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Abstract xi

Schwarz methods and boundary integral equations
Abstract

The objective of this thesis is to use domain decomposition methods to develop new efficient methods
for high performance computing and boundary integral equations. One can think of two approaches
for domain decomposition. One can make a decomposition of the original domain where the solution is
sought, a volume decomposition, and then formulate a boundary integral equation in each subdomain
with some ways of coupling them. Or we could first set up a boundary integral equation and then
apply a domain decomposition of the boundary, a surface decomposition. In the first approach, we show
that the local variant of the multi-trace formulation, which is naturally well-adapted to parallelization,
has optimal properties of convergence in the case of constant coefficients in the whole domain for a
geometry without junction points. This property is similar to the convergence of the optimal Schwarz
method, and we actually prove an equivalence between these two methods. Numerical tests are provided
to illustrate the convergence property and show the potentialities and the limits of this approach when
coefficients are piecewise constants instead of constants in the whole domain. In the second approach,
we present how we use the framework of the fictitious space lemma and the approach of the GenEO
(Generalized Eigenproblems in the Overlap) coarse space to define several two-level preconditioners
for the hypersingular operator associated with any symmetric positive definite equation. Numerical
experiments are provided to show scalability in terms of iterations using the conjugate gradient method
and GMRes. To be able to use Schwarz preconditioners and the boundary element method, we also need
to adapt a compression method to a distributed-memory parallel framework. This led us to implement
Htool, a C++ library for hierarchical matrices parallelized using MPI and OpenMP.

Keywords: numerical analysis, domain decomposition methods, Schwarz methods, boundary integral
equations, boundary element method, two-level preconditioners, hierachical matrices

Méthodes de Schwarz et équations intégrales de frontière
Résumé

L’objectif de cette thèse est d’utiliser des méthodes de décomposition de domaine pour mettre au point de
nouvelles méthodes pour le calcul haute performance et les équations intégrales de frontière. Dans le cas
des équations intégrales de frontière, on peut penser à deux approches de décomposition de domaine. Nous
pouvons faire une décomposition du domaine où la solution est recherchée, une décomposition volumique,
puis formuler une équation intégrale de frontière dans chaque sous-domaine en les couplant. Ou nous
pouvons d’abord établir une équation intégrale de frontière et ensuite appliquer une décomposition de
domaine à la frontière, une décomposition surfacique. Dans la première approche, nous montrons que
la variante locale de la formulation multi-trace, naturellement bien adaptée à la parallélisation, possède
des propriétés de convergence optimales dans le cas de coefficients constants dans tout le domaine pour
une géométrie sans points de jonction. Cette propriété est similaire à la convergence de la méthode
optimale de Schwarz, et nous prouvons en réalité une équivalence entre ces deux méthodes. Des tests
numériques sont fournis pour illustrer la propriété de convergence et montrer les potentialités et les
limites de cette approche lorsque les coefficients sont constants par morceaux au lieu de constants dans
l’ensemble du domaine. Dans la deuxième approche, nous présentons comment nous utilisons le cadre
du lemme de l’espace fictif et l’approche de l’espace grossier GenEO (Generalized Eigenproblems in the
Overlap) pour définir plusieurs préconditionneurs à deux niveaux pour l’opérateur hypersingulier associé
à toute équation symétrique et définie positive. Des expériences numériques sont fournies pour montrer
leur extensibilité en termes d’itérations avec la méthode du gradient conjugué et GMRes. Pour pouvoir
utiliser les préconditionneurs de Schwarz et la méthode des éléments finis de frontière, nous devons
également adapter une méthode de compression à un environnement parallèle à mémoire distribuée.
Cela nous a conduit à implémenter une bibliothèque C++ pour les matrices hiérarchiques parallélisée en
utilisant MPI et OpenMP.

Mots clés : analyse numérique, méthodes de décomposition de domaine, méthodes de Schwarz, équa-
tions intégrales de frontière, méthode des éléments finis de frontière, préconditionneurs à deux
niveaux, matrices hiérarchiques

Laboratoire Jacques-Louis Lions
4 place Jussieu – 75005 Paris – France
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1.1 Introduction : version française
1.1.1 Contexte de la thèse
Les modèles mathématiques sont particulièrement utiles pour décrire des problèmes issus de la
physique et de l’ingénierie tels que l’acoustique, la mécanique ou l’électromagnétisme. Ils per-
mettent d’exprimer des phénomènes physiques dans un langage unifié et rigoureux. En particulier,
les équations aux dérivées partielles relient les grandeurs physiques et leurs éventuelles variations.
La résolution de telles équations permet de mieux comprendre et prédire le comportement de
ces grandeurs physiques à l’erreur du modèle mathématique près, qui ne peut que simplifier la
complexité de la physique.

Mais les solutions d’équations aux dérivées partielles sont rarement connues explicitement.
Heureusement, l’invention et l’évolution des ordinateurs depuis le siècle dernier ont permis aux
scientifiques d’inventer des méthodes numériques pour les approcher. À partir de l’analyse des
équations aux dérivées partielles et du comportement de leurs solutions, les mathématiciens du
domaine de l’analyse numérique étudient l’erreur et l’efficacité de ces approximations.

1
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La résolution numérique des équations aux dérivées partielles conduit à des systèmes linéaires
à résoudre par ordinateur. La performance des calculateurs est alors cruciale. Ainsi, l’amélioration
de leurs performances se traduit par des simulations numériques plus rapides et la résolution de
problèmes plus importants. Jusqu’au milieu des années 2000, ces améliorations provenaient de
l’augmentation de la fréquences des processeurs utilisés pour les simulations. À partir du milieu
du XXe siècle, la loi de Moore stipule que le nombre de transistors par microprocesseur double
tous les deux ans, tandis que la règle d’échelle de Dennard [43] indique que la puissance nécessaire
au fonctionnement des transistors dans un volume donné reste constante, peu importe le nombre
de transistors. La combinaison de ces deux lois (également appelée loi de Koomey [108]) signifie
que la performance par watt augmente au même rythme que la loi de Moore. Mais à partir du
milieu des années 2000, la taille des transistors est devenue si petite que les limitations physiques
ont mis fin à la règle d’échelle de Dennard, principalement à cause des fuites de courant et de la
dissipation thermique, et donc l’efficacité des processeurs monocœurs a commencé à stagner.

La fin de la règle d’échelle de Dennard ayant conduit à un changement dans les architectures
des ordinateurs, le calcul parallèle est devenu le nouveau paradigme. Il est aujourd’hui largement
utilisé pour le calcul haute performance dans les supercalculateurs, mais aussi dans les ordinateurs
personnels et les téléphones portables où les processeurs multicœurs sont aujourd’hui courants.
La figure 1.11 illustre ces différentes tendances.

Cette évolution de l’architecture des ordinateurs a également eu une conséquence dans le
développement des méthodes numériques, où le parallélisme des algorithmes est aujourd’hui in-
dispensable à leur efficacité sur supercalculateur. Dans le cas des algorithmes de résolution de
systèmes linéaires, il existe deux classes de méthodes : les méthodes directes et les méthodes
itératives. D’une part, les méthodes directes sont connues pour être robustes, mais leur nombre
d’opérations et leur consommation mémoire peuvent être importantes pour les grands systèmes.
D’autre part, les méthodes itératives ont une faible consommation mémoire parce qu’elles se com-
posent principalement de produits matrice-vecteur avec le système linéaire original, et peuvent
donc être plus faciles à paralléliser. Mais elles sont moins robustes et peuvent ne pas converger.

Notons Ax = f le système linéaire considéré. Une méthode pour améliorer la robustesse
des méthodes itératives est de multiplier le système par un autre opérateur P appelé précon-
ditionneur, afin que PAx = Pf soit plus facile à résoudre, et dont l’application n’est pas trop
coûteuse.

1.1.2 Méthodes de décomposition de domaine et équations intégrales
de frontière

Les méthodes de décomposition de domaine regroupent un large éventail de techniques dont
le point commun est principalement une stratégie de « diviser pour régner », qui est naturel-
lement parallèle et donc bien adaptée aux ordinateurs modernes. Dans cette thèse, nous nous
intéresserons aux méthodes de Schwarz, une classe particulière de méthodes de décomposition
de domaine. Elles consistent à diviser le domaine de calcul en plusieurs sous-domaines dans les-
quels nous résolvons des problèmes locaux tout en échangeant des informations pertinentes entre
eux. Deux points de vue existent sur ces méthodes, elles peuvent être considérées comme des
algorithmes itératifs où une approximation de la solution de l’équation considérée est calculée
à chaque itération, ou comme des préconditionneurs pour résoudre le système linéaire original
par des méthodes itératives de type Krylov (gradient conjugué, GMRes, gradient biconjugué,…).

1Les données ont été recueillies par Karl Rupp pour son article « 42 Years of Microprocessor Trend Data »
et publié dans https://github.com/karlrupp/microprocessor-trend-data sous une license Creative Commons
Attribution 4.0 International Public License

https://github.com/karlrupp/microprocessor-trend-data
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Mais dans les deux cas, les problèmes locaux sont typiquement résolus par des méthodes directes,
c’est pourquoi ces méthodes sont dites hybrides.

Dans cette thèse, nous cherchons à adapter les méthodes de Schwarz aux équations intégrales
de frontière qui sont des reformulations des équations aux dérivées partielles usuelles. En utilisant
la fonction de Green de l’équation aux dérivées partielles considérée, des opérateurs intégraux
peuvent être définis pour formuler une équation intégrale dont l’inconnue est liée à la frontière
du problème initial. Les principaux avantages des équations intégrales de frontière sont que le do-
maine de calcul comporte une dimension de moins, et que la condition à l’infini est naturellement
satisfaite. Cela signifie en particulier que les problèmes en domaine non-borné sont naturellement
formulés à l’aide d’équations intégrales de frontière.

Mais les équations intégrales de frontière sont limitées aux problèmes dont la fonction de
Green est explicitement connue, tels que les problèmes elliptiques à coefficients constants. Par
ailleurs, les opérateurs intégraux sont non-locaux, rendant l’analyse mathématique plus difficile.
En pratique, cela signifie aussi que les matrices obtenues par une méthode de Galerkin sont
denses, contrairement aux matrices issues de la méthode des éléments finis qui sont creuses.

Dans le cas des équations intégrales de frontières, on pourrait penser à deux approches de
décomposition de domaine, comme indiqué dans l’introduction de [79]. Nous pouvons faire une
décomposition du domaine où la solution est recherchée, une décomposition volumique, puis for-
muler une équation intégrale de frontière dans chaque sous-domaine en les couplant. Ou nous
pouvons d’abord établir une équation intégrale de frontière et ensuite appliquer une décomposi-
tion de domaine de la frontière, une décomposition surfacique.

1.1.3 Résumé et contributions
Le sujet principal de cette thèse est d’établir des liens entre les méthodes de décomposition
de domaine et les équations intégrales de frontières en utilisant les différents points de vue
décrits dans la section précédente. Outre les défis scientifiques auxquels nous avons dû faire face,
une difficulté inhérente à ce sujet est d’ordre pédagogique. Les méthodes de décomposition de
domaine et les équations intégrales de frontière correspondent à deux domaines de recherche
distincts. C’est pourquoi nous prendrons le temps de présenter succinctement ces deux domaines
en donnant des références importantes, afin que les lecteurs de l’une ou l’autre communauté
puissent lire ce document. Ce dernier est structuré en six chapitres dont le chapitre 1 est la
présente introduction.

Dans le chapitre 2, nous présentons au lecteur les équations d’intégrale de frontière avec
la plupart des résultats de base.

• Nous définissons les espaces de Sobolev fractionnaires, les espaces d’énergie des équations
intégrales de frontière considérées.

• Les équations aux dérivées partielles elliptiques sont introduites avec les résultats concer-
nant leur caractère bien posé.

• Les opérateurs intégraux de frontière associés, basés sur la fonction de Green, sont présentés.

• Nous faisons le lien entre les opérateurs intégraux de frontière et le projecteur Calderón,
ainsi qu’avec l’opérateur Dirichlet-to-Neumann.

• Les équations intégrales de frontière sont présentées sous plusieurs formes et les résultats
sur leur caractère bien posé sont présentés.
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Dans le chapitre 3, nous donnons au lecteur une introduction très succincte aux méthodes
de Schwarz. Nous présentons les deux points de vue, comme algorithmes itératifs et comme
préconditionneurs.

• Nous donnons une présentation historique des méthodes de Schwarz avec les principaux
algorithmes itératifs.

• La méthode de Schwarz optimale est présentée et son optimalité est illustrée.

• Après avoir présenté le cadre discret lié à la méthode des éléments finis, nous présentons les
outils théoriques pour étudier les préconditionneurs de Schwarz, et notamment le lemme
de l’espace fictif.

• Nous l’utilisons afin d’analyser le préconditionneur additif Schwarz sans espace grossier,
pour justifier de la nécessité d’un espace grossier ajoutant un minimum de communication
globale entre les sous-domaines.

• Nous présentons l’espace grossier GenEO (Generalized Eigenproblem in the Overlap), qui
est basé sur des problèmes aux valeurs propres généralisés locaux.

Le chapitre 4 est consacré à notre travail sur la méthode multi-trace locale. Nous consi-
dérons une décomposition volumique, dans laquelle une équation intégrale de frontière est for-
mulée dans chaque sous-domaine. Cela permet de représenter une équation avec des coefficients
constants par morceaux dans chaque sous-domaine. Il existe plusieurs formulations pour ce type
de problèmes : la formulation PMCHWT (Poggio-Miller-Chang-Harrington-Wu-Tsai) [131, 22,
163] aussi appelée principe de réaction de Rumsey, la méthode BETI (Boundary Element Tearing
and Interconnecting) [110] et les formulations Multi-Trace (MTF) [37]. Dans [32], des résultats
intéressants ont été présentés pour Dissipative Helmholtz et l’opérateur associé à local-MTF, une
variante de MTF. Les auteurs ont examiné une discrétisation particulière de local-MTF liée à
une méthode de Jacobi. Ils ont prouvé que pour deux et trois domaines, celle-ci converge en un
nombre fini d’itérations pour des coefficients constants dans tout le domaine et avec un choix
particulier de paramètre dans la méthode. Une équivalence avec la méthode optimale de Schwarz
est également présentée pour deux sous-domaines dans une dimension, où tout peut être fait de
manière analytique. Nous généralisons ces résultats dans ce chapitre.

• Les opérateurs intégraux dans un contexte multi-domaines sans points de jonction sont
introduits, ce qui permet de présenter la formulation PMCHWT et local-MTF.

• Nous introduisons la méthode de Jacobi de [32] dans un cadre plus général (n sous-domaines
sans points de jonction et équation elliptique générique) et nous prouvons qu’elle converge
en un nombre fini d’itérations pour des coefficients constants dans tout le domaine avec
un choix particulier de paramètre dans la méthode. Nous donnons explicitement le nombre
d’itérations pour converger en fonction de la géométrie.

• Nous prouvons également l’équivalence entre le local-MTF et la méthode de Schwarz opti-
male pour ce choix particulier de paramètres et des coefficients constants dans le domaine.

• Des expériences numériques sont menées pour illustrer ces résultats théoriques et pour
observer ce qui se passe lorsque les hypothèses ne sont plus satisfaites, par exemple des
coefficients constants par sous-domaine au lieu de constants dans tout le domaine. Ainsi,
nous montrons le potentiel et les limites de cette approche.
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Dans le chapitre 5, nous présentons nos travaux sur les préconditionneurs de Schwarz
pour la méthode des éléments finis de frontière. Les méthodes de Schwarz sont bien connues
pour les équations aux dérivées partielles, et leur application à la méthode des éléments finis
de frontière en tant que préconditionneurs a également été explorée (voir [79, 156, 88]) avec un
espace grossier basé sur un problème grossier. Les stratégies élaborées jusqu’à maintenant dans
la litérature semblent être des adaptations du cadre présenté dans [153, Chapitre 3]. Cela signifie
qu’un problème grossier est défini pour construire l’espace grossier, de telle sorte qu’il assure un
conditionnement indépendant du nombre de sous-domaines. Mais le problème grossier pertinent
dépend de l’opérateur, de la dimension, etc. À notre tour, nous adaptons l’espace grossier GenEO
à des équations intégrales de frontière symétriques et définies positives. Cet espace grossier a
l’avantage d’être plus algébrique car il est construit à partir de problèmes aux valeurs propres
généralisés. À notre connaissance, c’est le premier espace grossier spectral et adaptatif pour les
éléments finis de frontière.

• Nous présentons le cadre discret associé à la méthode des éléments finis de frontière et à la
décomposition surfacique.

• Plusieurs inégalités liées à la localisation des normes fractionnaires de Sobolev sont présen-
tées.

• En utilisant le cadre du lemme de l’espace fictif avec l’approche de l’espace grossier GenEO,
nous introduisons de nouveaux espaces grossiers spectraux pour l’opérateur hypersingulier.

• Nous effectuons plusieurs tests numériques pour vérifier que la méthode passe à l’échelle
en termes de nombre d’itérations.

• Des perspectives pour l’extension de la méthode sont données et des tests numériques
avec des préconditionneurs de Schwarz pour l’opérateur faiblement singulier et l’équation
d’Helmholtz sont présentés.

Dans le chapitre 6, nous présentons notre implémentation parallèle de matrices hiérar-
chiques pour pouvoir utiliser des préconditionneurs de Schwarz. Une particularité de la méthode
des éléments finis de frontière par rapport à la méthode des éléments finis usuelle est que les
systèmes linéaires à résoudre sont denses. Cela peut s’avérer rapidement très coûteux en terme
de nombres d’opérations et de stockage pour les grands systèmes, ce qui rend les techniques de
compression nécessaires. Plusieurs techniques existent, panel clustering [77, 78], Fast Multipole
Method (FMM) [134, 69, 41, 41, 42], matrices hiérarchiques (H et H2-matrices) [73, 75, 76, 17, 12,
74] Adaptive Cross Approximation (ACA) [11, 13, 18, 12], Sparse Cardinal Sine Decomposition
(SCSD) [4] et wavelet compression techniques [5]. Nous avons utilisé des matrices hiérarchiques
car leur construction a l’avantage d’être algébrique et indépendante du noyau. Pour pouvoir réa-
liser des expériences numériques avec les préconditionneurs de Schwarz, nous avons développé
Htool, une bibliothèque C++ pour les matrices hiérarchiques parallélisée avec MPI et OpenMP.
Des illustrations numériques des différents concepts présentés dans ce chapitre sont présentées à
l’aide de Htool.

• Plusieurs approximations classiques de rang faible sont présentées, à savoir la SVD tron-
quée, l’approximation adaptative en croix entièrement pivotée et l’approximation adapta-
tive croisée partiellement pivotée.

• Nous présentons les différentes structures hiérarchiques nécessaires pour définir une matrice
hiérarchique.
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• Notre mise en œuvre de ces concepts est présentée. En particulier, nous montrons comment
Htool est conçue pour faciliter les ajouts et nous présentons comment la bibliothèque est
parallélisée pour le processus de construction des matrices hiérarchiques et l’assemblage de
l’espace grossier GenEO.

• Enfin, nous donnons quelques perspectives de développement logiciel pour la bibliothèque.

Publications : Cette thèse a donné lieu aux publications suivantes :

• Pierre Marchand, Xavier Claeys, Pierre Jolivet, Frédéric Nataf, Pierre-Henri Tournier
(2019). Boundary integral multi-trace formulations and Optimised Schwarz Methods. (Sub-
mitted to Numerische Mathematik).

• Xavier Claeys, Pierre Marchand (2018). Boundary integral multi-trace formulations and
Optimised Schwarz Methods. (Submitted to Computers and Mathematics with Applica-
tions).

Développement logiciel : Cette thèse a conduit à l’implémentation de Htool disponible sur la
page de l’auteur2, une bibliothèque C++ header-only pour les matrices hiérarchiques parallélisée
avec MPI et OpenMP. Toutes les expériences numériques seront disponibles prochainement sur
la page web de l’auteur.

2Aussi disponible à l’adresse suivante : https://github.com/PierreMarchand20/htool

https://github.com/PierreMarchand20/htool
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1.2 Introduction: english version
1.2.1 Context of the thesis
Mathematical models are particularly useful for describing problems in physics and engineering
such as acoustics, mechanics or electromagnetics. They allow physical phenomena to be ex-
pressed with a unified and rigorous language. In particular, partial differential equations relate
physical quantities and their possible variations. Solving such equations makes it possible to
better understand and predict the behaviour of these physical quantities up to the error of the
mathematical model, which can only simplify the complexity of the physics.

However solutions of partial differential equations are rarely explicitly known. Fortunately,
the invention and evolution of computers since the last century has allowed scientists to invent
numerical methods to approximate them. From the analysis of partial differential equations and
the behaviour of their solutions, mathematicians in the field of numerical analysis study the error
and efficiency of these approximations.

The numerical solution to partial differential equations leads to linear systems to be solved
by computers, whose performance is then crucial. Thus, improving their performance results in
faster numerical simulations and solving larger problems. Until the mid-2000s, these improve-
ments were due to the increase in the frequency of the processors used for simulations. From
the mid-20th century, Moore’s law stated that the number of transistors on a chip would double
every two years, while Dennard scaling [43] stated that the power needed to run transistors in
a unit volume stays constant, regardless of the number of transistors. The combination of these
two laws (also called Koomey’s law [108]) meant that performance per watt increases at the same
rate as Moore’s law. But from the mid-2000s, the size of the transistors became so small that
physical limitations broke Dennard scaling, mainly due to current leakage and heat dissipation,
and so the efficiency of single-core processors began to stagnate.

The breakdown of Dennard scaling led to a change in computer architectures, parallel com-
puting became the new paradigm. It is now widely used in high-performance computing on
supercomputers, but also on personal computers and mobile phones where multicore processors
are common now. Figure 1.13 illustrates these different trends.

This change in computer architectures also had a consequence in the development of numer-
ical methods, where parallelism of the algorithms is now essential for them to be efficient on
supercomputers. In the case of algorithms for solving linear systems, there exist two classes of
methods: direct methods and iterative methods. On the one hand, direct methods are known
to be robust but their number of operations and memory consumption can be overwhelming for
large systems. On the other hand, iterative methods have low memory consumption because
they consist mainly of matrix-vector products with the original linear system, and may therefore
be easier to parallelize. But they are less robust and might not converge.

Denoting Ax = f the considered linear system, a method to circumvent the lack of robustness
of iterative methods is to multiply the system by another operator P called preconditioner, so
that PAx = Pf is easier to solve, and whose application is not too expensive.

1.2.2 Domain decomposition methods and Boundary Element Method
Domain decomposition method is a term that encompasses a wide range of approaches whose
common point is mainly a “divide and conquer” strategy, which is naturally parallel and there-
fore well suited to modern computers. In this thesis, we will be interested in Schwarz methods,

3The data has been gathered by Karl Rupp for his article “42 Years of Microprocessor Trend Data” and
published in https://github.com/karlrupp/microprocessor-trend-data under a Creative Commons Attribution
4.0 International Public License

https://github.com/karlrupp/microprocessor-trend-data
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Figure 1.1 – 42 years of microprocessors trend data by Karl Rupp.

a particular class of domain decomposition methods. It consists in dividing the computational
domain in many subdomains on which we solve local problems while exchanging relevant infor-
mation between them. Two points of view exist on these methods, they can be seen as iterative
algorithms where an approximated solution is computed at each iteration, or as preconditioners
for solving the original linear system with iterative methods such as Krylov methods (conjugate
gradient, GMRes, biconjugate grandient,…). But in both cases, local problems are typically
solved using direct methods, hence they are called hybrid methods.

In this thesis, we seek to adapt Schwarz methods to boundary integral equations that consist in
reformulations of usual partial differential equations. Using the Green function of the considered
partial differential equation, integral operators can be defined to formulate an integral equation
whose unknown is related to the boundary of the original problem. The main advantages of
boundary integral equations are that the computational domain is one dimension smaller, and the
condition at infinity is naturally satisfied. This means in particular that problems in unbounded
domains are naturally formulated using boundary integral equations.

But they are restricted to problems whose Green function is explicitly known, such as elliptic
problems with constant coefficients, and the integral operators are non-local making the math-
ematical analysis more difficult. In practice, it also means that matrices obtained by Galerkin
methods are dense, contrary to matrices stemming from the finite element method which are
sparse.

In the case of boundary integral equations, we could think of two approaches for domain
decomposition, as pointed out in the introduction of [79]. We could make a decomposition of
the original domain where the solution is sought, a volume decomposition, and then formulate
a boundary integral equation in each subdomain with some ways of coupling them. Or we
could first set up a boundary integral equation and then apply a domain decomposition of the
boundary, a surface decomposition.

1.2.3 Summary and contributions
The main subject of this thesis is to make connections between domain decomposition methods
and boundary integral equations using the different points of view described in the previous
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section. In addition to the scientific challenges we had to face, an inherent difficulty in this subject
is pedagogical. Domain decomposition methods and boundary integral equations correspond to
two distinct fields of research. With this in mind, we will take the time to present succinctly
both domains giving important references for each field, so that readers from one community or
the other could still read this manuscript. The manuscript is structured in six chapters whose
Chapter 1 is the current introduction.

In Chapter 2, we introduce the reader to boundary integral equations with most of the
basic results.

• We define fractional Sobolev spaces, the energy spaces of the considered boundary integral
equations.

• Classically, we introduce usual elliptic partial differential equations and results about their
well-posedness.

• The associated boundary integral operators based on their Green functions are presented.

• We make the connection between the boundary integral operators, and both Calderón
projectors and Dirichlet-to-Neumann operator.

• Boundary integral equations in several forms are given, and results about their well-
posedness are presented.

In Chapter 3, we give to the reader a very succinct introduction to Schwarz methods. We
present both points of view, as iterative algorithms and as preconditioners.

• We give an historical presentation of Schwarz methods with the main iterative algorithms,
alternating Schwarz method and parallel Schwarz method.

• The optimal Schwarz method is introduced and its optimality is illustrated.

• After introducing the discrete setting, we present the theoretical framework to study
Schwarz preconditioners using the fictitious space lemma.

• We use it to analyse the additive Schwarz preconditioner without coarse space, to justify the
need for a mechanism adding a minimum of global communication between the subdomains.

• We present the GenEO (Generalized Eigenproblem in the Overlap) coarse space, which is
based on local eigenproblems.

Chapter 4 is devoted to our work on multi-trace method. We consider a volume decomposi-
tion in which, a boundary integral equation is formulated in each subdomain. It allows having an
equation with piecewise constant coefficients in each subdomain. There exist several formulations
for this type of problems: the PMCHWT (Poggio-Miller-Chang-Harrington-Wu-Tsai) formula-
tion [131, 22, 163] also called Rumsey’s reaction principle, the Boundary Element Tearing and
Interconnecting (BETI) method [110] and Multi-Trace Formulations (MTF) [37]. In [32], inter-
esting results have been presented for Dissipative Helmholtz and the operator associated with
local-MTF, a variant of MTF. The authors considered a particular discretization of local-MTF
related to a Jacobi method, and they proved that for two and three domains it converges in a
finite number of iterations for constant coefficients in the whole domain, with a particular choice
of parameter in the method. An explicit equivalence with the optimal Schwarz method is also
presented for two subdomains in one dimension, where everything can be done analytically. We
generalize these results in this chapter.
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• Integral operators in a multi-subdomain setting without junction points are introduced,
which allows presenting PMCHWT formulation and local-MTF.

• We introduce the Jacobi method from [32] in a more general setting (n subdomains without
junction points and any elliptic equation) and we prove that it converges in a finite number
of iterations for constant coefficients in the whole domain, with a particular choice of
parameter in the method. We give explicitly the number of iterations to converge in
function of the geometry.

• We also prove the equivalence between local-MTF and the optimal Schwarz method for
this particular choice of parameter and constant coefficients.

• Numerical experiments are conducted to illustrate these theoretical results and to observe
what happens when the hypotheses no longer hold, piecewise constant coefficients in each
subdomain instead of constant in the whole domain for example. Thus, we show the
potentialities and the limits of this approach.

In Chapter 5, we present our work on Schwarz preconditioners for the boundary element
method. Schwarz methods are well-known for usual partial differential equations, and their
application to boundary element method as preconditioners has also been explored (see [79, 156,
88]) with a coarse space based on a coarse problem. As far as we know, the strategies developed
in the present literature are usually adaptations of the framework presented in [153, Chapter
3]. It means that a coarse problem is defined to build the coarse space such that it ensures a
condition number independent of the number of subdomains. But the relevant coarse problem
depends on the operator, the dimension, etc. In our turn, we adapt the GenEO coarse space to
symmetric positive definite boundary integral equations. This coarse space has the advantage to
be more algebraic, because it is built upon local generalized eigenproblems. As far as we know,
it is the first adaptive spectral coarse space for the boundary element method.

• We introduce the discrete setting associated with the boundary element method and the
surface domain decomposition.

• Several inequalities related to the localization of fractional Sobolev norms are presented.

• Using the framework of the fictitious space lemma with the approach of the GenEO coarse
space, we introduce several new spectral coarse spaces for the hypersingular operator.

• We conduct several numerical tests to check the scalability of the method in terms of
number of iterations.

• Perspectives to extend the method are given and numerical tests with Schwarz precondi-
tioners for the weakly singular operator and Helmholtz are shown.

In Chapter 6, we present our parallel implementation of hierarchical matrices for using
Schwarz preconditioners. A particularity of the boundary element method compared to the
finite element method is that the linear systems to solve are dense. This can be quickly over-
whelming in terms of storage and number of operations for large systems, making compression
techniques mandatory. Several techniques exist, panel clustering [77, 78], Fast Multipole Method
(FMM) [134, 69, 41, 42], hierarchical matrices (H and H2-matrices) [73, 75, 76, 17, 12, 74] Adap-
tive Cross Approximation (ACA) [11, 13, 18, 12], Sparse Cardinal Sine Decomposition (SCSD) [4]
and wavelet compression techniques [5]. In our work, we used hierarchical matrices, which have
the advantage to be algebraic and kernel independent. To be able to conduct numerical experi-
ments with Schwarz preconditioners, we developed Htool, a C++ library for hierarchical matrices
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parallelized with MPI and OpenMP. Numerical illustrations of the different concepts introduced
in this chapter are provided using Htool.

• Several classical low-rank approximations are presented, namely truncated SVD, fully piv-
oted adaptive cross approximation and partially pivoted adaptive cross approximation.

• We present the different hierarchical structures to define a hierarchical matrix.

• Our implementation of these concepts are presented. In particular, we show how the library
is designed to facilitate easy additions and we present how the library is parallelized for
the building process of hierarchical matrices and the assembly of the GenEO coarse space.

• Finally, we give some software development perspectives for the library.

Publications: This thesis led to the following publications:

• Pierre Marchand, Xavier Claeys, Pierre Jolivet, Frédéric Nataf, Pierre-Henri Tournier
(2019). Boundary integral multi-trace formulations and Optimised Schwarz Methods.
(Submitted to Numerische Mathematik).

• Xavier Claeys, Pierre Marchand (2018). Boundary integral multi-trace formulations and
Optimised Schwarz Methods. (Submitted to Computers and Mathematics with Applica-
tions).

Software development: This thesis led to the implementation of Htool4, a C++ header-only
template library for hierarchical matrices parallelized with MPI and OpenMP. All the numerical
experiments should be available on the webpage of the author shortly.

4https://github.com/PierreMarchand20/htool

https://github.com/PierreMarchand20/htool
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In this chapter, we introduce what are Boundary integral equations (BIE), which are one of the
main focus in our work, and how they can be used to solve elliptic Boundary Value Problems
(BVP). In Section 2.1, we recall what are Lipschitz domains and surfaces since it will be our main
geometric setting. We also introduce relevant function spaces for BIE, that is to say, fractional

13
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Sobolev spaces. Then, in Section 2.2 we define what we call Dirichlet and Neumann traces, and
we present elliptic BVP and their properties. Finally, we introduce the associated Boundary
Integral Operators (BIO) with their properties in Section 2.3 and how they can be used to define
BIE in Section 2.4. We refer to [139, 132, 123] for more details.

2.1 Sobolev spaces
In this section, we define the function spaces that we will need later to introduce BIE. To do so,
we first define the domain on which the function spaces will be defined. Then we introduce the
relevant functional spaces, namely the Sobolev-Slobodeckij spaces Hs. We refer to [123, 139] for
more details.

2.1.1 Lipschitz domains and surfaces
Let Ω ⊂ Rd be an open set and d ≥ 2 an integer, its boundary Γ is defined as follows:

Γ = ∂Ω = Ω ∩ (Rd \ Ω).

Then Ω is said to be a Lipschitz domain, if its boundary can be represented locally as the graph of
a Lipschitz function in an appropriate orthonormal basis. More precisely, we have the following
definitions:

Definition 2.1 (Lipschitz hypograph). Ω is said to be a Lipschitz hypograph if it can be
represented as

Ω =
{

x = (xi)
d
i=1 ∈ Rd |xd < ζ(x′) for all x′ = (xi)

d−1
i=1 ∈ Rd−1

}
,

where ζ : Rd−1 → R is a Lipschitz function.

Definition 2.2 (Lipschitz domain, [123, Definition 3.28]). Ω is said to be a Lipschitz domain if
its boundary Γ is compact and if there exist finite families Wj and Ωj ⊂ Rd with 1 ≤ j ≤ J such
that:

(i) The family {Wj} is a finite open cover of Γ, that is to say, each Wj is an open subset of
Rd and Γ ⊆ ∪jWj.

(ii) Each Ωj can be transformed to a Lipschitz hypograph by a rigid motion, i.e., by a rotation
and a translation.

(iii) Wj ∩ Ω =Wj ∩ Ωj for each j.

Remarks 2.3.

• Ω can be unbounded, even if Γ is bounded.

• If Ω is a Lipschitz hypograph, then

Γ =
{

x = (xi)
d
i=1 ∈ Rd |xd = ζ(x′) for all x′ = (xi)

d−1
i=1 ∈ Rd−1

}
• Polygons in R2 and polyhedrons in R3 are Lipschitz domains.
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2.1.2 Sobolev-Slobodeckij spaces

Let Ω ⊆ Rd be a non-empty open set, we denote by L2(Ω) the usual space of Lebesgue square
integrable functions equipped with the standard norm ‖·‖L2(Ω). We also define the space of
infinitely differentiable functions with compact support in Ω,

D(Ω) := {u ∈ C∞(Ω) with supp(u) ⊆ K for some K, a compact subset of Ω} ,

so that D∗(Ω) is the space of Schwartz distributions. Let α = (α1, . . . , αd), β = (β1, . . . , βd) ∈ Nd,
be some d-tuples, and denote

∂αu :=

(
∂

∂x1

)α1

. . .

(
∂

∂xd

)αd

u and xβ :=
(
xβ1

1 , . . . , x
βd

d

)
,

we define Sobolev spaces as follows: for 0 ≤ p <∞,

Hp(Ω) :=
{
u ∈ L2(Ω) | ∂αu ∈ L2(Ω) for |α| ≤ p

}
,

where ∂αu is a distribution on Ω, and we define its norm

‖u‖2Hp(Ω) :=
∑
|α|≤p

∫
Ω

|∂αu(x)|2 dx.

For spaces of fractional order, we define the Slobodeckij semi-norm: for 0 < µ < 1

|u|2µ,Ω :=

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|d+2µ
dxdy,

so that, with s = r + µ > 0 r an integer and 0 < µ < 1, we can define the following space,
called Sobolev-Slobodeckij space Hs(Ω) := {u ∈ Hr(Ω) | |∂αu|µ,Ω <∞ for |α|= r} equipped with
the norm

‖u‖2Hs(Ω) := ‖u‖2Hr(Ω) +
∑
|α|=r

|∂αu|2µ,Ω.

Then, we define two subspaces of Hs(Ω),

H̃s(Ω) := D(Ω)
Hs(Rd)

and Hs
0(Ω) := D(Ω)

Hs(Ω)
.

We define H−s(Rd) as the dual of Hs(Rd). Then, according to [123, Theorem 3.30], if Ω is
Lipschitz, we have actually Hs(Ω)∗ = H̃−s(Ω) for s ∈ R. Remark that the main difference from
Hs(Ω) and H̃s(Ω) lies in traces at ∂Ω. According to [123, Theorem 3.33 and 3.40], Hs(Ω) =

H̃s(Ω) for −1/2 < s < 1/2 since there is no notion of trace anymore. We associate the following
norms to the negative order Sobolev spaces

‖u‖H−s(Ω) := sup
v∈H̃s(Ω)\{0}

|〈u, v〉H−s(Ω)×H̃s(Ω)|
‖v‖H̃s(Ω)

, for u ∈ H−s(Ω)

‖w‖H̃−s(Ω) := sup
v∈Hs(Ω)\{0}

|〈w, v〉H̃−s(Ω)×Hs(Ω)|
‖v‖H−s(Ω)

, for w ∈ H̃s(Ω).
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Remark 2.4 (Notations). According to [123, Theorem 3.33], if Ω is a Lipschitz domain and s ≥ 0

then H̃s(Ω) = Hs
0(Ω) provided s /∈ {1/2, 3/2, 5/2, . . .}. In particular, we have H1

0 (Ω) = H̃1(Ω).
In the literature, the notation H̃1/2(Ω) is used in the BIE community following [72] but it is
more often denoted H1/2

00 (Ω) in the FEM community following [111].

2.1.3 Sobolev spaces on the boundary
We extend the previous definitions to Sobolev spaces on boundaries Γ = ∂Ω and Γ0 ( Γ, which
corresponds to a Lipschitz curve in 2D and a Lipschitz surface in 3D. For the sake of completeness,
we recall these definitions in this section.

Any Lipschitz domain Ω has a surface measure σ, and an outward unit normal ν that exists
σ-almost everywhere on Γ. Using the notations from Definition 2.2 and [139, Theorem 2.7.1.
(Rademacher)], we have that a lipschitz function on an open set of Rd is differentiable almost
everywhere. In particular, we have

‖∇ζ‖L∞(Rd−1)d−1 ≤M

where M is a Lipschitz constant for ζ. Then, for a Lipschitz hypograph, we have

dσ =
√
1 + |∇ζ(x′)|2 dx′ and n(x) = (−∇ζ(x′), 1)√

1 + |∇ζ(x′)|2
,

for x ∈ Γ. In particular, we deduce that n ∈ (L∞(Γ))d.
Let Ω be a Lipschitz domain, we define Sobolev-Slobodeckij spaces on Γ = ∂Ω exactly as for

(d − 1)-dimensional domains but using surface integral. As in [72, Section 1.3.3], we define the
associated norm as

‖u‖2Hs(Γ) := ‖u‖2L2(Γ) +

∫
Γ

∫
Γ

|u(x)− u(y)|2

|x − y|d+2s
dσ(x)dσ(y),

for 0 < s < 1, so that Hs(Γ) := {u | ‖u‖Hs(Γ) <∞}. Since Ω is a Lipschitz domain, we could not
define a similar space for s > 1. Similarly to Hs(Rd), we define H−s(Γ) as the dual of Hs(Γ)
with the norm

‖u‖H−s(Γ) = sup
v∈Hs(Γ),v 6=0

|〈u, v〉H−s(Γ)×Hs(Γ)|
‖v‖Hs(Γ)

.

We also need to define Sobolev spaces on a part Γ0 ( Γ of the boundary, meaning that Γ0

itself has a boundary. Let us denote

D(Γ) =
{
u |u = U |Γ for some U ∈ D(Rd)

}
,

D(Γ0) = {φ ∈ D(Γ) | supp(φ) ⊆ Γ0} .

Then, we define

Hs(Γ0) := {U |Γ0
|U ∈ Hs(Γ)} ,

H̃s(Γ0) := D(Γ0)
Hs(Γ)

.

Then, the norm of H̃s(Γ0) for 0 ≤ s ≤ 1 is given by ‖u‖H̃s(Γ0)
:= ‖EΓ0

(u)‖Hs(Γ), where EΓ0
(u)

is the extension by zero of u.
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Similarly to Hs-norms defined on Ω ⊆ Rd, we have the following properties for Sobolev spaces
on Lipschitz open surfaces such as Γ0

• If ∂Γ = ∅, then Hs(Γ) = H̃s(Γ) for |s|≤ 1.

• According to [123, Theorem 3.33 and 3.40], H̃s(Γ0) = Hs(Γ0) for −1/2 < s < 1/2.

• According to [123, Theorem 3.30], if Ω ⊂ Rd is a Lipschitz domain, then Hs(Γ0)
∗ =

H̃−s(Γ0) and H̃s(Γ0)
∗ = H−s(Γ0) for |s|≤ 1.

We also need to define the operators of extension by zero and restriction by duality on these
spaces: for u ∈ H−1/2(Γ)

〈u|Γ0
, ψ〉H−1/2(Γ0)×H̃1/2(Γ0)

:= 〈u,EΓ0
(ψ)〉H−1/2(Γ)×H̃1/2(Γ) for ψ ∈ H̃1/2(Γ0),

and for u ∈ H̃−1/2(Γ0)

〈EΓ0(u), ϕ〉H̃−1/2(Γ)×H1/2(Γ) := 〈u, ϕ|Γ0〉H̃−1/2(Γ0)×H1/2(Γ0)
for ϕ ∈ H1/2(Γ).

For 0 < s < 1 and Γ ⊆ ∂Ω, we will use the dual norms:

‖u‖H−s(Γ) := sup
v∈H̃s(Γ)\{0}

〈u, v〉H−s(Γ)×H̃s(Γ)

‖v‖H̃s(Γ)

, for u ∈ H−s(Γ)

‖w‖H̃−s(Γ) := sup
v∈Hs(Γ)\{0}

〈w, v〉H̃−s(Γ)×Hs(Γ)

‖v‖Hs(Γ)
, for w ∈ H̃−s(Γ).

2.1.4 Trace operators
Trace operators are a fundamental tool to build boundary integral operators. It is the gener-
alisation of the notion of restriction for a function u ∈ Hs(Ω) on its boundary ∂Ω = Γ with
1/2 < s < 3/2. The trace operator can also be defined for functions only locally in Hs(Ω),

Hs
loc(Ω) := {u ∈ C∞

comp(Ω)
∗ |ϕu ∈ Hs(Ω),∀ϕ ∈ C∞

comp(Ω)},

where C∞
comp(Ω) := {u|Ω |u ∈ D(Rd)}.

Remarks 2.5. We can do the same remarks as [139, Remark 2.6.2.].

(i) The space Hs
loc(Ω) contains no restriction on the growth of functions at infinity.

(ii) By choosing ϕ equal to one, we see that for bounded domain Ω, Hs
loc(Ω) and Hs(Ω) coincide.

(iii) Let Ω ⊂ Rd be a bounded domain. Then, the growth of functions from Hs
loc(Rd \ Ω) is

not restricted towards infinity, and thus relevant function spaces need to be defined when
introducing partial differential equations on unbounded domains. But notice that the growth
of functions is restricted in every bounded neighborhood of ∂Ω.

The following theorem gives the values of s for which the trace operator has a meaning and,
it also shows that its range is given by fractional Sobolev spaces.

Theorem 2.6 (Trace theorem, [139, Theorem 2.6.8.]). Let Ω− ⊂ Rd be a bounded Lipschitz
domain with boundary Γ = ∂Ω− and Ω+ = Rd \ Ω−,



18 CHAPTER 2. Boundary integral equations

(i) For 1/2 < s < 3/2, there exists a continuous, linear trace operator γD : Hs
loc(Rd) →

Hs−1/2(Γ) with γDϕ = ϕ|Γ for all ϕ ∈ D(Rd).

(ii) For 1/2 < s < 3/2 and l ∈ {−,+}, there exists one-sided, continuous, linear trace operators
γlD : Hs

loc(Ω
l) → Hs−1/2(Γ) with γlDϕ = ϕ|Γ for all ϕ ∈ D(Ωl) and γ+Dϕ = γ−Dϕ = γDϕ

almost everywhere for all u ∈ Hs
loc(Rd).

When it is relevant, we denote γΩD the Dirichlet trace taken from the interior of Ω.

2.2 Elliptic boundary value problems
We introduce here the model problems we want to solve for Ω, a bounded Lipschitz domain. We
refer to [139, 132] for more details.

2.2.1 Model problem
Let us define a generic differential operator L as follows

L(u) := −div(A∇u) + 2b · ∇u+ cu, (2.1)

where A ∈ Rd×d is positive definite, b ∈ Rd and c ∈ R. This generic differential operator
coincides with several well-known partial differential operators:

(i) With A = Id, b = 0 and c = 0, we obtain the Laplace operator L = −∆,

(ii) With A = Id, b = 0 and c = −k2, we obtain the Helmholtz operator L = −∆− k2 where
k > 0 is usually called the wave number.

We denote the bilinear form associated with the differential operator defined in Equation (2.1)

a(u, v) :=

∫
Ω

A∇u · ∇v + 2(b · ∇u)v + cuv dx.

We also need to define the formal adjoint of L

L∗(v) := −div(A∇v)− 2b · ∇v + cv,

2.2.2 Conormal derivative and Green’s formulas
Elliptic boundary problems usually consists of a differential operator such as L defined in Equa-
tion (2.1) and associated boundary conditions. These boundary conditions usually gives the
value of the trace or the normal derivative of the unknown function. We defined the trace op-
erator in Section 2.1.4, and we now define the conormal derivative. For u ∈ H2(Ω), we have
A∇u ∈ H1(Ω)d so that we can define the conormal derivative

γΩN (u) := AnΩ · γΩD∇u ∈ L2(Γ), (2.2)

where nΩ is the outer normal relative to Ω. For A = Id, notice that γΩN is exactly the usual normal
derivative. Then, using Gauss’ theorem (cf. [139, Theorem 2.7.3.]), we obtain the following
Green’s first formulas [139, Theorem 2.7.4]
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• for u ∈ H2(Ω) and v ∈ H1(Ω),

a(u, v) = (L(u), v)L2(Ω) +

∫
Γ

γΩN (u)γΩD(v)dσ(x) (2.3)

• for u ∈ H1(Ω) and v ∈ H2(Ω),

a(u, v) = (u,L∗(v))L2(Ω) +

∫
Γ

γΩD(u)γ̃ΩN (v)dσ(x) (2.4)

where γ̃ΩN (v) := γΩN (v) + 2b · nΩγ
Ω
D(v) is the modified conormal derivative. More generally, we

can extend the definition of the conormal derivative to the space

H1
L(Ω) := {u ∈ H1

loc(Ω) | L(u) ∈ L2(Ω)},

using the following lemma

Lemma 2.7 ([123, Lemma 4.3]). Suppose that Ω is a Lipschitz domain. If u ∈ H1(Ω) and
f ∈ H̃−1(Ω) satisfy

L(u) = f on Ω,

then there exists g ∈ H−1/2(Ω) such that

a(u, v) = 〈f, v〉H̃−1(Ω)×H1(Ω) + 〈g, γDv〉H−1/2(Γ)×H1/2(Γ) for v ∈ H1(Ω).

Furthermore, g is uniquely determined by u and f , and we have

‖g‖H−1/2(Γ) ≤ C(‖u‖H1(Ω) + ‖f‖H̃−1(Ω)).

We define the weak conormal derivative γΩN (u) := g for u ∈ H1
L(Ω) and g from Lemma 2.7.

According to this lemma, γΩN : H1
L(Ω) → H−1/2(Γ) is a bounded linear operator and it extends

the relation given in Equation (2.3) for u ∈ H1
L(Ω). Noticing that H1

L(Ω) = H1
L∗(Ω), we can

extend similarly the definition of the modified conormal derivative to γ̃NΩ
: H1

L(Ω) → H−1/2(Γ)
so that it also extends the relation given Equation (2.4) for v ∈ H1

L(Ω). Remark that the
definition of the conormal derivative only depends on the principal part of L i.e., −div(A∇·).
Indeed, we have

〈g, γDv〉H−1/2(Γ)×H1/2(Γ) = 〈f, v〉H̃−1(Ω)×H1(Ω) − a(u, v) = 〈L(u), v〉H−1/2(Γ)×H1/2(Γ) − a(u, v),

and the sum of the terms of lower order in the last expression is equal to zero.
According to Theorem 2.6 and the previous definition, the operator γΩD (resp. γΩN ) continu-

ously maps H1
loc(Ω) to H1/2(∂Ω) (resp. H1

L(Ω) to H−1/2(∂Ω)). In these definitions, the trace is
taken from the interior of Ω. We shall denote trace operators γΩc (φ) := (γΩD,c(φ), γ

Ω
N,c(φ)) defined

as γΩ(φ) = (γΩD(φ), γΩN (φ)) except that the traces are taken from the exterior.
This allows us to define the jump and the mean value of these traces as follows:

[γΩ] := γΩ − γΩc and {γΩ} :=
γΩ + γΩc

2
. (2.5)

We will drop the subscript referring to Ω when there is no ambiguity, which will be mostly the
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case in this chapter.

2.2.3 Boundary value problems
Let us suppose that the boundary of Ω is split into two disjoint parts ∂Ω = ΓD ∪ ΓN with
ΓD ∩ ΓN = ∅. We can define the following boundary value problem (BVP):

L(u) = f in D∗(Γ)

γD(u) = gD in H1/2(Γ)

γN (u) = gN in H−1/2(Γ)

(2.6)

where f ∈ H̃−1(Ω), gD ∈ H1/2(Ω) is called Dirichlet data and gN ∈ H−1/2(Ω) is called Neumann
data. If ΓD = Γ, the BVP (2.6) is called first or Dirichlet BVP, and if ΓN = Γ, second or
Neumann BVP. To study the well-posedness of this BVP, we introduce the weak formulation of
BVP (2.6): Find u ∈ H1(Ω) with γD(u) = gD on ΓD such that

a(u, v) = 〈f, v〉H̃−1(Ω)×H1(Ω) + 〈gN , γD(v)〉H−1/2(ΓN )×H̃1/2(ΓN ) ∀v ∈ H1
D(Ω) (2.7)

where

H1
D(Ω) :=

{
v ∈ H1(Ω) | γD(v)|ΓD

= 0
}
.

Notice that, since v ∈ H1
D(Ω) in Equation (2.7), γD(v)|ΓN

∈ H̃1/2(ΓN ) so that the second term
in right-hand side of Equation (2.7) makes sense.

Remark 2.8. Exterior problems can be formulated in the same way, but using functional spaces
that take into account decay conditions at infinity. For example:

• For c ≥ 0 and d = 3, |u(x)| = O(|x|−1) for |x| → ∞,

• For the Helmholtz equation, we have the Sommerfeld’s radiation conditions

|u(x)| = O(|x|−
d−1
2 )∣∣∣∣∂u∂r (x)− iku(x)

∣∣∣∣ = o(|x|−
d−1
2 )

 for |x| → ∞,

where r = |x| and ∂u
∂r = x

|x| · ∇u. To lighten the presentation, we do not introduce all the
different functions spaces and we refer to [139, Section 2.9.2.4] for more details.

2.2.4 Well-posedness
We define the main hypotheses on the bilinear form a that will be used to prove the well-posedness
of Equation (2.7).

Definition 2.9 (Strong ellipticity). Let a : H ×H → C be a sesquilinear form. We say that a
is strongly H-elliptic if

Re(σa(u, u)) ≥ c‖u‖2H ∀u ∈ H,

where c > 0 and σ ∈ C.
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Definition 2.10 (Ellipticity). Let a : H × H → C be a sesquilinear form. We say that a is
H-elliptic if

|a(u, u)| ≥ c‖u‖2H ∀u ∈ H,

with c > 0.

Remark 2.11 (Terminology). We followed the terminology from [102] and we make the same
remark as [102, Remark 5.2.1]: in the literature H-ellipticity may refer to the stronger condition
of strong H-ellipticity (see [139]). But remark that strong H-ellipticity implies H-ellipticity
(cf. [139, Remark 2.1.50.3]).

Definition 2.12 (Coercivity). Let H and U be two Hilbert spaces such that H ⊂ U ⊂ H∗ with
the continuous and dense embedding H ⊂ U . Let a : H ×H → C be a sesquilinear form. We say
that a is H-coercive if

Re(σa(u, u)) ≥ c‖u‖2H − CU‖u‖2U ∀u ∈ H,

where c > 0, CU > 0 and σ ∈ C.

Typically, we will have U = L2(Γ) and H = H1(Γ). Let us recall two important tools to
prove well-posedness.

Theorem 2.13 (Lax-Milgram Theorem, [139, Lemma 2.1.51]). Let H be a Hilbert space, a :
H ×H → C a sesquilinear form and b : H → C a continuous bilinear form. If a is H-elliptic
and continuous, i.e.

|a(u, v)| ≤ C‖u‖H‖v‖H ∀u, v ∈ H,

then, there exists a unique u ∈ H that solves the abstract variational problem: find u ∈ H such
that

a(u, v) = b(v), ∀v ∈ H.

Theorem 2.14 (Fredholm’s alternative, [139, Theorem 2.1.60]). Let H ⊂ U ⊂ H∗ with a
compact and dense embedding between H and U . Let the sesquilinear form a(·, ·) : H×H → C be
H-coercive and we denote A : H → H∗ its associated operator defined by 〈Au, v〉H∗×H := a(u, v).

Then, we have for all λ ∈ C either (A − λI)−1 : H∗ → H is a bounded operator or λ is an
eigenvalue of A. In the first case, the variational problem: Find u ∈ H such that

a(u, v)− λ(u, v)U = 〈f, v〉H∗×H , ∀v ∈ H,

has a unique solution for all f ∈ H∗. In the second case, the eigenspace E(λ) = ker(A−λI) 6= {0}
is finite dimensional.

The following lemmas show that the bilinear form a defined in Equation (2.7) is continuous
and H1(Ω)-coercive.

Lemma 2.15 ([139, Lemma 2.10.1] ). The sesquilinear form a defined in Equation (2.7) is
coercive on H1(Ω), i.e.

Re(a(u, u)) ≥ C1‖u‖2H1(Ω) − C2‖u‖2L2(Ω), ∀u ∈ H1(Ω).
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Notice that it is also true for every subspace of H1(Ω) such as H1
D(Ω). Besides, under certain

conditions, the bilinear form a defined Equation (2.7) is also H1-elliptic.

Lemma 2.16 ([139, Corollary 2.10.2]). The bilinear form a defined in Equation (2.7) is

• H1(Ω)-elliptic, if aminc > |b|2,

• H1
D(Ω)-elliptic, if |ΓD| > 0 and b = 0 and c = 0

• elliptic on H1(Ω)/C, if b = 0 and c = 0,

where amin is the smallest eigenvalue of A.

Using the previous lemmas, we deduce the following theorem concerning the well-posedness
of Equation (2.7).

Theorem 2.17 ([139, Theorems 2.10.4, 2.10.5 and 2.10.6]). Let us consider the variational
formulation given in Equation (2.7) with gD ∈ H1/2(Γ), gN ∈ H−1/2(Γ) and f ∈ (H1

D(Ω))∗. The
Fredholm alternative is applicable: either, for every boundary conditions and right-hand side,
Equation (2.7) admits a unique solution u ∈ H1

D(Ω) that depends continuously on the right-
hand side, or zero is an eigenvalue of the operator associated with a(·, ·) that corresponds to a
finite-dimensional eigenspace.

Furthermore, we have

• if aminc > |b|2, the first case applies in the Fredholm’s alternative,

• if c = 0, |b| = 0 and |ΓD| > 0, the first case applies in the Fredholm’s alternative,

• if c = 0, |b| = 0 and |ΓD| = 0, the first case applies in the Fredholm’s alternative, but with
H = H1(Ω)/C. In other words, the solution is unique up to a constant function.

Proof. The fact that we can apply Fredholm’s alternative is a direct application of Theorem 2.14
and Lemma 2.15. Then, using the fact that a can be elliptic under certain conditions according
to Lemma 2.16 shows that a is in fact in the first case of the Fredholm’s alternative.

In particular, we deduce that the Laplace equation is well-posed as soon as |ΓD| > 0 and the
Helmholtz equation is well-posed as soon as k2 is not an eigenvalue of the Laplacian operator.
Again, these results can be adapted to exterior problems considering the relevant functions
spaces, in particular weighted Sobolev spaces for the Laplace and Helmholtz equation to control
the decay of the considered functions at infinity.

2.3 Boundary integral operators
The main focus of our work is the study of Boundary Integral Equations (BIE) and how to solve
them numerically. We introduce here Boundary Integral Operators (BIO) on which BIE are built
on. We refer to [139, 132] for more details.

2.3.1 Representation formula and surface potentials
We set v := c+‖b‖2A with ‖x‖2A := xT Ax for every x ∈ Rd, and λ =

√
v if v > 0 and λ = −i

√
|v|

otherwise. To define the relevant BIO of the equation L(u)(x) = 0 for x ∈ Ω ⊂ Rd, a Lipschitz
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domain, we need the fundamental solution L(GL)(x) = δ(x) in the sense of distributions, where
δ(x) is the Dirac delta function:

GL(x) =



e〈b,x〉A

2π
√

det A
ln
(

1

‖x‖A

)
for d = 2 and λ = 0,

e〈b,x〉A

4
√

det A
iH

(1)
0 (iλ‖x‖A) for d = 2 and λ 6= 0,

1

4π
√

det A
e〈b,x〉A−λ‖x‖A

‖x‖A
for d = 3,

(2.8)

where H(1)
0 stands for the Hankel function of order zero and of first kind (see [130, Section 10.2]).

Remark that the function GL is singular for x = 0 and analytic for x 6= 0.
With the fundamental solution, we can define the two following operators:
• Single Layer Potential

SLL(q)(x) :=
∫
Γ

GL(x − y)q(y)dσ(y), ∀x ∈ Rd \ Γ,

• Double Layer Potential1

DLL(v)(x) :=
∫
Γ

(γ̃NGL)(x − y)v(y)dσ(y), ∀x ∈ Rd \ Γ,

for all (v, q) ∈ H1/2(Γ) ×H−1/2(Γ). These two operators have the very interesting property to
produce solutions of L(u) = 0 in Rd \ Γ according to the following theorem
Theorem 2.18 ([139, Theorem 3.1.1]). Let v ∈ L1(Γ),

• We have (L ◦SLL)(u)(x) = (L ◦DLL)(u)(x) = 0 for every x ∈ Rd \ Γ

• The functions SLL(v) and DLL(v) are infinitely differentiable in Rd \ Γ.
Besides, the functions produced by these operators naturally satisfy the necessary conditions

at infinity (see Remark 2.8). It means that to solve the BVP (2.6) with f = 0, we can use the
ansatz SLL(q) and DLL(v). Thus, it remains to find a trace v such that these ansatz also satisfy
the boundary conditions given on Γ.

More precisely, we have the representation formula
Theorem 2.19 (Representation formula or Green’s thrid formula, [139, Theorem 3.1.6]). Let Ω
be a bounded Lipschitz domain. For any function u ∈ H1

L(Rd \ Γ) where

H1
L(Rd \ Γ) := {u ∈ L2(Rd) |u|Ω ∈ H1

L(Ω) and u|Rd\Ω ∈ H1
L(Rd \ Ω)},

with compact support and L(u) = 0 in Ω and Rd \ Ω2

u = SLL([γN (u)]) + DLL([γD(u)]) := GL([γ(u)]),

1Usually the kernel is denoted γ̃N,yG(x − y), where the subscript y indicates that the modified conormal
derivative is applied to the y-variable. But here, we already applied the conormal derivative so that our definition
is the same as in [139, p102] multiplied by −1. This allows us to only have plus signs in the representation formula
and afterward.

2Notice that we also do not have the same definition of the normal n given in Equation (2.2) and of the Dirichlet
and Neumann jumps given in Equation (2.5) as in [139], so that the signs are different.
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where GL : H1/2(Γ)×H−1/2(Γ) → H1
L(Rd \ Γ) such that GL(v, q) = SLL(q) + DLL(v) for every

(v, q) ∈ H1/2(Γ)×H−1/2(Γ).

This last theorem can be extended to functions with unbounded support in 3D for the Laplace
equation [139, Theorem 3.1.12.], Helmholtz equation [139, Theorem 3.1.13.] and if aminc >
|b|2 [139, Theorem 3.1.11]. In particular, we have the following corollary

Corollary 2.20. Let u ∈ H1
loc(Ω) satisfy the equation L(u) = 0 in Ω. If Ω is unbounded, we also

make the additionally hypothesis that d = 3, L corresponds to the Laplace equation or Helmholtz
equation, or aminc > |b|2 and u satisfy the appropriate conditions at infinity. Then we have the
representation formula

GL(γ(u))(x) =
{
u(x) for x ∈ Ω,

0 for x ∈ Rd \ Ω.

Similarly, if v ∈ H1
loc(Rd \ Ω) satisfies L(u) = 0 in Rd \ Ω (and the same type of hypothesis as

previously if Ω is bounded), then we have

GL(γc(v))(x) =
{

− v(x) for x ∈ Rd \ Ω,
0 for x ∈ Ω.

Proof. If Ω is bounded, we use Theorem 2.19 and we extend u by zero in Rd \ Ω.
If Ω is unbounded, Theorem 2.19 can be extended to functions with unbounded support in 3D

for Laplace equation, Helmholtz equation and aminc > |b|2 according to [139, Theorem 3.1.11,
3.1.12 and 3.1.13]. In these cases, we do as previously, extending u by zero in Rd \Ω. The same
reasoning can be applied to the case where v ∈ H1

loc(Rd \ Ω).

Theorem 2.21 (Mapping properties, [40, Theorem 1] or [139, Theorem 3.1.16]). Let Ω be a
Lipschitz domain. The single and double layer potentials are continuous with the following
mappings:

SLL : H−1/2(Γ) → H1
loc(Rd), and DLL : H1/2(Γ) → H1

L(Rd \ Γ).

In particular, GL : H1/2(Γ) × H−1/2(Γ) → H1
L(Rd \ Γ) is continuous. We also have the

following property on how the jumps of these potentials occur across the interface Γ

Theorem 2.22 (Jump relations, [139, p. 3.3.1.]). Let Ω be a Lipschitz domain. We have for
every q ∈ H−1/2(Γ) and v ∈ H1/2(Γ)

[(γD ◦ SLL)(q)] = 0, [(γD ◦ DLL)(v)] = v, in H1/2(Γ),

[(γN ◦ SLL)(q)] = q, [(γN ◦ DLL)(v)] = 0, in H−1/2(Γ).

These relations can be rewritten in a more compact form as [γ]◦GL = Id on H1/2(Γ)×H−1/2(Γ).

In other words, the single layer potential SLL (resp. the double layer potential DLL) applied
to q ∈ H−1/2(Γ) (resp. v ∈ H1/2(Γ)) produces a solution of the equation L(u) = 0 in Rd \Γ and
the appropriate conditions at infinity, with a continuous Dirichlet trace and a jump equal to q
for his Neumann trace (resp. with a continuous Neumann trace and a jump equal to v for his
Dirichlet trace).
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2.3.2 Definitions and their properties

We define the following Boundary Integral Operators (BIO):

• Weakly singular operator or single layer potential

VL(q) := (γD ◦ SLL)(q), ∀q ∈ H−1/2(Γ),

• Double layer potential(
1

2
Id +KL

)
(v) := (γD ◦ DLL)(v), ∀v ∈ H1/2(Γ),

• Adjoint double layer potential(
1

2
Id +K′

L

)
(q) := (γN ◦ SLL)(q), ∀q ∈ H−1/2(Γ),

• Hypersingular integral operator

WL(v) := (γN ◦ DLL)(v), ∀v ∈ H1/2(Γ),

where Id denotes the identity operator.

We give a few interesting properties about these BIO. First, they are all linear and continuous
operators according to the following theorem

Theorem 2.23 (Mapping properties, [139, Theorem 3.1.16]). Let Ω be a Lipschitz domain, the
BIO defined previously are continuous for the following mappings:

• VL : H−1/2(Γ) → H1/2(Γ),

• 1
2 Id +KL : H1/2(Γ) → H1/2(Γ),

• 1
2 Id +K′

L : H−1/2(Γ) → H−1/2(Γ),

• WL : H1/2(Γ) → H−1/2(Γ).

Proof. It is a direct application of Theorem 2.21 with the continuous properties of γD and γN ,
see Theorem 2.6 and Section 2.2.2.

Then, we have an explicit expression of these operators for the differential operator L defined
in Equation (2.1) (and others actually, elasticity problems for example). It is because we have
these explicit expressions that we can discretize numerically the BIE that we will derive later.

• For q ∈ L∞(Γ), according to [139, p. 3.3.5.], we have

VL(q) =

∫
Γ

GL(x − y)q(y)dσ(y), ∀x ∈ Rd
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• For v, q ∈ C1
pw, and if we assume that Γ is C2

pw, according to [139, Corollaries 3.3.14. and
3.3.15.], we have(

Id

2
+ KL

)
(v)(x) = v(x)

2
+

∫
Γ

(γ̃N ◦GL)(x − y)v(y)dσ(y),(
Id

2
+ K′

L

)
(q)(x) = q(x)

2
+

∫
Γ

(γN ◦GL)(x − y)q(y)dσ(y),

where the second term in each expression is an improper integral. In practice, they are
evaluated using the Cauchy principal value.

• There exist several representations of the hypersingular operator W . The following is
obtained by means of integration by parts: for every u, v ∈ H1/2(Γ)

〈WL u, v〉H−1/2(Γ)×H1/2(Γ) =

∫
Γ×Γ

GL(x − y)(curlΓ,A,0(v)(x) · curlΓ,A,0(u)(y))dσ(x)dσ(y)

+ c

∫
Γ×Γ

GL(x − y)v(x)u(y)(A1/2n(x) · A1/2n(y))dσ(x)dσ(y),

where curlΓ,A,f(u) := (A1/2∇u∗ + uA1/2f) × A1/2n for u ∈ H1/2(Γ) and u∗ its extension
in Ω.

Remark that for A = I and b = 0, curlΓ,I,0 is the usual surface curl operator of a tangent vector.

2.3.3 Calderón projector
In this section, we derive some useful relations between the BIO introduced previously. The idea
comes from the following remark: using Corollary 2.20, we see that for u ∈ H1

loc(Ω) such that
L(u) = 0 (and u satisfies the appropriate condition at infinity), we have γ ◦ GL(γ(u)) = γ(u).
Taking u = GL((v, q)) with (v, q) ∈ H1/2(Γ) × H−1/2(Γ), we see that γ ◦ GL is a projector on
H1/2(Γ)×H−1/2(Γ). In fact, we have the following result

Theorem 2.24 (Calderón projector, [139, Proposition 3.6.2.]). We define the Cauchy data set
CL(Ω) as:

CL(Ω) := {γ(u) | L(u) = 0 in Ω and u satisfies
the appropriate conditions at infinity if Ω is unbounded }.

Then PL := γ ◦ GL : H1/2(Γ) × H−1/2(Γ) → H1/2(Γ) × H−1/2(Γ) is a continuous projector,
so called Calderón projector whose range coincides with CL(Ω), i.e. for any (v, q) ∈ H1/2(Γ) ×
H−1/2(Γ) we have

(v, q) ∈ CL(Ω) ⇐⇒ (γ ◦ GL)((v, q)) = (v, q).

By definition, we can also write the Calderón projector as follows: for every (v, q) ∈ H1/2(Γ)×
H−1/2(Γ),

PL((v, q)) = γ ◦ GL((v, q)) =

( Id
2 + KL VL

WL
Id
2 + K′

L

)(
v
q

)
=

(
Id +AL

2

)
(v, q).

Using the jump relations from Theorem 2.22, AL can also be rewritten as follows:

AL = 2{γ} ◦ GL
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such that clearly A2
L = Id. In particular, we have the following corollary:

Corollary 2.25 (Calderón identities, [139, Proposition 3.6.4.]). We have the following relations,
called Calderón identities

KL VL = −VL K′
L on H−1/2(Γ), WL KL = −K′

L WL on H1/2(Γ), (2.9a)

and

VL WL =
Id

4
− K2

L on H1/2(Γ), WL VL =
Id

4
− K′2

L on H−1/2(Γ). (2.9b)

Proof. According to Theorem 2.24, we have P2
L = PL on CL(Ω), which can be rewritten( Id

4 + KL +K2
L +VL WL VL +KL VL +VL K′

L
WL +WL KL +K′

L WL WL VL + Id
4 + K′

L +K′2
L

)
=

( Id
2 + KL VL

WL
Id
2 + K′

L

)
.

Remark 2.26. The operators VL and WL have the order 1 and −1 respectively. From Equa-
tion (2.9b), we see that the product of one with the other defines a operator of order 0. This
property can be used to define efficient preconditioners [146, 25, 94], usually called Calderón
preconditioners.

2.3.4 Dirichlet-to-Neumann operator

In this section, we describe an interesting relation between the BIO introduced previously and
the Dirichlet-to-Neumann operator (also called Steklov-Poincaré operator) defined as follows:
Let gD ∈ H1/2(Γ), we consider a Dirichlet problem{

L(u) = 0 in Ω,

γD(u) = gD in Γ.

Assume this problem is well-posed (see Section 2.2.4 to see conditions on the coefficients of
the differential operator L to satisfy this assumption), the mapping gD 7→ γN (u) defines the
Dirichlet-to-Neumann operator denoted DtNL. This operator is clearly continuous from H1/2(Γ)
to H−1/2(Γ). Besides, it can be expressed using BIO as proved in the next lemma.

Theorem 2.27. The Dirichlet-to-Neumann operator can be written explicitly as

DtNL = (VL)
−1

(
Id
2

− KL

)
=

(
Id
2

− K′
L

)−1

WL .
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Proof. According to Theorem 2.24, for every (v, q) ∈ CL(Ω), we have

PL((v, q)) = (v, q) ⇔


(

Id

2
+ KL

)
v + VL q = v

WL v +

(
Id
2

+ K′
L

)
q = q

⇔


(VL)

−1

(
Id
2

− KL

)
v = q(

Id
2

− K′
L

)−1

WL v = q.

Since (v, q) ∈ CL(Ω), we have in particular DtNL(v) = q so that we deduce the expected relations.

2.4 Integral equations for elliptic boundary value problems

We have now everything to define Boundary Integral Equations (BIE). There are several ways to
formulate BIE related to the BVP (2.6). One way is to use the single or double layer potential
as ansatz, and another possibility is to use the Calderón projector. The former give rise to the
indirect method, while the latter is used to formulate the direct method.

2.4.1 The indirect method

As we have seen previously, for every v ∈ H1/2(Γ) and q ∈ H−1/2(Γ), SLL(q) and DLL(v) satisfy
L(u) = 0 with the appropriate conditions at infinity if Ω is unbounded. So that it remains to
find v or q such that SLL(q) and DLL(v) also satisfy the boundary conditions given on Γ. In the
case of a Dirichlet problem with gD ∈ H1/2(Γ), we then can look for q ∈ H−1/2(Γ) such that
γD ◦ SLL(q) = VL(q) = gD, or for v ∈ H1/2(Γ) such that γD ◦ DLL(v) = ( 12 Id +KL)(v) = gD.
Then, we can multiply by a test function, which gives the following variational formulations:

• For Dirichlet problems, taking the Dirichlet trace of the single layer potential: Find q ∈
H−1/2(Γ) such that

〈VL(q), r〉H1/2(Γ)×H−1/2(Γ) = 〈gD, r〉H1/2(Γ)×H−1/2(Γ), ∀r ∈ H−1/2(Γ). (2.10)

Or, taking the Dirichlet trace of the double layer potential: Find v ∈ H1/2(Γ) such that〈(
1

2
Id +KL

)
(v), r

〉
H1/2(Γ)×H−1/2(Γ)

= 〈gD, r〉H1/2(Γ)×H−1/2(Γ), ∀r ∈ H−1/2(Γ).

(2.11)

• For Neumann problems, taking the Neumann trace of the double layer potential: Find
v ∈ H1/2(Γ) such that

〈WL(v), w〉H−1/2(Γ)×H1/2(Γ) = 〈gN , w〉H−1/2(Γ)×H1/2(Γ), ∀w ∈ H1/2(Γ). (2.12)
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Or, taking the Neumann trace of the single layer potential: Find q ∈ H−1/2(Γ) such that〈(
1

2
Id +K′

L

)
(v), w

〉
H−1/2(Γ)×H1/2(Γ)

= 〈gN , w〉H−1/2(Γ)×H1/2(Γ), ∀w ∈ H1/2(Γ).

(2.13)

2.4.2 The direct method
This method is based on the Calderón projector and Theorem 2.24. For Dirichlet problems, we
have that q ∈ H−1/2(Γ) is solution if and only if (gD, q) is a fixed point of the Calderón projector

PL((gD, q)) =

 Id
2

+ KL VL

WL
Id

2
+ K′

L

[gD
q

]
=

[
gD
q

]
.

Taking the first row of the previous relation, we obtain the following variational formulation:
find q ∈ H−1/2(Γ) such that

〈VL(q), r〉H1/2(Γ)×H−1/2(Γ) =
1

2
〈gD, r〉H1/2(Γ)×H−1/2(Γ) − 〈KL(gD),r〉H1/2(Γ)×H−1/2(Γ),

∀r ∈ H−1/2(Γ).
(2.14)

Taking the second row, gives the following variational formulation: find q ∈ H−1/2(Γ) such that

1

2
〈q, w〉H−1/2(Γ)×H1/2(Γ) − 〈K′

L(q), w〉H−1/2(Γ)×H1/2(Γ) = 〈WL(gD),w〉H−1/2(Γ)×H1/2(Γ),

∀w ∈ H1/2(Γ).
(2.15)

Similarly, for Neumann problem, we can obtain the following formulations. Find v ∈ H1/2(Γ)
such that

〈WL(v), w〉H−1/2(Γ)×H1/2(Γ) =
1

2
〈gN , w〉H−1/2(Γ)×H1/2(Γ) − 〈K′

L(gN ),w〉H−1/2(Γ)×H1/2(Γ),

∀w ∈ H1/2(Γ).
(2.16)

Find v ∈ H1/2(Γ) such that

1

2
〈v, r〉H1/2(Γ)×H−1/2(Γ) − 〈KL(v), r〉H1/2(Γ)×H−1/2(Γ) = 〈VL(gN ),r〉H1/2(Γ)×H−1/2(Γ),

∀r ∈ H−1/2(Γ).
(2.17)

Remarks 2.28 (Comparaison between Direct and Indirect methods). As in [139, Section 3.4.3],
we can formulate the following remarks:

• The right-hand side for the direct formulation is defined by an integral operator, while
the right-hand side of the indirect formulation is just a L2(Γ) inner product between the
boundary data and the test functions.

• Solving the direct formulation gives directly the trace of the solution. The indirect formu-
lation only gives a boundary function that needs to be evaluated by means of potentials.
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• To compute the solution in Ω, one needs to use only one potential with the indirect formu-
lation by definition of the ansatz. But two potentials are needed for the direct formulation
(see Corollary 2.20).

According to the previous remarks, a rule of thumb for choosing between these two methods
is to use the direct formulation when the unknown boundary data is needed, or the indirect
formulation if the unknown solution needs to be computed in many points of Ω.

2.4.3 Well-posedness
As in Section 2.2.4, we can use Lax-Milgram theorem (Theorem 2.13) or Fredholm’s theory
(Theorem 2.14), depending on the properties of the bilinear forms introduced in the two last
sections.

We can differentiate two types of formulation among those introduced previously: those
that use VL and WL, called formulations of first kind, and those that use KL and K′

L, called
formulations of second kind.

In the case of formulations of first kind, the same approach as in Section 2.2.4 can be used.
Cases where the previous bilinear forms are elliptic usually correspond to cases where the bilinear
form a from (2.7) is also elliptic. Let us denote aVL(q, r) := 〈VL(q), r〉H1/2(Γ)×H−1/2(Γ) and
aWL(q, r) := 〈WL(v), w〉H−1/2(Γ)×H1/2(Γ) for v, w ∈ H1/2(Γ) and q, r ∈ H−1/2(Γ), we have the
following lemma (see [139, Theorem 3.5.3. and 3.5.4] and [125]):

Lemma 2.29 (Ellipticity of aVL and aWL). The bilinear form aVL and aWL are respectively

• H−1/2(Γ) and H1/2(Γ)− elliptic if aminc > |b|2,

• H−1/2(Γ) and H1/2(Γ)/C− elliptic if L = −∆ and d = 3,

• H−1/2(Γ) and H1/2(Γ)/C − elliptic if L = −∆, d = 2, but the fundamental solution used
in the weakly singular operator V−∆ has to be modified as follows:

G−∆(x) =
1

2π
ln
(

α

‖x‖

)
,

with α > αΓ > 0 where αΓ is the logarithmic capacity of Γ.

Using Lax-Milgram Theorem 2.13, we deduce that the formulations of first kind are well-
posed when L satisfies the conditions given in the previous lemma. More generally, we have the
following theorem

Theorem 2.30 ([40, Theorem 2]). The bilinear form aVL and aWL satisfy a Gårding in-
equality. More specifically, there exists a compact operator TVL : H−1/2(Γ) → H1/2(Γ) and
TWL : H1/2(Γ) → H−1/2(Γ) such that

〈(VL +TVL)(q), q〉H1/2(Γ)×H−1/2(Γ) ≥ cVL‖q‖2H−1/2(Γ), ∀q ∈ H−1/2(Γ),

〈(WL +TWL)(v), v〉H−1/2(Γ)×H1/2(Γ) ≥ cWL‖w‖2H1/2(Γ), ∀w ∈ H1/2(Γ).

A more general statement of Fredholm’s alternative [102, Theorem 5.3.10] shows that if a
bilinear form satisfies a Gårding inequality and if it is injective, then it is well-posed. In the case
of the Helmholtz equation, we have the following result.
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Theorem 2.31 ([139, Theorem 3.9.1. and Exercise 3.9.5.]). We consider the Helmholtz equation:
A = Id, b = 0 and c = −k2 with k > 0. Then, the weakly singular operator VL is injective if
and only if

• Ω is bounded and k2 is not an eigenvalue for the Laplace operator in Ω with Dirichlet
conditions,

• or Rd \ Ω is bounded and k2 is not an eigenvalue for the Laplace operator in Rd \ Ω with
Dirichlet conditions.

Similarly, the hypersingular operator WL for the Helmholtz equation is injective if and only if

• Ω is bounded and k2 is not an eigenvalue for the Laplace operator in Ω with Neumann
conditions,

• or Rd \ Ω is bounded and k2 is not an eigenvalue for the Laplace operator in Rd \ Ω with
Neumann conditions.

Using the previous theorem and Theorem 2.30, we deduce that the formulations of first kind
for the Helmholtz equation are well-posed. Surprisingly, exterior problems for the Helmholtz
equation are well-posed for every k > 0 (see [139, Section 3.9.3.]), but their standard BIE cannot
be solved for the resonant frequencies of the associated interior problem. This issue led to the
introduction of modified BIE, see [139, Section 3.9.4.].

2.4.4 Screen problems
So far, we considered BIE on closed surfaces, but we are also interested in screen problems,
i.e., for Γ0 ⊂ Γ = ∂Ω such that ∂Γ0 6= ∅, gD ∈ H1/2(Γ0) and gN ∈ H−1/2(Γ0), we look for
u ∈ H1

loc(Rd \ Γ0) such that{
L(u) = 0, in Rd \ Γ0

γD(u) = gD, on Γ0

or

{
L(u) = 0, in Rd \ Γ0

γN (u) = gN , on Γ0

with the appropriate conditions at infinity. We define the localization of the BIO on Γ0 as
follows: for every v ∈ H1/2(Γ), q ∈ H−1/2(Γ) such that supp(v) ⊂ Γ0 and supp(q) ⊂ Γ0, i.e.,
v|Γ0 ∈ H̃1/2(Γ0) and q|Γ0 ∈ H̃−1/2(Γ0)

VL,Γ0(q|Γ0) := VL(q)|Γ0 , KL,Γ0(v|Γ0) := KL(v)|Γ0 ,

WL,Γ0(v|Γ0) := WL(v)|Γ0 , K′
L,Γ0

(q|Γ0) := K′
L(q)|Γ0 .

Following the same approach as in Section 2.4.1, these problems can be reformulated as BIE as
follows

• Find q ∈ H̃−1/2(Γ0) such that

〈VL,Γ0(q), r〉H1/2(Γ0)×H̃−1/2(Γ0)
= 〈gD, r〉H1/2(Γ0)×H̃−1/2(Γ0)

, ∀r ∈ H̃−1/2(Γ0). (2.18)

• Find v ∈ H̃1/2(Γ0) such that

〈WL,Γ0
(v), w〉H−1/2(Γ0)×H̃1/2(Γ0)

= 〈gN , w〉H−1/2(Γ0)×H̃1/2(Γ0)
, ∀w ∈ H̃1/2(Γ0). (2.19)
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Notice that since Γ0 has a boundary, the energy spaces become H̃1/2(Γ0) and H̃−1/2(Γ0),
which are respectively subspaces of H1/2(Γ0) and H−1/2(Γ0) containing functions whose exten-
sion by zero on Γ are respectively in H1/2(Γ) and H−1/2(Γ). Thus, we can recover properties
about well-posedness using the BIE on Γ just by extending by zero the considered functions (see
Theorem [139, Theorem 3.5.9.]). We also refer to [148] for more details.

2.4.5 Galerkin discretization
The discretization of BIE is a large field of research and we only mention the main ideas and its
specificities. There exist several ways to discretize them but we will focus here on the Boundary
Element Method (BEM), which is similar to the Finite Element Method (FEM) in the sense
that the solutions of the BIE introduced in Sections 2.4.1 and 2.4.2 will be approximated by a
Galerkin method using the weak formulation where the subspaces of finite dimension are finite
element spaces defined on the boundary.

For example, the approximation of Equation (2.10) can be formulated as follows: find qh ∈
Vh ⊂ H−1/2(Γ) such that

〈VL(qh), rh〉H1/2(Γ)×H−1/2(Γ) = 〈gD, rh〉H1/2(Γ)×H−1/2(Γ), ∀r ∈ Vh, (2.20)

where Vh can be the space of piecewise constant functions on Γ with h the characteristic size
of its associated mesh for example. The numerical analysis to prove the well-posedness and the
convergence of the approximation is not too different from FEM, so we refer to [139, Chapter 4]
for more details.

In practice, we need to compute the coefficients aVL(ϕj , ϕi) where ϕj and ϕi are two elements
of the finite element basis {ϕl} associated with Vh. That is why we need the explicit expressions
introduced in Section 2.3.2, for example:

aVL(ϕj , ϕi) =

∫
Γ×Γ

GL(x − y)ϕi(x)ϕj(y)dσ(x)dσ(y).

There are two interesting differences compared to usual FEM. First, this is a double integral
with a non-local kernel so that all the coefficients are non-null a priori, so that the matrix is
dense. Then, when the support of ϕj and ϕi are close to each other, or intersect with each other,
the integral is quasi-singular so that extra care must be taken with quadrature rules. Several
techniques exist to approximate this type of double integral [139, Chapter 5].

The discrete Equation (2.20) leads to the following linear system

AVLx = b,

where (AVL)i,j = aVL(ϕj , ϕi), bj = 〈gD, ϕj〉H1/2(Γ)×H−1/2(Γ) and qh =
∑

i xiϕi. Because of the
non-locality of the bilinear form aVL , BEM matrices like AVL are dense, which precludes direct
methods for the inversion as Gauss–Jordan elimination, whose complexity grows cubically with
respect to N , the number of degrees of freedom. Besides, the storage and the numerical work to
assemble the matrices are both quadratic. Similarly, iterative solvers should be quite expensive
because of the matrix-vector product that is also quadratic. Solutions to these three issues can be
found with methods like panel clustering [77, 78], Fast Multipole Method (FMM) [134, 69, 41, 42],
hierarchical matrices (H and H2-matrices) [73, 75, 76, 17, 12, 74] Adaptive Cross Approximation
(ACA) [11, 13, 18, 12], Sparse Cardinal Sine Decomposition (SCSD) [4] and wavelet compression
techniques [5]. They all give an approximate representation of the matrix that allows storage
and matrix-vector product with almost linear complexity. In our numerical tests, we usually use
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hierarchical matrices with the C++ library Htool3 that we present in Chapter 6.
These techniques have the advantage of lowering the storage cost and make it easier to ap-

ply the operator to a vector, but the underlying structure is not well suited for direct solvers
such as exact LU decomposition. Nevertheless, direct solvers to be used in conjunction with a
compression procedure have been developed, for example, hierarchical LU decomposition [74]
and a fast direct solver as described in [121, 70]. Another approach relies on iterative solvers,
such as Conjugate Gradient (CG) [83] for symmetric positive definite matrices or Generalized
Minimal Residual (GMRes) [137]. These methods have the advantage of relying only on matrix-
vector products, they are non-intrusive in the sense that they are independent of the compression
method used. However, the number of iterations needed strongly depends on the spectral prop-
erties of the matrix of the system. In the case of the single layer for the Laplace problem, the
condition number κ(AVL) := ‖AVL‖2‖A−1

VL
‖2 typically deteriorates like O(h−1) [139, Section

4.5], and we have the same behavior for the hypersingular operator. This means that the num-
ber of iterations when using CG will increase when refining the mesh size as the square root of
h−1.

To circumvent this problem, one has to find a relevant preconditioner, i.e., a matrix P such
that PAh has better spectral properties (typically, a condition number bounded independently
of the meshsize) and that is not too costly in a matrix-vector multiplication, because instead of
solving the previous linear system, we will solve

PAhuh = Pbh.

This approach is called left preconditioning but another popular approach is right preconditioning
which consists in solving AhPxh = bh with xh = P−1uh. These two approaches are closely
related since their Krylov space only differs by a multiplication by P, but the minimized residuals
also differ because the latter is the residual of non-preconditioned system ‖bh − Ahuh‖ while
the former minimizes ‖M−1(bh − Ahuh‖) (see [138, Section 9.3.4] for more details).

Various preconditioning strategies have been proposed for BEM matrices. One of the most
popular one is Calderón preconditioning [146], which is the application of operator precondition-
ing [94] based on Calderón identities from Equation (2.9a) that shows that certain products of
boundary integral operators yield a compact perturbation of the identity. An alternative con-
sists in building a sparse approximation of the inverse to precondition our problem, which is
usually called Sparse Approximate Inverse Preconditioner (SPAI) [3]. Finally, another approach,
proposed in [86, 156] for example, relies on adapting well-known preconditioners stemming from
Domain Decomposition Methods (DDM) to BEM matrices.

3https://github.com/PierreMarchand20/htool

https://github.com/PierreMarchand20/htool
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We actually focus on a particular type of Domain Decomposition Methods (DDM), namely
Schwarz methods. Schwarz methods is one of the first class of domain decomposition meth-
ods, and they have this particularity of having two related formulations. Historically, they have
been introduced as iterative algorithms to approximate a solution solving local problems and
exchanging informations between neighbouring subdomains. But after discretization, these it-
erative algorithms can be rewritten as stationary methods and define a specific preconditioner.
Thus, one can be interested in studying the efficiency of such preconditioners applied in Krylov
methods, that are more efficient than stationary methods. In this case, the speed of convergence
is often related to the condition number of the linear system, that is to say, the ratio between
the largest and lowest eigenvalues. In particular, we want the condition number to be bounded
independently of the meshsize and the number of subdomains so that refining or increasing the
number of subdomains do not change the number of iterations of the linear solver. One usu-
ally uses the fictitious space lemma to study the condition number of the preconditioned linear
system. We refer to [56] for a historical review on Schwarz methods.

35
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Ω1

Ω2

Γ1

Γ2

Figure 3.1 – Example of domain decomposition: the domain Ω consists of the union of a rectangle
Ω1 and a disk Ω2 with an overlap.

Another interesting fact about Schwarz methods is that, since they mainly consist in solving
local problems and exchanging informations between adjacent subdomains, there is a lack of
global communication that prevent the method to be scalable in a High-Performance Computing
(HPC) context. Meaning that increasing the number of subdomains will not be as efficient as
expected. For example, suppose that we associate a subdomain to a processor, an engineer solving
a problem will expect to solve his problem twice faster if he doubles the number of processors.
But this will be unlikely because the lack of global communication will affect the efficiency of
the method. See [44, Chapter 4] for numerical evidences.

To fix this issue, a coarse space is usually added so that a minimum of global communication
is present in the method. The first coarse spaces were usually based on solving a coarse problem
on a coarse grid, but recent progress in DDM was achieved and a coarse space construction
based on Generalized Eigenproblems in the Overlap (which we will call GenEO coarse space)
has been proposed. The advantage of the latter is a more “blackbox” approach to build robust
preconditioners. This coarse space has been first introduced in [142], see also [44, Chapter 7]
for another version. We refer to [161, 118] for a more general presentation on coarse spaces for
DDM.

In this chapter, we recall the main ideas of Domain Decomposition Methods (DDM), more
precisely of Schwarz methods at the continuous level in Section 3.1 and GenEO coarse space in
Section 3.3, after introducing all the discrete setting in Section 3.2. We refer to [153, 44] for
more details. Note that we are only considering finite element discretization, as it is commonly
done in the DDM literature.

3.1 Schwarz methods at the continuous level

3.1.1 Origins

The origin of domain decomposition methods stems from the work of Schwarz in 1870 (see [56]
for a historical review of Schwarz methods). The goal was to establish existence of a solution for
Poisson problem with non-smooth boundaries such as:{

−∆u = f in Ω,

u = 0 on ∂Ω,
(3.1)
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where f is regular enough and Ω = Ω1∪Ω2 (see Section 3.1.1). Without nowadays modern theo-
retical tools, such as Sobolev spaces and Lax-Milgram theorem, the proof for the well-posedness
of Equation (3.1) was limited to simple geometries (circle, disc…) using Fourier transform. With
this in mind, Schwarz suggested a constructive argument, which relies on a decomposition of the
domain in simple geometries, to prove the well-posedness for more general geometries. The idea
is to solve the problem alternatively on each of these subdomains, using transmission conditions
coming from the solution computed in the neighboring subdomains. More precisely, he intro-
duced the following iterative algorithm: given an initial guess u0, which vanishes on ∂Ω, um+1

is computed with the two following sequential steps:
−∆um+1

1 = f in Ω1,

um+1
1 = 0 on ∂Ω1 ∩ ∂Ω,
um+1
1 = um2 on Γ1,


−∆um+1

2 = f in Ω2,

um+1
2 = 0 on ∂Ω2 ∩ ∂Ω,
um+1
2 = um+1

1 on Γ2,

(3.2)

where Γi = ∂Ωi∩Ωj for i 6= j and i, j ∈ {1, 2}. Schwarz proved the convergence of this algorithm,
called Alternating Schwarz method, and thus, the well-posedness of the Poisson problem in more
general geometries. This algorithm was later studied in a more general framework in [112, 113].

One of the major drawbacks of this method is its sequential nature. A small modification
of (3.2), which was introduced in [112], gives the Parallel Schwarz method:

−∆um+1
1 = f in Ω1,

um+1
1 = 0 on ∂Ω1 ∩ ∂Ω,
um+1
1 = um2 on ∂Ω1 ∩ Ω2,


−∆um+1

2 = f in Ω2

um+1
2 = 0 on ∂Ω2 ∩ ∂Ω,
um+1
2 = um1 on ∂Ω2 ∩ Ω1.

(3.3)

3.1.2 Optimal Schwarz Method (OSM)

The main idea of Schwarz methods is to solve subproblems associated with a decomposition of
geometric domain and to exchange some information between the neighboring subdomains. We
saw in the previous section an example where there is an overlap between the subdomains and
the information exchanged is a Dirichlet trace. But there exist a lot of variants, one of the most
well-known is the P.L. Lions algorithm introduced in [113], where the exchanged information
consists in Robin (or Fourier) data, which allows a convergence even without overlap.

More generally, one can wonder what is the best information to exchange, meaning the
information that allows the fastest convergence. Let us denote a general elliptic problem as
follows {

L(u) = f in Ω,

u = g on ∂Ω.

We decompose Ω into two domains Ω1 and Ω2 as described in Section 3.1.1. The domain
decomposition can be with and without overlap for OSM. We suppose the problem regular
enough so that ui := u|Ωi

, i = 1, 2 is continuous and has continuous normal derivatives across
the interface Γi. Notice that Ω1 and Ω2 can overlap or not. A generic Schwarz method would
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be as follows:
L(um+1

1 ) = f in Ω1,

um+1
1 = g on ∂Ω1 ∩ ∂Ω,

µ1∇um+1
1 · n1 + B1(u

m+1
1 )

= −µ1∇um2 · n2 + B1(u
m
2 )

]
on Γ1,


L(um+1

2 ) = f in Ω2,

um+1
2 = g on ∂Ω2 ∩ ∂Ω,

µ2∇um+1
2 · n2 + B2(u

m+1
2 )

= −µ2∇um1 · n1 + B2(u
m
1 )

]
on Γ2,

with µ1 and µ2 real valued functions, B1 and B2 operators acting along Γ1 and Γ2 and u01 and
u02 arbitrary initial guesses. Notice that we recover the original parallel Schwarz algorithm with
µ1 = µ2 = 0 and B1 = B2 = Id. As for the P.L. Lions algorithm using Robin interface conditions,
we need to set µ1 = µ2 = 1 and B1 = B2 = α Id with α ∈ R. The goal is to look for the operators
Bi such that we have convergence in a minimal number of iterations. By linearity, the errors
emi = u− umi satisfy the same equations as ui but with f = 0 and g = 0. To simplify, let us take
µ1 = µ2 = 1.

Obviously, we cannot have convergence in one iteration since the initial guess is arbitrary. To
have a convergence in two iterations, we need e21 = 0 which requires

−µ2∇e12 · n2 + B1(e
1
2) = 0 on Γ1. (3.4)

It should be noticed that e12 is solution in Ω2. Then, the idea is to introduce the Dirichlet-to-
Neumann map:

DtN2 : H1/2(Γ1) → H−1/2(Γ1)

v 7→ ∇w · n2|∂Ω1∩Ω2

where w satisfies the following problem:
L(w) = 0 in Ω2 \ Ω1,

w = 0 on ∂Ω2 ∩ ∂Ω,
w = v on Γ1.

We observe that if B1 = DtN2 ◦γD, we recover Equation (3.4). Thus, Dirichlet-to-Neumann
operators give the optimal interface condition and we obtain convergence in two iterations. It
should be noticed that in practice, Dirichlet-to-Neumann operators are not partial differential
operators which makes them difficult to implement. But this remark is the source of various
optimized Schwarz methods that consist in approximating the Dirichlet-to-Neumann operator
by partial differential operators (see [44, Section 2.5] for more details).

The result above is generalized for a domain decomposition with n vertical strips or n con-
centric rings in [128, Section 2] as follows: Let {Ωj}mj=0 denote the vertical strips or concentric
rings without overlap, Γj,k = Ωj ∩ Ωk



L(um+1
j ) = f in Ωj ,

um+1
j = g on ∂Ω ∩ ∂Ωj ,

∇um+1
j · nj + D̃tN

j

kk(u
m+1
j )

= −∇umk · nk + D̃tN
j

kk(u
m
k )

 on Γj,k, ∀k = 0, . . . , n, k 6= j,

(3.5)
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Ω1 Ω2 Ω3 ΩnΩn−1Ωn−2. . .

f

123n− 1 n− 2 n− 3

Figure 3.2 – Slow spread of the information about the presence of an external force for a domain
decomposition method without a second level. Number of the iteration in blue.

where D̃tN
j

is the Dirichlet-to-Neumann operator associated with Ω\Ωj , D̃tN
j

kl = Rj
k,N ◦D̃tN

j
◦

(Rj
l,D)∗ where Rj

k,N : H−1/2(Γj) → H−1/2(Γj,k) and (Rj
l,D)∗ : H1/2(Γj,l) → H1/2(Γj) are the

restriction and extension operator applied to, respectively, a Neumann trace and a Dirichlet
trace.

In that case, the convergence is achieved in n iterations. To understand why we need at least
n iterations, one can use the following argument: for n vertical strips as in Figure 3.2, let us
assume that the support of the right-hand side f is contained in the domain on the far right,
then the domain on the far left needs at least n − 1 iterations just to be aware of the presence
of a right-hand side (see Section 3.1.2). To conclude, we have convergence in a finite number of
steps and the result is sharp.

3.2 Discrete setting
Now that we introduced the continuous point of view of the usual domain decomposition methods,
we will present the discrete point of view. But first, we introduce in this section all the notions
needed for discrete approximation of the solution to an elliptic problem such as Equation (3.1)
with Ω ⊂ Rd a Lipschitz domain and d = 2 or 3, we refer to [52] for more details.

3.2.1 Meshes
For numerical solution of our elliptic problem, we first need to introduce a triangulation of the
domain Ω.

Definition 3.1 (Mesh, [55, Definition 8]). Let Ω be a domain in Rd. A mesh is a finite collection
of disjoint non-degenerate simplices T = {K1, . . . ,KNel} such that

• Ω =
⋃Nel

i=1Ki,

• the intersection Ki ∩Kj is either empty, a common point or a common edge of both Ki

and Kj for every 1 ≤ i, j ≤ Nel and i 6= j.

Definition 3.2 (Meshsize, [52, Definition 1.13]). For all K ∈ T , hK denotes the diameter of K

∀K ∈ T , hK = diamK = max
x,y∈K

|x− y|.
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Then, we define the meshsize of T as

h := max
K∈T

hK .

We use the notation Th for a mesh T of meshsize h.

Definition 3.3 (Shape regularity, [52, Definition 1.13]). A family of meshes {Th}h>0 is said to
be shape-regular if there is σ0 such that

∀h, ∀K ∈ Th, σK =
hK
ρK

≤ σ0,

where ρK is the radius of the largest ball that can be inscribed in K.

Usually, the mesh Th is generated using a reference cell Kref and an affine geometric trans-
formation mapping Kref to the actual mesh cells. We denote this mapping FK , so that K =
FK(Kref).

3.2.2 Galerkin approximation
In the following, we will denote Vh a generic space of finite element functions associated with
Th, N its dimension and (ϕj)

N
j=1 the finite element basis of Vh. We need to write the variational

formulation of Equation (3.1): find u ∈ H1
0 (Ω) such that

a(u, v) :=

∫
Ω

∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx, ∀v ∈ H1
0 (Ω). (3.6)

The Galerkin approximation of Equation (3.6) consists in looking for the solution in Vh ⊂ H1
0 (Ω):

find uh ∈ Vh such that

a(vh, wh) = (f, wh), ∀wh ∈ Vh. (3.7)

Then, from Equation (3.7), we obtain the following linear system

Ahvh = bh, (3.8)

where (Ah)i,j = a(ϕj , ϕi), (bh)j =
∫
Ω
fϕj for 1 ≤ i, j ≤ N and vh is the vector of coefficients

corresponding to the unknown finite element function vh. Notice that, since the bilinear form a
is symmetric and positive definite, so is Ah.

3.2.3 Domain decomposition
We now define the framework particular to DDM. We first partition Ω into a set of non-
overlapping subdomains (Ω′

p)
n
p=1 resolved by Th, using for example a graph partitioner such

as METIS [105] or SCOTCH [24]. Then, each domain Ω′
p is extended to a domain Ωp by

adding one or several layers of mesh elements, such that (Ωp)
n
p=1 corresponds to an overlapping

decomposition of Ω. This decomposition induces a natural decomposition of Vh:

Ṽh,p := Span(ϕj | supp(ϕj) ∩ Ωp 6= ∅ and 1 ≤ j ≤ N).

We also denote Np = dim(Ṽh,p). Notice that the Ṽh,p corresponds to the set of functions whose
support intersects Ωp. It also means that their support is not necessarily contained in Ωp, that
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is to say Ωp ( ∪ϕ∈Ṽh,p
supp(ϕ) (see Figure 3.3). That is why, we introduce Ω̃p as the subdomain

containing the support of all functions in Ṽh,p and

Vh,p := Span(ϕ|Ω̃p
, ϕ ∈ Ṽh,p).

Besides, we define the set of degrees of freedom associated with Vh,p: dofh,p := {j | supp(ϕj) ∩
Ωp 6= ∅}, and we choose an arbitrary local numbering of the degrees of freedom defined by
σp : {1, 2, . . . , Np} → dofh,p. Then, we can define the extension by zero of a function v ∈ Vh,p to
Ω that lies in Vh. The corresponding operator is denoted by

RT
p : Vh,p → Vh.

RT
p (u

p
h)(x) =

{
uph(x) if x ∈ Ω̃p,

0 otherwise.

We also denote by RT
p ∈ RN×Np a matrix representation of RT

p defined as follows

(RT
p )j,k =

{
1 if j = σp(k),

0 otherwise.

Thus, we can define the algebraic restriction Rp ∈ RNp×N , the dual of RT
p using the usual

euclidean scalar product and its continuous counterpart Rp : Vh → Vh,p

Rp : Vh → Vh,p.

N∑
j=1

uh,jϕj 7→
Np∑
j=1

uh,σp(j)ϕσp(j)|Ω̃j

Note that Rp is not a restriction in the natural sense. It restricts the set of shape functions used
to represent an element of the discrete space Vh,p (see remark thereafter). Notice also that RT

p

is not the dual of Rp for the L2 scalar product, they are respectively the equivalent of RT
p and

Rp for finite element functions, and RT
p is the transpose of Rp.

Remarks 3.4.

• Let us take an example and consider the case where Γ is the interval between 0 and 10 on
the x-axis discretized using P1 Lagrange elements Vh = Span(ϕj | 0 ≤ j ≤ 10). Defining
dofh,1 := {0, 1, 2, 3, 4, 5, 6} and dofh,2 := {4, 5, 6, 7, 8, 9, 10}, we represent uh = 1 in Fig-
ure 3.3. Notice that, R1(uh) is not the usual restriction of uh since it is linear between 6
and 7.

• Another example in 2D is given Figure 3.4 for a square with P1 shape function. The nodes
in dofh,1 are represented with rectangle nodes.

• A minimal overlap of one mesh cell corresponds to algebraic restriction and extension
operators without algebraic overlap (see Figure 3.3).

We have the relations RpRT
p = Id ∈ RNp×Np and Rp RT

p = Id. We also define the following
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0 1 2 3 4 5 6 7 8 9 10

1

Ω1 Ω2

Ω̃1 Ω̃2

R1uh R2uh

δ1 = δ2

Figure 3.3 – Example of an overlap in 1D for P1 finite elements with Ω = Ω1 ∪ Ω2 and uh ∈ Vh

such that uh = 1, that is to say, uh,j = 1 for 1 ≤ j ≤ N .

Ω̃1 Ω1

Figure 3.4 – Example of a subdomain in 2D for P1 finite elements where the rectangle nodes
denote P1 functions in Vh,1.
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RNp RN

Vh,p Vh

RT
p

Ph,p

Rp
Ph

RT
p

Rp

Figure 3.5 – Relations between restriction, extension operators, Ph and Ph,p for finite element
functions.

linear applications
Ph : RN → Vh,

uh = (uh,j)
N
j=1 7→ uh =

N∑
j=1

uh,jϕj ,
and


Ph,p : RNp → Vh,p,

up
h = (uph,j)

Np

j=1 7→ uph =

Np∑
j=1

uph,jϕσp(j),

that allow going back and forth between the finite element and the algebraic point of view. Several
relations exist between the operators introduced so far, they are summarized in Figure 3.5.

We will also need partitions of unity that we define as an operator [143] and a function [140].
We will mainly use the former so that we only give the properties of the latter and refer to [140]
for more details.

Definition 3.5 (Partition of unity — function). In [140, Proposition 2.1], the authors defined
a partition of the unity {χp}np=1 using a coarse mesh and the nodal interpolant Ih defined as

Ih(f)(x) :=
N∑
j=1

ϕj(x)f(xj), ∀f ∈ C0(Ω),

with {xj}Nj=1 the vertices of the mesh, so that ϕj(xi) = δi,j. This partition of unity as the
following properties

0 ≤ χp ≤ 1, and |∇χp| . H−1
p , with Hp = diam(Ω̃p).

Definition 3.6 (Partition of unity — operator). For each degree of freedom 1 ≤ j ≤ N , we
define a family of weights {µp,j | j ∈ dofh,p, 1 ≤ p ≤ n} for 1 ≤ p ≤ Np such that

µp,j ≥ 1 and
∑

{p|j∈dofh,p}

1

µp,j
= 1.
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Then, we define the local partition of unity operator for the subdomain p as follows

Ξp : Vh,p → Vh,p

vh =

Np∑
j=1

vh,jϕσp(j)|Ω̃p
7→

Np∑
j=1

1

µp,σp(j)
vh,jϕσp(j)|Ω̃p

.

We also denote Dp its matrix representation, which is a diagonal matrix of size Np ×Np whose
elements are the µp,σp(j) for 1 ≤ j ≤ Np. We have the following identity:

Id =

n∑
p=1

RT
p DpRp. (3.9)

A few constants will characterize the domain decomposition, they will appear in the study of
the efficiency of DDM preconditioners. All these definitions are inspired by [44].

Definition 3.7.

• k0 denotes the maximum multiplicity of the interaction between subdomains plus one, i.e.,

k0 := max
1≤j≤N

#
{
p |RpMRT

j 6= 0
}
, (3.10)

where (M)i,j =
∫
Ω
ϕi(x)ϕj(x)dx is the mass matrix.

• k1 denotes the maximal multiplicity of the subdomain intersection, i.e., the largest integer
m such that there exist m different subdomains whose intersection has a nonzero measure.

k1 := ess sup

{
n∑

p=1

1Ωp

}
(3.11)

• Nc is the minimum number of colors we can use to color a decomposition such that any
two domains sharing an overlap have different colors

As for the domain decomposition, these constants are not supposed to increase with the
number of subdomains a priori because they only depend on the local interaction between sub-
domains. The domain decomposition could be considered as a graph where subdomains are the
vertices and then, two vertices are related by an edge if the corresponding subdomains over-
lap. Using the terminology from graph theory to describe this graph, k0 − 1 corresponds to the
maximum vertex degree [160, Definition 1.3.1], Nc corresponds to the chromatic number [160,
Definition 5.1.1], and we have Nc ≤ k0 [160, Proposition 5.1.13]. Brook’s theorem [160, Theorem
5.1.22] states that this bound can be improved to Nc ≤ k0 − 1 if the graph is connected [160,
Definition 1.2.6] (meaning that there is always a path between two vertices) but not complete
(meaning that each vertex is not connected to every other vertex) and not an odd cycle.

3.3 Schwarz methods at the discrete level
Discretization of Equations (3.2) and (3.3) using Lagrange P1 elements with a minimal overlap
of one mesh cell (or without algebraic overlap, that is to say dofh,p ∩dofh,l = ∅ for p 6= l), lead
respectively to a Gauss-Seidel method and a Block Jacobi method (see [44, Section 1.2]), and
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thus both define a preconditioner. In practice, they are not necessarily used in a fixed-point
method, Krylov solvers are usually preferred to them because they are more efficient.

The Additive Schwarz Method (ASM), introduced in [162], refers to the preconditioner M−1
ASM

which stems from the discretization of (3.3) in the case of a minimal overlap

M−1
ASM :=

n∑
p=1

RT
p (RpART

p )
−1Rp, (3.12)

but its definition is extended to the case of a more general overlap.

Remark 3.8. The preconditioner which stems from the discretization of Equation (3.2) is usually
called Multiplicative Schwarz Method (MSM). Historically, the ASM has been introduced as a
modification of the MSM such that it became additive in [162, 122]. In the case of a general
overlap, the ASM does not correspond to the discretization of Equation (3.3) anymore.

The use of Krylov solvers instead of Block Jacobi iterations is even more justified by the fact
that the ASM preconditioner does not necessarily converge with the latter. Indeed, it has been
shown for example in [46, Theorem 3.5] that, for a Poisson problem with two subdomains, the
method does not converge in the overlap. In [122] a damping factor “sufficiently small” is used
to make the method converge (see [46] for an insight on the value of damping parameter). This
shows that the ASM does not correspond to the Parallel Schwarz Method since the latter always
converges in this case, cf. [112]. This last remark led to the introduction of the Restricted Additive
Schwarz method (RAS) (see [46]) which corresponds to the discretization of Equation (3.3).
Nevertheless, the ASM preconditioner has very desirable properties, it is symmetric when A is
symmetric, which is not the case with RAS, and thanks to its additive expression, it is tailored
for parallelization, which is not the case of the MSM that is sequential by nature.

3.3.1 Fictitious space lemma
Since we want to use the ASM preconditioner with Krylov solver, typically the conjugate gradient,
we need an estimate on the condition number of the preconditioned system. To do so, we will
use the following abstract theorem [129, 71]:

Theorem 3.9 (Fictitious space lemma). Let H and HD be two Hilbert spaces, respectively with
the scalar product (·, ·) and (·, ·)D. Let the symmetric positive definite bilinear forms ã : H×H →
R and b̃ : HD × HD → R generated by symmetric positive definite operators A : H → H and
B : HD → HD respectively. Suppose that there exists a linear operator R : HD → H such that
the following hold:

(i) R is surjective.

(ii) There exists a positive constant cR such that

ã(RuD,RuD) ≤ cRb̃(uD, uD) ∀uD ∈ HD. (3.13)

(iii) There exists a positive constant cT such that for all u ∈ H there exists uD ∈ HD with
RuD = u and

cT b̃(uD, uD) ≤ ã(RuD,RuD) = ã(u, u) (3.14)
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And let us introduce the adjoint operator R∗ : H → HD by (RuD, u) = (uD,R∗u)D for all
uD ∈ HD and u ∈ H. Then, we have the spectral estimate

cT ã(u, u) ≤ ã(RB−1R∗Au, u) ≤ cRã(u, u), ∀u ∈ H,

which shows that the spectrum of the operator RB−1R∗A are bounded from below by cT and from
above by cR.

Remark 3.10. The estimate in Equation (3.14) is usually referred to as stable decomposition.

3.3.2 Analysis without coarse space
Let us reformulate the ASM in the framework of the fictitious space lemma:

Definition 3.11.

• H := RN is endowed with the standard euclidean scalar product (·, ·), and we consider the
following bilinear form:

ã : RN × RN → R
(uh,vh) 7→ (Auh,vh) = a(uh, vh),

with A defined in Equation (3.8) while uh = Ph(uh) and vh = Ph(vh). In the following,
we will often use this vector representation in the finite element basis (bold font) of finite
element functions (normal font).

• HD :=
∏n

p=1 RNp is endowed with the standard euclidean scalar product, and we consider
the following bilinear form:

b̃ :

n∏
p=1

RNp ×
n∏

p=1

RNp → R

(up
h,v

p
h)

n
p=1 7→

n∑
p=1

(ART
p up

h,R
T
p vp

h) =

n∑
p=1

a(RT
p u

p
h,R

T
p v

p
h),

with uph = Ph,p(up
h) and vph = Ph,p(vp

h). Then, B : HD → HD is defined by

∀Uh = (up
h)

n
p=1 ∈

n∏
p=1

RNp , B(Uh) := (RpART
p up

h)1≤p≤n.

Notice that B is a block diagonal operator, such that

∀Uh = (up
h)

n
p=1 ∈

n∏
p=1

RNp , B−1(Uh) := ((RpART
p )

−1up
h)1≤p≤n.

• The linear operator RASM is defined as follows

RASM : HD → H

(up
h)1≤p≤n 7→

n∑
p=1

RT
p up

h.
(3.15)
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We have now all the ingredients to study the ASM in the framework of the fictitious space
lemma. First, since M−1

ASM = RASMB
−1R∗

ASM according to Equation (3.12) and the previous
framework, we just need to check the hypothesis of Theorem 3.9 to obtain the needed estimate.

Lemma 3.12 (Surjectivity of RASM). The operator RASM defined in Equation (3.15) is surjec-
tive.

Proof. For all uh ∈ RN , uh = RASM(Uh) with Uh = (DpRpuh)1≤p≤n according to Equa-
tion (3.9).

Lemma 3.13 (Continuity of RASM). For Uh = (up
h)1≤p≤n ∈ HD, we have the following in-

equality:

ã(RASMUh,RASMUh) ≤ k0b̃(Uh,Uh),

where k0 is defined in Equation (3.10) as the maximum number of neighbors a subdomain can
have.

Proof. The proof is the same as [44, Lemma 7.9].

The previous lemma shows that Equation (3.13) is satisfied. Let us see now why the ASM
with only one-level can be insufficient in practical computations.

Lemma 3.14 (Stable decomposition). Let us assume that Vh is the standard space of continuous
and piecewise linear functions. For uh ∈ RN , let Uh = (up

h)1≤p≤n ∈ HD such that up
h =

Rp P−1
h Ih χp Ph uh with (χp)

n
p=1 and Ih, respectively a partition of the unity and the nodal

interpolant, defined in Definition 3.5. Then, we have uh = RASM(Uh) and

b̃(Uh,Uh) ≤ 2k1C(1 +H2 max
p=1...n

1

H2
p

)ã(uh,uh)

where k1 is the maximal multiplicity of the subdomain intersections defined in Equation (3.11),
H is the diameter of Ω, Hp is the diameter of the subdomain Ω̃p, C > 0 is a constant independent
of h and that only depends on the shape of Ω, but not on its size.

Proof. Denoting uh = Ph(uh) and uph = Ph,p(up
h), notice that we have the following relation:

(ART
p up

h,R
T
p up

h) = a(Ph RT
p up

h,Ph RT
p up

h)

= a(Ph RT
p Rp P−1

h Ih(χpuh),Ph RT
p Rp P−1

h Ih(χpuh))

= a(Ih(χpuh), Ih(χpuh)).

Using the fact that Ih applied to piecewise quadratic functions is stable in norm H1
0 (see [140,

Lemma 2.3]), that is to say

a(Ih(vh), Ih(vh)) ≤ Cintera(vh, vh),

for every vh ∈ Vh with Cinter is independent of h and the diameter of Ω. Taking vh = χpuh, we
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obtain

(ART
p up

h,R
T
p up

h) ≤ Cinter

∫
Ω̃p

|∇(χpuh)|2

≤ 2Cinter

(∫
Ω̃p

|∇uh|2 +
Cp

H2
p

|uh|2
)

using |∇χp|2 ≤ Cp/H
2
p , where Cp is a constant (see Definition 3.5) and Hp is the diameter of the

subdomain Ω̃p. Summing over p, we obtain

n∑
p=1

(ART
p up

h,R
T
p up

h) ≤ 2k1Cinter

∫
Ω

|∇uh|2 + 2k1Cinter max
p=1...n

(
Cp

Hp

2)∫
Ω

|uh|2.

Then, using the following Poincaré inequality [153, Corollary A.15], we have∫
Ω

|uh|2 ≤ CPH
2

∫
Ω

∇|uh|2,

where CP depends only on the shape of Ω, but not on its size, so that we obtain

b̃(Uh,Uh) =

n∑
p=1

(ART
p up

h,R
T
p vp

h) ≤ 2k1C

(
1 +H2 max

p=1...n

1

H2
p

)
a(uh, uh)

where H is the diameter of Ω, C > 0 is a constant that depends only on the shape of Ω but not
on its size and k1 is the maximal multiplicity of the subdomain intersection. Finally, notice that

RASM(Uh) =

n∑
p=1

RT
p up

h =

n∑
p=1

RT
p Rp P−1

h Ih χp Ph uh

= P−1
h Ih

n∑
p=1

χp Ph uh = P−1
h Ih Ph uh.

Applying Ih to a piecewise linear function like Ph uh reduces to the identity operator, so that we
obtain RASM(Uh) = uh.

Theorem 3.15 (Spectral estimate for the ASM). We have

κ(M−1
ASMA) ≤ 2k0k1C(1 +H2 max

p=1...n

1

H2
p

), (3.16)

where k1 is the maximal multiplicity of the subdomain intersections defined inEquation (3.11),
k0 is defined inEquation (3.10) as the maximum number of neighbors a subdomain can have, Hp

is the diameter of the subdomain Ω̃p, H is the diameter of Ω, C is a constant that depends only
on the shape of Ω but not on its size.

Proof. Since M−1
ASM = RASMB

−1R∗
ASM, the framework introduced previously needs to satisfy

the three hypothesis of Theorem 3.9. The first is satisfied according to Lemma 3.12. The second
is given by Lemma 3.13 with cR = k0. And finally, the last hypothesis is given by Lemma 3.14
with c−1

T = 2k1C(1 +H2 maxp=1...n(1/H
2
p )).
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Let us define two notions of scalability (cf. [44, Chapter 4]).

Definition 3.16 (Strong scalability). Strong scalability is defined as how the solution time varies
with the number of cores for a fixed total problem size. Ideally, the elapsed time is inversely
proportional to the number of processing units (CPUs, cores, GPUs).

Definition 3.17 (Weak scalability). Weak scalability is defined as how the solution time varies
with the number of cores for a fixed problem size per core. Ideally, the elapsed time is constant
for a fixed ratio between the size of the problem and the number of processing units (CPUs, cores,
GPUs).

The previous estimate given in Equation (3.16) does not guarantee any scalability:

• If we increase the number of subdomains for a fixed domain Ω, so that the size of the
subdomains decrease, we have H/Hp → ∞.

• If we increase the number of subdomains and the size of the domain with the same ratio, so
that the size of the subdomains is fixed but the size of Ω increases, we also have H/Hp → ∞.

In both cases, if our bound is optimal, the condition number will increase so that the number of
iterations using CG will also increase. So, the method is not scalable, both weakly and strongly.

And indeed, the method is not scalable, this is due to the fact that the solution is non-local,
its value at one point depends on the right-hand side at any other point. And since the ASM
performs communications between neighbors, we understand that the method becomes slower
when the number of subdomains is large. This is observed in actual numerical experiments,
see [44, Chapter 4] for examples of this phenomenon.

3.3.3 Analysis with GenEO coarse space
To solve the lack of scalability of the ASM, a mechanism which performs global communications
can be added. It is usually done via a coarse space correction, i.e. we want to decompose Vh as
follows

Vh = RT
0 Vh,0 +

n∑
p=1

RT
p Vh,p,

where Vh,0 is a coarse space and RT
0 : Vh,0 → Vh, an interpolation operator. This coarse correction

can be added to the ASM as follows

M−1
ASM,2 := RT

0 (R0ART
0 )

−1R0 +

n∑
p=1

RT
p A−1

p,pRp, (3.17)

but there exist several other ways to add a coarse correction (see [152] for example). The idea
behind this coarse space is to directly take care of some parts of the function space Vh. For
example, we see in the proof of Lemma 3.14 that the reason why the Poincaré constant of the
whole domain appears is that we cannot apply the Poincaré inequality locally. And this is
because the functions under consideration are not in H1

0 (Ω̃p). To solve this, we can remove
a coarse component that contains at least the constants, so that we can apply local Poincaré
inequalities to a zero mean value functions instead. This argument is called a quotient space
argument (see [153, Chapter 3.5] for more details).

The coarse spaces proposed in the literature generally rely on the kernel of the local solvers,
for example, constants for Poisson problems and rigid body motions for elasticity. This is in part
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due to the fact that they are necessary in substructuring methods for the local problem to be
well-posed. One can also enlarge the coarse space to obtain more robust coarse spaces at the
price of more expensive computations to deal with the coarse component. We refer to [161, 118]
for historical reviews.

Here, we want to use the GenEO method (see [143] for the initial method and [44] for its
present version) that builds a coarse space tailored for the condition number required by the
user. In the analysis of the GenEO method, the coarse space is not initially prescribed. We first
define a generic coarse space Vh,0 and we denote its size by N0. The coarse space is spanned by
the columns of a rectangular matrix RT

0 of size N × N0. Actually, most of the assumptions of
Theorem 3.9 are satisfied without any a priori knowledge of Vh,0.

We formulate the ASM with GenEO coarse space as follows

Definition 3.18.

• H := RN is endowed with the standard euclidean scalar product (·, ·), and bilinear form ã
is defined as in Definition 3.11.

• HD :=
∏n

p=0 RNp is endowed with the standard euclidean scalar product, and we consider
the following bilinear form:

b̃ :

n∏
p=0

RNp ×
n∏

p=0

RNp → R

(up
h,v

p
h)

n
p=0 7→

n∑
p=0

(ART
p up

h,R
T
p vp

h) = (ART
0 u0

h,RT
0 v0

h)

+

n∑
p=1

a(RT
p u

p
h,R

T
p v

p
h),

with uph = Ph,p up
h and vph = Ph,p vp

h for 1 ≤ p ≤ n. Then, B : HD → HD is defined by

∀Uh = (up
h)

n
p=0 ∈

n∏
p=0

RNp , B(Uh) := (RpART
p up

h)0≤p≤n.

Notice that B is a block diagonal operator,

∀Uh = (up
h)

n
p=0 ∈

n∏
p=0

RNp , B−1(Uh) := ((RpART
p )

−1up
h)0≤p≤n.

• The linear operator RASM,2 is defined as follows

RASM,2 : HD → H

(up
h)0≤p≤n 7→

n∑
p=0

RT
p up

h.
(3.18)

With these definitions, we have M−1
ASM,2 = RASM,2B

−1R∗
ASM,2. We just need to satisfy the

three hypothesis of Theorem 3.9 using Definition 3.18.

Lemma 3.19 (Surjectivity of RASM,2, [44, Lemma 7.10]). The operator RASM,2 defined in
Equation (3.18) is surjective.
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Proof. For all uh ∈ RN , uh = RASM(Uh) with Uh = (0, (DpRpuh)1≤p≤n) according to Equa-
tion (3.9).

Lemma 3.20 (Continuity of RASM,2, [44, Lemma 7.11]). For Uh = (up
h)0≤p≤n ∈ HD, we have

the following inequality:

ã(RASM,2Uh,RASM,2Uh) ≤ 2k0b̃(Uh,Uh),

where k0 is defined in Equation (3.10) as the maximum number of neighbors a subdomain can
have.

Proof. First, we use the Cauchy-Schwarz inequality

ã(RASM,2Uh,RASM,2Uh) =

(
A
(

n∑
p=0

RT
p up

h

)
,

n∑
p=0

RT
p up

h

)

≤ 2

(
(ART

0 u0
h,RT

0 v0
h) + a

(
n∑

p=1

RT
p u

p
h,

n∑
p=1

RT
p v

p
h

))
,

and then we use Lemma 3.13 with the last term to obtain the expected result.

Then, notice that we have the following lemma for any additive coarse space.

Lemma 3.21 ([44, Lemma 7.12]). Let uh ∈ H and Uh = (up
h)0≤p≤n ∈ HD with RASM,2(Uh) =

uh. Then, we have

b̃(Uh,Uh) ≤ 2ã(uh,uh) + (2k0 + 1)

N∑
p=1

ã(RT
p up

h,R
T
p up

h).

Proof. First, we use the definition of RASM,2 and the Cauchy-Schwarz inequality,

b̃(Uh,Uh) = ã(RT
0 u0

h,RT
0 u0

h) +

n∑
p=1

ã(RT
p up

h,R
T
p up

h)

= ã(uh −
n∑

p=1

RT
p up

h,uh −
n∑

p=1

RT
p up

h) +

n∑
p=1

ã(RT
p up

h,R
T
p up

h)

≤ 2

[
ã(uh,uh) + ã

(
n∑

p=1

RT
p up

h,

n∑
p=1

RT
p up

h

)]
+

n∑
p=1

ã(RT
p up

h,R
T
p up

h).

Then, we can apply Lemma 3.13 to the second term to obtain the result.

Besides, we have the following lemma using our finite element setting.

Lemma 3.22 ([44, Lemma 7.13]). For all uh ∈ H we have

n∑
p=1

aΩp(Ph uh,Ph uh) ≤ k1ã(uh,uh),
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where aΩp corresponds to the local bilinear form associated with Ωp, that is to say, for u, v ∈ H1(Ω)

aΩp
(u, v) =

∫
Ωp

∇u(x) · ∇v(x)dx.

Proof.
n∑

p=1

aΩp
(Ph uh,Ph uh) =

n∑
p=1

∫
Ωp

|∇(Ph uh)|2 dx ≤ k1

∫
Ω

|∇(Ph uh)|2 dx = k1ã(uh,uh).

According to the last two lemmas, a sufficient condition for Uh = (up
h)0≤p≤n ∈ HD to satisfy

the third hypothesis of Theorem 3.9 is to satisfy the following relation: for every 1 ≤ p ≤ n,

(ART
p up

h,R
T
p up

h) ≤ τaΩp(Ph uh,Ph uh) = τ(ÃpRpuh,Rpuh), (3.19)

where τ > 0 is a given parameter and Ãp is the finite element matrix associated with aΩp
. Notice

that the condition given in Equation (3.19) is local. The definition of Uh for a given τ will be
a consequence of the definition of the coarse space. To be able to find a Uh ∈ HD that satisfies
Equation (3.19), we solve the associated generalized eigenvalue problems: for 1 ≤ p ≤ n, find
(vp

h,k, λ
p
k)

P̃pDpAp,pDpP̃pvp
h,k = λpkÃpvp

h,k (3.20)

where P̃p is the projection on range(Ãp) parallel to ker(Ãp).

Definition 3.23 ([44, Lemma 7.7]). Let τ > 0, we define the following space related to the
generalized eigenvalue problem defined in Equation (3.20):

Zp,τ := ker(Bp) ∪ Span(vp
h,k | for every k s.t. λpk > τ),

Then, we also define the local projection πp on Zp,τ parallel to Span(vp
h,k |λ

p
k ≤ τ).

Then, according to [44, Lemma 7.7], we have the following theorem:

Theorem 3.24 ([44, Lemma 7.15]). For every 1 ≤ p ≤ n and vp
h ∈ RNp , we have

(RT
p Dp(Id − πp)vp

h)
T A(RT

p Dp(Id − πp)vp
h) ≤ τ(vp

h)
T Ãpvp

h

Notice that the last relation is similar to Equation (3.19). That is why we define up
h for

1 ≤ p ≤ n as follows

up
h := Dp(Id − πp)Rpuh. (3.21)

Then, it remains to define the coarse space Vh,0 and the associated component u0
h such that

RASM,2(Uh) = uh where Uh = (up
h)

n
p=0.

Definition 3.25 (GenEO coarse space, [44, Definition 7.16]). The GenEO coarse space is defined
as a sum of local contributions weighted with the partition of unity:

Vh,0 = Span(RT
p Dpvp

h | 1 ≤ p ≤ N, vp
h ∈ Zp,τ )
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Let Zτ ∈ RN×N0 be a column matrix so that Vh,0 is spanned by its columns and N0 = dim(Vh,0).
We denote its transpose by R0 := ZT

τ .

Theorem 3.26 (GenEO coarse component, [44, Theorem 7.17]). Let uh ∈ H, we define up
h for

1 ≤ p ≤ n as in Equation (3.21) and u0
h by

u0
h := (R0RT

0 )
−1R0

(
n∑

p=1

RT
p DpπpRpuh

)
, (3.22)

Then, Uh = (up
h)

n
p=0 ∈ HD is a stable decomposition of uh, that is to say

RASM,2(Uh) = uh and cT b̃(Uh,Uh) ≤ ã(uh,uh),

where c−1
T = (2 + (2k0 + 1)k1τ).

Proof. Let uh ∈ RN and Uh = (up
h)0≤p≤n ∈ HD defined using Equations (3.21) and (3.22). First

notice that we have

w0 = RT
0 (R0RT

0 )
−1R0w0

for every w0 ∈ Vh,0 since RT
0 (R0RT

0 )
−1R0 is a projector on Vh,0. Then, we have

RASM,2(Uh) =

n∑
p=0

RT
p up

h = RT
0 u0

h +

n∑
p=1

RT
p up

h

= RT
0 (R0RT

0 )
−1R0

(
n∑

p=1

RT
p DpπpRpuh

)
︸ ︷︷ ︸

∈Vh,0

+

n∑
p=1

RT
p up

h

=

n∑
p=1

RT
p DpπpRpuh +

n∑
p=1

RT
p Dp(Id − πp)Rpuh

=

n∑
p=1

RT
p DpRpuh = uh,

where we used the fact that Dp defines a partition of unity in the last line. Then, using
Lemma 3.21 and Theorem 3.24 with vp

h = Rpuh for 1 ≤ p ≤ n, we have

n∑
p=0

a(Ph RT
p up

h,Ph RT
p up

h) =

n∑
p=0

(AhRT
p up

h,R
T
p up

h)

≤ 2(Ahuh,uh) + (2k0 + 1)

n∑
p=1

(AhRT
p up

h,R
T
p up

h)

≤ 2(Ahuh,uh) + (2k0 + 1)τ

n∑
p=1

(ÃhRpuh,Rpuh)
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Finally, using Lemma 3.22 we deduce
n∑

p=0

a(Ph RT
p up

h,Ph RT
p up

h) ≤ (2 + (2k0 + 1) τk1) a(Phuh, Phuh).

Theorem 3.27 ([44, Theorem 7.18]). We have the following condition number estimate

κ(M−1
ASM,2A) ≤ 2k0(2 + (2k0 + 1)k1τ).

Proof. Again, we use Theorem 3.9. The first hypothesis is satisfied according to Lemma 3.19.
The second is given by Lemma 3.20 with cR = 2k0. And finally, the last hypothesis is given by
Theorem 3.26 such that c−1

T = (2 + (2k0 + 1)k1τ).

Remark 3.28. It should be noted that the decomposition (up
h)

n
p=1 is necessary for the analysis,

but it does not need to be computed in practice. To use this coarse space, it is sufficient to compute
Zτ and then (R0AhRT

0 )
−1 to be able to apply M−1

ASM (see Equation (3.12)). And to do so, each
local contribution to the coarse space given in Definition 3.23 can be computed independently in
parallel, so that computing Zτ can be done efficiently. Then, to compute R0AhRT

0 , one can
use the fact that Zτ is sparse and distributed (since the eigenvectors are computed in parallel).
Finally, we need to invert (R0AhRT

0 ) ∈ RN0×N0 and that is why a good coarse space should be
of minimum size while still containing relevant information for the convergence.

In conclusion, this approach requires the solution to local generalized eigenvalue problems,
which is a parallel task, and we obtain a condition number independent of the number of subdo-
mains, contrary to the one-level approach of Section 3.3.2. The advantage of this method over
other methods using a two-level approach is that it can work in a black-box manner and it is
more robust, in the sense that the coarse space is built automatically from the local generalized
eigenvalue problems and its efficiency is proved as long as the problem is symmetric and positive
definite. However the coarse space can be large so that inverting R0AhRT

0 can be expensive at
some point. In this case, approximate solvers can be used, and the effect of the approximation
on the bound are studied in [127].
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In Chapter 3, we presented two different points of view on Schwarz methods, either as iterative
methods or as preconditioners. In the case of BEM, we could also think of two approaches
for DDM, as pointed out in the introduction of [79]. We could make a decomposition of the
original domain where the solution is sought, a volume decomposition, and then formulate a
BIE in each subdomain with some ways of coupling them. Or we could first set up a BIE on
the whole computational domain and then apply a domain decomposition of its boundary, a
surface decomposition. In this chapter, we will explore the first approach and show a relation
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with the first point of view introduced on Schwarz methods. This approach can be useful to
solve multi-subdomain scattering problems.

Several formulations for this approach have been introduced where the difference lies usually in
the way the BIE are coupled with each other: the PMCHWT (Poggio-Miller-Chang-Harrington-
Wu-Tsai) formulation [131, 22, 163] also called Rumsey’s reaction principle, the Boundary El-
ement Tearing and Interconnecting (BETI) method [110] and the Multi-Trace Formulations
(MTF) [37]. The latter consists in doubling unknown traces at each point of each interface,
and these duplicated unknowns are disconnected a priori from one another. This allows solving
independently problems in each subdomains, which makes MTF similar to DDM as presented in
Chapter 3, while the transmission condition is enforced weakly with a transmission operator.

There exist several variants of MTF and they differ in the choice of the transmission operator.
We will focus on local MTF [96] where the transmission consists in exchanging the traces of the
neighbouring subdomains, which is local and similar to Schwarz methods like the alternating
Schwarz method given in Equation (3.2). Interesting results about this formulation have been
proved in [32] for Helmholtz with a constant material coefficient. The authors introduced a
particular Jacobi method that led to a convergence in a finite number of iterations for two and
three subdomains. This is similar to the Optimal Schwarz Method (OSM) [128] described in
Section 3.1.2, and they actually proved an equivalence between their Jacobi method applied to
local MTF and OSM in the case of two subdomains for d = 1.

In this chapter, we will first introduce the framework of multi-subdomain problems in Sec-
tion 4.1, then we will present local MTF and the properties of its boundary integral operators in
Section 4.2 using results from [30]. With these properties, we will be able to extend the results
from [32] to n subdomains in Section 4.3 and we will generalize the equivalence between local
MTF and OSM. Finally, we will illustrate these results numerically in Section 4.4, and explore
how the Jacobi method proposed for a homogeneous material can lead to a preconditioner that
can be useful for a heterogenous material. This work also appears in [38] and has been submitted.

4.1 Multi-subdomain problems

4.1.1 Geometric settings

We consider a non-overlapping partition of the whole space Rd =
⋃n

p=0 Ωp where n + 1 is the
number of domains, Ω0 is the exterior domain by convention and each Ωp is a Lipschitz open
set such that Ωp ∩ Ωk = ∅ for p 6= k. We denote Γp := ∂Ωp, Γp,k := Γp ∩ Γk, and we call Σ the
skeleton of the partition, defined as follows:

Σ :=

n⋃
p=0

Γp with Γp := ∂Ωp.

We also make the strong assumption that there is no junction point, that is to say

Γp ∩ Γk ∩ Γm = ∅, for p 6= k, p 6= m,m 6= k. (4.1)

We define the adjacency graph G = (V,E) associated with the partition:

V = {Ωp, p = 0, . . . , n} ,
E = {{Ωp,Ωk} , such that Γp ∩ Γk 6= ∅ and p 6= k, for p = 0, . . . , n and k = 0, . . . , n} ,
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Ω0

Ω1

Ω2

Ω3

Ω4

Ω0

Ω2

Ω4Ω3

Ω1

Figure 4.1 – Example of a partition of R2 without junction point and its associated adjacency
graph.

and we denote PG the maximal length (here, the number of edges) of a simple (without any
repeated vertices) path (Ωp1 , . . . ,ΩpPG+1

). Notice that the assumption (4.1) implies that if
{Ωp,Ωk} ∈ E for 0 ≤ p, k ≤ n, then either Ωp ⊂ Ωk or Ωk ⊂ Ωp. We deduce that G is a tree
whose root is Ω0, and we give an example in Figure 4.1 where PG = 3.

4.1.2 Problem under consideration
We consider the Helmholtz equation in piecewise homogeneous domains. First, let us recall the
form of the equation:

−∆u− κ2pu = 0 in Ωp ∀p = 0 . . . n,

u− uinc is κ0-outgoing,
γpD(u)− γkD(u) = 0

µ−1
p γpN (u) + µ−1

k γkN (u) = 0
on Γp ∩ Γk,∀p, k = 0 . . . n.

(4.2a)
(4.2b)

(4.2c)

which corresponds locally to the elliptic model problem given in Equation (2.1) with A = Id,
b = 0 and c = −κ2, where κ is the wavenumber, a function on Rd piecewise constant such that
κ(x) = κp for x ∈ Ωp. Similarly, µ : Rd → R+ such that µ(x) = µp > 0 for x ∈ Ωp. We will
assume that it satisfies the condition considered in [159, 36]:

κp 6= 0, Re(κp) ≥ 0 and Im(κp) ≥ 0, ∀p = 0, . . . , n. (4.3)

These two last conditions correspond respectively to a choice of a direction of propagation and a
dissipative domain. In the transmission condition, γpD and γpN are the trace operators associated
with Ωp and µp is called the magnetic permeability of Ωp in electromagnetism for example. For
the exterior domain Ω0, one has to choose a condition for the behavior of the solution at infinity,
and it will depend on κ0. We say that u is κ0-outgoing if it satisfies

• if Im(κ0) > 0, u|Ω0
∈ H1(Ω0)
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• if κ0 > 0, we have the Sommerfeld radiation condition whose purpose is to impose that the
energy which is radiated from the sources must propagate toward infinity:

|u(x)| = O(|x|−
d−1
2 )∣∣∣∣∂u∂r (x)− iku(x)

∣∣∣∣ = o(|x|−
d−1
2 )

 for |x| → ∞,

These two conditions are the same as the ones given in Remark 2.8.
The source term comes from the incident wave uinc solution of the Helmholtz equation in Rd

with κ0. For example, a plane wave uinc = exp(iκ0d · x) with d ∈ R3, |d| = 1, a direction of
propagation. Notice that the incident wave is not a priori κ0-outgoing

This equation comes from the study of periodic stationary solutions of the wave equation.
That is why it is a model for stationary wave propagation. Typically, Ω0 represents the back-
ground medium while

⋃n
p=1 Ωp is a composite scatterer. Equation (4.2) has been proved to be

well-posed in [159].

4.1.3 Functional setting for multi-subdomain problems
We need to adapt the notations and the functional setting developed in Chapter 2 to the multi-
subdomain problem we are considering. The notations we use are the same as in [29, Section
2.1]. We shall denote γpD, γpN , γp (resp. γpD,c, γ

p
N,c, γpc ) interior (resp. exterior) traces on the

boundary of Ωp. We define the integral operators SLp
κp

, DLp
κp

, Gp
κp

, Vp
κp

, Wp
κp

, Kp
κp

, K′p
κp

, Pp
κp

and Ap
κp

as in Sections 2.3.1 to 2.3.3 with Ω = Ωp and n = np the normal vector directed towards
the exterior of Ωp.

We denote the local trace space H(Γp) = H1/2(Γp)×H−1/2(Γp), the trace space associated
with Γp, equipped with the norm ‖(v, q)‖2H(Γp)

:= ‖v‖2
H1/2(Γp)

+ ‖q‖2
H−1/2(Γp)

. We also consider
the following pairing

[u, v]Γp :=

∫
Γp

(uq − vp)dσ

where u = (u, p) ∈ H(Γp) and v = (v, q) ∈ H(Γp).

Lemma 4.1. The pairing [·, ·]Γp
puts H(Γp) in duality with itself, meaning that the application

i : H(Γp) → H(Γp)
∗

v 7→ ψv,

with ψv(u) := [u, v] is an isomorphism,.

Proof. Linearity is straightforward, we need to prove the injectivity and surjectivity of the con-
sidered application.

• injectivity: Let v = (v, q) ∈ H(Γp), let us assume that for every u ∈ H(Γp), we have
[u, v] = 0. Taking u = (u, 0) and then, u = (0, p), we obtain that∫

Γp

vpdσ = 0, ∀p ∈ H−1/2(Γp)∫
Γp

qu dσ = 0, ∀u ∈ H1/2(Γp)
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so that v = 0 and ker(i) = {0}.

• surjectivity: Let ṽ = (q, ṽ) ∈ H(Γp)
∗ = H1/2(Γp)×H−1/2(Γp), we have

〈u, ṽ〉H(Γp)×H(Γp)∗ =

∫
Γp

(uq + ṽp)dσ = [u, v],

defining v = (−ṽ, q) ∈ H(Γp), so that i(v) = ṽ.

Definition 4.2 (Multi-trace space). Let us denote the multi-trace space H(Σ) as the cartesian
product of traces on the boundary of each domain:

H(Σ) := H(Γ0)× · · · × H(Γn)

This space will be equipped with its natural cartesian product norm: for every u = (up)
n
p=0 ∈ H(Σ)

‖u‖2H(Σ) :=

n∑
p=0

‖up‖2H(Γp)
.

Then, we define as well a duality pairing:

Ju, vK :=
n∑

p=0

[up, vp]Γp

for every u = (up)
n
p=0 and v = (vp)

n
p=0 belonging to H(Σ), and this pairing puts also H(Σ) in

duality with itself.

Definition 4.3 (Single-trace space). Let us denote the single-trace space X(Σ) defined as

X(Σ) :=
{
u =(vp, pp)

n
p=0 ∈ H(Σ)

∃v ∈ H1(Rd) such that v|Γp = vp

∃q ∈ H(div,Rd) such that np · q|Γp = qp ∀p = 0, . . . , n
}
,

where H(div,Rd) := {q ∈ L2(Rd)d | div(q) ∈ L2(Rd)}.

It corresponds to a subspace of H(Σ) whose functions satisfy the transmission conditions. It
can be seen as a space taking into account the transmission condition as an essential condition
when µ1 = · · · = µn. This denomination “single trace” comes from the fact that only one pair of
Dirichlet and Neumann traces come into play on each Γp contrary to the multi-trace space. The
following lemma gives a characterization of the single trace space:

Lemma 4.4 ([28, Proposition 2.1]). For any u ∈ H(Σ) we have u ∈ X(Σ) ⇐⇒ Ju, vK = 0 ∀v ∈
X(Σ).

We generalize the definition of the solution space given in Theorem 2.24 in a multi-subdomain
setting:

C(κ)(Σ) :=
{
u = (γp(up))p=0|up ∈ H1

loc(Ωp) and −∆up − κ2pup = 0 in Ωp

and up is κp-outgoing if Ωp is unbounded
}
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where (κ) stands for the tuple (κ0, . . . , κn). Then, this space has a characterization similar to
Lemma 4.4 for the single-trace space:

Lemma 4.5 ([36, Lemma 6.2]). For any u ∈ H(Σ) we have u ∈ C(κ)(Σ) ⇐⇒ Ju, vK = 0 ∀v ∈
C(κ)(Σ).

The multi-trace space is actually a direct sum of the single-trace space and the cauchy data
set:

Lemma 4.6 ([36, Proposition 6.1]). H(Σ) = X(Σ)
⊕
C(κ)(Σ).

4.2 Formulations with boundary integral operators
4.2.1 Integral operators in a multi-subdomain setting
Using the operators introduced in Chapter 2, we define integral operators acting on the multi-
trace space. Let us define the Calderón operator P(κ) : H(Σ) → H(Σ) and A(κ) : H(Σ) → H(Σ)
as:

q
P(κ) (v) , v

′y :=
n∑

p=0

[
Pp
κp

vp, v
′
p

]
Γp

,

q
A(κ)(v), v

′y :=

n∑
p=0

[
Ap

κp
vp, v

′
p

]
Γp

,

for all v = (vp)
n
p=0, v′ = (v′p)

n
p=0 ∈ H(Σ) where Pp

κp
is the local Calderón projector associated

with Ωp and Ap
κp

= 2Pp
κp

− Id as defined in Section 2.3.3. We may also use the equivalent
notation in matrix-type form as follows:

P(κ) = diag
p=0,...,n

(
Pp
κp

)
,

A(κ) = diag
p=0,...,n

(
Ap

κp

)
,

acting on vectors such as v = (v0, . . . , vn)
T . Since we are considering a scattering problem with

several domains, we need extension and restriction operators to decompose traces accordingly.
Let us denote Γp,k = Γp ∩ Γk so that Γp =

⋃
k 6=p Γp,k. For a given pair (p, k) with p 6= k, we

define:

Rp
k : H(Γp) → H(Γp,k)

vp 7→ vp|Γp,k
,

and we will denote vpk = Rp
k(v

p). The adjoint of this restriction operator is given by:

(Rp
k)

∗ : H(Γp,k) → H(Γp)

v 7→

{
v on Γp,k

0 on Γp \ Γp,k.

Now that we can decompose traces using restriction and extension operators, each Pp
κp

(resp.
Ap

κp
) induces a matrix of integral operators denoted [Pp

κp
] (resp. [Ap

κp
]) whose maximal size is
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(n× n). For example, we have

[
Pp
κp

]
:=

Pp
κp,0,0

· · · Pp
κp,0,n

...
...

Pp
κp,n,0

· · · Pp
κp,n,n

 and Pp
κp,k,m

:= Rp
k ◦Pp

κp
◦(Rp

m)∗. (4.4)

But it should be noted that the rows and columns associated with indices k such that Γp,k =
∂Ωp ∩ ∂Ωk = ∅ and k = p must be omitted. So that, if we define for each domain Ωp, the set of
indices of its neighbors:

Λp := {k |k 6= p, ∂Ωp ∩ ∂Ωk 6= ∅} ,

the matrix in Equation (4.4) is square with card(Λp) rows. We also define the following matrix
Q:

Q =

(
1 0
0 −1

)
.

It will be used to apply transmission conditions. Indeed, because of the orientation of the
normal in the definition of the trace operator γ, we see that for a continuous function u across
Γp,k = Γp ∩ Γk, we have:

γp(u) = Q γk(u).

This matrix is the elementary building block of the transmission operator Π that is the key
ingredient of the multi-trace formulation introduced in Section 4.2.2.

4.2.2 Several formulation
There are several ways to formulate the scattering problem defined in Equation (4.2) by means
of boundary integral equations, and the properties of each of these formulations can be quite
different.

4.2.2.1 Rumsey’s reaction principle (PMCHWT)

One of the most popular approach to solve Equation (4.2) is called Rumsey’s reaction principle, or
PMCHWT which stands for Poggio-Miller-Chang-Harrington-Wu-Tsai from the various authors
who introduced independently this formulation (see [131, 22, 163]). The mathematical analysis
has been carried in [159] (see also [37, Section 3.2]). This formulation can be expressed with the
previous notation in the following way: let us denote the scattering source:

uinc :=
(
γ0(uinc), 0, . . . , 0

)
where uinc satisfies −∆uinc + κ20uinc = 0, in Rd. As in Equation (4.2) we call the solution u,
and we write ũ = (τµp

◦ γp(u))np=0 where τα(v, q) := (v, q/α) for α > 0. Then Equation (4.2c)
can be rewritten as an essential condition ũ ∈ X(Σ). We denote τ(µ)(v) := (τµp

(vp))
n
p=0 for

µ = (µ0, . . . , µn) and v ∈ H(Σ), in particular, we have τ—1
(µ) (ũ) = u = (γp(u))np=0. According to

Equations (4.2a) and (4.2b) we can apply Theorem 2.24 to u− EΩ0
(uinc) such that:

P(κ)(τ
—1
(µ) (ũ)− uinc) = τ—1

(µ) (ũ)− uinc.
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This last equation can be rewritten as follows using the relation between Ap
κp

and Pp
κp

:

(
A(κ) − Id

)
(τ—1

(µ) (ũ)) =
((

A0
κ0

− Id

)
γ0(uinc), 0, . . . , 0

)
. (4.5)

To simplify the right-hand side, we can use the fact that uinc is solution of the Helmholtz equation
with a uniform coefficient κ0 in the whole space, so that according to Corollary 2.20:

γ0c ◦G0
κ0

◦ γ0c (uinc) = −γ0c (uinc). (4.6)

Applying the identity γ0c = {γ0} − [γ0]/2 to the equation Equation (4.6) and using the jump
formula from Theorem 2.22, we obtain:(

A0
κ0

− Id

2

)
γ0c (uinc) = −γ0c (uinc).

And since γ0(uinc) = γ0c (uinc) by elliptic regularity, we have the following identity:

A0
κ0
γ0(uinc) = −γ0(uinc). (4.7)

Then, Equation (4.7) allows us to simplify the right-hand side in Equation (4.5) and, testing this
equation with a test function v ∈ X(Σ) and using Lemma 4.4, we obtain the following variational
formulation: find ũ ∈ X(Σ) such that

q
A(κ,µ)(ũ), v

y
= −2

q
τ(µ)(uinc), v

y
, ∀v ∈ H(Σ), (4.8)

where A(κ,µ) := τ(µ) ◦ A(κ) ◦ τ−1
(µ). As we did in Chapter 2 using Theorem 2.14, the key to prove

well-posedness is to show that the operator A(κ,µ) is injective and satisfies a Gårding inequality.
To do so, we have the following theorem for the Helmholtz equation:

Theorem 4.7 ([95, Theorem 2.16]). Set θ(v, q) = (−v, q) and Θ(v) = (θ(vp))
n
p=0. There exists

a constant C > 0 and a compact operator K(κ) : H(Σ) → H(Σ) such that

Re
(q(

A(κ,µ) +K(κ)

)
(v),Θ(v)

y)
≥ C‖v‖2H(Σ) ∀v ∈ H(Σ).

Hence, we deduce that A(κ,µ) is an isomorphism if and only if it is injective, which is true
under our assumption given by Equation (4.3):

Theorem 4.8 ([37, Lemma 3.4]). Under the assumption given by Equation (4.3), A(κ,µ) is
injective, so that Equation (4.8) is well-posed.

As explained in Section 2.4.5, we need to have a preconditioning strategy because the matrices
stemming from boundary element methods are usually ill-conditioned. According to [37, Section
4], this is also the case for the Galerkin approximation of Equation (4.8). It is also explained
in [37] that it is not possible to use the operator preconditioning strategy described in [146, 26,
27, 94] for the PMCHWT approach with a geometry involving junction points, and this is what
led the development of the alternative formulation called Multri-trace formulations. But here,
we will be interested in these methods from a domain decomposition point of view.

4.2.2.2 Multi-trace formulation (MTF)

Dealing with multi-subdomain scattering problems, several alternatives to the PMCHWT ap-
proach exist. For example, there is the Boundary Element Tearing and Interconnecting (BETI)
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method introduced in [110] which is the boundary element counterpart of the Finite Element
Tearing and Interconnecting (FETI) method. Here, we will focus on another alternative called
local multi-trace formulation introduced in [96] and [100]. It should be noted that there exists
also a global multi-trace formulation (see [34]) and a quasi-local multi-trace formulation ([31]).

All these formulations are dubbed Multi-Trace Formulation (MTF) because at each point of
each interface, two pairs of Dirichlet/Neumann traces come into play, contrary to the PMCHWT
approach. They differ on the way transmission conditions are imposed. Concerning local MTF,
the transmission condition is weakly imposed with a transmission operator Π defined as follows:
∀u = (up)np=0 ∈ H(Σ), v = (vp)np=0 ∈ H(Σ) such that uk = (uk, pk), vk = (vk, qk) ∈ H(Γp) for
1 ≤ k ≤ n, we have

Π(u) = v ⇐⇒ vpk = Q ukp on Γp,k, ∀k ∈ ∆p and ∀ 0 ≤ p ≤ n,

⇐⇒

{
vp = uk

qp = −pk
on Γp,k ∀k ∈ ∆p and ∀ 0 ≤ p ≤ n.

This operator maps continuously H(Σ) onto H(Σ) under the assumption that there is no junc-
tion point in the geometry. It has the interesting property to only exchange traces between
neighboring subdomains, similarly to Schwarz methods. Then, we have the following properties:

Π2 = Id, and JΠ(u), vK = JΠ(v), uK ∀u, v ∈ L2(Σ)

where L2(Σ) is defined as the cartesian product of L2(Γ0) × · · · × L2(Γn) for every 0 ≤ p ≤ n.
For every u ∈ H(Σ), we have u ∈ X(Σ) ⇐⇒ Π(u) = u. Another way to express the transmission
operator is to use the matrix operator Q: for every u, v ∈ H(Σ)

JΠ(u), vK =
n∑

p=0

∑
k∈Λp

[
Q(ukp), v

p
k

]
Γp,k

.

Using Equation (4.5) and simplifying the right-hand side as we did in the last section, the
transmission condition is imposed weakly so that we have the following variational formulation
of Equation (4.2): find ũ ∈ H(Σ) such that

q(
P(κ,µ) − Id

)
(ũ), v

y
+ α J(Id −Π) (ũ), vK = −

q
τ(µ)(uinc), v

y
, ∀v ∈ H(Σ). (4.9)

This formulation was originally proposed in [96] with α = 1
2 , and then, a variant with the

relaxation parameter α was introduced in [100]. Well-posedness in the first case given in [96]
and extended to the second case in [30] for α ∈ C \ {0}. The value α = 0 is clearly forbidden
since Id −P(κ,µ) is a non-trivial projector, and hence it cannot be invertible. Let us denote the
local-MTF operator MTFα,(κ,µ) := P(κ,µ) + (α− 1) Id −αΠ.

4.2.3 Algebraic relations
In this section, we will derive some algebraic relations concerning the operators introduced in
Section 4.2.1, similarly to what is done in [30, Section 6]. However, we focus on the operator
P(κ,µ) instead of A(κ,µ) since the former has the good property of being a projector.

First, we show some relations for the operators defined on trace spaces H(Γp) for 0 ≤ p ≤ n,
and then these relations will help us to derive relations for operators defined on the multi-trace
space H(Σ).
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Ol

Ok

Ωp

Om

Figure 4.2 – Example of a multi-subdomain setting for Lemma 4.9.

Lemma 4.9 ([30, Lemma 6.1]). For p = 0, . . . , n, and every k, l,m ∈ Λp with k 6= m and k 6= l,
we have

(i) Pp
lk ◦Pp

km = 0,

(ii) (Pp
kk)

2
= Pp

kk,

(iii) Pp
lk ◦Pp

kk = Pp
lk

(iv) Q Pp
kk = −Pk

pp Q+Q for κp = κl.

Proof. Let p = 0, . . . , n and k, l,m ∈ ∆p with k 6= l and k 6= m. Let us denote Ol the maximal
open set such that ∂Ol = Γpl and Ol∩Ωp = ∅ (see Section 4.2.3). Take an arbitrary v ∈ H(Γp,m)
and ṽ = (Rp

m)∗v, it should be noticed that Gp(ṽ) does not have a jump on Γp,k according to the
jump relations from Theorem 2.22, because Γp,k ∩ Γp,m = ∅. We deduce that

Pp
km(v) = Rp

k ◦γ
p ◦ Gp(ṽ) = Rp

k ◦γ
p
c ◦ Gp(ṽ).

Let us denote w the function defined as follows:

w =

{
Gp(ṽ) in Ok

0 in Oi for i 6= k and i ∈ Λp.

Notice that w is solution to the Helmholtz equation in the complementary of Ωp. Besides, we
have the relation

γpc (w) = (Rp
k)

∗ ◦ Rp
k ◦γ

p
c ◦ Gp(ṽ) = (Rp

k)
∗ ◦ Pp

km(v)

According to the second part of Corollary 2.20, we have

Gp ◦ γpc (w) =


−Gp(ṽ) in Ok

0 in Oi for i 6= k and i ∈ Λp

0 in Ωp.

We conclude that the interior trace γp of Gp◦γpc (w) vanishes, that is to say γp◦Gp◦(Rp
k)

∗◦Pp
km =

0, and therefore we have the first relation, Pp
lk ◦Pp

km = 01.
Now we want to prove second and third relation. We know that (Pp)2 = Pp because it is the

1We actually do not need the assumption l 6= k made in [30, Lemma 6.1]
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Calderón projector associated with Ωp. We deduce∑
m∈∆p

Pp
km ◦Pp

mk = Pp
kk and

∑
m∈∆p

Pp
lm ◦Pp

mk = Pp
lk .

But according to the first relation, every term such that k 6= m is equal to zero. Thus, we obtain
(Pp

kk)
2 = Pp

kk and Pp
lk ◦Pp

kk = Pp
lk. Finally, let us prove the fourth relation. Using the definition

of the potentials, we have

Gp ◦ (Rp
k)

∗ = −Gk ◦ (Rk
p)

∗ Q . (4.10)

TThen, we remark that we have Rp
k γ

p = Q Rk
p γ

k
c , so that

Pp
kk =Rp

k γ
pGp(Rp

k)
∗ = Q Rk

p γ
k
c Gp(Rp

k)
∗

=Q Rk
p(γ

k − [γk])Gp(Rp
k)

∗

=Q Rk
p γ

kGk ◦ (Rk
p)

∗ Q−Q Rk
p[γ

k]Gk ◦ (Rk
p)

∗ Q,

where we used Equation (2.5) in the second line and Equation (4.10) in the third one. The
second term in the right-hand side is equal to the identity using Theorem 2.22 and the first term
is equal to −Q Pk

pp Q by definition, then we obtain the fourth relation by multiplying by Q.

Let us define the operators D(κ) and T(κ):

q
D(κ)(v), v

′y :=

n∑
p=0

∑
k∈Λp

[
Pp
kk(v

p
k), v

′p
k

]
Γp,k

∀v, v′ ∈ H(Σ),

q
T(κ)(v), v

′y :=

n∑
p=0

∑
k,m∈Λp

k 6=m

[
Pp
km(vpm), v′pk

]
Γp,k

∀v, v′ ∈ H(Σ),

such that P(κ) = D(κ) + T(κ). The first operator can be seen in a matrix-type notation as the
diagonal of P and the second one as the extra-diagonal part. Notice that for v ∈ H(Σ), the com-
ponents of D(κ) and T(κ) associated with Γp,k are respectively Pp

kk(v
p
k) and

∑
m∈∆p,m 6=k Pp

km(vpm).
We have a similar result as [35, Lemma 6.2] which gives some properties of the operator D(κ).

Lemma 4.10 ([30, Lemma 6.2]). We have D2
(κ) = D(κ) and Π ◦ D(κ) + D(κ) ◦Π = Π

Proof. These results come from direct computations and Lemma 4.9: ∀v, v′ ∈ H(Σ),

r
D2

(κ)(v), v
′
z
=

n∑
p=0

∑
k∈Λp

[
(Pp

kk)
2︸ ︷︷ ︸

=Pp
kk

(vpk), v
′p
k

]
Γp,k

=
q
D(κ)(v), v

′y ,

q
Π ◦ D(κ)(v), v

′y =

n∑
p=0

∑
k∈Λp

[
Q Pk

pp(v
k
p), v

′p
k

]
Γp,k

=

n∑
p=0

∑
k∈Λp

−
[
Pp
kk ◦Q(vkp), v

′p
k

]
Γp,k

+
[
Q(vkp), v

′p
k

]
Γp,k

= −
q
D(κ) ◦Π(v), v′

y
+ JΠ(v), v′K .
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Concerning the operator T(κ), similarly to [30, Lemma 6.3] and [30, Corollary 6.1], we have
the following lemma:

Lemma 4.11 ([30, Lemmas 6.3 and Corollary 6.1]). We have the following relations

T2
(κ) = 0 and

(
Π ◦ T(κ) + T(κ) ◦Π

)k
=
(
Π ◦ T(κ)

)k
+
(
T(κ) ◦Π

)k
.

Proof. As in the last lemma, the proof is just a direct computation using Lemma 4.9: ∀v, v′ ∈
H(Σ),

r
T2
(κ)(v), v

′
z
:=

n∑
p=0

∑
k,l,m∈Λp

k 6=l,l 6=m

[
Pp
kl ◦Pp

lm︸ ︷︷ ︸
=0

(vpm), v′pk

]
Γp,k

= 0.

The second relation is a direct consequence of the first one and the identity Π2 = Id.

We are now interested in relations between the two operators D(κ) and T(κ).

Lemma 4.12. We have D(κ) ◦ T(κ) = 0 and T(κ) ◦ D(κ) = T(κ).

Proof. Again, we use results from Lemma 4.9: ∀v, v′ ∈ H(Σ),

q
D(κ) ◦ T(κ)(v), v

′y =

n∑
p=0

∑
k,m∈Λp

k 6=m

[
Pp
kk ◦Pp

km︸ ︷︷ ︸
=0

(vpm), v′pk

]
Γp,k

= 0

q
T(κ) ◦ D(κ)(v), v

′y =

n∑
p=0

∑
k,m∈Λp

k 6=m

[
Pp
km ◦Pp

mm︸ ︷︷ ︸
=Pp

km

(vpm), v′pk

]
Γp,k

=
q
T(κ)(v), v

′y

4.2.4 Spectrum of the local-MTF
Similarly to [30, Theorem 6.1], we know precisely the spectrum of the local-MTF operator in
the case of a homogeneous material, meaning κ0 = · · · = κn and µ0 = · · · = µn. We drop the
subscripts (κ, µ) and (κ) in this case, i.e. T(κ) will be denoted T. First, we prove that ΠT and
TΠ are nilpotent operators of index PG similarly to [30, Proposition 6.1], but with more precise
results on the index.

Lemma 4.13. If κ0 = · · · = κn, then (ΠT)PG = (TΠ)PG = (ΠT + TΠ)PG = 0 where PG is
defined in Section 4.1.1 as the maximal length of a simple path in the adjacency graph associated
with the partition.

Proof. A direct computation gives

J(Π ◦ T) (u), vK =
n∑

p0=0

∑
p1∈∆p0

∑
p2∈∆p1
p2 6=p0

[(
Q ◦Pp1

p0p2

)
(up1

p2
), vp0

p1

]
Γp0,p1

,
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J(Π ◦ T)n (u), vK =
n∑

p0=0

∑
p1∈∆p0

∑
p2∈∆p1
p2 6=p0

· · ·
∑

pn+1∈∆pn
pn+1 6=pn−1

[
Q ◦Pp1

p0p2
· · ·Q ◦Ppn

pn−1pn+1
(upn

pn+1
), vp0

p1

]
Γp0,p1

,

such that each term in the last equation corresponds to a simple path in the adjacency graph of
length n+1. Since there is no such path of length PG+1, we deduce that

r
(Π ◦ T)PG (u), v

z
= 0.

Then, we have (TΠ)PG = Π(ΠT)PGΠ = 0, and according to Lemma 4.11, (Π ◦ T + T ◦ Π)PG =
(TΠ)PG + (ΠT)PG = 0.

We deduce the following theorem

Theorem 4.14 ([30, Theorem 6.1]). If κ0 = · · · = κn and µ0 = · · · = µn, then

σ(A− αΠ) = σp(A− αΠ) = {+
√
1 + α2,−

√
1 + α2},

where σ(σp(A− αΠ)) denotes the spectrum of (A− αΠ) and σp(A− αΠ), its point spectrum.

Proof. If α = 0, the result is clear because Id +A
2 is a projector. Let us assume now that α 6= 0.

First, taking the square of A− αΠ, we obtain

(A− αΠ)2 = A2 + α2 Id −α(2P− Id)Π− αΠ(2P− Id)

= (1 + α2) Id −2α(DΠ+ΠD−Π)− 2α(ΠT+ TΠ)

= (1 + α2) Id −2α(ΠT+ TΠ),

where we used (Ap)2 = Id and Lemma 4.10. Remark that according to Lemma 4.13, ΠT + TΠ
is nilpotent, and according to the spectral radius formula [135, Theorem 10.13 (b)], we have
σ(ΠT+ TΠ) = {0} and we deduce that σ((A− αΠ)2) = {1 + α2}.

Using the spectral mapping theorem [135, Theorem 10.28], one can show σ(A − αΠ) ⊂
{+

√
1 + α2,−

√
1 + α2}. According to the spectral mapping theorem for the point spectrum [135,

Theorem 10.33], we also have σp(A− αΠ) ⊂ {+
√
1 + α2,−

√
1 + α2}. To finish the proof, let us

show that if λ ∈ σp(A− αΠ) then −λ ∈ σp(A− αΠ).
Let u ∈ H(Σ) \ {0} be the eigenvector associated with the eigenvalue λ, then (A−αΠ)u = λu

and notice that (AΠ−ΠA)(A− αΠ) = −(A− αΠ)(AΠ−ΠA), so that

(A− αΠ)(AΠ−ΠA)u =− (AΠ−ΠA)(A− αΠ)u

=− λ(AΠ−ΠA)u.

Hence, −λ is an eigenvalue of A− αΠ if (AΠ−ΠA)u 6= 0. Notice that

ΠAu = λΠu+ αu and AΠu =
1

α
u− λ

α
Au,

so that

(ΠA− AΠ)u =

(
α− 1

α

)
u− λ

α
(A− αΠ)u.

By hypothesis, λ = ±
√
1 + α2, so that the spectrum of

(
α− 1

α

)
Id +

λ
α (A− αΠ) contains only

α− 1

α
± λ

α

√
1 + α2 =

α2 − 1± (1 + α2)

α
= 2α or −2

α
.



68 CHAPTER 4. Local multi-trace formulation and optimal Schwarz method

Since α 6= 0, we deduce that (ΠA−AΠ)u cannot be equal to zero, so that −λ is also an eigenvalue
of A− αΠ.

Corollary 4.15. If κ0 = · · · = κn and µ0 = · · · = µn, then

σ(MTFα) = σp(MTFα) = {α− 1

2
+

√
1 + 4α2

2
, α− 1

2
−

√
1 + 4α2

2
},

Proof. By definition, we have

MTFα = P+ (α− 1) Id −αΠ

=
1

2
(A− 2αΠ+ (2α− 1) Id),

and we conclude using Theorem 4.14.

Notice that it is consistent with the fact that −MTF0 is a projector in the last corollary.

4.3 Jacobi method
In [32], where local MTF is presented for the DDM community, a Jacobi method for Equa-
tion (4.9) is introduced and analysed for two and three subdomains with Dissipative Helmholtz
equation. In particular, it is proved that the iteration operator is nilpotent, and it is explicitly
shown that this iteration operator is nilpotent of index two for two subdomains and of index four
for three subdomains in one dimension, while an explicit equivalence with the optimal Schwarz
method is presented for two subdomains in one dimension. We show thereafter a generalization
of these results for n subdomains in any dimension, based on algebraic properties introduced in
Section 4.2.3.

4.3.1 Definition
First, let us introduce the Jacobi method introduced in [32, Equation (12)] for the Equation (4.9):

um+1 = Jα,(κ,µ)um + F (4.11)

where

Jα,(κ,µ) =
(
P(κ,µ) + (α− 1) Id

)−1
αΠ,

F = −
(
P(κ,µ) + (α− 1) Id

)−1
τ(µ)(uinc).

It should be noticed that for α 6= 0, 1, we can do the following computation(
P(κ,µ) + (α− 1) Id

)
◦
(
P(κ,µ) − α Id

)
= P2

(κ,µ) − αP(κ,µ) + (α− 1)P(κ,µ) − α(α− 1) Id

= −α(α− 1) Id,

so that (
P(κ,µ) + (α− 1) Id

)−1
=

1

α(1− α)

(
P(κ,µ) − α Id

)
.
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Then, according to Equation (4.7), we have A0
κ0
γ0(uinc) = −γ0(uinc) so that

F =
1

α(α− 1)

(
P(κ,µ) − α Id

)
τ(µ)(uinc)

=
1

α(α− 1)

( Id +A(κ,µ)

2
− α Id

)
◦ τ(µ)(uinc)

=
1

2α(α− 1)

(
τµ0

◦
(
(1− 2α) Id +A0

κ0

)
τ−1
µ0

◦ τµ0
◦ γ0(uinc), 0, . . . , 0

)
=

1

2α(α− 1)
(τµ0

◦ ((1− 2α) Id − Id) γ0(uinc), 0, . . . , 0)

=
1

1− α
(τµ0

◦ γ0(uinc), 0, . . . , 0) =
1

1− α
τ(µ)(uinc).

To conclude, we have

Jα,(κ,µ) =
1

1− α

(
P(κ,µ) − α Id

)
◦Π,

F =
1

1− α
τ(µ)(uinc).

4.3.2 Nilpotent operator and optimal convergence
In [33], it has been proved that the spectral radius, which controls the speed of convergence of
the Jacobi solver, is minimal if α = 0 for two and three subdomains in the case of κ0 = · · · = κn
and µ0 = · · · = µn. First, we will generalize this property to a general configuration. But, one
should notice that α cannot take the value 0 since it is equivalent to imposing no transmission
condition (cf. Equation (4.9)). Nevertheless, it will give interesting results that we will justify
thereafter.

Theorem 4.16. If κ0 = · · · = κn and µ0 = · · · = µn, then for α ∈ R, we have
σ(Jα) = σp(Jα) ={+i

√
α

1− α
,−i
√

α

1− α
} if |α| < 1

σ(Jα) = σp(Jα) ={+
√

α

α− 1
,−
√

α

α− 1
} if |α| > 1

Proof. By definition, we have

λ ∈ σ((P− α Id) ◦Π) ⇐⇒ (P− α Id) ◦Π− λ Id is not invertible
⇐⇒ P− α Id −λΠ is not invertible
⇐⇒ A− 2λΠ− (2α− 1) Id is not invertible
⇐⇒ (2α− 1)2 = 1 + 4λ2

⇐⇒

{
λ = ±i

√
α(1− α) if |α| ≤ 1

λ = ±
√
α(α− 1) if |α| > 1

,

where we used Theorem 4.14.

The spectral radius ρ(Jα) := sup{|λ|, λ ∈ σ(Jα)} is a critical parameter for the convergence
on the Jacobi iteration Equation (4.11). The parameter α must be chosen such that the spectral
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radius is as small as possible. According to Theorem 4.16, one should take α = 0. The interesting
feature of taking α = 0 in the Jacobi method is that it gives a convergence in a finite number of
iterations since it becomes nilpotent. More precisely, we prove that the operator J0 is nilpotent
of order PG + 1, the length of the adjacency graph associated with the partition of the domain
(see Section 4.1.1).

Lemma 4.17. If κ0 = · · · = κn and µ0 = · · · = µn, we have Jk+1
0 = (T ◦ Π)k+1 + Π ◦ (T ◦ Π)k

for every integer k ≥ 1.

Proof. We prove this relation by induction. For k = 1, we have

J20 = ((D+ T) ◦Π)
2

= (D ◦Π)
2
+ (T ◦Π)

2
+ D ◦Π ◦ T ◦Π+ T ◦Π ◦ D ◦Π.

Using Lemma 4.10, we have D ◦ Π = Π− Π ◦ D so that (D ◦Π)
2
= D ◦ Π ◦ (Π− Π ◦ D) = 0 and

the last expression becomes

J20 = (T ◦Π)
2
+Π ◦ T ◦Π−Π ◦ D ◦ T ◦Π+ T− T ◦ D.

Since T ◦ D = T and D ◦ T = 0 according to Lemma 4.12, we obtain

J20 = (T ◦Π)
2
+Π ◦ T ◦Π.

which is the expected relation. For k > 1, let us assume we have

Jk0 = (T ◦Π)
k
+Π ◦ (T ◦Π)

k−1
.

Then, we obtain

Jk+1
0 = (D ◦Π+ T ◦Π) ◦

[
(T ◦Π)

k
+Π ◦ (T ◦Π)

k−1
]

= D ◦Π ◦ (T ◦Π)k + D ◦ (T ◦Π)
k−1

+(T ◦Π)k+1 + T ◦ (T ◦Π)
k−1

.

The second and the last terms vanish according to Lemmas 4.11 and 4.12. Simplifying the first
term with the relation obtained in Lemma 4.10 gives

Jk+1
0 = (T ◦Π)

k+1
+Π ◦ (T ◦Π)

k
.

By induction, we proved the expected relation.

Theorem 4.18. If κ0 = · · · = κn and µ0 = · · · = µn, then the Jacobi method defined in
Equation (4.11) converges in PG + 1 iterations.

Proof. We just combine Lemmas 4.13 and 4.17.

Despite its convergence property, one could argue that it does not really make sense to take
α = 0. But actually, it can be justified by the following remark: the equation obtained with
α = 0 is

um+1 = P ◦Πum + uinc, (4.12)
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which can be seen as a block Jacobi method applied to

MTF1 ◦Π(u) = (P−Π)Π(u) = (J0 − Id)u = −uinc. (4.13)

This last equation is consistent with Equation (4.9) for α = 1 since the solution must satisfy
u = Πu. In other words, taking α = 0 in Equation (4.11) is equivalent to solving Equation (4.9)
with a Jacobi method, α = 1, and Π as right preconditioner.

In [96, Section 5.3], the authors introduced another preconditioning strategy for Equa-
tion (4.9) with α = 1

2 where the diagonal part of the operator MTF1/2,(κ,µ), that is to say
A(κ,µ), is used as a preconditioner. But notice that we have the following relation

A(κ,µ) MTF1/2,(κ,µ) = A(κ,µ)
1

2
(A(κ,µ) −Π)

=
1

2
(Id −A(κ,µ)Π)

= −(A(κ,µ) −Π)Π

= −MTF1/2,(κ,µ) Π,

using A2
(κ,µ) = Id and Π2 = Id. So that, the preconditioning strategy suggested in [96, Section

5.3] corresponds also to a right preconditioning by Π but with α = 1
2 .

4.3.3 Equivalence with Optimal Schwarz Methods
According to Theorem 4.18, we have convergence of the Jacobi method applied to Equation (4.9)
in PG+1 iterations. Thus, for the case of n concentric ring, we have convergence in n iterations.
This last result is similar to the one we can obtain with Optimal Schwarz Method (OSM) (cf. [128]
and Section 3.1.2). This suggests a link between MTF and OSM and this is what we are going
to clarify.

Let us define the following bounded one-to-one operators

Xp : H1/2(Γp) → H(Γp),

u 7→ (u,DtNp(u))
and

Yp : H(Γp) → H−1/2(Γp).

(u, p) 7→ p+ D̃tN
p
(u)

,

where DtNp is the Dirichlet-to-Neumann operator defined as in Section 3.1.2 associated with Ωp,
while D̃tN

p
is the Dirichlet-to-Neumann operator associated with Rd \ Ωp. We already defined

these notations in Section 3.1.2, but we remind them here:{
DtNp : H1/2(∂Ωp) → H−1/2(∂Ωp)

v 7→ ∇w · np

and

{
D̃tN

p
: H1/2(∂Ωp) → H−1/2(∂Ωp)

v 7→ −∇w̃ · np

where np is the outer normal relative to Ωp, while w and w̃ respectively satisfy the following
problems: {

L(w) = 0 in Ωp,

w = v on ∂Ωp.
and

{
L(w̃) = 0 in Ωc

p = Rd \ Ωp,

w = v on ∂Ωp.

If Ωp or Ωc
p is unbounded, we add the appropriate conditions at infinity for the problem to be

well-posed (see Section 4.1.2). More generally, we use a tilde to denote the operators associated
with Ωc

p.
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Lemma 4.19. We have the following relations

DtNp = (Vp)−1

(
Id

2
− Kp

)
=

(
Id

2
− K′p

)−1

Wp,

D̃tN
p
= (Vp)−1

(
Id

2
+ Kp

)
=

(
Id

2
+ K′p

)−1

Wp .

Proof. The first relation is just a reminder of Theorem 2.27. According to Theorem 2.22, we
have

[γΩp ] ◦ GΩp

L = Id,

where the superscript Ωp means that the operator is relative to Ωp and its outer normal np. We
deduce that

γΩp ◦ GΩp

L = Id +γ
Ωp
c ◦ GΩp

L

= Id +Q γΩ
c
p ◦ GΩp

L .

We can rewrite the last expression in matrix form using the operators defined in12 Id +Kp Vp

Wp 1

2
Id +K′p

 =

[
Id 0
0 Id

]
+ Q

[
γ
Ωc

p

D

γ
Ωc

p

N

] [
DLΩp SLΩp

]

=

[
Id 0
0 Id

]
+

[
γ
Ωc

p

D ◦ DLΩp γ
Ωc

p

D ◦ SLΩp

−γΩ
c
p

N ◦ DLΩp −γΩ
c
p

N ◦ SLΩp

]
.

Notice that we have SLΩp = SLΩc
p and DLΩp = −DLΩc

p (cf. definitions in Section 2.3.1), so that12 Id +Kp Vp

Wp 1

2
Id +K′p

 =

[
Id 0
0 Id

]
+

[
−γΩ

c
p

D ◦ DLΩc
p γ

Ωc
p

D ◦ SLΩc
p

γ
Ωc

p

N ◦ DLΩc
p −γΩ

c
p

N ◦ SLΩc
p

]

=

[
Id 0
0 Id

]
+

−1

2
Id −K̃

p
Ṽ

p

W̃
p

−1

2
Id −K̃

′p

 .
We deduce that

Kp = −K̃
p
, Vp = Ṽ

p
,

Wp = W̃
p
, K′p = −K̃

′p
,

and then, we just use Theorem 2.27 to obtain the second relation.

Using the previous lemma, we can relate the operators Xp and Yp with Pp
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Lemma 4.20. We have the following relations

Pp = Xp ◦ Vp ◦Yp and Vp ◦Yp ◦ Xp = Id

Proof. Using matrix notations, we have[
Id

DtNp

]
◦ Vp ◦

[
D̃tN

p
Id

]
=

[
Vp D̃tN

p
Vp

DtNp Vp D̃tN
p

DtNp Vp

]
,

=

 1

2
+ Kp Vp

DtNp Vp D̃tN
p

DtNp Vp

 ,
where we used Lemma 4.19. Then, we have DtNp Vp = Id

2 + K′p with Lemma 4.19 and Equa-
tion (2.9a), so that Pp = Xp ◦ Vp ◦Yp. Concerning the second equation, we have

Vp ◦Yp ◦ Xp = Vp ◦
(

DtNp +D̃tN
p
)
= Id,

using Lemma 4.19.

We can now exhibit the link between the OSM and the local MTF in the geometric setting
described in Section 4.1.1. Let us look at the error em = u − um ∈ H(Σ) of the Jacobi method
given in Equation (4.11) with u the trace of the solution of Equation (4.2) and α = 0, we have

em+1 = P ◦Π(em),

which means that, for every p = 0, . . . , n, we have

(ep)m+1 = Pp ◦
∑
k∈∆p

(Rk
p)

∗ Q(ekp)
m.

Then, we can apply Vp ◦Yp and Lemma 4.20 to obtain

Vp ◦Yp(ep)m+1 = Vp ◦Yp ◦
∑
k∈∆p

(Rk
p)

∗ Q(ekp)
m. (4.14)

We can define D̃tN
p

kl with k, l ∈ ∆p as follows

D̃tN
p

kl : H
1/2(Γj,l) → H−1/2(Γj,k)

vpl 7→ Rp
k,N ◦D̃tN

p
◦ (Rp

l,D)∗(vpl )

where Rp
k,N and (Rp

l,D)∗ are the restriction and extension operators applied to, respectively,
a Neumann trace and a Dirichlet trace. Notice that if k = l, this operator is the Dirichlet-to-
Neumann operator associated with the connected component of Rd \Ωp such that its intersection
with Ωp is Γj,k (similar to the operator Λj,r or Λj,l in [128]). Otherwise, if k 6= l, the operator is
null. Thus multiplying by (Vp)−1 and applying the restriction operator Rp

k,N to Equation (4.14),
we obtain

D̃tN
p

kk

(
(epk)

m+1
)
+ (rpk)

m+1 = D̃tN
p

kk

(
(ekp)

m
)
− (rkp)

m



74 CHAPTER 4. Local multi-trace formulation and optimal Schwarz method

Ω0

Ω1

Ω2

Ω3

(a) Configuration I

Ω0

Ω1 Ω2 Ω3

(b) Configuration II

Figure 4.3 – Considered geometric configurations in our numerical tests with the local multi-trace
formulation with PG varying or constant.

where epk = (epk, r
p
k) ∈ H(Γp) for 1 ≤ p ≤ n and k ∈ ∆p. This is exactly the transmission condition

used in the OSM as described in Equation (3.5). Thus, we understand why the convergence
properties are similar, both methods actually perform the same iteration on the traces.

4.4 Numerical evidences
In this section, we present numerical results conducted on PDEs in 2D that illustrate the con-
clusions of the previous sections. Denote D(x, r), the disk of center x and radius r > 0. We
introduce two geometric configurations that we will use in our numerical experiments, they are
illustrated in Figure 4.3, and defined as follows:

• Configuration I: It consists in centered nested disks. Considering a sequence of radii rp =
n− p, we set Ω0 := R2 \D(0, r0), and then Ωp := D(0, rp−1) \D(0, rp), for p = 1, . . . , n− 1,
and Ωn := D(0, 1). In this configuration, the depth of the adjacency graph PG equals n,
i.e. it grows linearly with the number of subdomains, see Figure 4.3a.

• Configuration II: We define a sequence of centers xp = (3(p − 1), 0), and we consider
translated unit disks Ωp = D(xp, 1), for p = 1, . . . , n with Ω0 = R2 \ (Ω1 ∪ · · · ∪ Ωn). In
this configuration, the depth of the adjacency graph PG systematically equals 2 for n > 1,
see Figure 4.3b.

The point of these two geometries is to have one test case where PG increases linearly, Con-
figuration I, and another test case where it is constant, Configuration II. We will use these two
test cases to illustrate Theorem 4.18. Note that we use GMSH [59] to discretize the considered
geometry. More precisely, we set the length of the mesh cells to 0.05 for Configuration I and to
0.1 for Configuration II.
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4.4.1 Discretization
We solve Equation (4.9) with a Galerkin discretization as described in Section 2.4.5 using Bem-
Tool2. We approximate H(Σ) by Vh :=

∏n
p=0 Vh(Γp) × Vh(Γp), where Vh(Γp) is a P1-Lagrange

function space over a regular mesh (here a set of straight panels forming a polygonal line), with
h as the maximal length of the panels. After discretization, Equation (4.9) becomes

MTFα,(κ,µ)(uh) = (P(κ,µ) − M + α(M −Π))uh = −Mτ(µ)(uh,inc), (4.15)

where uh, uinc,h ∈ Vh, while P(κ,µ), M are Π are the Galerkin matrices associated with, respec-
tively P(κ,µ), Id and Π. More precisely, let us denote ((ϕj

h)
N
j=0) the boundary element basis,

where N is the number of nodes in the mesh. It should be noticed that each function (ϕj
h) is

used four times. Indeed, for each node, we have one degree of freedom for the Dirichlet trace
and one for the Neumann trace on each side of the boundary.

We denote the basis functions associated with Γp ((ψj
h)

Np−1
j=Np−1

), such that (N−1 = 0), (Nn =

2N) and (Np − Np−1) is the number of nodes on Γp. Remark that every boundary function
(ϕj

h) appear twice in ((ψj
h)

2N−1
j=0 ), for example if (Γpk 6= ∅), ((ψj

h)
Np−1
j=Np−1

) and ((ψj
h)

Nk−1
j=Nk−1

) both
contain the functions (ϕj

h) located on (Γpk).

uph := (uh)
2Np−1
j=2Np−1

= ((uph)D, (u
p
h)N )

T
,

Mp := (M)
2Np−1
j,k=2Np−1

=


(∫

Γp
ψjψk

)Np−1

j,k=Np−1

0

0
(∫

Γp
ψjψk

)Np−1

j,k=Np−1

 ,

Ap
(κ,µ) :=

(
A(κ,µ)

)2Np−1

j,k=2Np−1
= 2

(
Kp µpVp

Wp/µp K′p

)
, Pp

(κ,µ) =
Ap

(κ,µ) + Mp

2

(Π)
2Np−1,2Nl−1
j=2Np−1,k=2Nl−1

:=


(∫

Γp,l
ψjψk

)Np−1,ml−1

j=Np−1,k=ml−1

0

0 −
(∫

Γp,l
ψjψk

)Np−1,ml−1

j=Np−1,k=Nl−1

 ,

F := Mτ(µ)(uinc,h)

Notice that Ap
(κ,µ) and Mp are block diagonal matrices where each block corresponds to a

subdomain. And these blocks are applied to pair of traces, for example in Mp the first diagonal
block is applied to Dirichlet traces and the second one to Neumann traces. Meanwhile, Π has only
extra diagonal blocks corresponding to interfaces between subdomains. The other coefficients we
have not defined yet vanish.

We are interested in solving Equation (4.15) for several values of α and various choices of
(κ0, . . . , κn) and (µ0, . . . , µn). As explained in the previous sections, a good choice would be
α = 1 with Π as a right preconditioner, so that in the homogeneous case MTF1 ◦Π = J0 − Id is
a nilpotent perturbation of the identity.

Remark 4.21 (Implementation and parallelization). All the discretized operators, except Π are
block diagonal. But notice that we have the relation Π−1 = M−1Π, where Π exchanges traces as
before, but applied to finite element functions. It means that an iterative solver using only matrix
vector multiplications by the discretized operator and Π−1 would be very parallel. Each block
can be assembled independently of one another, each global matrix vector multiplication can be

2https://github.com/xclaeys/BemTool

https://github.com/xclaeys/BemTool
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performed as local matrix vector products in each subdomain, and exchanging trace is also quite
local since it is only between neighboring subdomains. Such a distributed parallelism is usually
performed with an implementation of the Message Passing Interface (MPI) standard, where each
subdomain is associated with a processor. Thus the exchange can be performed efficiently defining
a MPI distributed graph topology, more precisely, we define in MPI a graph like the adjacency
graph G defined in Section 4.1.1 to set how the subdomains/processors are related to one another.
This allows a reranking of the processors to optimize the hardware to the communication patterns.
The term distributed comes from the fact that this MPI topology is scalable, contrary to the usual
MPI graph topology (see [101] for more details). For example, we only give to each subdomain
its neighbors, we do not define the whole adjacency graph in each processor.

4.4.2 Homogeneous material

We first examine the spectrum of the local multi-trace operator preconditioned by Π for several
values of α with homogeneous coefficients κ0 = · · · = κn = 1 and α0 = · · · = αn = 1. At the
continuous level, we are interested in finding u 6= 0 and λ ∈ C such that MTFα Πu = λu, which is
equivalent to determining v 6= 0 and λ ∈ C such that MTFα v = λΠv. The discrete counterpart
of this eigenvalue problem writes

MTFα(vh) = λΠvh. (4.16)

The results are given in Figure 4.4 with three interfaces and a mesh size equal to 0.1, where
Helmholtz equation stands for κ ∈ R, while Dissipative Helmholtz equation corresponds to
κ ∈ iR. As expected, the case α = 1 leads to one cluster of eigenvalues around the real value
−1 since in this case, MTF1 ◦Π is a nilpotent perturbation of − Id according to Equation (4.13),
and this regardless of the values of (κ) as long as it is uniform.

We also want to illustrate the convergence of the Jacobi method described in Section 4.3.
As we have seen in this section, an optimal choice is to solve Equation (4.9) with α = 1 and
preconditioned by Π using Equation (4.12). In the discrete setting, this means that we want to
solve Equation (4.15) with α = 1, i.e.

(P −Π)uh = −M(uh,inc),

using the change of variable Πuh = vh, and the following Jacobi method

vm+1
h = PΠ−1vmh + Muh,inc, (4.17)

we obtain the results from Figure 4.5 for a mesh size equal to 0.1, such that we always obtain
a relative error of the order 10−3 compared to the solution uinc. The number of iterations is
constant in Configuration II, while it increases linearly in Configuration I, with the number of
interfaces for Configuration I. This is expected since PG is increasing with the number of in-
terfaces in Configuration I and remains constant in Configuration 2 (expect between one and
two interfaces). But notice that the number of iterations is not exactly the one expected from
Theorem 4.18, there are about one more iteration, this is probably due to the numerical approx-
imation, as we can see in Figure 4.4, the discretized operator is not exactly nilpotent. Notice
that Π—1 = M−1Π as explained in Remark 4.21.
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Figure 4.4 – Distribution of eigenvalues for the discretized local multi-trace operator (see Equa-
tion (4.16)) for n = 3, h = 0.1 and a homogeneous material.
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Figure 4.5 – Number of iterations to solve the local multi-trace formulation using the Jacobi
method defined in Equation (4.17).

4.4.3 Heterogeneous material

In practice, we are also interested in solving problems with heterogeneous material. But in this
case, the nilpotent property of the Jacobi operator does not hold anymore. Indeed, the Jacobi
method defined in Equation (4.17) may not converge when applied to P(κ,µ) instead of just P,
which can be observed numerically.

It is well-known that fixed-point methods such as Jacobi do not converge very fast, because
it is an algorithm without “memory”, meaning that each iteration is just computed from the
previous one, while Krylov methods such as the Conjugate Gradient method (CG) [83] or the
Generalized Minimal Residual method (GMRes) [137] take into account all the previous iterations
via Krylov spaces. It is common in DDM to define a preconditioner from the continuous point of
view leading to a fixed-point method, and to use it in a Krylov solver as we saw in Section 3.3.

Similarly, we can still study numerically the efficiency of using Π−1 as a preconditioner for
solving Equation (4.15) using GMRes, and we will see that α = 1 will still be the optimal value,
in the sense that it needs fewer iterations to be solved. We still expect interesting results in the
case where (κ) is not uniform because it only induces compact perturbations of the formulation.

First, we can look at the spectrum of the following eigenvalue problem

MTFα,(κ,µ)(vh) = λΠvh, (4.18)

which is really similar to Equation (4.16). Let us take n = 3, µ0 = µ1 = µ2 = 1 and κ0 = 1.00002,
κ1 = 1.26308, κ2 = 2.51121, values between 1 and 3 obtained randomly. The resulting spectrum
is given in Figure 4.6 where we can still observe the same clusters of eigenvalues as in Figure 4.4
but more scattered.

Then, we solve Equation (4.15) using GMRes. We set the maximum number of iterations to
10 000, a restart at 200 iterations and the tolerance is equal to 10−6 to obtain at least a relative
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Figure 4.6 – Distribution of eigenvalues for the discretized local multi-trace operator (see Equa-
tion (4.18)) for n = 3, κ0 = 1.00002, κ1 = 1.26308 and κ2 = 2.51121.
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error of 10−3 in the homogeneous case. The preconditioner is Π—1 = M−1Π as explained in
Remark 4.21. We show in Figure 4.7 the number of iterations of GMRes as a function of the
number of interfaces for µ0 = · · · = µ5 = 1 and κ0 = 1.00002, κ1 = 1.26308, κ2 = 2.51121,
κ4 = 2.06553 and κ5 = 1.43792. First, notice that we showed results without preconditioner
just to justify the need of a preconditioner (we will not show them anymore to lighten the
presentation), notice that the convergence is always faster except for α = 0.25. We can observe
that for the Helmholtz equation the number of iterations increases regardless of the geometric
configuration, while it is constant for Dissipative Helmholtz. We also notice that Configuration II
makes the problem easier to solve, which is consistent with the case of a homogeneous material.
In particular for the Helmholtz equation, we see that the number of iterations increases less in
Configuration II than in Configuration I. Finally, we remark that α = 1 with Π−1 is still the
best way to solve Equation (4.15).

If the variations between the κj ’s increase, the number of iterations increases. Taking the
following randomly obtained values between 1 and 41, κ0 = 1.00031, κ1 = 6.26151, κ2 = 31.2242,
κ3 = 19.346, κ4 = 22.3107 and κ5 = 9.75837, we obtain the results presented in Figure 4.8. In this
case, the solver never converges without preconditioner for Helmholtz equation. Configuration
I is really difficult to handle, the only cases that converge are α = 0.75 and α = 1 with the
preconditioner, and they converge after about 6000 iterations. Concerning Configuration II
for Helmholtz equation, the only cases that converge are still α = 0.75 and α = 1 with the
preconditioner, but the number of iterations is more reasonable, about 200 iterations. Again, we
see that the formulation associated with the preconditioner Π−1 is more adapted to this case.
The case of Dissipative Helmholtz is less problematic, and we observe that the case α = 1 with
the preconditioner gives the best results.

We are also interested in looking at variations in (µ). We take randomly obtained values
between 1 and 100, µ0 = 1.00078, µ1 = 14.1538, µ2 = 76.5605, µ3 = 46.865, µ4 = 54.2767 and
µ5 = 22.8959 with κ0 = · · · = κ5 = 1. Similarly to the previous numerical experiments, we
obtain Figure 4.9. The results are similar to the case where we added a small perturbation to
(κ), the case α = 1 with the preconditioner gives the best results. The number of iterations
increases, but variation is small compared to the one observed with important variations in (κ).

To conclude, this method can be particularly useful to solve piecewise constant problems in
(κ) with Dissipative Helmholtz equation. Concerning Helmholtz equation, it gives interesting
results for a small PG, but it is not adequate otherwise. Concerning variations in (µ), the method
is robust but it lacks a theoretical explanation.
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Figure 4.7 – Number of iterations for GMRes to solve the local multi-trace formulation using
Equation (4.15) with Π−1 as a preconditioner, κ0 = 1.00002, κ1 = 1.26308, κ2 = 2.51121,
κ3 = 1.9173, κ4 = 2.06553 and κ5 = 1.43792.
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Figure 4.8 – Number of iterations for GMRes to solve the local multi-trace formulation using
Equation (4.15) with Π−1 as a preconditioner, κ0 = 1.00031, κ1 = 6.26151, κ2 = 31.2242,
κ3 = 19.346, κ4 = 22.3107 and κ5 = 9.75837.
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µ3 = 46.865, µ4 = 54.2767 and µ5 = 22.8959.
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In Chapter 3, we presented two different points of view on Schwarz methods, either as iterative
methods or as preconditioners. In [79], it was pointed out that in the case of Boundary Ele-
ment Method (BEM), we could also think of two approaches for Domain Decomposition Method

85
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(DDM). Indeed, we could make a decomposition of the original domain where the solution is
sought, a volume decomposition, and then formulate a Boundary Integral Equation (BIE) in
each subdomain with some ways of coupling them. Or we could first set up a BIE on the whole
computational domain and then apply a domain decomposition of its boundary, a surface decom-
position. In this chapter, we will explore the second approach to define Schwarz preconditioners
and thus, we will adapt the second point of view on Schwarz method to BEM matrices.

It is quite counter intuitive to apply techniques based on locality as Additive Schwarz Method
(ASM), to non-local problems as Boundary Integral Equations (BIE). But several works followed
this idea and an intuition of why it works anyway would be that because of the singularity of
the kernel of the BIE, the linear systems in the definite positive case are somehow “diagonal
dominant”. The first article seems to be [79] where a one-level strategy in two dimensions for the
h-version applied to the weakly singular operator and the hypersingular operator with overlap
has been studied. Then, the case of symmetric positive definite operators have been extended
to two-level strategy, with and without overlap, for the p-version, h-version and hp-version in
2D [156, 155, 88, 93, 154] and 3D [86, 92, 87, 90, 84, 91, 157]. For an overview on the articles
published before 1998, we refer to [147], we also refer to the habilitation thesis [89] for a summary
of results on interpolation theory and fractional Sobolev spaces.

We seek to adapt the GenEO coarse space associated with the ASM as introduced in Sec-
tion 3.3.3, to precondition BEM matrices described in Section 2.4.5. We saw in Section 3.3.1
that Theorem 3.9 allows us to study such preconditioners, and a key point to satisfy its hypoth-
esis is how we can decompose a global energy. More precisely, to satisfy the second and third
hypothesis of Theorem 3.9, we have to be able to respectively upper bound and lower bound
the global energy by a sum of local energies. Studying BIE, a new obstacle appears compared
to usual Partial Differential Equations (PDE) with the non-locality of the bilinear forms under
study and of the norms of the underlying Sobolev spaces. Decomposing the global energy as we
did with Lemma 3.13 for example with usual PDE, will be difficult because of this non-locality.

We found several possibilities using different approaches to decompose a global energy and
to circumvent the non-locality of the problem. They all lead to a specific GenEO-type coarse
space. It brought us to study numerically the efficiency of the coarse spaces we introduced.

In Section 5.1, we first adapt the discrete setting introduced in Section 3.2 to surface meshes.
Then in Section 5.3, we present coarse spaces for BEM matrices inspired by the GenEO approach
assuming we have a way to lower bound the global energy by a sum of local terms. In Section 5.2,
we present several concrete possibilities to do so. Finally, in Section 5.4 we present several
numerical studies of the introduced coarse spaces. This work also appears in [119] and has been
submitted.

5.1 Finite element setting
As described in Section 3.2, we introduce a finite element setting with the same notation, the
only difference being that we mesh Γ that we suppose polyhedral.

5.1.1 Meshes
Definition 5.1 (Surface mesh, [55, Definition 8]). Let Γ ⊆ ∂Ω where Ω is a domain in Rd. A
mesh of Γ is a finite collection of disjoint non-degenerate simplices T = {K1, . . . ,KNel} such
that

• Γ =
⋃Nel

i=1Ki,
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• the intersection Ki ∩Kj is either empty, a common point or a common edge of both Ki

and Kj for every 1 ≤ i, j ≤ Nel and i 6= j.

Definition 5.2 (Meshsize, [52, Definition 1.13]). For all K ∈ T , hK denotes the diameter of K

∀K ∈ T , hK = diamK = max
x,y∈K

|x− y|,

Then, we define the meshsize of T as

h := max
K∈T

hK .

We use the notation Th for a mesh T of meshsize h.

Definition 5.3 (Shape regularity, [52, Definition 1.13]). A family of meshes {Th}h>0 is said to
be shape-regular if there is σ0 such that

∀h, ∀K ∈ Th, σK =
hK
ρK

≤ σ0,

where ρK is the radius of the largest ball that can be inscribed in K.

Usually, the mesh Th is generated using a reference cell Kref and an affine geometric trans-
formation mapping Kref to the actual mesh cells. We denote this mapping FK , so that K =
FK(Kref).

5.1.2 Discrete spaces
In the following, we will denote Vh a generic space of finite element functions associated with Th,
N its dimension and (ϕj)

N
j=1 the finite element basis of Vh. But, we also introduce some more

specific discrete spaces. First, we define the polynomial space on the reference element

Pm(Kref) := Span

{
(xi)

d
i=1 ∈ Rd 7→

d∏
i=1

xmi
i | 0 ≤

d∑
i=1

mi ≤ m

}
.

Thus, polynomial spaces on a mesh Th are defined by

Pm(Th) := {u ∈ L∞(Ω) | ∀K ∈ T , u ◦ FK ∈ Pm(Kref)} ,
Sm(Th) :=Pm(Th) ∩ C0(Γ),

where C0(Γ) is the space of continuous functions on Γ. We also define the discrete space with
vanishing boundary conditions

S̃m(Th) := H̃1/2(Γ) ∩ Sm(Th).

5.1.3 Galerkin approximation
As described in Section 2.4.5, the discretization of any BIE of the first kind derived in Sec-
tions 2.4.1 and 2.4.2 then reads: find uh ∈ Vh ⊂ H̃s(Γ) such that

a(uh, wh) = b(wh), ∀wh ∈ Vh, (5.1)
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where s = ± 1
2 , a : H̃s(Γ) × H̃s(Γ) → R and b : H̃s(Γ) → R. If s = 1

2 , it means that we
are interested in Neumann problem (since we are looking for a Dirichlet trace) and we denote
the bilinear form aW. On the contrary, if s = − 1

2 , it means that we are interested in Dirichlet
problem, and we denote the bilinear form aV. In any case, we assume that a is symmetric positive
definite, i.e.

C−‖u‖2
H̃s(Γ)

6 a(u, u) 6 C+‖u‖2
H̃s(Γ)

, (5.2)

and more precisely, we denote the equivalence constants C−
W and C+

W for s = 1
2 and C−

V and C+
V

for s = − 1
2 .

We denote by (ϕj)
N
j=1 the finite element basis of Vh and dim(Vh) = N , then from (5.1), we

obtain the following linear system

Avh = bh,

where (A)i,j = a(ϕj , ϕi), (bh)j =
∫
Γ
gϕj dσ for 1 ≤ i, j ≤ N and vh is the vector of coefficients

corresponding to the unknown finite element function vh. Since we assume that a is symmetric
and positive definite, so is A. The main difference with Chapter 3 is that A is dense because of
the non-local nature of the underlying operators (see Section 2.4.5). Again, we will denote AW
the matrix associated with aW and AV the matrix associated with aV.

5.1.4 Domain decomposition

We need to partition the domain Γ. Since we have in mind the implementation of H-matrices, we
consider the partition techniques used to define the hierarchy of this compression method. These
techniques are generally based on a geometric clustering of the degrees of freedom, which is why
we consider a partition of the degrees of freedom into n clusters, that induces a partition of the
global numbering {1, . . . , N} = ∪n

p=1 dof′h,p with dof′h,p ∩dof′h,l = ∅ for every p, l ∈ {1, . . . , n}
and p 6= l. This partition of the degrees of freedom induces a geometric partition.

This differs from what is usually done in a finite element context, where automatic partitioners
such as METIS [105] or SCOTCH [24] are used to decompose the domain, and they are generally
used to partition the elements of the mesh. By contrast, here we take account of a compression
method working on degrees of freedom. Then, we can add several layers of mesh elements and
their associated degrees of freedom to increase the overlap between neighboring subdomains. We
denote the indices of the resulting pth subdomain dofh,p so that dof′h,p ⊂ dofh,p and {1, . . . , N} ⊂
∪n
p=1 dofh,p. Its associated local finite element space is

Vh,p := Span(ϕj |Γ̃p
| j ∈ dofh,p),

where Γ̃p := ∪j∈dofh,p
supp(ϕj), and thus Γ ⊂ ∪n

p=1Γ̃p. Later, we will also need to use Γp :=

Γ̃p \ ∪j /∈dofh,p
supp(ϕj), see the remark below for an example. We also define an arbitrary local

numbering of the degrees of freedom with the bijection σp : {1, 2, . . . , Np} → dofh,p, where
Np := dim(Vh,p). Similarly to Section 3.2.3, we introduce the operator of extension by zero RT

p

associated with Vh,p, and its matrix representation RT
p , we also denote the restriction operator

Rp and its matrix representation Rp so that RpRT
p = Id ∈ RNp×Np and Rp RT

p = Id. We can
do the same remark as in Section 3.2.3, Rp is not a restriction in the natural sense. It restricts
the set of shape functions used to represent an element of the discrete space Vh,p (see remark
thereafter). Besides RT

p is not the dual of Rp for the L2 scalar product, they are respectively the
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Γ̃1 Γ1

Figure 5.1 – Example of a subdomain in 2D for P1 finite elements where the rectangle nodes
denote P1 functions in Vh,1.

equivalent of RT
p and Rp for finite element functions, and RT

p is the transpose of Rp.

Remark 5.4. Figure 5.1 adapts the example given in Figure 3.4 with P1 shape functions to a
screen problem in 3D. Let Vh ⊂ H̃1/2(Γ) so that finite element functions associated with nodes
on the boundary are not in Vh.

We also introduce again the linear applications Ph, Ph,p and their inverse to allow going back
and forth the finite element and algebraic representation of functions. The relations between all
these operators are again summarized in Figure 3.5. We define a partition of unity {Dp}np=0 ∈
(RNp×Np)n as in Definition 3.6 such that Id =

∑n
p=1 RT

p DpRp. Similar constants to the ones
defined in Definition 3.7 will be used in the analysis thereafter:

Definition 5.5.

• k0 denotes the maximum multiplicity of the interaction between subdomains plus one, i.e.,

k0 := max
1≤j≤N

#
{
p |RpMRT

j 6= 0
}
,

where (M)i,j =
∫
Γ
ϕiϕj dγ is the mass matrix.

• k1 denotes the maximal multiplicity of the subdomain intersection, i.e., the largest integer
m such that there exist m different subdomains whose intersection has a nonzero measure.

k1 := ess sup

{
n∑

p=1

1Γp

}

• Nc is the minimum number of colors we can use to color a decomposition such that any
two domains sharing an overlap have different colors

And of course, the same remarks as in Section 3.2.3 can be done concerning the graph point
of view on these constants. Finally, the definition of the preconditioner without coarse space is
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again

M−1
ASM :=

n∑
p=1

RT
p A−1

p,pRp, with Al,p = RT
l ARp, and 1 ≤ l, p ≤ n.

5.2 Inequalities for splitting norms
As we have seen in Section 3.3.1, the hypotheses of Theorem 3.9 are related to how we can
decompose the global energy norm of the problem. Working directly on the analytical expression
of the considered bilinear forms a is usually really difficult, so we will focus on decomposing
fractional Sobolev norms. Thus, decomposing the global energy given by the bilinear form a will
be given by the equivalence relation between a and fractional Sobolev norms.

Inequalities between the global norm and the sum of the local norms are essential in the
analysis of the efficiency of domain decomposition methods and they are not trivial because the
norms are non-local. The constants appearing in these inequalities are important because they
will appear in the final estimate for the condition number.

5.2.1 Localization by local fractional order norms

In this section, we will show how to directly localize a global norm in H̃1/2(Γ). We have the
following lemma

Lemma 5.6 ([139, Lemma 4.1.49 (b)]). For (up)16p6n ∈
∏n

p=1 H̃
1/2(Γ′

p) with (Γ′
p)

n
p=1 a non-

overlapping partition of Γ, i.e. Γ = ∪n
p=1Γ

′
p and Γ′

p ∩ Γ′
l = ∅ for l 6= p and 1 6 l, p 6 n, we have

the following inequality: ∥∥∥∥∥
n∑

p=1

EΓ′
p
(up)

∥∥∥∥∥
2

H̃1/2(Γ)

6
5

2

n∑
p=1

‖up‖2H̃1/2(Γ′
p)
,

Then, we can obtain the following lemma using a coloring argument:

Lemma 5.7. For (up)16p6n ∈
∏n

p=1 H̃
1/2(Γ̃p), we have the following inequality:∥∥∥∥∥

n∑
p=1

EΓ̃p
(up)

∥∥∥∥∥
2

H̃1/2(Γ)

6
5

2
Nc

n∑
p=1

‖up‖2H̃1/2(Γ̃p)
,

where Nc is defined in Definition 5.5.

Proof. If one colors each subdomain Γ̃p such that two subdomains with the same color cannot be
neighbors, that is to say, cannot overlap, then we can define (Γ′′

l )
Nc

l=1 where each Γ′′
l is the union

of every subdomain with the same color, that we number l, and Nc is the number of colors. Let
us define

wl =
∑

p|Γ̃p⊂Γ′′
l

EΓ̃p
(up) ∈ H̃1/2(Γ′′

l ).
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Then, we have∥∥∥∥∥
n∑

p=1

EΓ̃p
(up)

∥∥∥∥∥
2

H̃1/2(Γ)

=

∥∥∥∥∥∥
Nc∑
l=1

∑
p|Γ̃p⊂Γ′′

l

EΓ̃p
(up)

∥∥∥∥∥∥
2

H̃1/2(Γ)

=

∥∥∥∥∥
Nc∑
l=1

wl

∥∥∥∥∥
2

H̃1/2(Γ)

6 Nc

Nc∑
l=1

‖wl‖2H̃1/2(Γ) .

By definition of Γ′′
l , we have that all subdomains Γ̃p such that Γ̃p ⊂ Γ′′

l are disjoint so that we
can use Lemma 5.6 in the last expression to obtain

Nc

Nc∑
l=1

‖wl‖2H̃1/2(Γ) 6 Nc

Nc∑
l=1

∥∥∥∥∥∥
∑

p|Γ̃p⊂Γ′′
l

EΓ̃p
(up)

∥∥∥∥∥∥
2

H̃1/2(Γ)

6 Nc
5

2

Nc∑
l=1

∑
p|Γ̃p⊂Γ′′

l

‖up‖2H̃1/2(Γ̃p)
= Nc

5

2

n∑
p=1

‖up‖2H̃1/2(Γ̃p)
.

The previous lemma gave a direct result about how we can upper bound a global energy in
‖·‖2

H̃1/2(Γ)
by a sum of local norms. The reverse inequality is false as proved by a counter example

in [2, Appendix], but we can lower bound the global energy by a sum of local H1/2 norms

Lemma 5.8. For u ∈ H1/2(Γ), there holds

n∑
p=1

‖u|Γp
‖2H1/2(Γp)

6 k1‖u‖2H̃1/2(Γ)
,

where k1 is defined in Definition 5.5.

Proof. The proof is in two parts. First, we bound the H̃1/2-norm from below by the H1/2-norm,
and then we split the H1/2-norm. We denote∫

Γ

∫
Γ′
[u] :=

∫
Γ

∫
Γ′

|u(x)− u(y)|2

|x − y|d+1
dγ(x,y),

where we borrowed the notation from [139, Lemma 4.1.49 (b)].
- First part: We have Γ ⊂ Γ̃ = ∂Ω with Ω ⊂ Rd, a lipschitz polyhedron. Then, for

u ∈ H̃1/2(Γ), we have by definition

‖u‖2
H̃1/2(Γ)

= ‖EΓ(u)‖2H1/2(Γ̃)
=

∫
Γ

|u|2 +
∫
Γ̃

∫
Γ̃

[EΓ(u)]

= ‖u‖2L2(Γ) +

∫
Γ

∫
Γ

[u]︸ ︷︷ ︸
=‖u‖2

H1/2(Γ)

+2

∫
Γ̃\Γ

∫
Γ

[u] +

∫
Γ̃\Γ

∫
Γ̃\Γ

[u]︸ ︷︷ ︸
≥0

≥ ‖u‖2H1/2(Γ).
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- Second part: According to the definition of the norm, we have

‖u‖2H1/2(Γ) = ‖u‖2L2(Γ) +

∫
Γ

∫
Γ

[u].

Following Lemma 3.22, we have
∑n

p=1‖u|Γp
‖2L2(Γp)

6 k1‖u‖2L2(Γ). Thus, it remains to prove∑n
p=1

∫
Γp

∫
Γp
[u] 6 k1

∫
Γ

∫
Γ
[u].

Let 1 ≤ l ≤ n, we consider all the intersections of l subdomains among the n subdomains.
Note that there can be several areas shared by possibly different sets of l subdomains, see
Figure 5.2 for an example. That is why, we define an arbitrary numbering {1, . . . , nl} of all the
set of l subdomains that intersect each other, except for l = 1 where the numbering corresponds
to the numbering of the subdomains.

Let us denote θl,i ⊂ Γ the ith set of l subdomains. In particular, we have θ1,p := Γp \
(∪n

m=1,m6=pΓm), i.e. θ1,p corresponds to the pth subdomain without its overlap. We denote

Θ := {(l, i) ∈ N2 | θl,i 6= ∅},

and remark that {θl,i}l,i defines a partition of Γ, so that∫
Γ

∫
Γ

[u] =
∑

(l,i)∈Θ

∑
(m,j)∈Θ

∫
θl,i

∫
θm,j

[u]. (5.3)

For every subdomain Γp, we also define

Θp := {(l, i) ∈ N2 | θl,i ∩ Γp 6= ∅},

so that Γp = ∪(l,i)∈Θp
θl,i and

n∑
p=1

∫
Γp

∫
Γp

[u] =

n∑
p=1

∑
(lp,ip)∈Θp

∑
(mp,jp)∈Θp

∫
θlp,ip

∫
θmp,jp

[u]

=

n∑
p=1

∑
(l,i)∈Θ

∑
(m,j)∈Θ

1(l,i)∈Θp
1(m,j)∈Θp

∫
θl,i

∫
θm,j

[u]

=
∑

(l,i)∈Θ

∑
(m,j)∈Θ

n∑
p=1

1(l,i)∈Θp
1(m,j)∈Θp

∫
θl,i

∫
θm,j

[u]. (5.4)

where 1(l,i)∈Θp
= 1 if (l, i) ∈ Θp and 0 otherwise. And, by definition, a given pair (l, i) ∈ Θ

cannot be in more that k1 sets Θp, otherwise it would mean that θl,i is shared by more than k1
subdomains. Thus,

n∑
p=1

1(l,i)∈Θp
1(m,j)∈Θp

6 k1.

Finally, we obtain the expected result using Equations (5.3) and (5.4) associated with the previous
inequality.
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θ1,1 θ1,2

θ1,3 θ1,4

θ2,1

θ2,2

θ2,3

θ2,4 θ4,1

Figure 5.2 – Example of a partition defined as in the proof of Lemma 5.8.

5.2.2 Other localizations

The preceding inequalities are the ones that mimic the best what is done for PDEs: Lemma 5.7
is similar to Lemma 3.13 (remember that Nc is upper bounded by k0) and Lemma 5.8 is similar
to Lemma 3.22. But other approaches can be followed and they will lead to other coarse spaces.

The simplest is based on the continuous injection between H̃1/2(Γ) and L2(Γ)

Lemma 5.9. Let u ∈ H̃1/2(Γ), we have

Cinj

n∑
p=1

‖u‖2L2(Γp)
6 k1‖u‖2H̃1/2(Γ)

,

where k1 is defined in Definition 5.5 and Cinj is the continuity constant of the injection of H̃1/2(Γ)
in L2(Γ).

Proof. Using the fact we have H̃1/2(Γ) is compactly embedded in L2(Γ), we obtain

‖u‖2
H̃1/2(Γ)

≥ Cinj‖u‖2L2(Γ).

Then, the L2 norm is local, so that we can decompose it like in Lemma 3.22.

Another approach is to take techniques and inequalities used in adaptive BEM (see [55]). Let
us denote u ∈ H̃s the solution of the underlying PDE and uh ∈ Vh its approximation, solution
of Equation (5.1) associated with a mesh Th, the goal of adaptive BEM (and more generally
adaptive FEM) is to estimate the error u− uh with a global computable quantity that serves as
a stopping criterion and that can be decomposed in local contributions to also estimate the local
error. Thus, it shows where to refine the mesh locally, until the stopping criterion is reached.
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Usually, a posteriori estimators have the following form

η2Th
=
∑

K∈Th

η2K .

Such an estimator is called reliable if ‖uh−u‖ . ηTh
, and it is also called efficient if ηTh

. ‖uh−u‖,
‖·‖ is typically the energy norm of the considered problem. Since u is unknown and the estimator
needs to be computable, a natural approach is to use residual type estimators where the unknown
error is estimated by the residual error. But this residual error is usually measured in fractional
Sobolev norms, thus localization techniques are needed and that is why it was interesting in our
case to look at the methods at play in adaptive BEM. In particular, we have been interested
in [8, Corollary 6.], that is used in the following lemma.

Lemma 5.10. Let uh ∈ S̃l(Th), we have

Cad

n∑
p=1

‖h1/2T ∇Γuh|Γp
‖2L2(Γp)

6 k1‖uh‖2H̃1/2(Γ)
,

where Cad depends only on Γ, the shape-regularity of Th and l, while hT |K = hK for every
K ∈ Th.

Proof. According to [7, Corollary 6.], we have

‖uh‖2H̃1/2(Γ)
≥ Cad‖h1/2T ∇Γuh‖2L2(Γ).

Then, the L2 norm is local, so that we can decompose it like in Lemma 3.22.

This result is actually an inverse inequality for fractional Sobolev norms and it is obtained
using interpolation theory.

5.3 Two-level preconditioning for the hypersingular oper-
ator

In this section, we use the strategy of GenEO [44] as in Section 3.3.3 to precondition the matrix
AW defined in Section 5.1.3 with the hypersingular singular operator W. We define a generic
coarse space Vh,0, and we denote its size by N0. The coarse space is spanned by the columns of
a rectangular matrix RT

0 of size N ×N0 and the preconditioner is defined as follows

M−1
ASM,W := RT

0 (R0AWRT
0 )

−1R0 +

n∑
p=1

RT
p (RpAWRT

p )
−1Rp. (5.5)

5.3.1 Fictitious space lemma
We formulate the ASM with GenEO coarse space as follows:

Definition 5.11.

• Vh ⊂ H̃1/2(Γ), for example Vh = S̃l(Th).
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• H := RN is endowed with the standard euclidean scalar product (·, ·), and we consider the
following bilinear form:

ã : RN × RN → R
(uh,vh) 7→ (AWuh,vh) = aW(uh, vh),

with uh = Phuh and vh = Phvh.

• HD :=
∏n

p=0 RNp is endowed with the standard euclidean scalar product, and we consider
the following bilinear form:

b̃ :
n∏

p=0

RNp ×
n∏

p=0

RNp → R

(up
h,v

p
h)

n
p=0 7→

n∑
p=0

(AWRT
p up

h,R
T
p vp

h) = (AWRT
0 u0

h,RT
0 v0

h)

+

n∑
p=1

aW(RT
p u

p
h, R

T
i v

p
h),

with uph = Ph,pup
h and vph = Ph,pvp

h for 1 ≤ p ≤ n. Then, B : HD → HD is defined by

∀Uh = (up
h)

n
p=0 ∈

n∏
p=0

RNp , B(Uh) := (RpAWRT
p up

h)0≤p≤n.

Notice that B is a block diagonal operator, so that

∀Uh = (up
h)

n
p=0 ∈

n∏
p=0

RNp , B−1(Uh) := ((RpAWRT
p )

−1up
h)0≤p≤n.

• The linear operator RASM,2 is defined as follows

RASM,2 : HD → H

(up
h)0≤p≤n 7→

n∑
p=0

RT
p up

h.

Before we introduce our two-level preconditioners, we formulate some general remarks. The
first hypothesis of Theorem 3.9 is satisfied by definition of RASM,2, identically to what is done
in Lemma 3.19. The second hypothesis of Theorem 3.9 corresponds to the continuity of RASM,2

and the third one is usually referred to as stable decomposition. Using the notations from Defi-
nition 5.11 of this theorem, these last two hypotheses can be rewritten as follows

(i) There exists a constant cR > 0 such that, for all (up
h)

n
p=0 ∈ HD

aW

(
n∑

p=0

PhRT
p up

h,

n∑
p=0

PhRT
p up

h

)
6 cR

n∑
p=0

aW(PhRT
p up

h, PhRT
p up

h).

(ii) There exists a constant cT > 0 such that, for all uh ∈ RN , there exists Uh = (up
h)

n
p=0 ∈ HD
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with uh = RASM,2(Uh), and

cT

n∑
p=0

aW(PhRT
p up

h, PhRT
p up

h) 6 aW(Phuh, Phuh).

We deduce that these two hypotheses are related to how we can localize the bilinear form aW,
and since it is symmetric positive definite, it is also related to how we can localize the H̃1/2-norm.

5.3.2 Continuity of RASM,2

The first hypothesis of Theorem 3.9 is actually satisfied without any precise definition of the
coarse space. We have Lemma 5.7 to localize the H̃1/2-norm, which yields an upper bound for
the global energy on H̃1/2(Γ) by a sum of local energies, so that we obtain the first hypothesis
required by Theorem 3.9.

Lemma 5.12. Using the notations of Theorem 3.9, let Uh = (up
h)

n
p=0 ∈ HD, we have

(AWRASM(Uh),RASM(Uh)) 6 2max
(
1,

5

2
Nc

C+
W

C−
W

)
(BUh,Uh)D.

Proof. Using the fact that AW is symmetric positive definite, we have

(AWRASM(Uh),RASM(Uh)) =

(
AW

n∑
p=0

RT
p up

h,

n∑
p=0

RT
p up

h

)

6 2

((
AWRT

0 u0
h,RT

0 u0
h

)
+

(
AW

n∑
p=1

RT
p up

h,

n∑
p=1

RT
p up

h

))
.

The last term on the right-hand side can be rewritten(
AW

n∑
p=1

RT
p up

h,

n∑
p=1

RT
p up

h

)
= aW

(
n∑

p=1

PhRT
p up

h,

n∑
p=1

PhRT
p up

h

)

= aW

(
n∑

p=1

RT
p u

p
h,

n∑
p=1

RT
p u

p
h

)
,

with uph = Ph,pup
h ∈ Vh,p ⊂ H̃1/2(Γ̃p) (see diagram Figure 3.5). Finally, using the equivalence

relation from Equation (5.2), Lemma 5.7 and the definition of the H̃1/2-norm, we have

aW

(
n∑

p=1

RT
p u

p
h,

n∑
p=1

RT
p u

p
h

)
6 C+

W

∥∥∥∥∥
n∑

p=1

RT
p u

p
h

∥∥∥∥∥
2

H̃1/2(Γ)

6
5

2
NcC

+
W

n∑
p=1

‖uph‖
2

H̃1/2(Γ̃p)

6
5

2
NcC

+
W

n∑
p=1

∥∥RT
p u

p
h

∥∥2
H̃1/2(Γ)

6
5

2
Nc

C+
W

C−
W

n∑
p=1

aW(RT
p u

p
h, R

T
p u

p
h)

6
5

2
Nc

C+
W

C−
W

n∑
p=1

(AWRT
p up

h,R
T
p up

h).
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Remark 5.13 (Norm definitions). We would like to point out that, although one can obtain
similar results to Lemma 5.7 with other definitions for the fractional Sobolev norms (with inter-
polation for example), we use in the last lemma the fact that ‖uph‖H̃1/2(Γp)

= ‖RT
p u

p
h‖H̃1/2(Γ) which

is not a priori guaranteed for other norms. And even if an equivalence relation can be proved,
extra care must be taken to show that the constants in the equivalence relation are independent
of the size of the subdomain Γp which is related to the number of subdomains. As a consequence,
the choice of the norm ‖·‖H̃1/2(Γ) plays a key role in the present analysis.

5.3.3 Stable decomposition — GenEO concept
We now focus on the second hypothesis of Theorem 3.9. The goal is to find a way to decompose
global finite element functions so that we can bound the global energy from below by the sum of
the local energies. To do so, let us present how to apply the GenEO approach to BEM matrices.
First, using the results from the preceding section, we have the following lemma for a generic
coarse space:

Lemma 5.14. Using the notations of Theorem 3.9, let uh ∈ RN and Uh = (up
h)

n
p=0 ∈

∏n
p=0 RNp

such that uh = RASM(Uh). Then, we have

(BUh,Uh)D 6 2(AWuh,uh) + (1 + 5Nc
C+

W
C−

W
)

n∑
p=1

(AWRT
p up

h,R
T
p up

h).

Proof. Using the definition of B and the Cauchy-Schwarz inequality,

(BUh,Uh)D = (AWRT
0 u0

h,RT
0 u0

h) +

n∑
p=1

(AWRT
p up

h,R
T
p up

h)

=

(
AW

(
uh −

n∑
p=1

RT
p up

h

)
,uh −

n∑
p=1

RT
p up

h

)
+

n∑
p=1

(AWRT
p up

h,R
T
p up

h)

6 2

(
(AWuh,uh) +

(
AW

n∑
p=1

RT
p up

h,

n∑
p=1

RT
p up

h

))
+

n∑
p=1

(AWRT
p up

h,R
T
p up

h).

Then, we apply the equivalence relation from Equation (5.2) and Lemma 5.7 to the second term
in the right-hand side to obtain the desired result.

The last lemma is insufficient to prove a spectral estimate of the ASM preconditioner. There
remains to bound the last term, corresponding to the sum of local energies, by the global energy
a(Phuh, Phuh). Let us assume there exists (Bp)

n
p=1 ∈

∏n
p=1 RNp×Np and a constant Cloc > 0

independent of h and n such that

Cloc

n∑
p=1

(BpRpuh,Rpuh) 6 aW(Phuh, Phuh). (5.6)

To obtain the second hypothesis of Theorem 3.9, and using Lemma 5.14 with Equation (5.6),
one can see that a sufficient condition would be to find a decomposition Uh = (up

h)
n
p=0 ∈
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∏n
p=0 RNp of a given uh ∈ RN such that

(AWRT
p up

h,R
T
p up

h) 6 τ(BpRpuh,Rpuh), (5.7)

for some fixed user-defined parameter τ > 0 and uh = RASM(Uh). A natural choice for (up
h)

n
p=0

might be up
h = DpRpuh, but generally it does not satisfy Equation (5.7). The idea of the GenEO

coarse space is to filter out the part of DpRpuh that does not satisfy Equation (5.7) using the
following local generalized eigenvalue problem: find (vp

h,k, λpk) such that

DpRpAWRT
p Dpvp

h,k = λpkBpvp
h,k. (5.8)

Then, we can define the local contribution to the coarse space

Zp,τ := ker(Bp) ∪ Span(vp
h,k | for every k s.t. λpk > τ), (5.9)

and the local projection πp on Zp,τ parallel to Span(vp
h,k | for every k s.t. λpk 6 τ). Using the

projection πp, we can filter out the part of DpRpuh that does not satisfy the sufficient condition
given by Equation (5.7).

Lemma 5.15 ([44, Lemma 7.15]). For every 1 6 p 6 n and vh,k ∈ RNp , we have

(RT
p Dp(Id − πp)vp

h)
T AW(RT

p Dp(Id − πp)vp
h) 6 τ(vp

h)
T Bpvp

h.

The last relation is similar to Equation (5.7), we define the decomposition such that, for
1 6 p 6 n

up
h = Dp(Id − πp)Rpuh. (5.10)

It remains to define the coarse space Vh,0 and the associated coarse component u0
h such that

uh = RASM,2(Uh) with Uh = (up
h)

n
p=0.

Definition 5.16. The GenEO coarse space is defined as the sum of the local contributions to
the coarse space weighted with the partition of unity. We define

Vh,0 = Span(RT
p Dpvp

h | 1 ≤ p ≤ N, vp
h ∈ Zp,τ )

Let Zτ ∈ RN×N0 be a column matrix so that Vh,0 is spanned by its columns and N0 = dim(Vh,0).
We denote its transpose by R0 := ZT

τ .

Lemma 5.17 (GenEO coarse component). Assuming there exists (Bp)
n
p=1 such that Equa-

tion (5.6) is true, we can define the coarse space as in Definition 5.16, and the coarse component
as

u0
h := (R0RT

0 )
−1R0

(
n∑

p=1

RT
p DpπpRpuh

)
, (5.11)

then Uh = (up
h)

n
p=0 ∈ HD defined by Equations (5.10) and (5.11) is a stable decomposition of

uh, that is to say

RASM,2(Uh) = uh and cT

n∑
p=0

aW(PhRT
p up

h, PhRT
p up

h) 6 aW(Phuh, Phuh),
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with c−1
T = 2 +

(
1 + 5Nc

C+
W

C−
W

)
τ

Cloc
.

Proof. Let uh ∈ RN and Uh = (up
h)06p6n ∈ HD defined by Equations (5.10) and (5.11). First

notice that we have

w0 = RT
0 (R0RT

0 )
−1R0w0

for every w0 ∈ Vh,0 since RT
0 (R0RT

0 )
−1R0 is a projector on Vh,0. Then, we have

RASM,2(Uh) =

n∑
p=0

RT
p up

h = RT
0 u0

h +

n∑
p=1

RT
p up

h

= RT
0 (R0RT

0 )
−1R0

(
n∑

p=1

RT
p DpπpRpuh

)
︸ ︷︷ ︸

∈Vh,0

+

n∑
p=1

RT
p up

h

=

n∑
p=1

RT
p DpπpRpuh +

n∑
p=1

RT
p Dp(Id − πp)Rpuh

=

n∑
p=1

RT
p DpRpuh = uh,

where we used the fact that Dp defines a partition of unity in the last line. Then, using
Lemma 5.14 and Lemma 5.15 with vp

h = Rpuh for 1 6 p 6 n, we have

n∑
p=0

a(PhRT
p up

h, PhRT
p up

h) =

n∑
p=0

(AWRT
p up

h,R
T
p up

h)

6 2(AWuh,uh) + (1 + 5Nc
C+

W
C−

W
)

n∑
p=1

(AWRT
p up

h,R
T
p up

h)

6 2(AWuh,uh) + (1 + 5Nc
C+

W
C−

W
)τ

n∑
p=1

(BpRpuh,Rpuh).

Finally, assuming Equation (5.6) holds, we deduce

n∑
p=0

aW(PhRT
p up

h, PhRT
p up

h) 6

(
2 +

(
1 + 5Nc

C+
W

C−
W

)
τ

Cloc

)
aW(Phuh, Phuh).

Remark 5.18. As pointed out in Remark 3.28, it should be noted that the decomposition (up
h)

n
p=0

is necessary for the analysis, but it does not need to be computed in practice. To use this
coarse space, it is sufficient to compute Zτ and then (R0AWRT

0 )
−1 to be able to apply PASM

(see definition given in Equation (3.12)). And to do so, each local contribution to the coarse
space defined in Equation (5.9) can be computed independently in parallel, so that computing Zτ

can be done efficiently. Then, to compute R0AWRT
0 , one can use the fact that Zτ is sparse

and distributed (since the eigenvectors are computed in parallel). Finally, we need to invert
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(R0AWRT
0 ) ∈ RN0×N0 and that is why a good coarse space should be of minimum size while still

containing relevant information for the convergence.

5.3.4 Concrete coarse spaces
Using Lemmas 5.12 and 5.17, it remains to find a sequence of local operators (Bp)

n
p=1 that

satisfies Equation (5.6) to be able to apply Theorem 3.9. The goal is to find a coarse space
whose size is as small as possible for a given τ because we need to invert R0AWRT

0 ∈ RN0×N0 .
However, the choice of the tuple (Bp)

n
p=1 is not a priori unique, and we can use Lemmas 5.8

to 5.10 to define various generalized eigenproblems as Equation (5.8). Besides, we do not know
the size of the coarse space in advance for a given τ , so that numerical tests are necessary to see
which one is the most efficient. A first simple way to obtain a decomposition (Bp)

n
p=1 satisfying

Equation (5.6) is to simply use Lemma 5.9.

Lemma 5.19. Let u ∈ H̃1/2(Γ), we have

CinjC
−
W

k1

n∑
p=1

‖u|Γp
‖2L2(Γp)

6 aW(u, u),

where k1 is defined in Definition 5.5, Cinj is continuity constant of the injection of H̃1/2(Γ) in
L2(Γ), and they are both independent of h and n.

Proof. Using Lemma 5.9, we obtain

aW(u, u) ≥ C−
W‖u‖2

H̃1/2(Γ)
≥
CinjC

−
W

k1

n∑
p=1

‖u|Γp
‖2L2(Γp)

.

Using the last lemma, we obtain a similar relation to Equation (5.6) with Cloc =
CinjC

−
W

k1
and

Bp = Mp for every 1 6 p 6 n where Mp is the mass matrix defined as

(Mp)i,j :=

∫
Γp

ϕσp(i)ϕσp(j) dγ, (5.12)

where Γp has been defined so that Mp ∈ RNp×Np . Then, we can obtain the following theorem

Theorem 5.20. We have the following condition number estimate

κ(PASM,injAW) 6 2max
(
1, Nc

5

2

C+
W

C−
W

)(
2 +

(
1 + 5Nc

C+
W

C−
W

)
τk1

CinjC
−
W

)
,

where PASM,inj is defined with the GenEO coarse space and the localization from Lemma 5.19.

Proof. Using Theorem 3.9 and its notations, we have to satisfy its two hypotheses.

(i) The first hypothesis is obtained using Lemma 5.12 with cR = 2max(1, Nc
5C+

W
2C−

W
).

(ii) The second hypothesis is obtained using Lemma 5.17 with Bp = Mp for every 1 6 p 6 n

and Lemma 5.19 so that c−1
T = 2 +

(
1 + 5Nc

C+
Wk1

C−
W

)
τk1

CinjC
−
W

.
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We will refer to the coarse space based on Theorem 5.20 as GenEO mass coarse space.
Another approach to build a coarse space is to use Lemma 5.10 to obtain the next lemma.

Lemma 5.21. Let uh ∈ S̃l(Th), we have

CadC
−
W

k1

n∑
p=1

‖h1/2T ∇Γuh|Γp‖2L2(Γp)
6 a(uh, uh),

where Cad depends only on Γ, the shape-regularity of Th and l.

Proof. According to Lemma 5.10 and the equivalence relation Equation (5.2), we have

a(uh, uh) ≥ C−
W‖uh‖2H̃1/2(Γ)

≥ CadC
−
W‖h1/2T ∇Γuh‖2L2(Γ)

≥
CadC

−
W

k1

n∑
p=1

‖h1/2T ∇uh|Γp‖2L2(Γp)
.

Using the last lemma, we obtain a similar relation to Equation (5.6) with Cloc =
CadC

−
W

k1
and

Bp = Kp for every 1 6 p 6 n where Kp is the stiffness matrix defined as

(Kp)i,j :=

∫
Γp

hT ∇Γϕσp(i)∇Γϕσp(j) dγ, (5.13)

where again, Kp ∈ RNp×Np due to the definition of Γp. Then, we can obtain the following
theorem

Theorem 5.22. We have the following condition number estimate

κ(PASM,adAW) 6 2max
(
1, Nc

5

2

C+
W

C−
W

)(
2 +

(
1 + 5Nc

C+
W

C−
W

)
τk1

CadC
−
W

)
,

where PASM,ad is defined with the GenEO coarse space and the localization from Lemma 5.21.

Proof. Using Theorem 3.9 and its notations, we have to satisfy its two hypotheses.

(i) The first hypothesis is obtained using Lemma 5.12 with cR = 2max(1, Nc
5C+

W
2C− ).

(ii) The second hypothesis is obtained using Lemma 5.17 with Bp = Kp for every 1 6 p 6 n

and Lemma 5.21 so that c−1
T = 2 +

(
1 + 5Nc

C+
Wk1

C−
W

)
τk1

CadC
−
W

.

We will refer to the coarse space based on Theorem 5.22 as GenEO stiffness coarse space. A
third approach is to use Lemma 5.8

Lemma 5.23. For u ∈ H1/2(Γ), there holds

C−
W
k1

n∑
p=1

‖u|Γp‖2H1/2(Γp)
6 aW(u, u),
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where k1 is defined in Definition 5.5.

Proof. According to Lemma 5.8 and the equivalence relation Equation (5.2), we have

aW(u, u) ≥ C−
W‖u‖2

H̃1/2(Γ)
≥
C−

W
k1

n∑
p=1

‖u|Γp
‖2H1/2(Γp)

.

Using the last lemma, we obtain a similar relation to Equation (5.6) with Cloc =
C−

W
k1

and
Bp = Hp for every 1 6 p 6 n where Hp is the matrix associated with the scalar product of
H1/2(Γ) defined as

(Hp)i,j :=

∫
Γp

ϕσp(i)ϕσp(j) dσ(x)dσ(y)+∫
Γp×Γp

(ϕσp(i)(x)− ϕσp(i)(y))(ϕσp(j)(x)− ϕσp(j)(y))
|x − y|d+1

dσ(x)dσ(y),
(5.14)

where again, Hp ∈ RNp×Np due to the definition of Γp. Then, we can obtain the following
theorem

Theorem 5.24. We have the following condition number estimate

κ(PASM,sloAW) 6 2max
(
1, Nc

5

2

C+
W

C−
W

)(
2 +

(
1 + 5Nc

C+
W

C−
W

)
τk1

C−
W

)
,

where PASM,slo is defined with the GenEO coarse space and the localization from Lemma 5.23.

Proof. Using Theorem 3.9 and its notations, we have to satisfy its two hypotheses.

(i) The first hypothesis is obtained using Lemma 5.12 with cR = 2max(1, Nc
5C+

W
2C−

W
).

(ii) The second hypothesis is obtained using Lemma 5.17 with Bp = Hp for every 1 6 p 6 n

and Lemma 5.23 so that c−1
T = 2 +

(
1 + 5Nc

C+
Wk1

C−
W

)
τk1

C−
W

.

We will refer to the coarse space based on Theorem 5.24 as GenEO Slobodeckij. Now that we
have introduced these three coarse spaces, we can make the following remarks:

Remark 5.25. The GenEO Stiffness coarse space is inexpensive to compute since it is sparse and
similar to the stiffness matrix of a Laplace problem weighted by the piecewise constant function
hT . However the constant in Theorem 5.22 may depend on the degree of the finite element
functions.

Remark 5.26 (Computational difficulties for GenEO Slobodeckij coarse space). The GenEO
Slobodeckij coarse space requires to compute the matrix associated with the H1/2 scalar prod-
uct. It induces new practical difficulties compared to usual BEM matrices. To see that, notice
that the norm of a function ϕ with compact support given by a BIO is usually of the type∫
Γ×Γ

K(x,y)ϕ(x)ϕ(y)dσ(x)dσ(y) where K(x,y) is a kernel depending on the BIO. Even if the
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kernel is non-local, the previous integral reduces to a double integral on supp(ϕ), the computation
remains local. This is not the case for the Sobolev-Slobodeckij semi-norm which reads∫

Γ×Γ

|ϕ(x)− ϕ(y)|2

|x − y|d+1
dσ(x)dσ(y) =2

∫
supp(ϕ)×Γ

|ϕ(x)|2

|x − y|d+1
dσ(x)dσ(y)

− 2

∫
supp(ϕ)×supp(ϕ)

ϕ(x)ϕ(y)
|x − y|d+1

dσ(x)dσ(y),

so that there is an integral over the whole domain in any case. In other words, the Sobolev-
Slobodeckij norm is “more non-local” than usual BIO, which makes the computation of Hp

difficult, see Appendix A for more practical details.

Due to the practical difficulties in computing Hp explained in Remark 5.26, another possibility
is to approximate the H1/2-norm in Lemma 5.23. It is natural to introduce the weakly singular
operator V : H̃−1/2(Γ) → H1/2(Γ) defined in Section 2.3.2, whose range is the right space under
consideration. We suppose that V is symmetric positive definite, which is true when we assume
that the hypersingular operator W also has this property. Then, we can define the local weakly
singular operator Vp as

〈Vp up, vp〉H1/2(Γp)×H̃−1/2(Γp)
:= 〈V EΓp

(up),EΓp
(vp)〉H1/2(Γ)×H̃−1/2(Γ)

for every up, vp ∈ H̃−1/2(Γp). Now, we can define a norm on H1/2(Γp) using the inverse of the
local weakly singular operator and equivalent to ‖u‖2

H1/2(Γp)
. Unfortunately, we have not been

able to fully analyse this preconditioner, and this is mainly related to the lack of control on the
equivalence constants between ‖up‖2H̃−1/2(Γp)

and ‖Ep(up)‖2H̃−1/2(Γ)
, we refer to Appendix B for

a more detailed discussion.
That is why, we only define the associated discrete local operator Bp = C̃p := MpV−1

p Mp,
for every 1 6 p 6 n where Vp is the discretization of the single layer defined as

Vp(i, j) := 〈Vp(ϕσp(j)|Γp
), ϕσp(i)|Γp

〉H1/2(Γp)×H̃−1/2(Γp)
, (5.15)

where again, C̃p ∈ RNp×Np due to the definition of Γp. The choice of C̃p comes from the fact
that we need to approximate the discretization V−1

p by the inverse of the discretization of Vp,
which is classical in Calderón preconditioning, see [124, 146]. We will refer to the coarse space
as GenEO single layer.

In conclusion, we have introduced four coarse spaces and Theorems 5.20, 5.22 and 5.24 showed
that at least three of them lead to a bounded condition number for the preconditioned linear
systems independently of the mesh size and the number of subdomains. The size of the coarse
spaces will adapt to the user-defined parameter τ , which is one of the advantages of this approach.
The downside, though, is that we do not know these sizes a priori. For example, if one has to
take all the eigenvectors in the local generalized eigenproblem defined in Equation (5.8), the
size of the coarse space will be the size of the global matrix, and thus inverting R0AWRT

0 will
be as costly as using a direct method. We have to verify how relevant these coarse spaces are
numerically, and which one retains the most of relevant information. In other words, we have to
check numerically that the sizes of the coarse spaces are small compared to the size of the global
problem, and which one is the smallest while improving the convergence.

The only intuition we can have a priori is about GenEO single layer and it will be discussed
in Section 5.4.2.
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5.4 Numerical study of GenEO coarse spaces for the hy-
persingular operator

To see if the coarse spaces introduced in the previous section are well-adapted in practice, we
need to verify that they improve scalability. Several definitions of scalability can be given, see
Definitions 3.16 and 3.17. For strong scalability tests, we study how the number of iterations
varies when we increase the number of subdomains for a given problem size. By contrast, for
weak scalability tests the local problem size is kept constant, in other words doubling the number
of subdomains means doubling the global problem size. In both cases, we say that the method is
scalable if the number of iterations does not increase with the number of subdomains. In a HPC
context, where we usually assign one subdomain per core, this yields robust methods in terms
of computing times (for example, constant computing time for weak scalability tests). Indeed,
the computing time should be proportional to the size of the subdomains and the number of
iterations, provided the coarse problem (R0AhRT

0 ) is small enough to be solved efficiently with
a direct method.

According to Theorems 5.20, 5.22 and 5.24, we see that the condition number of AW pre-
conditioned by the ASM defined in Equation (5.5) with the coarse spaces we introduced, is
independent of the number or size of subdomains. The numerical experiments in this section will
illustrate Theorems 5.20, 5.22 and 5.24 with up to 512 subdomains and show that the proposed
methods are scalable, as the resulting coarse problems remain small enough for a direct solver.

Note that the preconditioners we introduced are independent of compression techniques, but
one has to implement them efficiently in conjunction with a compression technique to be able to
run tests of reasonable size. That is why we developed Htool, an open source C++ library for
hierarchical matrices that offers with HPDDM a way to use DDM preconditioners with MPI and
OpenMP. For more details, we refer to Chapter 6.

In particular, it allows numerical illustrations of the efficiency of the previous coarse spaces
and their costs. We use BemTool1 to compute the coefficients associated with the interaction
between two degrees of freedom and a P1-Lagrange discretization, Htool2 to compress the ma-
trices using hierarchical matrices as described in [12, 74, 132] and HPDDM [104] which provides
iterative solvers. The setup of the DDM preconditioners for BEM matrices is shared between
HPDDM and Htool.

Concerning compression, hierarchical matrices are built upon a hierarchical decomposition
of the degrees of freedom in clusters that is usually called cluster tree. Each block of the global
matrix can be seen as the interaction between two nodes of this tree. Then, we define the block
tree as the product of this cluster tree with itself, so that each node corresponds to a block in
the global matrix. Because of the nature of the integral kernels, some of these blocks can be
considered as admissible meaning that they correspond to far interactions so that they can be
well approximated using low-rank matrices, while others are not admissible because they are
associated with close interactions. In the latter case, one has to look at the subblocks via the
block tree or the blocks need to be built as dense blocks.

To determine if a block is admissible, we use the admissibility condition described in [132,
(3.15)]. A block is considered to be admissible if the minimum of the diameters of both clusters
over the distance separating them is lower than a user-defined parameter η. Then, we use
Adaptive Cross Approximation with partial pivoting similarly to [132, Algorithm 3.9] to compress
the admissible blocks. The stopping criterion of this algorithm looks at the Frobenius norm
between two consecutive approximations and if it is lower than a given threshold ε. In our

1https://github.com/xclaeys/BemTool
2https://github.com/PierreMarchand20/htool

https://github.com/xclaeys/BemTool
https://github.com/PierreMarchand20/htool
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numerical tests, we take η = 10 and ε = 0.01. Note that the compression may depend on how
the hierarchical matrix is parallelized, but in the case of the strong scaling, we made sure that
the compression was the same to have a fair comparison with different subdomains.

Our domain decomposition is actually defined by the cluster tree. More precisely, one of the
levels in the cluster tree defines a partition without overlap, to which we add overlap. Notice that
the algorithm used to build the cluster tree tries to obtain a balanced decomposition between
the clusters of nodes to have a better compression and load-balanced decomposition. We refer
to Chapter 6 for more details about hierarchical matrices and our implementation.

We would like to point out that we are using GMSH [59] to create all the meshes in our test
cases and LAPACK [6] to solve generalized eigenproblems. Besides, we use right preconditioning,
we set the tolerance for the iterative solvers in HPDDM to 10−6, and we have not used any restart
with GMRes.

5.4.1 Test cases
Let Ωout = [−2, 2] × [−2, 2] ⊂ R2 and Ωin = [−1, 1] × [−1, 1] ⊂ R2. In this first numerical
experiment, we want to solve the following equation

−∆u+ κ2u = 0, in Ω := Ωout \ Ωin (5.16)

where κ = 0.1 with the Neumann condition u|∂Ω = f(x, y) such that

f(x, y) =

{
100 ∗ (x+ 1.5)2 if x > 1.5

0 otherwise.

This problem can be reformulated as a BIE using Equation (2.12) with the hypersingular
operator W from Section 2.3.2. More precisely, we use the analytical expression of the hyper-
singular operator from Section 2.3.2 with A = Id, b = 0 and c = κ2. The bilinear form a is
symmetric positive definite according to Lemma 2.29.

In 3D, we consider a similar test case with cubes instead of squares. To be more precise, we
have now Ωout = [−2, 2] × [−2, 2] × [−2, 2] ⊂ R3 and Ωin = [−1, 1] × [−1, 1] × [−1, 1] ⊂ R3 as
described in Figure 5.4, but we still consider Equation (5.16) with the same boundary condition.
The main difference, besides the geometry, is the Green function (see Equation (2.8)).

5.4.2 Spectrum
There are no theoretical results that establishes relevance of the GenEO coarse space, i.e. that
it contains relevant information to ensure that it will be of small size while improving the con-
vergence. This is the downside of having a black-box method that adapts the size of the coarse
space to the problem, we cannot know in advance this size. But to see if we can expect a coarse
space of small size, we can look at the distribution of the eigenvalues in Equation (5.8) and check
that we can discriminate some high eigenvalues that we will put in the coarse space.

Using the 2D test case described in Section 5.4.1 with eight subdomains and h = 0.1, we
obtain the eigenvalue distributions given in Figure 5.5 for the four coarse spaces. We observe
that GenEO single layer, GenEO stiffness and GenEO Slobodeckij have a few high eigenvalues.
This is not the case of GenEO mass so that we expect this coarse space to not have the relevant
information to improve the convergence. Notice that it is not worth comparing the values of the
eigenvalues between the different coarse spaces since they all have different constants appearing
in the final bound on the condition number.
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Ω

Figure 5.3 – 2D geometry used to test scal-
ability of the DDM preconditioners for the
hypersingular operator.

Ωout

x

y

z

Ωin

Figure 5.4 – 3D geometry used to test scal-
ability of the DDM preconditioners for the
hypersingular operator.

In the case of GenEO single layer, we can actually expect such a distribution of eigenvalues.
Indeed, looking at the associated local generalized eigenproblem given by Equation (5.8) where
Bp = MpV−1

p Mp with Bp defined in Equation (5.15), it can be rewritten as a local eigenproblem

M−1
p VpM−1

p DpRpAWRT
p Dpvp

h,k = λpkvp
h,k. (5.17)

It is actually really close to a local Calderón preconditioning apart from Dp. The subdomains
usually correspond to screens and it is a well-known fact that Calderón preconditioning does not
work well in this case. In practice, we observe that the eigenvalues are distributed as observed
in [98, Figures 4.1 and 4.2], with a few high eigenvalues so that we expected to be able to
discriminate a few eigenvectors for this coarse space.

5.4.3 Results in 2D
We solve the linear system associated with our test case and preconditioned with the coarse
spaces introduced in the previous section. We only add one layer of elements for the overlap.
To have a fair comparison between these coarse spaces, we take τ = 60 for the GenEO stiffness
coarse space, and we take the same number of eigenvectors in the local eigenproblems to build
the coarse component of the other coarse spaces, so that the sizes of the local contributions to
the coarse space and the size of the global coarse space are the same for a given number of
subdomains with all the coarse spaces.

To test the strong scaling, we solve the considered problem with a mesh size h = 0.001
so that the number of degrees of freedom N is equal to 24 000 and we use several numbers of
subdomains: {8, 16, 32, 64, 128}. The resulting numbers of iterations using CG and GMRes are
given in Figure 5.6. Since τ is fixed, the condition number is bounded independently of the
number of subdomains according to Theorem 5.22 for GenEO stiffness, so that we expect the
number of iterations to be constant contrary to the case without the coarse component.
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Figure 5.5 – Eigenvalue distributions for the generalized eigenproblem defined Equation (5.8)
with eight subdomains and the hypersingular operator.
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Figure 5.6 – Strong scaling to solve Equation (5.16) with the 2D geometry described in Figure 5.3
and the hypersingular operator.

The numbers of iterations without preconditioner are 656 for CG and 450 for GMRes, and
they do not depend on the number of subdomains so that they are not shown in Figure 5.6. We
first observe that the preconditioner without coarse component greatly reduces the number of
iterations since it is approximately between 40 and 120 iterations instead of several hundreds
without preconditioner. But as expected, the one-level preconditioner does not scale with the
number of subdomains. It goes from 57 iterations for 8 subdomains to 114 iterations for 128
subdomains with CG for example. We do not show the results for GenEO mass because the
results are at best close to the one-level, as expected from Section 5.4.2. We conclude that this
coarse space needs to be much larger to scale in terms of iterations. GenEO Slobodeckij, GenEO
stiffness and GenEO single layer scale, their number of iterations stagnates respectively between
10 and 27 iterations for CG. Note that the number of iterations for the latter is always greater
than the other two. It shows that the size of the GenEO single layer coarse space needs to be
greater to maintain the same amount of information. We call the number of eigenvectors taken
to build Zp,τ , local contribution to the global coarse space associated with the pth subdomain
and we show Figure 5.7 how the mean of these local contributions and the size of the global
coarse space vary with the number of subdomains. It is interesting to see how the mean local
contribution decreases with the number of subdomains so that the size of the global coarse space
does not increase more than linearly.

Finally, we also did the experiment with a Calderón preconditioning. In this case, the pre-
conditioner is defined as [146, (5.15)]

PCalderón,Wh
:= M−1

h VhM−1
h

where Mh is the global mass matrix. Using PCalderón,Wh
to precondition the linear system

associated with the considered test case, we obtain 12 iterations with CG and GMRes.
To conclude about strong scaling, we were able to obtain a number of iterations comparable
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Figure 5.7 – Mean local contribution to coarse space and size of the latter for 2D strong scaling.

to Calderón preconditioning with the GenEO stiffness coarse space and GenEO single layer
coarse space, while maintaining a good behavior when increasing the number of subdomains. In
this case, DDM preconditioners are interesting alternatives to Calderón preconditioning because
they are less expensive to compute since only local computations are needed while Calderón
preconditioning requires a global mass matrix, its inversion and a matrix-vector product with
another BEM matrix. They are also more likely to scale better thanks to their parallel nature,
and they give similar performances in terms of iterations according to our results.

We now conduct a 2D test about weak scaling. We consider the following array of mesh
sizes: h = [0.0005, 0.001, 0.002, 0.004, 0.008] that will be used to discretize the geometry shown
in Figure 5.3. For each mesh size h[i], we obtain a number of degrees of freedom N [i] with
N = [48 000, 24 000, 12 000, 6000, 3000]. We associate a number of subdomains n[i] to each mesh
such that N [i]/n[i] = 750. The resulting array of number of subdomains is n = [64, 32, 16, 8, 4].
The results about the number of iterations are given Figure 5.8. The same remarks as for the
strong scaling can be formulated here.

Following these two tests, the best coarse space is the GenEO stiffness coarse space, it gen-
erally yields fewer iterations and it is also less expensive to compute than the others due to the
fact that its associated local matrix Kp is sparse.

5.4.4 Results in 3D
We only add one layer of elements to the subdomains for the overlap. As for the 2D strong
scaling, we take a fixed τ , here equal to 5, for the GenEO stiffness coarse space, and we take the
same number of eigenvectors in the local eigenproblems to build the coarse component of the
other coarse spaces.

To test the strong scaling, we take a mesh size of 0.039 so that we obtain a number of degrees
of freedom N equal to 104 738. We solve the linear system associated with our test case and
preconditioned with the coarse spaces we introduced earlier using several numbers of subdomains:
{32, 64, 128, 256, 512}. The resulting numbers of iterations are shown in Figure 5.10. We observe
the same behavior as in 2D. Note that here the number of iterations without preconditioner is
156 with CG and 101 with GMRes.
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Figure 5.8 – Weak scaling to solve Equation (5.16) with the 2D geometry described in Figure 5.3
and the hypersingular operator.
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Figure 5.9 – Mean local contribution to coarse space and size of the latter for 2D weak scaling.
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Figure 5.10 – Strong scaling to solve Equation (5.16) with the 3D geometry described in Figure 5.4
and the hypersingular operator.
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Figure 5.11 – Mean local contribution to coarse space and size of the latter for 3D strong scaling.



112 CHAPTER 5. Preconditioners for the boundary element method

0 10 20 30 40 50 60 70
0

20

40

60

80

100

Number of subdomains

N
um

be
r

of
ite

ra
tio

ns
Weak scaling in 3D with CG

0 10 20 30 40 50 60 70
10

20

30

40

50

Number of subdomains

N
um

be
r

of
ite

ra
tio

ns

Weak scaling in 3D with GMRes

Stiffness Slobodeckij Single layer One level

Figure 5.12 – Weak scaling to solve Equation (5.16) with the 3D geometry described in Figure 5.4
and the hypersingular operator.

We now present a 3D test about weak scaling, we consider the following mesh sizes: h =
[0.05, 0.07, 0.1, 0.15, 0.2]. For each mesh size h[i], we obtain a number of degrees of freedom N [i]
with N = [63 360, 33 200, 15 922, 7201, 3846]. We associate a number of subdomains n[i] to each
mesh such thatN [i]/n[i] ' 1000. Thus, the array of number of subdomains is n = [64, 32, 16, 8, 4].
The resulting number of iterations are given in Figure 5.12. The same remarks as for the strong
scaling hold here. Notice that the 3D weak scaling is approximated contrary to the 2D case.

We observe that the GenEO stiffness coarse is again the most efficient, it generally yields
fewer iterations and it is less expensive to compute because its associated local matrix Kp is
sparse.

5.5 Concluding remarks and perspectives
We have adapted the GenEO approach to precondition the BEM approximation of the hypersin-
gular operator for symmetric positive definite cases. We introduced several coarse spaces, and
we have tested them numerically with Dissipative Helmholtz on problems of reasonable size (up
to 100 000 degrees of freedom) on a closed surface. The most efficient coarse space from our
numerical experiments is the GenEO stiffness coarse space defined by Theorem 5.22.

As a result of this work, several developments can be carried out. Some interesting numerical
experiments have not been realized because of the time it would have taken to implement them.
For example, screen problems for the hypersingular operator implies that we need to be able to
remove the nodes on the boundary of the surface Γ so that Vh ⊂ H̃1/2(Γ). Another alternative
would be to “virtually” remove them as homogeneous Dirichlet conditions in FEM, using pseudo-
elimination or exact penalization. But it is not clear how the former will interact with hierarchical
matrices, while the latter is difficult to handle in the coarse space. A study of these different
approaches would be appealing for numerical applications.

Another possible development would be to adapt our work to vector valued problems such
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Figure 5.13 – Mean local contribution to coarse space and size of the latter for 3D weak scaling.

as linear elasticity (see [81]). It seems reasonable to think that we could extend our analysis as
the authors of [157] extended theirs to Lamé crack problems. We focused on scalar problems so
far mainly because we had not the tools to test numerically vector valued problems.

We also only considered the h-version of BEM, i.e. the degree of the polynomials is fixed but
we can refine the mesh, mainly besause we only had P1 Lagrange discretization. Another popular
approach is the hp-version where the degree of the polynomials also varies. This is particularly
useful to correctly approximate the solution on open surfaces despite its singularity near the
boundary. We refer to [55, Section 2.5] for more details about these singularities. In any case,
notice that the bounds given in Theorems 5.20 and 5.24 are independent of the discretization,
while, as stated in Remark 5.25, the bound given in Theorem 5.22 depends on the polynomial
degree via the inverse inequality Lemma 5.21. But recent results [8, Equation (3.3)] gave a more
precise inverse inequality where the dependence on the polynomial degree is explicit, so that we
could just change the weight in the definition of Kp to take into account the varying polynomial
degree. Then, it would remain to observe how the size of the coarse space changes.

Finally, we make two general remarks, first on the preconditioning of the weakly singular
operator, and then on preconditioning the Helmholtz equation.

5.5.1 Preconditioner for the weakly singular operator
Naturally, after adapting the GenEO approach to the hypersingular operator, we wanted to do
the same for the weakly singular operator. The analysis is actually more difficult because the
energy space is then H̃−1/2(Γ).

Concerning the continuity of RASM,2, notice that the main tool is how we upper bounded the
H̃1/2(Γ) in Lemma 5.12 using Lemma 5.7 and the fact that the local term ‖uph‖H̃1/2(Γp)

is equal
to ‖RT

p uh‖H̃1/2(Γ). Then, we can use several norm definitions for H1/2 to define the dual norm
on H̃−1/2:

• with the Sobolev-Slobodeckij norm as we did so far, we can prove a similar inequality to
Lemma 5.7 for the H̃−1/2(Γ) norm using duality and Lemma 5.8. But then, we do not
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know how to relate ‖uph‖H̃−1/2(Γp)
and ‖RT

p uh‖H̃−1/2(Γ) independently of the size of the
subdomain.

• with interpolation theory, we can prove a similar lemma to Lemma 5.8, so that again, we
can prove a similar inequality to Lemma 5.7 by duality. But again, we were not able to
relate ‖uph‖H̃−1/2(Γp)

and ‖RT
p uh‖H̃−1/2(Γ) independently of the size of the subdomain.

In other words, with our choice of norms, we need to know how to relate a local norm
‖uph‖2H̃−1/2(Γp)

with the global norm of its extension by zero ‖Ep(u
p
h)‖2H̃−1/2(Γ)

to be able to use
the positive definiteness of a. Thus, the difficulty is similar to the one in the analysis of GenEO
single layer (see Appendix B).

An important tool to prove the stable decomposition was based on how we lower bound the
global norm by a sum of local terms. In the case of the hypersingular operator, we introduced
several approaches that we can try to adapt to the weakly singular operator.

• Lemma 5.8 comes from a direct computation on the Sobolev-Slobodeckij norm. By duality,
we can prove a similar lemma for −1/2 instead of 1/2 using Lemma 5.7. But then there is
no analytical expression for ‖u|Γp

‖H−1/2(Γp) to compute the associated matrix.

• Lemma 5.9 relies on the continuous injection between L2(Γ) and H̃1/2(Γ). There is nothing
similar for H̃−1/2(Γ).

• Similarly to GenEO single layer, we could approximate ‖u|Γp
‖H−1/2 using the inverse of

the local hypersingular operator Wp : H̃1/2(Γp) → H−1/2(Γp). But then, we would need a
dual mesh to compute the discretization of its inverse because usually if Vh,p ⊂ H̃−1/2(Γp)

then Vh,p * H̃1/2(Γp).

• There is a similar result to Lemma 5.10 for the H−1/2 norm given [64] for the h-version
and generalized in [8, Equation (3.4)] for the hp-version.

Thus, the most practical localization technique is the one given by the following lemma:

Lemma 5.27. Let uh ∈ Pm(Th), we have

C ′
ad

n∑
p=1

‖h1/2T uh|Γp
‖2L2(Γp)

6 k1‖uh‖2H̃−1/2(Γ)
,

where C ′
ad depends only on Γ, the shape-regularity of Th and m.

Proof. According to [64], we have

‖uh‖2H̃1/2(Γ)
≥ C ′

ad‖h
1/2
T uh‖2L2(Γ).

Then, the L2-norm is local, so that we can decompose it like in Lemma 3.22.

This last lemma motivates a GenEO-type preconditioner as introduced in Section 5.3 with
(Bp)i,j =

∫
Γp
hT ϕσp(i)ϕσp(j), similarly to Equation (5.13).

Because of the technical difficulties mention before, we cannot carry the full analysis of a
GenEO-type preconditioner for the weakly singular operator. But we can still test numerically
its efficiency. Using the same test case as described in Section 5.4.1 but where f is used as
a Dirichlet condition. We first compute the spectra given in Figure 5.14 from the generalized
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Figure 5.14 – Eigenvalue distributions for the generalized eigenproblem defined Equation (5.8)
with eight subdomains and the weakly singular operator.

eigenproblem defined with Bp and eight subdomains. We observe that we can discriminate a few
eigenvalues to be put in the coarse space.

We carry a strong scaling test similarly to the one done in Section 5.4.3, the results are given
in Figures 5.15 and 5.16. We also added results where the coarse space is not used additively as
in Equation (5.5) for the hypersingular operator:

RT
0 (R0AVRT

0 )
−1R0 + (Id − P0)

n∑
p=1

RT
p (RpAVRT

p )
−1Rp(Id − P0) Balanced, (5.18)

RT
0 (R0AVRT

0 )
−1R0 +

n∑
p=1

RT
p (RpAVRT

p )
−1Rp(Id − P0) Deflated, (5.19)

where P0 is the aV-orthogonal projection on the coarse space. It can be shown that P0 =
RT

0 (RT
0 AVR0)

−1R0AV. We refer to [44, Section 7.5] and [152] for more details on alternatives
to Equation (5.5).

The number of iterations without preconditioner is about 420 with CG and 128 with GMRes.
The results are given in Figure 5.15. We see that the difference of efficiency between the one-level
and the coarse space suggested by the localisation in Lemma 5.27 is smaller that in the tests
we did with the hypersingular. With the hypersingular operator, the GenEO stiffness coarse
space and CG, the number of iterations for the strong scaling 2D test from Section 5.4.3 was
around 11, while it increased from 57 to 114 with the one-level preconditioner. So the number of
iterations was at least 4.75 lower using the GenEO stiffness coarse space. For a similar test case
with the weakly singular operator, the two curves obtained with CG in Figure 5.15 are relatively
close to each other, the one-level is even slightly more efficient for 64 and 128 subdomains, but
in any case the difference is of the order of the unit. The additive approach is quite close to the
one-level, and we recover a quasi-constant number of iterations with Balanced and Deflated. In
this case, Calderón preconditioning becomes PCalderón,Vh

= M−1
h WhM−1

h and then, we obtain
17 iterations with CG and 10 iterations with GMRes. We obtain a few iterations more with
the one-level and additive preconditioners, but it is still of the same order, and one iteration
of PCalderón,Vh

implies two matrix vector products, so we expect it to be more expensive. We
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Figure 5.15 – Number of iterations for a strong scaling to solve Equation (5.16) with the 2D
geometry described in Figure 5.3 and the weakly singular operator.

show in Figure 5.17 the number of matrix vector products for this strong scaling experiment.
We see that the DDM preconditioners usually require less matrix vector products than Calderón
preconditioning.

We also tried a more difficult test case solving the Laplace equation in 3D with a Dirichlet
condition equal to one and the geometry described in Figure 5.18. We used 121 996 degrees of
freedom and we refined around the boundary. The number of iterations without preconditioner
is 471 with GMRes and it does not converge in less than 1000 iterations with CG. The results
are shown in Figures 5.19 and 5.20 and even with this more difficult test case, it seems that
the one-level is already a good preconditioner and there is not a lot of room for improvement
contrary to Neumann problems. In both test cases, the variations in the number of iterations
for the one-level are small (no more than 10 at worst), so that it may not worth adding a coarse
space. We did not try Calderón preconditioning here because it is known to not work very well
on screens and requires a special treatment with special BIO, see [97, 98, 99].

5.5.2 Preconditioner for Helmholtz equation
Another natural question which comes to mind after Section 5.3 is how to precondition problems
that are not positive definite such as the Helmholtz equation. In this case, the GenEO coarse
space is no longer relevant in FEM or in BEM, because the analysis that relies on norm properties
does not hold anymore. Other approaches have been introduced, for example solving a coarse
problem on a coarse mesh or special conditions at the interface of the subdomains (see [65]
and [67] for recent results and a literature review).

We were interested in how the one-level behaved for BEM matrices. Let uinc = eiκx·d be a
plane wave with d the direction of propagation and κ = 2πk

c0
where c0 = 299 792 548 m s−1 is the

speed of light and k is the frequency.
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Figure 5.16 – Mean local contribution to coarse space and size of the latter for 2D strong scaling.
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Figure 5.17 – Number of matrix vector products for a strong scaling to solve Equation (5.16)
with the 2D geometry described in Figure 5.3 and the weakly singular operator.
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Figure 5.18 – Mesh of a L-shaped screen in 3D with 121 996 nodes and refined near its boundary.
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Figure 5.19 – Strong scaling to solve Equation (5.16) with the 3D geometry described in Fig-
ure 5.18 and the weakly singular operator.



5.5. Concluding remarks and perspectives 119

0 100 200 300 400 500
0

2

4

6

Number of subdomains

M
ea

n
lo

ca
lc

on
tr

ib
ut

io
n

Strong scaling in 3D

0 100 200 300 400 500

200

250

300

Number of subdomains
Si

ze
of

th
e

co
ar

se
sp

ac
e

Strong scaling in 3D

Figure 5.20 – Mean local contribution to coarse space and size of the latter for 3D strong scaling.

First, we solved a 2D problem with homogeneous Neumann condition on the total field.
Similarly to Equation (2.12), the equation reads: Find v ∈ H̃1/2(Γ) such that

〈WLH(v), w〉H−1/2(Γ)×H̃1/2(Γ) = −〈γN (uinc), w〉H−1/2(Γ)×H̃1/2(Γ), ∀w ∈ H̃1/2(Γ), (5.20)

where Γ is an object with a cavity as described in Figure 5.21, LH(u) = −∆u + κ2u and d =
(−1/

√
2,−1/

√
2). Figure 5.21 shows the geometry and the real part of the computed solution

for k = 1 GHz. We have h = 0.001 so that there are 16 000 degrees of freedom. Figure 5.22 shows
the results of a strong scaling with this test case. For Calderón preconditioning, we obtain 111
iterations with k = 1 GHz, 355 iterations with k = 3 GHz, 536 iterations with k = 5 GHz, and
we do not show the number of iterations without preconditioner when it does not converge in
less than 1000 iterations. We see that the number of iterations with the one-level preconditioner
is increasing, and this increase is more important when the frequency is greater. But in any
case, in terms of matrix vector product, the efficiency of Calderón preconditioning, shown by
multiplying by two the number of iterations, seems to deteriorate faster.

Then, we take a classical geometry, namely the COBRA cavity described in [114] and shown
in Figure 5.23. We solved a screen problem with homogeneous Dirichlet condition as described
in Equation (2.18). This time d = (1, 0, 0) so that uinc is a plane wave normally incident upon
the cavity aperture. The equation then reads: Find q ∈ H̃−1/2(Γ) such that

〈VLH(q), r〉H1/2(Γ)×H̃−1/2(Γ) = −〈γD(uinc), r〉H1/2(Γ)×H̃−1/2(Γ), ∀r ∈ H̃−1/2(Γ), (5.21)

where Γ is the COBRA cavity. We always keep 10 nodes per wavelength in our geometry, see
Figure 5.23. We do a strong scaling test for k = 5 GHz, k = 10 GHz and k = 17.5 GHz. The
results are given in Figure 5.24 and the total field SL(q) + uinc for k = 5 GHz is shown in
Figure 5.25.

We observe that the variation in the number of iterations for the one-level is small compared to
what is expected from FEM, similarly to what was observed in the previous section for Dissipative
Helmholtz. For k = 5 GHz (N = 3346), it increases by about 20 iterations, it increases by about
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Figure 5.21 – 2D geometry used to solve Equation (5.20) with the hypersingular operator and
real part of the computed solution.

100 iterations for k = 10 GHz (N = 16 266) and by about 200 iterations for k = 17.5 GHz
(N = 92 664). Of course, the problem is more difficult when the frequency increases, but we note
that the one-level preconditioner is quite cheap and parallel, so that it can be already efficient
enough for a range of frequencies. Like the 3D test case in Section 5.5.1, we do not make the
comparison with Calderón preconditioning because for screens it requires a special treatment.

We would like to point out that this case is more difficult to analysis and to solve numerically
compared to symmetric positive definite problems for the following reasons:

• When k increases, the solution becomes more oscillatory which put a constraint on the
mesh to be able to represent accurately such a solution.

• When k increases, the problem becomes more and more indefinite, so that usual precon-
ditioners for symmetric positive definite problems are less and less efficient. It is exactly
what we have seen in this section with the one-level DDM preconditioner.

• Because the equation is indefinite, CG is not relevant, and GMRes is used instead. But
the convergence proof is then more difficult.

In a FEM context, one of the first approach to adapt Schwarz method to precondition in-
definite problems was introduced in [20] (see also [153, Chapter 11]) and the analysis relies on
considering the Helmholtz equation as a symmetric positive definite operator with a compact
perturbation. This approach has been adapted to BEM in [149, 85, 150].

Since then, other approaches have been developed for usual PDE. There seems to be several
classes of methods. One idea introduced in [10] was to precondition the Helmholtz equation
by solving the Laplace equation. A variant proposed in [117, 116] was to properly perturb the
associated matrix to define a preconditioner. These approaches were then pushed forward in [109,
51] where they solved another Helmholtz equation where κ2 was modified to be positive definite
to precondition the original problem. Then, this approach was usually called “shifted Laplacian”
and has been studied in [50, 49, 61, 53] for example.
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Figure 5.22 – Strong scaling to solve Equation (5.20) with the 2D geometry described in Fig-
ure 5.21 and the hypersingular operator.

Figure 5.23 – Mesh of the COBRA cavity for 5 GHz with ten points per wavelength.
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Figure 5.25 – Total field solution of Equation (5.21) for 5 GHz with five points per wavelength.

Another approach is to use DDM methods where the subproblems are solved sequentially,
namely sweeping preconditioners [47, 48], single trace layer [151], the source transfer methods [23]
and polarized trace method [164], which are all related to the approximation of the Optimal
Schwarz Method presented in Section 3.1.2 (see [58] for a unified presentation).

Finally, DDM preconditioners have also been proposed in [54, 57, 106, 107, 39, 103, 65] with
special conditions at the interface and/or a coarse space. Convergence proofs for these methods
are usually an open problem but recent developments have been made in [65, 66, 67].

An interesting development would be to explore if ideas or techniques from the methods
developed in a FEM context as the ones we cited previously can be adapted to BEM matrices,
like we adapted GenEO preconditioners to BIE.
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As we have seen in Section 2.4.5, BEM matrices are dense due to the non-local nature of the
integral kernels introduced in Section 2.3. This means that using classical direct solvers is too
expensive for BEM matrices. Besides, the storage and the cost of assembling dense BEM matrices
are both quadratic. Iterative solvers should also be expensive because the complexity associated
with a matrix-vector product is quadratic.
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To tackle these issues, several techniques have been developed: panel clustering [77, 78],
Fast Multipole Method (FMM) [134, 69, 41, 42], hierarchical matrices (H and H2-matrices) [73,
75, 76, 17, 12, 74] Adaptive Cross Approximation (ACA) [11, 13, 18, 12], Sparse Cardinal Sine
Decomposition (SCSD) [4] and wavelet compression techniques [5]. All these techniques give an
approximate representation of the matrix that allows storage and matrix-vector product with
almost linear complexity. Let us emphasize that they do not require the original dense matrix,
in practice the approximated representation of a BEM matrix is directly assembled, so that we
never need to perform a step whose complexity is more than quasi-linear.

With these alternative representations of BEM matrices, iterative solvers such as CG and
GMRes can be a good choice to solve the linear systems associated with BEM since the matrix-
vector product has a reasonable cost. Another advantage of iterative solvers is that they are
independent of the underlying structure of the approximate matrix in theory, unlike techniques
using direct methods and compression like hierarchical LU decomposition [74] and the fast direct
solver described in [121, 70].

Another issue comes from the fact that the number of iterations needed in iterative solvers
is strongly linked to the spectral properties of these matrices. For example, in the case of the
single layer for the Laplace problem, the condition number κ(AV,h) := ‖AV,h‖2‖A−1

V,h‖2 typically
deteriorates like O(h−1) [139, Section 4.5], and we have the same behavior for the hypersingular
operator. This means that the number of iterations when using CG will increase when refining
the mesh size as the square root of h−1.

That is why we introduced in Chapter 5 DDM preconditioners for symmetric positive definite
BEM matrices that bound the condition numbers of these matrices, so that iterative solvers
should be robust to variations of the mesh size h and the number of subdomains n. DDM
preconditioners are particularly well-suited for distributed memory parallel environments, which
is usually the paradigm used for HPC. If, in theory, preconditioning is independent of the
compression techniques, in practice we still need a distributed memory parallel implementation
of a compression technique adapted to DDM preconditioners. For example, it seems appropriate
that the parallelism of the compression techniques should be linked to the domain decomposition
to lower the exchange of information between the processors.

With this in mind, we decided to use hierarchical matrices because it is a black-box method.
The compression algorithm is independent of the nature of the underlying linear operator, unlike
FMM for BEM matrices for example. This feature goes well with GenEO preconditioners that
are also black-box, in the sense they do not depend on the underlying equation as long as it is
symmetric positive definite. The resulting solver should be easy to use for the end user.

This led us to implement Htool1, an open source C++ library for hierarchical matrices that
offers a way to use DDM preconditioners with MPI and OpenMP. It depends on several libraries

• a BLAS [15] implementation to perform algebraic operations (dense matrix-matrix or
matrix-vector operations),

• LAPACK [6] to solve dense generalized eigenvalue problems and perform LU-decomposition,

• HPDDM [104] to use iterative solvers.

The user needs to provide a function that generates the coefficient Ai,j from the pair of indices
(i, j), where A is the matrix to be compressed. Then, Htool can assemble the hierarchical matrix
associated with A and do parallel H-matrix-vector and H-matrix-matrix products. It also allows
solving linear systems associated with the approximation of A using DDM preconditioners. The
setup of the DDM preconditioners for BEM matrices is shared between HPDDM and Htool.

1https://github.com/PierreMarchand20/htool

https://github.com/PierreMarchand20/htool
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We would like to point that several C libraries implementing hierarchical matrices already
existed, for example HLIB2 and its successor H2Lib3, but they usually do not support distributed
memory parallelism, which is more relevant for DDM preconditioners. Besides, our implemen-
tation is by no means the most optimal, years of R&D led to the development of very efficient
implementations (see [115] for example), but they are proprietary softwares. Htool has several
advantages from our point of view.

• It is portable, it has been used on laptops and supercomputers. Actually, the library is
automatically tested on Linux and macOS using g++ and clang compilers on every change.

• It is lightweight, it focuses on hierarchical matrices and how to solve the associated linear
systems. We preferred to focus on its interoperability to facilitate its integration in other
codes.

• It is black-box, in the sense that it can be easily embedded in other libraries as an inde-
pendent module. It is already in Freefem++ [82] for instance.

• Its structure is modular, so that additions of new low-rank approximations should be easy
to integrate.

• It works in parallel using MPI and OpenMP.

• It is free and open source under the MIT Licence.

In this chapter, we present the main ideas of hierarchical matrices and how we implemented
them to be sufficiently efficient with DDM preconditioners for our test cases. We refer to [74,
132, 145, 115] for more details on the presentation and analysis of hierarchical matrices. We
first present low-rank approximation in Section 6.1. Since BEM matrices do not have a low rank
structure because of the singularity of the Green kernel (see Equation (2.8)), we introduce in
Section 6.2 how to partition these matrices in admissible blocks, i.e. blocks that can be well-
approximated by low-rank matrices. In Section 6.3, we introduce the library Htool and we
present how we implemented the methods and algorithms presented in this manuscript. Finally,
we conclude with some perspectives for Htool.

We want to acknowledge that Htool was created following the CEMRACS4 summer school in
2016, where we had the opportunity to work on hierarchical matrices for a particular application
from IFPEN (the French Institute of Petroleum). This led to the code called ElastoPhi5 and the
publication [60]. Htool was then written following what we learned from this project and paral-
lelized with the collaboration of Pierre-Henri Tournier, CNRS research engineer at Laboratoire
Jacques-Louis Lions.

6.1 Low-rank approximation

6.1.1 Low-rank matrix
Let B ∈ CM×N be a dense matrix with B = (Bj,k)1≤j≤M,1≤k≤N . Without any assumption, the
cost of storage and the complexity of a matrix-vector product are both quadratic. Assume that

2http://www.hlib.org
3http://www.h2lib.org
4http://smai.emath.fr/cemracs/cemracs16/
5https://github.com/xclaeys/ElastoPhi

http://www.hlib.org
http://www.h2lib.org
http://smai.emath.fr/cemracs/cemracs16/
https://github.com/xclaeys/ElastoPhi
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B can be written as follows

B =
r∑

j=1

ujvT
j , (6.1)

where r ≤ min(M,N), uj ∈ CM ,vj ∈ CN with 1 ≤ j ≤ r. Then, the cost of storage and the
complexity of a matrix-vector product can be reduced to O(r(M + N)), which is lower that
O(MN) provided r < MN/(M +N). In this case, we say that B has a low rank structure.

6.1.2 Singular value decomposition
Matrices encountered in applications rarely have this feature. Nevertheless, a matrix can always
be written as a sum of rank-one matrices through its Singular Value Decomposition (SVD)

B =

P∑
j=1

σjujvT
j (6.2)

such that the spectrum of B∗B is equal to (σ2
j )

r
j=1 with P = min(M,N) while (uj)

M
j=1 and

(vj)
N
j=1 are orthogonal bases of respectively CM and CN . By convention, we have σ1 ≥ σ2 ≥

· · · ≥ σP . Then, a natural idea is to truncate the SVD Equation (6.2) to obtain a low-rank
approximation of B. This should be a good approximation in the case (σj)

P
j=1 quickly decreases.

The following theorem gives a more precise result.

Theorem 6.1 ([62, Sections 2.5.3 and 2.5.6] and [74, Lemma C.5]). Let B ∈ CM×N , then

(i) there exist unitary matrices U ∈ CM×M and V ∈ CN×N such that

B = USV

where S ∈ (R+)P×P is a rectangular diagonal matrix with P = min(M,N). We denote its
diagonal elements σ1 ≥ σ2 ≥ · · · ≥ σP ≥ 0. If M ≤ N , we have

S =


σ1 0 · · · 0 0 · · · 0

0 σ2
. . .

... 0 · · · 0
...

. . . . . . 0 0 · · · 0
0 · · · 0 σP 0 · · · 0

 ,

where (σj)
P
j=1 are called singular values of B.

(ii) The spectral norm of B has the value ‖B‖2 = σ1, where ‖·‖2 refers to the matrix norm
induced by the vector norm ‖u‖22 = (

∑N
j=1 |uj |2) for u = (uj)

N
j=1 ∈ CN .

(iii) The Frobenius norm of M has the value ‖B‖2F =
∑P

j=1 σ
2
j , where ‖ · ‖F refers to the

Frobenius norm given by ‖B‖2F =
∑

j,k=1...n |Bj,k|2.

(iv) rank(B) is equal to max{j |σj > 0}.

We obtain directly the following corollary
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Corollary 6.2. Let B(r) ∈ CM×N , the matrix obtained by truncating the SVD of B at rank
r ≤ P , i.e. B(r) =

∑r
j=1 σjujvT

j where uj and vj are respectively the jth column of U and V
from Theorem 6.1. Then, we have

‖B − B(r)‖22 = σ2
r+1 and ‖B − B(r)‖2F =

n∑
j=r+1

σ2
j .

We deduce that, if B has exponentially decreasing singular values, i.e. σr < qr for some
0 < q < 1, then we can obtain an error of ε in Frobenius norm with r ' logq(ε) approximating B
by B(r). Another important result states that the truncated SVD is actually the best low-rank
approximation possible.

Theorem 6.3 (Eckart–Young–Mirsky theorem, [45] and [62, Theorem 2.5.3 ]). Using the nota-
tion from Theorem 6.1 and Corollary 6.2, for r < rank(B), we have

min
rank(C)=r

‖B − C‖2 = ‖B − B(r)‖2 = σr+1,

min
rank(C)=r

‖B − C‖F = ‖B − B(r)‖F =

√√√√ n∑
j=r+1

σ2
j .

These results have been extended to every unitarily invariant norms in [126].

6.1.3 Adaptive cross approximation

Unfortunately, the SVD is quite expensive. State of the art SVD algorithms require at least
O(N3 + M2N + MN2) operations (see [62, Section 5.4.5]) and we still need to compute the
whole original matrix. Thus, it is still expensive in terms of storage and computation, even if we
then obtain a cheaper matrix-vector product.

6.1.3.1 Pseudo-skeleton approximation

Another approach to obtain low-rank approximations of B ∈ CM×N is to use columns and rows
of the original matrix. Let us denote B(σ, τ) ∈ C|σ|,|τ | the submatrix of B consisting of the rows
σ ⊆ {1, . . . ,M} and the columns τ ⊆ {1, . . . , N}. We will use the notation B(σ, :) (resp. B(:, τ))
when τ = {1, . . . , N} (resp. σ = {1, . . . ,M}) and we denote B(j, :) (resp. B(:, k)) the jth row of
B (resp. the kth column of B).

Theorem 6.4 ([63, Corollary 3.1]). Assume that B, R ∈ RM×N such that ‖B − R‖2 ≤ ε and
rank(R) ≤ r. Then, there exists σ ⊂ {1, . . . ,M}, τ ⊂ {1, . . . , N} and S ∈ Rr×r such that |σ| = r,
|τ | = r and

‖B − B(:, τ)SB(σ, :)‖2 ≤ ε(1 + 2
√
r(
√
N +

√
M)).

The matrix B(:, τ)SB(σ, :) is called pseudo-skeleton component of B.

In other words, if there exists a low-rank approximation of rank r for a given error ε, then
there exists a pseudo-skeleton approximation.
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6.1.3.2 Fully pivoted Adaptive Cross Approximation

The Adaptive Cross Approximation (ACA) algorithm introduced in [11, 13, 12] is an iterative
algorithm that provides such an approximation with S diagonal. As in [132, Section 2.2], we first
present the Fully pivoted ACA algorithm with Algorithm 1 and then its variant called Partially
pivoted ACA algorithm with Algorithm 2. In our pseudo-code notation, for any vector w ∈ CN ,
the number w(j) refers to the jth entry of w.

Algorithm 1 Fully Pivoted ACA
1: function Full ACA(B) . We need the original dense matrix
2: r = 0 and R0 = B
3: while (stopping criterion not satisfied) do . see Section 6.1.3.4
4: (jr∗ , k

r
∗) = argmax1≤j≤M, 1≤k≤N |Rr

j,k|
5: wr

∗ = Rr
jr∗ ,k

r
∗

6: if (|wr
∗| 6= 0) then

7: vr = Rr(jr∗ , :) and ur = (wr
∗)

−1Rr(:, kr∗)
8: Rr+1 = Rr − urvT

r

9: r = r + 1
10: else
11: break
12: return B̂(r) =

∑r−1
j=0 ujvT

j

In other words, at each iteration r we look for the coefficient (jr∗ , k
r
∗) of maximal absolute

value in the residual Rr and we define ur and vr respectively as the kr∗th column and the jr∗th
rows, with the right normalization for the former so that Rr+1 = Rr − urvT

r has zeros for
kr∗th column and jr∗th row (see Lemma 6.6). The coefficients (jr∗ , k

r
∗)r are usually called the

pivots. This algorithm has several interesting properties given by the following lemmas from [19,
Chapitre 4]6.

Lemma 6.5 (Exact reproduction of rank-r matrices, [19, Lemma 4.4]). Let B be a matrix of
rank exactly r. Then B̂(r) = B.

Proof. Remark that Rr = B−
∑r−1

j=0 ujvT
j , we will prove that Rr′ is of rank r− r′ for 0 ≤ r′ ≤ r

by induction on r′.
For r′ = 0 the relation is trivial. Suppose now that the relation is true for 0 ≤ r′ < r, i.e. Rr′

is of rank r− r′. Let V denote the image of Rr′ of dimension r− r′ by induction hypothesis, we
define W as the orthogonal complement of V in RN so that its dimension is equal to N − r+ r′.
Similarly, we define V ′ and W ′ the corresponding spaces for Rr′+1 = Rr′ −ur′vT

r′ . By definition
of Algorithm 1, ur′ is the kr′∗ th column of Rr′ up to a multiplicative constant so that it belongs
to V . Therefore V ′ ⊂ V and W ⊂W ′.

Let j∗ := jr
′

∗ , we have

eT
j∗Rr′ = vr′ 6= 0,

because wr
∗ 6= 0 and

eT
j∗(R

r′ − ur′vr′) = vr′ − ur′(j∗)︸ ︷︷ ︸
1

vr′ = 0,

6Because the reference may not be easy to find and the proofs can be unclear, we also provide the proofs
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using ur′(j∗) = (wr′

∗ )−1Rr(jr
′

∗ , k
r′

∗ ) = 1. We deduce that ej∗ is in the left null space of Rr′+1,
but not in the one of Rr′ . In other words, ej∗ ∈ W ′ \ W , so that dim(V ′) < dim(V ), or
dim(V ′) ≤ k − k′ − 1.

We also have rank(Rr′) = rank(Rr′+1 + ur′vT
r′) ≤ rank(Rr′+1) + 1, so that dim(V ′) =

rank(Rr′+1) ≥ r − r′ + 1
To conclude, we have dim(V ′) = r − r′ − 1, and so Rr′+1 is of rank r − r′ − 1, which proves

our initial statement. In particular for r′ = r, we have B̂(r) = B.

Lemma 6.6 (Interpolation property, [19, Lemma 4.5]). Let B ∈ CM×N be a matrix of rank at
least r ≥ 1 and B̂(r) the cross approximation from Algorithm 1. For any pivot (jr

′

∗ , k
r′

∗ ) with
0 ≤ r′ ≤ r − 1, there holds

B̂(r)(:, kr
′

∗ ) = B(:, kr
′

∗ ) and B̂(r)(jr
′

∗ , :) = B(jr
′

∗ , :),

i.e. B̂(r) reproduces the columns and rows associated with the pivots (jr
′

∗ , k
r′

∗ ).

Proof. We will prove the result by induction on r for 1 ≤ r and r lower than the exact rank of
B. In the case, B is of rank exactly r, we have actually that B is equal to B̂(r) according to
Lemma 6.5.

For r = 1, the statement follows from the definition of Algorithm 1, we have

B̂(1)(:, k1∗) = B(:, k1∗) and B̂(1)(j1∗ , :) = B(j1∗ , :).

Suppose now that the relation is true for 1 ≤ r and strictly lower that the rank of B, then
we have for 0 ≤ r′ ≤ r − 1

B̂(r)(:, kr
′

∗ ) = B(:, kr
′

∗ ) and B̂(r)(jr
′

∗ , :) = B(jr
′

∗ , :),

or equivalently, Rr(:, kr
′

∗ ) = 0 and Rr(jr
′

∗ , :) = 0. We have

Rr+1 = Rr − urvT
r = Rr − (wr

∗)
−1Rr(:, kr∗)Rr(jr∗ , :)

T

so that for 0 ≤ r′ ≤ r − 1, we have

Rr+1(:, kr
′

∗ ) = Rr+1ekr′
∗

= Rr(:, kr
′

∗ )− (wr
∗)

−1Rr(:, kr∗)Rr(jr∗ , :)
T ekr′

∗
.

The first term in the right-hand side is equal to zero by induction hypothesis, while the second
term is equal to (wr

∗)
−1Rr(:, kr∗)Rr(jr∗ , k

r′

∗ )T where Rr(jr∗ , k
r′

∗ ) is also equal to zero. We deduce
that Rr+1(:, kr

′

∗ ) = 0 for 0 ≤ r′ ≤ r − 1 and similarly, we can prove that Rr+1(jr
′

∗ , :) = 0. It
remains to prove this relation for r′ = r,

Rr+1(:, kr∗) = Rr+1ekr
∗
= Rr(:, kr∗)− (wr

∗)
−1Rr(:, kr∗)Rr(jr∗ , :)

T ekr
∗

= Rr(:, kr∗)− (wr
∗)

−1Rr(:, kr∗)Rr(jr∗ , k
r
∗)

T︸ ︷︷ ︸
wr

∗

= 0.

Similarly, we can prove that Rr+1(jr∗ , :), which finishes the proof.

This last lemma shows that the low-rank approximation is built upon the rows and columns
associated with the pivots. Remark that this is not the case a priori for the optimal low-rank
approximation B(r). It can also be proved that ACA can actually be seen as a pseudo-skeleton
approximation according to [12, Lemma 3.32] or [19, Lemma 4.6].
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Let us denote r̂final, the final value of r obtained following Algorithm 1. Without taking into
account the stopping criterion, the total number of operations of Algorithm 1 is O(r̂finalMN)
because of the search of the argmax of Rr and the update of the matrix Rr+1, respectively in
lines 5 and 9 of Algorithm 1. We also need to compute the whole matrix B to compute the
argmax of Rr.

6.1.3.3 Partially pivoted Adaptive Cross Approximation

As we have seen with Lemma 6.6, the resulting low-rank approximation only uses the columns
and the rows associated with the pivots, so that if we knew in advance the pivots, we would
not need to compute the whole matrix B and we would not need to update the whole residual
Rr+1 ∈ CM×N . Since we cannot know a priori the pivots because they are computed iteratively,
a variant of Algorithm 1 is to restrict the search for the pivots to a part of the matrix.

This variant is given by Algorithm 2, where in each iteration r, we have a given row jr∗ and
we look for the coefficient (jr∗ , k

r
∗) of maximal absolute value in the residual Rr, but only in the

jr∗th row. This means that we do not need to compute the whole matrix and residual, but only
their jr∗th row. Then, similarly, we look for the coefficient (jr+1

∗ , kr∗) of maximal absolute value
in the kr∗th column of the residual Rr, which is never completely computed (this is why it does
not appear explicitly in Algorithm 2). As in Algorithm 1, the successive rows and columns of
residual associated with the pivots are used to build the low-rank approximation that we denote
B̃(r).

Algorithm 2 Partially Pivoted ACA
1: function Partial ACA((j, k) 7→ Bj,k) . We do not need the whole matrix
2: initialize j0∗ . see Remark 6.7
3: r = 0
4: while (stopping criterion not satisfied) do . see Section 6.1.3.4
5: vT

r = B(jr∗ , :)−
∑r−1

k=0 uk(j
r
∗)vT

k

6: kr∗ = argmaxk=1...N |vr(k)|
7: wr

∗ = vr(k
r
∗)

8: if (wr
∗ 6= 0) then

9: ur = w−1
∗ (B(:, kr∗)−

∑r−1
k=0 ukvT

k (k
r
∗))

10: r = r + 1
11: jr∗ = argmaxj=1...M |ur(j)|
12: else
13: pick any another jr∗ different from the previous pivots
14: return (uj)

r
j=1 and (vj)

r
j=1

Let us denote r̃final the final value of r following Algorithm 2. At each iteration r, the number
of operations to look for jr+1

∗ and kr∗ is O(M +N), but the number of operations to compute vr

and ur is O(r(M +N)) because we cannot compute the residual iteratively as in Algorithm 1.
Without taking into account the initialization step and the stopping criterion, we deduce that
the complexity of Algorithm 2 is O(r̃2final(M +N)).

Remark 6.7 (Initialization). The initial row is sometime presented as picked arbitrarily in
the literature, but in [12, Section 3.4.3] a procedure is presented. It uses the geometry of the
problem. Usually one can associate a geometric point with each degree of freedom, let us denote
Clt the cluster of points associated with the rows, usually called targets, Cls the cluster of points
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associated with the columns usually called sources. Then, j0∗ is chosen to be the closest target
point to the barycenter of the target points.

6.1.3.4 Stopping criteria

The stopping criterion can be a given rank, for example r < rrequired, or a given error of the
approximation ε. In the latter case, we want to stop when

‖B − B̂(r)‖F ≤ ε‖B‖F. (6.3)

Since this needs the whole matrix B and the number of operations is O(MN) at each iteration, we
will use it with the fully pivoted ACA algorithm so that the complexity and the cost of storage
is not changed. In [115, Section 3.2.2], it is stated that the number of operations is actually
O(r2MN) because it said that we need to compute the vector products in B̂(r) =

∑r−1
j=0 ujvT

j

at each iteration to then compute the error. But remark that in line 8 of Algorithm 1, Rr+1 =
B− B̂(r) is iteratively computed in O(MN) operations so that we do not need to recompute the
error doing all the vector products in B̂(r) =

∑r−1
j=0 ujvT

j .
But the complexity is still quadratic so that in practice, the stopping criterion given in

Equation (6.3) is usually estimated by

‖B̃(r+1) − B̃(r)‖F ≤ ε‖B̃(r+1)‖F,

which can be rewritten

‖urvT
r ‖F ≤ ε‖B̃(r+1)‖F, (6.4)

First, notice that

‖B̃(r+1)‖2F = ‖B̃(r)‖F + 2〈B̃(r),urvT
r 〉F + ‖urvT

r ‖2F, (6.5)

where 〈·, ·〉F stands for the Frobenius inner product. Let us precise how to compute all these
terms

‖urvT
r ‖2F = Tr(vruT

r urvT
r ) = Tr(vruT

r urvT
r ) = ‖ur‖22 Tr(vrvT

r )︸ ︷︷ ︸
‖vr‖2

2

〈B̃(r),urvT
r 〉F =

r−1∑
j=0

〈ujvT
j ,urvT

r 〉F =

r−1∑
j=0

Tr(vjuT
j urvT

r ) =

r−1∑
j=0

〈uj ,ur〉2 Tr(vjvT
r )︸ ︷︷ ︸

〈vj ,vr〉2

,

where 〈·, ·〉2 stands for the inner product for vectors. The number of operations are respectively
O(M + N) and O(r(M + N)) at each iteration r. According to Equation (6.5), we see that
‖B̃(r+1)‖F from the criterion given in Equation (6.4) can be computed iteratively using O(r(M+
N)) operations at each iteration, while computing ‖urvT

r ‖F requires O(M+N). We deduce that
the number of operations for this stopping criterion is O(r2(M +N)), which is linear in the size
of B. With this choice, the Algorithm 2 has still a complexity of O(r2(M +N)).

Using the stopping criteria given in Equation (6.3) or Equation (6.4), the rank of the approx-
imation is chosen adaptively to ε.
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Figure 6.1 – Geometry used to illustrate low-rank approximation with z1 − z2 = 1.

6.1.4 Numerical illustrations
We now illustrate the approximation properties of the three low-rank approximations introduced
in the previous sections: SVD, full ACA and partial ACA, respectively B(k), B̂(k) and B̃(k). Let
us define the set of target points (xj)

M
j=1 and source points (yk)

N
k=1. We generate them randomly

using a uniform law, such that they are both in a circle of radius 1 included in a plane normal
to the z-axis, see Figure 6.1. We denote their respective z-coordinate z1 and z2.

We compute the low-rank approximations of the matrix B ∈ RM×N defined as Bj,k =
1/|xj − yk| with M = 500 and N = 100. The errors of approximation in Frobenius norm as
a function of the rank are given in Figure 6.2 for z1 − z2 = 1 and z1 − z2 = 2. In both cases,
we observe an exponential decrease of the error of approximation. The SVD approximation
gives always the best approximation, which is consistent with Theorem 6.3. Then, the full ACA
approximation is better than the partial ACA approximation, which is expected since there is
more freedom in the choice of the pivots in Algorithm 1 than in Algorithm 2. Remark also that
when the distance between the two circles increases so that the interaction in farther away from
the singularity of 1/|x − y|, the approximation for a given rank is improved.

6.2 H-matrices
In Section 6.1, we presented techniques to compute the low-rank approximations of a matrix
B ∈ CM×N . These techniques are especially efficient when B has very fast decreasing singular
values, which is not the case for a general BEM matrix. It is actually not the case because of
the singularity of Green functions.

To illustrate this behavior, we consider the P1-Lagrange discretization of the weakly singular
operator and the hypersingular operator on a circle associated with the equation −∆u + u = 0
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Figure 6.2 – Approximation of the kernel 1/|x − y| by low-rank matrices for the geometry given
in Figure 6.1.

for d = 2 and M = N = 63. In Figure 6.3, we show the BEM matrices associated with these
two operators normalized by their maximal values, and their corresponding singular values. We
observe that great variations in the value of the coefficients occur around the diagonal (and also
on the top right and bottom left corners by periodicity). This is because the diagonal corresponds
to close interactions, and the Green functions are singular in this case. According to Theorem 6.3,
we see that even if we took the SVD approximation of these matrices with a rank equal to 62,
we could not obtain a better error than 10−2 in Frobenius norm.

But we see that apart from the diagonal, the values of the coefficients show smaller variations
compared to the diagonal. In this case, the coefficients correspond to far interactions so that the
Green function is very regularizing. The idea of hierarchical matrices is based on a hierarchical
geometric partition of the domain, called cluster tree, that induces a hierarchical representation
of the blocks of the matrix, called block tree. This allows us to identify the blocks that correspond
to far interactions and that can be compressed using low-rank approximation. We develop this
idea in the following.

6.2.1 Cluster tree
Let us consider a generic BEM matrix A ∈ CN×N stemming from the Galerkin discretization
of a BIO as presented in Section 2.4.5. Each coefficient corresponds to the interaction of two
degrees of freedom ϕj , ϕk so that Aj,k = a(ϕj , ϕk) where a is the bilinear form of the problem
and 1 ≤ j, k ≤ N . We denote I = (1, . . . , N) the global array of indices, it is completely arbitrary
and it is usually defined by the numbering of the degrees of freedom. We can usually associate
a degree of freedom ϕj with a geometric point xj (center of cell for P0-Lagrange, node for P1-
Lagrange for example) and some “weight” gj (size of the cell for P0-Lagrange and size of the
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Figure 6.3 – Discretization of the weakly singular operator and the hypersingular operator on a
circle associated with the equation −∆u+ u = 0 for d = 2 and M = N = 63. Normalized values
of the coefficients and singular values.



6.2. H-matrices 137

Cl = Cl
(0)
1

Cl
(1)
1

Cl
(2)
1

Cl
(3)
1 Cl

(3)
2

Cl
(2)
2

Cl
(3)
3 Cl

(3)
4

Cl
(1)
2

Cl
(2)
3

Cl
(3)
5 Cl

(3)
6

Cl
(2)
4

Cl
(3)
7 Cl

(3)
8

Figure 6.4 – Example of cluster tree for p = 3.

support of the shape functions for P1-Lagrange for example). Thus, we can associate an array
of indices with a cluster/set of points, for example

Cl = {(xj , gj) | j ∈ I} .

Denoting Cl(0)1 = Cl, the goal of the hierarchical geometric partition is to define hierarchically
subclusters of Cl(0)1 that group closer points. To do so, we will separate each cluster Cl(p)l in
two sons recursively Cl

(p+1)
2(l−1)+1 and Cl

(p+1)
2(l−1)+2, so that we obtain a binary tree whose nodes

correspond to clusters, as shown in Figure 6.4 for example. Then, each subcluster Cl(p)l can be
associated with a subinterval I(p)

l i.e., a set of integers corresponding to the numbering of the
geometric points in Cl

(p)
l , see Figure 6.5. We define the isomorphism f(Cl

(p)
l ) = I(p)

l that gives
the associated numbering of a cluster.

To actually separate a cluster in two subclusters, we use the algorithm defined in [132, p. 3.1.2]
and given in Algorithm 3. Algorithm 3 is similar to a principal component analysis, it computes
the covariance matrix associated with the distance of each point to the barycenter. The first
eigenvector of this covariance matrix, the first principal component, corresponds to the direction
of longest expanse of the cluster. Then, we separate the cluster along a plane perpendicular to
this direction and containing xc. This approach and the fact that we weight the points should
provide a balanced partition of the clusters in most cases. We should emphasize that since
the covariance matrix is symmetric and in R3×3, the associated eigenproblem can be solved
explicitly [141].

This cluster tree actually defines a permutation of the global numbering such that the degrees
of freedom in a cluster are numbered continuously. We denote pfinal the depth of the cluster tree,
then the permuted numbering J (p)

l is defined as the concatenation of (I(pfinal)
m )m for 0 ≤ p ≤ pfinal,

1 ≤ l ≤ 2p and 2pfinal−p(l − 1) + 1 ≤ m ≤ l2pfinal−p.
In particular, we have J = (Ipfinal

1 , . . . , Ipfinal

2pfinal ) and we give an example in Figure 6.5, where
J = (4, 0, 6, 3, 8, 5, 2, 7, 9, 1). The array J allows us to go from the permuted numbering to the
original numbering. Notice that a cluster is characterized by the position of its first element in
J , also called offset, and its size. In our example, J (2)

2 = (3, 6, 8) can also be defined as the
subsequence in J whose offset is 3 and its size is 3.

Remark 6.8 (Other clustering approaches). There exist other approaches to define a cluster
tree. For example, in [19, Section 2.1], variants are presented where bounding boxes are used
with respectively a quadtree in 2D and an octree 3D.
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Algorithm 3 Cluster tree
1: function Cluster tree(Cl) . Cl can be any cluster
2: Mass of cluster:

G =

N∑
j∈f(Cl)

gj ,

3: Center of the cluster:

xc =
1

G

∑
j∈f(Cl)

xj ,

4: Covariance matrix of cluster:

C =
∑

j∈f(Cl)

gj(xj − xc)(xj − xc)
T ∈ R3×3,

5: Eigenvalues and eigenvectors:

Cvl = λlvl, l ∈ {1, 2, 3}, λ1 ≥ λ2 ≥ λ3,

6: Separation: Let Cl1 = ∅ and Cl2 = ∅,
7: for j ∈ f(Cl) do
8: if (xj − xc)

T v1 ≥ 0 then
9: Cl1 = Cl1 ∪ (xj , gj)

10: else
11: Cl2 = Cl2 ∪ (xj , gj)

12: return Cl1 and Cl2

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

(0, 3, 4, 6, 8)

(0, 4)

(4) (0)

(3, 6, 8)

(6) (3, 8)

(1, 2, 5, 7, 9)

(2, 5, 7)

(5) (2, 7)

(1, 9)

(9) (1)

Figure 6.5 – Example of numbering induced by a cluster tree.



6.2. H-matrices 139

J (0)
1

J (1)
1 J (1)

2

J (2)
1 J (2)

2 J (2)
3 J (2)

4

J (0)
1

J (1)
2

J (1)
1

J (2)
4

J (2)
3

J (2)
2

J (2)
1

Figure 6.6 – Relation between blocks and cluster trees.

6.2.2 Block tree
Let us denote I(p)

l , I(p′)
l′ two subintervals defined by the cluster tree. Remark that (I(p)

l , I(p′)
l′ )

actually corresponds to a subblock of A, which may not be contiguous. Similarly, (J (p)
l ,J (p′)

l′ )
corresponds to a subblock of A after permutation so that the block is contiguous. An example is
given in Figure 6.6 where the block associated with (J (1)

1 ,J (2)
4 ) and (J (2)

4 ,J (2)
1 ) are shown. The

fact that the blocks are contiguous has several advantages in practice, so we will always work on
the permuted matrix in the following.

The block tree is then a quadtree where the nodes are pairs (J (p)
l ,J (p′)

l′ ) and their sons
are defined using the sons of J (p)

l and J (p′)
l′ . It is actually an alternative representation of the

permuted matrix. Starting from the root (J ,J ), this hierarchical structure allows going from
the coarsest blocks to the smaller blocks while descending in the tree.

To know which block can be compressed, we use an admissibility condition based on the
geometry of clusters. It is a geometric condition which states that two clusters are sufficiently
far apart so that the associated block corresponds to a far interaction. As we have seen at the
beginning of the section, far interaction are regular because of the Green kernel so that they
should contain little information, or more precisely they should have fast decreasing singular
values. In this case, low-rank approximations introduced in Section 6.1 should be relevant.

Current literature provides various admissibility criteria. It should be considered as problem
dependent. In our case, we chose the following admissibility criterion (see [132, eq. 3.15]) for
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two clusters Clt and Cls

min
(

diam(Clt),diam(Cls)
)
< η dist(Clt, Cls),

where

diam(Cls) = max
xk1

,xk2
∈Cls

|xk1
− xk2

|, dist(Cls, Clt) = min
xk∈Cls,xl∈Clt

|xk − xl|,

and η > 0 is a fitting parameter. As suggested in [132] and in order to avoid the quadratic cost
of the computation of diam(Cls), the practical implementation makes use of the more restrictive
but more easily computable admissibility condition:

2 min
(

max
xk∈Cls

|Xs−xk|, max
xl∈Clt

|Xt−xl|
)
< η |Xt−Xs|− (max

xk∈s
|Xs−xk|+max

xl∈t
|Xt−xl|), (6.6)

where Xs (resp. Xt) is the center of Cls (resp. Clt). To summarize, the block tree is traversed
recursively calling Algorithm 4 with (Cl

(0)
1 , Cl

(0)
1 ).

Algorithm 4 Block tree

1: function Block tree(Cl(p)l , Cl(p
′)

l′ )
2: if (Cl(p)l , Cl

(p′)
l′ ) is admissible then . See condition given in Equation (6.6)

3: Compression of A|J (p)
l ×J (p′)

l′

4: else if Cl(p)l and Cl
(p′)
l′ are both leafs then

5: Assembling of A|J (p)
l ×J (p′)

l′

6: else if Cl(p)l has more elements than Cl
(p′)
l′ then

7: Block tree (Cl(p)2(l−1)+1,Cl(p
′)

l′ )

8: Block tree (Cl(p)2(l−1)+2,Cl(p
′)

l′ )
9: else

10: Block tree (Cl(p)l ,Cl(p
′)

2(l′−1)+1)

11: Block tree (Cl(p)l ,Cl(p
′)

2(l′−1)+2)

6.2.3 Numerical illustrations
We give a small illustration of the cluster tree and block tree introduced in the previous section.
We take as an example a disk with a mesh of N = 924 degrees of freedom and we want to
assemble the approximation of the weakly singular operator V for the Laplace equation. We
show the results for the cluster tree using GMSH [59].

In Figure 6.7, we show several levels of the cluster tree. Remark that the clusters are well-
balanced, this is because we chose an algorithm that always looks for the direction of longest
expense of the cluster and cut along the perpendicular plane containing the barycenter.

We show the resulting hierarchical matrices in Figure 6.8 for ε = 0.01 and η = 100 where
the level of green describes the level of compression while the red blocks are dense blocks. We
also write the rank of the low-rank approximations, when the block is not too small. We define
the compression rate of the matrix as Comp = 100(1 − Ng/MN) where Ng is the number of
generated coefficients, so that when Comp is closer to 100, it is more compressed. We obtain the
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(a) p=1
(b) p=2

(c) p=3

Figure 6.7 – Cluster tree for a disk with N = 924 at several depth p.
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following compression rates

CompSVD = 74.98% > CompfullACA = 68.82% > ComppartialACA = 65.93%.

As expected, using SVD approximations gives the best compression rate, but remember that
it is also the most costly. Similarly, we see that the full ACA approximation gives a better
compression rate than the partial ACA approximation, but again, remember that it requires to
compute the whole matrix.

6.3 Implementation
We present here the organization of Htool, a C++ header-only template library for hierarchical
matrices parallelized with MPI and OpenMP. Our goal was to make it as modular as possible
to allow easy additions (other compression methods for example), and it should be as easy as
possible to use. For the latter, we aimed to use black-box methods to not require too many
parametrizations from the end-user.

We often use a simple and efficient design called Abstract Base Class (ABC). It consists in a
pure abstract class that defines the interface, i.e. all the functions used by the rest of the code
and pure virtual functions that needs to be defined by derived classes. This abstract class cannot
be instantiated directly. This approach allows for a great factorization of codes and a modular
design that makes additions easy to implement.

6.3.1 Clustering
We defined ClusterTree as a class containing the root of the cluster tree and some auxiliary
functions. The real cluster tree is defined as a linked list of Cluster objects that contain the
radius, the center of the cluster and the pointers to its Cluster sons. It takes the geometry as
an argument, in practice an array of 3D points, and optionally an array of weights.

When traversing the tree, we build the array J implementing the permutation that allows
going from the numbering stemming from the clustering to the numbering of the given geometric
points (see Figure 6.5 for an example).

Then, the Cluster objects also contain their offset and the number of associated geometric
points, which completely characterizes the cluster with J .

6.3.2 Matrix
We use the ABC pattern to define matrix structures where IMatrix is the abstract class. It
only defines the number of rows and columns and their associated accessors. The pure virtual
function is get_coef that takes a pair (j, k) and returns the coefficient (j, k). The type of the
coefficient is a template argument of the class.

As stated in [158, Section 1.3.1], this type of dynamic polymorphism using pure virtual
function can imply performance penalties, but this overhead can be negligible if the actual code
of the function is costly. Since, BEM quadratures are usually expensive because of the singularity
of the Green kernel, we expect that the overhead is indeed negligible.

IMatrix defines the interface that the user can use to build hierarchical matrices with their
own kernel. The user can define a class deriving from IMatrix and its function get_coef
that implements how to compute a coefficient (j, k), and we will see that it will be a required
argument to our class implementing hierarchical matrices.
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(a) SVD (b) Fully pivoted ACA

(c) Partially pivoted ACA

Figure 6.8 – Hierarchical matrices associated with the geometry from Figure 6.7, ε = 0.1 and
η = 10.
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We also define Matrix as a derived class that inherits from IMatrix. It implements dense
matrices with BLAS operations. And we define SubMatrix as a derived class that inherits from
Matrix. It corresponds to a dense block of the global matrix, so it stores the offsets and sizes of
the source and target clusters, corresponding respectively to the columns and rows of the global
matrix.

Remark 6.9 (get_submatrix). Using Galerkin method, assembling a block looping over el-
ements is usually more efficient, than looping over degrees of freedom. So that IMatrix also
provides a virtual function get_submatrix that can be overloaded by the user. By default, it
loops over the coefficients of given arrays of source points and target points using get_coef. It
returns the corresponding block as a SubMatrix.

6.3.3 Low-rank approximation

Following the ABC pattern, we define a class LowRankMatrix to implement low-rank approx-
imations of a dense matrix. It contains all data members and methods needed to use low-rank
approximations. The pure virtual function is the build function that needs to be implemented
by each class deriving from LowRankMatrix.

Then, we defined the compressors such as the partial ACA approximation as derived classes
from LowRankMatrix, defining the build function that implements the particular algorithm
to assemble the low-rank approximation. It takes as arguments a IMatrix to generate the
coefficients, a source and target cluster because it will correspond to a block of the global matrix.
At the moment, the three algorithms from Section 6.1 are implemented.

The only optimization we made is that we represent the low-rank approximation by two
matrices U ∈ CM×r and V ∈ Cr×N instead of sum of vectors as in Equation (6.1), where r is
the rank of the approximation. It allows for matrix-vector products that uses BLAS 2 routines,
instead of looping over the vectors.

6.3.4 H-matrices

The HMatrix class implements hierarchical matrices, it takes two template arguments, the type
of the coefficients and the class of the compressor which is expected to follow the interface defined
in LowRankMatrix. This design pattern relies on static polymorphism and it can be called
policy-based design. Each compressor defines a “policy class” that the host, the HMatrix class,
can take. But policy classes have to follow a policy, an implicit interface. Using the ABC design
for the compressors with LowRankMatrix, we actually made this interface explicit, so that
new additions just need to derive from this abstract class to follow the needed policy.

The constructor takes as arguments smart shared pointers to a source cluster tree and a target
cluster tree. This allows sharing the cluster tree between several HMatrix. It can be useful
when discretizing the direct method in BEM where several operators on the same geometry are
necessary, see Equation (2.14). It also requires a IMatrix to generate the coefficients.

In practice, it goes through the block tree recursively as described in Algorithm 4. But we
only define objects of type Block that contain the associated target and source clusters. Then,
each MPI process determines which block it needs to compute, following a band decomposition
as described in Section 6.3.5. To compute the blocks, the IMatrix is given to the constructor
of the chosen compressor for admissible blocks and to the constructor of SubMatrix for dense
blocks.
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6.3.5 Parallelization
We chose to use both distributed and shared parallelism. Because we want to use DDM precon-
ditioners, it is natural to use distributed parallelism, but then one has to choose how to distribute
the data.

There exist several classical approaches to partition the data for a dense matrix. In our case,
notice that the diagonal usually contains more dense blocks corresponding to close interactions
(see Figure 6.8 for example). Then, we cannot just decompose the data in a regular grid because
it would imply that some processes would only have compressed extra-diagonal blocks, which
could lead to load-balancing issues.

Since we want to apply a DDM preconditioner, it is relevant to use a row-wise partition.
After a matrix-vector product, the resulting vector is local and so are the DDM preconditioners.
This means that if we define the subdomain partitioning in accordance with the cluster tree
partitioning, we only need to exchange the values in the overlap between MPI processes to be
able to apply the preconditioner. That is why we define the domain decomposition as a level of
the cluster tree, and then we add overlap.

The issue with a row-wise decomposition is that when increasing the number of processes, we
need to traverse the target cluster tree, which may break larger blocks that could be compressed.
To be able to scale with more processes but without going too deep in the block tree, we use
OpenMP threads to parallelize loops over blocks (when building them and for the matrix-vector
product). But as we have said, each row has dense diagonal blocks, compressed extra-diagonal
blocks, and their size are usually different. This means that the distribution of the tasks to
each thread needs to be done dynamically, which is done by using guided scheduling. Guided
scheduling is appropriate when the iterations in the loop are poorly balanced between each
other, which is the case for hierarchical matrices stemming from BEM matrices, see Figure 6.8
for example.

The parallelization pattern is summarized in Figure 6.9. In Figure 6.10, we give the mean
assembly time for the matrix associated with the test case introduced in Section 6.1.4 with
1 000 000 points in each disk and a distance equal to 0.05. More precisely, we do a strong scaling
increasing the number of MPI processes for a fixed number of OpenMP threads. The total
number of cores (MPI process and OpenMP threads) goes from 32 to 2048 for each curve. We
take η = 100 and ε = 10−5 so that we always obtain a compression of the order of 99%.

When increasing the number of MPI processes, we see in Figure 6.10 that it always scales
well for a smaller number of MPI processes, but we need more OpenMP threads to scale longer,
as expected. Adding more OpenMP threads allows not breaking larger compressed blocks and
it balances the parallelization pattern.

6.3.6 DDM preconditioners
The iterative solvers and DDM preconditioners are provided through the class ddm that takes
an IMatrix, a HMatrix and the information related to the domain decomposition.

Let us denote p the chosen level of parallelization. To build the one-level part of the precon-
ditioner (second term in the right-hand side of Equation (5.5)), in the MPI process numbered m,
we need to assemble the diagonal block corresponding to the interaction between J (p)

m and itself.
We densify the relevant compressed blocks and put all the blocks associated with this diagonal
block in a dense matrix. Then, we need to generate the coefficients stemming from the degrees
of freedom in the overlap using IMatrix. Once we have the diagonal block corresponding to
the subdomain associated with the MPI process, we apply a LU factorization using Lapack [6]
to the diagonal block for assembling the one-level preconditioner.
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Figure 6.9 – Description of the parallelization pattern.
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Figure 6.10 – Strong scaling for the assembly of the matrix associated with the kernel 1/|x− y|,
the geometry given in Figure 6.1 and 1 000 000 points.
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Remark 6.10 (Generating diagonal blocks). Instead of densifying the diagonal blocks and re-
generating the coefficients from the overlap, one could build a hierarchical matrix associated
with the subdomain with overlap. Then, a H-LU factorization could be used for the one-level
preconditioner for example.

To assemble the coarse component (first term in the right-hand side of Equation (5.5)), ddm
has a method called build_coarse_space that takes the relevant arguments depending on
the type of coarse space (see Section 5.3.4). For GenEO Stiffness and GenEO Slobodeckij for
example, it just takes a matrix corresponding to Bm in Equation (5.8), so respectively the stiffness
matrix Km and the Sobolev-Slobodeckij matrix Hm. For GenEO Single layer, this function is
overloaded so that it can take a IMatrix and the 3D points of the geometry to assemble a local
hierarchical matrix corresponding to Vm that we densify like the diagonal block of A. For this
coarse space, the function also takes as input the local mass matrix whose inverse is needed in
the definition of GenEO single layer Equation (5.17).

In every case, the function calls Lapack to solve the generalized eigenvalue problem given
in Equation (5.8). The number of eigenvectors chosen for the coarse space depends on a user-
defined number, or a user-defined threshold on the eigenvalues (we refer to Section 5.3.3 for a
presentation of the GenEO coarse space). Each processor stores these eigenvectors as columns
of a local dense matrix Zm ∈ CNm×Nloc,m where Nm is the number of degrees of freedom in the
mth subdomain with overlap and Nloc,m is the local number of eigenvectors chosen to assemble
the coarse space. The interpolation matrix from the finite element space to the coarse space
R0 = ZT is defined as the transpose of the concatenation of (RT

mDmZm)nm=1 ∈ (CN×Nloc)nm=1.

In practice, we define the partition of unity (Dm)nm=1 such that Dm is a diagonal matrix whose
diagonal coefficients are equal to 1 if they correspond to a degree of freedom in the subdomain
without overlap, or 0 otherwise. In this case, we denote D̃mZm the block DmZm stripped of
its zero-blocks due to this particular definition of the partition of unity. Then, an example of
matrix Z is given by the top right matrix in Figure 6.11. The assembling procedure to build
the coarse component E = ZT AZ is described in Figures 6.11 and 6.12. The first figure shows
the operations where the block in Z associated with the first subdomain is involved, while the
second figure is similar but for the block in Z associated with the second subdomain. All the
blocks involved in the computation are in brighter colors.

In practice, E is built by looping over the mth subdomains to execute the following operations.
For subdomain m, process m broadcast D̃mZm to every other MPI process so that they all can
do the product Aj,mD̃mZm for 1 ≤ j ≤ n, see Figures 6.11a and 6.12a. Then, each MPI process

can locally build Ej,m = D̃jZj

T

Aj,mD̃mZm as illustrated in Figures 6.11b and 6.12b. Remark
that we never store completely AZ ∈ CN×N0 where N0 =

∑n
m=1Nloc,m is the total number

of chosen eigenvectors to span the coarse space. We only compute a block in each row that is
directly used to compute a block in E ∈ CN0×N0 .

Finally, all the elements of the preconditioner, i.e. the diagonal block associated with the
subdomain with overlap, the local contributions to the coarse space DmZm and E are passed
to HPDDM where they are used when applying the DDM preconditioner in iterative solvers.
It can actually apply several types of Schwartz methods (additive or restricted) using several
coarse correction (Additive as in Equation (5.5), Deflated as in Equation (5.19) or Balanced as
in Equation (5.18)).
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(b) Computation of the blocks of E

Figure 6.11 – Building the first block column of the coarse component.
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Figure 6.12 – Building the second block column of the coarse component.
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6.4 Perspectives
Htool proved to be efficient enough for our test cases (see Sections 5.4 and 5.5) and quite easy to
use (see an example in Appendix C). We mention here some software development perspectives
for Htool. Besides all the technical enhancements we could do (better testing, refactoring some
parts of the code, adding code coverage, …), we want to point out some more mathematical
perspectives for Htool. As noted in Section 5.5, we could add the possibility to deal with vector
valued problems such as linear elasticity or electromagnetics. This means that we should be
able to associate one geometric point to several degrees of freedom and the ACA approximation
should be modified as in [133, 80]. We would like also to study different approaches to apply a
“Dirichlet boundary” type condition on hierarchical matrices using similar techniques to pseudo-
elimination and exact penalization. This would be particularly useful when dealing with the
hypersingular operator whose energy space is H̃1/2. Because, in the case of screen problems for
the hypersingular operator, there is no degree of freedom on the boundary of the screen.

Finally, we point out improvements that can be made on two parts of the library.

6.4.1 Clustering and block-tree
One point where we could improve Htool would be to change how we handle clustering to offer
the same modularity as for low-rank approximations. It would allow adding other clustering
techniques using bounding boxes as described in [74, Section 5.4].

We focused on H-matrix-vector and H-matrix-matrix products because we are interested in
solving linear systems with iterative solvers, but it could be interesting to develop the algebra
of hierarchical matrices. In particular, we could add the possibility to sum or multiply two
hierarchical matrices in Htool, but also to factorize a hierarchical matrix using H-LU or H-QR
as described in [12, Sections 2.5, 2.9 and 2.10]. Then, the H-LU factorization could be used when
building the diagonal blocks associated with the one-level DDM preconditioner, see Remark 6.10.

6.4.2 Low-rank approximation
We can take advantage of the modularity of the class LowRankMatrix to offer other low-rank
approximations. In particular, it has been shown in [68] that ACA can have bad performances
in certain situations and the author introduced a variant called ACA+ that relies on a different
heuristic in the choice of the pivots.

Other approaches have also been introduced using pseudo-skeleton approximations (see Sec-
tion 6.1.3.1), which is also called CUR decomposition. For example, CUR-GS introduced in [9]
provide such an approximation in linear-time and relies on a Geometric Sampling to choose the
pivots.

There exists also randomized algorithms to provide a low-rank approximation of a given
matrix, see [120] for a review on these methods. Htool would be a good framework to compare
all these low-rank approximation on a same problem.

Finally, recompression techniques introduced in [68] could be implemented to improve the
efficiency of the approximation and lower the storage cost.
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APPENDIX A

Computation of the Sobolev-Slobodeckij mass matrix

Outline of the current chapter

A.1 Looping over the elements 166
A.2 Looping over the degrees of freedom 166
A.3 Conclusion 167

We detail here two methods to compute the Sobolev-Slobodeckij matrix Hp introduced in Equa-
tion (5.14). In any case, we need to compute a global integral as we said in Remark 5.26. This
implies that the assembly of the finite element matrix will be quite different to usual BEM and
FEM matrices. To simplify, we will focus on building the global matrix H defined by

(H)i,j :=

∫
Γ

ϕiϕj dσ(x)dσ(y)+∫
Γ×Γ

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))
|x − y|d+1

dσ(x)dσ(y),

with 1 ≤ i, j ≤ N and using P1 Lagrange functions. Let us denote Ei ∈ RN such that

(Ei)j =

{
1 if i=j
0 otherwise

and (Mi,j) =

∫
Γ

ϕi(x)ϕj(x)dσ(x).
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A.1 Looping over the elements

To compute efficiently H, we can loop over the elements and compute local stiffness matrices, as
usually done in FEM and BEM.

H =M +

N∑
i=1

N∑
j=1

EiET
j

∫
Γ×Γ

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))
|x − y|d+1

dσ(x)dσ(y)

=M +

N∑
i=1

N∑
j=1

EiET
j

∑
T∈Th

∑
T ′∈Th

∫
T×T ′

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))
|x − y|d+1

dσ(x)dσ(y)

=M +
∑
T∈Th

∑
T ′∈Th

∫
T×T ′

N∑
i=1

N∑
j=1

EiET
j

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))
|x − y|d+1

dσ(x)dσ(y)︸ ︷︷ ︸
Kloc(T,T ′)

where Kloc(T, T
′) is the elementary contribution to H associated with the interaction between

T and T ′, it is also called local stiffness matrix.
One can see that

(Kloc(T, T
′))i,j 6= 0 ⇐⇒ supp(ϕi) ∩ (T ∪ T ′) and supp(ϕj) ∩ (T ∪ T ′),

so that, taking P1 functions and a triangular mesh, Kloc(T, T
′) can be reduced to a (2d − k) ×

(2d − k) matrix with k the number of common nodes. Indeed, suppose that T ∩ T ′ = ∅ and ϕi

is associated with a node of T , then (Kloc(T, T
′))i,j is non-zero as soon as ϕj is associated with

a node if T ′, similarly to BEM. But also if ϕj is associated with a node of T . In particular, if
i = j, you see that (Kloc(T, T

′))i,i is a part of the global integral

(H)i,i = Mi,i + EiET
i

∫
Γ×Γ

(ϕi(x)− ϕi(y))2

|x − y|d+1
dσ(x)dσ(y).

In other words, the computation of the global integrals is distributed in all the computations of
the local stiffness matrices, so that the complexity of building H is O(N2

el) at worst, with Nel
the number of elements in the mesh Th. In our applications, we are computing Hp so that the
complexity is related to the number of elements of the subdomain, that is why this approach is
still acceptable in terms of computation time.

This method can be actually quite inconvenient when using compression. For example, in
the case of hierarchical matrices, we need to be able to compute extra diagonal blocks that are
compressed. But if in practice we compute this local stiffness matrices, then we will generate
part of the diagonal at the same time.

A.2 Looping over the degrees of freedom

Another approach consists in looping over the degrees of freedom so that, for every 1 ≤ i, j ≤ N ,
we compute

(H)i,j = Mi,j + EiET
j

∫
Γ×Γ

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))
|x − y|d+1

dσ(x)dσ(y),
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and notice that it involves a global integral as soon as supp(ϕi) ∩ supp(ϕj) 6= 0. Thus, the
computation of such a coefficient costs O(Nel) so that the overall computation will be roughly at
worse O(N(mmaxNel + N −mmin)), where mmax and mmin are respectively the maximum and
the minimum number of degrees of freedom whose support intersect.

In this case, there is no issue with compression compared to looping over elements. But the
complexity can be greater when mmax is large, which might occur especially in 3D.

A.3 Conclusion
Assembling H is far from trivial and quite different from usual BEM and FEM. We showed two
different methods that can be useful in different cases. The first one is more adapted to dense
matrices, while the second one is useful with compression. Ideally, one would like to use both,
the first one for far interactions and the second one for close interactions. In practice, it also
depends on how easy it can be to access the associated vertices of one element and vice versa.

Note that computing H is particularly useful when approximating the fractional Laplacian
and apart from the point we made here, it is quite similar to BEM, see [16, Section 3.3] and [1,
Section 4.1 and Appendix 1].
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APPENDIX B

Discussion on the analysis of GenEO Single layer coarse space

Outline of the current chapter
B.1 Analysis 169
B.2 Issue with the operator of extension by zero 172
B.3 Concluding remarks 173

In this appendix, we want to show why we were not able to fully analysis the GenEO single layer
coarse space introduced in Section 5.3.4 using a local weakly singular operator defined as

〈Vp up, vp〉H1/2(Γp)×H̃−1/2(Γp)
:= 〈V EΓp

(up),EΓp
(vp)〉H1/2(Γ)×H̃−1/2(Γ)

for every up, vp ∈ H̃−1/2(Γp). This local operator was used to define an equivalent H1/2-norm
following the GenEO Slobodeckij coarse space. The issue will also prevent us to fully analyse a
coarse space for the weakly singular operator.

B.1 Analysis
Following Section 5.3.4, it remains to prove an inequality like Equation (5.6) that we recall here

Cloc

n∑
p=1

(BpRpuh,Rpuh) 6 aW(Phuh, Phuh),

where Bp is related to Vp. We proved in Lemma 5.23 the following inequality

C−
W
k1

n∑
p=1

‖u|Γp‖2H1/2(Γp)
6 aW(u, u).
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Suppose we have the following equivalence

C−
ext,p‖u‖2H̃−1/2(Γp)

≤ ‖EΓp
(u)‖2

H̃−1/2(∂Ω)
≤ C+

ext,p‖u‖2H̃−1/2(Γp)
.

Then, we have the following lemma

Lemma B.1. Let uh ∈ RN , then we have

C−
WC

−
V

k1C
−
ext,p

n∑
p=1

〈V−1
p (uh|Γp

), uh|Γp
〉 ≤ a(uh, uh).

Proof. Let us denote ψp = V−1
p uh|Γp

∈ H̃−1/2(Γp). Then, we have

‖ψp‖2H̃−1/2(Γp)
≤ Cp‖EΓp(ψp)‖2H̃−1/2(Γ)

.

And since the weakly singular operator is continuous and positive definite, we have

C−
V ‖ψp‖2H̃−1/2(Γp)

≤ C−
ext,pC

−
V ‖EΓp

(ψp)‖2H̃−1/2(Γ)

≤ C−
ext,paV(EΓp

(ψp),EΓp
(ψp))

≤ C−
ext,p〈Vp ψp, ψp〉H1/2(Γp)×H̃−1/2(Γp)

≤ C−
ext,p‖Vp ψp‖H1/2(Γp)‖ψp‖H̃−1/2(Γp)

.

We deduce

〈V−1
p uh|Γp , uh|Γp〉H̃−1/2(Γp)×H1/2(Γp)

= 〈ψp,Vp ψp〉H̃−1/2(Γp)×H1/2(Γp)

≤ ‖ψp‖H̃−1/2(Γp)
‖Vpψp‖H1/2(Γp)

≤
C−

ext,p

C−
V

‖Vp ψp‖2H1/2(Γp)
=
C−

ext,p

C−
V

‖uh|Γp‖2H1/2(Γp)
.

Using the last relation for each term of the sum in Lemma 5.23, we obtain the expected result.

Notice that we need to be able to compute the left-hand side of the inequality obtained in
Lemma B.1, because we need to compute a matrix Bp. But we do not know analytically V−1

p

so that we cannot directly compute the left-hand term of the inequality from Lemma B.1. The
next lemma shows that we can approximate the Galerkin approximation of the inverse of Vp by
the inverse of the approximation of Vp. A similar difficulty arises with operator preconditioning
(see [124, 146]). To overcome this, we prove a lemma similar to [124, Theorem 3.1.] and [146,
Theorem 3.1.]:

Lemma B.2. Let uh ∈ RN and uh = Phuh, we have

(C̃pRpuh,Rpuh) ≤ (CpRpuh,Rpuh) = 〈V−1
p (uh|Γp

), uh|Γp
〉H̃−1/2(Γp)×H1/2(Γp)
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where

Cp(i, j) := 〈V−1
p (ϕσp(j)|Γp

), ϕσp(i)|Γp
〉H̃−1/2(Γp)×H1/2(Γp)

,

Vp(i, j) := 〈Vp(ϕσp(j)|Γp
), ϕσp(i)|Γp

〉H1/2(Γp)×H̃−1/2(Γp)
,

Mp(i, j) := 〈ϕσp(j)|Γp
, ϕσp(i)|Γp

〉H̃−1/2(Γp)×H1/2(Γp)
,

C̃p := MpV−1
p Mp,

with ϕσp(i), ϕσp(j) ∈ Vh,p for all 1 ≤ i, j ≤ Np

Proof. Let us denote uh|Γp = ûph =
∑Np

j=1 u
p
h,jϕσp(i)|Γp with σp, the permutation from the local

to the global numbering, for 1 ≤ p ≤ n. Notice that ûph ∈ H1/2(Γp) and let tp = V−1
p ûph ∈

H̃−1/2(Γp) so that

(CpRpuh,Rpuh) = 〈V−1
p (ûph), û

p
h〉H̃−1/2(Γp)×H1/2(Γp)

= 〈tp,Vp(tp)〉H̃−1/2(Γp)×H1/2(Γp)
.

Then, we define tph =
∑Np

i=1 t
p
h,iϕσ(i)|Γp

∈ H1/2(Γp) ⊂ H̃−1/2(Γp) such that, for every vph =∑Np

i=1 v
p
h,iϕσp(i)|Γp

〈Vp(t
p
h), v

p
h〉H1/2(Γp)×H̃−1/2(Γp)

= 〈ûph, v
p
h〉H1/2(Γp)×H̃−1/2(Γp)

.

Remark that tp 6= tph and we want to actually characterize the difference. Denoting tph = (tph,i),
the previous relation can be written as follows

Vptph = MpRpuh.

Since Mp and Vp are symmetric, we have

(C̃pRpuh,Rpuh) = (MpV−1
p MpRpuh,Rpuh)

= (V−1
p MpRpuh,MpRpuh)

= (V−1
p MpRpuh,Vptph)

= (MpRpuh, tph)
= 〈ûph, t

p
h〉H1/2(Γp)×H̃−1/2(Γp)

.

Then, one can remark that

〈ûph, t
p
h〉H1/2(Γp)×H̃−1/2(Γp)

= 〈Vp(tp), t
p
h〉H1/2(Γp)×H̃−1/2(Γp)

= 〈Vp(t
p
h), t

p
h〉H1/2(Γp)×H̃−1/2(Γp)

,

so that, using the positivity and symmetry of Vp, we find that

0 ≤ 〈Vp(tp − tph), (tp − tph)〉H1/2(Γp)×H̃−1/2(Γp)

≤ 〈Vp(tp), tp〉H1/2(Γp)×H̃−1/2(Γp)
− 〈Vp(t

p
h), t

p
h〉H1/2(Γp)×H̃−1/2(Γp)

≤ (CpRpuh,Rpuh)− (C̃pRpuh,Rpuh).

Using the last two lemmas, we obtain a similar relation to Equation (5.6) with Cloc =
C−

V C−
W

k1C
−
ext,p
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and Bp = C̃p for every 1 ≤ p ≤ n. Then, we can obtain the following theorem

Theorem B.3. We have the following condition number estimate

κ(PASM,singAh) ≤ 2max
(
1, Nc

5

2

C+
W

C−
W

)(
2 +

(
1 + 5Nc

C+

C−

)
τk1C

−
ext,p

C−
VC

−
W

)
,

where PASM,sing is defined with the GenEO coarse space and the localization from Lemma B.1
where the local terms are approximated using Lemma B.2.

Proof. Using Theorem 3.9 and its notations, we have to satisfy its two hypothesis.

(i) The first hypothesis is obtained using Lemma 5.12 with cR = 2max(1, Nc
5C+

W
2C−

W
).

(ii) The second hypothesis is obtained using Lemma 5.17 with Bp = C̃p for every 1 ≤ p ≤ n

and Lemmas B.1 and B.2 so that c−1
T = 2 +

(
1 + 5Nc

C+
Wk1

C−
W

)
τk1C

−
ext,p

C−
V C−

W
.

Unfortunately, the previous theorem is not enough to get a rigorous bound on the condition
number of PASM,sing. Indeed, all the constants are global constant that should not depend on
the mesh size h or the number of subdomains n, except C−

ext,p that may depend on the size of
Γp, and indirectly on the number of subdomains in a strong scaling test for example.

B.2 Issue with the operator of extension by zero
In this section, we formulate some remarks on the constant C−

ext,p. We will drop the subscript p
and just consider the case of an extension by zero for a function u ∈ H̃−1/2(Γ), where Γ ( ∂Ω
and Ω ⊂ Rd. So that the equivalence relation we would like is

C−
ext‖u‖H̃−1/2(Γ) ≤ ‖EΓ(u)‖H̃−1/2(∂Ω) ≤ C+

ext‖u‖H̃−1/2(Γ), (B.1)

where C−ext and C+ext are positive constants. And we need to understand to some extent how
these constants depend on Γ. The next lemma relates the proof of the equivalence relation given in
Equation (B.1) to the construction of a continuous extension operator EΓ : H1/2(Γ) → H1/2(∂Ω),
i.e., EΓ(v)|Γ = v for every v ∈ H1/2(Γ).

Lemma B.4. Let Γ ( ∂Ω with Ω ⊂ Rd and suppose that there exists a continuous extension
operator EΓ : H1/2(Γ) → H1/2(∂Ω). Then we have

1

CEΓ

‖u‖H̃−1/2(Γ) ≤ ‖EΓ(u)‖H̃−1/2(∂Ω) ≤ ‖u‖H̃−1/2(Γ),

where CEΓ
the operator norm of EΓ.

Proof. Let u ∈ H̃−1/2(Γ). By definition of H1/2(Γ), there exists v = V |Γ such that V ∈ H1/2(∂Ω)

so that we can rewrite the definition of the H̃−1/2 norm as

‖u‖H̃−1/2(Γ) = sup
V ∈H1/2(∂Ω)

〈u, V |Γ〉H̃−1/2(Γ)×H1/2(Γ)

‖V |Γ‖H1/2(Γ)

= sup
V ∈H1/2(∂Ω)

〈EΓ(u), V 〉H̃−1/2(∂Ω)×H1/2(∂Ω)

‖V |Γ‖H1/2(Γ)

.
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Then, we have ‖V |Γ‖H1/2(Γ) ≤ ‖V ‖H1/2(∂Ω) using the expression of the norm, so that

‖u‖H̃−1/2(Γ) ≥ sup
V ∈H1/2(∂Ω)

〈EΓ(u), V 〉H̃−1/2(∂Ω)×H1/2(∂Ω)

‖V ‖H1/2(∂Ω)

= ‖EΓ(u)‖H̃−1/2(∂Ω).

To show the other inequality, remark that we have

‖EΓ(u)‖H̃−1/2(∂Ω) = sup
V ∈H1/2(∂Ω)

〈EΓ(u), V 〉H̃−1/2(∂Ω)×H1/2(∂Ω)

‖V ‖H1/2(∂Ω)

≥ sup
v∈H1/2(Γ)

〈EΓ(u), EΓ(v)〉H̃−1/2(∂Ω)×H1/2(∂Ω)

‖EΓ(v)‖H1/2(∂Ω)

.

Then, since EΓ is continuous, we have ‖EΓ(v)‖H1/2(∂Ω) ≤ CEΓ
‖v‖H1/2(Γ) for every v ∈ H1/2(Γ)

and we can use the following relation

〈EΓ(u), EΓ(v)〉H̃−1/2(∂Ω)×H1/2(∂Ω) = 〈u, EΓ(v)|Γ〉H̃−1/2(Γ)×H1/2(Γ) = 〈u, v〉H̃−1/2(Γ)×H1/2(Γ)

to obtain

‖EΓ(u)‖H̃−1/2(∂Ω) ≥ sup
v∈H1/2(Γ)

〈EΓ(u), EΓ(v)〉H̃−1/2(∂Ω)×H1/2(∂Ω)

‖EΓ(v)‖H1/2(∂Ω)

≥ sup
v∈H1/2(Γ)

〈u, v〉H̃−1/2(Γ)×H1/2(Γ)

‖EΓ(v)‖H1/2(∂Ω)

≥ 1

CEΓ

sup
v∈H1/2(Γ)

〈u, v〉H̃−1/2(Γ)×H1/2(Γ)

‖v‖H1/2(Γ)

=
1

CEΓ

‖u‖H̃−1/2(Γ).

This lemma is also valid if we define the H1/2-norm by interpolation (see [123, 21, 14]
for its definition) since the only part that depends explicitly on the norm is the inequality
‖V |Γ‖H1/2(Γ) ≤ ‖V ‖H1/2(∂Ω). And that can be proved easily by interpolation. And similarly, if
we define the H1/2(Γ)-norm as

inf
U∈H1/2(∂Ω)

{
‖U‖H1/2(∂Ω) |U |Γ = v

}
,

for v ∈ H1/2(Γ), then we have the same type of relation. In any case, we have C+
ext = 1 and

C−
ext = 1/CEΓ

where EΓ is a continuous operator. Such continuous extension operator have been
introduced (see [136, 144] for example), but we did not find any explicit dependence on Γ, and
we were not able to prove that CEΓ is independent of the size of Γ.

B.3 Concluding remarks
We proved that the equivalence relation given in Equation (B.1) is related to the existence of a
continuous operator, and that the constant in the equivalence relation depends on the continuity
constant of this operator. Unfortunately, we have not found any proof that CEΓ

is independent
of the size of Γ, and we were not able to prove it ourself. But notice that an equality between
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‖u‖H̃−1/2(Γ) and ‖EΓ(u)‖H̃−1/2(∂Ω) is sometime used without rigorous proof. The same remark
could be done between the H̃1/2-norms when they are defined by interpolation.

This issue is also what prevents us to fully analysis a DDM preconditioner for the weakly
singular operator.
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Example of code using Htool

We show a small practical example of code in Listing C.1. The lines between 5 and 41 correspond
to the definition of the interface IMatrix. We define a simple operator that takes two arrays
of 3D points p1 and p2, and returns 1/ (p1[j]-p2[k]) for the interaction between p1[j] and
p2[k]. It has also some auxiliary functions used afterward for comparing dense and hierarchical
matrices. Then, the lines between 60 and 82 correspond to the generation of two randomized set
of points corresponding to the geometry Figure 6.1. The actual part of the code where we build
a hierarchical matrix and do a H-matrix-vector product is located between the lines 84 and 88.

This example is part of the library in the example folder1.

Remark C.1. Htool defines some usual operations on the class vector from the C++ STL.

Listing C.1 – Small example of code using Htool
1 #include <htool/htool.hpp>
2
3 using namespace std;
4 using namespace htool;
5
6 class MyMatrix: public IMatrix<double >{
7 const vector<R3>& p1;
8 const vector<R3>& p2;
9

10 public:
11 // Constructor
12 MyMatrix(const vector<R3>& p10,const vector<R3>& p20 ):
13 IMatrix(p10.size(),p20.size()),p1(p10),p2(p20) {}
14
15 // Virtual function to overload
16 double get_coef(const int& k, const int& j)const {

1https://github.com/PierreMarchand20/htool/tree/master/examples
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17 return 1./(norm2(p1[j]-p2[k]));
18 }
19
20 // Matrix vector product
21 std::vector<double> operator*(std::vector<double> a){
22 std::vector<double> result(p1.size(),0);
23 for (int j=0;j<p1.size();j++){
24 for (int k=0;k<p2.size();k++){
25 result[j]+=this->get_coef(j,k)*a[k];
26 }
27 }
28 return result;
29 }
30
31 // Frobenius norm
32 double norm(){
33 double norm = 0;
34 for (int j=0;j<p1.size();j++){
35 for (int k=0;k<p2.size();k++){
36 norm+=this->get_coef(j,k);
37 }
38 }
39 return norm;
40 }
41 };
42
43
44 int main(int argc, char *argv[]) {
45
46 // Initialize the MPI environment
47 MPI_Init(&argc,&argv);
48
49 // Htool parameters
50 SetEpsilon(0.001);
51 SetEta(100);
52
53 // Data
54 srand (1);
55 int nr = 10000;
56 int nc = 5000;
57 vector<int> Ir(nr); // row indices for the hmatrix
58 vector<int> Ic(nc); // column indices for the hmatrix
59
60 // p1: points in a unit disk of the plane z=z1
61 double z1 = 1;
62 vector<R3> p1(nr);
63 for(int j=0; j<nr; j++){
64 Ir[j] = j;
65 double rho = ((double) rand() / (double)(RAND_MAX));
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66 double theta = ((double) rand() / (double)(RAND_MAX));
67 p1[j][0] = sqrt(rho)*cos(2*M_PI*theta);
68 p1[j][1] = sqrt(rho)*sin(2*M_PI*theta);
69 p1[j][2] = z1;
70 }
71
72 // p2: points in a unit disk of the plane z=z2
73 double z2 = 2;
74 vector<R3> p2(nc);
75 for(int j=0; j<nc; j++){
76 Ic[j] = j;
77 double rho = ((double) rand() / (RAND_MAX));
78 double theta = ((double) rand() / (RAND_MAX));
79 p2[j][0] = sqrt(rho)*cos(2*M_PI*theta);
80 p2[j][1] = sqrt(rho)*sin(2*M_PI*theta);
81 p2[j][2] = z2;
82 }
83
84 // Hmatrix
85 MyMatrix A(p1,p2);
86 std::vector<double> x(nc,1),result(nr,0);
87 HMatrix<fullACA,double> HA(A,p1,p2);
88 result = HA*x;
89
90 // Output
91 HA.print_infos();
92 std::cout<< Frobenius_absolute_error(HA,A)/A.norm()<<"\n";
93 std::cout<< norm2(A*x-result)/norm2(A*x)<<std::endl;
94
95 // Finalize the MPI environment.
96 MPI_Finalize();
97 }
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Schwarz methods and boundary integral equations
Abstract

The objective of this thesis is to use domain decomposition methods to develop new efficient methods
for high performance computing and boundary integral equations. One can think of two approaches
for domain decomposition. One can make a decomposition of the original domain where the solution is
sought, a volume decomposition, and then formulate a boundary integral equation in each subdomain
with some ways of coupling them. Or we could first set up a boundary integral equation and then
apply a domain decomposition of the boundary, a surface decomposition. In the first approach, we show
that the local variant of the multi-trace formulation, which is naturally well-adapted to parallelization,
has optimal properties of convergence in the case of constant coefficients in the whole domain for a
geometry without junction points. This property is similar to the convergence of the optimal Schwarz
method, and we actually prove an equivalence between these two methods. Numerical tests are provided
to illustrate the convergence property and show the potentialities and the limits of this approach when
coefficients are piecewise constants instead of constants in the whole domain. In the second approach,
we present how we use the framework of the fictitious space lemma and the approach of the GenEO
(Generalized Eigenproblems in the Overlap) coarse space to define several two-level preconditioners
for the hypersingular operator associated with any symmetric positive definite equation. Numerical
experiments are provided to show scalability in terms of iterations using the conjugate gradient method
and GMRes. To be able to use Schwarz preconditioners and the boundary element method, we also need
to adapt a compression method to a distributed-memory parallel framework. This led us to implement
Htool, a C++ library for hierarchical matrices parallelized using MPI and OpenMP.

Keywords: numerical analysis, domain decomposition methods, Schwarz methods, boundary integral
equations, boundary element method, two-level preconditioners, hierachical matrices

Méthodes de Schwarz et équations intégrales de frontière
Résumé

L’objectif de cette thèse est d’utiliser des méthodes de décomposition de domaine pour mettre au point de
nouvelles méthodes pour le calcul haute performance et les équations intégrales de frontière. Dans le cas
des équations intégrales de frontière, on peut penser à deux approches de décomposition de domaine. Nous
pouvons faire une décomposition du domaine où la solution est recherchée, une décomposition volumique,
puis formuler une équation intégrale de frontière dans chaque sous-domaine en les couplant. Ou nous
pouvons d’abord établir une équation intégrale de frontière et ensuite appliquer une décomposition de
domaine à la frontière, une décomposition surfacique. Dans la première approche, nous montrons que
la variante locale de la formulation multi-trace, naturellement bien adaptée à la parallélisation, possède
des propriétés de convergence optimales dans le cas de coefficients constants dans tout le domaine pour
une géométrie sans points de jonction. Cette propriété est similaire à la convergence de la méthode
optimale de Schwarz, et nous prouvons en réalité une équivalence entre ces deux méthodes. Des tests
numériques sont fournis pour illustrer la propriété de convergence et montrer les potentialités et les
limites de cette approche lorsque les coefficients sont constants par morceaux au lieu de constants dans
l’ensemble du domaine. Dans la deuxième approche, nous présentons comment nous utilisons le cadre
du lemme de l’espace fictif et l’approche de l’espace grossier GenEO (Generalized Eigenproblems in the
Overlap) pour définir plusieurs préconditionneurs à deux niveaux pour l’opérateur hypersingulier associé
à toute équation symétrique et définie positive. Des expériences numériques sont fournies pour montrer
leur extensibilité en termes d’itérations avec la méthode du gradient conjugué et GMRes. Pour pouvoir
utiliser les préconditionneurs de Schwarz et la méthode des éléments finis de frontière, nous devons
également adapter une méthode de compression à un environnement parallèle à mémoire distribuée.
Cela nous a conduit à implémenter une bibliothèque C++ pour les matrices hiérarchiques parallélisée en
utilisant MPI et OpenMP.

Mots clés : analyse numérique, méthodes de décomposition de domaine, méthodes de Schwarz, équa-
tions intégrales de frontière, méthode des éléments finis de frontière, préconditionneurs à deux
niveaux, matrices hiérarchiques

Laboratoire Jacques-Louis Lions
4 place Jussieu – 75005 Paris – France
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