
HAL Id: tel-02931317
https://hal.science/tel-02931317

Submitted on 6 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Agile Heterogeneous Computing: Variable Platform
Heterogeneous Computing and its Design Flow

Avishek Chakraborty

To cite this version:
Avishek Chakraborty. Agile Heterogeneous Computing: Variable Platform Heterogeneous Computing
and its Design Flow. Hardware Architecture [cs.AR]. University of South Australia, 2020. English.
�NNT : �. �tel-02931317�

https://hal.science/tel-02931317
https://hal.archives-ouvertes.fr

Agile Heterogeneous Computing:
Variable Platform Heterogeneous
Computing and its Design Flow

by

Avishek Chakraborty
Bachelor of Computer Science (Hons 1)

A thesis submitted for the degree of

Doctor of Philosophy
February 2020

Computational Learning Systems Laboratory
School of Information Technology & Mathematical Sciences

Division of Information Technology, Engineering and the Environment

Abstract

Agile heterogeneous embedded computing refers to the consideration
of platform architectures as a first class design variable in deploying
applications on heterogeneous platforms, which constitute one or more
of the following compute engines: FPGA, GPU and CPU. Design flows
for agile heterogeneous computing are in the early phases of develop-
ment. Few state of the art design flows that consider variable platform
architectures have the following drawbacks: (1) restricted template-
based representations, which cannot express all possible architectural
topologies, (2) limited support for concurrent tasks on all three com-
pute engines and (3) design space exploration approaches indirectly
consider variable platform architectures, because they are derived from
fixed platform design flows, where different platform architectures are
iteratively evaluated without closely considering the application’s com-
putational needs.

This research explores solutions to these three major issues that have
yet to be addressed in agile heterogeneous computing design flows. The
solutions to these issues are encapsulated into a new design flow called
agile heterogeneous computing flow (AhcFlow) that can support both
design space exploration and deployment. In order to realise AhcFlow,
a new representation to express variable platform architectures called
parameterised platform graph (PPG) is conceived, a new intermedi-
ate data structure called augmented synchronous dataflow (ArcSDF) is
created and a new design space exploration algorithm called agile map-
ping and scheduling algorithm (AMS) is developed. PPG is a constraint
based representation, which unlike template-based representations has
higher expressive capabilities to represent the different topologies of
agile heterogeneous computing. ArcSDF is a new dataflow based inter-
mediate data structure, which is built on the well-known synchronous
dataflow graphs (SDF) to express the architectural decisions together
with the application. ArcSDF extends the capabilities of the dataflow
paradigm to incorporate computation resource analysis and capital cost
analysis. Due to these extra analysis capabilities, ArcSDF is used within
design space exploration. The design space exploration algorithm is
AMS that considers the variable platform architecture in a fully inte-
grated way together with mapping and scheduling decisions.

A prototype of the new design flow (AhcFlow) has been created and

shown to be valid both for an exhaustive number of synthetic test cases
and for a large real life embedded multi-object visual tracking appli-
cation. The new analysis capabilities of ArcSDF have been validated
through its integration within the design flow prototype. The prototype
also consists of a deployment module, which is used to validate the de-
sign space exploration predictions with the actual deployment results.
The results from the real life tracking application show that design
space exploration estimates closely match the deployment results. The
new mapping and scheduling algorithm, that also makes architecture
topology decisions, has shown to be competitive with published results
of applications implemented manually to hand crafted architectures.

3

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis structure . 3
1.3 Research contributions . 4

2 Literature review 6
2.1 Introduction . 7
2.2 Agile Heterogeneous computing . 7

2.2.1 Historic perspective . 8
2.2.2 Agile heterogeneous computing challenges 9
2.2.3 Conclusion . 11

2.3 Design flows for agile heterogeneous computing 11
2.3.1 Fixed platform design flows 12
2.3.2 Variable platform . 14
2.3.3 Conclusion . 15

2.4 Representation of application algorithm, architectural decisions and
platform architecture . 16
2.4.1 Representing application algorithms 16
2.4.2 Intermediate representation 19
2.4.3 Representing heterogeneous platform architecture 23
2.4.4 Conclusion . 25

2.5 Mapping and scheduling algorithms 25
2.5.1 Static and dynamic algorithms 26
2.5.2 Static algorithm’s taxonomy 27
2.5.3 Evolutionary meta-heuristic algorithms 27
2.5.4 List-based heuristic algorithms 28
2.5.5 Conclusion . 38

2.6 Conclusion . 38

3 Research methodology 40
3.1 Introduction . 41
3.2 Research questions . 42
3.3 Research methodology . 44

3.3.1 A design flow for agile heterogeneous computing 44
3.3.2 Constraint based platform representation 45
3.3.3 Intermediate data structure 46

i

3.3.4 Agile mapping and scheduling algorithm 47
3.3.5 Sharing of compute engine resources 48

3.4 Conclusion . 48

4 A design flow for agile heterogeneous computing 49
4.1 Introduction . 50
4.2 Inputs to the design flow . 54

4.2.1 Agile platform representation 54
4.2.2 Application algorithm . 56
4.2.3 Pre-engineered components 57

4.3 Design space exploration . 58
4.4 Deployment . 60
4.5 Conclusion . 61

5 Representing platform architecture and architectural decisions 63
5.1 Introduction . 64
5.2 PPG: Parameterised platform graph 65

5.2.1 Overview . 65
5.2.2 Tier 1 . 66
5.2.3 Tier 2 . 70
5.2.4 Example of a parameterised platform graph (PPG) 71
5.2.5 Defining architectural decisions 78
5.2.6 Conclusion . 83

5.3 ArcSDF: Architecture augmented synchronous dataflow 84
5.3.1 Overview . 84
5.3.2 Comprehensive definition of ArcSDF 89
5.3.3 Analysis of ArcSDF . 99
5.3.4 Conclusion . 108

5.4 Conclusion . 109

6 Agile mapping and scheduling algorithm 110
6.1 Introduction . 111
6.2 The agile mapping and scheduling (AMS) algorithm 113

6.2.1 Overview . 114
6.2.2 rHEFT1: Resource conscious mapping and scheduling 119
6.2.3 rHEFT-2: Specialised connectivity topology 128
6.2.4 Local platform architecture expansion 133
6.2.5 Global platform architecture update 143
6.2.6 Conclusion . 151

6.3 AMS algorithm evaluation . 153
6.3.1 Evaluation framework . 153
6.3.2 rHEFT-2 evaluation . 158
6.3.3 AMS evaluation . 164
6.3.4 Conclusion . 170

6.4 Conclusion . 171

ii

7 Case study with a multi-object visual tracking application 173
7.1 Introduction . 174
7.2 CACTuS visual tracking application 174

7.2.1 Dataflow model . 176
7.2.2 Pre-engineered components 178
7.2.3 Conclusion . 183

7.3 The CACTuS application with AhcFlow: comparison with published
results . 184

7.4 Design space exploration for the CACTuS application 186
7.4.1 Exploration results overview 188
7.4.2 Resource usage with mapping and scheduling decisions . . . 190
7.4.3 Conclusion . 201

7.5 Application deployment within AhcFlow 203
7.5.1 Deployment technique overview 203
7.5.2 Parsing and Validation . 208
7.5.3 Skeleton code generation . 208
7.5.4 Injection of pre-engineered actors and launch 210
7.5.5 Deployment of CACTuS using AhcFlow 212
7.5.6 Conclusion . 212

7.6 Conclusion . 214

8 Conclusion and future work 215
8.1 Introduction . 216
8.2 Research questions revisit . 217
8.3 Future work . 220

A CACTuS computation and communication timings 222

Bibliography 227

iii

List of Figures

2.1 Y-chart methodology . 13
2.2 SDF example . 19
2.3 intermediate representation taxonomy 20
2.4 Static mapping and scheduling taxonomy 27
2.5 Static mapping and scheduling taxonomy 28
2.6 Original HEFT pseudocode . 30
2.7 Original EFT calculation pseudocode 31
2.8 HEFT example DAG and Platform 32
2.9 HEFT example Gantt chart . 33
2.10 The Gain/Loss algorithm . 37

3.1 Research methodology stepse . 44

4.1 AhcFlow diagram . 52
4.2 Agile platform representation . 55
4.3 Agile design space exploration . 59

5.1 PPG sample . 65
5.2 PPG tier2 eample . 73
5.3 PPG tier2 eample . 74
5.4 SDF model for Manual DSE example 75
5.5 Manual DSE Gantt chart . 77
5.6 Data parallelism selection . 79
5.7 Mapping decisions . 80
5.8 Mapping decisions . 81
5.9 Concurrent actor layout . 82
5.10 ArcSDF example 1 . 85
5.11 ArcSDF example setup . 86
5.12 ArcSDF example 2 . 87
5.13 ArcSDF example 2 . 87
5.14 ArcSDF partial . 90
5.15 ArcSDF period . 92
5.16 ArcSDF deadlock . 92
5.17 ArcSDF interface . 94
5.18 Topology matrix rank for ArcSDF interface 94
5.19 Partial actor expansion . 96
5.20 initial-ArcSDF example . 98
5.21 ArcSDF maximum resource usages 100

iv

5.22 ArcSDF earliest time slot algorithm 102
5.23 ArcSDF earliest time slot example 103
5.24 Merging initial-ArcSDF compute zones example 104
5.25 Compute zone merging problem . 105
5.26 Compute zone merging example . 105
5.27 Compute zone merging algorithm 106
5.28 ArcSDF to equivalent times SDF pseudocode 107

6.1 AMS algorithm structure . 115
6.2 Resource-HEFT original . 120
6.3 Resource-based EFT original . 121
6.4 First resource-HEFT original example 122
6.5 Second resource-HEFT original example 122
6.6 Resource-HEFT ranking . 124
6.7 rHEFT enhanced ranking example 125
6.8 rHEFT compute engine selection algorithm 127
6.9 rHEFT enhanced compute engine selection example 128
6.10 rHEFT-2 algorithm . 129
6.11 rEFTCOMM algorithm . 130
6.12 rHEFT specialised connectivity example 132
6.13 rHEFT shared link impact . 133
6.14 LPAE algorithm . 137
6.15 LPAE allocate algorithm . 138
6.16 LPAE selection algorithm . 139
6.17 LPAE example configuration . 141
6.18 LPAE example steps . 141
6.19 LPAE example expansion . 142
6.20 AMS pseudocode . 144
6.21 GPAU pseudocode . 145
6.22 Limit reached pseudocode . 146
6.23 Limit reached pseudocode . 147
6.24 Evaluation framework structure . 154
6.25 rHEFT results random DAG . 163
6.26 AMS results random DAG . 168
6.27 AMS results Laplace equation solver DAG 168
6.28 AMS results Fourier transformation DAG 169
6.29 AMS results LU decomposition DAG 169

7.1 CACTuS FL . 175
7.2 CACTuS SDF representation . 177
7.3 CACTuS DAG representation . 178
7.4 CACTuS C1 occupancy 1 GPU . 185
7.5 CACTuS C1 resource usage 1 GPU 185
7.6 CACTuS design space exploration study overview 189
7.7 CACTuS C1 occupancy 4 GPU . 191
7.8 CACTuS C1 resource usage 4 GPU 192

v

7.9 CACTuS 511, 64 SEF occupancy 1 GPU 193
7.10 CACTuS 511, 64 SEF resource usage 1 GPU 193
7.11 CACTuS C3F occupancy 4 GPU 195
7.12 CACTuS C3 resource usage 4 GPU 196
7.13 CACTuS C3 occupancy 4 GPU all connected 197
7.14 CACTuS C3 resource usage 4 GPU all connected 198
7.15 CACTuS C3 occupancy 7 GPU . 199
7.16 CACTuS C3 resource usage 7 GPUs 200
7.17 Deployment module . 204
7.18 Deployment example SDF graph . 205
7.19 Deployment ArcSDF example . 206
7.20 Deployment ArcSDF JSON structure 207
7.21 Deployment channel and interface details 209
7.22 Code snippet of compute zone firing 210
7.23 Deployment detection example . 211

vi

List of Tables

2.1 HEFT example mapping and scheduling decisions 32

3.1 Crnkovic’s research categories . 42

5.1 PPG example CPU . 72
5.2 PPG example GPU/FPGA . 72
5.3 PPG example comm links . 73
5.4 Manual DSE example performance data 76

6.1 List of Hyper-parameters in AMS algorithm 117
6.2 GPAU expansion example . 149
6.3 GPAU reduction example . 151
6.4 Synthetic DAG parameters . 157
6.5 Synthetic DAG data parameters . 158
6.6 Synthetic DAG parameter values 159
6.7 Synthetic DAG data parameter values 160
6.8 The platform architecture constraints for the AMS experiments. . . 164

7.1 CACTuS configrations . 179
7.2 CACTuS actor details . 179
7.3 CACTuS execution and resource consumption data 180
7.4 CACTuS C1 communication timings 180
7.5 Published CACTuS execution and resource consumption data . . . 181
7.6 Published CACTuS throughput . 181
7.7 This table compares two published hand-crafted implementations of

CACTuS with the predicted performance from the AMS algorithm.
Since the performance metric of AMS is makespan, throughput is
calculated as 1 by makespan. 184

7.8 CACTuS C1 mapping decisions 1 GPU 186
7.9 AMS hyper-parameters for CACTuS 187
7.10 Design space exploration study list for CACTuS 187
7.11 CACTuS design space exploration examination 190
7.12 CACTuS C1 resource usage 4 GPUs 192
7.13 CACTuS C3 resource usage 1 GPU 194
7.14 CACTuS C3 resource usage 4 GPU 196
7.15 CACTuS C3 resource usage 4 GPU all connected 198
7.16 CACTuS C3 actor mapping 7 GPUs 200
7.17 Tracking performance of the deployment of CACTuS C1. 212

vii

A.1 Appendeix: CACTuS C2 data . 223
A.2 CACTuS C2 communication timings 223
A.3 Appendeix: CACTuS C3 data . 224
A.4 CACTuS C3 communication timings 224
A.5 Appendeix: CACTuS C4 data . 225
A.6 CACTuS C4 communication timings 225
A.7 Appendeix: CACTuS C4 data . 226
A.8 CACTuS C5 communication timings 226

viii

List of abbreviations

AhcF low Agile heterogeneous computing flow

AMS Agile mapping and scheduling

AND Average normalised difference

ArcSDF Architecture augmented synchronous dataflow

CE Compute engine

cecomm Communication factor

ceglobal Global factor

celocal Local factor

CZ Compute zone

DAG Dataflow acyclic graph

DCER Dynamic compute engine rank

EFT Earliest finish time

EH Exploration history

EST Earliest start time

ETS Earliest time slot

FASG Final ArcSDF generation

GPAU Global platform architecture update

HEFT Heterogeneous earliest-finish-time

HSDF Homogeneous synchrohous dataflow

ix

LPAE Local platform architecture expansion

MT Mapping threshold

PI Platform architecture instance

PPG Parameterised platform graph

RE Resource edge

RF Resource factor

rHEFT Resouorce-based heterogeneous earliest-finish-time

rpv Resource performance value

SDF Synchronous dataflow

SEF Shape estimating filter

SLR Schedule length ratio

slr Schedule length ratio

Y-chart Y-chart design methodology

x

Declaration

I declare that:

This thesis presents work carried out by myself and does not incorpo-
rate without acknowledgement any material previously submitted for
a degree or diploma in any university; to the best of my knowledge it
does not contain any materials previously published or written by an-
other person except where due reference is made in the text; and all
substantive contributions by others to the work presented, including
jointly authored publications, are clearly acknowledged.

Avishek Chakraborty
11th May 2020

Acknowledgements

I would like to thank my supervisor, Dr David Kearney for his wealth of
knowledge, encouragement and support. I consider myself lucky to have
him as my supervisor straight out of undergraduate school, especially
while trying to get accustomed to a new country. David has given me
a lot of freedom to choose my research topic, while providing essential
direction and guidance. His multifaceted research outlook closely aligns
with the direction of modern computing platform architectures and this
has had a great influence on my thesis work and research interests. I
would also like to thank David for his contribution to my conference
travel expenses, where I was able to engage with fellow researchers and
exchange ideas.

Next, I would like to thank my associate supervisor, Dr Sebastien Wong,
for being a steady source of support and encouragement. He introduced
me to an ongoing multi-object visual tracking project, which eventually
provided me with a real-world application for the case-study of my
thesis. This further helped me with the lab equipment for my research
work. I am also thankful to Sebastien for creating the opportunity
to work on a publication with Dr Victor Stamatescu. It was a great
learning experience. Although Victor was not directly involved with
my thesis, he constantly encouraged me, and I am grateful to have had
him around the lab. I would further like to acknowledge Sebastien and
Victor for their suggestions to improving the thesis document.

During the initial phase of my PhD, Dr Stewart Von Itzstein, Dr Grant
Wigley and Dr Ivan Lee were enormous sources of help. I am thankful to
Stewart for the opportunities to teach various computer science courses
at the University. Although teaching the courses did not contribute to
my research work, they were valuable experiences and allowed me to
maintain proficiency on different computer languages. Grant provided
valuable guidance with lab equipment, travel arrangements and advice
to efficiently conduct research. I am also grateful for all the help and
support I have received from the Reconfigurable Computing Labora-
tory, which has now grown as Computational Learning Systems Labo-
ratory. My research was financially supported by University of South
Australia President’s Scholarship, school of ITMS, later on by Univer-
sity of South Australia Postgraduate Award and Defence Science and
Technology Group (previously DSTO), which I gratefully acknowledge.

I would like to thank all my laboratory peers for their company and
maintaining the research environment which has obliquely influenced
my thesis. This gives me the opportunity to thank Dr Anthony Milton,
Dr Kelly Foreman, Dr Adam Gatt, Wanjung Zhai and Samya Bagchi.
They were always present to listen to my research ideas. I consider
myself fortunate to have been surrounded by them. I am thankful to
Anthony for taking time out to read my thesis.

This PhD journey is close to 5 years of full-time work and fuelled by
blood, sweat and tears, would not have been possible without the con-
stant support of my friends and family. I am grateful to Akash, Karan,
Arindam, Daniel, Melissa, William, Shaurya, Krishna, Yogesh and An-
nanya for the fun weekends and always ensuring that there is a positive
source of distraction. I am also thankful to Dr Santanu Roy, Dr Anut-
tam Patra and Dr Debdeep Banerjee for having inspired me to embark
on this journey of research.

My special thanks go to my brother, Bubun who kept reminding me the
importance of having fun and also for maintaining a constant accom-
modation space for me in Adelaide. There are many others, but not
possible to mention all of them here, so I end this with the following
dedication.

To my grandfather, Santi Gopal Das

To my mother, Sonali

To my father, Asoke

xiii

Chapter 1

Introduction

Contents

1.1 Motivation . 2
1.2 Thesis structure . 3
1.3 Research contributions . 4

1

1.1 Motivation

Parallel hardware is now the mainstream for high performance computing. This has
been driven by power dissipation limits on clock rates in single core microproces-
sors. A side effect of the parallel revolution is the fragmentation of the architectures
of compute engines that implement concurrency. In the mainstream there are now
three major architectures - shared memory multicore (CPU), graphics processing
units (GPU), and field programming gate arrays (FPGA). While each has been
created in response to a particular need, two or more are often used in combination
to exploit the different types of parallelisms within an application [1]. The moti-
vation to use different compute architectures for better performance and resource
utilisation dates back to the 1970s [2] when a combination of different processing
architectures started to be used for compute intensive applications. In the present
time an influence of this motivation has given birth to the field of modern day het-
erogeneous computing, where applications are spread over two or more compute
engine types. In particular there are many applications that use three compute en-
gines - FPGA, GPU, and CPU [3–5]. Such heterogeneous platforms often have the
flexibility to change their configuration and the quantity of the compute engines
easily. This flexibility and readiness to change the overall platform architecture is
referred in this research work as agile heterogeneous computing.

The implementation of algorithms on agile heterogeneous platforms is much more
complex than on multicore CPUs alone. The design space is much greater, there
are often multiple languages and tools to contend with and the prediction of per-
formance depends on both the nature of the compute engines and how they are
configured into a platform. It may not be clear to the application developer on
which compute engine each component should be implemented and there is a com-
binatorial explosion in the choices for implementation of components on multiple
compute engines. The diversity of languages and tools means that compilation
of an algorithm from a single language source is problematic from a performance
point of view. More importantly to evaluate the design space, each component
of an algorithm will require compute engine specific implementations because of
the differences in the nature of the architecture, the number of compute resources
available on a specific instance of the architecture, and the memory availability of
the overall architecture. On an FPGA there is a further a wide choice in the actual
architecture employed. The influence of the platform inter-connection topology is
likely to be significant. The communication channels between CPU and GPU may
slow a well performing GPU kernel down. Performance will be influenced by the
call pattern of the kernels in the algorithm. Hence, the often-used single acceler-
ation library approach used in CPUs does not scale up to an agile heterogeneous
environment.

The above challenges can be summarised into three broad problems: finding the
best compute engine for each component of the application, finding the best com-
munication sequence among other components and finding the right mix of compute

2

engines to constitute the platform. These three problems can be characterised as
design space exploration. In addition, there are challenges associated with the im-
plementation of the various components of the application based on the decisions
made during design space exploration, which is a deployment problem. Design
space exploration and deployment are usually handled by a design flow.

Design flows for fixed architecture heterogeneous platforms are well established.
These design flows can be adapted to variable architecture agile heterogeneous ap-
plications by placing the fixed architecture design flow, as a black box, inside an
iteration whereby the architecture is changed at each step. However this approach
means that there is no intimate interaction between the algorithms used in fixed
architecture design flow (which effectively remain a black box) and changes in the
architecture. Opportunities for simultaneous adjustment of mapping and schedul-
ing with architectural changes may be lost. In the new design flow proposed in
this work these opportunities are explored. The parallel computing resources of
the heterogeneous platform and within the compute engines that make up the
platform can form the basis of resource aware versions of mapping and scheduling
algorithms previously developed for fixed architecture design flows. In this new
concept of a design flow for agile heterogeneous computing; a fixed platform def-
inition is no longer relevant as an input. Instead a new generalised conception
of an agile platform definition is required. The new design flow will also require
a new integrated representation of the application, architecture and the mapping
and scheduling decisions. This thesis explores the feasibility and means of creating
all the required elements of a new design flow for agile heterogeneous computing.

1.2 Thesis structure

The thesis is organised as follows. Chapter 2 presents the current research re-
sults relevant to concerning design flows for agile heterogeneous computing. In
Chapter 3, the research questions and a methodology for answering them are pre-
sented. Chapter 4 presents an overview of agile heterogeneous computing flow
(AhcFlow), which is the proposed new design flow for agile heterogeneous comput-
ing. In Chapter 5, the representations of inputs, called the Parameterised Platform
Graph (PPG), and the internal data structures, called Architecture augmented Syn-
chronous Dataflow (ArcSDF), for the new design flow are described. In Chapter 6,
a new design space exploration algorithm, called the Agile Mapping and Schedul-
ing (AMS) algorithm is presented and evaluated. In Chapter 7, the design flow is
evaluated with a real life visual tracking algorithm (CACTuS) and the details of
the deployment are explained. The final chapter concludes this thesis and proposes
future work.

3

1.3 Research contributions

The primary contributions of this dissertation are summarised as follows:

• A new design flow called heterogeneous computing flow (AhcFlow) is cre-
ated that closely combines architectural exploration with the mapping and
scheduling decisions. This is achieved by first generalising the Y-chart de-
sign methodology [6] (section 2.3.1) to enable the use of platform constraints
rather than a fixed platform architecture. Secondly, an intermediate data-
structure (ArcSDF) that can express agile design decisions is developed. Fi-
nally, a design space exploration strategy based on platform constraints is
created.

The research contributions associated with the new design flow are:

– Exploration of platform architectures at a the same time as mapping
and scheduling decisions of the application-algorithm.

– Separation of concerns between design space exploration and deployment
by using the new intermediate data-structure (ArcSDF) that can express
design decisions and can be analysed for performance and capital cost
prior to deployment.

– Automation for the creation of a runtime on the designated platform
architecture for deployment.

• A novel way to represent platform constraints at a higher abstraction, called
Parameterised platform graph (PPG). PPG consists of two tiers. PPG tier1
represents the platform constraints, whereas PPG tier2 expresses an initial
valid platform architecture instance. PPG tier1 constraints the design space
exploration algorithm, which starts with the PPG tier2 instance for the se-
lection of the final platform architecture to be used for deployment.

The research contributions associated with PPG include:

– A high-level representation that incorporates the necessary details for
design space exploration of applications on agile heterogeneous platform
architecture.

– The expression of the platform constraints and the representation of
instances of platform architectures possible within those constraints.

• A new data-structure called architecture augmented synchronous dataflow
(ArcSDF) is developed to represent design decisions. The research contribu-
tions related with ArcSDF are associated with four new constructs.

4

– A compute zone which groups actors for sequential execution and also
expresses the resource consumption of the group.

– Interfaces which are the ports through which compute zones communi-
cate.

– Resource edges represents the resource dependencies between compute
zones.

– Control actors which represent the common design patterns whereby the
execution of an actor on one compute engine is managed from another
compute engine. For example the launch and execution of a GPU kernel
is initiated from a code running on the CPU.

Finally in addition to throughput analysis ArcSDF enables the evaluation of
maximum resource usage, time slots for scheduling a new actor and optimi-
sation of the number of compute zones used.

• The agile mapping and scheduling (AMS) algorithm. AMS is a combination
of a resource aware HEFT Topcuoglu et. al. 1999 [7] Heterogeneous Earliest-
Finish-Time (HEFT) and the Sakellariou et. at 2007 [8] Gain/Loss algorithm.
Research contributions associated with AMS include:

– A new version of HEFT that enables concurrent execution of actors on
a compute engine and supports consideration of resources.

– A further enhancement of HEFT that allows specialised connectivity
topologies including restricted connectivity between compute engines.

– Adaptation of the Gain/Loss algorithm to use capital cost metrics.

– The incorporation of the Gain/Loss algorithm with capital cost metric
into a final enhanced version of HEFT.

5

Chapter 2

Literature review

Contents

2.1 Introduction . 7
2.2 Agile Heterogeneous computing 7

2.2.1 Historic perspective . 8
2.2.2 Agile heterogeneous computing challenges 9
2.2.3 Conclusion . 11

2.3 Design flows for agile heterogeneous computing 11
2.3.1 Fixed platform design flows 12
2.3.2 Variable platform . 14
2.3.3 Conclusion . 15

2.4 Representation of application algorithm, architectural decisions
and platform architecture . 16
2.4.1 Representing application algorithms 16
2.4.2 Intermediate representation 19
2.4.3 Representing heterogeneous platform architecture . . . 23
2.4.4 Conclusion . 25

2.5 Mapping and scheduling algorithms 25
2.5.1 Static and dynamic algorithms 26
2.5.2 Static algorithm’s taxonomy 27
2.5.3 Evolutionary meta-heuristic algorithms 27
2.5.4 List-based heuristic algorithms 28
2.5.5 Conclusion . 38

2.6 Conclusion . 38

6

2.1 Introduction

In this chapter, the current research literature in relation to the challenges of design
flows for agile heterogeneous computing is examined. The literature selected for
the survey is based on its likely impact on the design flow itself, the application
representation, and algorithms for the simultaneous optimization of architectural
topology with mapping and scheduling.

This chapter is organised as follows. Firstly, the landscape of heterogeneous com-
puting as it exists today is considered. Then, in the next section the published
design flows for heterogeneous computing are explored. Then, the representations
of architectural decisions that are made during design space exploration are re-
viewed. Finally, the mapping and scheduling algorithms that are relevant to het-
erogeneous computing are surveyed. In this section, proposed algorithms dealing
with agile architectures are also reviewed. The outcome of this survey shows that
there are gaps in the research literature relating to design flows, representations
and heuristics for architecture, scheduling and mapping exploration.

2.2 Agile Heterogeneous computing

Heterogeneous computing has evolved from its early days of a few slightly dis-
similar microprocessors to its present day where three disparate compute engines
(FPGA, GPU and CPU) are in use. Due to these recent developments, there are
new challenges in designing applications. In this section, notable and recent liter-
ature on heterogeneous computing are reviewed with the aim of highlighting the
new challenges. This is achieved in two steps. At first, a historic perspective is
presented to show how the field of heterogeneous computing has evolved to include
these compute engines. In this part, the challenges associated with classical het-
erogeneous computing are shown and how design flows are used to mitigate them
are highlighted. Then, in the second part, present day heterogeneous computing
with different compute engines is considered. It is shown that compute engines can
be included or excluded to form the platform architecture. There are also decisions
to be made as to how compute engines are connected to one another. Therefore,
along with the usual challenges of heterogeneous computing, a designer needs to
consider variable compute platform architecture. Other challenges of managing si-
multaneous execution of multiple tasks on a compute engine and handling different
tool-sets for deployment, are also discussed.

7

2.2.1 Historic perspective

The classical era of heterogeneous computing reflects the current motivation behind
using more than one type of processors. A very early reference to heterogeneous
computing was by Liu and Yang at 1974 [2]. In this paper the term "heterogeneous"
refers to processors with different speed being combined together. Heterogeneous
computing was studied as a theoretical discipline and the concepts were simu-
lated on the existing computers that used one or more similar microprocessors.
The physical existence of heterogeneous computing can be traced from the early
days of supercomputers. Menascé and Almeida 1990 [9] states that the reason for
heterogeneity in supercomputing was use of different types of processors to boost
performance in a cost efficient way through dedicated processors for certain parts
of the application.

Ercegovac 1988 [10] was an early advocate for evaluating different heterogeneous
architectures to achieve cost effective performance. Menascé and Almeida [9] de-
veloped further a cost performance analysis of computers available during the early
1990s such as the NCUBE [11] and the connection machines [12].

Menascé and Almeida [9] treats the elements of their ideal model of heterogeneous
computing as CPUs with different throughput. The idea of heterogeneity was
further expanded to include algorithms that run partially on SIMD and MIMD
processors by Watson et al. 1993 [13]. The authors further promoted a taxonomy
called EM3 which separated the concepts of individual machine architectures and
the way these architectures were connected. However, at this time the heterogeneity
of individual machine architectures was limited to variation of what would now be
single core and multicore CPUs. Although the potential benefit of heterogeneous
computing was appreciated, heterogeneous computing was not a commercial success
due to the constant progress of Moore’s Law. This started changing from the mid
2000, when alternate sources of acceleration started to emerge in response to power
responses of a single core. In this way the field of heterogeneous computing was
re-imagined.

Heterogeneous computing also evolved with the advent of FPGAs [14]. However,
the initial motivation of FPGAs was not performance, rather they were used as a
mechanism to prototype ASICs. But with the demand for more parallel computa-
tion, FPGAs were used for performance acceleration.

Around mid-1990s graphics cards appeared in volumes for personal computers [15,
16]. It was not long before there were attempts to use the graphics commands
supported by these card to do general purpose computing [17,18], which later was
introduced under the term general purpose graphics processing unit computing -
GPGPU [19].

A major factor in the rapid development of multicore CPUs, GPUs and FPGAs
to become the primary constituents for heterogeneous computing as compared to

8

CPUs was power [20]. It is well known that by 2003 the clock rates on CPUs had
plateaued [21] and the need to consider massively parallel platforms to avoid power
issues had become the primary driver for heterogeneous computing engines.

Although the compute engines FPGA, GPU and multicore CPU originated for dif-
ferent applications, there is a growing trend to use them together and the reason
for this is the same that started heterogeneous computing, which is utilising differ-
ent compute elements effectively for maximising performance [2,9]. Heterogeneous
computing platforms that are constituted of multicore CPU, GPU, and FPGA are
reviewed in the next subsection.

2.2.2 Agile heterogeneous computing challenges

In this subsection, the challenges of designing applications for heterogeneous plat-
forms that incorporates the three compute engines; CPU, GPU and FPGA are
reviewed. These include the selection of the platform architecture, the manage-
ment of design complexity using a design flow, mapping and scheduling of tasks
with the compute engine resources, and the diverse software and hardware skills
that might be required for the implementation.

Silva. et. al. 2013 [22] experiments with dissimilar platform architectures to study
the performance variations of a pedestrian recognition application. The application
algorithm is based on a version of histogram oriented gradient (HOG) detector.
These platform architectures consists of all three types of compute engines. The
FPGA and GPU are connected through standard PCIe slots with the CPU. Four
different platform architectures are used. These variations are formed by using two
different models of GPU and by changing the number of FPGAs. Although the
primary motive of measuring performances on dissimilar platform architectures is
to show the benefits of heterogeneous computing with distinct compute engines,
the authors have implicitly revealed the importance of selecting a suitable platform
architecture for a specific application algorithm.

Similar experimental studies [23, 24] though with limited number of compute en-
gines, one of each kind, are used to find the best platform architecture for an
electro-physical and n-body simulation application algorithms. Again, the prime
finding of these research articles are performance gains obtained through the collab-
oration of three distinct compute engines, but they also shed light on the rigorous
experimentation necessary to find a suitable platform architecture. In both these
studies, a single application algorithm is targeted, which enables it to be manually
profiled and partitioned and mapped on the available compute engines.

Current commodity platform architectures feature communication links such as
PCIe slots, where readily available compute engines can be added and removed.
However, these links can also be considered as the bottleneck [25] that restricts

9

complete utilisation of heterogeneous platforms. Every time two compute engines
that are not a CPU needs to pass data, it often takes place through CPU. These
bottlenecks can be tackled through direct communication links between compute
engines [26, 27] that bypass the CPU, such as NVLink [28] for some GPU mod-
els from NVIDIA. Accordingly many more options for the platform architecture
topology will be feasible in the future. Thus platform architecture will increasing
become a design variable which can be optimized.

Quite recently, Chung. et. al. 2018, [29] have proposed servers with flexible
resource swapping options called composable systems. They provide a guided way
to create platform architectures based on the requirements of an application. They
have mentioned the necessity of selecting appropriate platform architecture, but it
has been left to the designer.

Given these observations it is clear that the design process for agile heterogeneous
computing is likely to be complex. The way similar complexities have been managed
in the past is through a design flow [30–33]. The challenge is to come up with a
design flow that allows the platform architecture to become a design variable and
not just a static platform architecture given at the start of the design process.

Another characteristic of agile heterogeneous computing is that several actors
1(components of an application) can be mapped to a single compute engine (like
a GPU). A scheduling decision needs to be made as to when to run actors concur-
rently. This decision will interact with resource allocation on the GPU. The reason
for this is that present day GPUs and FPGAs are constituted of large quantities
of compute resources, which can be exploited by simultaneously executing more
than one task. Simultaneous execution of tasks has led to the improvement of
performance and optimised resource utilisation [34–36]. Cruz. et. al. 2017 [37]
have experimentally demonstrated that the order in which simultaneous actors are
submitted to a GPU will affect resource usage and performance. The order of
actor submission essentially enforces a schedule that restricts certain concurrent
executions, while permitting other simultaneous executions. The schedule for agile
heterogeneous computing, thus, must take into account of resource consumption
for compute engines that allow concurrent actors.

The expansion of the design space for agile heterogeneous computing is self-evident;
variable platform architecture and scheduling decisions based on resource consump-
tion. In section 2.5, it is shown that efficient mapping and scheduling algorithms
for a fixed architecture exist. Algorithms will need to be adapted to find mapping
and scheduling decisions while considering the resource consumption of individual

1Carl Hewitt in 1977 [38] used the term "actor" for autonomous agents, which was later used by
Gul Agha in 1990 [39] to describe concurrent components of an application. More recently, actors
are used by Lee et. al. 2004 [40] to describe components of a parallel application as a graph-based
representation, where actors are nodes that communicates by passing messages through channels
(edges). It will be shown later (in section 2.4.1) that such dataflow representations are widely
used for design flows due to their analytical strengths.

10

actors.

A final challenge of heterogeneous computing is that a diverse skill set is required to
implement software and hardware components for all the different compute engines
and interfaces between them. Increasingly, it can be assumed that components
written by experts will come to dominate the design process. In this thesis, the
approach to agile heterogeneous computing assumes that such components are
readily available together with performance data of their executions on the various
compute engines.

In summary agile heterogeneous computing raises new challenges for designers. In
the rest of the literature review, progress that has been made so far to address
these challenges will be explored.

2.2.3 Conclusion

Agile heterogeneous computing was introduced in this section. At first an his-
toric perspective of heterogeneous computing was presented, where it was shown
how FPGA, GPU and CPU started to be used together in a platform architec-
ture. Then, previous research literatures highlighting the challenges of using these
computing engines together and the variability of the platform architecture due to
compute engine type and the connection topology were described. The necessity
for a design flow that can automate some stages of the design process was reflected
while reviewing literatures on agile heterogeneous computing.

2.3 Design flows for agile heterogeneous computing

The previous section highlighted the necessity of a design flow to mitigate the
unique challenges of designing applications for agile heterogeneous computing.
These challenges are; (1) forming a heterogeneous compute platform architecture,
(2) schedule simultaneous execution of multiple actors on compute engines, and (3)
manage complex tool-flows to target disparate compute engines. In this section,
prominent and recent design flows proposed for agile heterogeneous computing are
reviewed. It is shown that although there are a large number of design flows, they
do not cater to all the aforementioned challenges. The reason being, previous de-
sign flows consider either fixed or a restrictive format of platform architectures.
Furthermore, simultaneous execution of multiple tasks on GPUs and in combina-
tion with FPGAs is a relatively new concept, thus it is not fully supported in most
design flows. During this review of different design flows, it is shown that along
with the overall design methodology, the representations that form the foundation
of a design flow and the algorithms used for the design space exploration might not
be sufficient for agile heterogeneous computing.

11

This section is organised into two parts. The first part introduces the Y-chart [41]
approach to fixed platform design flows where algorithms and platform architec-
tures are separated. The second part reviews variable platform design flows that
allows platform architectures to be first class 2 design variables.

2.3.1 Fixed platform design flows

A major innovation in design flows, that is relevant to the challenges in the selection
of a platform architecture in agile heterogeneous computing, is the development of
the so called Y-chart methodology [42, 43] for the construction of design flows. In
this methodology, two separate high-level representations, one for the application-
algorithm and the other for the target platform architecture is required. The appli-
cation representation can be a dataflow model where nodes are computation and the
channels are communications. Whereas, the platform architecture representation,
expresses the communication and computation services offered by the platform,
such as CPU, GPU and the connections between them. These two representations
are then used to find the mapping and scheduling decisions. These decisions are
finally used to deploy the application on the chosen platform architecture. The
Y-chart methodology is illustrated in Figure 2.1, where the light bulbs depict the
iterations to improve the design space exploration for improved performance by ei-
ther modifying the mapping and scheduling decisions, or by changing the platform
architecture outside the design space exploration stage.

The concepts underpinning the Y-chart design methodology were independently
proposed in 1997 by Kienhuis et. al. [42] and Balarin et. al. [43]. A refined
exposition that actually coined the term Y-chart was later presented by Kienhuis.
et. al. 2002 [41]. Y-chart approach encompass a number of innovations. The
most significant is the separation of application-algorithm and (fixed) platform
architecture all the way through the design flow. The Y-chart approach implies
that during design space exploration, a mapping must be created between the
application-algorithm and the platform architecture components, which will drive
the final implementation. The Y-chart paper proposed a number of refinements
of the architectural representation as the design flow proceeds from specification
to implementation. However, tools that are based on Y-chart, such as SDF3 [44]
and PeaCE [45] are constructed on a single level of abstraction in the architecture
representation. So refinement is not a key concept in Y-charts rather it is the
separation of concerns between algorithm and architecture. It is this key idea
which is likely to be most helpful in developing a design flow for agile heterogeneous
computing.

Another possible separation of concerns (in addition to that suggested by the Y-
chart papers) is between design space exploration and deployment. The Algorithm

2The term first class is used to emphasise that platform architecture is a design variable that
always exists as a variable during the design process.

12

Figure 2.1: The Y-chart methodology. This figure is reproduced from [41]. The light bulbs
indicates the possible iterations to improve performance by changing the application-
algorithm set, mapping and scheduling decisions or by modifying the platform architec-
ture. These modifications can only take place after the completion of the design space
exploration stage.

Architecture Adequation (AAA) methodology [46] proposes this. It is the basis of
a more recent design flow called Preesm [30]. However, both of these methodolo-
gies are for fixed platform architectures. In AAA approach, the results of design
space exploration are expressed in a format that is independent of any deployment
technology and the deployment step is separate. This format is an intermediate rep-
resentation (IR) that contains the mapping and scheduling, and routing decisions.
The IR contains all the necessary details for deployment. It can be used for perfor-
mance prediction and for further analysis. Furthermore, it exhibits separation of
concerns between the design space exploration and deployment. Since this repre-
sentation is used for deployment, it can be analysed further. From the standpoint
of agile heterogeneous computing the analysis of such an IR to know if it is deploy-
able is desirable. Platform architecture is variable, it is important to know before
hand of all the resources that are available for deployment. Preesm enables the
use of independently developed pre-engineered components for deployment which
mitigates the need for designers to have skills on all the compute engines used in
the platform.

Thus, a well designed intermediate representation can foster separation of concerns
between design space exploration and deployment. Ideally, it would support further
analysis that was not possible just with the application-algorithm representation.

Since, for fixed platform architectures, modern machine learning libraries like,
Torch [47], TensorFlow [48], MatConvNet [49] and MXNet [50] have started to
support multiple GPUs [51, 52] and more recently FPGAs [53, 54], these libraries

13

are also reviewed. These libraries are used by machine learning application devel-
opers to target a fixed heterogeneous platform. However, they are limited in their
abilities to analyse a platform architecture to find if the platform architecture is
suitable for an application-algorithm. Due to this limitation the machine learning
libraries cannot be used as a design flow for agile heterogeneous computing. This
limitation exists because these machine learning libraries were developed to pro-
vide an abstraction layer to program machine learning application-algorithms as a
dataflow acyclic graph (DAG) and then implement the DAG on the target hetero-
geneous platform. In principle, during the design phase, the platform architecture
is assumed that it cannot be changed. It is important note that although these
libraries are not suitable as a design flow for agile heterogeneous platforms, they
show the usage of DAGs for implementation in heterogeneous platform architec-
tures.

2.3.2 Variable platform

SESAME [55] is a design flow that is constructed on the concepts of Y-chart
methodology [41] with limited ability to handle platform architecture as a design
variable. Like any other Y-chart based design flow, it has two separate high-level
representations. One for the application algorithm and the other for the platform
architecture. The applications are represented as high-level Kahn Process Networks
(KPN) [56], whereas the platform architecture is expressed as a high-level graph
based representation.

It is important to recollect here that KPN is the most general dataflow repre-
sentation. For this reason, it is difficult to analyse because the first-in-first-out
(FIFO) channels that connects dataflow graph’s nodes are not bounded. Another
limitation of KPN is that its FIFOs can introduce deadlocks. A KPN cannot be
scheduled without transformation. It needs to be converted to one of the more re-
strictive dataflow models, such as synchronous dataflow (SDF) [57] or cyclo-static
synchronous dataflow CSDF [58] or some other type of decidable dataflow represen-
tations [59] that can be scheduled during compile-time [60]. However, conversion
from a general dataflow instance such as KPN to its equivalent restrictive form
is not always feasible. A work around in this situation is a runtime scheduler
proposed by Parks in 1995 [61]. This scheduler ensures that the deadlocks are
prevented during runtime. However, a runtime scheduler can introduce execution
overheads [59].

In Sesame, the KPN is thus first transformed to a mapping layer. After the mapping
layer, the KPN is now deadlock free and has finite FIFO buffers. Now in this
mapping layer, each KPN processor is mapped to a virtual processor. Virtual
processors are mapped to a single core of a CPU. The mapping is one-to-one, such
that each KPN process is mapped to one unique virtual processor. The mapping
layer is comprised of virtual processes linked by bounded FIFOs, onto which the

14

KPN FIFOs are mapped.

The most interesting aspect of SESAME is its ability to treat the architectures as a
design variable in an design space exploration based on evolutionary algorithms. A
meta platform which is a type of template for possible platform architectures is the
starting point for the optimization algorithm. This template features a common bus
to which processors and RAM can be added. The evolutionary optimization algo-
rithms used, mutate the template architecture by removing and adding processors
and memory (RAM) components. The evolutionary algorithm has no knowledge
of the internal mapping and scheduling. In this, they are treated as a black box.

After mapping, the performance of an instance of the design is derived from sim-
ulation. This is possible because the constrained architectural choices allow the
usage of off-the-shelf simulators. These estimates are used to evolve the platform
architecture for improvement using a cost function. There is no allowance for a
change in the processor type. As discussed previously in section 2.2, for hetero-
geneous computing, changing of processor type may be a desirable part of design
space exploration.

The other main area where variable platform architectures have been considered
is in the general domain of work-flow scheduling in the cloud by [62]. The various
research works in this area are not strictly a complete design flow but they do allow
for a restricted form of variable architecture as described here. There are several
algorithms, such as GA-ETI by Casas. et. al. 2016 [63], Gain/Loss approach by
Sakellariou. et. al. 2007, [8], MOHEFT by Durillo. et. al. 2012 [64] and EGA-TS
by Akbari. et. al. 2017 [65] . All are proposed with the goal of reducing the rental
cost of cloud resources without compromising performance. In these bodies of work,
the platform architecture variability is restricted to selecting the number of virtual
resources. Interconnections and their associated bandwidth are bundled into the
performance of each virtual resource. It is assumed that there is potential all-to-all
connectivity available between virtual resources. The designer cannot determine
the way various physical components of a cloud platform are connected and it is
usually assumed that bandwidth between virtual resources is equal. Therefore, it
can be said that in the cloud, the platform architectures are primarily fixed with
the option to choose the required amount of virtual resources. Heterogeneity is
modelled in a very simplistic way such that virtual resources can be scaled but the
actual nature of the underlying execution engines are abstracted away. The details
of the assumptions and the scheduling and mapping algorithms used in these cloud
work-flow schedulers is explored in more detail in section 2.5.

2.3.3 Conclusion

There are design flows both in the context of embedded and cloud applications that
consider platform architecture as a variable, which was suggested in section 2.2.2 for

15

agile heterogeneous computing. SESAME maintains a separation of architecture
and, mapping and scheduling. Cloud papers have a more integrated approach
but assume that all processors are connected to a common bus and assume all
compute engines are capable of communication with each other without details
being considered.

2.4 Representation of application algorithm, archi-
tectural decisions and platform architecture

In the previous section, the design flows for agile heterogeneous computing that
appear in literature were reviewed. In this section, the literature on representations
for application-algorithms and platform architectures are discussed.

Representation is important because it is unlikely that a design flow can escape
from the assumptions implied by its internal representation. Agile architectures
will need unique representations for expression of variability in platform architec-
ture and in the expression of mapping and scheduling decisions for such variable
platforms. Finally, a separation of concerns between design space exploration and
deployment makes the design process more manageable, such an approach was dis-
cussed in the previous section. Separation of concerns are dependant on finding
suitable representations. Therefore, in this section, ways of representing paral-
lel applications, platform architectures and, mapping and scheduling decisions are
reviewed.

This section is divided into three parts. In the first part, the representations of
parallel application algorithms using dataflow models are reviewed. Then, in the
second part, approaches of representing architectural decisions are visited, which is
followed by the third part that reviews the platform architecture representations.

2.4.1 Representing application algorithms

Whilst representations that have been used in other domains include petri nets [66]
and statecharts [67]; the dominant representation of algorithms in cloud workflows
and embedded applications is dataflow. This can be seen from the large number
of design flows, reviewed in the previous section, that uses dataflow to represent
the application algorithms. However, certain design flows, such as COMPLEX [68]
and MOPCOM [69] are not based on dataflow representations, rather they uses a
form of statecharts extended as a UML profile, which is called as MARTE/UML.
Nevertheless, they have triggered research work for the support of dataflow models
with MARTE/UML [68, 70, 71]. There are two ways in which this is supported.
Firstly, the application-algorithms are expressed initially as a statechart instance,

16

which is then converted to its native MARTE/UML [72] format. Secondly, a trans-
formation from MARTE/UML to different kinds of dataflow models are also sup-
ported, so that analysability for performance estimation and resource usage are
enhanced [68, 70]. The widespread use of dataflow models can be attributed to
their analysis strength and also, to their natural ability of expressing parallelism
visually in the form of graphs. Therefore, in this subsection, notable and recent
dataflow models are reviewed.

A dataflow representation is composed of actors (nodes) and channels (edges). The
actors denote computation and the channels symbolise token (data) transfers be-
tween them. Actors consume tokens from their input channels and release the
resulting tokens at the output channels. An early dataflow representation was
proposed by Kahn 1974 [56], which is a network of actors connect through un-
bounded FIFOs. It is commonly known as Kahn Process Network (KPN). Due to
its expressivity of parallelism, it has been used in the representations of course-
grained parallel applications [42]. Another important characteristic of a KPN is
the order in which the actors are executed do not affect the application. Only the
input tokens determines the final outcome, not scheduling of the actors. Dataflow
models that exhibit this characteristic are known as deterministic [60]. Repre-
senting applications through a deterministic model removes the burden from the
designer regarding its functional consistency during deployment. Although KPN
are excellent at expressing parallelism, they require special care during implemen-
tation. This is due to the fact that they have channels that are unbounded. A
runtime scheduler is necessary to ensure that the channels do not exceed memory
limits [61]. Such schedulers add extra runtime overheads and restrict compile-time
analysis [73].

With rising complexities of parallel signal processing applications, the demand for a
representation approach with powerful analysis and optimisation capabilities grew.
Synchronous dataflow (SDF) proposed by Lee. et. al. 1987 [57] was the first
dataflow model that was widely accepted to represent application-algorithms for
various design flows [44, 74]. It is based on the concept of actor firing (execution)
with pre-defined rates (number of tokens needed for firing). Actors can fire when
they have a pre-defined number of tokens at their input channels. Similarly, there is
a predefined number of tokens that are released at the output channels after firing.
In Figure 2.2(a) an example SDF graph of three actors A, B and C is illustrated
with their data token consumption and release rates. The small black circle is
the initial token, which is necessary to determine the starting actor. Due to the
predefined actor rates, an SDF representation can be scheduled during compilation
for a platform composed of single or multiple processors [60]. A schedule is a
periodic order of actors that will be repeated infinitely (lifetime of the application).
For the example SDF graph in Figure 2.2(a) the sequential schedule is <A, B, B,
C>. The number of times an actor fires within a schedule is called as the firing
rate, such as the firing rate of actor A is 1 and for actor B is 2. The order in which
the actors fire determines the buffer size of the channels, which can be optimised
to reduce the buffer sizes [60,75].

17

In order to schedule an SDF graph, a topology matrix Γ which represents the tokens
consumed and released by the actors on the channels (shown id Figure 2.2(b)) is
required. A topology matrix is created by assigning the actors to the column and
channels to the row and each entry represents the tokens given or taken to/from
the channel. For actor A and channel ab the entry is 2, as when A fires it gives
the channel 2 tokens. Whereas, for actor C and channel bc, the entry is -2, as B
takes 2 tokens from the channel. A zero implies that the actor neither gives or
takes tokens from the channel.This topology matrix is next used to determine the
consistency of the graph and also used for scheduling.

A condition needs to be first fulfilled to check whether the SDF graph is consistent.
This condition is rank(Γ) = S−1, where rank(Γ) is the rank of the matrix and S is
the number of actors(nodes) of the SDF graph. Then, a non-trivial repetition vector
r, where r.Γ = 0 is calculated to create the sequential schedule. The minimum
repetition vector for the example SDF graph is: A : 1, B :2 and C : 1. Now a
sequential schedule can be created based on the repetition vector and the starting
actor, which is determined by the initial token. The sequential schedule is the first
step to construct a parallel schedule on multiple processors. The second step is to
create an equivalent dataflow acyclic (DAG) graph of the SDF graph. Figure 2.2(c)
shows the equivalent DAG of the example SDF. Then, the third step is to map the
actors on the respective processors and then find the order (schedule) in which the
actors must fire. Lee et. al have shown that this task of mapping and scheduling
on each processor is NP complete. After it is decided where the actors will be
mapped, partial DAGs for each processors are constructed. Each of these partial
DAGs comprises of a multi-processor schedule. The compile time multi-processor
schedule can be used to estimate throughput [60,76]. These analysis capabilities led
to the wide usage of SDF model. However, SDF has limited expressive capabilities
that prevents the representation of certain traits of an application-algorithm [77].
Newer models [58, 77, 78] are proposed to cater for these needs. Most of these
new models rely on the SDF semantics, as they are converted back to a SDF form
during analysis.

Since SDF requires to be expanded to its homogeneous form and then to a DAG
for mapping and scheduling decisions, there is a chance of exponential increase
in the number of DAG actors [60]. An approach to directly analyse SDF graphs
was proposed by [76]. However, as this approach does not expand the SDF graph,
complete task and data parallelisms cannot be achieved [79]. Partial expansion of
the SDF graph can be a probable solution to prevent the graph from becoming
very large and also revealing some of the data parallelisms [79, 80]. Expression of
partially expanded graph has gained little attention.

Depending on which actor is expanded for data parallelism, which actor is to be
mapped on a given processor and their order of firing, an SDF graph can be imple-
mented in a large number of different ways. Although in a deterministic dataflow
model like SDF, the scheduling or the mapping decisions will not affect the func-
tional outcome [81], they will impact performance and resource usage [60]. This

18

Figure 2.2: (a) an SDF graph, (b) the graph’s topology matrix with its rank which is
3− 1 thus can be scheduled and (c)an equivalent dataflow acyclic graph(DAG).

has led to an increased interest in considering alternative platform architectures
at the design stage. For this reason, representations of these design decisions are
gaining prominence. They act as an intermediate representation to transition from
the design space exploration stage to the deployment stage. This is the subject of
the next subsection.

2.4.2 Intermediate representation

Dataflow models that can also represent design decisions are reviewed here. A new
taxonomy of representations based on expressing mapping and scheduling decisions
is presented in Figure 2.3. Following this taxonomy, the three options of separate
graph, SDF compatible and new semantics are now discussed.

Separate graph

In this approach the design decisions are represented through an entirely separate
graph, which is not extended from the application-algorithm. This approach of rep-
resentation adds extra responsibilities to the design flow in managing another model
apart from the already existing representations of application-algorithm and the
platform architecture. During analysis and also for deployment, the application-
algorithm representation needs to be used along with this model. This is the ap-
proach taken by the data flow schedule graph (DSG) [82] and the implementation
model in Algorithm Architecture Adequation (AAA) [46] design methodology.

19

Figure 2.3: This diagram shows a taxonomy of dataflow models expressing design deci-
sions. The taxonomy is based on the different approaches that are developed to expressing
the extra information of design decisions. There are two major approaches; separate graph
models that do not extend the application algorithm and extending the application al-
gorithm representation with the design decisions. The later can be classified further into
two groups. The first group are the representations that just uses SDF semantics. The
second group are the dataflow models with new semantics.

A DSG [82] is a separate dataflow representation with extra semantics to contain
the mapping and scheduling decisions. These extra semantics consists of reference
actors and schedule control actors. The reference actors shadow the actual actor
of the corresponding dataflow representation, whereas the schedule control actors
represent the loops and other control-flows. Sequential execution of actors, when
they are mapped on the same processor is guaranteed through special tokens called
control flow tokens. They are passed within reference actors to control the flow
of execution. These special tokens are also duplicated and merged for concurrent
executions when actors are mapped on different processors. Since resource con-
sumption of actors are not explicitly expressed by DSG, expression of concurrent
executions on compute engines like GPUs, where multiple actors can execute to-
gether (when there are sufficient resources) is limited. It can only be achieved
by mapping parts of the actor on individual GPU processors, which may not be
practical, as GPU architectures are generally abstracted by vendor specific tools.
Another disadvantage of DSG is that any analysis and deployment would require
the merger of the DSG instance with the application-algorithm representation. The
paper does not address these issues directly.

In the Algorithm Architecture Adequation (AAA) methodology [46], the interme-
diate representation (IR), called the implementation model is formed by assigning
actors (nodes) of the application graph to the chosen processors of the platform
architecture representation. Extra actors are created to denote the additional task
of communication that takes place between the processors. These communication
tasks are mapped on the available physical links. If a communication is between
processors that do not have direct physical links, then a route that travels between
processors is used. This feature is a robust way to handle platform architectures
where all the processors are not directly connected to one another. After the as-
signments of the actors to processors and their communication on the physical

20

links, their executions are scheduled. The schedule is expressed as partial orders
for every processor and communication links. This partial order schedule is based
on the assumption that a processor only executes one actor at a time. Although
this successfully expresses all the decisions necessary for deployment on a platform
of few processors, implementation model has severe limitations in the expression
of simultaneous execution of multiple actors as would be required on a compute
engine like an FPGA or a GPU.

This limitation is similar to DSG and can be explained further with the help of an
example. Suppose two actors execute concurrently on a GPU. Since the assumption
is one actor at a time can execute on a processor, this decision can be expressed by
breaking down the actor into multiple smaller actors that just uses one single-core
processor of the GPU. Then, creating a corresponding platform architecture, where
the GPU is represented into its constituent singe-core processors. But the details
of GPU architectures are often abstracted by the vendors, making this approach
impractical. How this intermediate representation can be applied to FPGAs has
not been studied. Furthermore, since consumption of compute resources are not
explicitly expressed, analysis of resource consumptions are not possible. Another
limitation of implementation model is that it is based on a dataflow representa-
tion that does not explicitly denote tokens, unlike SDF, thus impairing memory
optimisations.

SDF compatible

Stuijk. et. al 2007 [44] extended the application algorithm SDF to bind-aware SDF
that incorporates scheduling and mapping decisions, and expresses how resources
are consumed at the start of actor execution and released after it finishes firing.
Similar to DSG, resource consumption is limited to the consideration of one ac-
tor mapped on a processor at a time. Thus, cannot be directly used for compute
engines like GPU and FPGA. Although this is insufficient for agile heterogeneous
computing, bind-aware SDF can be used to analyse the trade-offs of resource re-
quirements and performance [83], which can be an essential component for design
space exploration. Bind-aware SDF is also tied to a restrictive form of platform
architecture representation (reviewed in section 2.4.3). This restrictive platform
architecture not only assumes that one actor executing at a time on a processor
but also the processors are connected using a single bus. Due to the assumption of a
simplistic connection topology, mapping of channels to multiple processor routes is
difficult to express. Such situations are common in agile heterogeneous computing,
as the tasks on GPU and FPGA are usually routed from the CPU.

The techniques used in bind-aware SDF [44] to express mapping and scheduling
decisions and consumption of resources are based on the usage of annotations and
extra edges on the original data flow graph. The actors and channels of the original
SDF graph are annotated with the resource information; like the processors they

21

are mapped and memory consumption values. This is limited to the mapping of
only one actor on a processor and sharing is not allowed. Extra edges are used to
restrict possible concurrent execution of actors. These extra edges are not part of
the application-algorithm and only enforce sequential execution.

Extra edges with annotations are also used to represent mapping and scheduling
decisions in synchronisation graphs (SG) [84]. An SDF is converted to the more
restrictive homogeneous-SDF (HSDF). In HSDF, the rates of all the actors are
reduced to one. This conversion results in multiple duplications of actors and
channels. The algorithm for this graph transformation is provided in [57,60]. It is
evident that as a consequence the size of the model can greatly expand; but the
advantage is that it exposes all the implicit data parallelisms [74, 79, 80]. After
this conversion, actors that can execute concurrently in the dataflow, but due to
lack of available processors cannot execute in parallel, are added a special channel.
This special channel, known as synchronisation channel, is an elegant way to use
existing semantics of dataflow to express these design decisions. The partial orders
for every processor is implied through these edges. However, such representations
lack resource information. They also don’t consider mapping of channels between
processors that do not connect directly.

New semantics

In the next part of this subsection, representations that add new semantics to
the algorithm data flow graph to represent mapping and scheduling decisions are
reviewed. In some cases, these extra semantics are incompatible with the SDF
model. In other cases, it is possible to propose a conversion between the graph
with extra semantics and the SDF model. However, these conversions have not
been pursued by the authors.

Decision state model (DSM) [85] and Partial ordered approach (POA) [86] are
representations like afore-mentioned synchronisation graphs (SG) that can express
mapping and scheduling decisions. Another commonality is that none of them
explicitly express resource usage, they are based on the assumption of only a sin-
gle actor executing on a compute engine and also rely on simple inter-processor
connections. This implies that they cannot be used within a design flow for agile
heterogeneous computing where FPGAs and GPUs are to be considered. However,
as these representations extend dataflow semantics, they still have strong analytical
abilities. These will now be considered in detail.

DSM [85] have extra actors and edges to represent mapping and scheduling deci-
sions. Extra actors which are not compatible with standard SDF actors. They are
added to avoid the expansion of the algorithm SDF to its equivalent HSDF. These
extra actors enforce the assumption that all the firings of an actor are mapped
on the same processor. Therefore, a possible design decision to expand an actor

22

for data parallelism and then mapping it onto two separate processors cannot be
represented. The authors have shown that decision state models are more effective
in analysing memory size versus throughput trade-off, as compared to SG. This
can be attributed to the fact that in a decision state model, the SDF structure
is preserved, thus the analysis algorithms can be directly applied to the original
model.

Zebelein et. al. 2013 [86] proposed a dataflow representation based on partial
ordered sets with extra semantics to express mapping and scheduling decisions.
This representation is referred here as partial order approach (POA). It is proposed
with the objective of minimising the runtime overheads of executing a dataflow
application. This run-time overhead is due to the checks done by actors to know
if there are enough tokens to fire and also if there are enough space to release
the tokens. Some of these checks can be avoided from the mapping decisions,
if an actor that has input and output channels on the same processor because
the processor usually has a round-robin scheduler that fires the actors infinitely
in a sequential order. This sequential order is the schedule for the processor.
Therefore, an actor that has predecessors and successors on the same processor
will have the dependencies cleared. The checks become essential when there are
channels from other processors. POA splits the long schedule on a processor into
partial orders removing the need to check tokens and space available for tokens on
other processors. However, this approach introduces a centralized scheduler which
is contrary to the concept of a model with independent actors. It must be noted
that these overheads addressed by the partial order approach can now be handled
quite quickly in software. In an application requiring FPGAs and GPUs practical
overhead delays may be insignificant with respect to the communication delays
amongst various compute engines. On the other hand, partial ordered approach
shows the innovation of using composition of actors (actors inside a bigger actor)
to assist in expressing mapping and scheduling decisions. However, the usage is
limited to the sequential execution of actors on a single processor and without
explicitly expressing resource usage, making it inapplicable to agile heterogeneous
computing.

From this review, it is noted that the advantages of using a representation that is
compatible with the SDF model used for the application-algorithm are powerful
performance analysis, compile-time memory estimation and possibility to leverage
the existing tool-sets for SDF representation. It is noted further that all represen-
tations considered here ignore resources that can be used to determine concurrent
executions on a compute engine.

2.4.3 Representing heterogeneous platform architecture

Design flows that are based on Y-chart methodology [42] promotes the idea of high-
level representations of platform architectures, so that design decisions relating to

23

platform architecture are made at a higher level of abstraction. In this subsection,
representations that are relevant to the expression of platform architectures for
agile heterogeneous computing are reviewed. This review aims to find how well the
existing representations can handle variable platform architectures.

The platform architecture representation in Algorithm Architecture Adequation
AAA methodology [46] is a graph that can only express a limited range of fixed
platform architecture. Later, this representation is improved by Grandpierre et al.
2003 [87] to make it more general, so that a wide range of platform architectures
can be expressed. The representation called an architecture graph consists of nodes
that represents four kinds of finite state machines (FSM) and the edges correspond
to the input and output of the state machines. The four types of FSMs sequen-
tially manage the following: operator, communicator, bus, and memory. Operator
is any kind of computation that can be a processor or an IP block. Communica-
tor enables data transfers and does not involve operators. Bus is a physical link
that communicators compete to get access to. In this representation, a platform
architecture with switches cannot be expressed. This drawback is addressed in [88]
by adding extra nodes to model switches. The architecture graph is further gen-
eralised into S-LAM [88], which is based on the idea that modern day processors
are too complex to be represented on a high-level model. Rather than using clock
rates, estimated or measured execution times are used for every (actor, operator
type) pair. Although S-LAM is significantly generalised to handle a wide variety
of platform architectures, it is limited to the expression of sequential actor firings
and lacks the ability to represent architectures that can vary. The attributes of the
platform architecture are fixed. Furthermore, resources requirements of an actors
are not considered.

The design flow proposed by [44] extends that platform model initially described
by Culler et al. 1997 [89] to create a platform architecture representation in the
form of tiles, known as multi-processor platform template. Each tile consists of the
a processing element, network interface, a memory assist and a local memory. The
processing element represents a type of processor core. The network interface is
responsible for data transfers to and from a tile, whereas the communication assist
acts an arbitrator to access memory. A variable number of tiles can be connected
through bus. Complex topologies using switches are difficult to be expressed by
multi-processor platform template. Moreover, in regards to agile heterogeneous
computing, this representation lacks the ability to express resources. Actor firings
on a tile are expressed sequentially and any expression of variability in the platform
architecture is not considered.

Linear system-level architecture model (LSLA) is proposed by Pelcat et al. 2018
[90], which is a high-level platform architecture model focusing on reproducibility
and energy analysis. Reproducibility refers to capturing enough details of the
platform architecture in the abstract model so that it can be physically assembled.
The platform architecture represented is fixed. There is no notion of variability
present in the representation. Also, it is unclear how concurrent executions of

24

multiple actors can be represented on a compute engine.

In order to cater for many kinds of platform architecture [91] extended the Y-
chart methodology [42] to separately represent communication topologies. This
separation of communication topologies gives more options to try in the design
space exploration stage. However, during the design space exploration, only a
fixed platform architecture is considered. The topologies are not created during
the course of the design space exploration, rather they are fixed.

A rather restricted way of considering platform architectures as a variable pa-
rameter in the design space exploration can be seen in the later versions [92] of
SESAME [55] design flow. It uses a platform architecture representation known
as meta-platform architecture model. This representation consists of the follow-
ing elements: processor, bus, memory and point-to-point links. These elements
are used to create a basic topology unit (BTU). BTUs are connected together to
form a platform architecture. This implies BTUs are used to form ta suitable
platform architecture in the design space exploration stage. Although variability
is represented through this meta-platform model, it is heavily restrictive. BTUs
are defined manually and connections of BTUs other than using a straight bus is
not explored in the paper. This is a drawback for agile heterogeneous computing,
as connectivity topologies amongst various compute engines cannot be expressed
through a simplified bus model.

2.4.4 Conclusion

Data flow graphs are good for representing parallel algorithms because they can
naturally express parallelism and they are underpinned by a well-defined model.
SDF compatible representations of mapping and scheduling decisions are elegant
and preserve analysis. However, they do not consider resource consumption to
express concurrent execution of actors on compute engines. Furthermore, platform
representations reviewed are aligned to fixed architectures, or if variable are quite
restrictive. The representation of GPU and FPGA compute engines is not well
explored.

2.5 Mapping and scheduling algorithms

The review of design flows in section 2.3 showed that mapping and scheduling algo-
rithms are key to the exploration of the design space. The decisions made by these
algorithms are used further in deploying the application-algorithm. In this section,
various algorithms that have been proposed for mapping and scheduling on a het-
erogeneous platform are reviewed with the aim of finding those that are suitable
for agile heterogeneous computing. This review is conducted in three steps and for

25

each step, there is a dedicated subsection. In the first subsection, a distinction is
made between static and dynamic mapping and scheduling algorithms. It is then
shown how the challenges of agile heterogeneous computing are best addressed with
static algorithms for mapping and scheduling. Then in the second subsection, a
taxonomy is presented to simplify this review of the vast literature on static map-
ping and scheduling algorithms. It is noted that the major division between them
are the so called heuristic and meta-heuristic algorithms. Among these two major
groups, it is shown that list-based heuristic algorithms and evolutionary-based (also
called genetic) meta-heuristic algorithms are widely used in design flows for hetero-
geneous computing. Therefore, the third and the fourth subsections focus on the
review of evolutionary-based and list-based algorithms, respectively. It is shown
that current evolutionary-based and list-based algorithms are limited in relation to
the challenges of agile heterogeneous computing. These limitations are; insufficient
consideration for variable platform architectures, simultaneous execution of actors
on an FPGA or a GPU and economic objectives based on the rental cost model
rather than capital costs as for embedded heterogeneous computing.

2.5.1 Static and dynamic algorithms

The mapping and scheduling problem can be divided into two forms; static and
dynamic [93]. In static mapping and scheduling, the allocation of all the actors
and the timings or order in which they will execute are determined during design
space exploration (also known as compile-time schedule). Whereas, in dynamic
mapping and scheduling, these decisions are taken at runtime. Since, mapping and
scheduling are a NP complete problem [94], the runtime scheduler can consume a
significant amount of resources [95] apart from running the application-algorithm.

Compile-time scheduling requires various details to be known in advance of the
application-algorithm such as, the computation timings of the actors, communica-
tion delays and data dependencies [93].

Static mapping and scheduling approaches are the focus of this work and are re-
viewed in the next sections.

Since in agile heterogeneous computing the platform architectures are determined
during design space exploration, the mapping and scheduling decisions must also
be known, so that a predictable performance is achieved. It is a problem of static
mapping and scheduling. Hence, static mapping and scheduling approaches are
reviewed here.

26

Figure 2.4: A taxonomy of mapping and scheduling algorithms from Akbari et al. 2017
[65].

2.5.2 Static algorithm’s taxonomy

There exists a wide range of static mapping and scheduling approaches. A classifi-
cation of these approaches by Akbari et al. 2017 [65] is shown in Figure 2.4. Note
that in the literature it is common to refer to mapping and scheduling algorithms
simply by the label of scheduling algorithms as is done in Figure 2.4.

The major distinction in the figure is between heuristic and meta-heuristic ap-
proaches. All scheduling algorithms use heuristics because in almost every case
the problem is known to be NP complete [94]. Meta heuristic approaches are
exemplified by evolutionary approaches such as genetic algorithms. These used
generalized approaches that have not been developed with any specific application
domain. For example a commonly used meta heuristic package for multi-objective
optimization is Strength Pareto Evolutionary Algorithm (SPEA2) [96]. Heuristic
approaches make use of more detailed information about the application-algorithm
and the platform architecture. For example the very widely cited list based al-
gorithm Heterogeneous Earliest Finish First (HEFT) [7] directly interacts with
the application-algorithm graph. Within the heuristic group, list-based algorithms
dominate. Other alternatives of clustering and duplication are not further consid-
ered in this review.

2.5.3 Evolutionary meta-heuristic algorithms

The key publication that discusses a meta heuristic approach to mapping and
scheduling of tasks in heterogeneous computing is [55]. The authors advocate the

27

Figure 2.5: Design space example showing different design points, which are actually
disparate platform architectures. This Figure is reproduced from [92].

Y-chart [42] design methodology which allows them to have variable platform ar-
chitecture separate from the application-algorithm with a separate mapping step
from one to the other. The authors use the SPEA2 [96] package in conjunction
with accurate simulations to simultaneously explore the design space of power con-
sumption, processing time and architecture cost. Resource consumption of actors is
considered for mapping to find a suitable platform architecture but the application-
algorithm is not taken into consideration. The mapping and scheduling decisions
are taken separate to the platform architecture selection.

In a follow up paper [92] the approach is refined and several suitable designs are
produced as shown in Figure 2.5. It is noted that very similar performance is
achieved by all the cases and that only two platform architectures result from the
study. The heterogeneity of the examples is limited only to different microprocessor
architectures and this refinement also considers the search of platform architecture
separate to the application-algorithm.

2.5.4 List-based heuristic algorithms

List-based heuristics algorithms use the structure of the input application-algorithm
directly, as they first prioritise the nodes and then consider each node separately
for mapping and scheduling. These algorithms were initially built for homogeneous
platform architectures [97–99]. In these early algorithms, the platform architecture
was limited to a network of few homogeneous processors. Also, most of the early al-
gorithms assumed that the communications overheads between the processors were
negligible. Although these assumptions were limiting, they created the foundation
for the later sophisticated algorithms. [100–102] progressed list-based algorithms to
consider communication delays. However, heterogeneous computing was still not
the prime focus.

This changed when Topcuoglu et al. 1999 [7] proposed Heterogeneous Earliest
Finish First (HEFT) for platform architectures consisting of a set of heterogeneous
processors. Other algorithms started to be proposed for heterogeneous platform
architectures, such as PEFT [103] and CPOPS [102], but HEFT got wider accep-

28

tance in cloud computing [64, 104] and in embedded application [105–107]. The
widespread adoption of HEFT can be attributed to its low complexity and its good
mapping and scheduling performance (a lower makespan). Makespan is the time
to complete the critical path of the graph representing the application [60].

Even though the results of mapping and scheduling decisions of HEFT are com-
petitive with other algorithms [104,108], its major draw-back with respect to agile
heterogeneous computing is that the platform is assumed to be of fixed architec-
ture. The connectivity topology of this fixed architecture is considered to be fully
connected, where every compute engine can be connected to every other. This is
contrasting to agile heterogeneous computing, where all compute engines may not
be capable of being directly connected and the architecture is a design variable.
Furthermore, when multiple actors are assigned to compute engines they are re-
stricted to sequential execution on that engine. This does not capture possible par-
allel execution of actors on compute engines like GPUs and FPGAs. Since HEFT
is widely adopted, many enhancements surrounding HEFT have been proposed.
These enhancements have either extended the algorithm to consider additional ob-
jectives such as the economic platform architecture cost [8,64], or have focused on
the improvement of performance [104,109].

In order to more deeply examine the enhanced versions of HEFT, the original HEFT
algorithm is described in detail using an example and then the enhancements are
reviewed.

29

Figure 2.6: Pseudocode for the HEFT algorithm [7]. The algorithm to calculate earliest
finish time (EFT) is shown in Figure 2.7.

The HEFT algorithm

The HEFT algorithm first ranks the actors (nodes) of the application DAG on the
basis of their average computation time on various compute engines (processors)
that constitutes the platform architecture. Then, on the basis of the rank, actors
are selected one by one to be mapped and scheduled on a compute engine. The
compute engine is selected on the basis of the earliest finish time (EFT) of the
selected actor. EFT on all the compute engines of the platform is calculated and
the one with minimum EFT is selected. The pseudocode of the HEFT algorithm
is shown in Figures 2.6 and 2.7.

In order to elaborately explain the pseudocode of HEFT, an example from [104]
is used. The application DAG of this example is shown in Figure 2.8(a). The
platform architecture is shown in Figure 2.8(b). It comprises two distinct compute
engines connected through a communication link L1. The execution timings of the

30

Figure 2.7: The pseudocode to calculate earliest finish time (EFT) for the HEFT algo-
rithm [7], which is shown in Figure 2.6.

actors on each compute engine are shown in Figure 2.8(c). From this table, the
average execution time is calculated: which is the sum of the total execution time
of an actor on the different compute engines divided by the number of compute
engines. This value will be used later to rank the actors, which is shown in table
2.1. Similarly the communication delay times are in Figure 2.8(d). HEFT can
handle a heterogeneous set of communication links in which the delay depends on
which compute engines are connected.

The ranking of these actors are based on a heuristic that estimates every actor’s
importance in determining the objective of the mapping and scheduling algorithm.
The objective is usually performance but other objectives have also been proposed
in the more recent works. This are discussed in the next part. In the original HEFT,
the so called upward rank (rankup) values of actors are calculated by summing the
average execution times and communication delays whilst traversing the graph
upwards from the last actor to the actor in question. When there are more than
one possible path up the graph, the path that gives the largest rankup value is
chosen. Table 2.1 lists the actor rank values for this example. Because there is
only one communication link in the example the average communication delay is
replaced by the delay on this link. The rank of an actor ni is denoted as rankup(ni)
(see Figure 2.6). The Gantt chart in Figure 2.9 illustrates the resulting mapping
and scheduling decisions.

After the actors are ranked, a ready list is created. Initially, the ready list contains
only the actors that don’t have any predecessors. Predecessor actors are denoted
as pre in the pseudocode in Figure 2.7. From this ready list, the actor with highest

31

Figure 2.8: An example originally published in [104] to describe the HEFT algorithm. (a)
The application DAG and the platform architecture to demonstrate the HEFT algorithm.
(b) The computation timings of the actors and (c) their communication timings for the
platform architecture.

Table 2.1: The mapping and scheduling decisions based on the HEFT algorithm
for the example shown in figure 2.8.

32

Figure 2.9: The mapping and scheduling decisions illustrated as a Gantt chart for the
example previously shown in Figure 2.8 and in table 2.1.

33

(rankup) value is selected for mapping. This actor is then assigned to a compute
engine based on the earliest finish time (EFT). The calculation EFT is the sum
of the execution time of ni on the compute engine pk and its earliest start time
(EST). The EST of ni on pk is the earliest time when ni can execute on it. This is
the maximum of when pk becomes available for execution (start time), or the time
when ni receives the necessary data at its input channels for execution.

Start time (st) of a compute engine is the earliest time slot when it can start
execution of a new actor. HEFT assumes that compute engines are single core
processors, only one actor is allowed at a time. Amongst already mapped and
scheduled actors, a time slot, if it is earliest can be selected for the new actor to
be placed. The authors of HEFT call this an "insertion-based schedule". Since
there is no pre-emption allowed in HEFT, the time slots must be minimum to the
computation time of the actor on the compute engines.

In the example, the EFT and EST of the compute engines that are selected are
listed in table 2.1. The resulting makespan after running HEFT with the mapping
and scheduling decisions are illustrated using a Gantt chart in Figure 2.9.

This description of HEFT reveals two major limitations, which are the implica-
tions of assuming single core compute engines and all-to-all connected compute
engines. The first assumption does not allow resources to be considered for concur-
rent actor execution. The second assumption prevents the possibilities of channels
queuing for the same communication link. Both of these are limitations for agile
heterogeneous computing, as concurrent actor execution on a compute engine and
specialised connectivity topologies are important aspects of agile heterogeneous
computing. The original HEFT assumes a fixed platform architecture. Therefore,
the economic costs of different platform architectures are not considered. Some
of these restrictions have been removed by various advancements around HEFT
which are discussed in the next paragraph.

34

HEFT enhancements

Shetti et al. 2013 [109] proposed HEFT-NC (no crossover), an enhancement of
HEFT for compute platforms with GPUs. The authors note that HEFT can become
stuck in a local optimum when the compute engines have very different speeds for
typical actors, as would be the case for a CPU and GPU pair. No crossover refers to
the prevention of assignment of an actor to a compute engine just based on the EFT.
Since the acceleration of an actor can be much higher on an FPGA or GPU than
on a CPU, sometimes EFT based compute engine placement may not result to the
optimal results. For this reason, the authors have proposed a crossover threshold
in the compute engine selection heuristic. This threshold is compared against how
much an actor can be accelerated on a GPU and its present EFT. Furthermore, the
authors have modified the actor ranking heuristic to reflect that tasks that are large
and that have a higher speed-up on a GPU are prioritized first. The combination
of this ranking approach and the usage of no-crossover threshold showed reduction
of makespan when compared to the original HEFT algorithm. However, HEFT-
NC did not consider communication delays between CPU and GPU during the
choice of compute engines. These communication delays due to PCIe links can be
significant. Thus, they must be included in the design process. Alebrahim et al.
2017 [104] further extended HEFT-NC to include the communication link delays
for platforms with GPU. Although the attributes of including an accelerator like
a GPU is added in these HEFT extensions, the platform is static and concurrent
actor execution is not considered.

Several variations of HEFT are proposed for cloud computing [8, 62, 64]. In cloud,
the cost of renting virtual machines is an important consideration, these modifi-
cations have incorporated into the objective function this economic rental cost as
well as performance. In the MOHEFT [64] extension, instead of assigning an actor
to one compute engine, several other options are explored. These extra solutions
are then examined in relation to performance rental cost trade-offs. The number of
alternative solutions that will be explored for trade-offs is a hyper-parameter which
has a lower bound that is defined at the beginning of the algorithm. The selected
solution is based on the concept of crowding distance, which provides a measure
of possible solutions that are closer to the one selected. The authors have shown
that this algorithm preforms better than genetic (evolutionary) algorithms coded
in SPEA2 [96]. However, it has a higher complexity as compared to the original
HEFT algorithm. This is due to the introduction of a search and evaluation of
multiple solutions.

A major drawback of MOHEFT is that the economic cost is based on a rental
model, which is coherent with cloud pricing schemes but is not applicable to the
embedded domain for agile heterogeneous computing where costs are capital costs
and the platform architecture is the one off purchase of its components. The second
drawback of MOHEFT is that the compute engines of the platform are assumed to
be fully connected and the communication delays are assumed to be uniform. The

35

pricing of bandwidth in the MOHEFT cost model is also rental based where each
byte transferred adds to the time that the compute engine will need to be rented.
Bandwidth is thus not priced explicitly and the capital cost of communication links
is not explicitly represented as a cost. In other respects MOHEFT is the same as
HEFT in that parallel actor executions on a compute engine are not possible.

A later version with lower time complexity than MOHEFT with cloud cost models
is proposed by Verma et al. 2015 [62]. In this algorithm, during the selection of
compute engines, the one which has the lowest rental cost is simply selected. In
this paper the authors have only compared the performance with original HEFT
algorithms, whereas an evaluation of this method with other cloud enhanced ver-
sions is expected. This algorithm also has similar deficiencies as that of MOHEFT,
which is a capital cost of the entire platform architecture is not considered and
communication delays are uniform.

There are many other extensions to the HEFT algorithm that have been proposed
for cloud applications. For a recent review see [110]. Of particular interest, in
a well cited paper, Sakellariou et al. 2007 [8] proposed the Gain/Loss algorithm
attempts to move from a high cost schedule to a low cost schedule (LOSS) or a
low cost schedule to a higher cost schedule (GAIN) without unduly increasing the
makespan using initial schedules created by HEFT. The cost is defined according
to a rental cost model similar to that of the cloud and the platform architecture
is assumed to be fully connected; because of these two factors, the Gain/Loss
algorithm is not directly applicable for agile heterogeneous computing. However,
this algorithm shows the avenues to adjust scheduling and mapping decisions by
considering new compute engines or by discarding a previously used one. This
provides the opportunity to change the platform architecture based on a pricing
budget. This can be explained in detail by looking into the pseudocode of the
Gain/Loss algorithm, shown in Figure 2.10.

In the Gain/Loss algorithm, the weight of an actor on a compute engine is used
to decide whether the actor will be mapped and scheduled on the compute engine.
This weight is calculated as the execution time decrease or increase for cost in-
crease or decrease of the gain or loss versions of the algorithm, respectively. If a
compute engine was not initially used (in the first HEFT schedule) but satisfies the
present budget conditions, then the new compute engine will be used. The same
is applicable to discard an initially used compute engine.

36

Figure 2.10: This Figure shows the pseudocode of the Gain/Loss algorithm [8].

37

2.5.5 Conclusion

The closest papers to the concept of agile heterogeneous are Pimentel et al. 2006
[55] and Sakellariou et al. 2007 [8]. However, they both have significant deficiencies
for agile heterogeneous computing. The first paper [55] considers template-based
platform architectures that have limited connectivity topology and the exploration
is based on evolutionary algorithm that do not consider the application-algorithm
directly. The second paper [8] is for rental cost optimisation, where the underlying
mapping and scheduling algorithms do not consider concurrent actor executions
on the same compute engine. The connectivity amongst the compute engines are
all-to-all which is simplistic for agile heterogeneous computing. In both the algo-
rithms, it is not clear how they would cope with resource consumption of actors on
architectures that include components such as GPUs and FPGAs.

The [8, 62, 64] researchers have different assumptions in their architecture model
namely zero bandwidth costs that allow an easy encoding for the evolutionary
algorithm. Their cost model is also based on rental costs of compute engines rather
than capital cost. Most other work on design flows do not envisage the architecture
being a design variable. These works also do not take into account the resource
consumption of actors that can allow simultaneous execution of multiple actors on
a compute engine.

2.6 Conclusion

In this chapter, the literature related to the agile heterogeneous computing design
flows were reviewed. The following gaps have been noted:

1. There is no agile design flow that has a close linking between the variable plat-
form architecture and mapping, and scheduling of the application-algorithm.
For example SESAME [55] treats the variable architecture quite separately
from the mapping and scheduling decisions, whereas research emanating from
cloud computing assumes a generalised all-to-all connection infrastructure
and are based on rental costing metric.

2. There is no constraint based representation that allows for generalised vari-
able architectures to be explored in conjunction with mapping and scheduling.
Generalised platform representations have only been applied to fixed archi-
tectures. Variable platform definitions based on tiles and templates are not
fully generalised.

3. Current SDF-based scheduling and mapping representations cannot express
groups of actors together with their resource consumptions. They are also
incapable of representing communication between compute engines, resource

38

dependences and control actors for the remote management of the actors on
another compute engine. Separate graph representations have provision for
many of the mapping and scheduling requirements for embedded systems but
require separate throughput analysis as they are not based on SDF semantics.
SDF compatible representations do not represent resources, thus not allowing
the possibility of expressing how groups of actors execute concurrently on a
compute engine.

4. Whilst mapping and scheduling has been applied to heterogeneous architec-
tures, compute resources have not been widely included and capital cost met-
rics are not considered. Further, there has been no integration between HEFT
typed algorithms and Gain/Loss algorithms. Evolutionary meta-heuristic ap-
proaches to variable architectures do consider resources but not at the same
time as mapping and scheduling decisions. List based mapping and schedul-
ing algorithms do not consider resources and specialised communication chan-
nels. Gain/Loss algorithm derived from cloud have very simplistic approach
to resources, where only one actor is executed on compute engine at a time
and all-to-all communication links are assumed to be always available. The
cost model for resources in cloud model are based on a rental metric.

39

Chapter 3

Research methodology

Contents

3.1 Introduction . 41
3.2 Research questions . 42
3.3 Research methodology . 44

3.3.1 A design flow for agile heterogeneous computing 44
3.3.2 Constraint based platform representation 45
3.3.3 Intermediate data structure 46
3.3.4 Agile mapping and scheduling algorithm 47
3.3.5 Sharing of compute engine resources 48

3.4 Conclusion . 48

40

3.1 Introduction

The previous chapter has revealed that there are significant gaps in the literature
with respect to agile heterogeneous computing design flows. A summary of these
gaps are:

• Current agile computing design flows do not treat the present platform ar-
chitecture within the mapping and scheduling context.

• There is no generalised constraint based platform description that would serve
as an input to an integrated agile heterogeneous computing design flow.

• Whilst SDF-based representations for mapping and scheduling decisions have
been used to integrate applications and the platforms on which they execute,
there are many details of embedded platforms that are not captured by cur-
rent SDF representations.

• Finally, there has been no comprehensive incorporation of the requirements of
agile heterogeneous computing into modern list based mapping and schedul-
ing algorithms.

In this chapter, research questions aimed at filling these gaps that arise from the
literature review are presented together with the methodology adopted to answer
each question. The methodology is based on the general framework suggested by
Crnkovic [111] and shown in table 3.1. The types of questions, strategy to answer
the question and the method to validate the work used to answer each question are
described in the next section.

41

Table 3.1: The categories of research questions, strategy/result and validation
identified by suggested by Crnkovic [111].

Question Strategy/Result Validation

Feasibility
Does X exist and what is it?
Is it possible to do X at all?

Qualitative model
Report interesting observations

Generalise from examples
Structure a problem area

Persuasion
I thought hard
about this, and
I believe . . .

Characterisation
What are the characteristics of X?
What exactly do we mean by X?

What are the varieties of X
and how are they related?

Technique
Invent new ways to do some

tasks, including implementation
techniques

Develop ways to select from
alternatives

Implementation
Here is a prototype
of a system that . .

Method/means
How can we do X?

What is a better way to do X?
How can we automate doing X?

System
Embody result in a system using
the system both for insight and as

a carrier of results

Evaluation
Given these criteria,
the object rates as . .

Generalisation
Is X always true of Y?

Given X, what will Y be?

Empirical model
Develop empirical predictive
models from observed data

Analysis
Given the facts, here
are the consequences

Selection
How do I decide whether X or Y?

Analytic model
Develop structural models
that permit formal analysis

Experience
Report on use in

practise

3.2 Research questions

In this section, the research question addressed by this thesis are presented. The
research questions are as follows:

1 Is it feasible to create a design flow for agile heterogeneous com-
puting where architectural exploration is closely integrated into
mapping and scheduling decisions?

According to the categories of the research questions described in table 3.1,
this is a feasibility question. The strategy to answer this question is to develop
a new technique by combining architectural exploration with mapping and
scheduling decisions. The question will be validated by implementing and
evaluating the new technique using a metric to measure the price of the
platform architecture and the performance of the application-algorithm on
the platform architecture. Capital cost is used to measure the price of the
platform architecture. Makespan and throughput is used to measure the
performance of the application-algorithm.

2 How to incorporate in a design flow, for agile heterogeneous com-
puting, a constraint based platform definition?

This is a method question which will be answered by constructing a system

42

which embodies a constraint based architecture inputs and generated deploy-
able implementations. The validation of this question will be through its
successful implementation in a prototype.

3 How to represent simultaneously the application, architecture, map-
ping and scheduling decisions, and deployment details of an agile
heterogeneous computing solution?

This is a method question which will be answered by embodying a data struc-
ture to represent the application, architecture, mapping and scheduling deci-
sions and deployment details within a full design flow system. The represen-
tation will be considered validated once it has been successfully implemented
in the prototype.

4 How to best perform mapping and scheduling in the context for
this new design flow for agile heterogeneous computing?

This is a method/means type of question. It will be answered using the
strategy technique of incorporating the new algorithms into a system. The
evaluation of this technique will be performed by measuring metrics based
on capital cost and makespan. Makespan is used instead of throughput 1

because the former is widely used in the mapping and scheduling literature.

5 How can an agile heterogeneous design flow incorporate decisions
concerning the sharing of the compute engine resources amongst
multiple concurrent actors?

This is a method/means type of question. It will be answered using the
strategy technique for incorporating resource constraints into mapping and
scheduling that inherently allow the concurrent allocation of actors to a com-
pute engine. The evaluation of this technique will be performed in the same
way as the evaluation of the previous research question; i.e measuring metrics
based on capital cost and makespan.

The aforementioned research questions are summarised in Figure 3.1 along with
the steps to categorise the research question, then selection of a strategy that will
lead the question being answered and finally selection of a validation approach to
verify the results obtained.

1Makespan and throughput are related as, throughputmin = 1
makespan , where throughputmin

are the minimum possible throughput [60].

43

Figure 3.1: The research questions along with their categories, research strategy and the
validation approaches. This table is constructed on the basis of the research Crnkovic’s
[111] research methodology.

3.3 Research methodology

In the previous section, the research questions were defined and an overview of
the methodologies to answer them were described. In this section, the research
methodology to address the research questions are discussed in detail. This sec-
tion is organised into five subsections where every research question is discussed
separately.

3.3.1 A design flow for agile heterogeneous computing

The overarching research question of this thesis is:

1. Is it feasible to create a design flow for agile heterogeneous com-
puting where architectural exploration is closely integrated into
mapping and scheduling decisions?

As described in the previous section that this is a feasibility question which will be
answered by creating a new technique and that will be validated using a combina-
tion of implementation and evaluation.

The steps in creating the technique comprises of first conceiving the new design
flow by generalising the previous Y-chart design methodology [41], so that variable
platforms can be included. The next step is to consider the mapping and scheduling

44

decisions in conjunction with the exploration of the platform architecture. The
third step is to define the key components of the new design flow and the new
elements required in the creation of this new design flow. The fourth step is to
create the new elements for the realisation of the design flow. The final step is to
create a prototype of the design flow system. The validation of the new design flow
is done is two stages, where the design space exploration is first evaluated with
synthetic and real application DAGs. Then in the the second stage, the complete
design flow that includes automated deployment is evaluated with CACTuS [112]
a published hand crafted multi-object tracking application.

This research question is primarily answered in Chapter 4 where the new design
flow called Agile heterogeneous computing flow (AhcFlow) is conceived. Also, the
necessity of the following new elements were described: a new agile platform rep-
resentation called Parameterised platform graph (PPG), a new intermediate repre-
sentation called Architecture augmented synchronous dataflow (ArcSDF), a design
space exploration algorithm called Agile mapping and scheduling algorithm (AMS)
and a deployment technique. The validation of the new design flow will be con-
ducted in parts, in Chapters 6 and 7, after these new elements are created.

In order to answer this question, the variable platform architectures are limited
to the ones that can be created by one or more of the following compute engines:
FPGA, GPU and CPU. It is assumed that these compute engines are connected
with each other using PCIe links and executions on GPU and FPGA are controlled
from the CPU.

3.3.2 Constraint based platform representation

In order to realise the new design flow (AhcFlow), a new constraint based platform
representation is necessary, which brings to the second research question:

2. How to incorporate in a design flow, for agile heterogeneous com-
puting, a constraint based platform definition?

This question is introduced in section 3.2 where it is categorised as a method ques-
tion, the strategy chosen to answer it is incorporating an agile platform represen-
tation within the design flow system. The validation technique is its successful
implementation.

At first an agile platform representation called Parameterised platform graph (PPG)
is created. As PPG was one of the new elements required for AhcFlow, its key re-
quirements will already be defined while presenting AhcFlow. These requirements
will be used to create PPG. Once PPG is created, it will be validated by using
it to construct the prototype of the new design flow. PPG will be one of the
foundations to create the design space exploration algorithm and the deployment
technique. Both of these stages of the design flow will be tested with a large

45

number of synthetic DAG datasets, some real application DAGs and the CACTuS
application.

This question is answered primarily in the first section of Chapter 5 where PPG is
defined and its usage in the definition of ArcSDF is also described. PPG will be
implemented and used for design space exploration on Chapter 6. In this chapter,
synthetic datasets will be used for the evaluation of the design space exploration
algorithm. Then, in Chapter 7 it will shown the PPG can be used for real platform
architectures.

3.3.3 Intermediate data structure

Another key ingredient of AhcFlow is an intermediate data structure (ArcSDF)
that can represent the application and all the decisions to deploy it on a platform
architecture. Thus the third research question is:

3. How to represent simultaneously the application, architecture, map-
ping and scheduling decisions, and deployment details of an agile
heterogeneous computing solution?

During the definition of the research questions, this question is categorised as a
method question. The strategy chosen is integrating the intermediate data struc-
ture (ArcSDF) within the AhcFlow system and the validation is its successful
implementation.

The first step to answering this research question will be to define the architec-
tural decisions, which include the mapping and scheduling decisions and all other
decisions that are necessary to deploy a dataflow graph (SDF) on a heterogeneous
platform. The PPG representation will be used to represent agile platform archi-
tectures for the identification of the architectural decisions. Once the architectural
decisions are defined, they will then be used to create a new dataflow represen-
tation that can express the application-algorithm together with the architectural
decisions. This will be achieved by augmenting the original SDF graph to express
the architectural decisions. The ArcSDF graph is verified mainly by incorporating
it with the design flow prototype.

The ArcSDF graph will be defined in Chapter 5 where it will be used to conduct
various other analysis that goes beyond throughput prediction. After the defini-
tion, in Chapter 6, ArcSDF and its analysis approaches will be used in the design
space exploration algorithm. In this chapter, a large number of synthetic and real
application DAGs will be used for the ArcSDF validation. In Chapter 7 ArcSDF
will be used for deployment using real applications.

46

3.3.4 Agile mapping and scheduling algorithm

The algorithm to conduct design space exploration for the new AhcFlow design
flow raises the following research question:

4. How to best perform mapping and scheduling in the context for
this new design flow for agile heterogeneous computing?

In section 3.2 this research question is categorised as a methods/means, where the
question will be answered by developing a new technique and this new technique
will be validated using evaluation of metrics-based on makespan and capital cost.

Previous mapping and scheduling algorithms for variable platforms have consid-
ered the platform architecture selection separate from the mapping and scheduling
decisions. However, the design space exploration algorithm in AhcFlow evolves
the platform architecture with the mapping and scheduling decisions. This design
space exploration algorithm called the agile mapping and scheduling (AMS) al-
gorithm will be developed in three steps. In the first HEFT will be extended to
incorporate resources so that it can allow concurrent execution of actors on the
same compute engine. Then, in the second step, HEFT will be generalised to
incorporate specialised connectivity topologies of agile heterogeneous computing.
Finally, in the third step this advanced HEFT will be merged with Gain/Loss algo-
rithm, so that platform architecture instances can be created within the mapping
and scheduling algorithm. The Gain/Loss algorithm is also adopted for capital
cost from the existing rental cost model.The AMS algorithm will be evaluated first
for the advanced HEFT and next for the overall design space exploration algo-
rithm. Advanced HEFT with modified internal heuristics to consider resources
will be compared to a version of advanced HEFT with original internal heuristics.
The overall AMS algorithm will be compared against random brute-force approach
with two approaches of AMS (called expansion and reduction). In order to conduct
these experiments, a prototype will be constructed which will also show the fea-
sibility of the new design flow and the underlying representations. The prototype
will support a framework to generate many synthetic datasets and also allow real
application data.

The AMS algorithm will be constructed in Chapter 6 where all the stages of its
development will be described. Then the prototype to conduct the evaluation
experiments will be presented. Finally, the evaluation results for advanced HEFT
and the overall AMS algorithm will be discussed. An exhaustive case study with a
complex visual tracking application called CACTuS will be presented in Chapter 7,
where the design space exploration will be compared with published hand crafted
results. Furthermore, the predictions from AMS will be matched with the actual
deployed results.

47

3.3.5 Sharing of compute engine resources

The compute engines (FPGA, GPU and multicore CPU) can be fully utilised if
multiple actors can execute concurrently, which raises the following question:

5. How can an agile heterogeneous design flow incorporate decisions
concerning the sharing of the compute engine resources amongst
multiple concurrent actors?

Like the previous research question, this question is also categorised as a meth-
ods/means, answered by developing a new technique and validated using evaluation
of metrics-based on makespan and capital cost.

It is noted that this question intersects all the previous research questions. Hence
the technique will be developed across PPG, ArcSDF, AMS and the deployment
technique. For PPG, the platform representation will be created to express re-
sources present in a compute engine. ArcSDF will be created to have features that
can represent resource consumption of actors on a compute engine. This ability
will enable further analytical possibilities with the incorporation of resources. Since
the amount of resources an actor requires determines other actors to be placed on
the compute engine, in the AMS algorithm, resources will be introduced at the
starting of the AMS construction. The deployment will also take the resources ex-
pressed by the ArcSDF into account. This technique will be evaluated along with
the AMS algorithm by using synthetic and real application DAGs to compare the
the benefits of the resource-based enhancements.

This question will be answered across Chapter 5, 6 and 7. In Chapter 5, this
question will be addressed in the PPG and ArcSDF, whereas in Chapter 6 resource
based heuristics will be developed for AMS and evaluation will be conducted in
Chapter 6 and 7.

3.4 Conclusion

This chapter presented the research questions to fulfil the gaps identified in chapter
2. Then methodologies to answer the research questions and to evaluate the an-
swers are described. It is also described how this thesis is organised to answer the
research questions into next four chapters. In the rest of the chapters, the research
methodologies will be the basis of answering the research questions.

48

Chapter 4

A design flow for agile
heterogeneous computing

Contents

4.1 Introduction . 50
4.2 Inputs to the design flow . 54

4.2.1 Agile platform representation 54
4.2.2 Application algorithm 56
4.2.3 Pre-engineered components 57

4.3 Design space exploration . 58
4.4 Deployment . 60
4.5 Conclusion . 61

49

4.1 Introduction

In the previous chapter, the review of the literature on design flows for heteroge-
neous computing showed that whilst progress has been made on the separation of
concerns between the algorithm and the platform architecture (using the Y-chart
approach [6]), there has been less attention focused on platform architectures that
can change. Of the papers that discuss variable architectures, [55] proposed a
limited topology template architecture which is evolved using a genetic algorithm
without considering the details of the platform architecture and the application-
algorithm, whereas list-based mapping and scheduling algorithms [7, 62, 113] con-
sider a simplified platform architecture that merely consists of the number and the
"power" of processors to form the final deployment platform. Cloud mapping and
scheduling algorithms, such as HEFT [7], however takes into account the details of
the simplified platform architecture which may contribute to better outcomes with
lower complexity, as compared to the evolutionary approach used by SESAME [55].

This chapter presents a new design flow called the agile heterogeneous computing
flow (AhcFlow) that proposes to use the constraints of a platform architecture as
a design flow input rather than a fixed platform architecture. The input "architec-
ture" is expressed as a set of constraints to create the platform architecture. These
constraints allow more platform architecture options to be considered as compared
with the template-based approaches in [55]. Furthermore, these constraints en-
able a design space exploration approach that can generate platform architecture
instances by taking into account the details of the application-algorithm and the
platform constraints. The new design flow, AhcFlow can be viewed as a generaliza-
tion of the Y-chart approach [6], where the fixed platform architecture is replaced
with the a representation of the set of platform architecture constraints. The plat-
form constraint representation, called the parameterised platform graph (PPG) is
derived from the platform components desired by the designer. PPG is presented
in the next chapter.

Another input to AhcFlow are the pre-engineered (implemented) actors of the
dataflow model that represents the application-algorithm. It is assumed that all
the actors have an implementation for the compute engines that the designer wants
to consider. It is not necessary to have implementations for every actors on all the
available compute engines; however if an implementation is missing for a particular
actor on a specific compute engine, then this option will not be considered in the
design space exploration. Due to the presence of these implementations at the
start of the design flow, performance and capital cost data is available to use in
the design space exploration stage.

Design space exploration can be viewed as the central organizing principle in the
new design flow (AhcFlow). The design flow proceeds from the inputs of the
application-algorithm dataflow model, platform constraints (PPG) and actor per-
formance data, to the stage of design space exploration using an algorithm inspired

50

by HEFT. The new algorithm, called the agile mapping and scheduling (AMS) algo-
rithm, performs platform architecture instance generation along with mapping and
scheduling decisions, so that the platform architecture is a design variable consistent
with the supplied constraints. To facilitate this approach, each instance of platform
architecture is embedded in a single representation that includes the application-
algorithm with the mapping and scheduling decisions. This representation is called
architecture augmented synchronous dataflow (ArcSDF). It is discussed in more
detail in the next chapter.

After the design space exploration is concluded, the output is preserved in a de-
ployment neutral form, as the final ArcSDF representation. The final stage of the
design flow is deployment that transforms the final ArcSDF to a runtime using the
set of pre-engineered actors and the vendor specific tools of the compute engines.
The runtime is targeted for the platform architecture instance corresponding to the
final ArcSDF, which is essentially the platform architecture instance selected by
the design space exploration (AMS) algorithm.

51

Figure 4.1: This figure shows AhcFlow, the design flow for agile heterogeneous computing.

A short description of the new design flow described in 4.1 is as follows.

The design flow begins with three manually created inputs. The first is the dataflow
representation of the application-algorithm, the second is the representation of the
platform architecture constraints (later referred to as the tier1 of the PPG model)
and the third is a collection of pre-engineered actor’s performance, capital cost and
resource usage data. The pre-engineered actors have implementations that are used
during deployment, whilst their other data is used for the design space exploration
(DSE). Various kinds of application dataflow representations are allowed and these
are converted to the format that the design space explorer can understand.

The AMS algorithm is used for the exploration of the design space. It searches for

52

the best mapping and scheduling decisions including a suitable platform architec-
ture. The search starts with an initial instance of the platform architecture that
is provided as input. This initial platform architecture instance is called tier2 of
the PPG model. The designer can provide an initial platform instance as small
or as large as they think fit. The initial platform instance provides a hint as to
where the AMS algorithm commences its search. The first iteration of the AMS
algorithm creates an initial ArcSDF based on the initial platform instance. This
initial ArcSDF is then used to estimate performance and the capital cost. Depend-
ing on the estimated values, the initial platform architecture is either expanded
or reduced by including or excluding compute engines, respectively. These steps
are iterated several times before the final platform architecture instance is chosen.
This architecture will then be used for deployment. The maximum number of iter-
ations is provided by the designer but the algorithm can also stop if the theoretical
best makespan of the application-algorithm is reached with a certain capital cost
budget.

After the AMS algorithm stops, the design flow progresses to the deployment stage.
The pre-engineered implementation for all actors and channels are stored inside
the repository and the deployer reads the final ArcSDF to retrieve the required
code. The actor code chosen depends on the compute engine selected by the AMS
algorithm. The deployer then connects the actor code on each compute engine
with generated channel code. Channel code may use pre-engineered libraries for
communication between compute engines that is consistent with the constraints
defined in tier1 of the PPG model. When this channel code is combined with
actor code, it forms the basis of the runtime. Developers need to conform to
an abstract actor class exposed by the application programmer’s interface (API)
when developing the pre-engineered actors. This allows the integration of the actor
code to be automated by the deployer. It is assumed that channel code libraries
implementing the actor interface API have been pre-engineered for each compute
engine upon which an actor might be deployed.

The remainder of this chapter, which expands on the description of the AhcFlow, is
organized as follows. In section 4.2, all the inputs to the design flow are described.
At first the specifications of the new agile platform constraint representation (PPG)
is presented. Then the application-algorithm is introduced as a dataflow graph.
Next, a summary of the pre-engineered actors of the dataflow graph is presented.
With these pre-engineered actors, their performance, capital cost and resource
usage data are also included. In section 4.3, the specifications of the design space
exploration part of the design flow is presented. In section 4.4, the requirements of
the deployment part of the design flow are specified.

53

4.2 Inputs to the design flow

This section describes the inputs that the designer must provide to the new design
flow (AhcFlow). These inputs are agile platform representation, dataflow represen-
tation of the application-algorithm, and pre-engineered actors and channels of the
application-algorithm. Amongst all these inputs, the agile platform representation
entails a new approach that allows variable platform architectures to be consid-
ered in the design flow and also provides the basis to express concurrent execution
of multiple actors on the same compute engine. In this section, there are three
subsection, where each of the inputs are described in a separate subsection.

4.2.1 Agile platform representation

The major innovation of the design flow is the introduction of a generalised defi-
nition of the platform architecture that allows for a wide range of platform archi-
tecture instances to be considered. The most significant parts of this new platform
architecture definition is a set of constraints that defines the limits of the archi-
tectures that will be considered in design space exploration. Next the architecture
definition has a set of capital costs associated with potential execution engines to
be used in an instance of the architecture. Finally an initial platform architecture is
contained in the definition that conforms to the previously mentioned constraints.
The platform architecture that starts with the initial platform instance and is an
outcome of the design space exploration; needs to conform the constraints of the
number of and connections between the compute engines.

There are two types of constraints that can be included. The first type of constraint
is limitations inherent when a particular compute engine is chosen. Formation of
the platform architecture is viewed as the connection between various compute
engines and the system memory. The review of agile heterogeneous computing in
section 2.2 shows that there can be more than one type of connection between the
compute engines. Furthermore, a compute engine has limitations on the kind and
number of other compute engines it can be connected to. The size of the system
memory in the platform architecture depends on the compute engines of type CPU
used. These connection restrictions are also required within the platform model
along with the available platform components.

54

Figure 4.2: Agile platform representation with two tiers and their interaction with the
design space exploration algorithm.

The second type of constraint is provided by the designer on the number of compute
engines to be used; for example, a design should only use a maximum of two CPUs
and 3 GPUs.

A unique feature of the agile platform representation and as a consequence, of the
proposed design flow is that multiple concurrent actors can be mapped to the same
compute engine. This feature recognises the capabilities of modern GPUs and
FPGAs which are capable of executing multiple actors in parallel. A compute zone
is a term that is used here to mean a part of a compute engine and its associated
resources that can be allocated to an actor. The design flow also allows for platforms
where compute zones can be dynamically created and destroyed. This feature is
only practical for compute engines such as GPUs which can switch kernel software
quickly as the algorithm is executed. Even on modern GPUs for this to be a
practical consideration the time it takes to switch kernels must be comparable to the
compute time of a particular kernel; otherwise a possibly slow switch time will come
to dominate the performance on that platform architecture. However, there may be
situations where the GPU kernels are not on the critical path for the algorithm as a
whole in which case the switch time may be covered by other parallel operations on
other compute platforms. In the case of FPGAs dynamic compute zones correspond
to partial reconfiguration which on most modern FPGAs is considered as too slow1

1The minimum time to reconfigure a reconfigurable area of an FPGA that can only accommo-
date a double precision floating point adder is approximately 300µs [114]. This time significantly

55

to be incorporated into the main data path of the algorithm. The information
about the capabilities of compute engines to support compute zones is contain in
the same files as the platform constraints.

The concept of agile platform thus uses an abstract platform model. The con-
straints are denoted tier1. Tier1 reflects the available platform components, along
with their limitations of connectivity and the system memory. This limitation
control the way the platform components are connected to form the platform ar-
chitecture. It can be said that the tier1 expresses the entire design space available.
Based on it, the design space exploration algorithm finds a suitable platform archi-
tecture, which is the components and the way they are connected together. Tier2
of the agile platform model represents the initial platform architecture instance.
The DSE algorithm creates and evaluates the possible multiple platform architec-
tures constrained by a tier1. A starting point of the exploration, which is a tier2,
is provided by the designer. This concept of agile platform as a two tiered model
is shown in 4.2.

4.2.2 Application algorithm

The input of the application algorithm is the most straightforward aspect of the
proposed design flow. The selection of the dataflow paradigm for algorithms is
widely adopted to represent highly parallel embedded applications and from the
literature review there seems to be no compelling competitor approach. The only
choice seems to revolve around various forms of data flow representations. Syn-
chronous dataflow (SDF)has the advantage of static analysis that allows buffer
sizes to be determined statically and there is a well-founded theory that enables
prediction of performance before the deployment [60,76]. Another benefit of using
SDF is that it can be converted to a dataflow acyclic graph (DAG). The conversion
algorithm is described in [60]. This conversion allows the standard mapping and
scheduling algorithms to be directly applied for design space exploration.

There are a number of different representations that have evolved from synchronous
data flow, such as CSDF [58], PiSDF [115] and PiMM [78]. These dataflow rep-
resentations, as previously mentioned in the literature review, can be statically
analysed by converting to an equivalent SDF and finally to a DAG. The design
flow (AhcFlow) has elected to use the SDF model [57] as the basis of representing
application-algorithms. The reasons for the selection of the SDF model is that it
is extensively used to express parallel applications and is widely supported in the
research community with analysis algorithms. Due to these reasons, the SDF rep-
resentation is also used as the basis of the intermediate data structure (ArcSDF).
Since the design space exploration algorithm is based on ArcSDF and the primary
input of the deployment module is ArcSDF, using other representations that can
be converted to SDF does not require modifications to the overall design flow.

increases with the size of the reconfiguration area.

56

4.2.3 Pre-engineered components

There are two types of pre-engineered components those that implement actors
and those that implement communication channels between actors executing on
compute engines. The performance of a component on each compute engine, its
resource usage on each compute engine and its pre-engineered code for deployment
are inputs to the design flow.

The advantage of assuming pre-engineering of individual components of a large ap-
plication is that it avoids the need for the design flow to consider the specific details
of how best to implement an actor or communication channel when this is likely
best done by a person with expertise in each case. For an instance, a GPU devel-
oper may not be the right candidate to build the same actor on FPGA. It is also
possible to have different implementations of the same actor for the same compute
engine. Different implementations are possible when either they are different from
a theoretical perspective, such as a convolution actor can be implemented in spatial
domain or in the frequency domain, or when the implementation is performed with
a different architecture. This choice of selecting the right actor implementation is
dependent on the platform architecture and the application-algorithm.

Insights from the literature review pertaining to the development challenges of
heterogeneous computing also point the failure of technologies that claim automatic
parallelisation of existing sequential code and the wider acceptance of component-
based design flows. Whilst well-know from the software engineering domain [116],
component based design has also become the basis of development with systems
consisting of hardware and software parts [117,118].

Multiple implementations of an actor or a channel can exists in this design flow
for different compute engines. For some actors there may be no pre-engineered
implementation on a particular compute engine or there may be several versions or
no pre-engineered communication code between two particular compute engines.
More than one implementation of a certain component for a similar compute engine
are useful if each is optimised for different input token sizes. The design flow
needs to have avenues to specify the implementation types. Since the actors and
the channels are pre-engineered, the information related to their performance and
the resources required is known statically. The components of an application-
algorithm are built by experts. Information regarding resource consumption and
execution times are thus pre-determined and available to be used in the design
space exploration.

57

4.3 Design space exploration

In agile heterogeneous computing, the platform architecture is an additional de-
sign variable which must be optimised together with mapping and scheduling of
the application-algorithm on it. Adding and removing different types of compute
engines and their associated internal connections is as important architectural de-
cision, as is changing which actors run on what compute engine and when they
run. Design space exploration needs to find the optimal platform architecture and
the set of architectural decisions required to implement the application-algorithm
on it, so as to meet the performance and capital cost targets set by the designer.

Design flows that are based on dataflow models are reviewed in section 2.3. In these
design flows, the platform architecture is represented as a fixed high-level model,
which is then used for the design space exploration. The models that represent the
application-algorithm and the platform architecture are separate. As also stated
in the literature review; previous approaches to design space exploration when
the architecture was a design variable were of two types. The first type had a
very simplified choice of architectural decisions (such as just the number of CPUs
connected to generic but ill-defined bus). The second type performs optimisation
of the architecture using a generic optimisation package (typically an evolutionary
algorithm) that did not make use of any specific detailed information available from
the mapping and scheduling optimizations. In the latter case, the only information
passed from the mapping and scheduling optimiser to the architecture optimiser
was the performance (and possible cost) on the decisions with reference to current
architecture. Thus the architecture optimiser could not gain any insights from
the current mapping and scheduling algorithms as to where to look for the most
promising changes to the platform architecture. In this proposed design flow, the
platform architecture decisions are integrated with the mapping and scheduling
decisions. This is enabled by the usage of an internal data structure (ArcSDF)
that integrates these decisions. The proposed design space exploration algorithm
is shown in Figure 4.3

58

Figure 4.3: Joint design space exploration of platform architecture and corresponding
architectural decisions. The shaded region shows the exploration without iterating all the
possible platform architectures.

Furthermore, the design space exploration algorithms used in the previous design
flows assumed that only one actor can be executed at a time on a compute engine.
The reason being that compute engines were assumed to be simply a sequential
processor. This however has changed with modern compute engines, where actors
can be executed concurrently depending on the resource usage requirements of the
actors mapped. It is shown in the literature review that previous mapping and
scheduling algorithms that were used for design space exploration cannot be di-
rectly used and indirectly usage is cumbersome requiring extreme modelling effort,
which defeats the purpose of using a design flow. In the proposed design flow,
the resource usage of the actors are taken into account allowing more than one
actor to concurrently execute on the same compute engine. This is achieved by
enabling ArcSDF to express resource usage of actors and by extending a widely
used list-based mapping and scheduling algorithm known as heterogeneous earli-
est first (HEFT) to incorporate resource usage. The extended version of HEFT,
called resource-HEFT (rHEFT), is a part of the overall design space exploration
algorithm called the agile mapping and scheduling (AMS) algorithm. Both of these
algorithms are presented in chapter 6.

The AMS algorithm starts by using an initial instance of the platform architecture

59

provided by the designer that already conforms to the constraints set in agile plat-
form input model. Combining the initial instance with the application-algorithm
and the pre-engineered component library; a mapper and scheduler (which is part
of the DSE algorithm) generates the first version of the ArcSDF representation
of architectural decisions. The application-algorithm is converted to a dataflow
acyclic graph (DAG) so that standard mapping and scheduling algorithms can be
applied. Then using data structures already set up by the mapper and scheduler,
the DSE algorithm makes a change to the initial platform architecture instance
to move towards a more favourable performance or capital cost design point. The
new design point results in a new platform architecture instance and then to its
associated ArcSDF instance after a further iteration of mapping and scheduling
algorithms. Thus at each iteration of the DSE algorithm a new platform instance
is created. The mapping and scheduling part of the DSE algorithm updates the
ArcSDF representation based on the new instance.

Note that at any stage after scheduling and mapping, the platform architecture
instance could be recovered directly from the ArcSDF instance. The actual plat-
form architecture instance is a convenience rather than an essential definition. At
each iteration, estimates emerge for overall capital cost and performance. These
estimates along with the decisions on platform architecture instance are based on
internal data from the mapping and scheduling algorithms.

The design flow begins with two separate high-level representations, first one is
for the constraints of the possible agile heterogeneous platforms and second one
is for the application-algorithm. The design space exploration algorithm acts on
these models to find the most suitable platform architecture and the set of suitable
architectural decisions.

4.4 Deployment

The deployer receives the intermediate data structure containing all the information
of the architecture, it must read the ArcSDF instance and retrieve necessary actor
code from the repository. In order to connect the actors together, the channel
information must also be read to create the required channels. During this code
retrieval and creation of the connection code, the deployment technique must also
create necessary threads that support multiple compute zones.

This design flow requires a new deployment approach because of the introduction
of compute zones within compute engines such as GPUs and FPGAs. Previous
research reported in [119] has results which need to be adapted for the presence
of compute zones. In this proposed design flow the concurrent processor of [119]
loosely correspond to compute zones. They don’t correspond exactly because com-
pute zones, unlike concurrent processors are based on the idea of a certain amount
of compute engine resources, which are released after the actors within a compute

60

zone completes execution. Compute zones are defined in chapter 5 with ArcSDF.
Following [119] the design flow allows for a set of actors to execute sequentially on
a compute zone. Actors that must execute in parallel must of course be mapped
to different compute zones.

In a classical SDF mapping and scheduling algorithm, where the compute engines
do not have compute zones, the only way concurrent actors can be allocated is
as if they are scheduled to run sequentially. In fact it has been shown [119] that
the only schedule required is the sequential schedules of actors on the each of the
processing cores that constitutes the compute engine. Along with the execution be-
haviour expressed through ArcSDF, this simplicity of the SDF schedule forms the
basis of this deployment technique. The deployment technique must read sched-
ule information from the ArcSDF instance and generate code that maintains this
schedule. This is achieved through a runtime that orchestrates the actors on dif-
ferent compute engines. It is important that this runtime is lightweight so that
actor performances are not affected. This lightweight runtime must also conduct
the initial actor placement and the initial thread spawning. One of the threads of
the CPU must be assigned to execute the runtime.

The final specification of the deployment technique is to validate the ArcSDF in-
stance to ensure that the platform architecture has all the resources and communi-
cation links for its deployment. Since ArcSDF contains the architectural decisions,
the compute engines required and the amount of resources needs for execution can
be retrieved.

4.5 Conclusion

This chapter presented a new design flow called Agile heterogeneous computing
flow (AhcFlow) that considers platform architectures as a design variable. This
design flow is built by generalising the Y-chart design methodology [6] to consider
constraints of a platform architecture instead of a fixed platform architecture. At
first, the overall structure of the new design flow was presented. Then, its inputs
and the major stages of design space exploration and deployment were described.
It was identified that in order to realise AhcFlow, the following new elements are
required:

1. A representation to express platform constraints calledParameterised plat-
form graph (PPG) was conceived. The key requirement of PPG is the ability
of express platform constraints and a platform architecture instance at high-
level.

2. A data structure called Architecture augmented synchronous dataflow graph
(ArcSDF) that can express the application-algorithm together with the archi-
tectural decisions is required for the design space exploration and to automate

61

the deployment.

3. A design space exploration algorithm called Agile mapping and scheduling
(AMS) algorithm that will be able to explore the platform architecture closely
with the mapping and scheduling decisions of the application-algorithm.

4. An automated deployment technique that can automatically generate a run-
time from the results of the design space exploration algorithm.

These new elements of the AhcFlow are presented in the next three chapters.
In chapter 5, Parameterised platform graph (PPG) and Architecture augmented
synchronous dataflow (ArcSDF) graph are presented. In chapter 6, Agile mapping
and scheduling (AMS) algorithm is presented along with its evaluation. In chapter
7, along with an overall evaluation of the new design flow, the deployment technique
is described.

62

Chapter 5

Representing platform architecture
and architectural decisions

Contents

5.1 Introduction . 64
5.2 PPG: Parameterised platform graph 65

5.2.1 Overview . 65
5.2.2 Tier 1 . 66
5.2.3 Tier 2 . 70
5.2.4 Example of a parameterised platform graph (PPG) . . 71
5.2.5 Defining architectural decisions 78
5.2.6 Conclusion . 83

5.3 ArcSDF: Architecture augmented synchronous dataflow 84
5.3.1 Overview . 84
5.3.2 Comprehensive definition of ArcSDF 89
5.3.3 Analysis of ArcSDF . 99
5.3.4 Conclusion . 108

5.4 Conclusion . 109

63

5.1 Introduction

A design flow for agile heterogeneous computing was presented in the previous
chapter. The new design flow calls for new representation of the agile platform
and the intermediate data structure used in design space exploration. These rep-
resentations are explained in this chapter. The agile platform is represented by
the parameterised platform graph (PPG). The PPG has two tiers as described
in the previous chapter, tier1 is a set of constraints for the platform and tier2
represents the initial instance of the platform architecture but is also updated as
the design space exploration proceeds. The architecture augmented synchronous
dataflow graph (ArcSDF) is the intermediate data structure that the design space
exploration stage uses and which is passed to the deployment stage. The PPG is
described first because the ArcSDF depends on it.

64

Figure 5.1: A simple platform architecture instance, where two GPUs are sharing the
same dock. This shows possible contention between cl1 and cl2. The communication
links are the straight lines, the compute nodes are the rectangles, the parallelogram is the
system memory node and the smaller circles are the docks.

5.2 PPG: Parameterised platform graph

In this section, a high-level model to represent the platforms for agile heterogeneous
computing is presented. This representation underpins the principles of an agile
platform for heterogeneous computing. The platform model consists of two tiers.
The first tier (tier1) represents the available compute engines, their resources and
the restrictions in connecting them together, which serves as one of the primary
inputs for design space exploration. There are thus a multitude of platform archi-
tectures possible whilst conforming to the tier1 definition. A platform architecture
instance conforming to tier1 is represented in tier2. The user supplies the first ver-
sion of tier2 and the design space exploration updates this as it progresses. Prior
to explaining tier1 and tier2 in detail an overview is provided.

5.2.1 Overview

Whilst conceptually tier1 provides the framework for the tier2 instance it is conve-
nient to explain the structure of the tier2 instance first.

Tier2 is a graphical model of a platform architecture instance, where the platform
architecture is shown as compute engines linked together by communication links.
It is best represented as a graph with nodes representing the compute engines and
the system memory and the edges representing communications pathways between
them. An example of a tier2 graphical model is shown in Figure 5.1.

The building blocks, which are the available nodes and edges to create the graphs

65

are selected from tier1.

The available nodes and the edges in tier1 all have attached properties which are
denoted as elements of nodes and edges. Examples of elements of nodes include
the cost of a compute engine and or the characteristics of a compute engine such
as number of cores if it is a CPU or the number of configurable logic blocks for an
FPGA. The maximum usable resources of a node are identified by the element of
the node. The maximum usable resources are important during design space ex-
ploration to estimate the simultaneous executions of multiple actors. For example
a CPU may have 2 cores which limits its simultaneous execution to two actors.
Examples of elements of edges include the set of nodes to which the edge can con-
nect to or the bandwidth of this type of edge. Edges have types to account for the
possibility of similar nodes being connected with edges that have different capabil-
ities (elements). Tier1 has rules which can be applied to nodes or edges. Unlike
elements, rules influence the way that the nodes and edges can be connected to one
another. For example a CPU might have a PCI lane limitation rule. Associated
with every rule is a parameter. So the CPU PCI lane rule might have a parameter
of 4. This limits the number of PCI lanes attached to the CPU to 4. This rule
and its associated parameter might limit the number of FPGAs that can connect
to that CPU via PCI. The connections between nodes and edges are made through
docks. Docks are effectively switches which if applied allow a node to exceed its
rules for the number of connections. So In Figure 5.1 the CPU has a dock to which
both GPU1 and GPU2 are connected. This implies that the input output capacity
of the CPU at this point of connection is shared between the two GPUs.

CPU compute engines are nodes in their own right and require separate memory
nodes to operate. GPU and FPGA nodes are assumed to be bundled with memory
and do not need it as a separate node. Edges are high-level abstractions of the
physical communication between two nodes. The data transfer rate between the
nodes depend on the internal architecture or the edge. It is possible that the data
communication rates of edges might be asymmetrical. An edge has a function,
called communication speed function to represent its data transfer rate. Each edge
has a list of nodes to which it can connect. Where there is hardware support, edges
representing direct links between multiple GPUs, or direct connection between
GPU and FPGA, can be modelled. An edge is by default full-duplex, however it
can be identified as half-duplex.

In the next subsection, more detailed explanations of tier1 and tier2 are provided.

5.2.2 Tier 1

The tier1 contains all the available components for the platform architecture. These
components are the compute nodes, the memory nodes and the communication
links. Thus, tier1 is defined as 3-tuple T1 = (CN,CL,MN). The individual

66

elements of T1 are defined as follows.

• CN is the set of available compute nodes, where each of them corresponds
to a compute engine. Some of these compute engines, if not all, forms the
platform architecture represented as tier2.

• MN is the set of memory nodes available for the system memory.

• CL is the set of communication links to connect the nodes with each other.

These sets are written as CN = {cn1, cn2, . . . cnj}, CL = {cl1, cl2, . . . clk} and
MN = {mn1,mn2, . . .mnl}∀(j, k, l) ∈ Z+, where cn, cl and mn are the individual
compute node, communication link and memory node, respectively.

Edges (Communication links)

A communication link cl represents the connection between two nodes. Every
communication link connects two distinct nodes and has a function to calculate
the rate of data transfer. The pair of nodes and the communication speed function
are denoted as ns and cs, respectively. Since the communication links between a
CPU and FPGA/GPU are restricted by the number of PCIe lanes, a communica-
tion link contains the number of PCIe lanes it requires. This number is denoted
by pl. It is used to calculate the number of communication links a compute node
of type CPU can support. However, for the direct communication links between
the compute nodes of type FPGA/GPU, this element may not be necessary. Thus,
it is an optional element. These direct communication links might need the PCIe
infrastructure. For example the direct FPGA and GPU communication proposed
by Bittner et. at. 2014 [26] takes place through the PCIe link. Thus, a commu-
nication link can be reliant on other communication links. This is reflected in the
model through reliant links, denoted as rl. The presence of these reliant links is a
condition for the communication link.

The nodes of the graph that represents a platform architecture have docks. These
docks are the attachment points for communication links. It handles only one
communication request at a time. Thus, when there are two or more communication
links at a dock, they might receive multiple requests at the same time. This causes
contention. Thus, they are used to represent contention in multiple communication
links. Docks are defined in detail while describing tier2. A communication link has
an element, denoted by sh that controls whether it can share a dock with other
links. sh is Boolean, where true indicates that the communication link can share a
dock and false otherwise. sh enables to explicitly specify the communication links
that do not have contention or minimal contention.

Together with ns, cs, pl, rl and sh, there are two other elements, id and dp that
defines a communication link. id is the unique identification of the communication

67

link. dp is Boolean to represent if the communication link is duplex or half-duplex.
Hence, a communication link is defined as 7-tuple, cl = (id, ns, cs, pl, rl, sh, dp), cl ∈
CL. These seven elements of cl are defined as follows.

• id uniquely identifies a communication link.

• ns represents the nodes that cl connects. Therefore, ns is a pair of nodes,
which is written as, ns = (n,m),∀(n,m) ∈ CN ∪MU .

• cs is the function that returns time to transfer a certain amount of data. It
is written as, t = cs(d) where d is some amount of data and t is the delay in
communication.

• pl represents the number of PCIe lanes a communication link requires. This
attribute is optional. Thus, pl ∈ Z+ ∪ ∅.

• rl is a set of communication links that must be present for cl to exist in the
platform architecture graph, where rl ⊆ CL and rl 6= cl.

• sh represents if cl can share a dock with another communication link, where
sh ∈ B. If cl can share a dock, then sh is true, else it is false.

• dp represents if cl is full-duplex or half-duplex, where dp ∈ B. If cl is full-
duplex, then dp is true, else it is half-duplex, which is false.

Nodes (Compute engines)

A compute node cn represents a compute engine. Since there are three types of
compute engines, its type can be either CPU, GPU or FPGA. Every compute node
consists of a finite amount of resources. They represent the total resources that can
be used for the execution of actors and channels. Its value is used for the design
space exploration to estimate simultaneous execution of actors and channels. Fur-
thermore, the compute nodes have parameters to govern the formation of a platform
architecture graph. A parameter is an element whose value controls the connec-
tions between compute nodes. For example, a compute node of type CPU has an
element mpl, which denotes the maximum number of PCIe. The rule associated
with it limits the communication links, so that the mpl value is not exceeded. The
parameters and the resources vary with the type of the compute node. Based on
the type of compute node, sets of parameters and resources are defined. A compute
node has five elements to denote its unique id, type, resources, parameters and its
cost. Thus a compute node is defined as 5-tuple ce = (id, ct, re, rq, pa, qe), ce ∈ CE.
The definition of these five elements are as follows.

• id uniquely identifies a given compute node.

68

• ct is the type of the compute engine, where ct ∈ T and T = {fpga, gpu, cpu}.

• qe represents the capital cost of ce, where qe ∈ R+.

• re is a tuple of resources, which depends on ct. Individual resource elements
are defined in the following way.

re =

(core),∀core ∈ Z+, when ct = cpu

(clb, bram, dsp),∀(clb, bram, dsp) ∈ Z+, when ct = fpga

(nsm, shm, reg, th),∀(nsm, shm, reg, th) ∈ Z+, when ct = gpu

For cpu, core represents the number of cores. For fpga, clb represents the total
complex logic blocks, bram represents the total block RAM and dsp represents
the total block RAM. For gpu, nsm represents total streaming multiprocessor,
shm represents total shared memory, reg represents total registers and th
represents total threads.

The gpu resource elements are based on the CUDA programming model [120].
This is because CUDA and OpenCL [121], the two widely used programming
models for GPU, represents the resources differently. However, these resource
elements can be replaced for another model. Nevertheless, a hybrid model
cannot be used.

• rq is a function that represents the amount of time a compute engine consumes
to allocate and deallocate resources; such as if r amount of resources are to
be allocated to an actor of an application graph, then rq(r) is the amount of
time consumed for resource allocation.

• pa is a set of parameters that depend on ct. These parameters are elements
with rules attached. They influence the connections of two or more cn. They
are defined in the following way.

pa =

{
(mpl,mem, dcpu), ∀(mpl,mem) ∈ Z+&dcpu ∈ B, when ct = cpu

(dgpu, dfpga, both),∀(dgpu, dfpga) ∈ Z+&both ∈ B, when ct = fpga, gpu

mpl represents the maximum number of PCIe lanes that a CPU can support.
The total number of PCIe lanes used by the communication links connected
to a CPU cannot exceed the value of mpl. However, PCIe switch can be
used to extend these lanes. This is represented in the model as docks. Docks
are defined in tier2 when nodes are connected with one another to form the
platform architecture graph. mem is the maximum system memory that the
CPU can support. dcpu represents whether the CPU can support multi-CPU
configuration. The value of dcpu represents the direct CPU connections that
it can support. In a compute node of type CPU that does not allow multiple
CPU connections, the dcpu value is set as zero. If two CPU models support
multi-CPU configuration but their models are incompatible, then they are

69

prevented from getting connected by the lack of communication links between
these CPU models.

When the compute engines are for type fpga or gpu, the number of direct
connections that are possible amongst each other is represented by dgpu and
dfpga. They are total number of direct connections possible with each type
of compute nodes. If they do not support direct connections, these values are
zero. Since direct connections between FPGA/GPU is a physical reality, this
model envisages an FPGA or GPU is directly connected with both FPGA
and GPU. If a compute node supports such connection, it is reflected through
a Boolean attribute called both.

Even though the parameters of a compute node may support certain con-
nections, the presence of respective communication links makes it possible
to create a graph with such connections. Thus, the designer may impose
further restrictions in creating platform architectures through the communi-
cation links.

Nodes (Memory units)

A memory node mn represents the available DRAM units in tier1. Every memory
node represents a physical memory card in tier1. It is defined as a 3-tuple mn =
(id, sz, qs),mn ∈MN . The definition of the attributes of mn are as follows.

• id uniquely identifies the memory unit

• sz represents the size of mn in units of data.

• qs is the capital cost of the memory unit, where qs ∈ R+.

5.2.3 Tier 2

Tier2 represents the platform architecture as a graph. It is composed of tier1 com-
ponents. To represent a graph, docks are added to the compute nodes that forms
the platform architecture graph. Docks are the attachment points of a communica-
tion link. A dock can have multiple communication links attached to it but handle
them one at a time. Thus, connections with possibilities of contentions are repre-
sented as multiple communication links attached to the same dock. Memory nodes
do not have docks of their own. They are combined together to form a system
memory node, which has a dock for connection with a CPU.

After docks are introduced within the compute nodes and communication links of
a platform architecture graph, they are redefined as connected compute nodes and

70

connected communication links, respectively. The tier2, which is a graph represent-
ing platform architecture is defined as 3-tuple, T2 = (CCN,CCL, SMN). CCN
is the set of connected compute nodes that forms the platform architecture graph.
CCL is the set of connected communication links that represents all the edges of
the platform architecture graph. SMN is the set of system memory nodes. These
sets are written as CCN = {ccn1, ccn2, . . . ccnm}, CCL = {ccl1, ccl2, . . . ccln} and
SMN = {smn1, smn2, . . . smno} ∀(m,n, o) ∈ Z+, where ccn, ccl and smn are the
individual connected compute node, connected communication link and system
memory node, respectively. These individual elements of the three sets are defined
as follows.

• A connected compute node ccni extends a compute node cni with a set of
docks Di. Thus, ccni is defined as, ccni = (cni, Di),where ccni ∈ CCN, cni ∈
CNand Di ∩Dj = ∅, ccni 6= ccnj.

• A system memory node smni is made up of a set of memory nodes and a dock.
It is defined as 2-tuple, smni = (Mi, di), where smni ∈ SMN,Mi ⊆ MN
and di is the dock. The memory nodes in Mi are unique to smni. Thus,
Mi ∩Mj = ∅,where smni 6= smnj. The size of smni is calculated by adding
the value of sz of all the individual memory nodes in Mi.

• A connected communication link ccli extends a communication link cli with
two docks d1i and d2i . Thus, ccli is defined as, ccli = (cli, d

1
i , d

2
i), where

ccli ∈ CCL, cli ∈ CL and d1i 6= d2i .

This definition of tier2 determines the platform architecture. In the next section,
an example of PPG modelling is presented, which illustrates: (1) different archi-
tectures that can be expressed through parameterised platform graph and (2) how
this model facilitates design space exploration.

5.2.4 Example of a parameterised platform graph (PPG)

In this section, the parameterised platform graph is demonstrated with an ex-
ample. Initially, it is shown how the components in tier1 can be arranged to
form distinct platform architecture graphs. This shows the effect of parameters
in shaping the platform architecture graph. Afterwards, the selection of a plat-
form architecture for a sample application-algorithm is demonstrated. This sample
application-algorithm is a simple SDF graph. The design space that exists in tier1
for the SDF model is explored manually to find the platform architecture that pro-
vides best performance at the least capital cost. In this example the measure of
better performance is a lower make-span. During this manual design space explo-
ration, the architectural decisions necessary to deploy an SDF representation on a
PPG tier2 instance are also identified. Thus, there are two parts in this subsection.
The first part describes tier1 of an example PPG and the possible tier2. The second

71

Table 5.1: This table lists all the attribute values for the compute nodes of type
CPU.

CPU
Attribute Description Value
id to uniquely identify CPU1
cost relative cost 1
mpl maximum PCIe lanes 24
dcpu number of direct CPU connections 0

Table 5.2: This table lists all the attribute values for the compute nodes of type
GPU and FPGA.

GPU/FPGA
Attribute Description Value

id to uniquely identify GPU1 GPU2 FPGA1
type whether GPU or FPGA GPU GPU FPGA
cost relative cost 1.5 1.5 3
dgpu direct connection with another GPU 0 0 1
dfpga direct connection with another FPGA 1 1 0
both can have direct connection to both FPGA and GPU false false false

part demonstrates a manual design space exploration for a sample SDF model.

PPG modelling example

In this example, tier1 consists of 4 compute nodes, one CPU, two GPUs of the
same kind and one FPGA. There is only one memory node, so that the system
memory in every platform architecture will have identical size. This reduces the
number of platform architectures that only differ in system memory sizes.

Based on the definition of compute nodes, pa contains the list of parameters. These
parameters influence the connections between the compute nodes. In Tables 5.1
and 5.2, the values of these parameters are listed. These values are derived from
the specifications provided by their respective vendors and the direct FPGA–GPU
connection proposed by Bittner. et.al. 2014 [26]. Since this direct connection is
tested with one FPGA–GPU pair, the parameters that determine the maximum
number of direct connections between them are set as one. For this reason, dfpga
for the GPUs, dgpu for the FPGA are set as 1 and parameter both is set as False.
In this example it is assumed that the resource allocation and deallocation delay
is negligible, thus rq of the compute engines are not taken into account.

To connect the compute nodes, there are 6 communication links, referred as L0,
L1, L2, L3 and L5. L0 represents the link between the CPU and the system

72

Table 5.3: This table lists the communication links with their attributes and their
values.

id compute nodes pcie lanes dependencies sharing
L0 (CPU1, DRAM) 0 None False
L1 (CPU1, GPU1) 16 None True
L2 (CPU1, GPU2) 16 None True
L3 (CPU1, FPGA1) 8 None True
L4 (GPU1, FPGA1) 0 L1, L3 True
L5 (GPU2, FPGA1) 0 L2, L3 True

Figure 5.2: Platform architectures (PPG tier2) examples based on the constraints (PPG
tier1) defined in Tables 5.1 and 5.2. These PPG tier2 consists of CPU1, GPU1 and
FPGA1.

memory. L1 models a x16 PCIe connection between the CPU and GPU1. L2 is a
similar connection but between the CPU and GPU2. L3 is a x8 PCIe connection
between the CPU and the FPGA. L4 and L5 are represents direct connections
between the FPGA and a GPU. There are two communication links for two GPUs.
These links are reliant on the PCIe infrastructure. Thus, their reliant links point
to L1, L2 and L3. The sharing condition sh is set true for all the links, as these
links can potentially share through a PCI express switch. These details of the
communication links that are involved with the formation of a platform graph are
listed in Table 5.3.

Based on tier1 of this example, there are several platform architectures possible.
Many of them are created by varying the connection topologies of the compute
engines. Platform architectures with the same set of compute nodes and system
memory have equal cost. Therefore, it becomes necessary to rule out the archi-

73

Figure 5.3: PPG tier2 models that consists of all the compute engines present in tier1,
which is defined in Tables 5.1 and 5.2.

tectures with performance bottlenecks that have equivalent cost. Suppose the
architecture instances in Figure 5.2, where there are four platform architectures
from the same set of compute engines. These differences in topologies are created
by the attaching L1 and L3 on the same dock and alternating the presence of L4,
which is the direct link between the FPGA and the GPU. Sharing the same dock,
models contention that can appear from the use of a PCIe switch, which can poten-
tially impede performance. Furthermore, the use of a direct link L4 can possibly
provide a performance boost. Thus, using simple rules, instead of simulating the
application-algorithm on every possible platform architecture, the ones that are
capable of providing better performances can be identified.

Three platform architectures with all the compute nodes available in tier1 is shown
in Figure 5.3. The primary differences between these architectures are the way a
CPU dock is shared to connect the other compute nodes and the direct link between
FPGA and GPU. Since the CPU has 24 PCIe lanes, attaching two GPUs and one
FPGA exceeds them. Thus, a switch is necessary, which is modelled through a
shared dock. It is also interesting to note that since dfpga and dgpu parameters are
set to 1, the direct link cannot connect two GPUs with the FPGA. The performance
of an application-algorithm on either of these platform architectures dependent on
the architectural decisions. This is examined in the next part, where an SDF model
is used as an example to conduct a manual design space exploration.

74

Figure 5.4: (a) A simple SDF graph, (b) with its equivalent homogeneous SDF graph.

Manual design space exploration with PPG

A manual design space exploration that does not use any particular intermediate
data structure or any form of automation is demonstrated here. The purpose of
this demonstration is to describe the design space exploration capabilities of PPG.
This example does not claim to find any optimal design; rather it is used to explore
some of the issues that will be further explored in chapter 6 which describes the
design space exploration algorithm in detail.

The example PPG presented in the previous part is used to manually explore the
design space for the simple SDF model in Figure 5.4(a). This exploration finds a
platform architecture and the corresponding architectural decisions that results in
the lowest makespan possible within the constraints of tier1. The exploration also
tries to find a platform architecture that has lower capital cost. The SDF model
consists of five actors and they have both task and data parallelisms. Task paral-
lelism is evident between actors B and C, D. Whereas, data parallelism that exists
in B, C and D. This becomes explicit after expanding the model to a homogeneous
dataflow model, which is shown in Figure 5.4(b).

In order to conduct design space exploration, the execution timings and the resource
usage of the actors on the available compute nodes are required. The execution tim-
ings are used to estimate the makespan. The resource consumption data determine
the possibilities of concurrent actor execution on a compute engine. These are listed
in table 5.4. Some execution times are infinite, which indicates that implementa-
tion of that actor is not available for a particular compute engine. The resource
consumption information of the actors is tallied with the maximum resources in
the compute engines to estimate if multiple actors can be placed together. In this
example, the resource usage is taken as percentage of resources consumed by an
actor on a compute engine.

75

Actor CPU exe GPU exe FPGA exe GPU resource % FPGA resource %
A 10 20 20 40% 20%
B 20 10 20 90% 60%
C ∞ 20 10 50% 20%
D ∞ 20 10 40% 20%
E 10 20 20 50% 20%

Table 5.4: This table lists the execution time and resource usage percentage of
actors on each compute engines. The actors are from the SDF model in Figure
5.4(a) and the compute engines are from the PPG tier1 in Tables 5.1 and 5.2. If
a pre-engineered component of an actor on a compute engine is lacking, then the
exec time is considered as infinite.

The execution times of the actors on the compute engines show that the best per-
formance of A and E are on the CPU, B on one of the GPUs and C and D are
on the FPGA. In order to achieve the data parallelism, they need to have separate
instances in parallel. Based on the resource consumption data, simultaneous exe-
cution of two instances of B are achievable on the FPGA but not on one GPU. The
second GPU can be brought in for this. However, this cannot reduce the make-span
further, rather it will increase the cost of the platform architecture. The reason
is A, C, D, E is the critical path. It consumes same time as the two instances
of B executing sequentially on the GPU. The makespan can be further reduced if
the critical path can be reduced. In this case, the critical path can be reduced by
lowering the execution time of the actors. However, tier1 does not contain other
compute engines to explore this option. Therefore, the platform architecture for
lowest make-span consists of CPU1, GPU1 and FPGA1. This architecture was
shown in Figure 5.2(a).

The actors placed on FPGA and GPU are controlled from the CPU. There is a
delay due to this control from CPU. This delay consists of the data transfer time
and the time required to activate the actors from the CPU. In this example, the
delay is assumed to be uniform and denoted by t. The control of actors is sequential
on the FPGA and GPU, as there is one communication link connecting them with
the CPU. But, if the control of GPU and FPGA are conducted through separate
threads, the make-span can be further reduced. This is illustrated using a Gantt
chart in Figure 5.5. This improvement depends on the value of t. If t is very
small, then the overhead of multiple threads can dwarf this decision of parallelly
controlling the actors. Furthermore, for the actors C and D, it is assumed they
communicate directly, rather than through the CPU. This communication time
within the actors on the same compute engine is assumed to be negligible.

The DSE makes decisions that involve the selection of the actors for data paral-
lelism, layout of actors on the compute engines and selection of the pre-engineered
actor and channel. In this example, the selection of data parallel actors is the
choice to sequentially execute B in a loop, while expanding C and D for parallel

76

Figure 5.5: The layout of actors on CPU, GPU and FPGA is shown in (a) without the
actor control delays. The actors placed on FPGA/GPU are controlled sequentially from
the CPU makespan = 40 + 5t is shown in (b), whereas in (c) they are controlled in
parallel makespan = 40 + 4t. The value of t is the delay due to control of actors from
CPU. In both (b) and (c) it is assumed that on the same compute engine, the actors
have negligible communication delays, which is reflected in actors C and D. Note that
the other two t are in sequence, as they are on the same compute engine, which is the
FPGA.

77

deployment. Layout of actors is the decision to execute three instances of C si-
multaneously, followed by two instances of D. Thus, an instance of C and D are
deployed sequentially. Resources can be optimised in this situation, as after C
completes D starts.

The architectural decisions identified during this manual design space exploration
can be summarised as follows:

1. choices on expanding a certain portion of a graph for data parallelism,

2. selection of a compute engine to place an actor,

3. implementation type of an actor and its channels,

4. choice of actor control from another compute engine and

5. choices on concurrent actor execution on a compute engine.

5.2.5 Defining architectural decisions

The architectural decisions that were identified in the previous subsection, while
conducting a manual design space exploration, are detailed with informal examples
in this subsection. The architectural decisions are defined in three parts. The first
part presents the architectural decision to selecting data parallel actors for expan-
sion. The second part presents three architectural decisions. They are the choice of
compute engines for the placement of actors, specifying their implementation type
and the decisions on how an actor placed on GPU/FPGA is controlled from CPU.
The third part describes the choices on concurrent actor execution on a compute
engine.

Actor selection for expansion

Task parallelism in an SDF model is explicitly represented, whereas data paral-
lelism is exposed by expanding the model into its homogeneous counterpart. This
example shows that there needs to be sufficient resources for the utilisation of all
the parallelisms. However, utilising every data parallelism cannot always improve
performance. Suppose the example in Figure 5.6, where an SDF graph with a data
parallel actor B is expanded for parallel deployment. But, this does not lead to
a better performance, due to the greater execution time of C. The performance is
the same as that of executing the instances of B sequentially.

This decision leads to the selection of only certain data parallel actors for expansion.
During deployment, the selected actors are deployed with parallelism. While other

78

Figure 5.6: Utilisation of data parallelism not yielding better performance: (a) the SDF
model, (b) the actor execution timings and they are placed on the compute engine with
the least execution time, (c) homogeneous transformation reveals the data-parallelism of
B and (d) the make-span is same as that of executing both the instances of B in a loop.

actors, even with parallelism, are sequentially implemented. Hence, this decision
is stated as follows.

Architectural decision–1: Selection of certain data-parallel actors to achieve
parallelism during deployment.

Placement, implementation type and actor control

The placement decision is the selection of a compute engine to place an actor for
deployment. Subsequently, this entails the decision of choosing a communication
link or a compute engine to place its channels. The placement of a channel on
a communication link takes place only for communications between two compute
engines. This is illustrated in Figure 5.7. In other situations, a channel is placed
on the compute engine. This compute engine is the one where the actors connected
by the channel is placed. Thus, this placement decision is defined as follows.

Architectural decision–2: Selection of a compute engine for the placement of
an actor and choosing communication links for its channels.

It is the performances of the actors on various compute engines combined with the
delay in the communication links that drive the mapping decisions. An example of
this decision is described in section 5.2.4. The outcome of this decision is passed

79

Figure 5.7: Actor and channel mapping: (a) a simple SDF model, (b) actor B is mapped
on a compute engine (CE2) that is either GPU or FPGA, while the actors A, C and D
are placed on the CPU (CE1). The mapping of B on CE2 requires to place channels ab
and bc on the communication link that connects CE1 and CE2.

to the deployer, which then uses it to implement the actors and channels on the
respective compute engines and communication links.

Based on the mapping decisions, the type of pre-engineered actors and channels
are selected from the repository. There can be distinct implementations of an actor
for the same type of compute engine. Distinct implementations exist to optimise
an actor on the basis of its token size or on the model of a compute engine. The
actor and channel implementation types are used to create instances of actors and
channels for the deployment. This decision of choosing the type of implementation
is stated as follows.

Architectural decision–3: Choosing the implementation type of an actor and
channel for deployment

When an actor is placed on FPGA or GPU, its communications are generally con-
trolled from the CPU. This control is the initiation of data transfers from the
CPU. Every actor placed on FPGA/GPU can be implemented by controlling both
its input and output from the CPU. This is an unique characteristic of agile het-
erogeneous computing that the actors on a compute engine are controlled from an
external compute engine. An explicit representation of this control is shown in
Figure 5.8. The dotted actors Bi and Bo represent the code that lies on the CPU
to control the actor’s communication. These actors are called control actors. They
are defined later along with the definition of ArcSDF. The placement decision of
control actors can impact performance.

Due to this control from another compute engine, there is an extra communication
delay. Some of these extra delays can be avoided by enabling actors on the same
FPGA/GPU to directly communicate. This is possible for multiple actors on the

80

Figure 5.8: Two actors B and C of the SDF model from Figure 5.7 are mapped on the
same CE. (a) Explicit representation of their communications controlled from the CPU
and the extra delays due to it, (b) whereas a direct communication between actors B and
C saves those extra delays. The dotted actors represent the code that is placed on the
CPU to control the passage of data.

same compute engine that have channels amongst themselves, as shown in Figure
5.8(b). The decision of direct communication between actors on FPGA/GPU can
be a result of a rule that implements it whenever possible. However, implementa-
tion of direct communications within a compute engine consumes resources. This
implies such a rule might use resources that can be used elsewhere to boost per-
formance. Thus, the choice of a direct communication is a part of the design space
exploration. This architectural decision is stated as follows.

Architectural decision–4: The choice of an actor being controlled from another
compute engine.

Concurrent actor execution on a compute engine

Multiple actors placed on the same compute engine can be deployed with distinct
layouts. A layout is the arrangements of concurrent and sequential execution of
actors. It determines resource usage and performance. Concurrent execution of
all the data independent actors result in the best possible performance on the
compute engine. However, this naive layout may not be deployable, as it might
exceed the resources available on the compute engine. Moreover, a layout that
combines sequential and concurrent executions may lead to the same performance

81

Figure 5.9: Actor layouts affecting performance and resource usage; (a) simple homoge-
neous SDF, (b) Performance data on CPU and another compute engine CE1 that can
be FPGA or GPU, (c) resource consumption of the actors mapped on CE1, (d) a naive
layout that exceeds resources, (e) and (f) two distinct layouts within resource limits with
varying performances.

with less resource usage. This is possible because not all data independent actors
contribute towards performance improvement. Suppose the example in Figure 5.9,
where actors B, C, D and E are placed on CE1. Amongst these actors, B and C
have task parallelism. A naive layout with parallel execution of B and C is shown
in Figure 5.9(d). This layout exceeds the resources of CE1. Therefore, these two
actors need to execute sequentially on CE1. The choice of whether to execute B
first or C creates variation in the make-span. A better decision is to execute C
before B, so E which, consumes more time, can run simultaneously with B and D.
A desirable outcome of this decision is to ensure a layout that is deployable with
lowest make-span. Thus, this architectural decision is stated as follows.

Architectural decision–5: Layout of actors governing their sequential and con-
current executions on a compute engine.

This decision of actor layout directs the way resources of a compute engine are
reused and shared amongst the actors. After an actor completes its execution, the
resources are released for others. Either they are consumed fully by the next actor,
or they are shared between the following concurrent actors. This is shown in the

82

example of Figure 5.9(f), where the resources of C are shared between B and E.

5.2.6 Conclusion

In this section a high-level representation for agile heterogeneous platforms called
Parameterised Platform Graph (PPG) is presented. PPG consists of two tiers.
The available components to create the platform architecture and their constraints
are represented in tier1. A platform architecture instance is expressed in tier2. A
sample design space exploration example is used to demonstrate how the model
is likely to interact with the design space exploration algorithm. In this example,
architectural decisions to deploy a SDF graph on a PPG tier2 instance are also
identified. These architectural decisions will be used in the next section for the
creation of the intermediate data structure (ArcSDF) required by the new design
flow.

83

5.3 ArcSDF: Architecture augmented synchronous
dataflow

A dataflow model capable of expressing architectural decisions together with the
application-algorithm is envisaged to be the intermediate data structure of AhcFlow,
so that it can be used for design space exploration and deployment. In this section,
such a data structure, as a data flow representation called architecture augmented
synchronous dataflow (ArcSDF) is presented. This representation uses four new
constructs (compute zone, interface, resource edge and control actor) along with the
basic actor and channel of SDF [57]. Amongst these four new constructs, compute
zone is the primary one. It represents mapping, scheduling and concurrent actor
layout. Whereas, the other constructs assist to express the operations concerning
compute zones.

A compute zone represents a certain amount of resources of a compute engine that
can only be used by the actors and channels mapped on it. Compute zones are
sequential; only one actor on it can execute at a time. Actors on disparate compute
zones can however execute concurrently. In order to make room for more actors,
a compute zone can become inactive and release resource to a new compute zone.
However, release of resources can incur a performance penalty. The dependencies
between compute zones for resources are represented through resource edges. These
features of compute zones allow the expression of an actor’s resource consumption
on the compute engine it is mapped and they also express the layout of actors in
case of concurrent executions.

Due to the augmentation of architectural decisions with SDF, it is possible to
analyse the following in addition to the traditional throughput calculation; (1)
maximum resource usage of an ArcSDF representation, (2) optimisation to min-
imise the number of compute zones, and (3) searching the earliest time to map
an actor on a platform architecture; some of these analyses are used in the design
space exploration algorithm in chapter 6. This section is thus organised into three
subsections. In the first subsection, an informal overview of ArcSDF is presented,
where the representation is described with two examples. Then, in the second sub-
section, ArcSDF is defined comprehensively. Finally, in the third subsection, four
different analyses with ArcSDF are described.

5.3.1 Overview

In this section, an overview of ArcSDF is presented using two examples. The first
example is illustrated in Figure 5.10 which shows a complete ArcSDF represen-
tation for the application-algorithm on the platform architecture shown in Figure
5.11. This example was previously introduced in section 5.2.4. The second exam-
ple shown in Figure 5.12 is the full ArcSDF graph for the application-algorithm

84

Figure 5.10: This figure shows the ArcSDF model representing the architectural deci-
sions and the application-algorithm from the manual design space exploration example
in section 5.2.4.

originally described in section 5.2.5 in Figure 5.9(a) with the actor concurrency
decisions of Figure 5.9(f).

The main features of the example in Figure 5.10 will now be explained. The
nodes of an ArcSDF graph correspond to the nodes (actors) of the application
SDF. However, as can be observed, some of the nodes have been duplicated in
the ArcSDF. This arises because nodes on GPU and FPGA require corresponding
control actors on the CPU. These control actors are shown with dotted outlines.
For GPU and FPGA there are separate control actors for input and output. Nodes
are grouped together using boxes which represent compute zones. A compute zone
is a part of a compute engine and its associated resources which can execute a set of
actors sequentially. Separate compute zones can execute actors concurrently. Every
compute zone is mapped to a compute engine chosen from those available in the
PPG tier1. The diagram shows percentage resource consumption of the compute
engine for each compute zone. In each compute zone, the sequential schedule of
actor executions is shown in between angle brackets <>. Note that the schedule
for the GPU is <B,B> which indicates that actor B1 will be executed followed by
actor B2. This also prevents multiple self execution.

Edges can enter and exit a compute zone through interfaces (small black rectan-
gles on the diagram). Interfaces have numbers called rates associated with them
and these rates have the same meaning as actor rates on an SDF graph. Rates
of 1 are omitted from the diagram. Edges in ArcSDF are either channels or re-
source edges. Channels are an extension of SDF channels, whereas resource edges
expresses resource dependencies. Resource edges are described in the second exam-
ple. Channels can be further classified as either internal or external to a compute
zone. External channels connect interfaces. Internal channels are always inside of

85

Figure 5.11: The application-algorithm and the platform architecture for the example in
Figure 5.10. These are reproduced from section 5.2.4.

compute zones. All edges have unique labels inside the ArcSDF representation.
However, on the diagram only external channel labels are shown to indicate con-
nectivity. External channels that are external to a compute engine are mapped
to communication links but internal channels do not require communication links
because they are assumed to use shared memory implementations.

A simplified version of resource usage is used here, where an overall percentage
of the resources are used. This can be easily replaced with the different types of
resources of a compute engine.

The second ArcSDF example in Figure 5.12 illustrates resource edges that repre-
sents the resource dependencies between the compute zones as bold black arrows.
Resource edges RE1 and RE2 between compute zones CE1_CZ1 and CE1_CZ2
expresses the decision to executing only actor C first. Then allowing the other
actors to commence execution concurrently. In section 5.2.5 it is explained why
this order of concurrency leads to better performance for this example.

For better readability, the ArcSDF graphs can be simplified by not showing the
control actors and the interfaces. This will make the graph appear closer to the
original application SDF and the make most of the architectural decisions more
readable. Figure 5.13 shows the simplified diagram of the actual ArcSDF in Figure
5.12. Although this simplified diagram only lacks the control actor and interface
related decisions, the majority of the decisions regrading mapping, scheduling and

86

Figure 5.12: This figure shows the ArcSDF graph for the example previously shown
in Figure 5.9. The actor concurrency decisions of Figure 5.9(f) are represented in this
ArcSDF graph.

Figure 5.13: A simplified illustration of the complete ArcSDF graph shown in Figure 5.12.
This simplified diagram only shows the mapping, scheduling and the actor concurrency
decisions without the actor control decisions and the compute zone interfaces.

87

actor concurrency are visible.

88

5.3.2 Comprehensive definition of ArcSDF

In this section, a comprehensive definition of the ArcSDF graph is provided.

ArcSDF is created by extending the SDF graph to represent the architectural
decisions. In this graph, actor firings are restricted by the availability of resources.
The notion of resource is incorporated within the graph by enclosing actors and
channels inside resource regions known as compute zones. A compute zone is
imagined to contain a certain amount of the resources of a compute engine. This
amount depend on the actors and channels enclosed in a compute zone. They are
limited, such that only one actor can execute at a time. Thus, multiple actors in a
compute zone are executed in a sequence. This sequence is known as the schedule
of a compute zone. After the completion of its schedule, a compute zone releases
its resources for others. The resource dependencies amongst compute zones are
represented as edges, known as resource edges.

Resource edges together with compute zones incorporate the architectural deci-
sion of actor layout. The architectural decision of actor placement is implicitly
expressed through the compute zones. This is because a compute zone represents
resources of a particular compute engine. Thus, the actors and channels within it
represents the placement decision. The architectural decisions of implementation
type is represented through additional attributes of actors and channels. Control
of actors are incorporated in the model through proxy actors known as control
actors. Furthermore, the architectural decision on selection of data parallelism is
represented through an implementation rule to restrict actor instances.

The example shown in Figure 5.14, is a partial ArcSDF model representing the
architectural decision of actor layout on CE1 from Figure 5.12. The compute zones
are depicted as rectangular boxes. The number above them represents the resources
contained by the compute zones. This number is the percentage of resources con-
sumed of CE1. The schedule is shown within the angle brackets. The resource
edges amongst the compute zones are shown as bold arrows. The resource edges
RE1 and RE2 represents the release of resource from CZ1 to its succeeding compute
zones CZ2 and CZ3. Since compute zones represent a resource region, there are
designated areas for the passage of data, known as interfaces. The solid rectangular
boxes symbolise these interfaces. The number beside an interface represents the
number of tokens released or consumed every time they fire.

Since ArcSDF is a dataflow representation, it is defined as a graph. An ArcSDF
graph G is augmented with the architectural decisions to deploy an SDF model
Gsdf on a platform architecture T2. G is defined as 5-tuple (CZ, IF,AC,CH,RE),
where CZ denotes a finite set of compute zones representing a set of sequential
actors along with the resources used, IF is a finite set of interfaces for the passage
of data through a compute zone, AC is the finite set of actors that is equivalent
to that of Gsdf , CH is a finite set of channels expressing the data dependencies
amongst the actors and RE is a finite set of resource edges expressing the resource

89

Figure 5.14: A partial ArcSDF model representing the actor layout on the compute
engine CE1 of figure 5.7(f). The rectangular boxes denote the compute zones, where the
resource amount is shown as the number and the schedules inside the angle brackets.
This number is the percentage of resources a compute zone consumes of CE1. The bold
arrows connecting the compute zones are the resource edges. They represent resource
dependencies amongst the compute zones. The solid circles are the interfaces of a compute
zone, which are used to pass data between compute zones. The number beside an interface
is its rate.

90

dependencies between the compute zones. The details of compute zones, interface,
actors, channels and resource edges are presented in six separate parts. At first
they are described intuitively, then followed by a formal definition.

Compute zone

A compute zone represents a set of actors on a compute engine and the resources
consumed by them. These resources are bounded by a compute zone, in a manner
that they are only available for its actors and their input channels. The resources
are just sufficient for the execution of the actors in a sequence. The sequence
in which the actors execute is known as the schedule of the compute zone. When
data parallelism is not expanded, a schedule incorporates the number of repetitions
of its actors. A schedule of compute zones with data parallel actors is shown in
Figure 5.15(b). Once all the actors on a compute zone are executed to fulfil its
schedule, the compute zone is said to be completed. This completion indicates
the release of its resources for succeeding compute zones, which are represented
by the resource edges. A succeeding compute zone is created from the resources
released by its preceding compute zones. Since the resources are released, the
actors and the channels in the preceding compute zones are no longer available.
The compute zones become inactive. Only the data released by the preceding
actors are available. However, a compute zone without a resource edge will always
occupy their resources. This enables compute zones with actors that have states
to retain them.

Since ArcSDF graph is augmented from an SDF graph, it is periodic. This period
begins with the start of the first compute zone and ends with the last compute
zone. During the lifetime of the application-algorithm, this period is repeated for
a very large number of times. Figure 5.15(c) illustrates the periodic nature of
ArcSDF. An inactive compute zone becomes active again after the completion of a
period. Thus, compute zones change from active to inactive in a periodic manner.
There are chances of deadlocks if the periodic release of resources from a compute
zone does not coincide with the data dependencies. For example, in Figure 5.16
the resource edge creates deadlock, as CZ1 can never complete and CZ2 can never
start. In order to prevent the creation of such deadlocks, a condition is enforced
between preceding and succeeding compute zones. This condition, known as the
precedence condition, is that all the actors of the preceding compute zones must
be data independent of the succeeding compute zones. Based on this condition,
resource edges between CZ1 and CZ2 are not allowed. Thus, prevents deadlock.
In the definition of resource edges, this precedence condition is integrated into the
model.

A compute zone cz is written as a 6-tuple cz = (A,CE,R, Sch, In,Out). Its
individual elements and their execution semantics are described as follows.

91

Figure 5.15: (a) An SDF model. (b) An ArcSDF instance of the SDF model, where the
actor B in CZ1 has a repetition of 2. (c) A Gantt chart showing the period P.

Figure 5.16: This figure shows deadlock due to the resource edge RE between compute
zones CZ1 and CZ2 that have data dependent actors.

92

• The actor list A is a finite list of actors, such that |A| 6= 0 and Ai ∩ Aj = ∅
where Ai 6= Aj are actor lists of two distinct compute zones czi and czj.

• CE is the compute engine to which the compute zone is mapped.

• R represents the resources required to execute the actors in a sequence, such
that R ≤ CER,Max and Rtype = CER,type where CER,Max denotes the maxi-
mum usable resource in CE and CER,type is its type of resource.

• Sch is the schedule of the compute zone, which is the order of execution for
the actors in A.

• A compute zone cz is said to be completed when the actors in A have com-
pleted their execution based on the schedule Sch.

• If cz is connected to resource edges, then after its completion R is released
for the succeeding compute zones.

• The period P of an ArcSDF graph G is the combination of all the schedules
of its compute zones. It starts with the first compute zone and ends with the
completion of the last compute zone. P is repeated for the life-time of the
application-algorithm.

• In and Out represents the set of input and output interfaces, respectively,
such that In ∩ out = ∅.

Interface

Since a compute zone encloses a certain amount of resources in a compute engine,
interfaces are vents for external communication. They take data in and out of a
compute zone. Thus, they are of two types, input and output interfaces, depending
on whether they bring data inside or send outside the compute zone. During the
execution of an interface, it reads (writes) a certain number of tokens from an
external (internal) channel to an internal (external) channel. The number of tokens
an interface reads or writes in known as the rate of the interface. The input and
output rates of an interface are equal. They execute whenever there are enough
tokens at its input channel. Thus, interfaces can be observed as actors that operate
on the threshold of compute zones. These actors have a special purpose of copying
data in and out of the compute zones.

In order to maintain the SDF character of the model, there are two restrictions
placed on the interfaces. Firstly, only one channel passes through an interface.
Secondly, both the rates (input and output) of the interface are same as that
of the rate which it’s input channel is connected. This is shown in Figure 5.17.
This restriction ensures that the rate of consumption and release of data tokens are

93

Figure 5.17: Interface rate is equal to the rate at which the actor releases tokens to the
interface’s input channel.

Figure 5.18: (a)An SDF graph, (b) its topology matrix with the rank of 1, which is one
less than the number of actors, thus it can be scheduled and (c) insertion of an interface
with the rates same as that of the input channel’s actors rate and (d) the rank of the new
topology matrix showing that it can still be scheduled.

94

consistent, so that the rank of the topology matrix of the SDF graph conforms with
the schedule condition (see section 2.4.1). An example in Figure 5.18 illustrates
an addition of interface to an SDF graph and the resulting rank of the topology
matrix.

An interface i is formally defined as 2-tuple (r, t) where i ∈ I. Its individual
elements and their execution semantics are described as follows.

• The rate r is the number of tokens the interface reads or writes to the compute
zone and r = rch, where rch is the token release rate of the actor’s port to
which the channel ch is connected with the interface i.

• The type t determines whether data is written or read from the compute
zone, where t ∈ input, output.

• Only one channel can pass through an interface.

Actor

Actors in ArcSDF are extended from their SDF definition by introducing an at-
tribute to represent the implementation type and a rule to limit instantiation. The
added attribute denotes the pre-engineered version of an actor for deployment, so
that it is compatible with the compute engine it is placed. The additional rule
allows only one instance for every actor. Thus, data parallel actors are expanded
to represent concurrent deployment. Such expansions are conducted during design
space exploration. Depending on the resource availability, some actors may not be
expanded. However, if all actors are expanded to create an equivalent homogeneous
dataflow model and there are not enough resources, then the actors are sequentially
executed without a loop. This implies multiple instances of the data parallel actor
is created but they are executed in a sequence. Figure 5.19 shows such a situation.

Expansion of all the data parallel actors are not necessary if there are limited
resources for parallel deployment, the actor instance rule directs the deployer to
create a single instance of every actor in the model. This also restricts the deployer
from making multiple instances of a data parallel actor. Thus, the architecture
decision of selecting data parallelism is incorporated in the model.

An actor a is defined as 3-tuple (Pin, Pout, impl) where Pin and Pout are the set
of input and output ports, respectively. The ports and the actor firing rules are
defined in the SDF graph [57, 76]. The new additions to an actor in ArcSDF are
defined here.

• impl represents the pre-engineered actor version that is chosen for deploy-
ment.

95

Figure 5.19: (a) A simple SDF graph with data parallelism that are not expanded. The
same instance of A and B are executed multiple times. The schedule is shown in the angle
brackets. (b) The former SDF graph but the data parallel actors are expanded. Multiple
instances of A and B are executed. As they are on the same compute zone, they execute
in a sequence. Thus, the make-span is same as the former one.

• The actors present in the model are instantiated only once. Thus, the same
instance of a data parallel actor is called multiple times, unless it is explicitly
expanded.

Control actor

Control actors, initially introduced in Figures 5.10 and 5.12, are proxies of usual
actors that are placed on GPU or FPGA to represent its control from CPU. Since
an actor is controlled during the input and output of its data, it can have two
control actors. One control actor for its input and another for its output. Actors
can also have just one control actor. The reason for this is that, multiple actors
placed on the same FPGA/GPU can communicate directly. This eliminates the
need for some of the control actors on CPU. Figure 5.12 shows control actors and
the direct communication amongst B and D that are placed on CE1.

The input and output ports of a control actor are restricted to mimic the actual
actor. For an input control actor, its input ports are equivalent to the actual
actor’s. They connect to the channels of the actual actor to receive the input data.
Its output ports are also equivalent to its input ports, but the channels connected to
it are used to send data to the actual actor. For an output control this is repeated
to receive data from the actual actor. Then, send them to the respective channels.
This restriction is integrated in the control actors.

96

Channel

Channels in ArcSDF are extended from its former SDF definition to add a place-
ment decision, implementation type and enable them establish connection between
compute zones. Channels in SDF join themselves itself to the actor’s ports, thus
connecting them. The actors that they are joined are usually distinct, unless the
channel is loop-back. Similarly, a channel connects two distinct compute zones by
connecting their interfaces. An interface reads (writes) tokens from (to) a channel.
Channels that are outside to a compute zone are always connected to two interfaces.
In other scenarios, either they are connected to an interface and a port, or both
ends are connected to ports. A placement decision is denoted through an attribute
pointing to the compute engine or the communication link where the channel is
mapped. A channel is mapped on a communication link, when the two actors
connected by it are on distinct compute engines. The implementations type of the
channel is expressed through another attribute, which refers to the pre-engineered
module that is used to implement the channel.

A channel c is defined as 4-tuple (pin, pout, impl,map), c ∈ C. The individual
elements are defined as follows.

• Since one end of the channel is connected to an input port or an input interface
and the other end to the output counterparts, pin, pout represents them, where
pin ∈ Pin ∪ Iin and pout ∈ Pout ∪ Iout.

• The type of implementation is denoted by impl, which is used for deployment
to retrieve the pre-engineered component from the repository.

• Themap expresses the compute engine or the communication link upon which
the channel is placed. Thus, map ∈ CCL ormap ∈ CCN , where CCL are the
connected communication links and CCN are the connected compute nodes
of the platform architecture (tier2).

Resource edges

A resource edge represents resource dependencies between compute zones. They
indicate the release of resources of compute zones, so that succeeding compute
zones are activated. These resource edges are described along with compute zones.

A resource edge e between two compute zones cz1 and cz2 is defined as the 2-tuple
(cz1, cz2), e ∈ RE. Its direction and precedence condition are defined as follows.

• The direction is from cz1 to cz2, which represents that cz2 is dependent on
the resources of cz1.

• e is allowed if all the actors in cz2 are data independent of the actors in cz1.

97

Figure 5.20: An initial-ArcSDF example graph with compute zones having one actor and
no resource edges. This also an equivalent initial-ArcSDF of the previous ArcSDF graph
shown in Figure 5.12.

initial-ArcSDF: preliminary ArcSDF graph

An initial-ArcSDF graph is defined as an ArcSDF graph where compute zones
are occupied by only one actor and there are no resource edges. It is assumed
that on a compute zone completion, which is also when all the actors on it have
completed firing, the resources used by it are then released. An initial-ArcSDF
example graph in Figure 5.20 shows that every compute zone is occupied by only
one actor. It is clear that such representation lacks actor layout decisions. Thus,
its direct implementation may lead to performance drawbacks.

The main purpose of initial-ArcSDF is however to be used for the design space
exploration as a precursor to a complete ArcSDF graph to be transformed into
a complete ArcSDF graph (see chapter 6). Once all the mapping and scheduling
decisions of all the actors are available, some of the compute zones of the initial-
ArcSDF are merged for a complete model. The actor start time, end time and where
it is mapped is used by the design space exploration algorithm for optimisation to
merge the compute zones of the initial-ArcSDF graph. An optimisation routine to
merge the compute zones of an initial-ArcSDF is presented in the next subsection.

98

5.3.3 Analysis of ArcSDF

ArcSDF has several advantages over previous intermediate formats in its ability to
support the analysis of the system beyond calculating throughput and makespan.
The additional analysis supported by ArcSDF includes establishing the maximum
resource usage, finding the earliest time slot to map an actor, and minimising
the overheads introduced by the compute zones in an initial-ArcSDF graph. In
this subsection, approaches for these additional analyses are presented along with
a method to calculate the throughput and makespan of an ArcSDF graph. An
overview of these analyses approaches are as follows:

1. The maximum resource usage of an ArcSDF graph is the amount of resources
that it will require during its deployment. This analysis can be used for de-
sign space exploration to minimise resource usage. Also, it can be used to
ascertain that sufficient resources are available for deployment. The maxi-
mum resource usage analysis is achieved by simulating the ArcSDF graph to
calculate the maximum total resource usages of the concurrent actors on each
of the compute engines.

2. When there are already mapped actors on a compute engine, the earliest time
slot available to map another actor determines the suitability of a compute
engine amongst others. This analysis is used within the design space ex-
ploration algorithm presented in the next chapter (Chapter 6). The earliest
time slot analysis is based on searching an ArcSDF graph for sufficient free
resources for the duration of the actor’s execution.

3. The optimisation to minimise overheads due to compute zones is achieved by
reducing the number of compute zones by merging them without compromis-
ing performance. This optimisation is developed for initial-ArcSDF, where
every compute zone has one actor.

4. The throughput and makespan calculation of an ArcSDF graph is useful to
estimate its performance, which finds its usage in design space exploration.
This analysis is attained by first converting to its equivalent SDF. Then,
applying previously published analysis approaches to calculate the equivalent
SDF model’s throughput and makespan.

In order to detail these analyses approaches, this subsection is divided into four
parts. The first part describes the maximum resource usage analysis. The second
part presents the analysis approach to find the earliest time slot to map an actor.
The third part details the optimisation routine to merge compute zones. The fourth
part describes a throughput and makespan calculation approach.

99

Figure 5.21: Pseudocode to calculate the maximum resource usages of an ArcSDF graph
for all the required compute engines.

Maximum resource usage

The maximum resource usage of an ArcSDF graph is the highest amount of re-
sources that the model will require on each compute engines during its execution.
Since the compute zones with resource edges release resources after the completion
of its schedule, the maximum resource usage of a compute engine is the highest
amount of resources occupied by all the active compute zones. This value is cal-
culated by simulating the execution of an ArcSDF graph to trace the resource
usages.

In order to trace the resource usage, a skeleton of ArcSDF model is used, which is
without the actual implementation of the actors and the channels. Dummy actor
and channels are used that only accept and release dummy tokens to simulate the
actor firing. A dummy token is a small sized primitive data-type, such as integer.
During an actor firing, a number of dummy tokens that are defined by the actor’s
firing rate is accepted (released) as input (output) from the input (output) channels.
An actor is fired whenever there are enough tokens available at its input channels.
Just before an actor is fired, its resources usage is summed with other actors that
can also fire. The resource usage of an actor on a compute engine is obtained
from the compute zone it is mapped. For every actor firing, the total resource
usage is traced. The trace is continued until the schedule of all the compute zones
are completed, which marks the end of one execution cycle. The highest of the
total resource usage of a compute engine is its maximum resource usage. Figure
5.21 describes a pseudocode for the calculation of maximum resource usages of all
compute engines required.

100

Earliest time slot to map a new actor

The earliest time slot (ets) is found by searching all the available slots within a
compute engine to map a new actor. It is assumed that the start and end times
of the already mapped actors are available. The available time slots are searched
through the ArcSDF graph containing the architectural decisions of the already
mapped actors. If a new actor a is to be mapped at the desirable time dta on a
compute engine cej for its execution duration exea,j , then a time slot closest to
dta is the earliest time slot. This time slot needs to satisfy two conditions. The
first condition is that the duration of the time slot is no less than dta which is
the actor’s execution time on cej. The second condition is that the time slot has
enough resources resa,j for the execution of the actor a on cej.

The ets is found by first transforming the ArcSDF graph to its equivalent initial-
ArcSDF graph, so that all the timing with the resource available slots are exposed.
Then a slot is searched that is closest to the desirable start time and with enough
available resources. The pseudocode to find ets is shown in Figure 5.22. Until line
8 the steps are to transform the ArcSDF graph to its equivalent initial-ArcSDF
graph. Line 15 is the condition to find the time slot with the required amount of
available resources within the already mapped actors. An example to describe the
ets search is shown in Figure 5.23. The actor C is to be mapped on the compute
engine CE1 where two actors B and D are already placed on a compute zone. This
example shows that the earliest time slot is from 20 to 30 time units, which is after
B completes and resources are enough to execute D and C concurrently.

It is noted that due to the transformation of ArcSDF to initial-ArcSDF, the de-
cisions of sequentially placing actors on a compute zone are lost. Also, it creates
a large number of compute zones, which will increase the overheads of activating
and deactivating a compute zone. To re-introduce the decisions of sequential actor
execution within a compute zone and also to reduce the overheads due to the large
number of compute zones, the initial-ArcSDF is transformed back to ArcSDF by
applying an optimisation routine that merges certain compute zones. If there are
several new actors to be mapped, then this might create many conversions between
ArcSDF and initial-ArcSDF. This can however be avoided by applying the opti-
misation routine after all the new actors are mapped. An optimisation routine for
initial-ArcSDF to reduce the number of compute zones is presented next.

101

Figure 5.22: Pseudocode to find the earliest time slot (ets).

102

Figure 5.23: An example describing the earliest time slot (ets) search algorithm which is
presented in Figure 5.22. The actor C marked in red is the new actor to be mapped on
the compute engine CE1 which already has actors B and D mapped and inside compute
zone ce1_cz_1. It can be seen that the ets for this example is from 20 to 30 time units.
The sub-figures are explained as follows: (a) the ArcSDF graph, (b) actor execution
timings on the compute engines, (c) actor resource usages on CE1, (d) the equivalent
initial-ArcSDF graph, (e) start and end timings of the already mapped actors and (f)
resources remaining with time for CE1; it is the dictionary D in the ets search algorithm.

103

Compute zone overhead optimization

An optimisation routine to reduce the number of compute zones in an initial-
ArcSDF is described here. The number of compute zones are reduced by merging
them, so that actors that are sequential to one another and have similar resource
usages are placed together in the same compute zone.

The merging of compute zone problem is visualised as a special case of knapsack
problem [122], where the actors are to be placed inside a minimum possible number
of compute zones while ensuring that the maximum resource of a compute engine
is not exceeded. This problem is depicted in Figures 5.24, 5.25 and 5.26. The y-
axis represents the start and end time of actors. Whereas, the x-axis represents the
resource requirements of an actor. The width of an actor is its resource requirement.
For a compute zone, its width equals to the actor within it that consumes maximum
resources. The actors can slide across the x-axis. They can cross one another, so
that they can be placed inside a suitable compute zone. This way of looking at
the problem introduces three conditions; (1) within a compute zone, actors cannot
overlap each other, which implies the actors that are placed inside a compute zone
have distinct y-values, (2) the total width of the compute zones cannot exceed the
maximum usable resource of the compute engine they are placed, and (3) every
actor is placed inside a compute zone.

This problem is handled by merging the single actor compute zones with close end
time and start time with the least resource usage difference. For example in Figure
5.25, compute zones RB and RD are merged when the first one finishes the second
starts. Also, a difference of 10% was allowed. However, due to this difference the
extra resources will be occupied for the duration of actor D. This resource expansion
threshold can increase the overall resource usage of the ArcSDF graph. It is left to
the designer to chose an appropriate resource threshold (RTH) for a given ArcSDF
graph. After the compute zones are merged, a rule based approach is followed to
add the resource edges among the compute zones. Resource edges are added to the
next succeeding compute zones from the preceding ones. The pseudocode of this

Figure 5.24: An initial-ArcSDF with start, end timing and the actors resource usages on
the compute engines they are mapped.

104

Figure 5.25: Compute zone merging problem as a special case of knapsack problem. mru
is the maximum resource usage and maxj is the maximum resource that can be used for
a compute engine j. For this example maxj is 100%.

Figure 5.26: (a)This figure shows the merged compute zones where actors B and D were
mapped before to create CZNEW . (b) The Arc-SDF graph with the merged compute
zones.

105

Figure 5.27: The compute zone merging algorithm.

optimisation routine to merge compute zones is presented in Figure 5.27.

ArcSDF throughput analysis

The throughput and makespan of an ArcSDF graph is calculated by converting it
to an equivalent timed SDF graph [44, 123] with timing information, which is the
execution time of the actors and the communication delays of the channels. Since
an ArcSDF graph is formed after the mapping decisions, the timing information of
an actor is its execution time on the compute engine it is mapped. Similarly the
timing information of a channel is the communication delays on a compute engine or
on a communication link for those channels that crosses between compute engines.
Once the conversion to the equivalent SDF model is completed, standard analysis

106

Figure 5.28: Pseudocode to convert an ArcSDF graph to its equivalent SDF representa-
tion. EXE is the actor execution timing data. COMM is the channel communication
delay timing data.

algorithms for SDF [44, 60, 76, 123] are applied for the calculation of throughput
and makespan.

The conversation of an ArcSDF model to an equivalent SDF is attained in three
steps. Firstly, by enforcing the execution restrictions that exists due to the compute
zones through extra restriction channels (RC). Then secondly, by removing the
compute zones, interfaces and control actors from the graph while retaining all the
actors and channels. The final step involves annotation of the execution timings of
actors and channels. These steps are detailed in the algorithm presented in Figure
5.28.

The restriction channels (RC) are to enforce sequential execution between actors
that can otherwise execute in parallel when there are sufficient resources. They
contain tokens with negligible size, so that no communication delays are incurred
because of an RC. Furthermore, an RC can be added in one of the following two
situations; (1) enforce sequential execution between actors of disparate compute
zones that have resource dependencies, and (2) ensure sequential execution of actors
inside a compute zone.

It is noted that most of the published analysis algorithms for SDF requires it to be

107

converted to an equivalent DAG [60] but [76] has proposed an approach based on
simulation, which can be directly applied to an SDF model (without conversion).
For some SDF models that have high firing rates, the later approach is preferable,
as for such SDF models the conversion to a DAG results in a large number of
actors. This potentially increases the analysis time than directly applying the
analysis algorithm on the SDF model. However, if data-level parallelism is to be
explored, the actors will need to be expanded. Since data-level parallelisms can
improve performance and applications with very high firing rates are rare, analysis
by converting an SDF graph to an equivalent DAG is used in the design space
exploration.

5.3.4 Conclusion

This section presented architecture augmented synchronous dataflow (ArcSDF)
which is the intermediate data structure for the new design flow. It expresses the
architectural decisions together with the application-algorithm. ArcSDF is created
by augmenting SDF with for new constructs: compute zones, interfaces, resource
edges and control actors. Amongst these new constructs, compute zone is the most
prominent. It introduces resource usages within the SDF graph. A compute zone
encloses the resource region of a compute engine and allows only one actor to be
executed at a time. Thus more compute zones are required for concurrent execu-
tions. The other constructs complement the functionality of compute zones. After
defining ArcSDF, its analytical capabilities were shown with new analyses, such as
maximum resource usage calculation, merging of compute zones and finding the
earliest time slot to map a new actor. These analyses approaches goes beyond the
traditional throughput or makespan estimation.

108

5.4 Conclusion

This chapter presented a high-level agile platform model called parameterised plat-
form graph (PPG) and a dataflow-based intermediate data structure called archi-
tecture augmented synchronous dataflow (ArcSDF). At first, the model for agile
heterogeneous platforms was created, which provided the reference point to exam-
ine the architectural decisions. After the architectural decisions were defined, they
were used to augment the SDF graph to introduce the notion of resources, as com-
pute zones. The architectural decisions were incorporated through compute zones,
its resource edges, control actors and interfaces. The ArcSDF model was described
intuitively and through examples. A comprehensive definition of ArcSDF was pre-
sented with details for integration within a system and was demonstrated with
examples. Both the models, PPG and ArcSDF are an integral part of AhcFlow
- the new design flow for agile heterogeneous computing. After the definition of
ArcSDF, its utility for analysis was presented. Three new analysis approaches
apart from the traditional throughput analysis of dataflow graphs were described.
The first analysis is the calculation of the maximum resource usage of the compute
engines required by the ArcSDF representation. The second analysis finds the ear-
liest time slot where enough resources are available to map a new actor into an
ArcSDF that already has mapped and scheduled actors. The third analysis is an
optimisation routine to merge compute zones. Finally, the fourth analysis is the
calculation of throughput. The next chapter presents a design space exploration
algorithm for AhcFlow that uses ArcSDF as an intermediate data structure and
uses the PPG to express agile platform architectures.

109

Chapter 6

Agile mapping and scheduling
algorithm

Contents

6.1 Introduction . 111
6.2 The agile mapping and scheduling (AMS) algorithm 113

6.2.1 Overview . 114
6.2.2 rHEFT1: Resource conscious mapping and scheduling . 119
6.2.3 rHEFT-2: Specialised connectivity topology 128
6.2.4 Local platform architecture expansion 133
6.2.5 Global platform architecture update 143
6.2.6 Conclusion . 151

6.3 AMS algorithm evaluation . 153
6.3.1 Evaluation framework 153
6.3.2 rHEFT-2 evaluation . 158
6.3.3 AMS evaluation . 164
6.3.4 Conclusion . 170

6.4 Conclusion . 171

110

6.1 Introduction

In chapter 4, a new design flow for agile heterogeneous computing called AhcFlow
was proposed. This chapter is focused on the details of a new design space ex-
ploration (DSE) algorithm for AhcFlow and the evaluation of a prototype that
embodies the algorithm. The new design space exploration algorithm is denoted as
agile mapping and scheduling (AMS) algorithm. The AMS algorithm incorporates
enhancements of two other published algorithms; (1) the heterogeneous earliest-
finish-time (HEFT) algorithm [108] and (2) an algorithm formerly developed for
workflow scheduling with rental budget constraints [8], which is denoted as the
Gain/Loss algorithm in this chapter. These algorithms have been previously sum-
marized in section 2.5.4 of chapter 2. The AMS algorithm described in this chapter
fulfils the following requirements that are unique to agile heterogeneous computing:

1. A mapping and scheduling algorithm that considers resource usage, so that
concurrent executions of actors on the same compute engine can be taken
into account.

2. Capabilities for the specialised connectivity topology of agile heterogeneous
platforms, where the compute engines are not always directly connected to
one another, rather their connections can go via CPU.

3. Mapping and scheduling decisions of the application-algorithm must directly
influence the formation of the platform architecture, which is created with the
platform components represented as a parametrised platform graph (PPG).

4. Capital cost based metric for exploration of the optimal platform architecture
rather than rental cost.

In order to cater for these unique requirements, the AMS algorithm consists of the
following major innovations:

1. The original heterogeneous earliest-finish-time (HEFT) algorithm is extended
to resource-HEFT (rHEFT) that allows resources to be considered for con-
current actor executions and also incorporate the specialised connectivity of
an agile heterogeneous platform. The original actor ranking and compute en-
gine selection algorithms, that are internal to HEFT, are enhanced by taking
resource into consideration.

2. The AMS algorithm consists of deterministic and random steps. The deter-
ministic steps gradually form a platform architecture based on local mapping
and scheduling decisions. However, these local deterministic decisions can
lead the design space exploration to a local minimum, which is avoided by
introducing global random steps. The global steps shift the exploration to
a random location of the design space, from where the deterministic steps
resume.

111

3. Supports formation of platform architecture through expansion or reduction
mode. In the expansion mode, the AMS algorithm gradually adds compute
engines to an initial platform architecture, whereas in the reduction mode,
compute engines are removed progressively from the initial platform archi-
tecture.

This chapter is organised into two major parts. In the first part (section 6.2), the
overall AMS algorithm is initially outlined. Then, its major modules are separately
described, which includes rHEFT and the algorithms for expansion and reduction
modes. In the second part (section 6.3), a prototype of the AMS algorithm is first
shown to be feasible. Then, the prototype is used to evaluate rHEFT and the overall
AMS algorithm. The framework used for the evaluation is discussed in section
6.3.1. The rHEFT evaluation shows that the enhancements of actor ranking and
compute engine allocations of rHEFT significantly improves the quality of mapping
and scheduling decisions as compared with the original actor ranking and compute
engine allocations of HEFT. The comparison is conducted over a wide range of
synthetic DAGs on multiple fixed platform architectures that are represented as
PPG tier 2. This is covered in section 6.3.2. Finally, in section 6.3.3, the AMS
algorithm which includes both the expansion and reduction modes of exploration
together with rHEFT is evaluated using synthetic and real DAGs taken from the
literature. The AMS algorithm is shown to produce better platform architectures
than random platform architectures. The AMS algorithm evaluation also shows
that the expansion mode performs better as compared to the reduction mode.

112

6.2 The agile mapping and scheduling (AMS) al-
gorithm

List-based algorithms, such as HEFT closely consider the detailed properties of
the application-algorithm, which results in a low complexity algorithm with good
mapping and scheduling decisions [104, 108]. However, they have two major lim-
itations concerning agile heterogeneous computing: (1) they are limited to fixed
platforms and (2) they have inadequate support for concurrent executions on the
same compute engine. In this section, a list-based agile mapping and scheduling
algorithm (AMS), created around HEFT for agile platforms, is presented. The
AMS algorithm is created in two stages. In the first stage, HEFT is extended to
resource-HEFT (rHEFT) that caters for concurrent actor execution on the same
compute engine and specialized connectivity topologies of platform architecture.
Then in the second stage, AMS is created around rHEFT together with the capa-
bility for expansion or reduction of the initial platform architecture (PPG tier2).
Expansion refers to addition of more compute engines to the initial platform ar-
chitecture, whereas reduction refers to an removal of compute engines from the
current platform architecture. The AMS algorithm either performs expansion or
reduction. This selection of the mode of exploration (expansion or reduction) is
dependent on the budget and the initial platform architecture. If the budget is
higher than the capital cost of the initial platform architecture, then PPG operates
in the expansion mode, else otherwise, it chooses the reduction mode.

In both the modes (expansion or reduction), AMS allows for the introduction of
randomness in choices for the possibility of escaping from local minimums in plat-
form architectures. The initial platform architecture provides the first design point,
which is changed gradually. This gradual change is deterministic which reaches an
end; either due to the budget limit or the platform constraints (PPG tier1). The
randomness can then reset the starting point of the design space exploration. In
order to direct the next starting point in an optimal direction, the random change
is guided by the history of the previous iterations.

This section is organised into five subsections. In the first subsection, an overview
of the AMS algorithm structure is presented. Its two key modules; the global
platform architecture update (GPAU) module and the local platform architecture
expansion (LPAE) module are introduced. Then, the second and third subsec-
tions present two enhancements of HEFT that incorporate resource and topology
information, respectively. The last two subsections detail LPAE and GPAU. After
detailing GPAU, the pseudocode of the full AMS algorithm is also described and
its application is demonstrated with examples to show both the modes of design
space exploration.

113

6.2.1 Overview

In this subsection, the overall structure of the AMS algorithm is described. Figure
6.1 illustrates the inputs, the output and the components of the AMS algorithm in
a hierarchical manner.

There are five distinct inputs for the AMS algorithm; (1) the application-algorithm
in the form of dataflow acyclic graph (DAG), (2) the parametrised platform graph
(PPG) consists of the platform constraints (tier1) with the initial platform archi-
tecture (tier2), (3) the maximum budget that can be spent to form the platform
architecture, (4) performance/resource consumption data of every actor and chan-
nel on various components in PPG tier1 and (5) the maximum iteration count for
the AMS algorithm. The maximum iteration count puts a limit on the number of
random design space points to be explored. It must be noted that the first design
point is always set by the initial platform architecture defined in the PPG.

At the highest-level of the hierarchy, there are four major modules; the global
platform architecture update (GPAU), the local platform architecture expansion
(LPAE), the exploration history (EH) and the final ArcSDF generation (FASG).

The global platform architecture update (GPAU) is the first module that sets the
mode of the AMS algorithm. This mode can be either expansion or reduction.
Expansion mode is switched on when the capital cost of the initial platform ar-
chitecture (PPG tier2) is lower than the maximum budget. In this mode, the
second module, which is the local platform architecture expansion (LPAE) tries
to expand the initial platform architecture with more compute engines for better
performance. The expanded platform instance however, needs to conform with
the platform constraints (PPG tier1) and its capital cost needs to be within the
maximum budget. On the other hand, reduction mode is switched on when the
initial platform architecture’s capital cost is higher than the maximum budget. In
the reduction mode, the GPAU gradually removes compute engines or swaps with
less expensive compute engines until the budget is met. There will be several plat-
form architectures which meet the budget but result in different makespans. The
platform architecture with the minimum makespan is selected, so that impact on
the performance is minimal. During reduction, the expansion is disabled and hence
LPAE defaults to rHEFT.

114

Figure 6.1: The structure of the AMS algorithm.
115

Another important functionality of the GPAU is to introduce randomness during
the gradual change of design points. This function of introducing randomness is
effective in both the modes of reduction and expansion. The gradual changes to
the initial design point is initially deterministic until it reaches the constraints
defined in the PPG tier1. In the expansion mode, this happens when the budget
reaches to the maximum or the platform constraints limit any further addition
of compute engines. When in the reduction mode, the limit is reached once the
platform instance cannot be reduced any more; that is the platform instance is
reduced to just a CPU. When one of these limits are reached, the GPAU selects
a random platform instance that fulfils the constraints of PPG. In this situation,
the GPAU also selects a random set of hyper-parameters, within the limits set by
the user, to be used inside the LPAE. The complete list of hyper-parameters are
contained in the table 6.1. The meaning and significance of these hyper-parameters
are introduced gradually through the chapter.

The inputs for the GPAU module are the PPG representation, maximum budget
and the maximum iteration value. Based on these inputs, the GPAU outputs a
platform instance, budget and a set of hyper-parameters. These three outputs are
used along with the DAG and the performance/resource consumption data, by the
second module (LPAE) to produce the mapping and scheduling decisions. These
mapping and scheduling decisions are targeted for the input platform instance.
However, if the budget is higher than the capital cost of the platform instance,
the LPAE may expand the platform instance. In the reduction mode, the budget
for the LPAE is less than the capital cost of its platform instance. Thus, only
mapping and scheduling decisions are explored. The LPAE outputs a possibly
expanded platform instance and a rudimentary ArcSDF model (initial ArcSDF1).
In the final ArcSDF generation (FASG) module, a chosen initial ArcSDF undergoes
optimisation and model completion routines to generate a complete ArcSDF model.

The LPAE module is a synthesis of rHEFT (enhanced HEFT for concurrent actor
execution and specialised topology) and a modification of the Gain/Loss algorithm
of Sakellariou et al. 2007 [8]. LPAE is responsible for: (1) searching the optimal
mapping and scheduling decisions for a platform instance and (2) conducting expan-
sion of the initial platform architecture when in the expansion mode. In reduction
mode, the expansion facilities of LPAE are disabled and the algorithm defaults of
rHEFT. In expansion mode, changes in the platform instance are deeply embedded
in rHEFT. This allows to explore several options without the need to find the map-
ping and scheduling decisions multiple times. LPAE expands a platform instance
by locally optimising the mapping and scheduling decision of an actor by incor-
porating a new compute engine in the platform instance. The available compute
engines are placed in a ranked list which is scored on the basis of their contribution
in lowering the makespan. This score considers three factors; acceleration of the
present actor, estimated acceleration of the remaining actors and the dampening

1The initial ArcSDF should not be confused with the initial platform instance. The initial
ArcSDF considers every actor to be inside one unique compute zone. Its applications are explained
in chapter 5 in section 5.3.

116

Table 6.1: This table lists the hyper-parameters in the AMS algorithm.

Name Denotation Description

Resource factor RF
RF is used to calculate actor rank in rHEFT.
It determines the weighting given to the
resource consumption of actors.

Mapping threshold MT

MT is used in rHEFT for the selection of
compute engines. It signifies the trade-off
between resource consumption and the
compute engine acceleration.

Local factor celocal

celocal is used within LPAE
during expansion mode for the creation of
dynamic compute engine rank. It determines
the weighting of local gain for a compute engine.

Global factor ceglobal

ceglobal is used within LPAE
during expansion mode for the creation of
dynamic compute engine rank. It determines the
weighting of global gain for a compute engine.

Communication factor cecomm

cecomm is used within LPAE during
expansion mode for the creation of dynamic
compute engine rank. It determines the negative
weighting of communication delay for a
compute engine.

117

impact of communication links. A set of three hyper-parameters are used to scale
these three factors. Then the highest scoring compute engine, determined by sum-
ming the scaled values of these three factors, is selected to be incorporated into the
platform. Once the budget is reached, expansion stops and control is transferred
to the GPAU. It is possible that halfway through the LPAE execution, the budget
is reached and then further expansion stops but the remaining actors are mapped
and scheduled as per the rHEFT algorithm.

The third module, which is the exploration history (EH) module records previous
platform instances, mapping and scheduling decisions from the LPAE as a history.
A record consists of the initial ArcSDF, the platform instance, makespan and the
capital cost. At the end of the AMS algorithm, the user selects one of the records
from the history, which is then sent to the final ArcSDF generation (FASG) module.

The fourth module is called the final ArcSDF generation (FASG) module. This
module is responsible for the selection of an optimal record from the EH. Control
moves to this module after the AMS algorithm reaches its maximum iteration limit
or the best theoretical makespan is attained within budget. The user is involved in
the first step of selecting an optimal record from the set of optimal records based
on the makespan length and the capital cost of the platform instance. From this
selected record, the initial ArcSDF is retrieved. The FASG then applies a peep-
hole [124] like compute zone optimisation routine (see section 5.3.3) to reduce the
number of compute zones to combine compute zones where the actors in these
zones are sequential and use similar resources. The final step of FASG is to com-
plete the ArcSDF model by inserting the so called pre-engineered control actors,
which manage communication between GPU/FPGA and their controlling CPU.
The output of FASG is thus a complete ArcSDF model. This ArcSDF model is the
output of the AMS algorithm that is used for deployment.

In the next subsection, the resource-HEFT part of the AMS algorithm is detailed.

118

6.2.2 rHEFT1: Resource conscious mapping and scheduling

There are two versions of rHEFT. This subsection presents the first version of the
new resource-HEFT (rHEFT-1) algorithm that allows parallel execution of actors
on the same compute engine. rHEFT-1 is created by mapping and scheduling actors
on compute engines with multiple compute zones. In the following subsection 6.2.2
rHEFT-2 is described that caters for specialised topologies.

Recall that in ArcSDF, the compute zones are partitions of a compute engine that
allow multiple actors to execute in parallel. rHEFT-1 is created by first introducing
compute zone resources from ArcSDF. rHEFT-1 redefines the earliest finish time
(EFT) by using the earliest time slot algorithm (see section 5.3.3). Then, the
underlying ranking and allocation algorithms are enhanced, so that the significance
of resource consumption is taken into account.

It is noted that enabling multiple actors to execute concurrently on the same com-
pute engine necessitates scheduling of communication links. The reason is that
multiple actors on the same compute engine might need to communicate with ac-
tors on another compute engine. In order to simplify the introduction of resources,
it is assumed that there are all-to-all communication links amongst the compute
engines and that the communication links can be shared without compromising
communication speed. This assumption permits the original earliest start time
(EST) and earliest finish time (EFT) functions to be used only with the resource
modifications. However, communication links are generalised in the second ver-
sion of (rHEFT-2), which is presented in the next subsection (6.2.2) to consider
specialised connectivity constraints of agile heterogeneous computing platforms.

The creation of rHEFT-1 is described in this subsection in three parts. In the
first part, the basic introduction of resources is presented and its capability to
consider parallel execution of actors on the same compute engine is demonstrated
with two examples. Then in the second and third part, the ranking and allocation
algorithms are improved, respectively. The improvement is achieved by considering
actor resource usage.

rHEFT1: Introducing compute zone resources in HEFT

Resource consumption is introduced by using the earliest time slot (ets) algorithm
(see section 5.3.3) to find the earliest time to map an actor on a compute engine.
The ets algorithm finds the space in a compute engine where enough compute zone
resources are available for a certain duration of time to execute an actor. Since
ets operates on initial-ArcSDF 2, an intermediate representation (IR) in the form
of an initial-ArcSDF model is used within HEFT to capture the mapping and

2In an initial-ArcSDF, every actor is mapped onto an different compute zone, so that all
available free resources are utilised during the search of earliest slot time.

119

scheduling decisions. Each time an actor is mapped and scheduled on a compute
engine, it’s earliest start time (EST) and the earliest finish time (EFT) are added
to the IR, along with the compute engine to which it is mapped. For the next
actor, the updated IR is used again by the ets algorithm to find the next EST on
the compute engine. This continues until all the actors are mapped. Figure 6.2
shows the pseudocode of rHEFT-1. It is noted that the ranking and allocation
algorithm are resource agnostic. They are similar to that in the original HEFT
algorithm (see section 2.5.4), with differences arising in the allocation algorithm
for the incorporation of est. The pseudocode of the new allocation algorithm is
shown in figure 6.3 details the inclusion of ets.

Figure 6.2: Resource-HEFT (rHEFT-1) algorithm with original ranking and allocation
approach. The rankup algorithm was previously described while reviewing the original
HEFT algorithm in section 2.5.4. This algorithm calls REFT in line 7 which is shown in
6.3.

120

Figure 6.3: Resource-based earliest finish time (REFT) algorithm called from rHEFT-2
in 6.2. The earliest time slot (ets) algorithm was described in section 5.3.3.

The algorithm of rHEFT-1 that introduces resources in the original HEFT algo-
rithm is demonstrated using two examples. They are illustrated in figures 6.4 and
6.5. The first example (Ex1) shows the mapping and scheduling of a DAG consist-
ing of six actors on a platform architecture with a CPU and a GPU. The ranking of
the actors based on their computation times on the CPU and the GPU is shown in
figure 6.4(c). In the same figure, the mapping and scheduling decisions are shown
consisting of the time each actor starts on a compute engine and their end time.
The mapping and scheduling decisions are illustrated through a Gantt chart in
figure 6.4(f). This shows that actors C and D are executing concurrently on the
GPU. Also, B and E show some amount of concurrent executions on the GPU.

The platform architecture of the second example (Ex2) is constituted of one of each
type of compute engines and executing a different DAG is used. The scheduling
and mapping decisions demonstrates the ability of the resource-HEFT algorithm in
enabling actors B and C to execute simultaneously on different compute engines.

The impact of the communication delays can be seen from the table with the
mapping and scheduling timings. In the second example (Ex2) (figure 6.5), actor
E, which is mapped on the GPU needs data from C on the CPU and from B on
the FPGA. Amongst these two actors, C takes the longest to complete. Thus, the
starting time of E is when C completes plus the communication delay.

121

Figure 6.4: Ex1 Resource-HEFT (rHEFT-1) enabling concurrent actor execution on the
same compute engine. The platform architecture consists of one CPU and one GPU.

Figure 6.5: Ex2 Resource-HEFT (rHEFT-1) enabling concurrent actor execution on the
same compute engine. The platform architecture consists of one of each type of compute
engines.

Although execution of multiple actors can be taken into account, better mapping

122

and scheduling decisions are also possible if resource usage of actors are considered.
The next two parts of this subsection revisits the ranking and allocation algorithms
to incorporate resource usage.

rHEFT-1a: Enhanced actor ranking and compute engine selection algo-
rithm

Although rHEFT-1 enabled concurrent execution of actors on the same compute
engine by introducing compute zone resources with the original HEFT algorithm,
the internal actor ranking and the compute engine selection algorithms were re-
source agnostic. In this part, the actor ranking and the compute engine selection
algorithms are enhanced to make them resource conscious. Initially, the actor
ranking algorithm is enhanced to consider resources. Then, the compute engine
selection algorithm is improved to incorporate resource usage of actors. The im-
provements are illustrated by applying these enhanced algorithms on the previous
examples (Ex1 and Ex2). It is acknowledged that all DAGs on all platform archi-
tectures will not result in an improvement. The examples used are illustrative only.
An elaborate evaluation will be conducted in section 6.3.2, which will show that
there is a significant improvement of average makespan over a very large number
of randomly generated DAGs, as compared with the original actor ranking and
compute engine selection algorithms.

rHEFT-1a: Resource conscious actor ranking
rHEFT-1a is based on a heuristic that if actors with higher resource requirements
and with longer execution times are mapped first, then the remaining resources can
be better utilised for rest of the actors. An actor with higher resource usage needs
a lot of resources continuously for the length of its execution. Compute engines
with already placed actors might not have an earlier slot time for a new actor with
higher resource requirement. Moreover, if such an actor has longer execution time
and has to wait significantly for placement on the compute engine, then it may
profoundly increase the makespan.

The original HEFT actor ranking algorithm (see section 2.4.3) only prioritised
actors with higher execution times. Whereas, in resource conscious ranking, the
actor’s resource usage value is also taken into account, such that actors with higher
resource usage and longer execution times are prioritised. This is explained in the
next paragraph. The detailed algorithm is contained in figure 6.6.

In the resource conscious ranking, the actors are ranked by traversing the graph
upwards. The weight of every actor is the sum of its average execution time with
a weighting of its average resource consumption value. The weighting is derived
from a hyper-parameter called resource factor (RF), which is set by the designer to
signify the influence of resource usage on the rank. Figure 6.6 shows the equation

123

to calculate this weighting. It is noted that a very high RF will dominate the
rank with only resource consumption values. This is not desirable as placing actors
with higher execution times are more critical. The average execution time and the
average resource consumption values are calculated from the inputs of the AMS
algorithm, where the performance and resource of all actors on every compute
engines exists.

Figure 6.6: An enhanced actor ranking for rHEFT-1a by considering resource usage. This
replaces the ranking algorithm used in figure 6.2.

The new ranking algorithm is demonstrated with an example Ex3 of figure 6.7,
where RF = 2.4. This example is based on the same input data that was previous
example Ex1 presented in figure 6.4. The improvement in the makespan can be
seen by comparing both the figures. This improvement is due to the change in the
ranking, where actor C is given extra priority, as it consumes more resources. The
new rank is shown in figure 6.7(b).

124

Figure 6.7: Ex3 An example to demonstrate that part of rHEFT-1a where resource con-
scious upward ranking is introduced. The makespan from this example can be compared
with the previous example Ex1 in figure 6.4.

In fact the application of this new ranking algorithm does not improve the other
example Ex2 shown in figure 6.5. This will require enhancement in the allocation
algorithm, which is the topic of the next part.

rHEFT-1a: Resource conscious compute engine selection
The second modification to rHEFT-1 internally is to introduce an enhanced com-
pute engine selection algorithm that reflects compute zones as resources in compute
engines. The major change is in step 9 of the rHEFT-1 algorithm, which previously
selected a compute engine based on EFT. Now, in rHEFT-1a, it selects a compute
engine with maximum resource performance value (rpv). The computation of the
rpv is added to the algorithm shown in the steps 9 to 17 in Figure 6.8.

The idea behind this new algorithm is, compute engines that can provide better
actor performance with fewer resources are given priority. The new compute engine
selection algorithm consists of two steps. They are repeated for every actor to be
mapped. In the first step, a list of compute engines, where the actor to be mapped
can have similar performances to the best possible one, is formed. Then, in the
second step, the compute engine with least resource requirements for the actor
is selected. In order to ensure that a significant amount of performance is not
compromised for resources, a hyper-parameter called mapping threshold (MT) is
used in the first step to form the list of compute engines with similar performances.

The value of the mapping threshold, MT is set by the designer. If the application

125

DAG has a lot of parallel executions, then a higher value of MT is preferred, as
compute engines may increase the number of concurrent actor executions. A very
small MT will make the algorithm behave like the original HEFT’s compute engine
selection algorithm. Whereas, a very large MT value will consider all the compute
engines and can lead to sub-optimal mapping and scheduling decisions. The reason,
when every compute engine is taken into account for acceleration to resource usage
calculation, it will result in the choice of a compute engine that might have a very
low resource usage value but high earliest finish time. Furthermore, the value of
MT is also dependent on the numerical sizes of the executing time of actors. The
designer needs to take these into account to set the value of MT.

Those compute engines on whom the EFT of the actor to be mapped falls within
EFTMIN to EFTMIN + MT are selected. Amongst this list of compute engines,
the one with maximum acceleration to resource usage ratio is selected for the actor
to be mapped. Acceleration is normalised to CPU times, which is calculated by
dividing the EFT on CPU with the EFT on the compute engine. Pseudocode of
this new compute engine selection algorithm is shown in figure 6.8.

126

Figure 6.8: Pseudocode of the overall rHEFT with the resource conscious compute engine
selection algorithm.

The previous example, Ex2 in figure 6.5 is used again to demonstrate the improve-
ment due to resource conscious compute engine selection. Example Ex4 shown in
Figure 6.9 shows the new mapping the scheduling decisions. In this example, the
MT value is set as 120 and the RF is set as 2.4. The makespan is improved due
to the local performance compromise of D by mapping it on FPGA, which cre-
ates more space for B and C to execute simultaneously. Since rHEFT-1 assumes
communication links to be all-to-all connected with no-loss sharing of the links (no
wait time), the specialised connectivity of agile heterogeneous computing platform
has not been taken into account yet.

This concludes discussions of rHEFT-1a. In the next subsection rHEFT-2 is de-
scribed, which includes all of rHEFT-1a plus capabilities to connect limited topolo-
gies connectivities in many real systems.

127

Figure 6.9: Ex 4: An enhanced compute engine selection algorithm for rHEFT by con-
sidering resource usage. The makespan from this example can be compared with the
previous example Ex2 in figure 6.5.

6.2.3 rHEFT-2: Specialised connectivity topology

In the previous subsection, resource consumption of actors was added into the
original HEFT, so that parallel execution of actors is allowed on a compute en-
gine. This enhancement, called the first version of resource-HEFT (rHEFT-1a)
was achieved by assuming that every compute engine is connected to one another
and that communication links are always available (no wait time). In this subsec-
tion, the second version of resource-HEFT (rHEFT-2) is presented that relaxes the
previous connectivity assumption.

rHEFT-2 encompasses the specialized connectivity topologies targeted in the new
design flow for agile heterogeneous computing proposed in chapter 4. This design
flow has allowance for a much richer range of interconnections between compute
engines than envisaged in the original HEFT algorithm. The communication links
between compute engines are shared amongst concurrently executing actors, which
can result in waiting time, as the communications links are sequential. Further-
more, every compute engine may not be directly connected to one another. For
example, communication between GPU and FPGA may take place through the
CPU, in fact in most platform architectures direct links will not be available.

The pseudocode of the rHEFT-2 algorithm is shown in figure 6.10 and the pseu-
docode to calculate the earliest start time with specialised connectivity topology is
shown in figure 6.11. The basic structure of rHEFT-2 is similar to rHEFT-1a but,

128

there are two main additions: (1) communication links are modified to include
waiting time and (2) the algorithm is made aware of the fastest route available
in the connectivity topology. These additions are demonstrated with an example
where the impact on mapping and scheduling decisions due to these additions are
discussed. Therefore, this subsection is organised into two parts. The first part
presents the additions of specialised connectivity topology and demonstrates them
with an example. Then the second part presents a discussion on the implications of
mapping and scheduling decisions due to the allowance of specialised connectivity
topology.

Figure 6.10: rHEFT-2 algorithm for specialised connectivity topology for agile heteroge-
neous computing. The resource based early finish time computation (REFT) has been
modified to take into account of the communication (REEFTCOMM) which is shown in
figure 6.11

129

Figure 6.11: REFTCOMM : Earliest start time algorithm that considers the specialised
communication topology.

Shared communication link

Since actors can execute in parallel on a compute engine, their need to communicate
with other actors mapped on different compute engines might coincide. Commu-
nication links, until now were treated to be always available without any waiting.
However, according to the definition of a communication link in the parametrised
platform graph (PPG), they are restricted to allow the communication of only one
channel (actor-to-actor communication) at a time. This implies that if a commu-
nication link is already occupied, then new channels will be queued. Therefore,
the communication delay of a channel is the sum of the data transfer time and the
wait time due to the previous channels. Data transfer time is calculated using the
token size of the channel and communication link bandwidth. Both of these values,
the token size and the bandwidth of communication links are obtained from the
application dataflow model and the platform architecture (PPG tier2), respectively.

Since communication links now have a wait time, the communication delays of

130

an actor’s input channels need to be calculated for its mapping. This was not
necessary previously, as the communication delay of a channel on a communication
link was always same. The earliest start time of a channel on a communication link
is calculated in the same way EST of an actor is done in the original HEFT, which
is by finding the earliest time slot available on a processor. Once the start time of a
channels is it is added with the data transfer time to compute the communication
delay.

The start time of an actor on a compute engine is dependent on the communication
delays of its input channels. The channel with the maximum communication delay
determines the start time of the actor. This leads to its earliest finish time on the
compute engine, which is then used to select the compute engine for the mapping of
the actor. This shows that a faster compute engine with a lot of resources may not
be chosen due it its slow or already queued communication links. The algorithm
to calculate the earliest finish time considering delays in a shared-communication
link (REFTCOMM) is shown in figure 6.11. Multiple routes between two compute
engines may be available in the connectivity topology of the platform architecture.
The route with the least communication delay is used for REFTCOMM . The fastest
route may not be chosen, as it may have channels already queued. After a compute
engine is selected, the actor’s input links are mapped on the communication links
with minimum delay.

Example Ex5 shown in figure 6.12 demonstrates the wait time on communication
links and the selection of routes. The computation time on a compute engine and
the resource utilisation is the same as in Ex4 in Figure 6.9. The Gantt chart in the
Figure shows the channel allocation on the communication links and their queuing.
L3 is the direct connection between the FPGA and GPU. It is chosen for the
channel DC instead of the communication links L1 and L2 that goes via the CPU.

131

Figure 6.12: Ex5: This example shows the waiting on a communication links and selection
of a route that has with lower communication delay. The connectivity topology consists
of three links; L1, L2 and L3. The compute engines GPU and FPGA can are connected
through L1 and L2 as indirect links and also via L3. The channel allocation on the
communication links are shown as black lines in the Gantt chart.

Mapping and scheduling decision impact

The main implications of generalising the communication links by allowing routes
and link sharing is that the delays due to the output channels of an actor can be-
come unpredictable. Although the output channels are considered by the preceding
actors to which they are input channels, it is sometimes not sufficient. This can be
explained better with an example (Ex6) in figure 6.13. A simple DAG with four
actors A, B, C and D is used in this example. There are two platform architec-
tures. The first has one of each compute engine kind and the communication links
are through CPU (no direct connections). The other has one CPU and a GPU.
The performances of actor A and D are better on the CPU, B on the GPU and C
on the FPGA. In the first platform architecture, after A is mapped on CPU, B is
then mapped on GPU, next C on FPGA and finally D on the CPU. This results
to a longer makespan than on the smaller platform architecture. The reason is
that the output channel from B to D was not taken into account while mapping
it. Since B has a channel BD that takes a very long time through the PCIe link,
the makespan is increased.

132

Figure 6.13: Ex6: This example shows that a larger platform can lead to a higher
makespan than a smaller platform, due to unpredicted output channel delays.

This example shows that more costly architectures are not necessarily faster. If
the expansion had proceeded rapidly it might have jumped from one CPU to one
CPU plus GPU and FPGA. without first considering a single GPU. Thus this
example supports the arguments that there should be gradual expansion in the
architecture. A similar situation is possible under the reduction scenario. So,
gradual reduction is also recommended. This concept of gradually changing the
platform architecture is applied in the next two subsection for the construction
of local platform architecture expansion (LPAE) and global platform architecture
update (GPAU).

6.2.4 Local platform architecture expansion

The local platform architecture expansion (LPAE) module of the AMS algorithm,
introduced in the overview 6.2.1, is presented in this subsection. As described in the
overview, this module is a synthesis of the enhanced versions of HEFT (rHEFT-2),
explained in the previous two subsections and a modified version of the Gain/Loss
algorithm [8]. Since the original Gain/Loss algorithm was created for rental cost,
it is modified to suit the conditions of capital cost for agile heterogeneous com-
puting. The synthesis of rHEFT-2 with the modified Gain/Loss algorithm enables
the expansion of the platform architecture in conjunction with the mapping and
scheduling decisions of the application-algorithm. As each actor is mapped, the
benefits of a new compute engine is evaluated. Based on this evaluation, new com-
pute engines are added to expand the platform architecture instance. Thus, the
result of the LPAE module is a possibly expanded platform architecture instance

133

and an initial-ArcSDF representation containing the mapping and scheduling de-
cisions. These results are used by the GPAU that eventually controls the overall
execution of the AMS algorithm. This subsection is divided into three parts. In
the first part, the synthesis of rHEFT with the Gain/Loss algorithm is described.
Then, in the second part, the pseudocode of LPAE is presented. Finally, in the
third part, LPAE is demonstrated with an example.

rHEFT-2 synthesis with the Gain/Loss algorithm

The original Gain/Loss algorithm is based on the idea to gradually increase the
rental cost by placing actors on compute engines where it can lower its computation
time as compared to what is currently mapped. The actor with the highest com-
putation gain with minimum cost increase is mapped first. This is continued for all
the actors until the budget limit is reached. This idea however, cannot be applied
for agile platforms, as using a compute engine for a long length of time increases
the capital cost to the same extent, as if it was used for a smaller timespan.

The gain idea is realised in LPAE by adding a new compute engine into the platform
instance with every actor mapping within rHEFT-2. This is done if the addition
has the potential to locally reduce the present actor’s computation time as well as
globally reduce computation time of all the other un-mapped actors. Recall that
in rHEFT-2 actors are first ranked and then they are selected one by one for map-
ping on the existing platform instance. However, if adding a new compute engine
reduces the computation time of the current actor and also has the potential to
reduce the computation timings of other un-mapped actors, then it can be added
to the existing platform instance. In the next paragraph the effect of adding an-
other compute engine is evaluated. The evaluation involves three hyper-parameters
(celocal, ceglobal and cecomm) listed previously in table 6.1.

The selection of the new compute engine during every actor mapping in rHEFT-
2 is achieved through a ranked list of compute engines. Unlike the actor rank in
rHEFT-2, the compute engine rank is dynamic. It is updated with the growth of the
platform architecture every-time a new actor is selected for mapping. The ranked
list of compute engines is called the dynamic compute engine rank (DCER). The
compute engines considered within DCER are all the ones that are possible given
the platform constraints (PPG tier1). If the compute engine with the highest non-
zero rank value in DCER can improve the performance of the actor to be mapped
in rHEFT-2, then it is selected for the expansion of the platform instance.

The DCER is created by adding three different factors for a compute engine and
the actor to be considered for mapping. These three factors are; local reduction
time (local), global reduction time (global) and communication impediment time
(comm). The comm is a negative value that reflects the extra communication time
due to the addition of an extra compute engine. local is the difference between the

134

earliest finish time (EFT) on the existing platform architecture instance (PI) minus
the EFT once the new CE is added to the platform. global is the sum of all possible
accelerations of the unmapped actors after the addition of the new compute engine.
comm is the average delay of all the communication links connecting the new
compute engine. Each of these factors are multiplied by the three different hyper-
parameters, respectively, to determine the weight of each factor for the DCER
value.

The DCER value of a compute engine CEk and actor Ai is defined as follows.

locali,k = EFTi,pi − EFTi,k (6.1)

globalk =
∑

j∈unmapped

EXEi,cpu

EXEi,k

(6.2)

commk =

∑ ¯linkk
|linkk|

(6.3)

dcerk = localk ∗ celocal + globalk ∗ ceglobal − commk ∗ cecomm (6.4)

Where EFTi,pi is the EFT of Ai on the PI, EFTi,k is the EFT of Ai on the new
CEk, unmapped refers to all the actors that are not yet mapped, EXEi,cpu is the
execution time of Ai on the CPU, similarly EXEi,k is the execution time of Ai

on CEk, linkk is the average communication delays on a link connected to CEk

and celocal, ceglobal and cecomm are the hyper-parameters to determined the weights
of local, global and communication factors. The LPAE pseudocode presented in
the next part shows the usage of DCER in expanding the platform architecture
instance.

LPAE pseudocode

The LPAE pseudocode is presented in three Figures 6.14, 6.15 and 6.16. The first
Figure 6.14 shows the overall LPAE algorithm. It calls the allocaterheft (see Figure
6.15)function twice to map the actor A that is to be mapped. The first call is to
calculate the EFT of A on the existing platform architecture instance (PI). The
EFT call is necessary to evaluate whether another compute engine is required to
be added in the PI. The function selectce (see Figure 6.16) is called to evaluate the
remaining compute engines in PPG tier1 and then based on the evaluation, it may
select from the remaining compute engines. After this evaluation and a possible
expansion of the PI, allocaterheft is called again (the second call) to actually map
the actor. The pseudocode further details the steps of updating the intermediate
representation (IR), which is an initial-ArcSDF instance to capture the mapping
and scheduling decisions required in the underlying rHEFT algorithm.

135

The connectivity topology formed while adding new compute engines favours direct
connection links for better performance. When a new compute engine is added to
the platform architecture instance, it is first checked that if there are available
PCIe lanes to connect a new FPGA or GPU with a CPU. Docks3 are used to
accommodate more compute engines when PCIe lanes are occupied. A similar type
of compute engine that was already connected is chosen to share a switch with the
new compute engine. Also, direct connections are added whenever possible.

3Docks are defined in the parametrised platform graph (PPG) it refers to the sharing of a
communication link with another compute engine, which can be similar to a switch.

136

Figure 6.14: The overall algorithm of local platform architecture expansion (LPAE).
rHEFT-2 is embedded in this algorithm. This algorithm requires the allocaterheft algo-
rithm, shown in figure 6.15 to map and schedule actors and selectce, shown in figure 6.16
to select compute engines for expansion of the initial platform architecture.

137

Figure 6.15: The algorithm to select a compute engine for mapping and scheduling of an
actor. This is based on the rHEFT algorithm.

138

Figure 6.16: The algorithm selects a compute engine for expansion of the platform archi-
tecture.

139

Example

LPAE is demonstrated through an example (Ex7) shown in Figures 6.17, 6.18 and
6.19. This example shows how compute engines are added in an existing platform
architecture instance (PI) within the rHEFT algorithm. The PI consists of one
CPU and one GPU, however there are one more GPU and two FPGAs available
in the PPG tier1. The application DAG consists of 6 actors. Figure 6.17 shows all
the inputs necessary for LPAE and the hyper-parameters values. It also contains
the actor rank values. Based on the rank values, actors are considered for mapping
in the following order: A, C, B, D, E and F.

All the execution steps of LPAE are illustrated in Figure 6.18. The budget for
the expansion is $1000 that includes the cost of the initial platform architecture.
This leaves $700 for the addition of new compute engines. The first actor to be
considered for mapping is A, which is based on the actor rank. In step 1, the DCER
values of the remaining compute engines are calculated. Since A has the least EFT
on CPU, already a part of PI, the local values are zero. This prevents from any
additional compute engine from being selected. The next step maps actor C. Since
the EFT of C is lower on a compute engine not part of the PI, the local values
are positive and so are the DCER values. The compute engine with the highest
DCER value is selected, which is GPU2 and it is added to the PI. Figure 6.19(b)
shows the expanded platform architecture. Since the connectivity topology is rule
based, it automatically adds direct connections whenever possible. It is interesting
to note that before the addition of GPU2 the EFT of C was 117 and after it is
added, the EFT reduces to 47.

Theses steps are continued for all the actors. No expansion occurs, until step 5,
where FPGA1 is added for actor D. The final expanded platform architecture is
shown in Figure 6.19(c). The mapping and scheduling decisions are shown as a
Gantt chart in Figure 6.19(d). It also shows the makespan on the final platform
architecture. The communication delays of 2 time units are shown as d blocks.

140

Figure 6.17: Ex7: An example illustrating LPAE. The configurations are shown in this
figure.

Figure 6.18: Ex7: Six steps of the example in Figure 6.17 to select compute engines for
platform architecture expansion.

141

Figure 6.19: Ex7: The expansion of the platform architecture from its initial architecture
for the example in Figure 6.17. The resulting mapping and scheduling decisions are also
shown as a Gantt chart.

142

6.2.5 Global platform architecture update

This subsection presents the global platform architecture update (GPAU) module
that was previously introduced in the AMS algorithm overview (see section 6.2.1).
GPAU controls the overall execution of the AMS algorithm by initially setting
the mode of design space exploration to either expansion or reduction and by
introducing randomness to restart exploration from a new design point when limits
are reached for the expansion or reduction of the earlier platform architecture
instances. This subsection is organised into three parts. The first part presents
pseudocode of the overall AMS algorithm and the GPAU module to explain how
GPAU controls the execution of AMS. The second part first describes the expansion
mode of GPAU and then demonstrates it with an example. The third part details
the reduction mode of exploration, along with an example.

AMS and GPAU pseudocode

The AMS algorithm pseudocode is presented in Figure 6.20. This pseudocode
calls both GPAU and LPAE. It shows that the GPAU and LPAE are called in
a loop that iterates until the number of "random design point changes" equals
to the maximum random iteration itrMAX . In every iteration, GPAU is executed
followed by LPAE and their outcomes are stored inside the exploration history
(EH). GPAU provides the budget b, the platform architecture instance PI to start
the iteration, hyper-parameters hpar and a boolean value for random update br.
Amongst these values, pi, hpar and b are used by LPAE, which return a possibly
expanded platform architecture xpi and the intermediate representation ir. br
is used to identify whether GPAU has changed the exploration path randomly.
This value is used to track the number of random changes to end the loop. After
reaching itrMAX the record with the lowest makespan (rbest) is retrieved from EH.
rbest contains the IR (initial-ArcSDF model) and the platform architecture (PPG
tier2) to be used for deployment.

The GPAU pseudocode shown in Figure 6.21 consists of an initialisation phase and
two exploration modes; expansion and reduction. During initialisation, the mode of
exploration is decided based on the initial platform architecture’s (pi0) capital cost
and the maximum budget (bmax) allocated for exploration. The exploration mode
is set to expansion if the capital cost of pi0 is less than bmax, so that there is extra
budget to expand the platform architecture. If bmax is less than the capital cost
of pi0, then reduction mode is set to remove compute engines to lower the capital
cost. It is noted that each mode has two stages; deterministic and random. When
the steps inside the deterministic mode are exhausted, the exploration shifts to a
random design point, which restarts the deterministic steps. limit_reached is the
function that decides whether the limits have been reached for the deterministic
steps. The pseudocode of limit_reached is described in Figure 6.23. If the limits
are reached then, the function random_point is called to find the random design

143

Figure 6.20: The high-level pseudocode of the AMS algorithm.

point. The pseudocode of random_point is described in Figure 6.22. Details of
how these functions operate during expansion and reduction are described in the
next two parts of the subsection.

144

Figure 6.21: Pseudocode of the global platform architecture update (GPAU) algorithm.

145

Figure 6.22: Pseudocode of the random_point function.

146

Figure 6.23: Pseudocode of the limit_reached function.

147

Expansion mode

Although the platform architecture expansion takes place in LPAE, the expansion
budget, the starting platform architecture and the hyper-parameters are decided
in GPAU. The expansion budget b is gradually increased, so that during expansion
in LPAE, the starting platform architecture is also gradually expanded. Gradual
expansion ensures that smaller architectures and lower capital cost compute engines
are considered even when the maximum budget bmax is high. The importance of
smaller architectures was discussed in section 6.2.3, where it was shown that large
platform architectures can sometimes incur communication penalty than its smaller
counterpart.

The expansion mode starts by calling the limit_reached function (see Figure 6.23)
to check whether the limits of platform expansion has been reached. There are
three limits to be checked; (1) the expansion budget b equals to the maximum
budget bmax, or (2) PPG tier1 has no more compute engines remaining, (3) the
available links between compute engines are exhausted. The second limit is due to
the connectivity constraints of PPG tier1. If any of these three limits are reached,
the exploration shifts to a new design point by calling the random_point function.

In the random_point function, a random starting platform architecture instance pi
is created and along with it, a random set of hyper-parameters within the minimum
and maximum range provided by the designer are also generated. While randomly
creating pi, it is ensured that it’s capital cost is much lower than the maximum
budget bmax. This allows more expansion to take place in the LPAE. The genera-
tion of a new random design point works as follows. The previous history of the
architecture is looked through to find the one with the lowest makespan. Then
the compute engines that form the lowest makespan are placed into the selection
pool. The history of the other architectures is also looked through to create a list
of compute engines that were never used before. These are added to the selection
pool. Finally, a random selection from the pool of compute engines is made to
create the random design starting point. For each possible random choice from the
pool the budget is checked and only those choices that meet the budget are kept.

When the expansion mode of exploration is within the limits, the deterministic
steps consist of increasing the expansion budget b gradually. The amount of bud-
get to be increased is a random value between the lowest cost compute engine
left in PPG tier1 and bmax. The starting platform architecture instance (pi0) is
not changed in these deterministic steps, only b is increased. This ensures that in
each iteration the LPAE expands platform architecture with increasing budget, so
that smaller and larger platform architectures are properly explored. The results
from the LPAE are the possibly expanded platform architecture, xpi and the in-
termediate representation IR containing the mapping and scheduling decisions are
recorded in the exploration history along with the hyper-parameters hpar. This
iteration is continued in the AMS algorithm for itrmax times.

148

The expansion mode of exploration is demonstrated through an example (Ex8) that
is based on inputs previously used to illustrate the LPAE algorithm (see Figure
6.17 (Ex7). Unlike the previous example, the initial platform architecture instance
(pi0) and the set of hyper-parameters hpar are controlled by GPAU. The result of
running GPAU for itrmax = 3 and bmax = 850 is shown in table 6.2. The first (pi0)
consists of only one CPU and the hpar values are shown in step 0. These values
are provided by the user. It is noted that in the 0th step, the expansion budget
is same as the (pi0) capital cost, so that expansion does not take place. Since
(pi0) consists of only one CPU, all the actors are mapped on the CPU, where the
makespan is 370. In the second step the (pi1) is expanded allowing the inclusion of
FPGA1 and the makespan reduced to 204. In the next step, (the 2nd step) three
compute engines (FPGA1, GPU1, GPU2) are added and the makespan reduces to
90. It is interesting to note that in the previous example (Ex6) this (pi2) resulted
in the lowest makespan but due to different hyper-parameter values, the mapping
and scheduling decisions are not the same. The design points are reset in steps 3
and 5. These two corresponding rows are marked as bold. In step 4, the lowest
makespan is achieved.

Table 6.2: Ex7: GPAU expansion example.

149

Reduction mode

The reduction mode of exploration takes place solely in GPAU. LPAE is only
for the mapping and scheduling decisions, so that the makespan of every platform
architecture instances can be calculated. First step is to find whether the reduction
limit has reached, which is when the platform architecture is just left with the CPU.
This is checked by calling the limit_reached function. After the reduction limit is
reached, random_point function is called to create a new design point by randomly
forming a starting platform architecture instance pi and also by randomly creating
new values for the hyper-parameters. pi is created from a combination of the
compute engines compute engines, compute engines from tier1 which are not yet
used and compute engines used in the previous iteration. At first, the compute
engines with lowest makespan from the previous iteration are preferred, but if the
capital cost of this pi is below the maximum budget bmax, compute engines from
the previous iterations are also included. It is noted that although all the hyper-
parameters are changed, resource factor (RF) and mapping threshold (MT) are
only used in the LPAE, as it defaults to rHEFT-2 during reduction. The others,
celocal, ceglobal and cecomm are not used, as they are applicable only when choosing
a new compute engine during expansion.

Up till the time of the one CPU limit is reached, the limit of reduction is not
reached, the algorithm is in the deterministic stage, where the platform architec-
ture instance is reduced gradually. The compute engine removed from the architec-
ture is determined as follows. The total compute time of every actors is evaluated.
The compute engine where the sum of execution time is the lowest is removed.
After removal of the this least used compute engine, LPAE is called to produce
the makespan and the intermediate representation containing the mapping and
scheduling decisions. The result of LPAE and GPAU are then stored in the explo-
ration history. Removal of compute engines continues until the reduction limit is
reached, then a new design point is randomly created. This iteration continues for
the maximum iteration count itrmax.

The example previously shown in Figure 6.17 (Ex7) is used as an input to the new
example Ex8 for the reduction mode of exploration. The initial platform architec-
ture consists of CPU, GPU2, FPGA1 and FPGA2 and its capital cost is 1100. The
maximum budget is 850, the same value was used to demonstrate expansion mode.
There are three deterministic steps to reduce the pi to a CPU. In these three steps,
compute engines are reduced one by one. In step three a platform instance is ran-
domly generated based on the previous history as described in section 6.2.1. It can
be seen that the makespan keeps to increasing. In step 1, the platform architecture
instance is randomly generated. Its capital cost is 1300 and the makespan is 90,
which is the lowest so far. However, in the next step after removing FPGA2, the
makespan is still 90. This shows that a smaller platform architecture can produce
a lower makespan than a larger one. This platform instance architecture is similar
to the one where makespan of 84 was attained previously. This is due to different

150

RF and MT values that changes the mapping and scheduling decisions. Another
reset happened in step 8 but none of the subsequent deterministic architectures
resulted in a better makespan.

Table 6.3: GPAU reduction example.

6.2.6 Conclusion

The design space exploration algorithm for agile heterogeneous computing, known
as agile mapping and scheduling algorithm (AMS) was presented in this section.
The creation of AMS was described in stages and how the unique requirements of
agile heterogeneous computing were fulfilled was explained and demonstrated with

151

examples. The unique requirements consist of allowing concurrent actor executions
on the same compute engine, catering to the specialised connectivity topology con-
straints of an agile platform architecture, formation an optimised platform archi-
tecture at the same time as considering the mapping and scheduling decisions and
capital cost based exploration rather than rental cost.

There are two main stages in which AMS was created. In the first stage, a widely
used and efficient list-based scheduling algorithm called HEFT [7] was extended
to consider actor resource usage and specialised connectivity topology of an ag-
ile heterogeneous computing architecture. This new version of HEFT is called
resource-HEFT (rHEFT-2). In the second stage, rHEFT-2 was combined with an
adapted version of Gain/Loss algorithm [8] to create the expansion and reduction
modes of exploration. Since the original Gain/Loss paper is a rental cost based
optimisation on cloud like infrastructures, it was adapted to incorporate capital
cost. In expansion mode, a smaller platform architecture is expanded by adding
more compute engines. Whereas, in reduction mode, a large platform architecture
is reduced by removing compute engine. In both the modes, addition and removal
of compute engines are gradual and are influenced by the mapping and scheduling
decisions. In the next section, the overall AMS algorithm incorporating rHEFT-2
is evaluated using a range of synthetic and real DAGs.

152

6.3 AMS algorithm evaluation

The previous section presented the agile mapping and scheduling (AMS) algorithm
for the new design flow called AhcFlow that was presented in chapter 4. This section
presents an evaluation of the AMS algorithm. Since the AMS algorithm comprises
of a new version of HEFT that considers resources (rHEFT), the evaluation first
assesses rHEFT with synthetic datasets to study the improvements due to the
enhanced resource oriented ranking and allocation algorithms. Then, the evaluation
focuses on the overall AMS algorithm, where real published and synthetic DAGs
are used to study the formation of the platform architectures. This study compares
performance for the expansion and reduction modes of exploration and compares
the results with randomly generated platform architectures.

In order to perform the evaluation, a framework and prototype of the AMS al-
gorithm is first developed with facilities to generate synthetic datasets and store
the design space exploration results in a database. Then, the framework is used
for the evaluation experimentations. Therefore, this section is organised into three
subsections. The first subsection describes the prototype of the AMS algorithm.
The second subsection evaluates enhanced resource conscious ranking and compute
engine selection algorithms with rHEFT-1, which is closest to the original HEFT
algorithm. Finally, the third subsection evaluates the overall AMS algorithm by
comparing the two modes of exploration with each other and with randomly gen-
erated platform architectures.

6.3.1 Evaluation framework

This subsection describes an evaluation framework consisting of a prototype of the
AMS algorithm and the functionalities to generate datasets, run experiments and
then store the results for interpretation. Figure 6.24 shows the software components
of the evaluation framework. It depicts the layered and hierarchical form of the
evaluation framework. Dependencies between the components exist as layers, where
a high-level component is placed on top of a low-level component. Organisation of
the components are hierarchical, where smaller ones are combined to form a larger
component. There are three key components; AMS prototype, data generator and
evaluation driver. Thus this subsection is divided into three parts to detail each
key component separately.

153

Figure 6.24: The structure of the evaluation framework and the AMS prototype.

AMS prototype

A prototype of the agile mapping and scheduling (AMS) algorithm is developed as
a plug-n-play structure, so that different configurations of rHEFT and AMS can be
created by just changing their underlying components. For example, to compare
the original ranking and allocation algorithm of rHEFT with the enhanced versions,
two instances of rHEFT are created but with different ranking and allocation algo-
rithms. In one of the instance, the original algorithm (pseudocode in Figure 6.3) is
used, whereas in the other instances, enhanced algorithms (pseudocode in Figures
6.6 and 6.8) are applied.

In order to create this flexibility, the AMS prototype is developed as high-level
components for rHEFT-2 and AMS with their fundamental algorithms constructed

154

from low-level components called Algorithms. There are five internal components;
ranking algorithms, allocation algorithms, selection algorithms and routing algo-
rithms. Each of these internal components have various versions. Therefore, differ-
ent configurations of rHEFT and AMS can be easily created by choosing distinct
combinations of the basic versions of these algorithms.

At the lowest level, there are two components; graph and platform. The graph com-
ponent is responsible for graph-based operations consisting of SDF to HSDF (DAG)
conversion, initial-ArcSDF optimisation routine to generate a complete ArcSDF,
ArcSDF to initial-ArcSDF conversion and the implementation of the earliest time
slot algorithm (see section 5.3.3). The platform component is responsible for the
parametrised platform graph (PPG). This component is primarily used to ensure
that the formation of platform architecture instances (PPG tier2) conforms to the
platform constraints (PPG tier1).

The structure of the evaluation framework in Figure 6.24 shows that the algorithms
components are directly used by rHEFT-2 and the Random explorer (RG) but,
the AMS components have another layer containing the LPAE, the GPAU and the
EH components. This extra layer is developed mainly for possible future extensions
of the LPAE and the GPAU algorithms, so that their later enhancements can be
developed without changing the AMS algorithm and the underlying components.
These possible future extensions are not part of this thesis.

The three high-level components; rHEFT, RE and AMS are exposed to the outside
world. They have application programmers interfaces (API) that are used to create
instances of rHEFT and AMS algorithms, which are then used for experimentation.
The RG component is used to generate random platform architectures from the
platform constraints in PPG tier1. The purpose of this component is to compare
random platform architectures with the ones generated by the AMS algorithm. In
order to establish a fair comparison, a list of N random platform architectures are
generated, then the best one is selected. The value of N is decided based on the
random iteration count of AMS. The next part describes the generation of datasets
used in the evaluation.

Data generator

The data generator produces data for the evaluation experiments. It consists of
three internal components; the application DAG generator (ADG), platform con-
straint generator (PCG), and the performance data generator (PDG). The DAG
generator produces synthetic graphs for the application-algorithm. The platform
constraint generator produces synthetic instances of the available components for
a platform architecture and their constraints in the form of a parametrised plat-
form graph (PPG) tier1 model. The final component, which is the performance
data generator produces synthetic computation, communication and resource usage

155

data for actors executing on various compute engines.

The DAG generator is capable of producing five kinds of DAGs; synthetic random
DAGs [7, 104] and four kinds of real DAGs. The published DAGs include Laplace
equation solver [101,125], fast Fourier transformation graph [101], and LU decom-
position [101,125]. These published DAGs are chosen because they are widely used
in the literature of heterogeneous mapping and scheduling algorithms [8,104,126].
The characteristics of random DAGs depend on various attributes, which can be
freely chosen, whereas for the published DAGs, attributes are are pre-determined,
except for their size. Table 6.4 lists all the attributes that affect the characteristics
of randomly generated DAGs. A large number of DAGs were generated using a
combination of these attributes for the evaluation. For every DAG, a set of perfor-
mance data that consists of: computation, communication and resource usage data
is produced by the performance data generator (PDG). Another table 6.5 lists the
attributes that affect the value of these data. How performance data is generated
based on these parameters are explained as follows.

• Before the performance data generation can start, the compute engine and the
communication link details are required. The number, type and unique ids of
each compute engines are necessary. Similarly, the types of communication
links are required. These details are present in PPG tier1 or tier2. For the
experiments with rHEFT, fixed platform architectures were used, so just tier2
instances were used. The tier2 instances were manually created by using the
platform component in the AMS component. The overall AMS algorithm
platforms are variable, so tier1 was used. The platform constraint generator
(PCG) contains scripts to generate PPG tier1.

• Computation time of an actor on a compute engine is generated relative to
the computation time of the actor on the slowest CPU. The computation
time of an actor Ai on the slowest CPU is written as EXEi,CPU . For every
actor, this value is generated as a uniform distribution with the limits of
MINCPU and MAXCPU . Based on the percentage of compute engines that
can accelerate, the compute engines are divided into two groups, one that
can accelerate and the rest will decelerate. Since the purpose of compute
engines are for acceleration, the value of ACCPER is supposed to be high.
The computation time on compute engines that will accelerate is a random
value withinMAXACC×EXEi,CPU andMINACC ∗EXEi,CPU . Similarly, for
the compute engines that will decelerate is within MINDECC × EXEi,CPU ,
MAXDECC × EXEi,CPU .

• Communication delays of a channel on a communication link (CLi) is based
on the average computation time and the computation communication ra-
tio (CCR). The average compute time AV GCOMP of every actors on each
compute engines are calculated. It is then divided by (CCR) to find the
average communication time, AV GCOMM . The AV GCOMM is used to pro-
duce the communication time of each channels on the available communi-

156

cation links. The amount of communication delay to be assigned to the
slow and fast links is decided by PERSLOW . The delay for a slow link is
Di,SLOW = AV GCOMM×PERSLOW

|CLSLOW |
, where CLSLOW is the set of all slow links.

The delay of a fast link is also calculated using the same approach. Band-
width is indirectly inferred from the CCR value and the average actor com-
putation time. These parameters for the generation of the synthetic DAGs
are summarised in table 6.4. The parameters that affect the computation,
communication and resource usage values of the DAGs are in table 6.5.

• The percentage of resources required to execute an actor Ai on a compute en-
gine CEj is randomly generated within the range RESBASE×DIFFMIN and
RESBASE ×DIFFMAX . The RESBASE value of an actor is generated from
a uniform random distribution with the limits of RESMIN and RESMAX .

Table 6.4: The parameters for the generation of synthetic application DAG that
are used for the evaluation of the AMS algorithm.

Parameter name Parameter description
NODE Number of nodes (actors) in the DAG
FAT Determines the maximum number of concurrent actors
JUMP Maximum number of levels that a channel crosses to con-

nect actors
AFFINITY Maximum number of channels that an actor connects be-

tween two consecutive levels
REGULAR Distribution regularity among the DAG levels

The next part will describe the highest-level component called the evaluation driver
(EVD) that is used by the user to run the experiments.

157

Table 6.5: The parameters for the generation of synthetic DAG’s performance and
resource usage data that are used in the evaluation.

Parameter name Parameter description
CPUMIN Minimum computation time when mapped onto the slowest

CPU
CPUMAX Maximum computation time when mapped onto the slow-

est CPU
ACCMIN Minimum acceleration ratio
ACCMAX Maximum acceleration ratio
DECMIN Minimum deceleration ratio
DECMAX Maximum deceleration ratio
PERACC Percentage of actors that can be accelerated in FPGA and

GPU
CCR Computation to communication ratio

PERSLOW Communication delay share assigned to the slow links rest
are given to the fast links

RESMIN Minimum percentage of resource usage for the base value
of an actor

RESMAX Maximum percentage of resource usage for the base value
of an actor

DIFFMIN Minimum difference of resource from an actor’s base value
DIFFMAX Maximum difference of resource from an actor’s base value

Evaluation driver

The evaluation driver (EVD) component is primarily responsible to run the ex-
periments. The high-level APIs of rHEFT and AMS are used to configure dif-
ferent versions of the algorithms. It consists of the functionalities to initialise the
database, orchestrate data generation followed by storage and then running dif-
ferent configurations of rHEFT and AMS algorithms. Databases are refreshed for
every run of an experiment unless the user specifies to retain the older data and
the results. DAGs are stored with an index of each DAG uniquely identified by
an id. The performance data for each DAG identified by its id is stored in the
database. After running the algorithm (either a version of rHEFT or AMS), the
results are stored. When all the DAGs are completed, the results are retrieved for
interpretation. The next two sub-section details the usage of evaluation driver to
set-up the experiments for evaluation and then discusses the results.

6.3.2 rHEFT-2 evaluation

In this subsection, the enhanced ranking and compute engine selection algorithms
that incorporate resource usage of actors is compared with the original algorithms

158

that do not take resources into account. For this comparison, the AMS prototype is
used to create two instances of rHEFT; one with the enhanced algorithms and the
second with the original algorithms. In both the instances, shared communication
links are used. The algorithm of the first instance is identical to the pseudocode in
Figure 6.10. The algorithm for the second instance is similar to figure 6.2 but with
shared communication links. The datasets used in this evaluation are adopted from
the original HEFT paper [7] with the addition of resource data and the datasets
are more exhaustive as three distinct platform architectures with varying sizes and
topologies are used. This subsection is divided into two parts. The first part details
the generation attribute values to generate the datasets and the metric used for
the evaluation. The second part presents the experiential results.

Experimental configuration

rHEFT evaluation was conducted on a large number of synthetic DAGs. Based on
the possibilities of concurrent actor executions, DAGs were grouped into high and
low density DAGs. A high density DAG has more actors at each level and they
consume less resources, as compared to a low density DAG. High density DAGs
were generated with high FAT values and low resource usage values. Whereas low
density DAGs were generated from low FAT values with higher resource usage.
The rest of the generation attribute values of high and low density DAGs were
same. Table 6.6 and 6.7 lists the generation attributes values of DAGs and their
performance data, respectively.

Table 6.6: The parameter values for the generation of synthetic application DAG.

Parameter name Parameter value
NODE 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200
FAT For low density 0.25 and 0.45, for high density 0.65 and

0.85
JUMP 1, 3 and 3

AFFINITY 1, 3 and 5
REGULAR 0.5 and 0.9

These experimental configurations were adopted from the original HEFT paper [7]
with the following four modifications; (1) the generation of resource data for every
actor, (2) the usage of three different platform architectures with varying sizes,
(3) running experiments separately for low and high density DAGs, and (4) aver-
age computation to communication ratio (CCR) values that are higher than the
original paper. A higher CCR value is used to emulate the agile heterogeneous
computing scenario, where average computational times are generally higher than
communication, so as to gain an acceleration advantage. Even if the computational
time reduces significantly on GPU or FPGA, the total time including communi-
cation must be lower than the computation time on the CPU, which implies that
average computation time is higher than communication.

159

Table 6.7: The parameter value for the generation of synthetic DAG’s performance
and resource usage data.

Parameter name Parameter value
CPUMIN 10
CPUMAX 200
ACCMIN 1.5 and 2.5
ACCMAX 8.0 and 12
DECMIN 0.75 and 1.25
DECMAX 1.5 and 2.25
PERACC 70 and 95
CCR 5, 0.5 and 10

PERSLOW 75 and 90
RESMIN for high density 10 and for low density 50
RESMAX for high density 50 and for low 95
DIFFMIN 10
DIFFMAX 30

The configuration details of (1) the fixed platform architecture used, (2) the range
of values for DAG generation attributes, (3) the range of values for the DAG’s
performance and resource consumption data and (4) the hyper-parameter configu-
rations are described as follows.

1. The three fixed platform architectures used varied in the number of con-
stituent compute engines. The first platform architecture is named mini that
consists of one of each compute engine kind. The second platform architec-
ture is named big, as it consists of two GPU, one FPGA and one CPU. The
third platform architecture is the largest. It consists of three GPUs, two
FPGA and one CPU. This platform architecture is named huge. The con-
nection topologies of mini, big and huge are as follows. In the mini platform,
there are no direct connections between FPGA and GPU are connected to
the CPU. In the big platform architecture, both the GPUs are directly con-
nected. In the huge platform architecture, two GPUs have a direct connection
and the two FPGAs have a direct connection as well. There are no direct
connections between GPU and FPGA.

2. A large number of high and low density DAGs were generated by using an
extended range of values for the generation attributes. Table 6.6 and 6.7
contain the values used for the generation attributes. Based on theses values,
around 140,000 DAGs with a unique set of attribute values were generated.
In order to reduce biases, the experiments were repeated 25 times. In every
repetition, DAGs were re-generated. Therefore, 25 × 140, 000 DAGs were
used for the evaluation of rHEFT.

3. The attribute values used for the performance data encompass a wide accel-

160

eration range. It also includes deceleration. However, only a small number of
actors were allowed to reduce their performance on GPU or FPGA, which is
evident from the PERACC values in table 6.7. A wide range of values were
also used for the resource usage data. It is noted that when actors consume
less resources, there are more chances of concurrent execution on a compute
engine, as compared to actors with large resource consumption percent.

4. The rHEFT-2 algorithm requires two hyper-parameters; resource factor (RF)
and mapping threshold (MT). They determine the influence of an actor’s re-
source usage on the mapping and scheduling decisions. Recall from section
6.2.2 that RF determines the impact of resource usage in the actor ranking.
Whereas, MT is the trade-off between actor acceleration and resources re-
quired to achieve it. In order to study how these hyper-parameters change
the quality of mapping and scheduling decisions, experiments are run with
different RF and MT values.

The original and the enhanced rHEFT algorithms (with different MT and RF
values) were executed on all the DAGs for the three different platform architectures.
This was repeated 25 times for random DAGs with common attributes and then
averaged. The metrics used to record performance are described in the next part.

Metrics

The metric used for comparing the two instances of rHEFT (original and enhanced)
is schedule length ratio (SLR). This metric is chosen because they are widely applied
in relevant literature for the comparison of mapping and scheduling decisions [7,
104,109]. The SLR definition is modified to incorporate resources within compute
engines.

SLR is defined as the ratio of the algorithm’s makespan with the theoretical mini-
mum makespan. The theoretical minimum makespan is obtained by mapping the
actors on the compute engines where it’s computation time is least and the commu-
nication delays are assumed to be negligible. It is also assumed that the compute
engines have infinite resources, allowing all possible concurrent executions. SLR
can be written as,

SLR =
∑

i∈CPMIN

EXEi,min (6.5)

where CPMIN is the critical path of the DAG after mapping the actors i on the
compute engines providing minimum computation time. The minimum computa-
tion time of actor i is CPMIN is denoted as EXEi,min. The average SLR of several
DAGs were used in the evaluation.

It is noted that the minimum theoretical makespan for agile heterogeneous com-
puting can be much lower than actual ones, resulting in higher SLR values than

161

previously published papers [7, 104, 109]. This is because of the higher variation
of computation times than traditional mapping and scheduling problems, where
the variations are considered only on different kinds of multiprocessors that led to
differ computation times with smaller range. Whereas, on FPGAs and GPUs the
computation times can be lower by up to 12 times of a CPU (see the data gener-
ation parameters in table 6.6) and 6.7. Higher SLR can be attributed to another
reason, which is, the theoretical minimum makespan do not include the delay due
to communication delays. This further increases the actual makespan than the
theoretical minimum value that can result in a higher SLR. The next part presents
the SLR and SU values that resulted after running rHEFT with the original and
enhanced algorithms.

Results

The experimental results for rHEFT using the three different platform architec-
tures (mini, big and huge) are shown in Figure 6.25. These platform architectures
were defined in the previous part. It can be seen that with the increase in plat-
form architecture size, the difference in makespan increases between the original
and the enhanced algorithm. The enhanced algorithms resulted in much lower
makespan with the increase in the platform architecture size. Also, high density
DAGs resulted in better performance.

It can be further seen that reduction of makespan only occurs within a certain
region of the chart called the gain region. This region starts from a lower actor
number and lasts until a higher actor number. As the number of actors increase,
chances of concurrent execution also increases. This causes the enhanced algorithms
to improve more with a higher number of actors. However, with too many nodes,
the makespan becomes similar to the original algorithms. Since too many actors
increases the communication waiting times, the over all performance drops.

Since the performance improves more with a higher number of actors and also for
high density DAGs, it can be inferred that the enhanced algorithms perform better
with resource competition. This inference can be backed by another observation
that the gain region starts with a higher number of actors with the increase of
platform architecture size. For example with the huge platform the gain starts
from 140 actors, whereas for mini it is 80. As the sizes of platform increases,
competition for resources are not created until a higher number of actors are to be
mapped.

162

Figure 6.25: The SLR values of random DAGs after executing the original and enhanced
versions of ranking and compute engine selection algorithms for different resource factor
(RF) and mapping threshold (MT) values.

163

6.3.3 AMS evaluation

In the previous subsection, it was shown that when there is competition for re-
sources, the rHEFT enhancements improve the mapping and scheduling decisions.
However, rHEFT is a part of the AMS algorithm. An overall evaluation of the AMS
algorithm with a large set of available compute engines and DAGs is presented here.
In this evaluation, the expansion and reduction modes of design space exploration
are comparatively studied. Also, they are compared with randomly generated plat-
form architecture within a similar budget (capital cost). The comparison of the two
exploration modes and the random platform architecture selection is adapted from
the evaluation method proposed in the Gain/Loss paper [8], where experiments are
run over a range of budget. The experimental results show that both the modes
of exploration (expansion and reduction) perform significantly better than random
platform generation. It is also established that among both the modes, the average
performance of expansion is better. This subsection is divided into three parts.
In the first part, the details of the experimental set-up is described. Then in the
second part the metrics used for the evaluation are defined. Finally, in the third
part, the experimental results are presented.

Experimental configuration

The platform architecture generated by the AMS algorithm depends on the follow-
ing: (1) platform constraints, (2) maximum budget, (3) initial platform architecture
instance, (4) random iteration count and (5) application-algorithm DAG. In order
to evaluate the expansion and reduction modes of exploration with each other and
with randomly generated platform architectures, these dependencies are set in a
way such that they are unbiased for every application DAG. The configuration of
these five dependencies are described as follows.

1. The platform constraints are in the form of parametrised platform graph
(PPG) tier1. It consists of 3 types of GPU, 3 types of FPGA and one CPU.
There are 5 units for every type of FPGA and GPU. By default communi-

Table 6.8: The platform architecture constraints for the AMS experiments.

Compute
Engine

No. of
Types

No. of units
of each type

Unit cost relative
to CPU cost

Direct
connections

Total compute
engines

GPU 3 2
type-1: 1.5
type-2: 2.0
type-3: 2.5

5 NA

FPGA 3 2
type-1: 2.0
type-2: 2.5
type-3: 3.0

5 NA

CPU 1 1 NA 4 4

164

cation links are through CPU. However, direct connection are also allowed.
Every GPU or FPGA can have a maximum of two direct communication links,
whereas the CPU can have 4 compute engines directly connected. However,
more compute engines can be connected through docks (switches). The cap-
ital cost of each compute engine type are relative to that of the CPU. The
lowest cost of a compute engine is equal to cost of the CPU, whereas the
most expensive is 10 times of its cost. Table 6.8 shows the compute engines
available for design space exploration. This platform constraints are used for
every application DAG in this evaluation.

2. The budget range for the evaluation is adopted from the Gain/Loss paper [8],
where equally spaced values between the lowest and the highest budget are
used. Since the Gain/Loss paper uses rental cost, the main difference in the
budget range calculation is in the formulation of the lowest and the highest
budget. The highest budget is the capital cost of the best platform archi-
tecture PIBEST on which the application DAG attains its best performance
(lowest makespan). It is calculated from the expansion mode of exploration,
where the initial platform architecture is the smallest architecture consisting
only of the CPU. Whereas, the lowest budget is the cost of the smallest plat-
form architecture, which is just the capital cost of one CPU. Therefore the
budget range of an application DAG i is defined as follows:

Bi = BCPU + k × (Bhighest,i −BCPU) (6.6)

where k is 0.2, 0.4, 0.6 and 0.8.

3. Two random iteration counts, 10 and 25 are used in the experiments. A
lower random iteration count shows efficiency in finding the optimal platform
architecture instance.

4. The initial platform architecture instance (PPG tier2) for expansion mode
is the smallest architecture, which is just the CPU. This ensures uniformity
for every application DAG. For the reduction, the best platform architecture
(PIBEST) is the initial platform architecture. PIBEST is the result of previous
exploration using the expansion mode to calculate the highest budget Bhighest.
It is noted from the budget range equation, the highest budget is always less
than the capital cost of PIBEST which satisfies the condition of the reduction
mode of the maximum budget to be always lower than the capital cost of the
initial platform architecture.

5. The application DAGs used in this evaluation consists of 90, 100 and 110 node
counts. The rest of the generation parameters values for the random DAGs
are identical to table 6.6 and 6.7. A relatively large number of nodes are
used so that PIBEST has at least 6 compute engines including the CPU. This
ensures that when the maximum budget is changed, at least one compute
engine can be added or removed, depending on the mode of exploration.

165

The two exploration modes along with the random platform architecture generation
are executed for all the DAGs. Experiments are repeated for the two different
random iteration counts. Each experiment is repeated for 25 times and the average
of the metrics are used. The metrics used are defined in the next part.

Metric

The quality of the platform architecture produced by either reduction, expansion
or random exploration for an application DAG G within a certain budget (Bmax)
is reflected by the makespan of G on the chosen platform architecture instance
PIchosen. PIchosen is the one that conforms to Bmax and results in the lowest
makespan amongst other platform architectures. Therefore, the metric used to
evaluate the quality of the platform architecture is based on makespan. An adap-
tation of the metric, average normalised difference (AND) defined in the Gain/Loss
paper [8] is used to compare the three different variations of agile platform architec-
ture exploration. Since AND is normalised difference averaged over the number of
DAGs, the adaptation of normalised difference (ND) is first defined, then adapted
AND is described.

The adapted normalised makespan is defined as follows:

NDk =
MSex −MScpu

MSbest −MScpu

(6.7)

, where k stands for the budget range of the exploration (defined in equation 6.6),
MSex is the makespan on the platform architecture produced by the experiment,
MScpu is the makespan on the platform architecture consisting only of the CPU
and MSbest is the makespan on the best platform architecture possible within the
PPG tier1. It is assumed that MSbest is the lowest makespan. This implies that
AND varies between 0 and 1, as MSex can only get close to MSbest. A higher
value of AND, closer to 1 signifies better platform architecture. The normalised
makespan is calculated for a DAG with a maximum budget denoted by k.

The adapted AND is defined as follows,

ANDk =
1

N

N∑
i=1

MSi
ex −MSi

cpu

MSi
best −MSi

cpu

(6.8)

, where N is the total number of DAGs used. For each DAG, AND was calculated
by running the three variations of exploration; expansion, reduction and random
platform generation. Each variation of exploration resulted in 4 AND values, where
every value of AND corresponds to MSex determined by k (see equation 6.6).

In order to study the impact of random iteration count (itrmax), the experiments
are conducted with two different values of itrmax. The first is lower, itrmax = 10

166

and the second is higher itrmax = 25. Based on itrmax, the number of samples for
the random platform generations is determined. The random samples are five times
of itrmax. This ensures a fair comparison between the random platform generation
with the two modes of exploration. These experimental results are presented next.

Results

The experimental results of running expansion, reduction and random modes of
platform generation are presented in Figures 6.26, 6.27, 6.28 and 6.29. Each figure
is dedicated for a type of DAG that are either random [7, 104], Laplace equation
solver [101, 125], fast Fourier transformation graph [101] and LU decomposition
[101, 125]. The figures are in the form of histogram showing the AND values
in the y-axis for every k values (see equation 6.8) that represents the maximum
budget. This budget represented by the k values are in the x-axis. These figures
show that expansion and random modes of exploration performs significantly better
than random platform generation. However, in some cases, when the budget is
low, the random generation results are closer to the other modes of exploration.
This is due to a reduced number of compute engines present for the creation of
a platform architecture with a low budget. As the best platform architecture in
random generation is selected amongst itrmax× 5 samples, there is a higher chance
of finding the optimal solution with less number of compute engines to form the
platform architecture.

Among expansion and reduction modes of exploration, the expansion approach
performs better. This can be attributed to the fact that in the reduction mode,
the removal of a compute engines do not consider replacing it with a cheaper
variant. Whereas, the expansion mode gradually builds the platform architecture
by accessing all the available compute engines. This inference can be used for the
optimisation of the reduction mode of exploration in the future work. However,
the of lower and higher random iteration counts show that the results of random
exploration tends to get closer with the expansion mode.

167

Figure 6.26: Average normalised difference (AND) for random DAGs [7,104]. Three modes
of exploration: expansion, reduction and random platform architectures are compared
with each other for random iteration counts of 10 and 25.

Figure 6.27: Average normalised difference (AND) for Laplace equation solver DAGs
[101,125]. Three modes of exploration: expansion, reduction and random platform archi-
tectures are compared with each other for random iteration counts of 10 and 25.

168

Figure 6.28: Average normalised difference (AND) for Fourier transformation DAGs [101].
Three modes of exploration: expansion, reduction and random platform architectures are
compared with each other for random iteration counts of 10 and 25.

Figure 6.29: Average normalised difference (AND) for LU decomposition DAGs [101,125].
Three modes of exploration: expansion, reduction and random platform architectures are
compared with each other for random iteration counts of 10 and 25.

169

6.3.4 Conclusion

In this section, the evaluation of the agile mapping and scheduling algorithm (AMS)
was presented. At first, a prototype of AMS was developed as a part of an elabo-
rate evaluation framework, which was later used to run experiments with different
versions of the rHEFT and AMS. Although rHEFT constitutes AMS, it was eval-
uated separately, as it lays the foundation of considering resource usage for design
space exploration.

The performance of rHEFT consisting of the enhanced resource conscious ranking
and compute engine selection algorithms were compared with the original rank-
ing and compute engine selection algorithms. A large number of synthetic DAGs
and three different platform architecture with varying sizes were used for the ex-
periments with rHEFT. The results showed that the enhanced algorithms reduce
makespan significantly at the gain region than the original ones. Gain region de-
notes the area in the graph where the enhanced algorithms perform better. This
region varies with size of the platform architecture and the value of the hyper-
parameters. Since the gain region shows more difference in makespan with larger
number of actors and high density DAGs, it was inferred that when there is compe-
tition for resources, the enhanced (resource conscious) algorithms performs better.

After evaluating rHEFT, AMS was evaluated to find which of the two modes of
exploration (expansion or reduction) are better. Furthermore, both the modes were
compared with randomly generated platform architectures. The random genera-
tion of the platform architecture selected the best architecture among a certain
number of samples. In order to compare fairly, the sample numbers were based on
the maximum random iteration count (itrmax). The experimental results showed
that the random mode of platform generation always perform below the other two
modes. Amongst expansion and reduction, the expansion mode perform better.
But, the difference of performance between expansion and reduction are evident
when itrmax is lower. With a higher itrmax, results of both the modes are almost
similar. It was inferred that the AMS algorithm can find optimal results and the
expansion approach of exploration is more efficient than the reduction mode. How-
ever, if the designer needs to use the reduction mode of exploration to reduce an
existing platform architecture’s capital cost, then it can be used with higher itrmax

to increase the chances of better results.

170

6.4 Conclusion

In this chapter, a design space exploration algorithm called agile mapping and
scheduling algorithm (AMS) was presented. AMS is created for the new design
flow of agile heterogeneous computing, where an optimised platform architecture
needs to be formed while considering the mapping and scheduling decisions of an
application-algorithm. AMS combines design space exploration with deterministic
and random steps. Initially the exploration starts from a designer provided design
point and proceeds with deterministic steps. However, the deterministic steps leads
the exploration to an edge of the design point that causes an impasse. The random
steps moves the design point to a new location to resume the deterministic steps.
The results of the exploration are stored in a database and they are used to guide
the random steps for the selection of a new design point. The number of times a
design point to be moved randomly is decided by the designer, which is typically
based on the size of the design space.

AMS was created in two stages. Each stage of the AMS development was described
with examples and pseudocode. In the first stage a widely used and efficient map-
ping and scheduling algorithm called HEFT was enhanced to allow the unique
requirements of agile heterogeneous computing, which resulted in resource-HEFT
(rHEFT) that can consider resource usage of actors and specialised topology of ag-
ile platforms. Then, in the second stage, rHEFT was synthesised with an enhanced
rental budget optimisation algorithm [8] for work-flow schedule. The enhancement
was to enable capital cost-based optimisation, rather than rental cost. The second
stage resulted in the AMS algorithm that consists of two modes of exploration;
expansion and reduction. In the expansion mode, a small platform architecture
is expanded by adding more compute engine. Whereas, in the reduction mode,
compute engines are removed from a large platform.

After describing the AMS algorithm, it was evaluated with an extensive range of
application DAGs. In order to conduct experiments for the evaluation, a framework
was created, which consisted of a prototype of AMS and other facilities of data
generation and storage. The evaluation first experimented with rHEFT, then the
overall AMS algorithm was considered.

It is noted that while rHEFT was created, the actor ranking and compute engine
selection algorithms, which are the constituents of HEFT, were enhanced to make
them resource conscious. Thus, in the rHEFT evaluation, the resource conscious
algorithms were compared with the original algorithms. It was found that the
enhanced algorithms provide significantly better mapping and scheduling results
when there is competition for resources. There will be competition for resources
when there are many actors for concurrent executions and less resources available
for all the concurrent executions. Since the enhanced algorithms is capable to
prioritise actors for the best available compute engine for concurrent executions,
they result in better performance.

171

The purpose of the overall AMS evaluation was to study the exploration results
of the expansion and reduction modes of explorations and to compare both the
modes of exploration with randomly generated platform architectures. For a fair
comparison, the random platform generation is sampled over an extended number
of random platform architectures. The results showed that the random platform
generation performed poorly as compared to both the modes of exploration. Fur-
thermore, on average, the expansion mode of exploration performs better than
the random mode. However, when the number of random design point selections
are increased, the results of reduction mode of exploration is comparable with the
expansion.

172

Chapter 7

Case study with a multi-object
visual tracking application

Contents

7.1 Introduction . 174
7.2 CACTuS visual tracking application 174

7.2.1 Dataflow model . 176
7.2.2 Pre-engineered components 178
7.2.3 Conclusion . 183

7.3 The CACTuS application with AhcFlow: comparison with pub-
lished results . 184

7.4 Design space exploration for the CACTuS application 186
7.4.1 Exploration results overview 188
7.4.2 Resource usage with mapping and scheduling decisions 190
7.4.3 Conclusion . 201

7.5 Application deployment within AhcFlow 203
7.5.1 Deployment technique overview 203
7.5.2 Parsing and Validation 208
7.5.3 Skeleton code generation 208
7.5.4 Injection of pre-engineered actors and launch 210
7.5.5 Deployment of CACTuS using AhcFlow 212
7.5.6 Conclusion . 212

7.6 Conclusion . 214

173

7.1 Introduction

The previous chapter introduced the agile mapping and scheduling (AMS) algo-
rithm, which is central to the new design flow (AhcFlow) for exploring the design
space. A number of synthetic and some real application DAGs were used to explore
the predicted performance from the AMS algorithm prior to actual deployment on
a real platform architecture. In this chapter a published visual tracking algorithm
(CACTuS [112]) which has been previously implemented as a hand crafted hetero-
geneous system is used to demonstrate the practical utility of AMS and AhcFlow
as an design space exploration tool and to illustrate the automated deployment
features of AhcFlow.

The chapter is organized as follows. In the next section 7.2, the CACTuS track-
ing algorithm is introduced. This introduction includes the SDF representation of
CACTuS, its conversion to a DAG and the actor performance and resource con-
sumption data taken from a previous published hand crafted implementation of
CACTuS on a heterogeneous platform not using AhcFlow. Also included is a data
set of performance and resource usage of actors in CACTuS obtained from ex-
periments conducted as part of this research. The following section 7.3 compares
the performances of two hand crafted published implementations of CACTuS with
that achieved with the AMS algorithm inside AhcFlow. This section shows that
the AMS algorithm is able to achieve similar predicted performance results as the
hand crafted implementations. Section 7.4 uses the AMS algorithm to explore
the design space for agile heterogeneous implementations of CACTuS that goes
beyond the architectures assumed in the published hand crafted implementations.
This section provides insight into the best architectures for larger versions of CAC-
TuS and especially investigates the impact of direct communication links between
GPUs on multi-GPU architectures for CACTuS. This design space exploration is
conducted with actor performance and resource usage data collected as part of this
research based on an Intel i7 CPU and Nvidia GTX 960 GPUs1. In section 7.5 the
deployment parts of AhcFlow are described in association with a simple example
DAG. The deployment of a version of CACTuS is also demonstrated. A complete
AhcFlow design flow deployment shows that the predicted performance of the AMS
algorithm is maintained after deployment.

7.2 CACTuS visual tracking application

In this section, the CACTuS visual tracking application is introduced. This ap-
plication is used to demonstrate and evaluate the complete AhcFlow design flow
from the DAG representing CACTuS to deployment, including the AMS mapping

1Direct GPU to GPU links were not available for this research but reasonable estimates were
used to simulate the links.

174

Figure 7.1: The CACTuS-FL application [112] showing multiple shape estimating filters
(SEFs) within the object detection and tracking block, numbered as (V).

and scheduling algorithm described in the previous chapter. CACTuS is a complex
algorithm whose detailed inner workings will not be all explained here. The reader
is referred to the numerous previous publications on the topic [112, 127–130]. It
should be noted that in recent times, CACTuS has been enhanced with feature
detection using machine learning (the so called CACTuS-FL as presented in Fig-
ure 7.1). The version used here is a tracking only subset of CACTuS-FL where
generic feature extraction, feature selection and object recognition are assumed to
be carried out prior to starting. This core component of CACTuS-FL is referred
as CACTuS [112].

One of the most important aspects of CACTuS is the possibility to scale the algo-
rithm based on the number of so called Shape Estimating Filters (SEFs) and the
size of each video frames, called image size. For the purposes of this work, a single
SEF can be viewed as capable of tracking a single object, so the algorithm can be
scaled from tracking a single object (1 SEF) to tracking a large number of objects
simultaneously (multiple SEFS). A large image can have more SEFs as compared
to a smaller image. As the number of SEFs increases, so does the computational
requirements of the algorithm. In this chapter five different configurations of image
sizes and SEF numbers are used. They are detailed later in table 7.1.

175

The first step in making CACTuS ready for processing by AhcFlow is to create
a DAG representing CACTuS, which is done by transforming an SDF graph of
CACTuS to its DAG equivalent. The second step is to gather the performance
and resources used by each actor (within the CACTuS DAG) on each compute
engine. There are two sets of performance and resource data used in this chapter.
The first set is obtained from the hand-crafted implementation in [129] and the
second is measured as a part of this research. These two steps are detailed in the
following two subsections. The first subsection, presents the CACTuS SDF graph
and then its equivalent DAG. Then, the second subsection details the two sets of
performance and resources datasets.

7.2.1 Dataflow model

A synchronous dataflow (SDF) graph2 of the CACTuS algorithm, showcasing all of
its constituent actors and channels is illustrated in Figure 7.2. The dotted rectangle
encloses the actors that are within each SEF. Based on the number of SEFs, which
is denoted by N in the figure, the actors within the dotted rectangle will be fired
N times for every image. In SDF semantics it can be said that the rate of firing of
all the actors within the dotted rectangle equals to N. The solid large dots are the
initial tokens that are used to start the application. The actors Predict Velocity
(PV), Predict Shape (PP) and Form Likelihood Ratio (FLR) are the starting actors.
This can be used to transform to an equivalent DAG using the algorithm presented
in [60]. A CACTuS DAG will consist of 18 × 2 + 3 actors (ignoring the duplicate
actors), where the 3 additional actors are external to the SEFs. This implies that
every time a SEF is added, 18 actors are also added. An equivalent DAG of a single
SEF SDF graph is shown in Figure 7.3.

It is interesting to note that the internal actors of a SEF form an homogeneous
synchronous dataflow (HSDF) graph, as every actor consumes and releases one
token at there input and output channels. The model also reveals that apart
from data-level parallelism amongst SEFs, the actors within a SEF has task-level
parallelism. It is up to the design space exploration to find which parallelisms are
essential for performance. Appropriate compute engine selection for an actor will
be essential when the number of SEFs are high and the available resources are not
enough to exploit all the available parallelisms.

2In this SDF graph, the actors that just duplicate an output of an actor to more than one
channel are not shown, rather an output channel is simply divided.

176

Figure 7.2: The SDF model of CACTuS. The actors shown are explained in table 7.2.

177

Figure 7.3: The DAG model of CACTuS with 1 SEF.

7.2.2 Pre-engineered components

In this section, the actor execution timings and resource usage data for the hand
crafted versions of CACTuS constructed by Milton 2017 [129] and the additional
data gathered as a part of this research using an Intel i7 CPU and Nvidia GTX960
GPU are presented. These datasets are specific to CACTuS configurations with
varying number of SEFs and image sizes. As the computation complexity of the
actors are dependent on the image size and the SEF numbers, the execution timing
and the resource usages of the actors vary. There are five different configurations
taken into account. These configurations are listed in table 7.1. Milton’s data
for configuration C1 is shown in table 7.5. The data collected as a part of this
research for configuration C1 is presented in tables 7.3 and 7.4. Data for the rest
of the configurations are listed in Appendix-A. The actor execution timings and
the communication delays are in micro seconds. The resource consumption shows
the percentage of the compute engine occupied by the actor.

Milton’s actor execution timings were inclusive of communication delays and they
were measured after all the SEFs were completed, so this dataset is extrapolated
for individual actor execution timing. This is done by dividing the reported timing
by the number of SEFs. Also, since Milton implemented one actor at a time on
a compute engine, the resource consumption for every actor on a compute engine
is considered to be 100%. Furthermore, as the communication delays are included
within the actor execution timings, the communication delays of the channels are

178

Table 7.1: The five CACTuS configurations are detailed in this table. It consists of
the number of SEFs and the actor input data token sizes in pixels for each of the
five configurations. In the table N refers to number of SEFs, Z is predict velocity
kernel size, S is the shape kernel size, I is the image size, V is the velocity kernel
size and X is the position kernel size.

Configuration N
no. of SEFs

Z
(pixels)

S
(pixels)

I
(pixels)

V
(pixels)

X
(pixels)

C1 16 7 × 7 13 × 13 127 × 127 27 × 27 115 × 115
C2 16 9 × 9 55 × 55 511 × 511 28 × 27 457 × 457
C3 64 9 × 9 27 × 27 511 × 511 29 × 27 485 × 485
C4 64 11 × 11 55 × 55 1023 × 1023 47 × 47 913 × 913
C5 256 11 × 11 111 × 111 1023 × 1023 47 × 47 968 × 968

Table 7.2: The CACTuS actors with their input data token sizes in pixels and their
complexities in big-O notation.

Actor name Denotation Operation Input data
pixel sizes Complexity

Predict Velocity PV Convolution V, Z O(V × Z)
Predict Position PP Convolution X, V O(X × V)
Predict Shape PS Convolution S, Z O(S × Z)
Predict Image PI Convolution X, S O(X × S)

Observe Velocity OV Cross-correlation X, X O(X2)
Observe Position OP Cross-correlation I, S O(X)

Observe Image OI Per-element
multiplication I, I O(I)

Image Association
Term IAT

Per-element
multiplication

with summation
I, I O(NI)

Update Velocity UV Per-element
multiplication V, V O(V)

Update Position UP Per-element
multiplication X, X O(X)

Position Association
Term PAT

Per-element
multiplication

with summation
X, X O(NX)

Competition COM Per-element
multiplication X, X O(X)

Peak Enhancement PE Max function X, X O(X)
Observe Shape OS Extraction S, S O(1)

Normalise Velocity NV Per-element
division V O(V)

Normalise Position NX Per-element
division X O(2X)

Update Shape US Per-element
multiplication S, S O(S)

Normalise Shape NS Per-element
division S O(2S)

Sum Position SUMX Summation N × X O(N ×X)
Sum Image SUMI Summation N × I O(N × I)

Form Likelihood
Ratio FLR Reading from file None O(1)

179

Table 7.3: The execution timings and the resource consumption percentage of the
CACTuS actors for configuration C1 obtained in this work. Infinite (∞) represents
the actors that do not have a pre-engineered implementation on the compute engine.
This is replaced with a very large number in the experiments. The timings are in
micro seconds (µ). The resource consumptions are expressed as the percentage of
the usable compute engine resources.

Actor CPU execution
timing (µ)

CPU resource
consumption (%)

GPU execution
timing (µ)

GPU resource
consumption (%)

PV 8 90 ∞ ∞
PP 22 90 192 12
PS 9 90 28 12
PI 898 90 261 12
OV 837 90 239 12
OP 129 90 314 12
OI 11 90 72 12
IAT 19 25 68 12
UV 12 90 47 12
UP 29 90 59 12
PAT 17 25 70 12
COM 11 25 51 12
PE 2 25 ∞ ∞
OS 62 90 62 12
NV 2 90 ∞ ∞
NX 2 90 ∞ ∞
US 2 90 ∞ ∞
NS 2 25 22 12

SUMX 2 25 ∞ ∞
SUMI 2 25 ∞ ∞
FLR 349 90 ∞ ∞

Table 7.4: The channel communication delays in micro-seconds (µ) for CACTuS
configuration C1.

Communication
Channel

Delay timing
µ

Communication
Channel

Delay timing
µ

PV to PP 150 OI to OP 600
PV to UV 150 OI to OS 600

PP to SUMX 482 IAT to OI 600
PP to PAT 482 UV to NV 150
PP to UP 482 UP to COM 482
PPto PI 482 PAT to COM 482
PS to PI 135 COM to PE 482
PS to OP 135 COM to NX 482
PS to US 135 PE to OS 5
PI to IAT 600 OS to US 135

PI to SUMX 600 US to NS 135
OV to UV 150 SUMX to PAT 482
OP to OV 482 SUMI to IAT 600
OP to UP 482 FLR to OI 600

180

Table 7.5: The published hand-crafted actor timing results by Milton [129]. Infinity
(∞) refers to the actors that were not considered to be implemented on the compute
engine. It is noted that the original results were in milliseconds for 16 SEFs. These
timings were extrapolated for individual actors by converting the timing to micro-
second (µ) and then dividing by the number of SEFs.

Actor CPU execution
timing (µ)

GPU execution
timing (µ)

FPGA execution
timing (µ)

PV 6 ∞ ∞
PP 19 200 ∞
PS 6 21 ∞
PI 975 256 ∞
OV 850 225 1080
OP 125 213 ∞
OI 6 56 ∞
IAT 13 75 ∞
UV 13 38 ∞
UP 31 63 ∞
PAT 13 69 ∞
COM 6 62 ∞
PE 2 ∞ ∞
OS 44 44 ∞
NV 2 ∞ ∞
NX 2 ∞ ∞
US 2 ∞ ∞
NS 2 13 ∞

SUMX 2 ∞ ∞
SUMI 2 ∞ ∞
FLR 349 ∞ ∞

Table 7.6: A summary of the throughput of the published hand crafted implemen-
tations of CACTuS configuration C1.

Publication
Published
Throughput

(fps)

CACTuS
Configuration Compute engines used

Milton [129] 60.98 C1 (16 SEF, I = 127 ×127) CPU:1, GPU:1, FPGA:1
Webb [130] 41.25 C1 (16 SEF I = 127× 127) CPU:1, GPU:1

181

assumed to be negligible for this dataset. This assumption is compatible with AMS,
due the implementation of one actor at a time on a compute engine. The reason,
as one actor executes on a compute engine, there are no communication queues,
so the assumption of negligible communication delays when they are added in the
actor execution timings will be valid for AMS.

The dataset that is collected as a part of this research are obtained by measuring
the timings of individual actors and by profiling their resource usages on the CPU
and the GPU. The actors with a GPU implementation and the multi-threaded CPU
implementation were executed separately by varying the input token sizes based on
the CACTuS configuration to measure their resource usages. GPU resource usages
were measured by CUDA profiler [131]. For the CPU, the resource consumption is
an approximation of its individual core usage, which is calculated as the average
over several executions. For the GPU, a range of resources were considered, which
includes threads per block, registers per thread and shared memory. CUDA profiler
showed that for C1, C2 and C3, the usages of these resources were very low. How-
ever, performance deteriorated when more that four streams with a combination of
actors from the afore-mentioned SEF configuration were executed. This led to the
assumption that the actors on a GPU consumes 12.5% of its resources. For config-
uration C4 and C5 performance deteriorated with two streams, so it is assumed
that 50% of GPU resources are consumed by the actors of those configurations.

The actor execution timings were measured by recording the timings before and
after an actor’s execution. For this purpose CACTuS was implemented on a single
thread and without streams, so that one actor executes at a time on a compute
engine. Communication delays between CPU and GPU for various channels were
calculated by varying the token sizes. A dummy kernel on the GPU was implement
for the measurement of the communication delay. From the execution timings in
table 7.3 it can be seen that not every actor has been benchmarked on each compute
engine. If an actor is not implemented it’s execution timing is taken as infinite (a
very large number).

Another published hand crafted implementation of CACTuS by Webb [130] has
been used along with Milton’s datasets for the comparison of performance pre-
dicted by the AMS algorithm and the published results. However, Webb has not
published individual actor performance and resource usage data. To overcome this
handicap, data collected as part of this research is used for the comparison, as
the compute engines used by Webb are identical to the ones used in this research.
The summary of throughput in frames per second (fps) of both the published hand
crafted implementations of CACTuS is shown in table 7.6.

182

7.2.3 Conclusion

In this section the CACTuS application-algorithm is introduced. An SDF model of
CACTuS is presented, which reveals its task and data parallelisms. The compute
performance and the resource consumption of actors as implemented by Milton and
as measured as part of this research work are described.

183

Table 7.7: This table compares two published hand-crafted implementations of
CACTuS with the predicted performance from the AMS algorithm. Since the per-
formance metric of AMS is makespan, throughput is calculated as 1 by makespan.

Publication
Published
Throughput

(fps)

AMS Predicted
throughput (fps)

CACTuS
Configuration Compute engines used

Milton [129] 60.98 61.4 C1 CPU:1, GPU:1, FPGA:1
Milton [129] 17.30 17.2 C2 CPU:1, GPU:1, FPGA:1
Webb [130] 41.25 47.70 C1 CPU:1, GPU:1

7.3 The CACTuS application with AhcFlow: com-
parison with published results

An important consideration for testing the validity of the AMS algorithm is to com-
pare the performance achieved with it as compared with the published hand-crafted
implementations. In this section, the predictions made by the AMS algorithms with
the measured performances of Milton [129] and Webb [130] are presented. Milton
has used two platform architectures; one consisting of a CPU, a GPU and an FPGA
and the other consisting of a CPU and a GPU. Whereas, Webb has used a fixed
platform architecture consisting of a CPU and a GPU.

Milton’s implementation allows only a single actor to execute on a compute engine
at a time. To match this decision using the AMS algorithm which allows concur-
rent execution of actors on a single compute, the resource usage of actors were
artificially constrained by assigning the actor resource usage data to be 100%, so
that concurrent actor executions are not considered. This restriction is however
removed for the comparison with Webb’s implementation and the implementation
developed in this work.

For the comparison with Milton, his actor timing data were used. As noted above
100% resource consumption with Milton’s data were used. Detailed actor timing
data are not reported by Webb. However, separate experiments were performed to
create actor timing and resource consumption to allow the comparison with Webb.

Table 7.7 summarises the results of the comparison. The throughput predictions
made by the AMS algorithm closely match the performance achieved Milton and
Webb. The throughput of Milton’s implementation are a closer match as compared
with Webb’s implementation. This may be expected because Milton’s implemen-
tation doesn’t have complex concurrent scheduling.

The details of the mapping and scheduling decisions that are made by AMS com-
pared to Webb’s implementation are shown in Figures 7.4 and 7.5 and in table 7.8.
Figure 7.4 shows the time-line of actor executions on the CPU and the GPU and
data transmission activity on the link (L1) between CPU and the GPU. A coloured

184

Figure 7.4: Occupancy of the CPU and the GPU by the CACTuS actors configuration
C1.

Figure 7.5: Resource usage of CACTuS actors configuration C1 on the CPU and the
GPU.

part of the time-line in Figure 7.4 indicates an actor executing on a compute engine
but doesn’t indicate the resource consumption of the actor on that compute en-
gine. Figure 7.5 provides the same information as 7.4 but in addition has resource
consumption. Table 7.8 provides the corresponding mapping of actors on to each
compute engine.

In this section the study is limited to 16 SEFs with 127 × 127 pixel images on just
two platform architectures. In the next section, larger images and higher numbed
SEFs are considered on an agile heterogeneous platform that can consist of up to
8 GPUs.

185

Table 7.8: Mapping decisions of the actors for CACTuS configuration C1. The
actors that are not mentioned were mapped to on the CPU.

Actors Total Number mapped
on the CPU

Number mapped
on the GPU

Predict Shape 16 15 1
Predict Image 16 6 10
Update Velocity 16 15 1
Observe Velocity 16 6 10

7.4 Design space exploration for the CACTuS ap-
plication

In this section, the utility of the AMS algorithm is illustrated through a series of
studies to explore the design space for the CACTuS application-algorithm. As pre-
viously noted, CACTuS can be scaled by introducing additional shape estimating
filters (SEF) and by increasing the image size. The study in this section illustrates
the agile architecture exploration capabilities of the AMS algorithm.

Table 7.10 shows the design space exploration studies that are presented in this
section. Five different CACTuS configurations representing dissimilar combinations
of SEFs and Image sizes (see table 7.1) are used in this design space exploration
study. The platform constraints consists of one Intel i7 quad-core CPU and a
maximum of 8 GTX 960 GPUs. It is assumed that the GPUs can have direct GPU
to GPU communication links with 3 other GPUs. Since these direct links are much
faster than the usual PCIe [132], it is assumed that the communication delay of the
channels are one fifth of their estimated delay on PCIe links. It is acknowledged
that the GTX 960 GPU doesn’t support GPU to GPU links. However, these
links are becoming available in more recent GPUs like in NVLINK [28]. The table
7.10 shows nine different capital cost budget points that were used in the AMS
algorithm for each CACTuS configuration. The AMS algorithm explores many
different platform architectures but outputs the one with the lowest makespan, for
each budget. However, the three lowest makespan are reported here. The hyper-
parameters for AMS used for this exploration are in table 7.9.

Because of the large number of cases involved in the design space exploration studies
(5 studies by 9 budgets per study) the results will be presented in an overview first,
then some interesting cases will be presented in more detail. This section is thus
organised into two subsections. The first subsection presents the overview of the
design space exploration. Then, the second subsection describes few interesting
platform architectures and the mapping and scheduling decisions with resource
usage details.

186

Table 7.9: The hyper-parameters of the AMS algorithm for the design space ex-
ploration of CACTuS.

Name Denotation Value
Resource factor RF 2.4

Mapping threshold MT 15
Local factor celocal 7
Global factor ceglobal 2

Communication factor cecomm 2

Table 7.10: The design space exploration studies showing the CACTuS configu-
rations, overview of the platform constraints (PPG tier 1) and the budget points
taken into account.

Study No.
CACTuS

configuration
from table T.a

Platform constraints
(PPG tier1)

Budget Points
(Capital cost units)

1
C1

(16 SEFs,
I = 127× 127) 1 CPU (cost: 100, max up to GPU: 8)

8 GPUs (unit cost: 200,
max direct connections: 3)

100 (CPU)
300 (CPU, GPU: 1)
500 (CPU, GPU: 2)
700 (CPU, GPU: 3)
900 (CPU, GPU: 4)
1100 (CPU, GPU: 5)
1300 (CPU, GPU: 6)
1500 (CPU, GPU: 7)
1700 (CPU, GPU: 8)

2
C2

(16 SEFs,
I = 511× 511)

3
C3

(64 SEFs,
I = 511× 511)

4
C4

(64 SEFs,
I = 1023× 1023)

5
C5

(256 SEFs,
I = 1023× 1023)

187

7.4.1 Exploration results overview

Figure 7.6 is a scatter plot (Pareto diagram) that shows all the platform archi-
tecture instances for each configuration of CACTuS (C1, C2, C3, C4 and C5)
described in table 7.1. The y-axis is the schedule length ratio (SLR) as a metric
of performance (equation 6.5). The x-axis is the capital cost of a platform archi-
tecture instance, which is the sum of constituent compute engines’ capital cost.
In order to distinguish the plots of different CACTuS configurations, the plots are
of different colour and shape. There are multiple plots with the same colour and
capital costs representing platform architecture instances with the same number
for GPUs. They have different connection topologies due to different GPU to GPU
connections.

The key observations from the platform architectures formed by AMS as shown in
Figure 7.6 are:

1. Major initial performance improvement: The makespan value drops
dramatically for the initial few GPU additions. This observation is common
across all the configurations of CACTuS. For example, in C3 the makespan
reduces from 141.53 to 86.76 with the increase of capital cost just by 200,
which is due to the addition of only one GPU. However, this significant drop
of makespan is not continued with further addition of GPUs beyond three or
four. This can be attributed to the actors that must be mapped on CPU, or
whose execution time on the CPU is lower than the GPU. Also, with more
GPUs the communication delays continue to increase.

2. Connectivity topology impact: The differences in makespan on the dif-
ferent platform architecture instances of the same capital cost are greater
for C3. These differences are attributed to different GPU to GPU connec-
tions. In the next subsection, further details are investigated on how direct
connections improve performance for certain configurations of CACTuS.

3. Configuration with larger image size yields better performance:
The final observation from Figure 7.6 is that the initial performance im-
provements as compared to CPU only are greater when the image sizes are
larger. It can be seen that C4, which is frame size 511 × 511 starts with
an SLR of 40.16 and it drops to 10.55 with the addition of just one GPU.
Whereas, C1 only drops from 45.88 to 30.46 with the addition of one GPU.
This can be attributed to better acceleration by GPU for larger images, as
compared to smaller images.

Since diversity of makespan with various collectivity topologies is more for the C3
configuration, two platform architecture instances with the same capital cost of
900, which is 4 GPUs, are examined in the next subsection. Along with these two
platform architecture instances, another two instance for C3 with just one GPU
and 7 GPUs are also examined to gain insight into the dramatic drop in makespan

188

Figure 7.6: Overview of the CACTuS design space exploration studies. Five different
configurations are considered with nine capital budget points. These configurations are
different combinations of SEF numbers and data token sizes, which are detailed in table
7.1. Y-axis represents the schedule length ratio (SLR) (equation 6.5 in section 6.3.2)
and the x-axis represents the capital cost. For configuration C5, the makespan on the
platform architecture with just the CPU is 760.78. Because of this large value, this
particular makespan is not shown in the figure.

189

from 86.76 to 30.27, as compared to 24.23 with another 3 GPUs (total 7) being
further added. A platform architecture instance for C1 is also examined in the next
subsection as a comparison with a configuration of smaller data token (image) sizes.

7.4.2 Resource usage with mapping and scheduling decisions

In order to gain further insights to the design space exploration of CACTuS, five
cases that are listed in table 7.11 are examined here. A case is an platform archi-
tecture instance that the AMS algorithm has explored. For each of these cases,
the occupancy of the compute engines, resource usages and the actor distribution
on the compute engines are studied. The first case is of CACTuS configuration
C1 and the rest of the cases are from C3. The C3 configuration is focused here
because it’s design space exploration shows larger differences in SLR than the other
configurations.

Table 7.11: The platform platform architecture instances that are discussed in de-
tailed. These platform architecture instances were explored by AMS for CACTuS.

Case
No.

CACTuS
Config

Architecture
Instance

Capital
cost SLR

1. C1 GPU: 4, CPU:1
No direct connection 900 17.64

2. C3 GPU: 1, CPU:1
No direct connection 300 86.76

3. C3 GPU: 4, CPU:1
No direct connection 900 38.06

4. C3 GPU: 4, CPU:1
6 direct connections 900 30.27

5. C3 GPU: 7, CPU:1
No direct connection 1500 36.29

190

Case 1: CACTuS configuration C1 on a platform of 4 GPU and 1 CPU
with no direct connection amongst the GPUs

In this first case, it can be seen from table 7.12 that two new actors Update Position
(UP) and Observe Position (OP) are mapped on some of the GPUs. They are new
since actors were not considered for GPU with an architecture of one GPU (see
section 7.3). From the compute engine occupancy in Figure 7.7 and the resource
usage Figure 7.8, it can be seen that the CPU usage drops after around 2500
µs. This is due to the mapping of more actors on the GPUs and also due to the
distribution of communication tasks to the concurrent links. Another observation
is that load amongst the GPUs are reasonably even, but they are not utilised much.

Figure 7.7: Occupancy of the CPU and 4 GPUs by the CACTuS C1 actors.

191

Figure 7.8: Resource usage of CACTuS C1 actors on the CPU and 4 GPUs with no direct
link (Case 1).

Table 7.12: Mapping decisions of the actors for CACTuS configuration C1 on the
CPU and 4 GPUs (Case 1). Only those kind of actors that are mapped on GPUs
are listed here. The actors that are not listed here are 100% mapped on the CPU.

Actors CPU GPU1 GPU2 GPU3 GPU4
PS 75 6.25 6.25 6.25 6.25
PI 12.5 18.75 25 25 18.75
UV 87.5 0 0 0 12.5
UP 93.75 6.25 0 0 0
OV 0 37.5 12.5 12.5 37.5
OP 87.5 6.25 0 6.25 0

192

Case 2: CACTuS configuration C3 on a platform of 1 GPU and 1 CPU

Since this is CACTuS C3, there are 64 SEFs of 1155 actors, which is a large number
of actors and the sizes of images (data tokens) are also bigger than the previous
case. It can be seen from table 7.13 that more actors are added on the GPU than
with CACTuS C1. This may be due to the better acceleration of the actors on
GPU as compared to smaller images of C1. The GPU usage from Figures 7.9 and
7.10 shows that it is fairly occupied and the maximum resource usage has reached
more than 20% of the GPU resources. It will be interesting to see how the actors
are distributed with more GPUs.

Figure 7.9: Occupancy of the CPU and 1 GPU by the CACTuS C3 actors (Case 2).

Figure 7.10: Resource usage of CACTuS C3 actors on the CPU and 1 GPU (Case 2).

193

Table 7.13: Mapping decisions of the actors for CACTuS configuration C2 on the
CPU and 1 GPU (Case 2). Only those kind of actors that are mapped on GPUs
are listed here. The actors that are not listed here are 100% mapped on the CPU.

Actors CPU GPU1
PAT 30 70
COM 17.2 82.8
PP 30 70
PI 17.2 82.8
IAT 17.2 82.8
OI 17.2 82.8
UP 17.2 82.8
OV 17.2 82.8
OS 17.2 82.8
OP 17.2 82.8

194

Case 3: CACTuS configuration C3 on a platform of 4 GPUs and 1 CPU
with no direct connections amongst the GPUs.

From the actor distribution table 7.14 it can be seen that although there has been
no new actor type being mapped on a GPU, all the same actor types that were
mapped in case 2 are now almost completely mapped on one of the 4 GPUs, with
the exception of Observe Shape (OS), where only 9.38% are still mapped on the
CPU. Thus, more new actors have moved to GPU. Also, the communication load
is shared amongst four links that executes them concurrently, as seen in Figures
7.11 and 7.12. This reveals the reason for the drastic reduction of SLR due to the
addition of the initial GPUs. Furthermore, the resource usage Figure 7.12 shows
that the GPUs are load balanced uniformly.

Figure 7.11: Occupancy of the CPU and 4 GPU no direct links by the CACTuS C3 actors
(Case 3).

195

Figure 7.12: Resource usage of CACTuS C3 actors on the CPU and 4 GPU with no direct
links (Case 3).

Table 7.14: Mapping decisions of the actors for CACTuS configuration C3 on the
CPU and 4 GPUs with no direct links (Case 3). Only those kind of actors that
are mapped on GPUs are listed here. The actors that are not listed here are 100%
mapped on the CPU.

Actors CPU GPU1 GPU2 GPU3 GPU4
PAT 0 25 25 25 25
COM 0 20.31 37.5 32.81 9.37
PP 0 23.44 25 25 26.56
PI 0 20.3 34.37 31.25 14.06
IAT 0 20.31 34.38 31.25 14.06
OI 0 20.31 34.38 31.25 14.06
UP 0 20.31 37.5 32.81 9.37
OV 0 20.31 34.38 31.25 14.06
OS 9.38 15.63 34.38 31.25 9.37
OP 0 20.31 34.38 31.25 14.06

196

Case 4: CACTuS configuration C3 on a platform of 4 GPUs and 1 CPU
with six direct connections (all-to-all) amongst the GPUs.

The actor distribution table 7.15 shows that the actors are distributed in the same
way as it was for the previous case. Also the pattern in which the resources shown
in Figure 7.14 are used is similar to the previous case. The performance gain can
thus be attributed only to the direct communications between the GPUs. The
usage of the direct connections (D1, D2, D3, D4, D5, and D6) are shown to be
used in Figure 7.13. However, this performance gain is not significant as compared
to the initial GPU addition improvements.

Figure 7.13: Occupancy of the CPU and 4 GPU all connected by the CACTuS C3 actors
(Case 4).

197

Figure 7.14: Resource usage of CACTuS C3 actors on the CPU and 4 GPU all connected
(Case 4).

Table 7.15: Mapping decisions of the actors for CACTuS configuration C3 on the
CPU and 4 GPUs with no direct links (Case 4). Only those kind of actors that
are mapped on GPUs are listed here. The actors that are not listed here are 100%
mapped on the CPU.

Actors CPU GPU1 GPU2 GPU3 GPU4
PAT 0 25 25 25 25
COM 0 20.31 37.5 32.81 9.37
PP 0 23.44 25 25 26.56
PI 0 20.3 34.37 31.25 14.06
IAT 0 20.31 34.38 31.25 14.06
OI 0 20.31 34.38 31.25 14.06
UP 0 20.31 37.5 32.81 9.37
OV 0 20.31 34.38 31.25 14.06
OS 9.38 15.63 34.38 31.25 9.37
OP 0 20.31 34.38 31.25 14.06

198

Case 5: CACTuS configuration C3 on a platform of 7 GPUs and 1 CPU
with no direct connections amongst the GPUs.

It is interesting to see that with 7 GPUs there is a reduction in the actors being
mapped on GPUs but there is only a slight improvement in performance as com-
pared to the architecture instance of 4 GPUs. The actor distribution table 7.16
shows the reduction in the actors being mapped on GPUs. The improvement in
performance (lowering of SLR) is due to the sharing of extra communication links,
which freed more CPU time, allowing actors that has low acceleration on GPU to
be mapped on CPU. The actor occupancy Figure 7.15 shows more CPU usage while
concurrent communication links are busy. Resource usage Figure 7.16 on the other
hand shows that some of the GPUs are barely used. Therefore, this case explains
why addition of further GPUs (beyond 3 or 4 GPUs) only improves performance
slightly.

Figure 7.15: Occupancy of the CPU and 7 GPU with no direct links by the CACTuS C3
actors (Case 5).

199

Figure 7.16: Resource usage of CACTuS C3 actors on the CPU and 7 GPU with no direct
link (Case 5).

Table 7.16: The percentage of actors mapped on the compute engines of the plat-
form architecture (Case 5). Only those kind of actors that are mapped on GPUs
are listed here. The actors that are not listed here are 100% mapped on the CPU.

Actors CPU GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7
PAT 96.88 0 0 0 1.56 1.56 0 0
COM 3.16 20.31 17.19 35.93 21.88 0 0 1.56
PP 0 23.44 23.44 20.31 12.5 9.38 6.25 4.69
PI 0 35.94 34.38 23.44 6.25 0 0 0
IAT 6.25 35.94 34.38 23.44 0 0 0 0
OI 95.31 1.56 0 1.56 0 0 0 0
UP 1.56 20.31 18.75 35.94 21.88 0 1.56 0
OV 0 1.56 3.13 21.88 53.13 17.18 3.13 0
OP 0 1.56 3.12 21.88 53.12 17.19 3.13 0

200

Summary

From the compute engines resource usages of the first case and the rest of the cases,
it is inferred that GPU resources are better utilised with larger data token (image
size). The larger resource usage is due to more concurrent actor executions on
GPU. This can be seen from the actor distribution tables, where the critical actors
like Observe Velocity (OV), Predict Image (PI) and few more actors are completely
mapped on the GPUs. Whereas, for the first case these critical actors are shared
amongst CPU and the GPUs. This is due to higher communication delay with the
GPU mapped actors that will not be compensated by the acceleration gained on the
GPUs. This explains the reason for better performance improvements with larger
image sizes. On the other hand, with the addition of more GPUs like four in total,
although there are not a lot of new actors mapped on these GPUs, performance
improves drastically due to the sharing of the communication tasks amongst the
available concurrent links. An important observation is that in spite of the direct
links help, performance is not improved much3. Performances are also not improved
much with further addition of GPU, like in the last case, some the additional GPUs
are rarely used.

7.4.3 Conclusion

This section presented the design space exploration results of five different con-
figurations of CACTuS with varying SEF numbers and image sizes. The platform
architecture constraints allow up to 8 GPUs which are capable of direct communica-
tions links and one CPU. This exploration showed the utility of the AMS algorithm
to study the impact of direct communication links with the expansion of the plat-
form architecture for better performance of CACTuS with different configurations.
The design space exploration showed the following:

• Performance improves greatly with the addition of first few GPUs. The
number of few GPUs depends upon the CACTuS configuration. However,
after the initial GPUs, the improvement in performance reduces with further
addition of GPUs.

• With larger image sizes, GPU resources are better used due to possibilities
of concurrent actor executions, as the communication link penalty is com-
pensated with the acceleration gained on GPU. Due to this phenomena, the
performance improvement with the initial GPUs are much greater for larger
image sizes.

• Direct connections improve performance but they are not as significant as
3GPUs with direct links are currently much more expensive. This extra cost is not reflected in

the cost metric of the study. If the extra cost was considered the performance advantage would
be overwhelmed by the extra capital cost.

201

compared with an addition of the initial GPUs. Further, the improvement
of performance due to the direct connections is more profound with only
configuration C3 of CACTuS.

In the next section the deployment that follows design space exploration is de-
scribed.

202

7.5 Application deployment within AhcFlow

In this section, the deployment technique is presented. It transforms the ArcSDF
representation output from the AMS algorithm to create a runtime image for the
heterogeneous platform. An overview of the deployment task has been detailed in
section 4.4. In summary, the deployer creates a runtime image of the application-
algorithm from the pre-engineered components of the actors and the communica-
tion channels. Vendor specific tool-flows are necessary to support deployment. A
complex software and hardware infrastructure is necessary to achieve this. For
this reason, the deployment details described here are limited to CPUs and GPUs
only. However, there is no inherent reason why deployment cannot be extended
to FPGA based compute engines. To assist in the exposition of the deployment
technique, a simple ArcSDF representation example with 6 actors on to a platform
architecture consisting of one CPU and one GPU is used. After describing the
deployment technique with the simple example, a version of 16 SEF CACTuS is
deployed, which is then verified as correct based on tracking accuracy.

This section is organised into five subsections. In the first subsection, an overview
of the deployment technique and the example that is used to describe the deploy-
ment technique are described. The overview of the deployment technique intro-
duces the following three key steps: (1) parsing and validation, (2) skeleton code
generation and (3) injection of pre-engineered actors and launch. Each of these
steps are detailed individually in the subsequent three subsections. Finally, in the
fifth subsection, the deployment of CACTuS with a configuration of 16 SEFs is
presented.

7.5.1 Deployment technique overview

The deployment technique entails reading of the ArcSDF model to create an
ArcSDF C++ object, which is then combined with pre-engineered components
to create the runtime. The pre-engineered components are written to follow an ap-
plication programmers interface. This API is used to realise the constructs of the
ArcSDF representation, which includes compute zones, interfaces, control actors
and resource edges. The deployer and its internal components are shown in Fig-
ure 7.17. There are three steps involved in the deployment and they are: parsing
and validation, skeleton code generation and lunching after pre-engineered actor
injection.

A simple application example targeted on a heterogeneous platform constituted
of one GPU and one CPU is used to illustrate the deployment technique. The
example application detects persons from a scene by running concurrent correla-
tion functions. The scene is divided into four equal parts to concurrently run the
correlation functions. Bounding boxes are then drawn over the peaks generated by

203

Figure 7.17: This figure illustrates the structure of the deployment module of the AhcFlow
design flow.

the correlation function. The final step is stitching the scene together for display.
The SDF graph of this example and its equivalent DAG is shown in Figure 7.18(a)
and (b), respectively. The platform architecture instance to deploy this application
is shown in Figure 7.18(c). An ArcSDF graph for this application and the target
platform architecture, which contains the architectural decisions is shown in Figure
7.19. This ArcSDF example will be used to describe all the steps of the deploy-
ment. Recall that the AMS algorithms generates the ArcSDF model in the form
of a JSON [133] data structure, which the main input for the deployer. A JSON
structure snippet representing for example ArcSDF graph is shown in Figure 7.20.

The SDF model of the example application consists of six actors. The frame source
(f) actor reads the video frames of size 288 × 384 from a camera, which is then
segmented by the segmentation (s) actor to split it into four equal parts of size
144 × 192. Each of these parts of the frame are processed concurrently to detect
persons. This is performed by the correlation (c) function, which essentially runs
a correlation function with a kernel of a walking person. The result is a set of
coordinates. Since correlation is an computationally expensive function, the video
frames are divided into 4 parts and each part is executed in parallel. After the
peaks are found, the images are stitched back by the merge (m) actor, which is
stored to the disk by the display (e) actor.

204

Figure 7.18: This figure illustrates the example used to describe the deployment technique.
The sub-images are: (a) the application SDF graph, (b) equivalent DAG and (c) platform
architecture instance.

205

Figure 7.19: The ArcSDF example to explain the deployment technique. The SDF graph
of the example and its equivalent DAG is shown in Figure 7.18

206

Figure 7.20: Snippet of the JSON file of the ArcSDF representation which is shown in
Figure 7.19.

207

7.5.2 Parsing and Validation

In this subsection, the first step in the deployment is described. The ArcSDF
representation for deployment is first analysed to check that the compute engines,
where the actors are placed, exists and the pre-engineered actors and the channels
supporting each compute engines are present in the repository. A second validation
check establishes that it is a valid ArcSDF graph and the maximum resources
required will not exceed the resources of the existing platform architecture. This
validation ensures that the model is deployable. As the ArcSDF graph is validated
and tested for compatibility on the platform, it is parsed, which brings to the
next stage of creating the internal ArcSDF skeleton object that will drive the
deployment.

In Figure 7.20, the example ArcSDF JSON file illustrates the identification of
the compute engines, actors and channels. Two compute engines, the CPU and
the GPU (marked in red boxes) are identified and the validation layer finds if
their types match with the one present in the existing platform architecture. Pre-
engineered components, comprising the actors (marked in green) and the channels
(marked in blue), are checked if they exists within the repository. Since actor C is
mapped on the GPU, its GPU implementation existence is checked, whereas rest of
the actor’s CPU implementation presences are checked. Communication link types
required by the channels are checked for their presence. In this example only PCIe
connection is necessary.

After it is ensured that the ArcSDF representation is deployable, the ArcSDF graph
is first checked for consistency. This is achieved by initially converting the ArcSDF
graph to an equivalent SDF (using the algorithm presented in Figure 5.28). Then
confirm the SDF graph’s consistency by checking if the repetition vector is not equal
to the null-vector. The concept of SDF consistency is explained in section 2.4.1.
In the deployer, this check is performed by using the SDF3 tool [31]. After the
consistency check, it is verified whether the ArcSDF graph is within the maximum
resource usage limit of the platform architecture. This is conducted by running
the maximum resource usage algorithm from section 5.3.3. After these checks,
the deployment then progress to the next stage of creating the internal ArcSDF
skeleton object.

7.5.3 Skeleton code generation

In this deployment stage, a skeleton ArcSDF object is created. It consists of
the compute zones and their communication channels. The compute zones of the
ArcSDF representation are transformed into virtual threads. Each virtual thread
executes the schedule of it’s compute zone infinitely. Some virtual threads end
up as real threads on the CPU, whilst others will end up as a combination of a
real-thread on the CPU and a stream on the GPU or equivalent on the FPGA. In

208

Figure 7.21: Details of how channels that are external to a compute are included within
the skeleton object. The two parts of the figure are: (a) shows that input channels are
included within the compute zone and (b) is the pseudocode to execute the actors within
a compute zone sequentially that includes the interfaces.

the current version of the deployer, it is assumed that actors mapped to the FPGA
and GPU are associated with control actors on the CPU. These virtual threads
are ordered on the basis of their resource edges. The preceding compute zones are
given a lower number, whereas the succeeding compute zones are given a higher
number. These numbers are used later to order the launch of the virtual threads.

The skeleton refers to the structure of virtual threads without the internal pre-
engineered actors and the channels being instantiated. The skeleton however in-
cludes the interfaces and the communication channels that are associated with an
interface. Since the interfaces are for external communication that are concurrent,
necessary communication infrastructure are created first before the instantiation of
the other internal components that will execute in sequence (recall that the actors
within a compute zone executes sequentially). External channels that are inputs
to a compute zone are attached with it. Figure 7.21(a) illustrates the attachment
of the external communication channels, which creates a self-contained concurrent
block capable to communicating with other compute zones. It is noted that the
interfaces are also include as a part of the schedule, as shown in Figure 7.21(b).
A loop infinitely executes the schedule by first finding a list of fireable actors and
interfaces. Then firing them one by one. The code snippet in Figure 7.22 shows a
CPU virtual thread that infinitely loops the schedule of a compute zone. In this
code snippet, compute zone is represented by a class named Group. The fire()
method is executed infinitely during the life time of the application.

Highlighted sections of the example ArcSDF JSON file in Figure 7.20 shows the
compute zones, interfaces and the selected channels that are of importance for the
ArcSDF skeleton. The compute zones cpu_cz1, cpu_cz2, cpu_cz3 and cpu_cz4
are transformed to four CPU virtual threads, on the other hand, gpu_cz1, gpu_cz2,
gpu_cz3 and gpu_cz4 are transformed to two CUDA streams. The virtual thread
numbers associated with cpu_cz1 and cpu_cz2 are both 1 as there are no re-
source edges between them. There are no virtual thread numbers for cz_gpu_1,
cz_gpu_2, cz_gpu_3 and cz_gpu_4 as they are CUDA streams. The example
also shows an interface and the external channel with more details regarding the
data token size of the channel. This information is used to instantiate a FIFO

209

Figure 7.22: The fire function of a CPU compute zone which is called in an infinite loop
during the life cycle of the application. In line 325, getFirableActor() returns ready to
fire actors ordered as the compute zone schedule.

channel with the required token type to connect compute zones. The actual actors
and the actual channels internal to the virtual threads are next added, which is the
next stage of deployment and are detailed in the following subsection.

7.5.4 Injection of pre-engineered actors and launch

After the formation of the ArcSDF skeleton object, it acts as a framework into
which the pre-engineered actors and the communication channels are injected.
Some optimisation occurs for communication channels between actors within the
same compute zone. Once the pre-engineered code is being injected, the runtime
is started by launching the real threads on the CPU. Correct synchronisation is
achieved automatically due to the inherent qualities of ArcSDF.

The communication channel optimisation is achieved by replacing the channels
that are internal to a CPU compute zone and is not connected to an interface with
memory references. This avoids the necessity of expensive FIFO implementations.
The blue box enclosing Ch_f_0 in the example ArcSDF JSON (see Figure 7.20)
shows an internal channel that can undergo the channel optimisation. This opti-
misation is followed by the actual actor injection, which is done by replacing the
previous dummy actors with the actual pre-engineered actors.

210

Figure 7.23: (a) The original shopping mall scene, (b) visual output from the detection
example and (c) target kernel.

Injection of the actors is followed by the launch of the CPU threads that corresponds
to virtual threads of CPU. The CPU threads are started in ascending order of the
virtual thread number. The GPU and FPGA virtual threads are handled by one
or more CPU threads. For instance in the afore-mentioned ArcSDF example, the
virtual thread of gpu_cz1 is realised as a CUDA stream, which is handled by a
CPU thread that corresponds to cpu_cz1. There is a delay in which the threads
are launched sequentially. This delay time allows each compute zone to occupy its
required resources. The delay time is provided by the designer.

In the ArcSDF example, the CPU threads th1, th2, th3 and th4 are launched
sequentially without any delay, as there are no resource edges used in this example.
If there were a resource edge between cpu_cz1, cpu_cz2 , cpu_cz3 and cpu_cz4,
then the first thread would have got more priority in occupying the resources than
the later thread. To apply this priority the delay between the thread launches
would have been applied. Further, streams st1, st2 , st3 and st4 are assigned to
the th1, th2, th3 and th4, respectively. The actual realisation of a resource edge,
which release resource after the completion of the compute zone is dependent on
the underlying tools that govern the respective compute engines.

The launch of the example ArcSDF showed that the application was successfully
deployed. This was seen visually by the detection of a person in the a shopping-
mall. An instance of a person being detected is shown in Figure 7.23. The results
of CACTuS deployment is described in the next subsection.

211

Table 7.17: Tracking performance of the deployment of CACTuS C1.

False Tracks
(NFT)

Track Error
(MTE)

Track Latency
(MTL)

Track Completeness
(MTC)

Predicted
Throughput

(fps)

Measured
Throughput

(fps)
1 1.62 16 87% 41.65 36.92

7.5.5 Deployment of CACTuS using AhcFlow

In this section, the deployment results of CACTuS configuration C1 which is 16
SEFs with 127× 127 pixel sized images on a platform architecture of one CPU and
one GPU are described. A video of 160 frames with a range of tracking scenarios as
described in [127] was used to measure the tracking accuracy. This video was cre-
ated along with its corresponding ground-truth data containing the coordinates of
the centroid of the objects. The tracking accuracy of the deployment of CACTuS in
table 7.17 shows that the CACTuS application was correctly deployed. The values
of the metrics used to measure the tracking performances are relatively similar to
the previous published implementations by Milton [129] and Webb [130]. Further-
more, the measured throughput is close the predicted throughput (1/makespan)
by the AMS algorithm.

The metrics used to measure the tracking performances are explained as follows:

1. Number of false tracks (NFT) are the total number of objects tracked that
were not part of the ground-truth data.

2. Mean tracking error (MTE) is calculated as the average of the pixels between
the tracked object’s centroid with the centroid of the object recorded in the
ground-truth data.

3. Mean track latency (MTL) is the mean of the number of frames elapsed before
a SEF makes the object as its primary target.

4. Mean track completeness (MTC) is the mean of the percentage of the total
distance that the algorithm accurately follows the target.

7.5.6 Conclusion

The deployment technique of the AhcFlow design flow was described in this section.
It was explained how the output of the AMS algorithm, which is an ArcSDF graph,
is used by the deployer to create a runtime image of the application-algorithm on
the platform architecture instance. The structure of the deployer framework was
described along with its four key steps in the creation of the runtime form the ab-
stract ArcSDF graph. These steps are verification and validation, skeleton object
generation and injection of the pre-engineered actors and channels with the launch

212

of the compute zones. These steps were described with a simple target detection
example. After describing the steps in the deployment technique, CACTuS was
automatically deployed using the aforementioned deployment technique from the
AMS algorithm on a platform architecture instance of one CPU and one GPU.
This automatic CACTuS deployment was checked for correctness and its actual
throughput was measured. It was found that the automatically deployed CACTuS
produced efficient tracking results comparable with published hand crafted imple-
mentations of CACTuS. Furthermore, the measured throughput was close to the
AMS predicted performance value.

213

7.6 Conclusion

In this chapter, a complex multi-object visual tracking application called CACTuS
[112, 127] was used to demonstrate the complete AMS design flow along with the
automated deployment features. Initially, an overview of the CACTuS DFG was
presented to describe its constituent actors, how the application can be scaled on
the basis of filter called shape estimating filter (SEF) and the profiled timings
and resource usages of the pre-engineered actors and channels of CACTuS. These
actor timings and their resource usages were used in the AMS algorithm to predict
makespan and to explore suitable platform architecture instances.

After describing the CACTuS application with the profiled actor timings and re-
source requirements, a comparison to AMS estimated performance with published
hand-crafted implementations of CACTuS was presented. The comparison show-
cased the predicted performance matched closely with the published throughput.
This comparison was limited to smaller data token sizes (image pixel size) of CAC-
TuS and the platform architecture was fixed to only one GPU.

In order to consider more variety of platform architectures, an exhaustive design
space exploration of five different configurations of CACTuS with varying data to-
ken sizes and number of SEFs on a PPG tier 1 (agile platform constraint) of one
CPU and eight GPUs were conducted. The utility of AMS algorithm was shown
during the study of direct connections impact between GPUs. This design space
exploration produced three key observations: (1) performance improves greatly
with the first few addition of 3 or 4 GPUs but this improvement plummets with
further GPU additions, (2) CACTuS configuration with larger sized images have
better concurrent GPU usages and (3) although direct connections improves per-
formance, they are not significant as expected and this slight improvement is not
consistent across all the CACTuS configurations.

The automatic deployment from the abstract ArcSDF representation was described
next. The framework that conducts this automated deployment was described
with its key steps consisting of verification and validation, skeleton ArcSDF object
generation and pre-engineered actor injection. These steps were described with
a simplified object detection application. It was shown how this application was
automatically deployed from ArcSDF and produced correct results. A configuration
of CACTuS was also automatically deployed on a platform architecture of a GPU
and a CPU. The measured tracking results were consistent with the published
results of CACTuS. Also, the predicted performance of CACTuS closely matched
with the measured throughput resulting from the automated deployment. This
demonstrated the feasibility of AhcFlow.

214

Chapter 8

Conclusion and future work

Contents

8.1 Introduction . 216
8.2 Research questions revisit . 217
8.3 Future work . 220

215

8.1 Introduction

This research has aimed to create a design flow for agile heterogeneous computing,
where the platform architecture is a design variable and is constituted of three
disparate compute engines (FPGA, GPU and CPU). A new design flow called
AhcFlow that can support platform architecture as a design variable and handle
concurrent actor executions on compute engines like FPGA, GPU and CPU is
created in this research. It was achieved by generalising the Y-chart approach to
enable design space exploration with variable platform architecture. In order to at-
tain the generalisation of Y-chart, a new model called parameterised platform graph
(PPG) was created to represent agile platforms and a new design space exploration
algorithm called agile mapping and scheduling (AMS) algorithm was developed.
Concurrent actor execution on the same compute engine was made possible by
creating a new dataflow-based intermediate data structure called architecture aug-
mented synchronous dataflow (ArcSDF). This representation is used within the
new design flow to enable analysis of resource consumption and to foster automa-
tion between design space exploration and deployment. Since ArcSDF represents
the architectural decisions, it is used to automatically produce the runtime code
for the deployment. A case-study using a computationally intensive multi-object
tracking application is also conducted in this research.

PPG is a high-level platform representation that is capable of representing vari-
able platform architecture and concurrent actor execution on the same compute
engine. These are unique requirements of agile heterogeneous computing and were
not addressed in previous research literature of high-level platform architectures.
PPG consists of two tiers. The first tier (also called tier 1) represents the available
platform components and their constraints. The second tier (also called tier 2)
represents a platform architecture instance. Tier 2 is used to reproduce a platform
architecture physically. PPG is used within the design space exploration algorithm
called AMS to find a suitable tier 2 that meets the constraints of tier 1. PPG
is a highly abstract representation and yet possesses the necessary details for re-
producibility to be used for design space exploration. PPG has been described
in detail and demonstrated using examples. Its feasibility is validated through an
implementation within the AMS prototype and is used for the case-study.

ArcSDF extends synchronous dataflow (SDF) representation to express architec-
tural decisions, which allows it to exhibit more analytical strengths than its par-
ent SDF. It can be actively used within design space exploration to access re-
source usage, prediction of concurrent executions and estimate throughput, which
is inherited from the parent SDF representation. ArcSDF is used in AhcFlow as
an intermediate data structure with the design space exploration algorithm and
also to automate deployment; showing that the architectural decisions in ArcSDF
is reproducible. The ArcSDF representation extends the boundary of decidable
dataflow models to increase their expressive and analytical strengths. In this re-
search, ArcSDF is presented and algorithms to showcase some of its analytical

216

strengths are developed. The ArcSDF representation is validated by implementa-
tion within the AMS prototype and also through its usage in the case-study.

The AMS algorithm addresses the research gap of a lack of design space exploration
algorithms for variable platform architectures. AMS explores the design space to
find an optimal platform architecture within a certain capital cost budget and also
finds the architectural decisions to deploy the application-algorithm onto it. The
output is an ArcSDF representation that can be used for deployment. Furthermore,
AMS allows concurrent actor execution on compute engines like GPU by enabling
concurrency on the same compute engine. This is accomplished by incorporating
ArcSDF within the algorithm. A large number of synthetic and real-application
specific DAGs were used to evaluate AMS. A prototype of AMS was created to
conduct the evaluation experiments. The experimental results showed that AMS
is capable of finding platform architectures to produce optimal performance with
the capital cost budget. Finally, the overall design flow (AhcFlow) was applied for
a case-study. The AMS prototype was used along with a deployment module to
conduct the case-study.

In order to describe the afore-mentioned research contributions in detail, the re-
search questions that were defined in Chapter 3 will be revisited in the next section;
following which, in the final section, suggested future work will be discussed.

8.2 Research questions revisit

The research questions that were presented previous in Chapter 3 are revisited in
this section. For every research question, a discussion is presented to summarise
the research contributions made while addressing them.

1. Is it feasible to create a design flow for agile heterogeneous com-
puting where architectural exploration is closely integrated into
mapping and scheduling decisions?

This is the overarching research question of this thesis, which was primarily an-
swered in Chapter 4, where a new design flow for agile heterogeneous computing
called AhcFlow was conceived. In order to realise AhcFlow, specifications of the
following new elements were described: a new agile platform representation called
Parameterised platform graph (PPG), a new intermediate data structure called Ar-
chitecture augmented synchronous dataflow (ArcSDF), a design space exploration
algorithm called Agile mapping and scheduling algorithm (AMS) and a deployment
technique. The representations; PPG and ArcSDF were presented in Chapter 5,
along with their analysis algorithms. The AMS algorithm was described in Chapter
6. The validation of the new design flow was conducted in parts, in Chapters 6
and 7.

217

AhcFlow was conceived through the generalisation of the Y-chart design method-
ology by incorporating a representation of the platform constraints (PPG) rather
than a fixed platform architecture. This allowed close exploration of platform ar-
chitecture instances with the mapping and scheduling decisions. An intermediate
data-structure (called ArcSDF) was proposed to support this close exploration of
platform architecture instances. The new design flow uses ArcSDF for analysis
to find suitable platform architecture instances and the mapping and scheduling
decisions. The use of ArcSDF for analysis is mainly done by the design space explo-
ration algorithm (AMS), which relies on ArcSDF to estimate makespan, resource
usage and capital cost of the platform architecture instance.

Another innovation of this new design flow is the automation of deployment by
using the intermediate data-structure. Since it contains the architectural decisions
that include the mapping and scheduling information, it is parsed during deploy-
ment to automate the creation of a runtime on the designated platform architecture.
The runtime is created by using vendor specific tool-flows of the compute engines
that constitutes the platform architecture.

While describing AhcFlow in Chapter 4, the requirements for PPG, ArcSDF and
AMS were also conceived. These requirements were later used in Chapters 5 and
6 to define PPG, ArcSDF and AMS.

2. How to incorporate in a design flow, for agile heterogeneous com-
puting, a constraint based platform definition?

A new way to represent agile heterogeneous platform at a higher abstraction, called
Parameterised platform graph (PPG) was created in Chapter 5 to answer this
question. PPG incorporates the necessary details for design space exploration, thus
it has the capabilities to express the platform constraints and represent instances
of platform architectures possible within the constraints. PPG was validated by
using it to construct the prototype of the new design flow. PPG was implemented
and used for design space exploration in Chapter 6, where synthetic datasets were
used for evaluation. Further, in Chapter 7 it was shown that PPG can be used for
real platform architectures.

The ability to express the details required for design space exploration, the platform
constraints and the architecture instances was achieved through the following two
features of PPG:

• PPG is divided into two tiers. PPG tier1 represents the platform constraints,
whereas PPG tier 2 expresses a platform architecture instance. PPG tier 1 is
used by the design space exploration algorithm, whereas different instances
PPG tier2 are explored for the selection of the final platform architecture
(PPG tier2) for deployment.

• PPG tier 2 that represents a platform architecture instance is a high-level

218

graph that can be analysed to estimate performance, resource usage and
capital during design space exploration.

It is important to note that PPG was used as a reference to define the architectural
decisions to be expressed by the intermediate data-structure (ArcSDF). These de-
cisions were an important aspect of the design space exploration algorithm (AMS).

3. How to represent simultaneously the application, architecture, map-
ping and scheduling decisions, and deployment details of an agile
heterogeneous computing solution?

A novel data-structure called architecture augmented synchronous dataflow (ArcSDF)
was developed to answer this research question in Chapter 5. ArcSDF was created
by augmenting the original SDF graph to express the architectural decisions, which
were defined by using PPG tier 2 as a reference. Four new constructs were defined
for the creation of ArcSDF. The most important one being the compute zone, which
groups actors for sequential execution and also expresses resource consumption by
the group. Compute zones are part of a compute engine and their resource usage
depends upon the actors mapped onto it. Once all the actors inside the compute
zones complete their execution, the compute zone may release the resources for a
new compute zone. The other constructs are interfaces, resource edge and con-
trol actors. ArcSDF is validated by implementing it within the AMS prototype
in Chapter 6 and using it for deployment in Chapter 7. The analysis algorithm
resulting from ArcSDF was used with the design space exploration algorithm which
was evaluated with synthetic and real application dataflow graphs.

It is further shown in Chapter 5 that ArcSDF is capable of maximum resource
usage by an ArcSDF representation, calculation of the earliest time slot to map a
new actor and optimisation to reduce the number of compute zones used, which
was not possible just with the parent SDF representation. These analyses were
later used for the design space exploration.

4. How to best perform mapping and scheduling in the context for
this new design flow for agile heterogeneous computing?

This research question is answered in Chapter 6 by creating a new design space ex-
ploration algorithm called the agile mapping and scheduling (AMS) algorithm that
evolves the platform architecture from the mapping and scheduling decisions. This
algorithm is created by advancing a widely accepted list scheduling heuristic algo-
rithm called HEFT to consider concurrent actor executions on a compute engine
and by advancing the Gain/Loss algorithm for capital cost. AMS was evaluated in
two phases. In the first phase, only static platform architectures were considered to
evaluate advanced HEFT. This evaluation was conducted with a very large number
of synthetic dataflow acyclic graphs. It was found that the advanced HEFT per-
formed significantly better than the version closer to its original counterpart. In the
second phase of evaluation, the overall AMS algorithm was evaluated with a large

219

number of synthetic and real application dataflow acyclic graphs. This evaluation
compared two approaches of the AMS algorithm (called expansion and reduction)
against a random brute-force approach. The experimental results showed that in
general both the approaches of AMS performed significantly higher than the brute
force approach. Also, the expansion mode of exploration performs better for larger
sized graphs with higher concurrency. AMS was further evaluated through an ex-
haustive case study with a complex visual tracking application called CACTuS in
Chapter 7, where the design space exploration was compared with published hand
crafted results. Furthermore, the predictions from AMS were shown to match with
actual deployed results.

5. How can an agile heterogeneous design flow incorporate decisions
concerning the sharing of the compute engine resources amongst
multiple concurrent actors?

This question intersects the previous research questions. It has been mainly ad-
dressed by enabling ArcSDF to express resource consumption through compute
zones, which allowed to analyse whether more than one actor can execute simul-
taneously on a compute engine. The resources are the computation resources that
are expressed through the PPG representation. Resource usage needed to be incor-
porated within AMS, so that the design space exploration can consider concurrent
actor executions. This was achieved by advancing the original HEFT algorithm to
allow resources to be considered. In Chapter 7, the AhcFlow deployer also took the
resources expressed by the ArcSDF into account, which shows the feasibility of this
technique to incorporate resource sharing decisions. The evaluation of this tech-
nique was further conducted in Chapter 6 along with the AMS algorithm by using
synthetic and real application DAGs to compare the benefits of the resource-based
enhancements.

8.3 Future work

The research results presented in this thesis, shows the future directions of agile
heterogeneous computing design flows are towards: (1) improving accuracy of the
design space exploration outcomes and (2) increasing automation in deployment
through an intermediate data structure (like ArcSDF). Improving accuracy in the
design space exploration algorithm refers to lessening the difference between the
predicted and the actual performance. It also refers to the inclusion of other ob-
jectives that might interest a designer, such as power usage. On the other hand,
increasing automation refers to deployment with minimal designer’s effort. This
section presents a discussion on these two future research directions.

A more detailed platform architecture representation is expected for the improve-
ment of accuracy in design space exploration results. This is so that the platform
architecture representation can express detailed aspects of communication delays

220

and computation timings. Examples of these details may include the time required
to access a certain type of memory, or the preparation time for a kernel to start exe-
cution. These details need to be included in such a manner that the complexities of
representing the platform architecture components are not significantly increased.
This is significant because if a designer’s involvement increases, then the purpose
of a design flow is defeated. In order to take advantage of the platform architecture
details, it is also important to evolve the design space algorithm (AMS). Currently,
the AMS algorithm assumes that communication requests on the same physical
link are queued but with more architectural details, this idealistic behaviour needs
to adapt.

A detailed platform architecture representation can also include power usage, so
that designers can conduct exploration with power consumption as an objective
during design space exploration. The challenge here is again including the de-
tails of power within the design flow (AhcFlow) without raising the representation
complexity. This will also necessitate a significant enhancement of the AMS al-
gorithm. It will be an interesting research direction to introduce more than two
objectives in the AMS algorithm and measure its performance with the two modes
of explorations (expansion and reduction).

The second future direction is increasing automation in deployment through an
intermediate data structure, in the likeness of ArcSDF, which was presented in this
thesis. The automated deployment conducted by the AhcFlow deployer heavily
relied on vendor specific tools, which requires the designer to manually install and
configure these tools. It is envisioned that the future research goals will extend
the deployer into a uniform hardware and software layer, where intermediate data-
structures like ArcSDF can be deployed with reduced human interventions. The
deployer layer will be closely integrated with the compute engine hardware. It will
read the ArcSDF instance to implement the application across all the compute
engines and the designer need not be concerned about interacting with every tool-
sets for each compute engines. In order to pursue research in this direction, support
from vendors to reveal their GPU and FPGA architectures would be necessary.

221

Appendix A

CACTuS computation and
communication timings

222

Table A.1: This table summarises the execution timings and the resource consump-
tion percentage of the CACTuS actors for configuration C2 (see table 7.1) obtained
in this work. Infinite (∞) represents the actors that do not have a pre-engineered
implementation on the compute engine. This is replaced with a very large number
in the experiments. The timings are in micro seconds (µ). The resource consump-
tions are expressed as the percentage of the usable compute engine resources.

Actor CPU execution
timing (µ)

CPU resource
consumption (%)

GPU execution
timing (µ)

GPU resource
consumption (%)

PV 6 90 13 12
PP 3262 90 2419 12
PS 81 90 75 12
PI 10388 90 2944 12
OV 9863 90 3475 12
OP 8700 90 3000 12
OI 413 90 94 12
IAT 1381 25 656 12
UV 44 90 56 12
UP 1263 90 988 12
PAT 1388 25 1013 12
COM 906 25 657 12
PE 6 25 ∞ ∞
OS 823 90 699 12
NV 17 90 ∞ ∞
NX 19 90 ∞ ∞
US 8 90 ∞ ∞
NS 8 25 700 12

SUMX 1138 25 ∞ ∞
SUMI 908 25 ∞ ∞
FLR 572 90 ∞ ∞

Table A.2: This table summarises the channel communication delays in micro-
seconds (µ) for CACTuS configuration C2. List of configurations are in table 7.1.

Communication
Channel

Delay timing
µ

Communication
Channel

Delay timing
µ

PV to PP 780 OI to OP 1800
PV to UV 780 OI to OS 1800

PP to SUMX 2300 IAT to OI 600
PP to PAT 2300 UV to NV 150
PP to UP 2300 UP to COM 2400
PP to PI 2300 PAT to COM 2400
PS to PI 700 COM to PE 2300
PS to OP 700 COM to NX 2300
PS to US 700 PE to OS 7
PI to IAT 2800 OS to US 700

PI to SUMX 1800 US to NS 700
OV to UV 760 SUMX to PAT 2300
OP to OV 2400 SUMI to IAT 1800
OP to UP 2400 FLR to OI 1800

223

Table A.3: This table summarises the execution timings and the resource consump-
tion percentage of the CACTuS actors for configuration C3 (see table 7.1) obtained
in this work. Infinite (∞) represents the actors that do not have a pre-engineered
implementation on the compute engine. This is replaced with a very large number
in the experiments. The timings are in micro seconds (µ). The resource consump-
tions are expressed as the percentage of the usable compute engine resources.

Actor CPU execution
timing (µ)

CPU resource
consumption (%)

GPU execution
timing (µ)

GPU resource
consumption (%)

PV 22 90 52 12
PP 3333 90 605 12
PS 34 90 1458 12
PI 8581 90 1575 12
OV 8200 90 2120 12
OP 8252 90 1814 12
OI 278 90 264 12
IAT 1314 25 298 12
UV 19 90 66 12
UP 1255 90 1095 12
PAT 1233 25 1109 12
COM 969 25 248 12
PE 6 25 ∞ ∞
OS 735 90 323 12
NV 17 90 ∞ ∞
NX 21 90 ∞ ∞
US 8 90 ∞ ∞
NS 8 25 700 12

SUMX 2797 25 ∞ ∞
SUMI 1891 25 ∞ ∞
FLR 572 90 ∞ ∞

Table A.4: This table summarises the channel communication delays in micro-
seconds (µ) for CACTuS configuration C3. List of configurations are in table 7.1.

Communication
Channel

Delay timing
µ

Communication
Channel

Delay timing
µ

PV to PP 780 OI to OP 1800
PV to UV 780 OI to OS 1800

PP to SUMX 2300 IAT to OI 600
PP to PAT 2300 UV to NV 150
PP to UP 2300 UP to COM 2400
PP to PI 2300 PAT to COM 2400
PS to PI 700 COM to PE 2300
PS to OP 700 COM to NX 2300
PS to US 700 PE to OS 7
PI to IAT 2800 OS to US 700

PI to SUMX 1800 US to NS 700
OV to UV 760 SUMX to PAT 2300
OP to OV 2400 SUMI to IAT 1800
OP to UP 2400 FLR to OI 1800

224

Table A.5: This table summarises the execution timings and the resource consump-
tion percentage of the CACTuS actors for configuration C4 (see table 7.1) obtained
in this work. Infinite (∞) represents the actors that do not have a pre-engineered
implementation on the compute engine. This is replaced with a very large number
in the experiments. The timings are in micro seconds (µ). The resource consump-
tions are expressed as the percentage of the usable compute engine resources.

Actor CPU execution
timing (µ)

CPU resource
consumption (%)

GPU execution
timing (µ)

GPU resource
consumption (%)

PV 27 90 7 12
PP 39451 90 8068 50
PS 493 90 239 12
PI 168874 90 34676 50
OV 157119 90 39477 50
OP 142020 90 35067 50
OI 1655 90 436 50
IAT 22139 25 4710 50
UV 133 90 196 12
UP 5041 90 1954 50
PAT 22159 25 9350 50
COM 3616 25 1291 50
PE 24 25 ∞ ∞
OS 823 90 11757 12
NV 76 90 ∞ ∞
NX 76 90 ∞ ∞
US 53 90 ∞ ∞
NS 24 25 611 12

SUMX 10190 25 ∞ ∞
SUMI 7271 25 ∞ ∞
FLR 785 90 ∞ ∞

Table A.6: This table summarises the channel communication delays in micro-
seconds (µ) for CACTuS configuration C4. List of configurations are in table 7.1.

Communication
Channel

Delay timing
µ

Communication
Channel

Delay timing
µ

PV to PP 1180 OI to OP 1800
PV to UV 1180 OI to OS 1800

PP to SUMX 3700 IAT to OI 2100
PP to PAT 3700 UV to NV 870
PP to UP 3700 UP to COM 3800
PP to PI 3700 PAT to COM 3800
PS to PI 920 COM to PE 3800
PS to OP 920 COM to NX 3800
PS to US 920 PE to OS 22
PI to IAT 3900 OS to US 940

PI to SUMX 4000 US to NS 940
OV to UV 1180 SUMX to PAT 3900
OP to OV 3800 SUMI to IAT 3700
OP to UP 3800 FLR to OI 3700

225

Table A.7: This table summarises the execution timings and the resource consump-
tion percentage of the CACTuS actors for configuration C4 (see table 7.1) obtained
in this work. Infinite (∞) represents the actors that do not have a pre-engineered
implementation on the compute engine. This is replaced with a very large number
in the experiments. The timings are in micro seconds (µ). The resource consump-
tions are expressed as the percentage of the usable compute engine resources.

Actor CPU execution
timing (µ)

CPU resource
consumption (%)

GPU execution
timing (µ)

GPU resource
consumption (%)

PV 49 90 7 12
PP 44348 90 6437 50
PS 421 90 209 12
PI 146607 90 22315 50
OV 198535 90 59982 50
OP 117369 90 28980 50
OI 1495 90 393 50
IAT 22057 25 4693 50
UV 164 90 242 12
UP 5667 90 2599 50
PAT 19539 25 9487 50
COM 4065 25 1431 50
PE 27 25 ∞ ∞
OS 823 90 12800 12
NV 76 90 ∞ ∞
NX 85 90 ∞ ∞
US 13 90 ∞ ∞
NS 6 25 150 12

SUMX 40759 25 ∞ ∞
SUMI 29084 25 ∞ ∞
FLR 785 90 ∞ ∞

Table A.8: This table summarises the channel communication delays in micro-
seconds (µ) for CACTuS configuration C5. List of configurations are in table 7.1.

Communication
Channel

Delay timing
µ

Communication
Channel

Delay timing
µ

PV to PP 1180 OI to OP 1800
PV to UV 1180 OI to OS 1800

PP to SUMX 3700 IAT to OI 2100
PP to PAT 3700 UV to NV 870
PP to UP 3700 UP to COM 3800
PP to PI 3700 PAT to COM 3800
PS to PI 920 COM to PE 3800
PS to OP 920 COM to NX 3800
PS to US 920 PE to OS 22
PI to IAT 3900 OS to US 940

PI to SUMX 4000 US to NS 940
OV to UV 1180 SUMX to PAT 3900
OP to OV 3800 SUMI to IAT 3700
OP to UP 3800 FLR to OI 3700

226

Bibliography

[1] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O.
Storaasli, “State-of-the-art in Heterogeneous Computing,” Sci. Program.,
vol. 18, pp. 1–33, Jan. 2010.

[2] J. W. S. Liu and A.-T. Yang, “Optimal Scheduling of Independent Tasks
on Heterogeneous Computing Systems,” in Proceedings of the 1974 Annual
Conference - Volume 1, (New York, NY, USA), pp. 38–45, ACM, 1974.

[3] R. Inta, D. J. Bowman, and S. M. Scott, “The "Chimera": An Off-the-
shelf CPU/GPGPU/FPGA Hybrid Computing Platform,” Int. J. Reconfig.
Comput., vol. 2012, pp. 2:2–2:2, Jan. 2012.

[4] P. Meng, M. Jacobsen, and R. Kastner, “FPGA-GPU-CPU heterogenous
architecture for real-time cardiac physiological optical mapping,” in 2012 In-
ternational Conference on Field-Programmable Technology, pp. 37–42, Dec.
2012.

[5] M. Alawieh, M. Kasparek, N. Franke, and J. Hupfer, “A high performance
FPGA-GPU-CPU platform for a real-time locating system,” in 2015 23rd
European Signal Processing Conference (EUSIPCO), pp. 1576–1580, Aug.
2015.

[6] B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. Vissers, “A Methodol-
ogy to Design Programmable Embedded Systems,” in SpringerLink, pp. 18–
37, Springer, Berlin, Heidelberg, July 2001.

[7] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling algorithms for
heterogeneous processors,” in Proceedings. Eighth Heterogeneous Computing
Workshop (HCW’99), pp. 3–14, Apr. 1999.

[8] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. D. Dikaiakos, “Scheduling
Workflows with Budget Constraints,” in Integrated Research in GRID Com-
puting (S. Gorlatch and M. Danelutto, eds.), pp. 189–202, Boston, MA:
Springer US, 2007.

[9] D. Menascé and V. Almeida, “Cost-performance Analysis of Heterogeneity in

227

Supercomputer Architectures,” in Proceedings of the 1990 ACM/IEEE Con-
ference on Supercomputing, Supercomputing ’90, (Los Alamitos, CA, USA),
pp. 169–177, IEEE Computer Society Press, 1990.

[10] M. Ercegovac, “Heterogeneity in supercomputer architectures,” Parallel Com-
puting, vol. 7, pp. 367–372, Sept. 1988.

[11] C. Ncube, “The NCUBE Family of High-performance Parallel Computer
Systems,” in Proceedings of the Third Conference on Hypercube Concurrent
Computers and Applications: Architecture, Software, Computer Systems, and
General Issues - Volume 1, C3P, (New York, NY, USA), pp. 847–851, ACM,
1988.

[12] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N.
Ganmukhi, J. V. Hill, D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S.
Wells, M. C. Wong, S.-W. Yang, and R. Zak, “The Network Architecture of
the Connection Machine CM-5 (Extended Abstract),” in Proceedings of the
Fourth Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’92, (New York, NY, USA), pp. 272–285, ACM, 1992.

[13] D. Watson, H. Siegel, J. Antonio, M. Nichols, and M. Atallah, “A Framework
for Compile-Time Selection of Parallel Modes in an Simd/spmd Heteroge-
neous Environment,” pp. 57–64, IEEE, 1993.

[14] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O.
Storaasli, “State-of-the-art in Heterogeneous Computing,” Scientific Pro-
gramming, vol. 18, no. 1, pp. 1–33, 2010.

[15] S. Undy, M. Bass, D. Hollenbeck, W. Kever, and L. Thayer, “A low-cost
graphics and multimedia workstation chip set,” IEEE Micro, vol. 14, pp. 10–
22, Apr. 1994.

[16] M. Awaga, “3D Graphics Geometry Processor for PC,” IEICE TRANSAC-
TIONS on Electronics, vol. E81-C, pp. 733–736, May 1998.

[17] M. Macedonia, “The GPU enters computing’s mainstream,” Computer,
vol. 36, pp. 106–108, Oct. 2003.

[18] C. Thompson, S. Hahn, and M. Oskin, “Using modern graphics architectures
for general-purpose computing: A framework and analysis,” in 35th Annual
IEEE/ACM International Symposium on Microarchitecture, 2002. (MICRO-
35). Proceedings., pp. 306–317, Nov. 2002.

[19] B. Neelima and P. S. Raghavendra, “Recent trends in software and hardware
for GPGPU computing: A comprehensive survey,” in 2010 5th International
Conference on Industrial and Information Systems, pp. 319–324, July 2010.

228

[20] Q. Wu, Y. Ha, A. Kumar, S. Luo, A. Li, and S. Mohamed, “A heteroge-
neous platform with GPU and FPGA for power efficient high performance
computing,” in 2014 International Symposium on Integrated Circuits (ISIC),
pp. 220–223, Dec. 2014.

[21] P. E. Ross, “Why CPU Frequency Stalled,” IEEE Spectrum, vol. 45, pp. 72–
72, Apr. 2008.

[22] B. da Silva, A. Braeken, E. H. D’Hollander, A. Touhafi, J. G. Cornelis, and
J. Lemeire, “Comparing and combining GPU and FPGA accelerators in an
image processing context,” in 2013 23rd International Conference on Field
Programmable Logic and Applications, pp. 1–4, Sept. 2013.

[23] S. Skalicky, S. Lopez, and M. Lukowiak, “Distributed execution of transmural
electrophysiological imaging with CPU, GPU, and FPGA,” in 2013 Inter-
national Conference on Reconfigurable Computing and FPGAs (ReConFig),
pp. 1–7, Dec. 2013.

[24] K. H. Tsoi and W. Luk, “Axel: A Heterogeneous Cluster with FPGAs and
GPUs,” in Proceedings of the 18th Annual ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, FPGA ’10, (New York, NY,
USA), pp. 115–124, ACM, 2010.

[25] R. Inta, D. J. Bowman, S. M. Scott, R. Inta, D. J. Bowman, and S. M. Scott,
“The “Chimera”: An Off-The-Shelf CPU/GPGPU/FPGA Hybrid Comput-
ing Platform,” International Journal of Reconfigurable Computing, Interna-
tional Journal of Reconfigurable Computing, vol. 2012, 2012, p. e241439,
2012/03/20, 2012/03/20.

[26] R. Bittner, E. Ruf, and A. Forin, “Direct GPU/FPGA communication Via
PCI express,” Cluster Computing, vol. 17, pp. 339–348, June 2014.

[27] Y. Thoma, A. Dassatti, and D. Molla, “FPGA2: An open source framework
for FPGA-GPU PCIe communication,” in 2013 International Conference on
Reconfigurable Computing and FPGAs (ReConFig), pp. 1–6, Dec. 2013.

[28] “NVDIA NVLink Fabric.” https://www.nvidia.com/en-au/data-
center/nvlink/, Dec. 2018.

[29] I.-H. Chung, B. Abali, and P. Crumley, “Towards a Composable Computer
System,” in Proceedings of the International Conference on High Performance
Computing in Asia-Pacific Region, (New York, NY, USA), pp. 137–147,
ACM, 2018.

[30] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J. F. Nezan, and S. Aridhi, “Preesm:
A dataflow-based rapid prototyping framework for simplifying multicore DSP
programming,” in 2014 6th European Embedded Design in Education and

229

Research Conference (EDERC), pp. 36–40, Sept. 2014.

[31] S. Stuijk, M. Geilen, and T. Basten, “A Predictable Multiprocessor Design
Flow for Streaming Applications with Dynamic Behaviour,” in 2010 13th
Euromicro Conference on Digital System Design: Architectures, Methods and
Tools, pp. 548–555, Sept. 2010.

[32] A. Enrici, L. Apvrille, and R. Pacalet, “A Model-Driven Engineering Method-
ology to Design Parallel and Distributed Embedded Systems,” ACM Trans.
Des. Autom. Electron. Syst., vol. 22, pp. 34:1–34:25, Jan. 2017.

[33] T. Stefanov, A. Pimentel, and H. Nikolov, “Daedalus: System-Level Design
Methodology for Streaming Multiprocessor Embedded Systems on Chips,” in
Handbook of Hardware/Software Codesign (S. Ha and J. Teich, eds.), pp. 1–
36, Dordrecht: Springer Netherlands, 2016.

[34] Q. Jiao, M. Lu, H. P. Huynh, and T. Mitra, “Improving GPGPU
energy-efficiency through concurrent kernel execution and DVFS,” in 2015
IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), (San Francisco, CA, USA), pp. 1–11, IEEE, Feb. 2015.

[35] Y. Liu and B. C. Schafer, “HW acceleration of multiple applications on a sin-
gle FPGA,” in 2014 International Conference on Field-Programmable Tech-
nology (FPT), pp. 284–285, Dec. 2014.

[36] Y. Wen and M. F. O’Boyle, “Merge or Separate?: Multi-job Scheduling for
OpenCL Kernels on CPU/GPU Platforms,” in Proceedings of the General
Purpose GPUs, GPGPU-10, (Austin, TX, USA), pp. 22–31, ACM, 2017.

[37] R. A. Q. Cruz, C. Bentes, B. Breder, E. Vasconcellos, E. Clua, P. M. C. de
Carvalho, and L. M. A. Drummond, “Maximizing the GPU resource usage by
reordering concurrent kernels submission,” Concurrency and Computation:
Practice and Experience, Nov. 2017.

[38] C. Hewitt, “Viewing control structures as patterns of passing messages,” Ar-
tificial Intelligence, vol. 8, pp. 323–364, June 1977.

[39] G. Agha, “Concurrent object-oriented programming,” Communications of the
ACM, vol. 33, pp. 125–141, Sept. 1990.

[40] E. A. Lee and S. Neuendorffer, “Actor-Oriented Models for Codesign,” in
Formal Methods and Models for System Design: A System Level Perspective
(R. Gupta, P. L. Guernic, S. K. Shukla, and J.-P. Talpin, eds.), pp. 33–56,
Boston, MA: Springer US, 2004.

[41] B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. A. Vissers, “A
Methodology to Design Programmable Embedded Systems - The Y-Chart

230

Approach,” in Embedded Processor Design Challenges: Systems, Architec-
tures, Modeling, and Simulation - SAMOS, (London, UK, UK), pp. 18–37,
Springer-Verlag, 2002.

[42] B. Kienhuis, E. Deprettere, K. Vissers, and P. V. D. Wolf, “An approach
for quantitative analysis of application-specific dataflow architectures,” in
Proceedings IEEE International Conference on Application-Specific Systems,
Architectures and Processors, pp. 338–349, July 1997.

[43] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara, eds., Hardware-Software Co-Design of Embedded Systems: The
POLIS Approach. Norwell, MA, USA: Kluwer Academic Publishers, 1997.

[44] S. Stuijk, Predictable Mapping of Streaming Applications on Multiprocessors.
PhD thesis, Technische Universiteit Eindhoven, Jan. 2007.

[45] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo, “PeaCE: A Hardware-
software Codesign Environment for Multimedia Embedded Systems,” ACM
Trans. Des. Autom. Electron. Syst., vol. 12, pp. 24:1–24:25, May 2008.

[46] Y. Sorel, “Massively parallel computing systems with real time constraints:
The "Algorithm Architecture Adequation" methodology,” in Proceedings of
the First International Conference on Massively Parallel Computing Systems
(MPCS) The Challenges of General-Purpose and Special-Purpose Computing,
pp. 44–53, May 1994.

[47] R. Collobert, S. Bengio, and J. Marithoz, “Torch: A Modular Machine Learn-
ing Software Library,” Nov. 2002.

[48] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale
Machine Learning,” in 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pp. 265–283, 2016.

[49] A. Vedaldi and K. Lenc, “MatConvNet: Convolutional Neural Networks for
MATLAB,” in Proceedings of the 23rd ACM International Conference on
Multimedia, MM ’15, (Brisbane, Australia), pp. 689–692, Association for
Computing Machinery, Oct. 2015.

[50] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang, “MXNet: A Flexible and Efficient Machine Learning Library
for Heterogeneous Distributed Systems,” arXiv:1512.01274 [cs], Dec. 2015.

[51] J. Zhan and J. Zhang, “Pipe-Torch: Pipeline-Based Distributed Deep Learn-

231

ing in a GPU Cluster with Heterogeneous Networking,” in 2019 Seventh In-
ternational Conference on Advanced Cloud and Big Data (CBD), pp. 55–60,
Sept. 2019.

[52] H. Zhang, Z. Hu, J. Wei, P. Xie, G. Kim, Q. Ho, and E. Xing, “Poseidon:
A System Architecture for Efficient GPU-based Deep Learning on Multiple
Machines,” arXiv:1512.06216 [cs], Dec. 2015.

[53] X. Liu, H.-A. Ounifi, A. Gherbi, W. Li, and M. Cheriet, “A hybrid GPU-
FPGA based design methodology for enhancing machine learning applica-
tions performance,” Journal of Ambient Intelligence and Humanized Com-
puting, June 2019.

[54] S. Mouselinos, V. Leon, S. Xydis, D. Soudris, and K. Pekmestzi, “TF2FPGA:
A Framework for Projecting and Accelerating Tensorflow CNNs on FPGA
Platforms,” in 2019 8th International Conference on Modern Circuits and
Systems Technologies (MOCAST), pp. 1–4, May 2019.

[55] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to ex-
ploring embedded system architectures at multiple abstraction levels,” IEEE
Transactions on Computers, vol. 55, pp. 99–112, Feb. 2006.

[56] G. Kahn, “The Semantics of Simple Language for Parallel Programming,” in
IFIP Congress, pp. 471–475, 1974.

[57] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, pp. 1235–1245, Sept. 1987.

[58] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-static
data flow,” in , 1995 International Conference on Acoustics, Speech, and
Signal Processing, 1995. ICASSP-95, vol. 5, pp. 3255–3258 vol.5, May 1995.

[59] S. Ha and H. Oh, “Decidable Signal Processing Dataflow Graphs,” in Hand-
book of Signal Processing Systems (S. S. Bhattacharyya, E. F. Deprettere,
R. Leupers, and J. Takala, eds.), pp. 907–937, Cham: Springer International
Publishing, 2019.

[60] S. Sriram and S. Bhattacharyya, Embedded Multiprocessors: Scheduling and
Synchronization, Second Edition. Jan. 2009.

[61] T. M. Parks, “Bounded Scheduling of Process Networks,” Tech. Rep.
UCB/ERL-95-105, CALIFORNIA UNIV BERKELEY DEPT OF ELEC-
TRICAL ENGINEERING AND COMPUTER SCIENCES, Dec. 1995.

[62] A. Verma and S. Kaushal, “Cost-Time Efficient Scheduling Plan for Executing
Workflows in the Cloud,” Journal of Grid Computing, vol. 13, pp. 495–506,
Dec. 2015.

232

[63] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, “GA-ETI: An
enhanced genetic algorithm for the scheduling of scientific workflows in cloud
environments,” Journal of Computational Science, vol. 26, pp. 318–331, Aug.
2016.

[64] J. J. Durillo, H. M. Fard, and R. Prodan, “MOHEFT: A multi-objective list-
based method for workflow scheduling,” in 4th IEEE International Conference
on Cloud Computing Technology and Science Proceedings, pp. 185–192, Dec.
2012.

[65] M. Akbari, H. Rashidi, and S. H. Alizadeh, “An enhanced genetic algorithm
with new operators for task scheduling in heterogeneous computing systems,”
Engineering Applications of Artificial Intelligence, vol. 61, pp. 35–46, May
2017.

[66] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings
of the IEEE, vol. 77, pp. 541–580, Apr. 1989.

[67] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of
Computer Programming, vol. 8, pp. 231–274, June 1987.

[68] F. Herrera, H. Posadas, P. Peñil, E. Villar, F. Ferrero, R. Valencia, and
G. Palermo, “The COMPLEX methodology for UML/MARTE Modeling and
design space exploration of embedded systems,” Journal of Systems Archi-
tecture, vol. 60, pp. 55–78, Jan. 2014.

[69] S. Lecomte, S. Guillouard, C. Moy, P. Leray, and P. Soulard, “A co-design
methodology based on model driven architecture for real time embedded
systems,” Mathematical and Computer Modelling, vol. 53, pp. 471–484, Feb.
2011.

[70] M. Ammar, M. Baklouti, M. Pelcat, K. Desnos, and M. Abid, “MARTE to
ΠSDF transformation for data-intensive applications analysis,” in Proceedings
of the 2014 Conference on Design and Architectures for Signal and Image
Processing, pp. 1–8, Oct. 2014.

[71] O. Labbani, J.-L. Dekeyser, P. Boulet, and É. Rutten, “Introducing Control
in the Gaspard2 Data-Parallel Metamodel: Synchronous Approach,” in In-
ternational Workshop MARTES: Modeling and Analysis of Real-Time and
Embedded Systems, Oct. 2005.

[72] B. P. Douglass, Real-Time UML: Developing Efficient Objects for Embedded
Systems. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1997.

[73] H. Yviquel, E. Casseau, M. Wipliez, and M. Raulet, “Efficient multicore
scheduling of dataflow process networks,” in 2011 IEEE Workshop on Signal

233

Processing Systems (SiPS), pp. 198–203, Oct. 2011.

[74] M. Pelcat, J. Piat, M. Wipliez, S. Aridhi, and J.-F. Nezan, “An Open Frame-
work for Rapid Prototyping of Signal Processing Applications,” EURASIP
Journal on Embedded Systems, vol. 2009, p. 598529, Dec. 2009.

[75] Y. Chen and H. Zhou, “Buffer minimization in pipelined SDF scheduling on
multi-core platforms,” in 17th Asia and South Pacific Design Automation
Conference, pp. 127–132, Jan. 2012.

[76] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D. Theelen, M. R.
Mousavi, A. J. M. Moonen, and M. J. G. Bekooij, “Throughput Analysis
of Synchronous Data Flow Graphs,” in Sixth International Conference on
Application of Concurrency to System Design, 2006. ACSD 2006, pp. 25–36,
June 2006.

[77] H. Hong, H. Oh, and S. Ha, “Hierarchical Dataflow Modeling of Iterative Ap-
plications,” in Proceedings of the 54th Annual Design Automation Conference
2017, DAC ’17, (New York, NY, USA), pp. 39:1–39:6, ACM, 2017.

[78] K. Desnos, M. Pelcat, J.-F. Nezan, S. Bhattacharyya, and S. Aridhi, “PiMM:
Parameterized and Interfaced dataflow Meta-Model for MPSoCs runtime re-
configuration,” in 2013 International Conference on Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation (SAMOS XIII), pp. 41–48,
July 2013.

[79] H. N. Tran, S. S. Bhattacharyya, J.-P. Talpin, and T. Gautier, “Toward
Efficient Many-core Scheduling of Partial Expansion Graphs,” in Proceedings
of the 21st International Workshop on Software and Compilers for Embedded
Systems, SCOPES ’18, (Sankt Goar, Germany), pp. 100–103, ACM, 2018.

[80] G. F. Zaki, W. Plishker, S. S. Bhattacharyya, and F. Fruth, “Partial Ex-
pansion Graphs: Exposing Parallelism and Dynamic Scheduling Opportuni-
ties for DSP Applications,” in 2012 IEEE 23rd International Conference on
Application-Specific Systems, Architectures and Processors, pp. 86–93, July
2012.

[81] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing,” IEEE Transactions on Com-
puters, vol. C-36, pp. 24–35, Jan. 1987.

[82] H. H. Wu, C. C. Shen, N. Sane, W. Plishker, and S. S. Bhattacharyya,
“A Model-Based Schedule Representation for Heterogeneous Mapping of
Dataflow Graphs,” in 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum, pp. 70–81, May 2011.

[83] A. H. Ghamarian, M. C. W. Geilen, T. Basten, B. D. Theelen, M. R. Mousavi,

234

and S. Stuijk, “Liveness and Boundedness of Synchronous Data Flow Graphs,”
in 2006 Formal Methods in Computer Aided Design, pp. 68–75, Nov. 2006.

[84] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Optimizing synchronization
in multiprocessor DSP systems,” IEEE Transactions on Signal Processing,
vol. 45, pp. 1605–1618, June 1997.

[85] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal,
“Schedule-Extended Synchronous Dataflow Graphs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 32, pp. 1495–
1508, Oct. 2013.

[86] C. Zebelein, C. Haubelt, J. Falk, T. Schwarzer, and J. Teich, “Representing
mapping and scheduling decisions within dataflow graphs,” in Proceedings of
the 2013 Forum on Specification and Design Languages (FDL), pp. 1–8, Sept.
2013.

[87] T. Grandpierre and Y. Sorel, “From algorithm and architecture specifications
to automatic generation of distributed real-time executives: A seamless flow
of graphs transformations,” in First ACM and IEEE International Confer-
ence on Formal Methods and Models for Co-Design, 2003. MEMOCODE ’03.
Proceedings, pp. 123–132, June 2003.

[88] M. Pelcat, J. F. Nezan, J. Piat, J. Croizer, and S. Aridhi, “A System-Level
Architecture Model for Rapid Prototyping of Heterogeneous Multicore Em-
bedded Systems,” in Conference on Design and Architectures for Signal and
Image Processing (DASIP) 2009, (nice, France), p. 8 pages, Sept. 2009.

[89] D. E. Culler, A. Gupta, and J. P. Singh, Parallel Computer Architecture: A
Hardware/Software Approach. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1st ed., 1997.

[90] M. Pelcat, A. Mercat, K. Desnos, L. Maggiani, Y. Liu, J. Heulot, J. Nezan,
W. Hamidouche, D. Ménard, and S. S. Bhattacharyya, “Reproducible Eval-
uation of System Efficiency With a Model of Architecture: From Theory to
Practice,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 37, pp. 2050–2063, Oct. 2018.

[91] P. Kutzer, J. Gladigau, C. Haubelt, and J. Teich, “Automatic generation of
system-level virtual prototypes from streaming application models,” in 2011
22nd IEEE International Symposium on Rapid System Prototyping (RSP),
pp. 128–134, May 2011.

[92] Z. J. Jia, A. D. Pimentel, M. Thompson, T. Bautista, and A. Núñez, “NASA:
A generic infrastructure for system-level MP-SoC design space exploration,”
in 2010 8th IEEE Workshop on Embedded Systems for Real-Time Multimedia,
pp. 41–50, Oct. 2010.

235

[93] Y.-K. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating
Directed Task Graphs to Multiprocessors,” ACM Comput. Surv., vol. 31,
pp. 406–471, Dec. 1999.

[94] J. D. Ullman, “NP-complete scheduling problems,” Journal of Computer and
System Sciences, vol. 10, pp. 384–393, June 1975.

[95] S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala, eds., Hand-
book of Signal Processing Systems. Boston, MA: Springer US, 2010.

[96] V. J. Amuso and J. Enslin, “The Strength Pareto Evolutionary Algorithm 2
(SPEA2) applied to simultaneous multi- mission waveform design,” in 2007
International Waveform Diversity and Design Conference, pp. 407–417, June
2007.

[97] H. El-Rewini and T. G. Lewis, “Scheduling parallel program tasks onto arbi-
trary target machines,” Journal of Parallel and Distributed Computing, vol. 9,
pp. 138–153, June 1990.

[98] B. Kruatrachue and T. Lewis, “Grain size determination for parallel process-
ing,” IEEE Software, vol. 5, pp. 23–32, Jan. 1988.

[99] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, “Scheduling Prece-
dence Graphs in Systems with Interprocessor Communication Times,” SIAM
J. Comput., vol. 18, pp. 244–257, Apr. 1989.

[100] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures,” IEEE
Transactions on Parallel and Distributed Systems, vol. 4, pp. 175–187, Feb.
1993.

[101] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multiprocessors,” IEEE Transactions
on Parallel and Distributed Systems, vol. 7, pp. 506–521, May 1996.

[102] E. Ilavarasan, P. Thambidurai, and R. Mahilmannan, “Performance Effec-
tive Task Scheduling Algorithm for Heterogeneous Computing System,” in
The 4th International Symposium on Parallel and Distributed Computing
(ISPDC’05), pp. 28–38, July 2005.

[103] H. Arabnejad and J. G. Barbosa, “List Scheduling Algorithm for Heteroge-
neous Systems by an Optimistic Cost Table,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, pp. 682–694, Mar. 2014.

[104] S. AlEbrahim and I. Ahmad, “Task scheduling for heterogeneous computing
systems,” The Journal of Supercomputing, vol. 73, pp. 2313–2338, June 2017.

236

[105] G. Xie, G. Zeng, L. Liu, R. Li, and K. Li, “High performance real-
time scheduling of multiple mixed-criticality functions in heterogeneous dis-
tributed embedded systems,” Journal of Systems Architecture, vol. 70, pp. 3–
14, Oct. 2016.

[106] G. Xie, R. Li, and K. Li, “Heterogeneity-driven end-to-end synchronized
scheduling for precedence constrained tasks and messages on networked em-
bedded systems,” Journal of Parallel and Distributed Computing, vol. 83,
pp. 1–12, Sept. 2015.

[107] T. Hagras and J. Janecek, “A high performance, low complexity algorithm for
compile-time task scheduling in heterogeneous systems,” in 18th International
Parallel and Distributed Processing Symposium, 2004. Proceedings., pp. 107–,
Apr. 2004.

[108] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 13, pp. 260–274, Mar. 2002.

[109] K. R. Shetti, S. A. Fahmy, and T. Bretschneider, “Optimization of the HEFT
Algorithm for a CPU-GPU Environment,” in 2013 International Confer-
ence on Parallel and Distributed Computing, Applications and Technologies,
pp. 212–218, Dec. 2013.

[110] E. N. Alkhanak and S. P. Lee, “A hyper-heuristic cost optimisation approach
for Scientific Workflow Scheduling in cloud computing,” Future Generation
Computer Systems, vol. 86, pp. 480–506, Sept. 2018.

[111] I. Crnkovic, “Software Engineering Research,” 2008.
http://www.idt.mdh.se/kurser/ct3340/archives/ht08, (retrieved
17/11/2015) Mälardalen University.

[112] S. C. Wong, V. Stamatescu, A. Gatt, D. Kearney, I. Lee, and M. D. McDon-
nell, “Track Everything: Limiting Prior Knowledge in Online Multi-Object
Recognition,” IEEE Transactions on Image Processing, vol. 26, pp. 4669–
4683, Oct. 2017.

[113] M. F. Akbar, E. U. Munir, M. M. Rafique, Z. Malik, S. U. Khan, and L. T.
Yang, “List-Based Task Scheduling for Cloud Computing,” in 2016 IEEE
International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 652–
659, Dec. 2016.

[114] L. Pezzarossa, M. Schoeberl, and J. Sparsø, “Reconfiguration in FPGA-based
multi-core platforms for hard real-time applications,” in 2016 11th Inter-
national Symposium on Reconfigurable Communication-Centric Systems-on-

237

Chip (ReCoSoC), pp. 1–8, June 2016.

[115] K. Desnos and J. Heulot, “PiSDF: Parameterized & Interfaced Synchronous
Dataflow for MPSoCs Runtime Reconfiguration,” in 1st Workshop on MEth-
ods and TOols for Dataflow PrOgramming (METODO), (Madrid, Spain),
ECSI, Oct. 2014.

[116] X. Cai, M. R. Lyu, K.-F. Wong, and R. Ko, “Component-based software
engineering: Technologies, development frameworks, and quality assurance
schemes,” in Proceedings Seventh Asia-Pacific Software Engeering Confer-
ence. APSEC 2000, pp. 372–379, 2000.

[117] F. Xie, G. Yang, and X. Song, “Component-based hardware/software co-
verification for building trustworthy embedded systems,” Journal of Systems
and Software, vol. 80, pp. 643–654, May 2007.

[118] T. Azumi, M. Yamamoto, Y. Kominami, N. Takagi, H. Oyama, and
H. Takada, “A New Specification of Software Components for Embedded
Systems,” in 10th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC’07), pp. 46–50, May
2007.

[119] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from
Dataflow Graphs. Springer Science & Business Media, Dec. 2012.

[120] “CUDA Programming.” http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html, Sept. 2018.

[121] “OpenCL programming.” http://opencl.org/about/, July 2017.

[122] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[123] I. E. Bennour and J. Abderrazek, “Timed-SDF patterns for applications
throughput analysis,” in 2016 11th International Design Test Symposium
(IDT), pp. 187–192, Dec. 2016.

[124] S. S. Muchnick, Advanced Compiler Design and Implementation. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[125] A. Radulescu and A. J. C. van Gemund, “Fast and effective task schedul-
ing in heterogeneous systems,” in Proceedings 9th Heterogeneous Computing
Workshop (HCW 2000) (Cat. No.PR00556), pp. 229–238, May 2000.

[126] R. Sakellariou and H. Zhao, “A hybrid heuristic for DAG scheduling on hetero-
geneous systems,” in 18th International Parallel and Distributed Processing
Symposium, 2004. Proceedings., pp. 111–, Apr. 2004.

238

[127] S. Wong, Algorithms and Architectures for Visual Tracking. PhD thesis,
University of South Australia, May 2010.

[128] A. Milton, S. Wong, D. Kearney, and S. Lemmo, “The CACTuS Multi-object
Visual Tracking Algorithm on a Heterogeneous Computing System,” in Pro-
ceedings of the 29th International Conference on Image and Vision Comput-
ing New Zealand, (New York, NY, USA), pp. 19–24, ACM, 2014.

[129] A. Milton, Heterogeneous Computing for Bayesian Multi-Object Visual Track-
ing. PhD Thesis, University of South Australia, Adelaide, Jan. 2017.

[130] D. Webb, GPGPU Multi Object Bayesian Tracking with an Embedded System
on a Chip. Masters Thesis, University of South Australia, Adelaide, Dec.
2015.

[131] “CUDA profiler.” http://docs.nvidia.com/cuda/profiler-users-
guide/index.html, Sept. 2017.

[132] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. Tallent, and K. Barker, “Eval-
uating Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and
GPUDirect,” IEEE Transactions on Parallel and Distributed Systems, pp. 1–
1, 2019.

[133] “The JSON Data Interchange Syntax.” http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf, Apr.
2016.

239

	Introduction
	Motivation
	Thesis structure
	Research contributions

	Literature review
	Introduction
	Agile Heterogeneous computing
	Historic perspective
	Agile heterogeneous computing challenges
	Conclusion

	Design flows for agile heterogeneous computing
	Fixed platform design flows
	Variable platform
	Conclusion

	Representation of application algorithm, architectural decisions and platform architecture
	Representing application algorithms
	Intermediate representation
	Representing heterogeneous platform architecture
	Conclusion

	Mapping and scheduling algorithms
	Static and dynamic algorithms
	Static algorithm's taxonomy
	Evolutionary meta-heuristic algorithms
	List-based heuristic algorithms
	Conclusion

	Conclusion

	Research methodology
	Introduction
	Research questions
	Research methodology
	A design flow for agile heterogeneous computing
	Constraint based platform representation
	Intermediate data structure
	Agile mapping and scheduling algorithm
	Sharing of compute engine resources

	Conclusion

	A design flow for agile heterogeneous computing
	Introduction
	Inputs to the design flow
	Agile platform representation
	Application algorithm
	Pre-engineered components

	Design space exploration
	Deployment
	Conclusion

	Representing platform architecture and architectural decisions
	Introduction
	PPG: Parameterised platform graph
	Overview
	Tier 1
	Tier 2
	Example of a parameterised platform graph (PPG)
	Defining architectural decisions
	Conclusion

	ArcSDF: Architecture augmented synchronous dataflow
	Overview
	Comprehensive definition of ArcSDF
	Analysis of ArcSDF
	Conclusion

	Conclusion

	Agile mapping and scheduling algorithm
	Introduction
	The agile mapping and scheduling (AMS) algorithm
	Overview
	rHEFT1: Resource conscious mapping and scheduling
	rHEFT-2: Specialised connectivity topology
	Local platform architecture expansion
	Global platform architecture update
	Conclusion

	AMS algorithm evaluation
	Evaluation framework
	rHEFT-2 evaluation
	AMS evaluation
	Conclusion

	Conclusion

	Case study with a multi-object visual tracking application
	Introduction
	CACTuS visual tracking application
	Dataflow model
	Pre-engineered components
	Conclusion

	The CACTuS application with AhcFlow: comparison with published results
	Design space exploration for the CACTuS application
	Exploration results overview
	Resource usage with mapping and scheduling decisions
	Conclusion

	Application deployment within AhcFlow
	Deployment technique overview
	Parsing and Validation
	Skeleton code generation
	Injection of pre-engineered actors and launch
	Deployment of CACTuS using AhcFlow
	Conclusion

	Conclusion

	Conclusion and future work
	Introduction
	Research questions revisit
	Future work

	CACTuS computation and communication timings
	Bibliography

