The while loop is also stopped when the size of historic data m is
equal to the maximum of observation window Mmax. The scheme of increasing value

69



Dynamic Regression Algorithm

of m is shown in line 12. This is a simple example of changing the size of observation
window. In particular, we can have other schemes of changing the size of observation
window. For example, we can change the size of window faster than that by m = 2 ∗m.
At the end, the cost function ĉN(p) is used for estimate the value of objectives for MOP.
In the scope of this thesis, we do not discuss about the best scheme of changing the
size of observation window.

5.3.3 Optimization

In this section, we focus on the accuracy of execution time estimation with the
low computational cost in MOQP. The original optimization approach in IReS uses
Weighted Sum Model [67] with user policy to find the best candidate. However, Multi-
objective Optimization algorithms have more advantages than WSM [50, 75]. As men-
tioned in Chapter 4, MOO algorithms are selected thanks to their advantages when
comparing with WSM. Estimating the weights corresponding to different objectives in
this model is also a multi-objective problem. Besides, the optimal solution of WSM
could be unacceptable, because of an inappropriate setting of the coefficients [50].
Furthermore, the research in [75] proves that a small change in weights may result
in significant changes in the objective vectors and significantly different weights may
produce nearly similar objective vectors. Moreover, if WSM changes, a new optimiza-
tion process will be required. For example, as shown in Figure 5.2, two Multi-Objective
Query Problem (MOQP) approaches are shown. If the weight sum model is changed,
the new optimization process of Multi-Objective Optimization based on Genetic Algo-
rithm can restart at the input of Weight Sum Model Values step. Otherwise, the system
should restart at the beginning of optimization process of Multi-Objective Optimization
based on Weighted Sum Model. Hence, our system applies a Multi-objective Optimiza-
tion algorithm to find a Pareto-optimal solution.

Hence, after using DREAM, a Multi-objective Optimization algorithm, such as Non-
dominated Sorting Genetic Algorithm II [40] is applied to determine a Pareto plan set.
At the final step, the weight sum model S and the constraint B associated with the
user policy are used to return the best QEP for the given query [67]. In particular,
the most meaningful plan will be selected by comparing function values with weight
parameters between ĉn [67] at the final step, as shown in Algorithm 3. Figure 5.2 shows
the difference between these MOQP approaches. As shown in Figure 5.2, the Multi-

70



Dynamic Regression Algorithm 5.3. DREAM

Initial
Population

Objective
values

Fitness
Distribution

Genetic
Operation

Insert Parent

Satisfied
Termination
Criteria?

Termination
Population

All Candidates

Weighted Sum
Model Values

Comparing
Scalar Values

Weighted Sum
Model Values

Comparing
Scalar Value

The best QEP

The best QEP

Multi-Objecitve Optimization based
on Genetic Algorithm

Multi-Objecitve Optimization
based on Weighted Sum Model

Figure 5.2 – Comparing two MOQP approaches

Objective Optimization based on Weighted Sum Model should evaluate all the space of
candidates to find the best Query Execution Plan (QEP) of a given plan. The candidate
space maybe very large to search the best QEP. Besides, when the WSM changes, the
new optimization process is restarted at the beginning. Otherwise, the Multi-Objective
Optimization based on Genetic Algorithms can restart at the input of Weight Sum Model
Values step. The space of candidate at this step is equal to the size of population
of Genetic Algorithm. Our algorithms are developed based on MLR described above
using xi for size of data and ci for the metric cost, such as the execution time.

Function BestInPareto is used to choose the best candidate in the set of non-
dominated candidates, called Pareto set. At the final step of MOOP, we have a Pareto
set of candidates. Depending on a user demand, we have a weighted sum model S and
constraints B. At the beginning, all candidates which have cost function values smaller
than the value of constraints are added to the new set of non-dominated candidates,

71



Dynamic Regression Algorithm

Algorithm 3 Select the best query plan in P
1: function BESTINPARETO(P ,S,B)
2: PB ← p ∈ P|∀n ≤ |B| : cn(p) ≤ Bn

3: if PB 6= ∅ then
4: return p ∈ PB|C(p) = min(WeightSum(PB,S))
5: else
6: return p ∈ P|C(p) = min(WeightSum(P ,S))
7: end if
8: end function

as shown in line 2. If this set is not empty, line 3, the scalar value of each candidate
is determined by the weighted sum model S and the best solution is selected by the
minimum value of C(p), as shown in line 4. In contrast, when the size of new non-
dominated candidates set is zero, the best candidate is chosen in the original Pareto
set by weighted sum model S, as shown in line 6. Finally, the best solution in the Pareto
set P is selected by the user with a weighted sum model S and a set of constraints B.

5.4 Conclusion

In this chapter, we have presented our contribution, DREAM, to improve the accu-
racy of the estimation of cost values in cloud federation. The size of historical data in
the training process is reduced based on the coefficient of determination. Following
this approach the execution time for training and testing process is decreased. Be-
sides, this approach avoids using the expired information of a system in the variability
of cloud federation. Experiments described in Chapter 8 will present the benefits of our
algorithms.

As discussed in Chapter 4, the space of candidates in searching and optimiz-
ing are huge in cloud federation. EMO approaches have been developed based on
Pareto dominance techniques and useful for non-linear programming methods which
are used to solve MOPs with convex constraint functions. Among EMO approaches,
Non-dominated Sorting Genetic Algorithms provide low computational complexity of
non-dominated sorting. In the next chapter, we propose our approach to improve the
performances of NSGAs.

72



Key Points
• We introduce Dynamic REgression AlgorithM, called DREAM, for esti-

mating cost values in MOP
• We present optimization process using MOO algorithms

Publication
• Trung-Dung Le, Verena Kantere, Laurent d’Orazio. Dynamic estimation
for medical data management in a cloud federation. International Workshop
On Data Analytics solutions for Real-LIfe APplications (DARLI-AP@EDBT),
Lisbon, Portugal, 2019.





CHAPTER 6

NON-DOMINATED SORTING GENETIC

ALGORITHM BASED ON GRID

PARTITIONING

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 NSGA-G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 Main process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.2 Non-Dominated Sorting . . . . . . . . . . . . . . . . . . . . . . 76

6.2.3 Filter front process . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.2 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.3 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Selecting the size of grid . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4.1 Simple front group . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4.2 Max front group . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Introduction

Chapter 5 shows the first contribution in the estimation process for MOOP. The
second step is looking for an efficient approach for searching and optimizing. Based
on Non-dominated Sorting Genetic Algorithms introduced in Chapter 4, this chapter

75



NSGA based on Grid partitioning

presents the second contribution of MOOP, called Non-dominated Sorting Genetic Al-
gorithm based on Grid partitioning (NSGA-G). We first show in Section 6.2 our algo-
rithm based on Grid partition. Next, the quality of NSGA-G is analyzed in Section 6.3.
How to select the grid partitioning is presented in the next section, Section 6.4. Finally,
we conclude with Section 6.5.

6.2 NSGA-G

We propose NSGA-G to improve both diversity and convergence while having an
efficient computation time by reducing the space of selected good solutions in the
truncating process.

At the tth generation of Non-dominated Sorting Genetic Algorithms, Pt represents
the parent population with N size and Qt is offspring population with N members cre-
ated by Pt. Rt = Pt ∪Qt is a group in which N members will be selected for Pt+1.

6.2.1 Main process

The process of NSGAs [39, 40] is described in Section 4.4. This section describes in
more detail the main process of NSGAs. Algorithm 4 shows the steps of the processing.
First, the Offspring is initialized in Line 2. The size of Offspring equals to the size
of Population, i.e., N . Hence, a parent is selected from the population and evolved
to become a new offspring. A new population with the size of (2N) is created from
Offspring and the old population. After that, the function Truncate will cut off the new
population to reduce the members to the size of N , as shown in Line 8.

6.2.2 Non-Dominated Sorting

Before the truncating process, the solutions in the population with a size of 2N
should be sorting in multiple fronts with their ranking, as shown in Algorithm 5. First,
the Non-dominated sorting operator generates the first Pareto set in a population of 2N
solutions. Its rank is 1. After that, the process is repeated until the remain population is
empty. Finally, 2N solutions are divided into various fronts with their ranks.

76



NSGA based on Grid partitioning 6.2. NSGA-G

Algorithm 4 Main process [39, 40].
1: function ITERATE(Population)
2: Offsprings← ∅
3: while Offsprings.size < populationSize do
4: Parent = Selection(Population)
5: Offsprings = Offsprings ∪ Evolve(Parent)
6: end while
7: Population = Population ∪Offsprings
8: Population = Truncate(Population)
9: return Population

10: end function

Algorithm 5 Non-dominated Sorting [39].
Require: R

1: function SORTING(R)
2: RinRank ← ∅
3: rank = 1
4: remaining ← R
5: while RisNotEmpty do
6: Front← non− dominatedPopulation(remaining, rank)
7: remaining = remaining \ Front
8: RinRank = RinRank ∪ Front
9: rank + +

10: end while
11: return RinRank
12: end function

6.2.3 Filter front process

NSGA-G using Min point

NSGA-G finds the nearest smaller and bigger grid point for each solution. For ex-
ample, Figure 6.1 shows an example of a two-objectives problem. If the unit of the grid
point is 0.25 (the size of grid is 4) and the solution with two-objective value is [0.35, 0.45],
the closest smaller point is [0.25, 0.5] and the nearest bigger point is [0.5, 0.5].

The first strategy is avoiding to calculate multiple objective cost values of all solu-
tions in the population, the space is divided into multiple small groups by Grid Min Point
and Grid Max Point, as shown in Figure 6.1. Each group has one Grid Min Point, the
nearest smaller point and one Grid Max Point, the nearest bigger point. Only solutions
in a group are calculated and compared. The solution has the smallest distance to the

77



NSGA based on Grid partitioning

0.25 0.5 0.75 1.00.0

0.25

0.5

0.75

1.0

Grid Max Point

Grid Min Point

Group
Time

Monetary

Figure 6.1 – An example of using Grid points.

Algorithm 6 Filter front in NSGA-G using Min point.

1: function FILTER(Fl,M = N −∑l−1
j=1Fj)

2: updateIdealPoint()
3: updateIdealMaxPoint()
4: translateByIdealPoint()
5: normalizeByMinMax()
6: createGroups
7: while | Fl |> M do
8: selectRandomGroup()
9: removeMaxSolutionInGroup()

10: end while
11: return Fl

12: end function

nearest smaller point in a group will be added to Pt+1. In this way, in any loop, we do
not need to calculate the crowding-distance values or estimate the smallest distance
from solutions to the reference points among all members in F3 in Fig. 6.1. In any loop,
it is not necessary to compare solutions among all members in Fl, as F3 in Figure 6.1.
The second strategy is choosing randomly a group. The characteristic of diversity is
maintained by this strategy. Both strategies are proposed to improve the qualities of
our algorithm. Algorithm 6 shows the strategy to select N −∑l−1

j=1Fj members in Fl.

The first two lines in Algorithm 6 determine the new origin coordinates and the max-
imum objective values of all solutions, respectively. After that, they will be normalized in
a range of [0, 1]. All solutions will be in different groups, depending on the coefficient of

78



NSGA based on Grid partitioning 6.2. NSGA-G

Algorithm 7 Filter front in NSGA-G using Random metric.

1: function FILTER(Fl,M = N −∑l−1
j=1Fj)

2: updateIdealPoint()
3: updateIdealMaxPoint()
4: translateByIdealPoint()
5: normalizeByMinMax()
6: createGroups
7: while | Fl |> M do
8: selectRandomGroup()
9: selectRandomMetric()

10: removeWorstSolutionInGroup()
11: end while
12: return Fl

13: end function

the grid. The most important characteristic of this algorithm is randomly selecting the
group like NSGA-III to keep the diversity characteristic and remove the solution among
members of that group. This selection helps to avoid comparing and calculating the
maximum objectives in all solutions.

To estimate the quality of the proposed algorithm, three metrics, Generational Dis-
tance [148], Inverted Generational Distance [30] and the Maximum Pareto Front Er-
ror [150], are used including convergence, diversity and execution time.

NSGA-G using Random metric

In MOOP, when the number of objectives is significant, any function which is used
to compare solutions leads to high computation. NSGA-G using Min point uses Grid
partitioning to reduce the number of solutions that needs to be compared, but it still
needs a function to group all objectives value to a scalar value. In order to decrease the
execution time, this section proposes a random method to compare solutions among a
group. This approach does not generate any referent point or an intermediate function
to estimate the value of solutions. The natural metric values are chosen randomly to
remove the worst solution in the different groups.

All the step in this algorithm are similar to NSGA-G using Min point, as shown from
line 2 to 6. While loop has one more step of choosing metric randomly. selectRandom-
Metric function is used to select a natural metric among the objectives in MOP. The
important characteristics of this algorithm are randomly selecting the group like NSGA-

79



NSGA based on Grid partitioning

G to keep the diversity characteristic and remove the solution among members of that
group, and randomly using nature metric among various objectives to reduce the com-
paring time. This selection helps to avoid using an intermediate function in comparing
and calculating the values of solutions.

6.3 Discussion

6.3.1 Convergence

In terms of convergence, Pareto dominance is a fundamental criterion to compare
solutions. The proposed algorithm keeps the generation process of NSGAs [40, 39],
except for the removed solution in the last front in preparing the population of the next
generation. The convergence quality of NSGA-G is better than the original NSGAs.
This will be shown in experiments of Generational Distance (GD) [148] and Inverted
Generational Distance (IGD) [30] in Session 8.4.1.

6.3.2 Diversity

The proposed approach uses Grid Partitioning to guarantee that the solutions are
distributed in all the solution space. In the problems of N objectives, N ≥ 4, assuming
that k solutions should be removed in the last front. In each axis coordinate with the
size of grid n, the maximum number of groups in all space of N axis coordinates is
nN and we choose the number of groups in the last front including all Non-dominated
solutions which should be removed is nN−1.

The proposed idea is to keep the diversity characteristic of the genetic algorithm by
generating k groups and removing k solutions which have the longest distance to the
minimum grid point. Hence, the size of grid in the proposed algorithm is n = dk1/(N−1)e,
where d.e is a ceiling operator. This equation will be described in Section 6.4

6.3.3 Computation

In every generation, other NSGAs compare all solutions in the last front to remove
the worst or select the best candidate. To reduce the computation of selecting a good
solution in the last front, NSGA-G divides the last front into multiple groups. By dividing

80



NSGA based on Grid partitioning 6.4. Selecting the size of grid

into small groups, the proposed algorithm selects a good solution in a small group,
that helps to accelerate the selection process in comparison with other approaches
scanning all solutions of the last front.

6.4 Selecting the size of grid

The proposed approach uses Grid partitioning to guarantee that the solutions are
distributed in all the solution space. Assuming that there is a problem with N objectives.
The last front should remove k solutions. By normalizing the space of solution in the
range of [0, 1] and dividing that range to n segments, a solution belongs to one of nN

groups in that space. In terms of Non-dominated principle, a group including a solution
in that space have many other groups which contain Non-dominated solutions. These
groups are called Non-dominated groups. All the groups in this situation make a set
groups, called front group.

The proposed idea is to keep the diversity characteristic of the genetic algorithm by
generating k groups and removing k solutions. Hence, the ideal front group is designed
so that it has k groups.

6.4.1 Simple front group

From a group in the normalizing space in range of [0, 1], a simple plane covers it
and includes Non-dominated groups. In the space of N axes, the number of groups is
nN . Hence, the simple front group is the simple plane. The number of groups in that
front group is nN−1. Therefore, if the last front needs to remove k solutions, the number
of grid n is determined as follows

n = dk
1

N−1 e. (6.1)

For example, Figure 6.2 shows a problem with 3 objectives. In each axis coordinate, the
size of grid is 4, and the maximum number of groups in all space of N axis coordinates
is 43. A simple front group includes 43−1 = 16 groups. If the last front needs to remove
15 solutions, the number of grid when we choose simple front group is n = dk

1
N−1 e = 4.

81



NSGA based on Grid partitioning

0.25 0.5 0.75 1.00.0

0.25

0.5

0.75

1.0

Figure 6.2 – A simple front group.

6.4.2 Max front group

From a group in the normalizing space in range of [0, 1], a simple plane covers it
and includes Non-dominated groups. In the space of N axis coordinates, the number
of groups is nN . The front group which has the largest number of groups includes N
planes. Hence, the number of groups in this front group is nN − (n− 1)N . Therefore, if
the last front needs to remove k solution, the number of grid n is determined as follows

nN − (n− 1)N = k. (6.2)

For instance, Figure 6.3 shows a problems with 3 objectives. In each axis coordinate,
the size of grid is 4, the maximum number of groups in all space of N axis coordinates
is 43. A max front group includes 43 − 33 = 64− 27 = 37.

6.5 Conclusion

In this chapter, we have presented our contribution to EMO algorithms, a Non-
dominated Sorting Genetic Algorithm based on Grid partitioning in NSGAs class. Our
approach can be applied to MOOPs. This chapter also discusses the advantages of
our algorithm compared to original NSGAs. The characteristic of NSGA-G promises to

82



NSGA based on Grid partitioning 6.5. Conclusion

0.25 0.5 0.75 1.00.0

0.25

0.5

0.75

1.0

Figure 6.3 – A max front group.

improve convergence, diversity and execution time in MOOPs. Besides, the way to de-
termine the grid point is presented. This method is adapted to the number of candidate
solutions in the last front of NSGA process.

As discussed in Chapter 2, a medical data set, such as DICOM, needs to store
in hybrid data storage to improve query processing while saving storage space. In
the next chapter, we detail our proposals for the optimization of hybrid data storage
configuration in a cloud federation.

Key Points
• We propose Non-dominated Sorting Genetic Algorithm based on Grid

Partitioning with Min point and Random metric.
• We present two methods of choosing the grid partitioning, including the

simple and max front group.

Publication
• Trung-Dung Le, Verena Kantere, Laurent d’Orazio. An efficient multi-

objective genetic algorithm for cloud computing: NSGA-G. International
workshop on on Benchmarking, Performance Tuning and Optimization for
Big Data Applications (BPOD@BigData), Seattle, WA, USA, 2018.

83





CHAPTER 7

HYBRID DATA STORAGE CONFIGURATION

IN CLOUD FEDERATION

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Medical system on cloud federation . . . . . . . . . . . . . . . . . . 86

7.2.1 MIDAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2.2 IRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2.3 Hybrid data storage configuration . . . . . . . . . . . . . . . . . 87

7.2.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Hybrid data storage configuration . . . . . . . . . . . . . . . . . . . 90

7.3.1 Two phases of generating data storage configuration . . . . . . 90

7.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4 Optimizing data storage configuration . . . . . . . . . . . . . . . . 104

7.4.1 Finding Pareto configuration set . . . . . . . . . . . . . . . . . 104

7.4.2 Finding the best configuration . . . . . . . . . . . . . . . . . . . 104

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 Introduction

Chapter 5 and 6 introduce two algorithms of estimation accurate cost value, search-
ing and optimizing for Multi-Objective Optimization Problems in a cloud federation. This
chapter introduces the detail of a hybrid data storage configuration of the medical sys-
tem in cloud environment and how to find a good hybrid data storage configuration fol-
lowing the required quality of workload [97]. Section 7.2 shows an overview of Medical
Data Management System for a cloud federation and the background of our approach

85



Hybrid data storage configuration

in data storage configuration. Section 7.3 shows the hybrid data storage configuration
implement following the automatic generation approach [97]. After that, the hybrid data
storage configuration optimized by our solution (NSGA-G) is presented in Section 7.4.
Finally, we conclude with Section 7.5.

7.2 Medical system on cloud federation

7.2.1 MIDAS

We propose Medical Data Management System (MIDAS), a DICOM management
system for cloud federation. MIDAS aims to provide both efficient DICOM manage-
ment system based on hybrid row and column layouts and query processing strategies
to integrate existing information systems (with their associated cloud provider and data
management system) for clinics and hospitals. Figure 7.1 presents an example of MI-
DAS. IReS optimizes workflows between different data sources and queries on graph
data combining with related data on different clouds such as Amazon Web Services,
Microsoft Azure and Google Cloud Platform. IReS takes advantage of multi-engine and
data stores on clouds. Meanwhile, HYTORMO generates a hybrid data storage con-
figuration on clouds using an automatic approach based on the workload related to
DICOM data at the initialization process. The hybrid store takes advantage of both tra-
ditional storage techniques, sequence files and Record Columnar File in Hive [129] or
PostgreSQL [133] and takes into account various kind of queries, including OLAP and
OLTP.

7.2.2 IRES

IReS provides a method of optimizing cost-based workflow and customizable re-
source management of diverse execution and various storage engines. IReS receives
information on data, operators and user-defined policy. Then, it optimizes a workflow
respecting user policy and puts the optimal plan into the physical infrastructure. Mod-
elling module, as shown in Figure 7.1, predicts the execution time by the model which
is chosen by comparing many machine learning algorithms. The module tries to build
models using the total information for training and testing process.

86



Hybrid data storage configuration 7.2. Medical system on cloud federation

Interface

User query
policy

Modelling

Generate
QEP

Hive
engine

Multi-Objective
Optimizer

Hive 

A Query A Workload

Generate data
configuration

Multi-Objective
Optimizer

User data
policy

PostgreSQL
engine

PostgreSQL

Spark
engine

Spark 

Amazon Web Services

Microsoft Azure Google Cloud
Platform

IReS

Figure 7.1 – An example of MIDAS system

7.2.3 Hybrid data storage configuration

To optimize the performances for both OLAP and OLTP workloads, the hybrid store
has two strategies to optimize storage and query.

Data Storage Strategy

Data storage strategy aims to optimize query performance and storage space over
a mixed OLTP and OLAP workload by extracting, organizing and storing data to reduce
space, tuple construction and I/O cost. In this strategy, all tables will be decomposed
into multiple sub-tables and stored in row or column stores of the hybrid store. For in-
stance, the entity Patient table in DICOM can be vertically partitioned into two tables
called RowPatient and ColumnPatient. A group of attributes classified as frequently-
accessed-together attributes can be stored in a row table, e.g. RowPatient. Meanwhile,
other groups are classified as optional attributes and stored in a column store, e.g.

87



Hybrid data storage configuration

ColumnPatient. Each attribute belongs to one group except that it is used to join the ta-
bles together. This strategy removes the null rows. Concretely, when a query requests
for attributes from many sub-tables, the hybrid store will change data storage configu-
ration to have efficient query processing in joining operators between sub-tables.

Query Processing Strategy

In order to improve the performance of query processing in a cloud environment,
the hybrid store needs to modify sub-tables to reduce the left-outer joins and irrelevant
tuples in the input tables of the join operation. When a query needs attributes from
many sub-tables, the hybrid store will change data storage configuration to have an
efficient query processing in joining operators between sub-tables. The query perfor-
mance is negatively impacted if the query execution needs attributes by joining many
tables. Therefore, the hybrid store needs to reconstruct result tuples and the storage
space will be increased to store surrogate attributes.

Denoting W = (A,Q,AUM,F ) as a workload related to table T [97], it comprises
four elements including query set Q in workload W, attribute set A of table T, attribute
usage matrix AUM of T and frequencies set of queries F in workload W. The hy-
brid data storage configuration is formed by four parameters including the weight of
similarity α, clustering threshold β, merging threshold θ and data layout threshold λ.
Depending on these four parameters and workload W, HYTORMO automatically cre-
ates a data storage configuration for the hybrid store.

7.2.4 Validation

Modelling module of IReS requires low computation cost and accurate method to
estimate the cost values. As mentioned in Chapter 5, machine learning methods can
lead to use expired information. Hence, our proposed method, DREAM, is integrated
into the Modelling module to predict the cost values with low computation cost in a cloud
environment. Moreover, the Multi-Objective Optimizer requires an efficient algorithm to
find an approximation of a Pareto-optimal solution. However, the space of candidate
solutions in MOOP for DICOM hybrid data is huge [97] and generating the Pareto-
optimal front is often infeasible due to high complexity [160].

For example, the automatic approach generating hybrid DICOM data storage con-
figuration in [97], called HYTORMO, using 4 predefined parameters the weight of sim-

88



Hybrid data storage configuration 7.2. Medical system on cloud federation

Table 7.1 – AUM and frequencies

a1 a2 a3 a4 a5 a6 F
q1 0 1 1 1 1 0 600
q2 0 0 1 1 1 1 100
q3 0 0 0 1 1 1 700
q4 1 1 0 0 0 0 1000
q5 1 1 1 0 0 0 200
q6 0 1 1 0 0 0 400

: Null value

: Non-null value

a5 a6

04
05
06
07
08
09
10

UID a1 a2 a3
01
02
03

a4

Figure 7.2 – The horizontal table T.

ilarity α, clustering threshold β, merging threshold θ and data layout threshold λ to
generate configuration for a given workload and data specific information, as shown in
Table 7.1 and Figure 7.2. The results of automatic approach in HYTORMO [97] are
shown in Table 7.2. Besides of these configuration, there are many other ones with
different values of α,β,θ,λ.

The vast space of data storage configuration candidates in a hybrid storage sys-
tem leverages an alternative solution to find a Pareto-optimal one. Our method applies
NSGA-G, an efficient MOO algorithm, to the Multi-Objective Optimizer to find an ap-
proximation of a Pareto-optimal solution. Our proposals are to improve the accuracy of
cost value prediction with low computation cost and to solve MOOP in both the querying
and storing configurations with an efficient algorithm in a cloud environment. Hence,
hybrid DICOM data storage configuration should be optimized by MOO algorithm, such
as NSGA-G.

89



Hybrid data storage configuration

Table 7.2 – AUM and frequencies

α β θ λ Configuration
G1 0 0 0 0 [a1, a2, a3, a4, a5, a6,]=row-store
G2 0 0.4 0 0 [a1, a2, a3, a4, a5, a6,]=row-store
G3 0.5 0.4 0 0 [a1, a2, a3, a4, a5, a6,]=row-store
G4 0.5 0.4 0 0.3 [a1, a2, a3, a4, a5, a6,]=column-store
G5 0.5 0.4 0.2 0.3 [a1, a2, a3, a4, a5, a6,]=column-store
G6 0.5 0.8 0.2 0.8 [a1, a2]=column-store, [a3, a4, a5, a6]=column-store
G7 0 0.5 0.2 0.7 [a1, a2, a3]=column-store, [a4, a5, a6]=row-store

7.3 Hybrid data storage configuration

7.3.1 Two phases of generating data storage configuration

Following the automated design framework [97] based on workload and data-specific
information to produce data storage configurations for DICOM data. The method is
generating a candidate configuration using as inputs:

— Workload-specific inputs including Attribute Usage Matrix (AUM) and F (query
frequencies),

— Data-specific input including the horizontal table T ,
— Parameter including

— α (weight of similar),
— β (clustering threshold),
— θ (merging threshold),
— λ (data layout threshold).

The method performs two phases: clustering and merging-selection. The first phase
aims to decrease storage space and reduce irrelevant attribute accesses. The sec-
ond phase is used to improve both reconstruction cost and the number of irrelevant
accesses.

Clustering Phase

The first phase is used to analyze both workload and data specific information on
the quality of vertical partitioning result. From the given table T and workload W , HY-
TORMO computes two similarity measures Attribute Access Similarity and Attribute
Density Similarity between every pair of attributes. The first measure analyses the

90



Hybrid data storage configuration 7.3. Hybrid data storage configuration

workload information. It is computed by the Attribute Usage Matrix and query frequen-
cies F and presented by Attribute Access Similarity Matrix. The Attribute Access Simi-
larity between two attribute ax and ay is computed by the Jaccard Coefficient [93, 85]

AttributeAccessSimilarity(ax, ay) = ∑m

i=1[(AUM [i][ax] ∧AUM [i][ay ])× fi]∑m

i=1[AUM [i][ax]× fi]−
∑m

i=1[(AUM [i][ax] ∧AUM [i][ay ])× fi] +
∑m

i=1[AUM [i][ay ]× fi]
, (7.1)

where ∧ is a binary bitwise AND operator and m is the number of queries in workload
W . The Algorithm 8 shows the way to calculate the Attribute Access Similarity Matrix.

Algorithm 8 Attribute Access Similarity.
Require: AUM, frequencies

1: AUM(m× n): Attribute Usage Matrix including m row and n attributes
2: F: Query frequencies

Ensure: AAS
3: AAS: Attribute Access Similarity (n× n)
4: function ATTRIBUTEACCESSSIMILARITY(AUM,F )
5: for i← 0 to AUM [0].length do
6: for j ← 0 to AUM [0].length do
7: if AUM[i][j]=1 then AUMbit[i][j] = true;
8: else
9: AUMbit[i][j] = false;

10: end if
11: end for
12: end for
13: AAS = ∅
14: for i← 0 to AUM [0].length do
15: Ai = takeColumnBitMatrix(AUMbit,i)
16: for j ← 0 to AUM [0].length do
17: Aj = takeColumnBitMatrix(AUMbit,j)
18: and = andLogic(Ai,Aj)
19: sumAndLogic = sumFrequencies(and, F)
20: AAS[i][j] = sumAndLogic

sumF requencies(Ai,F )+sumF requencies(Aj,F )−sumAndLogic

21: end for
22: end for
23: return AAS
24: end function

First, the algorithm finds the attributes which are used together by generating AUMbit[i][j]

91



Hybrid data storage configuration

matrix, from line 5 to 12. After that Attribute Access Similarity Matrix showing the rela-
tion ship between two attributes are computed by 7.3.1, line 20.

The second one captures the data information, and shows in Attribute Density Sim-
ilarity Matrix. The matrix is computed by the information in the given horizontal table T .
The measure is also calculated by the Jaccard Coefficient as follows:

AttributeDensitySimilarity(ax, ay) =∑|T |
i=1{inNotNull(T [i][ax]) ∧ isNotNull(T [i][ay ])}∑|T |

i=1 isNotNull(T [i][ax])−
∑|T |

i=1{inNotNull(T [i][ax]) ∧ isNotNull(T [i][ay ])}+
∑|T |

i=1 isNotNull(T [i][ay ])
, (7.2)

and the Algorithm 9 presents how to calculate Attribute Density Similarity Matrix.

Algorithm 9 Attribute Density Similarity.
Require: T

1: T(m× n): Horizontal table including m tuples and n attributes
Ensure: ADS

2: ADS: Attribute Density Similarity (n× n)
3: function ATTRIBUTEDENSITYSIMILARITY(T )
4: isNotNull = isNotNull(T) ADS = ∅
5: for i← 0 to T [0].length do
6: Ai = takeColumnBitMatrix(isNotNull,i)
7: for j ← 0 to T [0].length do
8: Aj = takeColumnBitMatrix(isNotNull,j);
9: and = andLogic(Ai,Aj);

10: andLogic = checkSumVector(and);
11: ADS[i][j] = andLogic

AASM.checkSumV ector(Ai)+AASM.checkSumV ector(Aj)−andLogic

12: end for
13: end for
14: return ADS
15: end function

The Hybrid Similarity between each pair of attributes, presented by Hybrid Similarity
Matrix, is calculated by the Attribute Access Similarity and Attribute Density Similarity
with the weight of similar, α, as follows:

HybridSimilarity(ax, ay) = α× AttributeAccessSimilarity(ax, ay)+

(1− α)× AttributeDensitySimilarity(ax, ay), (7.3)

92



Hybrid data storage configuration 7.3. Hybrid data storage configuration

where α is the predefined weight parameter, such as α ∈ [0, 1]. The Hybrid Similarity
Matrix can be calculated by AASM and ADSM, as follows:

HSM = α× AASM + (1− α)× ADSM (7.4)

Algorithm 10 HybridSimilaritySimilarity [97].
Require: AAS,ADS, α

1: AAS: Attribute Access Similarity (n× n)
2: ADS: Attribute Density Similarity (n× n)
3: α: Weight of similar

Ensure: HS
4: HS: Hybrid Similarity(n× n)
5: function HYBRIDSIMILARITY(AAS,ADS, α)
6: for i← 0 to AAS.length do
7: for j ← 0 to AAS[0].length do
8: HS[i][j] = alpha ∗ AAS[i][j] + (1− α) ∗ ADS[i][j]
9: end for

10: end for
11: return HS
12: end function

Finally, a set of resulting is a column groups Cin = {Ci,1, Ci,2, ..., Ci,z}, is shown as
setCluster in Algorithm 16.

Merging-Selection Phase

To improve the query performance, the second phase tries to reduce both the tuple
reconstruction cost and the number of irrelevant attribute accesses. The hybrid data
storage configuration should take care of efficient storage in terms of workload and
query processing. The input of this phase is the resulting column groups in the clus-
tering phase. Intra-Cluster Access Similarity and Inter-Cluster Access Similarity [126,
97] are used in this phase to reduce the number of joins and apply a suitable layout to
each column group.

The Intra-Cluster Access Similarity of a single cluster Ci,u of a data storage config-
uration Gi is calculated as follows:

93



Hybrid data storage configuration

IntraClusterAccessSimilarity(Ci,u) =
∑

ax∈Ci,u,ay∈Ci,u,x#y
AttributeAccessSimilarity(ax,ay)

|Ci,u|×(|Ci,u|−1) , if | Ci,u |> 1

1, | Ci,u |= 1,
(7.5)

where Ci,u is a component of a set of column groups Ci = {Ci,1, Ci,2, ..., Ci,z} in a candi-
date data storage configurationGi = (Ci, Li), and Li = {Ld1(Ci,1), Ld2(Ci,2), ..., Ldz (Ci,z)}
is a set of data layouts for the column groups. Ldx(Ci,x) shows the layout dx of a column
group Ci,x, where the row-store is denoted by dx = 1 and the column-store is showed
by dx = 0, or vice versa.

Algorithm 11 Intra-Cluster Access Similarity [97].
Require: AAS,Cu

1: AAS(m× n): Attribute Access Similarity (n× n)
2: Cu: Cluster

Ensure: IntraClusterAccessSimilarity
3: function INTRACLUSTERACCESSSIMILARITY(AAS,Cu)
4: if | Cu = 1 | then return 1
5: else
6: for u:Cu do
7: for v:Cu do
8: if u!=v then
9: sum = sum+ AAS[u][v]

10: end if
11: end for
12: end for
13: return sum

(|Cu|)∗(|Cu|−1)
14: end if
15: end function

The Inter-Cluster Access Similarity between cluster Ci,u and Ci,v of a data storage
configuration Gi is defined as follows

InterClusterAccessSimilarity(Ci,u, Ci,v) ={∑
ax∈Ci,u,ay∈Ci,v

AttributeAccessSimilarity(ax,ay)

|Ci,u|×|Ci,v | , (7.6)

94



Hybrid data storage configuration 7.3. Hybrid data storage configuration

where u 6= v.

Algorithm 12 Inter-Cluster Access Similarity [97].
Require: AAS,Cu,Cv

1: AAS(m× n): Attribute Access Similarity (n× n)
2: Cu,Cv: Cluster

Ensure: InterClusterAccessSimilarity
3: function INTERCLUSTERACCESSSIMILARITY(AAS,Cu,Cv)
4: sum = 0
5: for u:Cu do
6: for v:Cv do
7: sum = sum+ AAS[u][v]
8: end for
9: end for

10: return sum
(|Cu|)∗(|Cv|)

11: end function

Algorithm 12 shows the way to calculate Inter-Cluster Access Similarity between
two clusters.

The merging-selecting phase groups a pair of columns together to create a new
group if their Inter-Cluster Access Similarity is bigger than or equal to the threshold θ.
A column group is stored in a row store if the Intra-Cluster Access Similarity is greater
than or equal to the threshold λ; otherwise, it is stored in a column store. The output is
this phase is a candidate of data storage configuration Gi = (Ci, Li).

7.3.2 Implementation

The automatic approach applies two phases, Clustering and Merging-selecting phase,
to generate a candidate storage configuration. The algorithms are based on the infor-
mation of a given table, workloads and four parameters, such as weight of similar α,
clustering threshold β, merging threshold θ, data layout threshold λ.

Generating a candidate storage configuration

Algorithm 13 presents the approach to generate automatically a hybrid data storage
configuration, including two phases. In the clustering phase, Attribute Access Similarity
matrix is created to present the relationship between every pair of attributes in the given
workload and table. Attribute Density Similarity (ADS) matrix is generated to show the

95



Hybrid data storage configuration

relationship between every pair of attributes in terms of the density. After that, Hybrid
Similarity (HS) matrix is constructed based on AAS, ADS, and the weight of similarity α.
Attribute Access Correlation matrix is built to describe how many times two attributes
are simultaneously accessed. The number of times two attributes simultaneously have
non-null values are described in the Attribute Density Correlation (ADC) matrix. After
that, the result clusters is presented as a set of clusters C = {C1, C2, ..., Cz}. At the end
of this phase, the clustering threshold, β ranges from 0 to 1, is used to add unclustered
attributes, au, to a cluster Ci when Hybrid Similarity between au and every attributes in
Ci is not less than the given β.

The merging-selecting phase calls a function, MergeAndSelectStore, depending
on data layout threshold λ and merging threshold θ. The produce checks every pair of
clusters and merging threshold to determine which pair of clusters are merged into a
new one. After that, the procedure decides which data layout is used to store attributes
in a cluster based on data layout threshold λ. The result of merging-selecting phase is
a candidate data storage configuration G = (C,L), where C is a set of clusters and L
is a set of suggested data layouts.

This approach concerns all the information of data and workload related to given
table (i.e., Attribute Usage Matrix, AUM , query frequencies, F , horizontal table T ).
Besides, a new candidate data storage configuration G of a table is generated corre-
sponding parameters, α, β, λ, θ. Each configuration has the statistics, such as the stor-
age cost, Null-ratio, the total number of joins, the total number of scanned data cells,
monetary storage cost, etc. There is no solution which have all objective better than
other one. Hence, we should optimize the hybird DICOM data storage configuration
problem by MOOP.

Attribute Access Correlation

The Algorithm 14 is used to generate Attribute Access Correlation matrix (n × n).
This matrix shows the correlation between two attributes in given table T . It presents
how many times two attributes are accessed together. First, Attribute Access Corre-
lation matrix, AAC, is initialized with n rows and n columns. After that, the algorithm
checks every row of AUM. For each row in AUM, the array row store the value of cur-
rent row. Next, the number of times in which two attributes k and l are access together
is increased by AAC[k][l] = AAC[k][l] + row[l] ∗ frequencies[i]. The result of this algo-
rithm is AAC matrix, as shown in Algorithm 14.

96



Hybrid data storage configuration 7.3. Hybrid data storage configuration

Algorithm 13 Generating Storage Configuration [97].
Require: AUM,T, F, α, β, λ, θ

1: AUM(m× n): Attribute Usage Matrix including m rows and n attributes
2: T (m× n): Horizontal table including m tuples and n attributes
3: F : Query frequencies
4: α: Weight of similarity
5: β: Clustering threshold
6: λ: Data layout threshold
7: θ: Merging threshold

Ensure: InterClusterAccessSimilarity
8: function GENERATESTORAGECONFIGURATION(AUM,T, F, α, β, λ, θ)
9: AAS = AttributeAccessSimilarity(AUM,F )

10: ADS = AttributeDensitySimilarity(T )
11: HS = HybridSimilarity(AAS,ADS)
12: AAC = AttributeAccessCorrelation(AUM,F )
13: ADC = AttributeDensityCorrelation(T )
14: // Clustering phase
15: C = ClusterAttributes(AAC,ADC,HS, α, β)
16: // Merging-selecting phase
17: G = MergeAndSelectStore(AAS,C, λ, θ)
18: return G
19: end function

97



Hybrid data storage configuration

Algorithm 14 Attribute Access Correlation [97].
Require: AUM, frequencies

1: AUM(m× n): Attribute Usage Matrix including m row and n attributes
2: frequencies: Query frequencies

Ensure: AAC
3: AAC: Attribute Access Correlation (n× n)
4: function ATTRIBUTEACCESSCORRELATION(AUM,F )
5: for i← 0 to AUM [0].length do
6: for j ← 0 to AUM [0].length do
7: AAC[i][j] = 0;
8: end for
9: end for

10: for i← 0 to AUM.length do
11: row = ∅
12: for j ← 0 to AUM [0].length do
13: if AUM [i][j] == 1 then
14: row[j] = 1
15: else
16: row[j] = 0
17: end if
18: end for
19: for k ← 0 to AUM [0].length do
20: if row[k] == 1 then
21: for l← k to AUM [0].length do
22: AAC[k][l] = AAC[k][l] + row[l] ∗ frequencies[i]
23: end for
24: end if
25: end for
26: end for
27: return AAC
28: end function

98



Hybrid data storage configuration 7.3. Hybrid data storage configuration

Attribute Density Correlation

Algorithm 15 is used to generate Attribute Density Correlation matrix (n × n). This
matrix shows the correlation between two attributes in the Table T . It presents how
many times two attributes having non-null values and are accessed together. First,
Attribute Density Correlation matrix, ADC, is initialized with n rows and n columns. After
that, the algorithm checks every row of T . For each row in T , the array row store the
value of current row. Next, the number of times in which two attributes k and l having
non-null values are access together is increased by ADC[k][l] = ADC[k][l] + row[l].
The result of this algorithm is AAC matrix, as shown in Algorithm 15.

Clustering Attribute

Algorithm 16 is used to generate the clusters in the clustering phase. The impact
of both workload and data information is considered in this algorithm. The approach
aims to reduce storage space and improve workload performance simultaneously. The
attributes of given table T is divided into a set of clusters setCluster. The inputs of this
algorithm are AAC,ADC,HS and parameters, i.e., the weight of similarity α, clustering
threshold β. First, AAC or ADC is selected depending on α values. For example, if
α >= 0.5, the approach chooses AAC. Otherwise, ADC is considered. Next, a new
cluster is added into setCluster and all the attributes having the same condition of
Hybrid Similarity value. The procedure is repeated until the left attribute is empty.

The clusters in setCluster is arranged in the decreasing order of the important at-
tributes level. The more attribute access frequency or data density (non-null values)
is selected before the less ones. The first step is selecting the frequency attribute or
data density. Depending on the parameter α, the method chooses AAC or ADC. After
creating empty setCluster, the most important attribute is added to a new cluster (i.e.,
clusterindex). After that, each left attribute aL is compared to each attribute aC in a clus-
ter in terms of Hybrid Similarity value. If the value is less than the clustering threshold
β, aL is added to clusterindex in which includes aC. The repeat loop is stopped when
the left attributes are empty. Finally, the output of the algorithm is a set of clusters,
setCluster.

The parameter of the clustering threshold is predefined by users based on exper-
iments. If the value of β is small, many attributes having the same range value of the
Hybrid Similarity are added into a cluster. Hence, the number of clusters is small, but

99



Hybrid data storage configuration

Algorithm 15 Attribute Density Correlation [97].
Require: T

1: T(m× n): Horizontal table including m tuples and n attributes
Ensure: ADS

2: ADC: Attribute Density Correlation (n× n)
3: function ATTRIBUTEDENSITYCORRELATION(T )
4: for i← 0 to T [0].length do
5: for j ← 0 to T [0].length do
6: ADC[i][j] = 0;
7: end for
8: end for
9: for i← 0 to T.length do

10: row = ∅
11: for j ← 0 to T [0].length do
12: if T [i][j]! = null then
13: row[j] = 1
14: else
15: row[j] = 0
16: end if
17: end for
18: for k ← 0 to T [0].length do
19: if row[k] == 1 then
20: for l← k to T [0].length do
21: ADC[k][l] = ADC[k][l] + row[l]
22: end for
23: end if
24: end for
25: end for
26: return ADC
27: end function

100



Hybrid data storage configuration 7.3. Hybrid data storage configuration

the size of the clusters is large. As a consequence, wide tables with a large num-
ber of null values or irrelevant attributes are created. In contrast, if β is large, less
attributes having high hybrid similarity are added into a cluster. The result is a large
number of clusters including a small number of attributes. The number of null values
is reduced, but the expensive join operators are generated in the reconstructing result
tuples across narrow tables.

Merging and Selecting Stores

Algorithm 17 implements the second phase of the generating hybrid data storage
configuration process. It is used to improve query performance. The result of the first
phase is a set of clusters, including attributes (non-overlapping) of the given table T .
When many attributes of a tuple are accessed, the query performance may be reduced
by the reconstructing tuple process. The second phase is created to reduce both the
tuple reconstruction cost and the number of irrelevant attribute accesses.

In the first step, the algorithm focuses on reducing the tuple reconstruction cost,
which impacts query performance. Two clusters are grouped together if the Inter Clus-
ter Access Similarity of them is greater than or equal to a given merging threshold θ.
This parameter is predefined at the beginning of the generating data storage configu-
ration process. The algorithm checks the Inter Cluster Access Similarity value between
two clusters. If the condition is satisfied, being bigger than or equal to merging thresh-
old θ, two clusters are merged together. Otherwise, they are two independent clusters.
At the end of this step, the list of clusters is generated.

In the second step, the algorithm focuses on reducing the number of irrelevant at-
tribute accesses. The data layout (row or column) has an impact on the query perfor-
mance when the workload accesses irrelevant attribute. If the attributes in the same
cluster are frequently accessed together, they need to be stored in row-oriented data
layout storage. Otherwise, they should be stored in column-oriented data layout stor-
age. The value of the Intra Cluster Access Similarity is used in this step. The algorithm
examines the Intra Cluster Access Similarity of a cluster. If the value is larger than the
data layout threshold λ, attributes in this cluster is stored in row-oriented data layout
storage, and vice versa. At the end of this step, the list of suggested data layout layouti
is created and stored along with Ci in configuration.

101



Hybrid data storage configuration

Algorithm 16 ClusterAttributes [97].
Require: AAC,ADC,HS, α

1: AAC: Attribute Access Correlation (n× n)
2: ADC: Attribute Density Correlation (n× n)
3: HS: Hybrid Similarity (n× n)
4: α: Weight of similar
5: β: Clustering threshold

Ensure: setCluster
6: setCluster: a set of resulting cluster (column groups)
7: function CLUSTERATTRIBUTES(AAC,ADC,HS, α, β)
8: Matrix = ∅
9: if α >= 0.5 then

10: Matrix = AAC
11: else
12: Matrix = ADC
13: end if
14: setCluster = ∅, index = 0, clusterindex = ∅
15: IndexAttribute = IndexAttribute(Matrix)
16: while | Attribute |> 0 do
17: IndexMax = 0, MaxV alue = 0
18: for index:IndexAttribute do
19: if Matrix[index][index] > MaxValue then
20: MaxValue =Matrix[index][index];
21: IndexMax = index;
22: end if
23: end for
24: clusterindex = clusterindex ∪ {IndexMax}
25: Attribute.remove(IndexMax)
26: for aL : Attribute do
27: similarity = true
28: for aC : clusterindex do
29: if (aC < aL and HS[aC][aL] < β) or (aC > aL and HS[aC][aL] > β)

then
30: similarity = false
31: break
32: end if
33: end for
34: if similarity then
35: clusterindex = clusterindex ∪ {aL}
36: end if
37: end for
38: setCluster = setCluster ∪ clusterindex

39: index++
40: end while
41: return setCluster
42: end function

102



Hybrid data storage configuration 7.3. Hybrid data storage configuration

Algorithm 17 Merging And Selecting Stores [97].
Require: AAS,Cluster, λ, θ

1: AAS(m× n): Attribute Access Similarity (n× n)
2: Cin: Cluster
3: λ: Data layout threshold
4: θ: Merging threshold

Ensure: configuration
5: function MERGEANDSELECTSTORE(AAS,Cin, λ, θ)
6: C = Cin

7: configuration = ∅
8: found = true
9: // Merge two clusters together depending on Inter-Cluster Access Similarity

10: while found do
11: MaxSim = 0, found = false, indexU = indexV = 0
12: for i← 0 to | Cin | −1 do
13: for j ← i+ 1 to | Cin | do
14: currentSim = interClusterAccessSimilar(Cin(i), Cin(j), ASM)
15: if currentSim >= θ and currentSim > MaxSim then
16: MaxSim = currentSim, found = true, indexU = i, indexV = j
17: end if
18: end for
19: end for
20: if found then
21: C = C \ C(indexU)
22: C = C \ C(indexV )
23: C = C ∪Merge(C(indexU), C(indexV ))
24: end if
25: end while
26: // Selecting a row/column layout for each cluster depending on Inter-Cluster

Access Similarity
27: store = ∅
28: for i← 0 to | C | do
29: if intraClusterAccessSimmilar(C(i), ASM) >= λ then
30: store.add(row)
31: else
32: store.add(column)
33: end if
34: end for
35: for i← 0 to | C | do
36: configuration.put(C(i), store.layout(i))
37: end for
38: return configuration
39: end function

103



Hybrid data storage configuration

7.4 Optimizing data storage configuration

7.4.1 Finding Pareto configuration set

In order to reduce storage space and improve workload execution performance, the
automatic generation of a hybrid data storage configuration is presented above [97].
The method generates a data storage configuration based on four parameters. Each
parameter is a real value and belongs to a range of [0, 1]. They are predefined by
users based on experiments. Hence, the authors can not give an optimal data storage
configuration of a hybrid system. They state that the space of parameter and data
storage configuration is huge.

This section introduces an algorithm to find an optimal data storage configuration
using NSGA-G, as shown in Algorithm 18. First, the hybrid data storage configuration
is formed by four parameters including the weight of similarity α, clustering threshold β,
merging threshold θ and data layout threshold λ. Depending on these four parameters,
HYTORMO automatically creates a data storage configuration of a hybrid store. How-
ever, the authors did not optimize the space of solutions of data storage configuration.
Hence, in the space of four parameters in [0, 1], we use NSGA-G to look for a Pareto
set of data storage configuration. Algorithm 18 finds the best data storage configura-
tion for a table T. Line 10 generates a Pareto set of data storage configuration. After
that, Line 12 uses Algorithm 3 to return the best solution in this set with the weight sum
model S and the constraint B [67], as shown in Algorithm 19.

7.4.2 Finding the best configuration

Among Pareto data storage configuration set, G, the best solution should be cho-
sen. Function BestInPareto is used to chose the best candidate in the set of non-
dominated candidates, called Pareto set. At the final step of MOOP, we have a Pareto
set of candidates. Depending on the user preferences, we have different weighted sum
model S and constraints B. At the beginning, all candidates which have smaller cost
function values than the value of constraints are added to the new set of non-dominated
candidates, as shown in line 2. If the size of this set is not empty, line 3, the scalar value
of each candidate is determined by the weighted sum model S and the best solution is
selected by the minimum value of C(g), as shown in Line 4. In contrast, when the size
of new non-dominated candidates set is zero, the best candidate is chosen in the orig-

104



Hybrid data storage configuration 7.5. Conclusion

Algorithm 18 Find a data configuration for a table T in cloud computing.
1: function BESTDATACONFIGURATION(Q,W,T,S,B)
2: // Find a Pareto data configuration set of table T and Workload W with weight

sum model S and Constraint B
3: α ∈ {0; 1} //weight of similarity
4: β ∈ {0; 1} //clustering threshold
5: θ ∈ {0; 1} //merging threshold
6: λ ∈ {0; 1} //data layout threshold
7: AUM ← AttributeUsageMatrix(W )
8: F ← QueryFrequencies(W )
9: I ← DataSpecific(T )

10: P ← NSGA−G(α, β, θ, λ, AUM, I, F )
11: //Return best candidate in P with weight sum model
12: return BestInPareto(P ,S,B)
13: end function

Algorithm 19 Select the best configuration in G
1: function BESTINPARETO(G,S,B)
2: GB ← g ∈ G|∀n ≤ |B| : cn(p) ≤ Bn

3: if GB 6= ∅ then
4: return g ∈ GB|C(g) = min(WeightSum(GB,S))
5: else
6: return g ∈ G|C(g) = min(WeightSum(G,S))
7: end if
8: end function

inal Pareto set by weighted sum model S, as shown in Line 6. Finally, the best solution
in Pareto set G is selected by user weighted sum model S and constraint B.

7.5 Conclusion

In this chapter, we have presented the automatic generating data storage config-
uration to the cloud federation with MOOP. The automatic approach is proposed in
HYTORMO [97], but the space of candidates is huge. We have extended HYTORMO
to find an optimal data storage configuration for DICOM data storage. We have used
NSGA-G to solve this problem to find an approximated optimal hybrid data storage
configuration.

Our contributions, DREAM, NSGA-G and an application to optimal hybrid data stor-

105



Hybrid data storage configuration

age configuration for a cloud federation, have been presented in Chapter 5, 6, 7. In
the next chapter, we implement our proposal approaches in cloud environment and
compare them to other methods.

Key Points
• We have defined DICOM data management, and DICOM storage in a

hybrid row-column system as a multi-objective problem.
• We have used Non-dominated Sorting Genetic Algorithm based on Grid
Partitioning to find the optimal data configuration for the hybird data.

Publication
• Trung-Dung Le, Verena Kantere, Laurent d’Orazio. Optimizing DI-

COM data management with NSGA-G. International Workshop On De-
sign, Optimization, Languages and Analytical Processing of Big Data
(DOLAP@EDBT), Lisbon, Portugal, 2019

106



PART III

Implementation of proposals and
validations

107



CHAPTER 8

PERFORMANCE VALIDATION

Contents
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.2 A medical cloud federation . . . . . . . . . . . . . . . . . . . . . . . 109

8.2.1 DICOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.3 DREAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.4 NSGA-G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.4.1 Validation on DTLZ test problems . . . . . . . . . . . . . . . . . 113

8.4.2 Hybrid data storage configuration . . . . . . . . . . . . . . . . . 127

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.1 Introduction

Chapters 5, 6, and 7 introduce two algorithms for the Multi-Objective Optimization
Problem, and an approximate optimal solution for the management of DICOM data.

This chapter presents the validation of proposed algorithms and the implementa-
tion of the medical data system in a cloud federation. First, Section 8.2 introduces
the implementation of the medical data, DICOM, in MIDAS. After that, experiments of
DREAM with the TPC-H benchmark in IReS platform is presented and compared to
other machine learning algorithms in Section 8.3. Our Multi-Objective Optimization Al-
gorithm is validated with DTLZ test problems in Section 8.4. Two versions of NSGA-G
are compared to other NSGAs in the multi-objective optimization problems. NSGA-G is

108



Performance evaluation 8.2. A medical cloud federation

also applied to DICOM data to find an optimal solution in a MOOP. Finally, we conclude
with section 8.5.

8.2 A medical cloud federation

As described in Chapter 3, the Medical Data Management System (MIDAS) is pro-
posed to manage medical data. In particular, MIDAS extends the management of mul-
tiple engines platform, IReS, to organize DICOM in a cloud federation. This section
presents more detail the implementation of DICOM data storage configurations in MI-
DAS.

8.2.1 DICOM

As introduced in Chapter 3, DICOM data set has been accessed by various OLAP,
OLTP, and mixed workloads. Row stores data store all data associated with a row to-
gether. This strategy is suitable for OLTP workload, but wastes I/O costs for a query
which requires few attributes of a table [66]. In contrast, column stores (e.g. MonetDB
[19] and C-Store [125]) organize data by column. A column contains data for a single
attribute of a tuple and stores sequentially on disk. The column stores allow reading
only relevant attributes and efficiently aggregating over many rows, but only for a few
attributes. Although the column stores are suitable for read-intensive (OLAP) work-
loads, their tuple reconstruction cost in OLTP workloads is higher than row stores. To
improve the performance of storing and querying in OLAP, OLTP, and mixed workloads,
DICOM data needs to be stored in a row-column store, called hybrid data storage. DI-
COM is used as an example of medical data in our system to validate the proposed
approaches.

8.2.2 Validation

Modelling module requires low computation cost and accurate method to estimate
the cost values. Machine learning methods can lead to the use of expired informa-
tion. Hence, our proposed method, DREAM, is integrated into Modelling module to
predict the cost values with low computation cost in a cloud environment. Moreover,
the Multi-Objective Optimizer requires an efficient algorithm to find an approximation of

109



Performance evaluation

a Pareto-optimal solution. However, the space of candidate solutions in MOOP for DI-
COM hybrid data is huge [97] and generating the Pareto-optimal front is often infeasible
due to high complexity [160]. The vast space of data storage configuration candidates
in a hybrid storage system leverages an alternative solution to find a Pareto-optimal
one. Our method applies NSGA-G, an efficient MOO algorithm, to the Multi-Objective
Optimizer to find an approximation of a Pareto-optimal solution. In conclusion, we pro-
pose to improve the accuracy of cost value prediction with low computation cost and to
solve MOOP in both the querying and storing configurations with an efficient algorithm
in a cloud environment.

Our validation 1 is implemented into IReS platform and a private cloud [127] with a
cluster of three machines. The system uses Hadoop 2.7.3 [133] to organize the dis-
tribute data system. Beside the scenario of heterogeneous database system is imple-
mented by three database engines. In particular, Hive 2.1.1 [129], PostgreSQL 9.5.14
[133], Spark 2.2.0 [135] are used in our system. The medical data management is run
in Java OpenJDK Runtime Environment 1.8.0.

8.3 DREAM

8.3.1 Implementation

Our experiments are executed on a private cloud [127] with a cluster of three ma-
chines, as shown in Figure 8.1. Each node has four 2.4 GHz CPU, 80 GiB Disk, 8
GiB memory and runs 64-bit platform Linux Ubuntu 16.04.2 LTS. The system uses
Hadoop 2.7.3 [133], Hive 2.1.1 [129], PostgreSQL 9.5.14 [133], Spark 2.2.0 [135] and
Java OpenJDK Runtime Environment 1.8.0. IReS platform is used to manage data in
multiple database engines and deploy the algorithms. We choose this implementation
because it shows the simple architecture of MIDAS with 3 database engines and a
single cluster.

8.3.2 Experiments

TPC-H benchmark [137] with two datasets of 100MB and 1GB is used to have ex-
periments with DREAM. Experiments with TPC-H benchmark are executed in a multi-

1. https://gitlab.inria.fr/trle/IReS-Platform

110

https://gitlab.inria.fr/trle/IReS-Platform


Performance evaluation 8.3. DREAM

Interface

User query
policy

Modelling

Generating
QEP

Hive
engine

Multi-Objective
Optimizer

Hive 

A Query

PostgreSQL
engine

PostgreSQL

Spark
engine

Spark

IReS

DREAM

Figure 8.1 – Implementation of MIDAS, DREAM and Multi-Objective Optimizer.

engine environment consisting of Hive[129] and PostgreSQL[133] deployed on a pri-
vate cloud [127].

In the TPC-H benchmark, the queries related to two tables are 12, 13, 14 and
17. We choose these queries because it shows the simple circumstance of joining
tables with different database engines in cloud environment. These queries with two
tables in two different databases, such as Hive and PostgreSQL, are studied. In our
experiments, a query is selected randomly in these four queries. Besides, the database
engines which store tables related to queries are chosen randomly. For example, a

111



Performance evaluation

Table 8.1 – Comparison of mean relative error with 100MiB TPC-H dataset.

Query BMLN BML2N BML3N BML DREAM
12 0.265 0.459 0.220 0.485 0.146
13 0.434 0.517 0.381 0.358 0.258
14 0.373 0.340 0.335 0.358 0.319
17 0.404 0.396 0.267 0.965 0.119

query is selected randomly in Query 12, 13, 14, 17, and then the result is Query 12. Two
tables related to Query 12 are orders, and lineitem. There are two circumstances: (1)
The database engine managing orders table is Hive, and PostgreSQL stores lineitem
table; (2) The lineitem table is stored in Hive, and PostgreSQL stores orders table. The
circumstance is selected randomly, too.

8.3.3 Results

To estimate the quality of DREAM in comparison with other algorithms, Mean Rel-
ative Error (MRE) [4] is used and described as below:

1
M

i=1∑
M

|ĉi − ci|
ci

, (8.1)

where M is the number of testing queries, ĉi and ci are the predict and actual execu-
tion time of testing queries, respectively. IReS platform uses multiple machine learning
algorithms in their model, such as Least squared regression, Bagging predictors, Mul-
tilayer Perceptron.

In IReS model building process, IReS tests many algorithms and the best model
with the smallest error is selected. It guarantees the predicted values as the best one
for the estimating process. DREAM is compared to the Best Machine Learning model
(BML) in IReS platform with many observation window (N , 2N , 3N and entire data
samples). The smallest size of a window, N = L + 2 [121], where L is the number of
variables, is the minimum data set DREAM requires.

In Table 8.1 and 8.2, IReS uses various machine learning algorithms to build cost
models and choose the best model which has the smallest Mean Relative Error (BML).
BML means that the entire historic data is used to train the cost models. BMLN

means the size of the observation window is N . The lower value of MRE in two tables

112



Performance evaluation 8.4. NSGA-G

Table 8.2 – Comparison of mean relative error with 1GiB TPC-H dataset.

Query BMLN BML2N BML3N BML DREAM
12 0.349 0.854 0.341 0.480 0.335
13 0.396 0.843 0.457 0.487 0.349
14 0.468 0.664 0.539 0.790 0.318
17 0.620 0.611 0.681 0.970 0.536

indicates the more accurately estimating cost model. As shown in two tables, MRE of
DREAM is the smallest values between various observation windows. For example,
the estimation execution times of query 12 in both tables show that DREAM estimates
more accurate than other algorithms. The best machine learning algorithm is the al-
gorithm IReS selected which have the smallest MRE. There are various versions of
BML according to the size of observation window, such as N , 2N , 3N , and entire data
samples. In our experiments, the size of data samples, which DREAM uses, are very
small, around N . However, the MRE of DREAM is the smallest value among them.

8.4 NSGA-G

8.4.1 Validation on DTLZ test problems

Various earlier studies on Multiple Objective Evolutionary Algorithms (MOEAs) in-
troduce test problems which are either simple or not scalable. DTLZ test problems [41]
are useful in various research activities on MOEAs, e.g., testing the performance of a
new MOEA, comparing different MOEAs and a better understanding of MOEAs. The
proposed algorithm is experimented on DTLZ test problems with other famous NSGAs
to show advantages in convergence, diversity and execution time.

Environment

For fair comparison and evaluation, the same parameters are used, such as Sim-
ulated binary crossover (30), Polynomial mutation (20), max evaluations (10000) and
populations (100) for eMOEA[31], NSGA-II, MOEA/D[158], NSGA-III and NSGA-G 2,

2. https://gitlab.inria.fr/trle/moea

113

https://gitlab.inria.fr/trle/moea


Performance evaluation

during their 50 independent runs to solve two types of problems in DTLZ test prob-
lems [41] with m objectives , m ∈ [5, 10] in Multiobjective Evolutionary Algorithms
(MOEA) framework [130] in Open JDK Java 1.8. These algorithms use the same pop-
ulation size N = 100 and the maximum evaluation M = 10000. All experiments are run
on a machine with following parameters: Intel(R) core(TM) i7-6600U CPU @ 2.60GHz
× 4, 16GB RAM.

NSGA-G with Min point

To estimate the qualities of algorithms, the Generational Distance (GD) [148], In-
verted Generational Distance (IGD) [30] and the Maximum Pareto Front Error (MPFE) [150]
are applied.

GD measures how far the evolved solution set is from the true Pareto front [155], as
shown in following:

GD =

√∑n
i=1 d

2
i

n
, (8.2)

where dj = min
j
||f(xi) − PFtrue(xj)|| shows the distance objective space between so-

lution xi and the nearest member in the true Pareto front (PFtrue), and n is the number
of solutions in the approximation front. Lower value of GD represents a better quality
of an algorithm.

IGD is a metric to estimate the approximation quality of the Pareto front obtained by
MOO algorithms [15], which can measure both convergence and diversity in a sense.
IGD is shown in the following equation [155]:

IGD =
∑

v∈P Ftrue
d(v,X)

|PFtrue|
, (8.3)

where X is the set of non-dominated solutions in the approximation front, d(v,X)
presents the minimum Euclidean distance between a point v in PFtrue and the points
in X. Lower value of IDG represents the approximate front getting close to PFtrue, and
not missing any part of the whole PFtrue.

MPFE shows the most significant distance between the individuals in Pareto front
and the solutions in the approximation front [155]. This metric is shown in the following
equation:

MPFE = max
i
di. (8.4)

114



Performance evaluation 8.4. NSGA-G

Table 8.3 – Generational Distance

m eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 3.675e-02 4.949e+01 1.129e-01 2.494e+00 2.721e-03
DTLZ3 5 1.030e-01 4.418e+00 1.951e-01 7.214e-01 6.342e-03
DTLZ1 6 1.600e-01 9.637e+01 3.138e-01 1.049e+00 3.850e-02
DTLZ3 6 1.306e+01 1.289e+02 5.265e+00 9.577e+00 9.921e-01
DTLZ1 7 1.390e-01 5.283e+01 1.515e-01 4.515e-01 1.542e-02
DTLZ3 7 3.793e-01 3.714e+00 2.251e-02 1.600e-01 2.379e-03
DTLZ1 8 6.817e-01 1.175e+02 2.608e-01 1.949e+00 8.223e-02
DTLZ3 8 1.419e+01 1.667e+02 5.320e+00 1.351e+01 9.146e-01
DTLZ1 9 4.451e-01 4.808e+01 1.101e-01 1.917e+00 1.040e-02
DTLZ3 9 6.843e-02 1.620e+00 5.237e-03 1.280e-01 1.325e-03
DTLZ1 10 3.431e-01 4.340e+01 1.432e-01 2.115e+00 0.000e+00
DTLZ3 10 8.458e-02 1.593e+00 6.763e-03 1.627e-01 1.815e-03

In all tables show the experiments, the darkest mark value show the least value in
various algorithm experiments, and the brighter mark value is the second least value
among them.

By dividing the space of solutions into multiple partitions and selecting groups ran-
domly, the proposed algorithm has both advantages of diversity and convergence, com-
paring to other NSGAs. The advantages of NSGA-G are not only on GD, IGD, as shown
in Tables 8.3 and 8.5, but also in MPFE experiment, as presented in Table 8.7. As
shown Equation 8.2, 8.3, the lower values of GD and IGD indicate the better perfor-
mance of algorithms. The convergence and diversity of NSGA-G are often the most or
second quality in the tests. Equation 8.4 shows that the small of the most signification
distance between the individuals in Pareto front and the solutions in the approximation
front is prefer than the big ones. The MPFE values in Table 8.7 is also shown that the
worst significant distance between solutions in the approximate front and the individu-
als in true Pareto front of NSGA-G is smaller than others one among algorithms.

By comparing solutions in a group, instead of all the space, the proposed algorithm
outperforms to other NSGAs in terms of computation time, as shown in Tables 8.4, 8.6
and 8.8. It can be seen that the computation time of NSGA-G is better than the others
among algorithms in most cases.

115



Performance evaluation

Table 8.4 – Average compute time (seconds) in Generational Distance experiment

m eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 5.904e+01 1.063e+02 2.264e+02 4.786e+02 1.261e+02
DTLZ3 5 1.005e+02 1.111e+02 2.358e+02 5.040e+02 1.233e+02
DTLZ1 6 9.024e+01 1.089e+02 2.320e+02 3.509e+02 1.083e+02
DTLZ3 6 1.602e+02 1.243e+02 2.520e+02 3.653e+02 1.209e+02
DTLZ1 7 1.038e+02 1.200e+02 2.839e+02 3.986e+02 1.244e+02
DTLZ3 7 2.946e+02 1.381e+02 2.820e+02 3.565e+02 1.342e+02
DTLZ1 8 1.463e+02 1.313e+02 2.896e+02 4.926e+02 1.249e+02
DTLZ3 8 5.575e+02 1.541e+02 3.458e+02 5.633e+02 1.399e+02
DTLZ1 9 1.573e+02 1.428e+02 3.242e+02 6.823e+02 1.496e+02
DTLZ3 9 8.147e+02 1.988e+02 3.721e+02 8.136e+02 1.640e+02
DTLZ1 10 1.436e+02 1.611e+02 3.745e+02 9.589e+02 1.370e+02
DTLZ3 10 9.151e+02 1.801e+02 3.907e+02 9.805e+02 1.577e+02

Table 8.5 – Inverted Generational Distance

m eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 4.070e-01 8.247e+01 3.434e-01 2.796e+00 3.314e-01
DTLZ3 5 1.656e-01 6.364e+00 3.335e-01 1.383e+00 1.922e-01
DTLZ1 6 7.981e-01 1.786e+02 9.150e-01 3.040e+00 7.034e-01
DTLZ3 6 4.429e+01 4.526e+02 1.164e+01 3.103e+01 8.100e+00
DTLZ1 7 4.188e-01 2.203e+01 3.280e-01 5.024e-01 3.715e-01
DTLZ3 7 9.630e-01 9.286e+00 1.929e-01 3.901e-01 1.667e-01
DTLZ1 8 1.417e+00 2.691e+02 1.023e+00 4.195e+00 9.540e-01
DTLZ3 8 1.023e+02 6.471e+02 1.167e+01 4.194e+01 7.513e+00
DTLZ1 9 4.432e-01 2.396e+01 3.019e-01 6.685e-01 3.147e-01
DTLZ3 9 3.737e-01 3.368e+00 1.381e-01 2.516e-01 1.331e-01
DTLZ1 10 5.912e-01 1.723e+01 3.737e-01 8.963e-01 3.613e-01
DTLZ3 10 6.287e-01 6.049e+00 1.296e-01 5.049e-01 1.521e-01

116



Performance evaluation 8.4. NSGA-G

Table 8.6 – Average compute time (seconds) in Inverted Generational Distance exper-
iment

m eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 6.780e+01 9.430e+01 2.292e+02 4.564e+02 9.646e+01
DTLZ3 5 9.976e+01 1.156e+02 2.564e+02 5.036e+02 1.166e+02
DTLZ1 6 7.696e+01 1.078e+02 2.451e+02 3.471e+02 1.178e+02
DTLZ3 6 1.549e+02 1.300e+02 2.527e+02 3.714e+02 1.986e+02
DTLZ1 7 1.021e+02 1.286e+02 2.732e+02 3.271e+02 1.297e+02
DTLZ3 7 3.522e+02 1.942e+02 3.794e+02 3.582e+02 1.523e+02
DTLZ1 8 1.170e+02 1.292e+02 3.222e+02 4.677e+02 1.212e+02
DTLZ3 8 5.333e+02 1.526e+02 3.140e+02 5.190e+02 1.431e+02
DTLZ1 9 1.435e+02 1.812e+02 3.120e+02 7.548e+02 1.544e+02
DTLZ3 9 7.445e+02 2.171e+02 3.533e+02 7.884e+02 1.485e+02
DTLZ1 10 2.104e+02 1.786e+02 3.942e+02 1.532e+03 2.182e+02
DTLZ3 10 1.195e+03 2.526e+02 5.766e+02 1.302e+03 2.131e+02

Table 8.7 – Maximum Pareto Front Error

m eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 7.363e-01 8.969e+02 2.556e+00 2.260e+02 1.024e-01
DTLZ3 5 9.455e+00 1.015e+02 3.692e+00 4.002e+01 1.957e-01
DTLZ1 6 4.699e+00 1.584e+03 8.950e+00 7.488e+01 3.375e-01
DTLZ3 6 5.112e+02 1.862e+03 9.387e+01 4.340e+02 1.244e+01
DTLZ1 7 9.524e+00 1.012e+03 3.074e+00 1.802e+01 1.695e-01
DTLZ3 7 1.458e+01 3.163e+01 2.035e-01 3.116e+00 2.708e-02
DTLZ1 8 3.186e+01 2.041e+03 5.685e+00 2.127e+02 5.532e-01
DTLZ3 8 1.170e+03 2.247e+03 9.867e+01 5.268e+02 1.145e+01
DTLZ1 9 1.111e+01 1.036e+03 2.075e+00 1.496e+02 3.106e-01
DTLZ3 9 1.320e+01 4.065e+01 1.354e-01 8.366e+00 3.195e-02
DTLZ1 10 2.641e+01 1.026e+03 2.793e+00 2.293e+02 0.000e+00
DTLZ3 10 1.492e+01 4.185e+01 1.368e-01 1.079e+01 2.744e-02

117



Performance evaluation

Table 8.8 – Average compute time (seconds) in Maximum Pareto Front Error experi-
ment

m eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 7.454e+01 1.214e+02 2.742e+02 5.796e+02 1.221e+02
DTLZ3 5 1.231e+02 1.437e+02 3.118e+02 6.035e+02 1.286e+02
DTLZ1 6 1.040e+02 1.318e+02 2.848e+02 4.258e+02 1.276e+02
DTLZ3 6 2.166e+02 1.673e+02 3.462e+02 5.014e+02 1.575e+02
DTLZ1 7 1.276e+02 1.638e+02 3.230e+02 4.314e+02 1.424e+02
DTLZ3 7 4.594e+02 1.959e+02 4.188e+02 5.557e+02 1.774e+02
DTLZ1 8 1.637e+02 1.609e+02 3.832e+02 5.952e+02 1.466e+02
DTLZ3 8 5.940e+02 1.963e+02 3.640e+02 6.025e+02 1.453e+02
DTLZ1 9 1.369e+02 1.474e+02 3.148e+02 7.728e+02 1.559e+02
DTLZ3 9 6.596e+02 1.982e+02 3.984e+02 8.069e+02 1.516e+02
DTLZ1 10 1.546e+02 1.540e+02 3.555e+02 9.331e+02 1.400e+02
DTLZ3 10 8.219e+02 1.841e+02 3.601e+02 9.677e+02 1.619e+02

NSGA-G with Random metric

Similarly as NSGA-G with Min point, we use the Generational Distance (GD) [148],
Inverted Generational Distance (IGD) [30] and the Maximum Pareto Front Error (MPFE) [150]
to compare the quality of NSGA-G with Random metric (NSGA-GR) to other NSGAs,
including NSGA-G with Min point.

At this section, besides of using DTLZ problems, we use WFG [69] test problem.
Advantages of two versions of NSGA-G are present in tables 8.9, 8.10, 8.11, 8.12, 8.13,
and 8.14. Similar to the previous section, the measuring metrics, such as GD, IDG,
MPFE, are used to estimate the qualities of the different algorithms. These experiment
compare NSGA-G with Random metric to other algorithms, including NSGA-G with Min
point.

First, two versions of NSGA-G often show that they are faster than the other algo-
rithms in all experiments of average computation time, Table 8.10, 8.12, 8.14.

Second, NSGA-Gs are also better than other NSGAs in terms of quality in GD
and MPFE experiments, as shown in Table 8.9, 8.13. Except for the IDG experiment,
as shown in Table 8.11 the quality of NSGA-G with Random metric is not as good
as other ones. However, the fastest algorithm among NSGAs is often NSGA-G with
Random metric. It can be accepted for the trade-off between quality and computation
time.

118



Performance evaluation 8.4. NSGA-G

Table 8.9 – Generational Distance

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 2.595e-01 4.418e-01 2.251e+01 4.264e-01 3.090e+00 1.977e-01
DTLZ3 5 1.861e-01 5.528e-02 1.130e+00 8.650e-02 3.079e-01 1.678e-02
WFG1 5 1.133e-03 9.748e-04 6.923e-03 6.908e-03 3.218e-03 7.617e-04
WFG3 5 4.027e-04 0.000e+00 2.549e-03 1.941e-03 2.011e-03 1.061e-05
DTLZ1 6 2.903e+00 2.137e+00 9.131e+01 1.820e+00 6.839e+00 4.907e-01
DTLZ3 6 2.226e+01 1.332e+01 1.252e+02 1.760e+01 2.389e+01 5.457e+00
WFG1 6 1.207e-03 8.842e-04 8.000e-03 6.753e-03 3.559e-03 7.417e-04
WFG3 6 4.104e-04 0.000e+00 2.523e-03 1.639e-03 1.800e-03 5.384e-05
DTLZ1 7 7.790e-01 8.949e-01 2.228e+01 2.601e-01 1.407e+00 8.201e-02
DTLZ3 7 1.719e-01 4.449e-02 1.309e+00 3.610e-02 1.619e-01 5.628e-03
WFG1 7 1.048e-03 8.219e-04 6.825e-03 5.613e-03 3.891e-03 6.405e-04
WFG3 7 4.011e-04 3.055e-06 2.390e-03 1.871e-03 1.665e-03 5.926e-05
DTLZ1 8 5.823e+00 5.851e+00 1.130e+02 1.276e+00 9.933e+00 4.660e-01
DTLZ3 8 2.071e+01 1.941e+01 1.604e+02 1.355e+01 3.001e+01 4.757e+00
WFG1 8 1.377e-03 9.406e-04 9.023e-03 7.659e-03 4.454e-03 6.469e-04
WFG3 8 3.655e-04 2.689e-05 1.692e-03 1.301e-03 9.662e-04 6.578e-05
DTLZ1 9 8.374e-01 3.626e+00 3.074e+01 3.544e-01 2.772e+00 1.003e-01
DTLZ3 9 4.673e-02 7.112e-02 6.293e-01 8.922e-03 1.052e-01 2.843e-03
WFG1 9 1.309e-03 8.924e-04 8.882e-03 7.551e-03 4.020e-03 6.816e-04
WFG3 9 3.597e-04 2.576e-05 1.298e-03 1.208e-03 7.634e-04 5.365e-05
DTLZ1 10 7.375e-01 1.519e+00 2.091e+01 2.705e-01 2.207e+00 3.021e-02
DTLZ3 10 4.785e-02 1.116e-01 6.793e-01 7.345e-03 1.118e-01 2.939e-03
WFG1 10 1.369e-03 1.385e-03 8.551e-03 6.364e-03 3.648e-03 6.692e-04
WFG3 10 3.259e-04 0.000e+00 1.196e-03 1.265e-03 6.945e-04 4.352e-05

119



Performance evaluation

Table 8.10 – Average compute time in Generational Distance experiment

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 3.604e+01 6.642e+01 5.508e+01 2.000e+02 2.241e+02 6.366e+01
DTLZ3 5 5.398e+01 6.440e+01 7.074e+01 1.870e+02 2.714e+02 6.212e+01
WFG1 5 1.379e+02 6.658e+01 6.636e+01 1.899e+02 2.594e+02 6.720e+01
WFG3 5 8.562e+02 8.162e+01 6.074e+01 1.864e+02 3.077e+02 8.370e+01
DTLZ1 6 4.552e+01 5.582e+01 5.632e+01 1.918e+02 1.662e+02 5.672e+01
DTLZ3 6 9.340e+01 6.572e+01 6.362e+01 1.971e+02 1.783e+02 6.638e+01
WFG1 6 1.961e+02 9.826e+01 7.392e+01 2.049e+02 2.157e+02 7.286e+01
WFG3 6 1.083e+03 7.580e+01 6.642e+01 1.967e+02 2.384e+02 7.782e+01
DTLZ1 7 6.206e+01 5.834e+01 6.208e+01 2.290e+02 1.621e+02 5.964e+01
DTLZ3 7 1.568e+02 6.992e+01 7.024e+01 2.405e+02 1.817e+02 7.022e+01
WFG1 7 2.585e+02 7.806e+01 8.042e+01 2.473e+02 2.085e+02 7.810e+01
WFG3 7 1.469e+03 8.030e+01 9.184e+01 2.896e+02 2.821e+02 9.950e+01
DTLZ1 8 8.762e+01 5.998e+01 6.640e+01 2.450e+02 2.327e+02 6.244e+01
DTLZ3 8 2.235e+02 7.618e+01 7.652e+01 2.536e+02 2.535e+02 7.424e+01
WFG1 8 3.100e+02 8.034e+01 8.710e+01 2.625e+02 2.924e+02 8.206e+01
WFG3 8 1.464e+03 7.912e+01 7.772e+01 2.542e+02 3.268e+02 8.346e+01
DTLZ1 9 1.157e+02 6.264e+01 7.034e+01 2.524e+02 3.095e+02 6.590e+01
DTLZ3 9 2.978e+02 7.694e+01 8.422e+01 2.678e+02 3.422e+02 7.828e+01
WFG1 9 3.846e+02 8.442e+01 9.426e+01 2.731e+02 3.844e+02 8.668e+01
WFG3 9 1.677e+03 8.954e+01 8.166e+01 2.595e+02 4.373e+02 8.642e+01
DTLZ1 10 1.527e+02 6.510e+01 7.584e+01 2.740e+02 4.204e+02 6.874e+01
DTLZ3 10 3.860e+02 8.132e+01 8.916e+01 2.883e+02 4.641e+02 8.370e+01
WFG1 10 4.747e+02 8.996e+01 1.005e+02 2.941e+02 5.175e+02 9.272e+01
WFG3 10 1.881e+03 8.576e+01 8.640e+01 2.802e+02 6.035e+02 9.128e+01

120



Performance evaluation 8.4. NSGA-G

Table 8.11 – Inverted Generational Distance

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 3.437e-01 1.027e+00 3.741e+01 6.226e-01 3.465e+00 4.637e-01
DTLZ3 5 5.568e-01 4.794e-01 3.576e+00 3.969e-01 1.098e+00 1.589e-01
WFG1 5 1.298e-01 2.924e-01 1.234e-01 7.202e-02 1.365e-01 2.906e-01
WFG3 5 4.167e-02 3.850e-01 1.272e-01 1.417e-01 7.899e-02 3.987e-01
DTLZ1 6 4.975e+00 6.617e+00 2.469e+02 2.903e+00 9.524e+00 2.688e+00
DTLZ3 6 1.131e+02 4.698e+01 5.199e+02 4.207e+01 8.253e+01 2.761e+01
WFG1 6 1.722e-01 3.705e-01 1.531e-01 7.460e-02 1.596e-01 3.341e-01
WFG3 6 5.367e-02 5.424e-01 1.488e-01 1.630e-01 1.065e-01 5.146e-01
DTLZ1 7 7.034e-01 4.042e+00 1.938e+01 4.718e-01 7.695e-01 8.458e-01
DTLZ3 7 7.320e-01 4.310e-01 4.852e+00 2.878e-01 3.826e-01 2.524e-01
WFG1 7 1.437e-01 3.547e-01 1.371e-01 7.114e-02 1.403e-01 3.199e-01
WFG3 7 6.134e-02 6.325e-01 1.573e-01 1.705e-01 1.169e-01 6.122e-01
DTLZ1 8 1.234e+01 1.212e+01 4.166e+02 3.101e+00 1.073e+01 2.849e+00
DTLZ3 8 1.501e+02 6.557e+01 7.623e+02 3.720e+01 1.011e+02 2.665e+01
WFG1 8 1.284e-01 3.186e-01 1.251e-01 6.956e-02 1.238e-01 2.692e-01
WFG3 8 6.487e-02 6.477e-01 1.593e-01 1.704e-01 1.115e-01 6.094e-01
DTLZ1 9 4.009e-01 3.676e+00 5.490e+00 3.932e-01 6.185e-01 5.747e-01
DTLZ3 9 3.029e-01 4.578e-01 1.713e+00 2.398e-01 2.584e-01 2.401e-01
WFG1 9 1.167e-01 2.921e-01 1.193e-01 6.477e-02 1.131e-01 2.561e-01
WFG3 9 6.758e-02 6.897e-01 1.621e-01 1.675e-01 1.078e-01 6.237e-01
DTLZ1 10 9.350e-01 9.074e+00 1.357e+01 6.061e-01 1.499e+00 1.028e+00
DTLZ3 10 4.368e-01 5.440e-01 2.368e+00 2.000e-01 3.965e-01 1.912e-01
WFG1 10 1.147e-01 3.043e-01 1.167e-01 6.273e-02 1.102e-01 2.671e-01
WFG3 10 6.759e-02 6.676e-01 1.670e-01 1.696e-01 1.043e-01 6.102e-01

121



Performance evaluation

Table 8.12 – Average compute time in Inverted Generational Distance experiment

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 3.384e+01 5.500e+01 5.176e+01 1.840e+02 2.139e+02 5.276e+01
DTLZ3 5 9.490e+01 8.072e+01 5.954e+01 2.942e+02 2.803e+02 6.146e+01
WFG1 5 1.453e+02 7.752e+01 8.710e+01 1.957e+02 2.988e+02 8.220e+01
WFG3 5 9.067e+02 8.638e+01 5.950e+01 2.087e+02 3.137e+02 8.416e+01
DTLZ1 6 4.982e+01 6.264e+01 5.860e+01 2.209e+02 1.894e+02 6.534e+01
DTLZ3 6 9.604e+01 6.984e+01 6.554e+01 2.182e+02 1.958e+02 7.078e+01
WFG1 6 2.188e+02 8.088e+01 7.810e+01 2.452e+02 2.282e+02 8.362e+01
WFG3 6 2.601e+03 9.036e+01 6.638e+01 3.200e+02 3.094e+02 1.215e+02
DTLZ1 7 6.754e+01 5.880e+01 6.122e+01 2.517e+02 1.620e+02 6.066e+01
DTLZ3 7 1.587e+02 7.172e+01 6.986e+01 2.525e+02 1.798e+02 7.168e+01
WFG1 7 2.579e+02 7.696e+01 8.294e+01 2.587e+02 2.185e+02 7.768e+01
WFG3 7 1.272e+03 7.836e+01 7.194e+01 2.487e+02 2.284e+02 8.888e+01
DTLZ1 8 8.430e+01 5.996e+01 6.610e+01 2.537e+02 2.322e+02 6.328e+01
DTLZ3 8 2.358e+02 7.418e+01 7.808e+01 2.608e+02 2.535e+02 7.446e+01
WFG1 8 3.158e+02 7.960e+01 8.682e+01 2.704e+02 2.903e+02 8.344e+01
WFG3 8 1.432e+03 8.044e+01 7.712e+01 2.513e+02 3.242e+02 8.364e+01
DTLZ1 9 1.237e+02 6.278e+01 6.978e+01 2.563e+02 3.120e+02 6.646e+01
DTLZ3 9 3.174e+02 7.882e+01 8.330e+01 2.721e+02 3.418e+02 7.838e+01
WFG1 9 3.827e+02 8.586e+01 9.338e+01 2.718e+02 3.837e+02 8.594e+01
WFG3 9 1.696e+03 8.290e+01 8.142e+01 2.607e+02 4.369e+02 8.654e+01
DTLZ1 10 1.436e+02 6.472e+01 7.536e+01 2.753e+02 4.187e+02 6.876e+01
DTLZ3 10 4.003e+02 8.566e+01 8.872e+01 2.897e+02 4.572e+02 8.270e+01
WFG1 10 4.635e+02 8.924e+01 1.008e+02 2.915e+02 5.137e+02 9.116e+01
WFG3 10 1.902e+03 8.662e+01 8.612e+01 2.802e+02 6.022e+02 9.028e+01

122



Performance evaluation 8.4. NSGA-G

Table 8.13 – Maximum Pareto Front Error

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 2.008e+01 1.195e+01 8.083e+02 1.765e+01 3.548e+02 4.912e+00
DTLZ3 5 1.079e+01 1.564e+00 2.545e+01 1.604e+00 1.546e+01 5.798e-01
WFG1 5 1.332e-01 1.763e-02 2.620e-01 2.042e-01 1.709e-01 1.588e-02
WFG3 5 1.583e-01 0.000e+00 9.601e-02 6.763e-02 1.139e-01 0.000e+00
DTLZ1 6 2.937e+02 5.789e+01 1.583e+03 5.168e+01 3.920e+02 7.665e+00
DTLZ3 6 1.045e+03 2.861e+02 1.825e+03 1.913e+02 7.048e+02 7.409e+01
WFG1 6 2.288e-01 1.619e-02 3.790e-01 3.086e-01 2.649e-01 1.372e-02
WFG3 6 1.690e-01 0.000e+00 1.090e-01 7.179e-02 9.973e-02 2.058e-03
DTLZ1 7 1.193e+02 4.205e+01 8.990e+02 9.095e+00 1.081e+02 2.998e+00
DTLZ3 7 1.138e+01 2.539e+00 1.768e+01 3.267e-01 4.447e+00 1.286e-01
WFG1 7 2.461e-01 1.443e-02 3.670e-01 2.775e-01 2.428e-01 1.545e-02
WFG3 7 1.630e-01 6.556e-04 1.017e-01 6.336e-02 7.499e-02 2.411e-03
DTLZ1 8 4.798e+02 2.375e+02 1.982e+03 4.991e+01 5.619e+02 8.178e+00
DTLZ3 8 1.458e+03 3.881e+02 2.152e+03 1.856e+02 9.085e+02 6.259e+01
WFG1 8 2.722e-01 1.486e-02 4.113e-01 3.155e-01 3.020e-01 1.039e-02
WFG3 8 1.499e-01 0.000e+00 9.124e-02 5.919e-02 6.697e-02 2.380e-03
DTLZ1 9 1.732e+02 1.234e+02 9.926e+02 1.264e+01 3.271e+02 1.976e+00
DTLZ3 9 7.820e+00 3.242e+00 1.899e+01 2.121e-01 6.489e+00 9.978e-02
WFG1 9 2.388e-01 1.108e-02 3.644e-01 2.316e-01 2.435e-01 7.929e-03
WFG3 9 1.516e-01 4.995e-04 8.803e-02 5.787e-02 8.046e-02 1.736e-03
DTLZ1 10 1.097e+02 1.138e+02 9.838e+02 8.148e+00 3.040e+02 2.231e+00
DTLZ3 10 6.727e+00 2.405e+00 1.556e+01 1.584e-01 5.933e+00 7.632e-02
WFG1 10 3.030e-01 1.372e-02 4.268e-01 2.544e-01 3.118e-01 9.250e-03
WFG3 10 1.468e-01 3.964e-04 7.328e-02 5.557e-02 6.889e-02 2.378e-03

123



Performance evaluation

Table 8.14 – Average compute time in Maximum Pareto Front Error experiment

m eMOEA NSGAR NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 4.128e+01 5.408e+01 5.408e+01 2.401e+02 2.308e+02 5.522e+01
DTLZ3 5 5.676e+01 6.470e+01 5.944e+01 2.074e+02 2.982e+02 6.294e+01
WFG1 5 1.623e+02 8.048e+01 7.232e+01 2.239e+02 2.815e+02 7.082e+01
WFG3 5 9.397e+02 7.952e+01 6.154e+01 2.043e+02 3.174e+02 1.023e+02
DTLZ1 6 4.550e+01 5.556e+01 5.634e+01 1.924e+02 1.662e+02 5.686e+01
DTLZ3 6 9.168e+01 6.554e+01 6.418e+01 1.985e+02 1.787e+02 6.656e+01
WFG1 6 1.958e+02 7.512e+01 7.434e+01 2.072e+02 2.170e+02 7.650e+01
WFG3 6 1.136e+03 7.774e+01 6.724e+01 1.967e+02 2.406e+02 7.916e+01
DTLZ1 7 8.734e+01 6.188e+01 6.164e+01 2.453e+02 2.058e+02 6.204e+01
DTLZ3 7 1.622e+02 7.046e+01 7.170e+01 2.699e+02 1.812e+02 8.968e+01
WFG1 7 2.674e+02 8.156e+01 8.470e+01 2.574e+02 2.154e+02 8.036e+01
WFG3 7 1.461e+03 8.358e+01 7.426e+01 2.546e+02 2.334e+02 8.180e+01
DTLZ1 8 8.920e+01 6.054e+01 6.592e+01 2.443e+02 2.349e+02 6.252e+01
DTLZ3 8 2.360e+02 7.318e+01 7.644e+01 2.536e+02 2.555e+02 7.426e+01
WFG1 8 4.476e+02 7.960e+01 8.678e+01 2.612e+02 2.932e+02 8.164e+01
WFG3 8 1.482e+03 8.250e+01 7.690e+01 2.497e+02 3.244e+02 8.380e+01
DTLZ1 9 1.031e+02 6.208e+01 6.984e+01 2.514e+02 3.068e+02 6.554e+01
DTLZ3 9 3.043e+02 7.924e+01 8.222e+01 2.634e+02 3.368e+02 7.806e+01
WFG1 9 3.935e+02 8.856e+01 9.290e+01 2.700e+02 3.807e+02 8.676e+01
WFG3 9 1.660e+03 9.016e+01 8.028e+01 2.594e+02 4.347e+02 8.622e+01
DTLZ1 10 1.507e+02 6.436e+01 7.442e+01 2.728e+02 4.151e+02 6.830e+01
DTLZ3 10 3.933e+02 8.494e+01 8.852e+01 2.865e+02 4.593e+02 8.244e+01
WFG1 10 4.769e+02 9.296e+01 9.974e+01 2.904e+02 5.110e+02 9.182e+01
WFG3 10 1.875e+03 8.474e+01 8.594e+01 2.784e+02 6.013e+02 9.096e+01

124



Performance evaluation 8.4. NSGA-G

Figure 8.2 – Inverted Generational Distance of 4 algorithms with DTLZ3_8.

Experiment of changing the evaluation

In two previous experiments, we survey algorithms with various problems and the
constant number of max evaluation. This section selects a specific problem and shows
the observation of algorithms while the process is running. In particular, we choose
DTLZ3 problem with eight objectives, call DTLZ3_8. Besides, we focus on reducing
the execution time of NSGAs algorithm. Hence, this section compares two versions of
NSGA-G algorithms to others in NSGA class, such as NSGA-II and NSGA-III. Two ver-
sions of NSGA-G with Min point and Random metric are called NSGAG and NSGAR,
respectively. The results in Figure 8.2 and 8.3 show the advantages of two versions of
NSGA-G. Both their convergence and diversity are better than NSGA-II and NSGA-III.
They are also faster than others.

125



Performance evaluation

Figure 8.3 – Execution time of 4 algorithms with DTLZ3_8.

126



Performance evaluation 8.4. NSGA-G

Table 8.15 – Example of real DICOM data set.

Datasets DICOM files AttributiesTuples Metadata Total size
CTColonography 98,737 86 7.76 GB 48.6 GB
Dclunie 541 86 86.0 MB 45.7 GB
Idoimaging 1,111 86 53.9 MB 369 MB
LungCancer 174,316 86 1.17 GB 76.0 GB
MIDAS 2,454 86 63.4 MB 620 MB
CIAD 3,763,894 86 61.5 GB 1.61 TB

Table 8.16 – Example of extracted DICOM data set.

Table Number of Tuples Size
Patient 120,306 20.788 MB
Study 120,306 19.183 MB
GeneralInfoTable 16,226,762 4,845,042 MB
SequenceAttributes 4,149,395 389.433 MB

In conclusion, NSGA-Gs often show better quality and faster execution time in
most cases, such as DTLZs, WFGs. One main conclusion of these experiments is that
NSGA-G with a Random metric is often the least expensive in terms of computation.

8.4.2 Hybrid data storage configuration

In this section, the proposed algorithm, NSGA-G, is applied to DICOM dataset to
look for a Pareto set of data storage configurations. The dataset containing the DICOM
files in the white paper by Oracle [105] is created by six different digital imaging modali-
ties. Its total size is about 2 terabytes, including 2.4 million images of 20,080 studies. In
particular, DICOM text files are used in [97], as shown in Table 8.16. They are extracted
from real DICOM dataset, as shown in Table 8.15. The extracted DICOM dataset [97]
comprises four tables: GeneralInfoTable, SequenceAttributes, Patient, Study.

Patient table

Patient table extracted from DICOM data has 120,306 tuples and 20.788 MB. It
is often processed by a workload WP , as shown in Table 8.17. The Attribute Usage
Matrix of Patient table is shown in Table 8.18. The null ratios of the attributes of the
entity Patient table are:

127



Performance evaluation

— PatientName: 0.0%,
— PatientID: 0.0%,
— PatientBirthDate: 83.55%,
— PatientSex: 1.48%,
— EthnicGroup: 100%,
— IssuerOfPatientID: 100%,
— PatientBirthTime: 96.32%,
— PatientInsurancePlanCodeSequence: 100%,
— PatientPrimaryLanguageCodeSequence: 100%,
— PatientPrimaryLanguageModifierCodeSequence: 100%,
— OtherPatientIDs: 100%,
— OtherPatientNames: 100%,
— PatientBirthNames: 100%,
— PatientTelephoneNumbers: 100%,
— SmokingStatus: 97.48%,
— PregnancyStatus: 90.01%,
— LastMenstrualDate: 97.72%,
— PatientReligiousPreference: 100%,
— PatientComments: 99.64%,
— PatientAddress: 100%,
— PatientMotherBirthName: 100%,
— InsurancePlanIdentification: 100%.

Study table

Study table extracted from DICOM data has 120,306 tuples and 19.183 MB. Work-
load WS accessing Study table is shown in Table 8.19. The Attribute Usage Matrix of
Study table is shown in Table 8.20. The null ratios of the attributes of the entity Study
table are:

— StudyInstanceUID: 0.0%,
— StudyDate: 0.07%,
— StudyTime: 0.07%,
— ReferringPhysicianName: 16.44%,
— StudyID: 15.65%,
— AccessionNumber: 93.93%,

128



Performance evaluation 8.4. NSGA-G

Table 8.17 – Frequency of Queries in Workload WP.

Queries Detail Freq
Qp1 SELECT UID, PatientName, PatientID, PatientBirthDate,

PatientTelephoneNumbers, PatientSex, PatientBirthName,
SmokingStatus, PatientComments, PatientMotherBirth-
Name FROM Patient WHERE PatientID = ’P30013’

300

Qp2 SELECT UID, PatientName, PatientID, PatientBirthDate,
PatientSex, EthnicGroup, IssuerOfPatientID, OtherPatient-
Names, PatientMotherBirthName, InsurancePlanIdentifica-
tion FROM Patient

100

Qp3 SELECT UID, PatientID, PatientName, PatientBirthDate,
PatientSex, EthnicGroup, SmokingStatus FROM Patient
WHERE PatientSex = ’M’ AND SmokingStatus = ’NO’

100

Qp4 SELECT UID, PatientName, PatientID, PatientBirthDate,
EthnicGroup, PatientPrimaryLanguageModifierCodeSe-
quence, OtherPatientIDs, PatientAddress FROM Patient

100

Qp5 SELECT UID, PatientName, PatientID, PatientBirthDate,
PatientBirthTime, PatientInsurancePlanCodeSequence,
PregnancyStatus, LastMenstrualDate, PatientReligious-
Preference FROM Patient

100

Qp6 SELECT UID, PatientName, PatientID, PatientBirthDate,
EthnicGroup, PregnancyStatus, LastMenstrualDate FROM
Patient

100

129



Performance evaluation

Table 8.18 – Attribute Usage Matrix of Patient table.

Attributes Q1 Q2 Q3 Q4 Q5 Q6
PatientName 1 1 1 1 1 1

PatientID 1 1 1 1 1 1
PatientBirthDate 1 1 1 1 1 1

PatientSex 1 1 1 0 1 0
EthnicGroup 0 1 1 1 0 1

IssuerOfPatientID 0 1 0 0 0 0
PatientBirthTime 0 0 0 0 1 0

PatientInsurancePlanCodeSequence 0 0 0 0 1 0
PatientPrimaryLanguageCodeSequence 0 0 1 0 0 0

PatientPrimaryLanguageModifierCodeSequence 0 0 0 1 0 0
OtherPatientIDs 0 0 0 1 0 0

OtherPatientNames 0 1 0 0 0 0
PatientBirthNames 1 0 0 0 0 0

PatientTelephoneNumbers 1 0 0 0 0 0
SmokingStatus 1 0 1 0 0 0

PregnancyStatus 0 0 0 0 1 1
LastMenstrualDate 0 0 0 0 1 1

PatientReligiousPreference 0 0 0 0 1 0
PatientComments 1 0 0 0 0 0

PatientAddress 0 0 0 1 0 0
PatientMotherBirthName 1 1 0 0 0 0

InsurancePlanIdentification 0 1 0 0 0 0

— StudyDescription: 0.48%,
— PatientAge: 11.23%,
— PatientWeight: 14.18%,
— PatientSize: 90.34%,
— Occupation: 99.63%,
— AdditionalPatientHistory: 71.64%,
— MedicalRecordLocator: 100%,
— MedicalAlerts: 100%.

GeneralInfoTalbe

GeneralInfoTable table is extracted from DICOM data. It is often processed by a
workload W, as shown in Table 8.21. The Attribute Usage Matrix of GeneralInfoTable

130



Performance evaluation 8.4. NSGA-G

Table 8.19 – Frequency of Queries in Workload WS.

Queries Detail Freq
Qs1 SELECT StudyInstanceUID, StudyDate, StudyTime, Re-

ferringPhysicianName, StudyID, AccessionNumber, Medi-
calAlerts FROM Study WHERE StudyDate >= ’20000101’
AND StudyDate <= ’20150101’

300

Qs2 SELECT StudyInstanceUID, StudyDate, StudyTime, Re-
ferringPhysicianName, StudyID, MedicalRecordLocator
FROM Study WHERE StudyID = ’20050920’

100

Qs3 SELECT PatientAge, PatientWeight, PatientSize FROM
Study WHERE PatientAge >= 90 Q4,4s

100

Qs4 SELECT UID, StudyInstanceUID, StudyDate, StudyTime,
ReferringPhysicianName, StudyID, AccessionNumber, Pa-
tientWeight, AdditionalPatientHistory FROM Study

100

Qs5 SELECT StudyInstanceUID, StudyDate, StudyTime,
StudyID, PatientSize, Occupation FROM Study

100

Qs6 SELECT StudyInstanceUID, StudyDate, StudyTime, Re-
ferringPhysicianName, StudyID, StudyDescription, Patient-
Age FROM Study WHERE StudyDate >= ’20000101’ AND
StudyDate <= ’20150101’

100

Table 8.20 – Attribute Usage Matrix of Study table.

Attributes Qs1 Qs2 Qs3 Qs4 Qs5 Qs6
StudyInstanceUID 1 1 0 1 1 1

StudyDate 1 1 0 1 1 1
StudyTime 1 1 0 1 1 1

ReferringPhysicianName 1 1 0 1 0 1
StudyID 1 1 0 1 1 1

AccessionNumber 1 0 0 1 0 0
StudyDescription 0 0 0 0 0 1

PatientAge 0 0 1 0 0 1
PatientWeight 0 0 1 1 0 0

PatientSize 0 0 0 0 1 0
Occupation 0 0 0 0 1 0

AdditionalPatientHistory 0 0 0 1 0 0
MedicalRecordLocator 0 1 0 0 0 0

MedicalAlerts 1 0 0 0 0 0

131



Performance evaluation

Table 8.21 – Frequency of Queries in Workload WGe.

Queries Detail Freq
QGe1 SELECT UID, GeneralTags, GeneralVRs, GeneralNames,

GeneralValues FROM GeneralInfoTable
100

QGe2 SELECT GeneralTags, count(GeneralValues) FROM Gen-
eralInfoTable GROUP BY GeneralTags

100

QGe3 SELECT UID, GeneralNames FROM GeneralInfoTable
WHERE GeneralNames = ’Modality’

100

QGe4 SELECT UID, GeneralVRs FROM GeneralInfoTable
WHERE GeneralVRs = ’DA’

100

Table 8.22 – Attribute Usage Matrix of GeneralInfoTable.

Queries GeneralTags
(a1)

GeneralVRs
(a2)

GeneralNames
(a3)

GeneralValues
(a4)

QGe1 1 1 1 1
QGe2 1 0 0 1
QGe3 0 0 1 0
QGe4 0 1 0 0

table is shown in Table 8.22. GeneralInfoTable has four attributes with the null ratios of
the attributes, given by:

— GeneralTags: 0.0%,
— GeneralVRs: 0.0%,
— GeneralNames: 0.0%,
— GeneralValues: 13.97%.

SequenceAttributes

SequenceAttributes table [97] is extracted from DICOM data. It is often processed
by a workload WSeq, as shown in Table 8.23. The Attribute Usage Matrix related to
SequenceAttributes is shown in Table 8.24. SequenceAttributes has four attributes with
the null ratios of the attributes as follows:

— SequenceTags: 0.0%,
— SequenceVRs: 0.0%,
— SequenceNames: 0.0%,
— SequenceValues: 0.34%.

132



Performance evaluation 8.4. NSGA-G

Table 8.23 – Frequency of Queries in Workload WSeq.

Queries Detail Freq
QSeq1 SELECT UID, SequenceTags, SequenceVRs, Sequen-

ceNames, SequenceValues FROM SequenceAttributes
WHERE SequenceNames LIKE ’%X-Ray%’

100

QSeq2 SELECT SequenceTags, SequenceVRs, SequenceNames
FROM SequenceAttributes WHERE SequenceVRs = ’CS’

100

Table 8.24 – Attribute Usage Matrix of SequenceAttributes.

Queries SequenceTags
(a1)

SequenceVRs
(a2)

SequenceNames
(a3)

SequenceValues
(a4)

QSeq1 1 1 1 1
QSeq2 1 1 1 0

Results

The number of attributes in GeneralInfoTable and SequenceAttibutes is four and the
null ratios of them often equal to 0.0%. Hence, the number of data storage configuration
candidates is not too big. The experiments give the same results in GD and IDG quality
tests with these two tables.

On the other hand, the information of Patient and Study tables are more compli-
cated than the others in DICOM. NSGA-G and other NSGAs are experimented with
Patient and Study tables in GD and IGD quality tests. The version of NSGA-G we use
in this section is NSGA-G with Min point. These algorithms use the same population
of size N = 100 and the maximum evaluation M = 100, while the default values in
MOEA framework are used, such as Simulated binary crossover (30) and Polynomial
mutation (20). Tables 8.25 and 8.26 show the qualities of diversity and convergence
of five algorithms. As mentioned in previous Section 8.4.1, the lower value of experi-
ments represents a better quality of an algorithm. In this experiment, the best algorithm
is NSGA-III and the second one is NSGA-G. These results can be explained by the
fact that the DICOM data storage configuration problem is less complicate than DTLZ
problems. Moreover, Table 8.28 show the advantage of NSGA-G among five NSGAs in
execution times.

In conclusion, despite the best quality algorithm in the case of DICOM hybrid store,
the computation time of NSGA-III is too long. In contrast, in spite of the second good
algorithm, the execution time of NSGA-G is shorter than the others.

133



Performance evaluation

Table 8.25 – Generational Distance.

eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
Patient 1.997e-02 2.156e-02 2.289e-02 1.604e-02 1.853e-02
Study 6.495e-02 6.166e-02 6.210e-02 5.559e-02 7.476e-02

Table 8.26 – Inverted Generational Distance.

eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
Patient 9.816e-02 1.002e-01 9.922e-02 8.552e-02 9.796e-02
Study 4.636e-02 4.445e-02 6.509e-02 4.249e-02 4.374e-02

Table 8.27 – Maximum Pareto Front Error

eMOEA NSGAII MOEAD NSGAIII NSGAG
patientall 2.492e-01 2.492e-01 2.492e-01 2.492e-01 2.492e-01
studyall 4.888e-01 6.027e-01 6.931e-01 6.563e-01 6.956e-01

Table 8.28 – The execution time of NSGAs with DICOM.

Table eMOEA(s) NSGA-II(s) MOEA/D(s) NSGA-III(s) NSGA-G(s)
Patient 17.804 17.822 17.810 17.907 17.740
Study 7.659 7.720 7.775 7.718 7.706

8.5 Conclusion

This chapter experiments the medical data management, MIDAS, in a cloud federa-
tion. In particular, DICOM dataset is organized by the management of multiple engines
platform, IReS, in the cloud environment. Dynamic REgression AlgorithM (DREAM)
and Non-dominated Sorting Genetic Algorithm based on Grid partitioning (NSGA-G)
are introduced as a part of Medical Data Management System and on top of IReS.

Furthermore, this chapter presents experiments of our solution to optimize storage
and query processing of DICOM files in a hybrid (row-column) store. The experiments
validate DREAM with IReS platform, and compare the quality of DREAM to other ma-
chine learning algorithms in IReS with TPC-H benchmark. NSGA-Gs are experimented
on DTLZ, WFG test problems. Besides, NSGA-G is used to find an approximation of
Pareto-optimal with a good trade-off between diversity and performance. Preliminary
experiments on DICOM files in a hybrid store prove that NSGA-G also provides the
best processing time with interesting results in both diversity and convergence.

134



Key Points
• We execute the experiments to validate DREAM with IReS platform, and
compare the quality of DREAM to other machine learning algorithms in IReS
with TPC-H benchmark.
• We execute the experiments to validate NSGA-G with MOEA framework,
and compare the quality of NSGA-Gs to other NSGAs with DTLZ, and WFG
problems.
• We execute the experiments to validate NSGA-G to find the approxi-

mate optimal solution in the hybrid data storage configuration with DICOM
dataset.





CHAPTER 9

CONCLUSION AND FUTURE WORK

Contents
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2.1 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.2.2 Estimating in Multi-Objective Optimization Problem . . . . . . . 139

9.2.3 Multi-Objective Evolutionary Algorithm . . . . . . . . . . . . . . 140

9.2.4 Optimizing medical data storage configuration . . . . . . . . . 140

9.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.3.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.3.2 Searching and optimization . . . . . . . . . . . . . . . . . . . . 141

9.3.3 Hybrid data storage configuration . . . . . . . . . . . . . . . . . 142

9.1 Introduction

This chapter concludes our work on data management in cloud federations and its
application in the medical domain. Section 9.2 summarizes our contributions. Large
scale data management is a vast domain that we have very partially addressed. Sec-
tion 9.3 describes future research directions in estimation, searching and optimization
for MOOPs, their applications.

9.2 Summary and Conclusion

Medical data management in cloud federations raises Multi-Objective Optimization
Problems (MOOPs) for query processing and data storage, according to users pref-
erences, such as response time, monetary cost, qualities, etc. These problems are

137



Conclusion and Future work

complex to address because of the variability of the environment (due to virtualization,
large-scale communications, etc.). Hence, the cost values for MOOPs need to be esti-
mated accurately by using efficient data sample. Besides, MOOP in a cloud federation
needs to be solved by an efficient search and optimization method. In particular, data
storage configuration for DICOM files on a hybrid row-column system need to find an
optimal solution.

Five main contributions emerged from this dissertation. First, we synthesize a com-
prehensive evaluation of the existing solutions related to query processing and data
storage in cloud federations. The state of the art also presented the current research
on medical data managing methods in row, column, row-column storages. The search-
ing and optimization methods are described with their strengths and weaknesses. Sec-
ond, we proposed a dynamic multiple linear regression method to estimate accurately
cost value in the cloud environment. Third, an efficient Non-dominated Sorting Genetic
Algorithm based on Grid partitioning (NSGA-G) is proposed to search and optimize the
process to solve Multi-Objective Optimization Problem in a cloud federation. We then
use NSGA-G to find an approximate optimal solution of a data storage configuration
for DICOM files on a hybrid row-column system. Finally, we performed validations to
demonstrate the advantages of our proposed approaches.

9.2.1 Existing solutions

Medical data in a cloud federation raises challenges in data management in terms
of Multi-Objective Optimization in hybrid data storage configuration, query processing,
the management of multiple engines platform.

First, the thesis shows recent works on various aspects in cloud environment, i.e.,
resource and data management. With regard to cloud environment, the existing sys-
tems focus on optimizing single metrics, such as execution time, data transferring. They
do not consider the MOOP in the optimization process. IReS is to the best of our knowl-
edge the only platform that addresses this kind of problem, but the algorithm they use
to built the cost model and optimize MOOP has limited performance. Therefore, we
reuse IReS, which is an open source, in a multi-engine environment, and evaluate the
proposal approaches to solve MOOP in a cloud federation more efficiently.

Second, based on the specific characteristics of medical data, we discussed op-
portunities and challenges in terms of data storage and possible layout configurations.

138



Conclusion and Future work 9.2. Summary and Conclusion

DICOM standard and medical data management using this format is also presented.
We described recent works on hybrid data storage configuration approaches. HY-
TORMO [97] addresses an automatically generate hybrid data storage configuration
in terms of query processing, data storage, the high volume and sparsity of DICOM
data. However, they do not give any method to find the optimal hybrid data storage
configurations [97, 101] in MOOP. Hence, in the context of MOOP in HYTORMO and
the huge space of candidates, the hybrid data configuration needs find an approximate
optimal solution with a low computational complexity Multi-Objective algorithm.

Third, the goal of Multi-Objective Optimization (MOO) is to find the set of Pareto-
optimal solutions, i.e. the query plans realizing optimal cost trade-offs for a given query,
the hybrid data storage configuration optimal cost trade-offs for a given workload and
data set. The MOO background is presented. Pareto set aspect and the widely es-
timation technique, Multiple Linear Regression, used in science and engineering are
showed in the thesis. It is introduced to build a cost model for estimating multiple cost
value in MOOP. Related to searching and optimizing approaches, we focus on the
process of a good technique in MOO, such as EMO class. In particular, NSGAs show
their advantage in EMO algorithms. However, the characteristics of NSGAs should be
improved to have better performance, such as diversity, convergence. Therefore, the
MOOP in cloud environment need to have efficient algorithms to build cost models, and
optimize query processing and data storage.

9.2.2 Estimating in Multi-Objective Optimization Problem

We proposed Dynamic REgression AlgorithM (DREAM) to improve the accuracy of
cost values in a cloud federation. The proposed algorithm reduces the size of historical
data in the training process based on the coefficient of determination. Following this
approach the execution time for training and testing process is decreased. This char-
acteristic is suitable to the variability of cloud environments, such as users demands of
resources.

We validated DREAM with IReS platform, and compare the quality of DREAM to
other machine learning algorithms with TPC-H benchmark. The experiments show that
DREAM estimations are more accurate than the ones of other machine learning algo-
rithms. In particular, Mean Relative Error of DREAM is the smallest values between
various experiments. Besides, the size of data sample DREAM uses is small, around

139



Conclusion and Future work

the size of observation windows.

9.2.3 Multi-Objective Evolutionary Algorithm

We then introduced our EMO algorithms, Non-dominated Sorting Genetic Algo-
rithms based on Grid partitioning. There are two versions of NSGA-G using: (1) Min
point and (2) Random metric. Both versions prove the advantage of our algorithms
comparing to original NSGAs. The characteristic of NSGA-G promise to improve con-
vergence, diversity and execution time in MOOPs. Besides, the way to determine the
grid point is presented. This method is adapted to the number of the candidate of solu-
tions in the last front of NSGA process.

The first NSGA-G uses the distance from the solution to the Min point to compare
the quality among solutions in a group, the convergence and diversity of method are
kept by randomly choosing a group to remove a solution in the last front. This strategy
help algorithm executed less time more than other NSGAs. To reduce more execution
time, NSGA-G with Random metric does not use the intermediate function to evaluate
the value of solution in a group. Instead, the algorithm use the nature metric to remove
a solution in a group in the last front. The way of choosing the nature metric is also
random. Not using an intermediate function enables to reduce processing time. The
convergence and the diversity are kept by the same step in NSGA-G with Min point,
but the quality is reduced a little. However, it is still better than other NSGAs.

We validated NSGA-Gs with DTLZ, WFG test problems, and MOEA framework.
The experiments show that NSGA-Gs often show better quality and faster execution
time than other NSGAs in most cases, such as DTLZs, WFGs. One main conclusion of
these experiments is that NSGA-G with a Random metric is often the least expensive
in terms of computation.

9.2.4 Optimizing medical data storage configuration

We proposed Medical Data Management System (MIDAS), a DICOM management
system for cloud federation. We addressed then the problem of automatically finding
data storage configurations for DICOM files in a cloud federation and solved it as a
MOO problem. The automatic approach [97] does not provide an approach to find an
optimal data storage configuration for DICOM data storage. Our contribution is applied

140



Conclusion and Future work 9.3. Future Works

NSGA-G to solve this problem to find an approximated optimal hybrid data storage
configuration.

We implement MIDAS by extending the management of multiple engines platform,
IReS, to organize DICOM in a cloud federation. NSGA-G is applied with DICOM extract
files to find an optimal data storage configuration. The experiments show the advantage
of NSGA-G among five NSGAs in execution times.

9.3 Future Works

9.3.1 Estimation

Our algorithm is developed to improve the accuracy of cost values in cloud envi-
ronment. The strategy of using the coefficient of determination is applied to a multi-
ple linear regression algorithm. Similar to Multiple Linear Regression, other machine
learning algorithms need to remove expired data samples. Besides, the build model
process should be as fast as possible. In addition, there is a various machine learning
algorithms could be used to estimate cost values, such as Least squared regression,
Bagging predictors, Multilayer Perceptron, etc. Hence, for the future, this strategy could
be used to reduce the data sample and applied to these machine learning algorithms.

9.3.2 Searching and optimization

Our algorithms are proposed to improve the quality of NSGAs. They show better
performances than other NSGAs. Our algorithms can be applied to MOOPs to find
an approximate optimal solution. It is suitable for cloud federations when the space of
candidates is huge.

In many NSGA algorithms, the size of population in each generation iterate is con-
stant. The suitable value of population size is still a question of NSGAs. First, the ge-
netic algorithm simulate the process of real animal population. The size of population of
real world animal could decrease or increase, according to the environment (for exam-
ple in case of diseases). Second, before running NSGAs, the size of population should
be defined as a constant. Future works include a deeper study on the impact of the size
of the population. Third, NSGAs are different in the process of removing the solution
in the last front. If this process is remove, the algorithms will be faster than the original

141



Conclusion and Future work

NSGAs. As a consequence, new method of studying NSGAs is considering the size of
population being variable. For example, the size of population in the next generation
iterate is equal to the first front which is the first Pareto set of candidates in the ranking
process.

9.3.3 Hybrid data storage configuration

The hybrid data is studied in this thesis by optimizing the data storage configuration
for DICOM dataset. By using NSGA-G, the approximate optimal data storage config-
uration is found in the huge space of candidates. In the future, the approach can be
applied to other medical data and real commercial clouds.

In the future, DREAM and NSGA-G may be applied to many other applications. For
example, SparkTune [54] shows the way to estimate the cost values for Spark [135].
However, they do not consider MOOPs in their work. Hence, the estimation, searching
and optimize methods for MOOPs are still the research works. For example, Spark
SQL [136] generates all query exectuion plans. In the various resource configuration,
the space of candidates is huge in MOOPs. Hence, the search and optimization need
an approximate optimal solution with low complexity computation to solve MOOPs.

In addition, when the workload and data changes, the exist hybrid data configura-
tion maybe is not the optimal solution anymore. This context raised an issue of the
re-configuration. Hence, other direction of the research is the adapt method of re-
configuration.

Further more, the hybrid data systems for DBMS and NoSQL is still not considered
in this thesis. Hence, other direction of the research is to find a method to integrate the
advantages of both DBMS and NoSQL.

142



PERSONAL PUBLICATIONS

— Trung-Dung Le, Verena Kantere, Laurent d’Orazio. Dynamic estimation for
medical data management in a cloud federation. International Workshop On
Data Analytics solutions for Real-LIfe APplications (DARLI-AP@EDBT), Lisbon,
Portugal, 2019.

— Trung-Dung Le, Verena Kantere, Laurent d’Orazio. Optimizing DICOM data
management with NSGA-G. International Workshop On Design, Optimization,
Languages and Analytical Processing of Big Data (DOLAP@EDBT), Lisbon,
Portugal, 2019.

— Trung-Dung Le, Verena Kantere, Laurent d’Orazio. An efficient multi-objective
genetic algorithm for cloud computing: NSGA-G. International workshop on on
Benchmarking, Performance Tuning and Optimization for Big Data Applications
(BPOD@BigData), Seattle, WA, USA, 2018.

— Trung-Dung Le, Verena Kantere, Laurent d’Orazio. Dynamic estimation and
Grid partitioning approach for Multi-Objective Optimization Problems in medical
cloud federations. Submitted on Information Systems Frontiers, ISSN: 1387-
3326, 2019.

143





BIBLIOGRAPHY

[1] Antonio Regalado (31 October 2011), « "Who Coined ’Cloud Computing’?". »,
in: Technology Review. MIT (Retrieved 31 July 2013).

[2] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang, « Integrating vertical and
horizontal partitioning into automated physical database design », in: Proceed-
ings of the 2004 ACM SIGMOD international conference on Management of
data - SIGMOD ’04 (2004), p. 359.

[3] Anastassia Ailamaki et al., « DBMSs on a Modern Processor: Where Does Time
Go? », in: Proceedings of the 25th International Conference on Very Large Data
Bases, VLDB ’99, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1999, pp. 266–277, ISBN: 1-55860-615-7.

[4] M. Akdere et al., « Learning-based query performance modeling and predic-
tion », in: International Conference on Data Engineering (2012), pp. 390–401.

[5] Yahya Al-Dhuraibi et al., « Elasticity in Cloud Computing: State of the Art and
Research Challenges », in: IEEE Transactions on Services Computing 11.2
(2018), pp. 430–447, ISSN: 19391374.

[6] Amazon Web Services Website, 2018, URL: https://aws.amazon.com/.

[7] Apache Cassandra, 2018, URL: http://cassandra.apache.org/.

[8] Michael Armbrust et al., « A View of Cloud Computing », in: Commun. ACM
53.4 (Apr. 2010), pp. 50–58.

[9] Michael Armbrust et al., « Above the Clouds: A Berkeley View of Cloud Com-
puting », in: Eecs.Berkeley.Edu (2009).

[10] Michael Armbrust et al., « Spark {SQL:} Relational Data Processing in Spark »,
in: Proceedings of the SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, 2015, pp. 1383–1394.

[11] Lucas S. Batista, « Performance Assessment of Multiobjective Evolutionary Al-
gorithms », in: 7 (2012).

145

https://aws.amazon.com/
http://cassandra.apache.org/


Bibliography

[12] M. A. Bayir, I. H. Toroslu, and A. Cosar, « Genetic Algorithm for the Multiple-
Query Optimization Problem », in: IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 37.1 (2007), pp. 147–153, ISSN:
1094-6977.

[13] Anton Beloglazov and Rajkumar Buyya, « Energy efficient allocation of virtual
machines in cloud data centers », in: CCGrid 2010 - 10th IEEE/ACM Interna-
tional Conference on Cluster, Cloud, and Grid Computing (2010), pp. 577–578.

[14] Phil Bernstein et al., « The Asilomar Report on Database Research », in: SIG-
MOD Rec. 27.4 (Dec. 1998), pp. 74–80, ISSN: 0163-5808.

[15] Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle, « An Em-
pirical Assessment of the Properties of Inverted Generational Distance on Multi-
and Many-Objective Optimization », in: Evolutionary Multi-Criterion Optimiza-
tion, Cham: Springer International Publishing, 2017, pp. 31–45.

[16] BigTable, 2018, URL: https://cloud.google.com/bigtable/.

[17] Burton H. Bloom, « Space/Time Trade-offs in Hash Coding with Allowable Er-
rors », in: Commun. ACM 13.7 (July 1970), pp. 422–426, ISSN: 0001-0782.

[18] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten, « Database Architec-
ture Optimized for the New Bottleneck: Memory Access », in: Proceedings of
the 25th International Conference on Very Large Data Bases, VLDB ’99, San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 54–65, ISBN:
1-55860-615-7.

[19] Peter A. Boncz, Marcin Zukowski, and Niels Nes, « MonetDB/X100: Hyper-
Pipelining Query Execution », in: CIDR 2005, Second Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, 2005, pp. 225–237.

[20] E. A. Boytsov, « Applying stochastic metaheuristics to the problem of data man-
agement in a multi-tenant database cluster », in: Automatic Control and Com-
puter Sciences (2014).

[21] Gilles Brassard and Paul Bratley, Algorithmics: Theory &Amp; Practice, Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1988, ISBN: 0-13-023243-2.

[22] Leo Breiman, « Bagging predictors », in: Machine Learning 24 (1996), pp. 123–
140.

146

https://cloud.google.com/bigtable/


Bibliography

[23] Francesca Bugiotti et al., « Invisible Glue: Scalable Self-Tunning Multi-Stores »,
in: Conference on Innovative Data Systems Research (CIDR), Asilomar, CA,
USA, 2015.

[24] George Candea, Neoklis Polyzotis, and Radek Vingralek, « Predictable perfor-
mance and high query concurrency for data analytics », in: VLDB Journal 20.2
(2011), pp. 227–248, ISSN: 10668888.

[25] V. Chankong and Y.Y. Haimes, Multiobjective decision making: theory and method-
ology, North-Holland series in system science and engineering, North Holland,
1983.

[26] Surajit Chaudhuri, « An Overview of Query Optimization in Relational Systems »,
in: Proceedings of the Symposium on Principles of Database Systems (PODS),
Seattle, Washington, USA, 1998, pp. 34–43.

[27] Jack Chen et al., « The MemSQL Query Optimizer: A Modern Optimizer for
Real-time Analytics in a Distributed Database », in: Proc. VLDB Endow. 9.13
(Sept. 2016), pp. 1401–1412, ISSN: 2150-8097.

[28] Paolo Ciaccia and Davide Martinenghi, « Reconciling Skyline and Ranking Queries »,
in: Proc. VLDB Endow. 10.11 (Aug. 2017), pp. 1454–1465, ISSN: 2150-8097.

[29] « Cloud Federation », in: Computing (2011), p. 7.

[30] Carlos A. Coello Coello and Nareli Cruz Cortés, « Solving Multiobjective Opti-
mization Problems Using an Artificial Immune System », in: Genetic Program-
ming and Evolvable Machines 6 (2005), pp. 163–190.

[31] Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont, Evo-
lutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolu-
tionary Computation), 2002.

[32] CouchDB, 2018, URL: http://couchdb.apache.org/.

[33] DICOM, 2019, URL: https://www.dicomstandard.org/.

[34] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi, « ElasTraS: An Elastic,
Scalable, and Self-managing Transactional Database for the Cloud », in: ACM
Trans. Database Syst. 38.1 (Apr. 2013), 5:1–5:45, ISSN: 0362-5915.

147

http://couchdb.apache.org/
https://www.dicomstandard.org/


Bibliography

[35] David J DeWitt et al., « Split query processing in polybase », in: Proceedings of
the SIGMOD International Conference on Management of Data, New York, NY,
USA, 2013, pp. 1255–1266.

[36] Jeffrey Dean and Sanjay Ghemawat, « MapReduce: Simplified Data Processing
on Large Clusters », in: Commun. ACM 51 (2008), pp. 107–113.

[37] Kalyanmoy Deb, « Multi-objective optimization using evolutionary algorithms:
an introduction », in: KanGAL Report (2011), pp. 1–24.

[38] Kalyanmoy Deb and Ram Bhushan Agrawal, « Simulated Binary Crossover for
Continuous Search Space », in: Complex Systems 9 (1994), pp. 1–34.

[39] Kalyanmoy Deb and Himanshu Jain, « An Evolutionary Many-Objective Opti-
mization Algorithm Using Reference-point Based Non-dominated Sorting Ap-
proach, Part I: Solving Problems with Box Constraints », in: IEEEXplore 18
(2013).

[40] Kalyanmoy Deb et al., « A fast and elitist multiobjective genetic algorithm: NSGA-
II », in: IEEE Trans. Evol. Comput. 6 (2002), pp. 182–197.

[41] Kalyanmoy Deb et al., « Scalable Test Problems for Evolutionary Multiobjec-
tive Optimization », in: Evolutionary Multiobjective Optimization. Theoretical Ad-
vances and Applications (2005), pp. 105–145.

[42] K. Doka et al., « IReS: Intelligent, Multi-Engine Resource Scheduler for Big Data
Analytics Workflows », in: SIGMOD ’15, 2015.

[43] Tansel Dokeroglu, Murat Ali Bayır, and Ahmet Cosar, « Integer Linear Program-
ming Solution for the Multiple Query Optimization Problem », in: Information
Sciences and Systems 2014, Cham: Springer International Publishing, 2014,
pp. 51–60, ISBN: 978-3-319-09465-6.

[44] Tansel Dokeroglu, Murat Ali Bayir, and Ahmet Cosar, « Robust Heuristic Algo-
rithms for Exploiting the Common Tasks of Relational Cloud Database Queries »,
in: Appl. Soft Comput. 30.C (May 2015), pp. 72–82, ISSN: 1568-4946.

[45] A. Elmore et al., « A Demonstration of the BigDAWG Polystore System », in:
Proc. VLDB Endow. 8.12 (Aug. 2015), pp. 1908–1911.

[46] Franz Färber et al., « SAP HANA Database: Data Management for Modern
Business Applications », in: SIGMOD Rec. 40 (2012), pp. 45–51.

148



Bibliography

[47] Franz Färber et al., « The SAP HANA Database – An Architecture Overview »,
in: IEEE Data Eng. Bull. 35 (2012), pp. 28–33.

[48] H. M. Fard et al., « A Multi-objective Approach for Workflow Scheduling in Het-
erogeneous Environments », in: 12th IEEE/ACM (2012).

[49] David B. Fogel, Evolutionary Computation: Toward a New Philosophy of Ma-
chine Intelligence (IEEE Press Series on Computational Intelligence), Wiley-
IEEE Press, 2006, ISBN: 0471749214.

[50] C. M. Fonseca and P. J. Fleming, « An Overview of Evolutionary Algorithms in
Multiobjective Optimization », in: Evolutionary Computation 3.1 (1995), pp. 1–
16.

[51] Global Inter-cloud Technology Forum, « Use Cases and Functional Require-
ments for Inter-Cloud Computing », in: (2010), p. 44.

[52] Michael Franklin, Alon Halevy, and David Maier, « From Databases to Datas-
paces: A New Abstraction for Information Management », in: SIGMOD Rec.
34.4 (Dec. 2005), pp. 27–33, ISSN: 0163-5808.

[53] Chi-Wai Fung, Kamalakar Karlapalem, and Qing Li, « Cost-driven vertical class
partitioning for methods in object oriented databases », in: The VLDB Journal
12.3 (2003), pp. 187–210.

[54] Enrico Gallinucci and Matteo Golfarelli, « SparkTune: tuning Spark SQL through
query cost modeling », in: Advances in Database Technology - 22nd Interna-
tional Conference on Extending Database Technology, EDBT 2019, Lisbon,
Portugal, March 26-29, 2019, 2019, pp. 546–549, DOI: 10.5441/002/edbt.
2019.52, URL: https://doi.org/10.5441/002/edbt.2019.52.

[55] A. Ganapathi et al., « Predicting Multiple Metrics for Queries: Better Decisions
Enabled by Machine Learning », in: 2009 IEEE 25th International Conference
on Data Engineering, 2009, pp. 592–603.

[56] Michael R. Garey and David S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness, New York, NY, USA: W. H. Freeman & Co.,
1990, ISBN: 0716710455.

[57] V. Giannakouris et al., « MuSQLE: Distributed SQL query execution over multi-
ple engine environments », in: 2016 IEEE International Conference on Big Data
(Big Data), 2016, pp. 452–461, DOI: 10.1109/BigData.2016.7840636.

149

http://dx.doi.org/10.5441/002/edbt.2019.52
http://dx.doi.org/10.5441/002/edbt.2019.52
https://doi.org/10.5441/002/edbt.2019.52
http://dx.doi.org/10.1109/BigData.2016.7840636


Bibliography

[58] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann, « SharedDB: Killing
One Thousand Queries With One Stone », in: CoRR abs/1203.0056 (2012),
arXiv: 1203.0056, URL: http://arxiv.org/abs/1203.0056.

[59] Jana Giceva et al., « Deployment of Query Plans on Multicores », in: Proc.
VLDB Endow. 8.3 (Nov. 2014), pp. 233–244, ISSN: 2150-8097.

[60] Christian Glaßer et al., « Approximability and Hardness in Multi-objective Opti-
mization », in: Programs, Proofs, Processes, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 180–189.

[61] Fred Glover and Manuel Laguna, Tabu Search, Norwell, MA, USA: Kluwer Aca-
demic Publishers, 1997, ISBN: 079239965X.

[62] David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, 1st, Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1989, ISBN: 0201157675.

[63] Martin Grund et al., « HYRISE: A Main Memory Hybrid Storage Engine », in:
VLDB Endow. 4 (2010), pp. 105–116.

[64] HBase, 2018, URL: https://hbase.apache.org/.

[65] Richard A. Hankins and Jignesh M. Patel, « Data Morphing: An Adaptive, Cache-
conscious Storage Technique », in: Proceedings of the 29th International Con-
ference on Very Large Data Bases - Volume 29, VLDB ’03, VLDB Endowment,
2003, pp. 417–428.

[66] Stavros Harizopoulos, Daniel J. Abadi, and Samuel Madden, « Performance
Tradeoffs in Read-Optimized Databases », in: VLDB (2006), pp. 487–498.

[67] Florian Helff and Laurent Orazio, « Weighted Sum Model for Multi-Objective
Query Optimization for Mobile-Cloud Database Environments », in: EDBT/ICDT
Workshops, 2016.

[68] Frederick S. Hillier and Gerald J. Lieberman, Introduction to Operations Re-
search, 4th Ed. San Francisco, CA, USA: Holden-Day, Inc., 1986, ISBN: 0816238715.

[69] S. Huband et al., « A review of multiobjective test problems and a scalable
test problem toolkit », in: IEEE Transactions on Evolutionary Computation 10.5
(2006), pp. 477–506, ISSN: 1089-778X, DOI: 10.1109/TEVC.2005.861417.

[70] HyperTable, 2018, URL: http://www.hypertable.org/.

150

http://arxiv.org/abs/1203.0056
http://arxiv.org/abs/1203.0056
https://hbase.apache.org/
http://dx.doi.org/10.1109/TEVC.2005.861417
http://www.hypertable.org/


Bibliography

[71] H. Ishibuchi, H. Masuda, and Y. Nojima, « Sensitivity of performance evaluation
results by inverted generational distance to reference points », in: 2016 IEEE
Congress on Evolutionary Computation (CEC), 2016, pp. 1107–1114.

[72] Himanshu Jain and Kalyanmoy Deb, « An evolutionary many-objective opti-
mization algorithm using reference-point based nondominated sorting approach,
Part II: Handling constraints and extending to an adaptive approach », in: IEEE
Transactions on Evolutionary Computation 18 (2014), pp. 602–622.

[73] Manos Karpathiotakis, Ioannis Alagiannis, and Anastasia Ailamaki, « Fast Queries
over Heterogeneous Data Through Engine Customization », in: Proc. VLDB En-
dow. 9.12 (Aug. 2016), pp. 972–983, ISSN: 2150-8097.

[74] G. Keller, Statistics for Management and Economics, Cengage Learning, 2014,
ISBN: 9781133420774.

[75] Salman A. Khan and Shafiqur Rehman, « Iterative non-deterministic algorithms
in on-shore wind farm design: A brief survey », in: Renewable and Sustainable
Energy Reviews 19 (2013), pp. 370 –384.

[76] V. Khare, X. Yao, and K. Deb, « Performance Scaling of Multi-objective Evolu-
tionary Algorithms », in: Evolutionary Multi-Criterion Optimization, Berlin, Hei-
delberg, 2003, pp. 376–390.

[77] Alireza Khoshkbarforoushha et al., « Flower: A Data Analytics Flow Elasticity
Manager », in: PVLDB 10 (2017), pp. 1893–1896.

[78] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, « Neurocomputing: Founda-
tions of Research », in: ed. by James A. Anderson and Edward Rosenfeld, Cam-
bridge, MA, USA: MIT Press, 1988, chap. Optimization by Simulated Annealing,
pp. 551–567, ISBN: 0-262-01097-6, URL: http://dl.acm.org/citation.cfm?
id=65669.104435.

[79] Herald Kllapi et al., « Schedule optimization for data processing flows on the
cloud », in: Proceedings of the 2011 international conference on Management
of data - SIGMOD ’11 (2011), p. 289.

[80] Konstantinos Kloudas et al., « Pixida: Optimizing Data Parallel Jobs in Wide-
Area Data Analytics », in: Vldb (2014), pp. 72–83, ISSN: 2150-8097.

151

http://dl.acm.org/citation.cfm?id=65669.104435
http://dl.acm.org/citation.cfm?id=65669.104435


Bibliography

[81] J. Knowles and D. Corne, « The Pareto archived evolution strategy: a new base-
line algorithm for Pareto multiobjective optimisation », in: 1999 Congress on
Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 1, 1999, pp. 98–
105.

[82] Boyan Kolev et al., « CloudMdsQL: querying heterogeneous cloud data stores
with a common language », in: Distributed and Parallel Databases 34.4 (2016),
pp. 463–503.

[83] Boyan Kolev et al., « The CloudMdsQL Multistore System », in: Proceedings of
the SIGMOD International Conference on Management of Data, San Francisco,
CA, USA, 2016, pp. 2113–2116.

[84] Mario Köppen and Kaori Yoshida, « Substitute Distance Assignments in NSGA-
II for Handling Many-objective Optimization Problems », in: (2006), pp. 727–
741.

[85] T. V. V. Kumar and K. Devi, « Frequent queries identification for constructing
materialized views », in: 2011 3rd International Conference on Electronics Com-
puter Technology, vol. 6, 2011, pp. 177–181.

[86] Jeff LeFevre et al., « {MISO:} souping up big data query processing with a mul-
tistore system », in: Proceedings of the SIGMOD International Conference on
Management of Data, Snowbird, UT, USA, 2014, pp. 1591–1602.

[87] Jongwuk Lee and Seung won Hwang, « Toward efficient multidimensional sub-
space skyline computation », in: VLDB Journal 23.1 (2014), pp. 129–145, ISSN:
10668888.

[88] Viktor Leis et al., « How Good Are Query Optimizers, Really? », in: Proc. VLDB
Endow. 9.3 (Nov. 2015), pp. 204–215, ISSN: 2150-8097.

[89] LevelDB, 2018, URL: http://leveldb.org/.

[90] Jiexing Li, Jeffrey F Naughton, and Rimma V Nehme, « Resource bricolage
and resource selection for parallel database systems », in: VLDBJ 26.1 (2017),
pp. 31–54.

[91] Harold Lim, Y Han, and S Babu, « How to Fit when No One Size Fits. », in: Cidr
(2013).

[92] Ji Liu et al., « Multi-objective scheduling of Scientific Workflows in multisite
clouds », in: Future Generation Computer Systems 63 (2016), pp. 76–95.

152

http://leveldb.org/


Bibliography

[93] Benjamin Markines et al., « Evaluating Similarity Measures for Emergent Se-
mantics of Social Tagging », in: Proceedings of the 18th International Confer-
ence on World Wide Web, WWW ’09, Madrid, Spain: ACM, 2009, pp. 641–650,
ISBN: 978-1-60558-487-4.

[94] Zbigniew Michalewicz, How to Solve It: Modern Heuristics 2e, Berlin, Heidel-
berg: Springer-Verlag, 2010, ISBN: 3642061346, 9783642061349.

[95] Microsoft Azure Website, 2018, URL: https://azure.microsoft.com/.

[96] MongoDB, 2018, URL: https://www.mongodb.com/.

[97] Cong-Danh NGUYEN, « Workload- and Data-based Automated Design for a
Hybrid Row-column Storage Model and Bloom Filter-based Query Processing
for Large-scale DICOM Data Management », PhD thesis, Clermont Auvergne
University, 2018.

[98] Arnab Nandi and H V Jagadish, « Guided Interaction: Rethinking the Query-
Result Paradigm », in: Vldb 4.12 (2011), pp. 1466–1469.

[99] Richard E. Neapolitan and Kumarss Naimipour, Foundations of Algorithms, Lex-
ington, MA, USA: D. C. Heath and Company, 1996, ISBN: 0-669-35298-5.

[100] Neo4J, 2018, URL: https://neo4j.com/.

[101] Danh Nguyen-Cong et al., « Storing and Querying DICOM Data with HYTORMO »,
in: Data Management and Analytics for Medicine and Healthcare, Cham: Springer
International Publishing, 2017, pp. 43–61.

[102] Hiep Nguyen et al., « AGILE: Elastic Distributed Resource Scaling for Infrastructure-
as-a-Service », in: Proceedings of the 10th International Conference on Auto-
nomic Computing (ICAC 13), San Jose, CA: USENIX, 2013, pp. 69–82, ISBN:
978-1-931971-02-7.

[103] T. Nykiel et al., « MRShare: sharing across multiple queries in MapReduce »,
in: VLDB Endowment (2010).

[104] Frank J. Ohlhorst, Big Data Analytics: Turning Big Data into Big Money, 1st,
Wiley Publishing, 2012, ISBN: 1118147596, 9781118147597.

[105] An Oracle and White Paper, « Performance Evaluation of Storage and Retrieval
of DICOM Image Content in Oracle Database 11g Using HP Blade Servers and
Intel Processors », in: January (2010).

153

https://azure.microsoft.com/
https://www.mongodb.com/
https://neo4j.com/


Bibliography

[106] Andrzej Osyczka, Multicriterion optimization in engineering with FORTRAN pro-
grams, Chichester, 1984, ISBN: 0853124817.

[107] M. Tamer Özsu and Patrick Valduriez, Principles of distributed database sys-
tems, third edition, 2011.

[108] S. Papadomanolakis and A. Ailamaki, « AutoPart: automating schema design
for large scientific databases using data partitioning », in: Proceedings. 16th
International Conference on Scientific and Statistical Database Management,
2004. 2004, pp. 383–392.

[109] Yannis Papakonstantinou, « Polystore Query Rewriting: The Challenges of Va-
riety », in: EDBT/ICDT Workshops, 2016.

[110] Yoonjae Park, Jun-Ki Min, and Kyuseok Shim, « Processing of Probabilistic Sky-
line Queries Using MapReduce », in: Proc. VLDB Endow. 8.12 (Aug. 2015),
pp. 1406–1417, ISSN: 2150-8097.

[111] Judea Pearl, Heuristics: Intelligent Search Strategies for Computer Problem
Solving, Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1984,
ISBN: 0-201-05594-5.

[112] Fabian Pedregosa et al., « Scikit-learn: Machine Learning in Python », in: J.
Mach. Learn. Res. 12 (Nov. 2011), pp. 2825–2830, ISSN: 1532-4435.

[113] S. Raschka, Python Machine Learning: Unlock Deeper Insights Into Machine
Learning, Community experience distilled, Packt Publishing, 2015, ISBN: 9781783555130.

[114] Riak, 2018, URL: https://riak.com/index.html.

[115] Peter J. Rousseeuw and Annick M. Leroy, Robust regression and outlier detec-
tion, 1987.

[116] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd,
Upper Saddle River, NJ, USA: Prentice Hall Press, 2009, ISBN: 0136042597,
9780136042594.

[117] Hans-Paul Paul Schwefel, Evolution and Optimum Seeking: The Sixth Genera-
tion, New York, NY, USA: John Wiley & Sons, Inc., 1993, ISBN: 0471571482.

154

https://riak.com/index.html


Bibliography

[118] Haitham Seada, Mohamed Abouhawwash, and Kalyanmoy Deb, « Towards a
Better Balance of Diversity and Convergence in NSGA-III: First Results », in:
Evolutionary Multi-Criterion Optimization, Cham: Springer International Publish-
ing, 2017, pp. 545–559.

[119] Juwei Shi et al., « Clash of the Titans: MapReduce vs. Spark for Large Scale
Data Analytics », in: Proc. VLDB Endow. 8.13 (Sept. 2015), pp. 2110–2121,
ISSN: 2150-8097.

[120] S. Sidhanta, W. Golab, and S. Mukhopadhyay, « OptEx: A Deadline-Aware Cost
Optimization Model for Spark », in: IEEE/ACM (2016).

[121] Tsu T. Soong, Fundamentals of probability and statistics for engineers, John
Wiley & Sons, 2004.

[122] N. Srinivas and K. Deb, « Muiltiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms », in: Evolutionary Computation 2 (1994), pp. 221–
248.

[123] Michael Stonebraker and Uğur Çetintemel, « "One Size Fits All": An Idea Whose
Time Has Come and Gone », in: Proceedings of the 21st International Confer-
ence on Data Engineering, ICDE ’05, Washington, DC, USA: IEEE Computer
Society, 2005, pp. 2–11, ISBN: 0-7695-2285-8, DOI: 10.1109/ICDE.2005.1,
URL: https://doi.org/10.1109/ICDE.2005.1.

[124] Michael Stonebraker et al., « The End of an Architectural Era: (It’s Time for a
Complete Rewrite) », in: Proceedings of the 33rd International Conference on
Very Large Data Bases, VLDB ’07, Vienna, Austria: VLDB Endowment, 2007,
pp. 1150–1160, ISBN: 978-1-59593-649-3.

[125] Mike Stonebraker et al., « C-store: A Column-oriented DBMS », in: International
Conference on Very Large Data Bases (VLDB ’05), Trondheim, Norway, 2005,
pp. 553–564.

[126] Er Strehl and Joydeep Ghosh, « Value-based Customer Grouping from Large
Retail Data-sets », in: Proceedings of the SPIE Conference on Data Mining and
Knowledge Discovery, Orlando (Mar. 2000).

[127] The Galactica Website, 2018, URL: https://horizon.isima.fr.

[128] The HDFS Website, 2018, URL: http://hadoop.apache.org/.

155

http://dx.doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1109/ICDE.2005.1
https://horizon.isima.fr
http://hadoop.apache.org/


Bibliography

[129] The Hive Website, 2018, URL: http://hive.apache.org/.

[130] The MOEA Website, 2018, URL: http://moeaframework.org/.

[131] The MemSQL Website, 2018, URL: https://www.memsql.com/.

[132] The Oracle Website, 2018, URL: https://www.oracle.com/.

[133] The PostgreSQL Website, 2018, URL: https://www.postgresql.org/.

[134] The SQL Website, 2018, URL: https://www.mysql.com/.

[135] The Spark Website, 2018, URL: https://spark.apache.org/.

[136] The SparkSQL Website, 2018, URL: https://spark.apache.org/sql/.

[137] The TPC-H Website, 2018, URL: http://www.tpc.org/tpch/.

[138] The Weka Website, 2018, URL: https://www.cs.waikato.ac.nz/ml/weka/.

[139] Ashish Thusoo et al., « Hive - {A} Warehousing Solution Over a Map-Reduce
Framework », in: Proceedings of the Very Large Data Bases Endowment (PVLDB)
2.2 (2009), pp. 1626–1629.

[140] Ashish Thusoo et al., « Hive - a petabyte scale data warehouse using Hadoop »,
in: Proceedings of the International Conference on Data Engineering ({ICDE}),
Long Beach, California, {USA}, 2010, pp. 996–1005.

[141] Sean Tozer, Tim Brecht, and Ashraf Aboulnaga, « Q-Cop: Avoiding bad query
mixes to minimize client timeouts under heavy loads », in: International Confer-
ence on Data Engineering (2010), pp. 397–408.

[142] Immanuel Trummer and Christoph Koch, « A Fast Randomized Algorithm for
Multi-Objective Query Optimization », in: (2016).

[143] Immanuel Trummer and Christoph Koch, « Approximation Schemes for Many-
objective Query Optimization », in: Proceedings of the 2014 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’14, Snowbird, Utah,
USA: ACM, 2014, pp. 1299–1310, ISBN: 978-1-4503-2376-5.

[144] Immanuel Trummer and Christoph Koch, « Multi-objective parametric query op-
timization », in: VLDB J. 8 (2016).

[145] Immanuel Trummer and Christoph Koch, « Multiple Query Optimization on the
D-Wave 2X Adiabatic Quantum Computer », in: Proc. VLDB Endow. 9.9 (May
2016), pp. 648–659, ISSN: 2150-8097.

156

http://hive.apache.org/
http://moeaframework.org/
https://www.memsql.com/
https://www.oracle.com/
https://www.postgresql.org/
https://www.mysql.com/
https://spark.apache.org/
https://spark.apache.org/sql/
http://www.tpc.org/tpch/
https://www.cs.waikato.ac.nz/ml/weka/


Bibliography

[146] Prasang Upadhyaya, Magdalena Balazinska, and Dan Suciu, « How to Price
Shared Optimizations in the Cloud », in: Proceedings of the VLDB Endowment
5 (Feb. 2012).

[147] Dana Van Aken et al., « Automatic Database Management System Tuning Through
Large-scale Machine Learning », in: Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, Chicago, Illinois, USA: ACM,
2017, pp. 1009–1024, ISBN: 978-1-4503-4197-4.

[148] David A. Van Veldhuizen and Gary B. Lamont, « Evolutionary Computation and
Convergence to a Pareto Front », in: Late Breaking Papers at the Genetic Pro-
gramming 1998 Conference (1998), pp. 221–228.

[149] J. Veiga et al., « Performance evaluation of big data frameworks for large-scale
data analytics », in: 2016 IEEE International Conference on Big Data (Big Data),
2016, pp. 424–431.

[150] David A. Van Veldhuizen and David A. Van Veldhuizen, Multiobjective Evolu-
tionary Algorithms: Classifications, Analyses, and New Innovations, tech. rep.,
Evolutionary Computation, 1999.

[151] Alessandro Vicini et al., « Multipoint transonic airfoil design by means of a multi-
objective genetic algorithm », in: 35th Aerospace Sciences Meeting and Exhibit,
1997, p. 82.

[152] Wendy Wolfson, « MapReduce: Simplified Data Processing on Large Clus-
ters », in: Chemistry and Biology 19.9 (2012), pp. 1075–1076, ISSN: 10745521.

[153] W. Wu et al., « Predicting query execution time: Are optimizer cost models re-
ally unusable? », in: IEEE 29th International Conference on Data Engineering
(ICDE), 2013.

[154] Pengcheng Xiong, Ferst Drive, and Yun Chi, « ActiveSLA : A Profit-Oriented
Admission Control Framework for Database-as-a-Service Providers Categories
and Subject Descriptors », in: 2nd ACM Symposium on Cloud Computing SOCC
11 (2011), pp. 1–14.

[155] G.G. Yen and Z. He, « Performance Metrics Ensemble for Multiobjective Evolu-
tionary Algorithms », in: IEEE Transactions on Evolutionary Computation (2013).

157



Bibliography

[156] Wenhui Yu et al., « Fast Algorithms for Pareto Optimal Group-based Skyline »,
in: Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, CIKM ’17, Singapore, Singapore: ACM, 2017, pp. 417–426, ISBN:
978-1-4503-4918-5.

[157] Steffen Zeuch, Holger Pirk, and Johann-Christoph Freytag, « Non-invasive pro-
gressive optimization for in-memory databases », in: Proceedings of the VLDB
Endowment 9.14 (2016), pp. 1659–1670, ISSN: 21508097.

[158] Q. Zhang and H. Li, « MOEA/D: A Multiobjective Evolutionary Algorithm Based
on Decomposition », in: IEEE Transactions on Evolutionary Computation 11
(2007), pp. 712–731.

[159] Jianqiao Zhu et al., « Looking ahead makes query plans robust », in: Proceed-
ings of the VLDB Endowment 10.8 (2017), pp. 889–900, ISSN: 21508097.

[160] E. Zitzler et al., « Performance assessment of multiobjective optimizers: an anal-
ysis and review », in: IEEE Transactions on Evolutionary Computation 7 (2003),
pp. 117–132.

[161] Eckart Zitzler, Marco Laumanns, and Lothar Thiele, « SPEA2: Improving the
strength Pareto evolutionary algorithm », in: TIK-report 103 (2001).

[162] M. A. et al., « TensorFlow : Large-Scale Machine Learning on Heterogeneous
Distributed Systems », in: CoRR, abs/1603.04467 (Jan. 2016).

158



Titre: Gestion de masses de données dans une fédéra-

tion de nuages informatiques

Mot clés : La régression linéaire multiple; Fédérations de nuages; Optimisation multi-
objectifs; Solutions pareto-optimales; Algorithmes génétiques; Algorithme de tri géné-
tique non dominé.

Resumé : Les fédérations de nuages
informatiques peuvent être considérées
comme une avancée majeure dans
l’informatique en nuage, en particulier
dans le domaine médical. En effet, le
partage de données médicales amélior-
erait la qualité des soins. La fédération
de ressources permettrait d’accéder à
toutes les informations, même sur une
personne mobile, avec des données hos-
pitalières distribuées sur plusieurs sites.
En outre, cela permettrait d’envisager de
plus grands volumes de données sur plus
de patients et ainsi de fournir des statis-
tiques plus fines.

Les données médicales sont générale-
ment conformes à la norme DICOM
(Digital Imaging and Communications in
Medicine). Les fichiers DICOM peuvent
être stockés sur différentes plates-formes,
telles qu’Amazon, Microsoft, Google
Cloud, etc. La gestion des fichiers, y com-
pris le partage et le traitement, sur ces

plates-formes, suit un modèle de paiement
à l’utilisation, selon des modèles de prix
distincts et en s’appuyant sur divers sys-
tèmes de gestion de données (systèmes
de gestion de données relationnelles ou
SGBD ou systèmes NoSQL). En outre,
les données DICOM peuvent être struc-
turées en lignes ou colonnes ou selon une
approche hybride (ligne-colonne). En con-
séquence, la gestion des données médi-
cales dans des fédérations de nuages
soulève des problèmes d’optimisation
multi-objectifs (MOOP - Multi-Objective
Optimization Problems) pour (1) le traite-
ment des requêtes et (2) le stockage des
données, selon les préférences des util-
isateurs, telles que le temps de réponse, le
coût monétaire, la qualités, etc. Ces prob-
lèmes sont complexes à traiter en raison
de la variabilité de l’environnement (liée
à la virtualisation, aux communications à
grande échelle, etc.).

Pour résoudre ces problèmes, nous



proposons MIDAS (MedIcal system on
clouD federAtionS), un système médi-
cal sur les fédérations de groupes. Pre-
mièrement, MIDAS étend IReS, une plate-
forme open source pour la gestion de
flux de travaux d’analyse sur des envi-
ronnements avec différents systèmes de
gestion de bases de données. Deux-
ièmement, nous proposons un algorithme
d’estimation des valeurs de coût dans une
fédération de nuages, appelé Algorithme
de régression dynamique (DREAM). Cette
approche permet de s’adapter à la vari-
abilité de l’environnement en modifiant la
taille des données à des fins de forma-
tion et de test, et d’éviter d’utiliser des
informations expirées sur les systèmes.
Troisièmement, l’algorithme génétique de
tri non dominé à base de grilles (NSGA-G)
est proposé pour résoudre des problèmes
d’optimisation multi-crtières en présence
d’espaces de candidats de grande taille.
NSGA-G vise à trouver une solution op-

timale approximative, tout en améliorant
la qualité du font de Pareto. En plus du
traitement des requêtes, nous proposons
d’utiliser NSGA-G pour trouver une solu-
tion optimale approximative à la configu-
ration de données DICOM.

Nous fournissons des évaluations
expérimentales pour valider DREAM,
NSGA-G avec divers problèmes de test et
jeux de données. DREAM est comparé à
d’autres algorithmes d’apprentissage au-
tomatique en fournissant des coûts es-
timés précis. La qualité de la NSGA-G
est comparée à celle des autres algo-
rithmes NSGA présentant de nombreux
problèmes dans le cadre du MOEA. Un
jeu de données DICOM est également
expérimenté avec NSGA-G pour trou-
ver des solutions optimales. Les résul-
tats expérimentaux montrent les qualités
de nos solutions en termes d’estimation
et d’optimisation de problèmes multi-
objectifs dans une fédération de nuages.

Title: Data Management in a Cloud Federation

Keywords : Multiple Linear Regression; Cloud federations; Multi-Objective Optimiza-
tion; Pareto-optimal solutions, Genetic algorithms; Non-dominated Sorting Genetic Al-
gorithm.

Abstract : Cloud federations can be seen
as major progress in cloud computing,

in particular in the medical domain. In-
deed, sharing medical data would improve



healthcare. Federating resources makes it
possible to access any information even
on a mobile person with distributed hos-
pital data on several sites. Besides, it en-
ables us to consider larger volumes of
data on more patients and thus provide
finer statistics.

Medical data usually conform to the
Digital Imaging and Communications in
Medicine (DICOM) standard. DICOM files
can be stored on different platforms, such
as Amazon, Microsoft, Google Cloud, etc.
The management of the files, including
sharing and processing, on such plat-
forms, follows the pay-as-you-go model,
according to distinct pricing models and
relying on various systems (Relational
Data Management Systems or DBMSs
or NoSQL systems). In addition, DICOM
data can be structured following traditional
(row or column) or hybrid (row-column)
data storages. As a consequence, med-
ical data management in cloud federa-
tions raises Multi-Objective Optimization
Problems (MOOPs) for (1) query process-
ing and (2) data storage, according to
users preferences, related to various mea-
sures, such as response time, monetary
cost, qualities, etc. These problems are
complex to address because of hetero-
geneous database engines, the variabil-
ity (due to virtualization, large-scale com-
munications, etc.) and high computational
complexity of a cloud federation.

To solve these problems, we propose
a MedIcal system on clouD federAtionS
(MIDAS). First, MIDAS extends IReS, an
open source platform for complex analyt-
ics workflows executed over multi-engine
environments, to solve MOOP in the het-
erogeneous database engines. Second,
we propose an algorithm for estimating of
cost values in a cloud environment, called
Dynamic REgression AlgorithM (DREAM).
This approach adapts the variability of
cloud environment by changing the size
of data for training and testing process to
avoid using the expire information of sys-
tems. Third, Non-dominated Sorting Ge-
netic Algorithm based on Grid partitioning
(NSGA-G) is proposed to solve the prob-
lem of MOOP is that the candidate space
is large. NSGA-G aims to find an approxi-
mate optimal solution, while improving the
quality of the optimal Pareto set of MOOP.
In addition to query processing, we pro-
pose to use NSGA-G to find an approxi-
mate optimal solution for DICOM data con-
figuration.

We provide experimental evaluations
to validate DREAM, NSGA-G with vari-
ous test problem and dataset. DREAM is
compared with other machine learning al-
gorithms in providing accurate estimated
costs. The quality of NSGA-G is com-
pared to other NSGAs with many prob-
lems in MOEA framework. The DICOM
dataset is also experimented with NSGA-



G to find optimal solutions. Experimental
results show the good qualities of our so-

lutions in estimating and optimizing Multi-
Objective Problem in a cloud federation.


	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Context and problems
	Related work
	MIDAS
	Outline

	I State of the art about cloud federation
	Cloud Federations
	Introduction
	Definitions
	Motivating Example
	Big data Management System
	Cloud Computing
	Cloud Federation

	Resource Management
	Virtualization
	Partitioning

	Data Management
	Homogeneous system
	Heterogeneous systems

	Conclusion

	Optimization of medical data management
	Introduction
	Medical Data management
	DICOM
	Data Model
	Hybrid data storage configuration
	Vertical Partitioning

	Search and Optimization
	Single Objective Optimization
	Multiple Objective Optimization

	Conclusion

	Multi-Objective Optimization
	Introduction
	Pareto set
	Multiple Linear Regression
	Linear Regression
	Multiple Linear Regression

	Non-dominated Sorting Genetic Algorithm
	NSGA process
	Application

	Conclusion


	II Techniques for cloud federation
	Dynamic Regression Algorithm
	Introduction
	Problem
	DREAM
	Coefficient of determination
	Cost Value Estmation
	Optimization

	Conclusion

	Non-dominated Sorting Genetic Algorithm based on Grid partitioning
	Introduction
	NSGA-G
	Main process
	Non-Dominated Sorting
	Filter front process

	Discussion
	Convergence
	Diversity
	Computation

	Selecting the size of grid
	Simple front group
	Max front group

	Conclusion

	Hybrid data storage configuration in cloud federation
	Introduction
	Medical system on cloud federation
	MIDAS
	IRES
	Hybrid data storage configuration
	Validation

	Hybrid data storage configuration
	Two phases of generating data storage configuration
	Implementation

	Optimizing data storage configuration
	Finding Pareto configuration set
	Finding the best configuration

	Conclusion


	III Implementation of proposals and validations
	Performance validation
	Introduction
	A medical cloud federation
	DICOM
	Validation

	DREAM
	Implementation
	Experiments
	Results

	NSGA-G
	Validation on DTLZ test problems
	Hybrid data storage configuration

	Conclusion

	Conclusion and Future work
	Introduction
	Summary and Conclusion
	Existing solutions
	Estimating in Multi-Objective Optimization Problem
	Multi-Objective Evolutionary Algorithm
	Optimizing medical data storage configuration

	Future Works
	Estimation
	Searching and optimization
	Hybrid data storage configuration


	Bibliography


