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Abstract

In my role as a research advisor, I strove to give to my students the opportunity to work on
promising and far fetching – whenever possible – research topics in the general framework of fifth
generation (5G) wireless. The works presented in this thesis reflect our studies in two areas of central
importance for bringing 5G to life: wireless security and resource allocation.

With respect to security, novel challenges emerged in 5G with the Internet of things (IoT) paradigm
and device to device (D2D) low latency communications. Novel verticals, such as haptics and vehicle
to everything (V2X), require low complexity and low latency security mechanisms, particularly in
the context of device authentication. In the present manuscript, lightweight solutions for device
authentication using physical unclonable functions (PUF) and secret key generation (SKG) at the
physical layer are presented.

Furthermore, as video content is responsible for more than 70% of the global IP traffic, it is
important for content delivery infrastructures to rapidly detect and respond to changes in content
popularity dynamics. In this thesis, we propose a flexible edge resource allocation approach leveraging
unikernel and container technologies. The allocation of the edge server resources is driven by a real-time
and low-complexity content popularity detector, implemented using off-line and on-line change point
analysis. Variations of these algorithms have applications in intrusion detection in wireless sensor
software defined networks, discussed next.

Finally, the potential use of non-orthogonal multiple access (NOMA) in the wireless uplink is
considered. Early results on the performance comparison of NOMA vs orthogonal allocation schemes
in asymptotic regimes, show that the gains in using NOMA carry on to the scenario of communications
under statistical delay quality of service (QoS) constrains.

Dans mon rôle de co-encadrent de thèse, je me suis efforcé de donner à mes étudiants l’occasion de
travailler sur des sujets de recherche prometteurs et fondamentaux dans le cadre général de communica-
tions sans fil de cinquième génération (5G). Les œuvres présentées dans cette thèse reflètent nos études
dans deux domaines d’importance centrale pour la réalisation de la 5G : la sécurité et l’allocation des
ressources.

En ce qui concerne la sécurité, de nouveaux défis sont apparus en 5G avec le paradigme de l’Internet
des objets (IoT) et les communications device to device (D2D) à faible latence. Les nouvelles verticales,
telles que l’haptique et les communications véhiculaires (V2X), nécessitent une faible complexité et
des mécanismes de sécurité à faible latence, en particulier dans le contexte de l’authentification. Dans
cette thèse, des solutions d’authentification de légère complexité en utilisant des fonctions physiques
inclonables (PUF) et des générations de clés secrètes (SKG) à la couche physique sont présentées.

En outre, comme le contenu vidéo est responsable de plus de 70% du trafic IP mondial, il est
important que les infrastructures de diffusion de contenu détectent et répondent rapidement aux
changements de la dynamique de popularité du contenu. Dans cette thèse, nous proposons une approche
flexible d’allocation des ressources qui tire parti des technologies unikernel et containers. L’allocation des
ressources est entrâınée par un détecteur de popularité de contenu en temps réel et à faible complexité,
mis en œuvre à l’aide des analyses hors ligne et en ligne des points de changement. Des variantes
de ces algorithmes ont des applications dans la détection d’intrusion dans les réseaux définis par les
logiciels de capteurs sans fil, qui sont discutés ensuite.

Enfin, l’utilisation potentielle d’un accès multiple non orthogonal (NOMA) dans le lien ascendant
sans fil est envisagée. Les premiers résultats de la comparaison des systèmes d’allocation NOMA
par rapport aux schémas orthogonaux dans les régimes asymptotiques, montrent que les gains dans
l’utilisation de NOMA se poursuivent dans le scénario des communications sous des contraintes
statistiques de délai de qualité de service (QoS).
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PHY Physical layer

PKE Public key encryption

PLS Physical layer security

PUF Physical unclonable function

QoS Quality of service

RAN Radio access network

RSS Received signal strength

SKG Secret key generation

SNR Signal-to-noise ratio

STEK Session ticket encryption key

TLS Transport layer security



URLLC Ultra reliable low latency communication

V2X Vehicle-to-everything communication
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Chapter 1

Activity Review

1.1 Motivation for Application for the HdR Diploma

With this thesis, I wish to submit my application for the Habilitation to Direct Research at CY -
Cergy Paris Université. Currently, I am a Mâıtre de Conférences at the Ecole Nationale Supérieure de
l’Electronique et de ses Applications (ENSEA) in Cergy and in parallel I have a Visiting Research
Fellow status at the Department of Electrical and Electronic Engineering of Princeton University in
the USA and at the School of Computer Science and Electronic Engineering of the University of Essex
in the UK.

Wireless 
Communications
5G, B5G

Security
Multi-factor authentication                           

Signal Processing
Stochastic SP

- PLS
- Secret key
generation

- PUFs

- Resource 
allocation

- NOMA
- - Low latency

Intrusion 
detection
MiM

- Proximity
estimation
- Jamming
- Injection 

attacks

Figure 1.1: Recent research areas and topics

My current research activities relate to various topics in wireless communications and physical
layer security with an emphasis on the proposal of low latency communication systems and the
development of new security protocols for future generations of wireless. I actively work on topics
in flexible numerology, non-orthogonal mutiple access (NOMA) and fast authentication protocols for
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delay constrained systems using physical unclonable functions (PUFs) and RF fingerprinting. In this
framework, with my current research team, that comprises four PhD students and two postdoctoral
researchers, we investigate resource allocation in beyond fifth generation (B5G) leveraging NOMA, the
efficient design of Slepian Wolf and Wyner Ziv reconciliation decoders at the short block-length, the
development of zero-round-trip-time (0-RTT) authentication protocols using resumption keys generated
from wireless fading coefficients, the analysis of the wireless channel secrecy capacity under statistical
delay quality of service (QoS) constraints and the development of quick anomaly detection algorithms
for software defined networks.

My research lies at the interface of wireless communications, signal processing and security studies,
as depicted in Fig. 1.1; at this – not so-frequented – scientific crossroad, new engineering problems
are encountered, a few of which will be discussed in later chapters of this thesis, along with proposed
solutions.

With respect to my contribution as an academic teacher and supervisor, I have a long experience in
teaching and supervising students in security, coding and wireless communications for more than 8 years
in the UK and France. I have had the chance to teach a variety of courses both at the undergraduate
and graduate level and contribute in teaching in the continuous education engineering track of ENSEA.
I have taught to a variety of class sizes and have customarily received very positive feedback from my
students, both in formal assessment and in face-to-face interaction. Furthermore, since last September
I am acting as the liaison of the international mobility for ENSEA students towards the UK and have
secured internships at Imperial College London, the University of York, etc.

In my academic employment I have had the opportunity to undertake a number of important
administrative responsibilities. I currently head the research team ICI (information, communications,
imaging) of the ETIS Lab that comprises 13 permanent faculty (3 PU, 8 MCF, 2 CNRS CR) and more
than 18 research students and teaching fellows. In this role my aim is to help maintain and enhance
the quality and quantity of the team’s collective research output, its ability to attract research funding
and good young researchers, increase further the team’s visibility in the national and international
level and ensure the team members work in a friendly and fertile learning environment. Furthermore,
during my employment at the School of Computer Science and Electronic Engineering in the UK, I
have acted in 2017 as the President of the Athena Swan Committee, steering 15 faculty and admin
staff for the preparation of the department’s gender equality and diversity charter.

With respect to my involvement in professional bodies, I am a member of the IEEE INGR Roadmap
Security Workgroup, of the IEEE P1940 Standardization Workgroup on ”Standard profiles for ISO
8583 authentication services” and have been a member of the IEEE Teaching Awards Committee for
the last three years.

I feel that my overall experience is of sufficient standing to allow me to lead independent research
and act as a stand-alone thesis advisor / director. A brief overview of my research and teaching
activities the last 8 years is provided in Sections 1.4 and 1.5 respectively. First, I introduce myself
to the reader through a detailed academic CV in Section 1.2. and an full list of my publications in
Section 1.3.

1.2 Curriculum Vitae and List of Publications

In the following pages my full academic Curriculum Vitae is provided, including a full record of my
publications in Section 1.3. The interested reader may also consult my web page and my google scholar
page.
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Dr. Arsenia Chorti  
Address: Room 341, ENSEA, 6 Avenue du Ponceau, Cergy, FR 
Telephone: +33 (0)769113367 
e-mail: arsenia.chorti@ensea.fr   achorti@princeton.edu 

 

1.2.1 Current Position / Responsibilities (in chronological order) 

Sep. 2017-present: ENSEA (ETIS UMR8051) Associate Professor (MCF) in Communications and 
Networking, Research Group: 4 PhD students, 2 postdocs 

Sep. 2017-Jul. 2020: Member of the IEEE Teaching Awards Committee  
Sep. 2019 – present: PEDR (prime d’encadrement doctoral et recherche) – premium for excellence in 

supervision and research 
Sep. 2019 – present: Member of the IEEE P1940 Standardization Workgroup on "Standard profiles 

for ISO 8583 authentication services" 
April 2020-present: Head of the Information, Communications and Imaging (ICI) Group of ETIS UMR 

8051 (Responsable d’équipe information, communications et imagerie), comprising 3 
Professors, 8 MCF, 2 CNRS Researchers, 2 Postdocs, 2 ATERs, 14 PhD students 

Apr. 2020: Award of CNRS delegation (half year travel sabbatical) to visit Prof. H.V. Poor (Princeton 
University, NJ USA), Prof. T. Rappaport (NYU, NYC USA) and Dr. A. Barolo (Barkhausen 
Institute, Dresden DE) in Spring / Summer 2021 

May 2020: Member of the IEEE International Network Generations Roadmap (INGR) Security 
Workgroup (pre-standardization workgroup for security in future networks) 

June 2020: Elevated to IEEE Senior Member 
 

1.2.2 Research Interests 

My current research spans the areas of wireless security and beyond fifth generation (B5G) networks. 
I work on the design of security schemes for B5G, with a particular focus on physical layer security; my 
recent contributions concern fast authentication protocols using physical unclonable functions (PUFs) 
and secret key generation (SKG) from shared randomness, with proximity / localization as an extra 
authentication factor. Furthermore, I work on low latency communications, leveraging recent results 
on non-orthogonal multiple access (NOMA), investigate polynomial complexity algorithms for flexible 
numerology and eMBB – URLLC coexistence and joint PHY-MAC resource allocation optimization using 
the theory of the effective capacity. Recent contributions (since 2017) include: 

o Wireless security for B5G and Internet of things (IoT) [J19], [J21], [C37], [C33], [S2] 
o Authentication protocols leveraging PUFs, SKG and proximity estimation [BC3], [U1] 
o Resource allocation in 5G using change point analysis [J17], [J20], [C32] 
o Anomaly detection in software defined networks [C39], [J18], [S1], [U2] 
o Active attacks in PHY [J15], [J16], [C36], [C28-C31] [BC2] 
o Low latency B5G communications, non-orthogonal multiple access (NOMA), NOMA-R, 

flexible numerology for B5G [J22], [U3-U5] 
 

1.2.3 Education 

2000-2005 Imperial College London: Department of Electrical and Electronic Engineering 
Ph.D. in Communications and Signal Processing 
Thesis Title: “The Impact of Circuit Nonlinearities and Noise in OFDM Receivers”, Supervisor: 
Mike Brookes, Scholarship awarded by Ι.Κ.Υ. and Panasonic UK ltd. 

1999-2000 Université Pierre et Marie Curie – Paris VI 
MSc (D.E.A.) in Electronics 
Dissertation Title: “F.P.G.A. Implementation of Multi-Layer Perceptron Neural Network for 
Real-Time Applications in High Energy Physics”, Supervisor: Prof. Patrick Garda, Ι.Κ.Υ. Scholar 
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1992-1998 University of Patras: Department of Electrical and Computer Science Engineering                      
M.Eng (Diploma) in Electrical Engineering 
Dissertation Title: “Development of User-Friendly Interface for the Testing of Nodal Cards of 
an Industrial Network”, Supervisor: Prof. K. Koumbias 
 

1.2.4 Academic Employment 

o September 2017 – present: ENSEA, Associate Professor in Communications and Networks 
o October 2013 – August 2017: University of Essex, School of Computer Science and Electrical 

Engineering, Lecturer in Communications and Networks and subsequently Visiting Research 
Fellow (ongoing) 

o November 2012 – October 2013: Foundation for Research and Technology Hellas (FORTH), 
Institute of Computer Science, International Outgoing Fellow (IOF) Marie Curie Research 
Fellow 

o May 2011 – present: Princeton University, Dep. of Electrical Engineering, IOF Marie Curie 
Fellow and subsequently Visiting Research Fellow 

o December 2008 – April 2011: Middlesex University UK, School of Engineering and Information 
Sciences, Dep. of Computer Communications, Senior Lecturer in Communications and 
Networks 

o October 2007 – September 2009: University College London (UCL), Dep. of Electronic and 
Electrical Engineering, Postdoctoral Research Fellow and subsequently Visiting Researcher 

o October 2006 – September 2007: Technical University of Crete (TUC), Department of Mineral 
Resources Engineering, Resources Detection and Identification Research Unit, Postdoctoral 
Research Fellow 

o October 2005 – September 2006: University of Southampton, School of Electronics and 
Computer Science, Electronic Systems Design Group (ECS), Postdoctoral Research Fellow 
 

1.2.5 Research Funding and Grants 

Project proposals currently under review: 
o Principal Investigator (PI) of ANR PRCE project HERCULES (enhancement measures in the 

security of beyond fifth generation networks) 2nd round AAPG 2020, with the SME 
Montimage, K. Salamatian (LISTIC), I. Andriyanova (ETIS), A. Histace (ETIS) and F. Ghaffari 
(ETIS) 

o External collaborator of project LEON (Intelligent Network Softwarization for the Internet of 
Things), ELIDEK, GR, with Dr. L. Mamatas 

o   PI project PROCOPE PHC (travel grant) to visit the Barkhausen Institute, DE in 2021-2022 
Ongoing projects: 

o Co-investigator (co-I) project PHEBE (Physical layer security for beyond fifth generation 
communications) with L. Wang (PI), L. Luzzi, M. Chafii, M. Le Treust, Paris-Seine Excellence 
Initiative, 2020-2024, 400,000€ 

o PI project SAFEST with F. Jardel (NOKIA Bell Labs) (Physical layer security for future 
generations wireless systems), DIM RFSI, 2019-2020, 27,500€ 

o PI project eNiGMA (Non-orthogonal multiple access techniques under security and delay 
constraints), with I. Fijalkow, Paris-Seine Excellence Initiative, 2019-2021, 110,000€ 

o Co-I project ELIOT (Enabling technologies for IoT), ANR PRCI with Univ. Sao Paolo, Brazil, 
with V. Belmega (PI), I. Andriyanova, I. Fijalkow, J. Lorandel, Role:  Leader of WP on IoT 
security, 2019-2023, ETIS: 390,420€ (total of 740 k€) 

Past projects: 
o PI SRV-ENSEA de l’Institut des Etudes Avancées Université Paris Seine, 2018-2019: 3,000€ 
o PI SRV-ENSEA Institut des Etudes Avancées Université Paris Seine: 2017-2018 : 2,850€ 
o PI project PHOTINO, University of Essex, Research and Innovation Fund: 2014-2015: £13,000 
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o Co-I FP7 PEOPLE Marie Curie IOF, project APLOE with H.V. Poor (Princeton University), 
245,448€, 2010-2013 

o PG Scholarship from the State Scholarships Foundation of Greece–I.K.Y. 2000-2004: £41,820  
 

1.2.6 Teaching and Related Responsibilities at ENSEA (since 2017) 

o 2019-present: Responsible of student international mobility to the UK, 2nd year MEng, 3rd 
year MEng, Erasmus programme with the UK 

o 2019-present Instructor in the MSc (M2R) module “Cryptography and Network Security”, 
University Cergy Pontoise, Master 2 Informatique et Ingénierie des Systèmes Complexes 
(IISC), specilization SIC (Signal, Information, Communications),  

o 2018-present: Responsible of the module “Network security” 3rd year MEng, ENSEA  
o 2018-present: Responsible of module “Interconnexion réseaux” 3rd year Cycle par 

Alternance, ENSEA  
o 2017-present: Responsible of the Option Internet of Things “Option IoT”, 2nd year MEng, 

ENSEA 
o 2017-present: Instructor “IoT Security”, 2nd year MEng, ENSEA 
o 2017-present: Responsible of the module “Internetworking”, 3rd year MEng, ENSEA 
o 2017-present: Instructor “Wireless Communications”, 3rd year MEng, ENSEA 
o 2017-present: Lab instructor in various courses, including Digital Communications, 

Internetworking, Signals and Systems, etc. 
 

1.2.7 Research Supervision 

Current supervision  
o PhD Student Mr. Miroslav Mitev: supervision @60%, 25/4/2017-9/2020, "Physical layer 

security for the Internet of things", co-supervised with Dr. M. Reed, University of Essex, UK, 
Thesis VIVA (defence) scheduled for September 2020, publications: [J21], [C37], [C36], [C33], 
[P1], [U1] 

o PhD student Mr. Sotiris Skaperas: supervision @40%, 1/9/2017-9/2020, "Data analysis and 
forecasting models for flexible resource management in 5th generation networks", co-
supervised with Dr. L. Mamatas, University of Macedonia in Thessaloniki, GR, Thesis defence 
scheduled for September 2020, publications: [J20], [J17], [C32], [U5] 

o PhD student Mr. Gustavo Alonso Nunez Segura: supervision @35%, 1/2/2019-projected to 
finish in 1/2022 (4-year thesis programme in Brazil), "Cooperative Intrusion Detection System 
for Software Defined Wireless Sensor Networks", co-supervised with Prof. Cintia Borges Margi, 
University of Sao Paolo, Brazil, publications: [J18], [C39], [C35], [S1], [U2] 

o PhD student Mr. Mouktar Bello: supervision @70%, 1/11/2020-projected to finish in 
10/2023, "Meeting delay and security constraints in 6G wireless networks", co-supervised with 
Prof. I. Fijalkow, ETIS/ENSEA, FR, publications: [C38], [U3, U4] 

o Postdoc Dr. Mahdi Shakiba Herfeh: supervision @100%, 21/11/2019-20/5/2021 (fixed term 
1.5 years), “Physical layer security for IoT applications”, project ELIOT ANR PRCI, ETIS/ENSEA 
FR, publications: [BC3], [U1] 

o Postdoc Dr. Nasim Ferdosian: supervision @90%, 1/1/2020-31/12/2021 (fixed term 2 years), 
“Non-orthogonal multiple access techniques under security and delay constraints”, with Prof. 
I. Fijalkow, ETIS/ENSEA, FR, publications: [U5] 

Past supervision  
o MSD (Master by Thesis – full year research project) student Cornelius Saiki: supervision 

@84%, 1/9/2014-31/8/2015, “A Novel Physical Layer Key Generation and Authenticated 
Encryption Protocol Exploiting Shared Randomness”, co-supervised with Prof. S. Walker, 
University of Essex, publications: [C27] 



20 
 

o MSc (M2R) SIC student Gada Rezgui: supervision @50%, 1/3/2017-31-8-2017, “Energy 
Harvesting as a Means to Mitigate Jamming Attacks; a Game Theoretic Analysis”, co-
supervised with V. Belmega, ETIS/University of Cergy Pontoise, publications: [J16] 

o MSc (M2R) SIC student Rihem Nasfi: supervision @100%, 1/11/2018-15/3/2019, Projet 
d’Initiation à la Recherche (PIR), “Non-orthogonal multiple access networks under QoS delay 
constraints”, publications : [C34] 

o MSc (M2R) SIC student Gada Rezgui, supervision @50%, 1/11/2016-15/3/2017, Projet 
d’Initiation à la Recherche (PIR), “Secret Key Generation systems under Jamming Attacks via 
Game Theoretic Tools” 

o MSc (M2R) IMD student Amani Gran, supervision @100%, 1/11/2018-15/3/2019, Projet 
d’Initiation à la Recherche (PIR), “IoT lightweight security” 

o MSc (M2R) SIC student Fatiha Ait Larbi, supervision @100%, 1/11/2018-15/3/2019, Projet 
d’Initiation à la Recherche (PIR), “Cross-layer security protocol design” 

o MSc (M2R) SIC student Mouad Nahri, supervision @100%, 1/11/2019-15/3/2020, Projet 
d’Initiation à la Recherche (PIR), “Flexible numerology for B5G” 

o Other MSc/BSc supervision: 5 MSc and 9 BSc dissertations at the University of Essex and more 
than 10 MSc and BSc dissertations at Middlesex University 
 

1.2.8 Recruitment (Selection) Committees / Thesis Examiner  

o May 2020: Recruitment Committee (Comité de sélection) for a MCF post at CY Cergy 
University on Networks and Security 

o Sep. 2019: Recruitment Committee (Comité de sélection) for a MCF post at EISTI on 
Cybersecurity 

o Jun. 2020: Thesis Examiner (rapporteur), A. Ben Hadj Fredj, Télécom ParisTech, supervisors 
Prof. G. Rekaya and Prof. J-C Belfiore, “Computations for Multiple Access Channels in 
Wireless Networks” 

o Jan. 2019: Thesis Reviewer, L. Senigagliesi, Univ. Polytechnica delle Marche, supervisors Prof. 
L. Spalazzi and Prof. M. Baldi, “Information-theoretic security techniques for data 
communications and storage” 

o Aug. 2014: Thesis Examiner, I. K. Musa, CSEE University of Essex UK, supervisor Prof. S. 
Walker, “Optimized Self-Service Resource Containers for Next Generation Cloud Delivery” 

 

1.2.9 Workshop Organization / Keynotes / Tutorials 

o Tutorial on “Statistical methods in physical layer security”, IEEE Statistical Signal Processing 
(SSP) Workshop, July 2020, Rio de Janeiro, BR (rescheduled to July 2021 due to COVID-19) 

o Special Session Organizer, “Selected topics on 6G security”, IEEE ISWCS, Sep. 2020, Berlin, 
Germany (rescheduled to Sep. 2021 due to COVID-19) 

o Special Session Organizer, “Statistical Methods for IoT”, IEEE SSP 2020, Jul. 2020, Rio de 
Janeiro, Brazil (postponed to July 2021 due to COVID-19) 

o Training School Co-organizer (with M. Chafii, S. Stanczak and R. Cavalcante), “Machine 
Learning for Communications”, 3-4 Sep. 2020, Berlin (co-located with ISWCS, rescheduled to 
Sep. 2021 due to Covid-19) 

o Chair of the GdR ISIS Workshop “Women in Communications, Information Theory and Signal 
Processing”, May 19 2020 (rescheduled to May 2021 due to Covid-19) 

o Chair of the GdR ISIS Workshop “Enabling ultra-reliability, low latency and massive 
connectivity”, June 18 2020 (virtual event due to Covid-19) 

o Keynote IEEE PIMRC Workshop Security Public RATs: “Practical examples of physical layer 
security”, 4 Sep. 2016, Valencia, Spain  

o Chair of the workshop ACCESS - Cutting edge topics in physical layer security, communications 
and distributed storage workshop, 11 May 2014, Aalborg, Denmark 
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o Co-chair of “2nd Women’s Workshop on Communications and Signal Processing”, 16-18 July 
2014, Princeton NJ, US 

o Track chair of the IEEE Global Wireless Summit 2014, 11-14 May 2014, Aaborg, Denmark 
o Chair of the “Second International Conference on Communications, Connectivity, 

Convergence, Content and Cooperation”, 11-14 May 2014, Aalborg, Denmark 
o Chair of the “WirelessVITAE, 10-13 May 2014, Aalborg, Denmark 

 

1.2.10 Editor / Reviewer / Selected TPCs  

o 2020- present: Associate Editor of the IEEE Open Journal on Signal Processing (OJSP) 
o Sep. 2019-present: Lead Guest Editor, EURASIP JWCN Special Issue “Physical layer security 

solutions for 5G-and-beyond”, Editors: S. Tomasin, H.V. Poor, M. Baldi, S. El Ruayheb, X. Wang, 
to appear in 2020 

o 2018-2019: Executive Editor Transactions on Emerging Telecommunications Technologies 
(ETT), Wiley 

o 2017-2019: Executive Editor of Internet Technology Letters (ITL), Wiley 
o Reviewer: IEEE Transactions (Trans.) on Information (Inf.) Forensics and Security, Elsevier 

Computers and Security, IEEE Trans. on Wireless Communications (Commun.)., IEEE Trans. 
Signal Processing, IEEE Trans. Vehicular Technologies, IEEE JSAC, IEEE Wireless Commun. 
Letters (L.), IEEE Commun. L., Trans. on Emerging Telecom Tech. (ETT), Eurasip JWCN, IEEE 
Trans on Commun., … 

o TPCs: more than 30 TPCs, indicatively IEEE GLOBECOM 2015, 2016, 2017, 2018, 2019, 2020, 
IEEE ICC 2014, 2015, 2016, 2018, 2019, 2020, IEEE WCNC 2016, 2019 (executive member), … 
 

1.2.11 Selected Invited Talks (after 2016) 

o July 2019, “Physical layer security in delay constrained applications”, NOKIA Bell Labs, FR 
o May 2019, “Physical layer security in delay constrained applications”, Barkhausen Institute, 

Dresden DE 
o May 2019, “Physical layer security in delay constrained applications”, ICS FORTH, GR 
o October 2017, “Emerging security paradigms”, Thales, FR 
o March 2017, “Physical layer security for future networks”, British Telecom, Adastral Park, UK 
o June 2016, “Practical examples of physical layer security”, Summer Research Institute, EPFL, 

CH 
 

1.2.12 Past Administrative Responsibilities and Outreach Activities 

o 2016-2017: President of the Committee for Gender Equality and Diversity Athena Swan, Univ. 
Essex, UK 

o 2016-2017: Vice-president “Research Student Progress and Management Committee”, Univ. 
Essex, UK 

o 2015-present: Fellow of the Higher Education Academy, UK (professional title in pedagogical 
training) 

o 2014-2015: Organizer of student recruitment activities “Visit Days”, Univ. Essex, UK 
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1.3 Publication List

1.3.1 Books [B] / Book Chapters [BC]

(supervised students and postdocs appear underlined)

BC3 M. Shakiba Herfeh, A. Chorti, V.H. Poor, A Review of Recent Results on Physical Layer
Security, to appear in Springer Nature 2020;

BC2 A. Chorti, A Study of Injection and Jamming Attacks in Wireless Secret Sharing Systems,
(Proc. 2nd Workshop Communication Security, WCS 2017), Lect. Notes in Elect. Eng., vol 447,
pp. 1-14, Springer;

BC1 A. Chorti, C. Hollanti, J.-C. Belfiore, H.V. Poor, Physical Layer Security: A Paradigm Shift in
Data Confidentiality, Springer, Lecture Notes in Electrical Engineering - Physical and Data-Link
Security Techniques for Future Communication Systems, vol. 358, pp. 1-15, Sep. 2015;

B A. Chorti, The Impact of Circuit Nonlinearities and Noise in OFDM Receivers, Feb. 2010,
Verlag

1.3.2 Refereed International Journals [J]

(supervised students and postdocs appear underlined)

J22 M. Pischella, A. Chorti, I. Fijalkow, ”On the Performance of NOMA-Relevant Strategies Under
Statistical Delay QoS Constraints”, IEEE Wireless Commun. Letters, in print (early access);

J21 M. Miroslav, A. Chorti, M.J. Reed, L. Musavian, ”Authenticated Secret Key Generation in
Delay Constrained Wireless Systems”, EURASIP J Wireless Com Network, vol. 122, Jun. 2020;

J20 S. Skaperas, L. Mamatas, A. Chorti, ”Real-Time Algorithms for the Detection of Changes in
the Variance of Video Content Popularity”, IEEE Access, vol. 8, pp: 30,445-30,457, Feb. 2020;

J19 W. Yu, A. Chorti, L. Musavian, V.H. Poor, Q. Ni, ”Effective Secrecy Capacity for a Downlink
NOMA Network”, IEEE Trans. Wireless Commun., vol. 18, no 12, pp: 5,673-5690, Dec. 2019;

J18 G.A. Nunez Segura, C. B. Margi, A. Chorti, ”Understanding the Performance of Software
Defined Wireless Sensor Networks Under Denial of Service Attack”, Open Journal of Internet of
things (OJIOT), Vol.5, no 1, pp:59-68 Aug. 2019 (published in the OJIOT as a special issue);

J17 S. Skaperas, L. Mamatas, A. Chorti, ”Real-Time Video Content Popularity Detection Based
on Mean Change Point Analysis”, Access, vol.7 pp: 142,246-142,260, Jul. 2019;

J16 G. Rezgui, E.V. Belmega, A. Chorti, ”Mitigating Jamming Attacks Using Energy Harvesting”,
IEEE Wireless Commun. Let., vol. 8 no 1, pp: 297-300, Feb. 2019;

J15 E.V. Belmega, A. Chorti ”Protecting Secret Key Generation Systems against Jamming: Energy
Harvesting and Channel Hopping Approaches”, IEEE Trans. Inf. Forensics Security, vol. 12, no
11, pp: 2611-2626, Nov. 2017;

J14 D. Karpuk, A. Chorti, ”Perfect Secrecy in Physical-Layer Network Coding Systems from
Structured Interference”, IEEE Trans. Inf. Forensics Security, vol. 11, no 8, pp. 1875-1887, Aug.
2016;

J13 A. Chorti, K. Papadaki, H.V. Poor, ”Optimal power allocation in block fading channels with
confidential messages”, IEEE Trans. Wireless Commun., vol. 14, no 9, pp. 4708-4719, Sep. 2015;
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J12 A. Chorti, S. Perlaza, Z. Han, H.V. Poor, ”On the resilience of wireless multiuser networks to
passive and active eavesdroppers”, IEEE Journal of Selected Areas in Commun., vol. 31 no 9,
pp. 1850-1863, Sep. 2013;

J11 A. Chorti, M. Brookes, ”On the effect of Voigt profile oscillators on OFDM systems”, IEEE
Trans. Circuits Syst. II, vol. 58, no 11, pp. 768-772, Nov. 2011;

J10 G. Spiliopoulos, D.T. Hristopulos, M.P. Petrakis, A. Chorti, ”A multigrid method for the
estimation of geometric anisotropy in environmental data from sensor networks”, Elsevier
Computers and Geosciences, vol. 37, no 3, pp. 320-330, Mar. 2011;

J9 A. Chorti, M. Brookes, ”Performance Analysis of COFDM and DAB Receivers in narrow-band
and tonal interference”, Springer Telecommunication Systems J., vol. 46, no 2, pp. 181-190, 2011.

J8 Y. Kanaras, A. Chorti, M. Rodrigues, I. Darwazeh, ”A fast constrained sphere decoder for ill
conditioned communication systems”, IEEE Commun. Let., vol. 14, no 11, pp. 999-1001, Nov.
2010.

J7 A. Chorti, ”How to model the near-to-the-carrier regime and the lower knee frequency of real
RF oscillators”, J. Electrical Computer Eng., vol. 2010, article ID 537132, Oct. 2010.

J6 A. Chorti, D.T. Hristopulos, ”Non-parametric identification of anisotropic correlations in
spatially distributed data sets”, IEEE Trans. Signal Proces, vol. 56, no 10, pp. 4738-4751, Oct.
2008.

J5 D. Karantzas, A. Chorti, N.M. White, C.J. Harris, ”Teaching old sensors new tricks: archetypes
of intelligence”, IEEE Sensors J., Special Issue on Intelligent Sensing”, invited paper, vol. 7, no
5, pp. 868-881, May 2007.

J4 A. Chorti, D. Karatzas, N.M. White and C.J. Harris, ”Intelligent Sensors in Software: The Use
of Parametric Models for Phase Noise Analysis”, Int. J. Inf. Process., vol. 1, no. 2, June 2007.

J3 A. Chorti, D. Karantzas, N.M. White and C.J. Harris, ”Use of the extended Kalman filter for
state dependent drift estimation in weakly nonlinear sensors”, Sensors Let., vol. 4, no 4, pp.
377-379, Dec. 2006.

J2 A. Chorti, M. Brookes, ”A spectral model for RF oscillators with power-law phase noise, IEEE
Trans. Circuits Syst. I ”, vol. 53, no 9, pp. 1989-1999, Sep. 2006.

J1 A. Chorti, M. Brookes, ”On the effects of memoryless nonlinearities on M-QAM and DQPSK
OFDM Signals”, IEEE Trans. Microw. Theory Techn., vol. 54, no 8, pp. 3301-3315, Aug. 2006.

1.3.3 Refereed International Conference Proceedings [C]

(supervised students and postdocs appear underlined)

C39 G.A. Nunez Segura, S. Skaperas, A. Chorti, L. Mamatas, C. Borges Magri, “Denial of Service
Attacks Detection in Software-Defined Wireless Sensor Networks”, Proc. IEEE Int. Conf.
Commun. (ICC) Worskhop on SDN Security, Dublin UK, 7-11 Jun. 2020;

C38 B. Mouktar, W. Yu, A. Chorti, L. Musavian, “Performance Analysis of NOMA Uplink Networks
under Statistical QoS Delay Constraints”, Proc. IEEE Int. Conf. Commun. (ICC), Dublin UK,
7-11 Jun. 2020;

C37 M. Mitev, A. Chorti, M.J. Reed “Subcarrier Scheduling for Joint Data Transfer and Key Genera-
tion Schemes in Multicarrier Systems”, Proc. IEEE Int. Global Commun. Conf. (GLOBECOM),
Hawaii US, 9-13 Dec. 2019;
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C36 M. Mitev, A. Chorti, E.V. Belmega, M.J. Reed “Man-in-the-Middle and Denial of Service
Attacks in Wireless Secret Key Generation”, Proc. IEEE Global Commun. (GLOBECOM),
Hawaii US, 9-13 Dec. 2019;

C35 G.A. Nunez Segura, C. B. Margi, A. Chorti , “Understanding the Performance of Software
Defined Wireless Sensor Networks Under Denial of Service Attack”, Proc. Int. Workshop on
Very Large IoT (VLIoT) 2019, Los Angeles, US, 30th Aug. 2019 (*invited paper);

C34 R. Nasfi, A. Chorti, “Performance Analysis of the Uplink of a Two User NOMA Network under
QoS Delay Constraints”, Proc. IEEE Int. Conf. on Ubiquous and Future Networks (ICUFN)
2018, Zagreb, Croatia, 2-5 July 2019;

C33 M. Mitev, A. Chorti, M.J. Reed “Optimal Resource Allocation in Joint Secret Key Generation
and Data Transfer Schemes”, Proc. IEEE Int. Conf. Wireless Commun. Mobile Comput.
(IWCMC), Tangiers Morocco, 24-28 June 2019;

C32 S. Skaperas, L. Mamatas, A. Chorti, “Early Video Content Popularity Detection with Change
Point Analysis”, Proc. IEEE Int. Global Commun. (GLOBECOM), Abu Dhabi, UAE, 6-11
December 2018;

C31 E.V. Belmega, A. Chorti, “Energy Harvesting in Secret Key Generation Systems under Jamming
Attacks”, Proc. IEEE Int. Conf. Commun. (ICC), Paris, France, May 2017;

C30 A. Chorti, “Secret Key Generation in Rayleigh Block Fading AWGN Channels under Jamming
Attacks”, Proc. IEEE Int. Conf. Commun. (ICC), Paris France, May 2017;

C29 A. Chorti, “Optimal Signalling Strategies and Power Allocation for Wireless Secret Key Gener-
ation Systems in the Presence of a Jammer”, Proc. IEEE Int. Conf. Commun. (ICC), Paris,
France, May 2017;

C28 A. Chorti, “Overcoming limitations of secret key generation in block fading channels under
active attacks”, Proc. IEEE 17th Int. Workshop Signal Process. Advances Wireless Commun.
(SPAWC), pp. 1-5, Jul. 2016 (*invited paper);

C27 C. Saiki, A. Chorti, “A novel authenticated encryption protocol exploiting shared randomness”,
Proc. IEEE Commun. Network Security (CNS), 2nd Workshop on Physical Layer methods for
Wireless Security, pp. 651-656, Sep. 2015;

C26 A. Chorti, M.M. Molu, D. Karpuk, C. Hollanti, A. Burr, “Strong secrecy in wireless network
coding systems with M-QAM modulators”, Proc. IEEE Int. Conf. Commun. China (ICCC), pp.
181-186, Oct. 2014;

C25 A. Chorti, K. Papadaki, H.V. Poor, “Optimal power allocation in block fading Gaussian channels
with causal CSI and secrecy constraints”, Proc. IEEE Global Commun. (GLOBECOM), pp.
752-757, Dec. 2014;

C24 S.M. Perlaza, A. Chorti, H.V. Poor, Z. Han, “On the trade-offs between networks state knowledge
and secrecy”, Proc. IEEE Int. Symp. Wireless Personal Multimedia Commun. (WPMC), pp.
1-6, Jun. 2013;

C23 A. Chorti, K. Papadaki, P. Tsakalides, H.V. Poor, “The secrecy capacity of block fading
multiuser wireless networks”, Proc. IEEE Int. Conf. Adv. Tech. Commun. (ATC), pp. 247-251,
Oct. 2013, (*best paper award);

C22 S.M. Perlaza, A. Chorti, H.V. Poor and Z. Han, “On the impact of network-state knowledge on
the feasibility of secrecy”, Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 2960-2964, Istanbul,
Turkey, Jul. 2013;
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C21 A. Chorti, S. Perlaza, Z. Han, H.V. Poor, “Physical layer security in wireless networks with
passive and active eavesdroppers”, Proc. IEEE Global Commun. (GLOBECOM), Anaheim,
USA, 3-7 Dec. 2012;

C20 A. Chorti, “Helping interferer physical layer security strategies for M-QAM and M-PSK systems”,
Proc. IEEE CISS 2012, Princeton NJ, USA, 21-23 Mar. 2012;

C19 A. Chorti and V. Poor, ”Achievable secrecy rates in physical layer security systems with a
helping interferer”, Proc. IEEE Int. Conf. Comp. Netw. Commun. (ICNC), Maui, HI, Feb.
2012;

C18 A. Chorti and V. Poor, “Faster than Nyquist interference assisted secret communication for
OFDM systems, IEEE Asilomar, Pacific Grove, CA, US, 4-7 Nov. 2011, (*invited paper);

C17 A. Chorti, “Masked M-QAM OFDM: Encryption of OFDM signals through faster than Nyquist
signalling”, Proc. IEEE MCECN Global Commun. (GLOBECOM), Miami, US, 6-10 Dec. 2010;

C16 A. Chorti, Y. Kanaras, M. Rodrigues, I. Darwazeh, “Joint channel equalization and detection
of spectrally efficient FDM signals”, Proc. IEEE Personal Indoor Multimedia Radio Commun.
(PIMRC), Istanbul, Turkey, 26-29 Sep. 2010

C15 Y. Kanaras, A. Chorti, M. Rodrigues, I. Darwazeh, “A new quasi-optimal detection algorithm
for a non-orthogonal spectrally efficient FDM system”, Proc. Int. Symp. Commun. Inf. Tech.
(ISCIT), Incheon, Korea, 28-30 Sep. 2009;

C14 Y. Kanaras, A. Chorti, M. Rodrigues, I. Darwazeh, “An Overview of Optimal and sub-Optimal
Detection Techniques for a Non Orthogonal Spectrally Efficient FDM”, Proc. LCS/NEMS,
London UK, 3-4 Sep. 2009;

C13 A. Chorti, Y. Kanaras, “Masked M-QAM OFDM: A simple approach for enhancing the security
of OFDM systems”, IEEE Personal Indoor Multimedia Radio Commun. (PIMRC), Tokyo, Japan,
13-16 Sep. 2009;

C12 D.T. Hristopulos, M.P. Petrakis, G. Spiliopoulos, A. Chorti, “Non-parametric estimation of
geometric anisotropy from environmental sensor network measurements”, Proc. StatGIS2009,
Milos, Greece, 17-19 Jun. 2009;

C11 Y. Kanaras, A. Chorti, M. Rodrigues, and I. Darwazeh, “Spectrally efficient FDM signals:
bandwidth gain at the expense of receiver complexity”, IEEE Int. Conf. Commun. (ICC),
Dresden, Germany, 13-17 Jun. 2009;

C10 Y. Kanaras, A. Chorti, M. Rodrigues, I. Darwazeh, “A near optimum detection for a spectrally
efficient non orthogonal FDM system”, Proc. InOWo’08, Hamburg Germany, 27-28 Aug. 2008;

C9 D.T. Hristopulos, A. Chorti, G. Spiliopoulos, E. Petrakis, “Systematic detection of anisotropy
in spatial data obtained from environmental monitoring networks”, EGU2008, Vienna, Austria,
13-18 Apr. 2008;

C8 Y. Kanaras, A. Chorti, M. Rodrigues, I. Darwazeh, “A combined MMSE-ML detection for a
Gram-Schmidt orthogonalized FDM system”, Proc. IEEE BROADNETS, London, UK, Sep.
2008;

C7 Y. Kanaras, A. Chorti, M. Rodrigues, I. Darwazeh, “Sub-optimum detection techniques for a
bandwidth efficient multi-carrier communication system”, Mutli-Strand Conf., Milton, UK, 6-7
May 2008.
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C6 A. Chorti, D.T. Hristopulos, “Automatic detection of spatial anisotropy in environmental data
sets”, Proc. StatGIS2007, Klagenfurt, Austria, Oct. 2007.

C5 A. Moustakas, A. Chorti and D.T. Hristopulos, “Geostatistical analysis of tree size distributions
in the southern Kalahari, obtained from remotely sensed data”, Proc. SPIE Europe Remote
Sensing, Florence, Italy, 17-20 Sep. 2007.

C4 A. Chorti and M. Brookes, “Resolving near carrier spectral infinities due to 1/f phase noise in
oscillators”, Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP), vol. 3, pp. III
1005-III 1008, Hawaii, USA, 15-18 Apr. 2007

C3 A. Chorti, D. Karatzas, N.M. White, C.J. Harris, “Intelligent sensors in software: the use of
parametric models for phase noise analysis”, Proc. IEEE Int. Conf. Intelligent Sensing Inf.,
Bangalore, India, 15-18 Dec. 2006.

C2 A. Chorti, B. Granado, B. Denby, P. Garda, “Une architecture electronique temps reel pour les
reseaux connexionnistes en physique des hautes energies”, NSI2000, Toulouse FR, May 2000.

C1 A. Chorti, B. Granado, B. Denby and P. Garda, ”An electronic system for the simulation of
neural networks with real time constraints”, Proc. ACAT, Chicago, U.S., Dec. 2000.

1.3.4 Posters

P2 M. Mitev, A. Chorti, M.J. Reed, “Physical layer security in wireless networks with active
eavesdroppers”, Munich Workshop on Coding and Cryptography (MWCC) 2018, (*invited poster,
Germany, 10-11 April 2018;

P1 A. Chorti, “Optimal resource allocation in secure multi-carrier systems”, 1st IEEE Women’s
Workshop Commun. Signal Proc., Banff, (*invited poster), Canada, 13-15 Jul. 2012.

1.3.5 In Preparation [U] / Submitted [S]

U1 M. Mitev, M. Shakiba Herfeh, A. Chorti, M.J. Reed, “Multi-factor lightweight authentication
for the Internet of Things”, IEEE Trans. Inf. Forensics Security, in preparation;

U2 G. A. Nunez Segura, A. Chorti, C. Borges Magri, “Multimetric centralized and decentralized
intrusion detection in software defined networks”, IEEE Internet of Things Journal, in preparation;

U3 M. Bello, W. Yu, M. Pischella, A. Chorti, I. Fijalkow, L. Musavian, “A Review of DL/UL
Multiple Access Enabling Low-Latency Communications”, IEEE Access, in preparation;

U4 M. Bello, A. Chorti, I. Fijalkow, W. Yu, L. Musavian, “Performance Analysis of NOMA
Uplink Networks under Statistical QoS Delay Constraints”, IEEE Trans. Communications, in
preparation;

U5 N. Ferdosian, A. Chorti, S. Skaperas, L. Mamatas, “Unleashing the Potential of Flexible Nu-
merology by Resolving Conflicts”, IEEE Trans. Wireless Communications, in preparation;

S1 G.A. Nunez Segura, A. Chorti, C. Borges Magri, “Multimetric Online Intrusion Detection in
Software-Defined Wireless Sensor Networks”, in review IEEE Globecom 2020;

S2 A. Chorti, V.H. Poor, “What Physical Layer Security Can Do for 6G”, accepted in IEEE
Globecom 2020 Tutorials.
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1.4 Recent Research Results

1.4.1 Motivation on studying physical layer security and resource allocation for
5G Systems

Physical Layer Security

The goal of physical layer security (PLS) [1–3] is to make use of the properties of the physical layer –
including the wireless communication medium and / or the transceiver hardware – to enable critical
security aspects. In particular, PLS can be employed to provide i) node (device) authentication,
ii) message authentication, iii) message confidentiality through the use of secrecy encoders, and, iv)
key management and distribution solutions through symmetric secret key generation from shared
randomness. Furthermore, proposals for intrusion detection and counter-jamming at PHY have recently
emerged [4]; indeed these two topics emerge as important research areas in B5G systems, particularly
in the industrial Internet of things (IoT) and the mmWave era.

PLS has been explicitly mentioned in the first white paper on 6G: “The strongest security protection
may be achieved at the physical layer”. Importantly, it is stated as an enabling technology in the IEEE
International Network Generations Roadmap 1st Edition 2019 in the Chapters on “Security” (Section
1.1 pp. 1-2) and on “Massive MIMO” (Section 4.3 pp. 8-9). The increasing interest in PLS has been
stimulated by many practical needs. Notably, many critical IoT networks require ultra-low latency
communications (< 1msec), e.g., in autonomous driving and vehicle to everything (V2X) applications,
telemedicine and haptics. However, standard authentication often requires significant processing time.
We note in passing that in the Third Generation Partnership Project (3GPP) technical report “Study
on the Security of URLLC” [5], all aspects related to low latency (fast) authentication remain open
and no solutions have so far been standardized. An added complication is due to hardware limitations
of low-end sensors and their ineptest to execute sophisticated security protocols such as the IPSec or
the DTLS.

A further challenge comes from quantum computing, which has seen significant progress after
massive investment by companies such as Google, Intel and IBM to build prototypes with more than 50
qubits. In October 2019 Google published in the journal “Nature” their quantum computer experiments
showing they have achieved quantum supremacy for a particular set of problems [6]. In this aspect,
PLS, that relies upon information-theoretic security proofs, could resist quantum computers, unlike
corresponding asymmetric key schemes relying on the (unproven) intractability in polynomial time
of certain algebraic problems. Even state-of-the-art elliptic curve cryptography (ECC) schemes, that
require substantially shorter keys than RSA or Diffie Hellman (DH) schemes, are still considerably
more intensive computationally than their PLS counterparts and are not post-quantum.

As a result, the study of novel PLS based solution for 5G and B5G security is highly pertinent.
Related proposals using physical unclonable functions [7] and secret key generation from shared
randomness [8] are included in this thesis.

Resource Allocation

The roll-out of fifth-generation (5G) mobile networks and the forthcoming 6G will bring about
fundamental changes in the way we communicate, access services and entertainment.With respect to
the latter, the multi-fold increase in the service data rates will provide users with ultra high resolution
in video-streaming, multi-media and virtual reality, offering immersive experiences. To this end, it is
important for Edge content delivery infrastructures to rapidly detect and respond to changes in content
popularity dynamics. For flexible and highly adaptive solutions, the capability for quick resource
(re-)allocation should be driven by early (real-time) and low-complexity content popularity detection
schemes. In this thesis, we study aspects of low-complexity detection of changes in video content
popularity in real-time, addressed as a statistical change point (CP) detection problem [9], breaking
completely new ground compared to earlier works that relied upon prediction models [10], [11].

27



CHAPTER 1. ACTIVITY REVIEW

Furthermore, novel exciting use cases were introduced in 5G in the context of ultra-reliable low
latency communications (URLLC) and massive machine type communications (mMTC); the new
industrial revolution, dubbed as Industry 4.0, along with emerging verticals in telemedicine, smart
agriculture, etc., will bring about automation and intelligence to levels never seen before.

As 5G is required to support a large variety of services, novel solutions to enable higher resource
efficiency are sought; amongst the various possible solutions, in this thesis we study non-orthogonal
multiple access (NOMA) because of its advantages over conventional orthogonal multiple access (OMA)
schemes in terms of spectral efficiency [12], cell-edge throughput [13], and energy efficiency [14],
rendering it an attractive solution in particular for the mMTC uplink scenario.

Additionally, to account for medium access (MAC) sub-layer latency, we use the theory of the
effective capacity [15], which can serve in wireless networks to provide statistical delay guarantees. The
pertinence of the theory of the effective capacity as a suitable metric results from the fact that in the
wireless MAC, due to small scale fading and shadowing, it is inherently impossible to provide hard
delay guarantees.

In the following, a brief presentation of my principal past contributions over the last 7 years is
given in reverse chronological order, to emphasize more recent results. Section 1.4.2 offers an outline of
recent results in the area of resource allocation using NOMA, the theory of the effective capacity and
CP analysis, while results in the area of PLS are described in Section 1.4.3.

1.4.2 Results in Resource Allocation

NOMA and Effective Capacity

Related Contributions: [J22], [J19], [C38], [C34]
In our works a flexible delay quality of service (QoS) model was employed using the theory of large

deviations (Gärtner-Ellis theorem [16]) that allows defining the metric of the effective capacity (EC)
on block fading additive white Gaussian noise (BF-AWGN) channels. The EC denotes the maximum
constant arrival rate that can be served by a given service process, while guaranteeing a required
statistical delay provisioning and is closely related to the concept of the effective bandwidth [17]. In
order to capture the impact of link layer (MAC) delays in the secrecy capacity of wireless BF-AWGN
channels, we introduced a novel metric, referred to as the “effective secrecy rate” (ESR); the ESR
represents the maximum constant arrival rate that can be securely served (with perfect secrecy), on
the condition that the required delay constraint can be statistically satisfied.

In more detail, in [J19] a novel approach was introduced to study the achievable delay-guaranteed
secrecy rate, focusing on the downlink of a NOMA network with one base station, multiple single-
antenna NOMA users and an eavesdropper. Two possible eavesdropping scenarios were considered; an
internal, unknown, eavesdropper in a purely antagonistic network and an external eavesdropper in
a network with trustworthy peers. For a purely antagonistic network with an internal eavesdropper,
the only receiver with a guaranteed positive ESR was proved to be the one with the highest channel
gain. The ESR in the high signal to noise ratio (SNR) regime was shown to approach a constant value
irrespective of the power coefficients, while the strongest user was shown to achieve a higher ESR when
it had a distinctive advantage in terms of channel gain with respect to the second strongest user. For
a trustworthy NOMA network with an external eavesdropper, a lower bound and an upper bound
on the ESR were proposed and investigated for an arbitrary legitimate user. For the lower bound, a
closed-form expression was derived in the high SNR regime. For the upper bound, the analysis showed
that if the external eavesdropper could not attain any channel state information (CSI), the legitimate
NOMA user at high SNRs would always achieve positive ESR. Simulation results numerically validated
the accuracy of the derived closed-form expressions and verified the analytical results given in the
theorems and lemmas.

Furthermore, in [J22], [C38], [C34], we turned our attention to NOMA uplink networks. We
provided performance analyses in asymptotic regimes (low and high SNR) and also proposed a novel
multiple access (MA) scheme referred to as NOMA-Relevant (NOMA-R). In NOMA-R, a flexible MA
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scheme is proposed based on the requirement that any user will opt for NOMA only when there is a
rate gain associated. We have shown that NOMA-R outperforms both NOMA and OMA in terms of
sum rates achievable in all SNR regions. Importantly, using the theory of the effective capacity we
demonstrated that the NOMA-R strategy is more favorable when the target delay-bound violation
probabilities are more stringent, especially for weak NOMA users.

Resource Allocation Using Change Point Analysis

Related Contributions: [J17], [J20], [C32]

In [J17], [J20] and [C32] we developed novel algorithms for the real-time detection of changes in
the mean and the variance of content popularity. Approaching the problem statistically, we efficiently
combined off-line and on-line non-parametric CUSUM procedures. The use of non-parametric CUSUM
allowed us to avoid making assumptions about the underlying statistics of the popularity of any
particular content, with the additional benefit of reduced computational cost. For the detection
of changes in the mean we divided the algorithm in two phases. The first phase was an extended
retrospective (off-line) procedure with an improved binary segmentation step and was used to adjust
on-line parameters, based on historical data of the particular video. The second phase integrated a
modified trend indicator to the sequential (on-line) procedure, to reveal the direction of a detected
change. We provided extensive simulations, using real data, that demonstrated the performance of the
first phase of our algorithm. We also provided proof-of-concept results that highlighted the efficiency
of the overall algorithm.

The approach of combining off-line and on-line CP algorithms was also employed in [J20] for
the detection of changes in the variance. However, a major difference concerned the choice of the
underlying test statistic, as unlike in the case of the mean, tracking changes in the variance is inherently
a nonlinear estimation problem. To develop the test statistic we proposed three different approaches:
i) a non-parametric approach, ii) a parametric approach using an autoregressive moving average
(ARMA) model, and, iii) a parametric approach using a nonlinear generalised autoregressive conditional
heteroskedasticity (GARCH) model. Our studies using synthetic data indicated that the ARMA
parametric approach did not generalize well. Due to this fact, we only performed experiments on real
data using the non-parametric and the GARCH approaches. We concluded that both can equally well
identify large deviations in the variance and that in the general case the non-parametric approach can
provide quicker detection of CPs in the datasets studied in this work. In the future, we will develop
joint detectors for the mean and the variance of video content popularity.

1.4.3 Results in PLS

The Role of PLS in 6G Security

Related contributions: [J21], [BC3], [C37], [C33], [C27]

With the emergence of 5G low latency applications, such as haptics and V2X, low complexity
and low latency security mechanisms are needed. Promising lightweight mechanisms include physical
unclonable functions (PUF) and secret key generation (SKG) at the physical layer from wireless fading
coefficients, as considered in [J21], [C37], [C33]. In this framework we proposed a zero-round-trip-time
(0-RTT) authentication protocol combining PUF for fast authentication and generation of resumption
keys using SKG. Furthermore, a novel authenticated encryption (AE) scheme using SKG and standard
symmetric key block ciphers for encryption and message authentication – first proposed in [C27] – was
enhanced in [J21]. Aiming at a fast PHY protocol we proposed the pipelining of the AE SKG process
and the encrypted data transfer at PHY in order to reduce latency. Looking at various alternatives
to implement the pipelining at PHY, we investigated a “parallel” SKG approach for multi-carrier
systems (e.g., using orthogonal frequency division multiplexing (OFDM) as in LTE and 5G new radio).
In the parallel approach a subset of the subcarriers was used for SKG and the rest for encrypted
data transmission (using the keys generated on the subset of SKG subcarriers). The optimal solution
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to the respective PHY resource allocation problem was identified under security, power and delay
constraints, by formulating the subcarrier scheduling as a subset-sum 0-1 knapsack optimization [18] .
A heuristic algorithm of linear complexity was proposed and shown to incur negligible loss with respect
to the optimal dynamic programming solution [J21], [C37], [C33]. The proposed mechanisms, have the
potential to pave the way for a new breed of latency aware PHY security protocols with an emphasis
on URLLC and IoT emerging systems.

Finally, the main lines of application of PLS in 6G systems were reviewed in [BC3], starting with
node authentication, moving to the information theoretic characterization of message integrity, and
finally, discussing message confidentiality both in the SKG and from the wiretap channel point of view.
The aim of this review was to provide a comprehensive roadmap on important relevant results by the
authors and other contributors and discuss open issues on the applicability of PLS in 6G systems.

Anomaly Detection in Software Defined Networks

Related contributions: [C39], [J18]

Software-defined networking (SDN) is a promising technology to overcome many challenges in
wireless sensor networks (WSN), particularly with respect to flexibility and reuse. Conversely, the
centralization and the planes’ separation turn SDNs vulnerable to new security threats in the general
context of distributed denial of service (DDoS) attacks. State of-the-art approaches to identify DDoS
do not always take into consideration restrictions in typical WSNs e.g., computational complexity and
power constraints, while further performance improvement is always a target. The objective of the
works in [J18], [C39] was to propose a lightweight but very efficient DDoS attack detection approach
using CP analysis. Our approach was shown to have a high detection rate, while its complexity grows
linearly with the observed time series length, rendering it suitable for WSNs. We demonstrated the
performance of our detector in software-defined WSNs of 36 and 100 nodes with varying attack intensity
(the number of attackers ranging from 5% to 20% of nodes).

We used CP detectors to monitor anomalies in two metrics: the data packets delivery rate and
the control packets overhead. Our results showed that as the intensity of the attack increased, our
approach could achieve a detection rate close to 100% and that, importantly, the type of the attack
could also be inferred. As an extension of this work, we will look into distributed anomaly detection
by allowing clusters of nodes to act on local early detection systems. A trade-off to be studied will
concern the cluster size versus the speed of the detection while maintaining the ability to localize the
source of the anomaly.

Shielding PLS Against Active Attacks

Related contributions: [BC2], [J16], [J15], [J12], [C36], [C31], [C30], [C29], [C28], [C24], [C22], [C21]

SKG schemes have been shown to be vulnerable to DoS attacks in the form of jamming and to man
in the middle attacks implemented as injection attacks. In [BC2] and [C36], a comprehensive study on
the impact of correlated and uncorrelated jamming and injection attacks in wireless SKG systems was
presented. First, two optimal signaling schemes for the legitimate users were proposed and the impact
of injection attacks as well as counter-measures were investigated. Finally, it was demonstrated that
the jammer should inject either correlated jamming when imperfect channel state information (CSI)
regarding the main channel was at their disposal, or, uncorrelated jamming when the main channel
CSI was completely unknown.

As jamming attacks represent a critical vulnerability for wireless SKG systems, in [J15], [C31],
[C30], [C29], [C28] two counter-jamming approaches were investigated for SKG systems: first, the
employment of energy harvesting (EH) at the legitimate nodes to turn part of the jamming power into
useful communication power, and, second, the use of channel hopping or power spreading in BF-AWGN
channels to reduce the impact of jamming.1 In both cases, the adversarial interaction between the pair

1We note in passing that spreading / hopping can be directly implemented with a standard inverse fast Fourier
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of legitimate nodes and the jammer was formulated as a two-player zero-sum game and the Nash and
Stackelberg equilibria (NE and SE) were characterized analytically and in closed form. In particular,
in the case of EH receivers, the existence of a critical transmission power for the legitimate nodes
allowed the full characterization of the game’s equilibria and also enabled the complete neutralization
of the jammer. In the case of channel hopping vs. power spreading techniques, it was shown that the
jammer’s optimal strategy was always power spreading while the legitimate nodes should only use
power spreading in the high signal-to-interference ratio (SIR) regime. In the low SIR regime, when
avoiding the jammer’s interference becomes critical, channel hopping is optimal for the legitimate
nodes. Numerical results demonstrated the efficiency of both counter-jamming measures.

Furthermore, in [J16] the novel proposal of using EH as a counter-jamming measure for point-to-
point communication was investigated on the premise that part of the harmful interference could be
harvested to increase the transmit power. We formulated the strategic interaction between a pair of
legitimate nodes and a malicious jammer as a zero-sum game. Our analysis demonstrated that the
legitimate nodes were able to neutralize the jammer. However, this policy was not necessarily a Nash
equilibrium and hence was sub-optimal. Instead, harvesting the jamming interference could lead to
relative gains of up to 95%, on average, in terms of Shannon capacity, when the jamming interference
was high.

Finally, in our earlier works [J12], [C24], [C22], [C21] the resilience of wireless multiuser networks
to passive (interception of the broadcast channel) and active (interception of the broadcast channel and
false feedback) eavesdroppers was investigated. Stochastic characterizations of the secrecy capacity (SC)
were obtained in scenarios involving a single transmitter (base station) and multiple destinations. The
expected values and variances of the SC along with the probabilities of secrecy outage were evaluated
in the following cases: (i) in the presence of passive eavesdroppers without any side information; (ii)
in the presence of passive eavesdroppers with side information about the number of eavesdroppers;
and (iii) in the presence of a single active eavesdropper with side information about the behavior of
the eavesdropper. This investigation demonstrated that substantial secrecy rates are attainable on
average in the presence of passive eavesdroppers as long as minimal side information is available. On
the other hand, it was further found that active eavesdroppers could potentially compromise such
networks unless statistical inference was employed to restrict their ability to attack. Interestingly,
in the high SNR regime, multiuser networks were shown to become insensitive to the activeness or
passiveness of the attack.

PLS Encoders and Secrecy Enhancement in Collaborative Networks

Related contributions: [J14], [J13], [C23], [C19], [C18]

Physical layer network coding (PNC) has been proposed for future generations of wireless networks.
In [J14], we investigated PNC schemes with embedded perfect secrecy by exploiting structured
interference in relay networks with two users and a single relay. In a practical scenario where both
users employed finite and uniform signal input distributions, we established upper bounds (UB) on
the achievable perfect secrecy rates and made these explicit when pulse amplitude modulation (PAM)
modems were used, while our results extend straightforwardly to quadrature amplitude modulation
(QAM) modems. We then described two simple, explicit encoders that could achieve perfect secrecy
rates close to these UBs with respect to an untrustworthy relay in the single antenna and single relay
setting. Lastly, we generalized our system to a MIMO relay channel where the relay had more antennas
than the users and studied optimal precoding matrices which satisfied a required secrecy constraint.
Our results established that the design of PNC transmission schemes with enhanced throughput and
guaranteed data confidentiality was feasible.

Finally, in [J13] the optimal power allocation that maximizes the SC of BF-AWGN networks with
causal CSI, M -block delay tolerance and a frame based power constraint was examined. In particular,

transform (IFFT) transmitter employed in OFDM systems; spreading requires no change in the canonical OFDM
transmitter, while hopping requires setting all but one of the IFFT inputs to zero.
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the SC maximization was formulated as a dynamic program. First, the SC maximization without any
information on the CSI was studied; in this case the SC was shown to be maximized by equidistribution
of the power budget, denoted as the ” blind policy ”. Next, extending earlier results on the capacity
maximization of BF-AWGN channels without secrecy constraints, transmission policies for the low
SNR and the high SNR regimes were proposed. When the available power resources were very low the
optimal strategy was a “threshold policy”. On the other hand, when the available power budget was
very large a “constant power policy” was shown to maximize the frame secrecy capacity. Subsequently,
a novel universal transmission policy was introduced, denoted as the “blind horizon approximation”
(BHA), by imposing a blind policy in the horizon of unknown events. Through numerical results, the
novel BHA policy was shown to outperform both the threshold and constant power policies as long as
the mean channel gain of the legitimate user was distinctively greater than the mean channel gain of
the eavesdropper. Furthermore, the secrecy rates achieved by the BHA compared well with the secrecy
rates of the secure waterfilling policy in the case of acausal CSI feedback to the transmitter.

1.5 Recent Teaching Activities

I have had the opportunity to teach for over 7 consecutive years in France and the UK, a variety
of courses from cryptography and network security, to networking and wireless communications. A
detailed description of my teaching record is presented in reverse chronological order in the following
Sections.

1.5.1 Overview of Teaching Activities in France (ENSEA)

Since September 2017 I have been engaged with teaching at ENSEA, giving courses both in French
and in English. I have taught in the second and third year of the engineering track of ENSEA, as well
as in the continuing education track (cycle par alternance). Furthermore, since September 2019 I am
responsible of the students’ international mobility towards the UK.

Engineering Track (teaching in English)

I have been teaching in the third year specialization “Networks and Telecommunications” the modules
of “Network Security” (module responsible), “Internetworking” (module responsible) and “Wireless
Communications”. In parallel I am teaching Cryptography in the M2 MSc of ETIS SIT (Systèmes,
Information, Télécommunications), whose syllabus mirrors in great extent that of “Network Security”.
A brief presentation of the courses is given below:

(1) Network Security / Cryptography: 10 hours of lectures. Topics covered include:

• Data Confidentiality: perfect secrecy, semantic security, block ciphers, DES, 3DES, AES;

• Data Integrity: message authentication codes (MAC), authenticated encryption;

• Key management using a trusted third party;

• Public key encryption, Diffie Hellman, El Gamal, RSA;

• Digital signatures, digital certificates, public key infrastructure;

• SSL / TLS.

(2) Internetworking: 16 hours of lectures, 24 hours of lab work (on GNS3), 6 hours of
seminars (classes)

• IP protocol, DHCP, ARP, ICMP, NAT;
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• Routing protocols: RIP, OSPF, BGP, Mobile IP, Dynamic Source Routing, Reverse Path
Forwarding, Multicasting;

• Quality of Service: Integrated Services, Differentiated Services, MPLS;

• Congestion control, TCP Tahoe, TCP Reno, TCP Vegas, Fast-TCP.

(3) Wireless Communications: 6 hours of lectures, 4 hours of lab work, 4 hours of seminars
(classes)

• Signal space, maximum a posteriori detection, maximum likelihood detection;

• Design of communication system, power / bandwidth limited systems, digital modulations;

• Narrowband fading channel models and channel capacity;

• Waterfilling algorithm, adaptive QAM.

Furthermore, immediately after my recruitment at ENSEA I was tasked with developing the second
year option on “Internet of things” (IoT Option: 36 hours of lectures, 28 hours of lab work in total). I
have engaged with the FIT IoT-lab of INRIA in Saclay and secured three related lab sessions with
remote access to the FIT-IoT lab. In the IoT option, typically 2 instructors from the industry (Nokia,
Huawei or Orange) give a number of lectures on topics related to low power wide area networks
(LPWAN), 3GPP standards (NB-IoT, MTC), vehicular IoT, wireless sensor networks. In the IoT
option I give 6 hours of lectures on
(4) IoT security and 4 hours of lab work, covering the following topics:

• Background concepts,introduction to DTLS and IPSec;

• Introduction to blockchains for IoT;

• RFID authentication;

• Jamming attacks (primarily through lab work).

Student satisfaction in the IoT Option has been strong with an average 4/5 in the first year,
bringing it amongst the best ranked second year options with a consistently high demand.

Continuous Education Track (teaching in French)

Additionally, I am teaching at the final year of the “cycle par alternace” of ENSEA in the specialization
“Réseaux et Télécommunications” the module “Interconnexion et Administration des Réseaux ”,
mirroring a reduced syllabus of the topics covered in the engineering track module “Internetworking”.
The module consists of 10 hours of lectures, 16 hours of lab work and 10 hours of seminars (classes).

1.5.2 Overview of Teaching Activities in the UK

Since July 2015 I have been a Fellow of the Higher Education Academy (FHEA) of the UK. FHEA
is a professional title in higher education that is recognized (and currently required) by academic
institutions in the United Kingdom. To become FHEA, I followed the courses offered at the University
of Essex as part of the CADENZA program, between October 2014 and March 2015. Then, I prepared
my teaching portfolio which included: (i) factual aspects concerning my teaching experience, (ii)
in-depth familiarization with recognized teaching theories, showcased in a pedagogical thesis reflecting
my teaching experience. The evaluation of my portfolio by the HEA took place in May 2015 and I
obtained the title of a FHEA the following July. In addition, student satisfaction in the courses I have
taught has been particularly strong. Notably, in the Student Evaluation of Teaching (SET) for the
year 2014-2015 I scored a perfect 5/5 for my teaching of the course CE702 Digital Communications at
the University of Essex.
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University of Essex

I served as a Lecturer at the University of Essex, School of Computer Science and Electronic Engi-
neering between 2013-2017. From 2014 to 2017 I was responsible for the module “CE702 - Digital
Communications” of the MSc in Advanced Communication Systems. The 12-week module included
weekly lectures and seminars (classes). Throughout the semester, 2 different assignments were given.
Topics covered include:

• Systems and signals, channel coding, modulation, OFDM, MIMO;

• Multiple access methods: TDD, FDD, TDMA, FDMA, CDMA, OFDMA;

• Wireless multipath channels, equalization;

• Antennas, satellite communication;

• Optical networks, wavelength division multiplexing (WDM), dense WDM (DWDM).

In January 2015 I became the responsible of the module “CE823 – Network Security and
Cryptographic Principles” of the MSc in Computer Networks and Security and of the optional
third-year BSc module CE324 (with the same description). The 12 weeks long module included weekly
lectures and lab sessions. Throughout the semester, 2 different assignments were given. The course
syllabus is described below:

• Data Confidentiality: perfect secrecy, semantic security, stream ciphers, block ciphers, DES,
3DES, AES;

• Data Integrity: message authentication codes (MAC), authenticated encryption;

• Key management using a trusted third party, Kerberos protocol;

• Public key encryption, Diffie Hellman, El Gamal, RSA;

• Digital signatures, digital certificates, public key infrastructure;

• SSL / TLS, HTTPS, SSH, IPSec, DNSSec;

• Denial of service (DoS), intrusion detection, firewalls;

• Security of wireless networks, WEP, WPA, WPA2.

After my maternity leave (Sep. 2015-Jun. 2016) I became responsible for the reorganization of the
module “CE740 Mobile Communications” of the MSc Computer Networks and Security and of
the MSc in Electronic Engineering. The 12-weeks long module consisted of weekly lectures. Throughout
the semester, 3 different assignments are given. Topics covered included:

• Routing: routing for static networks (Dijkstra algorithm), dynamic source routing for ad-hoc
networks, clustering, data aggregation;

• MAC: Static access methods (TDMA, FDMA, CDMA, OFDMA), random access (Aloha, Slotted
Aloha, CSMA, CSMA / CD, CSMA / CA), MACA protocol, scatternets, piconets, master-slave
protocols, management power management / wake-up patterns, infrastructure networks and
ad-hoc networks, 802.11;

• Physical layer: wireless channel, capacity, waterfilling, diversity, modulation, OFDM, Direct
Sequence Spread Spectrum, Frequency Hopping Spread Spectrum, MIMO, 5G.

In addition, while at the University of Essex I supervised 3 MSc students in their projects, one of
which obtained an MSc by research dissertation (year-long research project, related conference paper
[C27]). Finally, I supervised 8 BSc projects, one of which was awarded the best departmental project
award on “Securing DNS on Android”.
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Middlesex University

Between January 2009 and April 2011, I held the position of Senior Lecturer at Middlesex University,
Department of Computer Communications. I was in charge of the course ”CCM4820 - Digital
Transmission Techniques” of the MSc in Telecommunications Engineering. In this context, I
designed and developed my own course on digital communications. Teaching at the master’s level
for the first time was a great experience for me. I was able to explore all aspects of the management
of teaching a course: the creation of the syllabus, the choice of the textbook, the employment and
supervision of teaching assistants, the development of tutorials, additional exams and materials,
preparation and presentation of courses. The course lasted 12 weeks during one semester, and included
2 hour lectures per week, weakly seminars and weakly lab sessions. Throughout the semester, 3 different
assignments were given. The typical class size ranged from 25 to 80 students, and gradually increased
over the years. Topics covered included:

• Stochastic signals, systems and processes, spectrum;

• Source coding: entropy, Huffman encoders, Lempel-Ziv encoders;

• Channel coding: block and convolution encoders, introduction to Turbo encoders;

• Digital modulation, OFDM systems;

• Multiple access techniques, TDMA, FDMA, CDMA, OFDMA;

• Introduction to MIMO systems, multi-path wireless channels, equalization;

• Introduction to optical systems.

In addition, I have supervised more than 25 master students in their projects, in a variety of subjects
and areas of research, including physical layer security, network security, detection of anomalies in
networks.

1.6 Research Supervision

My supervision activities at the PhD level include 2 students that have scheduled thesis defences for
September 2020 and two further that are ongoing. In detail:

1.6.1 PhD theses to be defended in September 2020:

PhD Student Mr. Miroslav Mitev
Supervision @60% for the period 25/4/2017-9/2020
Thesis title: ”Physical layer security for the Internet of things”.
Student co-supervised with Dr. M. Reed, Senior Lecturer at University of Essex, UK.
Thesis VIVA (defence) scheduled for September 2020.
Publications from thesis: [J21], [C37], [C36], [C33], [P1], [U1].
M. Mitev is registered at the Ecole Doctorale of CY University and was the thesis director between

April-August 2017 before joining ENSEA.

PhD student Mr. Sotiris Skaperas
Supervision @40% for the period 1/9/2017-9/2020
Thesis title: ”Data analysis and forecasting models for flexible resource management in 5th
generation networks”.
Co-supervised with Dr. L. Mamatas, Assistant professor at the University of Macedonia, GR.
Thesis defence scheduled for September 2020.
Publications from thesis: [J20], [J17], [C32], [U5].
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1.6.2 Ongoing theses

PhD student Mr. Gustavo Alonso Nunez Segura
Supervision @35% started on 1/2/2019.
Thesis title: ”Cooperative Intrusion Detection System for Software Defined Wireless Sensor
Networks”.
Co-supervised with Dr. Cintia Borges Margi, Associate Professor at the University of Sao Paolo,
BR.
Publications from thesis: [J18], [C39], [C35], [S1], [U2].

PhD student Mr. Mouktar Bello
Supervision @70% started on 1/11/2020.
Title: ”Meeting delay and security constraints in 6G wireless networks”.
Co-supervised with Prof. I. Fijalkow, ETIS/ENSEA, FR.
Publications from thesis: [C38], [U3, U4].

1.6.3 Current Postdoctoral Students

• Postdoc Dr. Mahdi Shakiba Herfeh: supervision @100%, 21/11/2019-20/5/2021 (fixed term 1.5
years), “Physical layer security for IoT applications”, project ELIOT ANR PRCI, ETIS/ENSEA
FR, publications: [BC3], [U1].

• Postdoc Dr. Nasim Ferdosian: supervision @90%, 1/1/2020-31/12/2021 (fixed term 2 years),
“Non-orthogonal multiple access techniques under security and delay constraints”, with Prof. I.
Fijalkow, ETIS/ENSEA, FR, publications: [U5].

1.7 Structure of the Rest of the Thesis

This thesis is structured around my most recent publications (dating within the last two years) with
the PhD students I supervise.

In Chapter 2, novel authentication protocols using PUFs and SKG proposed by Miroslav Mitev,
myself and Martin Reed are presented. This Chapter focuses on works presented in [J21] and [C33]
and [C37] and includec contributions by Dr. L. Musavian.

Next, in Chapter 3 a novel, real-time and non-parametric detector for changes in the mean value of
content popularity is discussed, reflecting [J17] and [C32] with Sotiris Skaperas and Lefteris Mamatas.
Additionally, the application of the same detector for intrusion detection in a software defined network
is demonstrated, showcasing part of our contributions with Gustavo Nunez and Cintia Borges Magri in
[J18] and [C35].

Chapter 4 includes some of our early results with Mouktar Bello, Wenjuan Wu and Leila Musavian
on the performance analysis of NOMA uplink networks under statistical delay constraints, published
in [C38].

Finally, my perspectives for future research in 6G technologies are presented in Chapter 5.
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Chapter 2

Security Protocols for Internet of
Things Applications

2.1 Introduction

With the emergence of 5G low latency applications, such as haptics and V2X, low complexity and
low latency security mechanisms are needed. Promising lightweight mechanisms include physical
unclonable functions (PUF) and secret key generation (SKG) at the physical layer, as considered in this
Chapter. In this framework we propose i) a zero-round-trip-time (0-RTT) resumption authentication
protocol combining PUF and SKG processes; ii) a novel authenticated encryption (AE) using SKG; iii)
pipelining of the AE SKG and the encrypted data transfer in order to reduce latency. Implementing
the pipelining at PHY, we investigate a parallel SKG approach for multi-carrier systems, where a
subset of the subcarriers are used for SKG and the rest for data transmission. The optimal solution
to this PHY resource allocation problem is identified under security, power and delay constraints,
by formulating the subcarrier scheduling as a subset-sum 0− 1 knapsack optimization. A heuristic
algorithm of linear complexity is proposed and shown to incur negligible loss with respect to the
optimal dynamic programming solution. All of the proposed mechanisms, have the potential to pave
the way for a new breed of latency aware security protocols.

2.2 Contributions and Chapter Organization

Many standard cryptographic schemes, particularly those in the realm of public key encryption (PKE),
are computationally intensive, incurring considerable overheads and can rapidly drain the battery of
power constrained devices [1], [2], notably in Internet of things (IoT) applications [3]. For example, a
3GPP report on the security of ultra reliable low latency communication (URLLC) systems notes that
authentication for URLLC is still an open problem [4]. Additionally, traditional public key generation
schemes are not quantum secure – in that when sufficiently capable quantum computers will be available
they will be able to break current known PKE schemes – unless the key sizes increase to impractical
lengths.

In the past years, physical layer security (PLS) [5–9] has been studied as a possible alternative to
classic, complexity based, cryptography. As an example, signal properties as in [10], can be exploited to
generate opportunities for confidential data transmission [11, 12]. Notably, PLS is explicitly mentioned
as a 6G enabling technology in the first white paper on 6G [13]: “The strongest security protection may
be achieved at the physical layer.” In this work, we propose to move some of the security core functions
down to the physical layer, exploiting both the communication radio channel and the hardware, as
unique entropy sources.

Since the wireless channel is reciprocal, time-variant and random in nature, it offers a valid,
inherently secure source that may be used in a key agreement protocol between two communicating
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parties. The principle of secret key generation (SKG) from correlated observations was first studied
in [14] and [15]. A straightforward SKG approach can be built by exploiting the reciprocity of the
wireless fading coefficients between two terminals within the channel coherence time [16] and the
contributions in this Chapter build upon this mechanism. This is pertinent to many forthcoming
B5G applications that will require a strong, but nevertheless, lightweight security key agreement; in
this direction, PLS may offer such a solution, or, complement existing algorithms. With respect to
authentication, physical unclonable functions (PUFs), firstly introduced in [17] (based on the idea
of physical one-way functions [18], [19]), could also enhance authentication and key agreement in
demanding scenarios, including (but not limited to) device to device (D2D) and tactile Internet.
We note that others also point to using physical layer security to reduce the resource overhead in
URLLC [20].

A further advantage of PLS is that it is information-theoretic secure [21], i.e., it is not open to
attack by future quantum computers, and, it requires lower computation costs. In this work, we will
discuss how SKG from shared randomness [22] is a promising alternative to PKE for key agreement.
However, unauthenticated key generation is vulnerable to man in the middle (MiM) attacks. In this
sense, PUFs, can be used in conjunction with SKG to provide authenticated secret key agreement. As
summarised in [19], the employment of PUFs can decrease the computational cost and play a pivotal
role in reducing the authentication latency in constrained devices.

In this study we introduce the joint use of PUF authentication and SKG in a zero-round-trip-time
(0-RTT) [23,24] approach, allowing to build quick authentication mechanisms with forward security.
Further, we develop an authenticated encryption (AE) primitive [25–27] based on standard SKG
schemes. To investigate a fast implementation of the AE SKG we propose a pipelined (parallel)
scheduling method for optimal resource allocation at the physical layer (PHY) (i.e., by optimal
allocation of the subcarriers in 5G resource blocks).

Next, we extend the analysis to account for statistical delay quality of service (QoS) guarantees, a
pertinent scenario in B5G. The support of different QoS guarantee levels is a challenging task. In fact,
in time-varying channels, such as in wireless networks, determining the exact delay-bound depending on
the users’ requirements, is impossible. However, a practical approach, namely the effective capacity [28],
can provide statistical QoS guarantees, and, can give delay-bounds with a small violation probability.
In our work, we employ the effective capacity as the metric of interest and investigate how the proposed
pipelined AE SKG scheme performs in a delay-constrained scenario.

The system model introduced in this work assumes that a block fading additive white Gaussian
noise (BF-AWGN) channel is used with multiple orthogonal subcarriers. In our parallel scheme a
subset of the subcarriers is used for SKG and the rest for encrypted data transfer. The findings of this
study are supported by numerical results, and the efficiency of the proposed parallel scheme is shown
to be greater or similar to the efficiency of an alternative approach in which SKG and encrypted data
transfer are sequentially performed.

To summarize, the contributions of this Chapter are as follows:

1. We combine PUF authentication and SKG for resumption key agreement in a single 0-RTT
protocol.

2. We develop an AE SKG scheme.

3. We propose a fast implementation of the AE SKG based on pipelining of key generation and
encrypted data transfer. This parallel approach is achieved by allocation of the PHY resources,
i.e., by optimal scheduling of the subcarriers in BF-AWGN channels.

4. We propose a heuristic algorithm of linear complexity that finds the optimal subcarrier allocation
with negligible loss in terms of efficiency.

5. We numerically compare the efficiency of our parallel approach with a sequential approach where
SKG and data transfer are performed sequentially. This comparison is performed in two delay
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Figure 2.1: Roadmap of contributions.

scenarios:

• When a relaxed QoS delay constraint is in place;

• When a stringent QoS delay constraint is in place.

A roadmap of the Chapter’s contributions is shown in Fig. 2.1.

2.2.1 Threat Model

In this work we assume a commonly used adversarial model with an active man-in-the-middle attacker
(Eve) and a pair of legitimate users (Alice and Bob). For simplicity, we assume a rich Rayleigh
multipath environment where the adversary is more than a few wavelengths away from each of the
legitimate parties. This forms the basis of our hypothesis that the measurements of Alice and Bob are
uncorrelated to the Eve’s measurements.

2.2.2 Notation

Random variables are denoted in italic font, e.g., x, vectors and matrices are denoted with lower and
upper case bold characters, e.g., x and X, respectively. Functions are printed in a fixed-width teletype
font, e.g., F. All sets of vectors are given with calligraphic font X and the elements within a set are
given in curly brackets e.g. {x,y}, the cardinality of a vector or set is defined by vertical lines e.g., |x|
or |X | . Concatenation and bit-wise XORing are represented as [x||y] and x⊕ y, respectively. We use
H to denote entropy, I mutual information, E expectation and C the set of complex numbers.

2.2.3 Chapter Organization

The rest of the Chapter is organized as follows: related work is discussed in Section 2.3 followed by
the general system model introduced in Section 2.4. The use of PUF authentication is illustrated in
Section 2.4.1, the baseline SKG in Section 2.4.2; next, in Sections 2.4.3 and 2.4.4 we present an AE
scheme using SKG and a resumption scheme to build a 0-RTT protocol. Subsequently, we evaluate
the optimal power and subcarrier allocation at PHY considering both the long term average rate in
Section 2.5 and the effective rate in Section 2.6. In Section 2.7, the efficiency of the proposed approach
is evaluated against that of a sequential approach, while conclusions are presented in Section 2.8.

2.3 Related Work

This work assumes the use of PUF-based authentication with SKG. PUFs are hardware entities based
on the physically unclonable variations that occur during the production process of silicon. These
unique and unpredictable variations allow the extraction of uniformly distributed binary sequences.
Due to their unclonability and simplicity, PUFs are seen as lightweight security primitives that can
offer alternatives to today’s authentication mechanisms. Furthermore, employing PUFs can eliminate
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the need of non-volatile memory, which reduces cost and complexity [29]. Common ways of extracting
secret bit sequences are through measuring jitter on oscillators, delays on gates, or, observing the
power up behavior of a silicon.

Numerous PUF architectures have been proposed for IoT applications in the literature. A few
of these architectures are: arbiter PUF [30], ring oscillator PUF [17], transient effect ring oscillator
PUF [31], static random-access memory PUF [32], hardware embedded delay PUF [33] and more [34].
Utilising these basic properties, many PUF-based authentication protocols have been proposed, both
for unilateral authentication [35,36] and mutual authentication [29,36–38]. A comprehensive survey on
lightweight PUF authentication schemes is presented by Delvaux et al. [39].

On the other hand, due to the nature of propagation in the shared, free-space medium, wireless
communications remain vulnerable to different types of attacks. Passive attacks such as eavesdropping
or traffic analysis can be performed by anyone in the vicinity of the communicating parties; to ensure
confidentiality, data encryption is vital for communication security. The required keys can be agreed
at PHY using SKG. In this case, all pilot exchanges need to take place over the coherence time of
the channel1, during which Alice and Bob can observe highly correlated channel states that can be
used to generate a shared secret key between them. SKG has been implemented and studied for
different applications such as vehicular communications [42, 43], underwater communications [44],
optical fiber [45], visible light communication [46] and more as summarized in [47]. The key conclusion
from these studies is that SKG shows promise as an important alternative to current key agreement
schemes.

Widely used sources of shared randomness used for SKG are the received signal strength (RSS)
and the full channel state information (CSI) [48]. In either case, it is important to build a suitable
pre-processing unit to decorrelate the signals in the time / frequency and space domains. As an
example, some recent works have shown that the widely adopted assumption [49] that a distance equal
to half of the wavelength (which at 2.4 GHz is approximately 6 cm [50]) is enough for two channels to
decorrelate, may not hold in reality [40]. Other works show that the mobility can highly increase the
entropy of the generated key [51,52] while an important issue with the RSS-based schemes is that they
are open to predictable channel attacks [40,53]. These important issues need to be explicitly accounted
for in actual implementations, but fall outside the scope of the present Chapter. We note in passing
that pilot randomization can be employed to overcome limitations related to channel predictability [54].

2.4 Node Authentication Using PUFs and SKG

In this Section we present a joint physical layer SKG and PUF authentication scheme. To the best of
our’ knowledge this is the first work that proposes the utilization of the two schemes in conjunction. As
discussed in Section 2.3, many PUF authentication protocols have been proposed in the literature, with
even a few commercially available [55,56]. We do not look into developing a new PUF architecture or a
new PUF authentication protocol, instead, we look at combining existing PUF mechanisms with SKG.
In addition, we develop an AE scheme that can prevent tampering attacks. To further develop our
hybrid crypto-system we propose a resumption type of authentication protocol, inspired by the 0-RTT
authentication mode in the transport layer security (TLS) 1.3 protocol. The resumption protocol is
important as it significantly reduces the use of the PUF to the initial authentication, thus, overcoming
the limitation of a PUFs’ challenge response space [34,57].

1The coherence time corresponds to the interval during which the multipath properties of wireless channels (channel
gains, signal phase, delay) remain stable [40–42]. It is inversely proportional to the Doppler spread, which on the other
hand, is a dispersion metric that accounts for the spectral broadening caused by the user’s mobility (for more details and
derivation please see [41]).
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2.4.1 Node Authentication Using PUFs

As discussed in Section 3.9.3, for security against MiM attacks, the SKG needs to be protected through
authentication. While existing techniques, such as the extensible authentication protocol-transport
layer security (EAP-TLS), could be used as the authentication mechanism, these are computationally
intensive and can lead to significant latency [58,59].

This leads to the motivation to seek lightweight authentication mechanisms that can be used in
conjunction with SKG. Such a mechanism that is achieving note within the research community uses a
PUF. A typical PUF-based authentication protocol consists of two main phases, namely enrolment phase
and authentication phase [60–64]. During the enrolment phase each node runs a set of challenges on
its PUF and characterizes the variance of the measurement noise in order to generate side information.
Next, a verifier creates and stores a database of all challenge-response pairs (CRPs) for each node’s
PUF within its network. A CRP pair in essence consists of an authentication key and related side
information. Within the database, each CRP is associated with the ID of the corresponding node.

Later, during the authentication phase a node sends its ID to the verifier requesting to start a
communication. Receiving the request, the verifier checks if the received ID exists in its database. If it
does, the verifier chooses a random challenge that corresponds to this ID and sends it to the node. The
node computes the response by running the challenge on its PUF and sends it to the verifier. However,
the PUF measurements at the node are never exactly the same due to measurement noise, therefore,
the verifier uses the new PUF measurement and the side information stored during the enrollment to
re-generate the authentication key. Finally, the verifier compares the re-generated key to the one in
the CRP and if they are identical the authentication of the node is successful. A simple approach to
prevent replay attacks consists in deleting a CRP from the verifier database once it is used, but more
elaborate schemes can also be built.

In summary, the motivation for using a PUF authentication scheme in conjunction with SKG is
to exclude all of the computationally intensive operations required by EAP-TLS, which use modulo
arithmetic in large fields. Measurements performed on current public key operations within EAP-TLS
on common devices (such as IoT) give average authentication and key generation times of approximately
160 ms in static environments and this can reach up to 336 ms in high mobility conditions [65].

On the other hand, PUF authentication protocols have very low computational overhead and require
overall authentication times that can be less than 10 ms [61, 66]. Furthermore, our key generation
scheme, proposed in Section 2.4.2, requires just a hashing operation and (syndrome) decoding. Hashing
mechanisms such as SHA256 performed on an IoT device require less than 0.3ms [66,67]. Regarding
the decoding, if we assume the usage of standard LDPC or BCH error correcting mechanisms, even in
the worst-case scenario with calculations carried out as software operations, the computation is trivial
compared to the hashing and requires less computational overhead [68].

2.4.2 SKG procedure

The SKG system model is shown in Fig. 2.2. This assumes that two legitimate parties, Alice and
Bob, wish to establish a symmetric secret key using the wireless fading coefficients as a source of
shared randomness. Throughout our work a rich Rayleigh multipath environment is assumed, such
that the fading coefficients rapidly decorrelate over short distances [16]. Furthermore, Alice and
Bob communicate over a BF-AWGN channel that comprises N orthogonal subcarriers. The fading
coefficients h = [h1, . . . , hN ], are assumed to be independent and identically distributed (i.i.d), complex
circularly symmetric zero-mean Gaussian random variables hj ∼ CN (0, σ2), j = 1, . . . , N . Although in
actual multicarrier systems neighbouring subcarriers will typically experience correlated fading, in the
present work this effect is neglected as its impact on SKG has been treated in numerous contributions
in the past [69–71] and will not enhance the problem formulation in the following Sections.

The SKG procedure encompasses three phases: advantage distillation, information reconciliation,
and privacy amplification [14], [15] as described below:
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Figure 2.2: Secret key generation between Alice and Bob.

1) Advantage distillation: This phase takes place during the coherence time of the channel. The
legitimate nodes sequentially exchange constant probe signals with power P on all subcarriers2, to
obtain estimates of their reciprocal CSI. We note in passing that the pilot exchange phase can be
made robust with respect to injection type of attacks (that fall in the general category of MiM) as
analyzed in [54]. Commonly, the received signal strength (RSS) has been used as the source of shared
randomness for generating the shared key, but it is possible to use the full CSI [72]. At the end of
this phase, Alice and Bob obtain observation vectors xA = [xA,1, . . . , xA,N ],xB = [xB,1, . . . , xB,N ],
respectively, so that:

xA =
√
Ph + zA, (2.1)

xB =
√
Ph + zB, (2.2)

where zA and zB denote zero-mean, unit variance circularly symmetric complex AWGN random vectors,
such that (zA, zB) ∼ CN (0, I2N ). On the other hand, Eve observes xE = [xE,1, . . . , xE,N ] with:

xE =
√
PhE + zE . (2.3)

Due to the rich Rayleigh multipath environment, Eve’s channel measurement hE is assumed uncorrelated
to h and zE denotes a zero-mean, unit variance circularly symmetric complex AWGN random vector
zE ∼ CN (0, IN ).

2) Information reconciliation: At the beginning of this phase the observations xA,j , xB,j are
quantized to binary vectors3 rA,j , rB,j j = 1, . . . , N [73–75], so that Alice and Bob distill rA =
[rA,1|| . . . ||rA,N ] and rB = [rB,1|| . . . ||rB,N ], respectively. Due to the presence of noise, rA and rB will
differ. To reconcile discrepancies in the quantizer local outputs, side information needs to be exchanged
via a public channel. Using the principles of Slepian Wolf decoding, the distilled binary vectors can be

2An explanation of the optimality of this choice under different attack scenarios is discussed in [22].
3Note that each observation can generate a multi-bit vector at the output of the quantizer.
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expressed as

rA = d + eA, (2.4)

rB = d + eB, (2.5)

where eA, eB are error vectors that represent the distance from the common observed (codeword)
vector d at Alice and Bob, respectively.

Numerous practical information reconciliation approaches using standard forward error correction
codes (e.g., LDPC, BCH, etc.,) have been proposed [16], [72]. As an example, if a block encoder is used,
then the error vectors can be recovered from the syndromes sA and sB of rA and rB, respectively. Alice
transmits her corresponding syndrome to Bob so that he can reconcile rB to rA. It has been shown
that the length of the syndrome |sA| is lower bounded by |sA| ≥ H(xA|xB) = H(xA,xB)−H(xB) [15].
This has been numerically evaluated for different scenarios and coding techniques [74,76–78]. Following
that, the achievable SKG rate is upper bounded by I(xA; xB|xE).

3) Privacy amplification: The secret key is generated by passing rA through a one-way collision
resistant compression function i.e., by hashing. Note that this final step of privacy amplification, is
executed locally without any further information exchange. The need for privacy amplification arises
in order to suppress the entropy revealed due to the public transmission of the syndrome sA. Privacy
amplification produces a key of length strictly shorter than |rA|, at least by |sA|. At the same time,
the goal is for the key to be uniform, i.e., to have maximum entropy. In brief, privacy amplification
reduces the overall output entropy while at the same time increases the entropy per bit – compared to
the input.

The privacy amplification is typically performed by applying either cryptographic hash functions
such as those built using the Merkle-Damgard construction, or universal hash functions and has been
proven to be secure, in an information theoretic sense, through the leftover hash lemma [79]. As an
example, [40, 80] use a 2-universal hash family to achieve privacy amplification. Summarizing, the
maximum key size after privacy amplification is:

|k| ≤ H(xA)− I(xA; xE)−H(xA|xB)− r0, (2.6)

where H(xA) represents the entropy of the measurement, I(xA; xE) represents the mutual information
between Alice’s and Eve’s observations, H(xA|xB) represents the entropy revealed during information
reconciliation and r0 > 0 is an extra security parameter that ensures uncertainty on the key at Eve’s
side. For details and estimation of these parameters in a practical scenario please see [81].

As shown in this Section the SKG procedure requires only a few simple operations such as
quantization, syndrome calculation and hashing. In future work we will examine the real possibilities
of implementing such a mechanism in practical systems.

2.4.3 AE Using SKG

To develop a hybrid cryptosystem that can withstand tampering attacks, SKG can be introduced in
standard AE schemes in conjunction with standard block ciphers in counter mode (to reduce latency),
e.g., the advanced encryption standard (AES) in Galois counter mode (GCM). As a sketch of such a
primitive, let us assume a system with three parties: Alice who wishes to transmit a secret message m
with size |m|, to Bob with confidentiality and integrity, and Eve, that can act as a passive and active
attacker. The following algorithms are employed:

• The SKG scheme denoted by G : C→ K×S, accepting as input the fading coefficients (modelled
as complex numbers), and generating as outputs binary vectors k and sA in the key and syndrome
spaces, of sizes |k| and |sA|, respectively,

G(h) = (k, sA) , (2.7)
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Figure 2.3: Pipelined SKG and encrypted data transfer between Alice and Bob.
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where k ∈ K denotes the key obtained from h after privacy amplification and sA is Alice’s
syndrome.

• A symmetric encryption algorithm, e.g., AES GCM, denoted by Es : K ×M → CT where CT
denotes the ciphertext space with corresponding decryption Ds : K × CT →M, such that

Es(k,m) = c, (2.8)

Ds(k, c) = m, (2.9)

for m ∈M, c ∈ CT .

• A pair of message authentication code (MAC) algorithms, e.g., in hashed-MAC (HMAC) mode,
denoted by Sign : K×M→ T , with a corresponding verification algorithm Ver : K×M×T →
(yes, no), such that

Sign(k,m) = t, (2.10)

Ver(k,m, t) =

{
yes, if integrity verified
no, if integrity not verified

(2.11)

A hybrid crypto-PLS system for AE SKG can be built as follows:

1. The SKG procedure is launched between Alice and Bob generating a key and a syndrome
G(h)=(k, sA).

2. Alice breaks her key into two parts k = {ke,ki} and uses the first to encrypt the message as
c = Es(ke,m). Subsequently, using the second part of the key she signs the ciphertext using the
signing algorithm t = Sign(ki, c) and transmits to Bob the extended ciphertext [sA‖c‖t], as it is
depicted in Fig. 2.3.

3. Bob checks first the integrity of the received ciphertext as follows: from sA and his own observation
he evaluates k = {ke,ki} and computes Ver(ki, c, t). The integrity test will fail if any part of the
extended ciphertext was modified, including the syndrome (that is sent as plaintext); for example,
if the syndrome was modified during the transmission, then Bob would not have evaluated the
correct key and the integrity test would have failed.

4. If the integrity test is successful then Bob decrypts m=Ds(ke, c).

2.4.4 Resumption Protocol

In Section 2.4.1 we discussed that using PUF authentication can greatly reduce the computational
overhead of a system. Authentication of new keys is required at the start of communication and at each
key renegotiation. However, the number of challenges that can be applied to a single PUF is limited.
Due to that we present a solution that is inspired by the 0-RTT authentication mode introduced in
the 1.3 version of the TLS [23]. The use of 0-RTT obviates the need of performing a challenge for
every re-authentication through the use of a resumption secret rs, thus reducing latency. Another
strong motivation for using this mechanism is that it is forward secure in the scenario we are using
here [24]. We first briefly describe the TLS 0-RTT mechanism before describing a similarly inspired
0-RTT mechanism applied to the information reconciliation phase of our SKG mechanism.

The TLS 1.3 0−RTT handshake works as follows: In the very first connection between client and
server a regular TLS handshake is used. During this step the server sends to the client a look-up
identifier kl for a corresponding entry in session caches or it sends a session ticket. Then both parties
derive a resumption secret rs using their shared key and the parameters of the session. Finally, the
client stores the resumption secret rs and uses it when reconnecting to the same server which also
retrieves it during the re-connection.
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If session tickets are used the server encrypts the resumption secret using long-term symmetric
encryption key, called a session ticket encryption key (STEK), resulting in a session ticket. The session
ticket is then stored by the client and included in subsequent connections, allowing the server to retrieve
the resumption secret. Using this approach the same STEK is used for many sessions and clients. On
one hand, this property highly reduces the required storage of the server, however, on the other hand,
it makes it vulnerable to replay attacks and not forward secure. Due to these vulnerabilities, in this
work we focus on the session cache mechanism described next.

When using session caches the server stores all resumption secrets and issues a unique look-up
identifier kl for each client. When a client tries to reconnect to that server it includes its look-up
identifier kl in the 0-RTT message, which allows the server to retrieve the resumption secret rs. Storing
a unique resumption secret rs for each client requires server storage for each client but it provides
forward security and resilience against replay attacks, when combined with a key generation mechanisms
such as Diffie Hellman (or the SKG proposed in the present) which are important goals for security
protocols [24]. In our physical layer 0-RTT, given that a node identifier state would be required for
link-layer purposes, the session cache places little comparative load and thus is the mechanism proposed
here for (re-)authentication.

The physical layer resumption protocol modifies the information reconciliation phase of Section
2.4.2 following initial authentication to provide a re-authentication mechanism between Alice and Bob.
At the first establishment of communication we assume initial authentication is established, such as
the mechanism shown in Section 2.4.1. During that Alice sends to Bob a look-up identifier kl. Then,
both derive a resumption secret rs that is identified by kl. Note, rs and the session key have the same
length |k|. Then referring to the notation and steps in Section 4.1-4.3:

1. Advantage distillation phase is carried out as before (See section 2.4.2), where both parties obtain
channel observations and obtain the vectors rA and rB.

2. During the information reconciliation phase both Alice and Bob exclusive-or the resumption
secret rs with their observations rA and rB, obtaining syndromes s′A and s′B with which both
parties can carry out reconciliation to obtain the same shared value which is now rA ⊕ rs.

3. The privacy amplification step in Section 4.2 is carried out as before, but now the hashing takes
place on rA ⊕ rs to produce the final shared key k′ that is a result of both the shared wireless
randomness and the resumption secret.

Note that the key k′ can only be obtained if both the physical layer generated key and the
resumption key are valid and this method can be shown to be forward secure [24].

2.5 Pipelined SKG and Encrypted Data Transfer

As explained in the previous Section, if Alice and Bob follow the standard sequential SKG process
they can exchange encrypted data only after both of them have distilled the key at the end of the
privacy amplification step. In this Section, we propose a method to pipeline the SKG and encrypted
data transfer. Alice can unilaterally extract the secret key from her observation and use it to encrypt
data transmitted in the same “extended” ciphertext that contains the side information (see Fig. 2.3).
Subsequently, using the side information, Bob can distill the same key k and decrypt the received data
in one single step.

We have discussed in Section 2.4.2 how Alice and Bob can distill secret keys from estimates of the
fading coefficients in their wireless link and in Section 2.4.3 how these can be used to develop an AE
SKG primitive. At the same time CSI estimates are prerequisite in order to optimally allocate power
across the subcarriers and achieve high data rates4. As a result, a question that naturally arises is

4As an example, despite the extra overhead, in URLLC systems advanced CSI estimation techniques are employed in
order to be able to satisfy the strict reliability requirements.
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whether the CSI estimates (obtained at the end of the pilot exchange phase), should be used towards
the generation of secret keys or towards the reliable data transfer, and, furthermore, whether the SKG
and the data transfer can be inter-woven using the AE SKG principle.

In this study, we are interested in answering this question and shed light into whether following
the exchange of pilots, Alice should transmit reconciliation information on all subcarriers, so that she
and Bob can generate (potentially) a long sequence of key bits, or, alternatively, perform information
reconciliation only over a subset of the subcarriers and transmit encrypted data over the rest, exploiting
the idea of the AE SKG primitive. Note here that the data can be already encrypted with the key
generated at Alice, the sender of the side information, so that the proposed pipelining does not require
storing keys for future use. We will call the former approach a sequential scheme, while we will refer to
the latter as a parallel scheme. The two will be compared in terms of their efficiency with respect to
the achievable data rates.

A simplified version of this problem, where the reconciliation rate is roughly approximated to the
SKG rate, was investigated in [82]. In this study it was shown that in order to maximize the data
rates in the parallel approach Alice and Bob should use the strongest subcarriers – in terms of SNR –
for data transmission and the worst for SKG. Under this simplified formulation, the optimal power
allocation for the data transfer has been shown to be a modified waterfilling solution.

Here, we explicitly account for the rate of transmitting reconciliation information and differentiate
it from the SKG rate. We confirm whether the policy of using the strongest subcarriers for data
transmission and not for reconciliation, is still optimal when the full optimization problem is considered,
including the communication cost for reconciliation.

As discussed in Section 2.4.2, our physical layer system model assumes Alice and Bob exchange
data over a Rayleigh BF-AWGN channel with N orthogonal subcarriers. Without loss of generality
the variance of the AWGN in all links is assumed to be unity. During channel probing, constant pilots
are sent across all subcarriers [16, 83] with power P . Using the observations (2.1), Alice estimates the
channel coefficients as

ĥj = hj + h̃j , (2.12)

for j = 1, . . . , N where h̃j denotes an estimation error that can be assumed to be Gaussian, h̃j ∼
CN (0, σ2

e) [84]. Under this model, the following rate is achievable on the j-th subcarrier from Alice to
Bob when the transmit power during data transmission is pj [84]:

Rj = log2

(
1 +

gjpj
σ2
eP + 1

)
= log2(1 + ĝjpj), (2.13)

where we use ĝi = gi
σ2
i,eP+1

, to denote the estimated channel gains. As a result, the channel capacity

C =
∑N

j=1Rj under the short term power constraint

N∑
j=1

pj ≤ NP, pj ≥ 0, ∀j ∈ {1, . . . , N}, (2.14)

is achieved with the well known waterfilling power allocation policy pj =
[

1
λ −

1
ĝj

]+
, where the water-

level λ is estimated from the constraint (2.14). In the following, the estimated channel gains ĝj are –
without loss of generality – assumed ordered in descending order, so that:

ĝ1 ≥ ĝ2 ≥ . . . ≥ ĝN . (2.15)

As mentioned above, the advantage distillation phase of the SKG process consists of the two-way
exchange of pilot signals during the coherence time of the channel to obtain rA,j , rB,j , j = 1, . . . , N .
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On the other hand, the CSI estimation phase can be used to estimate the reciprocal channel gains in
order to optimize data transmission using the waterfilling algorithm. In the former case, the shared
parameter is used for generating symmetric keys, in the latter for deriving the optimal power allocation.
In the parallel approach the idea is to inter-weave the two procedures and investigate whether a joint
encrypted data transfer and key generation scheme as in the AE SKG in Section 4.3 could bear any
advantages with respect to the system efficiency. While in the sequential approach the CSI across all
subcarriers will be treated as a source of shared randomness between Alice and Bob, in the parallel
approach it plays a dual role.

2.5.1 Parallel Approach

In the parallel approach, after the channel estimation phase, the legitimate users decide on which
subcarrier to send the reconciliation information (e.g., the syndromes as discussed in Section 2.4.2)
and on which data (i.e., the SKG process here is not performed on all of the subcarriers). The total
capacity has now to be distributed between data and reconciliation information bearing subcarriers.
As a result, the overall set of orthogonal subcarriers comprises two subsets; a subset D that is used for
encrypted data transmission with cardinality |D| = D and a subset D̆ with cardinality |D̆| = N −D
used for reconciliation such that, D ∪ D̆ = {1, . . . , N}. Over D the achievable sum data transfer rate,
denoted by CD is given by

CD =
∑
j∈D

log2(1 + ĝjpj), (2.16)

while on the subset D̆, Alice and Bob exchange reconciliation information at rate

CR =
∑
j∈D̆

log2(1 + ĝjpj). (2.17)

As stated in Section 2.4.2 the fading coefficients are assumed to be zero-mean circularly-symmetric
complex Gaussian random variables. Using the theory of order statistics, the distribution of the ordered
channel gains of the SKG subcarriers, j ∈ D̆, can be expressed as [85]:

f(gj)=
N !

σ2(N − j)!(j − 1)!

(
1− e−

ĝj

σ2

)N−j(
e−

ĝj

σ2

)j
, (2.18)

where σ2 is the variance of the channel gains. As a result of ordering the subcarriers, the variance of
each of the subcarriers, is now given by:

σ2
j = σ2

N∑
q=j

1

q2
, j ∈ {D + 1, . . . , N}. (2.19)

Thus, we can now write the SKG rate as (note that the noise variances are here normalized to unity
for simplicity) [16,83]:

CSKG =
∑
j∈D̆

log2

1 +
Pσ2

j

2 + 1
Pσ2

j

 . (2.20)

The minimum rate necessary for reconciliation was discussed in Section 4.2. Here, alternatively,
we employ a practical design approach in which the rate of the encoder used is explicitly taken into
account. Note that in a rate k

n block encoder the side information is n− k bits long, i.e., the rate of

syndrome to output key bits after privacy amplification is n−k
k . However, in each key session a 0-RTT

look-up identifier of length k is also sent. Therefore, we define the parameter κ = n−k
k + 1 = n

k , i.e.,
the inverse of the encoder rate, that reflects the ratio of the reconciliation and 0-RTT transmission
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rate to the SKG rate. For example, for a rate k
n = 1

2 encoder, κ = 2, etc. Based on this discussion, we
capture the minimum requirement for the reconciliation rate through the following expression:

CR ≥ κCSKG. (2.21)

Furthermore, to identify the necessary key rate, we note that depending on the exact choices of
the cryptographic suites to be employed, it is possible to reuse the same key for the encryption of
multiple blocks of data, e.g., as in the AES GCM, that is being considered for employment in the
security protocols for URLLC systems [4]. In practical systems, a single key of length 128 to 256 bits
can be used to encrypt up to gigabytes of data. As a result, we will assume that for a particular
application it is possible to identify the ratio of key to data bits, which in the following we will denote
by β. Specifically, we assume that the following security constraint should be met

CSKG ≥ βCD, 0 < β ≤ 1, (2.22)

where, depending on the application, the necessary minimum value of β can be identified. We note
in passing that the case β = 1 would correspond to a one-time-pad, i.e., the generated keys could be
simply x-ored with the data to achieve perfect secrecy without the need of any cryptographic suites.

Accounting for the reconciliation rate and security constraints in (2.21) and (2.22) we formulate
the following maximization problem:

max
pj ,j∈D

∑
j∈D

Rj (2.23)

s.t. (2.14), (2.21), (2.22),∑
j∈D

Rj +
∑
j∈D̆

Rj ≤ C. (2.24)

(2.22) can be integrated with (2.21) to the combined constraint

∑
j∈D

Rj ≤

∑
j∈D̆

Rj

κβ
. (2.25)

The optimization problem at hand is a mixed-integer convex optimization problem with unknowns both
the sets D, D̆, as well as the power allocation policy pj , j ∈ {1, . . . , N}. These problems are typically
NP hard and addressed with the use of branch and bound algorithms and heuristics.

In this work, we propose a simple heuristic to make the problem more tractable by reducing the
number of free variables. In the proposed approach, we assume that the constraint (2.24) is satisfied
with equality. The only power allocation that allows this is the waterfilling approach that uniquely
determines the power allocation pj and also requires that the constraint (2.14) is also satisfied with
equality. Thus, if we follow that approach, we determine the power allocation vector uniquely and can
combine the remanining constraints (2.24) and (2.25) into a single one as:∑

j∈D
Rj ≤

C

κβ + 1
. (2.26)
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Algorithm 1: Heuristic Greedy Algorithm for (2.27)-(2.28)

1: procedure Heuristic(start, end, Rj)
2: j ← 1, R0 ← 0, RN+1 ← 0
3: while j ≤ N − 1 and

∑N
j=1Rjxj ≤

C
1+κβ do

4:
∑N

j=1Rjxj ←
∑N

j=1Rj−1xj−1 +Rjxj

5: if
∑N

j=1Rjxj ≤
C

1+κβ then
6: xj ← 1; j ← j + 1
7: else do xj ← 0; j ← j + 1
8: end if
9: end while

10: end procedure

The new optimization problem can be re-written as

max
xj∈{0,1}

N∑
j=1

Rjxj (2.27)

s.t.
N∑
j=1

Rjxj ≤
C

1 + κβ
. (2.28)

The problem in (2.27)-(2.28) is a subset-sum problem from the family of 0− 1 knapsack problems, that
is known to be NP hard [86]. However, these type of problems are solvable optimally using dynamic
programming techniques in pseudo-polynomial time [86, 87]. Furthermore, it is known that greedy
heuristic approaches are bounded away from the optimal solution by half [88].

We propose a simple greedy heuristic algorithm of linear complexity, as follows.5 The data
subcarriers are selected starting from the best – in terms of SNR – until (2.28) is not satisfied. Once
this situation occurs the last subcarrier added to set D is removed and the next one is added. This
continues either to the last index N or until (2.28) is satisfied with equality. The algorithm is described
in Algorithm 1.

The efficiency of the proposed parallel method – measured as the ratio of the long-term data rate
versus the average capacity – is evaluated as:

ηparallel =

E

[∑
j∈D

Rj

]
E[C]

. (2.29)

This efficiency quantifies the expected back-off in terms of data rates when part of the resources (power
and frequency) are used to enable the generation of secret keys at the physical layer. In future work,
we will compare the efficiency achieved to that of actual approaches currently used in 5G by accounting
for the actual delays incurred due to the PKE key agreement operations [20].

2.5.2 Sequential Approach

In the sequential approach encrypted data transfer and secret key generation are two separate events;
first, the secret keys are generated over the whole set of subcarriers, leading to a sum SKG rate given

5Without loss of generality, the algorithm assumes that the channel gains are ordered in decreasing order as in (2.15),
and, consequently, the rates Rj are also ordered in descending order. The ordering is a O(N logN) operation and required
in common power allocation schemes such as the waterfilling, and, therefore does not come at any additional cost.
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as

CSKG = N log2

(
1 +

Pσ2

2 + 1
Pσ2

)
. (2.30)

To estimate the efficiency of the scheme, we further need to identify the necessary resources for the
exchange of the reconciliation information. We can obtain an estimate of the number of transmission
frames that will be required for the transmission of the syndromes, as the expected value of the
reconciliation rate (i.e., it’s long-term value) E[CR]. The average number of frames needed for
reconciliation is then computed as:

M =

⌈
κCSKG
E[CR]

⌉
, (2.31)

where dxe denotes the smallest integer that is larger than x.

The average number of the frames that can be sent while respecting the secrecy constraint is:

L =

⌊
CSKG
βE[C]

⌋
, (2.32)

where bxc denotes the largest interger that is smaller than x. The efficiency of the sequential method
is then calculated as:

ηsequential =
L

L+M
. (2.33)

2.6 Effective Data Rate Taking into Account Statistical Delay QoS
Requirements

In the previous section, we investigated the optimal power and subcarrier allocations strategy of Alice
and Bob in order to maximize their long-term average data rate and proposed a greedy heuristic
algorithm of linear complexity. Here, we extend our work from Section 2.5 by taking into account delay
requirements. In detail, we investigate the optimal resource allocation for Alice and Bob, when their
communication has to satisfy specific delay constraints. To this end, we use the theory of effective
capacity [28] which gives a limit for the maximum arrival rate under delay-bounds with a specified
violation probability.

We study the effective data rate for the proposed pipelined SKG and encrypted data transfer
scheme; the effective rate is a data-link layer metric that captures the impact of statistical delay
QoS constraints on the transmission rates. As background, we refer to [89] which showed that the
probability of a steady-state queue length process Q(t) exceeding a certain queue-overflow threshold x
converges to a random variable Q(∞) as:

lim
x→∞

ln(Pr[Q(∞) > x])

x
= −θ, (2.34)

where θ indicates the asymptotic exponential decay-rate of the overflow probability. For a large
threshold x, (2.34) can be represented as Pr[Q(∞) > x] ≈ e−θx. Furthermore, the delay-outage
probability can be approximated by [28] :

Prout
delay=Pr[Delay>Dmax]≈Pr[Q(∞)>0]e−θζDmax , (2.35)

where Dmax is the maximum tolerable delay, Pr[Q(∞) > 0] is the probability of a non-empty buffer,
which can be estimated from the ratio of the constant arrival rate to the averaged service rate, ζ is the
upper bound for the constant arrival rate when the statistical delay metrics are satisfied.

Using the delay exponent θ and the probability of non-empty buffer, the effective capacity, that
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denotes the maximum arrival rate, can be formulated as [28]:

EC(θ) = − lim
t→∞

1

θ
lnE

[
e−θS[t]

]
(bits/s), (2.36)

where S[t] =
∑t

i=1 s[i] denotes the time-accumulated service process, and s[i], i = 1, 2, ... denotes
the discrete-time stationary and ergodic stochastic service process. Therefore, the delay exponent θ
indicates how strict the delay requirements are, i.e., θ → 0 corresponds to looser delay requirements,
while θ → ∞ implies exceptionally stringent delay constraints. Assuming a Rayleigh block fading
system, with frame duration Tf and total bandwidth B, we have s[i] = TfBR̃i, with R̃i representing
the instantaneous service rate achieved during the duration of the ith frame. In the context of the
investigated data and reconciliation information transfer, R̃i, is given by:

R̃i =
1

F

∑
i∈D

log2(1 + piĝi), (2.37)

where F is the equivalent frame duration, i.e., the total number of subcarriers used for data transmission,
so that for the parallel approach we have F = |D| while for the sequential approach F = N(L+M)L−1.

Under this formulation and assuming that Gärtner-Ellis theorem [90,91] is satisfied, the effective
data rate6 EC(θ) is given as:

EC,D(θ) = − 1

θTfB
ln
(
E
[
e−θTfBR̃i

])
. (2.38)

We set α =
θTfB
ln(2) . By inserting (2.37) into (2.38) we get:

EC,D(θ)=− 1

ln(2)α
ln
(
E
[
e− ln(2)αF−1

∑
i∈Dlog2(1+piĝi)

])
,

EC,D(θ)= − 1

α
log2

(
E

[∏
i∈D

(1 + piĝi)
−αF−1

])
. (2.39)

Assuming i.i.d. channel gains, by using the distributive property of the mathematical expectation,
(2.39) becomes [92]:

EC,D(θ)= − 1

α
log2

(∏
i∈D

E
[
(1 + piĝi)

−αF−1
])

. (2.40)

We further manipulate by using the log-product rule to obtain:

EC,D(θ) = − 1

α

∑
i∈D

log2

(
E
[
(1 + piĝi)

−αF−1
])
. (2.41)

Similarly, the effective syndrome rate can be written as:

EC ˘,D(θ) = − 1

α

∑
i∈D̆

log2

(
E
[
(1 + piĝi)

−αF̆−1
])
, (2.42)

where the size of F̆ here is |N −D|.

6Since part of the transmission rate is used for reconciliation information, and part for data transmission the terms
“effective syndrome rate” and “effective data rate” are introduced instead of the term “effective capacity”, for rigour. We
note that we assume the information data and reconciliation information are accumulated in separate independent buffers
within the transmitter.
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Using that, we now reformulate the maximization problem given in (2.23) by adding a delay
constraint. The reformulated problem can be expressed as follows:

max
pj ,j∈D

EC,D(θ), (2.43)

s.t. (2.14), (2.25),

EC,D(θ) + EC,D̆(θ) ≤ Eopt
C (θ), (2.44)

where Eopt
C (θ) represents the maximum achievable effective capacity for both key and data transmission

for a given value of θ over N subcarriers:

Eopt
C (θ)=max

pi,i=1,2,...N

{
− 1

α
log2

(
E

[
N∏
i=1

(1 + piĝi)
−αN−1

])}
. (2.45)

In the proposed approach, we assume that the constraint (2.44) is satisfied with equality. Given
that, the optimization problem in (2.43) can be evaluated as two sub-optimization problems: i) finding
the optimal long term power allocation from (2.14) and (2.45); ii) finding the optimal subcarrier
allocation that satisfies (2.25). We solve the first problem that gives the optimal power allocation using
convex optimization tools. Next, as in Section 2.5 we use two methods to solve subcarrier allocation
problem, i.e., by formulating a subset-sum 0 – 1 knapsack optimization problem or through a variation
of Algorithm 1. The efficiency of both methods is compared numerically to the sequential method in
Section 3.10.

Now, following the same steps as in (2.39)-(2.41) and using the fact that maximizing EC(θ) is
equivalent to minimizing −EC(θ) (this is due to log(·) being a monotonically increasing concave
function for any θ > 0) we formulate the following minimization problem:

min
pi,i=1,2,...N

N∑
i=1

(
E
[
(1 + piĝi)

−αN−1
])
, (2.46)

s.t. (2.14).

where F = N in this case as the full set of subcarriers is concerned. We form the Lagrangian function
L as:

L =
(
E
[
(1 + piĝi)

−αN−1
])

+ λ

(
N∑
i=1

pi −NP

)
. (2.47)

By differentiating (2.47) w.r.t. pi and setting the derivative equal to zero [93] we get:

∂L
∂pi

= λ− αĝi
N

(ĝipi + 1)−
α
N
−1 = 0. (2.48)

Solving (2.48) gives the optimal power allocation policy:

p∗i =
1

g
N

α+N

0 ĝ
α

α+N

i

− 1

ĝi
, (2.49)

where g0 = Nλ
α is the cutoff value which can be found from the power constraint. By inserting p∗i in
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Figure 2.4: a) Efficiency comparison for N = 12,
SNR=10 dB and κ = 2.

Figure 2.4: b) Efficiency comparison for N = 64,
SNR=10 dB and κ = 2.

EC(θ) we obtain the expression for Eopt
C (θ):

Eopt
C (θ) = − 1

α

N∑
i=1

log2

(
E

[(
ĝi
g0

)− α
α+N

])
(2.50)

When θ → 0 the optimal power allocation is equivalent to water-filling and when θ →∞ the optimal
power allocation transforms to total channel inversion.

Now, fixing the power allocation as in (2.49) we can easily find the optimal subcarrier allocation
that satisfies (2.25). As in Section 2.5 to do that we first formulate a subset-sum 0 – 1 knapsack
optimization problem that we solve using the standard dynamic programming approach. Furthermore
we evaluate the performance of the heuristic algorithm presented in Algorithm 1.

2.7 Results and Discussion

In this Section we provide numerical evaluations of the efficiency that can be achieved with the presented
methods (i.e., sequential and parallel) for different values of the main parameters. With respect to the
parallel approach, we provide numerical results of the optimal dynamic programming solution of the
subset-sum 0− 1 knapsack problem, as well as of the greedy heuristic approach presented in Algorithm
1. For the case of the long term average data rate CD (2.16), we compare the two methods through
their efficiencies, i.e. ηsequential and ηparallel given in (2.33) and (2.29), respectively. Next, to compare
the two methods in the case of effective data rate we evaluate EC,D(θ) given in (2.41). For better
illustration of each case they are separated into different subsections.

2.7.1 Numerical results for the case long term average CD

Figures 2.4a and 2.4b show the efficiency of the methods for N = 12, and N = 64, respectively, while
κ = 2 and P = 10. We note that the proposed heuristic algorithm has a near-optimal performance
(almost indistinguishable from the red curves achieved with dynamic programming). Due to this fact
(which was tested across all scenarios that follow) only the heuristic approach is shown in subsequent
figures for clarity in the graphs.

We see that when there are a small number of subcarriers (N=12, typical for NB-IoT) and small
β the efficiency of both the parallel ηparallel and the sequential ηsequential approaches are very close to
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Figure 2.6: a) Size of set D for different SNR
levels and σ2

e when N = 24.
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Figure 2.6: b) Size of set D for different values of
κ when N = 24.

unity, a trend that holds for increasing N . With increasing β, due to the fact that more frames are
needed for reconciliation in the sequential approach (i.e., M increases), regardless of the total number
of subcarriers, the parallel method proves more efficient than the sequential. While the efficiency of
the sequential and parallel methods coincide almost until around β = 0.01 for N = 12, for N = 64
the crossing point of the curves moves to the left and the efficiency of the two methods coincide until
around β = 0.001. This trend was found to be consistent across many values of N , only two of which
are shown here for compactness of presentation.

Next, in Fig. 2.5 the efficiency of the parallel ηparallel and the sequential ηsequential methods are
shown for two different values of κ ∈ {2, 3} for SNR = 10 dB and N = 24. It is straightforward to see
that they both follow similar trends and when κ increases the efficiency decreases. On the other hand,
regardless of the value of κ they both perform identically until around β = 0.001.

Finally, in Fig. 2.6, focusing on the parallel method, the average size of set D is shown for different
values of σ2

e and SNR levels (Fig. 2.6a) and κ (Fig. 2.6b), for N = 24. As expected, in Fig. 2.6a
we see when the SNR increases the size of the set increases, too. This is due to the fact that more
power is used on any single subcarrier and consequently a higher reconcilliation rate can be sustained.
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Figure 2.7: a) Effective data rate achieved by
the parallel heuristic approach and the sequential
approach when N = 12, SNR= 10 dB and κ = 2.

Figure 2.7: b) Effective data rate achieved by
the parallel heuristic approach and the sequential
approach when N = 64, SNR= 10 dB and κ = 2.

Regarding the estimation error σ2
e of the CSI, it only slightly affects the performance at high SNR

levels. Hence more subcarriers have to be used for reconciliation, and fewer for data. The SNR level in
Fig. 2.6b is set to 10 dB. The figure shows that when increasing κ the size of set D decreases. This
result can be easily predicted from inequality (2.21), meaning, when κ increases more reconciliation
data has to be sent, hence fewer subcarriers can be used for data. In both Fig. 2.6a and Fig. 2.6b
when β increases the size of set D decreases; this effect is a consequence of constraint (2.28) as the
data rate is decreasing with β.

2.7.2 Numerical results for the case of effective data rate

Inspired by the good performance of Algorithm 1, in the case where long-term average rate is the metric
of interest, here, we continue our investigation with a variation of Algorithm 1, with the following
differences: at lines 3 and 5 instead of (2.26) we use the constraint (2.25), the power allocation is
fixed as in (2.49). The performance of our system is again compared with a sequential method and
the metric of interest here is the effective data rate. The comparison is performed by taking into
account the following parameters: signal to noise ration (SNR); number of subcarriers N ; ratio of the
reconciliation and 0−RTT transmission rate to the SKG rate κ; delay exponent θ; and, the ratio of key
bits to data bits β.

In Fig. 2.7 we give a three-dimensional plot showing the dependence of the achievable effective
data rate EC,D(θ) on β and θ. Figures 2.7a and 2.7b compare the parallel heuristic approach and the
sequential approach for high SNR levels, whereas Fig. 2.8a and 2.8b compare their performance at
low SNRs. In Fig. 2.7a and 2.8a we have N = 12 while in Fig. 2.7b and 2.8b the total number of
subcarriers is N = 64. All graphs compare the performance of the heuristic parallel approach and the
sequential approach for κ = 2.

As discussed in Section 2.6, when the delay exponent θ increases, the optimal power allocation
transforms from waterfilling to total channel inversion. Consequently, the rate achieved on all subcarriers
converges to the same value, hence when we a have small number of subcarriers (such as N = 12) and
small values of β then using a single subcarrier for reconciliation data will use more capacity than
needed and most of the rate on this subcarrier is wasted. Devoting a whole subcarrier for sending the
reconciliation data for the case of N = 12 and β = 0.0001 is almost equivalent of losing 1/12 of the
achievable rate.

This can be seen in Fig. 2.7a and 2.8a where N = 12. When the SNR is high (See Fig. 2.7a),
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Figure 2.8: a) Effective data rate achieved by
the parallel heuristic approach and the sequential
approach when N = 12, SNR= 0.2 dB and κ = 2.

Figure 2.8: b) Effective data rate achieved by
the parallel heuristic approach and the sequential
approach when N = 64, SNR= 0.2 dB and κ = 2.

as discussed, this effect is mostly noticeable for large values of θ and small values of β7, whereas
for small values of β and θ both algorithms perform nearly identically. A similar trend can be seen
at the low SNR regime in Fig. 2.8a. However, at a low SNR the sequential approach has a lower
effective data rate. This happens because at high SNR levels each reconciliation frame will contain
more information and hence more data frames will follow. Therefore, at the low SNR regime, the
reconciliation information received will decrease, hence less data can be sent afterwards. This does not
affect the parallel approach. However, in both scenarios high SNR Fig. 2.7a and low SNR Fig. 2.8a,
when β increases regardless of the value of θ the parallel approach always achieves higher effective data
rate EC,D(θ).

In the next case, when the total number of subcarriers is N = 64, illustrated in Fig. 2.7b and
2.8b, we see that the penalty of devoting a high part of the achievable effective capacity Eopt

C (θ) to
reconciliation disappears and the heuristic parallel approach always achieves higher or identical effective
data rate EC,D(θ) compared to the sequential approach. This trend repeats for high and low SNR
levels as given in Fig. 2.7b and 2.8b, respectively.

Now, we take a closer look and transform some specific cases from the 3D plots to two-dimensional
graphs. In Fig. 2.9 we see the achieved effective data rate EC,D(θ) given in (2.41), for different values
of N and θ while the SNR=5 dB and κ = 2. Fig. 2.9a gives the achieved effective rate on set D for
N = 12 and θ = 0.0001 (relaxed delay constraint). Similarly to the case of long term average value of
CD we see that for small values of β the sequential approach achieves slightly higher effective data
rate. As before, the increase of β results in more reconciliation frames M required in the sequential
case. This effect is not seen in the parallel case and for high values of β it performs better.

Fig. 2.9b illustrates the case when N = 12 and θ = 100 (very stringent delay constraint). Similarly
to before, we can see that for small values of β the sequential approach performs better than the
parallel. As discussed, the efficiency loss is caused by the fact that the devoted part of the total
achievable effective capacity Eopt

C (θ) to reconciliation (syndrome communication) is more than what
is required. However, a higher β leads to an increase in the reconciliation information that needs to
be sent, and the rate of the subcarriers in set D̆ will be fully or almost fully utilised and the parallel
approach shows better performance for these values.

In the next two Fig.: 2.9c and 2.9d we show the performance of the two algorithms for higher value
of N = 64. It is easy to see that regardless of the value of θ and β both algorithms perform identical

7i.e., that the ratio of reconciliation information to data is small as seen from (2.25))
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Figure 2.9: a) Effective data rate achieved by
parallel and sequential approaches when N = 12,
SNR= 5dB, θ = 0.0001, κ = 2.
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Figure 2.9: b) Effective data rate achieved by
parallel and sequential approaches when N = 12,
SNR= 5dB, θ = 100, κ = 2.
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Figure 2.9: c) Effective data rate achieved by
parallel and sequential approaches when N = 64,
SNR= 5dB, θ = 0.0001, κ = 2.
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Figure 2.9: d) Effective data rate achieved by
parallel and sequential approaches when N = 64,
SNR= 5dB, θ = 100, κ = 2.

or the parallel is better. In the previous case of N = 12 increasing θ might reduce the effectiveness
of the parallel approach, however when N = 64 increasing θ does not incur such a penalty and the
parallel is either identical to the sequential or outperforms it.

Another interesting fact from Fig. 2.9 is that looking at the parallel approach, it can easily be
seen that in all cases the heuristic approach almost always performs as well as the optimal knapsack
solution. The case of small values of θ is similar to the one when we work with long term average rate
and choosing the best subcarriers for data transmission works as well as the optimal knapsack solution.
Interestingly, Algorithm 1 works well for high values of θ, too. This can be explained by the fact that
when θ increases the rate on all of the subcarriers becomes similar and switching the subcarriers in set
D does not incur high penalty.
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2.8 Conclusions

In this work we discussed the possibility of using SKG in conjunction with PUF authentication
protocols, illustrating this can greatly reduce the authentication and key generation latency compared
to traditional mechanisms. Furthermore, we presented an AE scheme using SKG and a resumption
protocol which further contribute to the system’s security and latency reduction, respectively.

In addition, we explored the possibility of pipelining encrypted data transfer and SKG in a Rayleigh
BF-AWGN environment. We investigated the maximization of the data transfer rate in parallel to
performing SKG. We took into account imperfect CSI measurements and the effect of order statistics
on the channel variance. Two scenarios were differentiated in our study: i) the optimal data transfer
rate was found under power and security constraints, represented by the system parameters β and κ,
which represent the minimum ratio of SKG rate to data rate and the maximum ratio of SKG rate to
reconciliation rate; ii) by adding a delay constraint, represented by parameter θ, to the security and
power constraint we found the optimal effective data rate.

To finalise our study we illustrated through numerical comparisons the efficiency of the proposed
parallel method, in which SKG and data transfer are inter-weaved, to a sequential method where the
two operations are done separately. The results of the two scenarios showed that in most of the cases
the performance of both methods, parallel and sequential, is either equal or the parallel performs better.
As the possible advantage of using the sequential is small and only applies in particular scenarios, we
recommend the parallel scheme as a universal mechanism for general protocol design, when latency is
an issue. Furthermore, a significant result is that although the optimal subcarrier scheduling is an NP
hard 0− 1 knapsack problem, it can be solved in linear time using a simple heuristic algorithm with
virtually no loss in performance.

x
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Chapter 3

Application of Change Point Analysis
in Edge Resource Allocation and
Intrusion Detection

3.1 Introduction

Edge computing emerges as a critical element in future networks, provisioning storage and computation
resources in the proximity of end devices to provide low latency services. The joint allocation and
management of communication, computing and storage resources will improve the quality of service
(QoS) and user experience, especially for various delay-sensitive applications. At the same time,
software-defined networking (SDN) is a technology that can help bridge the gap when combining Edge
computing and traditional Clouds. For example, the SDN controller can make decisions on whether
tasks should be uploaded and processed in the Cloud or at the Edge. The advancement of Edge
computing poses many challenges, e.g., in the deployment and management of distributed resources; in
parallel, SDNs are prone to new security threats due to the separation of the control and data planes.
In this Chapter, we first focus on content distribution at the Edge using change point (CP) analysis.
Next, motivated by the good performance of the developed algorithms, we investigate their application
in intrusion detection in software defined wireless sensor networks (SDWSNs), showcasing that the
wide range of applications that can be covered.

Beginning with resource allocation at the Edge servers, we propose a novel and flexible approach
exploiting popular virtualization technologies, such as unikernels [1] or containers; as a use case we
consider video content distribution, which accounts for more than 70% of the global IP traffic. The
core idea in our proposal is that virtual servers could hold individual video content and could be “live”
for as long as there is corresponding demand; in case of an increase in demand, more replicas of the
virtual servers could be put up, or alternatively put down if the demand dies off. We note that bringing
up or down a unikernel is typically very fast, with reported numbers for the boot time as little as 20
milliseconds [2].

In this context, due to high volatility in the respective demand, it is important for video content
delivery infrastructures to rapidly detect and respond to changes in “content popularity” dynamics. We
explore the employment of on-line CP analysis to implement real-time, autonomous and low-complexity
video content popularity detection. Our proposal, denoted as real-time change point detector (RCPD),
estimates the existence, the number and the direction of changes on the average number of video
visits by combining: (i) off-line and on-line CP detection algorithms; (ii) an improved time-series
segmentation heuristic for the reliable detection of multiple CPs; and (iii) two algorithms for the
identification of the direction of changes. The proposed detector is validated against synthetic data, as
well as a large database of real YouTube video visits.

Finally, we note that customarily CP analysis is employed in the detection of anomalies in times
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series. Therefore, as a natural extension of this work, we further consider the application of the RCPD
for anomaly detection in SDWSNs. SDN is a promising technology to overcome many challenges in
wireless sensor networks (WSN), particularly with respect to flexibility and reuse. Notably, it is now
argued that SDN and related technologies should be integrated to facilitate the management and
operations of Edge servers and various IoT devices [3]. Conversely, the centralization and the planes’
separation turn SDNs vulnerable to new security threats in the general context of distributed denial of
service (DDoS) attacks, which carry over to SDWSNs. State-of-the-art approaches to identify DDoS
do not always take into consideration restrictions in typical WSNs, e.g., computational complexity and
power constraints, while further performance improvement is always a target. Our objective in this
study is to propose a lightweight but very efficient DDoS attack detection approach using the RCPD.

3.2 Contributions and Chapter Organization

3.2.1 CP Analysis in Resource Allocation

Video content is projected to account for 82% of the global Internet traffic by 2020, significantly
increased from 72% in 2016 [4]. In parallel, novel emerging networking, Cloud and Edge computing
paradigms with significant elasticity capabilities appeared recently, e.g., SDNs [5], Cloud orchestration
proposals [6] and content distribution networks (CDNs) [7]. These advances offer the means to respond
quickly to changes in content popularity dynamics with appropriate adaptations, e.g., in terms of
efficient server resource allocation schemes, load balancing or content caching. As a result, the early
detection of changes in content popularity [8], [9] is proving a highly important topic and can have a
significant impact on the network traffic and the utilization of servers.

So far, the vast majority of research efforts have focused on the prediction of content popularity
dynamics, as opposed to their real time detection, which is the focus of this study. There is a multitude
of reasons as to why the precision of even state-of-the-art prediction algorithms can be impaired. A
variety of factors – both from the digital and the physical world – can influence the users’ Internet
surfing behavior, e.g., [8]: (i) the quality, type (e.g., commercial or user-provided) and life-time of
content; (ii) its relevance to users and physical events; (iii) the social interactions between users; and
(iv) the content promotion strategies involved. Importantly, mid-term and long-term content popularity
prediction [10] – and corresponding adaptations in the network or cloud environment – can prove
highly inaccurate [11] and thus result in sub-optimal service planning, provisioning, and utilization of
resources or violation of service level agreements.

In this work, to address the aforementioned shortcomings of the commonly employed prediction
algorithms, we propose a corresponding detector, referred to as the “real-time change point detector”
(RCPD). The RCPD is compatible with modern, flexible networking and Cloud approaches, that are
highly adaptive and can respond to short-term network dynamics. With accurate, on-line content
popularity detection, discrepancies between inaccurate predictions and actual changes can be alleviated.
The RCPD is real-time, lightweight, accurate and is parameterized autonomously by analyzing historical
data.

In the RCPD, we employ the CP detection theory and algorithms; their suitability is confirmed
against a large number of synthetic as well as real YouTube video datasets. In this contribution, the
early detection of changes in the average content popularity is addressed with a novel CP detection
methodology, consisting of a training phase, using historical data, and, an on-line phase. In the
training phase, we employ a modified off-line CP detection scheme to configure the on-line (sequential)
algorithm’s parameters. This approach is shown to greatly improve the accuracy of the on-line detector,
as in essence, the algorithm parameterization is not arbitrary but rather extracted from corresponding
historical data. To the best of our knowledge, this was the first proposal in the literature on combining
retrospective (off-line) and sequential (on-line) CP detection schemes in a single algorithm operating
autonomously (i.e., without manual configuration of parameters).

Besides that, our approach complements the off-line scheme with an improved time-series segmen-
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tation heuristic for the detection of multiple CPs. Furthermore, we propose two possible variations for
the on-line CP algorithm, the first based on the standard cumulative sum (CUSUM) procedure [12]
and the second on the ratio-type CUSUM procedure [13]1. Additionally, we introduce two alternative
indicators to detect the direction of changes: the first one is directly derived from the statistical test
of the on-line CP procedure, while the second is based on a modified exponential moving average
filter, extensively used in econometrics. As discussed in Sections 3.4 and 3.5, the RCPD combines
all the above mentioned algorithmic elements, and is based on sufficiently general and convenient
assumptions. Moreover, unlike other approaches e.g., [14], we employ methods that allow dependence
between observations (in the form of t−dependence), leading to more realistic assumptions for the
statistical structure of the content visits.

We evaluate the proposed detector and its individual algorithmic components (i.e., the off-line / on-
line test statistics, the time-series segmentation algorithm and the trend indicator), over synthetic and
real YouTube content views data. Our experiments using synthetic data, generated by an autoregressive
moving average (ARMA) filter, demonstrate:

• The superior performance of the proposed time-series segmentation heuristic over the standard
approach, improving the true alarm rates by up to 43%.

• The ability of the two proposed trend indicators to identify the direction of estimated changes,
with successful identification rates exceeding 99%, in all cases.

• The RCPD performance; the true alarm rates surpass 94% for medium / large changes in the
mean number of content views, while the corresponding CP identification lag ranges between
10 to 20 instances, confirming the real-time operation of the detector. On the other hand, the
RCPD achieves very small false alarm rates, well within the limits of the statistical error specified
by the chosen significance level of the CP algorithms.

Furthermore, our tests on real YouTube content views datasets show that:

• YouTube video views match the underlying assumptions of the RCPD, i.e., the content popularity
time-series datasets can be modeled as t-dependent.

• The RCPD can detect CPs in more than 70% of the videos in our dataset, implying a sufficiently
high number of content popularity changes and the suitability of the CP theory framework for
content popularity detection.

• The successful CP direction identifications exceed 91%, i.e., the proposed trend indicators work
for real data.

• The average dynamic time warping (DTW) distance [15], [16] between the identified CPs and a
benchmark off-line algorithm was estimated to be 52 time instances on average, showcasing the
rapid responsiveness of the RCPD.

• The overall processing cost of the RCPD is very low; notably, it took less than one second to
process 882 videos on a typical personal computer (PC).

As a proof-of-concept, we demonstrate the applicability of the proposed algorithm in a real load
balancing scenario. We provide a set of measurements showcasing improvements in terms of the clients’
connectivity time to download specific content, without a significant impact on the utilization of the
content servers. This is achieved due to the deployment of additional content caches, an event triggered
by the output of the proposed RCPD detector.

1The advantage of ratio-type CUSUM is that it does not require the estimation of long-run covariance (variance)
matrices, which is the case for the standard CUSUM method.
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3.2.2 CP Analysis for Anomaly Detection in SDWSNs

Next, we explore the application of the RCPD for anomaly (intrusion) detection in SDWSNs. The
SDN paradigm was devised to simplify network management, avoid configuration errors and automate
infrastructure sharing in wired networks [17]. The aforementioned benefits motivated the discussion of
combining SDN and WSNs as a solution to many WSN challenges, in particular concerning flexibility
and resource reuse [18]. This combination is referred to as SDWSN. The SDWSN approach decouples
the control plane from the data plane and centralizes the control decisions; its main characteristic is
the ability to program the network operation dynamically [19]. Recent results show that SDWSNs can
perform as well as the IPv6 routing protocol for low-power and lossy networks (RPL) [20].

On the other hand, the SDN centralization and the planes’ separation turn the network vulnerable
to new security threats (explained in Section 3.9.1), a property that is inadvertently passed on to
SDWSNs. Shielding SDNs from these vulnerabilities has already attracted a lot of attention in the
literature with proposals to implement attack detection in IoT networks using SDN. Overall, in the case
of SDWSNs, due to the resource constraints of the nodes, most of the security mechanisms designed for
non-resource constrained SDNs have to be adapted or redesigned. This is one of the major challenges
for SDWSN security.

Considering the limitations of previous works, our main objective is to propose a mechanism for
DDoS detection with, i) a high detection rate, and, ii) low complexity, so that it would be suitable
for “restricted” networks. To this end, we propose the employment of the RCPD [21] [22]. We study
two DDoS attacks: a false data flow forwarding (FDFF) attack, and a false neighbor information
(FNI) attack, chosen to illustrate the proposed algorithm’s capabilities in the case of specific SDWSN
vulnerabilities that exhibit largely different behavior. Both attacks are explained in Section 3.9.1. We
have tested our approach on the IT-SDN framework2 [20] and our results show that we can detect
these attacks with a detection rate close to 100%, improving the state of the art; importantly, it is
further possible to gain insight regarding the type of the attack, based on the metric that provides the
quickest detection, a feature, that to the best of our knowledge, breaks new ground in the domain of
DDoS analysis for SDWSNs.

3.2.3 Chapter Organization

The rest of the Chapter is organized as follows. In Section 3.3 we provide a comprehensive literature
review of related topics. In Section 3.4, we present the off-line (training) phase of the RCPD algorithm,
while the on-line phase is discussed in Section 3.5. In Section 3.6, we present four experiments over
synthetic video content data, providing an extensive validation of the RCPD and its subroutines, while
in Section 3.7, we discuss corresponding experiments using a database of real YouTube video views.
In Section 3.8, we demonstrate the load balancing gains achieved through the use of the RCPD, in a
realistic content provisioning scenario.

Moving to intrusion detection in SDWSNs, Section 3.9.1 illustrates the FDFF and FNI attacks and
their impact on the network performance. Experimental methods are presented in Section 3.9.3 and
results on intrusion detection using the RCPD are presented in Section 3.10.

Finally, Section 3.11 concludes the Chapter.

3.3 Related Works

In this Section, we discuss how this work relates to the literature of video content popularity prediction,
and, anomaly detection in general and in SDNs and SDWSNs in particular.

The topic of content popularity attracted a lot of attention in recent years, because of its importance
in a number of applications, such as network dimensioning (e.g., capacity planning or scaling of
resources), on-line marketing (e.g., advertising, recommendation systems) or real-world outcome

2http://www.larc.usp.br/users/cbmargi/www/it-sdn/
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prediction (e.g., analysis of economical trends) [8]. The main approaches used for content popularity
estimation can be categorized as: (i) cumulative growth studies, estimating the “amount of attention”
from the publication instance to the prediction moment [9]; (ii) temporal analysis approaches, i.e., how
content visits evolve over time [23]; and (iii) clustering methods of content with similar popularity
trends [10]. We note that many content popularity studies consider the aggregate behavior of a
particular content, e.g., [9], [23], whereas we study the real-time behavior of video views time-series. In
addition, studies using clustering methods [10] are based on content popularity prediction and adopt
parametric models, unlike the RCPD algorithm that is non-parametric.

To the best of our knowledge, our conference paper [24] is the first in the literature proposing CP
techniques [25] for content popularity detection. The RCPD algorithm falls into the general category
of anomaly detection [26]; in essence, we assume that no changes in popularity constitutes the normal
behavior of video content and search for deviations from this behavior. Non-parametric anomaly
detection has typically been considered for the detection of abnormalities in the network traffic. As
an example, in [27] an algorithm was proposed based on the Shiryaev-Roberts procedure for anomaly
detection in computer network traffic. In [28] and [29], CUSUM based approaches were introduced for
the detection of SYN attacks.

As opposed to previous content popularity prediction works, in this Chapter we introduce a novel
CP detection methodology that provides accurate, lightweight, autonomous and on-line CP detection
of content popularity. We formulate the detection of a change in the average content popularity as a
statistical hypothesis test and employ non-parametric procedures to avoid a particular distribution
assumption (such as a specific copula model). This context ensures low convergence time since it
avoids estimating a large number of model parameters and restrictive assumptions that may not match
the structure of the time-series. Furthermore, we avoid problems of parametric models that require
parameters’ fitting and selection, which become challenging as new data become available. In the
proposed RCPD algorithm, an off-line phase specifies important parameters for the on-line phase;
these parameters are re-evaluated dynamically after a detected CP. Our load-balancing experiments,
elaborated in [7], demonstrate the RCPD’s behavior in a real test-bed deployment.

Up to now there are only a handful of proposals addressing the challenges of new flexible networking
and Cloud architectures accounting for content popularity. Exceptions include [30] in which a machine
learning approach to content popularity prediction is applied for a Fog radio access network (RAN)
environment, and, our recent papers [7] and [24]. In [7], the algorithm – outlined in [24] and presented
extensively here – is integrated into an elastic content distribution network (CDN) framework based
on lightweight Cloud capabilities using Unikernels. [7] focuses on the platform details rather than on
the CP algorithm; it confirms experimentally the suitability of the latter for relevant flexible network
and cloud architectures. A detailed description of the proposed CP detection algorithm is presented in
the following Sections, along with a rich set of validation results.

Further examples of parametric anomaly detection methods include [31], in which a bivariate
sequential generalized likelihood ratio test (LRT) was proposed, accounting for the packet rate –
assumed to follow a Poisson distribution – and the packet size – assumed to follow a normal distribution.
Other parametric anomaly detection approaches assume a particular underlying process for the normal
behavior and search for anomalies on the residuals of the process. For example, in [32], Kalman
filtering is combined with several CP methods, such as CUSUM and LRT, to detect anomalies in
origin-destination flows. In [33], traffic flows (in the form of TCP’s finite state machine), are modeled
using Markov chains and an anomaly detection mechanism based on the generalized LRT algorithm is
developed.

On the other hand, looking at existing literature in SDN anomaly detection, the authors in [34]
proposed softhings, an SDN-based IoT framework with security support. The framework was developed
for OpenFlow [19], which, however, can be a limiting factor for its use in networks composed of low-end
nodes. The use of support vector machines (SVM) was proposed to detect control plane attacks; it was
shown that a detection rate of around 96% and 98% could be achieved. The algorithm was tested in
Mininet, simulating scenarios with only five nodes and considering one node as attacker. Furthermore
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Yin et al. [35] developed the framework SD-IoT, which included a security system for DDoS attacks
detection, based on the difference of packets received by the controller. The difference was calculated
using the cosine similarity method. This mechanism was devised for networks where all the nodes had
periodic communication with the controller, which could be not optimal for very “restricted” networks
with low-end nodes. The authors tested their proposal through simulations using Mininet. The network
size was not explicitly specified, but can be inferred to be around 50 to 60 nodes.

Furthermore, Wang et al. [36] proposed an SDWSN trust management and routing mechanism.
They compared their proposal to SDN-WISE when both networks were under attack. The focus of
the work was on the selective forwarding attacks and new flow requests. The first attack applied to
any type of WSNs, while the second was specific to SDNs. The mechanism was tested in simulations
with 100 nodes, varying the number of attackers between 5 and 20. Their results showed an attack
detection rate between 90% and 96% when 5 nodes were attackers, and between 60% and 79% when
20 nodes were attackers. Compared to these previous works, our proposal for the employment of the
RCPD is SDWSN anomaly detection has the advantages of being i) lightweight, ii) fast and iii) highly
accurate as will be demonstrated in Sections 3.9 to 3.10.

We begin the description of the RCPD by first elaborating on the off-line and on-line phases in
Sections 3.4 and 3.5 respectively, where we also provide the corresponding pseudo-code.

3.4 Training (Off-line) Phase

In this Section, the training phase of the algorithm is discussed and the fundamental components of
the off-line scheme are presented. We note that standard off-line CP schemes can only detect a single
CP. To address the issue of detection of multiple CPs, we modify the basic algorithm with a novel
time-series segmentation heuristic, that belongs to the family of binary segmentation algorithms.

3.4.1 Basic Off-line Approach

Let {Xn : n ∈ N} be a sequence of r- dimensional random vectors (r.v.). The first dimension represents
the number of views for a specific video content within a time period n ∈ {1, . . . , N}, while the other
dimensions could be optionally used to represent other content popularity features, such as likes,
comments, etc. We assume that X1, ..., XN can be written as,

Xn = µn + Yn, 1 6 n 6 N (3.1)

where {µn : n ∈ N} is the mean value of video visits, {Yn : n ∈ N} a random component with zero
mean E [Yn] = 0 and positive definite covariance matrix, E

[
YnY

T
n

]
= Σ, while E[·] denotes expectation.

We further assume that the time-series is t-dependent, implying that for t1, t2, t ∈ N, Yt1 is independent
of Yt2 if |t1 − t2| > t.

The model in (3.34) and the underlying assumption of t−dependence are in agreement with
statistical characterizations of the distribution of visits, which have been shown in numerous analyses to
follow either a Zipf [37] or a Zipf-Mandelbrot [38] distribution for both commercial and user-generated
content. Furthermore, it is confirmed in the real YouTube datasets used in the present work through
the evaluation of the time-series’s Hurst exponents, as will be discussed in Section 3.7.1.

The off-line analysis tests the constancy (or not) of the mean values up to the current time N .
Hence, we define the following null hypothesis of constant mean,

H0 : µ1 = . . . = µN ,

against the alternative,

H1 : µ1 = . . . = µk∗off 6= µk∗off+1 = . . . = µN ,
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indicating that the mean value changed at the unknown (time) point k∗off ∈ {1, . . . , N}.
Considering (3.34) and the corresponding assumptions for the stochastic process Xn, we develop

a non-parametric CUSUM test statistic following [39]. The test statistic TSoff , can be viewed as a
max-type procedure,

TSoff = max
16n6N

CTn Ω̂−1
N Cn, (3.2)

where the parameter Cn is the retrospective CUSUM detector,

Cn =
1√
N

(
n∑
i=1

Xi − nX1,N

)
, (3.3)

while X1,N = 1
N

∑N
i=1Xi denotes the sample mean. Ω̂N represents a suitable estimator of the long-run

covariance Ω, where

Ω =
∞∑

i=−∞
Cov (XnXn−i). (3.4)

The estimator should satisfy,

Ω̂N
P−→Ω (3.5)

where
P−→ denotes convergence in probability.

Several estimators have been proposed in the literature that satisfy (3.5), including kernel-based [40],
bootstrap-based [41], etc. Considering our requirement for real-time detection (low computational
time), a kernel-based estimator is more suitable; in this context, we employ the Bartlett estimator, so
that

Ω̂N = Σ̂0 +
W∑
w=1

kBT

(
w

W + 1

)(
Σ̂w + Σ̂T

w

)
, (3.6)

which satisfies (3.5), while the function kBT (.) corresponds to the Bartlett weight,

kBT (x) =

{
1− |x|, for |x| 6 1

0, otherwise
, (3.7)

and Σ̂w denotes the empirical auto-covariance matrix for lag w,

Σ̂w =
1

N

N∑
n=w+1

(
Xn −X

) (
Xn−w −X

)T
. (3.8)

Finally, we chose W = log10(N) as in [40].

The long-run covariance is involved in the test statistic to incorporate the dependence structure of
the r.v. into the statistical analysis, through the integration of second order statistical properties. This
approach is suitable for the targeted context since we avoid a restrictive assumption for the dependence
structure of the observations.

Going back to the basic question of rejecting or not H0, we need to obtain critical values, denoted
by cvoff , for the test statistic. We approach this issue by considering the asymptotic distribution of
the test statistic under H0,

TSoff
D−→cvoff = sup

06t61

r∑
j=1

B2
j (t) (N →∞), (3.9)

where
D−→ denotes convergence in distribution, (Bj(t) : t ∈ [0, 1]) , 1 6 j 6 r, are independent standard

Brownian bridges B(t) = W (t)− tW (1), and W (t) denotes the standard Brownian motion with mean
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0 and variance t. The critical values for several significance levels α can be computed using Monte
Carlo simulations that approximate the paths of the Brownian bridge on a fine grid. The last step is
to estimate the unknown CP, defined previously as k∗off , under H1, given by:

k̂∗off =
1

N
argmax
16n6N

TSoff . (3.10)

3.4.2 Extended Off-line Approach

The above hypothesis test identifies the existence of at most one CP and does not ensure that the sample
remains statistically stationary in either direction of the detection. In particular, by construction (see
(3.2)), the off-line test statistic detects the CP with the highest magnitude. Therefore, for the detection
of multiple CPs we need to rephrase the hypothesis test H1, as follows:

H1 : µ1 = . . . = µk1 6= µk1+1 = . . . = µk2 6= . . . · · · 6= µkτ−1+1 = . . . = µkτ 6= µkτ+1 = . . . = µN .

A greedy technique to identify multiple CPs is the binary segmentation (BS) algorithm. The
standard BS algorithm relies on the general concept of binary segmentation and is an extension of
the single CP estimator. First, a single CP is searched for in the time-series. In case of no change,
the procedure stops and H0 is accepted. Otherwise, the detected CP is used to divide the time-
series into two segments in which new searches are performed. The procedure is iterated until no
more CPs are detected. The BS algorithm is lightweight (computational time O(N logN)), while its
conceptual simplicity leads to efficient implementations. On the other hand, it has been shown in the
literature [42], [43], that the standard BS algorithm tends to overestimate the number of CPs, as it
does not cross-validate them after their detection.

In the extended off-line approach, we propose the modification of the standard BS with a cross-
validation step of the estimated CPs. The cross-validation step is similar to that used in the iterative
cumulative sum of squares (ICSS) segmentation algorithm [44], which is used to search for CPs on
the marginal variance of independent and identically distributed (i.i.d.) r.vs. In the extended off-line
algorithm we consider the CPs estimated from the standard BS in pairs and check if H0 is rejected
in the segment delimited by each pair. If H0 is not rejected in a particular segment, then no change
can be detected in it; as a result, all CPs that fall in the respective segment are eliminated. The
improvement, in terms of accuracy, is shown through simulation results in Section IV.

3.5 On-line Phase

In this Section, we describe the on-line scheme that includes: (i) two alternative CUSUM-type
approaches for the detection of a change in the mean; and (ii) two alternative approaches to estimate
the direction of a change.

3.5.1 On-line Analysis

We rewrite equation (1) in the form,

Xn =

{
µ+ Yn, n = 1, . . . ,m+ k∗ − 1

µ+ Yn + I, n = m+ k∗, . . .
(3.11)

where µ, I ∈ Rr represents the mean parameters before and after the unknown time of possible change
k∗ ∈ N∗ respectively. As a reminder, the first dimension of the time-series represents the video views;
the rest could be likes, comments, etc., and {Yn : n ∈ N} is a random component. The term m ∈ N
denotes the length of the training period, i.e., an interval of length m over the historical period during

74



CHAPTER 3. APPLICATION OF CHANGE POINT ANALYSIS IN EDGE RESOURCE
ALLOCATION AND INTRUSION DETECTION

which the mean is assumed to remain unchanged, so that,

µ1 = · · · = µm. (3.12)

To satisfy this assumption, the modified off-line CP test previously presented is run in order to identify
a suitable m. With m determined, the on-line procedure can be used to check whether (3.12) holds as
new data become available. In the form of a statistical hypothesis test, the on-line problem becomes,

H0 : I = 0,

H1 : I 6= 0.
(3.13)

The on-line sequential analysis belongs to the category of stopping time stochastic processes. In
general, a chosen on-line test statistic TSon(m, l) and a given threshold F (m, l) define the stopping
time τ(m):

τ(m) =

{
min{l ∈ N : TSon(m, l)> F (m, l)},
∞, if TSon(m, l)< F (m, l) ∀l ∈ N,

(3.14)

implying that TSon(m, l) is calculated on-line for every l in the monitoring period. The procedure
stops if the test statistic exceeds the value of the threshold function F (m, l). As soon as this happens,
the null hypothesis is rejected and a CP is detected. The following properties should hold for τ(m),

lim
m→∞

Pr{τ(m) <∞|H0} = α,

ensuring that the probability of false alarm is asymptotically bounded by α ∈ (0, 1), and,

lim
m→∞

Pr{τ(m) <∞|H1} = 1,

ensuring that under H1 the asymptotic power of the statistical test is unity. The threshold F (m, l) is
given by,

F (m, l) = cvon,ag(m, l), (3.15)

where: (i) the critical value cvon,a is determined from the asymptotic behavior of the stopping time
procedure under H0 by letting m→∞; and (ii) the weight function,

g(m, l) =
√
m

(
1 +

l

m

)(
l

l +m

)γ
(3.16)

depends on the sensitivity parameter γ ∈ [0, 1/2).

We use two different CUSUM approaches; the standard [12], with test statistic denoted by TScton, and,
the ratio-type [13], with test statistic denoted by TSrton. Their corresponding critical values are denoted
by cvcton,a and cvrton,a, respectively, and their stopping rules by τct(m) and τrt(m), correspondingly. Both
tests are based on the sequential CUSUM detector, E(m, l),

E(m, l) =
(
Xm+1,m+l −X1,m

)
(3.17)

The standard CUSUM test is expressed as:

TScton(m, l) = lΩ̂
− 1

2
m E(m, l), (3.18)

where Ω̂m is the estimated long-run covariance, defined as in (4), that captures the dependence between
observations. Then, the stopping rule τct(m), is defined as:

τct(m) = min{l ∈ N : ‖TScton(m, l)‖1 ≥ cvcton,ag(m, l)}, (3.19)
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where the `1 norm is involved to modify TScton so that it can be compared to a one dimensional threshold
function. The critical value, cvcton,a, is derived from the asymptotic behavior of the stopping rule under
H0:

lim
m→∞

Pr{τ(m) <∞} = lim
m→∞

Pr

{
sup

16l6∞

‖TScton(m, l)‖1
g(m, l)

> cvcton,α

}
= Pr

{
sup
t∈[0,1]

‖W (t)‖1
tγ

> cvcton,α

}
= α. (3.20)

Unlike standard CUSUM tests, ratio type statistics do not require to estimate the long-run covariance
and are also considered for this reason in this analysis. The precise form of the chosen statistic is given
in the following quadratic form,

TSrton(m, l) =
l2

m
ET (m, l)

 1

m2

m∑
j=1

j2
(
X1,j −X1,m

) (
X1,j −X1,m

)T
−1

E(m, l), (3.21)

with its equivalent stopping rule,

τrt(m) = min{l ∈ N : TSrton ≥ cvrton,ag2(m, l)}. (3.22)

Similarly to the standard CUSUM, the critical value, cvrton,a, is estimated by,

lim
m→∞

Pr{τ(m) <∞} = Pr

{
sup

t∈[0,∞)
∆γ(t) > cvrton,α

}
= α, (3.23)

where,

∆γ(t) =
1

η2
γ(t)

BT (1 + t)

(∫ 1

0
B(r)BT (r)dr

)−1

B(1 + t),η2
γ(t) = (1 + t)

(
t

1 + t

)γ
,

and B(t) is a standard Brownian bridge, t ∈ [0,∞) .

Similarly to the off-line case, the on-line critical values for both test statistics can be computed
using Monte Carlo simulations, considering that,

cvcton,α = sup
t∈[0,1]

W (t)

tγ
, (3.24)

cvrton,α = sup
t∈[0,∞)

∆γ(t). (3.25)

The estimated on-line CP, k̂∗on, is derived directly from the value of the stopping time τ(m), as,

k̂∗on = m+ {τ(m)|τ(m) <∞}. (3.26)

3.5.2 Trend Indicator

Considering the on-line procedure, the hypothesis H1 is two-tailed because the test statistics TSrton and
TScton are formulated in a quadratic form and a `1 norm, respectively. This means that the stopping
time rule τct(m) (or τrt(m)) cannot be an indicator of the direction of a detected change. Thus, to
estimate the direction of a change we introduce two indicators: i) based on the CUSUM detector in
(3.17), denoted by TIts; and ii) based on the moving average convergence divergence (MACD) filter [45],
denoted by TIf .
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Focusing on TIts, the indicator is directly derived from the form of the sequential CUSUM detector
E(m, l). The detector compares the mean value of the observations that are collected on-line for
a chosen monitoring period l, with the mean value of a subsample of the historical data over the
predetermined training sample. Hence, for a detected CP, we have that,{

E(m, l) > 0, denotes an upward change

E(m, l) < 0, denotes a downward change
. (3.27)

However, in certain cases, limiting the window over which the direction of a change is estimated to
the immediate neighbourhood of a detected CP can be unreliable due to the continuous variability of
the time-series. In such cases, we have to estimate the direction of a change by incorporating more
elaborate filters; in this context, we estimate the direction of detected changes by applying the MACD
indicator. The MACD is based on an exponential moving average (EMA) filter, of the form,

EMAp(n) =
2

p+ 1
Xn +

p− 1

p+ 1
EMAp(n− 1), (3.28)

with p denoting the lag parameter. The MACD series can be derived from the subtraction from a short
p2 lag EMA (sensitive filter) of a longer p3 lag EMA (blunt filter), as described below:

MACD(n) = EMAp2 − EMAp3 . (3.29)

The trend indicator TIf is then obtained by the subtraction of a short p1 lag EMA filter of a MACD
series from the raw MACD series, as described below

TIf (n) = MACD(n)− EMAp1(MACD(n)), p1 < p2 < p3. (3.30)

In the evaluation of TIf three exponential filters are involved. In essence, TIf is an estimation of
the second derivative over an interval around the change (considering that the subtraction of a filtered
variable from the variable generates an estimate of its time derivative). In contrast to other works [45],
we only adopt TIf to characterize the direction from the specific value of TIf at the estimated time

of change. We announce an upward change if TIf (k̂∗on) > 0, otherwise, if TIf (k̂∗on) < 0, a downward
change.

Finally, we propose a modification of the trend indicator TIf , converting it from a point estimator

to an interval estimator; instead of evaluating TIf (k̂∗on), we propose to evaluate the trend indicator at

a time interval (k̂∗on, k̂
∗
on + h), where h is a threshold parameter:

TIf (k̂∗on, h) =

k̂∗on+h∑
l=k̂∗on

TIf (l). (3.31)

The proposed TIf (k̂∗on, h) modification improves the estimator’s accuracy; the calculation of the sum
of a multitude of observations, after a CP, can smooth out a potential false one-point estimation,
especially in the case of small changes.

3.5.3 Overall Algorithm

We outline in Algorithm 1 the RCPD algorithm, as a combination of the off-line and the on-line phase,
in the form of pseudo-code. Beginning from the initial value set for the monitoring starting period,
denoted by ms, the modified off-line algorithm is applied over the whole historical period; the training
period m is then defined as the interval elapsed from the last detected off-line CP (if one exists) to ms.
As a second step, the on-line test statistic, TSon(m, l) in (14), is applied for a specified monitoring time
frame l. If a content popularity change is detected at time instance k̂∗on, the trend indicator subroutine
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Algorithm 1: The Real-time CP Detector (RCPD)

procedure RCPD(Xn,ms,k)
; Xn: time-series of video views
; ms: running end of training period
; m: training period
; l: monitoring time frame
; d: period assuming no change
; TSon: on-line test statistic (eq. 3.18 or 3.21)
; cvon: critical value (eq. 3.24 or 3.25)
; k̂∗on: the estimated on-line CP (eq. 3.26)
; TI: trend indicator (TIts or TIf )
for n in Xn do

if n = ms then
s=MBS(1,ms,1) ; calculate off-line CPs
if array length(s) > 0 then

m={max(s),ms} ; max(s) is the latest CP
else

m={max(1,ms − u),ms} ; u a large value
end if

else if ms < n < ms + l then
calculate TSon(m,l)

if TSon(m,l)>cvon then
calculate TI

signal CP and estimated direction
ms = ĉpon + d ; keep a distance from ĉpon

end if
else if n = ms + l then

ms = ms + l ; start a new training period
end if

end for
end procedure

is called to reveal the direction of change.3 At this point the procedure stops and a new starting point
for the monitoring window is defined as ms = k̂∗on + d, where d is a constant value specifying a period
assuming no change. Otherwise, if no change is detected after a maximum of l instances, the procedure
restarts from the last time point, ms = ms + l.

3.6 Validation of the RCPD Using Synthetic Data

In this Section, we validate the performance of the overall algorithm by performing a series of four
different experiments on synthetic data. The use of synthetic data allows us to regulate the parameters
of the time-series in terms of mean changes and thus obtain quantitative metrics for the performance
of the proposed algorithms.

The choice of the time-series model for the generation of the synthetic data is based on the fact
that several studies have shown that ARMA models capture very well content popularity evolution.
For example, in [10] it has been concluded that an ARMA model can efficiently describe the daily
access patterns of YouTube content, based on an extensive analysis of 100, 000 videos. Similarly, in [46]

3In the load balancing scenario discussed in Section VII, in the case of an increase in the content popularity a new
content cache is being deployed, while conversely a decrease leads to the removal of an existing cache.
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Table 3.1: Percentage of the successful CP detections for the standard and modified BS algorithm

Test 1: two CPs Test 2: four CPs

µ BS modified BS BS modified BS

True (false) alarm rate True (false) alarm rate

µ1=1 0.94 (0.06) 0.95 (0.05) 0.5 (0.258) 0.7 (0.05)

µ2=1.5 0.95 (0.05) 0.95 (0.05) 0.5 (0.258) 0.9 (0.08)

µ3=2 0.95 (0.05) 0.95 (0.05) 0.47 (0.53) 0.9 (0.1)

Table 3.2: Success rates of trend indicators

Test 1: two CPs Test 2: four CPs

µ TIts TIf TIts TIf

Success rate Success rate

µ1=1 0.99 0.99 0.99 0.99

µ2=1.5 1 1 1 1

µ3=2 1 1 1 1

an ARMA model has been proposed for the estimation of the popularity of video content. Motivated
by these findings, for the validation of the proposed algorithm we use an ARMA(1, 1) time-series. We
generate 1, 000 time-series of length N = 600 samples. Without loss of generality, we assume an initial
mean value µ0 = 0, noting that the performance of the RCPD is independent of the initial mean value
and only depends on the magnitude of the variation of the mean value before and after a CP.

In the first experiment, we begin with a comparison of the standard BS to the proposed modified
BS algorithms described in Section 3.4. We perform two tests; in the first test we introduce two
CPs at the instances k∗i = (iN)/3, i = 1, 2, while in second test, we introduce four CPs at k∗i =
(iN)/5, i = 1, . . . , 4. The two tests are repeated for three different values of the magnitude of a change
µ1 = 1, µ2 = 1.5, µ3 = 2, i.e., we randomly increase or decrease the mean value by µj , j = 1, . . . , 3 at
the time of change. Table 3.1 summarizes our findings regarding the true and false alarm rates of the
two algorithms.

Both the standard and the modified BS algorithms provide similar true alarm rates, exceeding 94%,
in the first test. On the contrary, in the more challenging second test, the superiority of the modified
BS over the standard BS algorithm is clear. The modified BS algorithm achieves true alarm rates in
excess of 70%, even in the demanding scenario of a relatively small change in the mean µ1 = 1. On the
other hand, the standard BS algorithm has in all cases a true alarm rate of less than 50%, rendering
any CP detection highly questionable. The second test confirms that the standard BS algorithm is
prone to an overestimation of the number of CPs as shown by the high false alarm rates (in excess of
25% in all cases), an issue that can be effectively addressed by the modified BS algorithm which scores
false alarm rates below 10%.

Next, in the second experiment, using the same test sets as above, we measure the success rates
achieved by the proposed trend indicators TIts and TIf for h = 0 (larger thresholds provided the
same true identification rates). The results are summarized in Table 3.2. The two trend indicators
successfully identify the direction of a change in more than 99% of the cases, which shows that they
can be interchangeably employed. In the assessment of the performance using real datasets in Sections
3.6 and 3.7, we solely employ the TIf trend indicator.
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Table 3.3: Results of the RCPDs’ algorithm CPs detection for one change in the mean value.

ARMA(1,1)

µ l standard CUSUM ratio-type CUSUM

Number of detected CPs k̂∗ Number of detected CPs k̂∗

0 1 > 1 med 0 1 > 1 med

25 0.95 0.05 0 - 0.95 0.05 0 -

µ = 0 50 0.95 0.05 0 - 0.95 0.05 0 -

100 0.94 0.06 0 - 0.95 0.05 0 -

25 0.7 0.29 0.01 - 0.8 0.19 0.01 -

µ = 0.5 50 0.16 0.8 0.04 343 0.55 0.43 0.02 -

100 0 0.93 0.07 341 0.2 0.76 0.04 348

25 0.26 0.73 0.01 332 0.69 0.3 0.01 -

µ = 0.7 50 0 0.96 0.04 326 0.3 0.65 0.05 328

100 0.01 0.91 0.08 331 0.05 0.89 0.06 335

25 0.01 0.97 0.02 327 0.52 0.46 0.02 -

µ = 1 50 0 0.96 0.04 316 0.08 0.86 0.06 321

100 0 0.92 0.08 321 0 0.95 0.05 323

25 0.01 0.97 0.02 323 0.43 0.54 0.03 331

µ = 1.2 50 0 0.95 0.05 316 0.02 0.93 0.05 317

100 0 0.93 0.07 318 0 0.93 0.07 318

25 0 0.97 0.03 320 0.36 0.6 0.04 329

µ = 1.5 50 0 0.95 0.05 310 0 0.94 0.06 313

100 0 0.93 0.07 314 0 0.94 0.06 318

25 0 0.97 0.03 310 0.26 0.71 0.03 317

µ = 2 50 0 0.95 0.05 307 0 0.93 0.07 310

100 0 0.94 0.06 310 0 0.94 0.06 313

We proceed by assessing the proposed RCPD algorithm using both the standard and the ratio
type CUSUM. In this third experiment, we measure the average number of CPs detected, averaged
over 1, 000 simulations when a single CP is introduced in the ARMA time-series at the time instance
N
2 = 300. We consider different values for the magnitude of change µ ∈ {0, 0.5, 0.7, 1, 1.2, 1.5, 2} and
the monitoring window length l ∈ {25, 50, 100}. We note that we included the case µ = 0 – which
corresponds to the absence of a change – to evaluate the false alarm rate of the overall algorithm. We
omit results with true alarm rates lower than 50% as they are statistically unreliable. In terms of the
remaining algorithmic parameters, we have set the minimum distance between two successive CPs to
d = 50,4 the sensitivity parameter to γ = 0.25 [47] (we choose a neutral value as the behaviour of γ is
well studied), and, the significance level to α = 0.05. In each test of the third experiment we measure
the exact number of CPs detected, tabulated as one the following three values: i) 0 when (falsely5) no

4This choice is justified by our observations of the minimum distance between successive CPs in real data sets, presented
in Section VI.

5Except for the µ = 0 case.
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Table 3.4: Results of the RCPDs’ algorithm CPs detection for two mean changes.

ARMA(1,1)

µ l standard CUSUM ratio-type CUSUM

Number of detected CPs k̂∗1 k̂∗2 Number of detected CPs k̂∗1 k̂∗2

< 2 2 > 2 med < 2 2 > 2 med

25 0.88 0.12 0 - - 0.95 0.05 0 - -

µ1 = 0.5 50 0.38 0.60 0.02 251 440 0.79 0.2 0.01 - -

100 0.1 0.87 0.03 242 443 0.54 0.44 0.02 - -

25 0.41 0.58 0.01 230 427 0.9 0.1 0 - -

µ1 = 0.7 50 0.06 0.91 0.03 223 427 0.58 0.41 0.01 - -

100 0.01 0.93 0.06 227 428 0.25 0.72 0.03 231 439

25 0.04 0.93 0.03 219 420 0.74 0.25 0.01 - -

µ1 = 1 50 0.03 0.93 0.04 215 419 0.26 0.71 0.03 221 423

100 0 0.94 0.06 217 420 0.05 0.9 0.05 220 424

25 0.01 0.96 0.03 214 414 0.56 0.42 0.02 - -

µ1 = 1.2 50 0 0.95 0.05 212 416 0.17 0.79 0.04 215 428

100 0 0.94 0.06 217 420 0.02 0.93 0.05 216 421

25 0 0.98 0.02 211 411 0.33 0.63 0.04 213 417

µ1 = 1.5 50 0 0.94 0.06 209 413 0.1 0.85 0.05 213 415

100 0 0.94 0.06 211 415 0 0.96 0.04 216 419

25 0 0.98 0.02 208 407 0.12 0.85 0.03 210 412

µ1 = 2 50 0 0.95 0.05 207 410 0.3 0.91 0.06 209 413

100 0 0.94 0.06 209 411 0 0.96 0.04 211 414

CP is detected; ii) 1 when (correctly) a single CP is detected; and iii) > 1 when (falsely) multiple CPs
are detected. Finally, we measure the median of the time instance of the single CP detection, denoted
by k̂∗.6 The results of this experiment are presented in Table 3.3 and are discussed below.

Firstly, we observe that both the standard and the ratio type CUSUM achieve very small false alarm
rates, inferior to 6% when no CP is inserted, irrespective of the choice of l. On the contrary, the choice of
l readily affects the algorithm’s success rate for µ > 0; for small changes in the mean value, µ = 0.5, 0.7,
a larger monitoring window l increases the algorithm’s true alarm rates in identifying correctly the
existence of the CP. For medium and high changes in the magnitude of change µ = 1, 1.2, 1.5, 2, it
is observed that a high true alarm rate – in excess of 93% for the standard CUSUM – is achieved,
while choosing a smaller l can slightly increase the true alarm rates. As a result, depending on the
application, a choice of a larger l can be appropriate if the algorithm is to be employed as a universal
CP detector. Alternatively, a smaller l can be chosen when the focus is on the identification of large
changes in the mean value, i.e., we are interested primarily in detecting CPs of larger magnitude.

Secondly, we observe that overall, the ratio type CUSUM is outperformed by the standard CUSUM
in all tests. Consequently, the standard CUSUM based detector can be considered as an efficient
universal choice. Finally, we observe that the lag between k̂∗ and the actual instance of change at

6We omit the results with true detection rate lower than 50%.
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the point 300 decreases with increasing µ, ranging from 343 to 307, while it appears less sensitive to
changes in l. This demonstrates that, intuitively, larger magnitude changes can be detected faster.
This result is important for load balancing applications as it provides us with the means to quickly
respond to significant changes in the network traffic.

Subsequently, in Table 3.4 in the previous page, we present the outputs of the fourth experiment in
which we assess the performance, averaged over 1, 000 simulations, of the RCPD algorithm when two
CPs are inserted in the ARMA time-series. We introduce a change at the time instance k∗1 = N

3 = 200
and a second CP at the time instance k∗2 = 2N

3 = 400. We investigate the true and false alarm rates
for µ ∈ {0.5, 0.7, 1, 1.2, 1.5, 2} and l ∈ {25, 50, 100}, while the rest of the parameters retain the values
of the third experiment. In each test of the fourth experiment we measure the exact number of CPs
detected, tabulated as one the following three values: i) < 2 when (falsely) less than two CPs are
detected, ii) 2 when (correctly) two CPs are detected, and iii) > 2 when (falsely) more than two CPs
are detected. Finally, we measure the median of the detection instances of the two CPs, denoted by k̂∗1
and k̂∗2, respectively (we omit the results with true detection rate lower than 50%).

Similarly to the third experiment, we observe that increasing l increases the true alarm rates for
small magnitudes in the mean changes µ = 0.5, 0.7, while this trend is reversed in high magnitudes
µ = 1.5, 2. For medium values µ = 1, 1.2 the effect of l on the true alarm rates is less than 2%.
Furthermore, in agreement with the outputs of the third experiment, with increasing µ the algorithms
achieve increasingly high success rates, over 93% for the standard CUSUM when µ ≥ 1.

In addition, the superior performance of the standard CUSUM is re-confirmed in all the tests of
the fourth experiment. Finally, with respect to the lag in the estimation of the time instances of the
CPs, we observe that, as in experiment three, larger magnitude changes can be detected faster, e.g., for
µ = 2 a lag inferior to 11 instances is observed for both CPs with the standard CUSUM, irrespective
of l.

Concluding this Section, we have presented an extensive set of experiments that provide strong
evidence for the efficiency of the proposed algorithms. We have explicitly demonstrated the superiority
of the modified BS over the standard BS algorithm and confirmed the validity of the proposed trend
indicators. Subsequently, we evaluated the performance of the overall algorithm for various values
of µ and l. We have shown that the RCPD algorithm achieves extremely high true alarm rates for
larger values of µ, while increasing the length of the monitoring window l can significantly impact the
performance for small values of µ. Finally, overall, the standard type CUSUM outperforms the ratio
type CUSUM and should be preferred.

3.7 Performance Evaluation Using Real Data

In this Section we investigate the performance of the proposed algorithms using a real dataset provided
within the framework of the CONGAS project [48]; the dataset consists of the number of views of 882
YouTube videos, observed over N = 1, 000 instances.

3.7.1 Statistical Properties of the Real Dataset

First, we evaluate the validity of the most important underlying assumption of this analysis, that the
content popularity can be modelled as the sum of a constant mean and a weak-dependent (t-dependent)
stochastic process, as given in (3.34). A first intuitive method to test whether the time-series is short-
range dependent (SRD) is through its autocorrelation function (ACF). The ACF for a weakly-stationary
process {Xt : t ∈ N with mean value µ is given by,

ρ(k) =
(Xt − µ)(Xt+k − µ)

σ2
.

Note that if
∑∞

k=−∞ ρ(k)→∞ the process has long-range dependence (LRD), while if
∑∞

k=−∞|ρ(k)| <
∞ it exhibits SRD. To distinguish between these two phenomena, we use the following functional form
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Figure 3.1: Estimated a) frequency and b) cumulative frequency of the number of CPs per time-series.

Table 3.5: Success rates of TIf trend indicator

h 0 3 5 7 10

Video Set 1 0.69 0.91 0.95 0.97 0.98

Video Set 2 0.90 0.99 0.99 0.99 0.99

of the ACF,
ρ(k) ∼ C2H−2

i , as i→∞,

where Ci > 0 and H ∈ (0, 1) is the Hurst exponent characterizing the LRD,i.e., H ∈ (1/2, 1) indicates
the presence of LRD. It is challenging to accurately estimate the Hurst exponent out of real data [49] and
several methods have been proposed in the literature [50]. In this work, we apply two semi-parametric
tests, identified as accurate options among others presented in the survey paper [50]. The first method
uses the discrete second order derivative in the time domain while the second uses the discrete second
order derivative in the wavelet domain. Both methods estimate an H ≤ 0.5 for 95% of the YouTube
time-series, indicating the validity of our assumptions related to the equation (3.34).

3.7.2 Performance of the Off-line Training Phase

First, we test the hypothesis H0 of no change in the mean structure on our dataset. H0 is rejected
in approximately 70% of the cases, for a significance level of a = 0.05. This outcome indicates that
CP algorithms can identify changing content dynamics in real times series. Next, we estimate the
number of CPs, by applying the extended off-line algorithm. The corresponding results are illustrated
in Fig. 3.1 and indicate a sufficiently high number of content popularity anomalies (i.e., mean changes).
Hence, a CP analysis is indeed a suitable tool for content popularity detection.

To evaluate the performance of the proposed trend indicator TIf , we need a baseline independent
assessment of the direction of change. We declare that a real increase in the mean value of content
visit exists if

E[X(k̂∗i−1,off ) : X(k̂∗i,off )] < E[X(k̂∗i,off ) : X(k̂∗i+1,off )], (3.32)

or, that a real decrease in the number of visits exists if

E[X(k̂∗i−1,off ) : X(k̂∗i,off )] > E[X(k̂∗i,off ) : X(k̂∗i+1,off )], (3.33)
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Figure 3.2: Frequency values of the number of upward and downward CPs, per time-series.

where i = 2, . . . , N − 1 and E[·] denotes the numerical average. We test the modified MACD TIf on
two sets of videos. The first set, Video Set 1, comprises the whole dataset, while the second set, Video
Set 2, comprises only the videos with a considerable average number of visits (> 10), i.e., for which,
E[X(1) : X(1000)] > 10.

The percentage of successful TIf identifications are tabulated in Table 3.5 for five values of
the parameter h, namely h = 0, 3, 5, 7 and 10, where h denotes the TIf ’s calculation threshold.
Commenting on the results for Video Set 1, the TIf trend indicator works well, except for h = 0,
providing at least 90% correct direction identifications. As expected, as h increases the procedure
works better. More specifically, an h ≥ 5 parameter choice yields a success rate of 95%, while if a
more agile estimation is needed then an h ≥ 3 still maintains a 91% accuracy. Considering the interim
time between consecutive changes, we deduce that an h ≤ 7 is preferable. Regarding Video Set 2,
we see that the results are highly improved, indicating that the procedure works even better for the
most popular videos. In practice, this represents the more interesting scenario as it will have a greater
impact in terms of the applied load balancing mechanism.

Furthermore, in Fig. 3.2, the time instances of upward and downward changes are shown in the
form of a boxplot. It is intuitive that upward changes occur earlier than downward changes. Moreover,
Fig. 3.2 demonstrates that the multitude of upward changes is greater than the respective of downward
changes, indicating that decreases in popularity are sharper than increases. In particular, we estimated
that out of the total number of changes, 67% are upward.

Finally, we analyze the interim time between consecutive CPs. The results presented in Fig. 3.3
illustrate the existence of a sufficiently large gap between consecutive potential changes. 90% of the
intervals corresponding to consecutive CPs exceed 70 time instances and only 5% of them are shorter
than 50 time instances, ensuring that a sufficiently large training window can be applied. The results
depicted in Fig. 3.3 allow adjusting parameters of the on-line phase, in particular the minimum time
interval between consecutive changes, denoted by the parameter d.

3.7.3 Evaluation of the RCPD Algorithm

In the previous subsection we have evaluated the performance of the off-line algorithm and demonstrated
its efficiency as well as how it is employed in determining parameters of the on-line phase, such as the
interval assuming no change d and the threshold parameter of TIf h.

We further employ the off-line algorithm as a benchmark against which the performance of the
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Figure 3.3: a) Boxplot including the interval (5% − 95%) (dashed line) and (10% − 90%) interval
(dotted line), b) Cumulative frequency for the interim time of consecutive CPs.
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Figure 3.4: DTW distances for the two on-line detection schemes.

RCPD algorithm will be evaluated. We note that the off-line analysis provides the best possible
statistical detection of the actual mean changes, as off-line algorithms operate retrospectively over
the entirety of each of the time-series. Thus, in absence of a priori knowledge of the actual CPs
in the real data (as opposed to the synthetic data in which the CPs were controlled), we evaluate
the performance of the RCPD procedure by measuring the “similarity” of its outputs (detected CPs,
instances of detection and trends) to the corresponding outputs of the off-line version.

As the number of detected CPs and / or their exact positions are likely to differ at the output of
the retrospective (off-line) and of the RCPD algorithm, in order to obtain a measure of their similarity,
we estimate their dynamic time warping (DTW) distance. The DTW is a dynamic programming tool
that measures distances between asynchronous sequences and is widely used by the speech processing
community [15].

The results are presented in Fig. 3.4, where the estimated DTW distances are depicted for several
values of the monitoring window length l ∈ [40, 150], to investigate the consistency of parameter l over
different values. In the RCPD algorithm we use d = 50 (minimum distance between two changes) and
have set the sensitivity parameter to γ = 0.25. The estimated mean DTW distance for the standard
CUSUM is 52 and for the ratio-type CUSUM is 73. For comparison purposes, we note that the
corresponding DTW distance over the synthetic data is 20 for medium / large changes, while the true
CP detections are around 95%. As a result, we can infer, that the outputs of the on-line algorithm,
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Table 3.6: Empirical percentiles of mean values change rate.

Percentiles Threshold

10% 15% 25% 50%

Standard 9% 13.1% 20.8% 42.21%

Ratio type 9.5% 14.82% 28.22% 67.40%
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Figure 3.5: Outputs of the RCPD algorithm using standard CUSUM for different time-series. Solid
and dashed lines depict an upward and a downward change, respectively.

using the standard CUSUM, are “very close” to the outputs of the benchmark off-line algorithm. In
agreement with our observations over the synthetic data, the DTW distance using the ratio-type
CUSUM is clearly larger.

We also study the magnitude of the detected CPs. We define as the CP magnitude the percentage-
wise change in the mean values before and after the CP. We group the measured magnitudes for all
change points using the four percentile threshold values 10%, 15%, 25% and 50%, i.e., reflecting the
frequency of magnitudes exceeding the respective thresholds. The results are summarized in Table
3.6. According to our results, both the standard and ratio type CUSUM algorithms detect the most
significant changes in the content popularity. Moreover, ratio-type CUSUM detects, in general, CPs
with the largest magnitude of change, in agreement with synthetic data results.

Additionally, for illustration purposes, we depict the RCPD algorithm’s outputs for four different
time-series. We set the beginning of the monitoring period at ms = 200 and monitoring horizon l = 50,
the on-line parameter g = 0.25 and the significance level to a = 0.05. The corresponding results
are depicted in Fig. 3.5 and 3.6, showing the estimated CPs by applying the standard CUSUM and
the ratio type CUSUM procedures, respectively. In both cases, the estimated changes correspond to
the real content popularity changes; visual inspection suggests that the performance of the standard
CUSUM is more reasonable (e.g., Fig. 3.6d). The RCPD, as it is illustrated in Fig. 3.5b seems to be
adaptable to “fast” changes; without getting “confused” by random peaks in the time-series, such as
those in Fig. 3.5a or in Fig. 3.6c.

3.7.4 Time Dependencies of Piecewise time-series

We also measure the autocorrelation function of the piecewise - divided by the detected CPs - time-series.
Results are tabulated in Table 3.7 and verify the short dependence structure of the dataset; significant
lags in time dependencies higher than 30 instances can be found in less than 5% of the time-series.
Furthermore, the fact that the ACF of the piecewise time-series drops to zero quickly indicates that
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Figure 3.6: Outputs of the RCPD algorithm using standard type CUSUM for different time-series.
Solid and dashed lines depict an upward and a downward change, respectively.
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Figure 3.7: Outputs of the RCPD algorithm using ratio type CUSUM for different time-series. Solid
and dashed lines depict an upward and a downward change, respectively.

the detected CPs split the time-series into stationary segments, which, additionally, confirms indirectly
the accuracy of the off-line CP estimations over the changes in the real data.

3.7.5 Computational Complexity and Scalability

Finally, we present a MATLAB r implementation of the overall algorithm with a large number of
time-series (882 in this experiment) to quantify its performance in terms of processing cost. The
computational time is measured on a Lenovo IdeaPad 510-15IKB laptop, with an Intel Core i7-7500U
@ 2.70 GHz processor and 12 GB RAM. In Fig. 3.9, we show the aggregate processing cost per time
instance for the two on-line methods and the total number of time-series. For the first 100 time
instances, the algorithm collects the initial data, since it bootstraps. The peaks indicate the off-line
part of the algorithm, which is more processing demanding mainly due to the segmentation algorithms
running in parallel. The on-line part in the standard on-line algorithm indicates a linear complexity,
since it is based on (3.18), while the equivalent quantity in (3.21) of the ratio-type is more CPU
intensive, justifying the comparatively higher processing cost of the latter algorithm. In both cases,
the aggregate processing cost is typically much less than a second, which demonstrates the lightweight
nature of the proposed scheme. Such results could be further improved with a distributed deployment
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Figure 3.8: Outputs of the RCPD algorithm; using ratio type CUSUM for different time-series. Solid
and dashed lines depict an upward and a downward change, respectively.

Table 3.7: Percentages of time-series with Time Dependencies Exceeding t Samples

t ≥ 1 ≥ 5 ≥ 15 ≥ 30 ≥ 50

piecewise 0.93 0.57 0.23 0.05 0.04

of scheme replicas since each of the time-series could be processed independently.

3.8 The RCPD Algorithm in a Load Balancing Scenario

In this Section, we demonstrate our proposal in a real content distribution scenario, balancing the
traffic between web clients and content caches with a bespoke DNS-based load-balancer. We implement
the RCPD algorithm as a client-server MATLAB r application. The RCPD engine receives periodic
content popularity measurements; if a CP is detected, the corresponding upward or downward changes
are signalled to the load balancer. The load balancer: (i) distributes the load between the deployed
content caches, in a round-robin fashion; (ii) tracks content visits and communicates them to the
RCPD engine; and (iii) deploys or removes content caches based on the RCPD outputs.

We implement the web clients using with the httpperf tool (https://github.com/httperf/httperf).
The number of clients at each time instance is based on a real time-series of YouTube content views,
illustrated in Fig. 3.10a. In practice, an experimental run without the RCPD mechanisms uses three
content caches constantly and a run with the RCPD mechanism enabled uses initially two and then
three, four and five content caches, after each of the three detected change points, respectively. As we
show in Fig. 3.10b, the web clients improve their connectivity times to download the content, while as
demonstrated in Fig. 3.10c the CPU utilization in the servers hosting the content remains almost the
same. A relevant experimental platform is presented in [7].
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Figure 3.9: The aggregated overall processing cost, per time-instance, of the RCPD algorithm over 882
time-series.
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Figure 3.10: a) time-series of video content views, red lines depict the detected CPs, b) the connection
time with and without RCPD adaptation and c) the equivalent servers’ CPU utilization.

3.9 Application of the RCPD for Intrusion Detection in SDWSNs

Considering the limitations of previous works in SDWSN anomaly detection, outlined in Section 3.3,
our main objective is to propose in the remainder of this Chapter a mechanism for DDoS detection
with, i) a high detection rate, and, ii) low complexity, so that it would be suitable for “restricted”
networks. To this end, we propose the employment of the RCPD. As will be explained in detail next,
we study two different DDoS attacks: a false data flow forwarding (FDFF) attack, and a false neighbor
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information (FNI) attack, chosen to illustrate the proposed algorithm’s capabilities in the case of
specific SDWSN vulnerabilities that exhibit largely different behavior. Both attacks are explained in
Section 3.9.1, next.

3.9.1 SDWSN security analysis

The SDN networks security threats are grouped in three sets [51]: application plane attacks, control
plane attacks, and data plane attacks. Among the three, the control plane attacks are pointed out
as the most high impact and attractive [51] [52], as the control plane is responsible for the overall
management of the network [53]. This characteristic turns the control plane prone to distributed denial
of service (DDoS) attacks. For example, an intruder may flood the network with flow rule requests,
which could lead to an exhaustion of the controller’s resources. This attack can be intensified using
multiple intruders.

The threats and vulnerabilities explained before also apply to SDWSNs. Moreover, there are
specific attacks that can attain SDWSNs due to resources constraints, for example: in SDWSN the
forwarding devices have low storage capacity, which limits the memory assigned for flow tables and
buffers. These constraints make the forwarding devices prone to saturation attacks. Also, SDWSN
networks are characterized for having a limited bandwidth and low processing power. This means that
a saturation attack can also result in a DoS attack.

Another vulnerability concerns the gateway between the SDN controller and the WSN. The gateway
has a radio module of limited bandwidth, rendering it a weak link even when the controller has enough
resources to overcome an attack.

For the reasons outlined above, most of the security mechanisms designed for standard SDN
networks have to be adapted or redesigned. This is one of the major challenges for SDWSN security.

3.9.2 Impact of DDoS Attacks on Network Performance

Based on SDWSN specific security vulnerabilities, in a previous work, we studied the impact of three
DDoS attacks on SDWSN performance [54]. The attacks investigated were: false flow request (FFR),
false data flow forwarding (FDFF), and false neighbor information (FNI).

The FFR attack aimed at increasing the SDWSN controller’s processing overhead, as well as the
packets’ traffic, thus, increasing the number of collisions. Each attacker sent multiple flow rule requests
to the controller, while the latter calculated the rule and replied to the request. The impact of the
attack was observed to be negligible. The FDFF attack followed the FFR attack main idea of sending
false flow rule requests to the controller, however, the execution was based on using each attacker’s
neighbors (benign nodes). Each attacker sent one data packet to its neighbors tagged with an unknown
flow identifier; as the neighbors did not have a rule to apply to the packet, they sent a flow request to
the controller asking a rule for the unknown flow identifier. Thus, compared to the FFR, the intensity
of the attack was multiplied by the number of neighbors. The FDFF attack tripled the number of
control packets in the whole network, but had a minor impact on the delivery rate. For both control
and data packets, the delivery rate decreased only between 2% and 4%.

In the FNI attack, each attacker intercepted packets containing neighbor information, modified
them with false neighbor information and forwarded them to the controller. The controller updated
the network topology graph using the false information, and then reconfigured the network with wrong
forwarding rules. Our main results [54] showed that the FNI attack could double the number of control
packets in the whole network and had a significant impact on the delivery rate. In the case of the
control packets, the delivery rate decreased between 35% and 50%. In the case of the data packets, the
delivery rate decreased between 20% and 70%.
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3.9.3 RCPD for Intrusion Detection

We employed the RCPD algorithm in SDWSNs under FDFF and FNI attacks. We simulated grid
topologies with 36 and 100 nodes, varying the number of attackers in the network (5% and 20%).
Each simulation run during 10 hours and each scenario was replicated 30 times. During the first 8
hours the network operated normally, then the attack was triggered. The choice of 8 hours was made
because empirically it was seen that we needed at least 250 samples for the training period and we
obtained one sample every 2 minutes. The simulations were performed using the COOJA simulator [55]
and sky motes. The MAC layer was the IEEE 802.15.4, configured to work without radio duty cycle
(nullrdc_driver). The data sink received the application data, while the management sink received
performance metrics information. Notice that the SDN controller is a different node from the sink.
Table 3.8 depicts the simulation parameters.

Table 3.8: Simulation Parameters

Simulation parameters

Topology Square grid

Number of nodes 36 and 100

Simulation duration 36000 s

Node boot interval [0, 1] s

Number of sinks 2

Sinks position Middle of the grid edge

Data traffic rate 1 packet every 30 seconds

Management traffic rate 1 packet every two minutes

Data payload size 10 bytes

Management payload size 10 bytes

Data traffic start time [2, 3] min

Radio module power 0 dB

Distance between neighbors 50 m

Attacks begins after 28800 s

IT-SDN parameters

Controller position center

ND protocol Collect-based

Link metric ETX

CD protocol none

Flow setup source routed

Route calculation algorithm Dijkstra

Route recalculation threshold 10%

Flow setup types regular or source routed

Flow table size 10 entries

We analyzed the data packets delivery rate and the control packets overhead. The delivery rate
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was calculated by dividing the total number of packets successfully received by the total number of
packets sent. The control packets overhead was quantified as the total amount of control packets sent.
Those metrics were updated every two minutes.

The metrics measuring the performance of the intrusion detection algorithm were the following: i)
the detection rate (DR); ii) the false positive rate (FPR); iii) the false negative rate (FNR); iv) the
detection time median (DTM), indicating the median of the time instances elapsed from the launch
of the attack to the instance it was identified; and v) the median absolute deviation (MAD). The
detection rate is defined as the ratio between the correctly detected attacks and the total number of
attacks. The false positive rate is defined as the ratio between the number of attack events classified as
attack and the total number of attack events. The false negative rate is defined as the ratio between
attack events classified as non-attack event and the number of attack events. The detection time
median is defined as the median of the number of samples required to detect the attack. The median
absolute deviation measures the variability of the detection times and is calculated as shown in (3.34),
where Xi is the detection time for replication i, and X̃ is the median of all the detection times,

MAD = median(|Xi − X̃|). (3.34)

The delivery rate and control overhead time series were analyzed for three monitoring windows and
three critical values. We used monitoring periods K ∈ {50, 100, 150} samples. This means that the
test statistic was run over K samples to extract changes in the mean value. As critical values we used
α ∈ {90%, 95%, 99%}. Finally, in this analysis, we discarded the first 15 samples because during this
time the network was bootstrapping.

3.10 Results and Analysis

In this Section we present and analyze the simulation results. In Section 3.10.1 we compare the FDFF
attack detection performance when monitoring the data packets delivery rate and the control overhead.
In Section 3.10.2 we repeat this analysis for the FNI attack.

3.10.1 FDFF attack detection

Tables 3.9 and 3.10 summarize the FDFF attack detection results when 5% of nodes are attackers. The
results show that when monitoring the data packets delivery rate, the DR is between 57% and 73% for
36 nodes, and between 60% and 83% for 100 nodes. The results when monitoring the control packets
overhead show two main points: (i) the algorithm has the same detection performance if configured
with a monitoring period K of 50 or 150 samples, and (ii) when the monitoring period is configured as
K = 100 samples we obtained a DR between 97% and 100%.

Comparing the FPR and the FNR metrics, we observed that the number of cases classified as false
negative is higher than the number of cases classified as false positive. This means, it is more common
for the algorithm not to detect a change in the metrics when the network is under attack than to
detect a suspicious change in a network without attackers. For example, looking at the results when
monitoring the control overhead in Table 3.9, only in one out of nine cases the FPR was different than
zero. Conversely, the FNR was different than zero in six of nine cases.

The DTM (detection time median) results show that when monitoring the control packets overhead,
the attack detection is faster than when monitoring the delivery rate in all the cases. When monitoring
the data packets delivery rate, the DTM is between 31 and 37 samples for 36 nodes, and between 20
and 31 samples for 100 nodes. When monitoring the control packets overhead, the DTM is between 9
and 19 samples for 36 nodes, and between 10 and 19 samples for 100 nodes. The fastest detection is
obtained monitoring the control packets overhead using a monitoring period of 100 samples, highlighted
in red color.
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Table 3.9: FDFF Attack Detection, 36 Nodes, 5% Attackers

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 31 33 31 31 37 33 31 31 31

MAD 4 6 4 8 9 10 4 4 4

DR 63 67 67 57 70 63 67 73 70

FPR 7 10 7 0 0 0 0 0 0

FNR 30 23 27 43 30 37 33 27 30

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 19 16 18 12 9 11 19 16 18

MAD 3 3 3 3 2 2 3 3 3

DR 67 73 67 100 97 100 67 73 67

FPR 0 0 0 0 3 0 0 0 0

FNR 33 27 33 0 0 0 33 27 33

Table 3.10: FDFF Attack Detection, 100 nodes, 5% Attackers

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 24 26 27 22 20 21 29 31 31

MAD 7 6 13 9 10 11 13 9 15

DR 60 67 67 77 83 73 63 67 63

FPR 23 20 20 10 7 13 0 3 7

FNR 17 13 13 13 1 13 37 30 30

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 19 17 19 13 10 12 19 17 19

MAD 3 3 3 3 2 3 3 3 3

DR 60 73 63 100 100 100 60 73 63

FPR 0 0 0 0 0 0 0 0 0

FNR 40 27 37 0 0 0 40 27 37

Tables 3.11 and 3.12 summarize the FDFF attack detection results when 20% of nodes are attackers.
In the case of 36 nodes, the DR was between 73% and 83% when monitoring the data packets delivery
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Table 3.11: FDFF Attack Detection, 36 nodes, 20% Attackers

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 28 28 28 30 24 28 29 28 28

MAD 5 8 6 11 7 8 6 5 8

DR 77 80 73 73 83 73 77 80 77

FPR 3 07 7 0 3 0 0 3 0

FNR 20 13 20 27 13 27 23 17 23

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

M 8 7 7 5 5 5 8 7 7

MAD 2 2 2 1 1 1 2 2 2

DR 100 100 100 97 87 97 100 100 100

FPR 0 0 0 3 13 3 0 0 0

FNR 0 0 0 0 0 0 0 0 0

Table 3.12: FDFF Attack Detection, 100 nodes, 20% Attackers

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 15 13 14 8 7 7 15 14 14

MAD 5 6 5 6 5 5 5 5 5

DR 100 93 100 97 93 97 100 97 97

FPR 0 7 0 3 7 3 0 3 3

FNR 0 0 0 0 0 0 0 0 0

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 4 4 4 3 3 3 4 4 4

MAD 0 0 0 0 0 0 0 0 0

DR 100 97 100 97 90 97 100 97 100

FPR 0 3 0 3 10 3 0 3 0

FNR 0 0 0 0 0 0 0 0 0

rate, and between 87% and 100% when monitoring the control packets overhead. In terms of detection
time, the best DTM when monitoring the data packets delivery rate was 24 samples and the DTM
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Table 3.13: FNI Attack Detection, 36 nodes, 5% Attackers

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 7 6 7 8 7 6 7 6 6

MAD 3 4 3 4 3 3 2 4 4

DR 93 83 93 93 80 93 93 83 87

FPR 0 10 0 0 13 0 0 10 7

FNR 7 7 7 7 7 7 7 7 6

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 28 25 27 35 26 33 28 25 27

MAD 6 7 9 4 3 5 6 7 9

DR 27 33 27 20 27 23 27 33 27

FPR 3 3 3 0 0 0 0 0 0

FNR 70 63 70 80 73 77 73 67 73

Table 3.14: FNI Attack Detection, 100 nodes, 5% Attackers

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 6 6 6 6 6 6 6 6 6

MAD 4 4 3 3 3 2 4 4 4

DR 87 93 83 83 83 83 83 90 87

FPR 13 7 17 17 17 17 13 10 13

FNR 0 0 0 0 0 0 3 0 0

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 34 29 33 35 37 37 34 29 33

MAD 7 7 7 10 7 8 7 8 8

DR 63 70 67 30 47 37 63 70 67

FPR 0 0 0 0 0 0 0 0 0

FNR 37 30 33 70 53 63 37 30 33

when monitoring the control packets overhead was 5 samples. Configuring the monitoring period in
100 we obtain the best DTM, but there was a drop in the DR if compared with the cases when using

95



CHAPTER 3. APPLICATION OF CHANGE POINT ANALYSIS IN EDGE RESOURCE
ALLOCATION AND INTRUSION DETECTION

Table 3.15: FNI Attack Detection, 36 nodes, 20% Attackers

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 7 7 7 7 7 7 8 7 7

MAD 2 2 2 3 4 3 2 2 2

DR 100 100 100 100 100 100 100 100 100

FPR 0 0 0 0 0 0 0 0 0

FNR 0 0 0 0 0 0 0 0 0

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 26 24 26 26 24 27 26 24 26

MAD 8 7 7 17 11 13 8 7 7

DR 57 70 60 43 63 57 57 70 60

FPR 0 0 0 0 0 0 0 0 0

FNR 43 30 40 57 37 43 43 30 40

Table 3.16: FNI Attack Detection, 100 nodes, 20% Attackers

Data packets delivery rate

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 9 10 10 8 9 8 10 12 11

MAD 5 8 7 4 6 4 5 9 8

DR 100 100 100 100 100 100 100 100 97

FPR 0 0 0 0 0 0 0 0 3

FNR 0 0 0 0 0 0 0 0 0

Control overhead

K 50 100 150

α 90 95 99 90 95 99 90 95 99

DTM 27 24 26 26 25 25 27 24 26

MAD 6 3 6 6 6 6 6 3 6

DR 93 97 97 93 97 93 93 97 97

FPR 0 0 0 0 0 0 0 0 0

FNR 7 3 3 7 3 7 7 3 3

monitoring periods of 50 and 150 samples.

The results for 100 nodes showed it is possible to obtain a DR of 100% monitoring any of the
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metrics, but there were significant differences in the detection time. The DTM when monitoring the
control overhead is between 3 and 4 samples, while when monitoring the data packets delivery rate the
DTM was between 7 and 15 samples. Considering the earliest detection with the highest DR for both
monitoring metrics, it occurred when using a monitoring period of 100 samples. For both cases the DR
obtained was 97%. In terms of FPR and FNR, the best performance was obtained when monitoring
the control overhead and using a monitoring period of 50 and 150 samples. Monitoring the control
overhead using a monitoring window of 100 samples provided a FPR between 3% and 10%.

Summarizing, the algorithm was able to detect the FDFF attack using either the data packet
packets delivery rate or the control packets overhead as inputs. Notably, the algorithm obtained a DR
of 100% with both metrics when 20% of nodes behave as attackers. However, aiming for the quickest
detection captured through the detection time median, the algorithm achieved far better results when
monitoring the control packets overhead in all scenarios. This is a direct consequence of the type of
the attack; the attacker creates multiple flow rule request packets to increase the packet traffic and the
controller processing overhead. After some time, the flow table of the nodes around the attacker start
to saturate, affecting the data packets delivery rate. This means that the change in the delivery will
be detected only after the tables saturation; on the contrary, the number of control packets start to
change immediately after the attack is triggered.

3.10.2 FNI attack detection

Tables 3.13 and 3.14 summarize the FNI attack detection results when 5% of nodes were attackers.
Opposite to the FDFF attack results, the algorithm obtained a better performance detecting the
FNI attack when monitoring the data packets delivery rate. In the case of 36 nodes, the DR when
monitoring the data packets delivery rate was between 80% and 93%, and the DR when monitoring
the control packets overhead was between 23% and 33%. In the case of 100 nodes, the DR when
monitoring the data packets delivery rate was between 83% and 93%, and the DR when monitoring the
control packets overhead was between 30% and 70%. This means, even the best DR when monitoring
the control packets overhead was under the worse DR when monitoring the data packets delivery
rate. Also, the results showed that using a critical value of 90%, we obtained a negligible FPR (in our
simulation calculated zero). With respect to the DTM, the best result was obtained by monitoring the
data packets delivery rate and the control packets overhead were 6 and 25 samples, respectively. This
means the algorithm detected the attack four times faster when monitoring the data packets delivery
rate. For 100 nodes, the best DTM when monitoring the data packets delivery rate remained in 6
samples, but when monitoring the control packets overhead it was 29 samples.

Lastly, Tables 3.15 and 3.16 summarize the FNI attack detection results when 20% of nodes were
attackers. For 36 nodes, the results remained similar to the case of 5% of nodes are attackers. In the
case of 100 nodes, the DR when monitoring the data packets delivery rate was between 97% and 100%,
and the DR when monitoring the control packets delivery rate was between 93% and 97%. About the
DTM, the results for the scenarios when monitoring the data packets delivery rate were between 4
and 9 samples. The results for this same metric when monitoring the control packets overhead were
between 24 and 26 samples. This means, for grid topologies with 100 nodes where 20% of nodes were
attackers, we obtained similar DRs regardless of the monitoring metric, but when monitoring the
delivery rate the detection was at least 3 times faster.

Summarizing our findings, the algorithm was able to detect the FNI attack monitoring either the
data packet packets delivery rate or the control packets overhead. Then, comparing the detection
performance based on the detection rate and the detection time median, the algorithm obtained a far
better performance when monitoring the data packets delivery rate in all scenarios. This effect was
directly related to the type of the attack; in the FNI attack, the attackers intercept the control packets
that contained neighbor information, modify them, and then forward them to the controller. This
means this attack could lead to a network misconfiguration using few control packets.
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3.11 Conclusion

In this Chapter, we proposed the RCPD, a novel algorithm for the real-time detection of changes in the
mean value of content popularity. Approaching the problem statistically, we efficiently combined off-line
and on-line non-parametric CUSUM procedures to avoid restrictive assumptions for content popularity
behavior and to reduce the overall computational cost. We divided the algorithm in two phases. The
first phase was an extended retrospective (off-line) procedure with a modified BS algorithm and was
used to adjust on-line parameters, based on historical data of the particular video. The second phase
integrated one of two alternative trend indicators to the sequential (on-line) procedure, to reveal the
direction of a detected change. We provided extensive simulations, using synthetic and real data, that
demonstrated the performance of the proposed algorithm for the successful identification of content
popularity changes in real-time. We also demonstrated through experimental measurements that the
RCPD’s processing cost is almost imperceptible. Finally we provided proof-of-concept by applying the
algorithm in a load balancing application, highlighting its efficiency in a realistic setting.

Furthermore, we have used the RCPD for intrusion detection in SDWSNs. We performed experi-
ments for two SDWSN DDoS attacks, in topologies of 36 and 100 nodes, and with varying number of
attackers. Our results showed that it is feasible to detect different types of attacks by monitoring either
the data packets delivery rate or control packets metrics. As the detector’s algorithmic complexity is
linear to the size of the network and the number of metrics monitored, the proposed approach could
scale to include other metrics.

98



CHAPTER 3. APPLICATION OF CHANGE POINT ANALYSIS IN EDGE RESOURCE
ALLOCATION AND INTRUSION DETECTION

References

[1] Tom Goethals, Merlijn Sebrechts, Ankita Atrey, Bruno Volckaert, and Filip De Turck. Unikernels
vs containers: An in-depth benchmarking study in the context of microservice applications. In
IEEE Int. Symp. Cloud Service Comput. (SC2), Nov. 2018.

[2] Joao Martins, Ahmed Mohamed, Costin Raiciu, and Felipe Huici. Enabling fast, dynamic
networking processing with ClickOS. In Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, pages 67–72, 2013.

[3] A. Wang, Z. Zha, Y. Guo, and S. Chen. Software-defined networking enhanced edge computing:
A network-centric survey. Proc. IEEE, 107:1500–1519, Aug. 2019.

[4] CISCO Visual Networking. Cisco global cloud index: forecast and methodology, 2015-2020. San
Jose, CA, USA, CISCO, Tech. Rep., 2017.

[5] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, et al. Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput.
Commun. Rev., 38(2):69–74, Mar. 2008.

[6] Necos project: Towards lightweight slicing of cloud federated infrastructures.
https://intrig.dca.fee.unicamp.br/2017/09/05/necos-2-year-eu-brazil-collaborative-project-
starting-in-nov2017/.

[7] Polychronis Valsamas, Sotiris Skaperas, and Lefteris Mamatas. Elastic content distribution based
on unikernels and change-point analysis. In Proc. 24th Eur. Wireless Conf. (EW), pages 1–7,
Catania, Italy, May 2018.

[8] Alexandru Tatar, Marcelo Dias De Amorim, Serge Fdida, and Panayotis Antoniadis. A survey on
predicting the popularity of web content. J. Internet Services Appl., 5(1):8, Dec. 2014.

[9] Gabor Szabo and Bernardo A Huberman. Predicting the popularity of online content. Commun.
ACM, 53(8):80–88, Aug. 2010.
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Chapter 4

Uplink Non-Orthogonal Multiple
Access (NOMA) Under Statistical QoS
Delay Constraints

4.1 Introduction

Various verticals in 5G and beyond (B5G) networks require very stringent latency guarantees, while
at the same time envisioning massive connectivity. As a result, choosing the optimal multiple access
(MA) technique to achieve low latency is a key enabler of B5G. In particular, this issue is more acute
in uplink transmissions due to the potentially high number of collisions. On this premise, in the
present contribution we discuss the issue of delay-sensitive uplink connectivity; to this end, we perform
a comparative analysis of various MA approaches with respect to the achievable effective capacity
(EC). As opposed to standard rate (PHY) or throughput (MAC) analyses, we propose the concept
of the effective capacity as a suitable metric for characterizing jointly PHY-MAC layer delays. The
palette of investigated MA approaches includes standard orthogonal MA (OMA) and power domain
non-orthogonal MA (NOMA) in uplink scenarios.

For two-user networks, we propose novel closed-form expressions for the EC of the NOMA users
and show that in the high signal to noise ratio (SNR) region, the “strong” NOMA user has a limited
EC, assuming the same delay constraint as the “weak” user. We demonstrate that for the weak user,
OMA achieves higher EC than NOMA at small values of the transmit SNR, while NOMA outperforms
OMA in terms of EC at high SNRs. On the other hand, for the strong user the opposite is true, i.e.,
NOMA achieves higher EC than OMA at small SNRs, while OMA becomes more beneficial at high
SNRs. This result raises the question of introducing “adaptive” OMA / NOMA policies, based jointly
on the users’ delay constraints as well as on the available transmit power.

4.2 Contributions and Chapter organization

Non-orthogonal multiple access (NOMA) schemes have attracted a lot of attention recently, allowing
multiple users to be served simultaneously with enhanced spectral efficiency; it is known that the
boundary of achievable rate pairs (in the case of two users) using NOMA is outside the capacity
region achievable with orthogonal multiple access (OMA) techniques [1] or other schemes [2]. Superior
achievable rates are attainable through the use of superposition coding at the transmitter and of
successive interference cancellation (SIC) at the receiver [3, 4]. The SIC receiver decodes multi-user
signals with descending received signal power and subtracts the decoded signal(s) from the received
superimposed signal, so as to improve the signal-to-interference ratio. The process is repeated until
the signal of interest is decoded. In uplink NOMA networks, the strongest user’s signal is decoded first
(as opposed to downlink NOMA networks in which the inverse order is applied).
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Besides, in a number of emerging applications, delay QoS requirements become increasingly
important, e.g., for URLLC systems. Furthermore, in future wireless networks, users are expected to
necessitate flexible delay guarantees for achieving different service requirements. In order to satisfy
diverse delay requirements, a simple and flexible delay QoS model is imperative to be applied and
investigated. In this respect, the EC theory can be employed [5], [6] [7], with EC denoting the maximum
constant arrival rate which can be served by a given service process, while guaranteeing the required
statistical delay provisioning. We studied delay-constrained downlink NOMA networks in [4] and with
secrecy constraints [8] in [9]. The present analysis complements [4], focusing on uplink transmissions.
In the following Sections, we derive novel closed-form expressions for the ECs of a two user network;
we then provide four Lemmas for the asymptotic performance of the network with NOMA and OMA.
The conclusions drawn are supported by an extensive set of simulations.

The rest of the Chapter is organized as follows. In Section 4.3 we investigate the EC of a two user
uplink NOMA system under statistical delay QoS constraints. Simulation results are given in Section
4.4, followed by conclusions in Section 4.5.

4.3 Effective Capacity of Two-user NOMA Uplink Network

Assume a two-user NOMA uplink network with users U1 and U2 in a Rayleigh block fading propagation
channel, with respective channel gains during a transmission block denoted by |h1|2 < |h2|2. The users
transmit corresponding symbols S1, S2 respectively, with power E[|Si|2] = Pi, i = 1, 2 and total power
PT =

∑2
i=1 Pi = 1. Here, Pi is the power coefficient for the user i [10]. The received superimposed

signal can be expressed as [11]

Z =
2∑
i=1

√
PihiSi + w, (4.1)

where w denotes a zero mean circularly symmetric complex Gaussian random variable with variance
σ2. The receiver will first decode the symbol of the strong user treating the transmission of the weak
as interference. After decoding it, the receiver will suppress it from Z and decode the signal of the
weak user. Following the SIC principle and denoting by ρ = 1

σ2 the transmit SNR, the achievable rates,
in b/s/Hz, for user Ui, i = 1, 2, is expressed as: [12]

Ri = log2

(
1 +

ρPi|hi|2

1 + ρ
∑i−1

l=1 Pl|hl|2

)
. (4.2)

Introducing statistical delay QoS constraints, let θi be the statistical delay QoS exponent of the i-th
user, and assume that the service process satisfies the Gärtner-Ellis theorem [6]. The delay exponent
θi captures how strict the delay constraint is [6]. A slower decay rate can be represented by a smaller
θi, which indicates that the system is more delay tolerant, while a larger θi corresponds to a system
with more stringent QoS requirements. Applying the EC theory in a uplink NOMA with two users,
the i-th user’s EC over a block-fading channel, is defined as:

Eic = − 1

θiTfB
ln
(
E
[
e−θiTfBRi

])
(in b/s/Hz) , (4.3)

where Tf is the fading-block length, B is the bandwidth and E [·] denotes expectation over the channel
gains. By inserting Ri into (4.3), we obtain the following expression for the EC of the i-th user

Eic =
1

βi
log2

(
E

[
(1 +

ρPi|hi|2

1 + ρ
∑i−1

l=1 Pl|hl|2
)βi

])
, (4.4)

where βi = − θiTfB
ln 2 , i = 1, 2, is the normalized (negative) QoS exponent.
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4.3.1 ECs in a Two-user NOMA Uplink Network

For the ordering of the channel gains we make use of the theory of order statistics in the following analysis
[13]. Assuming a Rayleigh wireless environment, the channel gains, denoted by xi = |hi|2, i = 1, 2, are
exponentially distributed with probability density function (PDF) and cumulative density function
(CDF) respectively given by f(xi) = e−xi , F (xi) = 1− e−xi . Then, according to order statistics [13],
the ordered channel gains have respective PDFs fi:2(xi), i = 1, 2, and joint PDF f(x1, x2) that are
expressed as

f1:2(x1) = 2e−2x1 , (4.5)

f2:2(x2) = 2e−x2
(
1− e−x2

)
, (4.6)

f(x1, x2) = 2e−x1e−x2 . (4.7)

As a result, the EC of User 1, denoted by E1
c is expressed as

E1
c =

1

β1
log2(E[(1 + ρP1x1)β1 ]) =

1

β1
log2

(∫ ∞
0

(1 + ρP1x1)β1f1:2(x1)dx1

)
=

1

β1
log2

(
2

P1ρ
× U

(
1, 2 + β1,

2

ρP1

))
. (4.8)

where U(·, ·, ·) denotes the confluent hypergeometric function [4]. On the other hand, the EC of the
User 2 is evaluated as

E2
c =

1

β2
log2

(
E

[(
1 +

ρP2x2

1 + ρP1x1

)β2])
=

1

β2
log2

(∫ ∞
0

∫ ∞
x1

(
1 +

ρP2x2

1 + ρP1x1

)β2
f(x1, x2)dx2dx1

)

=
1

β2
log2

(
2P 1−β2

2 (ρP2)β2e
1
ρP2 e

− (P1−P2)
ρP2

)
+

1

β2
log2

(−β2∑
j=0

(
−β2

j

)
(ρP1)j ×

∞∑
k=0

(−1)k(P2 − P1)k

k!(1 + j + k)

×
[
Γ[2 + β2 + j + k,

1

ρP2
]− (ρP2)−1−j−kΓ[1 + β2,

1

ρP2
]
])
, (4.9)

with Γ(·, ·) denoting the incomplete Gamma function [4]. The proof for deriving E1
c is omitted as it can

be verified with standard software (MAPLE or Mathematica) while for E2
c is provided in Appendix I.

In order to perform a comparative performance analysis, here we provide the achievable data rates
for a two-user OMA network, denoted by R̃i, i = 1, 2, given as

R̃i =
1

2
log2

(
1 + ρPT |hi|2

)
, i = 1, 2 (4.10)

Note that the coefficient 1
2 is due to the equal allocation of resources to both users. The corresponding

expressions are obtained for the ECs of both users in a OMA network, denoted by Ẽic, given as

Ẽic =
1

βi
log2

(
E
[
(1 + ρPT |hi|2)

βi
2

])
so that, (4.11)

Ẽ1
c =

1

β1
log2

(
2

ρ
× U

(
1, 2 +

β1

2
,

2

ρ

))
Ẽ2
c =

1

β2
log2

(
2

ρ

1∑
k=0

(
1

k

)
(−1)k × U

(
1, 2 +

β2

2
,
1 + k

ρ

))

The proof is omitted as it can be verified with software (MAPLE or Mathematica).
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4.3.2 Asymptotic Analysis

We first perform an asymptotic analysis with respect to the SNR. Our results are summarized in
Lemma 1.

Lemma 1: In the low and high SNR regimes, respectively, the following conclusions hold:

1. When ρ→ 0, then, E1
c → 0, E2

c → 0, Ẽ1
c → 0, Ẽ2

c → 0, E1
c − Ẽ1

c → 0, E2
c − Ẽ2

c → 0;

2. When ρ→ +∞, then E1
c → +∞, E2

c → 1
β2

log2

(
E
[(

1 + P2|h2|2
P1|h1|2

)β2])
, Ẽ1

c → +∞, Ẽ2
c → +∞,

E1
c − Ẽ1

c → +∞, E2
c − Ẽ2

c → −∞.

Proof : The proof is provided in Appendix II.
Lemma 1 indicates that the ECs of both users are vanishingly small at low values of ρ, irrespective

of employing NOMA or OMA. On the other hand, at high SNRs, we notice that the EC of the strong
user with NOMA is limited to a finite value. On the contrary, for the weaker user, when ρ >> 1,
its achievable EC in the NOMA uplink increases without bound. This is the exact opposite of the
downlink scenario, where it is the weaker user which is limited in terms of EC, when ρ >> 1 [4].

Now, the question is how the ECs evolve with ρ between the two asymptotic regimes. To answer
this question and to further analyze the impact of ρ on the individual EC, we look at the derivatives
with respect to ρ [4] in Lemma 2.

Lemma 2: For the EC of User 1, in a two-user uplink network the following hold:

1. ∂E1
c

∂ρ ≥ 0 and ∂Ẽ1
c

∂ρ ≥ 0, ∀ρ;

2. When ρ→ 0, then lim
ρ→0

(∂(E1
c−Ẽ1

c )
∂ρ ) =

P1− 1
2

ln 2 E[|h1|2];

3. When ρ >> 1, then ∂(E1
c−Ẽ1

c )
∂ρ ≈ 1

2ρ ln 2 ≥ 0 and it approaches 0 when ρ→∞.

Proof : The proof is provided in Appendix III.
Lemma 2 indicates that for User 1, when the transmit SNR ρ is very small, the EC with OMA

increases faster than the EC with NOMA. On the other hand, Lemma 2 shows that when the transmit
SNR is very large, the EC with NOMA increases faster than with OMA.

Combining Lemma 2 and Lemma 1, we can conclude that, E1
c − Ẽ1

c starts at vanishingly small
value, first decreases, and subsequently increases to ∞ at a gradually reducing speed. This means
that for the weaker user, OMA achieves higher EC than NOMA at small values of the transmit SNR
ρ. At high values of ρ, NOMA becomes more beneficial for the weak user. Finally, when ρ→∞ the
performance gain of NOMA over OMA reaches a constant value in the case of User 1.

Lemma 3: For the EC of User 2, in a two-user uplink network the following hold:

1. ∂E2
c

∂ρ ≥ 0 and ∂Ẽ2
c

∂ρ ≥ 0, ∀ρ;

2. When ρ→ 0, then lim
ρ→0

(∂(E2
c−Ẽ2

c )
∂ρ ) = P2

2 ln 2E[|h2|2]

3. When ρ >> 1, then ∂(E2
c−Ẽ2

c )
∂ρ ≈ − 1

2 ln 2
1
ρ < 0 and it approaches 0 when ρ→∞.

Proof : The proof is provided in Appendix IV.
Lemma 3 indicates that, for User 2, when the transmit SNR ρ is very small, the uplink EC with

NOMA increases faster than that with OMA. On the other hand, when the transmit SNR is very
large, the uplink EC with OMA increases faster than that with NOMA. Combining Lemma 3 and
Lemma 1, we can conclude that, E2

c − Ẽ2
c starts at an initial vanishingly small value, first increases,

and subsequently decreases to −∞ with a gradually diminishing rate. This means that for the stronger
user, NOMA achieves higher EC than OMA at small values of the transmit SNR ρ. At high values of
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ρ, OMA becomes more beneficial for the strong user. Finally, when ρ→∞ the performance gain of
OMA over NOMA reaches a constant value, for the stronger user.

Finally, we investigate the sum ECs when using OMA and NOMA, denoted by VN and VO,

VN = E1
c + E2

c , (4.12)

VO = Ẽ1
c + Ẽ2

c . (4.13)

Our conclusions are drawn in Lemma 4.

Lemma 4: For the sum EC with NOMA, denoted by VN , and with OMA, denoted by VO, in a
two-user uplink network, the following hold:

1. ∂VN
∂ρ ≥ 0 and ∂VO

∂ρ ≥ 0, ∀ρ;

2. When ρ → 0, VN → 0, lim
ρ→0

(∂VN∂ρ ) = P1
ln 2E[|h1|2] + P2

ln 2E[|h2|2] ≥ 0, and VO → 0, lim
ρ→0

(∂VO∂ρ ) =

P1
2 ln 2E[|h1|2] + P2

2 ln 2E[|h2|2] ≥ 0;

3. When ρ >> 1, VN →∞, lim
ρ→∞

(∂VN∂ρ ) = 0, and VO →∞, lim
ρ→∞

(∂VO∂ρ ) = 0.

The proof is provided in Appendix V.

Lemma 4 indicates that when NOMA is applied, the sum EC has a constant increasing rate at
small value of the transmit SNR ρ that depends on the average of the channel power gains and the
allocated power coefficients. A similar conclusion is reached when using OMA. On the other hand,
when ρ >> 1, Lemma 4 indicates that the rate at which the sum ECs increase reaches a plateau, both
in the case of NOMA and OMA.

4.4 Numerical Results

In this Section, the Lemmas presented in Section 4.3 are validated through Monte Carlo simulations.
We consider a two user uplink NOMA system, with the following settings: normalized transmission
power levels for both users, P1 = 0.2, P2 = 0.8, normalized delay exponent β1 = β2 = −1 for both
users, unless otherwise stated.

In Fig. 4.1 the ECs of the two-user uplink NOMA and OMA networks are depicted versus the
transmit SNR. We note that for the weak user, OMA is more advantageous than NOMA for low transmit
SNRs, and NOMA is more advantageous than OMA at high transmit SNRs. Reverse conclusions can
be drawn for the strong user. We notice also that the EC of the strong user converges at high SNRs.
This provides numerical validation for Lemma 1.

Figs. 4.2 and 4.3, show respectively the EC of User 1 and User 2, versus the transmit SNR, for
different values of β1 = β2 = β. When the delay constraints become more stringent, i.e., β decreases
(equivalently, θ increases), the individual link-layer rates in NOMA decrease, for both users.

In Fig. 4.4, the ECs of the strong and weak users are depicted across different SNR values,
ρ ∈ {1, 10, 30, 40, 50} dB, as functions of the (negative) normalized delay exponent, for NOMA and
OMA scenarios. We notice that the EC of each user is identical for NOMA and OMA, for small and
large values of the normalized delay exponent. And with incresing transmit SNR ρ, the EC increases
for both users.

Fig. 4.5 shows the difference of the EC in NOMA and the EC in OMA of the weak user. This curve
starts initially at zero, then decreases to a certain minimum and starts increasing at the high values
of transmit SNR. This confirms Lemma 2. When the delay is equal to −1, we see that for ρ ∈ [0, 30]
dB, the difference values are negative, indicating that OMA outperforms NOMA in this range. But
when ρ > 30 dB, the values are positive, i.e., NOMA offers better link-layer rates. However, the
particular ranges depend not only on the delay exponents but also on the power allocation coefficients.
By increasing the transmission power of the weak user and reducing the transmission power of the
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Figure 4.1: E1
c , E2

c in a two-user NOMA uplink network compared to Ecs of two users OMA, versus ρ

Figure 4.2: E1
c versus the transmit SNR, for several delays.

strong user, we notice that the range is reduced. That range expands when we do the inverse. Also,
when the delay becomes more stringent, e.g., β1=β2=-2, the zero crossing moves from 30 to 36 dB.

Figure 4.6 shows the difference of the EC in NOMA and the EC in OMA for the strong user. This
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Figure 4.3: E2
c versus the transmit SNR ρ for several delays.

Figure 4.4: E1
c and E2

c in a two-user NOMA compared to ECs of two users OMA, versus normalized
delay β, for different values of ρ.

curve starts initially at zero, then increases to a certain maximum and starts decreasing without bound
at high values of the transmit SNR. This confirms Lemma 3. We note that the maximum of these
curves decreases when the delay becomes more stringent.
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Figure 4.5: E1
c − Ẽ1

c versus ρ, for several values of the normalized delay exponent.

Figure 4.6: E2
c − Ẽ2

c versus ρ, for various normalized delay exponent.

To investigate the impact of ρ on the performance of the total link-layer rate for the two-user
system, in Fig. 4.7 the plots for VN in NOMA and VO in OMA, versus the transmit SNR are depicted
for various delay exponents. The curves demonstrate that for both NOMA and OMA, the total EC for
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the two users starts at the initial value of 0 and then increases with the transmit SNR, as outlined in
Lemma 4. When ρ is very small, the total link-layer rate for the two user in NOMA, VN , increases
faster than VO in OMA. On the contrary, with the increase of the transmit SNR, VO becomes gradually
higher than VN . At very high values of the transmit SNR, the gap between the sum EC with NOMA
and OMA increases further. Finally, when the delay becomes more stringent, the sum EC of both
NOMA and OMA decreases.

Figure 4.7: VN and VO versus ρ, for several values of normalized delay exponent.

Finally, Figs 4.8 and 4.9 depict the sum ECs versus ρ, for several values of the (negative) normalized
delay exponent. In Fig. 4.8, the delay of the strong user is fixed, while the delay exponent of the weak
user varies. It is shown that in this case, the highest delay QoS (i.e., the smallest negative normalized
delay exponent) of the weak user corresponds to the highest gap between the sum ECs VN − VO. On
the other hand, when the delay of the weak user is fixed, Fig. 4.9 shows that the smallest delay Qos
(i.e., the highest negative normalized delay exponent) for the strong user corresponds to the largest
gap in VN − VO.

The curve of VN − VO starts at zero, increases to a maximum, and returns to negative values. The
transition to zero is at ρ = 31, and ρ =36 respectively for the figures 4.8 and 4.9. That means from
0 to 31dB (36dB in the Figure 4.9), the total link-layer rate of NOMA is higher than the OMA one.
And when ρ becomes larger than this transition point, the total link-layer rate of OMA outperforms
the NOMA one.

4.5 Conclusions

The concept of the EC enabled us to study the achievable data-link layer rates when statistical delay
QoS guarantees are in place, expressed in the form of delay exponents. We investigated the EC for the
uplink of a two-user NOMA network, assuming a Rayleigh block fading channel. We derived novel
closed-form expressions for the ECs of the two users and provided a comparison between NOMA and
OMA. In NOMA networks, we showed that the ECs of both users decrease as the delay constraints
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Figure 4.8: VN - VO versus ρ for various normalized delay.

become stringent. On the other hand, at high transmit SNRs, the EC of the weak user can surpass
the EC of the strong user, as the latter is limited due to interference. This provides the possibility of
switching between NOMA and OMA according to the individual users’ delay constraints and transmit
power levels.

Appendix I

For the second user, we have:

E2
c =

1

β2
log2

(
2

∫ ∞
0

(
ρP2

1 + ρP1x1
)β2e−x1

∫ ∞
x1

(1 + ρP1x1

ρP2
+ x2

)β2
e−x2dx2dx1

)
.

Set z = 1+ρP1x1
ρP2

+ x2, which means we have x2 = z − 1+ρP1x1
ρP2

and dx2 = dz. Then,

E2
c =

1

β2
log2

(
2e

1
ρP2

∫ ∞
0

(
ρP2

1 + ρP1x1
)β2e−x1e

P1x1
P2

∫ ∞
1+ρx1
ρP2

zβ2e−zdzdx1

)

=
1

β2
log2

(
2(ρP2)

β2
2 e

1
2ρP2

∫ ∞
0

(1 + ρP1x1)−β2(1 + ρx1)
β2
2 e

(2P1−2P2−1)x1
2P2

[
Wβ2

2
,
1+β2

2

(
1 + ρx1

ρP2
)
]
dx1

)
=

1

β2
log2

(
2P2(ρP2)β2e

1
ρP2 e

− (P1−P2)
ρP2

∫ ∞
1
ρP2

P−β22 (1 + ρP1y)−β2e(P1−P2)yΓ(1 + β2, y)dy

)
,

where W is the Whittaker W function.

Using the binomial expansion, we have (1 + ρP1y)−β2 =
∑−β2

j=0

(−β2
j

)
(ρP1y)j and we get the

expression given in (4.9).
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Figure 4.9: VN - VO versus ρ for various normalized delay.

The closed-form expression for the EC OMA, of the m-th user with M total users, is determined
in [4] as follow.

Ẽmc =
1

βm
log2

(
E
[
(1 + ρ|hm|2)

βm
2

])
(4.14)

=
1

βm
log2

(
ψm
ρ

∫ ∞
0

(1 + γm)βme
− (M−m+1)γm

ρ (1− e
−γm
ρ )m−1dγm

)
=

1

βm
log2

(ψm
ρ

m−1∑
k=0

(
m− 1

k

)
(−1)k

∫ ∞
0

(1 + γm)βme
− (M−m+1+k)γm

ρ dγm

)
.

Ẽmc =
1

βm
log2

(
ψm
ρ

m−1∑
k=0

(
m− 1

k

)
(−1)kU

(
1, 2 +

2

M
βm,

M −m+ 1 + k

ρ

))
(4.15)

For the two users case, M = 2, we have:

Ẽ1
c =

1

β1
log2

(
2

ρ
× U

(
1, 2 + β1,

2

ρ

))
(4.16)

and,

Ẽ2
c =

1

β2
log2

(
2

ρ

1∑
k=0

(
1

k

)
(−1)k × U

(
1, 2 + β2,

1 + k

ρ

))
(4.17)

where U(·, ·, ·) is the confluent hypergeometric function of the second kind, defined as

U(a, b, z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1dt (4.18)
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Appendix II

By inserting ρ→ 0 into (4.8) and (4.9), we get 1) of Lemma 1, i.e.,

lim
ρ→0

(E1
c − Ẽ1

c ) =
1

β1
log2(

E[(1 + ρP1|h1|2)β2 ]

E[(1 + ρ|h1|2)
β2
2 ]

) = 0,

lim
ρ→0

(E2
c − Ẽ2

c ) =
1

β2
log2

E[(1 + ρP2|h2|2
1+ρP1|h1|2 )β2 ]

E[(1 + ρ|h2|2)
β2
2 ]

 = 0.

In the same way, by inserting ρ→∞ into (4.8) and (4.9), we get 2) in Lemma 1, given below.

lim
ρ→∞

E2
c →

1

β2
log2(E[(1 +

P2|h2|2

P1|h1|2
)β2 ]),

lim
ρ→∞

(E1
c − Ẽ1

c ) =
1

β1
log2(ρ

β1
2

E[(1
ρ + P1|h1|2)β2 ]

E[(1
ρ + |h1|2)

β2
2 ]

) =∞,

lim
ρ→∞

(E2
c − Ẽ2

c ) =
1

β2
log2(

E[(
1
ρ

+P1|h1|2+P2|h2|2
1
ρ

+P1|h1|2
)β2 ]

ρ
β2
2 E[(1

ρ + |h2|2)
β2
2 ]

) =−∞.

Appendix III

To analyze the trends of E1
c and Ẽ1

c with respect to ρ, we start with

∂E1
c

∂ρ
=

1

β1 ln 2

(
E[(1 + ρP1|h1|2)β1 ]

)′
E[(1 + ρP1|h1|2)β1 ]

=
P1

ln 2

E[|h1|2(1 + ρP1|h1|2)β1−1]

E[(1 + ρP1|h1|2)β1 ]
≥ 0.

Similarly, for user 1 in OMA we have

∂Ẽ1
c

∂ρ
=

1

β1 ln 2

(
E[(1 + ρ|h1|2)

β1
2 ]
)′

E[(1 + ρ|h1|2)
β1
2 ]

=
1

2 ln 2

E[|h1|2(1 + ρ|h1|2)
β1
2
−1]

E[(1 + ρ|h1|2)
β1
2 ]

≥ 0.

Then, we get that

∂(E1
c − Ẽ1

c )

∂ρ
=

P1

ln 2

E[|h1|2(1 + ρP1|h1|2)β1−1]

E[(1 + ρP1|h1|2)β1 ]
− 1

2 ln 2

E[|h1|2(1 + ρ|h1|2)
β1
2
−1]

E[(1 + ρ|h1|2)
β1
2 ]

, (4.19)

and lim
ρ→0

(∂(E1
c−Ẽ1

c )
∂ρ ) =

(P1− 1
2

)

ln 2 E[|h1|2] ≤ 0. When ρ >> 1, we have

∂(E1
c − Ẽ1

c )

∂ρ
) =

P1

ln 2

E[|h1|2(ρP1|h1|2)β1−1]

E[(ρP1|h1|2)β1 ]
− 1

2 ln 2

E[|h1|2(ρ|h1|2)
β1
2
−1]

E[(ρ|h1|2)
β1
2 ]

=
1

2ρ ln 2
≥ 0. (4.20)

When ρ→∞, this term approaches 0.
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Appendix IV

E2
c = 1

β2
log2(E[(1 + ρP2|h2|2

1+ρP1|h1|2 )β2 ]), and

∂E2
c

∂ρ
=

1

β2 ln 2

(
E[(1 + ρP2|h2|2

1+ρP1|h1|2 )β2 ]
)′

E[(1 + ρP2|h2|2
1+ρP1|h1|2 )β2 ]

=
1

ln 2

E[ P2|h2|2
(1+ρP1|h1|2)2

(1 + ρP2|h2|2
1+ρP1|h1|2 )β2−1]

E[(1 + ρP2|h2|2
1+ρP1|h1|2 )β2 ]

≥ 0. (4.21)

In the same way, for the user 2 in OMA, we have

∂Ẽ2
c

∂ρ
=

1

β2 ln 2

(
E[(1 + ρ|h2|2)

β2
2 ]
)′

E[(1 + ρ|h2|2)
β2
2 ]

=
1

2 ln 2

E[|h2|2(1 + ρ|h2|2)
β2
2
−1]

E[(1 + ρ|h2|2)
β2
2 ]

≥ 0, (4.22)

and

∂(E2
c − Ẽ2

c )

∂ρ
=

1

ln 2

E[ P2|h2|2
(1+ρP1|h1|2)2

(1 + ρP2|h2|2
1+ρP1|h1|2 )β2−1]

E[(1 + ρP2|h2|2
1+ρP1|h1|2 )β2 ]

− 1

2 ln 2

E[|h2|2(1 + ρ|h2|2)
β2
2
−1]

E[(1 + ρ|h2|2)
β2
2 ]

. (4.23)

When ρ→ 0, we have that lim
ρ→0

(∂(E2
c−Ẽ2

c )
∂ρ ) =

(P2− 1
2

)

ln 2 E[|h2|2]. When ρ is very large,

∂(E2
c − Ẽ2

c )

∂ρ
=

E[ P2|h2|2
ρ2( 1

ρ
+P1|h1|2)2
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ρ

(P2|h2|2)
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ρ
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)β2−1]
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ρ

P2|h2|2
( 1
ρ

+P1|h1|2)
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− 1

2 ln 2

1

ρ

E[|h2|2(1
ρ + |h2|2)

β2
2
−1]

E[(1
ρ + |h2|2)

β2
2 ]

=
E[ P2|h2|2

ρ2(P1|h1|2)2
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− 1
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=
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ρ2P 2
1
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2 ln 2

1

ρ
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P 2
1 ln 2
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2 ln 2ρ
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, (4.24)

where A =
E[
|h2|

2

(|h1|2)2
(1+

P2|h2|
2

P1|h1|2
)β2−1]

E[(1+
P2|h2|2
P1|h1|2

)β2 ]
, unrelated to ρ. Hence, when ρ is very large, ∂(E2

c−Ẽ2
c )

∂ρ can be

approximated by − 1
2 ln 2

1
ρ , and it gradually approaches 0 when ρ→∞.

Appendix V

Note that VN = E1
c +E2

c . By using Lemma 1, we have lim
ρ→0

(VN ) = 0 and lim
ρ→∞

(VN ) =∞. Then, we get

that

∂VN
∂ρ

=
∂(E1

c + E2
c )

∂ρ
=

P1

ln 2

E[|h1|2(1 + ρP1|h1|2)β1−1]

E[(1 + ρP1|h1|2)β1 ]
+

1

ln 2

E[ P2|h2|2
(1+ρP1|h1|2)2

(1 + ρP2|h2|2
1+ρP1|h1|2 )β2−1]
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≥ 0.

(4.25)
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When ρ→ 0, we have lim
ρ→0

(∂VN∂ρ ) = P1
ln 2E[|h1|2] + P2

ln 2E[|h2|2]. When ρ→∞, we get that

lim
ρ→∞

∂VN
∂ρ

=
1

ρ ln 2
+

E[ P2|h2|2
(P1|h1|2)2

(1 + P2|h2|2
P1|h1|2 )β2−1]

ρ2 ln 2E[(1 + P2|h2|2
P1|h1|2 )β2 ]

=0.

For VO in the case of OMA, we note that VO = Ẽ1
c + Ẽ2

c . By using Lemma 1, we have lim
ρ→0

(V0) = 0

and lim
ρ→∞

(V0) =∞. Then,

∂V0

∂ρ
=
∂(Ẽ1

c + Ẽ2
c )

∂ρ
=

1

2 ln 2

E[|h1|2(1 + ρ|h1|2)
β1
2
−1]

E[(1 + ρ|h1|2)
β1
2 ]

+
1

2 ln 2

E[|h2|2(1 + ρ|h2|2)
β2
2
−1]

E[(1 + ρ|h2|2)
β2
2 ]

≥ 0.

When ρ→ 0, we have lim
ρ→0

(∂VO∂ρ ) = 1
2 ln 2E[|h1|2]+ 1

2 ln 2E[|h2|2]. When ρ→∞, we have that lim
ρ→∞

(∂VO∂ρ ) =

lim
ρ→∞

( 1
2ρ ln 2 + 1

2ρ ln 2) = lim
ρ→∞

( 1
ρ ln 2), which equals to 0.
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Chapter 5

Perspectives

ToDo!

5.1 Introduction

While security protocols predominantly focus on the core network, the enhancement of the security
of the B5G access network becomes of critical importance. Despite the strengthening of 5G security
protocols with respect to LTE, there are still open issues that have not been fully addressed. The
current tutorial is articulated around the premise that rethinking the security design bottom up,
starting at the physical layer, is not only viable in 6G but importantly, arises as an efficient way to
overcome security hurdles in novel use cases, notably mMTC and URLLC. In this tutorial, we begin
with a review of fundamental concepts in security overall and physical layer security in particular.
We then move to provide a comprehensive review of the state-of the-art in i) secret key generation
from shared randomness, ii) the wiretap channel in the mMIMO era, iii) authentication of devices
using physical unclonable functions (PUFs) and localization based authentication, protocols using
multi-factor authentication, iv) jamming attacks and intrusion detection at PHY. We finally conclude
with the proposers’ aspirations for the 6G security landscape, in the hyper-connectivity and semantic
communications era.

5.2 6G Research Topics

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer
id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus
et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla
et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer
sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum.
Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor
semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,
diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo.
Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan
bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit
mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et
magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper
vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique,
libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing
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semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie
nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi
blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque
tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam
in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum
pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer
tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut
imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim.
Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit
ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis
sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in
sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis.
Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui.
Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas.
Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean
faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros,
malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna
sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur
et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est,
nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit
sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst.
Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed,
volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui
lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad
litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel,
eleifend faucibus, vehicula eu, lacus.

5.3 The Role of of PLS in 6G

The rollout of fifth-generation (5G) mobile networks and the forthcoming 6G will bring about fundamen-
tal changes in the way we communicate, access services and entertainment. In the context of security,
inarguably, 5G security enhancements present a big improvement with respect to LTE. However, as
the complexity of the application scenarios increases with the introduction of novel use cases, notably
ultra-reliable low latency (URLLC) and massive machine type communications (mMTC), novel security
challenges arise that might be difficult to address using the standard paradigm of complexity based
classical crypto solutions. Specific use cases with open security issues are described in detail in a
number of 3GPP technical reports, e.g., on the false base station attack scenario [1] and on the security
issues in URLLC [2]. Indeed, for beyond 5G (B5G) systems, there exist security aspects that can
be further enhanced by exploiting different approaches, as classical mechanisms either fall short in
guaranteeing all the security and privacy relevant aspects, or, can be strengthened with mechanisms
that could provide a second layer of protection.

In the past years, physical layer security (PLS) [3, 4] has been studied and indicated as a possible
way to emancipate networks from classical, complexity based, security approaches. Notably, it is
explicitly mentioned in the first white paper on 6G: “The strongest security protection may be achieved
at the physical layer.” Furthermore, it is stated as an enabling technology in the IEEE International
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Network Generations Roadmap (INGR) 1st Edition 2019 in the Chapters on “Security” (Section 1.1 pp.
1-2) and on “Massive MIMO” (Section 4.3 pp. 8-9) and is expected to be more closely monitored in
the 2nd Edition (currently under writing). Based on this, the objective of this tutorial is to investigate
how it could be possible in B5G to move some of the security core functions down to the physical layer,
exploiting both the communication radio channel and the hardware, as unique entropy sources.

Since the wireless channel is reciprocal, time-varying and random in nature, it offers a valid,
inherently secure source for key agreement (KA) protocols between two communicating parties. This is
pertinent to many forthcoming B5G applications that will require strong, but nevertheless, lightweight
KA mechanisms; in this direction, PLS may offer such solutions, or complement existing algorithms,
with minimal changes in the control plane. With respect to authentication, physical unclonable
functions (PUFs), wireless fingerprinting / localization, combined with more classical approaches, could
also enhance authentication and key agreement (AKA) in demanding scenarios, including (but not
limited to) device to device (D2D) and Industry 4.0. In parallel, mmWave in the Terahertz range
will rely upon setting up wireless “wires”; although on their own they cannot ensure confidentiality,
they will provide a concrete scenario for the wiretap channel. It is therefore pertinent to discuss
advancements in wiretap secrecy encoders. In a nutshell, several advantages can be envisioned by
rethinking the security design bottom-up, and in particular: 1) PLS can provide information-theoretic
security guarantees with lightweight mechanisms (e.g., using LDPC encoders); 2) hybrid crypto-PLS
protocols can provide alternatives in scenarios where classical mechanisms fall short such as in [1] and
[2], and 3) PLS can act as an extra security layer, complementing other approaches.

Our motivation in this tutorial on PLS stems from the fact that in B5G PLS emerges as a
complementary means to enhance the security in demanding low latency and massive connectivity
scenarios. A few supporting examples include: 1) the security vulnerabilities identified in [1] arise
during the establishment of the radio link; in this aspect, standard security protocols that build on
the premise that the communication link has already been established, cannot offer solutions when
this is not the case, whereas, PLS schemes can be seamlessly incorporated (e.g., can be interwoven
with channel estimation); 2) in the realm of massive IoT in which standard authentication and key
distribution /management becomes challenging (it is unrealistic to use digital certificates for billions
of devices), PLS can offer complementary, device oriented solutions; 3) in 6G we will move away
from the standard client/server networking paradigm on which the most successful security protocols
build on and incorporate D2D and D2Edge at massive scales; and 4) the standard “rigid” on-or-off
security approach of current protocols might not be the best fit to future generations of “semantic”
communications between smart devices. A further benefit comes from the fact that PLS techniques –
if implemented correctly – can offer quantum resistance. In this sense, PLS could pave the way out of
the low latency impasse introducing novel lightweight mechanisms to post-quantum security.

The tutorial’s two core objectives are: 1) to inform the audience on how PLS schemes can work
either as stand-alone or as complementary schemes to address open security issues in 5G, and 2) to
discuss how PLS can fit in the palette of 6G security solutions.

5.3.1 Information theoretic security

Fundamental results of information theory, notably in terms of the channel capacity of various classes
of wireless communication channels, have to a large extent materialized in working communication
systems, bringing wireless technology to the current fifth generation (5G). However, confidentiality
in communication exchange took a different route to practice than the one prescribed by Shannon,
whose negative result on perfect secrecy is referred to as the one-time pad scheme. The requirement
of perfect secrecy was abandoned for decades and security studies focuses on semantic security, i.e.,
indistinguishability results in polynomial time, giving rise to the domain of computational security.
Yet, recent work on information theoretic secrecy, such as using channel noise to assist in secret
communication or using shared aléa, e.g., manifested as quantum entanglement to exchange secret keys,
removes some of the barriers for perfect secrecy. This advancement become increasingly important as
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quantum computers seem finally to be tangible in the not so distant future.

However, quantum computing is not the only precarity for public key encryption based authentication
and key agreement (AKA). The rollout of 5G mobile networks and the forthcoming sixth generation (6G)
will bring about fundamental changes in the way we communicate, access services and entertainment.
In the context of security, inarguably, 5G security enhancements present a big improvement with respect
to LTE. However, as the complexity of the application scenarios increases with the introduction of
novel use cases, notably ultra-reliable low latency (URLLC) and massive machine type communications
(mMTC), commonly referred to as the Internet of things IoT, novel security challenges arise that might
be difficult to address using the standard paradigm of complexity based crypto solutions. Blockchain
technologies could offer a viable alternative for the registration and normal activity tracking of massive
IoT; however, these are also computationally intensive and might not be the best approach in the
domain of fast authentication. Security under latency constraints is still considered as a high priority
open issue.

In the past years, physical layer security (PLS) has been studied and indicated as a possible way
to emancipate networks from classic, complexity based, security approaches. Notably, it is explicitly
mentioned as a 6G enabling technology in the first white paper on 6G and in two IEEE INGR
(International Network Generations Roadmap) chapters. Importantly, several advantages can be
envisaged by rethinking the security design bottom-up, and in particular:

1) PLS can provide information-theoretic security guarantees and can offer a lightweight mechanism
towards quantum resistance; 2) hybrid crypto-PLS protocols can provide alternatives in scenarios
where classic mechanism falls short such as in low latency scenarios; 3) PLS can act as an extra security
layer, complementing other approaches.

A primary direction of my proposed research project is to move some of the security core functions
down to the physical layer, exploiting both the communication radio channel and the hardware, as
unique entropy sources. My proposed research on PLS encompasses research on authentication, data
confidentiality and anomaly detection, described below.

5.3.2 Authentication

With respect to authentication, physical unclonable functions (PUFs), wireless fingerprinting and
localization could enhance AKA in demanding scenarios, including (but not limited to) device to device
(D2D) and ultra-low latency applications such as autonomous vehicles or smart factories, enhanced
reality and tactile Internet. Related research questions in this direction would include:

- The design of novel information reconciliation code designs from the families of Slepian Wolf or
Wyner Ziv distributed source encoders, with a particular focus on the short block-length; furthermore,
benchmarking their performance against the best known second order approximation results for the
respective achievable rates.

- Characterization of the wireless channel from a security (as opposed to the standard point-to-point
communication) point of view. The baseline idea boils down to the fact that the predictable element
of the wireless coefficient is useful for authentication (localization), while the purely random for
extracting secret keys. Developing the mathematical and machine learning tools to resolve the two is
an unchartered area of research so far. Together with the systematic study of the short block-length
reconciliation, it can give important answers on the required amount of privacy amplification in real
systems.

- The evaluation of the security level achieved with the proposed PLS methods will be sought,
scrutinizing the hypothesis that security level 5 (post-quantum) is attainable with PLS in the finite
block-length regime.

- The proposal of hybrid crypto-PLS systems and the resilience of related systems to active attacks.
Unlike in the network security paradigm, active attacks at the physical layer (PHY) can be alleviated
by PHY remedies, e.g., narrow beamforming, pilot randomization, energy harvesting and frequency
hopping.
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5.3.3 Data Confidentiality

Additionally, with respect to data confidentiality achieved in wiretap channels with the use of secrecy
encoders, practical designs have so far been presented only for the wiretap-II channel (i.e., noiseless
main channel) and the erasure channel. Building secrecy encoders for the standard wiretap-I channel
is timely, especially as degradedness of the eavesdropping channel can be substantiated in mmWave
technologies enabled by narrow beamforming using multiple antennas. In my proposed research
direction in this domain, I intend to seek input from the design of core building blocks of symmetric
block ciphers, in particular of reversible S-boxes. While linear encoders purposed for reliability have
proved instrumental to reach the Shannon limit for reliable communication in (linear) channel wireless
settings, they might not be the optimal choice for secrecy. The study of bent functions from the crypto
community can constitute the starting point of the design of non-linear secrecy encoders, purposed to
guarantee reliability in the communication and secrecy with respect to an eavesdropper.

5.3.4 Anomaly Detection

In terms of anomaly detection, my focus is on proposing novel approaches to identify hacking and
distributed denial of service (DDoS) attacks in IoT networks, starting at the device (PHY) level
and accounting for the wireless edge. The primary aim is to break away from incremental earlier
approaches that rely on traffic monitoring and (deep) packet inspection, performed at the upper layers
of the network stack. In the proposed research direction, IoT resilience to hacking and DDoS will be
investigated leveraging my recent results in change point analysis, on one hand, and, deep learning
techniques, on the other. The primary innovation is on rethinking the overall design bottom up, noting
that robust, early detection tools should optimally aggregate behavioural information both from the
network side (e.g., IP addresses, number of TCP segments, type of messages, etc.) as well as the
device’s physical side channels (e.g., power consumed, duty cycle, temperature variations, variations in
the number of memory read /write operations, etc.).

With respect to this latter dimension, side channels have customarily been used for negative security
proofs, e.g., showcasing it is possible to compromise symmetric block ciphers such as the DES with
smart power monitoring. The idea of using side channels to identify intrusions or anomalous events
breaks completely new ground and can offer a straightforward solution to issues related to monitoring
a huge number of network layer parameters (an issue typically tackled with data thinning approaches).
On this premise, the early detection of hacking / DDoS can be developed using state-of-the-art,
real-time, lightweight anomaly detection algorithms, suitable for the constraints of IoT devices, such as
on-line change point detection or deep learning tools. A second important aspect is the development of
distributed anomaly detection algorithms. Understanding the trade-off between cluster size and speed
of detection would be the primary initial goal in this setting.

5.4 Longer Term Perspectives

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer
id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus
et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla
et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer
sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum.
Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor
semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,
diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo.
Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan
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bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit
mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et
magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper
vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique,
libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing
semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie
nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi
blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque
tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam
in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum
pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer
tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut
imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim.
Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit
ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis
sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in
sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis.
Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui.
Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas.
Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean
faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros,
malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna
sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur
et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est,
nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit
sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst.
Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed,
volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui
lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad
litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel,
eleifend faucibus, vehicula eu, lacus.
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