
HAL Id: tel-02919785
https://hal.science/tel-02919785

Submitted on 24 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Schedulability Analysis of Probabilistic Real-Time
Systems

Jasdeep Singh

To cite this version:
Jasdeep Singh. Schedulability Analysis of Probabilistic Real-Time Systems. Engineering Sciences
[physics]. UNIVERSITE DE TOULOUSE, 2020. English. �NNT : �. �tel-02919785�

https://hal.science/tel-02919785
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Institut Supérieur de l’Aéronautique et de l’Espace (ISAE)

Présentée et soutenue le Date de défense (06/03/2020) par :
Jasdeep SINGH

Schedulability Analysis of Probabilistic Real-Time Systems

JURY
CHRISTINE ROCHANGE Professor at University of

Toulouse
Président du Jury

LAURENT GEORGE Professor at ESIEE Paris,
University of Paris-Est

Membre du Jury

LAURA CARNEVALI Associate Professor at
University of Florence

Membre du Jury

ZHISHAN GUO Assistant Professor at University
of Central Florida

Membre du Jury

DIDIER LIME Maître de Conférences at École
Centrale de Nantes

Rapporteur

ENRICO VICARIO Professor at University of
Florence

Rapporteur

LUCA SANTINELLI Ingenieur de Recherche Directeur de Thèse

PIERRE SIRON Professor at ISAE-SUPAERO Membre du Jury

École doctorale et spécialité :
MITT : Domaine STIC : Réseaux, Télécoms, Systèmes et Architecture

Unité de Recherche :
ONERA-DTIS SEAS

Directeur(s) de Thèse :
Jean-Loup FARGES et Luca SANTINELLI

Rapporteurs :
Enrico VICARIO et Didier LIME

Acknowledgements

First and foremost, I would like to pass my heartfelt thanks to my supervisors Luca Santinelli, Guillaume
Infantes whose place was later taken by Jean-Loup Farges. With them, I would like to sincerely thank
David Doose and Julien Brunel, all of them stood by me through the learning process of the thesis. I
wish to express my sincere gratitude to Zhishan Guo, Konstantinos Bletsas and Federico Reghenzani
who helped me shape my thesis with their immense support. I am indebted to all of them.

My heartfelt thanks to the thesis reviewers Enrico Vicario and Didier Lime for their help in making
the thesis as refined as possible. I must not forget to thank the unknown reviewers of the accepted as
well as unaccepted articles as they helped to improve the thesis.

My sincere gratitude to all the colleagues at ONERA and ISAE-SUPAERO who contributed to my
work environment in invaluable ways. A million thanks to my friends and family for their continuous
support through this journey.

i

Contents

Table of acronyms xi

1 Introduction 1

Introduction 1

1.1 Real-Time Systems . 2

1.2 Probabilistic Real-time Systems . 4

1.3 Mixed Criticality Real-Time Systems . 7

1.4 Mixed Criticality Probabilistic Real-Time Systems 9

1.5 Formal Methods . 10

1.6 The Thesis . 11

1.7 State Of The Art . 16

2 Fundamentals and Notations 23

2.1 Probability . 23

2.2 Real-Time Systems . 25

2.3 Mixed Criticality Systems . 26

3 Continuous Time Markov Chain Schedulability Analysis 29

3.1 Continuous Time Markov Chain . 30

3.2 Pessimism, Exponential Upper Bounding, and Safety 32

3.3 Job Execution Interference Definitions . 34

3.4 Deterministic Observations . 38

3.5 Modelling and Analyzing Probabilistic Real-Time Systems 39

3.6 Experimental Results . 45

3.7 Perspectives . 51

iii

4 Discrete Time Markov Chain Mixed Criticality Schedulability Analysis 55

4.1 Mixed Criticality System . 57

4.2 Discrete Time Markov Chain model . 58

4.3 Analysis . 60

4.4 Perspectives . 64

5 Graph Based Mixed Criticality Schedulability Analysis: Execution Time 65

5.1 Graph and Tree Model . 67

5.2 Scheduling Tree . 71

5.3 Schedulablity analysis . 73

5.4 Experiments . 78

5.5 Perspectives . 80

6 Graph Based Mixed Criticality Schedulability Analysis: Response Time 83

6.1 Graph and Tree Model . 84

6.2 Worst Case Scheduling Model . 91

6.3 Dependence . 96

6.4 Perspectives . 100

7 General Perspectives and Conclusion 103

Bibliography 106

iv

List of Figures

1.1 A depiction of a real-time system. 2

1.2 Task execution times lies between the BCET and WCET for predictability of task
execution. 3

1.3 Task probabilistic execution through pWCET represented as ICDF with BCET and
WCET. 5

1.4 Tasks executions with WCET(left) or pWCET(right) 6

1.5 Mixed Criticality scheduling. 8

2.1 A continuous Gaussian distribution in PDF, CDF and CCDF forms. 24

2.2 Example of PDF, discrete CDF and discrete CCDF representations of a certain distri-
bution. 24

2.3 Task probabilistic execution shown as a pWCET ICDF with BCET and WCET. . . . 25

2.4 pWCET as a PMF distribution. 26

3.1 CTMCh and the corresponding embedded DTMCh. 31

3.2 Exponential EXP upper bounding distributions with a certain rate. 34

3.3 Various possible delays to the execution of a job. 35

3.4 Job J, job set Jprd(J), job set Jsyc(J), and job set Jprm(J) are represented with interac-
tions between them. 38

3.5 Job CMTCh model formalization with blocks and input information. 40

3.6 Iterative process to build a CTMCh model; the preemption effects are added and
validated one preemption by one preemption. 42

3.7 EDF scheduling . 46

3.8 CTMCh job models . 46

3.9 Job executions of Γ1 before and after execution interference. 47

3.10 Complexity of CTMCh approach with types of interference. 49

3.11 Probabilities of deadline misses for the tasks of the task set Γ4 with EDF and FP. . . 50

v

3.12 Proabilities of deadline misses for the jobs given by the task set Γ4. 51

3.13 Continuous to Discrete pWCET . 53

4.1 pWCRT of job J in its ICDF in (a) continuous and (b) discrete form . High and low
criticality regions are separated by l. Low and High criticality zones denoted as LO and
HI. 58

4.2 System DTMCh model M, assuming J1,J2, . . . ,JnHI ∈ ΓHI and such that p1 ≤ p2 ≤
. . .≤ pnHI . 59

4.3 Pkn from (k,n) system criticality. 61

4.4 The backlog to the HI-criticality job JHI reduces to zero by dropping LO-criticality jobs
J′ and J′′. 63

4.5 Probability of deadline miss of the job J14 vs when the LO-criticality jobs dropped. . 64

5.1 Graph nodes for jobs of various criticalities. 68

5.2 Probabilistic job executions of jobs of task set Γ1 in a hyperperiod. 69

5.3 Graph for task set Γ1. 69

5.4 Graph with subgraphs for task set Γ1. 70

5.5 Exploration tree of task set Γ1. 72

5.6 A portion of the optimized scheduling tree T schd
s for task set Γ1 with root node J1. . . 77

5.7 Jobs in Γ2. 78

5.8 Graph for the jobs in Γ2. 79

5.9 A portion of an exploration tree for task set Γ2 with the root node J1. 80

6.1 Jobs of task set Γ1. 85

6.2 The graph of the jobs in Γ1. 85

6.3 Graph unfolded into a tree for jobs of Γ1. 86

6.4 pWCRT from convolution of Tail distribution and the pWCET. 88

6.5 High criticality from a threshold l1 on pWCRT of a job J1 of Γ1. 88

6.6 pWCRT distributions of some of the jobs of the task set Γ2. 92

6.7 pWCRT of a job with threshold for criticality mode. 93

vi

6.8 HI and LO subnodes within the node for high criticality jobs. 93

6.9 The scheduling tree Tsched for the schedule in PMC. 95

6.10 Optimal scheduling tree for the task set Γ2. 97

6.11 Dependence convolution. 98

6.12 Dependent pWCRT PMF of job J12 in Γ2 . 99

6.13 Probability of system entering high criticality . 99

6.14 Probability of jobs missing deadline . 99

vii

List of Tables

3.1 Task set Γ1 parameters. 46

3.2 Parameters for task set Γ2 and task probability of deadline miss. 48

3.3 Task sets ΓA
3 , ΓB

3 , and ΓC
3 to test computation time. 49

3.4 Task set Γ4. 50

4.1 Task set Γ parameters with pWCET as exponential distribution given with the rate
parameter. 61

5.1 Task set Γ2. 78

5.2 Schedules of the jobs of Γ2 enter MI or HI criticality with schedule J11 ,J51 ,J41 ,J31

,J52 ,J12 ,J32 ,J13 ,J21 ,J53. 79

5.3 Task set Γ3. 79

5.4 Complexity as number of jobs vs number of nodes in exploration tree. 81

6.1 Task set Γ2. 91

ix

Table of acronyms

BCET Best Case Execution Time

CCDF Complementary Cumulative Density Function

CDF Cumulative Density Function

CTMCh Continuous Time Markov Chain

DTMCh Discrete Time Markov Chain

EDF Earliest Deadline First

FoS Factor of Safety

FP Fixed Priority

ICDF Inverse Cumulative Density Function

MBPTA Measurement Based Probabilistic Timing Analysis

MC Mixed Criticality

MCh Markov Chain

PDF Probability Density Function

PMF Probability Mass Function

pRTS Probabilistic Real-Time System

pWCET Probabilistic Worst Case Execution Time

pWCRT Probabilistic Worst Case Response Tim

SPTA Static Probabilistic Timing Analysis

WCET Worst Case Execution Time

WCRT Worst Case Response Time

xi

CHAPTER 1

Introduction

If you know the enemy and know yourself,
you need not fear the results of a hundred
battles.

Sun Tzu

The objective of any act beyond the basic needs of food, shelter and clothing by the humans
tends to have the direction which eases the human life for the same basic needs. Now that curiosity
to look for these acts is born and ambitions grew, it has made us develop great machines, from the
primitive machine inventions by Leonardo da Vinci to the self landing rockets boosters by SpaceX.
With this progress, the complexity of understanding the systems rose, and the functional reliability of
the machines, computer systems in our case, became a question. So did the complexity of the computer
systems which must perform in real world timing constraints, which are called real-time systems.
When computer systems are applied for scenarios which are safety critical, like those in satellites or
aircraft controls, they need to be reliable. If they are not reliable, they end up becoming an enemy
which threaten human life, like an aircraft losing its control. The above quote by Sun Tzu from The Art
of War says exactly that, to know your enemy. In this thesis we explore such systems which are applied
in real world scenarios, the need for them, the challenges that exist today and the research undertaken
for the solutions proposed to those challenges.

L’objectif de tout acte au-delà des besoins fondamentaux de nourriture, d’abri et de vêtements par
les humains a la direction qui facilite la vie humaine pour les mêmes besoins de base. Maintenant
que la curiosité de recherche est né et les ambitions ont grandi, il nous a fait développer de grandes
machines, comme des inventions de machines primitives de Léonard de Vinci et les propulseurs de
fusées à atterrissage automatique de SpaceX. Avec ces progrès, la complexité de la compréhension
des systèmes a augmenté et la fiabilité fonctionnelle des machines, des systèmes informatiques dans
notre cas, sont devenues une question. Même pour la complexité des systèmes d’ordinateur qui doivent
fonctionner dans les contraintes temps réelles, appelés systèmes en temps réel. Lorsque des systèmes
informatiques sont utilisés pour des scénarios critiques pour la sécurité, comme ceux des satellites ou
les commandes des avions, elles doivent être fiables. S’ils ne sont pas fiables, ils finissent par devenir
un ennemi qui menacent la vie humaine, comme un avion qui perd son contrôle. La citation ci-dessus
par Sun Tzu de «The Art of War» dit exactement cela, pour connaître votre ennemi. Dans cette thèse,
nous explorons de tels systèmes qui sont appliqués dans des scénarios du monde réel, leur besoin, les
défis qui existent aujourd’hui et les recherches entreprises pour les solutions proposées à ces défis.

1

1.1 Real-Time Systems

Computer systems which operate under real world timing requirements are called real-time systems.
That is, real-time systems must produce the result of their functionality within a timed deadline. These
are practical applications of digital computers intended to serve a dedicated function. At the same time,
the functions they perform must be completed by a certain timed limit. There are several examples
of such systems ranging from highly important avionics systems in the aeroplanes or satellites to
household items like washing machines and microwaves. A washing machine has a dedicated function
which is a cycle of various digital and physical executions to be completed by a certain time in order to
wash clothes in the real world. Similarly, satellites have dedicated function of collecting, processing
and transmitting data to the earth stations, also done by a certain timed limit. Real-time systems are
classified as hard and soft; Hard real-time systems are those which can never afford to defy a timing
constraint, like satellite systems; Soft real-time systems can afford to miss some deadlines.

Real-time systems are composed of various tasks. These tasks are the unit of execution which is
essentially a code which takes certain inputs and produces outputs. Task has an execution time which
is the time it takes to finish execution. Task has a deadline which is the maximum allowed time to end
its execution after it is released. Task can also be periodic in which case it repeats execution in a certain
period. An example of periodic task is one which takes data from a sensor at a certain frequency. In
application, there are more than one such tasks which may be dependent on one another, e.g. output
of one task is the input for another. These tasks require resources to executed, most importantly a
processor for execution, in conjunction with memories and buses for data transport. Figure 1.1 shows
such a depiction of a real-time system.

Tasks

ProcessorsMemory/

Resources

Real Time

Figure 1.1: A depiction of a real-time system.

For example, a washing machine has a task to wash the clothes followed by a task responsible for
drying operation, all requiring processor and inputs like water level and total weight.

Real-time systems must be predictable for numerous reasons. The reasons include highly important
ones like cost of implementing a satellite to the those of lower importance like satisfactory usability of

2

video streaming. That is, there must be confidence before its application that the system will function
as designed. Predictability is this confidence associated with the application.

For real-time systems, predictability is essentially related to timing characteristics of the tasks.
Each task takes a certain time to execute and produce its output. The requirement of timed limit of the
tasks in the real-time systems demands timing analysis of the system. Timing characteristics depend
on the system hardware and on the real-time demands of the application. E.g., an avionic system is
required to calculate airspeed every 10 milliseconds. The hardware frequency must support that under
all circumstances. Timing analysis is a study on a given real-time system in order to predict the time
the tasks might take to execute.

The emphasis on the previous sentence is on the word ‘might’. The exact duration of the task
execution is extremely difficult to obtain. This is because the conditions in which the task executes may
change during application. For example, a satellite heats up in the sun and cools down in the eclipse
portion of its orbit (behind earth away from the sun). This change in temperature affects the material of
the buses and processor which changes the rate of flow of electrons, in turn affecting the rate of flow of
data. This affects the task execution duration because it uses that data to produce output. So, even if the
timing characteristics are determined by hardware, the execution time may change due to environment
of the application. Because of this uncertainty in determining the exact execution duration, a worst case
upper bound is obtained called Worst Case Execution Time (WCET). WCET is the maximum amount
of time the task takes to finish execution. For example, if we only consider temperature change in the
case of the satellites, the WCET of the tasks will consider the fact that the resistance increases of the
conducting material with increase in temperature. As a result of the timing analysis, a task will never
execute for more than its WCET. The literature also defines a minimum amount of time task requires
to execute called Best Case Execution Time (BCET). These are represented in the Figure 1.2. There
are various methods at present to determine WCET or BCET like measurement based analysis, static
analysis etc. and is wide field of research. Determining the value of WCET or BCET is a subject of
timing analysis and is not the focus of this study.

BCET WCET

Possible task execution

time0

Task release

Figure 1.2: Task execution times lies between the BCET and WCET for predictability of task execution.

In order to ensure that the tasks are able to execute within their timing constraints or deadlines,
the tasks are scheduled. Task scheduling is a problem to obtain an arrangement of task ordering or
sequencing which provides them enough room for execution based on their WCET and ensures that
each task has sufficient room to execute by its deadline. Scheduling is the result of the requirement of
predictability by imposing a specific order of task executions and preventing random and on-the-go
executions. Random order of task executions may or may not be completed by the deadlines. This
uncertainty is not acceptable. Task scheduling can be online, i.e. task sequence is determined during
the application; or offline, i.e. task sequences are known beforehand and fixed. Various algorithms or
schemes for scheduling exist like Earliest Deadline First (EDF), Fixed Priority (FP), Round Robin (RR),

3

etc. In addition, scheduling can be preemptive or non-preemptive. Preemption means that an already
executing task can be interrupted by another task which demands immediate execution. Preemption is
or is not allowed by the scheduler and therefore is a scheduling property.

A schedulability analysis is thus performed which is an extensive, exhaustive and complete
formal analysis of the real-time system tasks which guarantees their executions with respect to their
deadlines. That is, a given set of tasks is scheduled using an algorithm. The objective of the respective
schedulability analysis is to ensure that the scheduling using that algorithm is feasible. It must ensure
that no task scheduled using the scheduling algorithm misses its deadline.

The analysis is usually performed offline because it can be extremely complex and infeasible to do
so online. An analysis can be an exploration of the possibilities, which can only be feasible offline.
An empirical condition like a processor demand criteria can be determined online but is usually not
enough to ensure predictability.

In real scenarios, the actual execution time of the task is rarely equal to its WCET and always
lies between WCET and BCET. There is always an uncertain gap between actual execution and the
WCET of the task. Since the scheduling is done based on the WCET, this gap leads to potential idle
time of the processor and induces pessimism in the system. Pessimism is to the over-allowance of
resources to the tasks for their execution. A scheduling which is based on WCET does not account
for this pessimism and results in an overall pessimistic system. This pessimism is not necessarily
undesirable from predictability point of view. Pessimism at least ensures functionality of the system.
However, rigorous formal modelling of this problem has the potential of quantifying and controlling
this pessimism. In this thesis we approach this very problem. We explore a set of possible solutions
which also define the direction the research has taken through the study.

1.2 Probabilistic Real-time Systems

Probabilities are extensively used in modelling science, finance and various other fields. It allows us to
see the random choices being made everywhere in a formal way. This way, we are able to dive deeper
into the meanings of things and try to make use of them.

Probability is the the measure of an event occurring which can be quantified as the number of times
it can occur divided by the total number of possible outcomes for the trial. For example, an unbiased
dice with numbers 1,2,3,4,5,6 is rolled. The probability of obtaining the number 2 is 1/6 where 6 is
the total number of possible outcomes when the dice is rolled. The term ‘Probabilistic’ is sometimes
used interchangebily with ‘stochastic’. In this text we only use ‘probabilistic’ referring to something
involving probability. The term ‘stochastic’ should be used in relation to a process which involves
making reasonable predictions of choices. The measure of probability to these predictions leads to the
use of the term ‘probabilistic’. The term ‘probabilistic’ should be used in relation to the measure of a
trial.

Let us recall the statement that the pessimism in scheduling task using its WCET can be quantified
and controlled using formal approaches. Recent efforts have been made to do so using probability

4

theory, specifically in timing analysis. The task execution time can take any value which is upper
bounded by the WCET. Each of those execution times has an associated probability of occurence. This
results in a probability distribution of execution times. We can obtain many such distributions from task
behaviour under different scenarios. A single probability distribution can be obtained which tightly
upper bounds all the execution time distributions. This upper bound is called a probabilistic Worst
Case Execution Time (pWCET), shown in Figure 1.3 with the pWCET ICDF. The figure shows various
possible execution time distributions with the dotted line which are PDFs. The pWCET is shown as an
ICDF which upper bounds all those distributions.

BCET WCET
time0

Task release pWCET ICDF
1

Figure 1.3: Task probabilistic execution through pWCET represented as ICDF with BCET and WCET.

pWCET is a worst case probability distribution which upper bounds all possible execution times
of a task. It is a probability distribution which can be continuous or discrete. The method to obtain
pWCET is not covered in this thesis and is assumed as given. For this thesis, the task execution is
described by pWCET instead of WCET. A real-time system in which at least one property is described
using a probability distribution is called probabilistic real-time system (pRTS).

Probability can potentially quantify other task properties too like probabilistic period and deadline
which is left for future studies. For example, probabilistic period interprets as probabilistic inter
arrival time of the tasks. For our study, the task period and deadline are deterministc (fixed) and not
probabilsitic.

Probabilistic representation of task execution allows us to quantify the occurrence of certain
execution time through probabilities. Evidently, the pWCET distribution contains more information
within itself than a deterministic WCET about task execution duration. Since there is more information,
the methods to study and utilize the pWCETs should exploit this quality. With this we can foresee
that the methods for schedulability analysis which we intend to study in this thesis will tend to have
high complexity. Figure 1.4 shows an example of task set execution where the tasks are defined with
WCET or pWCET. Scheduling of tasks using WCET is less complex because the deterministic values
of WCET are used. However, the exact instant at which tasks finish execution is unknown. On the
other hand, pWCET contains the probabilistic information that task execution finishes or begins after
delay from another task. pWCET scheduling analysis can lead to higher complexity but more control
over resource usage through scheduling.

Going back to the notion of predictability and the requirement of schedulability analysis, careful
observation is needed when we have pWCET. By including a probability distribution in the real-time
system analysis, we have a method to quantify the overall pessimism. Naturally, the guarantees which
will be provide therafter will also be probabilistic. For hard real-time systems, the resulting probabilities
can be upper bound by the worst case value. As we will see, the pessimism in the system analysis can
be quantified with probabilities but the analysis must aim at predictability. There are several challenges

5

Probabilistic time of
finishing execution

Probabilistic time of
beginning execution

Deterministic execution time
predictable scheduling

Tasks

timetime

Figure 1.4: Tasks executions with WCET(left) or pWCET(right) .

in this direction.

Probabilistic Interactions: Scheduling a task with pWCETs enables probabilistic interactions between
them. The execution of a task can be delayed by other tasks: by a task executing immediately before
which pushes the execution of the current task: another task preempting the current task; etc. Since
pWCET describes their execution, all these delays to the execution are probabilistically known. This
affects the finishing time of the tasks which in turn affects whether the tasks meet their deadline
constraints. When designing a schedulability analysis, these interactions have to be formally captured.

Discrete vs Continuous distribution: The pWCET can be mathematically defined as a continuous or
discrete distribution. Discrete distribution gives the probability of occurrence of a certain single value
of execution time. On the other hand, continuous distribution gives the probability of occurrence in an
interval of execution time. Probability obtained from continuous distribution at a single value is zero.
From the real-time point of view, this poses a challenge. As we will see, coping with probabilistic
interactions involves performing certain operations on the pWCET distributions. It needs to be ensured
that the probabilistic information is not lost after an operation on the distributions. At the same time,
the nature of the distribution must be taken into account. If it is done, the mathematical representation
of a continuous function after the operation becomes challenging. As for the discrete distribution, the
system events can occur in between the discrete values represented by the distribution. Therefore, the
probabilities at the discrete values must also be an upperbound in the interval. This must be carefully
addressed and handled.

Determinism vs Non-determinism: It is required to clarify the difference between non-deterministic
and probabilistic system. Deterministic system is one in which all of its functionalities are known and
the system is assured to function as desgined. Deterministic systems are predictable as they do not
deviate from the desired operation. Non-deterministic system is one whose output cannot be predicted
for the same input because it contains uncertain choices within. It contains randomness at some point in
its process which cannot be determined beforehand. For example, hardware random number generator
which generates random numbers from physical input is a non-deterministic system.

If the random choices within the non-deterministic system have a probability of occurrence which
is known, the non-deterministic system becomes a probabilistic system. That is, in a probabilistic

6

system there is a measure of probability to make a predicition of the future states in a non-deterministic
system. In this case there are random choices being made but all the possible random choices are
known and each has a probability associated. The associated probability is usually described by a
distribution.

If these non-deterministic systems can be bounded, they tend to become deterministic systems.
That is, if the maximum and minimum value of its output is determined, then it can be seen as a
deterministic system with a worst case or best case output. Task execution is such an example. Task
taking a certain execution time can be seen as a random choice taken by the task, making the task itself
a non-deterministic system. Task execution bounded with WCET and BCET makes it a deterministic
system which is predictible. On the other hand, non-deterministic task associated with the probability
distribution pWCET makes it a probabilistic system. The challenge from this perspective is to obtain
schedulability analysis model which is inherently probabilistic which models randomness.

Safety: In the context of real-time systems, safety refers to the safety of operation of the system. This
means, the system is predictable and will function as desired. A deterministic system is always safe.
A non-deterministic system is safe if the random choices in the system are bounded. In the context
of probabilistic system, the notion of safety dives deeper in the analysis and overall safety is ensured
at the bounds. Functionality of the Probabilistic systems contains probabilistic properties within. In
probability, safety links to pessimism. Pessimistic choices like worst case probabilities ensure that the
actual probability is always lower. For example, actual probability of failure of a system is 0.1. In that
case, the probability of failure of 0.2 from the analysis is safe while 0.05 is not safe. Thus, it must be
ensured that all the operations performed during the analysis are at least pessimistic, if they are not
exact. An exact analysis must be proven so through rigorous model checking.

Scalability: Scalability refers to the ability of an analysis to handle larger number of tasks. Scalability
refers to the complexity of the analysis. A simple enumerations of all the possible scenarios (like state
space exploration in Petri Net), increases in complexity as the number of tasks increases. On the other
hand, a simple empirical evaluation which does not depend on the number of tasks has low complexity .
Enumeration guarantees completeness of the analysis and confirms schedulability. Empirical evaluation
need not guarantee a completeness of the analysis. Scalability of an analysis must be evaluated and
ensured feasible. For methods with high complexity, justification must be made as to what is gained
with this increase in complexity.

In this thesis we will explore and use such a model for analyzing pRTSs in the Chapter 3. In this
direction of exploration, we also encounter another approach towards coping with pessimism as we
explain further.

1.3 Mixed Criticality Real-Time Systems

Let us again recall the statement that the pessimism in task execution from WCET can be quantified
and controlled using formal approaches. In this direction, another field of extensive research is
that of Mixed Criticality (MC) systems. MC real-time systems contain tasks of various importance
or criticalities. In two criticality systems, two types of tasks exist which are high criticality and

7

low criticality. High criticality tasks are those which are of higher importance for correct system
functionality. Low criticality tasks are of lesser importance for system functionality. Higher criticality
tasks must always be executed and ensured schedulable, even if it requires dropping of low criticality
tasks.

This notion of criticality then extends to the notion of system criticality ‘mode’. The high criticality
tasks are given with two WCETs, one greater than the other. The higher WCET is more pessimistic
than the lower WCET. Low criticality tasks have only one WCET. In system high criticality mode, it is
imperative that the high criticality tasks execute and are scheduled using the larger WCET. This way,
the system high criticality mode allows more room for the execution of high criticality tasks. In this
case, the system usually chooses to drop the low criticality tasks. In the system low criticality mode,
the high criticality tasks are scheduled using the lower WCET. The low criticality tasks are effectively
scheduled in the gap between the two WCETs of the high criticality tasks. At this point, it is natural
to raise the question of how can there be two different worst cases of execution time. It is simply
something embedded in the literature and we will continue to use this to avoid ambiguity with other
references.

Thus, a real-time system which is composed of tasks with more than one criticality level is called a
Mixed Criticality real-time system. It is a way to quantify pessimism in the classical models by having
multiple WCETs for each level of pessimism. It allows to use a common set of resources for different
scenarios of the system application. For example, the aircraft controls are of prime importance in an
aircraft while the in-flight entertainment system is not. Whenever required, the system can drop the
entertainment systems and allow more execution time for the flight controls to ensure that they execute
completely. An example is shown in Figure 1.5 where there are two high criticality tasks and two of
low criticality. Both the tasks are scheduled using their low WCET. When the system is triggered to
enter high criticality mode, the low criticality tasks are dropped from execution. The high criticality
tasks are then allowed more time to execute according to their high WCET.

high
criticality

low
criticality

{

{

System
mode
HI

Tasks

Low WCET High WCET

Figure 1.5: Mixed Criticality scheduling.

MC systems pose a scheduling problem in order to be predictable. Current approaches in practice
are based on hardware partitioning based on the criticality levels. That is, each criticality is given a
dedicated set of resources and the schedulability of the tasks of that criticality is ensured. This readily
poses the problem of having large set of hardware, in turn increasing the cost. In this case, system truly
becomes mixed criticality if there is some sharing or dependencies between tasks of different criticality.
This dependency cause further challenges for timing analysis it is difficult to upper bound the waiting
time for the dependent task.

8

The challenge here is the predictability of execution of a set of mixed criticality tasks which are
scheduled on a given set of resources. This includes consideration of interference, not only due to
execution, but also due to criticality mode changes.

1.4 Mixed Criticality Probabilistic Real-Time Systems

We see that mixed criticality as well as probabilistic approaches have the potential to quantify and
control the pessimism in the system. For MC, different WCETs can be obtained for a task, in the
increasing order of pessimism. This will result in as many criticality levels. Doing so affects the
scheduling decisions as the scheduling depends on the WCETs of the tasks. This will extend to many
system criticality modes and the scheduling options will depend on these modes. For example, an
existing approach is switching to high criticality system mode in a two criticality tasks, implying two
WCETs, which enables dropping low criticality tasks.

From probabilistic approach, the quantification of pessimism is done using a probability distribution.
The distribution assigns probability to each possible execution time. The scheduling decision does not
change and remains as defined by a scheduling algorithm. At the present state of the art, scheduling
based on probabilities is not accomplished.

In this thesis, we use this direction Chapter 2 onward which combines MC and pRTSs to model
a MC pRTS. In this case, the task executions are described by a probability distribution. On the
distribution of the high criticality task, we impose a threshold which corresponds to the lower WCET.
The meaning of lower WCET for a task does not change by doing so. What we get in addition is
the probability of the task exceeding this threshold, i.e. exceeding lower WCET end entering higher
criticality mode. This extends to the probability that the system enters high criticality mode.

Decisions based on probability: Until this point in MC systems we see that the task criticality is
defined based on its WCET. We have pWCET instead of WCET and there are probabilities associated.
The scheduling decisions do not change the pWCET of the tasks, rather they are based on the WCET.
Following this line of thought, the probability that the system enters high criticality can only be
quantified.

MC theory in itself is a method to quantify and handle pessimism in real-time systems. By switching
to the higher criticality mode, the system drops all non-essential low criticality tasks. The resources
which were earlier given to low criticality tasks are now used to provide more time for execution for
high criticality tasks. The high criticality tasks are then scheduled using a higher WCET. Applying
probabilities to the MC theory enables to quantify the probability of this mode change. Since, resources
are taken away from low criticality tasks which drops their execution, system entering high criticality
mode is treated as a special case. The probability of this occurring should be quantified. Beyond this,
by closely observing the MC system, the probabilities get affected by the scheduling decisions. By
minimizing the probability of system entering high criticality, the MC scheduling problem can be
optimized. Furthermore, the classical idea that all the low criticality tasks are suspended from execution
in the system high criticality mode is also dropped in this thesis. Low criticality tasks are allowed to
execute as long as they do not sabotage the execution of the high criticality ones.

9

The probabilities can not be included in the decision making process until they are affected by the
decisions themselves. This statement might sound self contradictory because the decision changes
the probability and vice versa. However, the decisions can be enumerated and the affect of all those
enumerations on the probabilities can be obtained. This way, an optimal decision can be deduced. We
will see how we accomplish this in Chapter 5 and 6.

1.5 Formal Methods

Formal methods are ways to prove a certain property of a system model through rigorous underlying
mathematical or logical foundation. A formal method has a framework which allows a system to be
modelled. This system model can then be checked for various properties. Through formal methods,
the system model checking is assured to be reliable. These are extensively used to ensure safety
critical systems like affect of failure of a system component on the whole system, ensure continuity (no
deadlock) of the system application, etc.

An example of formal methods is Petri Net. Petri Net models the system using states and triggers
between those states. The states contain tokens which pass to other states through triggers. Trigger
represents an action, which can be timed or physical, and can change the state of the system. This way
Petri Net allows system modelling. Then, the Petri Net is exploded into a state space which contains all
the possibilities from the system model. This state space is explored to check various possibilities like
reachability, deadlock, etc. Suppose, a Petri Net represents an avionics system with a state representing
complete system failure. Through model checking, the state of system failure should never be reached.
Petri Net comes under the theory of Automata which models states with transitions between them.
Automata is a general definition which describes a sequence of events. At the same time, there are
formal methods which are based on deductive logic. For example, if property A of a system is true and
another property B of the system is true, a statement for system utilizes those results. Frama-C is an
example of such a tool.

Markov Chain (MCh) is also such an example. MCh is a set of states and transitions between them.
A set of states and unidirectional transition is a MCh if it respects Markov property. Markov property
states that to know the future state of any state, any knowledge of the past states is not required. In
a Discrete Time Markov Chain (DTMCh), each transition is labelled with the probability of being
chosen. In the case of Continuous Time Markov Chain (CTMCh), the transitions are labelled with
the exponential probability distribution parameter. Various properties exist of such a system which is
mathematically proven. For example, a MCh which is closed (there is no absorbing or end state), there
exists a steady state probability of the system staying in a state. This is the probability that the system
is in a state as time tends to infinity. Formal methods like this are based on a mathematical formulation
and not state space exploration.

We intend to use such formal methods for our study. We recall that the real-time systems must be
ensured safe. Using formal methods, we can conclude this with certainty through model checking of
the system model. By doing so, there remains no question of loss of probabilistic information.

We will use such methods for next two chapters. We will also explore the limitation of such

10

approaches and we will be compelled to find a more suitable solution from the safety point of view.
We will develop our own analysis in chapters 5 and 6 which does not refer to classical formal methods.

1.6 The Thesis

The objective of the thesis is to utilize probabilistic approaches to model and analyze real-time system
behaviour. This is done in order to exploit the advantage of probabilistic task models. The advantage in
this case is the probabilistic quantification of the pessimism that exists in task execution time estimation.
This pessimism then propagates through the system during its analysis. Therefore, the global objective
of this thesis is, and for the rest of the text will remain, reduction of pessimism in the system in order
to improve resource usage efficiency.

The thesis is partitioned into four parts which progressively exhibit the problems encountered and
their respective solutions. These problems are the objectives of the thesis. These are as follows:

1. Given a probabilistic real-time system with scheduled task executions which are described with
pWCET, what is the probability that the tasks miss their deadline.

2. Given a Mixed Criticality probabilistic real-time system with task executions described with a
continuous pWCET, what is the probability that the system enters high criticality mode.

3. Given a Mixed Criticality probabilistic real-time system with task executions described with
pWCET, what is the optimal schedule when the system enters high criticality mode

4. Given a Mixed Criticality probabilistic real-time system with task executions described with
pWCET, what is the optimal application oriented schedule when the system enters high criticality
mode.

The answer to each problem is also the motivation for next problem. We interpret and answer the
problems as follows.

1. Given a probabilistic real-time system with scheduled task executions which are described with
pWCET, what is the probability that the tasks miss their deadline?

This question is the formal reformulation of the title of the thesis. We are given with a real-time
system with a set of periodic tasks on a uniprocessor machine. The task executions are described by a
continuous pWCET. We consider continuous pWCET because the output of the timing analysis from
Measurement Based Probabilistic Timing Analysis (MBPTA) are continuous distributions. Continuous
distributions cannot be converted to discrete distributions because of the difference in the interpretation
of the two. Moreover, the continuous and discrete must be safely handled with worst case upper bounds
during performing analysis. We perform analysis on Earliest Deadline First as well as Fixed Priority.

In order to analyse the system we observe the following. The system needs to be represented in a
discrete form using states. That is because the system occurences are discrete in nature, like preemption,

11

release of task, etc. If we see them as continuous properties, we will eventually have to discretize them
to make them computationally useful. This will lead us to complexity issues affecting the scalability of
the solution. The states must have transitions between them because the system acts by switching from
one state to another, e.g. execution followed by preemption. Moreover, a task cannot execute again
after deadline miss implying the transitions have to be unidirected. Thus we need a set of states and
unidirected transitions to model a pRTS. The execution is probabilistic, implying that there might be
some transitions relating to task execution which are probabilistic. This means we need a set of states
and transitions which can cope with probabilistic transitions. Moreover, we need a formal method to
do so because only then the underlying mathematical foundation can be used to ensure correctness
of the analysis. This relates to safety of the method used. Through formal methods, there will not be
question of losing any probabilistic information because the mathematics is formulated as such.

At this point it is important to observe the difference between probabilistically distributed system
and a sequential system. Discrete event systems like Petri Net and Automata are sequential systems.
They begin with an initialization, like tokens in a node of Petri Net. Then they evolve in a precise manner
described by the transitions the system can take. This precise evolution results in a state space in which
various properties are verified, like reachability, liveness, etc. Models of probabilistically distributed
systems on the other hand do not evolve sequentially. The probability is distributed throughout its
states as soon as it is constructed. This means as long as the system model is complete, the system has
a certain probability of being in any state. This probability exists any time the system is executed, like
the probability of obtaining number 6 exists each time the dice is rolled. The value of probability is
independent of the event occurrence. To illustrate the difference, a state in the sequential system may or
may not be reachable but a state in probabilistic system is always reachable with a certain probability.
In addition, the state reachability in sequential system is a question of when and whether will it be
reached, but in probabilistcally distributed system, state is always reachable at any time.

On the other hand, we need observations at deterministic times from a probabilistically distributed
model in order to be conclusive of the scheduling decisions. For example, the time instant of deadline
miss is a deterministic value and the probabilistic model has to be checked for task execution against
this instant. Similar is the case for preemption because time of preemption for periodic tasks is
deterministically known. Thus, we need a formal method which can cope with this requirement.

From this observation, we can clarify that in a probabilistic system there cannot be states repre-
senting deadline miss. This is because reaching the state deadline miss will always be possible with
a probability. This is not practically possible because deadline miss may occur at a specific time or
may not occur at all. Representing this would have been possible in the sequential system. Also, a
continuous distribution applied to a sequential system will require a discretization of the distribution.
The fine-ness of the discretization will affect the complexity of the model because we would have as
many number of states. Using a probabilistically distributed model for a continuous distribution will
not have this problem.

To summarize, we need a probabilistically and continuously distributed non-deterministic modelling
formal method. We choose Continuous Time Markov Chain (CTMCh). Markov Chain is a set of states
and transitions with the Markov Property. Markov Property states that to determine the future state, the
system does not need to remember the past states. The system model can be prepared in the manner that
this property is respected. The transitions in Markov Chain are labelled with the probability of it being

12

chosen. In the case of CTMCh, the transitions are labelled with exponential distribution parameter
which describes the probabilistic rate of the transition. The CTMCh can be checked using a formal
model checker, like PRISM Model Checker in [KNP11].

We will build one CTMCh model for each instance of a task. The task set is scheduled and we
perform schedulability analysis on it. It has states representing executions after release and preemptions
and a state that it has finished execution. This model can be checked for deadline using a formal
property, ‘the probability that finish state is reached by the deadline’. Similar properties can be checked
for preemption. We also propose a solution in case the input probability distributions are not exponential
which is safe by pessimism. This solution is presented in Chapter 3.

2. Given a Mixed Criticality probabilistic real-time system with task executions described with a
continuous pWCET, what is the probability that the system enters high criticality mode?

At this point we incorporate mixed criticality into the pRTS. The input is kept the same that the
task executions are described by a continuous distribution. We add another specification that some
tasks in the input are high criticality tasks and the rest are low criticality. The task enters high criticality
if it crosses an execution time threshold which is less than the WCET. This makes the system a MC
pRTS on a uniprocessor machine. The objective here to obtain the probability that the system enters
high criticality.

Here, the system criticality is defined on the basis of task criticality. That is, if a task enters high
criticality at any point of time, the system switches to high criticality mode. The event of a task entering
high criticality is a discrete event even though it is extracted from a continuous distribution. Thus we
need a discrete system modelling method which can also incorporate the probability. In addition, it
should remain a formal method to ensure safety.

In this direction we choose Discrete Time Markov Chain (DTMCh). DTMCh is Markov Chain in
which the transition between the states is labelled by the probability of being taken. The number of
outgoing transitions from a state are limited and the total probability of the outgoing transitions must
be equal to one. The discrete probability of a task entering high criticality from the pWCET can be
directly mapped to these transitions. Such states and transitions represent the set of tasks executing as
the schedule. On the resulting model, the formal properties can be checked, like ‘the probability that at
least one task enters high criticality’, etc. We define a set of such properties to evaluate the probability
that the system enters high criticality in Chapter 4.

3. Given a Mixed Criticality probabilistic real-time system with task executions described with
pWCET, what is the optimal schedule when the system enters high criticality mode?

Until this point we have been performing schedulability analysis on the task set which are scheduled
according to a given algorithm. This method works as long as all the low criticality tasks are dropped
as soon as the system enters high criticality. This is because the schedulability is ensured for those
high criticality tasks. This method does not take into consideration the possibility that; first, one task
entering high criticality does not mean all the tasks will surely enter high criticality; second, if there is
room for execution of low criticality tasks even in the system high criticality mode. This imposes a
pessimism which is due to scheduling decisions and not due to task execution. With this motivation,

13

we decide to obtain a schedule for mixed criticality pRTS.

The schedule obtained here aims at maximizing resource usage. We fine grain the classical mixed
criticality approach by decomposing the notion itself to the tasks and not to the system. We remove the
assumption that if one task enters high criticality, the system enters high criticality mode. By doing
so, we have removed the pessimistic action of dropping all the low criticality tasks. The notion of
criticality is decomposed to the task execution level and the notion of system wide mode switch is
removed.

We need a model that can capture this fine grained approach for mixed criticality system. In
order to prove global optimality, we need to explore all the possibilities of schedule. The modelling
methodology should be discrete because the events of task entering criticality or missing deadlines are
discrete events. We naturally tend towards a graph based exploration. There are states which represent
the task execution and unidirected transitions between the states. The exploration across all the possible
schedules is performed. This exploration removes all the possibilities which are not feasible (deadline
miss) or non-optimal and keeps the optimal and complete schedules. This means, for a task entering
high criticality, the schedule keeps the room for execution of all the high criticality tasks in the high
criticality mode as well as maximum possible number of low criticality tasks. From this exploration,
we obtain a schedule which is optimal in resource usage and is prepared for any task entering high
criticality. We are able to precisely see when a task can enter high criticality and plan ahead if it does
enter high criticality. This solution is presented in Chapter 5.

4. Given a Mixed Criticality probabilistic real-time system with task executions described with
pWCRT, what is the optimal application oriented schedule when the system enters high criticality
mode?

We have seen so far that the probabilities obtained from pWCET are fixed. These probabilities do
not change because of the scheduling, rather the scheduling is based on these probabilities. Through
this, we can only quantify of something occuring, like the system entering high criticality. The
probability never tells us when the event will occur. In the case of mixed criticality systems, we cannot
know exactly when the task enters high criticality.

We also study and interpret the meaning of criticality by making an observation. The mixed
criticality theory is a result of uncertainity in task execution. That is, the uncertainty exists while the
task is executing in the applied system. Effectively, the criticality is decided while the task executes,
i.e. online. Online task execution is described by probabilistic Worst Case Response Time (pWCRT).
Therefore, the criticality should be defined using the pWCRT and not pWCET. This is what we mean
by an application oriented mixed criticality schedule because mode change depends on the application
When we do so, the probability of a task entering high criticality depends on the schedule and so does
probability of system entering high criticality. With this, the probability comes into play to decide the
schedule of the system.

Now we explore the case to obtain an optimal schedule when the mixed criticality is defined using
pWCRT. That is, a schedule for which the probability that a task enters high criticality is minimum.
Same as before, we use graph based exploration to obtain a global optimal. The response times are
obtained for each task in each exploration and an optimal one is selected.

14

Now that we reduce the probability, what is the optimal schedule if the system actually does enter
high criticality. The probability that system enters high criticality exists each time the tasks execute. In
order to be certain of the schedulability when the system enters high criticality, the schedule must be
upper bounded. In addition, the schedule must be optimal in system high criticality mode. In this, we
will not talk in terms of probability and only use WCET in order to consider worst cases. WCET is the
information given in the pWCET. The graph model is extended to obtain an optimal schedule in this
worst case. Same as before, the schedule is obtained which is prepared with the appropriate action for
any task to enter higher criticality which is resource efficient.

We also perform a first step towards understanding dependence in the case of mixed criticality
pRTS. These dependencies between tasks in their timing behaviour can arise due to a shared resource
or a shared bus, etc. A task entering high criticality necessarily causes another task to enter high
criticality; thus, the dependence affects the decisions taken about the task and system criticality modes.
Thus, a task can enter high criticality because of itself as well as another task, each case with its own
probability of occurrence. The dependence that we consider is not the same notion as dependence
between probability distributions. In our knowledge, our approach is a first step towards understanding
dependence in MC probabilistic environment. Our work intends to include dependence between tasks
and couple those with scheduling decisions. This is presented in Chapter 6. Chapter 7 concludes the
thesis and presents the overall perspectives.

15

1.7 State Of The Art

Beginning with the Apollo Guidance Computer [Int09], we are surrounded by real-time systems which
function with real-time constraints. A good early overview of the complexity of the systems in then
future was given by [Moo65]. As a rough measure of increasing complexity, the Moore’s Law follows
that every two years, the number of transistors in an integrated circuit doubles. In 2015, Intel said in
the article ‘Intel Rechisels the Tablet on Moore’s Law’ in Wall Street Journal, “The last two technology
transitions have signaled that our cadence today is closer to two and a half years than two”. The
complexity arises from the ever-increasing demand of functionality and performance. The technical
challenges that exist with growing real-time systems has been reviewed by [Sta88]. One should go
through [Sta88] to gain insights about some common misconceptions for real-time systems. For
example, having faster computers will solve real-time needs is a misconception; the wrong assumption
that real-time systems will function in application as in a static environment, etc.

A comprehensive text on the fundamentals of real-time computing systems is given in [But11].
The book ranges from basic concepts of real-time systems which extend to periodic and aperiodic
scheduling. The notions of fixed priority servers and dynamic priority servers have deserved a chapter
each which describe various scheduling policies.

Most of the modern research in this field is performed to cope with the challenges mentioned
in [Sta88], like scheduling, verification, etc. The ever growing research is always driven by to one
of the Murhpy’s Laws, “Anything that can go wrong will go wrong". Scheduling is a major research
area because scheduling is directly responsible for managing resource usage. Under the guidance of
Andrew van Tilborg, the Real Time Systems Initiative by the United States Office of Naval Research
contains important early results about scheduling theory.

Timing analysis itself is an area of extensive research. Timing analysis results are the input for
scheduling theories. [EE07] is a good discussion on how to obtain WCET. [Wil+08] elaborates on
the meaning of WCET and the challenges associated. It discusses the need for timing analysis, the
various factors affecting the WCET like software behaviour, memories, etc. and various methods
to obtain WCET like measurement based analyses, static analyses, etc. In the probabilistic domain,
[BCP02] presents such a WCET analysis for pRTS. They do so by defining an Execution Time Profile
(ETP) as the time of a piece of code. This is followed by classical probabilistic combinations of the
ETPs through convolution. They extend their work towards biased convolution in order to include
dependencies. It is an overview of the methods like static analysis and measurement based. Some
commercial WCET analysis tools are also discussed.

Plethora of research exists in the field of real-time analysis. [Vic01] presents a static analysis of a
system dependent on time. They use a Time Petri Net to represent system states and timed triggers,
and reachability is verified. This followed by changing from one model to another as demanded by the
safety and operational constraints. Work by [VMF03] exhibits a use of real-time systems as a control
system The control system must perform with real-time constraints in order to control a physical
system. [VMF03] provide a model for self-triggered task by adjusting the task period according to
system dynamics. [BLHS91] present a general mathematical modelling of scheduling problems. They
classify the scheduling problems into criteria based on completion time, due dates or inventory cost

16

and utilization. The equations for optimization are formalized.

The tasks in the system are scheduled to allocate resources for their execution. In order to ensure
an allocation methodology ensures complete and safe execution of system, schedulability analysis is
performed. [LL73] is considered as the foundational work on Fixed Priority (FP) Scheduling. An
analysis of Earliest Deadline First (EDF) algorithm is also shown in [LL73]. [ZB09] present an
overview and foundation of schedulability analysis of real-time systems with EDF scheduling. [SB94]
extend EDF scheduling algorithm to four new directions. Dynamic Priority Exchange server with its
improved version, Total Bandwidth Server and Earliest Deadline Late methods are presented. They are
aimed at deadline with soft, aperiodic and hard periodic tasks.

Formal methods are also used to perform real-time system analysis. [LR09] is a work on formal
verification of real-time systems with preemptive scheduling. It proposes a method for verifying
schedulability using Time Petri Net. [BD91] contains a framework for modelling a time dependent
system through Time Petri Net. It being a Petri Net, usual properties are proved like boundedness,
reachability, etc. [G. 04] extend Petri Net to Preemptive Time Petri Net to model task executions in
which timeliness and reachability are verified. [Oli04] is a work which develops Time Petri Nets with
inhibitor arcs. Inhibitor arcs on a trigger prevent that trigger if the inhibitor arc comes from a state with
a token. [Kim05] present a test of real-time embedded control software using the UPPAAL-TRON tool.
They use a Timed Automata to model a temperature controller.

Formal models of real-time systems based in graph theory also exists in the literature. [Bar98]
presents a graph based representation of recurring real-time tasks. Using graph properties, a Demand
Bound Function (DBF) is derived. DBF denotes the maximum cumulative execution requirements by
the tasks. [MKT04] present a work using workload representation, similar to DBF. They obtain bounds
on this representation using task WCETs and BCETs. This is followed by obtaining backlogs and
ensuring that they lie withing those bounds. [Sti+11] is work which used Digraph to model real-time
tasks. They model jobs of the tasks as graph nodes. Then the demand bound function for the same is
obtained using classical graph properties.

In direction of probabilistic real-time system, [DBG17] clearly defines and then explains the
meaning of pWCET distributions. It briefly discusses how they are obtained and their uses. Work by
[CG13] discuss the independence of the pWCET of the tasks. It discusses the meaning of pWCET
as the upper bound of all possible execution times. It encourages the readers to see the pWCET as a
property which does not imply the task independence from other tasks. That is, pWCET should contain
all the possible delays except the ones due to scheduling any dependence produced thereafter.

Research is being carried out to exploit the advantages of probabilistic approaches without jeopar-
dizing the safety of the system. [Dia+02] present a strong approach towards analysis of pRTS. First,
they establish a method to construct response time from given discrete pWCETs of the tasks. They
call it ‘convolution and shrinking’. This is followed by proving the accumulation of backlog, that is
execution delay, for the periodic tasks is a Markov Chain. Then they proceed to obtain the steady state
probability function of backlog. This shows that if such a stability is proven, the probabilistic system
will not accumulate an increasing backlog. Another work,[Sto02], gives a foundation of probabilistic
automata which is a potential tool for pRTS analysis. It also classifies various probabilistic models
without, with partial and with full non-determinism. At the same time, [CT06] present a framework for

17

to obtain response time of the tasks. Peculiar to their work, the probability exists in the inter-arrival
time of the tasks instead of their execution time. This is an example of how probabilities can represent
the system apart from the pWCET.

Works exist which exploit the benefits the probabilities in pRTS research. [BBB03] consider
various aspects of probabilistic systems. They provide probabilistic guarantees for fault tolerant system
by obtaining the Mean Time Between transient Faults (MTBF). This is usually given as the reciprocal of
the exponential parameter which is a special case of Poisson distribution. They represent non-periodic
arrival patterns by simply obtaining a response time. This is followed by a discussion of Copulas to
represent execution time. Work by [SG16] provide a representation for probabilistic resource usage.
They extend the DBF to the probabilistic variant called probabilistic C-Space. Such a representation
allows to clearly define feasibility and confidences of a probabilistic system. [AMP12] develop a
theorem to provide a bound to the probability for finishing time of tasks. An important definition of
safety in pRTS is given in [Dia+04]. They elaborate on the notion of pessimism in the probabilistic
systems. That is, they define how a distribution can be ‘worse than’ another distribution by providing
pessimistic probabilities. This pessimism is desired because a system can be over-provisioned but not
once it should be under-provisioned.

[Lu+12] present an approach which performs measurements directly on the system. The system
is viewed as a black box and no knowledge of WCET values are required. They use EVT and a
number of measurements to provide a probabilistic picture of the system. [DD99] is a work out of
real-time domain but useful for probabilistic analysis. The work is on estimation of the index of
Extreme Value Theorem (EVT) which is useful for pWCET estimation. [HHM09] is a work which
used EVT. However, they do so to obtain WCET as an upper bound. This is also based on number of
observations and obtaining an upper bound curve. Further work using EVT, [Abe+14] studies the use
of Measurement Based Probabilistic Timing Analysis using EVT. They study the requirements and
affecting scenarios for MBPTA analysis. Various factors are considered to gain more confidence on
the approach. [CG+12] is also an example of using EVT based MBPTA approach to obtain pWCET.
[MEP04] derive an analysis of pRTS by first defining priority monotonicity intervals. These are time
partitions based on scheduling of tasks. They assume continuous pWCET distributions. The probability
distributions for task execution in the schedule are then computed with respect to those intervals
through convolution.

Considering continuous distribution is unique to the above work by [MEP04]. Another work by
[Buc+10] develop Oris tool which is able to model systems using Time Petri Nets (TPN), preemptive
TPNs, stochastic preemptive TPNs and stochastic TPNs. Oris tool is module supporting timed automa-
tion and subsequent model checking. They present an analysis of tasks with pWCETs defined using
Erland continuous distribution in [Car+14]. They present a stochastic TPN in which the timed transition
is probabilistic and follows the given pWCET distribution. They produce transient probabilities of a
certain task execution at any given time.

Work by [CGV09] use Stochastic Time Petri Nets to represent task execution. They construct a
calculus for the probability in the enumeration of the Petri Net. [Cia94] provide a characterization
of the Stochastic Petri Net. They elaborate on various Petri Nets, namely, Generalized Stochastic
Petri Net, Deterministic Petri Net, semi-Markovian stochastic Petri Net and Generalized Times Petri
Net. They discuss their hierarchy and decomposition into Discrete or Continuous Markov Chain. A

18

probabilistic model checker we use is named PRISM Model Checker. Using PRISM Model checker,
[KNP11] elaborates a real-time system application which uses the model checker for a probabilistic
Timed Automata. Various properties can be formally checked using the tool. We will use this tool in
one of our research studies in this thesis. [Hor+12] also develop a formal transient analysis of stochastic
state classes like stochastic Petri Net. Work by [CKT94] develops a Markov regenerate stochastic Petri
Net for networks. Here, a stochastic trigger in the Petri Net maps the probabilistic distributions. The
model is converted into reachability problem with probability. [Caz+11] elaborates a project named
PROARTIS. It is a study to obtain pWCET distributions. They elaborate on static analysis as well as
measurement based approaches and develop the mathematical foundation.

Relevant work to probabilistic scheduling also exists in network analysis. [SM01] applies an
activity network with a stochastic extension similar to Petri Net. Work by [A. 95] applied Markov
Regenerative Stochasitc Petri Net for network analysis and obtain transient probabilities.

In last two decade, plethora of research is being performed in mixed criticality (MC) systems.
[Bar09] show that the MC scheduling problem is NP-hard. It is evident that any effort to obtain a
schedule, which also looks for optimal solutions in a probabilistic environment, will be complex.
[BD19] is a review of mixed-criticality systems. It presents a general definition of a MC system using
tasks components and each component having a level of criticality. WCET is used to represent task
criticality. It overviews single and multiprocessor scheduling of real-time systems. It also presents
utilization bounds, speedup factors and formal language issues relevant to MC analysis. [BG15] is
short discussion on the expressiveness between the Vestal [Ves07] and the Burns [Bur15] model MC
system.

[Bak+09] present a Simplex Architecture in which there is a complex system model which can
potentially result in erroneous results, and an assuredly safe system model. The decision logic switches
to the safe system model when the complex model results in errors or false values. In our context, the
system execution in low criticality is the complex model and the system execution in high criticality is
the safe model. The decision logic switches the system to safe model when a task executes for a longer
duration. The safe model, that is system in high criticality, is safely schedulable. This work is similar
in idea to MC approach that we use in this thesis.

[TF13] present a MC scheduling approach which creates scheduling table and obtains a schedule
from a tree. They also present a method to backtrack within the tree to remove any infeasible schedules.
[AD17] perform Fixed Priority MC schedulability analysis of tasks with pWCET. This analysis is
based on convolution of the pWCETs to compute the response times.

Another work by [TBW92] derives a criticality mode change protocol. They form their work
around execution window of a task as given by its response time. In effect, the mode change is based
on the amount of idle processor time.

[GSY15] present a schedulability analysis of mixed criticality pRTS. A permitted failure probability
is assumed. They present an LLFL-clustering algorithm in which separate EDF scheduling is verified
for just the high criticality and another for complete system. This leads to the notion of strongly or
weakly probabilistic schedulable.

19

Works like [Bar+14] apply MC scheduling problem for multiprocessors/ They present an algorithm
based fpEDF algorithm. fpEDF is a global EDF-based algorithm in non MC environment. The new
algorithm acts by dropping the low criticality tasks from execution when required. Another work
[BB13] present fixed priority MC scheduling which also lead to dropping of lower criticality tasks.
[BEG15] present a MC-Fluid scheduling for MC systems. It derives execution rate of the tasks and
obtains bounds for execution in high criticality mode by dropping low criticality tasks.

Works of [Liu+16]; [Bar+11] present a method called EDF-VD (Virtual Deadline) scheduling
algorithm for mixed criticality systems. This work in the deterministic environment, an important work
nevertheless. The approach is to establish a virtual deadline to the high criticality tasks and schedule
them according to EDF algorithm. Changing the virtual deadline changes the priority of the high
criticality tasks.

[BBD11] present approaches for Static Mixed Criticality (SMC) and Adaptive Mixed Criticality
(AMC) analyses. In SMC, all the jobs can execute up to their representative execution time but are
prevented from executing further. With AMC, the jobs are dropped or not depending the system
criticality mode. SMC assumes a limited execution support to the tasks. AMC provides an a flexible
schedulability guarantees with requiring additional execution support to the tasks. The present the case
with FP scheduling algorithm.

[Max+17] present a probabilistic analysis of preemptive fixed priority mixed criticality scheduling.
The probabilities of exceeding an execution time are determined from the pWCET distribution. A
translation of deterministic response time to probabilistic response time is performed. The schedulability
is performed under Static Mixed Criticality (SMC) and Adaptive Mixed Criticality (AMC) schemes.

A doctoral thesis by [MBP17] present an Directed Acyclic Graph based approach for MC pRTS
systems. They proceed to obtain schedulability analysis for MC tasks in different modes on multi-core
architectures. [AG16] utilize a Markov Decision Process to model MC task executions. They obtain a
feasible schedule where the probability constraints are satisfied. This is based on the trajectories given
from the MDP which interpret as the schedules.

Some novel ideas in MC scheduling research include [Ab+16]. They present a MC model in
which they consider two additional criticality modes, transient fault and execution time overrun. These
two modes aim at a more expressive MC environment which in turn improve utilization. Another
work [Bhu+19] present a MC scheduling which varies processor speed through dynamic voltage
and frequency scaling. [Guo+17] discuss sustainability in the MC scheduling. Sustainability is the
requirement that schedulability tests remain valid if the runtime behavior of the system in better.

This thesis extends the existing state of the art in many directions. The general direction of these
extensions is to increase the efficiency of resource usage by quantifying and utilizing the existing
pessimism. The specific points of these directions are given as follows:

• The existing literature on obtaining the pWCET is used and it is assumed given. We question the
form in which this information is present in terms of usability, like using continuous distributions.
We also obtain perspectives on safety of representation or transformation of pWCET from
discrete to continuous and vice versa.

20

• The complexity of using various pWCETs is obtained and discussed. In the cases where
complexity is high, we obtain perspectives on where we gain in terms of system representation
and application.

• We obtain safe and less pessimistic ways of obtaining task response times which efficiently uses
classical convolution operation.

• We use formal methods for a good part of this thesis. We do so with the aim of safety of system
representation. We are assured that the results obtained thereafter are safe and no information is
lost in the process.

• With respect to existing literature on MC, we learn the extent of the usability of existing
scheduling methods in MC pRTS.

• We follow this line to remove some of the classical MC assumptions and approaches which go
against the idea of removing pessimism and increasing resource efficiency.

• While studying these directions, the safety of the MC system representation is not sabotaged and
taken care of. That is, the schedulability of high criticality tasks is assured, even in the worst
case scenario.

• We obtain an application oriented MC definition which uses response time instead of execution
time to define criticality. Ours is the first work to undertake such an approach.

• We take a first step towards defining and quantifying inter-task execution dependence apart from
scheduling in a MC environment.

21

CHAPTER 2

Fundamentals and Notations

Works of art make rules; rules do not make
works of art.

Claude Debussy

In this chapter we define the notations and revise some fundamentals related to probability theory,
real-time systems and mixed criticality theory. These are general notations throughout this thesis. If
required, any additions to these will be done in context within the specific chapter.

Dans ce chapitre, nous définissons les notations et révisons certains principes fondamentaux liés à
la théorie des probabilités, systèmes en temps réel et théorie de la criticité mixté. Ce sont des notations
générales tout au long de cette thèse. Si nécessaire, tout ajout sera fait dans le contexte du chapitre
spécifique.

2.1 Probability

For any two events A and B the probability law holds Pr(A
⋃

B) = Pr(A)+Pr(B)−Pr(A
⋂

B), where
Pr() denotes the probability of event,

⋃
is logical OR and

⋂
is logical AND. The probability that A

occurs given B has occured is given by the conditional probability, Pr(A/B) = Pr(A
⋂

B)/P(B). If
the events A and B are independent, Pr(A/B) = Pr(A) implies Pr(A

⋂
B) = Pr(A)Pr(B). It should be

noted that the events A and B come from a common sample space, for example from all the possible
outcomes of roll of dice. More attention is needed to this notion of common or uncommon sample
space when applying probabilistic models in real-time systems.

The possible outcomes of a trial are represented by a random variable C with corresponding
probability functions. For example, a discrete random variable representing the outcome of roll of
a dice can take values from {1,2,3,4,5,6}. For a discrete random variable C representing the task
execution time, the Probability Mass Function (PMF) f (x), or simply f , gives the probability that

C takes a certain value x , f
de f
= P (C = x); Σ∞

−∞ f (x) = 1. Alternative representations to C are the

Cumulative Distribution Function (CDF) F
de f
= Σ f , and the Inverse Cumulative Distribution Function

(ICDF) F
de f
= 1−F . The random variable C can be continuous or discrete.

23

Execution Time

P
ro

b
a
b
il
it

y

0.40

0.30

0.20

0.10

0.00

7 9 11 13

(a) PDF
Execution Time

P
ro

b
a
b
il
it

y

1.00

0.75

0.50

0.25

0.00
7 9 11 13

(b) CDF
Execution Time

P
ro

b
a
b
il
it

y

1.00

0.75

0.50

0.25

0.00

7 9 11 13

(c) ICDF

Figure 2.1: A continuous Gaussian distribution in PDF, CDF and CCDF forms.

In case of exponential distributions, f = λe−λx where λ is the rate parameter which describes the
shape of the exponential distribution. Exponential distributions are continuous distributions supported
on the interval (0,+∞]; they are referred to as EXP(λ).

If C is a continous random variable, the probability density function (PDF) f (x), or simply f , gives
the probability that C takes the value between a and b; Pr(a≤ C ≤ b =

∫ b
a f (x)dx. The Cumulative

Distribution Function (CDF) F gives the cumulative probability for C ≤ x. F is the integration of
probability density function f : F =

∫ x
0 f (x)dx;

Figure 2.1 illustrates an example of a continuous random variable represented respectively with the
PDF, the CDF and the ICDF.

Similarly, Figure 2.2 shows a distribution in discrete form in PMF, CDF and ICDF forms.

Execution Time

P
ro

b
ab

il
it

y

0.40

0.30

0.20

0.10

0.00
7 9 11 13

(a) PDF
Execution Time

P
ro

b
a
b
il
it

y

1.00

0.75

0.50

0.25

0.00
7 9 11 13

(b) CDF

Execution Time

P
ro

b
ab

il
it

y

1.00

0.75

0.50

0.25

0.00
7 9 11 13

(c) ICDF

Figure 2.2: Example of PDF, discrete CDF and discrete CCDF representations of a certain distribution.

For exponential distribution of rate λ, F(x) = 1− e−λx. The Inverse Cumulative Distribution
Function (ICDF) F(x) gives the exceeding threshold probability as the probability that C > x. F(x) is
the one minus integration of probability density function f (x) : F = 1−

∫ x
0 f (x)dx, and for exponential

distribution of rate λ, F = e−λx.

The convolution of two PDFs f and g, denoted by ⊗, refers to the summation of the random
variables they represent and is given as: f ⊗g(z) =

∫
∞

−∞
f (z)g(t− z)dz. The convolution of more than

two PDFs is represented as ⊗
i
Ci. In case of discrete distributions, the convolution of two PMFs is given

24

as f ⊗g(z) = ∑
∞
z=−∞ f (z)g(t− z).

2.2 Real-Time Systems

A real-time systems consists of a set of tasks and certain resources:

1. Tasks: The execution processes which produce certain result. Tasks are represented as τ defined
using the following properties

(a) Worst Case Execution Time: The maximum amount of time the task can take to finish
execution in isolation.

(b) Period: The time after which the task executes again.

(c) Deadline: The maximum amount of time the task is allowed to take to finish execution.
The deadline is always less than or equal to the period.

2. Resources: The resources include the processors, memory, buses which tasks require to complete
their operation.

The task arrives at an instant called the arrival time. A task during execution can get preempted if
there is another tasking which arrives later but must be executed immediately. The task has a response
time which is the amount of time the task takes to finish execution after its release. The response time
of the task contains all the possible delays it can have to its execution plus the execution time itself.
These properties are shown in the Figure 2.3. The figure shows the pWCET as the ICDF of a task
which upper bounds various possible task execution PDFs.

BCET WCET

time

Task release pWCET ICDF

deadline period
arrival

Response Time ICDF
Various delays

1

Figure 2.3: Task probabilistic execution shown as a pWCET ICDF with BCET and WCET.

In this thesis, we will focus on tasks and the resource given is a uniprocessor machine.

In our case, the execution time is described using probabilistic worst case execution time (pWCET).
pWCET is the the worst case probability distribution which upper bounds all possible execution times
of a task.

The task pWCET is a discrete random variable C whose PMF f represents the probability that the
task takes a certain WCET. In its representation with CDF, F is the cumulative probability that the

25

task respects certain WCET while executing; in the ICDF representation, F(x) is the probability that
the task overcome certain WCET. Figure 2.4 shows an example of a pWCET PMF. The deterministic
WCET C from C is the maximum value of C ; for it F(C) = 1, and F(C) = 0.

We assume a set of m ∈ N, periodic tasks running in a system which is represented with the set
Γ = {τ1,τ2, . . .τm}, N is set of natural numbers. The parameters of each task τ are identified by the
tuple (C ,T,D), where C is the pWCET with f as the PMF, T the period, D the relative deadline.

The pWCETs are assumed to be independent [CG13]; this is because the pWCET represents the
worst case execution scenario of the task. Any execution delays which are caused apart from the
scheduling or task dependence from another task execution must already be included in the pWCET
distribution. Figure 2.4 shows an example of a pWCET PMF. The maximum value of the pWCET is
the deterministic WCET and lower value is the BCET. This way, pWCET is upper and lower bounded.

pWCET WCET

P
ro

b
ab

il
it

y 1

0
time

Figure 2.4: pWCET as a PMF distribution.

An instance of a task τ is called a job represented as J. The arrival time of the job J is a and
the absolute deadline is d. We assume that the arrival of the first job of each task is always at time
zero. The task set is scheduled periodically on a uniprocessor machine in which execution of jobs are
suspended at their respective deadlines. The priority of the job J is p with 0 being the highest priority.

All times in capital letters, i.e. T,D,A, are time instances of the task; lower case letters, i.e. t,d,a,
are absolute time instants with zero being the arrival of the first job in the hyperperiod.

We analyze the jobs in the hyperperiod because the schedule repeats each hyperperiod since the
jobs are suspended at their respective deadlines. The hyperperiod H of the system is the minimum
amount of time necessary for the schedule to repeat itself. It is given as the least common multiple of
the periods of the tasks.The hyperperiod job set is the list of jobs with arrival times in the time-span
(0,H):

Λ
de f
= {J s.t. 0≤ a < H}.

where a is the arrival time of job J.

In the hyperperiod there are n jobs. The real-time application is be represented by the set Λ = {J}.

2.3 Mixed Criticality Systems

Mixed Criticality systems consist of tasks of the set Γ with various levels of criticalities or importance.
Classically, the execution time (WCET, or pWCET) is used to represent task criticality. In contrast,

26

we use response time to represent the task criticality. To recall, response time is the time a task
finishes execution after its release. It is the sum of task execution time and all the possible delays to its
execution.

Let l be the threshold on the response time for task criticality. If the task execution exceeds
this threshold after its release, it is said to enter high criticality mode. The variables T and D are
deterministic single-valued parameters, D≤ T (constrained deadline). The criticality level of the job J
is defined as L. The job inherits the criticality level of the task to which it belongs.

We consider pWCET described with discrete distributions. We also consider two level criticality
case, HI and LO, with HI having higher importance than LO. The high criticality tasks can execute
in HI or LO mode, the low criticality tasks execute only in LO mode. After its release, task executes
in LO criticality mode until the execution reaches the response time threshold l. A task execution
exceeding this threshold is said to execute in the high criticality mode. For tasks with L = HI, 0 < l < D
and for tasks with L = LO, l = D. Evidently, l is a deterministic single-valued parameter. The task
pWCET independence property allows to apply the task pWCET to each job of the same task. Because
the job worst-case execution time is probabilistic, the job response time is also probabilistic. Further
notations of jobs are defined in the specific chapter of their usage.

The probabilistic distribution representing execution of a job by including all the possible delays in
execution is a probabilistic worst case response time. It accounts for the worst case scenarios for the
execution of the task that might delay its execution. It is defined as follows.

Definition 1. Probabilistic Worst Case Response Time pWCRT of a job J, is a random variable R
with PMF fR which gives the worst case probability that J will take certain random time R , to end
execution after its release.

The response time CDF is FR = Σ fR , and the ICDF is FR = 1−FR . A certain allowed maximum
probability of deadline miss for any job P max

dm is given. A job J with deadline d is said to have missed
its deadline if 1−Σd

x=0 fR (x)> P max
dm .

Same as in the case of pWCET where the upper bound is the WCET, the upper bound of the
pWCRT fR is the deterministic Worst Case Response Time WCRT .

The jobs entering high criticality mode is defined using its response time as follows.

Definition 2. A job J is said to have entered HI criticality if its Worst Case Response Time exceeds a
threshold l, R > l.

There are nHI high criticality jobs and nLO low criticality jobs. The set of all high criticality
jobs is represented as ΛHI and that of low criticality jobs is ΛLO. It follows that Λ = ΛHI ∪ΛLO, and
n = nLO +nHI.

In the determinisic case, the response time of a job is the time it takes to end execution after its
release. In addition to the execution time, response time also contains the duration in which it has to
wait for a previous job or a preempting job to finish execution. Similarly, the pWCRT is the worst
case probability distribution representing the time end of job execution after its release. It contains the
pWCET as well as the probabilistic waiting times due to various delays in execution.

27

CHAPTER 3

Continuous Time Markov Chain
Schedulability Analysis

The first step to becoming is to will it.

Mother Teresa

In this Chapter we present our first step towards the thesis subject. The thesis subject is formally
put as follows.

Given a probabilistic real-time system with task executions described with continuous pWCET,
what is the probability that the tasks miss their deadline?

We begin the contributions in this thesis by answering the question posed above which directly
relates to the subject of the thesis. We are given with a task set in which task executions are described
by a continuous probability distribution. The objective is to perform a schedulability analysis on the
tasks execution to obtain the probability of their deadline miss. From the first look, we already see
that scheduling such tasks involve a certain play of probabilities within the system which propagates
and affects the system functionality probabilistically. From our discussion in the introduction, now we
formally dive deeper into this idea.

We obtain a schedulability analysis model using Markov Chain, in particular, Continuous Time
Markov chain (CTMCh). We model the system task executions using the CTMCh. Continuous Time
Markov Chain is a set of states with unidirectional transitions between them. The transitions are
labelled with the rate of the exponential distribution which corresponds to the probability of that
transition as well as the probabilistic time spent in the transition. This allows a direct mapping of
continuous pWCET to the Markov Chain transitions. Moreover, the formal nature of the Markov
Chain allows us to evaluate the probabilities relating to the real-time system, like the response time
distribution.

We obtain a schedulability analysis for already existing scheduling algorithms and we do not obtain
a schedule yet. We assume a given task set with pWCET on a uniprocessor machine. We bring our
attention at the job level as the periodic instances of the tasks within the hyperperiod. The pWCET is
assumed to be described with exponential distribution. The scheduling analysis copes with preemptive
Earliest Deadline First or Fixed Priority scheduling as given in [But11]. We begin by presenting the
Continuous Time Markov Chain.

29

Dans ce chapitre, nous présentons notre premier pas vers le sujet de thèse. Le sujet de thèse est
formellement mettre comme suit.

Étant donné un système probabiliste en temps réel avec des exécutions de tâches décrites avec
pWCET continu, quelle est la probabilité que les tâches manquent leur échéance?

Nous commençons les contributions dans cette thèse en répondant à la question posée ci-dessus
qui directement se rapporte au sujet de la thèse. On nous donne un ensemble de tâches dans lequel
les exécutions de tâches sont décrites par une distribution de probabilité continue. L’objectif est de
réaliser une analyse d’ordonnancement de l’exécution des tâches pour obtenir la probabilité de manquer
leur échéance. Aux premier regard, on voit déjà que la programmation de telles tâches implique un
certain jeu de probabilités au sein du système qui se propage et affecte la fonctionnalité du système de
manière probabiliste. De notre discussion dans l’introduction, ici nous plongons formellement plus
profondément dans cette idée.

Nous obtenons un modèle d’analyse d’ordonnancabilité utilisant la chaîne de Markov, en particulier
Chaîne de Markov Temps Continu (CTMCh). Nous modélisons les exécutions de tâches système à
l’aide de CTMCh. Chaîne de Markov Temps Continu est un ensemble d’états avec des transitions
unidirectionnelles entre eux. Les transitions sont étiqueté avec le paramètre de la distribution expo-
nentielle qui correspond à la probabilité de cette transition ainsi que le temps probabiliste passé dans
la transition. Cela permet une cartographie directe des pWCET continu aux transitions de la chaîne
de Markov. De plus, le caractère formel du Chaîne de Markov nous permet d’évaluer les probabilités
relatives au système en temps réel, comme le distribution probabiliste du temps de réponse.

Nous obtenons une analyse d’ordonnancabilité pour les algorithmes d’ordonnancement déjà exis-
tants et nous n’obtenons pas un ordonnance encore. Nous supposons un ensemble de tâches donné
avec pWCET sur une machine monoprocesseur. Nous apportons notre attention au niveau du travail
comme les instances périodiques des tâches dans l’hyperpériode. Le pWCET est supposé être décrit
avec une distribution exponentielle. L’analyse d’ordonnancement fait face à l’Earliest Deadline First
(EDF) ou Fixed Priority (FP) comme indiqué dans [But11]. Nous commençons par présenter le Chaîne
de Markov Temps Continu.

3.1 Continuous Time Markov Chain

This section defines the necessary fundamentals of Markov Chain as given in [Nor97] in relation to the
real-time systems.

Definition 3. A Markov chain is a set of random variables representing states {Pk}k≥0 taking values
vk in a countable set. {Pk}k≥0 is a MCh if it respects the property: Pr(Pk+1 = vk+1|P0 = v0,P1 =

v1 . . .Pk = vk) = Pr(Pk+1 = vk+1|Pk = vk).

This property is called the Markov property which says that the conditional probability of future
state Pk+1 depends only on the present state Pk and not on the events in the past. Pk are the states and vk

are the values assumed by the states; Pk = vk is the event vk for the k-th state.

30

A Discrete Time Markov Chain (DTMCh) is a MCh in which the state transitions occur at discrete
time. Each outgoing transition from a state has a probability of being chosen; the sum of the probabilities
of all the outgoing transitions is one.

A Continuous Time Markov Chain (CTMCh) is a MCh in which there are exponential rates λ

associated to the state transitions. This implies that there is an exponentially distributed time spent in a
transition. The transitions for a CTMCh are formalized as a Q-matrix Q = (qi j : i, j ∈ I) where each
elements qi j is an exponential rate and describes the transition itself.


P0 P2 P3 . . .

P0 −(q02 +q03) q02 q03 . . .

P2 q03 −(q03 +q23) q23 . . .

P3 q31 q32 −(q31 +q32) . . .
...

...
...

...
. . .


with the conditions: −∞≤−qii < 0,∀i; qi j ≥ 0,∀i 6= j; ∑

j∈I
qi j = 0,∀i. A CTMCh model is represented

with {X ,Q}, where X is the set of states and Q is the transition matrix.

CTMCh can be represented as embedded DTMCh with (i) exponentially distributed time spent in a
state and (ii) probability of choosing an outgoing transition from that state, given in [KNP07]. The
probability of choosing a state transition with rate λr out of m outgoing state transitions is given by:

Pr(λr) =
λr

m
∑

k=1
λi

,r ≤ m, (3.1)

and the rate of exponentially distributed time spent in each state, denoted by Λ, is given as:

Λ =
m

∑
i=1

λi. (3.2)

λ1
λ2

λm

State ...
(a) CTMCh

State
Pr(λ2)

Pr(λm)

Pr(λ1)

...EXP(Λ)

(b) DTMCh

Figure 3.1: CTMCh and the corresponding embedded DTMCh.

This is shown in Figure 3.1 where Figure 3.1a is a portion of CTMCh with one state and m
outgoing transitions. Each transition, has a probabilistic duration given by an exponential rate λr. In
Figure 3.1b the correspondent embedded DTMCh is illustrated which is decomposed as: (i) probability
of choosing a transition Pr(λr), Equation (3.1); and (ii) the exponentially distributed time spent in the

31

state, Equation (3.2). These two equations are exploited to understand and model a pRTS.

Model checking can be performed on CTMCh models. This means verification of certain properties
of the model in order to obtain probabilistic task execution characteristics, like probability of being in
a state at some time. The model checking is done to verify that a model meets certain probabilistic
specification. For a job J, the function Pr(J,state, time) expresses the probability that the CTMCh of J
is in state state at time time. For example, Pr(J,finished,deadline) checks the CTMCh model of the
job J and returns the probability that it has finished execution at the deadline. The argument time could
be a time instant or a time interval. Property Pr(J,finished, [time,deadline]) is also a valid property
which checks if the job J is in state state between time instances time and deadline.

PRISM model checker [KNP07] is the tool that we apply to formally check the CTMCh models and
the probabilistic schedulability analysis. It is used to verify the timing properties of CTMCh models
such as Pr(J,state, time) by solving the CTMCh matrices for transient probabilities.

3.2 Pessimism, Exponential Upper Bounding, and Safety

Here, we form the link between existing pWCET distributions and the exponential distributions in order
to map them to the CTMCh model. We begin with definition of safety. Any schedulability analysis is
safe if it does not provide optimistic results.

Definition 4 (Pessimism). Given two random variables C1 and C2 with PDFs f1 and f2, respectively.
C2 is said to be more pessimistic than (“larger than or equal to") C1 in the time interval [a,b], iff:∫ b

a
f2 ≥

∫ b

a
f1. (3.3)

The interval [a,b] belongs to the support1 of both C1 and C2.

A larger/pessimistic distribution than one given, can be used as a safe representation for it. Equa-
tion (3.3) is taken from [Dia+04] and it defines the partial ordering between distributions in a specific
interval [a,b]. Here, the focus is in a certain interval in the support which provides a more general defi-
nition of pessimism. Throughout the thesis, by safety we mean a safe approximation of the associated
probabilities. This is not to be confused with the safety of the software systems.

In order to form the link between any given continuous distribution and the exponential distribution
that we use, we make the following interpretation. Given a PDF f , it is always possible to find a
pessimistic representation with an exponential distribution. It has to be a larger than f , at least in the
upper part of its support, the interval [a,b] in Equation (3.3) as described next. We name an exponential
distribution like that a safe upper bound for f .

Lemma 1 (Safe Exponential Upper Bounding). Given a PDF f and another PDF fE of an exponential

1The random variable support is the interval in which the random variable can have values.

32

distribution of rate λ which intersects f in Pint , fE is a safe upper bound for f if:

λ≤− 1
Pint

ln(1−
∫ Pint

0
f); (3.4)

Pint > 0.

Proof. Using Equation (3.3), an exponential distribution fE = λe−λx safely upper bounds f from Pint

to infinity if: ∫
∞

Pint

fE ≥
∫

∞

Pint

f

Since the integration of PDF gives the cumulative probability, and the total probability in [0,∞) cannot
exceed one, it is:

1−
∫ Pint

0
fE ≥ 1−

∫ Pint

0
f

and

e−λPint ≥ 1−
∫ Pint

0
f .

In order to satisfy the former inequality, λ has to be such that:

λ≤− 1
Pint

ln(1−
∫ Pint

0
f).

The above definition and lemma state the notion of safety for pRTSs. With pessimistic representa-
tions and correct approaches, the schedulability analysis with probabilities is guaranteed to be safe. To
note that the pWCET from MBPTA have shapes of either a generalized extreme value distribution or a
generalized Pareto distribution [Caz+11]; [LDB16]; [SGM17].

We use a factor of safety FoS to define Pint . For a job J, Pint is the product of deadline d and the
FoS; Pint = d.FoS with 0≤ FoS≤ 1. FoS close to 1 implies Pint close to d, which means reducing the
pessimism in [0,d] with a small margin for errors in the Pint estimation. FoS close to O implies Pint

close to 0, which means increasing the pessimism with a large margin for errors in the Pint estimation.

Figure 3.2 shows an exponential distribution CDF FE upper bounding distributions with different
shapes. All the distributions are defined in a support [0,∞). The distributions considered are: a Gumbel
distribution, as one of the generalized extreme value distributions, a Pareto distribution, from the
generalized Pareto distribution, and a Convolution distribution, resulting form the convolution of two
exponential distributions.

FE intersects the three distributions in three different points, PG
int , PP

int , and PC
int respectively for

the Gumbel, the Pareto and the Convolution distributions. In [PG
int ,∞), FE upper bounds the Gumbel

distribution; in [PP
int ,∞), FE upper bounds the Pareto distribution; in [PC

int ,∞), FE upper bounds the
Convolution distribution.

33

Gumbel

 1

P

Pareto

P
ro

b
ab

il
it

y

time

Convolution FE

0 infP PG
int int int

P C

Figure 3.2: Exponential EXP upper bounding distributions with a certain rate.

3.3 Job Execution Interference Definitions

Using the above definitions, we evaluate the job backlogs in detail. Backlog is the delay caused to a
job by the execution of certain other higher priority jobs. Because the execution is probabilistic, the
backlog is also probabilistic. The notion of backlog is used to represent job interference and build
CTMCh models. We define the backlog and classify various ways in which it is produced. There are
three possible scenarios which impose a backlog to the victim job J as follows.

Case1 - Preceding job: A job which is released before job J, which delays the execution of J is the

set Jprd(J)
de f
= {J′ : p′ < p,a′ < a} and p′− p is minimum for all possible J′. As will be seen in later

sections, the process of analysis is sequential in the order of decreasing job-priority. Because of this
approach, it is enough to obtain the backlog from the previous job and we do not need to consider all
the jobs in the past. The cardinality2 of Jprd(J) is always one.

Case2 - Synchronous job: A set of higher priority jobs released synchronously to J which execute

first and thus delay job J. It is the set Jsyc(J)
de f
= {J′ : a′ = a, p′ < p}. The total delay to the job J by

the jobs in Jsyc(J) is given by the convolution of the pWCETs of all the jobs in the set.

Case3 - Preempting job: Higher priority jobs preempt the already executing victim job. From the
preemption instant the victim job is delayed and awaits execution. The effect of backlog is that
it changes the execution distribution of the victim job. The resulting new exponential distribution

incorporates all the backlogs affects. The set of preempting jobs is defined as Jprm(J)
de f
= {J′ : a′ >

a, p′ < p,a′ < d}. Jprm(J) is ordered in increasing arrival times of its constituent jobs. K is the
maximum number of preemptions J can have and is given as K = card(Jprm(J)) which is the number
of elements in the set.

To detail the backlog scenarios, we consider the jobs from two tasks are scheduled either using
EDF or FP on a uniprocessor. Three are the jobs in the hyperperiod, J1, J2 and J3 with arrival times
a1, a2 and a3; deadline d1, d2 and d3; and priorities p1, p2 and p3. The jobs scheduled under EDF are
shown in Figure 3.3a while the FP schedule is shown in Figure 3.3b. The executions are represented in

2Given a set S, the cardinality of S is represented as card(S) which gives the number of elements in S

34

the ICDF form. The generalization of the backlog to any task set is left for the following sections.

J1

J3

J2

tr

da0

0 d

(a) EDF scheduling with no
preemption

J11 J12

J21

0

0

a

tr d

d

(b) FP scheduling with J3 pre-
empted by J2

 J3

a tr
0 d

J2

(c) Backlog ∆ in [a,d] for
J2 from J3

Figure 3.3: Various possible delays to the execution of a job.

Case1 - Job released earlier: High priority job arriving earlier and postponing.

Job J2 arrives at time a and is the job under investigation; Job J3 is released earlier and delays job J2,
as shown in Figure 3.3c. The deadline for both the jobs is d.

The event that job J2 finishes at the deadline d is equal to the events that J2 begins at the arrival
time a and ends at the deadline d.

Event(J2 finishes at d after J3) = Event(J2 begins at a) and Event(J2 finishes at d)

The event that J2 begins at the arrival time is equal to the event that J3 ends execution at a.

Event(J2 finishes at d after J3) = Event(J3 ends at a) and Event(J2 finishes at d)

The execution of J3 is given by its response time and the execution of J2 is given by its pWCET.
Let, the random variable of execution of J2 is C2, the response time random variable of J2 is R2 and
that of J3 is R3. Because the response time of J3 does not affect the duration for which J2 will execute,
R3 and C2 can be assumed independent. The probabilities are thus,

Pr(R2 = d) = Pr(R3 = d−a)Pr(C2 = d)

Function fR2 is an exponential distribution because we need to map it to the CTMCh transitions.
We obtain the fR3 from the CTMCh model of the job J3. f2 is the pWCET of the job J2. Therefore,

∫ d

0
λ2e−λ2 xdx = (1−∆

J3
[a,d])

∫ d

0
f2

λ2
de f
= −1

d
ln(1− (1−∆

J3
[a,d])

∫ d

0
f2), (3.5)

35

where ∆
J3
[a,d] =

∫ d−a
a f3dx gives the backlog from J3 to J2. Thus, 1−∆

J3
[a,d] is the probability that J3

has finished execution in [a,d] as represented in Figure 3.3c. The superscript of ∆ denotes the job
from which the backlog exists, here J3. The subscript denotes the time interval during which the
backlog exists, here the interval [a,d]; 1−∆

J3
[a,d] = Pr(J3,finished in [a,d]). This notation will be used

throughout this paper. We obtain this value from the analysis of the CTMCh model of J3.

We notate the backlog as 1−∆
J3
[a,d] to denote that we obtain this value from the CTMCh analysis of

the job. Moreover, we notate as a subtraction from one to prevent loss of accuracy due to decimal point
representation in the computer program.

Case2 - Synchronously released jobs: High priority job arriving synchronously and postponing.
Here, J3 is the task under investigation, while jobs J1 and J3 are synchronously released, see Figure 3.3a.
Here, the exact finishing time of J1 is unknown. We cannot discuss in terms of events like in the
previous case because a deterministic time across which discrete observations can be made is unknown.

The random variable of execution of J3 is C3 that of J1 is C1, response time random variable of J1

is R1 and that of J3 is R3. Thus,
R3 = R1 +C3

R3 = C1 +C3

Thus, to know the combined affect of J1 and J3, the pWCETs of C1 and C2 are convolved. As a
reminder, CTMCh only accepts exponential distributions.

∫ Pint

0
λ3e−λ3 xdx =

∫ Pint

0
fR1⊗ f2

The rate λ3 of the exponential upper bound for job J3 is:

λ3
de f
= − 1

Pint
ln(1−

∫ Pint

0
fR1⊗ f2). (3.6)

where fR1 and f2 are the response time and the pWCET PDFs of the jobs J1 and J2 respectively. The
choice of λ depends on Pint . In this specific case, fR1 is equal to the pWCET f1 because J1 is the first
job executing.

Case3 - Job preempting: High priority job arriving after and preempting.
To illustrate this case, consider Figure 3.3b with the FP scheduling with J3 being the job under
investigation. In this case, J2 preempts J3 at time a.

The event that job J3 finishes at the deadline d is equal to the events that J3 executes at the arrival
time a and ends at the deadline d.

Event(J3 finishes at d after J2) = Event(J3 executes at a) and Event(J3 finishes at d)

36

The event that J2 begins at the arrival time is equal to the event that J3 ends execution at a.

Event(J3 finishes at d after J2) = Event(J2 ends at a) and Event(J3 finishes at d)

The execution of J3 after preemption is given its pWCET and the execution of J2. Let, the random
variable of execution of J3 is C3, the response time random variable of J2 is R2 and that of J3 is R3.
Since the response time of J2 does not affect the duration of execution of J3, R2 and C3 can be assumed
independent. The probabilities are thus,

Pr(R3 = d−a) = Pr(R2 = a)Pr(C3 = d)

Function fR3 is an exponential distribution because we need to map it to the CTMCh transitions.
We obtain the fR2 from the CTMCh model of the job J3. f3 is the pWCET of the job J3. Therefore,

∫ d−a

0
λ3e−λ3 xdx = (1−∆

J2
[0,d])

∫ d

a
f3

λ3
de f
= − 1

d−a
ln(1− (1−∆

J2
[0,d])

∫ d

a
f3), (3.7)

where f3 is the pWCET PDF of the job J3; and (1−∆
J2
[0,d]) is the probability that the job J2 finishes by

its deadline. We obtain the value of ∆
J2
[a,d] from the CTMCh model of J2.

Therefore, the pWCET of job J3 changes and the rate λ3 of the exponential distribution accounts
for the probabilistic waiting time and the remaining execution of itself.

These job classifications are depicted in Figure 3.4 for each J. The job executions are represented in
the ICDF form to differentiate the case of pWCETs from deterministic WCETs. In here, the worst-case
execution is described with a random variable, and the ICDF captures the distribution law as well as
the probabilistic behaviour that jobs follow.

Regarding these sets classifying the backlog, the scheduling follows either Earliest Deadline First
(EDF) or Fixed Priority (FP) preemptive paradigms [But11]. The scheduling policy defines the job
ordering by imposing job-wise priorities. EDF or FP would have a different job ordering with effects
on the job sets Jprd(J),Jsyc(J),Jprm(J) which define the task interference. We assume that the jobs are
suspended if their execution reaches the deadline. We also assume deadline is always less than or equal
to the periods. The hyperperiod hp = lcm(T),∀τ ∈ Γ gives the scope of the schedulability analysis for
EDF or FP.

37

0

0

0

0

{ }

a3

J1

J3

J

J' J'' J2

a1 tp

...

time

tp
' ''

Figure 3.4: Job J, job set Jprd(J), job set Jsyc(J), and job set Jprm(J) are represented with interactions
between them.

3.4 Deterministic Observations

The probabilistic execution of jobs is described using continuous distributions. Since we assume that
the jobs are described with continuous pWCET defined in [0,∞), there exists a non-zero probability
that a task executes until any time after arrival. This also implies that there exists a non-zero probability
that the task gets preempted after its arrival. With a set of such executing jobs, the system behaviour is
seen as continuous and uninterrupted in [0,∞). In order to observe a system composed of such tasks,
we need to define certain points of observations in time. The formal properties are later checked on
these points. Moreover, the assumption of suspending tasks slightly changes the case with intervals
limited to [0,d]. The convolution does not take into account the offset between arrivals and the cutting
of the distributions at the deadline. In the following sections we will show how such suspended case
is treated in CTMCh models. We sample the continuously distributed probabilistic system at certain
discrete points. These discrete points are defined as follows.

Definition 5 (Observation Points and Preemptions). Given a job J and its preempting jobs from Jprm(J),
the time instants at which job J gets preempted and the time instant at which it is mandatory to finish
execution, are the job observation points is given in the set Tp(J) as:

Tp(J)
de f
= ∀J′ ∈ Jprm(J) : {a′−a}∪d−a (3.8)

Tp(J) is ordered by increasing time. If there are two or more equal time instances, they are ordered
by increasing priority of the job to which they belong. Tp(J) elements are referred to with superscript k
as T k

p , k = 1,2,3, . . . ,K,K +1, with K the cardinality of Jprm(J) for the job J. The time instances in
the set Tp(J) are defined such that they are relative to the job to which it refers to, in this case J, and
the arrival time a is the local zero.

It is sufficient to reduce Tp(J) from Equation (3.8) to unique and increasingly ordered observation
points. Of the multiple elements T k

p which are of the same value, the ones which belong to lowest

38

priority jobs are kept. This is because of the two preempting jobs arriving at the same time, the CTMCh
model of the lower priority job already accounts for the backlog from the higher one.

6 ∃(J′,J′′) ∈ Tp(J) : a′′ = a′ and p′′ > p′ (3.9)

3.5 Modelling and Analyzing Probabilistic Real-Time Systems

This section builds CTMCh models for pRTS with continuous distributions, and how to perform
schedulability analysis from those models. It combines the notions defined earlier, job backlog
classification, deterministic observations and exponential upper bounding. Consider a given task set
scheduled under preemptive EDF or FP on a uniprocessor, and a continuous pWCET for each task. For
each job in the hyperperiod, there is a CTMCh model which accounts for all the interference specific to
the job.

The scheduling policy chosen (EDF or FP) imposes a priority to each job and a job ordering. The
job J to be modelled and analyzed is selected in the order of decreasing priority with the so called
sequential approach. We recall the sets Jsyc(J), Jprm(J) and Jprd(J) which categorize delays to the job.
These sets depends on the scheduling policy. The process to build CTMCh models does not depend on
the scheduling policy, since all the dependence due to the order of execution are embedded into the job
sets and the job ordering. All the CTMCh models are then used for the probabilistic schedulability
analysis.

As shown in Figure 3.5, for each job J, in order to build its CTMCh model it is necessary to know
the job sets Jprd(J), Jsyc(J) and Jprm(J). The three blocks ‘Backlog’, ‘Preemption’, and ‘CTMCh’
described in the following subsections, applies such information. Figure 3.5 illustrates the building of
a CTMCh model with the inputs for a job J and the logical order between the blocks.

The construction of a CTMCh job model requires identification of states and state transitions. For
a job J, an initial set of states for the CTMCh is given, X = {P0,F} with P0 representing execution
after release and F representing end of execution. In that case, the transition represents the execution
of the job by including the backlog from all the jobs released synchronously and/or the job released
earlier, sets Jprd(J) and Jsyc(J). The exponential rate of the transitions is given by the block ‘Backlog’.
Then, depending on the number of preemptions to the job, given by the set Jprm(J), new states, and
corresponding transitions, are added to the CTMCh. The new transition from the preempting state to
the end of execution includes the waiting time of the job due to preemption as well as the remaining
execution after preemption. This is made within the ‘CTMCh’ block. The computation of the CTMCh
transitions from preemptions requires certain probabilistic information as properties Pr(job,state, time),
computed by the block ‘Preemption’. This is detailed and formalized as follows.

3.5.1 Backlog

In the block ’Backlog’, we obtain the backlog to a job when it begins execution. In this case, the only
sources the backlogs can come from are the preceding job and the parallel released jobs. For J, the

39

Ji

J (Ji)

PK

Pr(job, state, time)s

∆, delays
2 : Preemption

 Δ

 1 : Backlog
Pj

λf0

preemptions

precede

synchronous

Pr()

λp0

λf1
λfK

prm

Pr(,F,)

P1

P0
F

...2 : CTMCh

λf0*

J (Ji)
prd

J (Ji)
syc

J (Ji)
prd

Tp

Tp

J (Ji)
prd Tp

Figure 3.5: Job CMTCh model formalization with blocks and input information.

input are the job sets Jprd(J) and Jsyc(J) which decide the type of backlog that exists. The output of
’Backlog’ is the rate λ∗f 0 which models the job execution with those backlogs.

In the case where J is the highest priority job, then it does not have any backlog. Instead, if J is
released synchronously with other jobs; Jsyc(J) 6= /0 and the backlog is determined by Equation (3.6).
Finally, if there exist higher priority jobs than J that arrived earlier than J, Jprd(J) 6= /0, and the job
backlog also comes from Equation (3.5). These two cases can also occur simultaneously.

At this stage of the modelling, there are two states in the CTMCh model of J, P0 and F . As a
reminder, we stated that Jprd(J) has only one job because the sequential approach we are building
requires only one preceding preceding job (and the one with the closest priority to J) to obtain the
delay to J.

The exponential transition between P0 and F is given by the exponential rate λ∗f 0 which is deter-
mined as follows:

a) If J is the highest priority job, λ∗f 0 is as given by pWCET PDF f .

b) If J has non empty Jprd(J) and empty Jsyc(J), the backlog is from previously released high priority
job (Case1).

λ
∗
f 0

de f
= −1

d
ln(1− (1−∆

Jprd(J)
[a−a′,d′−a′])

∫ d

0
f),∀J′ ∈ Jprd(J) (3.10)

c) If J has non empty Jsyc(J) and empty Jprd(J), the backlog is from synchronously released higher
priority job only.

λ
∗
f 0

de f
=
−1
Pint

∫ d

0
f ⊗ f ′. (3.11)

40

d) If J has non empty Jprd(J) and non empty Jsyc(J), the backlog is the combination of Case1 and
Case2:

λ
∗
f 0

de f
= − 1

di
ln(1− (1−∆

Jprd(J)
[a−a′,d′−a′])

∫ d

0
f ⊗ (⊗∀J′′∈Jsyc(J) f ′′),∀J′ ∈ Jprd(J) (3.12)

It is to be noted that the upper limit of the integrals on the left hand side is the job relative deadline
d of the job J. This is because the backlog affects the whole job and the safety of the upper bound is
evaluated in [0,d], with 0 being the arrival of the job a. The term 1−∆ refers to the CMTC model of
the job given by the superscript and returns the probability that it has finished execution in the time
interval given by the subscript. Thus 1−∆

Jprd(J)
[a−a′,d′−a′] is the probability that the job Jprd(J) has finished

execution in the time interval [a−a′,d′−a′]. It is the property Pr(Jprd(J),finished, [ti j−T k
pi
, ti j])

which is obtained using PRISM model checker.

Equation (3.10), Equation (3.11) and Equation (3.12) generalize the backlog computation for Case1
and Case2 formerly illustrated with the example in Section 3.3.

3.5.2 Preemption Pr()

The ‘Preemption’ block helps block ‘CTMCh’ with evaluating the timing properties of CTMCh models.
For any job, ‘Preemption’ refers to the model checker to compute the probability that the job exists in
an executing state state at time time. The resulting probability is returned to the ’CTMCh’ block.

‘Preemption’ is only called if there is preemption. This is because preemptions cause adding states
and state transitions to the CTMCh, and ‘Preemption’ has to evaluate job waiting and job execution
after each preemption. The probabilities Pr(J,executing, time) are computed within ‘Preemption’
using PRISM model checker. This is explained next.

3.5.3 CTMCh States and State Transitions

In this subsection, we describe the ‘CTMCh’ block and its interactions with ‘Backlog’ and ‘Preemption’
to build the complete CTMCh model for a job.

For the job J arriving at time a with a deadline at d, an initial set of states X = {P0,F} is given.

The exponential transition between them has rate λ∗f 0 which is provided by the block ‘Backlog’. If
there are no preemptions to the job, λ f 0 = λ∗f 0, then the CTMCh model is complete.

However, there can exist a preemption to J at a time T 0
p , first element of the set Tp , by another

higher priority job J′ arriving at a′ and with deadline at d′. In that case, a new state P1 is added. The
transitions now are λp0 between P0 and P1; λ f 0 between P0 and F; and λ f 1 between P1 and F . The
rates λp0 and λ f 0 are obtained by splitting the given rate λ∗f0

using Equation (3.1), i.e. probability of

41

choosing a transition, and Equation (3.2), i.e. probabilistic time spent in a state:

λp0 = Pr(J, p′, t0
p).λ

∗
f0

; λ f 0 = λ
∗
f 0−λp0.

The rate λ f 1 accounts for the probabilistic waiting time by the job and its remaining execution at the
time of preemption. It is determined using Equation (3.7) as:

λ f 1 =−
1

d′− t0
p

ln(1− (1−∆
J
[d′−a′,t0

p−a])
∫ d′−t0

p

0
f ′dx),

where f ′ is the pWCET of the preempting job J′.

If a second preemption to J exists, then state P2 is added together with new transitions λp1 between
P1 and P2, λ f 1 between P1 and F (former λ f 1 updated by the presence of P2), and λ f 2 between P2

and F . The rates λp1 and λ f 1 are determined by splitting the former λ f 1, with Equation (3.1) and
Equation (3.2); λ f 2 is computed using Equation (3.7). At each preemption, the Q-matrix grows
correspondingly as:

 P0 F
P0 − λ f 0
F 0 1

[2,2]

→


P0 P1 F

P0 − λp0 λ f 0
P1 0 − λ f 1
F 0 0 1


[3,3]

→


P0 P1 P2 F

P0 − λp0 0 λ f 0
P1 0 − λp1 λ f 1
P2 0 0 − λ f 2
F 0 0 0 1


[4,4]

P0 F

P1 PK

λf0

P0
F

P1

P0 F
λf0

λp0 λf1

λf0

λp0

LfKλf1

λp1 λpK-1

...

...

Figure 3.6: Iterative process to build a CTMCh model; the preemption effects are added and validated
one preemption by one preemption.

The generalization of the CTMCh job modelling process is an iterative process, as illustrated
in Figure 3.6. For the k-th (k ≤ K) preemption, a state PK is added to the CTMCh where K is the
maximum number of preemptions to the job J. The new transitions are computed and validated from
‘Preemption’.

The complete representation of the job is a set of states X = {P0,P1, ...PK ,F}. The final Q-matrix
of size [(K +2),(K +2)] is given as:

42



P0 P1 P2 . . . PK F
P0 −(λp0 +λ f 0) λp0 0 . . . 0 λ f 0
P1 0 −(λp1 +λ f 1) λp1 . . . 0 λ f 1
P2 0 0 −(λpK +λ f 2) . . . λpK λ f 2
...

...
...

...
. . .

...
...

PK 0 0 0 . . . −λ f K λ f K
F 0 0 0 . . . 0 1



[(K+2),(K+2)]

where the subscript of λ denotes i) the final state, f if it goes to state F or k if it goes to PK state, and ii)
the k-th state from which it goes out. For example, λ f 2 denotes the rate of transition from state P2 to
state F .

Regarding the exponential rates in the Q-matrix, if K = 0 for the job J,it is λ f 0 = λ∗f 0 and the model
is complete. For k = 1 i.e. if set Jprm(J) has one preempting job, λp1 = Pr(J,P0, tk

p).λ
∗
f 0; λ f 1 =

λ∗f 0−λp1. And then for 1 < k ≤ K, λpk and λ f k are:

λpk = Pr(J,Pk, tk
p).λ f k−1; λ f k = λ f k−1−λpk. (3.13)

λ f k+1, as a generalization of Case3 and Equation (3.7), is:

λ f k+1 =
−1

tk+1
p − tk

p
ln(1− (1−∆

J
[tk

p,t
k+1
p]

)
∫ tk+1

p −tk
p

0
f k);Jk is k-th job in Tp(J)) (3.14)

where 1−∆J
[tk

p,t
k+1
p]

= Pr(J, p j, [tk
p, t

k+1
p]).

For each job, the CTMCh modelling is now complete and it accounts for all the possible interference
which can delay job executions.

As an observation, there can be synchronous jobs in the set Jprm(J) which can preempt J. For each
subset of jobs in Jprm(J), those which are synchronous between them, into the J CTMCh modeling it
is sufficient to take into account for only the lowest priority job. This is because of the sequential of the
approach we propose. Indeed, while modelling the preempting jobs which are synchronous between
them (modelled before J), the delay of higher priority jobs is included into the model of the lowest
priority job.

This also applies to the case where two synchronous victim jobs are delayed by a single preempting
or earlier released job. There will be priorities assigned to the two victim jobs. The one with the higher
priority will account for the preempting or the earlier released job. The one with the lower priority first
accounts for the higher priority synchronous job which already contains the previous delays.

EDF vs FP. As already stated, EDF and FP impose different priorities to each job. The specific schedul-
ing applied, changes the job ordering (job J absolute and relative priority) and the job interference
Jprd(J),Jsyc(J),Jprm(J). Once accounted for that, the CTMCh modelling process we have illustrated
applies with no difference between EDF or FP.

43

3.5.4 Schedulability Analysis

Once the job models are in hand, the probability of deadline miss and the response time curve for jobs
and tasks can be extracted from them. This is what we call probabilistic schedulability analysis and is
formalized as follows.

Probability of Deadline Miss. For a job J, the probability of deadline miss Pr(DM) is given by one
minus the probability that the job CTMCh is finished in the state F at the deadline, Pr(J,F,deadline):

Pr(DM)
de f
= 1−Pr(J,F,deadline). (3.15)

Response Time. The response time distribution FR T of a job J can be obtained from the model
checking. In particular, it comes from the probability that the job is finished by some positively
increasing time t, Pr(J,F, t):

FR T
de f
= Pr(J,F, t) = Pr(J finishes by t), 0≤ t ≤ d. (3.16)

For the job J, FR T is evaluated in the interval [0,d], since the job is suspended at the deadline and the
information beyond d is not required.

Complexity. Given a task set Γ with m jobs in its hyperperiod. For each job, there are nsyc syn-
chronously released higher priority jobs, nprm preempting jobs, and only one preceding job (due to the
sequential).

The convolution operation is applied to combine the nsyc jobs, Case2 in Equation (3.6) and its generaliza-
tion from Equations (3.10)-(3.12). Numerical convolution requires a discretization of the distributions
by a unit d; the convolution has complexity O((D/d)2), D being the job deadline. Case2 backlog is
computed with also an integration; the trapezoidal rule uses the discretization of d unit, for a complexity
of the integration of O(D/d).

In case of preemptions, the rates are obtained with the integration operation, Case3 and Equation (3.7).
Its complexity is O(D/d). For each job it is O(nsyc.((D/d)2 +D/d)+nprm.(D/d)).

For the m jobs, there can be a maximum of m−1 synchronous jobs and m−1 preempting jobs, due to
the sequential nature of the approach and the job ordering by decreasing priority. The total complexity
of the modeling is then O((m(m+1)/2).(D/d)2). Without the sequential, the complexity would be
O(m2.(D/d)2).

Algorithm. The algorithm to build CTMCh models and perform schedulability analysis as defined
in this paper, is detailed below in pseudo-code. A task set is given to be scheduled on a uniprocessor
machine with scheduling policy EDF or FP, preemption enabled, and jobs that are suspended at their
deadline. The factor of safety, which define the exponential upper bound is given and is same for each
job.

The functions implemented are such that:

44

procedure MODEL_ANALYSE_PRTS(tasks, policy)
Order_Jobs(Jobs,policy) . Order Jobs by their increasing priority
for each job in Jobs do

Define Jpre(J), Jsyc(J), Jprm(J), T̄p(J) . The higher priority jobs sets
Declare X = {P0,F};Q = {0,0;0,1} . Initial CTMCh
λ f 0 =Backlog(J,Jpre(J),Jsyc(J)) . Backlog effects
Q = {−λ f 0,λ f 0;0,1}
for each preemptive job J[k,Jprm(J)] in Jpre(J) do . Preemption effects

Pr = P(J, p j, tk
p) . k-th preemption

λ f k = λ f 0.Pr
λpk = λ f 0−λ f k
λ f k+1 = Delta_Pre(J,J[k,Jprm(J)])
Update(X ,Q,k)

Pr(DM) = 1−Pr(J,F, tK+1
pi

) . Probability of deadline miss
for time t do

FRT (t) =PRISM_Verify(J,F, t) . Function of response time curve

Backlog(J,Jpre(J),Jsyc(J)): Determines the backlog to the job (J) as defined in Equation (3.5)and
Equation (3.6) or their generalized version from Equations (3.10)-(3.12), and depending on the sets
Jsyc(J), Jpre(J), Jprm(J). It uses PRISM model checker to find the backlog from Jpre(J).
Delta_Pre(J,J[k,Jprm(J)]) : Calculates the exponential rate for execution after preemption. It uses
PRISM model checker to calculate the remaining execution of J using its model.
Update((X ,Q,k)): Update the CTMCh matrix by adding the new state and the corresponding rates at
the appropriate positions.
P(job,state, time): Uses PRISM Model checker to verify Pr(job,state, time); it returns the probability
of job being in state state at time instance or time interval time.

The code that implements the algorithm and the whole approach for CTMCh modeling and probabilistic
schedulability analysis is available at https://gitlab.com/MAUVE/RTStoc. Is has been implemented
in Python and includes the interface to PRISM model checker.

3.6 Experimental Results

This section presents some numerical results for the method presented in this paper. A real-time case
study composed of 4 test cases is investigated . For each test case, our method is applied to model all
the jobs in the test case hyperperiod and perform probabilistic schedulability analysis. The 4 test cases
are used to explain different benefits from CTMCh applied to pRTSs.

3.6.1 Test Case 1

The first test case is a relatively simple real-time task set. It is Γ1 that we apply to explain the overall
process. It composes of three tasks Γ1 = {τ1,τ2,τ3}; τ1 with pWCET C1 = EXP(5) and implicit
deadline D1 = 2; τ2 with pWCET C2 = EXP(6) and implicit deadline D2 = 3; τ3 with pWCET
C3 = EXP(7) and implicit deadline D2 = 6. The hyperperiod is equal to 6 time units, which is also the
scope of analysis. The task parameters are detailed in Table 3.1, and the times are expressed in time
units. Γ1 is scheduled on a uniprocessor machine using EDF, the jobs are suspended if they reach their

45

https://gitlab.com/MAUVE/RTStoc

deadline, and can get preempted by higher priority jobs. For all the jobs, the FoS applied is 0.5.

Table 3.1: Task set Γ1 parameters.

Ci Ti = Di Pr(DMi)

τ1 EXP(5) 2 1.28E-04
τ2 EXP(6) 3 3.34E-05
τ2 EXP(7) 6 4.98E-08

The ordered set of jobs, from the highest priority to lowest priority, is {J1,J3,J2,J31,J22,J13}. In
case of priority ambiguities, the disambiguation mechanism applied bases on the job arrivals: first
arrived are higher priority. The construction of CTMCh models is performed sequentially following
that order, beginning from J1.

2

J12

J21

J11

0

40 6

6

63

0

J31

J13

J22

Figure 3.7: EDF scheduling

J11

3.59

6.14

2.85E-05 4.99

3.44

synchronous

4.6

4.48

∆

J21 J12

J13 J22 J31

P0 F

P1

5
P0 F

P0 F P0 F
P0 F

convolution

synchronous

convolution

P0 F

∆∆

Figure 3.8: CTMCh job models

The job schedule is represented in Figure 3.7, with task executions as ICDF. The CTMCh model
for each job is shown in Figure 3.8 as well as the models interconnections. In the following we detail
interesting cases.

46

First job (highest priority): J1 has the highest priority and cannot get preempted. Its CTMCh model
is such that X1 = {P0,F}, with P0 representing execution and F representing end of execution. J1

Q-matrix is Q1 = {−λ f 0,λ f 0;0,1}, with the rate of state transitions given by the job pWCET, since it
not preempted nor pushed by any job. λ f 0 = 5 =⇒ Q1 = {−5,5;0,1}.

Job with higher priority synchronous job, Case2: For J3, J1 is the job that precedes it and from
which the backlog has to be computed. The rate of transition λ∗f 0, which is the pWCET for J3 modified to
include the delay caused by J1, given by Equation (3.6) as: λ∗f 0 =−1

3 ln(1−
∫ 3

0 5e−5x⊗6e−6xdx) = 3.59.
For J3 it is X1 = {P0,F} and Q3 = {−λ∗f 0,λ

∗
f 0;0,1}= {−3.59,3.59;0,1}.

Job preempted, Case3: To model J31, we have to take into account for the backlog from the higher
priority synchronously released jobs J1 and J3, and the preempting job J2.

The pWCET of J31 that take into account the backlog from J1 and J3 is 6.14, computed like in
Equation (3.6). Initially, the CTMCh for J31 it is X31 = {P0,F} and Q31 = {−6.14,6.14;0,1}.

As there is the preemption from J2, a state P1 is needed to model that and to append to the CTMCh model.
As a result, it is X31 = {P0,P1,F}. Using ’Preemption’, the probability Pr(J31,P0,2) is calculated; it is
the probability that job is executing at the time of preemption. Pr(J31,P0,2) = 4.38E−06 and using
Equation (3.1) and (3.2): λ f 0 = 6.14;λp0 = 2.85E−05. Using Equation (3.14) it is λ f 1 = 4.99.

The complete CTMCh model for J31 is X31 = {P0,P1,F} and Q31 = {−6.14,2.85E−05,6.14;
0,−4.99,4.99;0,0,1}.

Job with preceding job, Case1:

J22 it the job which gets postponed by J31, job J31 is the previous job in the sequence of decreasing
priority jobs. Thus J22 has a backlog from J31 in the time region [3,6], [0,3] relative to the job
arrival a22. The initial set of states is X22 = {P0,F}; the rate of transition λ∗f 0, which represents
the pWCET for that job by including the delay caused by J13, is computed using Equation (3.10):
λ∗f 0 =−1

3 ln(1− (1−∆
J31
[3,6])

∫ 3
0 6e−6xdx) = 3.44, where ∆

J31
[3,6] = 7.31E−08 is the amount of backlog.

Therefore, the Q-matrix is given as Q22 = {−λ f 0,λ f 0;0,1}= {−3.44,3.44;0,1}, since λ f 0 = λ∗f 0.

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

EXP(6)

EXP(3.59)

J21
sync

(a) J3: syn-
chronous jobs -
Case2

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

EXP(6)

EXP(3.44)

J22
delta

(b) J22: preceding
job - Case1

(c) J31: execution be-
fore preemption

(d) J31: execution af-
ter preemption

Figure 3.9: Job executions of Γ1 before and after execution interference.

Figure 3.9 illustrates the job executions before and after the effect of the interference: 3 repre-
sentative jobs of Γ1 are detailed. The job execution distributions before and after the interference are

47

compared to describe the effect of the interference. All the executions are represented with exponential
upper bounds.

In case of Figure 3.9a, the interference to J3 comes from a synchronous job; the computed λ account
for such backlog slowing down the job execution (larger probabilities at the deadline). In Figure 3.9b,
it is illustrated the case of a preceding job; J22 is delayed by J31. Figure 3.9c and Figure 3.9d illustrate
J31 execution; in particular, it is the execution before being preempted by J2 with the backlog received
from J1 and J3 Figure 3.9c. Figure 3.9d instead, presents the execution after preemption including the
preemption postponement with respect to the remaining execution at preemption time.

3.6.2 Comparison and Computation

Comparison test case. A task set Γ2 is shown in Table 3.2 and scheduled using FP scheduling policy.

Task Ci Ti = Di Pr(DMi) Oris-tool Pr(DMi) CTMCh model

τ1 EXP(19) 1 8.34E-14 3.71E-08
τ2 EXP(20) 1 6.66E-13 3.73E-08
τ3 EXP(20) 3 0.0 4.73E-08

Table 3.2: Parameters for task set Γ2 and task probability of deadline miss.

Γ2 is modelled and analyzed using sPN by [Buc+10] as well as using our approach. For CTMCh and
all the jobs, the FoS used is 0.5. Table 3.2 shows the probability of deadline miss as obtained from the
two approaches, Oris-tool3 for sPN and CTMCh model for our approach.

The Oris-tool provides exact result in terms of probability of deadline miss. Compared to it, the
CTMCh modeling is more pessimistic due to exponential upper bounding. On the other hand, our
approach has low complexity and thus can analyze larger task sets with much lower exponential rates.

To observe that the pessimism of the results from our tool depends also on the limit of the floating
point computation of PRISM. Without that, we could have achieve better probability of deadline
miss. To verify that, we have computed the probability of deadline miss as one minus the probability
of executing at the deadline. The results are Pr(DM1) = 5.61E− 09, Pr(DM2) = 1.057E− 06 and
Pr(DM3) = 1.23E−35, unexpectedly different from those of Table 3.2 for CTMCh modelling. This
confirms the floating point limits of PRISM in computing the probability of deadline miss.

Computation time test case. Here we present 3 cases to illustrate the computational complexity of
our approach. They relate to different types of backlog that can exist in a task set. All the times are in
time instants.

First, ΓA
3 is a set of n jobs, such that J1 arrives at time 0 with deadline 2, J2 arrives at time 1 with

deadline 3, and Jn arrives at time n with deadline n+1, see Table 3.3. Except for the first job, each
job is delayed by the previous job in the relative interval [1,2]. Such a set is scheduled under FP, with
J1 the highest priority and Jn the lowest. In Figure 3.10a, the computation time of the task backlog
(Case1) is plotted against n, showing a linear trend.

3The Oris-tool is developed by the University of Florence for the analysis of timed and stochastic Petri nets, http:

48

http://www.oris-tool.org/
http://www.oris-tool.org/
http://www.oris-tool.org/

ΓA
3 - Job Ai Ti = Di

J1 0 2
J2 1 3
.
Jn n n+1

ΓB
3 - Job Ai Ti = Di

J1 0 1
J2 0 1
.
Jn 0 1

ΓC
3 - Task Ai Ti = Di

τ1 0 1
τ2 0 n

Table 3.3: Task sets ΓA
3 , ΓB

3 , and ΓC
3 to test computation time.

Second, ΓB
3 is the task set. It is a set of n jobs such that all the jobs arrive at 0 and have deadline

equal to time 1. Except the first job, each job is delayed by the previously released synchronous jobs,
Table 3.3. ΓB

3 is scheduled using FP with J1 the highest priority and Jn the lowest. In Figure 3.10b, the
computation time of this backlog (Case2) is plotted against n showing an exponential trend due to the
convolution.

Third, ΓC
3 is a set of tasks such that τ1 has period 1 and τ2 has period n, Table 3.3. ΓC

3 is scheduled using
FP with the n jobs of τ1 having all higher priority than τ2; τ2 is preempted n−1 times. In Figure 3.10c,
the computation time from preemption (Case3) is plotted against n, showing a linear trend.

0 5 10 15 20 25 30 35
0

50

100

150

200

250

C
om

p
u
ta

ti
on

 t
im

e

Number of jobs

(a) Computation time for the backlog from
previous job

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

C
om

p
u
ta

ti
on

 t
im

e

Number of jobs

(b) Computation time for the backlog from
synchronous jobs

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

180

200

C
om

p
u
ta

ti
on

 t
im

e

Number of jobs

(c) Computation time for the interference
from preempting jobs

Figure 3.10: Complexity of CTMCh approach with types of interference.

//www.oris-tool.org/.

49

http://www.oris-tool.org/
http://www.oris-tool.org/
http://www.oris-tool.org/
http://www.oris-tool.org/
http://www.oris-tool.org/
http://www.oris-tool.org/
http://www.oris-tool.org/
http://www.oris-tool.org/
http://www.oris-tool.org/
http://www.oris-tool.org/
http://www.oris-tool.org/

3.6.3 Realistic real-time task set

The fourth test case is a large task set Γ4 composed of five tasks which parameters are shown in
Table 3.4. For this task set, there are 36 jobs in the hyperperiod. Γ4 is analyzed using CTMCh for
both EDF and FP scheduling policies; the analysis for EDF takes 123.63 seconds; 147.77 seconds are
necessary for FP.

Table 3.4: Task set Γ4.

Task Ci Ti = Di Pr(DMi) EDF Pr(DMi) FP

τ1 EXP(7) 1 2.42E-02 9.12E-04
τ2 EXP(8) 1 2.42E-02 2.42E-02
τ3 EXP(5) 2 8.11E-03 8.84E-03
τ4 EXP(6) 3 2.32E-03 3.67E-03
τ5 EXP(6) 4 1.26E-03 1.27E-03

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Task 1
Task 2
Task 3
Task 4
Task 5

time

P
ro

b
ab

il
it

y

(a) FP: response time for all the tasks, computed
with constant FoS = 0.5

1 2 3 4 5 6 7 8 9 10 11 12
0

0.005

0.01

0.015

0.02

0.025

FoS=0.5

FoS=0.9

FoS=1/3

Job

P
ro

b
ab

il
it

y
 d

ea
d
li
n
e

m
is

s

(b) FP: probability of deadline miss for all the jobs
of τ1 for different FoS

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Task 1

Task 2

Task 3

Task 4

Task 5

P
ro

b
ab

il
it

y

time

(c) EDF: response time for all the tasks,
computed with constant FoS = 0.5

Figure 3.11: Probabilities of deadline misses for the tasks of the task set Γ4 with EDF and FP.

Figure 3.11a and 3.11c depict the task response times in the CDF form for FP and EDF, respectively.
Figure 3.11b and 3.12f depict the probability of deadline miss of all the jobs of τ1 for FP and EDF,
respectively. In there, we have plotted the probability of deadline miss with different FoS; the obvious
dependence on the FoS does not apply to all the jobs. In particular, under EDF there are jobs for which
the pessimism introduced by low FoS does not reflect into large probability of deadline miss. For FP,

50

1 2 3 4 5 6 7 8 9 10 11 12
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

EDF FP

Job

P
ro

b
ab

il
it

y
 d

ea
d
li
n
e

m
is

s

(a) Jobs of task τ1

1 2 3 4 5 6 7 8 9 10 11 12
0

0.005

0.01

0.015

0.02

0.025

EDF FP

Job

P
ro

b
a
b
il
it

y
 d

ea
d
li
n
e

m
is

s

(b) Jobs of task τ2

1 2 3 4 5 6
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

2
.2

9
E
-0

3

3
.8

8
E
-0

5

2
.2

0
E
-0

6

8
.1

3
E
-0

7

2
.2

9
E
-0

3

8
.8

9
E
-0

7

2
.4

1
E
-0

3

2
.4

1
E
-0

3

2
.4

1
E
-0

3

2
.4

1
E
-0

3

2
.4

1
E
-0

3

2
.4

1
E
-0

3

EDF FP

Job

P
ro

b
ab

il
it

y
 d

ea
d
li
n
e

m
is

s

(c) Jobs of task τ3

1 2 3 4
0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

2
.6

5
E
-0

4

2
.1

1
E
-0

6

2
.6

4
E
-0

4

8
.0

7
E
-0

7

3
.7

8
E
-0

4

2
.0

5
E
-0

6

3
.7

8
E
-0

4

2
.0

5
E
-0

6

EDF FP

Job

P
ro

b
a
b
il
it

y
 d

ea
d
li
n
e

m
is

s

(d) Jobs of task τ4

1 2 3
0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

3
.8

7
E
-0

5

7
.8

0
E
-0

7

7
.8

0
E
-0

7

3
.8

7
E
-0

5

7
.0

8
E
-0

7

5
.2

1
E
-0

7

EDF FP

Job

P
ro

b
ab

il
it

y
 d

ea
d
li
n
e

m
is

s

(e) Jobs of task τ5

1 2 3 4 5 6 7 8 9 10 11 12
0

0.005

0.01

0.015

0.02

0.025

FoS=0.5

FoS=0.9

FoS=1/3

Job

P
ro

b
ab

il
it

y
 d

ea
d
li
n
e

m
is

s

(f) EDF: probability of
deadline miss for all the
jobs of τ1 for different
FoS

1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1
.2

8
E
-0

2

1
.2

8
E
-0

2

2
.2

9
E
-0

3

2
.6

5
E
-0

4

3
.8

7
E
-0

5

9
.1

2
E
-0

4

1
.2

8
E
-0

2

2
.4

1
E
-0

3

3
.7

8
E
-0

4

3
.8

7
E
-0

5

EDF FP

Job

P
ro

b
ab

il
it
y
 d

ea
d
li
n
e

m
is

s

(g) All the tasks

Figure 3.12: Proabilities of deadline misses for the jobs given by the task set Γ4.

since τ1 has the highest priority, the jobs are not at all affected by FoS. Lower priority jobs shows
obvious pessimism by FoS, it still does not apply to all the jobs of a task.

Figure 3.11 compares the probability of deadline miss of all the jobs and tasks. FoS = 0.5 for
all the cases here. It is noticeable how the dominance of EDF in deterministic real-time systems
and deterministic WCETs, is not confirmed with pRTS and continuous pWCETs. There exist jobs
for which the probability of deadline miss is larger under EDF than under FP, in particular for τ1,
Figure 3.12a and Figure 3.12g. In deterministic case, EDF is proved to be better than FP in terms of
maximum possible utilization with maximum EDF utilization being 1 and that of FP being 0.693. In
the probabilistic case, this cannot be deemed a deciding factor while choosing a scheduling policy.

3.7 Perspectives

With this work, we used CTMCh for modelling and analyzing pRTSs with continuous pWCETs for task
execution. A CTMCh model for each job in the task set has been built and properties formally extracted
through model analysis. The models take into account the probabilistic behaviour of the jobs and
the probabilistic interference they subdue to. From all the models, a safe probabilistic schedulability
analysis has been developed for preemptive EDF and FP scheduling. It computes the probability
of deadline miss and probabilistic response time of the jobs and the tasks. The complexity and the
accuracy of this approach have been theoretically studied and evaluated with test cases.

pWCET is a probabilistic quantity which can be described through discrete or continuous dis-
tributions. pWCET described as continuous probabilistic distributions is a result of MBPTA timing
analysis [CG+12]. On the other hand discrete pWCET is a result of SPTA timing analysis. Whenever

51

using either of the distributions, careful observation should be made in order to use an appropriate
modelling method in order to ensure that no information is lost. This is explained as follows.

When many tasks execute, periodically or aperiodically, each task has an arrival time and a deadline.
Since each task is described with a pWCET distribution, in real-time, the pWCET starts at the time
of arrival and ends at the deadline. Thus, when task executions are scheduled such that they overlap
(like parallel releases), one task can probabilistically delay the execution of the other in a uniprocessor
machine. This information of probabilistic delay is contained in the pWCET. But due to arrival
times and deadline, the pWCET distributions overlap only partially. This phenomenon poses certain
challenges when pWCET distribution is continuous.

First, if we use continuous pWCET distributions they need mathematical representation. This can
be done as exponential, Pareto, Gaussian, etc. distributions. These continuous pWCET distributions are
defined in the interval [0,∞). In the real-time context, arrival times and deadlines impose a threshold to
these distributions which are less than infinity. Thus, there is a potential risk of loosing probabilistic
information in the distribution beyond the deadline. Second, the difference in arrival time implies a
shift when the pWCET distribution actually ‘begins’, By the term ‘begin’, we mean the time after
which the probabilistic affect of a pWCET on other tasks starts to come into play. This is what we
have called ‘backlog’ in this chapter. Now, classically the backlog is evaluated simply by convolving.
However, the convolution operation does not take into account this shift due to arrival times and the
deadlines. Therefore, using continuous distribution requires careful handling, and possibly pessimistic
approaches, to ensure that no information is lost during any operation.

We can argue that we should convert a continuous pWCET distribution to a discrete pWCET
distribution. This requires a deeper understanding. Mathematically, continuous and distributions
represent probability in a different manner. Probability for a single value of the random variable as
given by discrete probability can be non zero but it is always zero when extracted from continuous
distribution. In the real-time context, we must proceed as follows. The continuous pWCET distribution
must first be discretized for the values of execution times. For each value, the probability at the point
must be the area of the continuous distribution between itself and the discrete point before.

Through the above method of discretization, the probability in an interval of the continuous
distribution is placed at the upper value of the interval. This means, the worst case probability that the
task takes the execution time is given as the summation of the probabilities in the interval preceding
that. The value is worst case because the probabilities are added and placed at the discrete value on the
upper limit. This is shown in Figure 3.13. For a job J with deadline d given with a continuous pWCET
PDF fcontinuous, the discrete PDF fdiscrete is given as:

fdiscrete(x) =
∫ x

x−δ

fcontinuous(x);0≤ x≤ d

where δ is the discretization interval.

On the other hand, we do not have to consider the probability at each execution time when using
a continuous distribution. This is unlike the discrete case where the probability at each point is
given. Thus, instead of computing and convolving the matrices as in the discrete case, the continuous
distributions can be evaluated using the parameters of their mathematical representations. For example,

52

xx-δ

δ

x

pWCET continuous pWCET discrete

P
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y

Area under curve is
the discrete probability
at the upper limit

Figure 3.13: Continuous to Discrete pWCET

the continuous exponential distribution can be convolved by evaluating their rates λ while discrete
convolution is classical matrix multiplication. This way using continuous distributions have a potential
to reduce the complexity of the schedulability analysis.

At this point we would like to highlight a potential problem with a common approach towards
probabilistic modeling which uses Monte Carlo method. Monte Carlo method is based on making
random choices and feeding them to a system model and then measuring the output. When this method
is applied for real-time systems, it can lead to an unsafe analysis. The method is based on generating a
sequence of random inputs. Generally, this random sequence can come from a pseudo-random number
generator or a physical source of randomness. Through physical source of randomness, it is difficult to
ensure that all the possibilities of the system can be explored. On the other hand, a pseudo-random
number generator has a period. This implies, the random numbers sequence generation will repeat after
a certain point. Because of this, it cannot be guaranteed that all the possible scenarios of the system
will be explored even if if it is fed with numbers from pseudo-random number source infinitely. Thus,
Monte Carlo method cannot be deemed safe for probabilistic real-time system analysis as functionality
at the worst cases cannot be ensured.

We also observe the following, the pessimism involved in the analysis of the real-time system is
dependent on the schedule. The pessimism or the over-approximation of the associated probabilities
relies on the assumption that the tasks can take longer to finish execution even if the execution time is
less. This characteristic is exhibited in the case where jobs of different tasks are released asynchronously.
As mentioned earlier, the objective of the probabilistic approach is to quantify the pessimism involved
in the timing analysis of the tasks. In this chapter, we scheduled the tasks with pWCETs through an
existing scheduling methodology like EDF or FP. Then we proceeded to quantify the task response
times. To obtain the response times, we are forced to stick to the task execution order as given by the
scheduling algorithms. Thus, any pessimism that results from backlog estimation operations depends
on the schedule. Therefore, a more correct way of approaching the probabilistic modelling is to obtain a
schedule itself. This way, the probabilities can come into picture which can be subject to a minimization
or a maximization criteria. At the moment, the probabilities are only quantified. We will approach this
in the Chapter 6.

53

Here, we must also observe the obvious. The probability of an occurrence exists each time a trial is
made. In the real-time context, the probability of a task missing its deadline exists each time it executes.
The affect of this is that we lose predictability of the system. Each time the task executes, we only
know a probability of it missing its deadline. We are not prepared to act suitably and ensure safety
when the task actually does miss its deadline. This observation calls for a modelling method where the
probabilities are quantified as well as upper bounded. One step further, the method should be able to
cope with a task missing its deadline, howsoever improbable it may be. We will approach this in the
Chapter 5 and 6.

In the next chapter, we approach another method of quantifying pessimism in the real-time systems
which is through Mixed Criticality (MC). As we will see, the MC method contains tasks of various
criticality. The higher criticality tasks are defined with two WCETs, one lower than the other. The
higher WCET corresponds to the task taking more time to execute. The system is then managed
to accommodate a task taking more time. Later we will combine these approaches as well as the
observation to obtain a schedule instead of using the existing ones in order to fully utilize the potential
of MC ans probabilistic approaches.

54

CHAPTER 4

Discrete Time Markov Chain Mixed
Criticality Schedulability Analysis

We keep moving forward, opening new
doors, and doing new things, because we’re
curious and curiosity keeps leading us down
new paths.

Walt Disney

In this Chapter we move forward with a different solution towards reducing pessimism in the pRTS
which is through Mixed Criticality. We pose the following question.

Given a Mixed Criticality probabilistic real-time system with task executions described with pWCET,
what is the probability that the system enters high criticality mode?

At this point we change our direction from analysis of classical pRTS to a mixed criticality pRTS.
Let us recall that a mixed criticality real-time system is one which contains some tasks which are of
higher importance or criticality than the others. The high criticality tasks have two worst case execution
times, one for lower criticality mode and the other for higher criticality mode which is larger. If the task
is not finished by the lower criticality WCET, the mode switch is triggered and more time is allowed for
execution. The high criticality tasks must be ensured schedulable in the system high criticality mode.
The other lower criticality tasks are allowed to execute in the time between the two WCET values and
are dropped when that time is allowed to the higher criticality task. This way the most important tasks
are ensured execution and the remaining time is available for other tasks to use. This chapter dives
deeper into this idea.

We bring the notion of the task criticality to the job level by assigning each job its criticality. In the
two-criticality-level case, each job is designated as being of either higher criticality HI-criticality or
lower criticality LO-criticality. The HI-criticality mode is where the job executes in highly critical (and
more demanding) conditions – critical function or fault recovery; a LO-criticality mode is the nominal
working condition for the job where it executes in normal conditions. Having a higher criticality is
regarded as giving more execution time to the task.

We define the job criticality based on response time. The choice is application oriented as the
job entering high criticality happens at run-time. This is a direct result of the high criticality task
demanding more time to execute. Because the notion of criticality is at job level, we propose a method
to selectively drop lower criticality jobs whenever required.

55

We proceed as follows by appending mixed criticality notation . A HI-criticality job JHI is the tuple:

JHI de f
= (C ,a,d, p, l,χ). C , a, p and d are as defined earlier. χ is the job criticality level defined for a

job J [Bar+15] which can take two values at runtime: HI and LO; χ = {HI,LO}. l ≤ d describes the
threshold with which we define the job criticality mode.

A LO-criticality job JLO is the tuple: JLO de f
= (C ,a,d, p,χ). χ for a LO-criticality job can take only

one value, χ = {LO}.

For the jobs, the criticality level of its task is inherited. However, the actual criticality mode of the
jobs can change at runtime depending on their scheduling, in turn affecting the system criticality mode.

The real-time application is formed from these tasks which are partitioned between their HI-
criticality jobs and LO-criticality jobs. ΓHI = {JHI} is the set of high criticality jobs with nHI number of
HI-criticality jobs; ΓLO = {JLO} is the set of LO-criticality jobs with nLO the number of LO-criticality
jobs; Γ = ΓHI ∪ΓLO and n is the total number of jobs in the hyperperiod, n = nHI +nLO. With tasks, it
is mHI the number of HI-criticality tasks, and mLO the number of LO-criticality tasks; mHI +mLO = m.

Let us recall that Markov Chain is a set of states and transitions with the Markov Property. Discrete
Time Markov Chain is one in which the transitions are labelled with the probability of being chosen
such that the sum of all outgoing probability from a state is one.

Dans ce chapitre, nous allons de l’avant avec une solution différente pour réduire le pessimisme
dans le pRTS, qui passe par la criticité mixté. Nous posons la question suivante.

Étant donné un système temps réel probabiliste à criticité mixté avec des exécutions de tâches
décrites avec pWCET, quelle est la probabilité que le système passe en mode de criticité élevée?

À ce stade, nous changeons notre direction de l’analyse de pRTS classique à un pRTS à criticité
mixté. Rappelons qu’un système en temps réel à criticité mixté est un système qui contient des
tâches plus importantes ou plus critiques que les autres. Les tâches à criticité élevée ont deux temps
d’exécution dans le pire cas, l’un pour le mode de criticité inférieure et l’autre pour le mode de criticité
plus élevée qui est plus grand. Si la tâche n’est pas terminée par le WCET de moindre criticité, le
changement de mode est déclenché et plus de temps est accordé pour l’exécution. Les tâches à haute
criticité doivent être assurées dans le mode de haute criticité du système. Les autres tâches de moindre
criticité sont autorisées à s’exécuter dans l’intervalle de temps entre les deux valeurs WCET et sont
supprimées lorsque ce délai est autorisé à la tâche de criticité plus élevée. De cette façon, l’exécution
des tâches les plus importantes est assurée et le temps restant est disponible pour d’autres tâches. Ce
chapitre approfondit cette idée.

Nous apportons la notion de criticité des tâches au niveau du job en attribuant à chaque job sa
criticité. Dans le cas de deux niveaux de criticité, chaque job est désigné comme étant d’une criticité
plus élevée HI-criticité ou d’une criticité inférieure LO-criticité. Le mode HI-criticité est l’endroit où
le job s’exécute dans des conditions très critiques (et plus exigeantes) - fonction critique ou reprise
après incident; un mode de criticité LO est la condition de job nominale pour le job où il s’exécute

56

dans des conditions normales. Une criticité plus élevée est considérée comme donnant plus de temps
d’exécution à la tâche.

Nous définissons la criticité du job en fonction du temps de réponse. Le choix est orienté vers
l’application, car le job entrant dans une zone de forte criticité se produit au moment de l’exécution.
Ceci est le résultat direct de la tâche de haute criticité exigeant plus de temps pour s’exécuter. Parce
que la notion de criticité se situe au niveau du job, nous proposons une méthode pour supprimer
sélectivement les jobs de moindre criticité chaque fois que cela est nécessaire.

Nous procédons comme suit en ajoutant une notation de criticité mixté. Un job de HI-criticité JHI

est le tuple: JHI de f
= (C ,a,d, p, l,χ). C , a, p et d sont tels que définis précédemment. χ est le niveau de

criticité du job défini pour un job J [Bar+15] qui peut prendre deux valeurs au moment de l’exécution:
HI et LO; χ = {HI,LO}. l ≤ d décrit le seuil avec lequel nous définissons le mode de criticité du job.

Un job de lo-criticité JLO est le tuple: JLO de f
= (C ,a,d, p,χ) . χ pour un job de lo-criticité ne peut

prendre qu’une seule valeur, χ = {LO}.

Pour les emplois, le niveau de criticité de sa tâche est hérité. Cependant, le mode de criticité réel
des travaux peut changer au moment de l’exécution en fonction de leur planification, affectant à son
tour le mode de criticité du système.

4.1 Mixed Criticality System

The MC definitions and modelling we propose, is slightly different than the classical ones with multiple
WCET thresholds [Ves07]; [GSY15]. With the MC modeling via pWCRT, it is possible to distinguish
the job behaviour at runtime, which, otherwise impossible to do with pWCETs and WCET thresholds.
This allows to relate the system criticality to the actual job execution which includes the job waiting
time due to preemptions and postponements. Nonetheless, the MC analysis we propose is general
enough to apply to WCET thresholds also. Note that in the latter case, every job of the same task would
have the same criticality mode.

Criticality threshold: We define the job criticality mode using a threshold l ≤ d which applies to the
job pWCRT. As shown in Figure 4.1a with HI and LO criticality regions, if the job finishing time is
in [l,∞), the job is considered to execute in high criticality mode, otherwise the job executes in low
criticality mode, [0, l).

The probability PHI that a job J executes in the high criticality mode is:

PHI de f
=

∫
∞

l
fR T (x)dx. (4.1)

If the pWCRT is discrete as shown in Figure 4.1b with WCET as the maximum possible execution

time, PHI de f
= ∑

WCET
x≥l fR T (x).

57

time

Probability

l0

HCLC

1

(a)
time

Probability

l0

HC
LC

1

(b)

Figure 4.1: pWCRT of job J in its ICDF in (a) continuous and (b) discrete form . High and low
criticality regions are separated by l. Low and High criticality zones denoted as LO and HI.

Classically, the definition of system criticality is such that: the system enters high criticality mode
whenever at least one of the HI-criticality job enters high criticality mode [Bar+15]. The schedule of
the high criticality jobs in the system high criticality mode is ensured. We propose the following more
generic and flexible definition of system criticality. Given total of nHI number of HI-criticality jobs:

Definition 6 ((k,n) System criticality). The system criticality level χ is high (HI) if at least kHI out of
nHI HI-criticality jobs enter high criticality mode.

nHI ≤ n where n is the total number of jobs in the hyperperiod. Using the above definition for
system criticality allows the flexibility to choose the value of kHI depending on the system. This also
implies that a kHI greater than 1 is less pessimistic than the classical definition of system criticality.
Because of the nature of the pRTSs, the event of the system entering high criticality mode is not
deterministically known anymore: there exists a probability of the system entering the high criticality
mode. This is why we need to use reliable probabilistic analysis tools to analyze such a system.

4.2 Discrete Time Markov Chain model

We assume that a task set is given, it is scheduled using EDF scheduling policy, and the pWCRT for
each job in the hyperperiod is known. The system criticality modes are modelled as a Discrete Time
Markov Chain (DTMCh). The choice of DTMCh makes it possible to simply arrange the readily
available probabilities from the schedulability analysis. System depiction as states replicates the
switching the real-time system between high the low criticality modes. The transitions between those
states can be labelled with the probability of it being chosen. Moreover, DTMCh allows modelling
of a probabilistically distributed system subject to its mathematical foundation. This is unlike a
sequential system, like Petri net or automata, where discrete actions form a complex explorable tree.
DTMCh is subject to formal model checking in which path properties or the probability of reaching
certain states can be formally checked. As we will see, this is useful to know the probability of a
path taken by the system. A DTMCh M is defined as a set of states S and state transitions given by
a Q-matrix Q, M = (S,Q) [Put94]. In the following, we give the basics to build DTMCh for mode
changes in MC pRTSs and the probabilistic properties which are formally verified with PRISM Model
Checker [KNP11]. It should be noted that property verification for a probabilistic system returns a
probability of that property being true.

The DTMCh model is given as M = (S,Q). To build M it is required to consider only the HI-

58

criticality jobs in this DTMCh. It is because only HI-criticality jobs contribute to decide the system
criticality. The contribution of the LO-criticality jobs is included in the pWCRTs of the HI-criticality
jobs. For each job JHI ∈ ΓHI, the set of states S = {JHI,HC,LC} is defined. State HC represents
execution of JHI in high criticality mode ([l,∞)) and state LC represents execution of JHI in low
criticality mode ([0, l)). The state JHI is simply a passing state used for the ease of modeling and
representation; it has no contribution to the analysis. The set of states S for the whole system is

defined as the union of the sets S for all the jobs J which are HI-criticality jobs: S
de f
= (

⋃
S) : ∀J ∈ ΓHI.

S is ordered in the increasing priorities of the jobs that it contains, for the ease of formalization
and presentation. Any other ordering would be possible, since the DTMCh does not represent the
scheduling but only the criticality configurations.

The set of states and transitions in M is shown in Figure 4.2 for an example task set Γ. There are
unidirectional transitions JHI−> HC, JHI−> LC, HC−> J′HI, LC−> J′HI; such that p′ > p and the
priority difference |p− p′| is minimum, J′,J ∈ ΓHI. The initial state of the DTMCh is a job executing
state J such that p is minimum amongst all J ∈ ΓHI.

The state transitions are labelled such that the sum of the probabilities of all the outgoing transitions
is equal to one. Each transition emanating from a state J to HC is labelled with the probability PHI

from Equation (4.1). This implies, each transition emanating from a state J to LC is labelled with the
probability 1−PHI. The transition matrix Q defined as:

J1 HC1 LC1 . . . JnHI HCnHI LCnHI
J1 0 P1 1−P1 . . . 0 0 0

HC1 0 0 0 . . . 0 0 0
LC1 0 0 0 . . . 0 0 0
J2 0 0 0 . . . 0 0 0

HC2 0 0 0 . . . 1 0 0
LC2 0 0 0 . . . 1 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

JnHI 0 0 0 . . . 0 PnHI 1−PnHI
HCnHI 0 0 0 . . . 0 0 0
LCnHI 0 0 0 . . . 0 0 0


(4.2)

To refer to an element of the matrix, Q(Stater,Statec) gives the probability of transition from a state
Stater in the row to a state Statec in the column, e.g. probability of transition from J1 to HC1 is referred
as Q(J1,HC1), equal to P1.

HC1 HC2 HCn

LCnLC2LC1

S1 S2 Sn

p1

1-p1

J1
1

1

p2

1-p2

1

1
J2

pn

1-pn

Jn

HI
HI

HI

HI

HI
HI

Figure 4.2: System DTMCh model M, assuming J1,J2, . . . ,JnHI ∈ ΓHI and such that p1 ≤ p2 ≤ . . .≤
pnHI .

As we see, the DTMCh models construction is quite straightforward without involving any math-

59

ematical operations like convolution or upper-bounding of any kind. It is simply arranging the
probabilities obtained from the schedulability analysis into formally verifiable DTMCh structure. Thus,
the safety of this construction comes the safety of the given schedulability analysis used to obtain the
pWCRTs.

4.3 Analysis

The DTMCh model M = (S,Q) is exploited here to extract probability of system entering high
criticality.

4.3.1 Criticality analysis

With DTMCh M = (S,Q) Matrix (4.2), we define the meaning of system criticality from the criticality
levels of the jobs. Then, we quantify the probability of the system criticality by exploring M with
formal model checking. The definition of system criticality level translates into paths within the
DTMCh taken by the system through certain states. Each path has a probability of being taken at
runtime. This is a possibility for the system entering the high criticality mode.

A path in M represents the trace of the jobs taking high or low criticality modes at runtime.

Definition 7. A path D is an ordered set of states D
de f
= [State1,State2, ...StatenHI], such that

Q(Statek,Statek+1)> 0 i.e. there exists a transition between two consecutive states.

The probability of occurrence of the path D is Pr(D), and it is computed by performing model
checking on DTMCh using the property: ‘the maximum probability that the next state is State1 AND
the next to next state is State2 AND the next to next to next...’. This property is formally written as:

Pmax =?[X state = State1 & XXX state = State2 &XXXXX state = State3 . . .]

It should be noted that for each state, the next (X) is considered one from the initial state. Doing so
defines a model checking property which navigates through the states. This is done in accordance with
the model checker that we use.

For M, there are 2nHI
possible paths which start from the initial state. Examples of a path from the

model in Figure fig:DTMC1 are: D1 = [J1,HC1,J2,LC2 . . . ,LCnHI],
D2 = [J1,LC1,J2,HC2, . . . ,HCnHI].

(k,n) system criticality: Here, we recall the Definition 6 that system is said to be in high criticality
mode if at least kHI out of nHI jobs enter high criticality mode. The system enters high criticality mode
in paths in which there is more than or equal to kHI high criticality states HC. Such paths are denoted
by the superscript kn.

The q-th path Dkn
q has a probability of occurrence Pr(Dkn

q). There are qk paths which pass through
a minimum of kHI high criticality state. The exact value of qk follows the mathematics of partitioning of

60

C Ti = Di χi

τ1 EXP(12) 3 {HI, LO}
τ2 EXP(13) 5 {HI, LO}
τ3 EXP(15) 6 LO

τ4 EXP(18) 10 LO

τ5 EXP(15) 10 LO

τ6 EXP(16) 15 LO

Table 4.1: Task set Γ parameters with pWCET as exponential distribution given with the rate parameter.

numbers, which is left for future discussions. Now, using Definition 6 system enters the critical region
if, Dkn

1 occurred OR Dkn
2 occurred OR . . . Dkn

qk
occurred. Thus, the probability Pkn that the system enters

high criticality region is:

Pkn de f
= Pr(Dkn

1)+ . . .+Pr(Dkn
qk
) =

qk

∑
q=0

Pr(Dkn
q). (4.3)

As special cases, (1,n) and (n,n) system criticality are the two extremes of the (k,n) definition. (1,n)
is to say that the system is in high criticality mode if at least one HI-criticality job is in high criticality

mode: P1n de f
= Pr(D1n

1)+ . . .+Pr(D1n
2n−1) = ∑

2n−1
q=1 Pr(D1n

q).

Where Dnn
1 is the path taken through all the high criticality states.

Example 1. For this and the next section, we assume a task set Γ as shown in Table 4.1. All the timing
parameters are in unit time and the C are exponential distributions with rate RAT E, represented as
EXP(RAT E). Γ is composed of 6 tasks with a total of 31 jobs. Tasks τ1 and τ2 are HI-criticality tasks,
and tasks τ3, τ4, τ5 and τ6 are LO-criticality tasks. The threshold l = 0.7D. Γ is scheduled using
preemptive EDF, the jobs are aborted at the deadline. The hyperperiod of this task set is 30 time units;
in it, there are a total of 16 HI-criticality jobs and 13 LO-criticality jobs executing. The task set Γ from
Example 1 is applied to this methodology for different kHI.

1E63
1E56
1E49
1E42
1E35
1E28
1E21

1E14
1E07

1E0
Probability

k

0 42 6 8 10 12 14 16

Figure 4.3: Pkn from (k,n) system criticality.

Figure 4.4 shows the value of Pkn computed with Equation (4.3) as the value of k changes from the
(k,n) system criticality definition Definition 6 . The probability that system enters HI-mode: using (1,n)

61

is 6.45E−03 and using (n,n) is 2.70E−62.

4.3.2 Deadline Miss Analysis

This section focuses on the deadline miss probability of HI-criticality jobs. The deadline miss probability
of a job J should be less than or equal to a given probability Pdm,max. Here Pdm,max is assumed to be
given and is the requirement to meet in order to guarantee the probabilistic schedulability. Here, the
focus is on the job to reduce its probability of deadline miss.

Usually, MC scheduling directs that when the system is in high criticality mode, all the LO-criticality
jobs are dropped to ensure the timing requirements of the remaining HI-criticality jobs. Instead, the
scheduling algorithms we propose acts by selectively dropping LO-criticality jobs whenever the deadline
miss probability constraint is not met. It is conceived to minimize the number of LO-criticality jobs
to drop allowing some of the LO-criticality jobs executing with HI-criticality jobs. This way, the
computational resources are better used and the scheduling of HI-criticality tasks is not jeopardized.
We present one such offline method below.

Job strategy: The job strategy is the scheduling algorithm we propose to reduce the probability
of deadline miss of a HI-criticality job without dropping all the LO-criticality jobs in the system.
Classically, all the LO-criticality jobs are dropped in the high criticality mode. A choice to drop a
single job in the ordered list of jobs requires complete re-evaluation of the whole system to prove
optimality. This is because the response time depends on the execution of the previously executed jobs.
The strategy to choose needs to ensure the optimality as well as the safety of the resulting schedule.
Dropping a single job will lead to an analysis of all possible execution sequences of the rest of the
jobs to find an optimal one. The complexity of doing so for every job to prove optimality and safety is
O(nn), where there are n jobs in the hyperperiod. Such complexity does not include the complexity of
the probabilistic schedulability analysis applied; it is only for exploring all the jobs. What we present
here is not an optimal strategy to maximize the deadline miss probability reduction per job dropped.
However, it is better than classical MC scheduling strategies in which all the LO-criticality jobs are
dropped whenever the system enters high criticality mode.

Interference isolation: The set of LO-criticality jobs Jover(JHI) which overlap to the execution of a
job JHI is:

Jover(JHI)
de f
= {J′ : p′ < p,d′ > a};J′ ∈ Γ

LO. (4.4)

The jobs in this set directly impose a probabilistic delay/backlog in the execution of JHI, as depicted in
the Figure 4.4 by LO-criticality jobs J′, J′′ and J′′′. All the jobs in Jover(JHI) impose an indirect backlog
to JHI. A certain amount of job backlog is passed in their order of priority and thus indirectly to the job
JHI. The term ‘interference isolation’ refers to the separation of JHI from the indirect backlog.

Lemma 2 (Backlog isolation). The backlog for a HI-criticality job JHI reduces by the maximum amount
if all the LO-criticality jobs in Jover(JHI) from Equation (4.4) are dropped, given that the jobs are
suspended at their respective deadlines.

62

J'''

}

J''

J'

J
a time

deadline
backlog

arrival
Dropped jobs

HI

Figure 4.4: The backlog to the HI-criticality job JHI reduces to zero by dropping LO-criticality jobs J′

and J′′.

Proof. With continuous distributions defined in [0,∞), a job imparts a probabilistic backlog after
executing to next jobs until its deadline. Since the jobs are suspended at deadline, the jobs with
deadline before the arrival time of JHI will not impart any direct backlog. For the job JHI, to ensure a
maximum reduction in deadline miss probability, all the jobs which impart backlog must be dropped
from execution. All such jobs are contained in the set Jover(JHI). It is the best possible effort to reduce
the probabilistic backlog to JHI. Thus, the backlog to JHI from all the preceding jobs is minimized,
once all the jobs in Jover(JHI) are dropped.

The job-level scheduling strategy we propose reduces the probability of deadline miss of a HI-
criticality job by dropping all the LO-criticality jobs in Jover(JHI). Lemma 2 proves that dropping all
those jobs ensures the maximum possible deadline miss probability reduction for JHI. Thus, the strategy
is:

• Identifying Jover(JHI);

• Dropping all the jobs in Jover(JHI).

Referring to the Figure 4.4, the backlog to the HI-criticality job JHI minimizes by dropping jobs
J′ and J′′: there is no effect from the job J′′′ to the job JHI because J′′′ suspends at the deadline. The
HI-criticality job in observation still retains its own execution after dropping the jobs J′′ and J′ of the
set Jover(JHI), that is after removing maximum interferences. The Pdm obtained once dropping all the
jobs in Jover(JHI), is the best (minimum) deadline miss probability we can achieve for JHI. If it is
not enough to meet the constraint Pdm,max, Pdm is still larger than Pdm,max, the problem for this job is
unsolvable.

Example 2. The task set Γ from Example 1 is analyzed. Figure 4.5 shows the probability of deadline
miss Pdm for HI-criticality jobs J26, J14 and J24 when no LO-criticality job is dropped as { /0}. Their
corresponding set Jover(JHI) is shown and the jobs in it are dropped. The reduced value Pdm for each
job is also shown. We use the CTMCh model to obtain the probability of deadline miss of the jobs from
Chapter 3.

63

1.00E+01

1.00E -01

1.00E -03

1.00E -05

1.00E -07

1.00E -09

1.00E -11

P
r
o
b
a
b
il
it

y
{∅} {∅} {∅}

J26 J14 J24

J () J () J ()

{J62,J35 ,J53

,J43}
{J41,J51,J32}{J33,J52,J42}

2.35E -04

8.04E -05 6.01E -05

1.09E -05
2.35E -07

4.99E -08

J26 J14 J24
over over over

Figure 4.5: Probability of deadline miss of the job J14 vs when the LO-criticality jobs dropped.

4.4 Perspectives

With this work, we have proficiently applied probabilistic formal methods (DTMCh) to model and
analyze MC pRTSs. The pWCRT is used to define the MC behaviour of the jobs with a threshold
parameter (l) to distinguish between low criticality mode and high criticality mode for HI-criticality
jobs. The DTMCh representations of the runtime behaviour are studied to quantify the probability
of the system entering HI-criticality mode. DTMCh is also used to obtain deadline miss probability
of HI-criticality jobs, and it can be easily extended to tasks in the future works. We have proposed
method to selectively drop LO-criticality jobs in order to achieve the required maximum probability
of deadline miss. This study does not yet focus on the scalability. They are enhancements to existing
MC schedulability that allow for a better use of the computational resource by reducing the number of
dropped LO-criticality jobs.

Here again we observe that we have same hurdles as in Chapter 3. We see that the probabilities
that arise in the system are from the pWCET. Since pWCET does not depend on the schedule of the
tasks, nor do the probabilities that are computed from them. Therefore, the probability can only be
quantified and not be used to make scheduling decisions. For the same reason, the schedule does not
affect the probability of the system entering high criticality. The schedule only affects the response
time of the tasks and not the pWCETs. So, we need to be free of the classical scheduling methods and
obtain a schedule that fits our global object of quantifying and minimizing the pessimism.

At the same time, the probabilities that are quantified exist each time there is a trial. That is, each
time the system is executed, the probability that it can enter high criticality mode exists. While this
information gives us a global picture of the system, it is not sufficient to deduce the correct action when
the system does enter high criticality mode. In order to do so, we need to obtain a system model which
is more granular in representation of job executions. That is, the model should be able to represent the
job executions at any given time and be able to foresee the appropriate actions whenever a job enters
higher criticality.

Therefore, we need an approach which uses the MC as well as the probabilistic approaches. We
need a model which is able to do both, quantify the probabilities as the global property of the system;
and upper bound these probabilities to be prepared whenever the system does enter high criticality, as
seen in the next chapter. In the later chapter, Chapter 6, we bring probability in the decision making
process.

64

CHAPTER 5

Graph Based Mixed Criticality
Schedulability Analysis: Execution Time

The true sign of intelligence is not
knowledge but imagination.

Albert Einstein

At this point in the thesis research, we imagine a new solution to solve the global issue of pessimism.
We approach MC and probabilistic models together. We do not adhere to classical scheduling algorithms.
At the same time, we do not adhere to certain existing MC norms. We formalize the problem as follows.

Given a Mixed Criticality probabilistic real-time system with task executions described with pWCET,
what is the optimal schedule when the system enters high criticality mode?

In this chapter we continue the notion of mixed criticality probabilistic real-time system. Earlier,
we performed schedulability analysis on existing scheduling algorithms, like EDF and FP. Now, we
approach the problem of finding the schedule itself in a MC pRTS.

As we saw in the earlier chapter, we can model probabilistically and obtain the probability of
something occurring within the system. However, we need a model which can provide a more precise
picture of those occurences. For example, the probability that a task enters higher criticality exists each
time the task is executed. When the task actually does enter high criticality, how should the scheduling
cope with that. Since scheduling is a sequence of jobs, using graphs provides a way to model such
sequences. From those graphs, necessary schedulability information is extracted.

In this chapter, we consider three criticality system as LO, MI and HI. The jobs belonging to those
criticalities are defined as follows. A HI-criticality job is:

J
de f
= ({(CLO,CMI,CHI),(P LO,P MI)},a,d,HI)

a MI-criticality job is:

J
de f
= ({(CLO,CMI),(P LO)},a,d,MI)

a LO-criticality job is:

J
de f
= ({(CLO)},a,d,LO)

where a is the job arrival time, d is its deadline, CLO, CMI and CHI are WCET values for the correspond-

65

ing criticality and P LO and P MI are the probabilities of the job exceeding LO and enter MI or exceeding
MI to enter HI criticality, respectively.

As the jobs execute, any job can take more time to finish execution and thus enter higher criticality
mode. This is only true for MI and HI criticality jobs. This calls for an analysis which is precise in
determining when this can happen. Moreover, the problem demands an optimality, at least in the
resource usage. The exact meaning of optimality will be presented in the next section. In any case,
global optimality can only be proven when all the possibilities are explored.

In this section, we propose a model of mixed-criticality system based on a graph structure. With
the graphs it is possible to represent a network of possible directions which can be taken by the system.
Then, through graphs we can perform explorations in a space of all possible schedules and aim at
optimality.

À ce stade de la recherche de thèse, nous imaginons une nouvelle solution pour résoudre le problème
globale de la these du pessimisme. Nous abordons ensemble les modèles MC et probabilistes. Nous
n’adhérons pas aux algorithmes de planification classiques. Dans le même temps, nous n’adhérons pas
à certaines normes MC existantes. Nous formalisons le problème comme suit.

Étant donné un système temps réel probabiliste à criticité mixte avec des exécutions de tâches
décrites avec pWCET, quel est l’ordonnance optimal lorsque le système passe en mode de criticité
élevée?

Dans ce chapitre, nous continuons la notion de système temps réel probabiliste à criticité mixte.
Plus tôt, nous avons effectué une analyse d’ordonnancabilité sur des algorithmes d’ordonnancement
existants, comme EDF et FP. Maintenant, nous abordons le problème de trouver le programme lui-même
dans un MC pRTS.

Comme nous l’avons vu dans le chapitre précédent, nous pouvons modéliser de manière probabiliste
et obtenir la probabilité que quelque chose se produise dans le système. Cependant, nous avons besoin
d’un modèle qui puisse fournir une image plus précise de ces événements. Par exemple, la probabilité
qu’une tâche entre dans une criticité plus élevée existe à chaque exécution de la tâche. Lorsque la tâche
atteint réellement une criticité élevée, comment la planification doit-elle y faire face. La planification
étant une séquence de travaux, l’utilisation de graphiques permet de modéliser ces séquences. À partir
de ces graphiques, les informations de programmation nécessaires sont extraites.

Dans ce chapitre, nous considérons trois systèmes de criticité comme LO, MI et HI. Les emplois
appartenant à ces criticités sont définis comme suit. Un job de HI-criticité est:

J
de f
= ({(CLO,CMI,CHI),(P LO,P MI)},a,d,HI)

un job de MI-criticité est:

J
de f
= ({(CLO,CMI),(P LO)},a,d,MI)

66

un job de LO-criticité est:

J
de f
= ({(CLO)},a,d,LO)

où a est l’heure d’arrivée du job, d est sa date limite, CLO, CMI et CHI sont des valeurs WCET pour
la criticité correspondante et P LO et P MI sont les probabilités que le job dépasse LO et saisisse MI ou
dépasse MI pour entrez HI criticité, respectivement.

Au fur et à mesure que les travaux s’exécutent, tout job peut prendre plus de temps pour terminer
l’exécution et ainsi entrer en mode de criticité plus élevée. Cela n’est vrai que pour les travaux de
criticité MI et HI. Cela nécessite une analyse précise pour déterminer quand cela peut se produire. De
plus, le problème demande une optimalité, au moins dans l’utilisation des ressources. La signification
exacte de l’optimalité sera présentée dans la section suivante. Dans tous les cas, l’optimalité globale ne
peut être prouvée que lorsque toutes les possibilités sont explorées.

Dans cette section, nous proposons un modèle de système à criticité mixté basé sur une structure de
graphe. Avec les graphiques, il est possible de représenter un réseau de directions possibles qui peuvent
être prises par le système. Ensuite, grâce à des graphiques, nous pouvons effectuer des explorations
dans un espace de tous les possibilites d’exécution des tâches et viser l’optimalité.

5.1 Graph and Tree Model

We describe the jobs of mixed-criticality probabilistic real-time system and their relations through a
directed graph. The graph represents the possible job schedules of the system in each hyperperiod. A
directed graph is defined as a tuple G = {V,E}, where V is a finite set of elements called nodes and E
is the finite set of ordered pairs of elements of V called arcs. After the definition of a graph, trees are
derived from the graph model which form a forest to be explored. This tree model will be exploited in
Section 5.3 to build the scheduling algorithm.

5.1.1 Graph structure and construction

The nodes of the graph represent the execution of the jobs in a hyperperiod; the arcs correspond to the
possible sequence relations of the jobs.

5.1.2 Nodes

In the graph, each node represents a job. We directly use the symbol J to represent the node. Nodes for
jobs belonging to LO, MI or HI criticalities are shown in Figure 5.1.

Definition 8 (Subgraph). For each node J ∈V , where V is the set of nodes in the graph G, a subgraph
of J is defined as follows:

• if J is HI-criticality, i.e. L = HI, the node J contains a subgraph with three nodes representing

67

J

J
P PLO

LO

J
MI J

HI

MI

(a) HI-criticality job.

J
PLO

LO

J
MI

J

(b) MI-
criticality
job.

J
LO

(c)
LO-
criticality
job.

J

J∈S
(d)
Early
job.

Figure 5.1: Graph nodes for jobs of various criticalities.

the job criticality modes: JLO, JMI, JHI;

• if J is MI-criticality, i.e. L = MI, the node J contains a subgraph with two nodes representing the
job criticality modes: JLO, JMI;

• if J is LO-criticality, i.e. L = LO, the node J does not contain a subgraph because this job does
not enter higher modes.

Figure 5.1 also shows these subgraph of the nodes for the jobs. Since the nodes with subgraphs
represent job criticalities, there are associated WCETs in each of the criticalities. It should be noted
that the probabilities labelled are for representation only. That is, the probability to enter HI criticality
node is cumulative and not conditional that the job was in MI node. This does not affect the schedule
as it only concerns with system probabilities. Since the nodes with subgraphs represent job criticality
modes, there are associated WCETs in each of the modes. We do not label them in the graph but we
refer to them later while computing the scheduling metrics.

The schedule of the jobs can begin with any job as the first job of a task. The jobs arriving at time
zero are defined in the following set.

Definition 9 (Early nodes set). The early nodes set S is a subset of the node set S⊆V such that a = 0
∀J ∈ S, i.e. the corresponding job is the first job of a task in the hyperperiod.

Graphically, we identify the early nodes in the set S with an extra arc entering the node which is
without the source node, as shown in Figure 5.1d. These arcs are not considered part of the E set.

5.1.2.1 Arcs

The arcs correspond to the possible sequence relations of the jobs. Each arc (J,J′) ∈ E represents a
possible ordering of jobs, in particular, the job J′ executes after the execution of the job J: (J,J′) ∈
E if a < d′; where d′ is the deadline of the job J′. It should be noted that, since the graph is directed,
(J,J′) is not the same as (J′,J). Also, no self loop exist, i.e. arcs do not connect to themselves
6 ∃(J,J) ∈ E.

As shown in Figure 5.1, the nodes of the subgraph are connected by labelled arcs representing the
possible transitions of the job criticality modes with the probability label P L. These transitions are

68

τ1

τ2

J1

J2 J3

J4

J5
CMICLO

CLO

Figure 5.2: Probabilistic job executions of jobs of task set Γ1 in a hyperperiod.

J1 J2 J3 J4 J5

Figure 5.3: Graph for task set Γ1.

represented as the dotted lines. These are taken because a job demands more execution time and thus
enters higher criticality. From scheduling point of view, the dotted transitions represent an uncertainty
in the system and do not represent a scheduling decision.

The arc (JL,JL′) exists if L < L′ and 6 ∃L′′ : L < L′′ < L′. It follows that two arcs exist in a
HI-criticality job subgraph, one arc exists in a MI-criticality job subgraph.

Definition 10 (Exiting arcs from a subgraph). A node J of a subgraph is connected to the subgraph of
a node J′ according to the following specification:

• An arc (JL,J′LO) exists if (J,J′) exists.

• No arc (JL,J′L
′
) exists if L′ = MI or L′ = HI.

These two specifications are put because in our model as a result of bringing notion of criticality
mode change to job level. A job always begins execution in LO-criticality mode and then moves to
higher criticalities. Therefore, the arcs from other jobs can only enter LO-criticality node because
the job always begins execution in LO-criticality. However, within the subgraph the arcs to higher
criticality nodes can only come from the lower criticality nodes of the same job. The arcs can exit from
any node implying the job can finish execution in any criticality mode. We illustrate this construction
with the following example.

Example 3. Let Γ1 be a task set of two tasks with five jobs with probabilistic executions and implicit
deadlines in the hyperperiod, as represented in Figure 5.2. Job J2 is a HI-criticality job and Job J4 is a
MI-criticality job. Thus, ΛHI = {J2}, ΛMI = {J4} and ΛLO = {J1,J3,J5}. Thier WCETs for entering
are labelled MI and HI criticality are C LO and C MI with C HI as the maximum WCET.

The graph for the jobs is built as shown in Figure 5.3. Each arc represents a possible ordering
between two jobs. For example, the arc (J1,J2) ∈ E(G) represents the possibility to execute J2 after
J1. Another example is the missing arc (J3,J2) 6∈ E(G): we can not execute J3 before executing J2,

69

J1

J2

J2

J2

MI

HI

LO
J3

J4

J4

MI

LO J5

P
LO

P
MI

P
LO

Figure 5.4: Graph with subgraphs for task set Γ1.

otherwise J2 would for sure miss the deadline. The early node set S(G) = {J1,J2} has been depicted
with arrows without source node. The arcs represent possible scheduler choices. In particular, the arcs
originating from a node shows the possible choices for the next job to execute. For example, a schedule
J1,J2,J3,J4,J5 is plausible, while J2,J3,J4,J1,J5 is not, because J4 6→ J1.

Considering the criticality levels of the jobs as L1 = L3 = L5 = LO, L2 = HI, L4 = MI, we build the
subgraph as shown in Figure 5.4. Inside each subgraph, the mode changes are depicted with dotted
arrows which are labelled with the probability. These mode changes represent an event happening at
run-time, that can not be forecast during the offline scheduling analysis.

5.1.3 Graph properties

The arcs in the graph between nodes represent the possible ordering of execution of the jobs. Arcs in
the subgraph represents uncertain transition to criticality modes of a job.

Any arc represents a possible sequence of events. Some properties of the graph are presented, in
order to make the graph model consistent with the mixed-criticality real-time definitions.

Property 1 (Job order of the same task conserving). For any job J and J′ of the same task, if J precedes
J′ in the job ordering, i.e. a < a′, then the arc (J′,J) shall not exist because J′ cannot start before its
predecessor. This is implicit in the definition of arcs.

Property 2 (No lower mode transitions). No job J can switch from a higher criticality L to a lower
criticality L′:

6 ∃(JL,JL′) ∈ E : L > L′

Property 3 (No LO to HI transitions). No job can directly switch from LO-criticality mode to HI-
criticality mode. Because CHI > CMI > CLO, a job begins execution in LO-criticality mode, then

70

Algorithm 1 Exploration forest building
1: procedure FORESTBUILDING(G)
2: for all Js ∈ S(G) do . For all jobs in early node set we build a tree
3: J← newNode()
4: label(Js)← Js
5: V ←{Js}
6: E←∅ EXPLTREEBUILDING(Js, Λ\{Js})
7: T ←{V,E}
8: F ← F ∪{T} . The new tree is added to the forest
9: procedure EXPLTREEBUILDING(Js, Λ̄)

10: Js← label(Js)
11: A← succ(Js)
12: A← A∩ Λ̄

13: for all J′ ∈ A do
14: J′← newNode()
15: label(J′)← J′

16: V ←V ∪{J′}
17: E← E ∪{J,J′}
18: EXPLTREEBUILDING(J′, Λ̄\{J′})

possibly switches to MI-criticality mode and then possibly switch to HI-criticality mode. In the graph, it
means that no arc of the form (JLO,JHI) exist. This is implicit in the definition of arcs in the subgraph:
The arc (JL,JL′) exists if L < L′′ and 6 ∃L′ : L < L′ < L′′.

5.2 Scheduling Tree

We need to explore all the possible combinations of sequences of the jobs in order to obtain a schedule
which is optimal in resource usage. To do so, the graph defined above is unfolded into trees which
are directed acyclic graphs. The trees represent all possible sequences of job execution; we call them
exploration trees. First, the complete construction process of the tree is presented; later, we will provide
a method to reduce the construction complexity.

Exploration Tree: The exploration tree T of a graph G with an early node J̄ ∈ S is defined as a
tree T = {V̄ , Ē}, where V̄ is the set of nodes of T and Ē is the set of arcs of T .

An example of the tree is shown in Figure 6.3. Each node of the tree is labelled with a job J. In
particular, since the tree is a rooted tree, its root is defined as the unique node with the label J̄. The
solid lines represent the scheduling decision in the tree. The dotted lines represent a job entering higher
criticality and they are not a part of scheduling as they represent uncertain events in the system.

The set of all exploration trees for different roots is called the exploration forest F . A leaf node J is
a node without successors, i.e. succ(J) = { /0}. In order to navigate the tree to obtain a schedule, we
define a path.

Definition 11 (Path). A path in the tree path(J,J′′′) is defined as a unique sequence of connected arcs
starting from the node J to a leaf node J′′′; path(J,J′′′) = {(J,J′),(J′,J′′), ...,(J′′,J′′′)} with (J,J′)∈ Ē)
for any job J, J′, J′′ with J′′′ a leaf node.

It should be noted that when we refer to the notation path(J,J′′′), we always refer to the unique

71

J1

J5

J5

J5

J5
J5

J2

J2

J2

J4
J4

J4
J4

J4

J3

J4

J4

J3

J3

MI

HI

MI

MI

MI

LO LO

LO

LO

LO

Figure 5.5: Exploration tree of task set Γ1.

path with job J and leaf node J′′′ unless otherwise specified. Two paths are the same if their elements
are the same. Also, a path can begin at any node but must end at a leaf node.

Remark 1 (Repeated Node). A node J′ does not exist in the tree T if it already exists between the root
J̄ and the desired point of addition.

J′ 6= succ(J) if ∃(J,J′) ∈ path(J̄,J′′′),J′′′ is a leaf node, J̄ ∈ S

The above remark is to prevent addition of same node in again in the tree. This is to prevent an
unrealistic scenario when same job is scheduled more than once.

Example 4. Using the example test case shown in Figure 5.2 and its graph in Figure 5.4, a portion of
the exploration tree is shown in Figure 5.5. The tree starts at a root node J1 because J1 arrives at time
0. The jobs that can be executed after J1 are J2,J3,J4,J5, and hence there are such arcs to those jobs.
This way the tree is built by adding possible jobs or jobs in higher criticalities from each node without
repetition.

5.2.1 Tree and Path properties

Each path represents a schedule in the hyperperiod which is composed of nodes with unique labels.
The paths which pass through the different criticality nodes of the same job are considered different.

72

For example, a path which passes through LO node of a job J is different from a path which pass
through LO followed by MI node of the same job J. This is done to distinguish the paths interpreted as
schedules in various criticality modes.

Jobs uniqueness in a path: In any path of a tree path(J,J′′′) = {(J,J′), (J′,J′′), ...,(J′′,J′′′)}, the set
of connected node (J,J′, ...,J′′′) has unique job nodes. The nodes do not repeat in the path from root
node to a leaf node. Thus, the same job is not scheduled twice. At the same time, the graph represents
all possible schedules from any job. Exploration tree is the unfolding of this graph to obtain a schedule.
Since the graph representation is complete and there are no node repetitions in the tree, all paths are
unique.

All schedules represented: The graph is a complete representation of all the precedence among the
tasks. The forest of trees is built using the graph which explores all the possible permutations of jobs.
Consequently, all the possible permutations of jobs (J,J′, ...,J′′′) are represented with at least one path.

5.2.2 Comments

As we see, the graphs and trees are a representation of all the possible combination of schedules in
the hyperperiod. We navigate the tree using the paths. In the next section, we use some metrics to
quantify those paths in order to obtain schedules in the hyperperiod. A path can begin from any job
node and because we know all the job combinations, we can foresee a criticality mode change of a job
and choose a best schedule from that point onward.

Let there be n the number of jobs in one hyperperiod. In the worst case, all the jobs are connected
by arcs in both directions and the cardinality of the arc set is the cardinality of a connected first-layer
graph multiplied by 4 for two incoming and two outgoing transitions: card(E)≤ 4 ·n(n−1) and thus
card(E) = O(n2).

Regarding the tree complexity, each path represents a possible schedule. Since all the possible
schedules are represented in the tree, the worst-case complexity scenario is when all jobs have the
same zero arrival time. This is because all time intervals overlap and in the graph all the nodes are
interconnected. In this case, all the possible schedules have to be represented and the number of
complete path is O(n!). We introduce some metrics in the next section to decide on an optimal schedule.
We also use a metric, the response time, to reduce the complexity of the process of building a tree such
that the real complexity is much less than O(n!).

5.3 Schedulablity analysis

In this section, we will use the trees constructed in the previous section to obtain job scheduling. The
selection of schedule is based on certain metrics which are presented first; the trees are explored by
using those metrics on paths. We also present a method to reduce the complexity of the process of
building offline the tree.

73

We quantify the probability of the system entering MI or HI criticality from the probabilities
obtained from the job pWCETs. An important point to note is that this probability does not change
depending on the schedule because they come from the pWCETs and pWCET does not depend on
the scheduling. However, because the probability is obtained by choosing an execution threshold on
the pWCET, the probability of any job entering the high criticality depends on this choice. If the
probability is higher than desired, changes in task parameters are requested.

5.3.1 Tree Analysis

Here we elaborate the information that is extracted from the graph representation of the system in the
previous section.

Response Time: The response time of a job is the difference between its finishing time and the arrival
time. The value of finishing time depends on both, the execution time, and on the time instant at which
the job actually begins execution. Since arrival time is known, the worst-case value of finishing time
depends on both the scheduling decision and on the execution of the previous jobs. The Worst Case
Response Time (WCRT) is given as:

Definition 12 (Worst-Case Response Time). Given a node J′′L in the subgraph of the job J′′ in a path
path(J,J′′′) for some J′′ : ∃(J′,J′′) ∈ path(J,J′′′) then the Worst-Case Response Time for node J′′L in
L criticality WCRT′′L is defined as:

WCRT′′L = max(0,WCRT′L +a′′)+C′′L

where L = {LO,MI,HI}, a′′ is the arrival time and C′′L is the WCET at L criticality mode of the job J′′.

In the proposed model, the WCRT is consequently a function of the path, because it is different
among different schedules and tasks criticality levels.

Using the above definition, we define the deadline miss of a job as follows. A job represented by its
node J′′ in a path path(J,J′′′) is said to have missed a deadline if WCRT (J′′L)> d′′,J′′ ∈ path(J,J′′′)
for any L in {LO,MI,HI}.

Path utilization: Utilization is the processor demand by the jobs scheduled in the path. The utilization
as determined by the job characteristics is as follows,

Definition 13 (Utilization). The utilization U for a path path(J,J′′′) is given as:

U(path(J,J′′′)) =
∑C′

H−a
∀J′ ∈ path(J,J′′′)

where a is the arrival time of job J and H is the hyperperiod.

Probability of System Criticality mode: The probabilities come from the pWCETs of the jobs.
There exists a probability that a job will take a certain time to execute and in turn, execute in a certain

74

criticality mode. The pWCET of a job does not depend on the schedule, thus it does not change if
the job execution sequence is changed. Since the probabilities are extracted from the pWCETs, these
probabilities also remain unaffected by the schedule. Therefore, the only information that can be
inferred is the probability that the system will enter higher criticality at a certain point of time.

We do not have a notion of system criticality in this paper. However, in order to relate to the
approaches where system criticality is used, we can use the pWCETs to obtain the probability that
the system enters a higher criticality. The system enters MI criticality if at least one of the jobs in its
path enters MI criticality, i.e. the first jobs enters MI OR the second job enters MI OR..., and so on.
We use the law P(A∪B) = P(A)+P(B)−P(A∩B) for any two events A and B with P() giving their
probability of occurrence [Nor97].

Definition 14 (System Criticality Probability). For a certain path path(J,J′′′) for some J, the proba-
bility P MI

sys that the system enters HI criticality is given as

P MI
sys (path(J,J′′′)) = 1−∏(1−P ′MI)∀J′ ∈ path(J,J′′′) & : J′ ∈ Λ

MIOR J′ ∈ Λ
HI,J′′′ is a leaf node

Similarly, the probability that the system enters HI criticality is P HI
sys (path(J,J′′′)) = 1−∏(1−

P ′HI)∀J′ ∈ path(J,J′′′) & J′ ∈ ΛHI,J′′′ is a leaf node.

It should be noted that this probability is not a path property but a system property. It does not
change with the schedule because the total number of jobs remain the same in the hyperperiod. If
this probability is higher than a certain allowed maximum probability, it cannot be reduced through
scheduling and it must be improved at the level of design before obtaining the pWCETs.

5.3.2 System Scheduling

In this subsection, we use the information extracted from the tree in the above definitions to obtain an
optimal schedule. In order to obtain a schedule, the exploration tree is pruned by removing all except
one optimal path for each job in each criticality. We begin with defining a valid path in the tree.

Definition 15 (Valid Path). A path path(J,J′′′) for a node J and a leaf node J′′′ in a tree is said to be a
valid path iff:

WCRT (J′HI)≤ d′∀J′ ∈ path(J,J′′′) and Λ
HI ∈ path(J,J′′′) (5.1)

The above definition filters all the possible paths to keep the ones in which no HI-criticality job
misses a deadline. These paths are the only ones which are candidates for an optimal schedule.
According to the above definition, a valid path is not required to pass through all the LO-criticality jobs.
Thus, there are paths which may contain only the HI criticality jobs and no MI or LO criticality jobs.

A non-valid path is represented as ˜path(J,J′′′). A non-valid path can exist by having all the jobs
meeting their deadlines but not containing all the HI-criticality jobs and vice versa.

75

Definition 16 (Dangerous Valid Path). A valid path path(J,J′′′) is said to be a dangerous path if:

∃JL ∈ path(J,J′′′) and JL′ ∈ ˜path(J,J′′′),L′ > L

A dangerous path is not necessarily a non-valid path. A job might meet its deadline in MI criti-
cality and thus, might seem schedulable. However, the same job might miss its deadline if it enters
HI criticality. Such a node belongs to a dangerous path. We extract an optimal valid path defined as
follows.

Definition 17 (Optimal Valid Path). Amongst all the finite possible paths for a node J ∈ T , a valid path
until a leaf node J′′′, path(J,J′′′) is optimal if the following conditions are met in the order of priority:

• the number of MI-criticality jobs is maximum in the path path(J,J′′′);

• the number of LO-criticality jobs is maximum in the path path(J,J′′′);

• the path path(J,J′′′) has maximum utilization.

From all the valid and non-dangerous paths, we keep one path which adheres to above conditions.
These conditions allow maximum number of jobs to execute even when a HI-criticality job enters
HI-criticality mode. This way, we optimize the schedule for resource usage by allowing maximum
number of jobs to execute. We look for such optimal paths for each job in each of its criticality. The
output of this strategy is a tree T schd with the information listed above. T schd is thus given as,

T schd = Optimize(T − pathT (J,J
′′′)− ˜path(J,J′′′))∀JL ∈ J,∀J ∈ Λ

where J′′′ is a leaf node, for all possible pathT (J,J
′′′) and ˜path(J,J′′′) and function Optimize() removes

all but one valid and optimal path for each job J according to the Definition 17. The tree T ∈ F
with certain root node J ∈ S is chosen in which there is at least one path path(J,J′′′) for any J with
maximum utilization U(path(J,J′′′)).

To recall, the objective is to find a valid schedule for the jobs. At the end of the analysis we obtain
the following.

• A valid path is a schedule with all the jobs in the LO-criticality mode. If there is no such
combination possible, that is there is no such path, the schedulability test fails and changes in
task parameters are requested.

• For each MI-criticality and HI-criticality job, an optimal valid path is obtained which is an optimal
schedule of the remaining scheduled jobs from that point in time onward. Such a schedule
necessarily contains all the MI and HI criticality jobs and includes maximum number of LO

criticality jobs.

76

J1 J2

J2

MI

LO J3

J3

J4

J4

MI

LO

Figure 5.6: A portion of the optimized scheduling tree T schd
s for task set Γ1 with root node J1.

5.3.3 Complexity reduction

We check the condition WCRT (J′) ≤ d′ whenever a new node J′ is added to the tree during its
construction. As soon as this condition becomes invalid, the tree is not built in that direction. This is
because WCRT (J′)> d′ implies J′ is in a non-valid or dangerous path. That is, the node being added
already missed its deadline, then the system should not be scheduled along this path. This way, the tree
is pruned during construction. This reduces the complexity of the process of building the trees.

5.3.4 Strategy:

From the offline analysis, we obtain a scheduling tree T schd for the task set Γ. The schedule is optimal
in resource usage and ensures scheduling of all the high criticality jobs. The system is scheduled from
the root node J ∈ S,T schd as the first job. Then the sequence of jobs in T schd is followed.

The online schedule is fixed in the sense that the schedules for each job in each of its criticality
is fixed. On the other hand, the schedule is adaptive in the sense that the job criticality mode change
selects the fixed schedule from that point onward. At run-time, a job can take more time to execute and
enter a higher criticality. This is represented as the dotted transition in Figure 5.6. This changes the
path taken by the system by moving to the higher criticality subgraph of the job. The optimized path
from that node onward is already available in the tree T schd . The system continues in this manner for
all jobs generated by the task set. This online process goes on until the leaf node job at the end of the
hyperperiod. This way, we have optimized the schedule offline and an online scheduler simply has to
follow the easy to adapt sequence of jobs.

Using our approach, the notion of system criticality does not exist as we only study job criticality
mode changes. All the jobs begin execution in their LO-criticality mode and then may move to higher
criticality. The scheduling tree is safely and optimally prepared for such criticality mode changes.

Example 5. For the task set Γ1, the scheduling tree T schd
s is shown in Figure 5.6. The schedule begins

with job J1 followed by J2, J3 and so on. If J2 enters MI-criticality, the schedule can safely continue.
However, we see that if J4 enters MI-criticality, there is no node for J5. That is because J5 can only be
scheduled if J4 remains in LO-criticality and does not enter MI-criticality.

77

τ1

30

30

30

30

30

10 20

15

10 20τ2

τ3

τ4

τ5

0

Figure 5.7: Jobs in Γ2.

Ti = Di Criticality CLO
i CMI

i CHI
i PLO

i PMI
i

τ1 10 HI 1 1.5 2.5 0.3 0.1
τ2 30 MI 2 6 - 0.2 -
τ3 15 LO 2 - - - -
τ4 30 MI 3 7 - 0.1 -
τ5 10 LO 2.5 - - - -

Table 5.1: Task set Γ2.

5.4 Experiments

In this section we propose a non exhaustive but realistic test case to explain all the contributions made.
We also discuss complexity in this section. The task sets and the scheduling which are obtained from
their graph trees are presented. We show the advantage of our approach by maximizing the number of
LO-criticality jobs which are executed when certain jobs enter higher criticality modes. This is done
as a result of finding an optimal schedule. Our approach is opposed to the classical one where all the
LO-criticality jobs are dropped when the system enters high criticality.

The task set Γ2 is shown in Table 5.1. There are 5 tasks, task τ1 being of HI-criticality, tasks τ2

and τ4 of MI-criticality and tasks τ3 and τ5 of LO-criticality. The corresponding periods and execution
times CLO, CMI and CHI are also shown. The task set has 10 jobs in the hyperperiod equal to 30 time
units. These jobs are shown in Figure 5.7. As an example, if first job of τ1 executes, it can be followed
by first jobs of the rest of the tasks or the second job of itself. We explore such possibilities as follows.

A portion of the graph for this task set is shown in Figure 5.8. There are 134 nodes in the graph. It is
developed into a forest of trees. A portion of the one of the trees in the forest the with J11 as root is shown
in Figure 5.9. There are 502,063 nodes in this tree. From the extracted valid paths in LO-criticality
mode of the jobs, the following scheduling is proposed: J11,J51,J41,J31,J52,J12,J32,J13,J21,J53 with
utilization of 0.65. The probability that system enters MI criticality is 0.22. The probability that system
enters HI criticality is 0.099. For each job in higher criticality mode, the optimized schedule to be taken
by the jobs is shown in Table 5.2. It also shows the corresponding utilization of the remaining schedule.
The table also shows that all the jobs in MI and HI-criticality are safely schedulable. We see that the
job J13 enters HI-criticality, the job J21 cannot be executed anymore. The job J21 is the last job in the

78

Job Criticality Schedule Utilization
J11 MI J51,J41,J31,J52,J12,J32,J13,J21 0.883
J11 HI J51,J41,J31,J52,J12,J32,J13,J21 0.983
J12 MI J32,J21,J13 0.55
J12 HI J32,J21,J13 0.65
J13 MI J21 0.75
J13 HI None 0.15
J21 MI None 0.25
J41 MI J31,J52,J12,J32,J21,J13 0.75

Table 5.2: Schedules of the jobs of Γ2 enter MI or HI criticality with schedule J11 ,J51 ,J41 ,J31 ,J52 ,J12
,J32 ,J13 ,J21 ,J53.

J11 J31 J52 J51

Figure 5.8: Graph for the jobs in Γ2.

hyperperiod. Therefore, the schedule for these two cases are ‘None’. This shows the advantage of our
approach. If J13 enters only MI-criticality, there is room for execution of J21. It is only when J13 enters
HI-criticality is when J21 is needed to be dropped from execution.

Apart from the results obtained above, in order to magnify the benefit of our approach, we examine
another task set Γ3 shown in Table 5.3. In this case, there are four tasks, task τ1 being of HI-criticality,
tasks τ2 of MI-criticality and tasks τ3 and τ4 of LO-criticality. The corresponding periods and execution
times CLO

i j , CMI
i j and CHI

i j are also shown. The task set has 7 jobs in the hyperperiod equal to 30 time
units. In this scenario, the proposed LO-criticality schedule is:
J11,J41,J31,J21,J12,J13,J32. the utilization of this schedule is 0.966.

We see that task τ1 is barely schedulable in the HI-criticality mode where it has an execution time of
8 with a period of 10. The task τ1 begins in LO-mode. However, if the job J11 enters HI-criticality, the
valid optimal path from the node of J11 in HI-criticality is the one which contains all the HI-criticality
jobs meeting their deadlines and then maximum number of MI-criticality jobs, followed by maximum
number of LO-criticality jobs. From the tree, there exists a path: J11 from LO to MI to HI, J21 LO to MI,
J12 from LO to MI to HI and J13 from LO to MI to HI. Thus the schedule from J11 in HI-criticality is:

Ti = Di Criticality CLO
i CMI

i CHI
i

τ1 10 HI 5 7 8
τ2 30 MI 3 4 -
τ3 15 LO 4 - -
τ4 30 LO 3 - -

Table 5.3: Task set Γ3.

79

J1
LO

J1
MI

J1
HI

J4
LO

J4
LO

J4
MI

J2
LO

J2
MI

J2
HI

J4
LO

J4
MI

J4
LO

J4
MI

J4
LO

J4
MI

J4
LO

J4
MIJ4

LO

J4
LO

J4
MI

J4
LO

J5
J5

J5

J3

J5
J5

J3

J5 J5
J5

J5 J3

J5

J5 J3

J5

J5

J3

J3 J5

Figure 5.9: A portion of an exploration tree for task set Γ2 with the root node J1.

J11,J21,J12,J13. The utilization of this schedule when all the HI-criticality and MI-criticality jobs are in
highest mode and is 0.933. In the case where all LO-criticality jobs are dropped, i.e. if the schedule
from J11 in HI-criticality would not include MI-criticality job J21, the utilization would have been 0.8.
However, as we see, there is room for including J21 to execute.

Moreover, the schedule after J11 in HI-criticality does not include J41. This is because the path from
the J11 HI-criticality node going through J41 does not reach a node for J13 in HI-criticality, causing it to
be dangerous path. In this case the maximum utilization is 1.033 which is clearly undesirable.

Complexity: Firstly, the complexity of building a tree depends on the total number of jobs. It
increase with the number of MI and HI jobs as it causes more number of nodes in the graph. Then,
it depends on the given pWCET and the WCET values of CLO

i j , CMI
i j and CHI

i j extracted as well as
the deadlines of the jobs. The more the WCET values are closer to the deadline, the less exploration
branches are there to explore. This also means, there are less possible schedules. This is because there
are less number of valid paths. A possible complexity of number of jobs vs the number of nodes is
shown in Table 5.4. the complexity is shown in the worst case when all the jobs arrive at the same time.
Actual complexity will be less than that is shown.

5.5 Perspectives

In this chapter we have used a graph based exploratory method to obtain a schedule for Mixed Criticality
probabilistic Real-Time System. The schedule is obtained for each job in each of its criticalities. Each

80

No. of jobs No. of tree nodes No. of jobs No. of tree nodes
3 25 7 125941
4 157 8 1.5 million
5 1261 10 2.5 million +
6 11965 - -

Table 5.4: Complexity as number of jobs vs number of nodes in exploration tree.

of those schedules are optimized in resource usage and ensured safely schedulable for safety criticality
applications. At the same time, the complexity of the exploration process is reduced. In addition, the
probabilities are quantified relating to the system and the schedule. In the next chapter, we intend
to introduce mixed criticality defined using the response time which is application oriented, where
probabilities come into play. We intend to further optimize such a construct to obtain schedules. We
will also study the affect of task dependence in mixed criticality probabilistic real-time system.

Here we have partially tackled the observations made in the previous chapter. In the Chapter 3
and 4, we observed that on the one hand we are trying to exploit the ability of probabilistic models to
quantify pessimism, and on the other, we are forced to do so through strict scheduling methodologies.
This is mainly because the scheduling strategies like EDF or FP are not designed for probabilistic
purposes in the first place.

In this chapter we obtained a schedule by keeping safety in mind. We mainly approached the
problem through MC approach. Through the approach in this chapter, we removed the classical action
in the MC domain that if one job enters high criticality, the system enters high criticality mode and all
the lower criticality jobs are dropped from execution. We removed the notion of system criticality and
brought the notion of criticality to the job level. By doing so, we are saved from forming a general
rule for the whole system like the classical action of dropping the low criticality jobs. Moreover, we
obtained a schedule by ensuring that, in no situation, the schedulability of the high criticality jobs is
sabotaged. The schedule is an adaptive one where a job entering high criticality or not decides which
jobs to schedule next.

The classical idea of dropping all the low criticality jobs does not take into account if there is room
to execute some low criticality jobs, making it a pessimistic decision. In this thesis, we are trying
to improve the pessimism. The classical idea has two more problems apart from being pessimistic.
First, when the criticality levels are more than two, this action needs further clarification. That is, in
multi-criticality systems, are all the lower criticality jobs dropped and only the highest is kept, or only
the equal and higher criticality jobs are kept. In either case, the schedulability needs to be ensured at
each level. In the current state of the art, the industry performs hardware separation and assigns tasks
to different set of hardware altogether. However, as the number of criticalities increases, the set of
hardware required will also increase. This makes the system simple yet bulky and expensive. This is
particularly important when each gram to be launched in a satellite has a high cost associated.

Second, this action does not consider the instant when the job enters high criticality. If the jobs
enters high criticality too late in the schedule, dropping all the low criticality jobs which have already
executed may not be successful. Therefore we need a method which knows when exactly does a job

81

enter higher criticality and adapt accordingly.

We observed in Chapter 3 that the discrete representation of the pWCET can lead to complexity
issues as each data point is preserved and used to compute system properties. We see such complexity
in this chapter as the possible scenarios are enumerated and searched through. On the other hand,
from the continuous representation, it is possible to reduce the complexity through mathematical
representation But, there we lacked the knowledge of the job execution at each instant of time. We
need to know the probabilistic job behaviour for a given time so that a schedule can be obtained and
schedulability can be ensured. The schedulability that is ensured must be deterministic for the safety
of the system. At this crossroad of complexity vs representativity, we chose to continue with discrete
representation at the cost of complexity. We intend to deal with complexity in the future works.

In this chapter as well, the probabilities do not play a role in deciding the schedule. The probability
is only quantified. This is because, as observed in the previous chapters, the probabilities come from
the pWCET and pWCET does not change from the schedule. We will now proceed to the next and final
chapter of the thesis where we make an observation on MC which naturally brings the probabilities into
play. We will observe the MC to be application oriented and not task oriented where runtime behaviour
of the jobs must decide the criticality and not the pWCET. We will also see it as an extension of this
chapter where the graph model presented here becomes the model for providing upper limits to the
probabilistic evaluation.

82

CHAPTER 6

Graph Based Mixed Criticality
Schedulability Analysis: Response Time

It is entirely possible that behind the
perception of our senses, worlds are hidden
of which we are unaware.

Albert Einstein

In this chapter we further the work from the previous chapter by changing the fundamental definition
of MC systems. We see the MC problem in a whole new perspective. We will see how this perspective
is closer to the real case and how it benefits us. We state the problem as follows.

Given a Mixed Criticality probabilistic real-time system with task executions described with pWCET,
what is the optimal application oriented schedule when system enters high criticality mode?

Our objective is to find a schedule which causes minimum probability of the system entering high
criticality. We will re-utilize the graph model in the previous chapter. In doing so, the probabilities
will come into play and help us make a scheduling decision. We will also upper bound this model for
safety critical applications. The solution that we propose is based on an exploration of graph models
for possible job execution combinations.

Using graphs allows us explore all the possible combinations of job scheduling. Only by exploring
all the combinations, we can confidently conclude for a schedule with the least probability of the
system switching mode to high criticality among all the possibilities. Moreover, using graphs enables
us to precisely predict occurrences of certain events, like a job entering high criticality, and foresee the
appropriate action thereafter which is best for the system. We are able to extract crucial schedulability
information like pWCRT and the probabilities associated. We begin by recalling the graph model.

Dans ce chapitre, nous approfondissons les travaux du chapitre précédent en modifiant la définition
fondamentale des systèmes MC. Nous voyons le problème MC dans une toute nouvelle perspective.
Nous verrons comment cette perspective est plus proche du cas réel et comment elle nous profite. Nous
énonçons le problème comme suit.

Étant donné un système temps réel probabiliste à criticité mixté avec des exécutions de tâches
décrites avec pWCET, quelle est la planification optimale orientée application lorsque le système passe

83

en mode de criticité élevée?

Notre objectif est de trouver un ordonnance qui entraîne une probabilité minimale que le système
entre dans une criticité élevée. Nous réutiliserons le modèle graphique dans le chapitre précédent. Ce
faisant, les probabilités entreront en jeu et nous aideront à prendre une décision de planification. Nous
allons également limiter ce modèle pour les applications critiques pour la sécurité. La solution que
nous proposons est basée sur une exploration de modèles de graphes pour d’éventuelles combinaisons
d’exécution de travaux.

L’utilisation de graphiques nous permet d’explorer toutes les combinaisons possibles de planifi-
cation des tâches. Ce n’est qu’en explorant toutes les combinaisons que nous pouvons conclure en
toute confiance pour un ordonnance avec la moindre probabilité du mode de commutation du système
à une criticité élevée parmi toutes les possibilités. De plus, l’utilisation de graphiques nous permet de
prédire avec précision les occurrences de certains événements, comme un travail entrant dans une forte
criticité, et de prévoir ensuite l’action appropriée qui est la meilleure pour le système. Nous sommes en
mesure d’extraire des informations cruciales d’ordonnancabilité comme pWCRT et les probabilités
associées. Nous commençons par rappeler le modèle graphique.

6.1 Graph and Tree Model

We quickly recall the graph model from the previous chapter. We consider two level criticality model
of the jobs, HI and LO.

Graph: The graph represents the possible job combinations as schedules of the system in each
hyperperiod. A directed graph is defined as a tuple G = {V,E}, where V is a finite set of elements
called nodes and E is the finite set of ordered pairs of elements of V called arcs.

Nodes: Each node J ∈V represents the execution of a job J ∈ Λ.

The early nodes set S is a subset of the node set V , S ⊆V such that ∀J ∈ S : a = 0. Graphically, we
identify the early nodes set S with extra arcs entering in J ∈ S without the source node.

Arcs: Each arc (J,J′) ∈ E represents a possible ordering of jobs, in particular, the job J′ executes after
the execution of the job J: (J,J′) ∈ E if a < d′. A successor node as succ(J) = J′ and a predecessor
node pred(J′) = J for (J,J′).

Scheduling Tree: The exploration tree T of a graph G with an early node J̄ ∈ S is defined as a tree
T = {V̄ , Ē}, where V̄ is the set of nodes of T and Ē is the set of arcs of T . The exploration tree is
constructed from the graph beginning with a root node of the graph as the first job to execute in the
schedule. Each node of the tree is labelled with job J it represents. A node is only added to the tree
if it does not miss its deadline and a corresponding arc exists in the graph given the corresponding
node exists the graph. The deadline miss is checked for at each time it is added to the tree. If there is a
deadline miss, the node/job is not added because the system should never be scheduled beyond this job.

The set of all exploration trees for different roots is called the exploration forest F . The trees

84

J2

J1

J3

J4

J5

HI

0 10

15

20 30

τ1

τ2
LO

time

Figure 6.1: Jobs of task set Γ1.

J1 J2 J3 J4 J5

Figure 6.2: The graph of the jobs in Γ1.

represent possible orderings or sequences of jobs beginning with an early job at the root. A leaf node J
is a node without successors, i.e. succ(J) = { /0}. In order to navigate the tree to obtain a schedule, we
define a path.

We also recall the definition of a path. A path in the tree path(J,J′′′) is defined as a unique sequence
of connected arcs starting from the node J to a leaf node J′′′; path(J,J′′′)= {(J,J′),(J′,J′′), ...,(J′′,J′′′)}
with (J,J′) ∈ Ē) for any J, J′, J′′ with J′′′ a leaf node.

Also, A node J′ does not exist in tree if it already exists between the root and the desired point of
addition. J′ 6= succ(J) if ∃(J,J′) ∈ path(J̄,J′′′),J′′′ is a leaf node, J̄ ∈ S

Example 6. We use a task set Γ1 shown in Figure 6.1 in parallel through this paper to explain our
method. It consists of five jobs of two tasks in the hyperperiod equal to 30 time units. The jobs of the
tasks are shown with their pWCET PMF in the Figure, the exact values of PMFs are not yet important.
The jobs of τ1 are HI criticality and those of τ2 are LO criticality.

The graph, which is a set of nodes connected by arcs, is a direct representation of all the possible
ordering of the jobs in the system. It is shown for the task set Γ1 in the Figure 6.2. There are nodes
J1, J2, etc. for each job which are interconnected by uni-directed arcs which refer to the order of
executions. E.g. if J3 is executing, then it can be followed by the jobs J1, J4 or J5. The system can begin
execution with J1 or J2. This set of early nodes of the jobs J1 and J2 are represented by the extra arcs
entering those nodes. In order to explore this graph to look for a schedule, it is unfolded into a forest of
trees.

A portion of the tree is represented in the Figure 6.3 for the task set Γ1. The tree begins with a root
J1 followed by possible jobs which can execute, namely, J2, J3, J4, J5. This goes on until the leaf nodes
where any more addition of nodes will mean a repetition of the same job in the schedule on the path.
For the tree task set Γ1 the Figure 6.3, one possible path is shown by a dotted line. The dotted line
represents a path J1,J2,J4,J3,J5. It also shows another possible tree with just its root J2.

85

J1

J2

J3

J4

J5 J4

J5

J4 J4

J3

J3 J5J5

J5

J2

Figure 6.3: Graph unfolded into a tree for jobs of Γ1.

At this point, the construction of the exploration model is complete. We now proceed extracting
certain metrics from these exploration trees in order to decide for a MC schedule.

6.1.1 Properties

We first the define the metrics necessary for system criticality and then apply them to our model. We
begin with obtaining a non-preemptive pWCRT for a job. Classically, the pWCETs of the jobs are
simply convoluted in order to obtain the pWCRT. The convolution operation does not take different
arrival times into account. Thus, performing a convolution contains a hidden assumption that all the
jobs arrive at the same time, i.e. at a critical instant. This results in a pessimistic pWCRT. Our approach
to obtain the pWCRT involves handling the discrete distributions in a piece-wise manner. To do so, we
first define a tail PMF as follows.

Definition 18 (Tail Probability Mass Function). A tail distribution of the probabilistic Worst Case
Response Time fR(x) of a job J with Worst Case Execution Time WCET for some time a′(0 < a′ <
WCET), is a PMF f [a

′,WCET]
tail (x) given as:

f [a
′,WCET]

tail (x) =

{
fR (x+a′) if 0 < x≤WCET

Σa′
y=0 fR (y) if x = 0

The tail distribution represents a complete PMF which probabilistically delays the execution of the
next job in the schedule where the next job arrives at time a′. The upper limit of the tail function is the
WCET because it is the maximum possible execution time by the definition of pWCET. The probability
accumulated at the instant a′ (x = 0 in the function) in the tail PMF represents the probability that
the job J has finished execution by then. As in Figure 6.4, the tail distribution of job J1 (from Γ1)

86

accumulates 0.1+0.15+0.15+0.2 = 0.6 time zero. By doing so we prevent any loss of information
in the distribution. We use this to obtain the pWCRT of the delayed job.

Theorem 1 (Non-Preemptive Probabilistic Worst Case Response Time). Non preemptive Probabilistic
Worst Case Response Time f ′R of a job J′ is represented by convolution between its probabilistic Worst
Case Execution Time f , and the Tail Probability Mass Function f [a

′,WCET]
tail of the job J executing

immediately before.

Proof. Consider two jobs, J arriving at time a and J′ arriving at time a′, a ≤ a′. These are shown
in Figure 6.4 as J1 and J3 for the task set Γ1. Probabilistically, J can continue to execute after the
arrival time of J′. That means, there exists a probabilistic delay to the execution of the job J′ due to the
execution of the job J.

Event(J′ finishes at some time x) = Event(J′ finishes at some time x) and Event(J′ finishes after a′d)

or Event(J′ finishes at some time x) and Event(J′ finishes before a′d)

Let, the random variable of execution of J is CJ , the response time random variable of J is RJ and the
response time random variable of J′ is RJ′ .

Pr(RJ′ = x) = Pr(RJ′ = x and RJ ≤ a′−a)+Pr(RJ′ = x and RJ > a′−a)

Now consider a random variable R ′J such that,

R ′J =

{
0 if RJ ≤ a′−a

RJ− (a′−a) if RJ > a′−a

The PMF fR ′J of R ′J is,

fR ′J =

{
fR ′J (0) = Pr(R ′J ≤ a′−a) = Σ

a′−a
x=0 fRJ (x), for x = 0

fR ′J (x) = fRJ (x+a′−a), for x > 0

Therefore we have,

Pr(RJ′ = x) = Pr(CJ′+R ′J = x and R ′J = 0)+Pr(CJ′+R ′J = x and R ′J > 0)

= Pr(CJ′+R ′J = x)

This leads to the convolution of the PMFs,

fRJ′
= fCJ′ ⊗ fR ′J

87

0.2
0.15 0.05

0.2

0.15
0.05

0.1
0.15 0.2

0.15

0.6

0 1 2 3

131211

J3

J1

ftail 1

10 20

1 2 3 4 5 6 7 8 9

ftail 1
C

3

pWCET
pWCRT

=fR
3

[10,13]

time

Figure 6.4: pWCRT from convolution of Tail distribution and the pWCET.

HILO

0 l time

0.15
0.05

P
ro

b
ab

il
it

y

Figure 6.5: High criticality from a threshold l1 on pWCRT of a job J1 of Γ1.

From the definition of fR ′J , it is the tail distribution of the response time of J. Simplifying the
notations, the response time of J′ is,

f ′R = f ′⊗ f [a′,WCET]
tail

Our approach to obtain the pWCRT separates the part of the pWCRT PMF which affects the
execution of the next job. We do not lose any information in the distribution as the probabilities before
the time a′ are accumulated 1. Moreover, we retain the information within the time intervals in the
distribution. This approach is similar to the ones used by [Kim+05]; [Max+17] but applied to every job
with respect to their arrival times.

Using the pWCRT we apply the job criticality Definition 2 on the paths through the exploration
tree.

Definition 19 (Job Criticality). A job J′ in a path path(J,J′′′) is said to have entered high criticality
if its response time crosses the threshold l′, fR ′(x)> l′, the probability P HI(path(J,J′′′)) of which is

1The distribution function accumulates the probabilities in the intervals of discretization at the worst case, e.g. probabilities
at execution times 0.2,0.5,0.7,etc. are accumulated the time 1.

88

given as
P HI(path(J,J′′′)) = 1−Σ

l′
x=0 fR ′(x)

where l′ < d′ and J′′′ is a leaf node.

We pause to exhibit these definitions in the following example.

Example 7. Figure 6.4 shows a scenario where job J3 executes after J1 from the task set Γ1 For
explanation, a pWCET PMF is assumed for J1. The Tail PMF for the same is shown in the box. To
obtain the pWCRT of J3, this PMF is then convoluted with the pWCET of the job J3.

A pWCRT of the job J1 with its threshold is shown in Figure 6.5. The threshold is shown by the
dotted line labelled l = 12. From the Figure, the probability that this job enters HI-criticality mode is
0.15+0.05 = 0.20.

Continuing our discussion, from the job criticality defined using its pWCRT, we define the proba-
bility of the system entering high criticality as follows.

Definition 20 (System Criticality). The system enters high criticality mode if at least one high criticality
job enters high criticality mode.

We apply these definitions to the graph and tree model. In our model, the schedule is represented as
paths. Because the paths represent the schedule, the probability that the system enters high criticality is
also a function of paths. However, not all the paths in the exploration tree are available for scheduling
because not all paths contain all the high criticality jobs. The set of available paths is defined as follows.

Definition 21 (Available paths). Available paths is a set of all possible paths in a tree from the root
node J ∈ S to a leaf node J′′′, Pavail = {path(J,J′′′)} such that

∀J′ ∈ Γ,J′ ∈ path(J,J′′′);

and

∀J′ ∈ path(J,J′′′) =⇒ 1−Σ
d′
x=0 fR′(x)< Pmax

dm

where Pmax
dm is the maximum allowed probability of deadline miss of any job, fR′(x) is the pWCRT

of job J′ and d′ being its deadline.

Pavail is a set of possible schedules of the jobs in MC through the trees as the available paths. The
available paths are the paths which contain all the jobs (low as well as high criticality) and all those
jobs meet their respective deadlines. In our context, the set of available paths represent the possible
candidates to find a schedule. It should be noted that the criteria of all jobs meeting their deadlines is
already met while constructing exploration tree. A node is not added to the tree if it misses its deadline.
To quantify the probability of these paths we apply the definition of system criticality on the available
paths as follows. We elaborate the definition of system criticality. The system enters high criticality
if the first high criticality job enters high criticality OR the second high criticality job enters high
criticality OR the third..., and so on. This represents a summation of probabilities. We use the law
P(A∪B) = P(A)+P(B)−P(A∩B) for any two events A and B with P() giving their probability of
occurrence [Nor97].

89

Definition 22 (Probability of system entering high criticality). For an available path path(J,J′′′) ∈
Pavail , the probability Psys(path(J,J′′′)) that the system enters high criticality by taking this path is
given as:

Psys(path(J,J′′′)) = 1−∏(1−P ′HI),∀J′ ∈ path(J,J′′′) & Γ
HI

Using the available paths and the system criticality metric defined above, we finally obtain a mixed
criticality (MC) schedule as follows.

Definition 23 (Mixed Criticality Schedule). A path PMC = path(J,J′′′) is the mixed criticality schedule
if Psys(path(J,J′′′)) is the minimum among all possible path(J,J′′′) ∈ Pavail ∃J ∈ path(J,J′′′), and
J ∈ Λ where J ∈ S.

The MC schedule is a path PMC through the exploration tree which contains all the low as well as
high criticality jobs, no job misses its deadline and the probability of the system entering high criticality
is minimum. It represents the schedule that should be taken by the system as the ordered sequence
of execution of the jobs. To recall, the probability is minimum given the criticality is defined using
the response time. Thus, we have found a solution to our problem which is a schedule represented
by the path PMC. The path PMC by definition is from root node to a leaf node, thus we do not need to
notate them (unlike jobs J and J′′′ in path(J,J′′′)). Since this method is based on complete exploration,
the schedule is guaranteed to be the optimal by minimizing the probability of system entering high
criticality. Any impossible schedule is the one in which a job does not meet its timing constraints.
These impossible schedules are already excluded while building the tree as we calculate response time
in parallel.

Therefore, as the input we assume a mixed criticality task set Γ on a uniprocessor machine. As
the output, a non-preemptive schedule PMC is provided for all the jobs of the tasks with minimum
probability of system entering high criticality mode.

Complexity: The complexity of our approach depends on the number of jobs n. The maximum
complexity of building the tree is O(n!). However, this might not always be the case because the tree
is not built in the direction of a node which missed its deadline. Thus, the complexity also depends
on the maximum allowed probability of deadline miss. The complexity of analyzing the tree and
finding the paths is linear to the number of leaf nodes in the tree. In addition to this, there exists
computational complexity of the convolution operation, which in turn depends on the possible values
a random variable can take. Assuming that all jobs release at one critical instant, the convolution
complexity is O(nn).

We apply this model to a non-exhaustive but realistic test case as follows.

Example 8. We analyze the task set Γ2 shown in Table 6.1 which consists of 4 tasks and 15 jobs with
pWCET and implicit deadline as shown. There are 6 high criticality jobs from task τ1 and 11 low
criticality jobs from the rest of the tasks. To recall, the task set is to be scheduled non-preemptively
on a uniprocessor system and the jobs are suspended at their deadlines. The threshold for the high
criticality jobs of task τ1 is set at 4 time units. The maximum allowed probability of deadline miss Pmax

dm
for any job is set at 1E−03.

90

Task Deadline pWCET Criticality

τ1 10
[

0.1 0.3 0.5 0.094 0.005 0.001
1 2 3 4 5 8

]
HI

τ2 20
[

0.1 0.4 0.4 0.1
1 2 3 4

]
LO

τ3 15
[

0.1 0.4 0.3 0.2
1 2 3 4

]
LO

τ4 30
[

0.1 0.7 0.2
1 2 3

]
LO

Table 6.1: Task set Γ2.

The proposed schedule PMC is:
J11,J41,J31,J32,J21,J12,J13,J42,J33,J22,J14,J15,J34,J23,J16. The probability that the system enters high
criticality is 0.0.00509. The pWCRT of some of the jobs is shown in Figure 6.6. The pWCRT jobs of
the high criticality task τ1 remains unchanged as their pWCET as shown in Figure 6.6a. The pWCRTs
of jobs which have been affected by probabilistic delay in execution are J21, J22, J23, J31, J33, J34 and
J41 whose pWCRTs are shown in Figures 6.6b,6.6c,6.6d,6.6e,6.6f and 6.6g, respectively.

We obtain this result along with other possible schedules in which there is no deadline miss but the
probability of the system entering high criticality is higher. For example, another possible schedule
is: J11,J21,J12,J31,J41,J32,J13,J14,J22,J42,J15,J33,J34,J23,J16. In this case the probability of system
entering high criticality is 0.0.00605.

On computation, the tree for the task set Γ2 contains 716,132 nodes.

Overall, we observe that in this section we can only quantify the probability of something occurring
in the system, like deadline miss or entering high criticality. This gives us a global picture of the MC
system with pWCETs in terms of risk involved of system entering high criticality when applying such
a system. In addition to obtaining this picture in terms of probabilities, we can also control it through
observing the pWCRTs and making the scheduling decisions accordingly. If there exists a probability
of occurrence of an event, it exists each time it occurs. That is, each time a MC system is applied, the
probability of it entering high criticality exists at each time instant. This does not tell us, exactly when
does the system enter high criticality. However, for safety critical systems in high criticalities, we need
a much more granular observation of the job execution instead of a global probabilistic view. For a
job executing in high criticality, we need to know whether the system is still schedulable in the worst
case even though probabilistically it might seem unlikely. Because of this requirement, we go one step
further into the graph representation in the next section.

6.2 Worst Case Scheduling Model

We recall the second problem from the beginning of this chapter. If a mode change does occur for a
given schedule, what is the optimal (adjusted) schedule from the mode change instant onward, such
that resource usage is maximized. Without calculating the utilization, we simply interpret it as allowing

91

0 105
P

ro
b
a
b
il
it

y

0.1

0.3

0.5

0.094

0.005
0.001

time

(a) Jobs of task τ1

0.001
0.02

0.08

0.21

0.29
0.24

0.13

0.04
0.004

0 10 15 205

P
ro

b
a
b
il
it

y

time

(b) Job J22

0 10 155

P
ro

b
a
b
il
it

y

0.01

0.08

0.23

0.31

0.24

0.11

0.02

20 time

(c) Job J23, J21

0 10 155

P
ro

b
ab

il
it

y

0.001
0.01

0.07

0.19

0.29
0.25

0.14

0.04
0.01

time

(d) Job J31

0 10 155

P
ro

b
ab

il
it

y

0.01

0.11

0.33
0.31

0.20

0.04

time

(e) Job J33

0 10 155

P
ro

b
ab

il
it

y

0.01

0.40

0.30

0.20

time

(f) Job J34

0 10 155

P
ro

b
ab

il
it

y

20 25 30

0.01

0.10

0.28

0.17

0.02
1.7E-03

2E-04

0.42

time

(g) Job J41

Figure 6.6: pWCRT distributions of some of the jobs of the task set Γ2.

92

pWCRT WCRT

P
ro

b
a
b
il
it

y

1

0
timel

LO HI

Figure 6.7: pWCRT of a job with threshold for criticality mode.

Ji
LO

Ji
HI

Ji
Figure 6.8: HI and LO subnodes within the node for high criticality jobs.

maximum number of low criticality jobs to execute. This also extends to ensuring that all the scheduled
jobs meet their deadlines in all the criticalities. Because this is a safety critical scenario we no longer
talk in terms of probabilities. We use the WCET of the job as the worst case of the given pWCET to
analyze the system in high criticality mode. We use the schedule obtained in the previous section in the
worst case in order to maximize the number of low criticality jobs to execute, without compromising
the scheduling of high criticality jobs.

6.2.1 Model

We recall the Worst Case Execution Time WCET for a job J with C , is the maximum execution time
with a non-zero probability, WCET = max(C). The threshold l on the pWCRT shown in Figure 6.7 is
assumed as in the previous section.

We recall the nodes defined for the graph and the exploration trees which represent the execution
of a job. Now, inside the node of each high criticality job, we define two subnodes. The subnodes
represent the job executing first in low and then it can enter high criticality by taking more time to
execute. This is shown in Figure 6.8 as a high criticality job J and the subnodes JLO and JHI inside.

The J job exits JLO LO subnode to enter HI subnode JHI if its response time crosses the threshold l,
WCRTi(path(J′,J′′′))> l, for any path path(J′,J′′′). It can exit LO subnode also if it finished execution
before crossing the threshold. The J job exits HI subnode JHI if its response time crosses the deadline
d, WCRTi(path(J′,J′′′))> d, for any path path(J′,J′′′).

Here we recall the result of the previous section which is a MC schedule with the lowest probability
of system entering high criticality, represented with a path PMC. This path forms the intialization of our
scheduling tree as a tree trunk.

Scheduling Tree Trunk: The scheduling tree trunk is a directed graph Ttr = {V (Ttr),E(Ttr)} where
V (Ttr) is the set of nodes representing the jobs and E(Ttr) is the set of arcs connecting them, such that
all the jobs in Γ are exist in V (Ttr).This represents the schedule obtained in the previous section as the
path PMC. The system executes this schedule in this sequence until a high criticality job enters high

93

criticality mode. This happens when the job execution time is more than the criticality threshold. In
that case, another path is taken which is characterized as a branch from this trunk.

Scheduling Tree Branches: A scheduling tree branch with an initial job node J ∈ PMC is a directed
graph Tbr = {V (Tbr),E(Tbr)} such that ∃E(Tbr) ∈ PMC and J ∈ ΓHI. This means that the job J is a high
criticality job and the arcs in this branch exist in the schedule PMC.

∀J′′ : J′′ 6= J′∧ J′′ 6= pred(J′) ∧
J′′ 6= pred(pred(J′))∧·· · =⇒ J′′ ∈V (Tbr)

This means that the branch must contain all the HI criticality jobs which remain to be executed.
This implies that there are branches which can omit some jobs. Thus, there are many possible branches
from a high criticality job in the schedule, ranging from all the jobs to only one job scheduled thereafter.
By combing the trunk and the branches, we define the scheduling tree.

Definition 24 (Scheduling Tree). A scheduling tree is a directed graph Tsched = Ttr ∪Tbr where Ttr is
the trunk and Tbr are the branches from the high criticality nodes of the high criticality jobs of the
trunk.

The scheduling tree represents the system schedule, first in system low criticality, and then possible
schedules when certain high criticality job enters high criticality mode. The system begins in the low
criticality mode and starts to execute the jobs in the trunk starting from the root. If any job in the trunk
enters high criticality, there are many possible branches which can be taken. The system schedule must
take one of these possible branches when the job enters high criticality. We prune this tree in the next
subsection to obtain an optimal tree as an optimal schedule.

Example 9. A portion of the scheduling tree for the task set Γ1 is shown in Figure 6.9 where the
trunk is represented with the thick nodes as schedule J1,J2,J4,J3,J5. Because jobs J1 and J3 are high
criticality jobs, there are high criticality subnodes for those jobs. To these high criticality subnodes, all
the branches added.

6.2.2 Properties

We reuse the definition of a Path which begins at a certain node and ends at a leaf node by navigating
through the tree. There are such paths through the scheduling tree Tsched . In order to obtain an optimized
schedule, we extract the following information from the scheduling tree Tsched .

Definition 25 (Worst Case Response Time). The Worst Case Response Time (WCRT) for a job Jk in a
path path(J,J′′′) ∈ Tsched is defined as the summation of its Worst Case Execution Time (WCET) and
the execution delay from the previous job J′,

WCRT ′′(path(J,J′′′)) =WCET ′′+max(WCRTj(path(J,J′′′))+a′′,0)

: (J′,J′′) ∈ path(J,J′′′)

94

J1
LO J1

HI

J2

J3

J4

J5

LO
J3

HI

J2

J4

J5
J5 J5

J3
LO J3

HI

J5 J5

J4

J3
LO J3

HI

J3
LO J3

HI

T
ru

n
k

Branches

Figure 6.9: The scheduling tree Tsched for the schedule in PMC.

We use this definition to say that a job J′′ in a path path(J,J′′′) is said to have missed its deadline
if WCRT ′′(path(J,J′′′))> d′′. It should be noted that we do not define the WCRT as the worst case of
pWCRT.

In a high criticality mode of the system, it is essential to ensure that there is no scheduled job which
misses deadline. Moreover, in a MC system, all the high criticality jobs should essentially be scheduled.
Therefore, using the definition of deadline miss, we define a valid schedule as follows.

Definition 26 (Valid Schedule for a Job). For a high criticality job J′ ∈ PMC, a valid schedule is a path
Pvalid(J′,J′′′) through the scheduling tree Tsched such that it necessarily contains all the high criticality
jobs which remain to be executed; and no job misses its deadline in all of its criticality modes. For all
J′ ∈ ΛHI,

∀J′′ : L′′ = HI∧ Jk 6= J′∧ J′′ 6= pred(J′)∧
J′′ 6= pred(pred(J′))∧·· · =⇒ J′′ ∈ Pvalid(J′,J′′′)

and

WCRT ′′ ≤ d′′ ∀J′′ ∈ Pvalid(J′,J′′′)

This definition filters out any branch which does not contain all the high criticality jobs and the
ones which have a deadline miss. A valid path denotes a possible schedule from a high criticality job
without any deadline miss. Now after the filtering, there can be many possible valid paths for any job
in higher criticality. These paths represent the schedule if a job enters high criticality from that point
onward. Any such schedule must contain all the high criticality jobs in the least. Thus, there can be
more than one valid path through the scheduling tree by changing the number of low criticality jobs
included in the schedule. We choose one valid path which is optimal defined as follows.

Definition 27 (Optimal Schedule for a Job). For a high criticality job J′, an optimal schedule
Popt(J′,J′′′) is a valid schedule Popt(J′,J′′′) ∈ Tsched which contains the maximum number of low

95

criticality jobs which remain to be executed.

This definition filters out the valid paths from a high criticality job to keep one. The system
schedule through this one valid path which ensures that all the deadline requirements are met even
when a job enters high criticality mode. Moreover, it maximizes the number of low criticality jobs kept
for execution. This removes the pessimism that exists in the classical case where all the low criticality
jobs are dropped when a job enters high criticality, even if there could be room to execute the low
criticality jobs. Therefore, we finally define an optimal scheduling tree.

Definition 28 (Optimal Scheduling Tree). An optimal scheduling tree T opt
sched is a pruned scheduling

tree Tsched with one optimal schedule for each high criticality job.

Eopt(Ttr) = E(Ttr)−Pvalid(J′,J′′′)+Popt(J′,J′′′)

∀J′ ∈ PMC ∧ J′ ∈ Λ
HI,T opt

sched = T opt
br (G)∪Ttr

where T opt
br (G) = {V (Tbr),E(Tbr)} and Pvalid(J′,J′′′) are all the possible paths beginning with the job

J′.

This way, the system simply has to follow the scheduling of the jobs defined by T opt
sched . As soon as a

high criticality job enters high criticality mode, the schedule from that job onward is defined in T opt
sched .

We have already minimized the probability that the system enters high criticality in the previous section.
Then, in the deterministic case for safety critical system in this section, we have maximized the number
of low criticality jobs which can execute.

Example 10. Referring to the same task set Γ2 as in the previous section, we further it to obtain an
optimal scheduling tree. To recall the best schedule PMC is:
J11,J41,J31,J32,J21,J12,J13,J42,J33,J22,J14,J15,J34,J23,J16.

The high criticality jobs are those belonging to the task τ1. For each of those jobs, there exists an
optimal schedule from that point onward. For jobs, J11, J13 and J15, some valid paths are shown in
Figure 6.10. If J11 enters high criticality, we can choose to schedule either J21 or J41 or J32 until J12 is
scheduled. After J12, job J13 is scheduled, so there is nothing to allow or suspend there. If J13 enters
high criticality, J22 can be allowed to execute until J14. Job J14 is followed b J15. If J15 enters high
criticality, either J34 or J32 can be allowed to execute before job J16 executes. We choose to allow J21,
J22 and J32 among the low criticality jobs. Thus, we are able to safely execute 3 low criticality jobs
apart from all the high criticality jobs in the system high criticality mode.

6.3 Dependence

We take a step further and study the effect of the task dependence on a schedule. In this section
we present a metric to introduce dependence in a mixed criticality probabilistic real-time system.
Dependence can exist in various ways between jobs, e.g. a job demanding higher execution time
shares a resource with another job, the result of one job is used by another and the result takes longer
time to obtain, etc. We assume for this work that there is no more than one job with dependence

96

J11
LO J11

HI

J13
LO J13

HI

J15
LO J15

HI

J32

J41
J21

J22

J32

J34

Figure 6.10: Optimal scheduling tree for the task set Γ2.

on another. We also assume that there is a deterministic dependence. That is, a job entering high
criticality does not cause a probable but deterministic high criticality mode of another job. Since the job
execution is described by pWCET and dependence effectively causes probabilistic delay in execution,
the dependence affects the pWCRT of the job. We quantify this as follows.

A job J′ is said to have dependence from another job J, a≤ a′, if J entering high criticality mode
causes J′ to enter high criticality mode. This is represented as J→ J′. This dependence affects the
pWCRT f ′R of the job J′ and results in a dependent pWCRT f ′dR j

.

Theorem 2 (Dependent Response Time). The pWCRT of a high criticality job J′ having dependence
from another high criticality job J is a piece-wise PMF with the pWCRT of J′ until the criticality
threshold l′ and convolution between tails of pWCRTs of J and J′ beyond the criticality threshold.

Proof. Job J has dependence on job J′. If the response time of J crosses the threshold l, J′ enters high
criticality. Now, there exists a probability that the job J as well as J′ crosses their respective thresholds.
Job J′ enters high criticality if it exceeds its threshold or J enters high criticality. That is,

Event(J′ enters HI-criticality) = Event(J enters HI-criticality) or

Event(J′ enters HI-criticality of its own execution)

The execution of J is given by its response time and that of J′ is given by its pWCET. Let the repsonse
time random variable be R for J, response time random variable R ′ for J′ and execution time random
variable for C ′ for J′, let the dependent response time be f ′dR . Since execution of J′ does not affect the

97

0.30
0.10

0.60

0.10

0.20

0.10 0.1
0.20

0.30

[l ,WCET]

'(l ,WCET]

l

l

=>
0.120.12

0.05 0.01

0.10 0.1
0.20

0.30

l

0.120.12
0.05 0.01

fR fR

fR

=
>

=>

J

J

timetime

time
time'

'd

tail

'

' '

'

tail

Figure 6.11: Dependence convolution.

duration for which J will execute, R and C ′ can be assumed independent. The probabilities are thus,

Pr(R ′ > l′) = Pr(R > l +C ′ > l′)

The summation leads to a convolution. The values of R ′ less than or equal to l′ are not affected
by R . That is, if the execution of J′ ends before or at l′, job J entering HI-criticality does not affect
J′. Therefore, only the probabilities after l′ or the tail of J′ needs to be convolved. This leads to a
piece-wise response time distribution. The dependent response time f ′dR is thus given as

f ′dR (x) =

{
fR (x) if x≤ l′

f ′(l
′,WCET ′]

tail ⊗ f [l,WCET]
tail if x > l′

It should be noted that (l′,WCET ′] is different from [l′,WCET ′] by not including the probability
at l′ in tail PMF. Same as the previous definition of response time, we do no lose any probabilistic
information by this operation. This is because the probabilities until l′ are included in the piece of the
function with x≤ l′. The probabilities after the threshold are convolved. This is shown in Figure 6.11
by assuming a PMF for the jobs in task set Γ1. The dependent pWCRT f ′dR (x) is formed piece-wise
from the pWCRT of the jobs J and J′.

It should be noted that the dependent pWCRT is obtained after obtaining the pWCRT. This way,
first the delay caused due the previously scheduled job is included, followed by any dependence. We
reuse the task Γ2 to exhibit this.

Example 11. Referring to the task set Γ2, say there exists dependence from J11 to the job J12. In
that case the pWCRT for J12 is shown in Figure 6.12. We see that the pWCRT changes for J12 in the
dependent case by accommodating for the probabilities from the job J11. The same schedule remains
feasible which is: J11,J41,J31,J32,J21,J12,J13,J42,J33,J22,J14,J15,J34,J23,J16.

Because of dependence, the probability that the system enters high criticality is 0.006005 which is

98

0 105

P
ro

b
ab

il
it

y

0.1

0.3

0.5

0.094

0.005

1.02E-03
1.00E-5

9.99E-07

time

Figure 6.12: Dependent pWCRT PMF of job J12 in Γ2 .

1.0
0.8
0.6
0.4
0.2

0
1 2 3 4 5 6 7

Depedence
Without dependenceP

ro
b
ab

il
it

y

No of parallel jobs

Figure 6.13: Probability of system entering high criticality

higher than 0.0050 in the non-dependent case.

In order to understand the relation between dependence and the system probabilities, we analyze
a set of jobs released at a critical instant, i.e. their arrival times are equal. The jobs characteristics
are same as that of J11 in Γ2. The dependence exists from the first job to all the subsequent jobs.
Figure 6.13 shows the affect of this dependence on the probability of system entering high criticality
as the number of jobs increases. The rate of increase in probability with number of jobs is same as
the non-dependent case with dependence probabilities being higher. The probability of deadline miss
of the jobs are shown in Figure 6.14. We see the cascade affect of the dependence in addition to the
parallel execution of jobs resulting in higher probabilities of deadline miss. They quickly cross the
maximum allowed limit of 1E−03 into the region in which they are no more schedulable. This will be
reflected in the graph model as no valid path will exist, implying that a feasible schedule will not exist.

Region not scheduled

1 2 3 4 5 6 7

1.0
0.8
0.6
0.4
0.2

0

P
ro

b
ab

il
it

y

1E-03
Deadline Miss

Job number

Figure 6.14: Probability of jobs missing deadline

99

It should be noted that we evaluate probabilistic dependence, i.e. the probability affected by depen-
dence. We quantify the probabilistic effect on the response time of the jobs which have dependence
from others. We do not need to apply it on the Worst Case model because the worst case model already
considers the worst cases of jobs entering high criticality mode. The probability of job entering high
criticality mode is unlikely but possible. The worst case model incorporates these unlikely occurences,
i.e. the schedules obtained from worst case model ensures timing constraints for all the high criticality
jobs.

6.4 Perspectives

We have utilized graph base exploratory method to obtain a schedule for Mixed Criticality probabilistic
real-time system. The task criticalities are defined using the response time because tasks enter higher
criticality by demanding more resource at run-time. This is as opposed using the execution time for task
criticalities. The obtained schedule minimizes the probability of system entering high criticality mode.
We extended this model in the deterministic worst case scenario where system does enter high criticality.
In this worst case, the maximum number of low criticality jobs are allowed to execute along with
high criticality ones without jeopardizing the schedulability of either. This way we have maximized
resource usage through scheduling. We also take a first step towards studying task dependence in the
probabilistic MC system. We will further explore the dependence in the mixed criticality environment
in the future. We also aim to perform a sensitivity analysis on the criticality definition using the task
response times.

In this final chapter of the thesis, we have tackled most of the problems we realized in the Chapter
3. We used discrete method of modelling through graphs to model the job execution scenarios. It is the
method of modelling which is discrete and not the distributions. This method can take both discrete
and continuous distributions as the input. The conversion from continuous and discrete distribution has
been discussed in Chapter 3.

We made the following observation. The mixed criticality model represents an adjustment to a task
demanding more execution time. This demand occurs at run-time and is not known beforehand. Since
response time represents the run-time behaviour of the task, the response time should be used to decide
the system criticality for schedulability analysis. This observation leads to a probabilistic response time
in our case, which in turn gives us a probability of jobs entering higher criticality. This probability now
depends on the schedule because response time depends on the schedule as well. This way probability
is brought into the decision making process.

We obtain a schedule and not remain affixed to EDF or FP, like in Chapter 3. The schedule obtained
minimizes the probability of system entering higher criticality. This way, the schedule is subject to a
probability criteria. Since the schedule uses probability as well as MC, we have combined both the
approaches and quantified the pessimism.

Once we have minimized the probability of system entering high criticality, we use the modelling in
Chapter 5 to provide the bounds to this probability. That is, we prepare for the scenario that the system
actually does enter high criticality. In that case, we ensure the schedulability of the high criticality jobs.

100

We do so without dropping all the lower criticality jobs. Here we obtain a schedule as a tree, as a result
the schedule adapts depending on whether a job enters high criticality or not.

Where we lack at the current stage is the ability to handle high complexity of our approach. In
the previous chapters we discussed where the complexity arises from. We decided to take the course
for higher complexity further to ensure safety of the schedule and the schedulability analysis. We
intend to reduce the complexity in the future works. Where we gain is the higher representativity of the
execution of jobs of different criticalities. We gain a flexible representation which also gives us more
control over job executions depending on the states of the system.

101

CHAPTER 7

General Perspectives and Conclusion

Simplicity is the final achievement. After
one has played a vast quantity of notes and
more notes, it is simplicity that emerges as
the crowning reward of art.

Frédéric Chopin

In the course of this thesis we obtained perspectives in many directions relating to pRTSs and
MC systems. The objective of this thesis was to perform schedulability analysis of probabilistic
real-time systems. Through our discussion, this objective transformed into quantifying and minimizing
pessimism in the analysis of the system. This is because the real-time system is applied in the real-
world with design constraints and over-allowance of resources. This over-allowance is quantified using
probabilistic representations of the system.

The task execution is described using a pWCET which is a probability distribution. The pWCETs
are assumed given. The tasks are scheduled to ensure that all tasks are allowed a processor time. In
order to ensure that all tasks are scheduled, schedulability analysis is performed. In our case when
task execution is described probabilistically, the schedulability analysis must also be probabilistic.
This implies that the probabilistic modelling of the system to probabilistically ensure that all tasks are
scheduled.

In Chapter 3, we began with a formal approach towards the probabilistic analysis of the system
through CTMCh. We used CTMCh to models jobs of the tasks which are scheduled using EDF or
FP scheduling algorithm. We assumed continuous pWCET distribution. We observed the differences
between continuous and discrete pWCET distributions with the advantages and disadvantages of
each. Following this, we approached another direction in search for reducing pessimism through MC
real-time systems.

In Chapter 4, we obtained a DTMCh model for a MC pRTS. DTMCh model was used to quantify
the probability of the system entering high criticality. At this moment, we observed that pessimism can
be further reduced in a probabilistic environment by letting go of the classical schedulability algorithms.
Moreover, the objective of the probabilistic as well as the MC approaches is to reduce the resource
over-allowance. These two approaches can be combined toghether to further refine our research.

In Chapter 5, we obtained a graph based exploratory model for MC pRTS. Using the graph model,
we obtained a schedule which is safe and ensures schedulability of high criticality jobs. At the same
time, the low criticality jobs are scheduled whenever possible. Through this approach, we dropped the

103

classical idea of suspending all low criticality jobs when a high criticality job enters high criticality
mode. At the same time we observed that the probabilities can only be quantified because they arrive
from pWCET and pWCET does not depend on the schedule.

In the final Chapter 6, we made the observation that tasks enters high criticality at runtime.
This implies that response time, and not execution time, must be used to decide criticality modes.
Since the response time is affected by the schedule.The schedule can then be subject to a probability
minimization or a maximization criteria. We observed the usability and hidden assumptions in the
classical convolution operation between pWCET distributions in the context of real-time systems. In the
end we obtain a MC schedule in which the probability of system entering high criticality is minimum.
At the same time, if the system does enter high criticality, the schedulability of high criticality jobs
is ensured with allowing low criticality jobs to execute. The schedule is also adaptive, which means
that depending on the when and which job enters high criticality, the following schedule is decided
accordingly. The schedule is ensured in the worst case. We also made a first step towards dependence
between the tasks which is apart from the scheduling.

Globally, probabilities have the potential to quantify the pessimism which exists in real-time
scheduling. With probabilities, many safety concerns arise. As a a general rule, pessimistic probabilities
are deemed safe and acceptable instead of optimistic probabilities even if it leads to resource over-
allowance. We assumed a pWCET given and we did not enter the details of obtaining a pWCET.
However, the pWCET estimations and the methods of obtaining them must be ensured to be safe.

Care must be taken if the pWCET is continuous or discrete. At the same time, if it is required
to transform from one to the other, it must ensured that no information is lost in the process and
the transformation is safe. Continuous distribution represented by mathematical expressions can be
evaluated with less complexity. On the other hand, continuous distributions may lead to representation
problems. Discrete distributions are accurate is representing probabilities with respect to an instant of
time. Discrete distributions are preferable because the probabilities are available for every possible
occurrence at the instant of its occurrence. However, discrete probabilities lead to large computational
complexity. Eventually, because of high information content in the probabilistic representations,
probabilistic analysis leads to high computational complexity.

MC approaches tend to reduce the pessimism in the system by assigning criticalities and criticality
modes to the system. These approaches should be more flexible in resource usage. For example, the
classical approach to drop all low criticality tasks when system enters high criticality does not take into
consideration any possible extra room for execution. It is understandable because it is a simple solution
which has one system parameter of criticality mode and one simple action to cope with it. However, to
increase resource usage efficiency, the idea of system-wide mode switch should be dropped. On the
other hand, an adaptive schedule, as one presented in this thesis, should be implemented.

Another classical concept is that of defining MC using task execution time. Since higher execution
demand by a task happens at runtime, and criticality is formalization of this demand, the run time
information must be used to decide for criticality. That is, response time instead of execution time
must be used to decide for task criticality mode. A dual effect of this idea is that the probabilities
associated to the criticality get affected by the schedule. This way, the probabilities of task entering
high criticalities can be used in the deciding for a MC pRTS schedule. Otherwise, in the case where

104

probabilities come from execution time, the probabilities can only be quantified as they are not affected
by the schedule.

Probabilistic analysis must always be accompanied by the worst case probabilities. That is, similar
to the case that pWCET is upper bounded by WCET, the probabilistic results from the schedulability
analysis must always be upper bounded. This way, the schedulability analysis is more rich than a
deterministic one. The probabilistic schedulability analysis not only explores the worst case scenarios,
it also gives a picture of task execution before the worst cases.

Overall, if some classical approaches be overlooked, a combination of probabilistic and MC
approached have the potential to provide a rich, safe and efficient real-time system.

In the future works, we would like to reduce the complexity of the MC pRTS graph based
approaches. We plan to do so through more organized search as well as through merging similar paths
in the exploration tree. We would like to further develop analysis of task dependence in the system.
The next steps should be taken in the general direction of studying complexity of the MC approaches.
Criticality levels based on probabilities can directly relate to some safety standards and this will be
studied in the future.

105

Bibliography

[Ab+16] Zaid Al-bayati et al. “A Four-Mode Model for Efficient Fault-Tolerant Mixed-Criticality
Systems”. In: Jan. 2016, pp. 97–102 (cit. on p. 20).

[Abe+14] Jaume Abella et al. “Heart of Gold: Making the Improbable Happen to Increase Confi-
dence in MBPTA”. In: 26th Euromicro Conference on Real-Time Systems, (ECRTS). 2014
(cit. on p. 18).

[AD17] Yasmina Abdeddaïm and Maxim Dorin. “Probabilistic Schedulability Analysis for Fixed
Priority Mixed Criticality Real-Time Systems ”. In: Design, Automation and Test in
Europe - DATE 2017. Lausanne, Switzerland, Mar. 2017 (cit. on p. 19).

[AG16] Bader Alahmad and Sathish Gopalakrishnan. “A Risk-Constrained Markov Decision
Process Approach to Scheduling Mixed-Criticality Job Sets”. In: Workshop on Mixed
Criticality Systems (WMC 2016). Porto, Portugal, Nov. 2016 (cit. on p. 20).

[AMP12] Luca Abeni, Nicola Manica, and Luigi Palopoli. “Efficient and robust probabilistic guaran-
tees for real-time tasks”. In: Journal of Systems and Software 85.5 (2012), pp. 1147–1156
(cit. on p. 18).

[Bar+11] Sanjoy K. Baruah et al. “Mixed-Criticality Scheduling of Sporadic Task Systems”. In: 19th
Annual European Symposium on Algorithms (ESA 2011). Ed. by Camil Demetrescu and
Magnús M. Halldórsson. Vol. 6942. Lecture Notes in Computer Science. Saarbruecken,
Germany: Springer, Sept. 2011, pp. 555–566 (cit. on p. 20).

[Bar+14] Sanjoy Baruah et al. “Mixed-criticality scheduling on multiprocessors”. In: Real-Time
Systems 50 (May 2014) (cit. on p. 20).

[Bar+15] Sanjoy K. Baruah et al. “Preemptive Uniprocessor Scheduling of Mixed-Criticality Spo-
radic Task Systems”. In: J. ACM 62.2 (2015) (cit. on pp. 56–58).

[Bar09] Sanjoy K. Baruah. “Mixed criticality schedulability analysis is highly intractable”. In:
2009 (cit. on p. 19).

[Bar98] S. K. Baruah. “A General Model for Recurring Real-Time Tasks”. In: Real-Time System
(1998) (cit. on p. 17).

[BB13] S.K. Baruah and A. Burns. “Fixed-priority scheduling of dual-criticality systems”. In:
Proc. RTNS. ACM, 2013, pp. 173–182 (cit. on p. 20).

[BBB03] A. Burns, G. Bernat, and I. Broster. “A Probabilistic Framework for Schedulability
Analysis”. In: (2003), pp. 1–15 (cit. on p. 18).

[BBD11] S. K. Baruah, A. Burns, and R. I. Davis. “Response-Time Analysis for Mixed Criticality
Systems”. In: Proceedings of the 2011 IEEE 32Nd Real-Time Systems Symposium. RTSS
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 34–43 (cit. on p. 20).

[BCP02] G. Bernat, A. Colin, and S. M. Petters. “WCET Analysis of Probabilistic Hard Real-Time
System”. In: IEEE Real-Time Systems Symposium (RTSS). 2002 (cit. on p. 16).

107

[BD19] Alan Burns and Robert Davis. Mixed criticality systems – a review (12th ed.) Tech. rep.
Dept of CS, U. of York, UK, 2019 (cit. on p. 19).

[BD91] B. Berthomieu and M. Diaz. “Modeling and Verification of Time Dependent Systems
Using Time Petri Nets”. In: IEEE Trans. on SW Eng. 17.3 (1991), 259–273 (cit. on p. 17).

[BEG15] S. Baruah, A. Easwaran, and Z. Guo. “MC-Fluid: Simplified and Optimally Quantified”.
In: 2015 IEEE Real-Time Systems Symposium. 2015, pp. 327–337 (cit. on p. 20).

[BG15] Sanjoy K. Baruah and Zhishan Guo. “Mixed-Criticality Job Models: A Comparison”. In:
2015 (cit. on p. 19).

[Bhu+19] Ashik Bhuiyan et al. “Precise Scheduling of Mixed-Criticality Tasks by Varying Processor
Speed”. In: Nov. 2019 (cit. on p. 20).

[BLHS91] Shaukat Brah, John L Hunsucker, and Jaymeen Shah. “Mathematical Modeling of Schedul-
ing Problems”. In: International Journal of Information and Management Sciences 12
(Jan. 1991), pp. 113–137 (cit. on p. 16).

[Buc+10] G. Bucci et al. “Oris: a tool for modeling, verification and evaluation of real-time systems”.
In: International Journal of Software Tools for Technology Transfer 12.5 (2010), 391 –403
(cit. on pp. 18, 48).

[Bur15] A. Burns. “An Augmented Model for Mixed Criticality”. In: Mixed Criticality on Multi-
core/Manycore Platforms (Dagstuhl Seminar 15121). Ed. by Davis Baruah Cucu-Grosjean
and Maiza. Vol. 5. 3. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2015, pp. 92–93 (cit. on p. 19).

[But11] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. 3rd. Springer Publishing Company, Incorporated, 2011 (cit. on
pp. 16, 29, 30, 37).

[Car+14] Laura Carnevali et al. “Probabilistic Deadline Miss Analysis of Real-Time Systems Using
Regenerative Transient Analysis”. In: Int. Conf. Real-Time Networks and Sys. RTNS. 2014
(cit. on p. 18).

[Caz+11] F.J. Cazorla et al. “PROARTIS: Probabilistically Analysable Real-Time Systems”. In:
ACM Transactions on Embedded Computing Systems (2011) (cit. on pp. 19, 33).

[CG+12] L. Cucu-Grosjean et al. “Measurement-Based Probabilistic Timing Analysis for Multi-
path Programs”. In: Euromicro Conf. on Real-Time Systems (ECRTS). IEEE, 2012 (cit. on
pp. 18, 51).

[CG13] Liliana Cucu-Grosjean. “Independence - a misunderstood property of and for (probabilis-
tic) real-time systems”. In: Real-time Systems: the past, the present and the future. 2013
(cit. on pp. 17, 26).

[CGV09] L. Carnevali, L. Grassi, and E. Vicario. “State-density functions over DBM domains in the
analysis of non-Markovian models”. In: IEEE Trans. on SW Eng. 35.2 (2009), 178–194
(cit. on p. 18).

[CKT94] Hoon Choi, Vidyadhar G. Kulkarni, and Kishor S. Trivedi. “Markov regenerative stochas-
tic Petri nets”. In: Performance Evaluation 20.1-3 (1994), pp. 337–357 (cit. on p. 19).

108

[CT06] Liliana Cucu and Eduardo Tovar. “A framework for the response time analysis of fixed-
priority tasks with stochastic inter-arrival times”. In: SIGBED Review 3.1 (2006), pp. 7–12
(cit. on p. 17).

[DBG17] Robert I. Davis, Alan Burns, and David Griffin. “On the Meaning of pWCET Distributions
and their use in Schedulability Analysis”. In: In Proceedings Real-Time Scheduling Open
Problems Seminar at ECRTS. 2017 (cit. on p. 17).

[DD99] A. L. M. Dekkers and L. De Haan. “On the Estimation of the Extreme-Value Index and
Large Quantile Estimation”. In: The Annals of Statistics 17.4 (1999), pp. 1795–1832
(cit. on p. 18).

[Dia+02] José Luis Diaz et al. “Stochastic Analysis of Periodic Real-Time Systems”. In: RTSS:
Proceedings of the 23rd IEEE Real-Time Systems Symposium. IEEE Computer Society,
2002, p. 289 (cit. on p. 17).

[Dia+04] J. L. Diaz et al. “Pessimism in the stochastic analysis of real-time systems: concept and
applications”. In: 25th IEEE International Real-Time Systems Symposium. 2004, pp. 197–
207 (cit. on pp. 18, 32).

[EE07] Andreas Ermedahl and Jakob Engblom. “Execution Time Analysis for Embedded Real-
Time Systems”. In: ed. by Sang H. Son Insup Lee Jospeh Y-T. Leung. Chapman &
Hall/CRC - Taylor and Francis Group, 2007 (cit. on p. 16).

[GSY15] Z. Guo, L. Santinelli, and K. Yang. “EDF schedulability analysis on mixed-criticality
systems with permitted failure probability”. In: Proc. RTCSA. 2015 (cit. on pp. 19, 57).

[Guo+17] Zhishan Guo et al. “Sustainability in Mixed-Criticality Scheduling”. In: 2017 IEEE
Real-Time Systems Symposium (RTSS) (2017), pp. 24–33 (cit. on p. 20).

[HHM09] J. Hansen, S. Hissam, and G. A. Moreno. “Statistical-Based WCET Estimation and
Validation”. In: Int. Workshop on WCET Analysis. 2009 (cit. on p. 18).

[Hor+12] András Horváth et al. “Transient analysis of non-Markovian models using stochastic state
classes”. In: Perf. Eval. 69.7-8 (2012), pp. 315–335 (cit. on p. 19).

[Int09] Michael Interbartolo. Apollo Guidance, Navigation, and Control (GNC) Hardware Overview.
Tech. rep. 2009 (cit. on p. 16).

[Kim+05] Kanghee Kim et al. “An exact stochastic analysis of priority-driven periodic real-time
systems and its approximations”. In: Computers, IEEE Transactions on 54.11 (2005),
pp. 1460 –1466 (cit. on p. 88).

[KNP07] M. Kwiatkowska, G. Norman, and D. Parker. “Stochastic Model Checking”. In: Formal
Methods for the Design of Computer, Communication and Software Systems: Performance
Evaluation SFM. Ed. by M. Bernardo and J. Hillston. Vol. 4486. LNCS (Tutorial Volume).
Springer, 2007, pp. 220–270 (cit. on pp. 31, 32).

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of Probabilistic
Real-time Systems”. In: Proc. 23rd International Conference on Computer Aided Verifi-
cation CAV. Ed. by G. Gopalakrishnan and S. Qadeer. Vol. 6806. LNCS. Springer, 2011
(cit. on pp. 13, 19, 58).

109

[LDB16] George Lima, Dario Dias, and Edna Barros. “Extreme Value Theory for Estimating Task
Execution Time Bounds: A Careful Look”. In: 28th Euromicro Conference on Real-Time
Systems, (ECRTS). 2016 (cit. on p. 33).

[Liu+16] Di Liu et al. “EDF-VD Scheduling of Mixed-Criticality Systems with Degraded Quality
Guarantees”. In: Proceedings of the 37th IEEE Real-Time Systems Symposium. 2016
(cit. on p. 20).

[LL73] C. L. Liu and James W. Layland. “Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment”. In: J. ACM 20.1 (Jan. 1973), pp. 46–61 (cit. on p. 17).

[LR09] Didier Lime and Olivier H. Roux. “Formal verification of real-time systems with preemp-
tive scheduling”. In: Real-Time Syst. 41.2 (2009), pp. 118–151 (cit. on p. 17).

[Lu+12] Yue Lu et al. “A Statistical Response-Time Analysis of Real-Time Embedded Systems”.
In: Proceedings of the 33rd IEEE Real-Time Systems Symposium, RTSS 2012, San Juan,
PR, USA, December 4-7, 2012. 2012, pp. 351–362 (cit. on p. 18).

[Max+17] Dorin Maxim et al. “Probabilistic Analysis for Mixed Criticality Systems Using Fixed
Priority Preemptive Scheduling”. In: Proceedings of the 25th International Conference on
Real-Time Networks and Systems. RTNS ’17. Grenoble, France: ACM, 2017, pp. 237–246
(cit. on pp. 20, 88).

[MBP17] Roberto Medina, Etienne Borde, and Laurent Pautet. “Directed Acyclic Graph Scheduling
for Mixed-Criticality Systems”. In: Ada-Europe. 2017 (cit. on p. 20).

[MEP04] S. Manolache, P. Eles, and Z. Peng. “Schedulability analysis of applications with stochastic
task execution times”. In: ACM Trans. Emb. Comp. Sys. 3.4 (2004), pp. 706–735 (cit. on
p. 18).

[MKT04] Alexander Maxiaguine, Simon Kunzli, and Lothar Thiele. “Workload Characterization
Model for Tasks with Variable Execution Demand”. In: DATE ’04: Proceedings of the
conference on Design, automation and test in Europe. IEEE Computer Society, 2004
(cit. on p. 17).

[Moo65] Gordon E. Moore. “Cramming more components onto integrated circuits”. In: Electronics
38.8 (1965) (cit. on p. 16).

[Nor97] J. R. Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic Mathemat-
ics. Cambridge University Press, 1997 (cit. on pp. 30, 75, 89).

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. 1st. John Wiley & Sons, Inc., 1994 (cit. on p. 58).

[SB94] Spuri and Buttazzo. “Efficient aperiodic service under earliest deadline scheduling”. In:
1994 Proceedings Real-Time Systems Symposium. 1994, pp. 2–11 (cit. on p. 17).

[SG16] Luca Santinelli and Laurent George. “Probabilities and Mixed-Criticalities: the Proba-
bilistic C-Space”. In: 3rd International Workshop on Mixed Criticality Systems WMC at
RTSS. 2016 (cit. on p. 18).

[SGM17] Luca Santinelli, Fabrice Guet, and Jérôme Morio. “Revising Measurement-Based Prob-
abilistic Timing Analysis”. In: 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2017, Pittsburg, PA, USA, April 18-21, 2017. 2017,
pp. 199–208 (cit. on p. 33).

110

[SM01] William H Sanders and John F Meyer. “Stochastic Activity Networks: Formal Definitions
and Concepts”. In: Lectures on Formal Methods and Performance Analysis. Springer,
2001, pp. 315–343 (cit. on p. 19).

[Sti+11] Martin Stigge et al. “The Digraph Real-Time Task Model”. In: Proceedings of the 2011
17th IEEE Real-Time and Embedded Technology and Applications Symposium. RTAS ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 71–80 (cit. on p. 17).

[Sto02] Mariëlle Stoelinga. “An introduction to probabilistic automata”. In: Bulletin of the Euro-
pean Association for Theoretical Computer Science (2002), pp. 176–198 (cit. on p. 17).

[TBW92] K. W. Tindell, A. Burns, and A. J. Wellings. “Mode changes in priority pre-emptively
scheduled systems”. In: Proceedings of the Real Time Systems Symposium. 1992, pp. 100–
109 (cit. on p. 19).

[TF13] Jens Theis and Gerhard Fohler. “Schedule Table Generation for Time-Triggered Mixed
Criticality Systems”. In: 2013 (cit. on p. 19).

[Ves07] Steve Vestal. “Preemptive Scheduling of Multi-criticality Systems with Varying Degrees
of Execution Time Assurance”. In: Proceedings of the 28th IEEE International Real-Time
Systems Symposium (RTSS). IEEE Computer Society, 2007, pp. 239–243 (cit. on pp. 19,
57).

[Vic01] E. Vicario. “Static analysis and dynamic steering of time dependent systems using time
Petri nets”. In: IEEE Trans. on SW Eng. 27.1 (2001), 728–748 (cit. on p. 16).

[VMF03] Manel Velasco, Pau Marti, and Josep M. Fuertes. The Self Triggered Task Model for
Real-Time Control Systems. 2003 (cit. on p. 16).

[Wil+08] R. Wilhelm et al. “The worst-case execution-time problem - overview of methods and
survey of tools”. In: ACM Trans. Embedded Comput. Syst. (2008) (cit. on p. 16).

[ZB09] Fengxiang Zhang and Alan Burns. “Schedulability Analysis for Real-Time Systems with
EDF Scheduling”. In: IEEE Transactions on Computers 58.9 (2009) (cit. on p. 17).

[A. 95] A. Bobbio and M. Telek. “Markov regenerative SPN with non-overlapping activity cycles”.
In: Int. Comp. Perf. and Depend. Symp. (IPDS95) (1995), 124–133 (cit. on p. 19).

[Bak+09] S. Bak et al. “The System-Level Simplex Architecture for Improved Real-Time Em-
bedded System Safety”. In: 2009 15th IEEE Real-Time and Embedded Technology and
Applications Symposium. 2009, pp. 99–107 (cit. on p. 19).

[G. 04] G. Bucci and A. Fedeli and L. Sassoli and E. Vicario. “Timed State Space Analysis of
Real Time Preemptive Systems”. In: IEEE Trans. on SW Eng. 30.2 (2004), 97–111 (cit. on
p. 17).

[Kim05] Kim G. Larsen and Marius Mikucionis and Brian Nielsen and Arne Skou. “Testing Real-
time Embedded Software using UPPAAL-TRON - An Industrial Case Study”. In: ACM
Int. Conf. on Embedded SW. 2005 (cit. on p. 17).

[Oli04] Olivier H. Roux and Didier Lime. “Time Petri nets with inhibitor hyperarcs: formal
semantics and state-space computation”. In: 25th Int. Conf. on Theory and Application of
Petri Nets 3099 (2004), 371–390 (cit. on p. 17).

111

[Sta88] J. A. Stankovic. “Misconceptions about real-time computing: a serious problem for
next-generation systems”. In: Computer 21.10 (1988), pp. 10–19 (cit. on p. 16).

112

	Table of acronyms
	Introduction
	Introduction
	Real-Time Systems
	Probabilistic Real-time Systems
	Mixed Criticality Real-Time Systems
	Mixed Criticality Probabilistic Real-Time Systems
	Formal Methods
	The Thesis
	State Of The Art

	Fundamentals and Notations
	Probability
	Real-Time Systems
	Mixed Criticality Systems

	Continuous Time Markov Chain Schedulability Analysis
	Continuous Time Markov Chain
	Pessimism, Exponential Upper Bounding, and Safety
	Job Execution Interference Definitions
	Deterministic Observations
	Modelling and Analyzing Probabilistic Real-Time Systems
	Experimental Results
	Perspectives

	Discrete Time Markov Chain Mixed Criticality Schedulability Analysis
	Mixed Criticality System
	Discrete Time Markov Chain model
	Analysis
	Perspectives

	Graph Based Mixed Criticality Schedulability Analysis: Execution Time
	Graph and Tree Model
	Scheduling Tree
	Schedulablity analysis
	Experiments
	Perspectives

	Graph Based Mixed Criticality Schedulability Analysis: Response Time
	Graph and Tree Model
	Worst Case Scheduling Model
	Dependence
	Perspectives

	General Perspectives and Conclusion

	Bibliography

