Impact of meso-scale heterogeneities on the mechanical behaviour of concrete : insights from in-situ x-ray tomography and E-FEM modelling - Archive ouverte HAL Accéder directement au contenu
Thèse Année : 2020

Impact of meso-scale heterogeneities on the mechanical behaviour of concrete : insights from in-situ x-ray tomography and E-FEM modelling

Effet des hétérogénéités sur le comportement mécanique du béton à l'échelle mésoscopique : apports de la micro-tomographie à rayons-x in-situ combinée à une modélisation E-FEM

Résumé

This doctoral thesis investigates the impact of the meso-scale heterogeneities of concrete (aggregates and macro-pores) on its macroscopic mechanical response. A combined numerical and experimental approach is adopted to study the progressive evolution of the 3D fracturing processes of micro-concrete specimens under uniaxial tension, uniaxial compression and triaxial compression. Part of the originality of this work lies in the exploration of multiple loading paths on concrete samples of realistic composition (including cement, sand, aggregates and water) and in the in-situ nature of the experiments conducted. The experimental campaign is performed inside an x-ray scanner, which allows the internal structure of the material to be non-destructively captured and its evolution from the intact (before loading) until the damaged (after unloading) state to be followed and quantified. The 3D images coming from the x-ray scans are first analysed in order to quantitatively describe the morphology of the meso-structure (aggregates, mortar matrix and macro-pores). A timeseries analysis of the set of 3D images coming from each in-situ test follows, in order to measure the 3D kinematic fields (displacement and strain fields) throughout the experiments. On the numerical side, the identified morphologies coming from the intact x-rays scans are given as an input to a FE meso-model with enhanced discontinuities. The originality of the numerical simulations comes from their 3D nature and the consideration of the actual meso-structure of the micro-concrete specimens, based on the segmentation of the three phases of the material. After a calibration of the model in uniaxial tension, its predictive ability is challenged under different stress paths in compression. An extensive comparison is presented between experimental and numerical observations, in terms of macroscopic responses, displacement fields, fracturing processes and failure patterns. The typical asymmetric behaviour of concrete in tension and compression, as well as the increase of strength and ductility with the increase of confinement are sufficiently captured numerically. Starting from an x-ray scan, it is shown that the model is able to satisfactorily reproduce some of the basic characteristic features of the failure modes observed experimentally for the different loading paths studied. While validating the numerical results and through a combination of numerical and experimental observations, the significant impact of the meso-scale heterogeneities on the local failure mechanisms is revealed. It is shown that, for the studied material, the shape and location of the largest aggregates and macro-pores are essentially driving the fracture patterns under simple tension, simple compression and triaxial compression. The predictive ability of the model strongly suggests that the explicit representation of these heterogeneities is the key feature that allows this predictive power. A further insight into the impact of the meso-structure is obtained by investigating virtual concrete morphologies, generated by modifying the real meso-structures coming from the x-ray scans.
Ce travail de thèse s'intéresse à l’effet des hétérogénéités du béton à l'échelle mésoscopique (granulats et porosités d’air occlus) sur son comportement mécanique à l'échelle macroscopique. Pour ce faire, les processus de déformation et de fissuration d'échantillons de micro-béton soumis à différentes sollicitations (traction, compression simple ou compression confinée) sont analysés en comparant des résultats expérimentaux de mesures de champs 3D avec des simulations d’échantillons de béton numérique.Outre le matériau étudié, représentatif d’un béton, l’originalité des essais expérimentaux vient de leur caractère "in situ" et de la multi-axialité des chargements étudiés. Les essais sont en effet réalisés dans un tomographe à rayons-x, donnant ainsi accès à la structure tridimensionnelle du matériau (de façon non-destructive) tout au long de l'expérience, de l'état initial intact à la rupture. Les images tridimensionnelles issues des radiographies sont également utilisées pour identifier et quantifier la morphologie de la mésostructure dont les phases d'intérêt sont les granulats, la macro-porosité et le mortier. De plus, la série d'images obtenue permet de mesurer des champs cinématiques tridimensionnels (déplacement et déformation), à différents stades du chargement, pour chacun des essais.Ces mesures permettent d'alimenter un modèle Éléments Finis mésoscopique en lui fournissant une mésostructure réaliste et en permettant de calibrer ses paramètres. Il est choisi ici d’identifier le modèle à l'aide des essais de traction simple et d'analyser la prédiction de ce dernier pour les autres types de sollicitations réalisées.L’originalité des simualtions numériques vient de leur caractère tridimentionnel et de la prise en compte d’une "vraie" mésostructure de micro-béton basée sur une segmentation tri-phasique du matériau (macro-pores, granulats et mortier).Une comparaison des résultats expérimentaux et numériques est proposée en confrontant les réponses macroscopiques, les champs cinématiques locaux ainsi que les faciès de fissurations. L’asymétrie des résistances du béton en traction et en compression est bien retrouvée par le modèle ainsi que l'augmentation de la ductilité de la réponse avec la pression de confinement. En outre, le modèle est capable de reproduire de façon satisfaisante les modes de rupture des différents chargements et états de confinement étudiés.L'analyse de la pertinence des prédictions du modèle mésoscopique permet de confirmer l'importance primordiale qu'une représentation réaliste des hétérogénéités a sur le développement des mécanismes de rupture locaux. Nous montrons que c'est principalement la forme et la position des plus grosses hétérogénéités (granulats et macro-pores) qui vont influencer le processus de fissuration du béton étudié, quelle que soit la sollicitation. Les prédictions faites avec le modèle nous encouragent à croire que la représentation explicite de la morphologie réelle est l'ingrédient clé de la bonne concordance observée, entre expérience et modélisation. A ce sujet, une étude numérique sur l'impact des formes sur le comportement est finalement conduite.
Fichier principal
Vignette du fichier
STAMATI_2020_archivage.pdf (59.93 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-02923399 , version 1 (27-08-2020)

Identifiants

  • HAL Id : tel-02923399 , version 1

Citer

Olga Stamati. Impact of meso-scale heterogeneities on the mechanical behaviour of concrete : insights from in-situ x-ray tomography and E-FEM modelling. Mechanics of materials [physics.class-ph]. Université Grenoble Alpes [2020-..], 2020. English. ⟨NNT : 2020GRALI023⟩. ⟨tel-02923399⟩

Collections

UGA CNRS 3S-R STAR
436 Consultations
47 Téléchargements

Partager

Gmail Facebook X LinkedIn More