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à deux niveaux, matrices hiérarchiques

Contexte de la thèse

Les modèles mathématiques sont particulièrement utiles pour décrire des problèmes issus de la physique et de l'ingénierie tels que l'acoustique, la mécanique ou l'électromagnétisme. Ils permettent d'exprimer des phénomènes physiques dans un langage unifié et rigoureux. En particulier, les équations aux dérivées partielles relient les grandeurs physiques et leurs éventuelles variations. La résolution de telles équations permet de mieux comprendre et prédire le comportement de ces grandeurs physiques à l'erreur du modèle mathématique près, qui ne peut que simplifier la complexité de la physique.

Mais les solutions d'équations aux dérivées partielles sont rarement connues explicitement. Heureusement, l'invention et l'évolution des ordinateurs depuis le siècle dernier ont permis aux scientifiques d'inventer des méthodes numériques pour les approcher. À partir de l'analyse des équations aux dérivées partielles et du comportement de leurs solutions, les mathématiciens du domaine de l'analyse numérique étudient l'erreur et l'efficacité de ces approximations.

1 La résolution numérique des équations aux dérivées partielles conduit à des systèmes linéaires à résoudre par ordinateur. La performance des calculateurs est alors cruciale. Ainsi, l'amélioration de leurs performances se traduit par des simulations numériques plus rapides et la résolution de problèmes plus importants. Jusqu'au milieu des années 2000, ces améliorations provenaient de l'augmentation de la fréquences des processeurs utilisés pour les simulations. À partir du milieu du XXe siècle, la loi de Moore stipule que le nombre de transistors par microprocesseur double tous les deux ans, tandis que la règle d'échelle de Dennard [START_REF] Robert | Design of ion-implanted MOSFET's with very small physical dimensions[END_REF] indique que la puissance nécessaire au fonctionnement des transistors dans un volume donné reste constante, peu importe le nombre de transistors. La combinaison de ces deux lois (également appelée loi de Koomey [START_REF] Koomey | Implications of Historical Trends in the Electrical Efficiency of Computing[END_REF]) signifie que la performance par watt augmente au même rythme que la loi de Moore. Mais à partir du milieu des années 2000, la taille des transistors est devenue si petite que les limitations physiques ont mis fin à la règle d'échelle de Dennard, principalement à cause des fuites de courant et de la dissipation thermique, et donc l'efficacité des processeurs monocoeurs a commencé à stagner.

La fin de la règle d'échelle de Dennard ayant conduit à un changement dans les architectures des ordinateurs, le calcul parallèle est devenu le nouveau paradigme. Il est aujourd'hui largement utilisé pour le calcul haute performance dans les supercalculateurs, mais aussi dans les ordinateurs personnels et les téléphones portables où les processeurs multicoeurs sont aujourd'hui courants. La figure 1.1 1 illustre ces différentes tendances.

Cette évolution de l'architecture des ordinateurs a également eu une conséquence dans le développement des méthodes numériques, où le parallélisme des algorithmes est aujourd'hui indispensable à leur efficacité sur supercalculateur. Dans le cas des algorithmes de résolution de systèmes linéaires, il existe deux classes de méthodes : les méthodes directes et les méthodes itératives. D'une part, les méthodes directes sont connues pour être robustes, mais leur nombre d'opérations et leur consommation mémoire peuvent être importantes pour les grands systèmes. D'autre part, les méthodes itératives ont une faible consommation mémoire parce qu'elles se composent principalement de produits matrice-vecteur avec le système linéaire original, et peuvent donc être plus faciles à paralléliser. Mais elles sont moins robustes et peuvent ne pas converger.

Notons Ax = f le système linéaire considéré. Une méthode pour améliorer la robustesse des méthodes itératives est de multiplier le système par un autre opérateur P appelé préconditionneur, afin que PAx = Pf soit plus facile à résoudre, et dont l'application n'est pas trop coûteuse.

Méthodes de décomposition de domaine et équations intégrales de frontière

Les méthodes de décomposition de domaine regroupent un large éventail de techniques dont le point commun est principalement une stratégie de « diviser pour régner », qui est naturellement parallèle et donc bien adaptée aux ordinateurs modernes. Dans cette thèse, nous nous intéresserons aux méthodes de Schwarz, une classe particulière de méthodes de décomposition de domaine. Elles consistent à diviser le domaine de calcul en plusieurs sous-domaines dans lesquels nous résolvons des problèmes locaux tout en échangeant des informations pertinentes entre eux. Deux points de vue existent sur ces méthodes, elles peuvent être considérées comme des algorithmes itératifs où une approximation de la solution de l'équation considérée est calculée à chaque itération, ou comme des préconditionneurs pour résoudre le système linéaire original par des méthodes itératives de type Krylov (gradient conjugué, GMRes, gradient biconjugué,…).

Mais dans les deux cas, les problèmes locaux sont typiquement résolus par des méthodes directes, c'est pourquoi ces méthodes sont dites hybrides. Dans cette thèse, nous cherchons à adapter les méthodes de Schwarz aux équations intégrales de frontière qui sont des reformulations des équations aux dérivées partielles usuelles. En utilisant la fonction de Green de l'équation aux dérivées partielles considérée, des opérateurs intégraux peuvent être définis pour formuler une équation intégrale dont l'inconnue est liée à la frontière du problème initial. Les principaux avantages des équations intégrales de frontière sont que le domaine de calcul comporte une dimension de moins, et que la condition à l'infini est naturellement satisfaite. Cela signifie en particulier que les problèmes en domaine non-borné sont naturellement formulés à l'aide d'équations intégrales de frontière.

Mais les équations intégrales de frontière sont limitées aux problèmes dont la fonction de Green est explicitement connue, tels que les problèmes elliptiques à coefficients constants. Par ailleurs, les opérateurs intégraux sont non-locaux, rendant l'analyse mathématique plus difficile. En pratique, cela signifie aussi que les matrices obtenues par une méthode de Galerkin sont denses, contrairement aux matrices issues de la méthode des éléments finis qui sont creuses.

Dans le cas des équations intégrales de frontières, on pourrait penser à deux approches de décomposition de domaine, comme indiqué dans l'introduction de [START_REF] Hahne | Schwarz iterations for the efficient solution of screen problems with boundary elements[END_REF]. Nous pouvons faire une décomposition du domaine où la solution est recherchée, une décomposition volumique, puis formuler une équation intégrale de frontière dans chaque sous-domaine en les couplant. Ou nous pouvons d'abord établir une équation intégrale de frontière et ensuite appliquer une décomposition de domaine de la frontière, une décomposition surfacique.

Résumé et contributions

Le sujet principal de cette thèse est d'établir des liens entre les méthodes de décomposition de domaine et les équations intégrales de frontières en utilisant les différents points de vue décrits dans la section précédente. Outre les défis scientifiques auxquels nous avons dû faire face, une difficulté inhérente à ce sujet est d'ordre pédagogique. Les méthodes de décomposition de domaine et les équations intégrales de frontière correspondent à deux domaines de recherche distincts. C'est pourquoi nous prendrons le temps de présenter succinctement ces deux domaines en donnant des références importantes, afin que les lecteurs de l'une ou l'autre communauté puissent lire ce document. Ce dernier est structuré en six chapitres dont le chapitre 1 est la présente introduction.

Dans le chapitre 2, nous présentons au lecteur les équations d'intégrale de frontière avec la plupart des résultats de base.

• Nous définissons les espaces de Sobolev fractionnaires, les espaces d'énergie des équations intégrales de frontière considérées.

• Les équations aux dérivées partielles elliptiques sont introduites avec les résultats concernant leur caractère bien posé.

• Les opérateurs intégraux de frontière associés, basés sur la fonction de Green, sont présentés.

• Nous faisons le lien entre les opérateurs intégraux de frontière et le projecteur Calderón, ainsi qu'avec l'opérateur Dirichlet-to-Neumann.

• Les équations intégrales de frontière sont présentées sous plusieurs formes et les résultats sur leur caractère bien posé sont présentés.

Dans le chapitre 3, nous donnons au lecteur une introduction très succincte aux méthodes de Schwarz. Nous présentons les deux points de vue, comme algorithmes itératifs et comme préconditionneurs.

• Nous donnons une présentation historique des méthodes de Schwarz avec les principaux algorithmes itératifs.

• La méthode de Schwarz optimale est présentée et son optimalité est illustrée.

• Après avoir présenté le cadre discret lié à la méthode des éléments finis, nous présentons les outils théoriques pour étudier les préconditionneurs de Schwarz, et notamment le lemme de l'espace fictif.

• Nous l'utilisons afin d'analyser le préconditionneur additif Schwarz sans espace grossier, pour justifier de la nécessité d'un espace grossier ajoutant un minimum de communication globale entre les sous-domaines.

• Nous présentons l'espace grossier GenEO (Generalized Eigenproblem in the Overlap), qui est basé sur des problèmes aux valeurs propres généralisés locaux.

Le chapitre 4 est consacré à notre travail sur la méthode multi-trace locale. Nous considérons une décomposition volumique, dans laquelle une équation intégrale de frontière est formulée dans chaque sous-domaine. Cela permet de représenter une équation avec des coefficients constants par morceaux dans chaque sous-domaine. Il existe plusieurs formulations pour ce type de problèmes : la formulation PMCHWT (Poggio-Miller-Chang-Harrington-Wu-Tsai) [START_REF] Poggio | Integral equation solutions of three-dimensional scattering problems[END_REF][START_REF] Chang | A surface formulation for characteristic modes of material bodies[END_REF][START_REF] Wu | Scattering from arbitrarily-shaped lossy dielectric bodies of revolution[END_REF] aussi appelée principe de réaction de Rumsey, la méthode BETI (Boundary Element Tearing and Interconnecting) [START_REF] Langer | Boundary element tearing and interconnecting methods[END_REF] et les formulations Multi-Trace (MTF) [START_REF] Claeys | Multitrace boundary integral equations[END_REF]. Dans [START_REF] Claeys | An introduction to multi-trace formulations and associated domain decomposition solvers[END_REF], des résultats intéressants ont été présentés pour Dissipative Helmholtz et l'opérateur associé à local-MTF, une variante de MTF. Les auteurs ont examiné une discrétisation particulière de local-MTF liée à une méthode de Jacobi. Ils ont prouvé que pour deux et trois domaines, celle-ci converge en un nombre fini d'itérations pour des coefficients constants dans tout le domaine et avec un choix particulier de paramètre dans la méthode. Une équivalence avec la méthode optimale de Schwarz est également présentée pour deux sous-domaines dans une dimension, où tout peut être fait de manière analytique. Nous généralisons ces résultats dans ce chapitre.

• Les opérateurs intégraux dans un contexte multi-domaines sans points de jonction sont introduits, ce qui permet de présenter la formulation PMCHWT et local-MTF.

• Nous introduisons la méthode de Jacobi de [START_REF] Claeys | An introduction to multi-trace formulations and associated domain decomposition solvers[END_REF] dans un cadre plus général (n sous-domaines sans points de jonction et équation elliptique générique) et nous prouvons qu'elle converge en un nombre fini d'itérations pour des coefficients constants dans tout le domaine avec un choix particulier de paramètre dans la méthode. Nous donnons explicitement le nombre d'itérations pour converger en fonction de la géométrie.

• Nous prouvons également l'équivalence entre le local-MTF et la méthode de Schwarz optimale pour ce choix particulier de paramètres et des coefficients constants dans le domaine.

• Des expériences numériques sont menées pour illustrer ces résultats théoriques et pour observer ce qui se passe lorsque les hypothèses ne sont plus satisfaites, par exemple des coefficients constants par sous-domaine au lieu de constants dans tout le domaine. Ainsi, nous montrons le potentiel et les limites de cette approche.

Dans le chapitre 5, nous présentons nos travaux sur les préconditionneurs de Schwarz pour la méthode des éléments finis de frontière. Les méthodes de Schwarz sont bien connues pour les équations aux dérivées partielles, et leur application à la méthode des éléments finis de frontière en tant que préconditionneurs a également été explorée (voir [START_REF] Hahne | Schwarz iterations for the efficient solution of screen problems with boundary elements[END_REF][START_REF] Tran | Additive Schwarz methods for the h-version boundary element method[END_REF][START_REF] Heuer | Efficient Algorithms for the p-Version of the Boundary Element Method[END_REF]) avec un espace grossier basé sur un problème grossier. Les stratégies élaborées jusqu'à maintenant dans la litérature semblent être des adaptations du cadre présenté dans [START_REF] Toselli | Domain decomposition methods: algorithms and theory[END_REF]Chapitre 3]. Cela signifie qu'un problème grossier est défini pour construire l'espace grossier, de telle sorte qu'il assure un conditionnement indépendant du nombre de sous-domaines. Mais le problème grossier pertinent dépend de l'opérateur, de la dimension, etc. À notre tour, nous adaptons l'espace grossier GenEO à des équations intégrales de frontière symétriques et définies positives. Cet espace grossier a l'avantage d'être plus algébrique car il est construit à partir de problèmes aux valeurs propres généralisés. À notre connaissance, c'est le premier espace grossier spectral et adaptatif pour les éléments finis de frontière.

• Nous présentons le cadre discret associé à la méthode des éléments finis de frontière et à la décomposition surfacique.

• Plusieurs inégalités liées à la localisation des normes fractionnaires de Sobolev sont présentées.

• En utilisant le cadre du lemme de l'espace fictif avec l'approche de l'espace grossier GenEO, nous introduisons de nouveaux espaces grossiers spectraux pour l'opérateur hypersingulier.

• Nous effectuons plusieurs tests numériques pour vérifier que la méthode passe à l'échelle en termes de nombre d'itérations.

• Des perspectives pour l'extension de la méthode sont données et des tests numériques avec des préconditionneurs de Schwarz pour l'opérateur faiblement singulier et l'équation d'Helmholtz sont présentés.

Dans le chapitre 6, nous présentons notre implémentation parallèle de matrices hiérarchiques pour pouvoir utiliser des préconditionneurs de Schwarz. Une particularité de la méthode des éléments finis de frontière par rapport à la méthode des éléments finis usuelle est que les systèmes linéaires à résoudre sont denses. Cela peut s'avérer rapidement très coûteux en terme de nombres d'opérations et de stockage pour les grands systèmes, ce qui rend les techniques de compression nécessaires. Plusieurs techniques existent, panel clustering [START_REF] Hackbusch | On the fast matrix multiplication in the boundary element method by panel clustering[END_REF][START_REF] Hackbusch | On the efficient use of the Galerkin-method to solve Fredholm integral equations[END_REF], Fast Multipole Method (FMM) [START_REF] Rokhlin | Rapid solution of integral equations of classical potential theory[END_REF][START_REF] Greengard | Accelerating fast multipole methods for the Helmholtz equation at low frequencies[END_REF][START_REF] Darve | The Fast Multipole Method I: Error Analysis and Asymptotic Complexity[END_REF][START_REF] Darve | The Fast Multipole Method I: Error Analysis and Asymptotic Complexity[END_REF][START_REF] Darve | The fast multipole method: numerical implementation[END_REF], matrices hiérarchiques (H et H 2 -matrices) [START_REF] Hackbusch | A Sparse Matrix Arithmetic Based on H -Matrices. Part I: Introduction to H -Matrices[END_REF][START_REF] Hackbusch | A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems[END_REF][START_REF] Hackbusch | On H 2 -Matrices[END_REF][START_REF] Börm | Data-sparse approximation of non-local operators by H 2 -matrices[END_REF][START_REF] Bebendorf | Hierarchical matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems[END_REF][START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF] Adaptive Cross Approximation (ACA) [START_REF] Bebendorf | Approximation of boundary element matrices[END_REF][START_REF] Bebendorf | Adaptive Low-Rank Approximation of Collocation Matrices[END_REF][START_REF] Börm | Hybrid cross approximation of integral operators[END_REF][START_REF] Bebendorf | Hierarchical matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems[END_REF], Sparse Cardinal Sine Decomposition (SCSD) [START_REF] Alouges | The sparse cardinal sine decomposition and its application for fast numerical convolution[END_REF] et wavelet compression techniques [START_REF] Alpert | Wavelet-like bases for the fast solution of second-kind integral equations[END_REF]. Nous avons utilisé des matrices hiérarchiques car leur construction a l'avantage d'être algébrique et indépendante du noyau. Pour pouvoir réaliser des expériences numériques avec les préconditionneurs de Schwarz, nous avons développé Htool, une bibliothèque C ++ pour les matrices hiérarchiques parallélisée avec MPI et OpenMP. Des illustrations numériques des différents concepts présentés dans ce chapitre sont présentées à l'aide de Htool.

• Plusieurs approximations classiques de rang faible sont présentées, à savoir la SVD tronquée, l'approximation adaptative en croix entièrement pivotée et l'approximation adaptative croisée partiellement pivotée.

• Nous présentons les différentes structures hiérarchiques nécessaires pour définir une matrice hiérarchique.

• Notre mise en oeuvre de ces concepts est présentée. En particulier, nous montrons comment Htool est conçue pour faciliter les ajouts et nous présentons comment la bibliothèque est parallélisée pour le processus de construction des matrices hiérarchiques et l'assemblage de l'espace grossier GenEO.

• Enfin, nous donnons quelques perspectives de développement logiciel pour la bibliothèque.

Publications : Cette thèse a donné lieu aux publications suivantes :

• Pierre Marchand, Xavier Claeys, Pierre Jolivet, Frédéric Nataf, Pierre-Henri Tournier (2019). Boundary integral multi-trace formulations and Optimised Schwarz Methods. (Submitted to Numerische Mathematik).

• Xavier Claeys, Pierre [START_REF] Claeys | Boundary integral multi-trace formulations and Optimised Schwarz Methods[END_REF]. Boundary integral multi-trace formulations and Optimised Schwarz Methods. (Submitted to Computers and Mathematics with Applications).

Développement logiciel : Cette thèse a conduit à l'implémentation de Htool disponible sur la page de l'auteur2 , une bibliothèque C ++ header-only pour les matrices hiérarchiques parallélisée avec MPI et OpenMP. Toutes les expériences numériques seront disponibles prochainement sur la page web de l'auteur.

Introduction: english version 1.2.1 Context of the thesis

Mathematical models are particularly useful for describing problems in physics and engineering such as acoustics, mechanics or electromagnetics. They allow physical phenomena to be expressed with a unified and rigorous language. In particular, partial differential equations relate physical quantities and their possible variations. Solving such equations makes it possible to better understand and predict the behaviour of these physical quantities up to the error of the mathematical model, which can only simplify the complexity of the physics. However solutions of partial differential equations are rarely explicitly known. Fortunately, the invention and evolution of computers since the last century has allowed scientists to invent numerical methods to approximate them. From the analysis of partial differential equations and the behaviour of their solutions, mathematicians in the field of numerical analysis study the error and efficiency of these approximations.

The numerical solution to partial differential equations leads to linear systems to be solved by computers, whose performance is then crucial. Thus, improving their performance results in faster numerical simulations and solving larger problems. Until the mid-2000s, these improvements were due to the increase in the frequency of the processors used for simulations. From the mid-20th century, Moore's law stated that the number of transistors on a chip would double every two years, while Dennard scaling [START_REF] Robert | Design of ion-implanted MOSFET's with very small physical dimensions[END_REF] stated that the power needed to run transistors in a unit volume stays constant, regardless of the number of transistors. The combination of these two laws (also called Koomey's law [START_REF] Koomey | Implications of Historical Trends in the Electrical Efficiency of Computing[END_REF]) meant that performance per watt increases at the same rate as Moore's law. But from the mid-2000s, the size of the transistors became so small that physical limitations broke Dennard scaling, mainly due to current leakage and heat dissipation, and so the efficiency of single-core processors began to stagnate.

The breakdown of Dennard scaling led to a change in computer architectures, parallel computing became the new paradigm. It is now widely used in high-performance computing on supercomputers, but also on personal computers and mobile phones where multicore processors are common now. Figure 1.1 3 illustrates these different trends.

This change in computer architectures also had a consequence in the development of numerical methods, where parallelism of the algorithms is now essential for them to be efficient on supercomputers. In the case of algorithms for solving linear systems, there exist two classes of methods: direct methods and iterative methods. On the one hand, direct methods are known to be robust but their number of operations and memory consumption can be overwhelming for large systems. On the other hand, iterative methods have low memory consumption because they consist mainly of matrix-vector products with the original linear system, and may therefore be easier to parallelize. But they are less robust and might not converge.

Denoting Ax = f the considered linear system, a method to circumvent the lack of robustness of iterative methods is to multiply the system by another operator P called preconditioner, so that PAx = Pf is easier to solve, and whose application is not too expensive.

Domain decomposition methods and Boundary Element Method

Domain decomposition method is a term that encompasses a wide range of approaches whose common point is mainly a "divide and conquer" strategy, which is naturally parallel and therefore well suited to modern computers. In this thesis, we will be interested in Schwarz methods, 1970 1980 1990 a particular class of domain decomposition methods. It consists in dividing the computational domain in many subdomains on which we solve local problems while exchanging relevant information between them. Two points of view exist on these methods, they can be seen as iterative algorithms where an approximated solution is computed at each iteration, or as preconditioners for solving the original linear system with iterative methods such as Krylov methods (conjugate gradient, GMRes, biconjugate grandient,…). But in both cases, local problems are typically solved using direct methods, hence they are called hybrid methods.

In this thesis, we seek to adapt Schwarz methods to boundary integral equations that consist in reformulations of usual partial differential equations. Using the Green function of the considered partial differential equation, integral operators can be defined to formulate an integral equation whose unknown is related to the boundary of the original problem. The main advantages of boundary integral equations are that the computational domain is one dimension smaller, and the condition at infinity is naturally satisfied. This means in particular that problems in unbounded domains are naturally formulated using boundary integral equations.

But they are restricted to problems whose Green function is explicitly known, such as elliptic problems with constant coefficients, and the integral operators are non-local making the mathematical analysis more difficult. In practice, it also means that matrices obtained by Galerkin methods are dense, contrary to matrices stemming from the finite element method which are sparse.

In the case of boundary integral equations, we could think of two approaches for domain decomposition, as pointed out in the introduction of [START_REF] Hahne | Schwarz iterations for the efficient solution of screen problems with boundary elements[END_REF]. We could make a decomposition of the original domain where the solution is sought, a volume decomposition, and then formulate a boundary integral equation in each subdomain with some ways of coupling them. Or we could first set up a boundary integral equation and then apply a domain decomposition of the boundary, a surface decomposition.

Summary and contributions

The main subject of this thesis is to make connections between domain decomposition methods and boundary integral equations using the different points of view described in the previous section. In addition to the scientific challenges we had to face, an inherent difficulty in this subject is pedagogical. Domain decomposition methods and boundary integral equations correspond to two distinct fields of research. With this in mind, we will take the time to present succinctly both domains giving important references for each field, so that readers from one community or the other could still read this manuscript. The manuscript is structured in six chapters whose Chapter 1 is the current introduction.

In Chapter 2, we introduce the reader to boundary integral equations with most of the basic results.

• We define fractional Sobolev spaces, the energy spaces of the considered boundary integral equations.

• Classically, we introduce usual elliptic partial differential equations and results about their well-posedness.

• The associated boundary integral operators based on their Green functions are presented.

• We make the connection between the boundary integral operators, and both Calderón projectors and Dirichlet-to-Neumann operator.

• Boundary integral equations in several forms are given, and results about their wellposedness are presented.

In Chapter 3, we give to the reader a very succinct introduction to Schwarz methods. We present both points of view, as iterative algorithms and as preconditioners.

• We give an historical presentation of Schwarz methods with the main iterative algorithms, alternating Schwarz method and parallel Schwarz method.

• The optimal Schwarz method is introduced and its optimality is illustrated.

• After introducing the discrete setting, we present the theoretical framework to study Schwarz preconditioners using the fictitious space lemma.

• We use it to analyse the additive Schwarz preconditioner without coarse space, to justify the need for a mechanism adding a minimum of global communication between the subdomains.

• We present the GenEO (Generalized Eigenproblem in the Overlap) coarse space, which is based on local eigenproblems.

Chapter 4 is devoted to our work on multi-trace method. We consider a volume decomposition in which, a boundary integral equation is formulated in each subdomain. It allows having an equation with piecewise constant coefficients in each subdomain. There exist several formulations for this type of problems: the PMCHWT (Poggio-Miller-Chang-Harrington-Wu-Tsai) formulation [START_REF] Poggio | Integral equation solutions of three-dimensional scattering problems[END_REF][START_REF] Chang | A surface formulation for characteristic modes of material bodies[END_REF][START_REF] Wu | Scattering from arbitrarily-shaped lossy dielectric bodies of revolution[END_REF] also called Rumsey's reaction principle, the Boundary Element Tearing and Interconnecting (BETI) method [START_REF] Langer | Boundary element tearing and interconnecting methods[END_REF] and Multi-Trace Formulations (MTF) [START_REF] Claeys | Multitrace boundary integral equations[END_REF]. In [START_REF] Claeys | An introduction to multi-trace formulations and associated domain decomposition solvers[END_REF], interesting results have been presented for Dissipative Helmholtz and the operator associated with local-MTF, a variant of MTF. The authors considered a particular discretization of local-MTF related to a Jacobi method, and they proved that for two and three domains it converges in a finite number of iterations for constant coefficients in the whole domain, with a particular choice of parameter in the method. An explicit equivalence with the optimal Schwarz method is also presented for two subdomains in one dimension, where everything can be done analytically. We generalize these results in this chapter.

• Integral operators in a multi-subdomain setting without junction points are introduced, which allows presenting PMCHWT formulation and local-MTF.

• We introduce the Jacobi method from [START_REF] Claeys | An introduction to multi-trace formulations and associated domain decomposition solvers[END_REF] in a more general setting (n subdomains without junction points and any elliptic equation) and we prove that it converges in a finite number of iterations for constant coefficients in the whole domain, with a particular choice of parameter in the method. We give explicitly the number of iterations to converge in function of the geometry.

• We also prove the equivalence between local-MTF and the optimal Schwarz method for this particular choice of parameter and constant coefficients.

• Numerical experiments are conducted to illustrate these theoretical results and to observe what happens when the hypotheses no longer hold, piecewise constant coefficients in each subdomain instead of constant in the whole domain for example. Thus, we show the potentialities and the limits of this approach.

In Chapter 5, we present our work on Schwarz preconditioners for the boundary element method. Schwarz methods are well-known for usual partial differential equations, and their application to boundary element method as preconditioners has also been explored (see [START_REF] Hahne | Schwarz iterations for the efficient solution of screen problems with boundary elements[END_REF][START_REF] Tran | Additive Schwarz methods for the h-version boundary element method[END_REF][START_REF] Heuer | Efficient Algorithms for the p-Version of the Boundary Element Method[END_REF]) with a coarse space based on a coarse problem. As far as we know, the strategies developed in the present literature are usually adaptations of the framework presented in [START_REF] Toselli | Domain decomposition methods: algorithms and theory[END_REF]Chapter 3]. It means that a coarse problem is defined to build the coarse space such that it ensures a condition number independent of the number of subdomains. But the relevant coarse problem depends on the operator, the dimension, etc. In our turn, we adapt the GenEO coarse space to symmetric positive definite boundary integral equations. This coarse space has the advantage to be more algebraic, because it is built upon local generalized eigenproblems. As far as we know, it is the first adaptive spectral coarse space for the boundary element method.

• We introduce the discrete setting associated with the boundary element method and the surface domain decomposition.

• Several inequalities related to the localization of fractional Sobolev norms are presented.

• Using the framework of the fictitious space lemma with the approach of the GenEO coarse space, we introduce several new spectral coarse spaces for the hypersingular operator.

• We conduct several numerical tests to check the scalability of the method in terms of number of iterations.

• Perspectives to extend the method are given and numerical tests with Schwarz preconditioners for the weakly singular operator and Helmholtz are shown.

In Chapter 6, we present our parallel implementation of hierarchical matrices for using Schwarz preconditioners. A particularity of the boundary element method compared to the finite element method is that the linear systems to solve are dense. This can be quickly overwhelming in terms of storage and number of operations for large systems, making compression techniques mandatory. Several techniques exist, panel clustering [START_REF] Hackbusch | On the fast matrix multiplication in the boundary element method by panel clustering[END_REF][START_REF] Hackbusch | On the efficient use of the Galerkin-method to solve Fredholm integral equations[END_REF], Fast Multipole Method (FMM) [START_REF] Rokhlin | Rapid solution of integral equations of classical potential theory[END_REF][START_REF] Greengard | Accelerating fast multipole methods for the Helmholtz equation at low frequencies[END_REF][START_REF] Darve | The Fast Multipole Method I: Error Analysis and Asymptotic Complexity[END_REF][START_REF] Darve | The fast multipole method: numerical implementation[END_REF], hierarchical matrices (H and H 2 -matrices) [START_REF] Hackbusch | A Sparse Matrix Arithmetic Based on H -Matrices. Part I: Introduction to H -Matrices[END_REF][START_REF] Hackbusch | A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems[END_REF][START_REF] Hackbusch | On H 2 -Matrices[END_REF][START_REF] Börm | Data-sparse approximation of non-local operators by H 2 -matrices[END_REF][START_REF] Bebendorf | Hierarchical matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems[END_REF][START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF] Adaptive Cross Approximation (ACA) [START_REF] Bebendorf | Approximation of boundary element matrices[END_REF][START_REF] Bebendorf | Adaptive Low-Rank Approximation of Collocation Matrices[END_REF][START_REF] Börm | Hybrid cross approximation of integral operators[END_REF][START_REF] Bebendorf | Hierarchical matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems[END_REF], Sparse Cardinal Sine Decomposition (SCSD) [START_REF] Alouges | The sparse cardinal sine decomposition and its application for fast numerical convolution[END_REF] and wavelet compression techniques [START_REF] Alpert | Wavelet-like bases for the fast solution of second-kind integral equations[END_REF]. In our work, we used hierarchical matrices, which have the advantage to be algebraic and kernel independent. To be able to conduct numerical experiments with Schwarz preconditioners, we developed Htool, a C ++ library for hierarchical matrices parallelized with MPI and OpenMP. Numerical illustrations of the different concepts introduced in this chapter are provided using Htool.

• Several classical low-rank approximations are presented, namely truncated SVD, fully pivoted adaptive cross approximation and partially pivoted adaptive cross approximation.

• We present the different hierarchical structures to define a hierarchical matrix.

• Our implementation of these concepts are presented. In particular, we show how the library is designed to facilitate easy additions and we present how the library is parallelized for the building process of hierarchical matrices and the assembly of the GenEO coarse space.

• Finally, we give some software development perspectives for the library.

Publications: This thesis led to the following publications: [START_REF] Sauter | Boundary element methods[END_REF][START_REF] Rjasanow | The Fast Solution of Boundary Integral Equations[END_REF][START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF] for more details.

Sobolev spaces

In this section, we define the function spaces that we will need later to introduce BIE. To do so, we first define the domain on which the function spaces will be defined. Then we introduce the relevant functional spaces, namely the Sobolev-Slobodeckij spaces H s . We refer to [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF][START_REF] Sauter | Boundary element methods[END_REF] for more details.

Lipschitz domains and surfaces

Let Ω ⊂ R d be an open set and d ≥ 2 an integer, its boundary Γ is defined as follows:

Γ = ∂Ω = Ω ∩ (R d \ Ω).
Then Ω is said to be a Lipschitz domain, if its boundary can be represented locally as the graph of a Lipschitz function in an appropriate orthonormal basis. More precisely, we have the following definitions:

Definition 2.1 (Lipschitz hypograph). Ω is said to be a Lipschitz hypograph if it can be represented as

Ω = x = (x i ) d i=1 ∈ R d | x d < ζ(x ) for all x = (x i ) d-1 i=1 ∈ R d-1 ,
where ζ : R d-1 → R is a Lipschitz function.

Definition 2.2 (Lipschitz domain, [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF]Definition 3.28]). Ω is said to be a Lipschitz domain if its boundary Γ is compact and if there exist finite families W j and Ω j ⊂ R d with 1 ≤ j ≤ J such that:

(i) The family {W j } is a finite open cover of Γ, that is to say, each W j is an open subset of R d and Γ ⊆ ∪ j W j .
(ii) Each Ω j can be transformed to a Lipschitz hypograph by a rigid motion, i.e., by a rotation and a translation.

(iii) W j ∩ Ω = W j ∩ Ω j for each j.

Remarks 2.3.

• Ω can be unbounded, even if Γ is bounded.

• If Ω is a Lipschitz hypograph, then Γ = x = (x i ) d i=1 ∈ R d | x d = ζ(x ) for all x = (x i ) d-1 i=1 ∈ R d-1
• Polygons in R 2 and polyhedrons in R 3 are Lipschitz domains.

Sobolev-Slobodeckij spaces

Let Ω ⊆ R d be a non-empty open set, we denote by L 2 (Ω) the usual space of Lebesgue square integrable functions equipped with the standard norm • L 2 (Ω) . We also define the space of infinitely differentiable functions with compact support in Ω,

D(Ω) := {u ∈ C ∞ (Ω) with supp(u) ⊆ K for some K, a compact subset of Ω} , so that D * (Ω) is the space of Schwartz distributions. Let α = (α 1 , . . . , α d ), β = (β 1 , . . . , β d ) ∈ N d ,
be some d-tuples, and denote

∂ α u := ∂ ∂x 1 α1 . . . ∂ ∂x d α d u and x β := x β1 1 , . . . , x β d d ,
we define Sobolev spaces as follows: for 0 ≤ p < ∞,

H p (Ω) := u ∈ L 2 (Ω) | ∂ α u ∈ L 2 (Ω) for |α| ≤ p ,
where ∂ α u is a distribution on Ω, and we define its norm

u 2 H p (Ω) := |α|≤p Ω |∂ α u(x)| 2 dx.
For spaces of fractional order, we define the Slobodeckij semi-norm: for 0 < µ < 1

|u| 2 µ,Ω := Ω Ω |u(x) -u(y)| 2
|x -y| d+2µ dx dy, so that, with s = r + µ > 0 r an integer and 0 < µ < 1, we can define the following space, called Sobolev-Slobodeckij space H s (Ω) := {u ∈ H r (Ω) | |∂ α u| µ,Ω < ∞ for |α|= r} equipped with the norm

u 2 H s (Ω) := u 2 H r (Ω) + |α|=r |∂ α u| 2 µ,Ω .
Then, we define two subspaces of H s (Ω),

H s (Ω) := D(Ω) H s (R d )
and H s 0 (Ω) := D(Ω)

H s (Ω)
.

We define 

H -s (R d ) as the dual of H s (R d ).
(Ω) = H s (Ω) for -1/2 < s < 1/2 since
there is no notion of trace anymore. We associate the following norms to the negative order Sobolev spaces

u H -s (Ω) := sup v∈ H s (Ω)\{0} | u, v H -s (Ω)× H s (Ω) | v H s (Ω) , for u ∈ H -s (Ω) w H -s (Ω) := sup v∈H s (Ω)\{0} | w, v H -s (Ω)×H s (Ω) | v H -s (Ω)
, for w ∈ H s (Ω).

Remark 2.4 (Notations).

According to [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF]Theorem 3.33], if Ω is a Lipschitz domain and s ≥ 0 then H s (Ω) = H s 0 (Ω) provided s / ∈ {1/2, 3/2, 5/2, . . .}. In particular, we have H 1 0 (Ω) = H 1 (Ω). In the literature, the notation H 1/2 (Ω) is used in the BIE community following [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF] but it is more often denoted H 1/2 00 (Ω) in the FEM community following [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF].

Sobolev spaces on the boundary

We extend the previous definitions to Sobolev spaces on boundaries Γ = ∂Ω and Γ 0 Γ, which corresponds to a Lipschitz curve in 2D and a Lipschitz surface in 3D. For the sake of completeness, we recall these definitions in this section.

Any Lipschitz domain Ω has a surface measure σ, and an outward unit normal ν that exists σ-almost everywhere on Γ. Using the notations from Definition 2.2 and [139, Theorem 2.7.1. (Rademacher)], we have that a lipschitz function on an open set of R d is differentiable almost everywhere. In particular, we have

∇ζ L ∞ (R d-1 ) d-1 ≤ M
where M is a Lipschitz constant for ζ. Then, for a Lipschitz hypograph, we have

dσ = 1 + |∇ζ(x )| 2 dx
and n(x) = (-∇ζ(x ), 1)

1 + |∇ζ(x )| 2 , for x ∈ Γ. In particular, we deduce that n ∈ (L ∞ (Γ)) d .
Let Ω be a Lipschitz domain, we define Sobolev-Slobodeckij spaces on Γ = ∂Ω exactly as for (d -1)-dimensional domains but using surface integral. As in [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]Section 1.3.3], we define the associated norm as

u 2 H s (Γ) := u 2 L 2 (Γ) + Γ Γ |u(x) -u(y)| 2 |x -y| d+2s dσ(x) dσ(y), for 0 < s < 1, so that H s (Γ) := {u | u H s (Γ) < ∞}.
Since Ω is a Lipschitz domain, we could not define a similar space for s > 1. Similarly to H s (R d ), we define H -s (Γ) as the dual of H s (Γ) with the norm

u H -s (Γ) = sup v∈H s (Γ),v =0 | u, v H -s (Γ)×H s (Γ) | v H s (Γ) .
We also need to define Sobolev spaces on a part Γ 0 Γ of the boundary, meaning that Γ 0 itself has a boundary. Let us denote

D(Γ) = u | u = U | Γ for some U ∈ D(R d ) , D(Γ 0 ) = {φ ∈ D(Γ) | supp(φ) ⊆ Γ 0 } .
Then, we define

H s (Γ 0 ) := {U | Γ0 | U ∈ H s (Γ)} , H s (Γ 0 ) := D(Γ 0 ) H s (Γ) . Then, the norm of H s (Γ 0 ) for 0 ≤ s ≤ 1 is given by u H s (Γ0) := E Γ0 (u) H s (Γ)
, where E Γ0 (u) is the extension by zero of u.

Similarly to H s -norms defined on Ω ⊆ R d , we have the following properties for Sobolev spaces on Lipschitz open surfaces such as Γ 0

• If ∂Γ = ∅, then H s (Γ) = H s (Γ) for |s|≤ 1.
• According to [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF]Theorem 3.33 and 3.40],

H s (Γ 0 ) = H s (Γ 0 ) for -1/2 < s < 1/2.
• According to [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF]Theorem 3.30

], if Ω ⊂ R d is a Lipschitz domain, then H s (Γ 0 ) * = H -s (Γ 0 ) and H s (Γ 0 ) * = H -s (Γ 0 ) for |s|≤ 1.
We also need to define the operators of extension by zero and restriction by duality on these spaces: for u ∈ H -1/2 (Γ)

u| Γ0 , ψ H -1/2 (Γ0)× H 1/2 (Γ0) := u, E Γ0 (ψ) H -1/2 (Γ)× H 1/2 (Γ) for ψ ∈ H 1/2 (Γ 0 ),
and for u ∈ H -1/2 (Γ 0 ) E Γ0 (u), ϕ H -1/2 (Γ)×H 1/2 (Γ) := u, ϕ| Γ0 H -1/2 (Γ0)×H 1/2 (Γ0) for ϕ ∈ H 1/2 (Γ).
For 0 < s < 1 and Γ ⊆ ∂Ω, we will use the dual norms:

u H -s (Γ) := sup v∈ H s (Γ)\{0} u, v H -s (Γ)× H s (Γ) v H s (Γ) , for u ∈ H -s (Γ) w H -s (Γ) := sup v∈H s (Γ)\{0} w, v H -s (Γ)×H s (Γ) v H s (Γ)
, for w ∈ H -s (Γ).

Trace operators

Trace operators are a fundamental tool to build boundary integral operators. It is the generalisation of the notion of restriction for a function u ∈ H s (Ω) on its boundary ∂Ω = Γ with 1/2 < s < 3/2. The trace operator can also be defined for functions only locally in H s (Ω),

H s loc (Ω) := {u ∈ C ∞ comp (Ω) * | ϕu ∈ H s (Ω), ∀ϕ ∈ C ∞ comp (Ω)},
where

C ∞ comp (Ω) := {u| Ω | u ∈ D(R d )}.
Remarks 2.5. We can do the same remarks as [START_REF] Sauter | Boundary element methods[END_REF]Remark 2.6.2.].

(i) The space H s loc (Ω) contains no restriction on the growth of functions at infinity.

(ii) By choosing ϕ equal to one, we see that for bounded domain Ω, H s loc (Ω) and H s (Ω) coincide.

(iii) Let Ω ⊂ R d be a bounded domain. Then, the growth of functions from H s loc (R d \ Ω) is not restricted towards infinity, and thus relevant function spaces need to be defined when introducing partial differential equations on unbounded domains. But notice that the growth of functions is restricted in every bounded neighborhood of ∂Ω.

The following theorem gives the values of s for which the trace operator has a meaning and, it also shows that its range is given by fractional Sobolev spaces. 

+ = R d \ Ω -, (i) For 1/2 < s < 3/2, there exists a continuous, linear trace operator γ D : H s loc (R d ) → H s-1/2 (Γ) with γ D ϕ = ϕ| Γ for all ϕ ∈ D(R d ).
(ii) For 1/2 < s < 3/2 and l ∈ {-, +}, there exists one-sided, continuous, linear trace operators

γ l D : H s loc (Ω l ) → H s-1/2 (Γ) with γ l D ϕ = ϕ| Γ for all ϕ ∈ D(Ω l ) and γ + D ϕ = γ - D ϕ = γ D ϕ almost everywhere for all u ∈ H s loc (R d ).
When it is relevant, we denote γ Ω D the Dirichlet trace taken from the interior of Ω.

Elliptic boundary value problems

We introduce here the model problems we want to solve for Ω, a bounded Lipschitz domain. We refer to [START_REF] Sauter | Boundary element methods[END_REF][START_REF] Rjasanow | The Fast Solution of Boundary Integral Equations[END_REF] for more details.

Model problem

Let us define a generic differential operator L as follows We denote the bilinear form associated with the differential operator defined in Equation (2.1)

L(u) := -div(A∇u) + 2b • ∇u + cu, (2.1 
a(u, v) := Ω A∇u • ∇v + 2(b • ∇u)v + cuv dx.
We also need to define the formal adjoint of L

L * (v) := -div(A∇v) -2b • ∇v + cv,

Conormal derivative and Green's formulas

Elliptic boundary problems usually consists of a differential operator such as L defined in Equation (2.1) and associated boundary conditions. These boundary conditions usually gives the value of the trace or the normal derivative of the unknown function. We defined the trace operator in Section 2.1.4, and we now define the conormal derivative. For u ∈ H 2 (Ω), we have A∇u ∈ H 1 (Ω) d so that we can define the conormal derivative

γ Ω N (u) := An Ω • γ Ω D ∇u ∈ L 2 (Γ), (2.2) 
where n Ω is the outer normal relative to Ω. For A = I d , notice that γ Ω N is exactly the usual normal derivative. Then, using Gauss' theorem (cf. [START_REF] Sauter | Boundary element methods[END_REF]Theorem 2.7.3.]), we obtain the following Green's first formulas [START_REF] Sauter | Boundary element methods[END_REF]Theorem 2.7.4] • for u ∈ H 2 (Ω) and v ∈ H 1 (Ω),

a(u, v) = (L(u), v) L 2 (Ω) + Γ γ Ω N (u)γ Ω D (v) dσ(x) (2.3) • for u ∈ H 1 (Ω) and v ∈ H 2 (Ω), a(u, v) = (u, L * (v)) L 2 (Ω) + Γ γ Ω D (u) γ Ω N (v) dσ(x) (2.4)
where

γ Ω N (v) := γ Ω N (v) + 2b • n Ω γ Ω D (v)
is the modified conormal derivative. More generally, we can extend the definition of the conormal derivative to the space

H 1 L (Ω) := {u ∈ H 1 loc (Ω) | L(u) ∈ L 2 (Ω)},
using the following lemma

Lemma 2.7 ([123, Lemma 4.3]). Suppose that Ω is a Lipschitz domain. If u ∈ H 1 (Ω) and f ∈ H -1 (Ω) satisfy L(u) = f on Ω, then there exists g ∈ H -1/2 (Ω) such that a(u, v) = f, v H -1 (Ω)×H 1 (Ω) + g, γ D v H -1/2 (Γ)×H 1/2 (Γ) for v ∈ H 1 (Ω).
Furthermore, g is uniquely determined by u and f , and we have

g H -1/2 (Γ) ≤ C( u H 1 (Ω) + f H -1 (Ω) ).
We define the weak conormal derivative γ Ω N (u) := g for u ∈ H 1 L (Ω) and g from Lemma 2.7. According to this lemma, γ Ω N : H 1 L (Ω) → H -1/2 (Γ) is a bounded linear operator and it extends the relation given in Equation (2.3) 

for u ∈ H 1 L (Ω). Noticing that H 1 L (Ω) = H 1 L * (Ω)
, we can extend similarly the definition of the modified conormal derivative to γ N Ω : H 1 L (Ω) → H -1/2 (Γ) so that it also extends the relation given Equation (2.4) 

for v ∈ H 1 L (Ω).
Remark that the definition of the conormal derivative only depends on the principal part of L i.e., -div(A∇•). Indeed, we have

g, γ D v H -1/2 (Γ)×H 1/2 (Γ) = f, v H -1 (Ω)×H 1 (Ω) -a(u, v) = L(u), v H -1/2 (Γ)×H 1/2 (Γ) -a(u, v),
and the sum of the terms of lower order in the last expression is equal to zero.

According to Theorem 2.6 and the previous definition, the operator

γ Ω D (resp. γ Ω N ) continu- ously maps H 1 loc (Ω) to H 1/2 (∂Ω) (resp. H 1 L (Ω) to H -1/2 (∂Ω)).
In these definitions, the trace is taken from the interior of Ω. We shall denote trace operators γ Ω c (φ

) := (γ Ω D,c (φ), γ Ω N,c (φ)) defined as γ Ω (φ) = (γ Ω D (φ), γ Ω N (φ))
except that the traces are taken from the exterior. This allows us to define the jump and the mean value of these traces as follows:

[γ Ω ] := γ Ω -γ Ω c and {γ Ω } := γ Ω + γ Ω c 2 .
(2.5)

We will drop the subscript referring to Ω when there is no ambiguity, which will be mostly the case in this chapter.

Boundary value problems

Let us suppose that the boundary of Ω is split into two disjoint parts ∂Ω = Γ D ∪ Γ N with Γ D ∩ Γ N = ∅. We can define the following boundary value problem (BVP):

     L(u) = f in D * (Γ) γ D (u) = g D in H 1/2 (Γ) γ N (u) = g N in H -1/2 (Γ) (2.6)
where 

f ∈ H -1 (Ω), g D ∈ H 1/2 (Ω) is called Dirichlet data and g N ∈ H -1/2 (Ω) is called Neumann data. If Γ D = Γ, the BVP (2.
u ∈ H 1 (Ω) with γ D (u) = g D on Γ D such that a(u, v) = f, v H -1 (Ω)×H 1 (Ω) + g N , γ D (v) H -1/2 (Γ N )× H 1/2 (Γ N ) ∀v ∈ H 1 D (Ω) (2.7)
where

H 1 D (Ω) := v ∈ H 1 (Ω) | γ D (v)| Γ D = 0 . Notice that, since v ∈ H 1 D (Ω) in Equation (2.7), γ D (v)| Γ N ∈ H 1/2 (Γ N
) so that the second term in right-hand side of Equation (2.7) makes sense.

Remark 2.8. Exterior problems can be formulated in the same way, but using functional spaces that take into account decay conditions at infinity. For example:

• For c ≥ 0 and d = 3, |u(x)| = O(|x| -1 ) for |x| → ∞,
• For the Helmholtz equation, we have the Sommerfeld's radiation conditions

|u(x)| = O(|x| -d-1 2 ) ∂u ∂r (x) -iku(x) = o(|x| -d-1 2 )      for |x| → ∞,
where r = |x| and ∂u ∂r =

x |x| • ∇u. To lighten the presentation, we do not introduce all the different functions spaces and we refer to [START_REF] Sauter | Boundary element methods[END_REF]Section 2.9.2.4] for more details.

Well-posedness

We define the main hypotheses on the bilinear form a that will be used to prove the well-posedness of Equation (2.7). Definition 2.9 (Strong ellipticity). Let a : H × H → C be a sesquilinear form. We say that a is strongly

H-elliptic if Re(σa(u, u)) ≥ c u 2 H ∀u ∈ H,
where c > 0 and σ ∈ C. Definition 2.10 (Ellipticity). Let a : H × H → C be a sesquilinear form. We say that a is

H-elliptic if |a(u, u)| ≥ c u 2 H ∀u ∈ H, with c > 0.
Remark 2.11 (Terminology). We followed the terminology from [START_REF] Hsiao | Boundary integral equations[END_REF] and we make the same remark as [START_REF] Hsiao | Boundary integral equations[END_REF]Remark 5.2.1]: in the literature H-ellipticity may refer to the stronger condition of strong H-ellipticity (see [START_REF] Sauter | Boundary element methods[END_REF]). But remark that strong H-ellipticity implies H-ellipticity (cf. [START_REF] Sauter | Boundary element methods[END_REF]Remark 2.1.50.3]). Definition 2.12 (Coercivity). Let H and U be two Hilbert spaces such that H ⊂ U ⊂ H * with the continuous and dense embedding H ⊂ U . Let a : H × H → C be a sesquilinear form. We say that a is H-coercive if

Re(σa(u, u)) ≥ c u 2 H -C U u 2 U ∀u ∈ H, where c > 0, C U > 0 and σ ∈ C.
Typically, we will have U = L 2 (Γ) and H = H 1 (Γ). Let us recall two important tools to prove well-posedness. 

|a(u, v)| ≤ C u H v H ∀u, v ∈ H,
then, there exists a unique u ∈ H that solves the abstract variational problem: find u ∈ H such that a(u, v) = b(v), ∀v ∈ H. Theorem 2.14 (Fredholm's alternative, [START_REF] Sauter | Boundary element methods[END_REF]Theorem 2.1.60]). Let H ⊂ U ⊂ H * with a compact and dense embedding between H and U . Let the sesquilinear form a(•, •) : H × H → C be H-coercive and we denote A : H → H * its associated operator defined by Au, v H * ×H := a(u, v).

Then, we have for all λ ∈ C either (A -λI) -1 : H * → H is a bounded operator or λ is an eigenvalue of A. In the first case, the variational problem: Find u ∈ H such that

a(u, v) -λ(u, v) U = f, v H * ×H , ∀v ∈ H,
has a unique solution for all f ∈ H * . In the second case, the eigenspace

E(λ) = ker(A-λI) = {0} is finite dimensional.
The following lemmas show that the bilinear form a defined in Equation (2.7) is continuous and H 1 (Ω)-coercive. 

(2.7) is coercive on H 1 (Ω), i.e. Re(a(u, u)) ≥ C 1 u 2 H 1 (Ω) -C 2 u 2 L 2 (Ω) , ∀u ∈ H 1 (Ω).
Notice that it is also true for every subspace of H 1 (Ω) such as H 1 D (Ω). Besides, under certain conditions, the bilinear form a defined Equation (2.7) is also H 1 -elliptic.

Lemma 2.16 ([139, Corollary 2.10.2]). The bilinear form a defined in Equation

(2.7) is • H 1 (Ω)-elliptic, if a min c > |b| 2 , • H 1 D (Ω)-elliptic, if |Γ D | > 0 and b = 0 and c = 0 • elliptic on H 1 (Ω)/C, if b = 0 and c = 0,
where a min is the smallest eigenvalue of A.

Using the previous lemmas, we deduce the following theorem concerning the well-posedness of Equation (2.7). 

D ∈ H 1/2 (Γ), g N ∈ H -1/2 (Γ) and f ∈ (H 1 D (Ω)) * .
The Fredholm alternative is applicable: either, for every boundary conditions and right-hand side, Equation (2.7) admits a unique solution u ∈ H 1 D (Ω) that depends continuously on the righthand side, or zero is an eigenvalue of the operator associated with a(•, •) that corresponds to a finite-dimensional eigenspace.

Furthermore, we have

• if a min c > |b| 2
, the first case applies in the Fredholm's alternative,

• if c = 0, |b| = 0 and |Γ D | > 0, the first case applies in the Fredholm's alternative,

• if c = 0, |b| = 0 and |Γ D | = 0, the first case applies in the Fredholm's alternative, but with H = H 1 (Ω)/C. In other words, the solution is unique up to a constant function.

Proof. The fact that we can apply Fredholm's alternative is a direct application of Theorem 2.14 and Lemma 2.15. Then, using the fact that a can be elliptic under certain conditions according to Lemma 2.16 shows that a is in fact in the first case of the Fredholm's alternative.

In particular, we deduce that the Laplace equation is well-posed as soon as |Γ D | > 0 and the Helmholtz equation is well-posed as soon as k 2 is not an eigenvalue of the Laplacian operator. Again, these results can be adapted to exterior problems considering the relevant functions spaces, in particular weighted Sobolev spaces for the Laplace and Helmholtz equation to control the decay of the considered functions at infinity.

Boundary integral operators

The main focus of our work is the study of Boundary Integral Equations (BIE) and how to solve them numerically. We introduce here Boundary Integral Operators (BIO) on which BIE are built on. We refer to [START_REF] Sauter | Boundary element methods[END_REF][START_REF] Rjasanow | The Fast Solution of Boundary Integral Equations[END_REF] for more details.

Representation formula and surface potentials

We set v := c+ b2 A with x 2 A := x T Ax for every x ∈ R d , and λ = √ v if v > 0 and λ = -i |v| otherwise. To define the relevant BIO of the equation L(u)(x) = 0 for x ∈ Ω ⊂ R d , a Lipschitz domain, we need the fundamental solution L(G L )(x) = δ(x) in the sense of distributions, where δ(x) is the Dirac delta function:

G L (x) =                    e b,x A 2π √ det A ln 1 x A for d = 2 and λ = 0, e b,x A 4 √ det A iH (1) 0 (iλ x A ) for d = 2 and λ = 0, 1 4π √ det A e b,x A -λ x A x A for d = 3, (2.8) 
where H

(1) 0 stands for the Hankel function of order zero and of first kind (see [130,Section 10.2]). Remark that the function G L is singular for x = 0 and analytic for x = 0.

With the fundamental solution, we can define the two following operators:

• Single Layer Potential • We have

SL L (q)(x) := Γ G L (x -y)q(y) dσ(y), ∀x ∈ R d \ Γ, • Double Layer Potential 1 DL L (v)(x) := Γ ( γ N G L )(x -y)v(y) dσ(y), ∀x ∈ R d \ Γ, for all (v, q) ∈ H 1/2 (Γ) × H -1/2 (Γ).
(L • SL L )(u)(x) = (L • DL L )(u)(x) = 0 for every x ∈ R d \ Γ • The functions SL L (v) and DL L (v) are infinitely differentiable in R d \ Γ.
Besides, the functions produced by these operators naturally satisfy the necessary conditions at infinity (see Remark 2.8). It means that to solve the BVP (2.6) with f = 0, we can use the ansatz SL L (q) and DL L (v). Thus, it remains to find a trace v such that these ansatz also satisfy the boundary conditions given on Γ.

More precisely, we have the representation formula Theorem 2.19 (Representation formula or Green's thrid formula, [START_REF] Sauter | Boundary element methods[END_REF]Theorem 3.1.6]). Let Ω be a bounded Lipschitz domain. For any function u ∈ H1 L (R d \ Γ) where

H 1 L (R d \ Γ) := {u ∈ L 2 (R d ) | u| Ω ∈ H 1 L (Ω) and u| R d \Ω ∈ H 1 L (R d \ Ω)},
with compact support and

L(u) = 0 in Ω and R d \ Ω 2 u = SL L ([γ N (u)]) + DL L ([γ D (u)]) := G L ([γ(u)]),
where

G L : H 1/2 (Γ) × H -1/2 (Γ) → H 1 L (R d \ Γ) such that G L (v, q) = SL L (q) + DL L (v) for every (v, q) ∈ H 1/2 (Γ) × H -1/2 (Γ).
This last theorem can be extended to functions with unbounded support in 3D for the Laplace equation [139, Theorem 3.1.12.], Helmholtz equation [START_REF] Sauter | Boundary element methods[END_REF]Theorem 3.1.13.] 

G L (γ(u))(x) = u(x) for x ∈ Ω, 0 for x ∈ R d \ Ω. Similarly, if v ∈ H 1 loc (R d \ Ω) satisfies L(u) = 0 in R d
\ Ω (and the same type of hypothesis as previously if Ω is bounded), then we have

G L (γ c (v))(x) = -v(x) for x ∈ R d \ Ω, 0 for x ∈ Ω.
Proof. 

If
SL L : H -1/2 (Γ) → H 1 loc (R d ), and 
DL L : H 1/2 (Γ) → H 1 L (R d \ Γ).
In particular, G L :

H 1/2 (Γ) × H -1/2 (Γ) → H 1 L (R d \ Γ) is continuous.
We also have the following property on how the jumps of these potentials occur across the interface Γ Theorem 2.22 (Jump relations, [139, p. 3.3.1.]). Let Ω be a Lipschitz domain. We have for every q ∈ H -1/2 (Γ) and v ∈ H 1/2 (Γ)

[(γ D • SL L )(q)] = 0, [(γ D • DL L )(v)] = v, in H 1/2 (Γ), [(γ N • SL L )(q)] = q, [(γ N • DL L )(v)] = 0, in H -1/2 (Γ).

These relations can be rewritten in a more compact form as

[γ] • G L = I d on H 1/2 (Γ) × H -1/2 (Γ).
In other words, the single layer potential SL L (resp. the double layer potential DL L ) applied to q ∈ H -1/2 (Γ) (resp. v ∈ H 1/2 (Γ)) produces a solution of the equation L(u) = 0 in R d \ Γ and the appropriate conditions at infinity, with a continuous Dirichlet trace and a jump equal to q for his Neumann trace (resp. with a continuous Neumann trace and a jump equal to v for his Dirichlet trace).

Definitions and their properties

We define the following Boundary Integral Operators (BIO):

• Weakly singular operator or single layer potential

V L (q) := (γ D • SL L )(q), ∀q ∈ H -1/2 (Γ),
• Double layer potential

1 2 I d + K L (v) := (γ D • DL L )(v), ∀v ∈ H 1/2 (Γ),
• Adjoint double layer potential

1 2 I d + K L (q) := (γ N • SL L )(q), ∀q ∈ H -1/2 (Γ),
• Hypersingular integral operator

W L (v) := (γ N • DL L )(v), ∀v ∈ H 1/2 (Γ),
where I d denotes the identity operator.

We give a few interesting properties about these BIO. First, they are all linear and continuous operators according to the following theorem Theorem 2.23 (Mapping properties, [START_REF] Sauter | Boundary element methods[END_REF]Theorem 3.1.16]). Let Ω be a Lipschitz domain, the BIO defined previously are continuous for the following mappings:

• V L : H -1/2 (Γ) → H 1/2 (Γ),
• 1 2

I d + K L : H 1/2 (Γ) → H 1/2 (Γ), • 1 2 I d + K L : H -1/2 (Γ) → H -1/2 (Γ), • W L : H 1/2 (Γ) → H -1/2 (Γ).
Proof. It is a direct application of Theorem 2.21 with the continuous properties of γ D and γ N , see Theorem 2.6 and Section 2.2.2.

Then, we have an explicit expression of these operators for the differential operator L defined in Equation (2.1) (and others actually, elasticity problems for example). It is because we have these explicit expressions that we can discretize numerically the BIE that we will derive later.

• For q ∈ L ∞ (Γ), according to [139, p. 3.3.5.], we have 

V L (q) = Γ G L (x -y)q(y) dσ(y), ∀x ∈ R d • For v, q ∈ C 1 pw ,
I d 2 + K L (v)(x) = v(x) 2 + Γ ( γ N • G L )(x -y)v(y)dσ(y), I d 2 + K L (q)(x) = q(x) 2 + Γ (γ N • G L )(x -y)q(y)dσ(y),
where the second term in each expression is an improper integral. In practice, they are evaluated using the Cauchy principal value.

• There exist several representations of the hypersingular operator W . The following is obtained by means of integration by parts: for every u, v ∈ H 1/2 (Γ)

W L u, v H -1/2 (Γ)×H 1/2 (Γ) = Γ×Γ G L (x -y)(curl Γ,A,0 (v)(x) • curl Γ,A,0 (u)(y)) dσ(x) dσ(y) + c Γ×Γ G L (x -y)v(x)u(y)(A 1/2 n(x) • A 1/2 n(y)) dσ(x) dσ(y),
where curl Γ,A,f (u) := (A 1/2 ∇u * + uA 1/2 f) × A 1/2 n for u ∈ H 1/2 (Γ) and u * its extension in Ω.

Remark that for A = I and b = 0, curl Γ,I,0 is the usual surface curl operator of a tangent vector.

Calderón projector

In this section, we derive some useful relations between the BIO introduced previously. The idea comes from the following remark: using Corollary 2.20, we see that for u ∈ H 1 loc (Ω) such that L(u) = 0 (and u satisfies the appropriate condition at infinity), we have γ • G L (γ(u)) = γ(u). Taking u = G L ((v, q)) with (v, q) ∈ H 1/2 (Γ) × H -1/2 (Γ), we see that γ • G L is a projector on H 1/2 (Γ) × H -1/2 (Γ). In fact, we have the following result Theorem 2.24 (Calderón projector, [139, Proposition 3.6.2.]). We define the Cauchy data set C L (Ω) as:

C L (Ω) := {γ(u) | L(u) = 0
in Ω and u satisfies the appropriate conditions at infinity if Ω is unbounded }.

Then P L := γ • G L : H 1/2 (Γ) × H -1/2 (Γ) → H 1/2 (Γ) × H -1/2 (
Γ) is a continuous projector, so called Calderón projector whose range coincides with C L (Ω), i.e. for any

(v, q) ∈ H 1/2 (Γ) × H -1/2 (Γ) we have (v, q) ∈ C L (Ω) ⇐⇒ (γ • G L )((v, q)) = (v, q).
By definition, we can also write the Calderón projector as follows: for every

(v, q) ∈ H 1/2 (Γ)× H -1/2 (Γ), P L ((v, q)) = γ • G L ((v, q)) = I d 2 + K L V L W L I d 2 + K L v q = I d + A L 2 (v, q).
Using the jump relations from Theorem 2.22, A L can also be rewritten as follows:

A L = 2{γ} • G L such that clearly A 2 L = I d .
In particular, we have the following corollary:

Corollary 2.25 (Calderón identities, [139, Proposition 3.6.4.]). We have the following relations, called Calderón identities

K L V L = -V L K L on H -1/2 (Γ), W L K L = -K L W L on H 1/2 (Γ), (2.9a) 
and

V L W L = I d 4 -K 2 L on H 1/2 (Γ), W L V L = I d 4 -K 2 L on H -1/2 (Γ).
(2.9b)

Proof. According to Theorem 2.24, we have P 2 L = P L on C L (Ω), which can be rewritten

I d 4 + K L + K 2 L + V L W L V L + K L V L + V L K L W L + W L K L + K L W L W L V L + I d 4 + K L + K 2 L = I d 2 + K L V L W L I d 2 + K L .
Remark 2.26. The operators V L and W L have the order 1 and -1 respectively. From Equation (2.9b), we see that the product of one with the other defines a operator of order 0. This property can be used to define efficient preconditioners [START_REF] Steinbach | The construction of some efficient preconditioners in the boundary element method[END_REF][START_REF] Snorre | A Preconditioner for the Electric Field Integral Equation Based on Calderon Formulas[END_REF][START_REF] Hiptmair | Operator preconditioning[END_REF], usually called Calderón preconditioners.

Dirichlet-to-Neumann operator

In this section, we describe an interesting relation between the BIO introduced previously and the Dirichlet-to-Neumann operator (also called Steklov-Poincaré operator) defined as follows: Let g D ∈ H 1/2 (Γ), we consider a Dirichlet problem

L(u) = 0 in Ω, γ D (u) = g D in Γ.
Assume this problem is well-posed (see Section 2.2.4 to see conditions on the coefficients of the differential operator L to satisfy this assumption), the mapping g D → γ N (u) defines the Dirichlet-to-Neumann operator denoted DtN L . This operator is clearly continuous from H 1/2 (Γ) to H -1/2 (Γ). Besides, it can be expressed using BIO as proved in the next lemma.

Theorem 2.27. The Dirichlet-to-Neumann operator can be written explicitly as

DtN L = (V L ) -1 I d 2 -K L = I d 2 -K L -1 W L .
Proof. According to Theorem 2.24, for every (v, q) ∈ C L (Ω), we have

P L ((v, q)) = (v, q) ⇔        I d 2 + K L v + V L q = v W L v + I d 2 + K L q = q ⇔          (V L ) -1 I d 2 -K L v = q I d 2 -K L -1 W L v = q.
Since (v, q) ∈ C L (Ω), we have in particular DtN L (v) = q so that we deduce the expected relations.

Integral equations for elliptic boundary value problems

We have now everything to define Boundary Integral Equations (BIE). There are several ways to formulate BIE related to the BVP (2.6). One way is to use the single or double layer potential as ansatz, and another possibility is to use the Calderón projector. The former give rise to the indirect method, while the latter is used to formulate the direct method.

The indirect method

As we have seen previously, for every v ∈ H 1/2 (Γ) and q ∈ H -1/2 (Γ), SL L (q) and DL L (v) satisfy L(u) = 0 with the appropriate conditions at infinity if Ω is unbounded. So that it remains to find v or q such that SL L (q) and DL L (v) also satisfy the boundary conditions given on Γ. In the case of a Dirichlet problem with g D ∈ H 1/2 (Γ), we then can look for q ∈ H -1/2 (Γ) such that

γ D • SL L (q) = V L (q) = g D , or for v ∈ H 1/2 (Γ) such that γ D • DL L (v) = ( 1 2 I d + K L )(v) = g D .
Then, we can multiply by a test function, which gives the following variational formulations:

• For Dirichlet problems, taking the Dirichlet trace of the single layer potential: Find q ∈ H -1/2 (Γ) such that

V L (q), r H 1/2 (Γ)×H -1/2 (Γ) = g D , r H 1/2 (Γ)×H -1/2 (Γ) , ∀r ∈ H -1/2 (Γ). (2.10) 
Or, taking the Dirichlet trace of the double layer potential: Find v ∈ H 1/2 (Γ) such that

1 2 I d + K L (v), r H 1/2 (Γ)×H -1/2 (Γ) = g D , r H 1/2 (Γ)×H -1/2 (Γ) , ∀r ∈ H -1/2 (Γ).
(2.11)

• For Neumann problems, taking the Neumann trace of the double layer potential:

Find v ∈ H 1/2 (Γ) such that W L (v), w H -1/2 (Γ)×H 1/2 (Γ) = g N , w H -1/2 (Γ)×H 1/2 (Γ) , ∀w ∈ H 1/2 (Γ).
(2.12)

Or, taking the Neumann trace of the single layer potential: Find q ∈ H -1/2 (Γ) such that

1 2 I d + K L (v), w H -1/2 (Γ)×H 1/2 (Γ) = g N , w H -1/2 (Γ)×H 1/2 (Γ) , ∀w ∈ H 1/2 (Γ).
(2.13)

The direct method

This method is based on the Calderón projector and Theorem 2.24. For Dirichlet problems, we have that q ∈ H -1/2 (Γ) is solution if and only if (g D , q) is a fixed point of the Calderón projector

P L ((g D , q)) =    I d 2 + K L V L W L I d 2 + K L    g D q = g D q .
Taking the first row of the previous relation, we obtain the following variational formulation:

find q ∈ H -1/2 (Γ) such that V L (q), r H 1/2 (Γ)×H -1/2 (Γ) = 1 2 g D , r H 1/2 (Γ)×H -1/2 (Γ) -K L (g D ),r H 1/2 (Γ)×H -1/2 (Γ) ,
∀r ∈ H -1/2 (Γ).

(2.14)

Taking the second row, gives the following variational formulation: find q ∈ H -1/2 (Γ) such that

1 2 q, w H -1/2 (Γ)×H 1/2 (Γ) -K L (q), w H -1/2 (Γ)×H 1/2 (Γ) = W L (g D ),w H -1/2 (Γ)×H 1/2 (Γ) , ∀w ∈ H 1/2 (Γ). (2.15) 
Similarly, for Neumann problem, we can obtain the following formulations.

Find v ∈ H 1/2 (Γ) such that W L (v), w H -1/2 (Γ)×H 1/2 (Γ) = 1 2 g N , w H -1/2 (Γ)×H 1/2 (Γ) -K L (g N ),w H -1/2 (Γ)×H 1/2 (Γ) , ∀w ∈ H 1/2 (Γ).
(2.16)

Find v ∈ H 1/2 (Γ) such that 1 2 v, r H 1/2 (Γ)×H -1/2 (Γ) -K L (v), r H 1/2 (Γ)×H -1/2 (Γ) = V L (g N ),r H 1/2 (Γ)×H -1/2 (Γ) , ∀r ∈ H -1/2 (Γ).
(2.17)

Remarks 2.28 (Comparaison between Direct and Indirect methods).

As in [START_REF] Sauter | Boundary element methods[END_REF]Section 3.4.3], we can formulate the following remarks:

• The right-hand side for the direct formulation is defined by an integral operator, while the right-hand side of the indirect formulation is just a L 2 (Γ) inner product between the boundary data and the test functions.

• Solving the direct formulation gives directly the trace of the solution. The indirect formulation only gives a boundary function that needs to be evaluated by means of potentials.

• To compute the solution in Ω, one needs to use only one potential with the indirect formulation by definition of the ansatz. But two potentials are needed for the direct formulation (see Corollary 2.20).

According to the previous remarks, a rule of thumb for choosing between these two methods is to use the direct formulation when the unknown boundary data is needed, or the indirect formulation if the unknown solution needs to be computed in many points of Ω.

Well-posedness

As in Section 2.2.4, we can use Lax-Milgram theorem (Theorem 2.13) or Fredholm's theory (Theorem 2.14), depending on the properties of the bilinear forms introduced in the two last sections.

We can differentiate two types of formulation among those introduced previously: those that use V L and W L , called formulations of first kind, and those that use K L and K L , called formulations of second kind.

In the case of formulations of first kind, the same approach as in Section 2.2.4 can be used. Cases where the previous bilinear forms are elliptic usually correspond to cases where the bilinear form a from (2.7) is also elliptic. Let us denote a VL (q, r) := V L (q), r H 1/2 (Γ)×H -1/2 (Γ) and a WL (q, r) := W L (v), w H -1/2 (Γ)×H 1/2 (Γ) for v, w ∈ H 1/2 (Γ) and q, r ∈ H -1/2 (Γ), we have the following lemma (see [START_REF] Sauter | Boundary element methods[END_REF]Theorem 3.5.3. and 3.5.4] and [START_REF] Mclean | A preconditioning strategy for boundary element Galerkin methods[END_REF]): Lemma 2.29 (Ellipticity of a V L and a W L ). The bilinear form a V L and a W L are respectively

• H -1/2 (Γ) and H 1/2 (Γ) -elliptic if a min c > |b| 2 , • H -1/2 (Γ) and H 1/2 (Γ)/C -elliptic if L = -∆ and d = 3, • H -1/2 (Γ) and H 1/2 (Γ)/C -elliptic if L = -∆, d = 2
, but the fundamental solution used in the weakly singular operator V -∆ has to be modified as follows:

G -∆ (x) = 1 2π ln α x ,
with α > α Γ > 0 where α Γ is the logarithmic capacity of Γ.

Using Lax-Milgram Theorem 2.13, we deduce that the formulations of first kind are wellposed when L satisfies the conditions given in the previous lemma. More generally, we have the following theorem Theorem 2.30 ([40, Theorem 2]). The bilinear form a VL and a WL satisfy a Gårding inequality. More specifically, there exists a compact operator T VL :

H -1/2 (Γ) → H 1/2 (Γ) and T WL : H 1/2 (Γ) → H -1/2 (Γ) such that (V L +T VL )(q), q H 1/2 (Γ)×H -1/2 (Γ) ≥ c VL q 2 H -1/2 (Γ) , ∀q ∈ H -1/2 (Γ), (W L +T WL )(v), v H -1/2 (Γ)×H 1/2 (Γ) ≥ c WL w 2 H 1/2 (Γ) , ∀w ∈ H 1/2 (Γ).
A more general statement of Fredholm's alternative [START_REF] Hsiao | Boundary integral equations[END_REF]Theorem 5.3.10] shows that if a bilinear form satisfies a Gårding inequality and if it is injective, then it is well-posed. In the case of the Helmholtz equation, we have the following result. Theorem 2.31 ([139, Theorem 3.9.1. and Exercise 3.9.5.]). We consider the Helmholtz equation:

A = I d , b = 0 and c = -k 2 with k > 0.
Then, the weakly singular operator V L is injective if and only if

• Ω is bounded and k 2 is not an eigenvalue for the Laplace operator in Ω with Dirichlet conditions,

• or R d \ Ω is bounded and k 2 is not an eigenvalue for the Laplace operator in R d \ Ω with Dirichlet conditions.

Similarly, the hypersingular operator W L for the Helmholtz equation is injective if and only if

• Ω is bounded and k 2 is not an eigenvalue for the Laplace operator in Ω with Neumann conditions,

• or R d \ Ω is bounded and k 2 is not an eigenvalue for the Laplace operator in R d \ Ω with Neumann conditions.

Using the previous theorem and Theorem 2.30, we deduce that the formulations of first kind for the Helmholtz equation are well-posed. Surprisingly, exterior problems for the Helmholtz equation are well-posed for every k > 0 (see [START_REF] Sauter | Boundary element methods[END_REF]Section 3.9.3.]), but their standard BIE cannot be solved for the resonant frequencies of the associated interior problem. This issue led to the introduction of modified BIE, see [139, Section 3.9.4.].

Screen problems

So far, we considered BIE on closed surfaces, but we are also interested in screen problems, i.e., for

Γ 0 ⊂ Γ = ∂Ω such that ∂Γ 0 = ∅, g D ∈ H 1/2 (Γ 0 ) and g N ∈ H -1/2 (Γ 0 ), we look for u ∈ H 1 loc (R d \ Γ 0 ) such that L(u) = 0, in R d \ Γ 0 γ D (u) = g D , on Γ 0 or L(u) = 0, in R d \ Γ 0 γ N (u) = g N , on Γ 0
with the appropriate conditions at infinity. We define the localization of the BIO on Γ 0 as follows: for every v ∈ H 1/2 (Γ), q ∈ H -1/2 (Γ) such that supp(v) ⊂ Γ 0 and supp(q) ⊂ Γ 0 , i.e.,

v| Γ0 ∈ H 1/2 (Γ 0 ) and q| Γ0 ∈ H -1/2 (Γ 0 ) V L,Γ0 (q| Γ0 ) := V L (q)| Γ0 , K L,Γ0 (v| Γ0 ) := K L (v)| Γ0 , W L,Γ0 (v| Γ0 ) := W L (v)| Γ0 , K L,Γ0 (q| Γ0 ) := K L (q)| Γ0 .
Following the same approach as in Section 2.4.1, these problems can be reformulated as BIE as follows

• Find q ∈ H -1/2 (Γ 0 ) such that V L,Γ0 (q), r H 1/2 (Γ0)× H -1/2 (Γ0) = g D , r H 1/2 (Γ0)× H -1/2 (Γ0) , ∀r ∈ H -1/2 (Γ 0 ). (2.18) • Find v ∈ H 1/2 (Γ 0 ) such that W L,Γ0 (v), w H -1/2 (Γ0)× H 1/2 (Γ0) = g N , w H -1/2 (Γ0)× H 1/2 (Γ0) , ∀w ∈ H 1/2 (Γ 0 ). (2.19)
Notice that since Γ 0 has a boundary, the energy spaces become H 1/2 (Γ 0 ) and H -1/2 (Γ 0 ), which are respectively subspaces of H 1/2 (Γ 0 ) and H -1/2 (Γ 0 ) containing functions whose extension by zero on Γ are respectively in H 1/2 (Γ) and H -1/2 (Γ). Thus, we can recover properties about well-posedness using the BIE on Γ just by extending by zero the considered functions (see Theorem [START_REF] Sauter | Boundary element methods[END_REF]Theorem 3.5.9.]). We also refer to [START_REF] Stephan | Boundary integral equations for screen problems in R 3[END_REF] for more details.

Galerkin discretization

The discretization of BIE is a large field of research and we only mention the main ideas and its specificities. There exist several ways to discretize them but we will focus here on the Boundary Element Method (BEM), which is similar to the Finite Element Method (FEM) in the sense that the solutions of the BIE introduced in Sections 2.4.1 and 2.4.2 will be approximated by a Galerkin method using the weak formulation where the subspaces of finite dimension are finite element spaces defined on the boundary.

For example, the approximation of Equation (2.10) can be formulated as follows: find

q h ∈ V h ⊂ H -1/2 (Γ) such that V L (q h ), r h H 1/2 (Γ)×H -1/2 (Γ) = g D , r h H 1/2 (Γ)×H -1/2 (Γ) , ∀r ∈ V h , (2.20) 
where V h can be the space of piecewise constant functions on Γ with h the characteristic size of its associated mesh for example. The numerical analysis to prove the well-posedness and the convergence of the approximation is not too different from FEM, so we refer to [START_REF] Sauter | Boundary element methods[END_REF]Chapter 4] for more details.

In practice, we need to compute the coefficients a V L (ϕ j , ϕ i ) where ϕ j and ϕ i are two elements of the finite element basis {ϕ l } associated with V h . That is why we need the explicit expressions introduced in Section 2.3.2, for example:

a VL (ϕ j , ϕ i ) = Γ×Γ G L (x -y)ϕ i (x)ϕ j (y) dσ(x)

dσ(y).

There are two interesting differences compared to usual FEM. First, this is a double integral with a non-local kernel so that all the coefficients are non-null a priori, so that the matrix is dense. Then, when the support of ϕ j and ϕ i are close to each other, or intersect with each other, the integral is quasi-singular so that extra care must be taken with quadrature rules. Several techniques exist to approximate this type of double integral [START_REF] Sauter | Boundary element methods[END_REF]Chapter 5].

The discrete Equation (2.20) leads to the following linear system

A VL x = b, where (A VL ) i,j = a VL (ϕ j , ϕ i ), b j = g D , ϕ j H 1/2 (Γ)×H -1/2 (Γ)
and q h = i x i ϕ i . Because of the non-locality of the bilinear form a VL , BEM matrices like A VL are dense, which precludes direct methods for the inversion as Gauss-Jordan elimination, whose complexity grows cubically with respect to N , the number of degrees of freedom. Besides, the storage and the numerical work to assemble the matrices are both quadratic. Similarly, iterative solvers should be quite expensive because of the matrix-vector product that is also quadratic. Solutions to these three issues can be found with methods like panel clustering [START_REF] Hackbusch | On the fast matrix multiplication in the boundary element method by panel clustering[END_REF][START_REF] Hackbusch | On the efficient use of the Galerkin-method to solve Fredholm integral equations[END_REF], Fast Multipole Method (FMM) [START_REF] Rokhlin | Rapid solution of integral equations of classical potential theory[END_REF][START_REF] Greengard | Accelerating fast multipole methods for the Helmholtz equation at low frequencies[END_REF][START_REF] Darve | The Fast Multipole Method I: Error Analysis and Asymptotic Complexity[END_REF][START_REF] Darve | The fast multipole method: numerical implementation[END_REF], hierarchical matrices (H and H 2 -matrices) [START_REF] Hackbusch | A Sparse Matrix Arithmetic Based on H -Matrices. Part I: Introduction to H -Matrices[END_REF][START_REF] Hackbusch | A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems[END_REF][START_REF] Hackbusch | On H 2 -Matrices[END_REF][START_REF] Börm | Data-sparse approximation of non-local operators by H 2 -matrices[END_REF][START_REF] Bebendorf | Hierarchical matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems[END_REF][START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF] Adaptive Cross Approximation (ACA) [START_REF] Bebendorf | Approximation of boundary element matrices[END_REF][START_REF] Bebendorf | Adaptive Low-Rank Approximation of Collocation Matrices[END_REF][START_REF] Börm | Hybrid cross approximation of integral operators[END_REF][START_REF] Bebendorf | Hierarchical matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems[END_REF], Sparse Cardinal Sine Decomposition (SCSD) [START_REF] Alouges | The sparse cardinal sine decomposition and its application for fast numerical convolution[END_REF] and wavelet compression techniques [START_REF] Alpert | Wavelet-like bases for the fast solution of second-kind integral equations[END_REF]. They all give an approximate representation of the matrix that allows storage and matrix-vector product with almost linear complexity. In our numerical tests, we usually use hierarchical matrices with the C ++ library Htool3 that we present in Chapter 6. These techniques have the advantage of lowering the storage cost and make it easier to apply the operator to a vector, but the underlying structure is not well suited for direct solvers such as exact LU decomposition. Nevertheless, direct solvers to be used in conjunction with a compression procedure have been developed, for example, hierarchical LU decomposition [START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF] and a fast direct solver as described in [START_REF] Martinsson | A fast direct solver for boundary integral equations in two dimensions[END_REF][START_REF] Greengard | Fast direct solvers for integral equations in complex threedimensional domains[END_REF]. Another approach relies on iterative solvers, such as Conjugate Gradient (CG) [START_REF] Rudolph | Methods of conjugate gradients for solving linear systems[END_REF] for symmetric positive definite matrices or Generalized Minimal Residual (GMRes) [START_REF] Saad | GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems[END_REF]. These methods have the advantage of relying only on matrixvector products, they are non-intrusive in the sense that they are independent of the compression method used. However, the number of iterations needed strongly depends on the spectral properties of the matrix of the system. In the case of the single layer for the Laplace problem, the condition number κ(A VL ) := A VL 2 A -1 VL 2 typically deteriorates like O(h -1 ) [139, Section 4.5], and we have the same behavior for the hypersingular operator. This means that the number of iterations when using CG will increase when refining the mesh size as the square root of h -1 .

To circumvent this problem, one has to find a relevant preconditioner, i.e., a matrix P such that PA h has better spectral properties (typically, a condition number bounded independently of the meshsize) and that is not too costly in a matrix-vector multiplication, because instead of solving the previous linear system, we will solve

PA h u h = Pb h .
This approach is called left preconditioning but another popular approach is right preconditioning which consists in solving A h Px h = b h with x h = P -1 u h . These two approaches are closely related since their Krylov space only differs by a multiplication by P, but the minimized residuals also differ because the latter is the residual of non-preconditioned system b h -A h u h while the former minimizes [START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF]Section 9.3.4] for more details).

M -1 (b h -A h u h ) (see
Various preconditioning strategies have been proposed for BEM matrices. One of the most popular one is Calderón preconditioning [START_REF] Steinbach | The construction of some efficient preconditioners in the boundary element method[END_REF], which is the application of operator preconditioning [START_REF] Hiptmair | Operator preconditioning[END_REF] based on Calderón identities from Equation (2.9a) that shows that certain products of boundary integral operators yield a compact perturbation of the identity. An alternative consists in building a sparse approximation of the inverse to precondition our problem, which is usually called Sparse Approximate Inverse Preconditioner (SPAI) [START_REF] Alléon | Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics[END_REF]. Finally, another approach, proposed in [START_REF] Heuer | Additive Schwarz Methods for Weakly Singular Integral Equations In R 3 -the p-Version[END_REF][START_REF] Tran | Additive Schwarz methods for the h-version boundary element method[END_REF] for example, relies on adapting well-known preconditioners stemming from Domain Decomposition Methods (DDM) to BEM matrices. We actually focus on a particular type of Domain Decomposition Methods (DDM), namely Schwarz methods. Schwarz methods is one of the first class of domain decomposition methods, and they have this particularity of having two related formulations. Historically, they have been introduced as iterative algorithms to approximate a solution solving local problems and exchanging informations between neighbouring subdomains. But after discretization, these iterative algorithms can be rewritten as stationary methods and define a specific preconditioner. Thus, one can be interested in studying the efficiency of such preconditioners applied in Krylov methods, that are more efficient than stationary methods. In this case, the speed of convergence is often related to the condition number of the linear system, that is to say, the ratio between the largest and lowest eigenvalues. In particular, we want the condition number to be bounded independently of the meshsize and the number of subdomains so that refining or increasing the number of subdomains do not change the number of iterations of the linear solver. One usually uses the fictitious space lemma to study the condition number of the preconditioned linear system. We refer to [START_REF] Gander | Schwarz methods over the course of time[END_REF] for a historical review on Schwarz methods. Another interesting fact about Schwarz methods is that, since they mainly consist in solving local problems and exchanging informations between adjacent subdomains, there is a lack of global communication that prevent the method to be scalable in a High-Performance Computing (HPC) context. Meaning that increasing the number of subdomains will not be as efficient as expected. For example, suppose that we associate a subdomain to a processor, an engineer solving a problem will expect to solve his problem twice faster if he doubles the number of processors. But this will be unlikely because the lack of global communication will affect the efficiency of the method. See [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF]Chapter 4] for numerical evidences.

CHAPTER 3

Domain Decomposition Methods

Outline of the current chapter
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To fix this issue, a coarse space is usually added so that a minimum of global communication is present in the method. The first coarse spaces were usually based on solving a coarse problem on a coarse grid, but recent progress in DDM was achieved and a coarse space construction based on Generalized Eigenproblems in the Overlap (which we will call GenEO coarse space) has been proposed. The advantage of the latter is a more "blackbox" approach to build robust preconditioners. This coarse space has been first introduced in [START_REF] Spillane | Robust domain decomposition methods for symmetric positive definite problems[END_REF], see also [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF]Chapter 7] for another version. We refer to [START_REF] Olof | The Development of Coarse Spaces for Domain Decomposition Algorithms[END_REF][START_REF] Mandel | Coarse spaces over the ages[END_REF] for a more general presentation on coarse spaces for DDM.

In this chapter, we recall the main ideas of Domain Decomposition Methods (DDM), more precisely of Schwarz methods at the continuous level in Section 3.1 and GenEO coarse space in Section 3.3, after introducing all the discrete setting in Section 3.2. We refer to [START_REF] Toselli | Domain decomposition methods: algorithms and theory[END_REF][START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF] for more details. Note that we are only considering finite element discretization, as it is commonly done in the DDM literature.

Schwarz methods at the continuous level

Origins

The origin of domain decomposition methods stems from the work of Schwarz in 1870 (see [START_REF] Gander | Schwarz methods over the course of time[END_REF] for a historical review of Schwarz methods). The goal was to establish existence of a solution for Poisson problem with non-smooth boundaries such as:

-∆u = f in Ω, u = 0 on ∂Ω, (3.1) 
where f is regular enough and Ω = Ω 1 ∪ Ω 2 (see Section 3.1.1). Without nowadays modern theoretical tools, such as Sobolev spaces and Lax-Milgram theorem, the proof for the well-posedness of Equation (3.1) was limited to simple geometries (circle, disc…) using Fourier transform. With this in mind, Schwarz suggested a constructive argument, which relies on a decomposition of the domain in simple geometries, to prove the well-posedness for more general geometries. The idea is to solve the problem alternatively on each of these subdomains, using transmission conditions coming from the solution computed in the neighboring subdomains. More precisely, he introduced the following iterative algorithm: given an initial guess u 0 , which vanishes on ∂Ω, u m+1 is computed with the two following sequential steps:

     -∆u m+1 1 = f in Ω 1 , u m+1 1 = 0 on ∂Ω 1 ∩ ∂Ω, u m+1 1 = u m 2 on Γ 1 ,      -∆u m+1 2 = f in Ω 2 , u m+1 2 = 0 on ∂Ω 2 ∩ ∂Ω, u m+1 2 = u m+1 1 on Γ 2 , (3.2) 
where Γ i = ∂Ω i ∩Ω j for i = j and i, j ∈ {1, 2}. Schwarz proved the convergence of this algorithm, called Alternating Schwarz method, and thus, the well-posedness of the Poisson problem in more general geometries. This algorithm was later studied in a more general framework in [START_REF] Lions | On the Schwarz alternating method. I[END_REF][START_REF] Lions | On the Schwarz alternating method. III: a variant for nonoverlapping subdomains[END_REF].

One of the major drawbacks of this method is its sequential nature. A small modification of (3.2), which was introduced in [START_REF] Lions | On the Schwarz alternating method. I[END_REF], gives the Parallel Schwarz method:

     -∆u m+1 1 = f in Ω 1 , u m+1 1 = 0 on ∂Ω 1 ∩ ∂Ω, u m+1 1 = u m 2 on ∂Ω 1 ∩ Ω 2 ,      -∆u m+1 2 = f in Ω 2 u m+1 2 = 0 on ∂Ω 2 ∩ ∂Ω, u m+1 2 = u m 1 on ∂Ω 2 ∩ Ω 1 . (3.3) 

Optimal Schwarz Method (OSM)

The main idea of Schwarz methods is to solve subproblems associated with a decomposition of geometric domain and to exchange some information between the neighboring subdomains. We saw in the previous section an example where there is an overlap between the subdomains and the information exchanged is a Dirichlet trace. But there exist a lot of variants, one of the most well-known is the P.L. Lions algorithm introduced in [START_REF] Lions | On the Schwarz alternating method. III: a variant for nonoverlapping subdomains[END_REF], where the exchanged information consists in Robin (or Fourier) data, which allows a convergence even without overlap.

More generally, one can wonder what is the best information to exchange, meaning the information that allows the fastest convergence. Let us denote a general elliptic problem as follows

L(u) = f in Ω, u = g on ∂Ω.
We decompose Ω into two domains Ω 1 and Ω 2 as described in Section 3.1.1. The domain decomposition can be with and without overlap for OSM. We suppose the problem regular enough so that u i := u| Ωi , i = 1, 2 is continuous and has continuous normal derivatives across the interface Γ i . Notice that Ω 1 and Ω 2 can overlap or not. A generic Schwarz method would be as follows:

           L(u m+1 1 ) = f in Ω 1 , u m+1 1 = g on ∂Ω 1 ∩ ∂Ω, µ 1 ∇u m+1 1 • n 1 + B 1 (u m+1 1 ) = -µ 1 ∇u m 2 • n 2 + B 1 (u m 2 ) on Γ 1 ,            L(u m+1 2 ) = f in Ω 2 , u m+1 2 = g on ∂Ω 2 ∩ ∂Ω, µ 2 ∇u m+1 2 • n 2 + B 2 (u m+1 2 ) = -µ 2 ∇u m 1 • n 1 + B 2 (u m 1 ) on Γ 2 ,
with µ 1 and µ 2 real valued functions, B 1 and B 2 operators acting along Γ 1 and Γ 2 and u 0 1 and u 0 2 arbitrary initial guesses. Notice that we recover the original parallel Schwarz algorithm with

µ 1 = µ 2 = 0 and B 1 = B 2 = I d .
As for the P.L. Lions algorithm using Robin interface conditions, we need to set

µ 1 = µ 2 = 1 and B 1 = B 2 = α I d with α ∈ R.
The goal is to look for the operators B i such that we have convergence in a minimal number of iterations. By linearity, the errors e m i = u -u m i satisfy the same equations as u i but with f = 0 and g = 0. To simplify, let us take

µ 1 = µ 2 = 1.
Obviously, we cannot have convergence in one iteration since the initial guess is arbitrary. To have a convergence in two iterations, we need e 2 1 = 0 which requires

-µ 2 ∇e 1 2 • n 2 + B 1 (e 1 2 ) = 0 on Γ 1 . (3.4) 
It should be noticed that e 1 2 is solution in Ω 2 . Then, the idea is to introduce the Dirichlet-to-Neumann map:

DtN 2 : H 1/2 (Γ 1 ) → H -1/2 (Γ 1 ) v → ∇w • n 2|∂Ω1∩Ω2
where w satisfies the following problem:

     L(w) = 0 in Ω 2 \ Ω 1 , w = 0 on ∂Ω 2 ∩ ∂Ω, w = v on Γ 1 .
We observe that if B 1 = DtN 2 •γ D , we recover Equation (3.4). Thus, Dirichlet-to-Neumann operators give the optimal interface condition and we obtain convergence in two iterations. It should be noticed that in practice, Dirichlet-to-Neumann operators are not partial differential operators which makes them difficult to implement. But this remark is the source of various optimized Schwarz methods that consist in approximating the Dirichlet-to-Neumann operator by partial differential operators (see [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF]Section 2.5] for more details).

The result above is generalized for a domain decomposition with n vertical strips or n concentric rings in [128, Section 2] as follows: Let {Ω j } m j=0 denote the vertical strips or concentric rings without overlap,

Γ j,k = Ω j ∩ Ω k              L(u m+1 j ) = f in Ω j , u m+1 j = g on ∂Ω ∩ ∂Ω j , ∇u m+1 j • n j + DtN j kk (u m+1 j ) = -∇u m k • n k + DtN j kk (u m k )   on Γ j,k , ∀k = 0, . . . , n, k = j, (3.5 
) 
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j kl = R j k,N • DtN j • (R j l,D ) * where R j k,N : H -1/2 (Γ j ) → H -1/2 (Γ j,k ) and (R j l,D ) * : H 1/2 (Γ j,l ) → H 1/2 (Γ j )
are the restriction and extension operator applied to, respectively, a Neumann trace and a Dirichlet trace.

In that case, the convergence is achieved in n iterations. To understand why we need at least n iterations, one can use the following argument: for n vertical strips as in Figure 3.2, let us assume that the support of the right-hand side f is contained in the domain on the far right, then the domain on the far left needs at least n -1 iterations just to be aware of the presence of a right-hand side (see Section 3.1.2). To conclude, we have convergence in a finite number of steps and the result is sharp.

Discrete setting

Now that we introduced the continuous point of view of the usual domain decomposition methods, we will present the discrete point of view. But first, we introduce in this section all the notions needed for discrete approximation of the solution to an elliptic problem such as Equation (3.1) with Ω ⊂ R d a Lipschitz domain and d = 2 or 3, we refer to [START_REF] Ern | Theory and Practice of Finite Elements[END_REF] for more details.

Meshes

For numerical solution of our elliptic problem, we first need to introduce a triangulation of the domain Ω.

Definition 3.1 (Mesh, [55, Definition 8]). Let Ω be a domain in R d . A mesh is a finite collection of disjoint non-degenerate simplices T = {K 1 , . . . , K N el } such that • Ω = N el i=1 K i ,
• the intersection K i ∩ K j is either empty, a common point or a common edge of both K i and K j for every 1 ≤ i, j ≤ N el and i = j.

Definition 3.2 (Meshsize, [52, Definition 1.13]). For all K ∈ T , h K denotes the diameter of K ∀K ∈ T , h K = diam K = max x,y∈K |x -y|.
Then, we define the meshsize of T as

h := max K∈T h K .
We use the notation T h for a mesh T of meshsize h.

Definition 3.3 (Shape regularity, [52, Definition 1.13]). A family of meshes {T h } h>0 is said to be shape-regular if there is σ 0 such that ∀h, ∀K ∈ T h , σ K = h K ρ K ≤ σ 0 ,
where ρ K is the radius of the largest ball that can be inscribed in K.

Usually, the mesh T h is generated using a reference cell K ref and an affine geometric transformation mapping K ref to the actual mesh cells. We denote this mapping F K , so that

K = F K (K ref ).

Galerkin approximation

In the following, we will denote V h a generic space of finite element functions associated with T h , N its dimension and (ϕ j ) N j=1 the finite element basis of V h . We need to write the variational formulation of Equation (3.1):

find u ∈ H 1 0 (Ω) such that a(u, v) := Ω ∇u(x) • ∇v(x) dx = Ω f (x)v(x) dx, ∀v ∈ H 1 0 (Ω). (3.6) 
The Galerkin approximation of Equation (3.6) consists in looking for the solution in

V h ⊂ H 1 0 (Ω): find u h ∈ V h such that a(v h , w h ) = (f, w h ), ∀w h ∈ V h . (3.7)
Then, from Equation (3.7), we obtain the following linear system

A h v h = b h , (3.8) 
where (A h ) i,j = a(ϕ j , ϕ i ), (b h ) j = Ω f ϕ j for 1 ≤ i, j ≤ N and v h is the vector of coefficients corresponding to the unknown finite element function v h . Notice that, since the bilinear form a is symmetric and positive definite, so is A h .

Domain decomposition

We now define the framework particular to DDM. We first partition Ω into a set of nonoverlapping subdomains (Ω p ) n p=1 resolved by T h , using for example a graph partitioner such as METIS [START_REF] Karypis | A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs[END_REF] or SCOTCH [START_REF] Chevalier | PT-Scotch: A tool for efficient parallel graph ordering[END_REF]. Then, each domain Ω p is extended to a domain Ω p by adding one or several layers of mesh elements, such that (Ω p ) n p=1 corresponds to an overlapping decomposition of Ω. This decomposition induces a natural decomposition of V h :

V h,p := Span(ϕ j | supp(ϕ j ) ∩ Ω p = ∅ and 1 ≤ j ≤ N ).
We also denote N p = dim( V h,p ). Notice that the V h,p corresponds to the set of functions whose support intersects Ω p . It also means that their support is not necessarily contained in Ω p , that is to say Ω p ∪ ϕ∈ V h,p supp(ϕ) (see Figure 3.3). That is why, we introduce Ω p as the subdomain containing the support of all functions in V h,p and

V h,p := Span(ϕ| Ωp , ϕ ∈ V h,p ).
Besides, we define the set of degrees of freedom associated with V h,p : dof h,p := {j | supp(ϕ j ) ∩ Ω p = ∅}, and we choose an arbitrary local numbering of the degrees of freedom defined by σ p : {1, 2, . . . , N p } → dof h,p . Then, we can define the extension by zero of a function v ∈ V h,p to Ω that lies in V h . The corresponding operator is denoted by

R T p : V h,p → V h . R T p (u p h )(x) = u p h (x) if x ∈ Ω p , 0 otherwise. 
We also denote by R T p ∈ R N ×Np a matrix representation of R T p defined as follows

(R T p ) j,k = 1 if j = σ p (k), 0 otherwise. 
Thus, we can define the algebraic restriction R p ∈ R Np×N , the dual of R T p using the usual euclidean scalar product and its continuous counterpart R p :

V h → V h,p R p : V h → V h,p . N j=1 u h,j ϕ j → Np j=1 u h,σp(j) ϕ σp(j) | Ωj
Note that R p is not a restriction in the natural sense. It restricts the set of shape functions used to represent an element of the discrete space V h,p (see remark thereafter). Notice also that R T p is not the dual of R p for the L 2 scalar product, they are respectively the equivalent of R T p and R p for finite element functions, and R T p is the transpose of R p .

Remarks 3.4.

• Let us take an example and consider the case where Γ is the interval between 0 and 10 on the x-axis discretized using P 1 Lagrange elements V h = Span(ϕ j | 0 ≤ j ≤ 10). Defining dof h,1 := {0, 1, 2, 3, 4, 5, 6} and dof h,2 := {4, 5, 6, 7, 8, 9, 10}, we represent

u h = 1 in Fig- ure 3.3. Notice that, R 1 (u h
) is not the usual restriction of u h since it is linear between 6 and 7.

• Another example in 2D is given Figure 3.4 for a square with P 1 shape function. The nodes in dof h,1 are represented with rectangle nodes.

• A minimal overlap of one mesh cell corresponds to algebraic restriction and extension operators without algebraic overlap (see Figure 3.3).

We have the relations

R p R T p = I d ∈ R Np×Np and R p R T p = I d .
We also define the following
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Ω 1 Ω 2 Ω 1 Ω 2 R 1 u h R 2 u h δ 1 = δ 2 Figure 3.3 -Example of an overlap in 1D for P 1 finite elements with Ω = Ω 1 ∪ Ω 2 and u h ∈ V h such that u h = 1, that is to say, u h,j = 1 for 1 ≤ j ≤ N . Ω 1 Ω 1 Figure 3.
4 -Example of a subdomain in 2D for P 1 finite elements where the rectangle nodes denote

P 1 functions in V h,1 . R N p R N V h,p V h R T p P h,p R p P h R T p R p Figure 3
.5 -Relations between restriction, extension operators, P h and P h,p for finite element functions. linear applications

       P h : R N → V h , u h = (u h,j ) N j=1 → u h = N j=1 u h,j ϕ j , and 
       P h,p : R Np → V h,p , u p h = (u p h,j ) Np j=1 → u p h = Np j=1 u p h,j ϕ σp(j) ,
that allow going back and forth between the finite element and the algebraic point of view. Several relations exist between the operators introduced so far, they are summarized in Figure 3.5.

We will also need partitions of unity that we define as an operator [START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF] and a function [START_REF] Scheichl | Weak Approximation Properties of Elliptic Projections with Functional Constraints[END_REF]. We will mainly use the former so that we only give the properties of the latter and refer to [START_REF] Scheichl | Weak Approximation Properties of Elliptic Projections with Functional Constraints[END_REF] for more details.

Definition 3.5 (Partition of unity -function).

In [START_REF] Scheichl | Weak Approximation Properties of Elliptic Projections with Functional Constraints[END_REF]Proposition 2.1], the authors defined a partition of the unity {χ p } n p=1 using a coarse mesh and the nodal interpolant I h defined as

I h (f )(x) := N j=1 ϕ j (x)f (x j ), ∀f ∈ C 0 (Ω),
with {x j } N j=1 the vertices of the mesh, so that ϕ j (x i ) = δ i,j . This partition of unity as the following properties

0 ≤ χ p ≤ 1,
and

|∇χ p | H -1 p , with H p = diam( Ω p ).

Definition 3.6 (Partition of unity -operator).

For each degree of freedom 1 ≤ j ≤ N , we define a family of weights

{µ p,j | j ∈ dof h,p , 1 ≤ p ≤ n} for 1 ≤ p ≤ N p such that µ p,j ≥ 1 and {p|j∈dof h,p } 1 µ p,j = 1.
Then, we define the local partition of unity operator for the subdomain p as follows

Ξ p : V h,p → V h,p v h = Np j=1 v h,j ϕ σp(j) | Ωp → Np j=1 1 µ p,σp(j) v h,j ϕ σp(j) | Ωp .
We also denote D p its matrix representation, which is a diagonal matrix of size N p × N p whose elements are the µ p,σp(j) for 1 ≤ j ≤ N p . We have the following identity:

I d = n p=1 R T p D p R p . (3.9) 
A few constants will characterize the domain decomposition, they will appear in the study of the efficiency of DDM preconditioners. All these definitions are inspired by [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF]. Definition 3.7.

• k 0 denotes the maximum multiplicity of the interaction between subdomains plus one, i.e.,

k 0 := max 1≤j≤N # p | R p MR T j = 0 , (3.10) 
where (M) i,j = Ω ϕ i (x)ϕ j (x) dx is the mass matrix.

• k 1 denotes the maximal multiplicity of the subdomain intersection, i.e., the largest integer m such that there exist m different subdomains whose intersection has a nonzero measure.

k 1 := ess sup n p=1 1 Ωp (3.11) • N c

is the minimum number of colors we can use to color a decomposition such that any two domains sharing an overlap have different colors

As for the domain decomposition, these constants are not supposed to increase with the number of subdomains a priori because they only depend on the local interaction between subdomains. The domain decomposition could be considered as a graph where subdomains are the vertices and then, two vertices are related by an edge if the corresponding subdomains overlap. Using the terminology from graph theory to describe this graph, k 0 -1 corresponds to the maximum vertex degree [160, Definition 1. 5.1.22] states that this bound can be improved to N c ≤ k 0 -1 if the graph is connected [160, Definition 1.2.6] (meaning that there is always a path between two vertices) but not complete (meaning that each vertex is not connected to every other vertex) and not an odd cycle.

Schwarz methods at the discrete level

Discretization of Equations (3.2) and (3.3) using Lagrange P 1 elements with a minimal overlap of one mesh cell (or without algebraic overlap, that is to say dof h,p ∩ dof h,l = ∅ for p = l), lead respectively to a Gauss-Seidel method and a Block Jacobi method (see [44, Section 1.2]), and thus both define a preconditioner. In practice, they are not necessarily used in a fixed-point method, Krylov solvers are usually preferred to them because they are more efficient.

The Additive Schwarz Method (ASM), introduced in [START_REF] Widlund | An additive variant of the Schwarz alternating method for the case of many subregions[END_REF], refers to the preconditioner M -1 ASM which stems from the discretization of (3.3) in the case of a minimal overlap

M -1 ASM := n p=1 R T p (R p AR T p ) -1 R p , (3.12) 
but its definition is extended to the case of a more general overlap.

Remark 3.8. The preconditioner which stems from the discretization of Equation (3.2) is usually called Multiplicative Schwarz Method (MSM). Historically, the ASM has been introduced as a modification of the MSM such that it became additive in [START_REF] Widlund | An additive variant of the Schwarz alternating method for the case of many subregions[END_REF][START_REF] Aleksandr | The Schwarz alternation method in a subspace[END_REF]. In the case of a general overlap, the ASM does not correspond to the discretization of Equation (3.3) anymore.

The use of Krylov solvers instead of Block Jacobi iterations is even more justified by the fact that the ASM preconditioner does not necessarily converge with the latter. Indeed, it has been shown for example in [START_REF] Efstathiou | Why Restricted Additive Schwarz Converges Faster than Additive Schwarz[END_REF]Theorem 3.5] that, for a Poisson problem with two subdomains, the method does not converge in the overlap. In [START_REF] Aleksandr | The Schwarz alternation method in a subspace[END_REF] a damping factor "sufficiently small" is used to make the method converge (see [START_REF] Efstathiou | Why Restricted Additive Schwarz Converges Faster than Additive Schwarz[END_REF] for an insight on the value of damping parameter). This shows that the ASM does not correspond to the Parallel Schwarz Method since the latter always converges in this case, cf. [START_REF] Lions | On the Schwarz alternating method. I[END_REF]. This last remark led to the introduction of the Restricted Additive Schwarz method (RAS) (see [START_REF] Efstathiou | Why Restricted Additive Schwarz Converges Faster than Additive Schwarz[END_REF]) which corresponds to the discretization of Equation (3.3). Nevertheless, the ASM preconditioner has very desirable properties, it is symmetric when A is symmetric, which is not the case with RAS, and thanks to its additive expression, it is tailored for parallelization, which is not the case of the MSM that is sequential by nature.

Fictitious space lemma

Since we want to use the ASM preconditioner with Krylov solver, typically the conjugate gradient, we need an estimate on the condition number of the preconditioned system. To do so, we will use the following abstract theorem [START_REF] Sergey | Mesh theorems on traces, normalizations of function traces and their inversion[END_REF][START_REF] Griebel | On the abstract theory of additive and multiplicative Schwarz algorithms[END_REF]: 

(i) R is surjective. (ii) There exists a positive constant c R such that a(Ru D , Ru D ) ≤ c R b(u D , u D ) ∀u D ∈ H D . ( 3 

.13)

(iii) There exists a positive constant c T such that for all u ∈ H there exists

u D ∈ H D with Ru D = u and c T b(u D , u D ) ≤ a(Ru D , Ru D ) = a(u, u) (3.14)

And let us introduce the adjoint operator R

* : H → H D by (Ru D , u) = (u D , R * u) D for all u D ∈ H D and u ∈ H. Then, we have the spectral estimate c T a(u, u) ≤ a(RB -1 R * Au, u) ≤ c R a(u, u), ∀u ∈ H,
which shows that the spectrum of the operator RB -1 R * A are bounded from below by c T and from above by c R .

Remark 3.10. The estimate in Equation (3.14) is usually referred to as stable decomposition.

Analysis without coarse space

Let us reformulate the ASM in the framework of the fictitious space lemma: Definition 3.11.

• H := R N is endowed with the standard euclidean scalar product (•, •), and we consider the following bilinear form:

a : R N × R N → R (u h , v h ) → (Au h , v h ) = a(u h , v h ), with A defined in Equation (3.8) while u h = P h (u h ) and v h = P h (v h ).
In the following, we will often use this vector representation in the finite element basis (bold font) of finite element functions (normal font).

• H D := n p=1 R Np is endowed with the standard euclidean scalar product, and we consider the following bilinear form: b :

n p=1 R Np × n p=1 R Np → R (u p h , v p h ) n p=1 → n p=1 (AR T p u p h , R T p v p h ) = n p=1 a(R T p u p h , R T p v p h ), with u p h = P h,p (u p h ) and v p h = P h,p (v p h ). Then, B : H D → H D is defined by ∀ U h = (u p h ) n p=1 ∈ n p=1 R Np , B(U h ) := (R p AR T p u p h ) 1≤p≤n .
Notice that B is a block diagonal operator, such that

∀ U h = (u p h ) n p=1 ∈ n p=1 R Np , B -1 (U h ) := ((R p AR T p ) -1 u p h ) 1≤p≤n .
• The linear operator R ASM is defined as follows

R ASM : H D → H (u p h ) 1≤p≤n → n p=1 R T p u p h . (3.15) 
We have now all the ingredients to study the ASM in the framework of the fictitious space lemma. First, since M -1 ASM = R ASM B -1 R * ASM according to Equation (3.12) and the previous framework, we just need to check the hypothesis of Theorem 3.9 to obtain the needed estimate.

Lemma 3.12 (Surjectivity of R ASM ). The operator R ASM defined in Equation (3.15) is surjec- tive. Proof. For all u h ∈ R N , u h = R ASM (U h ) with U h = (D p R p u h ) 1≤p≤n according to Equa- tion (3.9). Lemma 3.13 (Continuity of R ASM ). For U h = (u p h ) 1≤p≤n ∈ H D ,
we have the following inequality:

a(R ASM U h , R ASM U h ) ≤ k 0 b(U h , U h ),
where k 0 is defined in Equation (3.10) as the maximum number of neighbors a subdomain can have.

Proof. The proof is the same as [44, Lemma 7.9].

The previous lemma shows that Equation (3.13) is satisfied. Let us see now why the ASM with only one-level can be insufficient in practical computations.

Lemma 3.14 (Stable decomposition). Let us assume that V h is the standard space of continuous and piecewise linear functions. For u

h ∈ R N , let U h = (u p h ) 1≤p≤n ∈ H D such that u p h = R p P -1
h I h χ p P h u h with (χ p ) n p=1 and I h , respectively a partition of the unity and the nodal interpolant, defined in Definition 3.5. Then, we have

u h = R ASM (U h ) and b(U h , U h ) ≤ 2k 1 C(1 + H 2 max p=1...n 1 H 2 p ) a(u h , u h )
where k 1 is the maximal multiplicity of the subdomain intersections defined in Equation (3.11), H is the diameter of Ω, H p is the diameter of the subdomain Ω p , C > 0 is a constant independent of h and that only depends on the shape of Ω, but not on its size.

Proof. Denoting u h = P h (u h ) and u p h = P h,p (u p h ), notice that we have the following relation:

(AR T p u p h , R T p u p h ) = a(P h R T p u p h , P h R T p u p h ) = a(P h R T p R p P -1 h I h (χ p u h ), P h R T p R p P -1 h I h (χ p u h )) = a(I h (χ p u h ), I h (χ p u h )).
Using the fact that I h applied to piecewise quadratic functions is stable in norm 

H 1 0 (see [140, Lemma 2.3]), that is to say a(I h (v h ), I h (v h )) ≤ C inter a(v h , v h ), for every v h ∈ V h with C inter is independent of h and the diameter of Ω. Taking v h = χ p u h , we obtain (AR T p u p h , R T p u p h ) ≤ C inter Ωp |∇(χ p u h )| 2 ≤ 2C inter Ωp |∇u h | 2 + C p H 2 p |u h | 2 using |∇χ p | 2 ≤ C p /H
(AR T p u p h , R T p u p h ) ≤ 2k 1 C inter Ω |∇u h | 2 + 2k 1 C inter max p=1...n C p H p 2 Ω |u h | 2 .
Then, using the following Poincaré inequality [153, Corollary A.15], we have

Ω |u h | 2 ≤ C P H 2 Ω ∇|u h | 2 ,
where C P depends only on the shape of Ω, but not on its size, so that we obtain

b(U h , U h ) = n p=1 (AR T p u p h , R T p v p h ) ≤ 2k 1 C 1 + H 2 max p=1...n 1 H 2 p a(u h , u h )
where H is the diameter of Ω, C > 0 is a constant that depends only on the shape of Ω but not on its size and k 1 is the maximal multiplicity of the subdomain intersection. Finally, notice that

R ASM (U h ) = n p=1 R T p u p h = n p=1 R T p R p P -1 h I h χ p P h u h = P -1 h I h n p=1 χ p P h u h = P -1 h I h P h u h .
Applying I h to a piecewise linear function like P h u h reduces to the identity operator, so that we obtain R ASM (U h ) = u h .

Theorem 3.15 (Spectral estimate for the ASM). We have

κ(M -1 ASM A) ≤ 2k 0 k 1 C(1 + H 2 max p=1...n 1 H 2 p ), (3.16) 
where k 1 is the maximal multiplicity of the subdomain intersections defined inEquation (3.11), k 0 is defined inEquation (3.10) as the maximum number of neighbors a subdomain can have, H p is the diameter of the subdomain Ω p , H is the diameter of Ω, C is a constant that depends only on the shape of Ω but not on its size.

Proof. Since M -1 ASM = R ASM B -1 R * ASM , the framework introduced previously needs to satisfy the three hypothesis of Theorem 3.9. The first is satisfied according to Lemma 3.12. The second is given by Lemma 3.13 with c R = k 0 . And finally, the last hypothesis is given by Lemma 3.14 with c -1

T = 2k 1 C(1 + H 2 max p=1...n (1/H 2 p )).
Let us define two notions of scalability (cf. [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF]Chapter 4]).

Definition 3.16 (Strong scalability). Strong scalability is defined as how the solution time varies

with the number of cores for a fixed total problem size. Ideally, the elapsed time is inversely proportional to the number of processing units (CPUs, cores, GPUs).

Definition 3.17 (Weak scalability). Weak scalability is defined as how the solution time varies with the number of cores for a fixed problem size per core. Ideally, the elapsed time is constant for a fixed ratio between the size of the problem and the number of processing units (CPUs, cores, GPUs).

The previous estimate given in Equation (3.16) does not guarantee any scalability:

• If we increase the number of subdomains for a fixed domain Ω, so that the size of the subdomains decrease, we have H/H p → ∞.

• If we increase the number of subdomains and the size of the domain with the same ratio, so that the size of the subdomains is fixed but the size of Ω increases, we also have H/H p → ∞.

In both cases, if our bound is optimal, the condition number will increase so that the number of iterations using CG will also increase. So, the method is not scalable, both weakly and strongly. And indeed, the method is not scalable, this is due to the fact that the solution is non-local, its value at one point depends on the right-hand side at any other point. And since the ASM performs communications between neighbors, we understand that the method becomes slower when the number of subdomains is large. This is observed in actual numerical experiments, see [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF]Chapter 4] for examples of this phenomenon.

Analysis with GenEO coarse space

To solve the lack of scalability of the ASM, a mechanism which performs global communications can be added. It is usually done via a coarse space correction, i.e. we want to decompose V h as follows

V h = R T 0 V h,0 + n p=1 R T p V h,p ,
where V h,0 is a coarse space and R T 0 : V h,0 → V h , an interpolation operator. This coarse correction can be added to the ASM as follows

M -1 ASM,2 := R T 0 (R 0 AR T 0 ) -1 R 0 + n p=1 R T p A -1 p,p R p , (3.17) 
but there exist several other ways to add a coarse correction (see [START_REF] Jok | Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods[END_REF] for example). The idea behind this coarse space is to directly take care of some parts of the function space V h . For example, we see in the proof of Lemma 3.14 that the reason why the Poincaré constant of the whole domain appears is that we cannot apply the Poincaré inequality locally. And this is because the functions under consideration are not in H 1 0 ( Ω p ). To solve this, we can remove a coarse component that contains at least the constants, so that we can apply local Poincaré inequalities to a zero mean value functions instead. This argument is called a quotient space argument (see [START_REF] Toselli | Domain decomposition methods: algorithms and theory[END_REF]Chapter 3.5] for more details).

The coarse spaces proposed in the literature generally rely on the kernel of the local solvers, for example, constants for Poisson problems and rigid body motions for elasticity. This is in part due to the fact that they are necessary in substructuring methods for the local problem to be well-posed. One can also enlarge the coarse space to obtain more robust coarse spaces at the price of more expensive computations to deal with the coarse component. We refer to [START_REF] Olof | The Development of Coarse Spaces for Domain Decomposition Algorithms[END_REF][START_REF] Mandel | Coarse spaces over the ages[END_REF] for historical reviews.

Here, we want to use the GenEO method (see [START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF] for the initial method and [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF] for its present version) that builds a coarse space tailored for the condition number required by the user. In the analysis of the GenEO method, the coarse space is not initially prescribed. We first define a generic coarse space V h,0 and we denote its size by N 0 . The coarse space is spanned by the columns of a rectangular matrix R T 0 of size N × N 0 . Actually, most of the assumptions of Theorem 3.9 are satisfied without any a priori knowledge of V h,0 .

We formulate the ASM with GenEO coarse space as follows Definition 3.18.

• H := R N is endowed with the standard euclidean scalar product (•, •), and bilinear form a is defined as in Definition 3.11.

• H D := n p=0 R Np is endowed with the standard euclidean scalar product, and we consider the following bilinear form:

b : n p=0 R Np × n p=0 R Np → R (u p h , v p h ) n p=0 → n p=0 (AR T p u p h , R T p v p h ) = (AR T 0 u 0 h , R T 0 v 0 h ) + n p=1 a(R T p u p h , R T p v p h ),
with u p h = P h,p u p h and v p h = P h,p v p h for 1 ≤ p ≤ n. Then, B : H D → H D is defined by

∀ U h = (u p h ) n p=0 ∈ n p=0 R Np , B(U h ) := (R p AR T p u p h ) 0≤p≤n .
Notice that B is a block diagonal operator,

∀ U h = (u p h ) n p=0 ∈ n p=0 R Np , B -1 (U h ) := ((R p AR T p ) -1 u p h ) 0≤p≤n .
• The linear operator R ASM,2 is defined as follows

R ASM,2 : H D → H (u p h ) 0≤p≤n → n p=0 R T p u p h . (3.18) 
With these definitions, we have

M -1 ASM,2 = R ASM,2 B -1 R * ASM,2 .
We just need to satisfy the three hypothesis of Theorem 3.9 using Definition 3.18. Proof. For all u h ∈ R N , u h = R ASM (U h ) with U h = (0, (D p R p u h ) 1≤p≤n ) according to Equation (3.9). Lemma 3.20 (Continuity of R ASM,2 , [44, Lemma 7.11]). For U h = (u p h ) 0≤p≤n ∈ H D , we have the following inequality:

a(R ASM,2 U h , R ASM,2 U h ) ≤ 2k 0 b(U h , U h ),
where k 0 is defined in Equation (3.10) as the maximum number of neighbors a subdomain can have.

Proof. First, we use the Cauchy-Schwarz inequality

a(R ASM,2 U h , R ASM,2 U h ) = A n p=0 R T p u p h , n p=0 R T p u p h ≤ 2 (AR T 0 u 0 h , R T 0 v 0 h ) + a n p=1 R T p u p h , n p=1 R T p v p h ,
and then we use Lemma 3.13 with the last term to obtain the expected result.

Then, notice that we have the following lemma for any additive coarse space.

Lemma 3.21 ([44, Lemma 7.12]). Let u h ∈ H and U h = (u p h ) 0≤p≤n ∈ H D with R ASM,2 (U h ) = u h . Then, we have b(U h , U h ) ≤ 2 a(u h , u h ) + (2k 0 + 1) N p=1 a(R T p u p h , R T p u p h ).
Proof. First, we use the definition of R ASM,2 and the Cauchy-Schwarz inequality,

b(U h , U h ) = a(R T 0 u 0 h , R T 0 u 0 h ) + n p=1 a(R T p u p h , R T p u p h ) = a(u h - n p=1 R T p u p h , u h - n p=1 R T p u p h ) + n p=1 a(R T p u p h , R T p u p h ) ≤ 2 a(u h , u h ) + a n p=1 R T p u p h , n p=1 R T p u p h + n p=1 a(R T p u p h , R T p u p h ).
Then, we can apply Lemma 3.13 to the second term to obtain the result.

Besides, we have the following lemma using our finite element setting.

Lemma 3.22 [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF]Lemma 7.13]). For all u h ∈ H we have

n p=1 a Ωp (P h u h , P h u h ) ≤ k 1 a(u h , u h ),
where a Ωp corresponds to the local bilinear form associated with Ω p , that is to say, for u, v ∈ H 1 (Ω)

a Ωp (u, v) = Ωp ∇u(x) • ∇v(x) dx. Proof. n p=1 a Ωp (P h u h , P h u h ) = n p=1 Ωp |∇(P h u h )| 2 dx ≤ k 1 Ω |∇(P h u h )| 2 dx = k 1 a(u h , u h ).
According to the last two lemmas, a sufficient condition for U h = (u p h ) 0≤p≤n ∈ H D to satisfy the third hypothesis of Theorem 3.9 is to satisfy the following relation: for every 1 ≤ p ≤ n,

(AR T p u p h , R T p u p h ) ≤ τ a Ωp (P h u h , P h u h ) = τ ( A p R p u h , R p u h ), (3.19) 
where τ > 0 is a given parameter and A p is the finite element matrix associated with a Ωp . Notice that the condition given in Equation (3.19) is local. The definition of U h for a given τ will be a consequence of the definition of the coarse space. To be able to find a U h ∈ H D that satisfies Equation (3.19), we solve the associated generalized eigenvalue problems: for

1 ≤ p ≤ n, find (v p h,k , λ p k ) P p D p A p,p D p P p v p h,k = λ p k A p v p h,k (3.20) 
where P p is the projection on range( A p ) parallel to ker( A p ). 

(R T p D p (I d -π p )v p h ) T A(R T p D p (I d -π p )v p h ) ≤ τ (v p h ) T A p v p h
Notice that the last relation is similar to Equation (3.19). That is why we define u p h for 1 ≤ p ≤ n as follows

u p h := D p (I d -π p )R p u h . (3.21)
Then, it remains to define the coarse space V h,0 and the associated component [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF]Definition 7.16]). The GenEO coarse space is defined as a sum of local contributions weighted with the partition of unity:

u 0 h such that R ASM,2 (U h ) = u h where U h = (u p h ) n p=0 . Definition 3.25 (GenEO coarse space,
V h,0 = Span(R T p D p v p h | 1 ≤ p ≤ N, v p h ∈ Z p,τ )
Let Z τ ∈ R N ×N0 be a column matrix so that V h,0 is spanned by its columns and N 0 = dim(V h,0 ). We denote its transpose by R 0 := Z T τ .

Theorem 3.26 (GenEO coarse component, [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF]Theorem 7.17]). Let u h ∈ H, we define u p h for 1 ≤ p ≤ n as in Equation (3.21) and u 0 h by

u 0 h := (R 0 R T 0 ) -1 R 0 n p=1 R T p D p π p R p u h , (3.22 
)

Then, U h = (u p h ) n p=0 ∈ H D is a stable decomposition of u h , that is to say R ASM,2 (U h ) = u h and c T b(U h , U h ) ≤ a(u h , u h ), where c -1 T = (2 + (2k 0 + 1)k 1 τ ).
Proof. Let u h ∈ R N and U h = (u p h ) 0≤p≤n ∈ H D defined using Equations (3.21) and (3.22). First notice that we have

w 0 = R T 0 (R 0 R T 0 ) -1 R 0 w 0 for every w 0 ∈ V h,0 since R T 0 (R 0 R T 0 ) -1 R 0 is a projector on V h,0 . Then, we have R ASM,2 (U h ) = n p=0 R T p u p h = R T 0 u 0 h + n p=1 R T p u p h = R T 0 (R 0 R T 0 ) -1 R 0 n p=1 R T p D p π p R p u h ∈V h,0 + n p=1 R T p u p h = n p=1 R T p D p π p R p u h + n p=1 R T p D p (I d -π p )R p u h = n p=1 R T p D p R p u h = u h ,
where we used the fact that D p defines a partition of unity in the last line. Then, using Lemma 3.21 and Theorem 3.24 with

v p h = R p u h for 1 ≤ p ≤ n, we have n p=0 a(P h R T p u p h , P h R T p u p h ) = n p=0 (A h R T p u p h , R T p u p h ) ≤ 2(A h u h , u h ) + (2k 0 + 1) n p=1 (A h R T p u p h , R T p u p h ) ≤ 2(A h u h , u h ) + (2k 0 + 1)τ n p=1 ( A h R p u h , R p u h )
Finally, using Lemma 3.22 we deduce

n p=0 a(P h R T p u p h , P h R T p u p h ) ≤ (2 + (2k 0 + 1) τ k 1 ) a(P h u h , P h u h ).
Theorem 3.27 [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF]Theorem 7.18]). We have the following condition number estimate

κ(M -1 ASM,2 A) ≤ 2k 0 (2 + (2k 0 + 1)k 1 τ ).
Proof. Again, we use Theorem 3.9. The first hypothesis is satisfied according to Lemma 3.19.

The second is given by Lemma 3.20 with c R = 2k 0 . And finally, the last hypothesis is given by Theorem 3.26 such that c -1 T = (2 + (2k 0 + 1)k 1 τ ). Remark 3.28. It should be noted that the decomposition (u p h ) n p=1 is necessary for the analysis, but it does not need to be computed in practice. To use this coarse space, it is sufficient to compute Z τ and then (R 0 A h R T 0 ) -1 to be able to apply M -1 ASM (see Equation (3.12)). And to do so, each local contribution to the coarse space given in Definition 3.23 can be computed independently in parallel, so that computing Z τ can be done efficiently. Then, to compute R 0 A h R T 0 , one can use the fact that Z τ is sparse and distributed (since the eigenvectors are computed in parallel). Finally, we need to invert (R 0 A h R T 0 ) ∈ R N0×N0 and that is why a good coarse space should be of minimum size while still containing relevant information for the convergence.

In conclusion, this approach requires the solution to local generalized eigenvalue problems, which is a parallel task, and we obtain a condition number independent of the number of subdomains, contrary to the one-level approach of Section 3.3.2. The advantage of this method over other methods using a two-level approach is that it can work in a black-box manner and it is more robust, in the sense that the coarse space is built automatically from the local generalized eigenvalue problems and its efficiency is proved as long as the problem is symmetric and positive definite. However the coarse space can be large so that inverting R 0 A h R T 0 can be expensive at some point. In this case, approximate solvers can be used, and the effect of the approximation on the bound are studied in [START_REF] Nataf | Mathematical Analysis of Robustness of Two-Level Domain Decomposition Methods with respect to Approximate Coarse Solves[END_REF].

CHAPTER 4

Local multi-trace formulation and optimal Schwarz method Outline of the current chapter In Chapter 3, we presented two different points of view on Schwarz methods, either as iterative methods or as preconditioners. In the case of BEM, we could also think of two approaches for DDM, as pointed out in the introduction of [START_REF] Hahne | Schwarz iterations for the efficient solution of screen problems with boundary elements[END_REF]. We could make a decomposition of the original domain where the solution is sought, a volume decomposition, and then formulate a BIE in each subdomain with some ways of coupling them. Or we could first set up a BIE on the whole computational domain and then apply a domain decomposition of its boundary, a surface decomposition. In this chapter, we will explore the first approach and show a relation with the first point of view introduced on Schwarz methods. This approach can be useful to solve multi-subdomain scattering problems. Several formulations for this approach have been introduced where the difference lies usually in the way the BIE are coupled with each other: the PMCHWT (Poggio-Miller-Chang-Harrington-Wu-Tsai) formulation [START_REF] Poggio | Integral equation solutions of three-dimensional scattering problems[END_REF][START_REF] Chang | A surface formulation for characteristic modes of material bodies[END_REF][START_REF] Wu | Scattering from arbitrarily-shaped lossy dielectric bodies of revolution[END_REF] also called Rumsey's reaction principle, the Boundary Element Tearing and Interconnecting (BETI) method [START_REF] Langer | Boundary element tearing and interconnecting methods[END_REF] and the Multi-Trace Formulations (MTF) [START_REF] Claeys | Multitrace boundary integral equations[END_REF]. The latter consists in doubling unknown traces at each point of each interface, and these duplicated unknowns are disconnected a priori from one another. This allows solving independently problems in each subdomains, which makes MTF similar to DDM as presented in Chapter 3, while the transmission condition is enforced weakly with a transmission operator.

There exist several variants of MTF and they differ in the choice of the transmission operator. We will focus on local MTF [START_REF] Hiptmair | Multiple traces boundary integral formulation for Helmholtz transmission problems[END_REF] where the transmission consists in exchanging the traces of the neighbouring subdomains, which is local and similar to Schwarz methods like the alternating Schwarz method given in Equation (3.2). Interesting results about this formulation have been proved in [START_REF] Claeys | An introduction to multi-trace formulations and associated domain decomposition solvers[END_REF] for Helmholtz with a constant material coefficient. The authors introduced a particular Jacobi method that led to a convergence in a finite number of iterations for two and three subdomains. This is similar to the Optimal Schwarz Method (OSM) [START_REF] Nataf | Optimal interface conditions for domain decomposition methods[END_REF] described in Section 3.1.2, and they actually proved an equivalence between their Jacobi method applied to local MTF and OSM in the case of two subdomains for d = 1.

In this chapter, we will first introduce the framework of multi-subdomain problems in Section 4.1, then we will present local MTF and the properties of its boundary integral operators in Section 4.2 using results from [START_REF] Claeys | Essential spectrum of local multi-trace boundary integral operators[END_REF]. With these properties, we will be able to extend the results from [START_REF] Claeys | An introduction to multi-trace formulations and associated domain decomposition solvers[END_REF] to n subdomains in Section 4.3 and we will generalize the equivalence between local MTF and OSM. Finally, we will illustrate these results numerically in Section 4.4, and explore how the Jacobi method proposed for a homogeneous material can lead to a preconditioner that can be useful for a heterogenous material. This work also appears in [START_REF] Claeys | Boundary integral multi-trace formulations and Optimised Schwarz Methods[END_REF] and has been submitted.

Multi-subdomain problems

Geometric settings

We consider a non-overlapping partition of the whole space R d = n p=0 Ω p where n + 1 is the number of domains, Ω 0 is the exterior domain by convention and each Ω p is a Lipschitz open set such that Ω p ∩ Ω k = ∅ for p = k. We denote Γ p := ∂Ω p , Γ p,k := Γ p ∩ Γ k , and we call Σ the skeleton of the partition, defined as follows:

Σ := n p=0 Γ p with Γ p := ∂Ω p .
We also make the strong assumption that there is no junction point, that is to say

Γ p ∩ Γ k ∩ Γ m = ∅, for p = k, p = m, m = k. (4.1)
We define the adjacency graph G = (V, E) associated with the partition: and we denote P G the maximal length (here, the number of edges) of a simple (without any repeated vertices) path (Ω p1 , . . . , Ω p P G +1 ). Notice that the assumption (4.1) implies that if

V = {Ω p , p = 0, . . . , n} , E = {{Ω p , Ω k } , such that Γ p ∩ Γ k = ∅ and p = k, for p = 0, . . . , n and k = 0, . . . , n} , Ω 0 Ω 1 Ω 2 Ω 3 Ω 4 Ω 0 Ω 2 Ω 4 Ω 3 Ω 1
{Ω p , Ω k } ∈ E for 0 ≤ p, k ≤ n, then either Ω p ⊂ Ω k or Ω k ⊂ Ω p .
We deduce that G is a tree whose root is Ω 0 , and we give an example in Figure 4.1 where P G = 3.

Problem under consideration

We consider the Helmholtz equation in piecewise homogeneous domains. First, let us recall the form of the equation: , where κ is the wavenumber, a function on R d piecewise constant such that κ(x) = κ p for x ∈ Ω p . Similarly, µ : R d → R + such that µ(x) = µ p > 0 for x ∈ Ω p . We will assume that it satisfies the condition considered in [START_REF] Von | Boundary integral equations for mixed Dirichlet, Neumann and transmission problems[END_REF][START_REF] Claeys | Multi-trace boundary integral formulation for acoustic scattering by composite structures[END_REF]:

             -∆u -κ 2 p u = 0 in Ω p ∀p = 0 . . . n, u -u inc is κ 0 -outgoing, γ p D (u) -γ k D (u) = 0 µ -1 p γ p N (u) + µ -1 k γ k N (u) = 0 on Γ p ∩ Γ k , ∀p, k = 0 . . . n.
κ p = 0, Re(κ p ) ≥ 0 and Im(κ p ) ≥ 0, ∀p = 0, . . . , n. (4.3) 
These two last conditions correspond respectively to a choice of a direction of propagation and a dissipative domain. In the transmission condition, γ p D and γ p N are the trace operators associated with Ω p and µ p is called the magnetic permeability of Ω p in electromagnetism for example. For the exterior domain Ω 0 , one has to choose a condition for the behavior of the solution at infinity, and it will depend on κ 0 . We say that u is κ 0 -outgoing if it satisfies

• if Im(κ 0 ) > 0, u| Ω0 ∈ H 1 (Ω 0 )
• if κ 0 > 0, we have the Sommerfeld radiation condition whose purpose is to impose that the energy which is radiated from the sources must propagate toward infinity:

|u(x)| = O(|x| -d-1 2 ) ∂u ∂r (x) -iku(x) = o(|x| -d-1 2 )      for |x| → ∞,
These two conditions are the same as the ones given in Remark 2.8. The source term comes from the incident wave u inc solution of the Helmholtz equation in R d with κ 0 . For example, a plane wave

u inc = exp(iκ 0 d • x) with d ∈ R 3 , |d| = 1, a direction of propagation.
Notice that the incident wave is not a priori κ 0 -outgoing This equation comes from the study of periodic stationary solutions of the wave equation. That is why it is a model for stationary wave propagation. Typically, Ω 0 represents the background medium while n p=1 Ω p is a composite scatterer. Equation (4.2) has been proved to be well-posed in [START_REF] Von | Boundary integral equations for mixed Dirichlet, Neumann and transmission problems[END_REF].

Functional setting for multi-subdomain problems

We need to adapt the notations and the functional setting developed in Chapter 2 to the multisubdomain problem we are considering. The notations we use are the same as in [ We denote the local trace space

H(Γ p ) = H 1/2 (Γ p ) × H -1/2 (Γ p ), the trace space associated with Γ p , equipped with the norm (v, q) 2 H(Γp) := v 2 H 1/2 (Γp) + q 2 H -1/2 (Γp)
. We also consider the following pairing

[u, v] Γp := Γp (uq -vp) dσ where u = (u, p) ∈ H(Γ p ) and v = (v, q) ∈ H(Γ p ). Lemma 4.1. The pairing [•, •] Γp puts H(Γ p ) in duality with itself, meaning that the application i : H(Γ p ) → H(Γ p ) * v → ψ v , with ψ v (u) := [u, v] is an isomorphism,.
Proof. Linearity is straightforward, we need to prove the injectivity and surjectivity of the considered application.

• injectivity: Let v = (v, q) ∈ H(Γ p ), let us assume that for every u ∈ H(Γ p ), we have [u, v] = 0. Taking u = (u, 0) and then, u = (0, p), we obtain that

Γp vp dσ = 0, ∀p ∈ H -1/2 (Γ p ) Γp qu dσ = 0, ∀u ∈ H 1/2 (Γ p )
so that v = 0 and ker(i) = {0}.

• surjectivity: Let ṽ = (q, ṽ)

∈ H(Γ p ) * = H 1/2 (Γ p ) × H -1/2 (Γ p ), we have u, ṽ H(Γp)×H(Γp) * = Γp (uq + ṽp) dσ = [u, v],
defining v = (-ṽ, q) ∈ H(Γ p ), so that i(v) = ṽ.

Definition 4.2 (Multi-trace space).

Let us denote the multi-trace space H(Σ) as the cartesian product of traces on the boundary of each domain:

H(Σ) := H(Γ 0 ) × • • • × H(Γ n )
This space will be equipped with its natural cartesian product norm: for every u = (u p )

n p=0 ∈ H(Σ) u 2 H(Σ) := n p=0 u p 2 H(Γp) .
Then, we define as well a duality pairing:

u, v := n p=0 [u p , v p ] Γp for every u = (u p ) n p=0 and v = (v p ) n p=0
belonging to H(Σ), and this pairing puts also H(Σ) in duality with itself.

Definition 4.3 (Single-trace space).

Let us denote the single-trace space X(Σ) defined as

X(Σ) := u =(v p , p p ) n p=0 ∈ H(Σ) ∃v ∈ H 1 (R d ) such that v| Γp = v p ∃q ∈ H(div, R d ) such that n p • q| Γp = q p ∀p = 0, . . . , n , where H(div, R d ) := {q ∈ L 2 (R d ) d | div(q) ∈ L 2 (R d )}.
It corresponds to a subspace of H(Σ) whose functions satisfy the transmission conditions. It can be seen as a space taking into account the transmission condition as an essential condition when µ 1 = • • • = µ n . This denomination "single trace" comes from the fact that only one pair of Dirichlet and Neumann traces come into play on each Γ p contrary to the multi-trace space. The following lemma gives a characterization of the single trace space:

Lemma 4.4 ([28, Proposition 2.1]). For any u ∈ H(Σ) we have u ∈ X(Σ) ⇐⇒ u, v = 0 ∀v ∈ X(Σ).
We generalize the definition of the solution space given in Theorem 2.24 in a multi-subdomain setting:

C (κ) (Σ) := u = (γ p (u p )) p=0 |u p ∈ H 1 loc (Ω p ) and -∆u p -κ 2 p u p = 0 in Ω p and u p is κ p -outgoing if Ω p is unbounded
where (κ) stands for the tuple (κ 0 , . . . , κ n ). Then, this space has a characterization similar to Lemma 4.4 for the single-trace space:

Lemma 4.5 ([36, Lemma 6.2]). For any u ∈ H(Σ) we have u ∈ C (κ) (Σ) ⇐⇒ u, v = 0 ∀v ∈ C (κ) (Σ).
The multi-trace space is actually a direct sum of the single-trace space and the cauchy data set:

Lemma 4.6 ([36, Proposition 6.1]). H(Σ) = X(Σ) C (κ) (Σ).

Formulations with boundary integral operators 4.2.1 Integral operators in a multi-subdomain setting

Using the operators introduced in Chapter 2, we define integral operators acting on the multitrace space. Let us define the Calderón operator P (κ) : H(Σ) → H(Σ) and A (κ) : H(Σ) → H(Σ) as:

P (κ) (v) , v := n p=0 P p κp v p , v p Γp , A (κ) (v), v := n p=0 A p κp v p , v p Γp , for all v = (v p ) n p=0 , v = (v p ) n p=0 ∈ H(Σ)
where P p κp is the local Calderón projector associated with Ω p and A p κp = 2 P p κp -I d as defined in Section 2.3.3. We may also use the equivalent notation in matrix-type form as follows:

P (κ) = diag p=0,...,n P p κp , A (κ) = diag p=0,...,n A p κp ,
acting on vectors such as v = (v 0 , . . . , v n ) T . Since we are considering a scattering problem with several domains, we need extension and restriction operators to decompose traces accordingly. Let us denote Γ p,k = Γ p ∩ Γ k so that Γ p = k =p Γ p,k . For a given pair (p, k) with p = k, we define:

R p k : H(Γ p ) → H(Γ p,k ) v p → v p | Γ p,k ,
and we will denote

v p k = R p k (v p ).
The adjoint of this restriction operator is given by:

(R p k ) * : H(Γ p,k ) → H(Γ p ) v → v on Γ p,k 0 on Γ p \ Γ p,k .
Now that we can decompose traces using restriction and extension operators, each P But it should be noted that the rows and columns associated with indices k such that Γ p,k = ∂Ω p ∩ ∂Ω k = ∅ and k = p must be omitted. So that, if we define for each domain Ω p , the set of indices of its neighbors:

Λ p := {k |k = p, ∂Ω p ∩ ∂Ω k = ∅} ,
the matrix in Equation (4.4) is square with card(Λ p ) rows. We also define the following matrix Q:

Q = 1 0 0 -1 .
It will be used to apply transmission conditions. Indeed, because of the orientation of the normal in the definition of the trace operator γ, we see that for a continuous function u across Γ p,k = Γ p ∩ Γ k , we have:

γ p (u) = Q γ k (u).
This matrix is the elementary building block of the transmission operator Π that is the key ingredient of the multi-trace formulation introduced in Section 4.2.2.

Several formulation

There are several ways to formulate the scattering problem defined in Equation (4.2) by means of boundary integral equations, and the properties of each of these formulations can be quite different.

Rumsey's reaction principle (PMCHWT)

One of the most popular approach to solve Equation (4.2) is called Rumsey's reaction principle, or PMCHWT which stands for Poggio-Miller-Chang-Harrington-Wu-Tsai from the various authors who introduced independently this formulation (see [START_REF] Poggio | Integral equation solutions of three-dimensional scattering problems[END_REF][START_REF] Chang | A surface formulation for characteristic modes of material bodies[END_REF][START_REF] Wu | Scattering from arbitrarily-shaped lossy dielectric bodies of revolution[END_REF]). The mathematical analysis has been carried in [START_REF] Von | Boundary integral equations for mixed Dirichlet, Neumann and transmission problems[END_REF] (see also [START_REF] Claeys | Multitrace boundary integral equations[END_REF]Section 3.2]). This formulation can be expressed with the previous notation in the following way: let us denote the scattering source:

u inc := γ 0 (u inc ), 0, . . . , 0 
where u inc satisfies -∆u inc + κ 2 0 u inc = 0, in R d . As in Equation (4.2) we call the solution u, and we write ũ = (τ µp • γ p (u)) n p=0 where τ α (v, q) := (v, q/α) for α > 0. Then Equation (4.2c) can be rewritten as an essential condition ũ ∈ X(Σ). We denote τ (µ) (v) := (τ µp (v p )) n p=0 for µ = (µ 0 , . . . , µ n ) and v ∈ H(Σ), in particular, we have τ -1 (µ) (ũ) = u = (γ p (u)) n p=0 . According to Equations (4.2a) and (4.2b) we can apply Theorem 2.24 to u -E Ω0 (u inc ) such that:

P (κ) (τ -1 (µ) (ũ) -u inc ) = τ -1 (µ) (ũ) -u inc .
This last equation can be rewritten as follows using the relation between A p κp and P p κp :

A (κ) -I d (τ -1 (µ) (ũ)) = A 0 κ0 -I d γ 0 (u inc ), 0, . . . , 0 . (4.5) 
To simplify the right-hand side, we can use the fact that u inc is solution of the Helmholtz equation with a uniform coefficient κ 0 in the whole space, so that according to Corollary 2.20:

γ 0 c • G 0 κ0 • γ 0 c (u inc ) = -γ 0 c (u inc ). (4.6) 
Applying the identity γ 0 c = {γ 0 } -[γ 0 ]/2 to the equation Equation (4.6) and using the jump formula from Theorem 2.22, we obtain:

A 0 κ0 -I d 2 γ 0 c (u inc ) = -γ 0 c (u inc ).
And since γ 0 (u inc ) = γ 0 c (u inc ) by elliptic regularity, we have the following identity:

A 0 κ0 γ 0 (u inc ) = -γ 0 (u inc ). (4.7) 
Then, Equation (4.7) allows us to simplify the right-hand side in Equation (4.5) and, testing this equation with a test function v ∈ X(Σ) and using Lemma 4.4, we obtain the following variational formulation: find ũ ∈ X(Σ) such that

A (κ,µ) (ũ), v = -2 τ (µ) (u inc ), v , ∀v ∈ H(Σ), (4.8) 
where

A (κ,µ) := τ (µ) • A (κ) • τ -1 (µ)
. As we did in Chapter 2 using Theorem 2.14, the key to prove well-posedness is to show that the operator A (κ,µ) is injective and satisfies a Gårding inequality. To do so, we have the following theorem for the Helmholtz equation: Theorem 4.7 ([95, Theorem 2.16]). Set θ(v, q) = (-v, q) and Θ(v) = (θ(v p )) n p=0 . There exists a constant C > 0 and a compact operator

K (κ) : H(Σ) → H(Σ) such that Re A (κ,µ) + K (κ) (v), Θ(v) ≥ C v 2 H(Σ)
∀v ∈ H(Σ).

Hence, we deduce that A (κ,µ) is an isomorphism if and only if it is injective, which is true under our assumption given by Equation (4.3): Theorem 4.8 ([37, Lemma 3.4]). Under the assumption given by Equation (4.3), A (κ,µ) is injective, so that Equation (4.8) is well-posed.

As explained in Section 2.4.5, we need to have a preconditioning strategy because the matrices stemming from boundary element methods are usually ill-conditioned. According to [START_REF] Claeys | Multitrace boundary integral equations[END_REF]Section 4], this is also the case for the Galerkin approximation of Equation (4.8). It is also explained in [START_REF] Claeys | Multitrace boundary integral equations[END_REF] that it is not possible to use the operator preconditioning strategy described in [START_REF] Steinbach | The construction of some efficient preconditioners in the boundary element method[END_REF][START_REF] Snorre | Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique[END_REF][START_REF] Snorre | Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'électromagnétisme[END_REF][START_REF] Hiptmair | Operator preconditioning[END_REF] for the PMCHWT approach with a geometry involving junction points, and this is what led the development of the alternative formulation called Multri-trace formulations. But here, we will be interested in these methods from a domain decomposition point of view.

Multi-trace formulation (MTF)

Dealing with multi-subdomain scattering problems, several alternatives to the PMCHWT approach exist. For example, there is the Boundary Element Tearing and Interconnecting (BETI) method introduced in [START_REF] Langer | Boundary element tearing and interconnecting methods[END_REF] which is the boundary element counterpart of the Finite Element Tearing and Interconnecting (FETI) method. Here, we will focus on another alternative called local multi-trace formulation introduced in [START_REF] Hiptmair | Multiple traces boundary integral formulation for Helmholtz transmission problems[END_REF] and [START_REF] Hiptmair | Domain decomposition for boundary integral equations via local multi-trace formulations[END_REF]. It should be noted that there exists also a global multi-trace formulation (see [START_REF] Claeys | Boundary integral formulation of the first kind for acoustic scattering by composite structures[END_REF]) and a quasi-local multi-trace formulation ( [START_REF] Claeys | Quasi-local multitrace boundary integral formulations[END_REF]).

All these formulations are dubbed Multi-Trace Formulation (MTF) because at each point of each interface, two pairs of Dirichlet/Neumann traces come into play, contrary to the PMCHWT approach. They differ on the way transmission conditions are imposed. Concerning local MTF, the transmission condition is weakly imposed with a transmission operator Π defined as follows:

∀u = (u p ) n p=0 ∈ H(Σ), v = (v p ) n p=0 ∈ H(Σ) such that u k = (u k , p k ), v k = (v k , q k ) ∈ H(Γ p ) for 1 ≤ k ≤ n, we have Π(u) = v ⇐⇒ v p k = Q u k p on Γ p,k , ∀k ∈ ∆ p and ∀ 0 ≤ p ≤ n, ⇐⇒ v p = u k q p = -p k on Γ p,k ∀k ∈ ∆ p and ∀ 0 ≤ p ≤ n.
This operator maps continuously H(Σ) onto H(Σ) under the assumption that there is no junction point in the geometry. It has the interesting property to only exchange traces between neighboring subdomains, similarly to Schwarz methods. Then, we have the following properties:

Π 2 = I d , and 
Π(u), v = Π(v), u ∀u, v ∈ L 2 (Σ)
where L 2 (Σ) is defined as the cartesian product of

L 2 (Γ 0 ) × • • • × L 2 (Γ n ) for every 0 ≤ p ≤ n.
For every u ∈ H(Σ), we have u ∈ X(Σ) ⇐⇒ Π(u) = u. Another way to express the transmission operator is to use the matrix operator Q: for every u, v ∈ H(Σ)

Π(u), v = n p=0 k∈Λp Q(u k p ), v p k Γ p,k
.

Using Equation (4.5) and simplifying the right-hand side as we did in the last section, the transmission condition is imposed weakly so that we have the following variational formulation of Equation (4.2): find ũ ∈ H(Σ) such that

P (κ,µ) -I d (ũ), v + α (I d -Π) (ũ), v = -τ (µ) (u inc ), v , ∀v ∈ H(Σ). (4.9) 
This formulation was originally proposed in [START_REF] Hiptmair | Multiple traces boundary integral formulation for Helmholtz transmission problems[END_REF] with α = 1 2 , and then, a variant with the relaxation parameter α was introduced in [START_REF] Hiptmair | Domain decomposition for boundary integral equations via local multi-trace formulations[END_REF]. Well-posedness in the first case given in [START_REF] Hiptmair | Multiple traces boundary integral formulation for Helmholtz transmission problems[END_REF] and extended to the second case in [START_REF] Claeys | Essential spectrum of local multi-trace boundary integral operators[END_REF] for α ∈ C \ {0}. The value α = 0 is clearly forbidden since I d -P (κ,µ) is a non-trivial projector, and hence it cannot be invertible. Let us denote the local-MTF operator MTF α,(κ,µ) := P (κ,µ) + (α -1) I d -αΠ.

Algebraic relations

In this section, we will derive some algebraic relations concerning the operators introduced in Section 4.2.1, similarly to what is done in [START_REF] Claeys | Essential spectrum of local multi-trace boundary integral operators[END_REF]Section 6]. However, we focus on the operator P (κ,µ) instead of A (κ,µ) since the former has the good property of being a projector.

First, we show some relations for the operators defined on trace spaces H(Γ p ) for 0 ≤ p ≤ n, and then these relations will help us to derive relations for operators defined on the multi-trace space H(Σ). ) * v, it should be noticed that G p ( v) does not have a jump on Γ p,k according to the jump relations from Theorem 2.22, because Γ p,k ∩ Γ p,m = ∅. We deduce that

O l O k Ω p O m
P p km (v) = R p k •γ p • G p ( v) = R p k •γ p c • G p ( v).
Let us denote w the function defined as follows:

w = G p ( v) in O k 0 in O i for i = k and i ∈ Λ p .
Notice that w is solution to the Helmholtz equation in the complementary of Ω p . Besides, we have the relation

γ p c (w) = (R p k ) * • R p k •γ p c • G p ( v) = (R p k ) * • P p km (v)
According to the second part of Corollary 2.20, we have

G p • γ p c (w) =      -G p ( v) in O k 0 in O i for i = k and i ∈ Λ p 0 in Ω p .
We conclude that the interior trace γ p of G p •γ p c (w) vanishes, that is to say γ p •G p •(R p k ) * •P p km = 0, and therefore we have the first relation, P p lk • P p km = 0 1 . Now we want to prove second and third relation. We know that (P p ) 2 = P p because it is the Calderón projector associated with Ω p . We deduce m∈∆p P p km • P p mk = P p kk and m∈∆p P p lm • P p mk = P p lk .

But according to the first relation, every term such that k = m is equal to zero. Thus, we obtain (P p kk ) 2 = P p kk and P p lk • P p kk = P p lk . Finally, let us prove the fourth relation. Using the definition of the potentials, we have

G p • (R p k ) * = -G k • (R k p ) * Q . (4.10)
TThen, we remark that we have R

p k γ p = Q R k p γ k c , so that P p kk = R p k γ p G p (R p k ) * = Q R k p γ k c G p (R p k ) * = Q R k p (γ k -[γ k ])G p (R p k ) * = Q R k p γ k G k • (R k p ) * Q -Q R k p [γ k ]G k • (R k p ) * Q,
where we used Equation (2.5) in the second line and Equation (4.10) in the third one. The second term in the right-hand side is equal to the identity using Theorem 2.22 and the first term is equal to -Q P k pp Q by definition, then we obtain the fourth relation by multiplying by Q.

Let us define the operators D (κ) and T (κ) :

D (κ) (v), v := n p=0 k∈Λp P p kk (v p k ), v p k Γ p,k ∀v, v ∈ H(Σ), T (κ) (v), v := n p=0 k,m∈Λp k =m P p km (v p m ), v p k Γ p,k ∀v, v ∈ H(Σ),
such that P (κ) = D (κ) + T (κ) . The first operator can be seen in a matrix-type notation as the diagonal of P and the second one as the extra-diagonal part. Notice that for v ∈ H(Σ), the components of D (κ) and T (κ) associated with Γ p,k are respectively P p kk (v p k ) and m∈∆p,m =k P p km (v p m ). We have a similar result as [35, Lemma 6.2] which gives some properties of the operator D (κ) . Lemma 4.10 ([30, Lemma 6.2]). We have

D 2 (κ) = D (κ) and Π • D (κ) + D (κ) • Π = Π
Proof. These results come from direct computations and Lemma 4.9:

∀v, v ∈ H(Σ), D 2 (κ) (v), v = n p=0 k∈Λp (P p kk ) 2 =P p kk (v p k ), v p k Γ p,k = D (κ) (v), v , Π • D (κ) (v), v = n p=0 k∈Λp Q P k pp (v k p ), v p k Γ p,k = n p=0 k∈Λp -P p kk • Q(v k p ), v p k Γ p,k + Q(v k p ), v p k Γ p,k = -D (κ) • Π(v), v + Π(v), v .
Concerning the operator T (κ) , similarly to [START_REF] Claeys | Essential spectrum of local multi-trace boundary integral operators[END_REF]Lemma 6.3] and [30, Corollary 6.1], we have the following lemma: Lemma 4.11 ([30, Lemmas 6.3 and Corollary 6.1]). We have the following relations

T 2 (κ) = 0 and Π • T (κ) + T (κ) • Π k = Π • T (κ) k + T (κ) • Π k .
Proof. As in the last lemma, the proof is just a direct computation using Lemma 4.9:

∀v, v ∈ H(Σ), T 2 (κ) (v), v := n p=0 k,l,m∈Λp k =l,l =m P p kl • P p lm =0 (v p m ), v p k Γ p,k = 0.
The second relation is a direct consequence of the first one and the identity Π 2 = I d .

We are now interested in relations between the two operators D (κ) and T (κ) .

Lemma 4.12. We have

D (κ) • T (κ) = 0 and T (κ) • D (κ) = T (κ) .
Proof. Again, we use results from Lemma 4.9: ∀v, v ∈ H(Σ),

D (κ) • T (κ) (v), v = n p=0 k,m∈Λp k =m P p kk • P p km =0 (v p m ), v p k Γ p,k = 0 
T (κ) • D (κ) (v), v = n p=0 k,m∈Λp k =m P p km • P p mm =P p km (v p m ), v p k Γ p,k = T (κ) (v), v

Spectrum of the local-MTF

Similarly to [30, Theorem 6.1], we know precisely the spectrum of the local-MTF operator in the case of a homogeneous material, meaning

κ 0 = • • • = κ n and µ 0 = • • • = µ n .
We drop the subscripts (κ, µ) and (κ) in this case, i.e. T (κ) will be denoted T. First, we prove that ΠT and TΠ are nilpotent operators of index P G similarly to [30, Proposition 6.1], but with more precise results on the index. Proof. A direct computation gives

(Π • T) (u), v = n p0=0 p1∈∆p 0 p2∈∆p 1 p2 =p0 Q • P p1 p0p2 (u p1 p2 ), v p0 p1 Γp 0 ,p 1 , (Π • T) n (u), v = n p0=0 p1∈∆p 0 p2∈∆p 1 p2 =p0 • • • pn+1∈∆p n pn+1 =pn-1 Q • P p1 p0p2 • • • Q • P pn pn-1pn+1 (u pn pn+1 ), v p0 p1 Γp 0 ,p 1
, such that each term in the last equation corresponds to a simple path in the adjacency graph of length n + 1. Since there is no such path of length P G + 1, we deduce that (Π • T)

P G (u), v = 0.
Then, we have (TΠ) P G = Π(ΠT) P G Π = 0, and according to Lemma 4.11,

(Π • T + T • Π) P G = (TΠ) P G + (ΠT) P G = 0.
We deduce the following theorem Theorem 4.14 ([30, Theorem 6.1]).

If κ 0 = • • • = κ n and µ 0 = • • • = µ n , then σ(A -αΠ) = σ p (A -αΠ) = {+ 1 + α 2 , -1 + α 2 },
where σ(σ p (A -αΠ)) denotes the spectrum of (A -αΠ) and σ p (A -αΠ), its point spectrum.

Proof. If α = 0, the result is clear because

I d +A 2
is a projector. Let us assume now that α = 0. First, taking the square of A -αΠ, we obtain Let u ∈ H(Σ) \ {0} be the eigenvector associated with the eigenvalue λ, then (A -αΠ)u = λu and notice that (AΠ -ΠA)(A -αΠ) = -(A -αΠ)(AΠ -ΠA), so that

(A -αΠ) 2 = A 2 + α 2 I d -α(2P -I d )Π -αΠ(2P -I d ) = (1 + α 2 ) I d -2α(DΠ + ΠD -Π) -2α(ΠT + TΠ) = (1 + α 2 ) I d -2α(ΠT + TΠ),
(A -αΠ)(AΠ -ΠA)u = -(AΠ -ΠA)(A -αΠ)u = -λ(AΠ -ΠA)u. Hence, -λ is an eigenvalue of A -αΠ if (AΠ -ΠA)u = 0. Notice that ΠAu = λΠu + αu and AΠu = 1 α u - λ α Au, so that (ΠA -AΠ)u = α - 1 α u - λ α (A -αΠ)u.
By hypothesis, λ = ± √ 1 + α 2 , so that the spectrum of α -

1 α I d + λ α (A -αΠ) contains only α - 1 α ± λ α 1 + α 2 = α 2 -1 ± (1 + α 2 ) α = 2α or -2 α .
Since α = 0, we deduce that (ΠA-AΠ)u cannot be equal to zero, so that -λ is also an eigenvalue of A -αΠ.

Corollary 4.15.

If κ 0 = • • • = κ n and µ 0 = • • • = µ n , then σ(MTF α ) = σ p (MTF α ) = {α - 1 2 + √ 1 + 4α 2 2 , α - 1 2 - √ 1 + 4α 2 2 },
Proof. By definition, we have

MTF α = P + (α -1) I d -αΠ = 1 2 (A -2αΠ + (2α -1) I d ),
and we conclude using Theorem 4.14.

Notice that it is consistent with the fact that -MTF 0 is a projector in the last corollary.

Jacobi method

In [START_REF] Claeys | An introduction to multi-trace formulations and associated domain decomposition solvers[END_REF], where local MTF is presented for the DDM community, a Jacobi method for Equation (4.9) is introduced and analysed for two and three subdomains with Dissipative Helmholtz equation. In particular, it is proved that the iteration operator is nilpotent, and it is explicitly shown that this iteration operator is nilpotent of index two for two subdomains and of index four for three subdomains in one dimension, while an explicit equivalence with the optimal Schwarz method is presented for two subdomains in one dimension. We show thereafter a generalization of these results for n subdomains in any dimension, based on algebraic properties introduced in Section 4.2.3.

Definition

First, let us introduce the Jacobi method introduced in [32, Equation ( 12)] for the Equation (4.9):

u m+1 = J α,(κ,µ) u m + F (4.11)
where

J α,(κ,µ) = P (κ,µ) + (α -1) I d -1 αΠ, F = -P (κ,µ) + (α -1) I d -1 τ (µ) (u inc ).
It should be noticed that for α = 0, 1, we can do the following computation

P (κ,µ) + (α -1) I d • P (κ,µ) -α I d = P 2 (κ,µ) -αP (κ,µ) + (α -1)P (κ,µ) -α(α -1) I d = -α(α -1) I d , so that P (κ,µ) + (α -1) I d -1 = 1 α(1 -α) P (κ,µ) -α I d .
Then, according to Equation (4.7), we have A 0 κ0 γ 0 (u inc ) = -γ 0 (u inc ) so that

F = 1 α(α -1) P (κ,µ) -α I d τ (µ) (u inc ) = 1 α(α -1) I d +A (κ,µ) 2 -α I d • τ (µ) (u inc ) = 1 2α(α -1) τ µ0 • (1 -2α) I d + A 0 κ0 τ -1 µ0 • τ µ0 • γ 0 (u inc ), 0, . . . , 0 = 1 2α(α -1) (τ µ0 • ((1 -2α) I d -I d ) γ 0 (u inc ), 0, . . . , 0) = 1 1 -α (τ µ0 • γ 0 (u inc ), 0, . . . , 0) = 1 1 -α τ (µ) (u inc ).
To conclude, we have

J α,(κ,µ) = 1 1 -α P (κ,µ) -α I d • Π, F = 1 1 -α τ (µ) (u inc ).

Nilpotent operator and optimal convergence

In [START_REF] Claeys | An introduction to Multitrace Formulations and Associated Domain Decomposition Solvers[END_REF], it has been proved that the spectral radius, which controls the speed of convergence of the Jacobi solver, is minimal if α = 0 for two and three subdomains in the case of

κ 0 = • • • = κ n and µ 0 = • • • = µ n .
First, we will generalize this property to a general configuration. But, one should notice that α cannot take the value 0 since it is equivalent to imposing no transmission condition (cf. Equation (4.9)). Nevertheless, it will give interesting results that we will justify thereafter.

Theorem 4.16.

If κ 0 = • • • = κ n and µ 0 = • • • = µ n , then for α ∈ R, we have        σ(J α ) = σ p (J α ) ={+i α 1 -α , -i α 1 -α } if |α| < 1 σ(J α ) = σ p (J α ) ={+ α α -1 , - α α -1 } if |α| > 1
Proof. By definition, we have

λ ∈ σ((P -α I d ) • Π) ⇐⇒ (P -α I d ) • Π -λ I d is not invertible ⇐⇒ P -α I d -λΠ is not invertible ⇐⇒ A -2λΠ -(2α -1) I d is not invertible ⇐⇒ (2α -1) 2 = 1 + 4λ 2 ⇐⇒ λ = ±i α(1 -α) if |α| ≤ 1 λ = ± α(α -1) if |α| > 1 ,
where we used Theorem 4.14.

The spectral radius ρ(J α ) := sup{|λ|, λ ∈ σ(J α )} is a critical parameter for the convergence on the Jacobi iteration Equation (4.11). The parameter α must be chosen such that the spectral radius is as small as possible. According to Theorem 4.16, one should take α = 0. The interesting feature of taking α = 0 in the Jacobi method is that it gives a convergence in a finite number of iterations since it becomes nilpotent. More precisely, we prove that the operator J 0 is nilpotent of order P G + 1, the length of the adjacency graph associated with the partition of the domain (see Section 4.1.1). Lemma 4.17.

If κ 0 = • • • = κ n and µ 0 = • • • = µ n , we have J k+1 0 = (T • Π) k+1 + Π • (T • Π) k for every integer k ≥ 1.
Proof. We prove this relation by induction. For k = 1, we have

J 2 0 = ((D + T) • Π) 2 = (D • Π) 2 + (T • Π) 2 + D • Π • T • Π + T • Π • D • Π.
Using Lemma 4.10, we have

D • Π = Π -Π • D so that (D • Π) 2 = D • Π • (Π -Π • D) = 0
and the last expression becomes

J 2 0 = (T • Π) 2 + Π • T • Π -Π • D • T • Π + T -T • D.
Since T • D = T and D • T = 0 according to Lemma 4.12, we obtain

J 2 0 = (T • Π) 2 + Π • T • Π.
which is the expected relation. For k > 1, let us assume we have

J k 0 = (T • Π) k + Π • (T • Π) k-1 .
Then, we obtain

J k+1 0 = (D • Π + T • Π) • (T • Π) k + Π • (T • Π) k-1 = D • Π • (T • Π) k + D • (T • Π) k-1 +(T • Π) k+1 + T • (T • Π) k-1 .
The second and the last terms vanish according to Lemmas 4.11 and 4.12. Simplifying the first term with the relation obtained in Lemma 4.10 gives

J k+1 0 = (T • Π) k+1 + Π • (T • Π) k .
By induction, we proved the expected relation. Proof. We just combine Lemmas 4.13 and 4.17.

Despite its convergence property, one could argue that it does not really make sense to take α = 0. But actually, it can be justified by the following remark: the equation obtained with α = 0 is

u m+1 = P • Πu m + u inc , (4.12) 
which can be seen as a block Jacobi method applied to

MTF 1 •Π(u) = (P -Π) Π(u) = (J 0 -I d )u = -u inc . (4.13)
This last equation is consistent with Equation (4.9) for α = 1 since the solution must satisfy u = Πu. In other words, taking α = 0 in Equation (4.11) is equivalent to solving Equation (4.9) with a Jacobi method, α = 1, and Π as right preconditioner.

In [96, Section 5.3], the authors introduced another preconditioning strategy for Equation (4.9) with α = 1 2 where the diagonal part of the operator MTF 1/2,(κ,µ) , that is to say A (κ,µ) , is used as a preconditioner. But notice that we have the following relation

A (κ,µ) MTF 1/2,(κ,µ) = A (κ,µ) 1 2 (A (κ,µ) -Π) = 1 2 (I d -A (κ,µ) Π) = -(A (κ,µ) -Π)Π = -MTF 1/2,(κ,µ) Π, using A 2 (κ,µ) = I d and Π 2 = I d .
So that, the preconditioning strategy suggested in [96, Section 5.3] corresponds also to a right preconditioning by Π but with α = 1 2 .

Equivalence with Optimal Schwarz Methods

According to Theorem 4.18, we have convergence of the Jacobi method applied to Equation (4.9) in P G + 1 iterations. Thus, for the case of n concentric ring, we have convergence in n iterations. This last result is similar to the one we can obtain with Optimal Schwarz Method (OSM) (cf. [START_REF] Nataf | Optimal interface conditions for domain decomposition methods[END_REF] and Section 3.1.2). This suggests a link between MTF and OSM and this is what we are going to clarify. Let us define the following bounded one-to-one operators

X p : H 1/2 (Γ p ) → H(Γ p ), u → (u, DtN p (u)) and Y p : H(Γ p ) → H -1/2 (Γ p ). (u, p) → p + DtN p (u)
, where DtN p is the Dirichlet-to-Neumann operator defined as in Section 3.1.2 associated with Ω p , while DtN p is the Dirichlet-to-Neumann operator associated with R d \ Ω p . We already defined these notations in Section 3.1.2, but we remind them here:

DtN p : H 1/2 (∂Ω p ) → H -1/2 (∂Ω p ) v → ∇w • n p and DtN p : H 1/2 (∂Ω p ) → H -1/2 (∂Ω p ) v → -∇ w • n p
where n p is the outer normal relative to Ω p , while w and w respectively satisfy the following problems:

L(w) = 0 in Ω p , w = v on ∂Ω p . and L( w) = 0 in Ω c p = R d \ Ω p , w = v on ∂Ω p .
If Ω p or Ω c p is unbounded, we add the appropriate conditions at infinity for the problem to be well-posed (see Section 4.1.2). More generally, we use a tilde to denote the operators associated with Ω c p .

Lemma 4.19. We have the following relations

DtN p = (V p ) -1 I d 2 -K p = I d 2 -K p -1 W p , DtN p = (V p ) -1 I d 2 + K p = I d 2 + K p -1 W p .
Proof. The first relation is just a reminder of Theorem 2.27. According to Theorem 2.22, we have

[γ Ωp ] • G Ωp L = I d ,
where the superscript Ω p means that the operator is relative to Ω p and its outer normal n p . We deduce that

γ Ωp • G Ωp L = I d +γ Ωp c • G Ωp L = I d + Q γ Ω c p • G Ωp L .
We can rewrite the last expression in matrix form using the operators defined in

   1 2 I d + K p V p W p 1 2 I d + K p    = I d 0 0 I d + Q γ Ω c p D γ Ω c p N DL Ωp SL Ωp = I d 0 0 I d + γ Ω c p D • DL Ωp γ Ω c p D • SL Ωp -γ Ω c p N • DL Ωp -γ Ω c p N • SL Ωp .
Notice that we have SL Ωp = SL Ω c p and DL Ωp = -DL Ω c p (cf. definitions in Section 2.3.1), so that

   1 2 I d + K p V p W p 1 2 I d + K p    = I d 0 0 I d + -γ Ω c p D • DL Ω c p γ Ω c p D • SL Ω c p γ Ω c p N • DL Ω c p -γ Ω c p N • SL Ω c p = I d 0 0 I d +    - 1 2 I d -K p V p W p - 1 2 I d -K p    .
We deduce that

K p = -K p , V p = V p , W p = W p , K p = -K p ,
and then, we just use Theorem 2.27 to obtain the second relation.

Using the previous lemma, we can relate the operators X p and Y p with P p Lemma 4.20. We have the following relations

P p = X p • V p •Y p and V p •Y p • X p = I d
Proof. Using matrix notations, we have

I d DtN p • V p • DtN p I d = V p DtN p V p DtN p V p DtN p DtN p V p , =   1 2 + K p V p DtN p V p DtN p DtN p V p   ,
where we used Lemma 4.19. Then, we have DtN p V p = I d 2 + K p with Lemma 4.19 and Equation (2.9a), so that P p = X p • V p •Y p . Concerning the second equation, we have

V p •Y p • X p = V p • DtN p + DtN p = I d , using Lemma 4.19.
We can now exhibit the link between the OSM and the local MTF in the geometric setting described in Section 4.1.1. Let us look at the error e m = uu m ∈ H(Σ) of the Jacobi method given in Equation (4.11) with u the trace of the solution of Equation (4.2) and α = 0, we have

e m+1 = P • Π(e m ),
which means that, for every p = 0, . . . , n, we have

(e p ) m+1 = P p • k∈∆p (R k p ) * Q(e k p ) m .
Then, we can apply V p •Y p and Lemma 4.20 to obtain

V p •Y p (e p ) m+1 = V p •Y p • k∈∆p (R k p ) * Q(e k p ) m . (4.14) 
We can define DtN p kl with k, l ∈ ∆ p as follows DtN

p kl : H 1/2 (Γ j,l ) → H -1/2 (Γ j,k ) v p l → R p k,N • DtN p • (R p l,D ) * (v p l )
where R p k,N and (R p l,D ) * are the restriction and extension operators applied to, respectively, a Neumann trace and a Dirichlet trace. Notice that if k = l, this operator is the Dirichlet-to-Neumann operator associated with the connected component of R d \ Ω p such that its intersection with Ω p is Γ j,k (similar to the operator Λ j,r or Λ j,l in [START_REF] Nataf | Optimal interface conditions for domain decomposition methods[END_REF]). Otherwise, if k = l, the operator is null. Thus multiplying by (V p ) -1 and applying the restriction operator R p k,N to Equation (4.14), we obtain where e p k = (e p k , r p k ) ∈ H(Γ p ) for 1 ≤ p ≤ n and k ∈ ∆ p . This is exactly the transmission condition used in the OSM as described in Equation (3.5). Thus, we understand why the convergence properties are similar, both methods actually perform the same iteration on the traces.

DtN p kk (e p k ) m+1 + (r p k ) m+1 = DtN p kk (e k p ) m -(r k p ) m Ω 0 Ω 1 Ω 2 Ω 3 (a) Configuration I Ω 0 Ω 1 Ω 2 Ω 3 (b) Configuration II

Numerical evidences

In this section, we present numerical results conducted on PDEs in 2D that illustrate the conclusions of the previous sections. Denote D(x, r), the disk of center x and radius r > 0. We introduce two geometric configurations that we will use in our numerical experiments, they are illustrated in Figure 4.3, and defined as follows:

• Configuration I: It consists in centered nested disks. Considering a sequence of radii r p = n -p, we set Ω 0 := R 2 \ D(0, r 0 ), and then Ω p := D(0, r p-1 ) \ D(0, r p ), for p = 1, . . . , n -1, and Ω n := D(0, 1). In this configuration, the depth of the adjacency graph P G equals n, i.e. it grows linearly with the number of subdomains, see Figure 4.3a.

• Configuration II: We define a sequence of centers x p = (3(p -1), 0), and we consider translated unit disks Ω p = D(x p , 1), for p = 1, . . . , n with

Ω 0 = R 2 \ (Ω 1 ∪ • • • ∪ Ω n ).
In this configuration, the depth of the adjacency graph P G systematically equals 2 for n > 1, see Figure 4.3b.

The point of these two geometries is to have one test case where P G increases linearly, Configuration I, and another test case where it is constant, Configuration II. We will use these two test cases to illustrate Theorem 4.18. Note that we use GMSH [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF] to discretize the considered geometry. More precisely, we set the length of the mesh cells to 0.05 for Configuration I and to 0.1 for Configuration II.

Discretization

We solve Equation (4.9) with a Galerkin discretization as described in Section 2.4.5 using Bem-Tool2 . We approximate H(Σ) by V h := n p=0 V h (Γ p ) × V h (Γ p ), where V h (Γ p ) is a P 1 -Lagrange function space over a regular mesh (here a set of straight panels forming a polygonal line), with h as the maximal length of the panels. After discretization, Equation (4.9) becomes

MTF α,(κ,µ) (u h ) = (P (κ,µ) -M + α(M -Π))u h = -Mτ (µ) (u h,inc ), (4.15) 
where u h , u inc,h ∈ V h , while P (κ,µ) , M are Π are the Galerkin matrices associated with, respectively P (κ,µ) , I d and Π. More precisely, let us denote ((ϕ j h ) N j=0 ) the boundary element basis, where N is the number of nodes in the mesh. It should be noticed that each function (ϕ j h ) is used four times. Indeed, for each node, we have one degree of freedom for the Dirichlet trace and one for the Neumann trace on each side of the boundary.

We denote the basis functions associated with Γ p ((ψ j h )

Np-1 j=Np-1 ), such that (N -1 = 0), (N n = 2N ) and (N p -N p-1 ) is the number of nodes on Γ p . Remark that every boundary function (ϕ j h ) appear twice in ((ψ j h ) 2N -1 j=0 ), for example if (Γ pk = ∅), ((ψ j h )

Np-1 j=Np-1 ) and ((ψ j h ) N k -1 j=N k-1 ) both contain the functions (ϕ j h ) located on (Γ pk ).

u p h := (u h ) 2Np-1 j=2Np-1 = ((u p h ) D , (u p h ) N ) T , M p := (M) 2Np-1 j,k=2Np-1 =    Γp ψ j ψ k Np-1 j,k=Np-1 0 0 Γp ψ j ψ k Np-1 j,k=Np-1    , A p (κ,µ) := A (κ,µ) 2Np-1 j,k=2Np-1 = 2 K p µ p V p W p /µ p K p , P p (κ,µ) = A p (κ,µ) + M p 2 (Π) 2Np-1,2N l -1 j=2Np-1,k=2N l-1 :=    Γ p,l ψ j ψ k Np-1,m l -1 j=Np-1,k=m l-1 0 0 -Γ p,l ψ j ψ k Np-1,m l -1 j=Np-1,k=N l-1    , F := Mτ (µ) (u inc,h )
Notice that A p (κ,µ) and M p are block diagonal matrices where each block corresponds to a subdomain. And these blocks are applied to pair of traces, for example in M p the first diagonal block is applied to Dirichlet traces and the second one to Neumann traces. Meanwhile, Π has only extra diagonal blocks corresponding to interfaces between subdomains. The other coefficients we have not defined yet vanish.

We are interested in solving Equation (4.15) for several values of α and various choices of (κ 0 , . . . , κ n ) and (µ 0 , . . . , µ n ). As explained in the previous sections, a good choice would be α = 1 with Π as a right preconditioner, so that in the homogeneous case MTF 1 •Π = J 0 -I d is a nilpotent perturbation of the identity.

Remark 4.21 (Implementation and parallelization).

All the discretized operators, except Π are block diagonal. But notice that we have the relation Π -1 = M -1 Π, where Π exchanges traces as before, but applied to finite element functions. It means that an iterative solver using only matrix vector multiplications by the discretized operator and Π -1 would be very parallel. Each block can be assembled independently of one another, each global matrix vector multiplication can be performed as local matrix vector products in each subdomain, and exchanging trace is also quite local since it is only between neighboring subdomains. Such a distributed parallelism is usually performed with an implementation of the Message Passing Interface (MPI) standard, where each subdomain is associated with a processor. Thus the exchange can be performed efficiently defining a MPI distributed graph topology, more precisely, we define in MPI a graph like the adjacency graph G defined in Section 4.1.1 to set how the subdomains/processors are related to one another. This allows a reranking of the processors to optimize the hardware to the communication patterns. The term distributed comes from the fact that this MPI topology is scalable, contrary to the usual MPI graph topology (see [START_REF] Hoefler | The scalable process topology interface of MPI 2.2[END_REF] for more details). For example, we only give to each subdomain its neighbors, we do not define the whole adjacency graph in each processor.

Homogeneous material

We first examine the spectrum of the local multi-trace operator preconditioned by Π for several values of α with homogeneous coefficients

κ 0 = • • • = κ n = 1 and α 0 = • • • = α n = 1.
At the continuous level, we are interested in finding u = 0 and λ ∈ C such that MTF α Πu = λu, which is equivalent to determining v = 0 and λ ∈ C such that MTF α v = λΠv. The discrete counterpart of this eigenvalue problem writes

MTF α (v h ) = λΠv h . (4.16) 
The results are given in Figure 4.4 with three interfaces and a mesh size equal to 0.1, where Helmholtz equation stands for κ ∈ R, while Dissipative Helmholtz equation corresponds to κ ∈ iR. As expected, the case α = 1 leads to one cluster of eigenvalues around the real value -1 since in this case, MTF 1 •Π is a nilpotent perturbation of -I d according to Equation (4.13), and this regardless of the values of (κ) as long as it is uniform.

We also want to illustrate the convergence of the Jacobi method described in Section 4.3. As we have seen in this section, an optimal choice is to solve Equation (4.9) with α = 1 and preconditioned by Π using Equation (4.12). In the discrete setting, this means that we want to solve Equation (4.15) with α = 1, i.e.

(P -Π)u h = -M(u h,inc ), using the change of variable Πu h = v h , and the following Jacobi method

v m+1 h = PΠ -1 v m h + Mu h,inc , (4.17) 
we obtain the results from Figure 4.5 for a mesh size equal to 0.1, such that we always obtain a relative error of the order 10 -3 compared to the solution u inc . The number of iterations is constant in Configuration II, while it increases linearly in Configuration I, with the number of interfaces for Configuration I. This is expected since P G is increasing with the number of interfaces in Configuration I and remains constant in Configuration 2 (expect between one and two interfaces). But notice that the number of iterations is not exactly the one expected from Theorem 4.18, there are about one more iteration, this is probably due to the numerical approximation, as we can see in Figure 4.4, the discretized operator is not exactly nilpotent. Notice that Π -1 = M -1 Π as explained in Remark 4.21. 

Heterogeneous material

In practice, we are also interested in solving problems with heterogeneous material. But in this case, the nilpotent property of the Jacobi operator does not hold anymore. Indeed, the Jacobi method defined in Equation (4.17) may not converge when applied to P (κ,µ) instead of just P, which can be observed numerically.

It is well-known that fixed-point methods such as Jacobi do not converge very fast, because it is an algorithm without "memory", meaning that each iteration is just computed from the previous one, while Krylov methods such as the Conjugate Gradient method (CG) [START_REF] Rudolph | Methods of conjugate gradients for solving linear systems[END_REF] or the Generalized Minimal Residual method (GMRes) [START_REF] Saad | GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems[END_REF] take into account all the previous iterations via Krylov spaces. It is common in DDM to define a preconditioner from the continuous point of view leading to a fixed-point method, and to use it in a Krylov solver as we saw in Section 3.3.

Similarly, we can still study numerically the efficiency of using Π -1 as a preconditioner for solving Equation (4.15) using GMRes, and we will see that α = 1 will still be the optimal value, in the sense that it needs fewer iterations to be solved. We still expect interesting results in the case where (κ) is not uniform because it only induces compact perturbations of the formulation.

First, we can look at the spectrum of the following eigenvalue problem

MTF α,(κ,µ) (v h ) = λΠv h , (4.18) 
which is really similar to Equation (4.16). Let us take n = 3, µ 0 = µ 1 = µ 2 = 1 and κ 0 = 1.00002, κ 1 = 1.26308, κ 2 = 2.51121, values between 1 and 3 obtained randomly. The resulting spectrum is given in Figure 4.6 where we can still observe the same clusters of eigenvalues as in Figure 4.4 but more scattered. Then, we solve Equation (4.15) using GMRes. We set the maximum number of iterations to 10 000, a restart at 200 iterations and the tolerance is equal to 10 -6 to obtain at least a relative error of 10 -3 in the homogeneous case. The preconditioner is Π -1 = M -1 Π as explained in Remark 4.21. We show in Figure 4.7 the number of iterations of GMRes as a function of the number of interfaces for µ 0 = • • • = µ 5 = 1 and κ 0 = 1.00002, κ 1 = 1.26308, κ 2 = 2.51121, κ 4 = 2.06553 and κ 5 = 1.43792. First, notice that we showed results without preconditioner just to justify the need of a preconditioner (we will not show them anymore to lighten the presentation), notice that the convergence is always faster except for α = 0.25. We can observe that for the Helmholtz equation the number of iterations increases regardless of the geometric configuration, while it is constant for Dissipative Helmholtz. We also notice that Configuration II makes the problem easier to solve, which is consistent with the case of a homogeneous material.

In particular for the Helmholtz equation, we see that the number of iterations increases less in Configuration II than in Configuration I. Finally, we remark that α = 1 with Π -1 is still the best way to solve Equation (4.15). If the variations between the κ j 's increase, the number of iterations increases. Taking the following randomly obtained values between 1 and 41, κ 0 = 1.00031, κ 1 = 6.26151, κ 2 = 31.2242, κ 3 = 19.346, κ 4 = 22.3107 and κ 5 = 9.75837, we obtain the results presented in Figure 4.8. In this case, the solver never converges without preconditioner for Helmholtz equation. Configuration I is really difficult to handle, the only cases that converge are α = 0.75 and α = 1 with the preconditioner, and they converge after about 6000 iterations. Concerning Configuration II for Helmholtz equation, the only cases that converge are still α = 0.75 and α = 1 with the preconditioner, but the number of iterations is more reasonable, about 200 iterations. Again, we see that the formulation associated with the preconditioner Π -1 is more adapted to this case. The case of Dissipative Helmholtz is less problematic, and we observe that the case α = 1 with the preconditioner gives the best results.

We are also interested in looking at variations in (µ). We take randomly obtained values between 1 and 100, µ 0 = 1.00078, µ 1 = 14.1538, µ 2 = 76.5605, µ 3 = 46.865, µ 4 = 54.2767 and µ 5 = 22.8959 with κ 0 = • • • = κ 5 = 1. Similarly to the previous numerical experiments, we obtain Figure 4.9. The results are similar to the case where we added a small perturbation to (κ), the case α = 1 with the preconditioner gives the best results. The number of iterations increases, but variation is small compared to the one observed with important variations in (κ).

To conclude, this method can be particularly useful to solve piecewise constant problems in (κ) with Dissipative Helmholtz equation. Concerning Helmholtz equation, it gives interesting results for a small P G , but it is not adequate otherwise. Concerning variations in (µ), the method is robust but it lacks a theoretical explanation. In Chapter 3, we presented two different points of view on Schwarz methods, either as iterative methods or as preconditioners. In [START_REF] Hahne | Schwarz iterations for the efficient solution of screen problems with boundary elements[END_REF], it was pointed out that in the case of Boundary Element Method (BEM), we could also think of two approaches for Domain Decomposition Method (DDM). Indeed, we could make a decomposition of the original domain where the solution is sought, a volume decomposition, and then formulate a Boundary Integral Equation (BIE) in each subdomain with some ways of coupling them. Or we could first set up a BIE on the whole computational domain and then apply a domain decomposition of its boundary, a surface decomposition. In this chapter, we will explore the second approach to define Schwarz preconditioners and thus, we will adapt the second point of view on Schwarz method to BEM matrices.

It is quite counter intuitive to apply techniques based on locality as Additive Schwarz Method (ASM), to non-local problems as Boundary Integral Equations (BIE). But several works followed this idea and an intuition of why it works anyway would be that because of the singularity of the kernel of the BIE, the linear systems in the definite positive case are somehow "diagonal dominant". The first article seems to be [START_REF] Hahne | Schwarz iterations for the efficient solution of screen problems with boundary elements[END_REF] where a one-level strategy in two dimensions for the h-version applied to the weakly singular operator and the hypersingular operator with overlap has been studied. Then, the case of symmetric positive definite operators have been extended to two-level strategy, with and without overlap, for the p-version, h-version and hp-version in 2D [START_REF] Tran | Additive Schwarz methods for the h-version boundary element method[END_REF][START_REF] Tran | Additive Schwarz algorithms for the p version of the Galerkin boundary element method[END_REF][START_REF] Heuer | Efficient Algorithms for the p-Version of the Boundary Element Method[END_REF][START_REF] Heuer | Multilevel additive Schwarz method for the h-p version of the Galerkin boundary element method[END_REF][START_REF] Tran | Overlapping additive Schwarz preconditioners for boundary element methods[END_REF] and 3D [START_REF] Heuer | Additive Schwarz Methods for Weakly Singular Integral Equations In R 3 -the p-Version[END_REF][START_REF] Heuer | Iterative Substructuring for Hypersingular Integral Equations in R 3[END_REF][START_REF] Heuer | An iterative substructuring method for the p -version of the boundary element method for hypersingular integral operators in three dimensions[END_REF][START_REF] Heuer | An additive Schwarz method for the h-p version of the boundary element method for hypersingular integral equations in R 3[END_REF][START_REF] Heuer | Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen[END_REF][START_REF] Heuer | An Overlapping Domain Decomposition Preconditioner for High Order BEM with Anisotropic Elements[END_REF][START_REF] Tran | An overlapping additive Schwarz preconditioner for boundary element approximations to the Laplace screen and Lamé crack problems[END_REF]. For an overview on the articles published before 1998, we refer to [START_REF] Stephan | Additive Schwarz methods for integral equations of the first kind[END_REF], we also refer to the habilitation thesis [START_REF] Heuer | Preconditioners for the p-version of the boundary element Galerkin method in R 3[END_REF] for a summary of results on interpolation theory and fractional Sobolev spaces.

We seek to adapt the GenEO coarse space associated with the ASM as introduced in Section 3.3.3, to precondition BEM matrices described in Section 2.4.5. We saw in Section 3.3.1 that Theorem 3.9 allows us to study such preconditioners, and a key point to satisfy its hypothesis is how we can decompose a global energy. More precisely, to satisfy the second and third hypothesis of Theorem 3.9, we have to be able to respectively upper bound and lower bound the global energy by a sum of local energies. Studying BIE, a new obstacle appears compared to usual Partial Differential Equations (PDE) with the non-locality of the bilinear forms under study and of the norms of the underlying Sobolev spaces. Decomposing the global energy as we did with Lemma 3.13 for example with usual PDE, will be difficult because of this non-locality.

We found several possibilities using different approaches to decompose a global energy and to circumvent the non-locality of the problem. They all lead to a specific GenEO-type coarse space. It brought us to study numerically the efficiency of the coarse spaces we introduced.

In Section 5.1, we first adapt the discrete setting introduced in Section 3.2 to surface meshes. Then in Section 5.3, we present coarse spaces for BEM matrices inspired by the GenEO approach assuming we have a way to lower bound the global energy by a sum of local terms. In Section 5.2, we present several concrete possibilities to do so. Finally, in Section 5.4 we present several numerical studies of the introduced coarse spaces. This work also appears in [START_REF] Marchand | Two-level preconditioning for h-version boundary element approximation of hypersingular operator with GenEO[END_REF] and has been submitted.

Finite element setting

As described in Section 3.2, we introduce a finite element setting with the same notation, the only difference being that we mesh Γ that we suppose polyhedral.

Meshes

Definition 5.1 (Surface mesh, [55, Definition 8]). Let Γ ⊆ ∂Ω where Ω is a domain in R d . A mesh of Γ is a finite collection of disjoint non-degenerate simplices T = {K 1 , . . . , K N el } such that

• Γ = N el i=1 K i ,
• the intersection K i ∩ K j is either empty, a common point or a common edge of both K i and K j for every 1 ≤ i, j ≤ N el and i = j.

Definition 5.2 (Meshsize, [52, Definition 1.13]). For all

K ∈ T , h K denotes the diameter of K ∀K ∈ T , h K = diam K = max x,y∈K |x -y|,
Then, we define the meshsize of T as

h := max K∈T h K .
We use the notation T h for a mesh T of meshsize h.

Definition 5.3 (Shape regularity, [52, Definition 1.13]). A family of meshes

{T h } h>0 is said to be shape-regular if there is σ 0 such that ∀h, ∀K ∈ T h , σ K = h K ρ K ≤ σ 0 ,
where ρ K is the radius of the largest ball that can be inscribed in K.

Usually, the mesh T h is generated using a reference cell K ref and an affine geometric transformation mapping K ref to the actual mesh cells. We denote this mapping F K , so that K = F K (K ref ).

Discrete spaces

In the following, we will denote V h a generic space of finite element functions associated with T h , N its dimension and (ϕ j ) N j=1 the finite element basis of V h . But, we also introduce some more specific discrete spaces. First, we define the polynomial space on the reference element

P m (K ref ) := Span (x i ) d i=1 ∈ R d → d i=1 x mi i | 0 ≤ d i=1 m i ≤ m .
Thus, polynomial spaces on a mesh T h are defined by

P m (T h ) := {u ∈ L ∞ (Ω) | ∀K ∈ T , u • F K ∈ P m (K ref )} , S m (T h ) :=P m (T h ) ∩ C 0 (Γ),
where C 0 (Γ) is the space of continuous functions on Γ. We also define the discrete space with vanishing boundary conditions

S m (T h ) := H 1/2 (Γ) ∩ S m (T h ).

Galerkin approximation

As described in Section 2.4.5, the discretization of any BIE of the first kind derived in Sections 2.4.1 and 2.4.2 then reads: find

u h ∈ V h ⊂ H s (Γ) such that a(u h , w h ) = b(w h ), ∀w h ∈ V h , (5.1) 
where

s = ± 1 2 , a : H s (Γ) × H s (Γ) → R and b : H s (Γ) → R. If s = 1 2
, it means that we are interested in Neumann problem (since we are looking for a Dirichlet trace) and we denote the bilinear form a W . On the contrary, if s = -1 2 , it means that we are interested in Dirichlet problem, and we denote the bilinear form a V . In any case, we assume that a is symmetric positive definite, i.e.

C -u 2 H s (Γ) a(u, u) C + u 2 H s (Γ) , (5.2) 
and more precisely, we denote the equivalence constants C - W and C + W for s = 1 2 and C - V and C + V for s = -1 2 . We denote by (ϕ j ) N j=1 the finite element basis of V h and dim(V h ) = N , then from (5.1), we obtain the following linear system

Av h = b h ,
where (A) i,j = a(ϕ j , ϕ i ), (b h ) j = Γ gϕ j dσ for 1 ≤ i, j ≤ N and v h is the vector of coefficients corresponding to the unknown finite element function v h . Since we assume that a is symmetric and positive definite, so is A. The main difference with Chapter 3 is that A is dense because of the non-local nature of the underlying operators (see Section 2.4.5). Again, we will denote A W the matrix associated with a W and A V the matrix associated with a V .

Domain decomposition

We need to partition the domain Γ. Since we have in mind the implementation of H-matrices, we consider the partition techniques used to define the hierarchy of this compression method. These techniques are generally based on a geometric clustering of the degrees of freedom, which is why we consider a partition of the degrees of freedom into n clusters, that induces a partition of the global numbering {1, . . . , N } = ∪ n p=1 dof h,p with dof h,p ∩ dof h,l = ∅ for every p, l ∈ {1, . . . , n} and p = l. This partition of the degrees of freedom induces a geometric partition.

This differs from what is usually done in a finite element context, where automatic partitioners such as METIS [START_REF] Karypis | A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs[END_REF] or SCOTCH [START_REF] Chevalier | PT-Scotch: A tool for efficient parallel graph ordering[END_REF] are used to decompose the domain, and they are generally used to partition the elements of the mesh. By contrast, here we take account of a compression method working on degrees of freedom. Then, we can add several layers of mesh elements and their associated degrees of freedom to increase the overlap between neighboring subdomains. We denote the indices of the resulting pth subdomain dof h,p so that dof h,p ⊂ dof h,p and {1, . . . , N } ⊂ ∪ n p=1 dof h,p . Its associated local finite element space is

V h,p := Span(ϕ j | Γp | j ∈ dof h,p ),
where Γ p := ∪ j∈dof h,p supp(ϕ j ), and thus Γ ⊂ ∪ n p=1 Γ p . Later, we will also need to use Γ p := Γ p \ ∪ j / ∈dof h,p supp(ϕ j ), see the remark below for an example. We also define an arbitrary local numbering of the degrees of freedom with the bijection σ p : {1, 2, . . . , N p } → dof h,p , where N p := dim(V h,p ). Similarly to Section 3.2.3, we introduce the operator of extension by zero R T p associated with V h,p , and its matrix representation R T p , we also denote the restriction operator R p and its matrix representation R p so that R p R T p = I d ∈ R Np×Np and R p R T p = I d . We can do the same remark as in Section 3.2.3, R p is not a restriction in the natural sense. It restricts the set of shape functions used to represent an element of the discrete space V h,p (see remark thereafter). Besides R T p is not the dual of R p for the L 2 scalar product, they are respectively the Γ 1 Γ 1 equivalent of R T p and R p for finite element functions, and R T p is the transpose of R p . Remark 5.4. Figure 5.1 adapts the example given in Figure 3.4 with P 1 shape functions to a screen problem in 3D. Let V h ⊂ H 1/2 (Γ) so that finite element functions associated with nodes on the boundary are not in V h .

We also introduce again the linear applications P h , P h,p and their inverse to allow going back and forth the finite element and algebraic representation of functions. The relations between all these operators are again summarized in Figure 3 • k 0 denotes the maximum multiplicity of the interaction between subdomains plus one, i.e.,

k 0 := max 1≤j≤N # p | R p MR T j = 0 ,
where (M) i,j = Γ ϕ i ϕ j dγ is the mass matrix.

• k 1 denotes the maximal multiplicity of the subdomain intersection, i.e., the largest integer m such that there exist m different subdomains whose intersection has a nonzero measure.

k 1 := ess sup n p=1 1 Γp • N c

is the minimum number of colors we can use to color a decomposition such that any two domains sharing an overlap have different colors

And of course, the same remarks as in Section 3.2.3 can be done concerning the graph point of view on these constants. Finally, the definition of the preconditioner without coarse space is again

M -1 ASM := n p=1 R T p A -1
p,p R p , with A l,p = R T l AR p , and 1 ≤ l, p ≤ n.

Inequalities for splitting norms

As we have seen in Section 3.3.1, the hypotheses of Theorem 3.9 are related to how we can decompose the global energy norm of the problem. Working directly on the analytical expression of the considered bilinear forms a is usually really difficult, so we will focus on decomposing fractional Sobolev norms. Thus, decomposing the global energy given by the bilinear form a will be given by the equivalence relation between a and fractional Sobolev norms.

Inequalities between the global norm and the sum of the local norms are essential in the analysis of the efficiency of domain decomposition methods and they are not trivial because the norms are non-local. The constants appearing in these inequalities are important because they will appear in the final estimate for the condition number.

Localization by local fractional order norms

In this section, we will show how to directly localize a global norm in H 1/2 (Γ). We have the following lemma

Lemma 5.6 ([139, Lemma 4.1.49 (b)]). For (u p ) 1 p n ∈ n p=1 H 1/2 (Γ p ) with (Γ p ) n
p=1 a nonoverlapping partition of Γ, i.e. Γ = ∪ n p=1 Γ p and Γ p ∩ Γ l = ∅ for l = p and 1 l, p n, we have the following inequality:

n p=1 E Γ p (u p ) 2 H 1/2 (Γ) 5 2 n p=1 u p 2 H 1/2 (Γ p ) ,
Then, we can obtain the following lemma using a coloring argument: Lemma 5.7. For (u p ) 1 p n ∈ n p=1 H 1/2 ( Γ p ), we have the following inequality:

n p=1 E Γp (u p ) 2 H 1/2 (Γ) 5 2 N c n p=1 u p 2 H 1/2 ( Γp) ,
where N c is defined in Definition 5.5.

Proof. If one colors each subdomain Γ p such that two subdomains with the same color cannot be neighbors, that is to say, cannot overlap, then we can define (Γ l ) Nc l=1 where each Γ l is the union of every subdomain with the same color, that we number l, and N c is the number of colors. Let us define

w l = p| Γp⊂Γ l E Γp (u p ) ∈ H 1/2 (Γ l ).
Then, we have

n p=1 E Γp (u p ) 2 H 1/2 (Γ) = Nc l=1 p| Γp⊂Γ l E Γp (u p ) 2 H 1/2 (Γ) = Nc l=1 w l 2 H 1/2 (Γ) N c Nc l=1 w l 2 H 1/2 (Γ) .
By definition of Γ l , we have that all subdomains Γ p such that Γ p ⊂ Γ l are disjoint so that we can use Lemma 5.6 in the last expression to obtain

N c Nc l=1 w l 2 H 1/2 (Γ) N c Nc l=1 p| Γp⊂Γ l E Γp (u p ) 2 H 1/2 (Γ) N c 5 2 Nc l=1 p| Γp⊂Γ l u p 2 H 1/2 ( Γp) = N c 5 2 n p=1 u p 2 H 1/2 ( Γp) .
The previous lemma gave a direct result about how we can upper bound a global energy in 

• 2 H 1/2 (Γ
k 1 u 2 H 1/2 (Γ) ,
where k 1 is defined in Definition 5.5.

Proof. The proof is in two parts. First, we bound the H 1/2 -norm from below by the H 1/2 -norm, and then we split the H 1/2 -norm. We denote

Γ Γ [u] := Γ Γ |u(x) -u(y)| 2 |x -y| d+1 dγ(x, y),
where we borrowed the notation from [START_REF] Sauter | Boundary element methods[END_REF]Lemma 4.1.49 (b)].

-First part:

We have Γ ⊂ Γ = ∂Ω with Ω ⊂ R d , a lipschitz polyhedron. Then, for u ∈ H 1/2 (Γ), we have by definition

u 2 H 1/2 (Γ) = E Γ (u) 2 H 1/2 ( Γ) = Γ |u| 2 + Γ Γ [E Γ (u)] = u 2 L 2 (Γ) + Γ Γ [u] = u 2 H 1/2 (Γ) + 2 Γ\Γ Γ [u] + Γ\Γ Γ\Γ [u] ≥0 ≥ u 2 H 1/2 (Γ) .
-Second part: According to the definition of the norm, we have

u 2 H 1/2 (Γ) = u 2 L 2 (Γ) + Γ Γ [u].
Following Lemma 3.22, we have

n p=1 u| Γp 2 L 2 (Γp) k 1 u 2 L 2 (Γ)
. Thus, it remains to prove

n p=1 Γp Γp [u] k 1 Γ Γ [u].
Let 1 ≤ l ≤ n, we consider all the intersections of l subdomains among the n subdomains. Note that there can be several areas shared by possibly different sets of l subdomains, see Figure 5.2 for an example. That is why, we define an arbitrary numbering {1, . . . , n l } of all the set of l subdomains that intersect each other, except for l = 1 where the numbering corresponds to the numbering of the subdomains.

Let us denote θ l,i ⊂ Γ the ith set of l subdomains. In particular, we have θ 1,p := Γ p \ (∪ n m=1,m =p Γ m ), i.e. θ 1,p corresponds to the pth subdomain without its overlap. We denote

Θ := {(l, i) ∈ N 2 | θ l,i = ∅},
and remark that {θ l,i } l,i defines a partition of Γ, so that

Γ Γ [u] = (l,i)∈Θ (m,j)∈Θ θ l,i θm,j [u]. (5.3)
For every subdomain Γ p , we also define 

Θ p := {(l, i) ∈ N 2 | θ l,i ∩ Γ p = ∅},
1 (l,i)∈Θp 1 (m,j)∈Θp θ l,i θm,j [u] = (l,i)∈Θ (m,j)∈Θ n p=1 1 (l,i)∈Θp 1 (m,j)∈Θp θ l,i θm,j [u].
(5.4) where 1 (l,i)∈Θp = 1 if (l, i) ∈ Θ p and 0 otherwise. And, by definition, a given pair (l, i) ∈ Θ cannot be in more that k 1 sets Θ p , otherwise it would mean that θ l,i is shared by more than k 1 subdomains. Thus,

n p=1 1 (l,i)∈Θp 1 (m,j)∈Θp k 1 .
Finally, we obtain the expected result using Equations (5.3) and (5.4) associated with the previous inequality. 

θ 1,1 θ 1,2 θ 1,3 θ 1,4 θ 2,1 θ 2,2 θ 2,3 θ 2,4 θ 4,1

Other localizations

The preceding inequalities are the ones that mimic the best what is done for PDEs: Lemma 5.7 is similar to Lemma 3.13 (remember that N c is upper bounded by k 0 ) and Lemma 5.8 is similar to Lemma 3.22. But other approaches can be followed and they will lead to other coarse spaces.

The simplest is based on the continuous injection between H 1/2 (Γ) and L 2 (Γ) Lemma 5.9. Let u ∈ H 1/2 (Γ), we have

C inj n p=1 u 2 L 2 (Γp) k 1 u 2 H 1/2 (Γ) ,
where k 1 is defined in Definition 5.5 and C inj is the continuity constant of the injection of

H 1/2 (Γ) in L 2 (Γ).
Proof. Using the fact we have H 1/2 (Γ) is compactly embedded in L 2 (Γ), we obtain

u 2 H 1/2 (Γ) ≥ C inj u 2 L 2 (Γ) .
Then, the L 2 norm is local, so that we can decompose it like in Lemma 3.22.

Another approach is to take techniques and inequalities used in adaptive BEM (see [START_REF] Feischl | Adaptive boundary element methods[END_REF]). Let us denote u ∈ H s the solution of the underlying PDE and u h ∈ V h its approximation, solution of Equation (5.1) associated with a mesh T h , the goal of adaptive BEM (and more generally adaptive FEM) is to estimate the error u -u h with a global computable quantity that serves as a stopping criterion and that can be decomposed in local contributions to also estimate the local error. Thus, it shows where to refine the mesh locally, until the stopping criterion is reached.

Usually, a posteriori estimators have the following form

η 2 T h = K∈T h η 2 K .
Such an estimator is called reliable if u h -u η T h , and it is also called efficient if η T h u h -u , • is typically the energy norm of the considered problem. Since u is unknown and the estimator needs to be computable, a natural approach is to use residual type estimators where the unknown error is estimated by the residual error. But this residual error is usually measured in fractional Sobolev norms, thus localization techniques are needed and that is why it was interesting in our case to look at the methods at play in adaptive BEM. In particular, we have been interested in [START_REF] Aurada | Local inverse estimates for non-local boundary integral operators[END_REF]Corollary 6.], that is used in the following lemma.

Lemma 5.10. Let u h ∈ S l (T h ), we have

C ad n p=1 h 1/2 T ∇ Γ u h | Γp 2 L 2 (Γp) k 1 u h 2 H 1/2 (Γ) ,
where C ad depends only on Γ, the shape-regularity of T h and l, while

h T | K = h K for every K ∈ T h .
Proof. According to [START_REF] Aurada | Energy norm based error estimators for adaptive BEM for hypersingular integral equations[END_REF]Corollary 6.], we have

u h 2 H 1/2 (Γ) ≥ C ad h 1/2 T ∇ Γ u h 2 L 2 (Γ) .
Then, the L 2 norm is local, so that we can decompose it like in Lemma 3.22. This result is actually an inverse inequality for fractional Sobolev norms and it is obtained using interpolation theory.

Two-level preconditioning for the hypersingular operator

In this section, we use the strategy of GenEO [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF] as in Section 3.3.3 to precondition the matrix A W defined in Section 5.1.3 with the hypersingular singular operator W. We define a generic coarse space V h,0 , and we denote its size by N 0 . The coarse space is spanned by the columns of a rectangular matrix R T 0 of size N × N 0 and the preconditioner is defined as follows

M -1 ASM,W := R T 0 (R 0 A W R T 0 ) -1 R 0 + n p=1 R T p (R p A W R T p ) -1 R p .
(5.5)

Fictitious space lemma

We formulate the ASM with GenEO coarse space as follows:

Definition 5.11.

• V h ⊂ H 1/2 (Γ), for example V h = S l (T h ).
• H := R N is endowed with the standard euclidean scalar product (•, •), and we consider the following bilinear form:

a : R N × R N → R (u h , v h ) → (A W u h , v h ) = a W (u h , v h ),
with u h = P h u h and v h = P h v h .

• H D := n p=0 R Np is endowed with the standard euclidean scalar product, and we consider the following bilinear form: b :

n p=0 R Np × n p=0 R Np → R (u p h , v p h ) n p=0 → n p=0 (A W R T p u p h , R T p v p h ) = (A W R T 0 u 0 h , R T 0 v 0 h ) + n p=1 a W (R T p u p h , R T i v p h ), with u p h = P h,p u p h and v p h = P h,p v p h for 1 ≤ p ≤ n. Then, B : H D → H D is defined by ∀ U h = (u p h ) n p=0 ∈ n p=0 R Np , B(U h ) := (R p A W R T p u p h ) 0≤p≤n .
Notice that B is a block diagonal operator, so that

∀ U h = (u p h ) n p=0 ∈ n p=0 R Np , B -1 (U h ) := ((R p A W R T p ) -1 u p h ) 0≤p≤n .
• The linear operator R ASM,2 is defined as follows

R ASM,2 : H D → H (u p h ) 0≤p≤n → n p=0 R T p u p h .
Before we introduce our two-level preconditioners, we formulate some general remarks. The first hypothesis of Theorem 3.9 is satisfied by definition of R ASM,2 , identically to what is done in Lemma 3.19. The second hypothesis of Theorem 3.9 corresponds to the continuity of R ASM,2 and the third one is usually referred to as stable decomposition. Using the notations from Definition 5.11 of this theorem, these last two hypotheses can be rewritten as follows (i) There exists a constant c R > 0 such that, for all

(u p h ) n p=0 ∈ H D a W n p=0 P h R T p u p h , n p=0 P h R T p u p h c R n p=0 a W (P h R T p u p h , P h R T p u p h ).
(ii) There exists a constant c T > 0 such that, for all u h ∈ R N , there exists

U h = (u p h ) n p=0 ∈ H D with u h = R ASM,2 (U h ), and c T n p=0 a W (P h R T p u p h , P h R T p u p h ) a W (P h u h , P h u h ).
We deduce that these two hypotheses are related to how we can localize the bilinear form a W , and since it is symmetric positive definite, it is also related to how we can localize the H 1/2 -norm.

Continuity of R ASM,2

The first hypothesis of Theorem 3.9 is actually satisfied without any precise definition of the coarse space. We have Lemma 5.7 to localize the H 1/2 -norm, which yields an upper bound for the global energy on H 1/2 (Γ) by a sum of local energies, so that we obtain the first hypothesis required by Theorem 3.9.

Lemma 5.12. Using the notations of Theorem 3.9, let U h = (u p h ) n p=0 ∈ H D , we have

(A W R ASM (U h ), R ASM (U h )) 2 max 1, 5 2 N c C + W C - W (BU h , U h ) D .
Proof. Using the fact that A W is symmetric positive definite, we have

(A W R ASM (U h ),R ASM (U h )) = A W n p=0 R T p u p h , n p=0 R T p u p h 2 A W R T 0 u 0 h , R T 0 u 0 h + A W n p=1 R T p u p h , n p=1 R T p u p h .
The last term on the right-hand side can be rewritten 3.5). Finally, using the equivalence relation from Equation (5.2), Lemma 5.7 and the definition of the H 1/2 -norm, we have

A W n p=1 R T p u p h , n p=1 R T p u p h = a W n p=1 P h R T p u p h , n p=1 P h R T p u p h = a W n p=1 R T p u p h , n p=1 R T p u p h , with u p h = P h,p u p h ∈ V h,p ⊂ H 1/2 ( Γ p ) (see diagram Figure
a W n p=1 R T p u p h , n p=1 R T p u p h C + W n p=1 R T p u p h 2 H 1/2 (Γ) 5 2 N c C + W n p=1 u p h 2 H 1/2 ( Γp) 5 2 N c C + W n p=1 R T p u p h 2 H 1/2 (Γ) 5 2 N c C + W C - W n p=1 a W (R T p u p h , R T p u p h ) 5 2 N c C + W C - W n p=1 (A W R T p u p h , R T p u p h ). n p=0 R Np of a given u h ∈ R N such that (A W R T p u p h , R T p u p h ) τ (B p R p u h , R p u h ), (5.7) 
for some fixed user-defined parameter τ > 0 and u h = R ASM (U h ). A natural choice for (u p h ) n p=0 might be u p h = D p R p u h , but generally it does not satisfy Equation (5.7). The idea of the GenEO coarse space is to filter out the part of D p R p u h that does not satisfy Equation (5.7) using the following local generalized eigenvalue problem: find (v p h,k , λ p k ) such that

D p R p A W R T p D p v p h,k = λ p k B p v p h,k . (5.8)
Then, we can define the local contribution to the coarse space

Z p,τ := ker(B p ) ∪ Span(v p h,k | for every k s.t. λ p k > τ ), (5.9) 
and the local projection π p on Z p,τ parallel to Span(v p h,k | for every k s.t. λ p k τ ). Using the projection π p , we can filter out the part of D p R p u h that does not satisfy the sufficient condition given by Equation (5.7). Lemma 5.15 [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF]Lemma 7.15]). For every 1 p n and v h,k ∈ R Np , we have

(R T p D p (I d -π p )v p h ) T A W (R T p D p (I d -π p )v p h ) τ (v p h ) T B p v p h .
The last relation is similar to Equation (5.7), we define the decomposition such that, for 1 p n

u p h = D p (I d -π p )R p u h . (5.10) 
It remains to define the coarse space V h,0 and the associated coarse component u 0 h such that

u h = R ASM,2 (U h ) with U h = (u p h ) n p=0 .
Definition 5.16. The GenEO coarse space is defined as the sum of the local contributions to the coarse space weighted with the partition of unity. We define

V h,0 = Span(R T p D p v p h | 1 ≤ p ≤ N, v p h ∈ Z p,τ )
Let Z τ ∈ R N ×N0 be a column matrix so that V h,0 is spanned by its columns and N 0 = dim(V h,0 ). We denote its transpose by R 0 := Z T τ .

Lemma 5.17 (GenEO coarse component). Assuming there exists (B p ) n p=1 such that Equation (5.6) is true, we can define the coarse space as in Definition 5. [START_REF] Bonito | Numerical approximation of the integral fractional Laplacian[END_REF], and the coarse component as

u 0 h := (R 0 R T 0 ) -1 R 0 n p=1 R T p D p π p R p u h , ( 5 

.11)

then U h = (u p h ) n p=0 ∈ H D defined by Equations (5.10) and (5.11) is a stable decomposition of u h , that is to say

R ASM,2 (U h ) = u h and c T n p=0 a W (P h R T p u p h , P h R T p u p h ) a W (P h u h , P h u h ), with c -1 T = 2 + 1 + 5N c C + W C - W τ C loc .
Proof. Let u h ∈ R N and U h = (u p h ) 0 p n ∈ H D defined by Equations (5.10) and (5.11). First notice that we have

w 0 = R T 0 (R 0 R T 0 ) -1 R 0 w 0 for every w 0 ∈ V h,0 since R T 0 (R 0 R T 0 ) -1 R 0 is a projector on V h,0 . Then, we have R ASM,2 (U h ) = n p=0 R T p u p h = R T 0 u 0 h + n p=1 R T p u p h = R T 0 (R 0 R T 0 ) -1 R 0 n p=1 R T p D p π p R p u h ∈V h,0 + n p=1 R T p u p h = n p=1 R T p D p π p R p u h + n p=1 R T p D p (I d -π p )R p u h = n p=1 R T p D p R p u h = u h ,
where we used the fact that D p defines a partition of unity in the last line. Then, using Lemma 5.14 and Lemma 5.15 with v p h = R p u h for 1 p n, we have

n p=0 a(P h R T p u p h , P h R T p u p h ) = n p=0 (A W R T p u p h , R T p u p h ) 2(A W u h , u h ) + (1 + 5N c C + W C - W ) n p=1 (A W R T p u p h , R T p u p h ) 2(A W u h , u h ) + (1 + 5N c C + W C - W )τ n p=1 (B p R p u h , R p u h ).
Finally, assuming Equation (5.6) holds, we deduce

n p=0 a W (P h R T p u p h , P h R T p u p h ) 2 + 1 + 5N c C + W C - W τ C loc a W (P h u h , P h u h ).
Remark 5.18. As pointed out in Remark 3.28, it should be noted that the decomposition (u p h ) n p=0 is necessary for the analysis, but it does not need to be computed in practice. To use this coarse space, it is sufficient to compute Z τ and then (R 0 A W R T 0 ) -1 to be able to apply P ASM (see definition given in Equation (3.12)). And to do so, each local contribution to the coarse space defined in Equation (5.9) can be computed independently in parallel, so that computing Z τ can be done efficiently. Then, to compute R 0 A W R T 0 , one can use the fact that Z τ is sparse and distributed (since the eigenvectors are computed in parallel). Finally, we need to invert

(R 0 A W R T 0 ) ∈ R N0×N0
and that is why a good coarse space should be of minimum size while still containing relevant information for the convergence.

Concrete coarse spaces

Using Lemmas 5.12 and 5.17, it remains to find a sequence of local operators (B p ) n p=1 that satisfies Equation (5.6) to be able to apply Theorem 3.9. The goal is to find a coarse space whose size is as small as possible for a given τ because we need to invert R 0 A W R T 0 ∈ R N0×N0 . However, the choice of the tuple (B p ) n p=1 is not a priori unique, and we can use Lemmas 5.8 to 5.10 to define various generalized eigenproblems as Equation (5.8). Besides, we do not know the size of the coarse space in advance for a given τ , so that numerical tests are necessary to see which one is the most efficient. A first simple way to obtain a decomposition (B p ) n p=1 satisfying Equation (5.6) is to simply use Lemma 5.9.

Lemma 5.19. Let u ∈ H 1/2 (Γ), we have

C inj C - W k 1 n p=1 u| Γp 2 L 2 (Γp) a W (u, u),
where k 1 is defined in Definition 5.5, C inj is continuity constant of the injection of H 1/2 (Γ) in L 2 (Γ), and they are both independent of h and n.

Proof. Using Lemma 5.9, we obtain

a W (u, u) ≥ C - W u 2 H 1/2 (Γ) ≥ C inj C - W k 1 n p=1 u| Γp 2 L 2 (Γp) .
Using the last lemma, we obtain a similar relation to Equation (5.6) with

C loc = CinjC - W k1
and B p = M p for every 1 p n where M p is the mass matrix defined as (M p ) i,j := Γp ϕ σp(i) ϕ σp(j) dγ, (5.12) where Γ p has been defined so that M p ∈ R Np×Np . Then, we can obtain the following theorem Theorem 5.20. We have the following condition number estimate

κ(P ASM,inj A W ) 2 max 1, N c 5 2 C + W C - W 2 + 1 + 5N c C + W C - W τ k 1 C inj C - W ,
where P ASM,inj is defined with the GenEO coarse space and the localization from Lemma 5.19.

Proof. Using Theorem 3.9 and its notations, we have to satisfy its two hypotheses.

(i) The first hypothesis is obtained using Lemma 5.12 with c R = 2 max(1, N c

5C + W 2C - W ).
(ii) The second hypothesis is obtained using Lemma 5.17 with B p = M p for every 1 p n and Lemma 5.19 so that c -1

T = 2 + 1 + 5N c C + W k1 C - W τ k1 CinjC - W .
We will refer to the coarse space based on Theorem 5.20 as GenEO mass coarse space. Another approach to build a coarse space is to use Lemma 5.10 to obtain the next lemma. Lemma 5.21. Let u h ∈ S l (T h ), we have

C ad C - W k 1 n p=1 h 1/2 T ∇ Γ u h | Γp 2 L 2 (Γp) a(u h , u h ),
where C ad depends only on Γ, the shape-regularity of T h and l.

Proof. According to Lemma 5.10 and the equivalence relation Equation ( 5.2), we have

a(u h , u h ) ≥ C - W u h 2 H 1/2 (Γ) ≥ C ad C - W h 1/2 T ∇ Γ u h 2 L 2 (Γ) ≥ C ad C - W k 1 n p=1 h 1/2 T ∇u h | Γp 2 L 2 (Γp) .
Using the last lemma, we obtain a similar relation to Equation (5.6) with

C loc = C ad C - W k1
and B p = K p for every 1 p n where K p is the stiffness matrix defined as

(K p ) i,j := Γp h T ∇ Γ ϕ σp(i) ∇ Γ ϕ σp(j) dγ, (5.13) 
where again, K p ∈ R Np×Np due to the definition of Γ p . Then, we can obtain the following theorem Theorem 5.22. We have the following condition number estimate

κ(P ASM,ad A W ) 2 max 1, N c 5 2 C + W C - W 2 + 1 + 5N c C + W C - W τ k 1 C ad C - W ,
where P ASM,ad is defined with the GenEO coarse space and the localization from Lemma 5.21.

Proof. Using Theorem 3.9 and its notations, we have to satisfy its two hypotheses.

(i) The first hypothesis is obtained using Lemma 5.12 with c R = 2 max(1, N c

5C + W 2C -).
(ii) The second hypothesis is obtained using Lemma 5.17 with B p = K p for every 1 p n and Lemma 5.21 so that c -1

T = 2 + 1 + 5N c C + W k1 C - W τ k1 C ad C - W .
We will refer to the coarse space based on Theorem 5.22 as GenEO stiffness coarse space. A third approach is to use Lemma 5.8 Lemma 5.23. For u ∈ H 1/2 (Γ), there holds

C - W k 1 n p=1 u| Γp 2 H 1/2 (Γp) a W (u, u),
where k 1 is defined in Definition 5.5.

Proof. According to Lemma 5.8 and the equivalence relation Equation (5.2), we have

a W (u, u) ≥ C - W u 2 H 1/2 (Γ) ≥ C - W k 1 n p=1 u| Γp 2 H 1/2 (Γp) .
Using the last lemma, we obtain a similar relation to Equation (5.6) with

C loc = C - W k1
and B p = H p for every 1 p n where H p is the matrix associated with the scalar product of H 1/2 (Γ) defined as

(H p ) i,j := Γp ϕ σp(i) ϕ σp(j) dσ(x) dσ(y)+ Γp×Γp (ϕ σp(i) (x) -ϕ σp(i) (y))(ϕ σp(j) (x) -ϕ σp(j) (y)) |x -y| d+1 dσ(x) dσ(y), (5.14) 
where again, H p ∈ R Np×Np due to the definition of Γ p . Then, we can obtain the following theorem Theorem 5.24. We have the following condition number estimate

κ(P ASM,slo A W ) 2 max 1, N c 5 2 C + W C - W 2 + 1 + 5N c C + W C - W τ k 1 C - W ,
where P ASM,slo is defined with the GenEO coarse space and the localization from Lemma 5.23.

Proof. Using Theorem 3.9 and its notations, we have to satisfy its two hypotheses.

(i) The first hypothesis is obtained using Lemma 5.12 with c R = 2 max(1, N c

5C + W 2C - W
).

(ii) The second hypothesis is obtained using Lemma 5.17 with B p = H p for every 1 p n and Lemma 5.23 so that c -1

T = 2 + 1 + 5N c C + W k1 C - W τ k1 C - W .
We will refer to the coarse space based on Theorem 5.24 as GenEO Slobodeckij. Now that we have introduced these three coarse spaces, we can make the following remarks: Remark 5.25. The GenEO Stiffness coarse space is inexpensive to compute since it is sparse and similar to the stiffness matrix of a Laplace problem weighted by the piecewise constant function h T . However the constant in Theorem 5.22 may depend on the degree of the finite element functions.

Remark 5.26 (Computational difficulties for GenEO Slobodeckij coarse space). The GenEO Slobodeckij coarse space requires to compute the matrix associated with the H 1/2 scalar product. It induces new practical difficulties compared to usual BEM matrices. To see that, notice that the norm of a function ϕ with compact support given by a BIO is usually of the type Γ×Γ K(x, y)ϕ(x)ϕ(y) dσ(x) dσ(y) where K(x, y) is a kernel depending on the BIO. Even if the kernel is non-local, the previous integral reduces to a double integral on supp(ϕ), the computation remains local. This is not the case for the Sobolev-Slobodeckij semi-norm which reads

Γ×Γ |ϕ(x) -ϕ(y)| 2 |x -y| d+1 dσ(x) dσ(y) =2 supp(ϕ)×Γ |ϕ(x)| 2 |x -y| d+1 dσ(x) dσ(y) -2 supp(ϕ)×supp(ϕ) ϕ(x)ϕ(y) |x -y| d+1 dσ(x) dσ(y),
so that there is an integral over the whole domain in any case. In other words, the Sobolev-Slobodeckij norm is "more non-local" than usual BIO, which makes the computation of H p difficult, see Appendix A for more practical details.

Due to the practical difficulties in computing H p explained in Remark 5.26, another possibility is to approximate the H 1/2 -norm in Lemma 5.23. It is natural to introduce the weakly singular operator V : H -1/2 (Γ) → H 1/2 (Γ) defined in Section 2.3.2, whose range is the right space under consideration. We suppose that V is symmetric positive definite, which is true when we assume that the hypersingular operator W also has this property. Then, we can define the local weakly singular operator V p as

V p u p , v p H 1/2 (Γp)× H -1/2 (Γp) := V E Γp (u p ), E Γp (v p ) H 1/2 (Γ)× H -1/2 (Γ)
for every u p , v p ∈ H -1/2 (Γ p ). Now, we can define a norm on H 1/2 (Γ p ) using the inverse of the local weakly singular operator and equivalent to u 2 H 1/2 (Γp) . Unfortunately, we have not been able to fully analyse this preconditioner, and this is mainly related to the lack of control on the equivalence constants between u p 2

H -1/2 (Γp) and E p (u p ) 2 H -1/2 (Γ)
, we refer to Appendix B for a more detailed discussion.

That is why, we only define the associated discrete local operator B p = C p := M p V -1 p M p , for every 1 p n where V p is the discretization of the single layer defined as

V p (i, j) := V p (ϕ σp(j) | Γp ), ϕ σp(i) | Γp H 1/2 (Γp)× H -1/2 (Γp) , (5.15) 
where again, C p ∈ R Np×Np due to the definition of Γ p . The choice of C p comes from the fact that we need to approximate the discretization V -1 p by the inverse of the discretization of V p , which is classical in Calderón preconditioning, see [START_REF] Mclean | Boundary element preconditioners for a hypersingular integral equation on an interval[END_REF][START_REF] Steinbach | The construction of some efficient preconditioners in the boundary element method[END_REF]. We will refer to the coarse space as GenEO single layer.

In conclusion, we have introduced four coarse spaces and Theorems 5.20, 5.22 and 5.24 showed that at least three of them lead to a bounded condition number for the preconditioned linear systems independently of the mesh size and the number of subdomains. The size of the coarse spaces will adapt to the user-defined parameter τ , which is one of the advantages of this approach. The downside, though, is that we do not know these sizes a priori. For example, if one has to take all the eigenvectors in the local generalized eigenproblem defined in Equation (5.8), the size of the coarse space will be the size of the global matrix, and thus inverting R 0 A W R T 0 will be as costly as using a direct method. We have to verify how relevant these coarse spaces are numerically, and which one retains the most of relevant information. In other words, we have to check numerically that the sizes of the coarse spaces are small compared to the size of the global problem, and which one is the smallest while improving the convergence.

The only intuition we can have a priori is about GenEO single layer and it will be discussed in Section 5.4.2.

Numerical study of GenEO coarse spaces for the hypersingular operator

To see if the coarse spaces introduced in the previous section are well-adapted in practice, we need to verify that they improve scalability. Several definitions of scalability can be given, see Definitions 3.16 and 3.17. For strong scalability tests, we study how the number of iterations varies when we increase the number of subdomains for a given problem size. By contrast, for weak scalability tests the local problem size is kept constant, in other words doubling the number of subdomains means doubling the global problem size. In both cases, we say that the method is scalable if the number of iterations does not increase with the number of subdomains. In a HPC context, where we usually assign one subdomain per core, this yields robust methods in terms of computing times (for example, constant computing time for weak scalability tests). Indeed, the computing time should be proportional to the size of the subdomains and the number of iterations, provided the coarse problem (R 0 A h R T 0 ) is small enough to be solved efficiently with a direct method.

According to Theorems 5.20, 5.22 and 5.24, we see that the condition number of A W preconditioned by the ASM defined in Equation (5.5) with the coarse spaces we introduced, is independent of the number or size of subdomains. The numerical experiments in this section will illustrate Theorems 5.20, 5.22 and 5.24 with up to 512 subdomains and show that the proposed methods are scalable, as the resulting coarse problems remain small enough for a direct solver.

Note that the preconditioners we introduced are independent of compression techniques, but one has to implement them efficiently in conjunction with a compression technique to be able to run tests of reasonable size. That is why we developed Htool, an open source C ++ library for hierarchical matrices that offers with HPDDM a way to use DDM preconditioners with MPI and OpenMP. For more details, we refer to Chapter 6.

In particular, it allows numerical illustrations of the efficiency of the previous coarse spaces and their costs. We use BemTool1 to compute the coefficients associated with the interaction between two degrees of freedom and a P 1 -Lagrange discretization, Htool2 to compress the matrices using hierarchical matrices as described in [START_REF] Bebendorf | Hierarchical matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems[END_REF][START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF][START_REF] Rjasanow | The Fast Solution of Boundary Integral Equations[END_REF] and HPDDM [START_REF] Jolivet | Scalable domain decomposition preconditioners for heterogeneous elliptic problems[END_REF] which provides iterative solvers. The setup of the DDM preconditioners for BEM matrices is shared between HPDDM and Htool.

Concerning compression, hierarchical matrices are built upon a hierarchical decomposition of the degrees of freedom in clusters that is usually called cluster tree. Each block of the global matrix can be seen as the interaction between two nodes of this tree. Then, we define the block tree as the product of this cluster tree with itself, so that each node corresponds to a block in the global matrix. Because of the nature of the integral kernels, some of these blocks can be considered as admissible meaning that they correspond to far interactions so that they can be well approximated using low-rank matrices, while others are not admissible because they are associated with close interactions. In the latter case, one has to look at the subblocks via the block tree or the blocks need to be built as dense blocks.

To determine if a block is admissible, we use the admissibility condition described in [132, (3.15)]. A block is considered to be admissible if the minimum of the diameters of both clusters over the distance separating them is lower than a user-defined parameter η. Then, we use Adaptive Cross Approximation with partial pivoting similarly to [132, Algorithm 3.9] to compress the admissible blocks. The stopping criterion of this algorithm looks at the Frobenius norm between two consecutive approximations and if it is lower than a given threshold . In our numerical tests, we take η = 10 and = 0.01. Note that the compression may depend on how the hierarchical matrix is parallelized, but in the case of the strong scaling, we made sure that the compression was the same to have a fair comparison with different subdomains.

Our domain decomposition is actually defined by the cluster tree. More precisely, one of the levels in the cluster tree defines a partition without overlap, to which we add overlap. Notice that the algorithm used to build the cluster tree tries to obtain a balanced decomposition between the clusters of nodes to have a better compression and load-balanced decomposition. We refer to Chapter 6 for more details about hierarchical matrices and our implementation.

We would like to point out that we are using GMSH [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF] to create all the meshes in our test cases and LAPACK [START_REF] Anderson | LAPACK Users' Guide[END_REF] to solve generalized eigenproblems. Besides, we use right preconditioning, we set the tolerance for the iterative solvers in HPDDM to 10 -6 , and we have not used any restart with GMRes.

Test cases

Let

Ω out = [-2, 2] × [-2, 2] ⊂ R 2 and Ω in = [-1, 1] × [-1, 1] ⊂ R 2 .
In this first numerical experiment, we want to solve the following equation

-∆u + κ 2 u = 0, in Ω := Ω out \ Ω in (5.16) 
where κ = 0.1 with the Neumann condition

u| ∂Ω = f (x, y) such that f (x, y) = 100 * (x + 1.5) 2 if x > 1.5 0 otherwise. 
This problem can be reformulated as a BIE using Equation (2.12) with the hypersingular operator W from Section 2.3.2. More precisely, we use the analytical expression of the hypersingular operator from Section 2.3.2 with A = I d , b = 0 and c = κ 2 . The bilinear form a is symmetric positive definite according to Lemma 2. [START_REF] Claeys | Boundary integral equations of time harmonic wave scattering at complex structures[END_REF].

In 3D, we consider a similar test case with cubes instead of squares. To be more precise, we have now 5.4, but we still consider Equation (5.16) with the same boundary condition. The main difference, besides the geometry, is the Green function (see Equation (2.8)).

Ω out = [-2, 2] × [-2, 2] × [-2, 2] ⊂ R 3 and Ω in = [-1, 1] × [-1, 1] × [-1, 1] ⊂ R 3 as described in Figure

Spectrum

There are no theoretical results that establishes relevance of the GenEO coarse space, i.e. that it contains relevant information to ensure that it will be of small size while improving the convergence. This is the downside of having a black-box method that adapts the size of the coarse space to the problem, we cannot know in advance this size. But to see if we can expect a coarse space of small size, we can look at the distribution of the eigenvalues in Equation (5.8) and check that we can discriminate some high eigenvalues that we will put in the coarse space.

Using the 2D test case described in Section 5.4.1 with eight subdomains and h = 0.1, we obtain the eigenvalue distributions given in Figure 5.5 for the four coarse spaces. We observe that GenEO single layer, GenEO stiffness and GenEO Slobodeckij have a few high eigenvalues. This is not the case of GenEO mass so that we expect this coarse space to not have the relevant information to improve the convergence. Notice that it is not worth comparing the values of the eigenvalues between the different coarse spaces since they all have different constants appearing in the final bound on the condition number. In the case of GenEO single layer, we can actually expect such a distribution of eigenvalues. Indeed, looking at the associated local generalized eigenproblem given by Equation (5.8) where

B p = M p V -1
p M p with B p defined in Equation ( 5.15), it can be rewritten as a local eigenproblem

M -1 p V p M -1 p D p R p A W R T p D p v p h,k = λ p k v p h,k . (5.17) 
It is actually really close to a local Calderón preconditioning apart from D p . The subdomains usually correspond to screens and it is a well-known fact that Calderón preconditioning does not work well in this case. In practice, we observe that the eigenvalues are distributed as observed in [98, Figures 4.1 and 4.2], with a few high eigenvalues so that we expected to be able to discriminate a few eigenvectors for this coarse space.

Results in 2D

We solve the linear system associated with our test case and preconditioned with the coarse spaces introduced in the previous section. We only add one layer of elements for the overlap.

To have a fair comparison between these coarse spaces, we take τ = 60 for the GenEO stiffness coarse space, and we take the same number of eigenvectors in the local eigenproblems to build the coarse component of the other coarse spaces, so that the sizes of the local contributions to the coarse space and the size of the global coarse space are the same for a given number of subdomains with all the coarse spaces.

To test the strong scaling, we solve the considered problem with a mesh size h = 0.001 so that the number of degrees of freedom N is equal to 24 000 and we use several numbers of subdomains: {8, 16, 32, 64, 128}. The resulting numbers of iterations using CG and GMRes are given in Figure 5.6. Since τ is fixed, the condition number is bounded independently of the number of subdomains according to Theorem 5.22 for GenEO stiffness, so that we expect the number of iterations to be constant contrary to the case without the coarse component. The numbers of iterations without preconditioner are 656 for CG and 450 for GMRes, and they do not depend on the number of subdomains so that they are not shown in Figure 5.6. We first observe that the preconditioner without coarse component greatly reduces the number of iterations since it is approximately between 40 and 120 iterations instead of several hundreds without preconditioner. But as expected, the one-level preconditioner does not scale with the number of subdomains. It goes from 57 iterations for 8 subdomains to 114 iterations for 128 subdomains with CG for example. We do not show the results for GenEO mass because the results are at best close to the one-level, as expected from Section 5.4.2. We conclude that this coarse space needs to be much larger to scale in terms of iterations. GenEO Slobodeckij, GenEO stiffness and GenEO single layer scale, their number of iterations stagnates respectively between 10 and 27 iterations for CG. Note that the number of iterations for the latter is always greater than the other two. It shows that the size of the GenEO single layer coarse space needs to be greater to maintain the same amount of information. We call the number of eigenvectors taken to build Z p,τ , local contribution to the global coarse space associated with the pth subdomain and we show Figure 5.7 how the mean of these local contributions and the size of the global coarse space vary with the number of subdomains. It is interesting to see how the mean local contribution decreases with the number of subdomains so that the size of the global coarse space does not increase more than linearly.

Finally, we also did the experiment with a Calderón preconditioning. In this case, the preconditioner is defined as [146, (5.15)]

P Calderón,W h := M -1 h V h M -1 h
where M h is the global mass matrix. Using P Calderón,W h to precondition the linear system associated with the considered test case, we obtain 12 iterations with CG and GMRes.

To conclude about strong scaling, we were able to obtain a number of iterations comparable to Calderón preconditioning with the GenEO stiffness coarse space and GenEO single layer coarse space, while maintaining a good behavior when increasing the number of subdomains. In this case, DDM preconditioners are interesting alternatives to Calderón preconditioning because they are less expensive to compute since only local computations are needed while Calderón preconditioning requires a global mass matrix, its inversion and a matrix-vector product with another BEM matrix. They are also more likely to scale better thanks to their parallel nature, and they give similar performances in terms of iterations according to our results.

We now conduct a 2D test about weak scaling. We consider the following array of mesh sizes: h = [0.0005, 0.001, 0.002, 0.004, 0.008] that will be used to discretize the geometry shown in Figure 5.3. For each mesh size h[i], we obtain a number of degrees of freedom N [i] with N = [48 000, 24 000, 12 000, 6000, 3000]. We associate a number of subdomains n[i] to each mesh such that N [i]/n[i] = 750. The resulting array of number of subdomains is n = [START_REF] Graham | Finite elements on degenerate meshes: inverse-type inequalities and applications[END_REF][START_REF] Claeys | An introduction to multi-trace formulations and associated domain decomposition solvers[END_REF][START_REF] Bonito | Numerical approximation of the integral fractional Laplacian[END_REF][START_REF] Aurada | Local inverse estimates for non-local boundary integral operators[END_REF][START_REF] Alouges | The sparse cardinal sine decomposition and its application for fast numerical convolution[END_REF]. The results about the number of iterations are given Figure 5.8. The same remarks as for the strong scaling can be formulated here.

Following these two tests, the best coarse space is the GenEO stiffness coarse space, it generally yields fewer iterations and it is also less expensive to compute than the others due to the fact that its associated local matrix K p is sparse.

Results in 3D

We only add one layer of elements to the subdomains for the overlap. As for the 2D strong scaling, we take a fixed τ , here equal to 5, for the GenEO stiffness coarse space, and we take the same number of eigenvectors in the local eigenproblems to build the coarse component of the other coarse spaces.

To test the strong scaling, we take a mesh size of 0.039 so that we obtain a number of degrees of freedom N equal to 104 738. We solve the linear system associated with our test case and preconditioned with the coarse spaces we introduced earlier using several numbers of subdomains: {32, 64, 128, 256, 512}. The resulting numbers of iterations are shown in Figure 5.10. We observe the same behavior as in 2D. Note that here the number of iterations without preconditioner is 156 with CG and 101 with GMRes. We now present a 3D test about weak scaling, we consider the following mesh sizes: h = [0.05, 0.07, 0.1, 0.15, 0.2]. For each mesh size h[i], we obtain a number of degrees of freedom N [i] with N = [63 360, 33 200, 15 922, 7201, 3846]. We associate a number of subdomains n[i] to each mesh such that N [i]/n[i] 1000. Thus, the array of number of subdomains is n = [START_REF] Graham | Finite elements on degenerate meshes: inverse-type inequalities and applications[END_REF][START_REF] Claeys | An introduction to multi-trace formulations and associated domain decomposition solvers[END_REF][START_REF] Bonito | Numerical approximation of the integral fractional Laplacian[END_REF][START_REF] Aurada | Local inverse estimates for non-local boundary integral operators[END_REF][START_REF] Alouges | The sparse cardinal sine decomposition and its application for fast numerical convolution[END_REF]. The resulting number of iterations are given in Figure 5.12. The same remarks as for the strong scaling hold here. Notice that the 3D weak scaling is approximated contrary to the 2D case.

We observe that the GenEO stiffness coarse is again the most efficient, it generally yields fewer iterations and it is less expensive to compute because its associated local matrix K p is sparse.

Concluding remarks and perspectives

We have adapted the GenEO approach to precondition the BEM approximation of the hypersingular operator for symmetric positive definite cases. We introduced several coarse spaces, and we have tested them numerically with Dissipative Helmholtz on problems of reasonable size (up to 100 000 degrees of freedom) on a closed surface. The most efficient coarse space from our numerical experiments is the GenEO stiffness coarse space defined by Theorem 5.22.

As a result of this work, several developments can be carried out. Some interesting numerical experiments have not been realized because of the time it would have taken to implement them. For example, screen problems for the hypersingular operator implies that we need to be able to remove the nodes on the boundary of the surface Γ so that V h ⊂ H 1/2 (Γ). Another alternative would be to "virtually" remove them as homogeneous Dirichlet conditions in FEM, using pseudoelimination or exact penalization. But it is not clear how the former will interact with hierarchical matrices, while the latter is difficult to handle in the coarse space. A study of these different approaches would be appealing for numerical applications.

Another possible development would be to adapt our work to vector valued problems such as linear elasticity (see [START_REF] Han | The boundary integro-differential equations of three-dimensional Neumann problem in linear elasticity[END_REF]). It seems reasonable to think that we could extend our analysis as the authors of [START_REF] Tran | An overlapping additive Schwarz preconditioner for boundary element approximations to the Laplace screen and Lamé crack problems[END_REF] extended theirs to Lamé crack problems. We focused on scalar problems so far mainly because we had not the tools to test numerically vector valued problems.

We also only considered the h-version of BEM, i.e. the degree of the polynomials is fixed but we can refine the mesh, mainly besause we only had P 1 Lagrange discretization. Another popular approach is the hp-version where the degree of the polynomials also varies. This is particularly useful to correctly approximate the solution on open surfaces despite its singularity near the boundary. We refer to [55, Section 2.5] for more details about these singularities. In any case, notice that the bounds given in Theorems 5.20 and 5.24 are independent of the discretization, while, as stated in Remark 5.25, the bound given in Theorem 5.22 depends on the polynomial degree via the inverse inequality Lemma 5.21. But recent results [START_REF] Aurada | Local inverse estimates for non-local boundary integral operators[END_REF]Equation (3.3)] gave a more precise inverse inequality where the dependence on the polynomial degree is explicit, so that we could just change the weight in the definition of K p to take into account the varying polynomial degree. Then, it would remain to observe how the size of the coarse space changes.

Finally, we make two general remarks, first on the preconditioning of the weakly singular operator, and then on preconditioning the Helmholtz equation.

Preconditioner for the weakly singular operator

Naturally, after adapting the GenEO approach to the hypersingular operator, we wanted to do the same for the weakly singular operator. The analysis is actually more difficult because the energy space is then H -1/2 (Γ).

Concerning the continuity of R ASM,2 , notice that the main tool is how we upper bounded the H 1/2 (Γ) in Lemma 5.12 using Lemma 5.7 and the fact that the local term

u p h H 1/2 (Γp) is equal to R T p u h H 1/2 (Γ)
. Then, we can use several norm definitions for H 1/2 to define the dual norm on H -1/2 :

• with the Sobolev-Slobodeckij norm as we did so far, we can prove a similar inequality to Lemma 5.7 for the H -1/2 (Γ) norm using duality and Lemma 5.8. But then, we do not know how to relate u p h H -1/2 (Γp) and R T p u h H -1/2 (Γ) independently of the size of the subdomain.

• with interpolation theory, we can prove a similar lemma to Lemma 5.8, so that again, we can prove a similar inequality to Lemma 5.7 by duality. But again, we were not able to relate u p h H -1/2 (Γp) and R T p u h H -1/2 (Γ) independently of the size of the subdomain.

In other words, with our choice of norms, we need to know how to relate a local norm u p h 2 H -1/2 (Γp) with the global norm of its extension by zero E p (u p h ) 2 H -1/2 (Γ) to be able to use the positive definiteness of a. Thus, the difficulty is similar to the one in the analysis of GenEO single layer (see Appendix B).

An important tool to prove the stable decomposition was based on how we lower bound the global norm by a sum of local terms. In the case of the hypersingular operator, we introduced several approaches that we can try to adapt to the weakly singular operator.

• Lemma 5.8 comes from a direct computation on the Sobolev-Slobodeckij norm. By duality, we can prove a similar lemma for -1/2 instead of 1/2 using Lemma 5.7. But then there is no analytical expression for u| Γp H -1/2 (Γp) to compute the associated matrix.

• Lemma 5.9 relies on the continuous injection between L 2 (Γ) and H 1/2 (Γ). There is nothing similar for H -1/2 (Γ).

• Similarly to GenEO single layer, we could approximate u| Γp H -1/2 using the inverse of the local hypersingular operator W p : H 1/2 (Γ p ) → H -1/2 (Γ p ). But then, we would need a dual mesh to compute the discretization of its inverse because usually if

V h,p ⊂ H -1/2 (Γ p ) then V h,p H 1/2 (Γ p ).
• There is a similar result to Lemma 5.10 for the H -1/2 norm given [START_REF] Graham | Finite elements on degenerate meshes: inverse-type inequalities and applications[END_REF] for the h-version and generalized in [START_REF] Aurada | Local inverse estimates for non-local boundary integral operators[END_REF]Equation (3.4)] for the hp-version.

Thus, the most practical localization technique is the one given by the following lemma:

Lemma 5.27. Let u h ∈ P m (T h ), we have

C ad n p=1 h 1/2 T u h | Γp 2 L 2 (Γp) k 1 u h 2 H -1/2 (Γ) ,
where C ad depends only on Γ, the shape-regularity of T h and m.

Proof. According to [START_REF] Graham | Finite elements on degenerate meshes: inverse-type inequalities and applications[END_REF], we have

u h 2 H 1/2 (Γ) ≥ C ad h 1/2 T u h 2 L 2 (Γ) .
Then, the L 2 -norm is local, so that we can decompose it like in Lemma 3.22.

This last lemma motivates a GenEO-type preconditioner as introduced in Section 5.3 with (B p ) i,j = Γp h T ϕ σp(i) ϕ σp(j) , similarly to Equation (5.13).

Because of the technical difficulties mention before, we cannot carry the full analysis of a GenEO-type preconditioner for the weakly singular operator. But we can still test numerically its efficiency. Using the same test case as described in Section 5.4.1 but where f is used as a Dirichlet condition. We first compute the spectra given in Figure 5.14 from the generalized eigenproblem defined with B p and eight subdomains. We observe that we can discriminate a few eigenvalues to be put in the coarse space. We carry a strong scaling test similarly to the one done in Section 5.4.3, the results are given in Figures 5. 15 and 5.16. We also added results where the coarse space is not used additively as in Equation (5.5) for the hypersingular operator:

R T 0 (R 0 A V R T 0 ) -1 R 0 + (I d -P 0 ) n p=1 R T p (R p A V R T p ) -1 R p (I d -P 0 ) Balanced, (5.18) 
R T 0 (R 0 A V R T 0 ) -1 R 0 + n p=1 R T p (R p A V R T p ) -1 R p (I d -P 0 ) Deflated, (5.19) 
where P 0 is the a V -orthogonal projection on the coarse space. It can be shown that

P 0 = R T 0 (R T 0 A V R 0 ) -1 R 0 A V .
We refer to [START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF]Section 7.5] and [START_REF] Jok | Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods[END_REF] for more details on alternatives to Equation (5.5).

The number of iterations without preconditioner is about 420 with CG and 128 with GMRes. The results are given in Figure 5.15. We see that the difference of efficiency between the one-level and the coarse space suggested by the localisation in Lemma 5.27 is smaller that in the tests we did with the hypersingular. With the hypersingular operator, the GenEO stiffness coarse space and CG, the number of iterations for the strong scaling 2D test from Section 5.4.3 was around 11, while it increased from 57 to 114 with the one-level preconditioner. So the number of iterations was at least 4.75 lower using the GenEO stiffness coarse space. For a similar test case with the weakly singular operator, the two curves obtained with CG in Figure 5.15 are relatively close to each other, the one-level is even slightly more efficient for 64 and 128 subdomains, but in any case the difference is of the order of the unit. The additive approach is quite close to the one-level, and we recover a quasi-constant number of iterations with Balanced and Deflated. In this case, Calderón preconditioning becomes P Calderón,V h = M -1 h W h M -1 h and then, we obtain 17 iterations with CG and 10 iterations with GMRes. We obtain a few iterations more with the one-level and additive preconditioners, but it is still of the same order, and one iteration of P Calderón,V h implies two matrix vector products, so we expect it to be more expensive. We show in Figure 5.17 the number of matrix vector products for this strong scaling experiment. We see that the DDM preconditioners usually require less matrix vector products than Calderón preconditioning.

We also tried a more difficult test case solving the Laplace equation in 3D with a Dirichlet condition equal to one and the geometry described in Figure 5.18. We used 121 996 degrees of freedom and we refined around the boundary. The number of iterations without preconditioner is 471 with GMRes and it does not converge in less than 1000 iterations with CG. The results are shown in Figures 5.19 and 5.20 and even with this more difficult test case, it seems that the one-level is already a good preconditioner and there is not a lot of room for improvement contrary to Neumann problems. In both test cases, the variations in the number of iterations for the one-level are small (no more than 10 at worst), so that it may not worth adding a coarse space. We did not try Calderón preconditioning here because it is known to not work very well on screens and requires a special treatment with special BIO, see [START_REF] Hiptmair | Mesh-independent operator preconditioning for boundary elements on open curves[END_REF][START_REF] Hiptmair | Optimal Operator preconditioning for hypersingular operator over 3D screens[END_REF][START_REF] Hiptmair | Optimal Operator preconditioning for weakly singular operator over 3D screens[END_REF].

Preconditioner for Helmholtz equation

Another natural question which comes to mind after Section 5.3 is how to precondition problems that are not positive definite such as the Helmholtz equation. In this case, the GenEO coarse space is no longer relevant in FEM or in BEM, because the analysis that relies on norm properties does not hold anymore. Other approaches have been introduced, for example solving a coarse problem on a coarse mesh or special conditions at the interface of the subdomains (see [START_REF] Graham | Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF] and [START_REF] Graham | Domain Decomposition with local impedance conditions for the Helmholtz equation[END_REF] for recent results and a literature review).

We were interested in how the one-level behaved for BEM matrices. Let u inc = e iκx•d be a plane wave with d the direction of propagation and κ = 2πk c0 where c 0 = 299 792 548 m s -1 is the speed of light and k is the frequency. First, we solved a 2D problem with homogeneous Neumann condition on the total field. Similarly to Equation (2.12), the equation reads:

Find v ∈ H 1/2 (Γ) such that W LH (v), w H -1/2 (Γ)× H 1/2 (Γ) = -γ N (u inc ), w H -1/2 (Γ)× H 1/2 (Γ) , ∀w ∈ H 1/2 (Γ), (5.20) 
where Γ is an object with a cavity as described in Figure 5.21, L H (u) = -∆u + κ 2 u and d = (-1/ √ 2, -1/ √ 2). Figure 5.21 shows the geometry and the real part of the computed solution for k = 1 GHz. We have h = 0.001 so that there are 16 000 degrees of freedom. Figure 5.22 shows the results of a strong scaling with this test case. For Calderón preconditioning, we obtain 111 iterations with k = 1 GHz, 355 iterations with k = 3 GHz, 536 iterations with k = 5 GHz, and we do not show the number of iterations without preconditioner when it does not converge in less than 1000 iterations. We see that the number of iterations with the one-level preconditioner is increasing, and this increase is more important when the frequency is greater. But in any case, in terms of matrix vector product, the efficiency of Calderón preconditioning, shown by multiplying by two the number of iterations, seems to deteriorate faster.

Then, we take a classical geometry, namely the COBRA cavity described in [START_REF] Liu | Scattering analysis of a large body with deep cavities[END_REF] and shown in Figure 5.23. We solved a screen problem with homogeneous Dirichlet condition as described in Equation (2.18). This time d = (1, 0, 0) so that u inc is a plane wave normally incident upon the cavity aperture. The equation then reads: Find q ∈ H -1/2 (Γ) such that

V LH (q), r H 1/2 (Γ)× H -1/2 (Γ) = -γ D (u inc ), r H 1/2 (Γ)× H -1/2 (Γ) , ∀r ∈ H -1/2 (Γ), (5.21) 
where Γ is the COBRA cavity. We always keep 10 nodes per wavelength in our geometry, see Figure 5.23. We do a strong scaling test for k = 5 GHz, k = 10 GHz and k = 17.5 GHz. The results are given in Figure 5.24 and the total field SL(q) + u inc for k = 5 GHz is shown in Figure 5.25.

We observe that the variation in the number of iterations for the one-level is small compared to what is expected from FEM, similarly to what was observed in the previous section for Dissipative Helmholtz. For k = 5 GHz (N = 3346), it increases by about 20 iterations, it increases by about Of course, the problem is more difficult when the frequency increases, but we note that the one-level preconditioner is quite cheap and parallel, so that it can be already efficient enough for a range of frequencies. Like the 3D test case in Section 5.5.1, we do not make the comparison with Calderón preconditioning because for screens it requires a special treatment.

We would like to point out that this case is more difficult to analysis and to solve numerically compared to symmetric positive definite problems for the following reasons:

• When k increases, the solution becomes more oscillatory which put a constraint on the mesh to be able to represent accurately such a solution.

• When k increases, the problem becomes more and more indefinite, so that usual preconditioners for symmetric positive definite problems are less and less efficient. It is exactly what we have seen in this section with the one-level DDM preconditioner.

• Because the equation is indefinite, CG is not relevant, and GMRes is used instead. But the convergence proof is then more difficult.

In a FEM context, one of the first approach to adapt Schwarz method to precondition indefinite problems was introduced in [START_REF] Cai | Domain decomposition algorithms for indefinite elliptic problems[END_REF] (see also [START_REF] Toselli | Domain decomposition methods: algorithms and theory[END_REF]Chapter 11]) and the analysis relies on considering the Helmholtz equation as a symmetric positive definite operator with a compact perturbation. This approach has been adapted to BEM in [START_REF] Ersnt | Domain decomposition algorithms for indefinite hypersingular integral equations: the h and p versions[END_REF][START_REF] Heuer | Additive Schwarz methods for indefinite hypersingular integral equations in R 3 -the p-version[END_REF][START_REF] Ersnt | Domain decomposition algorithms for indefinite weakly singular integral equations: the h and p versions[END_REF].

Since then, other approaches have been developed for usual PDE. There seems to be several classes of methods. One idea introduced in [START_REF] Bayliss | An iterative method for the Helmholtz equation[END_REF] was to precondition the Helmholtz equation by solving the Laplace equation. A variant proposed in [START_REF] Magolu Monga Made | Preconditioning of discrete Helmholtz operators perturbed by a diagonal complex matrix[END_REF][START_REF] Magolu Monga Made | Incomplete factorization-based preconditionings for solving the Helmholtz equation[END_REF] was to properly perturb the associated matrix to define a preconditioner. These approaches were then pushed forward in [START_REF] Alistair | Preconditioned iterative solution of the 2D Helmholtz equation[END_REF][START_REF] Ahmad Erlangga | On a class of preconditioners for solving the Helmholtz equation[END_REF] where they solved another Helmholtz equation where κ 2 was modified to be positive definite to precondition the original problem. Then, this approach was usually called "shifted Laplacian" and has been studied in [START_REF] Ahmad Erlangga | A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems[END_REF][START_REF] Ahmad | Advances in Iterative Methods and Preconditioners for the Helmholtz Equation[END_REF][START_REF] Van Gijzen | Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian[END_REF][START_REF] Oliver | Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods[END_REF] for example. Another approach is to use DDM methods where the subproblems are solved sequentially, namely sweeping preconditioners [START_REF] Engquist | Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation[END_REF][START_REF] Engquist | Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers[END_REF], single trace layer [START_REF] Christiaan | A rapidly converging domain decomposition method for the Helmholtz equation[END_REF], the source transfer methods [START_REF] Chen | A Source Transfer Domain Decomposition Method for Helmholtz Equations in Unbounded Domain[END_REF] and polarized trace method [START_REF] Zepeda-Núñez | The method of polarized traces for the 2D Helmholtz equation[END_REF], which are all related to the approximation of the Optimal Schwarz Method presented in Section 3.1.2 (see [START_REF] Gander | A Class of Iterative Solvers for the Helmholtz Equation: Factorizations, Sweeping Preconditioners, Source Transfer, Single Layer Potentials, Polarized Traces, and Optimized Schwarz Methods[END_REF] for a unified presentation).

Finally, DDM preconditioners have also been proposed in [START_REF] Farhat | A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems[END_REF][START_REF] Gander | Optimized Schwarz Methods without Overlap for the Helmholtz Equation[END_REF][START_REF] Kimn | Restricted overlapping balancing domain decomposition methods and restricted coarse problems for the Helmholtz problem[END_REF][START_REF] Kimn | Shifted Laplacian RAS Solvers for the Helmholtz Equation[END_REF][START_REF] Conen | A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator[END_REF][START_REF] Huber | Hybrid Domain Decomposition Solvers for the Helmholtz Equation[END_REF][START_REF] Graham | Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF] with special conditions at the interface and/or a coarse space. Convergence proofs for these methods are usually an open problem but recent developments have been made in [START_REF] Graham | Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption[END_REF][START_REF] Graham | Recent Results on Domain Decomposition Preconditioning for the High-Frequency Helmholtz Equation Using Absorption[END_REF][START_REF] Graham | Domain Decomposition with local impedance conditions for the Helmholtz equation[END_REF].

An interesting development would be to explore if ideas or techniques from the methods developed in a FEM context as the ones we cited previously can be adapted to BEM matrices, like we adapted GenEO preconditioners to BIE.

CHAPTER 6

Hierarchical matrices and Htool

Outline of the current chapter As we have seen in Section 2.4.5, BEM matrices are dense due to the non-local nature of the integral kernels introduced in Section 2.3. This means that using classical direct solvers is too expensive for BEM matrices. Besides, the storage and the cost of assembling dense BEM matrices are both quadratic. Iterative solvers should also be expensive because the complexity associated with a matrix-vector product is quadratic.
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To tackle these issues, several techniques have been developed: panel clustering [START_REF] Hackbusch | On the fast matrix multiplication in the boundary element method by panel clustering[END_REF][START_REF] Hackbusch | On the efficient use of the Galerkin-method to solve Fredholm integral equations[END_REF], Fast Multipole Method (FMM) [START_REF] Rokhlin | Rapid solution of integral equations of classical potential theory[END_REF][START_REF] Greengard | Accelerating fast multipole methods for the Helmholtz equation at low frequencies[END_REF][START_REF] Darve | The Fast Multipole Method I: Error Analysis and Asymptotic Complexity[END_REF][START_REF] Darve | The fast multipole method: numerical implementation[END_REF], hierarchical matrices (H and H 2 -matrices) [START_REF] Hackbusch | A Sparse Matrix Arithmetic Based on H -Matrices. Part I: Introduction to H -Matrices[END_REF][START_REF] Hackbusch | A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems[END_REF][START_REF] Hackbusch | On H 2 -Matrices[END_REF][START_REF] Börm | Data-sparse approximation of non-local operators by H 2 -matrices[END_REF][START_REF] Bebendorf | Hierarchical matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems[END_REF][START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF] Adaptive Cross Approximation (ACA) [START_REF] Bebendorf | Approximation of boundary element matrices[END_REF][START_REF] Bebendorf | Adaptive Low-Rank Approximation of Collocation Matrices[END_REF][START_REF] Börm | Hybrid cross approximation of integral operators[END_REF][START_REF] Bebendorf | Hierarchical matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems[END_REF], Sparse Cardinal Sine Decomposition (SCSD) [START_REF] Alouges | The sparse cardinal sine decomposition and its application for fast numerical convolution[END_REF] and wavelet compression techniques [START_REF] Alpert | Wavelet-like bases for the fast solution of second-kind integral equations[END_REF]. All these techniques give an approximate representation of the matrix that allows storage and matrix-vector product with almost linear complexity. Let us emphasize that they do not require the original dense matrix, in practice the approximated representation of a BEM matrix is directly assembled, so that we never need to perform a step whose complexity is more than quasi-linear.

With these alternative representations of BEM matrices, iterative solvers such as CG and GMRes can be a good choice to solve the linear systems associated with BEM since the matrixvector product has a reasonable cost. Another advantage of iterative solvers is that they are independent of the underlying structure of the approximate matrix in theory, unlike techniques using direct methods and compression like hierarchical LU decomposition [START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF] and the fast direct solver described in [START_REF] Martinsson | A fast direct solver for boundary integral equations in two dimensions[END_REF][START_REF] Greengard | Fast direct solvers for integral equations in complex threedimensional domains[END_REF].

Another issue comes from the fact that the number of iterations needed in iterative solvers is strongly linked to the spectral properties of these matrices. For example, in the case of the single layer for the Laplace problem, the condition number κ(A V,h ) := A V,h 2 A -1 

V,h 2 typically deteriorates like O(h -1 ) [139, Section 4.5], and we have the same behavior for the hypersingular operator. This means that the number of iterations when using CG will increase when refining the mesh size as the square root of h -1 .

That is why we introduced in Chapter 5 DDM preconditioners for symmetric positive definite BEM matrices that bound the condition numbers of these matrices, so that iterative solvers should be robust to variations of the mesh size h and the number of subdomains n. DDM preconditioners are particularly well-suited for distributed memory parallel environments, which is usually the paradigm used for HPC. If, in theory, preconditioning is independent of the compression techniques, in practice we still need a distributed memory parallel implementation of a compression technique adapted to DDM preconditioners. For example, it seems appropriate that the parallelism of the compression techniques should be linked to the domain decomposition to lower the exchange of information between the processors.

With this in mind, we decided to use hierarchical matrices because it is a black-box method. The compression algorithm is independent of the nature of the underlying linear operator, unlike FMM for BEM matrices for example. This feature goes well with GenEO preconditioners that are also black-box, in the sense they do not depend on the underlying equation as long as it is symmetric positive definite. The resulting solver should be easy to use for the end user.

This led us to implement Htool 1 , an open source C ++ library for hierarchical matrices that offers a way to use DDM preconditioners with MPI and OpenMP. It depends on several libraries • a BLAS [START_REF] Blackford | An updated set of basic linear algebra subprograms (BLAS)[END_REF] implementation to perform algebraic operations (dense matrix-matrix or matrix-vector operations),

• LAPACK [START_REF] Anderson | LAPACK Users' Guide[END_REF] to solve dense generalized eigenvalue problems and perform LU-decomposition,

• HPDDM [START_REF] Jolivet | Scalable domain decomposition preconditioners for heterogeneous elliptic problems[END_REF] to use iterative solvers.

The user needs to provide a function that generates the coefficient A i,j from the pair of indices (i, j), where A is the matrix to be compressed. Then, Htool can assemble the hierarchical matrix associated with A and do parallel H-matrix-vector and H-matrix-matrix products. It also allows solving linear systems associated with the approximation of A using DDM preconditioners. The setup of the DDM preconditioners for BEM matrices is shared between HPDDM and Htool.

We would like to point that several C libraries implementing hierarchical matrices already existed, for example HLIB2 and its successor H2Lib3 , but they usually do not support distributed memory parallelism, which is more relevant for DDM preconditioners. Besides, our implementation is by no means the most optimal, years of R&D led to the development of very efficient implementations (see [START_REF] Lizé | Résolution directe rapide pour les éléments finis de frontière en électromagnétisme et acoustique: H-Matrices. Parallélisme et applications industrielles[END_REF] for example), but they are proprietary softwares. Htool has several advantages from our point of view.

• It is portable, it has been used on laptops and supercomputers. Actually, the library is automatically tested on Linux and macOS using g++ and clang compilers on every change.

• It is lightweight, it focuses on hierarchical matrices and how to solve the associated linear systems. We preferred to focus on its interoperability to facilitate its integration in other codes.

• It is black-box, in the sense that it can be easily embedded in other libraries as an independent module. It is already in Freefem++ [START_REF] Hecht | New development in FreeFem++[END_REF] for instance.

• Its structure is modular, so that additions of new low-rank approximations should be easy to integrate.

• It works in parallel using MPI and OpenMP.

• It is free and open source under the MIT Licence.

In this chapter, we present the main ideas of hierarchical matrices and how we implemented them to be sufficiently efficient with DDM preconditioners for our test cases. We refer to [START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF][START_REF] Rjasanow | The Fast Solution of Boundary Integral Equations[END_REF][START_REF] Steinbach | Numerical approximation methods for elliptic boundary value problems. Finite and boundary elements[END_REF][START_REF] Lizé | Résolution directe rapide pour les éléments finis de frontière en électromagnétisme et acoustique: H-Matrices. Parallélisme et applications industrielles[END_REF] for more details on the presentation and analysis of hierarchical matrices. We first present low-rank approximation in Section 6.1. Since BEM matrices do not have a low rank structure because of the singularity of the Green kernel (see Equation (2.8)), we introduce in Section 6.2 how to partition these matrices in admissible blocks, i.e. blocks that can be wellapproximated by low-rank matrices. In Section 6.3, we introduce the library Htool and we present how we implemented the methods and algorithms presented in this manuscript. Finally, we conclude with some perspectives for Htool.

We want to acknowledge that Htool was created following the CEMRACS4 summer school in 2016, where we had the opportunity to work on hierarchical matrices for a particular application from IFPEN (the French Institute of Petroleum). This led to the code called ElastoPhi5 and the publication [START_REF] Ben | Fast Solution of Boundary Integral Equations for Elasticity Around a Crack Network: A Comparative Study[END_REF]. Htool was then written following what we learned from this project and parallelized with the collaboration of Pierre-Henri Tournier, CNRS research engineer at Laboratoire Jacques-Louis Lions.

Low-rank approximation

Low-rank matrix

Let B ∈ C M ×N be a dense matrix with B = (B j,k ) 1≤j≤M,1≤k≤N . Without any assumption, the cost of storage and the complexity of a matrix-vector product are both quadratic. Assume that B can be written as follows

B = r j=1 u j v T j , (6.1) 
where r ≤ min(M, N ), u j ∈ C M ,v j ∈ C N with 1 ≤ j ≤ r. Then, the cost of storage and the complexity of a matrix-vector product can be reduced to O(r(M + N )), which is lower that O(M N ) provided r < M N /(M + N ). In this case, we say that B has a low rank structure.

Singular value decomposition

Matrices encountered in applications rarely have this feature. Nevertheless, a matrix can always be written as a sum of rank-one matrices through its Singular Value Decomposition (SVD)

B = P j=1 σ j u j v T j (6.2)
such that the spectrum of B * B is equal to (σ 2 j ) r j=1 with P = min(M, N ) while (u j ) M j=1 and (v j ) N j=1 are orthogonal bases of respectively C M and C N . By convention, we have

σ 1 ≥ σ 2 ≥ • • • ≥ σ P .
Then, a natural idea is to truncate the SVD Equation (6.2) to obtain a low-rank approximation of B. This should be a good approximation in the case (σ j ) P j=1 quickly decreases. The following theorem gives a more precise result. where S ∈ (R + ) P ×P is a rectangular diagonal matrix with P = min(M, N ). We denote its diagonal elements (iv) rank(B) is equal to max{j | σ j > 0}.

σ 1 ≥ σ 2 ≥ • • • ≥ σ P ≥ 0. If M ≤ N , we have S =       σ 1 0 • • • 0 0 • • • 0 0 σ 2 . . . . . . 0 • • • 0 . . . . . . . . . 0 0 • • • 0 0 • • • 0 σ P 0 • • • 0       , 
We obtain directly the following corollary Corollary 6.2. Let B (r) ∈ C M ×N , the matrix obtained by truncating the SVD of B at rank r ≤ P , i.e. B (r) = r j=1 σ j u j v T j where u j and v j are respectively the jth column of U and V from Theorem 6.1. Then, we have

B -B (r) 2 2 = σ 2 r+1 and B -B (r) 2 F = n j=r+1 σ 2 j .
We deduce that, if B has exponentially decreasing singular values, i.e. σ r < q r for some 0 < q < 1, then we can obtain an error of ε in Frobenius norm with r log q (ε) approximating B by B (r) . Another important result states that the truncated SVD is actually the best low-rank approximation possible. Theorem 6.3 (Eckart-Young-Mirsky theorem, [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF] and [START_REF] Golub | Matrix Computations[END_REF]Theorem 2.5.3 ]). Using the notation from Theorem 6.1 and Corollary 6.2, for r < rank(B), we have

min rank(C)=r B -C 2 = B -B (r) 2 = σ r+1 , min rank(C)=r B -C F = B -B (r) F = n j=r+1 σ 2 j .
These results have been extended to every unitarily invariant norms in [START_REF] Mirsky | Symmetric gauge functions and unitarly invariant norms[END_REF].

Adaptive cross approximation

Unfortunately, the SVD is quite expensive. State of the art SVD algorithms require at least O(N 3 + M 2 N + M N 2 ) operations (see [START_REF] Golub | Matrix Computations[END_REF]Section 5.4.5]) and we still need to compute the whole original matrix. Thus, it is still expensive in terms of storage and computation, even if we then obtain a cheaper matrix-vector product.

Pseudo-skeleton approximation

Another approach to obtain low-rank approximations of B ∈ C M ×N is to use columns and rows of the original matrix. 

) 2 ≤ ε(1 + 2 √ r( √ N + √ M )).
The matrix B(:, τ )SB(σ, :) is called pseudo-skeleton component of B.

In other words, if there exists a low-rank approximation of rank r for a given error ε, then there exists a pseudo-skeleton approximation.

Fully pivoted Adaptive Cross Approximation

The Adaptive Cross Approximation (ACA) algorithm introduced in [START_REF] Bebendorf | Approximation of boundary element matrices[END_REF][START_REF] Bebendorf | Adaptive Low-Rank Approximation of Collocation Matrices[END_REF][START_REF] Bebendorf | Hierarchical matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems[END_REF] is an iterative algorithm that provides such an approximation with S diagonal. As in [132, Section 2.2], we first present the Fully pivoted ACA algorithm with Algorithm 1 and then its variant called Partially pivoted ACA algorithm with Algorithm 2. In our pseudo-code notation, for any vector w ∈ C N , the number w(j) refers to the jth entry of w. Algorithm 1 Fully Pivoted ACA

1: function Full ACA(B)
We need the original dense matrix return B

(r) = r-1 j=0 u j v T j
In other words, at each iteration r we look for the coefficient (j r * , k r * ) of maximal absolute value in the residual R r and we define u r and v r respectively as the k r * th column and the j r * th rows, with the right normalization for the former so that R r+1 = R ru r v T r has zeros for k r * th column and j r * th row (see Lemma 6.6). The coefficients (j r * , k r * ) r are usually called the pivots. This algorithm has several interesting properties given by the following lemmas from [19, Chapitre 4] 6 . Lemma 6.5 (Exact reproduction of rank-r matrices, [START_REF] Börm | Hierarchical Matrices[END_REF]Lemma 4.4]). Let B be a matrix of rank exactly r. Then B (r) = B.

Proof. Remark that R r = Br-1 j=0 u j v T j , we will prove that R r is of rank r -r for 0 ≤ r ≤ r by induction on r .

For r = 0 the relation is trivial. Suppose now that the relation is true for 0 ≤ r < r, i.e. R r is of rank r -r . Let V denote the image of R r of dimension r -r by induction hypothesis, we define W as the orthogonal complement of V in R N so that its dimension is equal to N -r + r . Similarly, we define V and W the corresponding spaces for R r +1 = R ru r v T r . By definition of Algorithm 1, u r is the k r * th column of R r up to a multiplicative constant so that it belongs to V . Therefore V ⊂ V and W ⊂ W .

Let j * := j r * , we have

e T j * R r = v r = 0, because w r * = 0 and e T j * (R r -u r v r ) = v r -u r (j * ) 1 v r = 0,
6 Because the reference may not be easy to find and the proofs can be unclear, we also provide the proofs

Let us denote r final , the final value of r obtained following Algorithm 1. Without taking into account the stopping criterion, the total number of operations of Algorithm 1 is O( r final M N ) because of the search of the argmax of R r and the update of the matrix R r+1 , respectively in lines 5 and 9 of Algorithm 1. We also need to compute the whole matrix B to compute the argmax of R r .

Partially pivoted Adaptive Cross Approximation

As we have seen with Lemma 6.6, the resulting low-rank approximation only uses the columns and the rows associated with the pivots, so that if we knew in advance the pivots, we would not need to compute the whole matrix B and we would not need to update the whole residual R r+1 ∈ C M ×N . Since we cannot know a priori the pivots because they are computed iteratively, a variant of Algorithm 1 is to restrict the search for the pivots to a part of the matrix.

This variant is given by Algorithm 2, where in each iteration r, we have a given row j r * and we look for the coefficient (j r * , k r * ) of maximal absolute value in the residual R r , but only in the j r * th row. This means that we do not need to compute the whole matrix and residual, but only their j r * th row. Then, similarly, we look for the coefficient (j r+1 * , k r * ) of maximal absolute value in the k r * th column of the residual R r , which is never completely computed (this is why it does not appear explicitly in Algorithm 2). As in Algorithm 1, the successive rows and columns of residual associated with the pivots are used to build the low-rank approximation that we denote B (r) . Algorithm 2 Partially Pivoted ACA

1: function Partial ACA((j, k) → B j,k )
We do not need the whole matrix 

Numerical illustrations

We now illustrate the approximation properties of the three low-rank approximations introduced in the previous sections: SVD, full ACA and partial ACA, respectively B (k) , B (k) and B (k) . Let us define the set of target points (x j ) M j=1 and source points (y k ) N k=1 . We generate them randomly using a uniform law, such that they are both in a circle of radius 1 included in a plane normal to the z-axis, see Figure 6.1. We denote their respective z-coordinate z 1 and z 2 .

We compute the low-rank approximations of the matrix B ∈ R M ×N defined as B j,k = 1/|x j -y k | with M = 500 and N = 100. The errors of approximation in Frobenius norm as a function of the rank are given in Figure 6.2 for z 1 -z 2 = 1 and z 1 -z 2 = 2. In both cases, we observe an exponential decrease of the error of approximation. The SVD approximation gives always the best approximation, which is consistent with Theorem 6.3. Then, the full ACA approximation is better than the partial ACA approximation, which is expected since there is more freedom in the choice of the pivots in Algorithm 1 than in Algorithm 2. Remark also that when the distance between the two circles increases so that the interaction in farther away from the singularity of 1/|x -y|, the approximation for a given rank is improved.

H-matrices

In Section 6.1, we presented techniques to compute the low-rank approximations of a matrix B ∈ C M ×N . These techniques are especially efficient when B has very fast decreasing singular values, which is not the case for a general BEM matrix. It is actually not the case because of the singularity of Green functions.

To illustrate this behavior, we consider the P 1 -Lagrange discretization of the weakly singular operator and the hypersingular operator on a circle associated with the equation -∆u + u = 0 for d = 2 and M = N = 63. In Figure 6.3, we show the BEM matrices associated with these two operators normalized by their maximal values, and their corresponding singular values. We observe that great variations in the value of the coefficients occur around the diagonal (and also on the top right and bottom left corners by periodicity). This is because the diagonal corresponds to close interactions, and the Green functions are singular in this case. According to Theorem 6.3, we see that even if we took the SVD approximation of these matrices with a rank equal to 62, we could not obtain a better error than 10 -2 in Frobenius norm. But we see that apart from the diagonal, the values of the coefficients show smaller variations compared to the diagonal. In this case, the coefficients correspond to far interactions so that the Green function is very regularizing. The idea of hierarchical matrices is based on a hierarchical geometric partition of the domain, called cluster tree, that induces a hierarchical representation of the blocks of the matrix, called block tree. This allows us to identify the blocks that correspond to far interactions and that can be compressed using low-rank approximation. We develop this idea in the following.

Cluster tree

Let us consider a generic BEM matrix A ∈ C N ×N stemming from the Galerkin discretization of a BIO as presented in Section 2.4.5. Each coefficient corresponds to the interaction of two degrees of freedom ϕ j , ϕ k so that A j,k = a(ϕ j , ϕ k ) where a is the bilinear form of the problem and 1 ≤ j, k ≤ N . We denote I = (1, . . . , N ) the global array of indices, it is completely arbitrary and it is usually defined by the numbering of the degrees of freedom. We can usually associate a degree of freedom ϕ j with a geometric point x j (center of cell for P 0 -Lagrange, node for P 1 -Lagrange for example) and some "weight" g j (size of the cell for P 0 -Lagrange and size of the Cl can be any cluster 2:

Mass of cluster:

G = N j∈f (Cl) g j , 3:
Center of the cluster:

x c = 1 G j∈f (Cl)
x j ,

4:

Covariance matrix of cluster:

C = j∈f (Cl) g j (x j -x c )(x j -x c ) T ∈ R 3×3 , 5:
Eigenvalues and eigenvectors:

Cv l = λ l v l , l ∈ {1, 2, 3}, λ 1 ≥ λ 2 ≥ λ 3 , 6: 
Separation: Let Cl 1 = ∅ and Cl 2 = ∅, 7:

for j ∈ f (Cl) do 8: if (x j -x c ) T v 1 ≥ 0 then 9: Cl 1 = Cl 1 ∪ (x j , g j ) 10: else 11: 
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Figure 6.6 -Relation between blocks and cluster trees.

Block tree

Let us denote I 

) actually corresponds to a subblock of A, which may not be contiguous. Similarly, (J

(p) l , J (p ) l 
) corresponds to a subblock of A after permutation so that the block is contiguous. An example is given in Figure 6.6 where the block associated with (J

(1) 1 , J (2) 
4 ) and (J

(2) 4 , J (2) 
1 ) are shown. The fact that the blocks are contiguous has several advantages in practice, so we will always work on the permuted matrix in the following.

The block tree is then a quadtree where the nodes are pairs (J

(p) l , J (p ) l 
) and their sons are defined using the sons of J . It is actually an alternative representation of the permuted matrix. Starting from the root (J , J ), this hierarchical structure allows going from the coarsest blocks to the smaller blocks while descending in the tree.

To know which block can be compressed, we use an admissibility condition based on the geometry of clusters. It is a geometric condition which states that two clusters are sufficiently far apart so that the associated block corresponds to a far interaction. As we have seen at the beginning of the section, far interaction are regular because of the Green kernel so that they should contain little information, or more precisely they should have fast decreasing singular values. In this case, low-rank approximations introduced in Section 6.1 should be relevant.

Current literature provides various admissibility criteria. It should be considered as problem dependent. In our case, we chose the following admissibility criterion (see [132, eq. 3.15]) for two clusters Cl t and Cl s min diam(Cl t ), diam(Cl s ) < η dist(Cl t , Cl s ), where diam(Cl s ) = max

x k 1 ,x k 2 ∈Cls |x k1 -x k2 |, dist(Cl s , Cl t ) = min x k ∈Cls,x l ∈Clt |x k -x l |,
and η > 0 is a fitting parameter. As suggested in [START_REF] Rjasanow | The Fast Solution of Boundary Integral Equations[END_REF] and in order to avoid the quadratic cost of the computation of diam(Cl s ), the practical implementation makes use of the more restrictive but more easily computable admissibility condition:

2 min max x k ∈Cls |X s -x k |, max x l ∈Clt |X t -x l | < η |X t -X s | -(max x k ∈s |X s -x k | + max x l ∈t |X t -x l |), (6.6) 
where X s (resp. X t ) is the center of Cl s (resp. Cl t ). To summarize, the block tree is traversed recursively calling Algorithm 4 with (Cl

1 , Cl

.

Algorithm 4 Block tree Block tree (Cl 

Block tree (Cl Block tree (Cl

(p) l ,Cl (p ) 
2(l -1)+2 )

Numerical illustrations

We give a small illustration of the cluster tree and block tree introduced in the previous section. We take as an example a disk with a mesh of N = 924 degrees of freedom and we want to assemble the approximation of the weakly singular operator V for the Laplace equation. We show the results for the cluster tree using GMSH [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF]. In Figure 6.7, we show several levels of the cluster tree. Remark that the clusters are wellbalanced, this is because we chose an algorithm that always looks for the direction of longest expense of the cluster and cut along the perpendicular plane containing the barycenter.

We show the resulting hierarchical matrices in Figure 6.8 for ε = 0.01 and η = 100 where the level of green describes the level of compression while the red blocks are dense blocks. We also write the rank of the low-rank approximations, when the block is not too small. We define the compression rate of the matrix as Comp = 100(1 -N g /M N ) where N g is the number of generated coefficients, so that when Comp is closer to 100, it is more compressed. We obtain the As expected, using SVD approximations gives the best compression rate, but remember that it is also the most costly. Similarly, we see that the full ACA approximation gives a better compression rate than the partial ACA approximation, but again, remember that it requires to compute the whole matrix.

Implementation

We present here the organization of Htool, a C ++ header-only template library for hierarchical matrices parallelized with MPI and OpenMP. Our goal was to make it as modular as possible to allow easy additions (other compression methods for example), and it should be as easy as possible to use. For the latter, we aimed to use black-box methods to not require too many parametrizations from the end-user. We often use a simple and efficient design called Abstract Base Class (ABC). It consists in a pure abstract class that defines the interface, i.e. all the functions used by the rest of the code and pure virtual functions that needs to be defined by derived classes. This abstract class cannot be instantiated directly. This approach allows for a great factorization of codes and a modular design that makes additions easy to implement.

Clustering

We defined ClusterTree as a class containing the root of the cluster tree and some auxiliary functions. The real cluster tree is defined as a linked list of Cluster objects that contain the radius, the center of the cluster and the pointers to its Cluster sons. It takes the geometry as an argument, in practice an array of 3D points, and optionally an array of weights.

When traversing the tree, we build the array J implementing the permutation that allows going from the numbering stemming from the clustering to the numbering of the given geometric points (see Figure 6.5 for an example).

Then, the Cluster objects also contain their offset and the number of associated geometric points, which completely characterizes the cluster with J .

Matrix

We use the ABC pattern to define matrix structures where IMatrix is the abstract class. It only defines the number of rows and columns and their associated accessors. The pure virtual function is get_coef that takes a pair (j, k) and returns the coefficient (j, k). The type of the coefficient is a template argument of the class.

As stated in [158, Section 1.3.1], this type of dynamic polymorphism using pure virtual function can imply performance penalties, but this overhead can be negligible if the actual code of the function is costly. Since, BEM quadratures are usually expensive because of the singularity of the Green kernel, we expect that the overhead is indeed negligible.

IMatrix defines the interface that the user can use to build hierarchical matrices with their own kernel. The user can define a class deriving from IMatrix and its function get_coef that implements how to compute a coefficient (j, k), and we will see that it will be a required argument to our class implementing hierarchical matrices. We also define Matrix as a derived class that inherits from IMatrix. It implements dense matrices with BLAS operations. And we define SubMatrix as a derived class that inherits from Matrix. It corresponds to a dense block of the global matrix, so it stores the offsets and sizes of the source and target clusters, corresponding respectively to the columns and rows of the global matrix. Remark 6.9 (get_submatrix). Using Galerkin method, assembling a block looping over elements is usually more efficient, than looping over degrees of freedom. So that IMatrix also provides a virtual function get_submatrix that can be overloaded by the user. By default, it loops over the coefficients of given arrays of source points and target points using get_coef. It returns the corresponding block as a SubMatrix.

Low-rank approximation

Following the ABC pattern, we define a class LowRankMatrix to implement low-rank approximations of a dense matrix. It contains all data members and methods needed to use low-rank approximations. The pure virtual function is the build function that needs to be implemented by each class deriving from LowRankMatrix.

Then, we defined the compressors such as the partial ACA approximation as derived classes from LowRankMatrix, defining the build function that implements the particular algorithm to assemble the low-rank approximation. It takes as arguments a IMatrix to generate the coefficients, a source and target cluster because it will correspond to a block of the global matrix. At the moment, the three algorithms from Section 6.1 are implemented.

The only optimization we made is that we represent the low-rank approximation by two matrices U ∈ C M ×r and V ∈ C r×N instead of sum of vectors as in Equation (6.1), where r is the rank of the approximation. It allows for matrix-vector products that uses BLAS 2 routines, instead of looping over the vectors.

H-matrices

The HMatrix class implements hierarchical matrices, it takes two template arguments, the type of the coefficients and the class of the compressor which is expected to follow the interface defined in LowRankMatrix. This design pattern relies on static polymorphism and it can be called policy-based design. Each compressor defines a "policy class" that the host, the HMatrix class, can take. But policy classes have to follow a policy, an implicit interface. Using the ABC design for the compressors with LowRankMatrix, we actually made this interface explicit, so that new additions just need to derive from this abstract class to follow the needed policy.

The constructor takes as arguments smart shared pointers to a source cluster tree and a target cluster tree. This allows sharing the cluster tree between several HMatrix. It can be useful when discretizing the direct method in BEM where several operators on the same geometry are necessary, see Equation (2.14). It also requires a IMatrix to generate the coefficients.

In practice, it goes through the block tree recursively as described in Algorithm 4. But we only define objects of type Block that contain the associated target and source clusters. Then, each MPI process determines which block it needs to compute, following a band decomposition as described in Section 6.3.5. To compute the blocks, the IMatrix is given to the constructor of the chosen compressor for admissible blocks and to the constructor of SubMatrix for dense blocks.

Parallelization

We chose to use both distributed and shared parallelism. Because we want to use DDM preconditioners, it is natural to use distributed parallelism, but then one has to choose how to distribute the data.

There exist several classical approaches to partition the data for a dense matrix. In our case, notice that the diagonal usually contains more dense blocks corresponding to close interactions (see Figure 6.8 for example). Then, we cannot just decompose the data in a regular grid because it would imply that some processes would only have compressed extra-diagonal blocks, which could lead to load-balancing issues.

Since we want to apply a DDM preconditioner, it is relevant to use a row-wise partition. After a matrix-vector product, the resulting vector is local and so are the DDM preconditioners. This means that if we define the subdomain partitioning in accordance with the cluster tree partitioning, we only need to exchange the values in the overlap between MPI processes to be able to apply the preconditioner. That is why we define the domain decomposition as a level of the cluster tree, and then we add overlap.

The issue with a row-wise decomposition is that when increasing the number of processes, we need to traverse the target cluster tree, which may break larger blocks that could be compressed. To be able to scale with more processes but without going too deep in the block tree, we use OpenMP threads to parallelize loops over blocks (when building them and for the matrix-vector product). But as we have said, each row has dense diagonal blocks, compressed extra-diagonal blocks, and their size are usually different. This means that the distribution of the tasks to each thread needs to be done dynamically, which is done by using guided scheduling. Guided scheduling is appropriate when the iterations in the loop are poorly balanced between each other, which is the case for hierarchical matrices stemming from BEM matrices, see Figure 6.8 for example.

The parallelization pattern is summarized in Figure 6.9. In Figure 6.10, we give the mean assembly time for the matrix associated with the test case introduced in Section 6.1.4 with 1 000 000 points in each disk and a distance equal to 0.05. More precisely, we do a strong scaling increasing the number of MPI processes for a fixed number of OpenMP threads. The total number of cores (MPI process and OpenMP threads) goes from 32 to 2048 for each curve. We take η = 100 and ε = 10 -5 so that we always obtain a compression of the order of 99%.

When increasing the number of MPI processes, we see in Figure 6.10 that it always scales well for a smaller number of MPI processes, but we need more OpenMP threads to scale longer, as expected. Adding more OpenMP threads allows not breaking larger compressed blocks and it balances the parallelization pattern.

DDM preconditioners

The iterative solvers and DDM preconditioners are provided through the class ddm that takes an IMatrix, a HMatrix and the information related to the domain decomposition.

Let us denote p the chosen level of parallelization. To build the one-level part of the preconditioner (second term in the right-hand side of Equation (5.5)), in the MPI process numbered m, we need to assemble the diagonal block corresponding to the interaction between J (p) m and itself. We densify the relevant compressed blocks and put all the blocks associated with this diagonal block in a dense matrix. Then, we need to generate the coefficients stemming from the degrees of freedom in the overlap using IMatrix. Once we have the diagonal block corresponding to the subdomain associated with the MPI process, we apply a LU factorization using Lapack [START_REF] Anderson | LAPACK Users' Guide[END_REF] to the diagonal block for assembling the one-level preconditioner. OpenMP Threads=4 OpenMP Threads=8

OpenMP Threads=16 Linear speedup Figure 6.10 -Strong scaling for the assembly of the matrix associated with the kernel 1/|x -y|, the geometry given in Figure 6.1 and 1 000 000 points. Remark 6.10 (Generating diagonal blocks). Instead of densifying the diagonal blocks and regenerating the coefficients from the overlap, one could build a hierarchical matrix associated with the subdomain with overlap. Then, a H-LU factorization could be used for the one-level preconditioner for example.

To assemble the coarse component (first term in the right-hand side of Equation (5.5)), ddm has a method called build_coarse_space that takes the relevant arguments depending on the type of coarse space (see Section 5.3.4). For GenEO Stiffness and GenEO Slobodeckij for example, it just takes a matrix corresponding to B m in Equation (5.8), so respectively the stiffness matrix K m and the Sobolev-Slobodeckij matrix H m . For GenEO Single layer, this function is overloaded so that it can take a IMatrix and the 3D points of the geometry to assemble a local hierarchical matrix corresponding to V m that we densify like the diagonal block of A. For this coarse space, the function also takes as input the local mass matrix whose inverse is needed in the definition of GenEO single layer Equation (5.17).

In every case, the function calls Lapack to solve the generalized eigenvalue problem given in Equation (5.8). The number of eigenvectors chosen for the coarse space depends on a userdefined number, or a user-defined threshold on the eigenvalues (we refer to Section 5.3.3 for a presentation of the GenEO coarse space). Each processor stores these eigenvectors as columns of a local dense matrix Z m ∈ C Nm×N loc,m where N m is the number of degrees of freedom in the mth subdomain with overlap and N loc,m is the local number of eigenvectors chosen to assemble the coarse space. The interpolation matrix from the finite element space to the coarse space R 0 = Z T is defined as the transpose of the concatenation of (R T m D m Z m ) n m=1 ∈ (C N ×N loc ) n m=1 .

In practice, we define the partition of unity (D m ) n m=1 such that D m is a diagonal matrix whose diagonal coefficients are equal to 1 if they correspond to a degree of freedom in the subdomain without overlap, or 0 otherwise. In this case, we denote D m Z m the block D m Z m stripped of its zero-blocks due to this particular definition of the partition of unity. Then, an example of matrix Z is given by the top right matrix in Figure 6.11. The assembling procedure to build the coarse component E = Z T AZ is described in Figures 6.11 and 6.12. The first figure shows the operations where the block in Z associated with the first subdomain is involved, while the second figure is similar but for the block in Z associated with the second subdomain. All the blocks involved in the computation are in brighter colors.

In practice, E is built by looping over the mth subdomains to execute the following operations. For subdomain m, process m broadcast D m Z m to every other MPI process so that they all can do the product A j,m D m Z m for 1 ≤ j ≤ n, see Figures 6.11a and 6.12a. Then, each MPI process can locally build E j,m = D j Z j T A j,m D m Z m as illustrated in Figures 6.11b and 6.12b. Remark that we never store completely AZ ∈ C N ×N0 where N 0 = n m=1 N loc,m is the total number of chosen eigenvectors to span the coarse space. We only compute a block in each row that is directly used to compute a block in E ∈ C N0×N0 . Finally, all the elements of the preconditioner, i.e. the diagonal block associated with the subdomain with overlap, the local contributions to the coarse space D m Z m and E are passed to HPDDM where they are used when applying the DDM preconditioner in iterative solvers. It can actually apply several types of Schwartz methods (additive or restricted) using several coarse correction (Additive as in Equation (5.5), Deflated as in Equation (5.19) or Balanced as in Equation (5.18)). 

Perspectives

Htool proved to be efficient enough for our test cases (see Sections 5.4 and 5.5) and quite easy to use (see an example in Appendix C). We mention here some software development perspectives for Htool. Besides all the technical enhancements we could do (better testing, refactoring some parts of the code, adding code coverage, …), we want to point out some more mathematical perspectives for Htool. As noted in Section 5.5, we could add the possibility to deal with vector valued problems such as linear elasticity or electromagnetics. This means that we should be able to associate one geometric point to several degrees of freedom and the ACA approximation should be modified as in [START_REF] Rjasanow | Matrix valued adaptive cross approximation[END_REF][START_REF] Haider | Adaptive Cross Approximation for BEM in Elasticity[END_REF]. We would like also to study different approaches to apply a "Dirichlet boundary" type condition on hierarchical matrices using similar techniques to pseudoelimination and exact penalization. This would be particularly useful when dealing with the hypersingular operator whose energy space is H 1/2 . Because, in the case of screen problems for the hypersingular operator, there is no degree of freedom on the boundary of the screen. Finally, we point out improvements that can be made on two parts of the library.

Clustering and block-tree

One point where we could improve Htool would be to change how we handle clustering to offer the same modularity as for low-rank approximations. It would allow adding other clustering techniques using bounding boxes as described in [START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF]Section 5.4].

We focused on H-matrix-vector and H-matrix-matrix products because we are interested in solving linear systems with iterative solvers, but it could be interesting to develop the algebra of hierarchical matrices. In particular, we could add the possibility to sum or multiply two hierarchical matrices in Htool, but also to factorize a hierarchical matrix using H-LU or H-QR as described in [12, Sections 2.5, 2.9 and 2.10]. Then, the H-LU factorization could be used when building the diagonal blocks associated with the one-level DDM preconditioner, see Remark 6.10.

Low-rank approximation

We can take advantage of the modularity of the class LowRankMatrix to offer other low-rank approximations. In particular, it has been shown in [START_REF] Grasedyck | Adaptive Recompression of H-Matrices for BEM[END_REF] that ACA can have bad performances in certain situations and the author introduced a variant called ACA+ that relies on a different heuristic in the choice of the pivots.

Other approaches have also been introduced using pseudo-skeleton approximations (see Section 6.1.3.1), which is also called CUR decomposition. For example, CUR-GS introduced in [START_REF] Ayala | Linear-time CUR approximation of BEM matrices[END_REF] provide such an approximation in linear-time and relies on a Geometric Sampling to choose the pivots.

There exists also randomized algorithms to provide a low-rank approximation of a given matrix, see [START_REF] Martinsson | Randomized methods for matrix computations[END_REF] for a review on these methods. Htool would be a good framework to compare all these low-rank approximation on a same problem.

Finally, recompression techniques introduced in [START_REF] Grasedyck | Adaptive Recompression of H-Matrices for BEM[END_REF] could be implemented to improve the efficiency of the approximation and lower the storage cost.

A.1 Looping over the elements

To compute efficiently H, we can loop over the elements and compute local stiffness matrices, as usually done in FEM and BEM. where K loc (T, T ) is the elementary contribution to H associated with the interaction between T and T , it is also called local stiffness matrix.

H =M +

One can see that (K loc (T, T )) i,j = 0 ⇐⇒ supp(ϕ i ) ∩ (T ∪ T ) and supp(ϕ j ) ∩ (T ∪ T ), so that, taking P 1 functions and a triangular mesh, K loc (T, T ) can be reduced to a (2d -k) × (2d -k) matrix with k the number of common nodes. Indeed, suppose that T ∩ T = ∅ and ϕ i is associated with a node of T , then (K loc (T, T )) i,j is non-zero as soon as ϕ j is associated with a node if T , similarly to BEM. But also if ϕ j is associated with a node of T . In particular, if i = j, you see that (K loc (T, T )) i,i is a part of the global integral (H) i,i = M i,i + E i E T i Γ×Γ (ϕ i (x) -ϕ i (y)) 2 |x -y| d+1 dσ(x) dσ(y).

In other words, the computation of the global integrals is distributed in all the computations of the local stiffness matrices, so that the complexity of building H is O(N 2 el ) at worst, with N el the number of elements in the mesh T h . In our applications, we are computing H p so that the complexity is related to the number of elements of the subdomain, that is why this approach is still acceptable in terms of computation time.

This method can be actually quite inconvenient when using compression. For example, in the case of hierarchical matrices, we need to be able to compute extra diagonal blocks that are compressed. But if in practice we compute this local stiffness matrices, then we will generate part of the diagonal at the same time.

A.2 Looping over the degrees of freedom

Another approach consists in looping over the degrees of freedom so that, for every 1 ≤ i, j ≤ N , we compute (H) i,j = M i,j + E i E T j Γ×Γ (ϕ i (x) -ϕ i (y))(ϕ j (x) -ϕ j (y)) |x -y| d+1 dσ(x) dσ(y), and notice that it involves a global integral as soon as supp(ϕ i ) ∩ supp(ϕ j ) = 0. Thus, the computation of such a coefficient costs O(N el ) so that the overall computation will be roughly at worse O(N (m max N el + N -m min )), where m max and m min are respectively the maximum and the minimum number of degrees of freedom whose support intersect. In this case, there is no issue with compression compared to looping over elements. But the complexity can be greater when m max is large, which might occur especially in 3D.

A.3 Conclusion

Assembling H is far from trivial and quite different from usual BEM and FEM. We showed two different methods that can be useful in different cases. The first one is more adapted to dense matrices, while the second one is useful with compression. Ideally, one would like to use both, the first one for far interactions and the second one for close interactions. In practice, it also depends on how easy it can be to access the associated vertices of one element and vice versa.

Note that computing H is particularly useful when approximating the fractional Laplacian and apart from the point we made here, it is quite similar to BEM, see [START_REF] Bonito | Numerical approximation of the integral fractional Laplacian[END_REF]Section 3.3] Remark that t p = t p h and we want to actually characterize the difference. Denoting t p h = (t p h,i ), the previous relation can be written as follows

V p t p h = M p R p u h .
Since M p and V p are symmetric, we have

( C p R p u h , R p u h ) = (M p V -1 p M p R p u h , R p u h ) = (V -1 p M p R p u h , M p R p u h ) = (V -1
p M p R p u h , V p t p h ) = (M p R p u h , t p h ) = ûp h , t p h H 1/2 (Γp)× H -1/2 (Γp) .

Then, one can remark that ûp h , t p h H 1/2 (Γp)× H -1/2 (Γp) = V p (t p ), t p h H 1/2 (Γp)× H -1/2 (Γp) = V p (t p h ), t p h H 1/2 (Γp)× H -1/2 (Γp) , so that, using the positivity and symmetry of V p , we find that 

≤ (C p R p u h , R p u h ) -( C p R p u h , R p u h ).
Using the last two lemmas, we obtain a similar relation to Equation Proof. Using Theorem 3.9 and its notations, we have to satisfy its two hypothesis.

(i) The first hypothesis is obtained using Lemma 5.12 with c R = 2 max(1, N c

5C + W 2C - W
).

(ii) The second hypothesis is obtained using Lemma 5.17 with B p = C p for every 1 ≤ p ≤ n and Lemmas B.1 and B.2 so that c -1

T = 2 + 1 + 5N c C + W k1 C - W τ k1C - ext,p C - V C - W .
Unfortunately, the previous theorem is not enough to get a rigorous bound on the condition number of P ASM,sing . Indeed, all the constants are global constant that should not depend on the mesh size h or the number of subdomains n, except C - ext,p that may depend on the size of Γ p , and indirectly on the number of subdomains in a strong scaling test for example.

B.2 Issue with the operator of extension by zero

In this section, we formulate some remarks on the constant C - ext,p . We will drop the subscript p and just consider the case of an extension by zero for a function u ∈ H -1/2 (Γ), where Γ ∂Ω and Ω ⊂ R d . So that the equivalence relation we would like is Lemma B.4. Let Γ ∂Ω with Ω ⊂ R d and suppose that there exists a continuous extension operator E Γ : H 1/2 (Γ) → H 1/2 (∂Ω). Then we have

1 C EΓ u H -1/2 (Γ) ≤ E Γ (u) H -1/2 (∂Ω) ≤ u H -1/2 (Γ) ,
where C EΓ the operator norm of E Γ .

Proof. Let u ∈ H -1/2 (Γ). By definition of H 1/2 (Γ), there exists v = V | Γ such that V ∈ H 1/2 (∂Ω) so that we can rewrite the definition of the H -1/2 norm as

u H -1/2 (Γ) = sup V ∈H 1/2 (∂Ω) u, V | Γ H -1/2 (Γ)×H 1/2 (Γ) V | Γ H 1/2 (Γ) = sup V ∈H 1/2 (∂Ω) E Γ (u), V H -1/2 (∂Ω)×H 1/2 (∂Ω) V | Γ H 1/2 (Γ)
.

Then, we have V | Γ H 1/2 (Γ) ≤ V H 1/2 (∂Ω) using the expression of the norm, so that u H -1/2 (Γ) ≥ sup 

V
E Γ (v) H 1/2 (∂Ω) ≥ sup v∈H 1/2 (Γ) u, v H -1/2 (Γ)×H 1/2 (Γ) E Γ (v) H 1/2 (∂Ω) ≥ 1 C EΓ sup v∈H 1/2 (Γ) u, v H -1/2 (Γ)×H 1/2 (Γ) v H 1/2 (Γ) = 1 C EΓ u H -1/2 (Γ) .
This lemma is also valid if we define the H 1/2 -norm by interpolation (see [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF][START_REF] Simon | Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples[END_REF][START_REF] Bergh | Interpolation Spaces: an Introduction[END_REF]] for its definition) since the only part that depends explicitly on the norm is the inequality V | Γ H 1/2 (Γ) ≤ V H 1/2 (∂Ω) . And that can be proved easily by interpolation. And similarly, if we define the H 1/2 (Γ)-norm as inf U ∈H 1/2 (∂Ω)

U H 1/2 (∂Ω) | U | Γ = v ,
for v ∈ H 1/2 (Γ), then we have the same type of relation. In any case, we have C + ext = 1 and C - ext = 1/C EΓ where E Γ is a continuous operator. Such continuous extension operator have been introduced (see [START_REF] Vyacheslav | On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to lipschitz domains[END_REF][START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF] for example), but we did not find any explicit dependence on Γ, and we were not able to prove that C EΓ is independent of the size of Γ.

B.3 Concluding remarks

We proved that the equivalence relation given in Equation (B.1) is related to the existence of a continuous operator, and that the constant in the equivalence relation depends on the continuity constant of this operator. Unfortunately, we have not found any proof that C EΓ is independent of the size of Γ, and we were not able to prove it ourself. But notice that an equality between

Schwarz methods and boundary integral equations

Abstract

The objective of this thesis is to use domain decomposition methods to develop new efficient methods for high performance computing and boundary integral equations. One can think of two approaches for domain decomposition. One can make a decomposition of the original domain where the solution is sought, a volume decomposition, and then formulate a boundary integral equation in each subdomain with some ways of coupling them. Or we could first set up a boundary integral equation and then apply a domain decomposition of the boundary, a surface decomposition. In the first approach, we show that the local variant of the multi-trace formulation, which is naturally well-adapted to parallelization, has optimal properties of convergence in the case of constant coefficients in the whole domain for a geometry without junction points. This property is similar to the convergence of the optimal Schwarz method, and we actually prove an equivalence between these two methods. Numerical tests are provided to illustrate the convergence property and show the potentialities and the limits of this approach when coefficients are piecewise constants instead of constants in the whole domain. In the second approach, we present how we use the framework of the fictitious space lemma and the approach of the GenEO (Generalized Eigenproblems in the Overlap) coarse space to define several two-level preconditioners for the hypersingular operator associated with any symmetric positive definite equation. Numerical experiments are provided to show scalability in terms of iterations using the conjugate gradient method and GMRes. To be able to use Schwarz preconditioners and the boundary element method, we also need to adapt a compression method to a distributed-memory parallel framework. This led us to implement Htool, a C ++ library for hierarchical matrices parallelized using MPI and OpenMP.

Keywords: numerical analysis, domain decomposition methods, Schwarz methods, boundary integral equations, boundary element method, two-level preconditioners, hierachical matrices

Méthodes de Schwarz et équations intégrales de frontière

Résumé

L'objectif de cette thèse est d'utiliser des méthodes de décomposition de domaine pour mettre au point de nouvelles méthodes pour le calcul haute performance et les équations intégrales de frontière. Dans le cas des équations intégrales de frontière, on peut penser à deux approches de décomposition de domaine. Nous pouvons faire une décomposition du domaine où la solution est recherchée, une décomposition volumique, puis formuler une équation intégrale de frontière dans chaque sous-domaine en les couplant. Ou nous pouvons d'abord établir une équation intégrale de frontière et ensuite appliquer une décomposition de domaine à la frontière, une décomposition surfacique. Dans la première approche, nous montrons que la variante locale de la formulation multi-trace, naturellement bien adaptée à la parallélisation, possède des propriétés de convergence optimales dans le cas de coefficients constants dans tout le domaine pour une géométrie sans points de jonction. Cette propriété est similaire à la convergence de la méthode optimale de Schwarz, et nous prouvons en réalité une équivalence entre ces deux méthodes. Des tests numériques sont fournis pour illustrer la propriété de convergence et montrer les potentialités et les limites de cette approche lorsque les coefficients sont constants par morceaux au lieu de constants dans l'ensemble du domaine. Dans la deuxième approche, nous présentons comment nous utilisons le cadre du lemme de l'espace fictif et l'approche de l'espace grossier GenEO (Generalized Eigenproblems in the Overlap) pour définir plusieurs préconditionneurs à deux niveaux pour l'opérateur hypersingulier associé à toute équation symétrique et définie positive. Des expériences numériques sont fournies pour montrer leur extensibilité en termes d'itérations avec la méthode du gradient conjugué et GMRes. Pour pouvoir utiliser les préconditionneurs de Schwarz et la méthode des éléments finis de frontière, nous devons également adapter une méthode de compression à un environnement parallèle à mémoire distribuée. Cela nous a conduit à implémenter une bibliothèque C ++ pour les matrices hiérarchiques parallélisée en utilisant MPI et OpenMP.

Mots clés : analyse numérique, méthodes de décomposition de domaine, méthodes de Schwarz, équations intégrales de frontière, méthode des éléments finis de frontière, préconditionneurs à deux niveaux, matrices hiérarchiques Laboratoire Jacques-Louis Lions 4 place Jussieu -75005 Paris -France
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 11 Figure 1.1 -42 years of microprocessors trend data by Karl Rupp.

Theorem 2 . 6 (

 26 Trace theorem, [139, Theorem 2.6.8.]). Let Ω -⊂ R d be a bounded Lipschitz domain with boundary Γ = ∂Ω -and Ω

  ) where A ∈ R d×d is positive definite, b ∈ R d and c ∈ R. This generic differential operator coincides with several well-known partial differential operators: (i) With A = I d , b = 0 and c = 0, we obtain the Laplace operator L = -∆, (ii) With A = I d , b = 0 and c = -k 2 , we obtain the Helmholtz operator L = -∆ -k 2 where k > 0 is usually called the wave number.

Theorem 2 . 13 (

 213 Lax-Milgram Theorem, [139, Lemma 2.1.51]). Let H be a Hilbert space, a : H × H → C a sesquilinear form and b : H → C a continuous bilinear form. If a is H-elliptic and continuous, i.e.

Lemma 2 .

 2 15 ([139, Lemma 2.10.1] ). The sesquilinear form a defined in Equation

  These two operators have the very interesting property to produce solutions of L(u) = 0 in R d \ Γ according to the following theorem Theorem 2.18 ([139, Theorem 3.1.1]). Let v ∈ L 1 (Γ),

Figure 3 . 1 -

 31 Figure 3.1 -Example of domain decomposition: the domain Ω consists of the union of a rectangle Ω 1 and a disk Ω 2 with an overlap.

Figure 3 . 2 -

 32 Figure 3.2 -Slow spread of the information about the presence of an external force for a domain decomposition method without a second level. Number of the iteration in blue.

  3.1], N c corresponds to the chromatic number [160, Definition 5.1.1], and we have N c ≤ k 0 [160, Proposition 5.1.13]. Brook's theorem [160, Theorem

Theorem 3 . 9 (

 39 Fictitious space lemma). Let H and H D be two Hilbert spaces, respectively with the scalar product (•, •) and (•, •) D . Let the symmetric positive definite bilinear forms a : H ×H → R and b : H D × H D → R generated by symmetric positive definite operators A : H → H and B : H D → H D respectively. Suppose that there exists a linear operator R : H D → H such that the following hold:

Lemma 3 . 19 (

 319 Surjectivity of R ASM,2 , [44, Lemma 7.10]). The operator R ASM,2 defined in Equation (3.18) is surjective.

Definition 3 .

 3 23 ([44, Lemma 7.7]). Let τ > 0, we define the following space related to the generalized eigenvalue problem defined in Equation (3.20):Z p,τ := ker(B p ) ∪ Span(v p h,k | for every k s.t. λ p k > τ ),Then, we also define the local projection π p on Z p,τ parallel to Span(v p h,k | λ p k ≤ τ ). Then, according to [44, Lemma 7.7], we have the following theorem: Theorem 3.24[START_REF] Victorita Dolean | An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation[END_REF] Lemma 7.15]). For every 1 ≤ p ≤ n and v p h ∈ R Np , we have
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 41 Figure 4.1 -Example of a partition of R 2 without junction point and its associated adjacency graph.

  2c) which corresponds locally to the elliptic model problem given in Equation (2.1) with A = I d , b = 0 and c = -κ 2
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 42 Figure 4.2 -Example of a multi-subdomain setting for Lemma 4.9.

Lemma 4 . 13 .

 413 If κ 0 = • • • = κ n , then (ΠT) P G = (TΠ) P G = (ΠT + TΠ) P G =0 where P G is defined in Section 4.1.1 as the maximal length of a simple path in the adjacency graph associated with the partition.

  where we used (A p ) 2 = I d and Lemma 4.10. Remark that according to Lemma 4.13, ΠT + TΠ is nilpotent, and according to the spectral radius formula [135, Theorem 10.13 (b)], we have σ(ΠT + TΠ) = {0} and we deduce that σ((A -αΠ) 2 ) = {1 + α 2 }. Using the spectral mapping theorem [135, Theorem 10.28], one can show σ(A -αΠ) ⊂ {+ √ 1 + α 2 , -√ 1 + α 2 }. According to the spectral mapping theorem for the point spectrum [135, Theorem 10.33], we also have σ p (A -αΠ) ⊂ {+ √ 1 + α 2 , -√ 1 + α 2 }. To finish the proof, let us show that if λ ∈ σ p (A -αΠ) then -λ ∈ σ p (A -αΠ).

Theorem 4 . 18 .

 418 If κ 0 = • • • = κ n and µ 0 = • • • = µ n ,then the Jacobi method defined in Equation (4.11) converges in P G + 1 iterations.
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 43 Figure 4.3 -Considered geometric configurations in our numerical tests with the local multi-trace formulation with P G varying or constant.
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 44 Figure 4.4 -Distribution of eigenvalues for the discretized local multi-trace operator (see Equation (4.16)) for n = 3, h = 0.1 and a homogeneous material.
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 45 Figure 4.5 -Number of iterations to solve the local multi-trace formulation using the Jacobi method defined in Equation (4.17).
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 46 Figure 4.6 -Distribution of eigenvalues for the discretized local multi-trace operator (see Equation (4.18)) for n = 3, κ 0 = 1.00002, κ 1 = 1.26308 and κ 2 = 2.51121.
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 47 Figure 4.7 -Number of iterations for GMRes to solve the local multi-trace formulation using Equation (4.15) with Π -1 as a preconditioner, κ 0 = 1.00002, κ 1 = 1.26308, κ 2 = 2.51121, κ 3 = 1.9173, κ 4 = 2.06553 and κ 5 = 1.43792.
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 48 Figure 4.8 -Number of iterations for GMRes to solve the local multi-trace formulation using Equation (4.15) with Π -1 as a preconditioner, κ 0 = 1.00031, κ 1 = 6.26151, κ 2 = 31.2242, κ 3 = 19.346, κ 4 = 22.3107 and κ 5 = 9.75837.
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 4955152535455551 Figure 4.9 -Number of iterations for GMRes to solve the local multi-trace formulation using Equation (4.15) with Π -1 as a preconditioner, µ 0 = 1.00078, µ 1 = 14.1538, µ 2 = 76.5605, µ 3 = 46.865, µ 4 = 54.2767 and µ 5 = 22.8959.
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 51 Figure 5.1 -Example of a subdomain in 2D for P 1 finite elements where the rectangle nodes denote P 1 functions in V h,1 .

. 5 .

 5 We define a partition of unity {D p } n p=0 ∈ (R Np×Np ) n as in Definition 3.6 such that I d = n p=1 R T p D p R p . Similar constants to the ones defined in Definition 3.7 will be used in the analysis thereafter: Definition 5.5.

  so that Γ p = ∪ (l,i)∈Θp θ l,i and n p=1 Γp Γp [u] = n p=1 (lp,ip)∈Θp (mp,jp)∈Θp θ lp ,ip θm p ,jp [u] = n p=1 (l,i)∈Θ (m,j)∈Θ
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 52 Figure 5.2 -Example of a partition defined as in the proof of Lemma 5.8.
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 5354 Figure 5.3 -2D geometry used to test scalability of the DDM preconditioners for the hypersingular operator.
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 55 Figure 5.5 -Eigenvalue distributions for the generalized eigenproblem defined Equation (5.8) with eight subdomains and the hypersingular operator.
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 56 Figure 5.6 -Strong scaling to solve Equation (5.16) with the 2D geometry described in Figure 5.3 and the hypersingular operator.
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 57 Figure 5.7 -Mean local contribution to coarse space and size of the latter for 2D strong scaling.
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 58 Figure 5.8 -Weak scaling to solve Equation (5.16) with the 2D geometry described in Figure 5.3 and the hypersingular operator.

  Size of the coarse spaceWeak scaling in 2D with CG
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 59 Figure 5.9 -Mean local contribution to coarse space and size of the latter for 2D weak scaling.
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 510 Figure 5.10 -Strong scaling to solve Equation (5.16) with the 3D geometry described in Figure 5.4 and the hypersingular operator.
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 511 Figure 5.11 -Mean local contribution to coarse space and size of the latter for 3D strong scaling.
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 512 Figure 5.12 -Weak scaling to solve Equation (5.16) with the 3D geometry described in Figure 5.4 and the hypersingular operator.
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 513 Figure 5.13 -Mean local contribution to coarse space and size of the latter for 3D weak scaling.
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 514 Figure 5.14 -Eigenvalue distributions for the generalized eigenproblem defined Equation (5.8) with eight subdomains and the weakly singular operator.
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 515 Figure 5.15 -Number of iterations for a strong scaling to solve Equation (5.16) with the 2D geometry described in Figure 5.3 and the weakly singular operator.
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 516 Figure 5.16 -Mean local contribution to coarse space and size of the latter for 2D strong scaling.
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 517 Figure 5.17 -Number of matrix vector products for a strong scaling to solve Equation (5.16) with the 2D geometry described in Figure 5.3 and the weakly singular operator.

Figure 5 . 18 -

 518 Figure 5.18 -Mesh of a L-shaped screen in 3D with 121 996 nodes and refined near its boundary.
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 519520 Figure 5.19 -Strong scaling to solve Equation (5.16) with the 3D geometry described in Figure 5.18 and the weakly singular operator.
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 5 Figure 5.21 -2D geometry used to solve Equation (5.20) with the hypersingular operator and real part of the computed solution.
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 522 Figure 5.22 -Strong scaling to solve Equation (5.20) with the 2D geometry described in Figure 5.21 and the hypersingular operator.
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 523 Figure 5.23 -Mesh of the COBRA cavity for 5 GHz with ten points per wavelength.
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 524 Figure 5.24 -Strong scaling to solve Equation (5.21) with the geometry described in Figure 5.23 and the weakly singular operator.
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 525 Figure 5.25 -Total field solution of Equation (5.21) for 5 GHz with five points per wavelength.
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 61 [62, Sections 2.5.3 and 2.5.6] and [74, Lemma C.5]). Let B ∈ C M ×N , then (i) there exist unitary matrices U ∈ C M ×M and V ∈ C N ×N such that B = USV

P j=1 σ 2 j

 2 where (σ j ) P j=1 are called singular values of B. (ii) The spectral norm of B has the value B 2 = σ 1 , where • 2 refers to the matrix norm induced by the vector norm u 2 2 = ( N j=1 |u j | 2 ) for u = (u j ) N j=1 ∈ C N . (iii) The Frobenius norm of M has the value B 2 F = , where • F refers to the Frobenius norm given by B 2 F = j,k=1...n |B j,k | 2 .

Theorem 6 . 4 ([ 63 ,

 6463 Let us denote B(σ, τ ) ∈ C |σ|,|τ | the submatrix of B consisting of the rows σ ⊆ {1, . . . , M } and the columns τ ⊆ {1, . . . , N }. We will use the notation B(σ, :) (resp. B(:, τ )) when τ = {1, . . . , N } (resp. σ = {1, . . . , M }) and we denote B(j, :) (resp. B(:, k)) the jth row of B (resp. the kth column of B). Corollary 3.1]). Assume that B, R ∈ R M ×N such that B -R 2 ≤ ε and rank(R) ≤ r. Then, there exists σ ⊂ {1, . . . , M }, τ ⊂ {1, . . . , N } and S ∈ R r×r such that |σ| = r, |τ | = r and B -B(:, τ )SB(σ, :

7 : 8 :

 78 v r = R r (j r * , :) and u r = (w r * ) -1 R r (:, k r * ) R r+1 = R ru r v T r
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 61 Figure 6.1 -Geometry used to illustrate low-rank approximation with z 1 -z 2 = 1.
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 62 Figure 6.2 -Approximation of the kernel 1/|x -y| by low-rank matrices for the geometry given in Figure 6.1.
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 633 Figure 6.3 -Discretization of the weakly singular operator and the hypersingular operator on a circle associated with the equation -∆u + u = 0 for d = 2 and M = N = 63. Normalized values of the coefficients and singular values.
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 65 Figure 6.5 -Example of numbering induced by a cluster tree.
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 67 Figure 6.7 -Cluster tree for a disk with N = 924 at several depth p.
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 68 Figure 6.8 -Hierarchical matrices associated with the geometry from Figure 6.7, ε = 0.1 and η = 10.

  OpenMP threads in each MPI
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 69 Figure 6.9 -Description of the parallelization pattern.
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 611612 Figure 6.11 -Building the first block column of the coarse component.
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Theorem B. 3 .

 3 and B p = C p for every 1 ≤ p ≤ n. Then, we can obtain the following theorem We have the following condition number estimate κ(P ASM,sing A h ) ≤ 2 max 1, ,sing is defined with the GenEO coarse space and the localization from Lemma B.1 where the local terms are approximated using Lemma B.2.

  C - ext u H -1/2 (Γ) ≤ E Γ (u) H -1/2 (∂Ω) ≤ C + ext u H -1/2 (Γ) , (B.1)where C -ext and C + ext are positive constants. And we need to understand to some extent how these constants depend on Γ. The next lemma relates the proof of the equivalence relation given in Equation (B.1) to the construction of a continuous extension operator E Γ : H 1/2 (Γ) → H 1/2 (∂Ω), i.e., E Γ (v)| Γ = v for every v ∈ H 1/2 (Γ).
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  6) is called first or Dirichlet BVP, and if Γ N = Γ, second or Neumann BVP. To study the well-posedness of this BVP, we introduce the weak formulation of BVP (2.6): Find

  Theorem 2.17 ([139, Theorems 2.10.4, 2.10.5 and 2.10.6]). Let us consider the variational formulation given in Equation (2.7) with g

  and if a min c > |b| 2 [139, Theorem 3.1.11]. In particular, we have the following corollary

	Corollary 2.20. Let u ∈ H 1 loc (Ω) satisfy the equation L(u) = 0 in Ω. If Ω is unbounded, we also
	make the additionally hypothesis that d = 3, L corresponds to the Laplace equation or Helmholtz
	equation, or a min c > |b| 2 and u satisfy the appropriate conditions at infinity. Then we have the
	representation formula

  Ω is bounded, we use Theorem 2.19 and we extend u by zero in R d \ Ω. If Ω is unbounded, Theorem 2.19 can be extended to functions with unbounded support in 3D for Laplace equation, Helmholtz equation and a min c > |b| 2 according to [139, Theorem 3.1.11, 3.1.12 and 3.1.13]. In these cases, we do as previously, extending u by zero in R d \ Ω. The same reasoning can be applied to the case where v ∈ H 1 loc (R d \ Ω).

	Theorem 2.21 (Mapping properties, [40, Theorem 1] or [139, Theorem 3.1.16]). Let Ω be a
	Lipschitz domain. The single and double layer potentials are continuous with the following
	mappings:

  and if we assume that Γ is C 2 pw , according to [139, Corollaries 3.3.14. and 3.3.15.], we have
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  29, Section 2.1]. We shall denote γ p

D , γ p N , γ p (resp. γ p D,c , γ p N,c , γ p c ) interior (resp. exterior) traces on the boundary of Ω p . We define the integral operators SL p κp , DL p κp , G p κp , V p κp , W p κp , K p κp , K p κp , P p κp and A p κp as in Sections 2.3.1 to 2.3.3 with Ω = Ω p and n = n p the normal vector directed towards the exterior of Ω p .

  ) by a sum of local norms. The reverse inequality is false as proved by a counter example in [2, Appendix], but we can lower bound the global energy by a sum of local H 1/2 norms Lemma 5.8. For u ∈ H 1/2 (Γ), there holds
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  and [1, Section 4.1 and Appendix 1].whereC p (i, j) := V -1 p (ϕ σp(j) | Γp ), ϕ σp(i) | Γp H -1/2 (Γp)×H 1/2 (Γp) , V p (i, j) := V p (ϕ σp(j) | Γp ), ϕ σp(i) | Γp H 1/2 (Γp)× H -1/2 (Γp) , M p (i, j) := ϕ σp(j) | Γp , ϕ σp(i) | Γp H -1/2 (Γp)×H 1/2 (Γp) , C p := M p V -1 p M p , with ϕ σp(i) , ϕ σp(j) ∈ V h,p for all 1 ≤ i, j ≤ N p Proof. Let us denote u h | Γp = ûp h = Np j=1 u p h,j ϕ σp(i)| Γp with σ p , the permutation from the local to the global numbering, for 1 ≤ p ≤ n. Notice that ûp h ∈ H 1/2 (Γ p ) and lett p = V -1 p ûp h ∈ H -1/2 (Γ p ) so that (C p R p u h , R p u h ) = V -1 p (û p h ), ûp h H -1/2 (Γp)×H 1/2 (Γp) = t p , V p (t p ) H -1/2 (Γp)×H 1/2 (Γp) . Np i=1 t p h,i ϕ σ(i) | Γp ∈ H 1/2 (Γ p ) ⊂ H -1/2 (Γ p ) such that, for every v p h = Np i=1 v p h,i ϕ σp(i) | Γp V p (t p h ), v p h H 1/2 (Γp)× H -1/2 (Γp) = ûp h , v p h H 1/2 (Γp)× H -1/2 (Γp) .

	Then, we define t p h =

  0 ≤ V p (t p -t p h ), (t p -t p h ) H 1/2 (Γp)× H -1/2 (Γp) ≤ V p (t p ), t p H 1/2 (Γp)× H -1/2 (Γp) -V p (t p h ), t p h H 1/2 (Γp)× H -1/2 (Γp)

  ∈H 1/2 (∂Ω) E Γ (u), V H -1/2 (∂Ω)×H 1/2 (∂Ω) V H 1/2 (∂Ω) = E Γ (u) H -1/2 (∂Ω) .To show the other inequality, remark that we haveE Γ (u) H -1/2 (∂Ω) = sup V ∈H 1/2 (∂Ω) E Γ (u), V H -1/2 (∂Ω)×H 1/2 (∂Ω) E Γ (u), E Γ (v) H -1/2 (∂Ω)×H 1/2 (∂Ω) E Γ (v) H 1/2 (∂Ω) .Then, since E Γ is continuous, we haveE Γ (v) H 1/2 (∂Ω) ≤ C EΓ v H 1/2 (Γ) for every v ∈ H 1/2 (Γ)and we can use the following relationE Γ (u), E Γ (v) H -1/2 (∂Ω)×H 1/2 (∂Ω) = u, E Γ (v)| Γ H -1/2 (Γ)×H 1/2 (Γ) = u, v H -1/2 (Γ)×H 1/2 (Γ)to obtainE Γ (u) H -1/2 (∂Ω) ≥ sup v∈H 1/2 (Γ) E Γ (u), E Γ (v) H -1/2 (∂Ω)×H 1/2 (∂Ω)

	V H 1/2 (∂Ω)
	≥ sup
	v∈H 1/2 (Γ)

Aussi disponible à l'adresse suivante : https://github.com/PierreMarchand20/htool

The data has been gathered by Karl Rupp for his article "42 Years of Microprocessor Trend Data" and published in https://github.com/karlrupp/microprocessor-trend-data under a Creative Commons Attribution

4.0 International Public License

https://github.com/PierreMarchand20/htool

Usually the kernel is denoted γ N,y G(x -y), where the subscript y indicates that the modified conormal derivative is applied to the y-variable. But here, we already applied the conormal derivative so that our definition is the same as in[139, p102] multiplied by -1. This allows us to only have plus signs in the representation formula and afterward.

Notice that we also do not have the same definition of the normal n given in Equation (2.2) and of the Dirichlet and Neumann jumps given in Equation (2.5) as in[START_REF] Sauter | Boundary element methods[END_REF], so that the signs are different.

https://github.com/PierreMarchand20/htool

We actually do not need the assumption l = k made in[START_REF] Claeys | Essential spectrum of local multi-trace boundary integral operators[END_REF] Lemma 6.1] 

https://github.com/xclaeys/BemTool

https://github.com/xclaeys/BemTool

https://github.com/PierreMarchand20/htool

https://github.com/PierreMarchand20/htool

http://www.hlib.org

http://www.h2lib.org

http://smai.emath.fr/cemracs/cemracs16/

https://github.com/xclaeys/ElastoPhi

Remerciements

Remark 5.13 (Norm definitions). We would like to point out that, although one can obtain similar results to Lemma 5.7 with other definitions for the fractional Sobolev norms (with interpolation for example), we use in the last lemma the fact that u p h H 1/2 (Γp) = R T p u p h H 1/2 (Γ) which is not a priori guaranteed for other norms. And even if an equivalence relation can be proved, extra care must be taken to show that the constants in the equivalence relation are independent of the size of the subdomain Γ p which is related to the number of subdomains. As a consequence, the choice of the norm • H 1/2 (Γ) plays a key role in the present analysis.

Stable decomposition -GenEO concept

We now focus on the second hypothesis of Theorem 3.9. The goal is to find a way to decompose global finite element functions so that we can bound the global energy from below by the sum of the local energies. To do so, let us present how to apply the GenEO approach to BEM matrices. First, using the results from the preceding section, we have the following lemma for a generic coarse space: Lemma 5.14. Using the notations of Theorem 3.9, let u h ∈ R N and U h = (u p h ) n p=0 ∈ n p=0 R Np such that u h = R ASM (U h ). Then, we have

Proof. Using the definition of B and the Cauchy-Schwarz inequality,

Then, we apply the equivalence relation from Equation (5.2) and Lemma 5.7 to the second term in the right-hand side to obtain the desired result.

The last lemma is insufficient to prove a spectral estimate of the ASM preconditioner. There remains to bound the last term, corresponding to the sum of local energies, by the global energy a(P h u h , P h u h ). Let us assume there exists (B p ) n p=1 ∈ n p=1 R Np×Np and a constant C loc > 0 independent of h and n such that

(5.6)

To obtain the second hypothesis of Theorem 3.9, and using Lemma 5.14 with Equation (5.6), one can see that a sufficient condition would be to find a decomposition U h = (u p h ) n p=0 ∈ 5:

if (w r * = 0) then 9: * is chosen to be the closest target point to the barycenter of the target points.

Stopping criteria

The stopping criterion can be a given rank, for example r < r required , or a given error of the approximation ε. In the latter case, we want to stop when

Since this needs the whole matrix B and the number of operations is O(M N ) at each iteration, we will use it with the fully pivoted ACA algorithm so that the complexity and the cost of storage is not changed. In [115, Section 3.2.2], it is stated that the number of operations is actually O(r 2 M N ) because it said that we need to compute the vector products in

at each iteration to then compute the error. But remark that in line 8 of Algorithm 1, R r+1 = B -B (r) is iteratively computed in O(M N ) operations so that we do not need to recompute the error doing all the vector products in

But the complexity is still quadratic so that in practice, the stopping criterion given in Equation ( 6.3) is usually estimated by

which can be rewritten

First, notice that

where •, • F stands for the Frobenius inner product. Let us precise how to compute all these terms

, where •, • 2 stands for the inner product for vectors. The number of operations are respectively O(M + N ) and O(r(M + N )) at each iteration r. According to Equation (6.5), we see that B (r+1) F from the criterion given in Equation (6.4) can be computed iteratively using O(r(M + N )) operations at each iteration, while computing u r v T r F requires O(M + N ). We deduce that the number of operations for this stopping criterion is O(r 2 (M + N )), which is linear in the size of B. With this choice, the Algorithm 2 has still a complexity of O(r 2 (M + N )).

Using the stopping criteria given in Equation (6.3) or Equation (6.4), the rank of the approximation is chosen adaptively to ε.

Cl

(3) 7

Cl

(3) 8 support of the shape functions for P 1 -Lagrange for example). Thus, we can associate an array of indices with a cluster/set of points, for example

Denoting Cl that group closer points. To do so, we will separate each cluster Cl To actually separate a cluster in two subclusters, we use the algorithm defined in [132, p. 3.1.2] and given in Algorithm 3. Algorithm 3 is similar to a principal component analysis, it computes the covariance matrix associated with the distance of each point to the barycenter. The first eigenvector of this covariance matrix, the first principal component, corresponds to the direction of longest expanse of the cluster. Then, we separate the cluster along a plane perpendicular to this direction and containing x c . This approach and the fact that we weight the points should provide a balanced partition of the clusters in most cases. We should emphasize that since the covariance matrix is symmetric and in R 3×3 , the associated eigenproblem can be solved explicitly [START_REF] Oliver | Eigenvalues of a symmetric 3 × 3 matrix[END_REF].

This cluster tree actually defines a permutation of the global numbering such that the degrees of freedom in a cluster are numbered continuously. We denote p final the depth of the cluster tree, then the permuted numbering J (p) l is defined as the concatenation of (I

In particular, we have J = (I

) and we give an example in Figure 6.5, where J = (4, 0, 6, 3, 8, 5, 2, 7, 9, 1). The array J allows us to go from the permuted numbering to the original numbering. Notice that a cluster is characterized by the position of its first element in J , also called offset, and its size. In our example, J

(2) 2 = (3, 6, 8) can also be defined as the subsequence in J whose offset is 3 and its size is 3.

Remark 6.8 (Other clustering approaches).

There exist other approaches to define a cluster tree. For example, in [START_REF] Börm | Hierarchical Matrices[END_REF]Section 2.1], variants are presented where bounding boxes are used with respectively a quadtree in 2D and an octree 3D.

APPENDIX A

Computation of the Sobolev-Slobodeckij mass matrix

Outline of the current chapter

A.1 Looping over the elements 166 A.2 Looping over the degrees of freedom 166 A.3 Conclusion 167

We detail here two methods to compute the Sobolev-Slobodeckij matrix H p introduced in Equation (5.14). In any case, we need to compute a global integral as we said in Remark 5.26. This implies that the assembly of the finite element matrix will be quite different to usual BEM and FEM matrices. To simplify, we will focus on building the global matrix H defined by

with 1 ≤ i, j ≤ N and using P 1 Lagrange functions. Let us denote E i ∈ R N such that

165

APPENDIX B

Discussion on the analysis of GenEO Single layer coarse space

Outline of the current chapter

B.1 Analysis 169 B.2 Issue with the operator of extension by zero 172 B.3 Concluding remarks 173

In this appendix, we want to show why we were not able to fully analysis the GenEO single layer coarse space introduced in Section 5.3.4 using a local weakly singular operator defined as

for every u p , v p ∈ H -1/2 (Γ p ). This local operator was used to define an equivalent H 1/2 -norm following the GenEO Slobodeckij coarse space. The issue will also prevent us to fully analyse a coarse space for the weakly singular operator.

B.1 Analysis

Following Section 5.3.4, it remains to prove an inequality like Equation (5.6) that we recall here

where B p is related to V p . We proved in Lemma 5.23 the following inequality

a W (u, u).

169

Suppose we have the following equivalence

Then, we have the following lemma Lemma B.1. Let u h ∈ R N , then we have

Proof. Let us denote

. Then, we have

And since the weakly singular operator is continuous and positive definite, we have

We deduce

Using the last relation for each term of the sum in Lemma 5.23, we obtain the expected result.

Notice that we need to be able to compute the left-hand side of the inequality obtained in Lemma B.1, because we need to compute a matrix B p . But we do not know analytically V -1 p so that we cannot directly compute the left-hand term of the inequality from Lemma B.1. The next lemma shows that we can approximate the Galerkin approximation of the inverse of V p by the inverse of the approximation of V p . A similar difficulty arises with operator preconditioning (see [START_REF] Mclean | Boundary element preconditioners for a hypersingular integral equation on an interval[END_REF][START_REF] Steinbach | The construction of some efficient preconditioners in the boundary element method[END_REF]). To overcome this, we prove a lemma similar to [START_REF] Mclean | Boundary element preconditioners for a hypersingular integral equation on an interval[END_REF]Theorem 3.1.] 

u H -1/2 (Γ) and E Γ (u) H -1/2 (∂Ω) is sometime used without rigorous proof. The same remark could be done between the H 1/2 -norms when they are defined by interpolation. This issue is also what prevents us to fully analysis a DDM preconditioner for the weakly singular operator.

APPENDIX C

Example of code using Htool

We show a small practical example of code in Listing C.1. The lines between 5 and 41 correspond to the definition of the interface IMatrix. We define a simple operator that takes two arrays of 3D points p1 and p2, and returns 1/ (p1[j]-p2 [k]) for the interaction between p1[j] and p2 [k]. It has also some auxiliary functions used afterward for comparing dense and hierarchical matrices. Then, the lines between 60 and 82 correspond to the generation of two randomized set of points corresponding to the geometry Figure 6.1. The actual part of the code where we build a hierarchical matrix and do a H-matrix-vector product is located between the lines 84 and 88.

This example is part of the library in the example folder 1 .

Remark C.1. Htool defines some usual operations on the class vector from the C++ STL.