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Abstract

In this Ph.D. thesis, we study a semilinear wave equation with nonlinear and
time-dependent damping term.

After rewriting the equation as a first order system, we define a class of ap-
proximate solutions employing typical tools of hyperbolic systems of conserva-
tion laws, such as the Riemann problem. We prove that the initial-boundary value
problem is well-posed for initial data in L∞ space. By recasting the problem as
a discrete-time nonhomogeneous system, which is related to a probabilistic inter-
pretation of the solution, we provide a strategy to study its long-time behavior
uniformly with respect to the mesh size parameter ∆x = 1/N → 0. The proof
makes use of the Birkhoff decomposition of doubly stochastic matrices and of ac-
curate estimates on the iteration system as N → ∞.

Under appropriate assumptions on the nonlinearity, we prove the exponential
convergence in L∞ of the solution to the first order system towards a stationary
solution, as t → +∞, as well as uniform error estimates for the approximate solu-
tions.
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Chapter 1

Introduction

1.1 Introduction and motivation of the work

This Ph.D. thesis aims at studying the asymptotic behavior of solutions of a semi-
linear damped wave equation on a bounded 1D domain. Such equations arise
in many contexts in mathematics, and they are important as they can describe
real-world applications. For instance, the damped wave equations can be used to
model a propagation of waves in dissipative media. Moreover, the damped wave
equation first occurred in the mathematical description of the telegraph, and it is
generally known as the equation of telegraphy. The telegrapher’s equation, see
[42], is a linear differential equation which represents a classical vibrating mem-
brane with the resistance proportional to the velocity.

In this dissertation, we consider the following semilinear damped wave equa-
tion 

∂ttu− ∂xxu + 2k(x)α(t)g(∂tu) = 0 , (x, t) ∈ [0, 1]×R+ ,
u(0, x) = u0(x) , ∂tu(0, x) = u1(x) , x ∈ [0, 1] ,
u(t, 0) = u(t, 1) = 0 , t ∈ R+ .

(1.1)

Until recently, equation (1.1) was studied with either space- or time-dependent
damping coefficients, and the methods used for these two types of problems are
incompatible. In the time-independent case, α(t) = const., problem (1.1) has
been considered in several papers, see for instance, [22, 32, 34, 39, 49, 21, 35, 19],
the review paper [50], and the recent monograph [36]. It is well known that
the initial-boundary value problem (1.1) is well-posed for initial data (u0, u1) ∈
H1

0([0, 1]) × L2([0, 1]), for k(x) ∈ L∞([0, 1]) with k(x) ≥ 0. Moreover, suitable
decay estimates for the energy are obtained, which are either exponential or poly-
nomial. More precisely, for the decay to hold, it is sufficient that the non-negative
damping potential k(x) to be effective (strictly positive) in a subinterval. Whether
the decay is exponential or polynomial depends in an essential manner on the
behavior of the function g near ut = 0, so that the decay is exponential when g
behaves linearly near zero and polynomial when g degenerates in a power-like
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fashion. For example, in [44], the author considered the case g(s) = |s|rs, with
r > −1, and under the assumption that the function k(x) is supported only near
the boundary, it is proved that the energy of the solution decays with rate (1+ t)−µ

for some µ > 0 provided a regular initial data (u0, u1) ∈ (H2 ∩ H1
0)× H1

0 . In [48],
the author has generalized the results of [44] to include a large class of function g.
We also refer to the recent paper [1], where sharp energy decay rates are obtained
for a large class of nonlinearly first-order damped systems.

In [35, Theorem 3.1], Lp decay estimates with 2 ≤ p ≤ ∞ are obtained under
the assumptions of k(x) = 1, α(t) = 1, g′ that vanishes at 0, and by assuming
sufficiently regular data, (u0, u1) ∈ W2,∞([0, 1])×W1,∞([0, 1]). This regularity re-
striction appears to be due to the lack of a Lyapunov functional, equivalent to the
norm of (u(·, t), ut(·, t)) in W1,∞([0, 1])× L∞([0, 1]), see also [20].

There are fewer results in the case of the wave equation with time-dependent
dissipation. It is shown, in particular, that the effect of the time dependence on the
decay rate is very delicate. Nakao in [45] generalizes the result of [44] to prove a
precise decay estimate of the solutions of the initial-boundary value problem (1.1)
for a regular data (u0, u1) ∈ (H2 ∩H1

0)×H1
0 , with a localized nonlinear dissipation

which depends on the time and on the space variable. In [11], the author general-
izes Nakao work [45] to prove decay estimates for (1.1) without any assumption
on the dynamics (that is, there is no assumption in the domain where the damping
term is effective).

In this Ph.D. thesis, first, we prove the existence and stability of weak solutions
to (1.1) with time-dependent damping term. Then, we assume that the damping
is space-dependent and that g′ > 0 to prove the decay of solutions in W1,∞. Our
main contribution is to develop a novel approach that originates from the point of
view of the hyperbolic systems of balance laws. In particular, after rewriting the
equation as a first order system, we construct approximate solutions that allow
us to get an accurate description of the solution, whose evolution is recast as a
discrete time system. Then we find a strategy for the analysis of this system that
makes use of a discrete representation formula (rather than Lyapunov functionals).
This eventually leads to the decay in L∞ of the solution in terms of (ux, ut).

More precisely, we introduce the variables J = ∂tu and ρ = −∂xu, then the
damped wave equation (1.1) is equivalent to the following first order 2× 2 system
in one space dimension {

∂tρ + ∂x J = 0,
∂t J + ∂xρ = −2k(x)α(t)g(J),

(1.2)
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where x ∈ I = [0, 1], t ≥ 0 and

(ρ, J)(·, 0) = (ρ0, J0)(·) , J(0, t) = J(1, t) = 0 , (1.3)

for (ρ0, J0) ∈ L∞(I).
About the terms k, α and g in (1.2), let

k ∈ L1(I) , k ≥ 0 a.e. , g ∈ C1(R) , g(0) = 0 , g′(J) ≥ 0 ,

and
α ∈ BVloc ∩ L∞([0, ∞); [0, 1]) , α(t) ≥ 0 .

We remark that the assumption on k includes the possibility of localized damping,
for instance, k(x) = k̄ > 0 on some (α, β) with [α, β] ⊂ (0, 1), and k(x) = 0
otherwise. In this thesis, part of the analysis is carried on for the case of localized
damping, while for the proof of L∞ estimate for the solutions of (1.2), we require
that k(x) is uniformly positive, see assumption (1.11).

The coefficient α(t) in (1.2), with values in [0, 1], plays the role of a time lo-
calization of the damping term. A specific time dependent case is the intermittent
damping [43, 37], in which for some 0 < T1 < T2 one has

α(t) =

{
1 t ∈ [0, T1),
0 t ∈ [T1, T2)

, α(t + T2) = α(t) ∀ t > 0 . (1.4)

In the time-independent case, α(t) = const., the large time behavior of solu-
tions to (1.2)–(1.3) is governed by the stationary solution

J(x) = 0, ρ(x) = const. =
∫

I
ρ0 .

After possibly changing the variable ρ with ρ−
∫

I ρ0, it is not restrictive to assume
that

∫
I ρ0(x) dx = 0 .

This thesis gives an overall review of works contained in [3, 4, 5], in addition,
we provide an ongoing study of the localized damping case. More precisely, in
[3], which is a joint work with Debora Amadori and Edda Dal Santo, we consider
initial data (ρ0, J0) ∈ BV(I), and we assume that the damping is space dependent
with g

′
> 0. Hence, under appropriate assumptions on the nonlinearity, we prove

the exponential convergence in L∞ of the solution to the first order system (1.2)
towards the stationary solution, as t→ +∞, as well as uniform error estimates for
the approximate solutions. In [4], which is in collaboration with Debora Amadori,
we prove that the initial-boundary value problem (1.2)-(1.3) with time-dependent
source is well-posed for L∞(I) initial data, as well as, we work on extending the
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results of [3] by showing that the time-asymptotic stability of solutions ρ = 0 = J
holds for L∞ initial data. Finally, we provide some numerical simulations and
perspectives.

For the system (1.2) a class of approximations of Well-Balanced type to the
Cauchy problem was studied in [28, 27] and in the papers [6, 7, 8]. In these last
papers, suitable L1 error estimates are derived by means of stability analysis for
hyperbolic systems of conservation laws, obtained through a suitable adaptation
of the Bressan-Liu-Yang functional [16, 15].

In this thesis, we adopt the same approach to define approximate solutions,
for the initial-boundary value problem (1.2)–(1.3). We remark that these approxi-
mate solutions can be regarded as wave-front tracking solutions [15], with a spe-
cial choice of the approximate initial data, having discontinuities uniformly dis-
tributed on a grid.

However, the analysis of the approximate solutions for the boundary value
problem turns out to be very different from the one for the Cauchy problem. In-
deed, thanks to the fact that the characteristic speeds are±1 and by approximating
the initial data with a uniform mesh, the structure of the approximate solution (see
Figure 3.4) is very special: each approximate solution is piecewise constant, with
discontinuities that occur along polygonal lines that intersect each other at times
which are multiple of ∆x = ∆t = N−1, N ∈ 2N.

As a consequence, based on the probabilistic interpretation of the solution (see
[42, 23] and [17] for a semilinear hyperbolic system with relaxation), the problem
can be recast as a discrete time evolution of a finite dimensional linear system of
size N as follows,

σ(tn+) = B(tn)σ(tn−1+) + (ᾱn − ᾱn−1) Gn , (1.5)

where σ(t), t 6= tn, tn+1/2 denotes a vector of wave sizes appearing in the approx-
imate solution to (1.2), (1.3) at time t, while B(tn) is a doubly stochastic matrix
(that is, a non-negative matrix for which the sum of all the elements by row is 1, as
well as by column), the matrix B(tn) ∈ M2N(R) depends on time: more precisely,
its coefficients depend on g′(J(x, t)) and on α(t). The vector Gn appears in the
time-dependent case that is α(t) 6= const., see (4.10) for its definition.

We remark that part of the analysis and the well posedness result in Theo-
rem 1.2.1 are for the time- and space-dependent case, while for the proof of the
decay of solutions in L∞, we require that α(t) ≡ 1. When α(t) ≡ 1, we have the
following representation:

σ(tn+) = B(tn)σ(tn−1+) = B(tn)B(tn−1) · · · B(0+)σ(0+) . (1.6)
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For a review of the properties of non-negative and stochastic matrices, see ref-
erences [10, 40, 47]. We refer the reader to Section 4.1 for more details on the deriva-
tion of (1.5) and on the structure of B(tn). The behavior of the vector σ(t) as n→ ∞
depends on the spectral properties of the matrix B: whenever g is nonlinear (that
is, B is not constant in time even if α(t) ≡ 1), the behavior of (1.5) (or (1.6)) is
not trivial and may require advanced matrix analysis’ tools, such as the concept of
Joint Spectral Radius ([41, 30]).

Also, a possible approach to the study of exponential stability of σ(t) → 0 in
(1.6) goes through the existence of a suitable Lyapunov functional. For N fixed it
is certainly possible to construct it, for instance by constructing a suitable norm on
R2N which is contractive along the discrete trajectories of the system; this is possi-
bly done by means of Schur triangularization theorem [40, Theorem 2.3.1, p. 101]
and using the fact that the spectral radius of a square matrix A is the greatest lower
bound of all the matrix norms of A [40, Lemma 5.6.10, p. 347]. See also the recent
preprint [14].

However, following this strategy, it does not appear clear how to get the needed
information on the size of the eigenvalues, uniformly on N. We overcame this
difficulty by working on iterates of B in (1.6) having a constant balance between n
and N, which is the relevant limit.

In the next section of this introductory chapter, we summarize the main results
of the thesis. Section 1.3 is devoted to showing the organization of the thesis.

1.2 Main results

In this section, we introduce the main results of this thesis. The first one (Theo-
rem 1.2.1) concerns the existence and stability of weak solutions to (1.2) with time-
dependent source, while the second one (Theorem 1.2.2) concerns the asymptotic-
time decay in L∞ of the solutions with BV initial data under more specific assump-
tions.

From now on, we use the standard notation R+ = [0,+∞).

Definition 1.2.1. Let (ρ0, J0) ∈ L∞(I). A weak solution of the problem (1.2)–(1.3) is a
function

(ρ, J) : I ×R+ → R2

that satisfies the following properties:

(a) the map t 7→ (ρ, J)(·, t) is continuous from R+ to L∞(I; R2), and it satisfies
(ρ, J)(·, 0) = (ρ0, J0);

(b) the equation (1.2)1 is satisfied in the distributional sense in [0, 1]× (0, ∞), while the
equation (1.2)2 in the distributional sense in (0, 1)× (0, ∞) .
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The boundary condition in (1.3) is taken into account by means of the first part of
(b), that is, by requiring that for all test functions φ ∈ C1([0, 1]× (0,+∞)) one has∫ 1

0

∫ ∞

0
{ρ∂tφ + J∂xφ} dxdt = 0 .

Now we state the following well-posedness result.

Theorem 1.2.1. Assume that

k ∈ L1(I) , k ≥ 0 a.e. , g ∈ C1(R) , g(0) = 0 , g′(J) ≥ 0 (1.7)

and that
α ∈ BVloc ∩ L∞([0, ∞); [0, 1]) . (1.8)

Let (ρ0, J0) ∈ L∞(I) with
∫

I ρ0 = 0. Then there exists a unique function

(ρ, J) : I ×R+ → R2

which is a weak solution of (1.2)–(1.3) in the sense of Definition 1.2.1. Let J = f+ −
f− and ρ = f+ + f− (see system (3.5)), then for any pair of initial data ( f−0 , f+0 ) and
( f̃−0 , f̃+0 ), the corresponding solutions f±, f̃± on (0, 1)× (0, T) satisfy

‖( f−, f+)(·, t)− ( f̃−, f̃+)(·, t)‖L1(I) ≤ ‖( f−0 , f+0 )− ( f̃−0 , f̃+0 )‖L1(I) . (1.9)

Moreover one has ∫
I

ρ(x, t) dx = 0 ∀ t > 0 (1.10)

and there exists D ⊂ R2, DJ ⊂ R that are invariant domains for (ρ, J) and for J, respec-
tively.

About the definition of D and DJ , see (3.36) and (3.37).
Next, we consider the case of time-independent damping. Assume that α(t) ≡ 1,

k ∈ L∞(I) , ess inf
I

k > 0 , (1.11)

and
g ∈ C1(R) , g(0) = 0 , g′(J) > 0 ∀ J . (1.12)

Let 0 < k1 ≤ k2 such that k1 ≤ k(x) ≤ k2 a.e. on I. Then define

d1 =̇ k1 min
J∈DJ

g′(J) > 0 , d2 =̇ k2 max
J∈DJ

g′(J) , (1.13)
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where DJ ⊂ R is a closed bounded interval, depending on the initial data, which
is invariant for J (see Theorem 1.2.1). Clearly one has 0 < d1 ≤ d2, and we assume
that

ed2 − d2 < ed1 , (1.14)

which consists in a moderate smallness requirement on the damping term that is
this condition is valid if k(x) and g′ do not vary much. Now we state the following
theorem.

Theorem 1.2.2. Let α(t) ≡ 1 and assume (1.11), (1.12), (1.14). Let (ρ0, J0) ∈ BV(I),
with

∫
I ρ0 = 0 and let (ρ, J)(x, t) be the corresponding weak solution of the problem (1.2),

(1.3).
Then, there exist constant values Cj > 0, j = 1, · · · , 3 that depend only on the coeffi-

cients of the equation and on the initial data, such that

‖J(·, t)‖∞ ≤ C1e−C3t ,

‖ρ(·, t)‖∞ ≤ C2e−C3t .
(1.15)

where C3 is given by

C3 = | log C(d1, d2)| , C(d1, d2) = e−d1(ed2 − d2) < 1 .

Remark 1.2.1. We present some essential comments on Theorem 1.2.2.

(a) In terms of the damped wave equation (1.1), Theorem 1.2.2 provides a result on
the decay in W1,∞ of the solution towards zero. Hence, our result is related to [35, The-
orem 3.1], where a decay estimate for the solution of the semilinear wave equation with
(ux(0, ·), ut(0, ·)) ∈W1,∞(0, `)×W1,∞(0, `) is obtained.

Some differences occur in the assumptions on the damping term:
– we assume that g′ > 0, while in [35], the possibly more interesting case of a degen-

eracy of g′ at J = ut = 0 is considered;
– we consider a space-dependent damping term, k(x)g(J);
– finally, we assume some restriction on the nonlinearity, namely (1.14).

(b) Beyond the exponential stability estimates (1.15), we also provide asymptotic es-
timates for the approximate solutions (ρ∆x, J∆x)(x, t) of (1.2)-(1.3) defined in Subsec-
tion 3.2.1. For the precise estimates of the approximate solutions with initial data in BV(I)
space, see Section 5.2, estimates (5.20) and (5.21).

(c) We are working in extending the exponential stability estimates (1.15) for the solu-
tions of (1.2)-(1.3) with L∞ initial data. The proof is not trivial, since the constants C1 and
C2 in (1.15) depend on the total variation of the initial data. A partial result in this direc-
tion is given by Theorem 5.3.4 for the linear case that is k(x) ≡ k̄ > 0 and g′(J) ≡ C̄ > 0
are constant (the telegrapher’s equation). See Remark 5.3.2.
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FIGURE 1.1: This graph shows that there exists a non-empty interval
of values for d1 ≤ d2 for which condition (1.14) holds.

Remark 1.2.2. Hereby we list several other comments on Theorem 1.2.2.

(i) From (1.13), it is clear that d1 ≤ d2. Also, one can see in Figure 1.1 that for every
d1 > 0 there exists a non-empty interval of values for d2 ≥ d1 for which (1.14) holds.
Moreover, if d1 increases, then d1 and d2 have to be almost of the same value. While, if d1
is close to zero, then the values of d1 and d2 have to be close to each other.

(ii) If k(x) ≡ k̄ > 0 and g′(J) ≡ C̄ > 0 are constant (as in the telegrapher’s equation,
[42]) then, d1 = d2 = d and then (1.14) is satisfied for every d = k̄C̄ > 0. Moreover, one
has the exponential decay rate is estimated by

C3 =
∣∣∣log(1− de−d)

∣∣∣ ∼ d as d→ 0 .

If k(x) ≡ k̄ > 0, then the condition (1.14) can be interpreted as a smallness condition on
maxJ∈DJ g′(J)−minJ∈DJ g′(J).

On the other hand, by assuming that g is linear (g′(J) ≡ C̄ > 0), then, (1.14) implies
that the upper and lower bound of k(x), k2 and k1, are sufficiently close to each other.

(iii) For (1.14) to hold, it is necessary that d1 > 0 and hence that g′ > 0 as in (1.12).
Differently, if g′ vanishes at J = 0, an exponential decay is no longer expected; see [35].
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(iv) Condition (1.14) is a sufficient condition on the damping term k(x)g(J) for the
L∞ estimate (1.15) to hold. This condition is required in order to get a suitable contractive
estimate, see Proposition 4.3.4.

In order to relax the assumption (1.14) within our approach and to allow for a more
general assumption on the damping term, it would be necessary to employ a more accurate
Birkhoff decomposition of the matrices B(tn), rather than the one in (4.70) which involves
just two matrices, and then to extend the result of Theorem 4.2.3.

This technical extension is not immediate and it may be object of a future investigation.

(v) (About localized damping) In the main theorem, we require that k satisfies the
assumption (1.11); in particular k(x) has to be uniformly positive on (0, 1). On the other
hand, the construction scheme in Section 3.2 and Theorem 1.2.1 work under the more gen-
eral assumption (1.7) on k(x), that include the case of a localized damping. In Section 5.4,
we consider the localized damping case and we provide an estimate of the modulus of the
eigenvalues.

(vi) (The time dependent damping) Through out the thesis, we require the general
assumption (1.8) on α(t). While for the L∞ decay to accrue, we require that α(t) ≡ 1.
In particular, the construction scheme in Section 3.2 and Theorem 1.2.1 work for the time
dependent damping case, that is α(t) satisfies (1.8), including the On-Off case (1.4). We
remark that the L∞ decay of the case On-Off damping is investigated only numerically in
Test 3 and we will consider it as a future work.

1.3 Structure of the thesis

The thesis is organized as the following:

• In Chapter 2, we review earlier results for the damped wave equation on a
bounded domain regarding the existence, uniqueness, and stability results.
In particular, in Section 2.1, we recall the existence and uniqueness results for
the semilinear damped wave equation with an exterior time-dependent force
density that are proved by Haraux in [36]. Then, in Section 2.2, we present
the proof of the stability for solution of semilinear damped wave equation
(1.1) with α(t) = 1 that is done by C. Dafermos in [22], which is based on
LaSalle invariance principle 2.2.4.

• In Chapter 3, in Section 3.1, we recall some preliminary results on Riemann
problems for hyperbolic system, and we prove interaction estimates that
take into account of the time change of the damping term. In particular,
we study the Riemann problem for the time-independent case in Subsec-
tion 3.1.1, while in Subsection 3.1.2, we study the interaction estimates for the
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time-dependent case. Then, in Section 3.2, we construct a family of approxi-
mate solutions by adapting the approach in the case of the Cauchy problem
(see for instance [6, p.607]), and we provide a-priori estimates on such ap-
proximations (Subsections 3.2.2– 3.2.4). In Section 3.3, we prove the conver-
gence of the approximate solutions in the BV setting and we use the stability
in L1, together with a density argument, to show the existence and stability
for L∞ initial data (ρ0, J0), thus completing the proof of Theorem 1.2.1 .

• In Chapter 4, we describe our strategy to study the long-time behavior of the
approximate solution. In Section 4.1, we introduce a vector representation
of the approximate solution, then we study the evolution in time of this vec-
tor by means of finite-dimensional evolution system. In Section 4.2, we use
Birkhoff decomposition Theorem A.1.1 for doubly stochastic matrices, and
we prove an exponential-type formula in Theorem 4.2.3. Thanks to a care-
ful expression of the first order in 1/N, and to a refined decomposition of
the vectors (see Subsection 4.3.1), we prove a contraction property for the `1

norm of the iterated matrix in (1.6) for the two cases: linear and non-linear
damping, in Subsection 4.3.3 and Subsection 4.3.4, respectively.

• In Chapter 5, we combine all the results of Chapters 3 and 4 for proving
the main result in Theorem 1.2.2. We start with a representation formula for
the approximate solutions (ρ∆x, J∆x), see Section 5.1. Then, in Section 5.2,
we relate the L∞ norm of the approximate solutions with the `1 norm of the
iterated matrix, see Proposition 5.2.1. Using the contraction property of the `1
norm that is proved in Subsection 4.3.4, we prove the L∞ decay estimates for
the approximate solutions (ρ∆x, J∆x). Finally, the L∞ decay estimate (1.15) in
Theorem 1.2.2 for the weak solution of the problem (1.2) is proved by passing
to the limit (see Section 3.3) by means of Helly’s Theorem 3.3.1, see the proof
at the end of Section 5.2. We remark that in this case, the constants C1 and
C2 in (1.15) depend on the total variation of the initial data which is finite for
BV initial data.

In Section 5.3, we extend partially the result of Theorem 1.2.2 to the case of
initial data in L∞ space. More precisely, we consider the telegrapher equation
that is the case when k(x) and g′ are constants. Thanks to a careful study of
the representation formula of the approximate solution in Section 5.1, Theo-
rem 5.3.4 proves a contraction property of the invariant domain D defined at
(3.36) for the approximate solutions. See Remark 5.3.2.

Finally, Section 5.4 contains an ongoing work of the localized damping case.
More precisely, we study the spectral properties of the evolution problem in
(1.6) when k(x) = k̄ > 0 on some (α, β) with [α, β] ⊂ (0, 1), and k(x) = 0
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otherwise. Using Rayleigh quotient Theorem A.1.4, we prove an estimate for
the modulus of the eigenvalues of the matrix.

• Chapter 6 is devoted to performing some numerical simulations based on the
numerical implementation of the algorithm presented in Chapter 3. We test
some cases such as the On-Off time-dependent case, and the case of localized
damping.
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Chapter 2

Literature review of semilinear
damped wave equation

This part of the thesis is devoted to reviewing earlier results for the damped wave
equation on a bounded domain regarding the existence, uniqueness, and stabil-
ity results. The existence and uniqueness issues for the semilinear damped wave
equation with an exterior time-dependent force density are proved by Haraux in
[36]. While the stability result for semilinear damped wave equation (1.1) with
α(t) = 1, is proved by C. Dafermos in [22].

2.1 Existence and uniqueness

Let Ω be a bounded and open subset of Rn, n ≥ 1. The initial value problem
associated with the semilinear wave equation is given by

∂2u
∂t2 − ∆u + g(∂tu) = h(t, x) , (t, x) ∈ R+ ×Ω ,
u(0, x) = u0, ∂tu(0, x) = u1 , x ∈ Ω ,
u(t, x) = 0 , (t, x) ∈ R+ × ∂Ω .

(2.1)

Assume that g, h satisfy the following:

g : R→ R , g ∈ C(R) , g′ ≥ 0 , (2.2)

h ∈ C([0, T]; L1(Ω)) ∩ L1([0, T]; H1
0(Ω)) . (2.3)

Functional setting: we introduce proper spaces for the unknown u so that (2.1)
is satisfied in a weak sense. If u is a smooth solution, with u ∈ C(Ω), then we can
multiply by a test function ϕ ∈ C1

c (Ω) and integrate on Ω to get
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∫
Ω

∂2
t u · ϕdx−

∫
Ω
(∑ ∂2

xj
u)ϕdx +

∫
Ω

g(∂u)ϕdx =
∫

Ω
hϕdx

⇒
∫

Ω
∂2

t u · ϕdx +
∫

Ω
∇u · ∇ϕdx +

∫
Ω

g(∂u)ϕdx =
∫

Ω
hϕdx , (2.4)

where we used the fact that ϕ = 0 on ∂Ω in which we have∫
Ω
(∑ ∂2

xj
u)ϕdx =

∫
Ω

∑ ∂xj((∂xj u)ϕ)dx︸ ︷︷ ︸
=
∫

∂Ω ϕ∇u·udx

−
∫

Ω
∑ ∂xj u∂xj ϕdx

= −
∫

Ω
∇u∇ϕdx .

Therefore, natural setting for weak solution u: u ∈ H1
0 where

H1(Ω) =

{
v : Ω→ R : v ∈ L2(Ω), ∃q1 · · · qn ∈ L2(Ω) :∫

Ω
v∂xj ϕdx = −

∫
Ω

qi ϕdx ∀ϕ ∈ C∞
c (Ω)

}
,

H1 is a Hilbert space with norm

‖v‖H1 = ‖v‖L2 +
n

∑
j=1
‖∂xj v‖L2 .

On H1
0 , we can use the same norm. But for bounded sets we have

• Poincaré inequality: Ω bounded⇒ ∃C = C(Ω) : ∀v ∈ H1
0(Ω)

‖v‖L2 ≤ C‖∇v‖L2 ,

which implies that on H1
0(Ω) the norm

(∫
Ω |∇v|2dx

) 1
2 is equivalent to ‖v‖H1 .

• H−1(Ω) is the dual space of H1
0(Ω) such that

H−1(Ω) = {F : H1
0(Ω)→ R, F linear and continuous} ,
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with norm

‖F‖H−1 = sup
‖v‖H1

0
≤1

< F, v > , v→< F, v >∈ R ∀v ∈ H1
0 .

Recall the Riesz representation theorem, see [18], that is ∀F ∈ H−1, ∃v0 ∈ H1
0 such

that
< F, v >H−1,H1

0
= < v0, v >H1

0
=
∫
∇v0 · ∇v .

Hence, H1
0(Ω) ⊆ L2(Ω) = (L2(Ω))′ ⊆ H−1(Ω) .

Now, we are in the position to define the weak solution for equation (2.1).

Definition 2.1.1. (Weak solution) Let u0 ∈ H1
0(Ω), u1 ∈ L2(Ω), g is Lipschitz contin-

uous and h ∈ C([0, T]; L2(Ω)). We say that a function u : [0, ∞)×Ω → R such that
u ∈ C([0, ∞); H1

0(Ω))∩C1([0, ∞); L2(Ω))∩C2([0, ∞); H−1(Ω)) is a weak solution to
(2.1) if

(a) u(0, x) = u0(x), ∂tu(0, x) = u1(x) a.e in Ω.

(b) The equation
∂ttu− ∆u + g(∂tu) = h

is satisfied in H−1(Ω), that is ∀t ≥ 0 and ∀ϕ ∈ H1
0(Ω) we have

< u′′, ϕ >H−1,H1
0
+
∫

Ω
∇u∇ϕdx +

∫
Ω

g(∂tu)ϕdx =
∫

Ω
hϕdx .

Motivation for definition of weak solution: We claim from (2.4) that

ϕ ∈ H1
0(Ω) :→

∫
Ω

hϕdx−
∫

Ω
g(∂tu)ϕdx−

∫
Ω
∇u∇ϕdx = φ(ϕ),

is a linear functional, and continuous in H1
0(Ω), ∀t.

Proof of the claim: the following hold true

(i)
∣∣∣∣∫Ω

h(t, ·)ϕdx
∣∣∣∣ ≤ ‖h(t, ·)‖L2(Ω)‖ϕ‖L2(Ω) ;

(ii)
∫

Ω
∇u∇ϕdx ≤ ‖∇u‖L2(Ω)‖∇ϕ‖L2(Ω) ;
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(iii) We have that g(∂tu) ∈ L2(Ω). Indeed, thanks to (2.2), there exists M > 0
such that

|g(∂tu)| ≤ |g(0)|+ M|∂tu| ,
noting that |g(0)| ∈ L2 since Ω bounded, and |∂tu| ∈ L2, we get g(∂tu) ∈
L2(Ω).

As a consequence,

• φ(ϕ)| ≤ C‖ϕ‖H1
0(Ω), so φ is linear.

• |φ(ϕ1) − φ(ϕ2)| = |φ(ϕ1 − ϕ2)| ≤ C‖ϕ1 − ϕ2‖H1
0(Ω), so φ is continuous on

H1
0(Ω).

Hence, it is natural to consider u′′(t) = ∂ttu(t, ·) in H−1(Ω).
Now, we recall the definition of contraction mapping and Banach’s fixed point

theorem that will be usful in the proof of the main result, see e.g., [24]:

Definition 2.1.2. Let (X, d) be a metric space. Then a map C : X → X is called a
contraction mapping on X if there exists k ∈ [0, 1) such that

d(C(x), C(y)) ≤ k d(x, y) ∀x, y ∈ X .

Theorem 2.1.1. (Banach’s fixed point theorem) Let (X, d) be a complete metric space. Let
C : X → X be a contraction mapping on X. Then there exists a unique x̄ ∈ X such that
Cx̄ = x̄ .

Next, we state the existence and uniqueness theorem.

Theorem 2.1.2. Assume h ∈ C([0, ∞); L2(Ω)), g : R→ R is Lipschitz continuous, and
u0 ∈ H1

0(Ω), u1 ∈ L2(Ω). Then there exists a unique solution u : [0, ∞)×Ω→ R that
is a weak solution in the sense of Definition 2.1.1. Moreover

E(t) =
1
2

∫
Ω

[
|∇u(t, x)|2 + |∂tu(t, x)|2

]
dx , (2.5)

satisfies E ∈ C1([0, ∞)) and

dE
dt

=
∫

Ω
[h(t, x)− g(∂tu)] ∂tudx . (2.6)

Before we start the proof of this theorem, we state a preliminary result for the
inhomogeneous wave equation that is the case where g = 0.
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Proposition 2.1.3. Let g = 0. Under the same assumptions of Theorem 2.1.2. There
exists a unique weak solution u in the sense of Definition 2.1.1 that is a solution of the
equation

∂2u
∂t2 − ∆u = h(t, x). (2.7)

Moreover,
dE
dt

=
∫

Ω
h(t, x)∂tudx .

Proof. The proof can be done through Galerkin method, we omit the proof and we
refer the reader to [25] or [36] for more details.

Now we start with the proof of Theorem 2.1.2.

Proof. The proof is a standard application of the classical method combining a con-
traction mapping argument, see Theorem 2.1.1, and on a priori estimates on the
maximal interval of existence. More precisely, we need to prove the following:

(I) Local in time existence by contraction mapping theorem.

(II) The existence for all time with the help of a priori estimates on the solution.

Proof (I): We start by defining the set X: Let δ > 0 and Iδ = [0, δ]. Let P > 0 such
that

P√
2
> max{‖u0‖H1

0
, ‖u1‖L2} ,

and define the set X as

X =
{

u ∈ C(Iδ, H1
0) ∩ C1(Iδ, L2) : u(0, x) = u0(x), ∂tu(0, x) = u1(x) ,

max
t∈Iδ

‖u(t)‖H1
0
≤ P , max

t∈Iδ

‖u′(t)‖L2 ≤ P
}

,

with norm
‖u‖X = max

{
max
t∈Iδ

‖u(t)‖H1
0

, max
t∈Iδ

‖u′(t)‖L2

}
. (2.8)

So that X is a metric space with metric d(u1, u2) = ‖u1 − u2‖X . Now, let v ∈ X
and let C(v) = z(t, x) be the unique solution by Proposition 2.1.3 of the following
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equation:

∂2z
∂t2 − ∆z = h(t, x)− g(

∂v
∂t

)︸ ︷︷ ︸
h̄(t,x)

,

z(0) = u0 ,
∂z
∂t
(0) = u1 .

Claim: ∀ P√
2
> max{‖u0‖H1

0
, ‖u1‖L2}, ∃δ = δ(P) such that:

(1) C(X) ⊆ X.

(2) C : X → X is a strict contraction.

Proof of (1): It holds if and only if for δ small enough the following is true max
t∈Iδ

‖z(t)‖H1
0
≤ P ,

max
t∈Iδ

‖∂tz‖L2 ≤ P ,
(2.9)

so we need to prove the above inequalities. Fix δ > 0, v ∈ X, then the energy for
z(t, x) is:

E(t) =
1
2

(
‖z(t, ·)‖2

H1
0
+ ‖∂tz(t, ·)‖2

L2

)
,

which implies that

‖z(t, ·)‖2
H1

0
≤ 2E(t) , ‖∂tz(t, ·)‖2

L2 ≤ 2E(t) . (2.10)

Therefore, at time t = 0

E(0) =
1
2

(
‖z0‖2

H1
0
+ ‖∂tz(0)‖2

L2

)
=

1
2

(
‖u0‖2

H1
0
+ ‖u1‖2

L2

)
≤ max{‖u0‖2

H1
0
, ‖u1‖2

L2}

<

(
P√
2

)2

=
P2

2
.
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Now, from Proposition 2.1.3, the energy estimate for z satisfy:

dE
dt

(t) =
∫

Ω
h̄(t, x)

∂z
∂t
(t, x)dx ≤ ‖h̄(t, x)‖L2(Ω)‖

∂z
∂t
(t, x)‖L2(Ω)

≤ 1
2

(
‖h̄(t, x)‖2

L2(Ω) + ‖
∂z
∂t
(t, x)‖2

L2(Ω)

)
≤ 1

2
max
t∈Iδ

‖h̄(t, x)‖2
L2(Ω) + E(t) ,

where

max
t∈Iδ

‖h̄(t, x)‖2
L2(Ω) ≤ max

t∈Iδ

‖h(t, x)‖2
L2(Ω) + max

t∈Iδ

‖g(∂tv)‖2
L2(Ω) (2.11)

≤ max
t∈Iδ

‖h(t, x)‖2
L2(Ω) + M max

t∈Iδ

‖∂tv(t, ·)‖2
L2(Ω)︸ ︷︷ ︸

≤P2

+‖g(0)‖2
L2(Ω) .

Hence,

dE
dt

(t) ≤ 1
2

max
t∈Iδ

‖h̄(t, x)‖2
L2(Ω) + E(t) ,

⇒ E(t) ≤ E(0)et +
1
2

max
t∈Iδ

‖h̄(t, x)‖2
L2(Ω)(e

t − 1) .

Since E(0) < P2

2 , then ∃δ > 0 such that

E(t) ≤ P2

2
, 0 ≤ t ≤ δ .

Note that δ does not depend on the choice of v, it depends only on P and on
the given function h, indeed, δ depends on the term maxt∈Iδ

‖h̄(t, x)‖2
L2(Ω)

which
depends only on the parameters of the problem, see (2.11).

So by (2.10), the inequalities in (2.9) are proved. In conclusion, ∃δ > 0 : X 3
v→ C(v) = z ∈ X which proves claim (1).

Proof of (2): We want to prove that there exists δ′ with 0 < δ′ < δ such that
C : X → X is strict contraction in the sense of Definition 2.1.2, i.e., we want to
prove that there exists k ∈ (0, 1) such that for all v1, v2 ∈ X we have

‖C(v1)− C(v2)‖X ≤ k‖v1 − v2‖X .
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Consider v1, v2 ∈ X such that z1 = C(v1), z2 = C(v2) that are solutions of

∂2z1

∂t2 − ∆z1 = h(t, x)− g(
∂v1

∂t
) ,

∂2z2

∂t2 − ∆z2 = h(t, x)− g(
∂v2

∂t
) ,

z1(0) = z2(0) = u0 ,
∂z1

∂t
(0) =

∂z2

∂t
(0) = u1 ,

with

E(z1−z2) =
1
2

(
‖z1(t, ·)− z2(t, ·)‖2

H1
0
+ ‖∂t (z1(t, ·)− z2(t, ·)) ‖2

L2

)
.

The energy estimate for z1 − z2 is:

dE(z1−z2)

dt
(t) =

∫
Ω

(
g(

∂v2

∂t
)− g(

∂v1

∂t
)

)
∂

∂t
(z1 − z2)dx

≤ M‖∂v2

∂t
− ∂v1

∂t
‖L2(Ω)‖

∂

∂t
(z1 − z2)‖L2(Ω)

≤ M
2

(
‖ ∂

∂t
(v2 − v1)‖2

L2(Ω) + ‖
∂

∂t
(z1 − z2)‖2

L2(Ω)

)
≤ M

2
max
t∈Iδ

‖ ∂

∂t
(v2 − v1)‖2

L2(Ω) + ME(z1−z2) .

Note that Ez1−z2(0) = 0, so we have the following:

E(z1−z2)(t) ≤
1
2
(eMt − 1)max

t∈Iδ

‖ ∂

∂t
(v2 − v1)‖2

L2(Ω)

≤ 1
2
(eMt − 1)‖v1 − v2‖2

X .

Choose δ′ ≤ δ and k < 1 such that (eMδ′ − 1) ≤ k, then

E(z1−z2)(t) ≤
1
2

k‖v1 − v2‖2
X ,

and by (2.10), we conclude that

‖(z1 − z2)(t, ·)‖2
H1

0
≤ 2E(z1−z2)(t) ≤ k‖v1 − v2‖2

X ,

‖ ∂

∂t
(z1 − z2)(t, ·)‖2

L2 ≤ 2E(z1−z2)(t) ≤ k‖v1 − v2‖2
X .
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Recalling (2.8), we have

‖C(v1)− C(v2)‖X = ‖z1 − z2‖X

= max{max
t∈Iδ′
‖z1 − z2‖H1

0
, max

t∈Iδ′
‖ ∂

∂t
(z1 − z2)‖L2}

≤ k‖v1 − v2‖2
X .

Hence, C : X → X is strict contraction. By the fixed point Theorem 2.1.1, there
exists a unique fixed point u ∈ X such that u ∈ C(Iδ′ ; H1

0(Ω)) ∩ C1(Iδ′ ; L2(Ω)) ∩
C2(Iδ′ ; H−1(Ω)) and

dE
dt

(t) ≤ C1 + C2E(t) ,

with C1, C2 independent in time.

Proof (II): To prove the existence globally in time, let Ĩ ⊆ [0, ∞) be the maximum
interval of existence, we need to prove that Ĩ = [0, ∞). But the energy does not
blow up in finite time, so the proof is concluded.

2.2 Stability of the zero solution

There is an extensive literature on the stabilization of the damped wave equa-
tions. In [22], C. Dafermos proved a stabilization result for the wave equation on a
bounded open domain, i.e., the energy of every solution of equation (1.1) tends to
0 as t → ∞, under the assumptions that k(x) 6= 1, α(t) = 1, and g is continuously
differentiable and strictly increasing over R. The proof is based on LaSalle invari-
ance principle. This result has been generalized by A. Haraux in [33], where g is
just a maximal monotone graph. However, this method does not show the rate of
the decay. In [49], Zuazua proved the exponential stability of the energy for the
semilinear wave equation with damping k(x)∂tu that is localized, and with force
function. Nakao in [44], extended the result of Zuazua by considering the case of
a nonlinear damping term with a polynomial growth near the origin. For more
works on the rate of decay for the energy, see for instance [49, 21, 11].

In this section, we only present an overview of the stability result that is proved
by Dafermos in [22] for the semilinear damped wave equation in a bounded, open,
smooth, and connected set Ω ⊆ Rn(n ≥ 1). The phenomenon "Stabilization"
means that the self-oscillations induced by the wave equation are damped out
asymptotically, and so we are left, when time tends to infinity, with an equilibrium
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if the system is autonomous [33]. Dafermos employed the LaSalle invariance prin-
ciple 2.2.4 to prove that the energy of every solution tends to zero as time goes to
infinity. The advantage of this approach is that it is simple that it only requires
quite weak assumptions on the dissipative mechanism. However, this method
does not produce explicit estimates of the decay rates.

Consider the semilinear damped wave equation:
∂ttu− ∂xxu + k(x)g(∂tu) = 0 , (x, t) ∈ Ω×R+ ,
u(0, x) = u0(x) , ∂tu(0, x) = u1(x) , x ∈ Ω ,
u = 0 , (x, t) ∈ ∂Ω×R+ ,

(2.12)

where Ω is an open , bounded, smooth, and connected set in Rn. We assume that
k(x) is smooth and satisfies k(x) ≥ 0, x ∈ Ω, k(x0) > 0 for some x0 ∈ Ω. In
addition, we assume g(x) ∈ C1(R) and it is strictly increasing.

The energy of this problem is

E(u, ut) =
1
2

∫
Ω
(|ut|2 + |∇u|2)dx , (2.13)

and it satisfies the following:

d
dt

E(u, ut) = −
∫

Ω
k(x)g(ut)utdx ≤ 0 , (2.14)

and therefore, the energy is a non-increasing function. The goal is to show how
LaSalle argument can verify the decay of the energy to zero as time goes to infinity.

Before we state the main theorem, we should recall some well-known results
from elementary topological dynamics that we will use in the proof. Throughout
this section, (X, d) denotes a complete metric space.

Definition 2.2.1. A dynamical system (semigroup) on X is a family {St}t>0 of mappings
on X such that:

(i) St ∈ C(X, X), ∀t > 0;

(ii) S0 = I;

(iii) St+s = St ◦ Ss, ∀s, t ≥ 0 ;

(iv) the function t→ Stx is in C([0, ∞), X) for all x ∈ X.

Definition 2.2.2. For all x ∈ X, the continuous curve t → Stx is called the trajectory
from x.
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Definition 2.2.3. Let x ∈ X. The set

ω(x) = {y ∈ X : ∃tn → ∞, Stn x → y as n→ ∞} ,

is called the ω-limit set of x.

Proposition 2.2.1. We have ω(x) =
⋂

s>0

⋃
t≥s
{Stx}.

Proposition 2.2.2. For all x ∈ X and all t > 0, we have

ω(Stx) = ω(x) , St(ω(x)) ⊂ ω(x) , (2.15)

which means that ω(x) is positive invariant under St. In addition, if
⋃

t≥0
{Stx} is relatively

compact in X, then
St(ω(x)) = ω(x) 6= ∅. (2.16)

Theorem 2.2.3. For fixed x ∈ X, suppose that
⋃

t≥0
{Stx} is relatively compact in X, then:

(i) St(ω(x)) = ω(x) 6= ∅ for all t ≥ 0;

(ii) ω(x) is a compact connected subset of X;

(iii) d(Stx, ω(x))→ 0 as t→ ∞.

Definition 2.2.4. (Lyapunov function) A function φ : X → R is called a Lyapunov
function for {St}t≥0 if φ is continuous and φ(Stx) ≤ φ(x) for all x ∈ X and all t ≥ 0.

Note that if φ is a Lyapunov function for {St}t≥0 then, for all x ∈ X, the function
t→ φ(Stx) is non-increasing.

Theorem 2.2.4. (LaSalle Invariance Principle) Let φ be a Lyapunov function for {St}t≥0,
and let x ∈ X be such that

⋃
t≥0
{Stx} is relatively compact in X. Then:

(i) ` = lim
t→∞

φ(Stx) exists;

(ii) φ(y) = `, for all y ∈ ω(x).

Now, we are in the position to state the stability result.

Theorem 2.2.5. Let u(t, x) be the solution of (2.12) with (u0, u1) ∈ H1
0(Ω)× L2(Ω).

Then

(u(t, ·), ut(t, ·))
H1

0(Ω)×L2(Ω)
−−−−−−−−→ 0 , as t→ ∞ . (2.17)
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Proof. We rewrite the first equation of (2.12) as a first order system{
ut = v ,
vt = uxx − k(x)g(v) ,

(2.18)

which generates a continuous semigroup St on H1
0(Ω)× L2(Ω). We start the proof

with first assuming that the initial data (u0, u1) ∈ (H2(Ω)
⋂

H1
0(Ω)) × H1

0(Ω),
which is the domain of the generator of St:

• Step 1 We prove that

St((u0, u1))
H1

0×L2

−−−−→ ω((u0, u1)) , as t→ ∞ , (2.19)

where ω is the limit set defined in Definition 2.2.3 for which X = H1
0 × L2. To do

so, we need to prove that
⋃

t≥0
{St(u0, u1)} is relatively compact in H1

0(Ω)× L2(Ω).

Differentiating system (2.18) with respect to t, we get

vtt = ∆v− k(x)g′(v)vt .

The energy integral of this system

d
dt

E(v, vt) = −
∫

Ω
k(x)g′(v)v2

t dx ≤ 0 , (2.20)

shows that {v(t, ·)t≥0} is bounded in H1
0(Ω), and is therefore relatively compact

in L2(Ω), and that {vt(t, ·)t≥0} is bounded in L2(Ω). It follows from (2.12) that
{∆u(t, ·)t≥0} is bounded in L2(Ω) and, consequently, {ut(t, ·)t≥0} is relatively
compact in H1

0(Ω). Thus, by Theorem 2.2.3, the proof of (2.19) is complete.

• Step 2 By the energy integral (2.14), E(u, v) is a Liapunov functional for St
which is continuous on H1

0(Ω)× L2(Ω), so that by Theorem 2.2.4, E(u, v) is con-
stant on ω((u0, u1)).

• Step 3 Now, by Proposition 2.2.2 ω((u0, u1)) is positive invariant. Using this
property in conjunction with (2.14) and the properties of k(x) and g(v), we ar-
rive at the following conclusion: If (ū(t, ·), v̄(t, ·)) = St(ū0, ū1) with (ū0, ū1) ∈
ω((u0, u1)), then

v̄(t, x) = 0, ∀t ≥ 0 x ∈ supp(k(x)) . (2.21)
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In particular, ū(t, ·) becomes a solution of the undamped wave equation so that
we have the representation

(ū(t, x), v̄(t, x)) = Re ∑
n

eiλntwn(x)(1, iλn) , (2.22)

where {
∆wn + λ2

nwn = 0 on Ω ,
wn = 0 on ∂Ω .

(2.23)

Substituting v̄(t, x) from (2.22) into (2.21) and using the elementary properties of
almost periodic functions, we deduce that wn(x) = 0 for x ∈ supp(k(x)). Since
solutions of (2.23) are analytic in Ω and Ω connected, it follows that wn(x) = 0 for
x ∈ Ω, so that (ū(t, x), v̄(t, x)) = 0 for t ≥ 0 and x ∈ Ω.

Thus the solutions of (2.18) through (H2(Ω)
⋂

H1
0(Ω)) × H1

0(Ω) tend to zero
as t → ∞. Using simple completion argument, we extend the result to the case of
initial data in H1

0(Ω)× L2(Ω).
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Chapter 3

Well-Balanced approximate solution

In this chapter, we recall some preliminary results on Riemann problems for hyper-
bolic system, and we prove interaction estimates that take into account of the time
change of the damping term. Then, we construct a family of approximate solu-
tions by adapting the approach in the case of the Cauchy problem (see for instance
[6, p.607]), and we provide a-priori estimates on such approximations. Finally,
we prove the convergence of the approximate solutions in the BV setting and use
the stability in L1, together with a density argument, to show the existence and
stability for L∞ initial data (ρ0, J0), thus completing the proof of Theorem 1.2.1 .

The Well-Balanced scheme, that is a scheme preserving some discrete version of
stationary equation, has been introduced in [29] for one-dimensional scalar equa-
tions in order to improve the consistency of numerical schemes in the inhomoge-
neous case. Since then, the scheme has been widely used, see for instance [27] and
references therein.

The core of this scheme is that instead of solving approximately generalized
Riemann problem for the 1D scalar equation ∂tu + ∂x f (u) = k(x)g(u) to derive
a Godunov scheme, one can solve a modified one, by replacing k(x) by an anti-
derivative a(x) and rewriting the right-hand side of the equation as g(u)∂xa. At the
discrete level, we approximate the variable a(x) by piecewise constant functions,
which implies that the effect of the source term is concentrated into a countable
collection of Dirac masses in order to integrate it inside a Riemann solver.

3.1 Preliminaries

In terms of the diagonal variables f±, defined by

ρ = f+ + f− , J = f+ − f− (3.1)
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the system (1.2) rewrites as a discrete-velocity kinetic model{
∂t f− − ∂x f− = k(x)α(t) g( f+ − f−),
∂t f+ + ∂x f+ = −k(x)α(t) g( f+ − f−) .

(3.2)

3.1.1 The time-independent case: the Riemann problem

In the following, we assume that α(t) ≡ 1. We recall some preliminary results from
[6] dealing with Riemann problems for system (3.4). Our approach is based on an
alternative formulation of system (1.2) that is obtained by adding an equation for
the antiderivative of k:

a = a(x) =̇
∫ x

0
k(y) dy , (3.3)

which by (1.7) satisfies a ∈ AC(R) (Absolutely continuous), ax = k ≥ 0 , TV a =
a(1)− a(0) = ‖k‖L1 > 0 .

This leads to consider the following non-conservative homogeneous 3× 3 sys-
tem 

∂tρ + ∂x J = 0 ,
∂t J + ∂xρ + 2g(J)∂xa = 0 ,
∂ta = 0 ,

(3.4)

which in diagonal variables (3.1) is written as
∂t f− − ∂x f− − g( f+ − f−)∂xa = 0 ,
∂t f+ + ∂x f+ + g( f+ − f−)∂xa = 0 ,
∂ta = 0 .

(3.5)

Notice that the non-conservative product g(J)∂xa, which in principle is ambiguous
across the discontinuities of a(x), is well-defined since J is constant along station-
ary solutions.

Systems (3.4), (3.5) are introduced in order to be able to set up the WB algo-
rithm: this procedure consists in localizing a source term of bounded extent into
a countable collection of Dirac masses in order to integrate it inside a Riemann
solver by means of an elementary wave, which is obviously linearly degenerate.
The characteristic speed of system (3.5) are ∓1, 0 with corresponding right eigen-
vectors (0, 1, 0)t, (1, 0, 0)t and (−g,−g, 1)t.

We call 0-wave curves those characteristic curves corresponding to the speed 0;
they are related to the stationary equations for f±, that is

∂x f± = −g( f+ − f−)∂xa . (3.6)
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We denote either by (ρ`, J`, a`), (ρr, Jr, ar) or by ( f−` , f+` , a`), ( f−r , f+r , ar) the left and
right states corresponding to Riemann data for (3.4), (3.5) respectively.

Proposition 3.1.1. [6] Assume that k(x) ≥ 0, that g(J)J ≥ 0 and consider the initial
states

U` = (ρ`, J`, a`) , Ur = (ρr, Jr, ar)

with corresponding states ( f−` , f+` , a`) , ( f−r , f+r , ar) in the ( f±, a) variables. Assume
a` ≤ ar and set

δ =̇ ar − a` ≥ 0 . (3.7)

Then the following holds.

(i) The solution to the Riemann problem for system (3.4) and initial data U`, Ur is
uniquely determined by

U(x, t) =


U` x/t < −1
U∗ = (ρ∗,`, J∗, a`) −1 < x/t < 0
U∗∗ = (ρ∗,r, J∗, ar) 0 < x/t < 1
Ur x/t > 1

(3.8)

with
J∗ + g(J∗)δ = f+` − f−r , ρ∗,r − ρ∗,` = −2g(J∗)δ , (3.9)

see Figure 3.1.

(ii) If m < M are given real numbers, the square [m, M]2 is invariant for the solution
to the Riemann problem in the ( f−, f+)-plane. That is, the solution U(x, t) given
in (3.8) satisfies

f±(x, t) ∈ [m, M] (3.10)

for any ( f−` , f+` ), ( f−r , f+r ) ∈ [m, M]2 and for any δ ≥ 0.

(iii) For every pair U`, Ur with ( f−` , f+` ), ( f−r , f+r ) ∈ [m, M]2, let σ−1 = (J∗ − J`) and
σ1 = (Jr − J∗). Hence,∣∣|σ1| − | f+r − f+` |

∣∣ ≤ C0δ ,
∣∣|σ−1| − | f−r − f−` |

∣∣ ≤ C0δ , (3.11)

where
C0 = max{g(M−m),−g(m−M)} . (3.12)

Proof. PROOF OF (i) The Riemann problem for system (3.4) is solved in terms of
the three characteristic families, resulting in three waves: the two ±1-waves, with
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corresponding speed±1, where only f± can change its value; and the 0-wave, cor-
responding to the stationary field of (3.4), evolving along the stationary equations
(3.6).

The intermediate states in the Riemann fan are U∗, U∗∗ while the waves appear-
ing in the solution are as follows: U` and U∗ are connected by a −1-wave, U∗ and
U∗∗ are connected by a 0-wave, and U∗∗ and Ur are connected by a 1-wave.

Here the ” ∗ ” denotes the corresponding value related to the 0-wave: more
precisely, (ρ∗,`, J∗) and (ρ∗,r, J∗) denote the left and right state along the 0-wave,
respectively, in term of the variables (ρ, J). Notice that J is constant across the
0-wave. The 3 unknown values (ρ∗,`, ρ∗,r, J∗) satisfy the system of conditions

ρ∗,` + J∗ = ρ` + J` = 2 f+`
ρ∗,r − J∗ = ρr − Jr = 2 f−r
ρ∗,r − ρ∗,l = −2g(J∗)δ

Indeed, recalling (3.5), the first two equations state that f± is conserved along the
±1-wave, while the third is relation that characterizes the 0-wave.

From the above system, an equation for J∗ can be deduced:

J∗ + g(J∗)δ = f+` − f−r . (3.13)

Since the map
x 7→ x + g(x)δ .

= ϕδ(x)

is increasing for δ ≥ 0, then (3.13) implicitly defines a unique value J∗ = J∗(δ, f+` −
f−r ). Hence (i) and (3.9) are proved.

PROOF OF (ii) By (3.13), the values f+∗ , f−∗ are defined by the identity

f+∗ − f−r = f+` − f−∗ = J∗ , (3.14)

⇒ f+` − f+∗ = f−∗ − f−r = g(J∗)δ ,

then one find that

( f+` − f+∗ )( f+∗ − f−r ) = ( f+` − f−∗ )( f−∗ − f−r ) = J∗ · g(J∗)δ. (3.15)

Noticing that u.g(u) ≥ 0 for all u, we conclude that, if δ ≥ 0, the new values f±∗ do
not leave the interval with extrema f+` , f−r :

m ≤ min{ f+` , f−r } ≤ f+∗ , f−∗ ≤ max{ f+` , f−r } ≤ M,

therefore (3.10) is proved.
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U` Ur

U∗ U∗∗

σ1σ−1 δ

0

FIGURE 3.1: Structure of the solution to the Riemann problem.

PROOF OF (iii) Concerning (3.11), we use (3.9) to find that

| f+r − f+` | ≤ | f
+
r − f+∗ |+ | f+∗ − f+` |

= |σ1|+ | f+∗ − f+` |
= |σ1|+ |g(J∗)|δ
≤ |σ1|+ C0δ

= | f+r − f+∗ |+ C0δ

≤ | f+r − f+` |+ | f
+
∗ − f+` |+ C0δ

≤ | f+r − f+` |+ 2C0δ ,

with C0 as in (3.12), so that

| f+r − f+` | − C0δ ≤ |σ1| ≤ | f+r − f+` |+ C0δ.

An analogous estimate holds for σ−1. Hence we end up with (3.11).

We stress that, in (3.11)–(3.12), the quantity C0 is independent of δ ≥ 0.
Here and in the following, we denote by ∆φ(x) the difference φ(x+)− φ(x−),

where φ is a real-valued function defined on a subset of R, and the limits φ(x±) =
limy→x± φ(y) exist. We define the amplitude of ±1–waves as follows:

σ±1 = ∆J = ±∆ f± = ±∆ρ . (3.16)

In particular, with the notation of Figure 3.1, we have

Jr − J` = σ1 + σ−1

ρr − ρ` = σ1 − σ−1 − 2g(J∗)δ .
(3.17)
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3.1.2 The time-dependent case: interaction estimates

As time evolves, the wave-fronts that stem from t = 0 propagate and interact
between each other; also the coefficient α(t) changes in time. In order to get a-
priori estimates on their total variation and L∞–norm, we study the interactions of
waves in the solutions to (3.5).

In [3, Proposition 3], the multiple interaction of two ±1 waves with a single 0–
wave of size δ > 0 is studied. The following proposition extends such a statement
to the case in which the 0–wave changes size at the time of the interaction.

Proposition 3.1.2. (Multiple interactions, time-dependent case) Assume that at a time
t̄ > 0 an interaction involving a (+1)–wave, a 0–wave and a (−1)–wave occurs, see
Figure 3.2. Let δ be as in (3.7) and α± ≥ 0 be given, so that α(t) = α+ for t > t̄ and
α(t) = α− for t < t̄. Assume that

(sup g′)δα± < 1 . (3.18)

Let σ−±1 be the sizes (see (3.16)) of the incoming waves and σ+
±1 be the sizes of the out-

going ones. Let J±∗ be the intermediate values of J (which are constant across the 0–wave),
before and after the interaction as in Figure 3.2, and choose a value s ∈ (min J±∗ , max J±∗ )
such that

g′(s) =
g(J+∗ )− g(J−∗ )

J+∗ − J−∗
. (3.19)

Then, for γ± =̇ g′(s)δα± , it holds(
σ+
−1

σ+
1

)
=

1
1 + γ−

(
1 γ−

γ− 1

)(
σ−−1
σ−1

)
+

g(J+∗ )(α+ − α−)δ

1 + γ−

(
−1
+1

)
, (3.20)

and similarly(
σ+
−1

σ+
1

)
=

1
1 + γ+

(
1 γ+

γ+ 1

)(
σ−−1
σ−1

)
+

g(J−∗ )(α+ − α−)δ

1 + γ+

(
−1
+1

)
. (3.21)

Moreover,

σ+
1 + σ+

−1 = σ−1 + σ−−1 (3.22)

|σ+
−1|+ |σ

+
1 | ≤ |σ

−
−1|+ |σ

−
1 |+ 2C0δ|α+ − α−| (3.23)

with C0 = max{g(M−m),−g(m−M)} as in (3.12), together with

m = min
{

f±` , f±r
}

, M = max
{

f±` , f±r
}

.
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J+∗

J−∗

t = t̄

σ+
1σ+

−1

σ−1 σ−−1

δα−

δα+

FIGURE 3.2: Multiple interaction, time-dependent case.

Remark 3.1.1. (a) If α(t) is as in (1.4), the ON–OFF time corresponds to α− = 1,
α+ = 0 while the OFF–ON time corresponds to α− = 0, α+ = 1 .

(b) With the notation of Proposition 3.1.2, one has

f±∗,`, f±∗,r ∈ [m, M] , |s| ≤ M−m (3.24)

where f±∗,`, f±∗,r are the intermediate states after the interaction time.

Indeed, as a consequence of Proposition 3.1.1-(ii), the values f+∗,`, f+∗,r belong to [m, M].
Using the same argument of the proof of Proposition 3.1.1 in [6], one can conclude that
the same property holds also for the intermediate state before the interaction, that is,
f−∗,`, f−∗,r ∈ [m, M]. As a consequence, both the intermediate values J±∗ satisfy

|J±∗ | ≤ M−m

and hence, by the intermediate value theorem used in (3.19), we obtain that |s| ≤
M−m.

Proof of Proposition 3.1.2. Let J−∗ , J+∗ be the intermediate values of J before and after
the interaction, respectively. By (3.9) these values satisfy

J+∗ + g(J+∗ )δα+ = f+` − f−r , J−∗ − g(J−∗ )δα− = f+r − f−` .

Since the quantity Jr − J` remains constant across the interaction, we get

Jr − J` = (Jr − J+∗ ) + (J+∗ − J`) = (Jr − J−∗ ) + (J−∗ − J`) .

Then, by the definition (3.16) of the sizes (σ±1 = ∆J) we deduce the identity (3.22).
Using again (3.9) and (3.16), the same procedure applied to ρr − ρ` and the fact
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that σ±1 = ±∆ρ lead to the following identity:

σ+
1 − σ+

−1 − 2g(J+∗ )δα+ = σ−1 − σ−−1 − 2g(J−∗ )δα− ,

that can be rewritten as

σ+
1 − σ+

−1 = σ−1 − σ−−1 + 2
[
g(J+∗ )− g(J−∗ )

]
δα− + 2g(J+∗ )δ(α

+ − α−)

= σ−1 − σ−−1 + 2g′(s)
[

J+∗ − J−∗
]

δα− + 2g(J+∗ )δ(α
+ − α−) (3.25)

for s as in (3.19). Notice that

J+∗ − J−∗ = (J+∗ − Jr) + (Jr − J−∗ ) = −σ+
1 + σ−−1

and, replacing Jr with J`, one has

J+∗ − J−∗ = σ+
−1 − σ−1 .

Since both equations are true, then one can combine them and write

J+∗ − J−∗ =
1
2
(
σ+
−1 − σ+

1 + σ−−1 − σ−1
)

.

By substitution into (3.25), we get

σ+
1 − σ+

−1 = σ−1 − σ−−1 + g′(s)
(
σ+
−1 − σ+

1 + σ−−1 − σ−1
)

δα− + 2g(J+∗ )δ(α
+ − α−) ,

which, for γ− =̇ g′(s)δα− leads to(
1 + γ−

) (
σ+

1 − σ+
−1
)
=
(
1− γ−

) (
σ−1 − σ−−1

)
+ 2g(J+∗ )δ(α

+ − α−) .

In conclusion, recalling (3.22), we have the following 2× 2 linear system

σ+
1 + σ+

−1 = σ−1 + σ−−1

σ+
1 − σ+

−1 =
1− γ−

1 + γ−
(
σ−1 − σ−−1

)
+

2g(J+∗ )δ(α+ − α−)

1 + γ−

whose solution is given by (3.20). The proof of (3.21) is completely similar. Finally,
by taking the absolute values in (3.20), we get (3.23).

This concludes the proof of Proposition 3.1.2.
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3.2 Approximate solutions

In this section, we construct a family of approximate solutions (Subsection 3.2.1)
and we provide a-priori estimates on such approximations (Subsections 3.2.2–
3.2.4).

3.2.1 Construction of the approximate solutions

In this subsection, we construct a family of approximate solutions for the initial–
boundary value problem associated to system (3.4) and initial, boundary condi-
tions (1.3) with ∫

I
ρ0(x) dx = 0 . (3.26)

Step 1: approximation of initial data, k(x) and of α(t). Let N ∈ 2N and set

∆x = ∆t =
1
N

, xj = j∆x (j = 0, . . . , N) , tn = n∆t (n ≥ 0) .

The size of the 0-wave at a point 0 < xj < 1 is given by

δj =
∫ xj

xj−1

k(x)dx , j = 1, . . . , N − 1 . (3.27)

Assume ∆x = 1/N small enough so that for C1 = sup g′(J),

C1‖α‖∞ · δj < 1 . (3.28)

We approximate the initial data f±0 and a(x) as

( f±0 )∆x(x) = f±0 (xj+) , a∆x(x) = a(xj) =
∫ xj

0
k , x ∈ (xj, xj+1) . (3.29)

Recalling that
∫

ρ0 dx = 0 and that ρ = f+ + f−, we easily deduce the following
inequality: ∣∣∣∣∫I

[
( f+0 )∆x + ( f−0 )∆x

]
dx
∣∣∣∣ ≤ ∆xTV ρ0 . (3.30)

Finally, we approximate α(t) in a natural way as follows:

αn(t) = ᾱn := α(tn+) for t ∈ [tn, tn+1) , n ≥ 0. (3.31)

Step 2: solution at t > 0, small t. At t = 0 each Riemann problem that arises at
0 < xj < 1 is solved using Proposition 3.1.1 adapted to the time-dependence of
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FIGURE 3.3: Interactions with the boundaries x = 0, 1 at time t > 0.

the source term in (1.2), that is the missing values in (3.2) satisfy the following:

J∗ + g(J∗)δᾱn = f+` − f−r , ρ∗,r − ρ∗,` = −2g(J∗)δᾱn . (3.32)

Moreover, at x = 0 and x = 1 we have to deal with two boundary Riemann problems.
For instance, at x = 0, t = 0 one has to solve the problem with ( f−0 , f+0 )(0+) as
initial data and J = 0 as boundary datum. The solution consists of a single (+1)-
wave and the intermediate state ( f−∗ , f+∗ ) between x = 0 and the (+1)-wave is
uniquely determined by

f−∗ = f−0 , f+∗ − f−∗ = 0 ⇒ f+∗ = f−0 . (3.33)

The size of the outgoing wave is given by

σ1 = ∆J = ( f+0 − f−0 ) = J0(0+) . (3.34)

Step 3: solution at t > 0, general t. At t = tn = n∆t with n ≥ 1, multiple
interactions of waves occur at 0 < xj < 1 and the newly generated Riemann
problems are again solved as in Proposition 3.1.1 adapted to the time-dependence
of the source term in (1.2). At x = 0, let σ−−1 be the size of a (−1)–wave that hits
the boundary. Clearly, on the left of this wave the boundary condition J = 0 is
satisfied. Being Jr the value of J on the right of the incoming wave, its size σ−−1
satisfies

σ−−1 = ∆J = Jr .

The boundary Riemann problem is solved as before and a new (+1)–wave is is-
sued at the point x = 0, t = tn. Since the boundary condition is still satisfied after
the interaction, the size of the new wave will be equal to

σ+
1 = ∆J = Jr = σ−−1 . (3.35)
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FIGURE 3.4: Well-balanced scheme in the case N = 4.

Hence, the total variation does not change under reflection of waves at the bound-
aries. See Figure 3.3 for a picture of this interaction. The construction that is pre-
sented above leads to the definition of an approximate solution ( f±)∆x(x, t) and
hence of ρ∆x, J∆x. In the rest of this chapter, as far as there is no ambiguity in
the notation, we will drop the ∆x and will refer to ( f±)(x, t) as an approximate
solution with fixed parameter ∆x > 0.

3.2.2 Invariant domains

Recalling Proposition 3.1.1-(ii), the set

D = [m, M]× [m, M] , M = sup
I

f±0 , m = inf
I

f±0 (3.36)

is an invariant domain for the solution to the Riemann problem in the ( f−, f+)-
variables. Let

Jmax = M−m , DJ = [−Jmax, Jmax] . (3.37)

Here DJ denotes the closed interval which is the projection of D on the J-axis.
It is easy to verify that D is invariant also under the solution to the Riemann

problem at the boundary. Indeed, assume that there is a −1-wave impinging on
the boundary x = 0 at a certain time t̄ with a +1 reflected wave. Let ( f̄−, f̄+) ∈ D
be the state on the right of the impinging/reflected wave. Hence
• the state between x = 0 and the impinging wave, for t < t̄, is ( f̄+, f̄+),
• the state between x = 0 and the reflected wave, for t > t̄, is ( f̄−, f̄−),
and both these states belong to D.

Proposition 3.2.1. Under the assumptions of Theorem 1.2.1, for every t ≥ 0 the following
holds:

m ≤ f±(x, t) ≤ M , (3.38)
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and hence, by means of (3.1),

2m ≤ ρ(x, t) ≤ 2M , |J(x, t)| ≤ M−m , (3.39)

with m, M given in (3.36).

As a consequence of the properties above, the solution satisfies J(x, t) ∈ DJ
outside discontinuities. We remark that, given m < M, the bound above holds
• for every choice of source term coefficients k(x), g(J), α(t) as in (1.7), (1.8);
• for every (approximate) solution such that the initial data satisfies (3.36).
We also remark that, in case of no source term (for instance if k(x) ≡ 0), by the

analysis of the Riemann problems one finds that the invariant domain is smaller
than the square D, being the rectangle [m−, M−]× [m+, M+]:

m± ≤ f±(x, t) ≤ M± ,

where
m± =̇ inf

I
f±0 , M± =̇ sup

I
f±0 .

3.2.3 Conservation of mass

In this subsection, we prove that the total mass of ρ∆x is conserved in time.

Proposition 3.2.2. Under the assumptions of Theorem 1.2.1, one has

d
dt

∫
I

ρ∆x(x, t) dx = 0 , (3.40)

and ∣∣∣∣∫I
ρ∆x(x, t) dx

∣∣∣∣ ≤ ∆xTV ρ0 . (3.41)

Proof. Let

y1(t) < y2(t) < . . . < y2N(t) ∀ t > 0 , t 6= tn, t 6= tn+1/2 (3.42)

be the location of the ±1 waves at time t, that is, the location of all the possible
discontinuities (see Figure 3.5). Note that the yj(t) does not necessarily correspond
to a discontinuity. Observe that, by the Rankine-Hugoniot condition of the first
equation in (1.2), which is satisfied in the approximate solution, we have

∆J(yj(t)) = ∆ρ(yj(t))ẏj . (3.43)
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FIGURE 3.5: Illustration of the polygonals yj(t) and of the wave
strengths σj(t)

Now, observe that the function

t 7→
∫

I
ρ∆x(x, t) dx ;

is continuous and piecewise linear on R+, and that its derivative is given by

d
dt

∫
I

ρ∆x(x, t) dx = −
2N

∑
j=1

∆ρ(yj)ẏj

= −
2N

∑
j=1

∆J(yj(t)) = −J(1−, t) + J(0+, t) = 0 (3.44)

for every t 6= tn, tn+1/2, where we used (3.43) and the boundary conditions J(1−, t)
= J(0+, t) = 0, which are satisfied exactly for every t 6= tn. Hence (3.40) is proved.

Finally, the inequality (3.41) follows from (3.40), (3.30) and recalling that ρ =
f+ + f−. The proof is complete.

3.2.4 Uniform bounds on the Total Variation

We define

L±(t) = ∑
(±1)−waves

|∆ f±| , (3.45)

L0(t) =
1
2

(
∑

0−waves
|∆ f+|+ |∆ f−|

)
(3.46)
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that by (3.16) are related to ρ and J as

L±(t) = TV J(·, t) , L±(t) + L0(t) = TV ρ(·, t) .

As in the case of the Cauchy problem [6] and as in [3], the functional L±(t) may
change only at the times tn, due to the interactions with the (±1)−waves with the
0− waves. Let us evaluate the total possible increase of L±. At each time tn, by
using the inequality (3.23), we get

L±(tn+) ≤ L±(tn−) + 2C0 |ᾱn − ᾱn−1|
N−1

∑
j=1

δj ≤ L±(tn−) + 2C0 |ᾱn − ᾱn−1| ‖k‖L1 .

Summing up the previous inequality, one gets

L±(tn+) ≤ L±(0+) + 2C0TV {α; [0, tn]}‖k‖L1 . (3.47)

Hence for every T > 0 the function [0, T] 3 t 7→ L±(t) is uniformly bounded in t
and ∆x. Moreover one has

L±(0+) ≤TV f+(·, 0) + TV f−(·, 0) + |J0(0+)|+ |J0(1−)|+ 2C0α(0+)‖k‖L1 ,

(3.48)

L0(t) ≤‖α‖∞ ∑
j
|g(J∗(xj))|∆a(xj) ≤ C0‖α‖∞‖k‖L1 .

In conclusion,

TV f+(·, t) + TV f−(·, t) = L±(t) + 2L0(t)

≤ TV f+(·, 0) + TV f−(·, 0) + |J0(0+)|+ |J0(1−)|

+ 4C0 (‖α‖∞ + TV {α; [0, T]}) ‖k‖L1

=̇M , (3.49)

and hence the total variation of t 7→ (ρ∆x, J∆x)(·, t) is uniformly bounded on all
finite time intervals [0, T], with T > 0, uniformly in ∆x.
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3.3 Strong convergence as ∆x → 0 and well-posedness

This section is devoted to proving Theorem 1.2.1. The core of the proof is an adap-
tation of Helly’s compactness theorem that we recall in the following ([15, Theo-
rem 2.4, p. 15]).

Theorem 3.3.1. (Helly’s Theorem). Consider a sequence of functions {uN}N∈N : [0, ∞)
×R→ Rn with the following properties:

TV (uN(t, ·)) ≤ C , |uN(t, x)| ≤ M , ∀(t, x) ∈ [0, ∞)×R ,∫ ∞

−∞
|uN(t, x)− uN(s, x)|dx ≤ L|t− s| , ∀t, s ≥ 0 ,

for some constants C, M, L . Then there exists a subsequence uµ which converges to some
function u in L1

loc([0, ∞)×R; Rn). This limit function satisfies∫ ∞

−∞
|u(t, x)− u(s, x)|dx ≤ L|t− s| , ∀t, s ≥ 0 .

The point value of the limit function u can be uniquely determined by requiring that

u(t, x) = u(t, x+)=̇ lim
y→x+

u(t, y) ∀(t, x).

In this case, one has

TV (u(t, ·)) ≤ C , |u(t, x)| ≤ M , ∀(t, x) ∈ [0, ∞)×R .

Now, we prove Theorem 1.2.1, we start by proving it for (ρ0, J0) ∈ BV(I).
In this case, it is possible to pass to the limit thanks to Helly’s compactness

Theorem 3.3.1 adapted to a bounded interval). To prove this statement, we observe
that the approximate solutions are uniformly bounded (with respect to t and N =
(∆x)−1) in the L∞–norm and their total variation is uniformly bounded as well.
Also, the following property holds: for M defined in (3.49),∫ 1

0
|( f±)∆x(x, t)− ( f±)∆x(x, s)| dx ≤ M|t− s| for all ∆x and t, s ≥ 0 . (3.50)

Indeed, let t and s be in the time intervals where no interactions exist, that is

tn ≤ s < t ≤ tn+ 1
2 or tn+ 1

2 ≤ s < t ≤ tn+1 , (3.51)
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then ∫ 1

0
|( f±)∆x(x, t)− ( f±)∆x(x, s)| dx = ∑

j
|∆( f±)∆x(xj, ·)||∆xj|

= ∑
j
|∆( f±)∆x(xj, ·)||ẋj| |t− s|

= ∑
j
|σj(t)| |t− s|

= TV ( f±)∆x(·, t) |t− s| ≤ M |t− s| ,

where (3.49) is used in the last inequality. Note that for t, s in larger intervals than
(3.51), the map t→ ( f±)∆x(·, t) ∈ L1(0, 1) is continuous.

Hence, by Helly’s theorem, there exists a subsequence (∆x)j → 0 such that

f±(∆x)j → f± in L1
loc(0, 1) × [0, ∞) for some functions f± : (0, 1) × [0, ∞) → R,

that are weak solutions to (3.2).
More precisely, the time-Lipschitz inequality (3.50) is satisfied in the limit as

∆x → 0, and hence functions f±(x, t) ∈ L∞((0, 1)× [0, ∞)) are Lipschitz continu-
ous as functions of t in L1(0, 1):∫ 1

0
| f±(x, t)− f±(x, s)| dx ≤ M|t− s| for all t, s ≥ 0 .

Up to a choice of a representative of f± (the one which is continuous from the
right, in space) one has f±(·, t) ∈ BV(I), where the function t→ TV f±(·, t) is non
increasing. Also, the L∞ bounds which are valid for ( f±)∆x are also valid for f±.

In terms of ρ∆x, J∆x, the identity∫ 1

0

∫ ∞

0

{
ρ∆x∂tφ + J∆x∂xφ

}
dxdt = 0 (3.52)

holds for every φ ∈ C1([0, 1] × (0, T)) (that is, up to the boundaries of I) since
J∆x(0+, t) = 0 = J∆x(1−, t) for every t 6= tn. Hence the identity (3.52) is satisfied
by the strong limit (ρ, J). Moreover, by passing to the limit as (∆x)j → 0 in (3.41)
one obtains that (1.10) holds, that is∫

I
ρ(x, t) dx = 0 ∀ t > 0 .
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To obtain the stability in L1 with respect to the initial data, one can observe that
the coupling in system (3.2) is quasimonotone, in the sense that the equations

∂t f± ± ∂x f± = ∓G , G(x, t, f±) = k(x)α(t) g( f+ − f−)

satisfy, thanks to the assumptions (1.8) and (1.7),

∓ ∂G
∂ f±

≤ 0 .

By adapting the arguments in [31], which rely on Kružkov techniques, one can
prove the L1 stability estimate (1.9), that is, for any pair of initial data ( f−0 , f+0 ) and
( f̃−0 , f̃+0 ), the corresponding solutions f±, f̃± on (0, 1)× (0, T) satisfy

‖( f−, f+)(·, t)− ( f̃−, f̃+)(·, t)‖L1(I) ≤ ‖( f−0 , f+0 )− ( f̃−0 , f̃+0 )‖L1(I) .

Therefore, the weak solution to (1.2)–(1.3) is unique on (0, 1)× (0, T) and can be
prolonged for all times, t ∈ R+.

Finally, let (ρ0, J0) ∈ L∞(I). Then there exists a sequence {(ρ0, J0)n}n∈N ⊂
BV(I) such that (ρ0, J0)n → (ρ0, J0) ∈ L1(I). By the L1 stability estimate (1.9), the
limit in L1 of f±n (·, t) is well defined and hence for (ρ, J)(·, t). Since the identity∫ 1

0

∫ ∞

0
{ρn∂tφ + Jn∂xφ} dxdt = 0 (3.53)

holds for every φ ∈ C1([0, 1]× (0, ∞)) and for every n, then (3.53) is valid also for
the strong limit (ρ, J), as well as (1.10). This completes the proof of Theorem 1.2.1 .
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Chapter 4

A finite-dimensional representation
of the approximate solutions

In this chapter, we study the evolution in time of the approximate solution by
means of finite-dimensional evolution system, of size 2N = 2∆x−1 for the vec-
tor σ(t) given in (4.1) . Then, we prove an exponential-type formula for a given
doubly stochastic matrix. The proof relies on a detailed study of the expansion of
the power whose coefficients are described by hypergeometric functions, and their
sum is computed through modified Bessel functions. Thanks to a careful expres-
sion of the first order in 1/N and to a convenient decomposition of the vectors, a
cancellation property is identified, see Proposition 4.3.4.

4.1 The iteration matrix

In this section, we will study the evolution in time of the approximate solution by
means of finite-dimensional evolution system, of size 2N = 2∆x−1. Let’s introduce
a vector representation of the approximate solution that will be the basis of our
subsequent analysis. Define

T = {t ≥ 0 : t = tn = n∆t or t = tn+ 1
2 =

(
n +

1
2

)
∆t , n = 0, 1, . . .}

the set of possible interaction times. At every time t 6∈ T, we can introduce the
vector of the sizes

σ(t) = (σ1, . . . , σ2N) (t) ∈ R2N , N ∈ 2N (4.1)

where, recalling (3.16) and the notation in Proposition 3.2.2, especially (3.42) and
(3.43), one has

σj =̇ ∆J(yj) = ∆ρ(yj)ẏj . (4.2)
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Let’s examine its evolution in the following steps.

(1) At time t = 0+, σ(0+) is given by the size of the waves that arise at xj = j∆x,
with j = 0, . . . , N. In particular, a (+1) wave arises at x = 0, two (±1) waves
arise at each xj with j = 1, . . . , N − 1 and finally a (-1) wave arises at x = 1.

(2) At every time tn+ 1
2 , n ≥ 0, the vector σ(t) evolves by exchanging positions

of each pair σ2j−1, σ2j:(
σ2j−1, σ2j

)
7→
(
σ2j, σ2j−1

)
j = 1, . . . , N (4.3)

that results into

σ(t+) = B1σ(t−) , B1
.
=



0 1 0 · · · 0 0
1 0 0 · · · 0 0
...

... . . . ...
...

...
... . . . ...

...
0 0 0 · · · 0 1
0 0 0 · · · 1 0


(4.4)

(3) At each time tn = n∆t, n ≥ 1, the interactions with the Dirac masses at each
xj of the source term occur, and we have to take into account the relations
introduced in Proposition 3.1.2.

For each j = 1, . . . , N − 1 we will rely on the identity (3.21). Define the tran-
sition coefficients γn

j as follows:

γn
j = g′(sn

j )δjᾱn , j = 1, . . . , N − 1 , n ≥ 1, (4.5)

where δj is given in (3.27), ᾱn in (3.31) and sn
j satisfies a relation as in (3.19);

more precisely

g′(sn
j ) =

g
(

J(xj, tn+)
)
− g

(
J(xj, tn−)

)
J(xj, tn+)− J(xj, tn−) ,

such that J(xj, tn) is computed by the implicit equations (3.32). Moreover
introduce the terms

pj,n = g
(

J(xj, tn−)
) δj

1 + γn
j

, j = 1, . . . , N − 1 , n ≥ 1 . (4.6)
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Then, the local interaction is described as follows:

(
σ2j

σ2j+1

)
7→ 1

1 + γn
j

(
γn

j σ2j + σ2j+1

σ2j + γn
j σ2j+1

)
+ (ᾱn − ᾱn−1) pj,n

(
−1
+1

)
. (4.7)

To recast it in a global matrix form, we define

γn =
(
γn

1 , . . . , γn
N−1

)
∈ RN−1 (4.8)

and set

B2(γ
n) =



1

Ân
1 0

. . .

0 Ân
N−1

1


, Ân

j =
1

1 + γn
j

[
γn

j 1
1 γn

j

]
. (4.9)

The matrix B2(γ) is tridiagonal with diagonal components as follows,(
1,

γn
1

1 + γn
1

,
γn

1
1 + γn

1
,

γn
2

1 + γn
2

, . . . ,
γn

N−2
1 + γn

N−2
,

γn
N−1

1 + γn
N−1

,
γn

N−1
1 + γn

N−1
, 1

)
∈ R2N

and subdiagonals(
0,

1
1 + γn

1
, 0,

1
1 + γn

2
, 0, . . . ,

1
1 + γn

N−1
, 0

)
∈ R2N−1 .

Hence σ(t) evolves according to

σ(tn+) = B2(γ
n)σ(tn−) + (ᾱn − ᾱn−1) Gn

with

Gn = (0,−p1,n,+p1,n, . . . ,−pN−1,n,+pN−1,n, 0)t . (4.10)
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Remark 4.1.1. We give a couple of remarks about the use of the local interaction estimates
(3.20), (3.21)

(i) If, in place of (3.21), the relation (3.20) is used, the quantities (4.5) and (4.6) are
defined by

γn
j = g′(sn

j )δjᾱn−1 , pj,n = g
(

J(xj, tn+)
) δj

1 + γn
j

.

(ii) In the definition of (4.7), notice that we consider the space order instead of the
family order, that was used in (3.20). That is,

(σ2j, σ2j+1) =

(σ−1 , σ−−1) before the interaction

(σ+
−1, σ+

1 ) after the interaction .

We summarize the previous identities to get the following statement.

Proposition 4.1.1. At time t = tn, let B1, B2(γ), Gn be defined by (4.4), (4.9), (4.10)
respectively. Define

B(γ) := B2(γ)B1 . (4.11)

Then the following relation holds,

σ(tn+) = B(γn)σ(tn−1+) + (ᾱn − ᾱn−1) Gn , n ≥ 1 . (4.12)

The matrix B in (4.11) is doubly stochastic for every γ; we will call it transition matrix.
Notice that it is non-negative provided that all the γn

j (see (4.5)) are non-negative, which
relies on the assumption that g′ ≥ 0. Let’s summarize some properties:

(i) The determinant of B is

det(B) = −
(

1− 2γ1

1 + γ1

)
· · ·
(

1− 2γN−1

1 + γN−1

)
. (4.13)

(ii) Its eigenvalues λi satisfy |λi| ≤ 1 for all i = 1, . . . , 2N;

(iii) The values λ = ±1 are eigenvalues with corresponding (left and right) eigenvectors

λ− = −1 , v− = (1,−1,−1, 1, . . . , 1,−1,−1, 1) ,
λ+ = 1 , e = (1, 1, . . . , 1, 1) .

(4.14)

(iv) If γj · γj+1 > 0 for some j, then the eigenvalues with maximum modulus are exactly
two (λ = ±1) and they are simple.
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Moreover, B(0) is a normal matrix, since it is a permutation and hence

B(0)tB(0) = B(0)B(0)t = I2N .

This property does not hold if γ 6= 0.

Proof. Proof of (4.12) is obvious by the evolution of σ(t) that is presented before,
and from the definitions of B1, B2(γ), Gn defined by (4.4), (4.9), (4.10) respectively.

Proof of (i) By the Binet Theorem, see [40, p. 28], we have

det(B) = det(B2)det(B1)

where

det(B1) = 1 , det(B2) = (
2γ1

1 + γ1
− 1) · · · ( 2γN−1

1 + γN−1
− 1) .

Since (N − 1) is odd, we obtain (4.13).

Proof of (ii) and (iii) By Gershgorin Theorem A.1.2, see [40, p. 387], all the eigen-
values of the matrix B are located in the circle of center 0 and radius 1 in the com-
plex plane. Indeed, all the terms on the diagonal are 0 and

2N

∑
j=1 ,i 6=j

|Bij| = 1 , ∀ i .

Hence (ii) follows. About (iii) it is immediate to check that

Bv− = −v− , vt
−B = −vt

− ,

while Be = e and etB = et follow by the double stochastic character of B.

Proof of (iv) It remains to prove that λ± are the only eigenvalues of B with mod-
ulus 1, while all the other have modulus < 1.

We claim that B satisfies the hypotheses of Romanovsky Theorem, see [46] and
[40, p. 541]. The latter result states that a non-negative irreducible matrix A ∈
Mn(R) has exactly p ∈N eigenvalues with maximum modulus if, for any node of
the corresponding directed graph, p is the greatest common divisor of the lengths
of all the directed paths that both start and end at a same node.

See Figure 4.1 for a picture of the graph related to the matrix B = [Bij] with
i, j = 1, . . . 2N, where each node correspond to a row i and each directed arc (i, j)
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1

2 2j 2j+2 2j+4

2j−1 2j+1 2j+3 2N−1

2N

FIGURE 4.1: The graph corresponding to B when γj, γj+1 > 0. The
red arcs correspond to the first and final row of the matrix, while the
blue arcs connecting the nodes 2j− 1, 2j, 2j + 1, 2j + 2 correspond to

the submatrix B̂j.

corresponds to a non-zero element Bij. Remark that the graph of B can be deduced
by noticing that the first row is represented by the arc (1, 2), the last row by the arc
(2N, 2N − 1) and that each 2× 4 submatrix occupying the block of rows 2j, 2j + 1
and columns 2j− 1, . . . , 2j + 2,

B̂j =
1

1 + γj

[
γj 0 0 1
1 0 0 γj

]
j = 1, . . . , N − 1,

corresponds to a squared subgraph made of the arcs (2j, 2j− 1), (2j, 2j + 2), (2j +
1, 2j− 1), (2j + 1, 2j + 2). Notice that, if γj = 0, then only the upper arc (2j, 2j + 2)
and the lower one (2j + 1, 2j − 1) survive in the squared subgraph related to B̂j.
The whole graph is then obtained by juxtaposing the arcs (1, 2), (2N, 2N − 1) to
the subgraphs representing B̂j, for j = 1, . . . , N − 1.

First, notice that B is irreducible, which is equivalent to say that the graph is
totally connected, namely that each node can be reached from any other node via a
path made of arcs present in the graph: this holds true since one can always follow
the circuit (1, 2, 4, . . . , 2j, 2j+ 2, . . . , 2N, 2N− 1, . . . , 2j+ 1, 2j− 1, . . . , 3, 1) from any
node in the graph. Secondly, the length of any path in the graph connecting a node
to itself can be divided at most by 2, which means that in this case p = 2. Indeed,
there is no way to obtain a path of odd length because there are no diagonal arcs.
Moreover, by assumption there exists an index j such that γj, γj+1 are not zero as
in Figure 4.1.

Then, it is easy to see that there are at least two paths connecting the node 1 to
itself of lengths 2j and 2j + 2 and the great common divisor must be 2.

Now, by the Romanovsky Theorem we can conclude that λ± are the only two
eigenvalues with modulus 1 and the proof of (iv) is complete.

Remark 4.1.2. Notice that in general B2 depends on tn, since the coefficients γj depend
on g′(J) and on ᾱn. However, in the time-independent case, α(t) = const., the structure
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of the matrix B (the coefficients which are 6= 0) does not change with n, in the sense that,
for a fixed j, either γn

j 6= 0 for every n or γn
j = 0 for every n.

It is well known that doubly stochastic matrices can be written as a convex
combination of permutations by Birkhoff Theorem A.1.1, which are at most 4N2−
4N + 2 = (2N − 1)2 + 1, see ([40, Theorem 8.7.2]). In the next proposition, for γ
constant we give an explicit Birkhoff decomposition of the matrix B(γ).

Proposition 4.1.2. Let γ = γ (1, . . . , 1) ∈ RN−1 , for some constant γ ∈ [0, 1). Then
the matrix B can be decomposed as

B(γ) =
1

1 + γ
(B(0) + γB1) . (4.15)

Proof. Since γ is constant, then the matrix B2(γ) in (4.9) can be written as

B2(γ) =
1

1 + γ
(B2(0) + γI2N) . (4.16)

Recalling that B(γ) = B2(γ)B1 and substituting (4.16), we obtain (4.15).

Remark 4.1.3. The properties established in Subsections 3.2.2–3.2.4 can be rewritten in
terms of the vectorial representation of the solution (4.1) .

(i) (Boundary conditions) From equation (3.44) it follows that

σ(t) · e = 0 (4.17)

for every t at which σ(t) is defined, that is, t being not interaction time.
Indeed,

σ(t) · e =
2N

∑
j=1

σj(t) =
2N

∑
j=1

∆J(yj(t)) = J(1−, t)− J(0+, t) = 0 .

(ii) (Total variation) The quantity L±(t) coincides with ‖σ(t)‖`1 . In particular,
from (3.47)–(3.48) we obtain

‖σ(0+)‖`1 ≤ TV f+(·, 0) + TV f−(·, 0) + |J0(0+)|+ |J0(1−)|+ 2C0α(0+)‖k‖L1 ,
(4.18)

‖σ(t)‖`1 ≤ ‖σ(0+)‖`1 + 2C0TV {α; [0, tn]}‖k‖L1 , tn < t < tn+1 .

(iii) The following property holds,

|σ(t) · v−| ≤ |σ(0+) · v−| ≤ TV { J̄0; [0, 1]} ∀ t 6∈ T (4.19)
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where v− is the eigenvector corresponding to λ = −1, see (4.14), and

J̄0(x) =

{
J0(x) x ∈ (0, 1)
0 x ∈ 0 or 1 .

(4.20)

To prove the first inequality in (4.19), we first consider t ∈ (tn, tn+1/2) and use the itera-
tion formula (4.12) to obtain

σ(t) · v− = σ(tn) · v− = B(γn)σ(tn−1+) · v− + Gn · v− .

By recalling the definition of (4.10), we immediately deduce that

Gn · v− = 0 ∀ n ,

and therefore that

σ(t) · v− = σ(tn−1+) · B(γn)tv−
= −σ(tn−1+) · v−
= −B(γn−1)σ(tn−2+) · v−
= (−1)nσ(0+) · v− ,

from which (4.19) follows for t ∈ (tn, tn+1/2). Secondly, for t ∈ (tn+1/2, tn+1), by using
(4.4) we have that

σ(t) = σ(tn+1/2+) = B1σ(tn+1/2−) = B1σ(tn+) , t ∈ (tn+1/2, tn+1)

and hence

σ(t) · v− = σ(tn+) · B1v− = −σ(tn+) · v−

from which it follows again (4.19) .
To prove the second inequality in (4.19), by recalling the definition of v− in (4.14), we

observe that

σ(0+) · v− = σ0
1 +

N−1

∑
j=1

(−1)j
(

σ0
2j + σ0

2j+1

)
+ σ0

2N .

Recalling that σ0
2j, σ0

2j+1 are the two outgoing waves at xj = j∆x and time t = 0, then by
(3.17) it holds

σ0
2j + σ0

2j+1 = J(xj+, 0)− J(xj−, 0) .
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Moreover, since the approximate solution satisfies the boundary conditions J = 0, for small
t we have

σ0
1 = J(x1−, 0)− J(0+, t) = J(x1−, 0) = J(0+, 0) , σ0

2N = −J(1−, 0) .

Therefore,

σ(0+) · v− = J(x1−, 0)+

+
N−1

∑
j=1

(−1)j(J(xj+, 0)− J(xj−, 0))− J(xN−1+, 0) , (4.21)

and then, by recalling (3.29), we find that

|σ(0+) · v−| ≤ |J0(0+)|+ TV J0 + |J0(1−)| ,

that gives the second inequality in (4.19).
(iv) The undamped equation: k(x) ≡ 0.
In this case, each vector Gn vanishes and γn = 0. Therefore from (4.12) and (4.3) we

obtain

σ(t) =

{
B(0)nσ(0+) tn < t < tn+ 1

2

B1B(0)nσ(0+) tn+ 1
2 < t < tn+1 .

Since every wave-front issued at t = 0, reflect on the two boundaries and gets back to the
initial position after a time T = 2 = 2N∆t, it is clear that

B(0)2N = I2N (4.22)

that is, B(0)2N coincides with the identity matrix in M2N. As a consequence, the powers
of B(0) are periodic with period 2N:

B(0)n+2N = B(0)n , n ∈ Z .

With a similar argument one can prove that

(B(0)N)ij =

{
1 if i + j = 2N + 1
0 otherwise,

(4.23)

that is, B(0)N is the matrix with component 1 on the antidiagonal positions (i, 2N + 1− i)
and 0 otherwise. It is clear that (B(0)N)2 = B(0)2N = I2N.
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Remark 4.1.4. Let us consider the Cauchy problem for system (1.2) with α(t) = 1 and
periodic initial data of the form{

ρ0(x) = ρ0(x + 1),
J0(x) = J0(x + 1),

x ∈ R. (4.24)

This problem can be studied following the same approach as for the initial-boundary value
problem considered in the thesis. Indeed, constructing approximate solutions by means of
the well-balanced scheme outlined in Section 3.2, we describe the evolution of σ(t) (vector
of the waves present at time t in the space interval [0, 1]) as follows.

At time t = (n− 1
2)∆t, n ≥ 1, each pair of components σ2j−1 and σ2j are switched,

j = 1, . . . , N. Hence, σ(t+) = B1σ(t−) = B1σ(tn−1+), where B1 is defined in (4.4).
At time t = n∆t, recalling (3.20), we have

σ(t+) = B̃2σ(t−)

where

B̃2(γ
n) =



0 0 . . . 0 1

0 Ân
1 0 0

... . . .

0 0 Ân
N−1

...
1 0 . . . 0 0


, Ân

j =
1

1 + γn
j

[
γn

j 1
1 γn

j

]
.

Remark that B̃2 differs from B2 defined in (4.9) only for the first and final rows. Indeed, by
the periodicity of the initial data we have

σ1(tn+) = σ2N(tn−) and σ2N(tn+) = σ1(tn−).

Finally, we compute B̃ .
= B̃2B1, which differs from B defined in (4.11) just for the first

and last rows. Hence, the evolution of the waves is completely determined by

σ(tn+) = B̃σ(tn−1+) n ≥ 0,

where B̃ ∈ M2N(R) is a non-negative, doubly stochastic matrix. Moreover, by an anal-
ogous of Proposition 4.1.1–(iv) we can prove that there are only two eigenvalues with
maximum modulus equal to 1.
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4.2 Expansion formula for the matrix

In this section, we will assume that k(x) ≡ k̄ > 0, g′(J) ≡ C1, α(t) ≡ 1 and then γ
is a vector where all the components are equal:

γ = γ(1, . . . , 1) , γ = d∆x =
d
N

, d = k̄C1 , (4.25)

which corresponds to the standard telegrapher’s equation:{
∂tρ + ∂x J = 0,
∂t J + ∂xρ = −2dJ .

(4.26)

By Proposition 4.1.2 and Birkhoff Theorem A.1.1, if γ is as in (4.25), then the matrix
B(γ) can be decomposed as the sum of only two matrices,

B(γ) =
1

1 + γ
(B(0) + γB1) .

Thanks to this decomposition, we can analyze the powers of B(γ). For a generic
n ∈N one has

B(γ)n = (1 + γ)−n [B(0) + γB1]
n (4.27)

The factor (1 + γ)−n provides an exponentially decreasing term with respect to
time. Indeed, let T > 0 and recalling that ∆t = N−1, we have(

1 +
d
N

)−[TN]

→ e−dT N → ∞ . (4.28)

Let us focus on the second factor in (4.27), that is

[B(0) + γB1]
n =

n

∑
k=0

γkSk(B(0), B1), (4.29)
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where each term Sk(B(0), B1) is the sum of all products of n matrices which are
either B1 or B(0), and in which B1 appears exactly k times, that is

Sk(B(0), B1) = ∑
(`1,...,`k+1)

B(0)`1 · B1 · B(0)`2 · B1 · · · B(0)`k · B1 · B(0)`k+1

0 ≤ `j ≤ n− k ,
k+1

∑
j=1

`j = n− k .
(4.30)

In what follows, we extensively use the fact that B2
1 = I2N = B(0)2N and the

commutation property described in the next proposition.

Proposition 4.2.1. The following identity holds for any ` ∈N:

B(0)±`B1 = B1B(0)∓`. (4.31)

Proof. Recalling (4.4) and (4.11) with γ = 0, we have that B(0)−1 = (B2(0)B1)
−1 =

B1B2(0). Then for every ` ≥ 0 we have

B(0)−`B1 = (B1B2(0)) · · · (B1B2(0))︸ ︷︷ ︸
` times

·B1

= B1 · (B2(0)B1) · · · (B2(0)B1)︸ ︷︷ ︸
` times

= B1 · B(0)` .

As for the identity for +`, notice that

B(0)`B1 = B(0)2N−(2N−`)B1 = B(0)2NB(0)−(2N−`)B1

= B(0)−(2N−`)B1,

where we used that B(0)2N = I2N. Hence, by the first identity we get

B(0)`B1 = B1 · B(0)2N−` = B1 · B(0)−` .

By means of (4.31) and using that B2
1 = I2N, the generic term in the sum Sk in

(4.30) can be conveniently rewritten. Indeed, one has S0 = B(0)n. For k = 1, . . . , n,
we have to distinguish the case of even/odd k.
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• For k even, we have

B(0)`1 · B1 · B(0)`2 · B1 · · · B(0)`k · B1 · B(0)`k+1 = B(0)α−β , (4.32)

where

α =
k+1

∑
j=1, j odd

`j , β =
k+1

∑
j=2, j even

`j = n− k− α . (4.33)

Now let us count how many vectors (`1, . . . , `k+1) lead, thanks to (4.32), to the
same matrix

B(0)α−β = B(0)2α+k−n .

In the first sum of (4.33) the indices are k/2 + 1, while in the second sum they
are k/2. Hence, for a given α, the number of the distinct vectors (`1, . . . , `k+1) for
which (4.33) holds is 1(

α + k
2

k
2

)(
n− α− 1− k

2
k
2 − 1

)
, α = 0, . . . , n− k .

If we perform a change of variable j = α + k/2, we get(
j
k
2

)(
n− j− 1

k
2 − 1

)
, j =

k
2

, . . . , n− k
2

,

and

Sk(B(0), B1) =
n− k

2

∑
j= k

2

(
j
k
2

)(
n− j− 1

k
2 − 1

)
B(0)2j−n , k = 2, 4, . . . , n . (4.34)

• For k odd, we have

B(0)`1 · B1 · B(0)`2 · B1 · · · B(0)`k · B1 · B(0)`k+1 = B(0)α−βB1

= B(0)2α+kB(0)−nB1

= B(0)2α+k−1B2(0)B(0)n ,

1Given M ≥ 0 and aj ≥ 0 integers such that ∑n
j=1 aj = M, the number of distinct (a1, . . . , an) is(

M + n− 1
n− 1

)
=

(
M + n− 1

M

)
.
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where α, β = n− k− α are given in (4.33).
Here, the number of vectors (`1, . . . , `k+1) for which (4.33) holds are counted as

follows. The indices `j are in total (k + 1)/2 for both sums, hence for a given α the
number of terms is(

α + k−1
2

k−1
2

)(
n− α− k−1

2 − 1
k−1

2

)
, α = 0, . . . , n− k .

If we perform a change of variable j = α + k−1
2 , we get(

j
k−1

2

)(
n− j− 1

k−1
2

)
, j =

k− 1
2

, . . . , n− k + 1
2

.

Hence,

Sk(B(0), B1) =
n− k+1

2

∑
j= k−1

2

(
j

k−1
2

)(
n− j− 1

k−1
2

)
B(0)2j−nB2(0) k = 1, 3, . . . , n− 1 .

(4.35)
For later use, in (4.35), it is convenient to rewrite the term B(0)2j−nB2(0) as follows.
Recalling that B(0) is given by B(0) = B2(0)B1, we obtain

B2(0) = B2(0)B2
1 = B(0)B1

and hence, by means of (4.31),

B(0)2j−nB2(0) = B(0)2j−n+1B1 = B1B(0)n−2j−1 . (4.36)

For later use, we define the following sets of indices

I′
.
= {1, 4, 5, 8, . . . , 2N − 3, 2N} , I′′

.
= {2, 3, 6, 7 . . . , 2N − 2, 2N − 1} . (4.37)

The next proposition gives an explicit formula for the sum of the powers of B(0).

Proposition 4.2.2. Let P̂ be the matrix defined by

P̂ =̇
1

2N
(
eet + v−vt

−
)

, (4.38)
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which is the matrix composed by N2/4 squared blocks as
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 .

Then, the following identity holds:

1
N

N−1

∑
j=0

B(0)2j =
1
N

N

∑
j=1

B(0)2j = P̂ . (4.39)

Proof. The first equality in (4.39) follows from the following identity:

(
I2N − B(0)2

)(N−1

∑
j=0

B(0)2j

)
= 0 .

Indeed,

(
I2N − B(0)2

)(N−1

∑
j=0

B(0)2j

)
=

(
N−1

∑
j=0

B(0)2j

)
−
(

N

∑
j=1

B(0)2j

)
= I2N − B(0)2N = 0.

To prove the second identity in (4.39), observe that the matrix B(0)2 contains the
following two separated "cycles" of length N,

1→ 5→ 9→ . . .→ 2N − 3→ 2N → 2N − 4→ . . .→ 4→ 1
2→ 3→ 7→ . . .→ 2N − 1→ 2N − 2→ 2N − 6→ . . .→ 6→ 2 .

In the first, second case, the indexes are precisely the ones in I′, I′′ respectively, see
(4.37).

By summing all the permutations B(0)2, . . . , B(0)2N = I2N, one obtains that
every ith row, with i ∈ I′, has value =1 exactly at every index ∈ I′ and value = 0
otherwise. The same holds for every ith row with i ∈ I′′ . Hence (4.39) holds.

The next theorem provides an estimate on the components of B(γ)hN, h ∈ N

in terms of d, N.
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Theorem 4.2.3. Let N ∈ 2N, h ∈N and d ≥ 0. Then the following identity holds[
B(0) +

d
N

B1

]hN
= B(0)hN + dhP̂ + RN(h, d) (4.40)

where the remainder RN(h, d) is given by

RN(h, d) =
hN−1

∑
j=0

ζ j,hNB1B(0)hN−2j−1 +
hN−1

∑
j=1

ηj,hNB(0)2j−hN . (4.41)

The coefficients ζ j,hN and ηj,hN satisfy the following estimate:

0 ≤
hN

∑
j=0

ζ j,hN +
hN

∑
j=1

ηj,hN ≤ ehd − hd− 1 +
K
N

(4.42)

where K = K(h, d) ≥ 0 is independent on N, and K(h, d) → 0 as d → 0, for every
h ∈N.

Proof. By (4.34), (4.35), and (4.36), after exchange the sum in k and j, we can write
(4.29) for any n as the following

[B(0) + γB1]
n = B(0)n + γ

n−1

∑
j=0

B1B(0)n−2j−1 (4.43)

+
n−1

∑
j=0

ζ j,nB1B(0)n−2j−1 +
n−1

∑
j=1

ηj,nB(0)2j−n ,

where γ = d
N and

ζ j,n =
min{j,n−j−1}

∑
`=1

γ2`+1
(

j
`

)(
n− j− 1

`

)
, (4.44)

ηj,n =
min{j,n−j}

∑
i=1

γ2i
(

j
i

)(
n− j− 1

i− 1

)
. (4.45)

In the expansion above, the term with the ζ j,n accounts for the odd powers, ≥ 3,
of γ while the term with the ηj,n accounts for the even powers ≥ 2 of γ.
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From now on, we assume that n = hN. We recall the identity (4.39), and some
immediate identities,

P̂B2(0) = P̂ , B(0)2P̂ = P̂B(0)2 = P̂ .

Therefore
hN−1

∑
j=0

B1B(0)hN−2j−1 = hB1

N−1

∑
j=0

B(0)hN−2j−1 = hNP̂ ,

and the identity (4.43) rewrites as

[B(0) + γB1]
hN = B(0)hN + hdP̂ + RN(h, d)

RN(h, d) =
hN−1

∑
j=0

ζ j,hNB1B(0)hN−2j−1 +
hN−1

∑
j=1

ηj,hNB(0)2j−hN .

To complete the proof, we need to estimate the sums of ζ j,hN, ηj,hN. We claim that

0 ≤
hN

∑
j=0

ζ j,hN ≤ sinh(hd)− hd +
1
N

f0(h, d) (4.46)

0 ≤
hN

∑
j=1

ηj,hN ≤ cosh(hd)− 1 +
1
N

f1(h, d) (4.47)

where

f0(h, d) =̇
∞

∑
`=1

(
h
2

)2` d2`+1

(`!)2 = d [I0(hd)− 1]

f1(h, d) =̇
∞

∑
i=1

(
h
2

)2i−1 (d)2i

i!(i− 1)!
= dI1(hd) ,

and

Iα(2x) =
∞

∑
m=0

x2m+α

m!(m + α)!
, α = 0, 1

is a modified Bessel function of the first type. It is clear that, once the claim above
is proved, then it follows that (4.42) holds with

K(h, d) = f0(h, d) + f1(h, d) . (4.48)
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We start with ζ j,hN defined in (4.44). Using the inequality(
n
k

)
≤ nk

k!
, 0 ≤ k ≤ n

and the definition γ = d/N, we find that

ζ j,hN ≤
1
N

∞

∑
`=1

(d)2`+1

(`!)2
j`

N`

(hN − j− 1)`

N`
. (4.49)

Then we introduce the change of variable

xj =
j

hN
, j = 0, . . . , hN − 1 . (4.50)

Thanks to the inequality (4.49) we get

0 ≤ ζ j,hN ≤
1

hN

∞

∑
`=1

(hd)2`+1

(`!)2 x`j

(
1− xj −

1
hN

)`

≤ 1
hN

∞

∑
`=1

(hd)2`+1

(`!)2 x`j (1− xj)
` .

As a consequence, we deduce an estimate for the sum of the ζ j,hN:

0 ≤
hN−1

∑
j=0

ζ j,hN ≤
1

hN

hN−1

∑
j=0

∞

∑
`=1

(hd)2`+1

(`!)2 x`j (1− xj)
`

=
∞

∑
`=1

(hd)2`+1

(`!)2

{
1

hN

hN−1

∑
j=0

x`j (1− xj)
`

}

Using the definition (4.50), we observe that

1
hN

hN−1

∑
j=0

x`j (1− xj)
` →

∫ 1

0
x`j (1− xj)

` dx as N → ∞, ` ≥ 1 ;
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more precisely the following estimate holds,

hN−1

∑
j=0

x`j (1− xj)
` 1
hN

=

(hN/2)−1

∑
j=0

+
hN−1

∑
j=(hN/2)+1

 x`j (1− xj)
` 1
hN

+
1

hN

(
1
2

)2`

≤
∫ 1

0
x`j (1− xj)

` dx +
1

hN

(
1
2

)2`

. (4.51)

It is easy to check the following identities∫ 1

0
x`j (1− xj)

` dx =
(`!)2

(1 + 2`)!
, ` ≥ 1 . (4.52)

By plugging the previous estimates into the sum of the ζ j,n we get

0 ≤
hN−1

∑
j=0

ζ j,n ≤
∞

∑
`=1

(hd)2`+1

(`!)2
(`!)2

(1 + 2`)!
+

1
N

∞

∑
`=1

(
h
2

)2` (d)2`+1

(`!)2︸ ︷︷ ︸
= f0(h,d)

=
∞

∑
`=1

(hd)2`+1

(1 + 2`)!
+

1
N

f0(h, d)

= sinh(hd)− hd +
1
N

f0(h, d) .

Therefore (4.46) follows.
Similarly to the estimate (4.49) for ζ j,hN and using the change of variables (4.50),

for ηj,hN defined in (4.45) we find that

ηj,hN ≤
1

hN

∞

∑
i=1

(hd)2i

i!(i− 1)!
xi

j

(
1− xj −

1
hN

)i−1

≤ 1
hN

∞

∑
i=1

(hd)2i

i!(i− 1)!
xi

j
(
1− xj

)i−1 .

The sum of the ηj,hN can be estimated as follows,

hN−1

∑
j=1

ηj,hN ≤
∞

∑
i=1

(hd)2i

i!(i− 1)!

{
1

hN

hN−1

∑
j=1

xi
j (1− xi)

i−1

}
.
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while by (4.51) with ` = i− 1 and by (4.52) we find that

1
hN

hN−1

∑
j=1

xi
j
(
1− xj

)i−1 ≤
∫ 1

0
xi

j
(
1− xj

)i−1 dx +
1

hN

(
1
2

)2i−1

=
(i− 1)!(i)!

(2i)!
+

1
hN

(
1
2

)2i−1

.

Therefore

hN−1

∑
j=1

ηj,N ≤
∞

∑
i=1

(hd)2i

i!(i− 1)!
(i− 1)!(i)!

(2i)!
+

1
N

∞

∑
i=1

(
h
2

)2i−1 (d)2i

i!(i− 1)!︸ ︷︷ ︸
= f1(h,d)

=
∞

∑
i=1

(hd)2i

(2i)!
+

1
N

f1(h, d)

= cosh(hd)− 1 +
1
N

f1(h, d) ,

that leads to (4.47). This completes the proof of Theorem 4.2.3.

Remark 4.2.1. For a ∈ R and n ≥ 0, n integer, we introduce the notation (shifted
factorial, see [9, p. 2]):

(a)n =

{
1 n = 0
a(a + 1) · · · (a + n− 1) n ≥ 1 .

(4.53)

With this notation we can write (1)n = n!. Observe that, if a is a negative integer, then
(a)n vanishes for every n ≥ |a|+ 1.

Then the product of the binomial coefficients in (4.44) can be rewritten as follows,(
j
`

)(
hN − j− 1

`

)
=

1
(`!)2 (−j)` · (−hN + j + 1)` , ` ≥ 0 ,

and it is clear that the above quantity vanishes for ` > min{j, hN − j− 1}. Therefore,
starting from ` = 0, the coefficients ζ j,N is rewritten as

ζ j,N =
∞

∑
`=0

γ2`+1

`!
(−j)`(−hN + j + 1)`

(1)`
. (4.54)
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Then, it can be rewritten in terms of the hypergeometric function, see [9],

2F1(a, b, c; z) =
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
, a, b, c ∈ R .

In conclusion we have

ζ j,N = γ 2F1(−j,−hN + j + 1, 1; γ2) , γ =
d
N

and hence, from (4.35), we obtain:

hN−1

∑
k=1
k odd

γkSk = γ
hN−1

∑
j=0

2F1(−j,−hN + j + 1, 1; γ2)B(0)2j−hNB2(0) .

4.3 `1 contraction

Let us define the operator Bn to be

Bn=̇
[

B(n)B(n−1) · · · B(2)B(1)
]

, B(n) = B(γn) , n ∈N (4.55)

In this section, we prove that the ‖ · ‖`1 is contractive for Bn with n = N, where

‖A‖`1 = max
j

n

∑
i=1
|aij| , A = (aij) ∈ Mn

is the maximum column sum matrix norm, which is induced by the `1-norm on
Rn. More precisely, we, first, write a convenient decomposition of the vectors on
the subspace

E−=̇ < e, v− >⊥ , (4.56)

the notation < e, v− >⊥ is the perpendicular of the span of e and v−, so that E− is
the space generated by all the eigenvectors of those eigenvalues λ such that |λ| <
1, along which a suitable cancellation occurs later on. Then, we prove a contractive
estimate for the linear damping case, that is the case k, g′ and α constants. Finally,
we prove the same estimate for the non-linear damping.
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4.3.1 A first decomposition of the strength vector

We decompose the initial vector σ(0+) as follows:

σ(0+) =
(σ(0+) · e)

2N
e +

(σ(0+) · v−)
2N

v− + σ̃(0+),

where e, v− are the eigenvectors defined at (4.14) and σ̃(0+) ∈ E−.
Recalling (4.17), that is σ(0+) · e = 0, hence the decomposition of σ(0+) re-

duces to

σ(0+) =
(σ(0+) · v−)

2N
v− + σ̃(0+). (4.57)

Let α(t) = const., consider the matrix Bn defined at (4.55), obtained by iterating
the step (4.12). By means of (4.57) and using again (4.14) for v−, we get that

σ(tn+) = Bnσ(0+) = (−1)n (σ(0+) · v−)
2N

v− +Bnσ̃(0+) . (4.58)

4.3.2 A refined decomposition of the strength vector

In this subsection, we focus on the analysis of ‖Bnσ̃(0+)‖`1 . In particular, we
analyze the sequence {Bnσ̃}n∈N whenever σ̃ belongs to the subspace E− =<
e, v− >⊥.

Let N ∈ 2N and consider σ̃ ∈ E−. By definition (4.14) of e, v− then σ̃ satisfies{
σ̃1 + σ̃2 + · · ·+ σ̃2N = 0,
σ̃1 − σ̃2 − σ̃3 + σ̃4 + σ̃5 − · · ·+ σ̃2N = 0,

which is equivalent to{
σ̃1 + σ̃4 + · · ·+ σ̃2N−3 + σ̃2N = 0,
σ̃2 + σ̃3 + · · ·+ σ̃2N−2 + σ̃2N−1 = 0.

Here we recall the sets I′′ and I′ defined at (4.37),

I′
.
= {1, 4, 5, 8, . . . , 2N − 3, 2N} , I′′

.
= {2, 3, 6, 7 . . . , 2N − 2, 2N − 1} .

We introduce the following subspaces in R2N, each of dimension N − 1:

H1
.
= {(x1, . . . , x2N) : x1 + x4 + · · ·+ x2N−3 + x2N = 0, xj = 0, j ∈ I′′},

H2
.
= {(x1, . . . , x2N) : x2 + x3 + · · ·+ x2N−2 + x2N−1 = 0, xj = 0, j ∈ I′}.
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Hence we can write

σ̃ = σ̃′ + σ̃′′ , σ̃′ ∈ H1 , σ̃′′ ∈ H2 . (4.59)

Notice that, since H1 and H2 are complementary, we have

‖σ̃‖`1
=
∥∥σ̃′ + σ̃′′

∥∥
`1
=
∥∥σ̃′
∥∥
`1
+
∥∥σ̃′′

∥∥
`1

. (4.60)

Let us define the vectors vij ∈ E− for either i, j ∈ I′ or i, j ∈ I′′ as follows,

(vij)i = 1 (vij)j = −1 (vij)k = 0 ∀ k 6= i, j , i 6= j , (4.61)

such vectors vij do not form basis. Remark that σ̃′ and σ̃′′ can be written as a linear
combination of suitable vij’s, i.e. we can identify β′ij, β′′ij ∈ R such that

σ̃′ = ∑
i,j∈I′

β′ijvij , σ̃′′ = ∑
i,j∈I′′

β′′ijvij . (4.62)

By the triangular inequality, one has that∥∥σ̃′
∥∥
`1
≤∑

ij
|β′ij|

∥∥vij
∥∥
`1
= 2 ∑

ij
|β′ij| ,

∥∥σ̃′′
∥∥
`1
≤ 2 ∑

ij
|β′′ij| .

In the next Lemma we prove that, for a suitable choice of the decomposition, the
sum above can be made an equality.

Lemma 4.3.1. (i) There exists a choice of the vectors vij such that (4.62) holds together
with ∥∥σ̃′

∥∥
`1
= 2 ∑

ij
|β′ij|, (4.63)

∥∥σ̃′′
∥∥
`1
= 2 ∑

ij
|β′′ij|. (4.64)

(ii) The following estimate holds,

∥∥Bnσ̃
∥∥
`1
≤ sup

i,j

∥∥∥∥∥Bn
vij

‖vij‖`1

∥∥∥∥∥
`1

·
∥∥σ̃
∥∥
`1

, ∀ σ̃ ∈ E−. (4.65)

Proof. We start with (i), it suffices to prove (4.63), since (4.64) is analogous.
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First, we have to find a suitable linear decomposition of σ̃′(0+) in a basis of
vectors of the form vij, with i, j ∈ I′. By construction we have

σ̃′ =
(
σ̃′1, 0, 0, σ̃′4, σ̃′5, 0 . . . , 0, σ̃′2N−3, 0, 0, σ̃′2N

)
,

i.e. the components corresponding to indices in I′′ are zero. Therefore, we can
simplify the notation and in place of σ̃′ consider

x = (x1, x2, . . . , xN) =
(
σ̃′1, σ̃′4, . . . , σ̃′2N

)
∈ RN,

the vector obtained erasing from σ̃′ the zero components and satisfying x1 + x2 +
· · · + xN = 0. Below we describe an algorithm to decompose x along a basis of
vij’s, for i, j ∈ I′.

Step 1. Let x 6= 0. Hence there exists a pair of indices k1, h1 ∈ {1, . . . , N} such
that

xk1 · xh1 < 0 , 0 < |xk1 | = min
k=1,...,N; xk 6=0

|xk| .

In particular one has that |xh1 | ≥ |xk1 |.
Step 2. Define the vector

x(1) .
= x− xk1vk1h1 ∈ RN,

and notice that it satisfies

(
x(1)
)

k =


0 k = k1

xh1 + xk1 k = h1

xk k 6= k1, h1 .

In particular, ∣∣(x(1))h1

∣∣ = |xh1 | − |xk1 | ≥ 0

and hence ∥∥x(1)
∥∥
`1
=
∥∥x
∥∥
`1
− 2|xk1 | <

∥∥x
∥∥
`1

.

Step 3. We apply the same procedure to x(1), namely we choose suitable in-
dexes k2, h2 ∈ {1, . . . , N} such that(

x(1)
)

k2
·
(
x(1)
)

h2
< 0 , 0 <

∣∣(x(1))k2

∣∣ = min
k=1,...,N ,

(
x(1)
)

k
6=0
|
(
x(1)
)

k| .
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Notice that, since
(
x(1)
)

k1
= 0, one has that k2, h2 are different from k1. Moreover

one has
∣∣(x(1))h2

∣∣ ≥ ∣∣(x(1))k2

∣∣.
As in Step 2, we define

x(2) .
= x(1) −

(
x(1)
)

k2
vk2h2

= x− xk1vk1h1 −
(
x(1)
)

k2
vk2h2 ,

that is (
x(2)
)

k =


0 k = k2(
x(1)
)

h2
+
(
x(1)
)

k2
k = h2(

x(1)
)

k k 6= k2, h2 .

Notice that (
x(2)
)

k = 0 for k = k1, k2

and that ∣∣(x(2))h2

∣∣ = |(x(1))h2
| − |

(
x(1)
)

k2
| ≥ 0 .

Observe that |xk1 |+
∣∣(x(1))k2

∣∣ ≤ |xk1 |+ |xk2 | and∥∥x(2)
∥∥
`1
=
∥∥x(1)

∥∥
`1
− 2|

(
x(1)
)

k2
|

=
∥∥x
∥∥
`1
− 2

(
|xk1 |+

∣∣(x(1))k2

∣∣) .

Step 4. Proceeding by induction, after at most N − 1 iterations of the method
we get

x(N−1) .
= x− xk1vk1h1 −

(
x(1)
)

k2
vk2h2 − · · · −

(
x(N−2))

kN−1
vkN−1hN−1

= (0, . . . , 0) ∈ RN.

Thus,

0 =
∥∥x(N−1)∥∥

`1
=
∥∥x
∥∥
`1
− 2

(
N−1

∑
i=1
|xki |

)
. (4.66)

and hence ∥∥x
∥∥
`1
=

1
2

N−1

∑
i=1
|xki | .

Since we can write that ∑N−1
i=1 |xki | = ∑ij |β′ij|, then the proof of (4.63) is complete.
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Proof of (ii) By using (4.59), we have

Bnσ̃ = Bnσ̃′ +Bnσ̃′′ .

By means of (4.62) and (i) we find that∥∥Bnσ̃
∥∥
`1
≤
∥∥Bnσ̃′

∥∥
`1
+
∥∥Bnσ̃′′

∥∥
`1

≤∑
I′
|β′ij|

∥∥Bnvij
∥∥
`1
+ ∑

I′′
|β′′ij|

∥∥Bnvij
∥∥
`1

≤
(

∑
I′
|β′ij|+ ∑

I′′
|β′′ij|

)
sup

i,j

∥∥Bnvij
∥∥
`1

≤ 1
2

(∥∥σ̃′
∥∥
`1
+
∥∥σ̃′′

∥∥
`1

)
sup

i,j

∥∥Bnvij
∥∥
`1

.

As ‖vij‖`1 = 2 and by using (4.60), the proof of (4.65) is complete.

4.3.3 `1 contraction: Linear damping

Next, we want to prove a contractive estimate for ‖B(γ)Nvij‖`1 . Then, thanks to
(4.65), the contractive estimate holds also for every σ̃ ∈ E−. We recall that here
γ = γ(1, . . . , 1) ∈ RN−1 with γ = d/N for some d > 0.

Theorem 4.3.2. For N ∈ 2N . For every d > 0 and σ̃ ∈ E− there is a constant CN(d) >
0 such that ∥∥B(γ)Nσ̃

∥∥
`1
≤ CN(d)

∥∥σ̃
∥∥
`1

, (4.67)

where σ̃ ∈ E− and

CN(d)→ (1− de−d) < 1 , N → ∞ . (4.68)

Proof. Thanks to Lemma 4.3.1, especially estimate (4.65), that is

∥∥BNσ̃
∥∥
`1
≤ sup

i,j

∥∥∥∥∥BN
vij

‖vij‖`1

∥∥∥∥∥
`1

·
∥∥σ̃
∥∥
`1

, ∀σ̃ ∈ E−,

it is then sufficient to study the behavior of

sup
i,j

∥∥∥∥∥BN
vij

‖vij‖`1

∥∥∥∥∥
`1
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as n→ ∞ for every vij, as defined in (4.61), with either i, j ∈ I′ or i, j ∈ I′′.
Notice that

B(γ)Nvij = B(γ)Nei − B(γ)Nej = B(γ)N[i]− B(γ)N[j],

where ei, ej are vectors of the canonical basis of R2N and B(γ)N[i], B(γ)N[j] denote
the i-th and j-th column of the matrix B(γ)N. Hence, ‖B(γ)Nvij‖`1 corresponds to
the distance between two columns of B(γ)N indicized by either i, j ∈ I′ or ∈ I′′.

Assume that i, j ∈ I′, the other case being completely similar. We use the ex-
pression (4.27) for B(γ)N and Theorem 4.2.3 to get

∥∥∥B(γ)N[i]− B(γ)N[j]
∥∥∥
`1
=

(
1 +

d
N

)−N 2N

∑
`=1
|b`i − b`j|,

where b`i denotes the generic element of the matrix [B(0) + γB1]
N and where b`i,

b`j = 0 if ` /∈ I′.
Then a key observation is that, the contribution in formula (4.40) from the term

P̂ is zero because
P̂[i]− P̂[j] = 0 ∈ R2N , i, j ∈ I′ .

The same property holds if i, j ∈ I′′. The matrix B(0)N defined at (4.23) has
b2N+1−i,i = 1 and 0 otherwise. Therefore

2N

∑
`=1
|b`i − b`j| ≤ |b2N+1−i,i − bij|+ |bji − b2N+1−j,j|+

2N

∑
` 6=i,j
|b`i − b`j|

≤ 2

(
1 +

N−1

∑
j=0

ζ j,N +
N−1

∑
j=1

ηj,N

)

≤
∥∥vij

∥∥
`1

[
ed − d +

K
N

]
,

where K = K(d) > 0 is a constant independent of N , and the last inequality holds
by the estimate (4.42). By denoting

CN(d)=̇
(

1 +
d
N

)−N [
ed − d +

K
N

]
, (4.69)

we easily get that CN(d) → (1− de−d) as N → ∞ . This completes the proof of
Theorem 4.3.2 .

The formula (4.67) indicates that, as N → ∞, the matrix norm induced by the
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`1–norm is asymptotically contractive for the power B(γ)N on the subspace E−.
Of course, for d and N fixed, the sequence of matrices B(γ)n will converge to zero
as n → ∞ on the subspace E− (that is, every vector B(γ)nσ with σ ∈ E−), see
Gelfand Theorem A.1.5. Hence, every matrix norm will become contractive after a
sufficiently large number n of iterations.

4.3.4 `1 contraction: Nonlinear damping

In this subsection, we prove Theorem 4.3.2 for the case of non-linear damping. We
will assume that the damping term is time-independent, with α(t) ≡ 1, and that
(1.11), (1.12) hold. Let us define d1, d2 as in (1.13), that is

d1 = k1 min
J∈DJ

g′(J) > 0 , d2 = k2 max
J∈DJ

g′(J) .

Lemma 4.3.3. Under the assumptions of Theorem 1.2.2, the following entrywise inequal-
ity holds:

B(γn) ≤
(

1 +
d1

N

)−1 [
B(0) +

d2

N
B1

]
∀ n ≥ 1 . (4.70)

Proof. Recalling the definitions (3.27), (4.5) for δj and γn
j respectively, the following

bounds hold for every j and n:

k1

N
≤ δj ≤

k2

N
,

d1

N
≤ γn

j ≤
d2

N
.

Now, recalling (4.9), the 2× 2 matrices Ân
j satisfy the following entrywise bounds,

Ân
j =

1
1 + γn

j

{[
0 1
1 0

]
+ γn

j

[
1 0
0 1

]}
≤
(

1 +
d1

N

)−1{[0 1
1 0

]
+

d2

N

[
1 0
0 1

]}

that are independent of n, j. By using again (4.9) and the definition (4.11) of B(γn),
we get (4.70) .

Recall the definition of the operator Bn defined in (4.55), that is

Bn=̇
[

B(n)B(n−1) · · · B(2)B(1)
]

, B(n) = B(γn) , n ∈N

Since the bound in (4.70) is independent of time, we have

Bn ≤
(

1 +
d1

N

)−n [
B(0) +

d2

N
B1

]n
. (4.71)
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Proposition 4.3.4. There exists a constant CN(d1, d2) such that as N → ∞

CN(d1, d2)→ e−d1(ed2 − d2) =̇ C(d1, d2) (4.72)

and ∥∥BNσ̃
∥∥
`1
≤ CN(d1, d2)

∥∥σ̃
∥∥
`1

.

In particular, if d1 and d2 satisfy (1.14), then CN(d1, d2) < 1 for N large enough.

Proof. The term
[

B(0) + d2
N B1

]N
in (4.71) can be estimated as in the proof of The-

orem 4.2.3. Then, as in the proof of Theorem 4.3.2, the conclusion follows easily
with

CN(d1, d2)=̇

(
1 +

d1

N

)−N [
ed2 − d2 +

K(d1, d2)

N

]
.
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Chapter 5

Long time behavior of the
approximate solutions

This chapter is devoted to proving Theorem 1.2.2. In Section 5.1, we provide
a pointwise representation of the approximate solutions. In Section 5.2, Theo-
rem 1.2.2 is proved for BV initial data using the `1 contraction property and all
the results of the previous chapters. In Section 5.3, we study the long time behav-
ior of the approximate solutions with L∞ initial data. More precisely, we consider
the linear damping case and we prove partial results by showing a contraction
property of the invariant domain [m, M]2 for the approximate solutions, see Theo-
rem 5.3.4. Section 5.4 is devoted to studying the localized damping case, where we
provide an estimate for the eigenvalues of the matrix B(γ) using Rayleigh quotient
Theorem.

5.1 A representation formula for ρ and J

In this section, we provide a pointwise representation of ρ(x, t), J(x, t) by means
of the vectorial quantity σ(t). It is based on the key properties (4.2) and (3.9)2, that
we recall here for convenience: for yj given in (3.42),{

σj = ∆J(yj) = ∆ρ(yj)ẏj x = yj(t) ,
∆ρ(xj) = −2g(J(xj))δj x = xj = j∆x

j = 1, . . . , 2N (5.1)

Therefore we can reconstruct the functions x → ρ(x, t) and x → J(x, t) as stated in
the following Proposition. We define

v0 = 02N , v` = (1, · · · , 1︸ ︷︷ ︸
`

, 0, · · · , 0) ∈ R2N, ` = 1, · · · , 2N (5.2)
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and

H =
{

v` ∈ R2N, ` = 0, · · · , 2N
}

. (5.3)

Lemma 5.1.1. (Representation formula for ρ, J, f±)
For every (x, t) with x 6= yj(t) and t ∈ (tn, tn+1), the following holds.

1. There exists v = v(x) ∈ H such that

J(x, t) = σ(t) · v(x) . (5.4)

In particular
v(xj) = v2j , j = 0, . . . , N . (5.5)

2. If moreover x 6= xj, then

ρ(x, t) = σ̂(t) · v(x) + ρ(0+, t)− 2ᾱn ∑
j: xj<x

g(J(xj, t))δj , (5.6)

with

σ̂(t) = ±Πσ(t) =

{
Πσ t ∈

(
tn, tn+1/2)

−Πσ(t) t ∈
(
tn+1/2, tn+1) (5.7)

and
Π = diag(1,−1, 1,−1, . . . , 1,−1) ∈ M2N . (5.8)

3. Finally, for j = 0, . . . , N − 1 one has that

f±(xj+, t) = σ(t) · v±2j +
1
2

ρ(0+, t)− ᾱn ∑
0≤`≤j

g(J(x`, t))δ` (5.9)

where
v+

2j =
1
2
(Π + I2N) v2j = (1, 0, . . . , 1, 0︸ ︷︷ ︸

2j

, 0, 0, . . . , 0, 0)

v−2j =
1
2
(Π− I2N) v2j = −(0, 1, . . . , 0, 1︸ ︷︷ ︸

2j

, 0, 0, . . . , 0, 0) .
(5.10)

Proof. (1) About (5.4), it is enough to observe that

J(x, t) = J(0+, t)︸ ︷︷ ︸
=0

+ ∑
y`(t)<x

∆J(y`) = ∑
y`<x

σ`(t) .
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Hence
J(x, t) = σ(t) · v¯̀

with ¯̀ ∈ {0, 1, . . . , 2N − 1} such that

y ¯̀ < x < y ¯̀+1 . (5.11)

In particular, if xj = j∆x, then

J(xj, t) = J(0+, t)︸ ︷︷ ︸
=0

+ ∑
y`(t)<xj

∆J(y`) =
2j

∑
`=1

σ`(t) = σ(t) · v2j .

Hence (5.5) is proved.
(2) To prove (5.6), let’s write ρ(x, t) for x 6= xj and x 6= y` as follows:

ρ(x, t) = ρ(0+, t) + ∑
y`<x

∆ρ(y`, t)︸ ︷︷ ︸
(a)

+ ∑
xj<x

∆ρ(xj, t)︸ ︷︷ ︸
(b)

.

Indeed, differently from J, the component ρ varies also along the 0-waves. About
(a), by recalling the first relation in (5.1), we get

∑
y`<x

∆ρ(y`, t) = ∑
y`<x

σ` ẏ` .

Now, notice that (see Figure 3.5)

ẏj(t) =

{
1 j odd
−1 j even

t ∈
(

tn, tn +
∆t
2

)
as well as

ẏj(t) =

{
−1 j odd
1 j even

t ∈
(

tn +
∆t
2

, tn+1
)

.

Therefore (a) is of the form

∑
y`<x

∆ρ(y`, t) = σ̂(t) · v¯̀ .
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Concerning (b), since ∆ρ(xj) = −2g(J(xj))δj we immediately get

∑
xj<x

∆ρ(xj, t) = −2ᾱn ∑
xj<x

g(J(xj, t))δj .

Therefore the proof of (5.6) is complete.
(3) Finally, about (5.9), we use the relation f± = ρ±J

2 to get

f±(xj+, t) =
σ̂(t)± σ(t)

2
· v(xj) +

1
2

ρ(0+, t)− ᾱn ∑
0≤`≤j

g(J(x`, t))δ` .

We rewrite the first term as follows,

σ̂(t)± σ(t)
2

· v(xj) =
1
2
(Π± I2N)σ(t) · v(xj)

= σ(t) · 1
2
(Π± I2N) v2j︸ ︷︷ ︸

=v±2j

where we used (5.5) and the fact that the matrices Π± I2N,

1
2
(Π + I2N) = diag(1, 0, 1, 0, . . . , 1, 0) ,

1
2
(Π− I2N) = −diag(0, 1, 0, 1, . . . , 0, 1)

are symmetric. The proof of (5.9) is complete.

Remark 5.1.1. Here is a list of remarks about the representation formulas in Lemma 5.1.1.

(a) The value of ρ(0+, t) in (5.6) is determined by the conservation of mass identity:∫
I ρ∆x(x, t) dx =

∫
I ρ∆x(x, 0) dx .

(b) By the definitions (5.10), (4.4) of v+
2j and B1, respectively, it is immediate to find that

B1v±2j = −v∓2j . (5.12)
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(c) The last term in (5.9), which is related to the variation of f± across the point sources
xj, can be also conveniently expressed as a scalar product with v±2j . Indeed, if we define

p̂j(t) = g(J(xj, t))δj

Ĝ(t) = (0,− p̂1, p̂1, . . . ,− p̂N−1, p̂N−1, 0)t

then it is immediate to verify the following identity holds:

∑
0≤`≤j

g(J(x`, t))δ` = Ĝ(t) · v−2j = Ĝ(t) · v+
2j+2 . (5.13)

Notice the similarity between Ĝ, for time t = tn−, and the vector source term Gn defined
at (4.10). In general, the map t 7→ Ĝ(t) is nonlinear with respect to σ(t) because of the
nonlinearity of J 7→ g(J).

5.2 Long time behavior of the solutions: BV initial
data

In this section, we combine the results of the previous chapters to prove the main
Theorem 1.2.2 with initial data (ρ0, J0) ∈ BV(I).

• First, we prove Proposition 5.2.1 that relates the L∞-norm of the approximate
solutions J(·, tn), ρ(·, tn) as n → ∞ to the evolution of the `1–norm of the
operator Bn (4.55), that is

Bn=̇
[

B(n)B(n−1) · · · B(2)B(1)
]

, B(n) = B(γn) , n ∈N

on the eigenspace E−=̇ < e, v− >⊥ .

• Then, we employ Theorem 4.2.3, Lemma 4.3.1, Proposition 4.3.4, and Propo-
sition 5.2.1 to prove the decay in L∞ of the approximate solutions.

• Finally, by the proof of the strong convergence of the approximate solution
towards the exact solution of the problem in Section 3.3, we conclude the L∞

estimate in (1.15) for the exact solution of the problem (1.2)-(1.3) with initial
data (ρ0, J0) ∈ BV(I).

Recall the decomposition of σ(tn+) (4.58), that is

σ(tn+) = Bnσ(0+) = (−1)n (σ(0+) · v−)
2N

v− +Bnσ̃(0+) . (5.14)
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In the following proposition, we employ (5.14) to obtain L∞-bounds on J = J∆x,
ρ = ρ∆x.

Proposition 5.2.1. For every t ∈ (tn, tn+1) one has

‖J(·, t)‖∞ ≤
1

2N
TV J̄0 + ‖Bnσ̃(0+)‖`1 (5.15)

‖ρ(·, t)‖∞ ≤
2
N
(1 + C1‖k‖L1)TV J̄0+

+ 2(1 + 2C1‖k‖L1)‖Bnσ̃(0+)‖`1 +
1
N

TV ρ0 . (5.16)

Proof. Proof of (5.15). Recall the representation formula (5.4) for J(x, tn+), that
is:

J(x, tn+) = σ(tn+) · v
where v ∈ H. By (5.14) we obtain

σ(tn+) · v = (−1)n 1
2N

(σ(0+) · v−)(v− · v) +Bnσ̃(0+) · v . (5.17)

Recalling the definition of (4.14), observe that v− · v ∈ {±1, 0} and hence

|J(x, tn+)| = |σ(tn+) · v|

≤ 1
2N
|σ(0+) · v−|+ |Bnσ̃(0+) · v|

≤ 1
2N

TV J̄0 + ‖Bnσ̃(0+)‖`1

where (4.19) is used for |σ(0+) · v−| and an `1− `∞ estimate is used for Bnσ̃(0+) ·
v.

To complete the proof of (5.15), it remains to bound the values of J at times
t ∈ (tn +∆t/2, tn+1), since it may change due to the linear interaction of the waves.
Recalling (4.4), we have

σ(tn+1−) = B1σ(tn+) = (−1)n 1
2N

(σ(0+) · v−)B1v− + B1Bnσ̃(0+)

with B1v− = −v−. By proceeding as before, we obtain

|J(x, tn+1−)| = |σ(tn+1−) · v| ≤ 1
2N

TV J̄0 + ‖B1Bnσ̃(0+)‖`1

≤ 1
2N

TV J̄0 + ‖Bnσ̃(0+)‖`1 ,
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where it is used that multiplication by B1 leaves unaltered the `1 norm (being a
permutation matrix). Therefore, (5.15) is completely proved.

Proof of (5.16). For x 6= xj and x 6= y`, by (5.6), for t ∈ (tn, tn +∆t/2) we have

ρ(x, t) = σ̂(t) · v + ρ(0+, t)− 2 ∑
xj<x

g(J(xj, t))δj ,

where σ̂(t) is defined at (5.7).
Recalling (3.30), we have∣∣∣∣∫ 1

0
ρ(x, tn+) dx

∣∣∣∣ = ∣∣∣∣∫ 1

0
ρ(x, 0) dx

∣∣∣∣ ≤ ∆xTV ρ0 ,

then

|ρ(0+, tn+)| ≤
∣∣∣∣∫ 1

0
[ρ(0+, tn+)− ρ(x, tn+)] dx

∣∣∣∣ + ∆xTV ρ0

≤ sup
x

∣∣∣∣∣ ∑
y`<x

∆ρ(y`, tn+)

∣∣∣∣∣+ sup
x

∣∣∣∣∣ ∑
xj<x

∆ρ(xj, tn+)

∣∣∣∣∣ + ∆xTV ρ0

= |σ̂(tn+) · v|+ 2

∣∣∣∣∣ ∑
xj<x

g(J(xj, t))δj

∣∣∣∣∣ + ∆xTV ρ0 ,

and hence

|ρ(x, tn+)| ≤ 2 |σ̂(tn+) · v|+ 4

∣∣∣∣∣ ∑
xj<x

g(J(xj, t))δj

∣∣∣∣∣ + ∆xTV ρ0 . (5.18)

• To estimate σ̂(tn+) · v, we use (5.7) and then we proceed similarly to (5.17):

σ̂(tn+) · v = Πσ(tn+) · v

= (−1)n 1
2N

(σ(0+) · v−)(Πv− · v) + ΠBnσ̃(0+) · v ,

where Πv− = (1, 1,−1,−1, · · · , 1, 1,−1,−1), hence |Πv− · v| ≤ 2. Then, by using
(4.19) and the fact that ‖Π‖`1 = 1, we get:

|σ̂(tn+) · v| ≤ 1
N
|σ(0+) · v−|+ ‖Bnσ̃(0+)‖`1

≤ 1
N

TV J̄0 + ‖Bnσ̃(0+)‖`1 .
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• To estimate ∑xj<x g(J(xj, t))δj, we have∣∣∣∣∣ ∑
xj<x

g(J(xj, tn+))δj

∣∣∣∣∣ ≤ C1 max
j
|J(xj, tn+)| ·

(
N−1

∑
j=1

δj

)

≤ C1‖k‖L1

(
1

2N
TV J̄0 + ‖Bnσ̃(0+)‖`1

)
.

In conclusion, for every x ∈ (0, 1) we find that

|ρ(x, tn+)| ≤ 2∆x (1 + C1‖k‖L1)TV J̄0

+ 2 (1 + 2C1‖k‖L1) ‖Bnσ̃(0+)‖`1 + ∆xTV ρ0

which is (5.16) for t ∈ (tn, tn +∆t/2). The estimate for t ∈ (tn +∆t/2, tn+1) is done
similarly as the one for J.

Remark 5.2.1. (On the total variation of J). We remark that the total variation of J∆x,
being

TV J∆x(·, t) = ‖σ(t)‖`1 ,

does not necessarily vanish at t→ ∞. Indeed, from (4.58) it follows that

‖σ(tn+)‖`1 ≥
1

2N
|σ(0+) · v−| ‖v−‖`1

− ‖Bnσ̃(0+)‖`1

= |σ(0+) · v−| − ‖Bnσ̃(0+)‖`1

where it is used that ‖v−‖`1
= 2N (see the definition of v− at (4.14)). By means of (4.21),

and using the notation

J` = J(x`−1+, 0) = J(x`−, 0) = J0(x`−1+) ` = 1, . . . , N

we have

|σ(0+) · v−| =
∣∣∣∣∣J1 − JN +

N−1

∑
`=1

(−1)`(J`+1 − J`)

∣∣∣∣∣
= 2

∣∣∣∣∣J1 − JN +
N−1

∑
`=2

(−1)`−1 J`

∣∣∣∣∣ = 2

∣∣∣∣∣N/2

∑
`=1

(J2`−1 − J2`)

∣∣∣∣∣ .

If the initial datum J0(x) is strictly monotone, then

|σ(0+) · v−| = 2 |JN − J1| → 2 |J0(1−)− J0(0+)| = 2TV J0 > 0 , N → ∞ .
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About the second term in the sum, when γ is constant in time we have Bn = B(γ)n and

‖Bnσ̃(0+)‖`1 → 0 as n→ +∞

since σ̃(0+) belongs to the subspace E− =< e, v− >⊥ corresponding to the eigenvalues
with modulus < 1. Therefore TV J(·, t) does not tend to zero as t → +∞ for J0 strictly
monotone, and the limit is uniformly positive as ∆x = 1/N → 0. However, in (5.20), it
will turn out that the L∞-norm of J is of order ∆x for large t.

Proof of Theorem 1.2.2. To prove (1.15) in Theorem 1.2.2, we employ Theorem 4.2.3,
Lemma 4.3.1, Proposition 4.3.4, and Proposition 5.2.1 together with Helly’s theo-
rem. About the estimate for J, we proceed as follows:

• We start from (5.15), that is

‖J∆x(·, t)‖∞ ≤
1

2N
TV J̄0 + ‖Bnσ̃(0+)‖`1 .

• Let n ∈N, 0 ≤ h ∈N and Nh ≤ n < N(h + 1), so that

h ≤ n
N

= n∆t = tn < (h + 1) , h ≥ 0 . (5.19)

Since E− is an invariant subspace for all B(n), we have

σ̃(tn) = Bnσ̃(0+) ∈ E− ∀ n .

Hence by Proposition 4.3.4 and using that
∥∥B(n)v

∥∥
`1
≤
∥∥v
∥∥
`1

for all v ∈ R2N,
the following holds∥∥σ̃(tn)

∥∥
`1
=
∥∥Bnσ̃(0+)

∥∥
`1
≤
∥∥BNhσ̃(0+)

∥∥
`1

=
∥∥BN

(
BN(h−1)σ̃(0+)

)∥∥
`1

≤ CN
∥∥BN(h−1)σ̃(0+)

∥∥
`1

≤ Ch
N
∥∥σ̃(0+)

∥∥
`1

.

Let δ > 0 satisfy [C − δ, C + δ] ⊂ (0, 1), and choose N large enough so that
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CN(d1, d2) ∈ [C− δ, C + δ]. One can easily get

|CN(d1, d2)− C(d1, d2)| ≤
1
N

(
1 +

d1

N

)−N

[ f0(d2) + f1(d2)]

+
(

ed2 − d2

)
· e−d1

((
1 +

d1

N

)
− 1
)

≤ 1
N

Ĉ(d1, d2) ,

for a suitable constant Ĉ(d1, d2) > 0. Therefore, one has∣∣∣Ch
N − Ch

∣∣∣ ≤ |CN − C| · h|ξ|h−1, ∀ h ≥ 1 ,

for some ξ ∈ [C− δ, C + δ] ⊂ (0, 1). Since the quantity h|ξ|h−1 is uniformly
bounded for h ≥ 1 and ξ ∈ [C − δ, C + δ], then we deduce that for some
Ĉ0 > 0 one has

∥∥Bnσ̃(0+)
∥∥
`1
≤
(

Ch +
Ĉ0

N

)∥∥σ̃(0+)
∥∥
`1

,

where n, N, h satisfy (5.19).

• From (4.57) we have that

σ̃(0+) = σ(0+)− (σ(0+) · v−)
2N

v−,

and then

∥∥σ̃(0+)
∥∥
`1
≤
∥∥σ(0+)

∥∥
`1
+

∥∥σ(0+)
∥∥
`1

2N
2N = 2

∥∥σ(0+)
∥∥
`1

.

Moreover, using (3.11) and (3.34), we have∥∥σ(0+)
∥∥
`1
≤ TV ρ0 + TV J̄0 + 2C0‖k‖L1

where J̄0 is defined at (4.20). Therefore it holds, for h ≤ tn ≤ (h + 1):

∥∥Bnσ̃(0+)
∥∥
`1
≤ 2

(
Ch +

Ĉ0

N

)
(TV ρ0 + TV J̄0 + 2C0‖k‖L1) .
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Using the relation (5.19) for h, n and N, we have

Ch ≤ Ctn−1 =
1
C

e−| log C|tn
.

In conclusion, we prove the following result:

‖J∆x(·, tn)‖∞ ≤
1

2N
{

TV J̄0 + 4Ĉ0 (TV ρ0 + TV J̄0 + 2C0‖k‖L1)
}

(5.20)

+
2
C

e−| log C|tn
(TV ρ0 + TV J̄0 + 2C0‖k‖L1) ,

that leads to decay in L∞ for the approximate solution J∆x(·, tn).

Starting from (5.16), the estimate for the approximate solution ρ∆x(·, tn), is
obtained in a similar way. Hence, we have

‖ρ∆x(·,tn)‖∞ ≤
2
N
(1 + C1‖k‖L1)TV J̄0 +

1
N

TV ρ0

+ 2(1 + 2C1‖k‖L1)‖Bnσ̃(0+)‖`1

≤ 2
N
(1 + C1‖k‖L1)TV J̄0 +

1
N

TV ρ0

+ 4(1 + 2C1‖k‖L1)

(
1
C

e−| log C|tn
+

Ĉ0

N

)
(TV ρ0 + TV J̄0 + 2C0‖k‖L1)

≤ 2
N

((1 + C1‖k‖L1)TV J̄0 + TV ρ0)

+
8
N

Ĉ0(1 + 2C1‖k‖L1) (TV ρ0 + TV J̄0 + 2C0‖k‖L1) (5.21)

+
4
C

e−| log C|tn
(TV ρ0 + TV J̄0 + 2C0‖k‖L1) (1 + 2C1‖k‖L1) ,

Then, passing to the limit by means of Helly’s theorem, see Section 3.3, the esti-
mates in (1.15) hold for suitable constants Cj, j = 1, 2 which are independent of ∆x
and t. The constant C3 in (1.15) is given by

C3=̇| log C(d1, d2)| C(d1, d2) = e−d1(ed2 − d2) .

This completes the proof of Theorem 1.2.2 for BV initial data.
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5.3 Long time behavior of solutions: L∞ initial data

Here, we consider the problem of the long time behavior of the approximate so-
lutions with L∞ initial data. We provide ’incomplete’ arguments suggesting that
Theorem 1.2.2 is valid for L∞ initial data. In particular, we consider the telegra-
pher’s equation (4.26) in which we prove a contraction property of the invariant
domain [m, M]2 for the approximate solutions, see Theorem 5.3.4.

In this section we will assume that

k(x) ≡ k̄ > 0 , g′(J) ≡ C1 , α(t) ≡ 1

and then γ (4.8), has all the components that are equal to (4.25),

γ = γ(1, . . . , 1) , d = k̄C1 > 0 , γ = d∆x =
d
N

,

which corresponds to the case of the standard telegrapher’s equation (4.26). In this
case, the iteration formula (4.12) leads to

σ(tn+) = B(γ)nσ(0+) . (5.22)

In the following, the analysis will be based on the equation (5.22) for n = hN. By
recalling (4.27) and the expansion formula (4.40), we get

σ(thN+) = B(γ)hNσ(0+)

=

(
1 +

d
N

)−hN (
B(0)hN + dhP̂ + RN(h, d)

)
σ(0+) .

(5.23)

Recalling (5.7), one obtains a similar expression for

σ̂(thN+) = ΠB(γ)hNσ(0+) . (5.24)

In the formula (5.23), an expansion in powers of d is obtained, since RN(h, d) can
be expressed in terms of powers d` with ` ≥ 2. A key point is the identification
of the first order term P̂, that will lead us to a cancellation property stated in the
following proposition.

Proposition 5.3.1. The following identity holds,

P̂σ(0+) =
1

2N
(
σ(0+) · v−

)
v− . (5.25)
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Proof. By recalling the definition of P̂ in (4.38), one has that

P̂w =
1

2N
(
(w · e) e + (w · v−) v−

)
∀w ∈ R2N . (5.26)

By setting w = σ(0+), from (4.17) we immediately get (5.25).

In Theorem 4.3.2, it is proved that the matrix norm induced by ‖ · ‖`1 is contrac-
tive for B(γ)n on the subspace E−=̇ < e, v− >⊥, (4.56). Here we provide a similar
version of Theorem 4.3.2, whose proof is simplified by the use of expansion for-
mula (4.40).

Proposition 5.3.2. Let N ∈ 2N, h ∈ N and d ≥ 0. There exists a constant CN(h, d)
(see (5.29) below) such that

CN(h, d)→ (1− hde−hd) =̇C(h, d) < 1 , N → ∞ (5.27)

and that, for all w ∈ R2N,

∥∥B(γ)hNw
∥∥
`1
≤ CN(h, d)

∥∥w
∥∥
`1
+ dh

(
1 +

d
N

)−hN

(|w · e|+ |w · v−|) . (5.28)

In particular, for N large enough such that CN(h, d) < 1, the `1–norm is contractive on
the subspace E− defined at (4.56).

Proof. Let w ∈ R2N. By means of the formula (4.27) and the expansion formula
(4.40), we obtain

B(γ)hNw =

(
1 +

d
N

)−hN [
B(0) +

d
N

B1

]hN
w

=

(
1 +

d
N

)−hN [
B(0)hNw +

dh
2N
(
(w · e) e + (w · v−) v−

)
+ RN(h, d)w

]
where we used (5.26).

Let || · || be a vector norm that is invariant under components permutation of
the vectors. Since B(0)N is permutation matrix and RN(h, d) is a linear combina-
tion of permutation matrices, we use (4.42) to get that

||B(γ)hNw|| ≤
(

1 +
d
N

)−hN
||w||

(
1 + ehd − hd− 1 +

K
N

)
+

(
1 +

d
N

)−hN dh
2N

(|w · e| · ||e||+ |w · v−| · ||v−||) .
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The above estimate holds, in particular, for || · || = ‖ · ‖`1 . Since ‖e‖`1 = ‖v−‖`1 =
2N, and by setting

CN(h, d)=̇
(

1 +
d
N

)−hN [
ehd − hd +

1
N

K(h, d)
]

(5.29)

then the estimate (5.28) follows. The proof of Proposition 5.3.2 is complete.

Remark 5.3.1. About the estimate (5.28), a proper choice for h can be done in order to
optimize the contraction constant CN(h, d).

Indeed, since the function x 7→ (1− xde−xd) has a global minimum at x = 1/d, it is
clear that there is an integer value h̄ ≥ 1 such that

C(h̄, d) = min{1− hde−hd ; h = 1, 2, . . .} .

Also, for d ≥ 1 one has that h̄ = 1 .

Next, under the assumptions (4.25), we prove a contractivity property of the
invariant domain [m, M]2 for the approximate solutions.

Proposition 5.3.3. Given w̄ ∈ R2N such that w̄ · v2N = 0, and given d ≥ 0, let

w(d) = w̄ +
d
N

(
1 +

d
N

)−1

Φ(w̄)

where,

Φ(w) = (w · v2N,−w · v2, w · v2, . . . ,−w · v2N−2, w · v2N−2,−w · v2N) , (5.30)

for w ∈ R2N and for v2`, ` = 0, . . . , N defined as in (5.2). Then one has

w̄ = w(d)− d
N

Φ(w(d)) (5.31)

and
B(0)Nw̄ = B(0)Nw(d)− d

N
Φ(B(0)Nw(d)) . (5.32)

Moreover, let m ≤ 0 ≤ M be such that

m ≤ w̄ · v±2` ≤ M ` = 0, . . . , N . (5.33)

Then one has, for every d ≥ 0 and j, k:

B(d)w̄ · (v±2j − v±2k) ≤ M−m . (5.34)
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Proof. Thanks to the definition of v2` ,

v0 = 0 , v2` = (1, · · · , 1︸ ︷︷ ︸
2`

, 0, · · · , 0) ` = 1, . . . , N ,

we easily find that

Φ(w) · v2` =
2`

∑
j=1

Φ(w)j = −w · v2` , ` = 1, . . . , N .

Then we claim that the map Φ satisfies the following property:

Φ(Φ(w)) = −Φ(w).

Indeed

Φ(Φ(w)) =

0,−Φ(w) · v2︸ ︷︷ ︸
=w·v2

, Φ(w) · v2, . . . ,−Φ(w) · v2N−2︸ ︷︷ ︸
=w·v2N−2

, Φ(w) · v2N−2, 0


= −Φ(w) .

Since Φ is linear, one has

Φ(w(d)) = Φ(w̄) +
d
N

(
1 +

d
N

)−1

Φ(Φ(w̄))︸ ︷︷ ︸
−Φ(w̄)

= Φ(w̄)

[
1− d

N

(
1 +

d
N

)−1
]
=

(
1 +

d
N

)−1

Φ(w̄) .

This proves (5.31). To prove (5.32), it is sufficient to prove that

Φ(B(0)Nw(d)) = B(0)NΦ(w(d)) . (5.35)

Indeed, if (5.35), from (5.31) we find immediately that

B(0)Nw̄ = B(0)Nw(d)− d
N

B(0)NΦ(w(d)) = B(0)Nw(d)− d
N

Φ(B(0)Nw(d)) ,

hence (5.32) holds.
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To prove (5.35), let w any vector in R2N such that w · v2N = 0. We recall (4.23)
to find that

B(0)Nw · v2` = w · B(0)Nv2`

= w · (v2N − v2N−2`) = w · v2N −w · v2N−2`

= −w · v2N−2`

and hence

Φ(B(0)Nw) = (0, w · v2N−2,−w · v2N−2, . . . , w · v2,−w · v2, 0) = B(0)NΦ(w) .

Since w(d) · v2N = 0 for every d ≥ 0, the previous identity applies and (5.35) holds.
To prove (5.34), recall (4.15), then we have

B(d)w̄ · (v±2j − v±2k) =
1

1 + d

B(0)w̄ · (v±2j − v±2k)︸ ︷︷ ︸
(I)

+d B1w̄ · (v±2j − v±2k)︸ ︷︷ ︸
(I I)


Estimate of (I),

(I) = w̄ · B(0)t(v±2j − v±2k) ,

and one can check that the following holds true

B(0)t(v+
2j − v+

2k) = v+
2j−2 − v+

2k−2

B(0)t(v−2j − v−2k) = v+
2j+2 − v+

2k+2 .

Therefore, by (5.33), we get

(I) =

{
w̄ · (v−2j−2 − v−2k−2) ≤ M−m

w̄ · (v+
2j+2 − v+

2k+2) ≤ M−m

Estimate of (I I), one has the following

(I I) = w̄ · B1(v±2j − v±2k)

= −w̄ · (v∓2j − v∓2k)

≤ M−m
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The last inequality holds by (5.33). Hence,

B(d)w̄ · (v±2j − v±2k) ≤
1

1 + d
((M−m) + d(M−m)) = M−m .

The proof of (5.34) is complete.

Theorem 5.3.4. Let f± be the approximate solution corresponding to the linear problem
(4.26). Let N ∈ 2N, h ∈N and let m ≤ 0 ≤ M be the constant values defined at (3.36) .
Then there exists a constant Ĉ > 0 such that

sup f±(·, thN)− inf f±(·, thN) ≤ CN(h, d)(M−m) +
Ĉ
N

(5.36)

for CN(h, d) defined at (5.29).

Proof. The proof employs the representation formula (5.9) for f± and the expan-
sion formula (5.23).

• We start from the representation formula (5.9) for t = thN+. Thanks to the
assumptions (4.25), it reads as:

f±(xj+, t) = σ(t) · v±2j +
1
2

ρ(0+, t)− d
N ∑

0≤`≤j
J(x`, t) , j = 0, . . . , N − 1 (5.37)

where xj = j∆x = j
N and v±2j are defined at (5.10).

We remark that f± is possibly discontinuous only at x = xj and along (±1)–
waves, and hence their image is given by the values at x = 0+, x = 1− and
x = xj± with j = 1, . . . , N − 1. At x = xj− one has that

f±(xj−, t) = σ(t) · v±2j +
1
2

ρ(0+, t)− d
N ∑

0≤`<j
J(x`, t) , j = 1, . . . , N

and hence

| f±(xj+, t)− f±(xj−, t)| ≤ sup |J(·, t)| d
N
≤ (M−m)

d
N

,

that vanishes as N → ∞.
Therefore, in the following we will consider only the values of f± at x = xj+.
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• Recalling the identity (5.13) for the variation of f± across the point sources
xj, we find that

p̂j,n =
d
N

J(xj, t) =
d
N

σ(t) · v2j , Ĝn =
d
N

Φ(σ(t))

where Φ : R2N → R2N is the linear map defined at (5.30). The map Φ has the
following property:

j

∑
`=1

w · v2` = Φ(w) · v−2j = Φ(w) · v+
2j+2 , j ≥ 1 (5.38)

where v2` is defined as in (5.2). Therefore, as in (5.13), we can write

∑
0≤`≤j

J(x`, t) = Φ(σ(t)) · v−2j = Φ(σ(t)) · v+
2j+2 . (5.39)

• Let j, k ∈ {0, . . . , N − 1}, j > k. We combine (5.37) and (5.39) to get

f−(xj+, t)− f−(xk+, t) =
(

σ(t)− d
N

Φ(σ(t))
)
·
(

v−2j − v−2k

)
f+(xj+, t)− f+(xk+, t) = σ(t) ·

(
v+

2j − v+
2k

)
− d

N
Φ(σ(t)) ·

(
v+

2j+2 − v+
2k+2

)
.

We claim that

f±(xj+, t)− f±(xk+, t) ≤
(

σ(t)− d
N

Φ(σ(t))
)
·
(

v±2j − v±2k

)
︸ ︷︷ ︸

=(∗)

+
2d
N
(M−m) .

(5.40)
Indeed, to prove (5.40) it is enough to check that∣∣∣Φ(σ(t)) ·

(
v+

2j+2 − v+
2j − v+

2k+2 + v+
2k

)∣∣∣ ≤ 2(M−m)

which is true since

|Φ(σ(t)) ·
(

v+
2j+2 − v+

2j

)
| = |σ(t) · v2j| = |J(xj, t)| ≤ M−m .

Let’s start with (∗). By applying the identity (5.23), the right hand side above
can be written as a sum of three terms, corresponding to B(0)hN, P̂ and RN(h, d)
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respectively:

(∗) =
(

1 +
d
N

)−hN

[A + B + C]

where

A =

[
B(0)hNσ(0+)− d

N
Φ
(

B(0)hNσ(0+)
)]
· (v±2j − v±2k)

B = dh
[

P̂σ(0+)− d
N

Φ
(

P̂σ(0+)
)]
· (v±2j − v±2k)

C =

[
RN(h, d)σ(0+)− d

N
Φ (RN(h, d)σ(0+))

]
· (v±2j − v±2k) .

• Estimate for B. We claim that

|B| ≤ dh
N
|σ(0+) · v−| .

To prove this claim, it is sufficient to prove that

(i) P̂σ(0+) · (v±2j − v±2k) ∈ {±1, 0} ,

(ii) Φ
(

P̂σ(0+)
)
· (v±2j − v±2k) = 0 .

To prove (i), we use (5.25) to write that

P̂σ(0+) · v±2` =
1

2N
(σ(0+) · v−)

(
v− · v±2`

)
,

where v− is the eigenvector in (4.14):

v− = (1,−1,−1, 1, . . . , 1,−1,−1, 1) .

From (5.10), it is immediate to check that

v− · v+
2` = (1,−1,−1, 1, . . . , 1,−1,−1, 1) · (1, 0, · · · , 1, 0︸ ︷︷ ︸

2`

, 0, · · · , 0) ∈ {0, 1} ,

and similarly

v− · v−2` = −(1,−1,−1, 1, . . . , 1,−1,−1, 1) · (0, 1, · · · , 0, 1︸ ︷︷ ︸
2`

, 0, · · · , 0) ∈ {0, 1} .
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More precisely,

v− · v+
2` = v− · v−2` =

{
1 if ` odd
0 if ` even .

Therefore, it is immediate to conclude that (i) holds.
To prove (ii), we use the identity (5.38) to find that

Φ
(

P̂σ(0+)
)
· v−2j =

j

∑
`=1

P̂σ(0+) · v2`

=
1

2N
(σ(0+) · v−)

j

∑
`=1

v− · v2`︸ ︷︷ ︸
=0

= 0 .

Here above we used the fact that v− · v2` = v− ·
(
v+

2` − v−2`
)
= 0. The proof for

Φ
(

P̂σ(0+)
)
· v+

2j =
j−1

∑
`=1

P̂σ(0+) · v2`

is totally analogous. The claim is proved.

• Towards an estimate for A and C. Consider the initial-boundary value
problem with the same initial data and boundary condition as the one correspond-
ing to σ(t), but for k(x) ≡ 0. Hence the problem is linear and undamped.

The corresponding evolution vector, that we denote with σ(t), is defined in-
ductively by

σ(tn+) = B(0)nσ(0+) ,

σ(tn+ 1
2+) = B1σ(tn+) ,

n ≥ 1 . (5.41)

About σ(0+) we claim that

σ(0+) = σ(0+)− d
N

Φ(σ(0+)) (5.42)

where

Φ(σ(0+)) = (0,−σ(0+) · v2, σ(0+) · v2, . . . ,−σ(0+) · v2N−2, σ(0+) · v2N−2, 0)

= (0,−J(x1, 0+),+J(x1, 0+), . . . ,−J(xN−1, 0+),+J(xN−1, 0+), 0)t .

To prove the claim,
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- we observe that σ1 = σ1 and σ2N = σ2N.
- at every xj, j = 1, . . . , N − 1 we compare (σ2j, σ2j+1) with (σ2j, σ2j+1). In the

notation of Proposition 3.1.2, let J∗ the middle value for J in the solution to the
Riemann problem with d = k̄ > 0 and Jm = f+` − f−r the middle value for J when
k̄ = 0. Using (3.9), we have the following identity:

J∗ +
d
N

J∗ = Jm ,

from which we deduce

σ2j = Jm − J` = (J∗ − J`︸ ︷︷ ︸
=σ2j

) +
d
N

J∗ = σ2j +
d
N

J(xj, 0+) .

Similarly one has

σ2j+1 = Jr − Jm = (Jr − J∗︸ ︷︷ ︸
=σ2j+1

)− d
N

J∗ = σ2j+1 −
d
N

J(xj, 0+) .

Therefore (5.42) holds. The claim is proved.
It is easy to check that (5.42) can be inverted as follows:

σ(0+) = σ(0+) +
d
N

(
1 +

d
N

)−1

Φ(σ(0+)) ,

see Proposition 5.3.3.

• Estimate for A. We apply (5.31) and (5.32), for h even and odd, respec-
tively, to find that

A = B(0)hNσ(0+) · (v±2j − v±2k) ≤ M−m .
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• Estimate for C. By using (4.41) we get

RN(h, d)σ(0+)− d
N

Φ (RN(h, d)σ(0+))

=
hN−1

∑
j=0

ζ j,hN

{
B1B(0)hN−2j−1σ(0+)− d

N
Φ
(

B1B(0)hN−2j−1σ(0+)
)}

+
hN−1

∑
j=1

ηj,hN

{
B(0)2j−hNσ(0+)− d

N
Φ
(

B(0)2j−hNσ(0+)
)}

.

Bound on the terms

B(0)nσ(0+)− d
N

Φ (B(0)nσ(0+)) = B(0)n
[

σ(0+)− d
N

Φ (σ(0+))

]
︸ ︷︷ ︸

(I)

− d
N

[Φ (B(0)nσ(0+))− B(0)nΦ (σ(0+))]︸ ︷︷ ︸
(I I)

By (5.34), the term (I) has the property

(I) · (v±2j − v±2k) ≤ M−m .

About (I I), it is obvious that

(I I) · (v±2j − v±2k) ≤ sup
j,k,n∈{1,··· ,N−1}

∣∣∣(I I) · (v±2j − v±2k)
∣∣∣ =̇C̃(σ(0+)) . (5.43)

The same hold for the terms containing B1. Therefore, by (4.42),

C ≤
(

ehd − hd− 1 +
K
N

)(
(M−m) +

d
N

C̃(σ(0+))

)
Hence, collecting the bounds on the terms A, B and C, and using (4.19), we get

(∗) ≤ CN(h, d)(M−m) +
dh
N

(
1 +

d
N

)−hN
TV J̄0

+
d
N

(
1 +

d
N

)−hN (
ehd − hd− 1 +

K
N

)
C̃(σ(0+)) .
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Hence,

0 ≤ sup f±(·, thN)− inf f±(·, thN) ≤ CN(h, d)(M−m) +
2d(M−m)

N

+

(
1 +

d
N

)−hN d
N

(
hTV J̄0 +

(
ehd − hd− 1 +

K
N

)
C̃(σ(0+))

)
which is (5.36). The proof of Theorem 5.3.4 is complete.

Remark 5.3.2. We remark that the constant Ĉ in formula (5.36) may depend on N. This
comes from estimating the term (I I) in (5.43), we should provide a finite bound that inde-
pendent on N for this term. Then, to prove the L∞ decay of the approximate solution of the
problem (4.26), we should iterate (5.36) to have the contraction property of the invariant
domain. Finally, we pass to the limit by means of Theorem 1.2.1 to get the L∞ decay of the
solution to (4.26) with L∞ initial data.

5.4 Localized damping case

In this section, we consider the case of localized damping, that is, k(x) ≥ k̄ > 0
on some (α, β) with [α, β] ⊂ (0, 1), and k(x) = 0 otherwise. We used the Rayleigh
quotient Theorem A.1.4 to obtain an estimate on the modulus of the eigenvalues
of the matrix B(γ) different from λ± (4.14). This could be a way to study the L∞

decay of problem (1.2)–(1.3) with localized damping source. Let α(t) = 1, and for
the function k = k(x), we assume that there exist k̄ > 0 and 0 ≤ α < β ≤ 1 such
that

k ∈ L1(I) ,

{
k(x) ≥ k̄ on (α, β) ,
k(x) = 0 on I \ (α, β) ;

(5.44)

while g = g(J) satisfies (1.12), that is g ∈ C1(R) , g(0) = 0 and it is strictly increas-
ing function. Due to assumption (5.44) on k, the 0-waves δj (3.27) are positive in a
certain range of indices and zero otherwise, i.e. for N large enough we can assume
that there exist two indices jα, jβ with jα = bNαc, jβ = bNβc and 1 ≤ jα < jβ ≤
N − 1 (b·c denotes the floor function, that is bxc = max{m ∈ Z : m ≤ x}), such
that

δj > 0 if jα ≤ j ≤ jβ , δj = 0 otherwise . (5.45)

Recall the transition coefficients (4.5), i.e. γn
j = g′(sn

j )δj, then

γj > 0 if jα ≤ j ≤ jβ , γj = 0 otherwise. (5.46)
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Notice that the matrix B(γ) (4.11) reduces to a permutation matrix B(0) for γ =
0 ∈ RN−1 and we can write B(γ) = B(0) + E(γ), where

E(γ) .
= B(γ)− B(0) =



0 0 0 0 · · · 0 0 0 0
γ1

1+γ1
0 0 − γ1

1+γ1
· · · 0 0 0 0

− γ1
1+γ1

0 0 γ1
1+γ1

...
...

...
...

...
...

...
...

0 0 0 0 · · · γN−1
1+γN−1

0 0 − γN−1
1+γN−1

0 0 0 0 · · · − γN−1
1+γN−1

0 0 γN−1
1+γN−1

0 0 0 0 · · · 0 0 0 0


.

This means that B(γ) is obtained as a perturbation of B(0).

Remark 5.4.1. The amplitude of this perturbation is computed by the operator norm of
E(γ), that is

‖|E(γ)|‖ = max
‖v‖=1

‖E(γ)v‖ ,

where ‖ · ‖ denotes the Euclidean norm in R2N. More precisely, we have

‖|E(c)|‖ = 2 max
j=1,...,N−1

γj

γj + 1
. (5.47)

Indeed, let v ∈ R2N and j∗ ∈ {1, . . . , N − 1} be such that

‖v‖ = 1 , γj∗ = max
j=1,...,N−1

γj

γj + 1
.

Then,

‖E(c)v‖ =

√
2

γ2
1

(γ1 + 1)2 (v1 − v4)2 + · · ·+ 2
γ2

N−1
(γN−1 + 1)2 (vN−3 − v2N)2

≤
√

2γ∗j

√
(v1 − v4)2 + · · ·+ (vN−3 − v2N)2

=
√

2γ∗j

√
v2

1 + v2
4 + · · ·+ v2

N−3 + v2
2N − 2(v1v4 + · · ·+ v2N−3v2N)

≤
√

2γ∗j

√√√√2
2N

∑
j=1

v2
j = 2γ∗j ,
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where we used ∑2N
j=1 v2

i ≥ −2 ∑j 6=i vivj. In particular, if we choose v ∈ R2N with

v2j∗−1 =
1√
2

, v2j∗+2 = − 1√
2

, vi = 0 otherwise,

we get ‖v‖ = 1 and

‖E(γ)v‖ =
√

2γj∗

(
1√
2
+

1√
2

)
= 2γj∗ ,

hence (5.47) holds true.

In the next proposition, we present an iterative way to compute the character-
istic polynomial of B(γ). In particular, we prove that the characteristic polynomial
of B(0) is λ2N − 1, hence its eigenvalues are the 2N-th roots of unity in C.

Proposition 5.4.1. Assume (5.45) and consider the 2× 2 matrix

Mj = M(λ, γj)
.
=

1
γj + 1

[
−(γj + 1)λ2 γj
−γjλ

2 γj − 1 ,

]
j = 1, . . . , N − 1 . (5.48)

Then, the characteristic polynomial p(λ, γ) = p2N(λ, γ) of B is given by

p2N = p2N−1 − λ2p2N−2 , (5.49)

where for j = 0, . . . , N − 1 the polynomials p2j, p2j+1 are defined inductively as follows:
p0 = p1 ≡ 1 ,
p2j =

γj
γj+1 p2j−1 − λ2 p2j−2 ,

p2j+1
.
=

γj−1
γj+1 p2j−1 −

γj
γj+1 λ2p2j−2 .

In particular, (
p2N−2
p2N−1

)
= MN−1 ·MN−2 · · ·M2 ·M1

(
1
1

)
. (5.50)

Moreover, we have
p2N(λ, 0) = λ2N − 1 (5.51)

and the eigenvalues of B(0) are the 2N-th roots of unity in C.

Proof. Since B2
1 = IR2N×2N , we can write

B− λI = (B2 − λB1) B1 ,
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and, since det B1 = 1, the eigenvalues λ of B satisfy

det (B− λI) = det (B2 − λB1) = 0 .

The matrix (B2 − λB1) is symmetric and tridiagonal, with

1,
γ1

γ1 + 1
,

γ1

γ1 + 1
, . . .

γN−1

γN−1 + 1
,

γN−1

γN−1 + 1
, 1

on the diagonal and

−λ,
1

γ1 + 1
, . . . ,−λ,

1
γN−1 + 1

,−λ

on the first subdiagonal and superdiagonal. More precisely, we have

B2 − λB1 =



a1 b1 0 0 · · · 0 0 0
b1 a2 b2 0 · · · 0 0 0

0 b2 a3 b3
...

...
...

...
...

...
0 0 0 0 · · · a2N−2 b2N−2 0
0 0 0 0 · · · b2N−2 a2N−1 b2N−1
0 0 0 0 · · · 0 b2N−1 a2N


where (a1, a2, · · · , a2N) is defined by

a1 = a2N = 1, a2j = a2j+1 =
γj

γj + 1
∀ j = 1, . . . , N − 1;

and (b1, . . . , b2N−1) is defined by

b2j−1 = −λ ∀ j = 1, . . . , N,

b2j =
1

γj + 1
∀ j = 1, . . . , N − 1.
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Following [40, p.35], we have that p2N(λ) = det (B2 − λB1) can be computed in-
ductively as follows. For j = 1, . . . , N − 1, we define the polynomials

p0 = p1 ≡ 1 , (5.52)

p2j = a2j p2j−1 − (b2j−1)
2 p2j−2 =

γj

γj + 1
p2j−1 − λ2 p2j−2 , (5.53)

p2j+1 = a2j+1 p2j − (b2j)
2 p2j−1 =

γj

γj + 1
p2j −

1
(γj + 1)2 p2j−1 , (5.54)

p2N = p2N−1 − λ2p2N−2 . (5.55)

By substitution of (5.53) into (5.54) we find

p2j+1 =
γj − 1
γj + 1

p2j−1 −
γj

γj + 1
λ2p2j−2 j = 1, . . . , N − 1

Hence, (
p2j

p2j+1

)
= Mj

(
p2j−2
p2j−1

)
= Mj ·Mj−1 · · ·M2 ·M1

(
1
1

)
(5.56)

where Mj is explicitly given in (5.48). Finally, we obtain (5.50) and then (5.49).
If γj = 0 for every j = 1, . . . , N − 1, then(

p2j
p2j+1

)
=

[
−λ2 0

0 −1

]j (1
1

)
= (−1)j

(
λ2j

1

)
and, as a consequence, (5.51) holds.

Let us call
µ`

.
= e

2iπ`
2N = e

iπ`
N , ` = 0, . . . , 2N − 1 ,

the eigenvalues of B(0) which correspond to the 2N-th roots of unity. Recall that
B(0) is a permutation matrix, hence it is normal. As a consequence, following the
same arguments as in [12, pag. 185], we can prove that the eigenvalues of B(γ)
belong to the union of closed disks

2N−1⋃
`=0

D(µ`, ‖|E(γ)|‖). (5.57)

Moreover, it is possible to show that for source of moderate strength the eigenval-
ues of B(γ) are all distinct.
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Proposition 5.4.2. Let γ ∈ K, compact set of RN−1. If we assume

C1‖k‖∞ <
1
2

, (5.58)

then B(γ) has 2N distinct eigenvalues.

Proof. We claim that all the disks in (5.57) are disjoint under assumption (5.58).
Indeed, recall that all the µ` are located at the vertices of a regular 2N-sided poly-
gon in the complex plane, centered at (0, 0) and circumscribed by the unit circle.
Hence, the minimal distance between two vertices is given by the length of the
sides of the polygon, namely

min
` 6=`′
|µ` − µ`′ | = 2 sin

(π

N

)
.

We have that

‖|E(γ)|‖ = 2 max
j=1,...,N−1

γj

γj + 1
≤ 2 C1‖k‖∞∆x =

2 C1‖k‖∞

N

and we need to require that

‖|E(γ)|‖ < sin
(π

N

)
,

in order that the disks are disjoint. This holds true if in particular

2 C1‖k‖∞

N
< sin

(π

N

)
, (5.59)

which is eventually ensured by assumption (5.58). Indeed, define

f (N) :=
2 C1‖k‖∞

N
− sin

(π

N

)
, N ≥ 1.

We have that f (1) = 2 C1‖k‖∞ − 1 < 0 by (5.58), f (N)→ 0 as N → +∞ and

f ′(N) =
1

N2

(
−2C1‖k‖∞ + π cos

(π

N

))
>

1
N2

(
−1 + π cos

(π

N

))
> 0.

The function f is strictly increasing and tends to zero from below, hence it is strictly
negative for each N ≥ 1 and (5.59) is verified.
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For ` = 0, . . . , 2N, let us denote by λ` the distinct eigenvalues of B(γ) (under
assumption (5.58)) that satisfy

λ` = µ` +
yH
` E(c)x`
yH
` x`

+O
(
‖|E(γ)‖|2

)
, (5.60)

where x`, y` ∈ C2N are respectively the right and left eigenvector associated to µ`

(see [40, Theorem 6.3.12]).
We observe that λ+ = 1 = µ0 and λ− = −1 = µN belong to the spectrum of

both B(γ) and B(0), while the remaining eigenvalues of B(γ) lie in the interior of
the unit circle in C and can be understood as a pertubation of

µ1, . . . , µN−1, µN+1, . . . , µ2N−1 .

Below we use (5.60) to locate the eigenvalues of B(γ). First, a general formula for
the quantity yH

` E(γ)x`/yH
` x` is computed in the following lemma.

Lemma 5.4.3. Let µ` ∈ C be a fixed eigenvalue of B(0), ` = 0, . . . , 2N − 1. If x` ∈ C2N

and y` ∈ C2N denote respectively its associated right and left eigenvectors, then

yH
` E(γ)x`

yH
` x`

= −µ`

N

N−1

∑
j=1

γj

γj + 1

[
1− cos

(
2π`j

N

)]
. (5.61)

Proof. We first compute x` and y`. By definition we have that

x` = (x1, x2, . . . , x2N)
T , and yH

` = (y1, y2, . . . , y2N)

satisfy B(0)x` = µ`x` and yH
` B(0) = µ`yH

` , namely:

x2
x4
x1
...

x2N
x2N−3
x2N−1


= µ`



x1
x2
x3
...

x2N−2
x2N−1

x2N


,

(
y3 y1 y5 . . . y2N−4 y2N y2N−2

)
= µ`

(
y1 y2 . . . y2N−1 y2N

)
.
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By letting x1 = y1 = 1 = λ2N, we get

x` =



1
µ`

µ2N−1
`

µ2
`

µ2N−2
`

...

µN+1
`

µN
`


, yH

` =
(
1 µ2N−1

` µ` µ2N−2
` µ2

` · · · µN−1
` µN

`

)
.

Hence,

E(γ)x` =



0
γ1

γ1+1(x1 − x4)

− γ1
γ1+1(x1 − x4)
γ2

γ2+1(x3 − x6)

− γ2
γ2+1(x3 − x6)

...
γN−1

γN−1+1(x2N−3 − x2N)

− γN−1
γN−1+1(x2N−3 − x2N)

0


=



0
γ1

γ1+1

(
µ2N
` − µ2

`

)
− γ1

γ1+1

(
µ2N
` − µ2

`

)
γ2

γ2+1

(
µ2N−1
` − µ3

`

)
− γ2

γ2+1

(
µ2N−1
` − µ3

`

)
...

γN−1
γN−1+1

(
µ

2N−(N−2)
` − µN

`

)
− γN−1

γN−1+1

(
µ

2N−(N−2)
` − µN

`

)
0
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and

yH
` E(γ)x`

=
γ1

γ1 + 1

(
µ2N
` − µ2

`

) (
µ2N−1
` − µ`

)
+

γ2

γ2 + 1

(
µ2N−1
` − µ3

`

) (
µ2N−2
` − µ2

`

)
+ · · ·+ γN−1

γN−1 + 1

(
µN+2
` − µN

`

) (
µN+1
` − µN−1

`

)
=

γ1

γ1 + 1

(
µ4N−1
` − 2µ2N+1

` + µ3
`

)
+

γ2

γ2 + 1

(
µ4N−3
` − 2µ2N+1

` + λ5
)

+ · · ·+ γN−1

γN−1 + 1

(
µ2N+3
` − 2µ2N+1

` + µ2N−1
`

)
=

γ1

γ1 + 1

(
µ2N−1
` − 2µ` + µ3

`

)
+

γ2

γ2 + 1

(
µ2N−3
` − 2µ` + µ5

`

)
+ · · ·+ γN−1

γN−1 + 1

(
µ3
` − 2µ` + µ2N−1

`

)
=µ`

[ γ1

γ1 + 1

(
µ2N−2
` − 2 + µ2

`

)
+

γ2

γ2 + 1

(
µ2N−4
` − 2 + µ4

`

)
+ · · ·+ γN−1

γN−1 + 1

(
µ2
` − 2 + µ2N−2

`

)]
.

Since yH
` x` = 2N, we obtain

yH
` E(γ)x`

yH
` x`

=
µ`

2N

[ γ1

γ1 + 1

(
µ2N−2
` − 2 + µ2

`

)
+

γ2

γ2 + 1

(
µ2N−4
` − 2 + µ4

`

)
+ · · ·+ γN−1

γN−1 + 1

(
µ2
` − 2 + µ2N−2

`

)]
= − µ`

2N

N−1

∑
j=1

γj

γj + 1

(
2− µ

−2j
` − µ

2j
`

)
.

Notice that each term
γj

γj+1(2− µ
−2j
` − µ

2j
` ) appearing in the sum above is a positive

real term. Indeed, µ
−2j
` and µ

2j
` are complex conjugate and µ

−2j
` + µ

2j
` = 2< (µ

2j
` ) <

2 since |µ2j
` | = 1. More precisely,

µ
j
` = e

2iπ`·j
2N = e

iπ`·j
N , µ

j
` = e−

iπ`j
N = µ

−j
` , j = 1, . . . , N,
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hence

(µ
j
`)

2 + (µ
j
`)

2 =

(
cos

(
π`j
N

)
+ i sin

(
π`j
N

))2

+

(
cos

(
π`j
N

)
− i sin

(
π`j
N

))2

=2
(

cos2
(

π`j
N

)
− sin2

(
π`j
N

))
=2 cos

(
2π`j

N

)
.

Finally, we obtain (5.61).

Recall that, since k(x) ≥ k̄χ[α,β](x), by the definition of γj at (4.5) and by (5.46)
we have that

γj

γj + 1
≥ inf g′

2
δj ≥

k̄ inf g′

2N
for all jα + 1 ≤ j ≤ jβ .

Using (5.61), we get

1
µ`

yH
` E(γ)x`

yH
` x`

≤ − k̄ inf g′

2N
1
N

jβ

∑
j=jα+1

[
1− cos

(
2π`j

N

)]
= − k̄ inf g′

2N
IN,` ,

where we set

IN,`
.
=

1
N

jβ

∑
j=jα+1

[
1− cos

(
2π`j

N

)]
, ` = 1, . . . ,

N
2

. (5.62)

Remark that it is sufficient to consider IN,` just for ` ≤ N/2 because of the symme-
try of the roots of unity. In this framework we can prove the following proposition.

Proposition 5.4.4. Let ` ≥ 1 and IN,` be defined as in (5.62). Then,

lim
N→+∞

IN,` → I` , (5.63)

where

I`
.
= (β− α)

[
1− sin(2πβ`)− sin(2πα`)

2π(β− α)`

]
.
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In particular, let `0 be the largest integer < 1/(β− α), then there exist a constant Cα,β <
1 such that

inf
`∈N

I` ≥ (β− α)
[
1− Cα,β

]
, (5.64)

where

Cα,β = max
{

1
π

, max
`=1,...,`0

sin(2πβ`)− sin(2πα`)

2π(β− α)`

}
(5.65)

Proof. Let ` ≥ 1 be fixed. From (5.62) we get

IN,` =
jβ − jα

N

1− 1
jβ − jα

jβ

∑
j=jα+1

cos (jθ)

 ,

where θ = θN,` = 2π`/N. By the definition of floor function, we have jβ ≤ βN <
jβ + 1 and jα ≤ αN < jα + 1, so that as N → ∞ we get

0 ≤ (β− α)−
jβ − jα

N
<

1
N
→ 0 . (5.66)

By a useful trigonometric identity (Lagrange identity) we can write

jβ

∑
j=jα+1

cos(jθ) =
jβ

∑
j=1

cos(jθ)−
jα

∑
j=1

cos(jθ)

=
1

2 sin( θ
2)

[
sin
(

jβθ +
θ

2

)
− sin

(
jαθ +

θ

2

)]
.

Notice that, since we are taking the limit of IN,` as N → ∞, we can consider N >
2`, so that 0 < θ/2 < π/2 and the above quantity is well-defined because sin(θ/2)
is not zero. Since

sin
(

jβθ +
θ

2

)
− sin

(
jαθ +

θ

2

)
=
[
sin(jβθ)− sin(jαθ)

]
cos(θ/2)

+
[
cos(jβθ)− cos(jαθ)

]
sin(θ/2) ,
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we have

1
jβ − jα

jβ

∑
j=jα+1

cos(jθ) =
sin(jβθ)− sin(jαθ)

2(jβ − jα) tan( θ
2)

+
cos(jβθ)− cos(jαθ)

2(jβ − jα)
.

The last term vanishes as N → ∞, since jβ − jα = [βN]− [αN] → ∞. On the other
hand, we can write

sin(jβθ)− sin(jαθ)

2(jβ − jα) tan( θ
2)

=
sin(jβθ)− sin(jαθ)

(jβ − jα)θ
·

θ
2

tan( θ
2)

and we get

θ
2

tan( θ
2)

=
π`
N

tan(π`
N )
→ 1 ,

sin(jβθ)− sin(jαθ)

(jβ − jα)θ
=

sin(jβ 2π`
N )− sin(jα 2π`

N )

(jβ − jα)2π`
N

→ sin(2πβ`)− sin(2πα`)

2π(β− α)`
,

as N → ∞. Hence,

sin(jβθ)− sin(jαθ)

2(jβ − jα) tan( θ
2)
→ sin(2πβ`)− sin(2πα`)

2π(β− α)`
N → ∞ .

Hence, by (5.66) and the formula above we get (5.63).
We observe that this quotient is always < 1 and we distinguish two cases:

(i) if ` ≥ 1/(β− α), then

sin (2πβ`)− sin (2πα`) ≤ 2 ≤ 2(β− α)`

and we get
sin(2πβ`)− sin(2πα`)

2π(β− α)`
≤ 1

π
< 1 ;

(ii) otherwise, for `0 ≥ ` being the largest integer < 1/(β− α), we have that

sin(2πβ`)− sin(2πα`)

2π(β− α)`
=

1
2π(β− α)`

∫ 2πβ`

2πα`
cos(ξ) dξ < 1 .
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Hence,

Cα,β
.
= max

{
1
π

, max
`=1,...,`0

sin(2πβ`)− sin(2πα`)

2π(β− α)`

}
< 1

and (5.64) holds true.

We remark that Cα,β depends only on α, β and is always strictly less than 1. For
instance, if α = 1/4 and β = 1/2, then `0 < 4 = 1/(β− α) and

Cα,β = max
{

1
π

, max
`=1,2,3

sin(2πβ`)− sin(2πα`)

2π(β− α)`

}
= max

{
1
π

,− 2
π

, 0,
2

3π

}
=

1
π

< 1.

As a consequence of (5.60), (5.63) and (5.64), we obtain an estimate on the mod-
ulus of the eigenvalues of B(γ) different from λ±.

Corollary 5.4.5. Let ` = 1, . . . , 2N − 1, ` 6= N (i.e. consider the eigenvalues λ` 6= λ±)
and call

δN
.
=

k̄ inf g′

2N
(β− α)

[
1− Cα,β

]
.

Then

|λ`| = |µ`|

1− 1
N

jβ

∑
j=jα+1

γj

γj + 1

[
1− cos

(
2π`j

N

)]+O
(
‖|E(γ)‖|2

)
≤ 1− δN +O

(
‖|E(γ)‖|2

)
. (5.67)

Remark 5.4.2. Let
O
(
‖|E(γ)‖|2

)
≤ O

(
1

N2

)
.

Then, we are interested in the constant(
1− δN +O

(
‖|E(γ)‖|2

))N
→ e−δ , N → ∞

where

δ =
k̄ inf g′

2
(β− α)

[
1− Cα,β

]
.

In Chapter (6), we analyze the case of localized damping in Test 2, where we take

k(x) = χ[0.4,0.6](x) , g(J) = eJ − 1 , α(t) ≡ 1
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and initial data

J0(x) = 0 , ρ0(x) = x2 − 1/3 x ∈ (0, 1) .

In this case, inf g′ = e−
1
6 , α = 0.4 , β = 0.6 and

Cα,β = max
{

1
π

, max
`=1,...,4

sin(2πβ`)− sin(2πα`)

2π(β− α)`

}
=

sin(4πβ)− sin(4πα)

4π(β− α)
= 0.75682 .

Hence,

δ =
e−

1
6

2
(0.6− 0.4)

[
1− Cα,β

]
= 0.02058.

While numerically, we got that the rate of decay is ≈ 0.05. This difference is due to the
oscillation we have in the numerical approximation, so we could not compute the precise
value of the decay using the following equation:

log(‖J(·, tn+1)‖L∞)− log(‖J(·, tn)‖L∞)

∆t
,

as n varies. Instead, what we do is to plot the log(‖J(·, tn)‖L∞), then we use the fitting
app, that provide a linear function plot C1 + C2t, with C2 = 0.05 which is the rate of
decay.
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Chapter 6

Numerical simulations and
perspectives

In this chapter we present some numerical proofs, based on the numerical imple-
mentation of the algorithm presented in Chapter 3. Define

f±j,n = ( f±)∆x(x, tn) , x ∈ (xj−1, xj) , j = 1, . . . , N , n ≥ 0

with the initial data:

f±j,0 = f±0 (xj−1+) , j = 1, . . . , N . (6.1)

The implicit equations

J∗j,n + g(J∗j,n)ᾱnδj = f+j,n − f−j+1,n , j = 1, . . . , N − 1 , (6.2)

with δj as in (3.27) and ᾱn as in (3.31), define uniquely the values

J∗1,n, . . . , J∗N−1,n n ≥ 0 .

To establish the values f±j,n+1 for every n ≥ 0, based on the construction of the
scheme presented in Subsection 3.2.1, one proceeds as follows:

• At the boundaries, we have to deal with two boundary Riemann problems, see
Step 2 in Subsection 3.2.1 and (3.33) for solving the problem at x = 0, t = 0.
In general, the conditions are

f+1,n+1 = f−1,n , f−N,n+1 = f+N,n (6.3)

which imply that the boundary conditions J(0, t) = J(1, t) = 0 are satisfied;
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t = tn

t = tn+1

∆t

f±1,n f±N,n

f±1,n+1 f±N,n+1

J∗1,n J∗N−1,n

FIGURE 6.1: A time interval

• While the other values, for j = 1, . . . , N − 1, are given by

f+j+1,n+1 = f+j,n − g(J∗j,n)ᾱnδj , f−j,n+1 = f−j+1,n + g(J∗j,n)ᾱnδj , (6.4)

which are a discrete version of (3.6). More precisely, given the approxi-
mate initial data (6.1), then the solution to the Riemann problem for (6.4) is
uniquely established by (3.8). In the equation (6.4), J∗j,n should be computed
by the implicit equations (6.2).

Test 1. Here we set
k(x) = 1 , g(J) = J ,

and
ρ0(x) = −π cos(πx) , J0(x) = 0 , x ∈ [0, 1] . (6.5)

Using separation of variables method (for the damped wave equation (1.1)), the
exact solution of equation (1.2) is found to be

Jex(x, t) = −
(√
|1− π2|+ 1√

|1− π2|

)
e−t sin(πx) sin(

√
|1− π2|t) ,

ρex(x, t) = −πe−t cos(πx)

(
cos(

√
|1− π2|t) + 1√

|1− π2|
sin(

√
|1− π2|t)

)
.

(I) We want to prove that the Well-Balanced approximation solutions converge
to the exact solution as ∆x → 0, see Section 3.3. This can be shown numer-
ically, take t = 0.5 and N = 40, · · · , 2000. See Figure 6.2, where this graph
show the values of ‖J∆x(t, ·) − Jex(t, ·)‖L∞ and ‖ρ∆x(t, ·) − ρex(t, ·)‖L∞ (red
color).
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FIGURE 6.2: Test 1: Convergence of the approximate solutions as
∆x → 0.

(II) Here we aim to prove numerically what we proved in Remark 1.2.2–[ii]. In
this test, the stationary solutions are J(x) = ρ(x) = 0, and d = g′k(x) =
k(x). The goal now is to see the rate of decay for the approximate solutions
towards the zero stationary solutions in case d → 0 that is k(x) is small. In
Figure 6.3, we take k(x) = 0.1, then the figure show the L∞ decay of the
approximate solutions to the zero stationary solutions (blue color). We use
the exponential models in the Curve Fitting Toolbox in MATLAB on the left-
hand side of Figure 6.3 (red color plots), and it appears that the decay is
exponential with rate very close to 0.1 as proved in Remark 1.2.2–[ii]. See
also Figure 6.4, where we take k(x) = 0.05.

Moreover, if the decay is exponential, then it should satisfies the following

‖J(·, t)‖L∞ = C1e−C2t =⇒ log(‖J(·, t)‖L∞) = log(C1)− C2t .

So, we plot the log(‖J(·, t)‖L∞) and log(‖ρ(·, t)‖L∞). These plots show that
the decay is exponential with rate close to C2 = 0.1 in case k(x) = 0.1, and
C2 = 0.05 in case k(x) = 0.05. See Figures 6.3-6.4.

Test 2. Here we choose

k(x) = χ[0.4,0.6](x) , g(J) = eJ − 1 , α(t) ≡ 1

and initial data

J0(x) = 0 , ρ0(x) = x2 − 1/3 x ∈ (0, 1) . (6.6)
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FIGURE 6.3: Test 1: Decay of approximate solutions with k(x) = 0.1.
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FIGURE 6.4: Test 1: Decay of approximate solutions with k(x) = 0.05.



Chapter 6. Numerical simulations and perspectives 112

N Error Order of convergence =
∣∣∣ log(Error)

log N

∣∣∣
600 0.002825 0.9175
800 0.00204 0.9267
1000 0.01548 0.9367

TABLE 6.1: Test 2: The order of convergence for J∆x at T = 60.

We use the Lambert W function (see [13] or [27, p. 256]) to find the value of J∗j,n in
equation (6.2), hence

J?j,n = δj −W(δje
δj+ f+j−1,n− f−j,n) + f+j−1,n − f−j,n .

In Figure 6.5, we show the quantities ‖J∆x(·, t)‖L∞ and ‖ρ∆x(·, t)‖L∞ (blue color)
for t = tn with n = 1, · · · , 14000 and N = 200 with initial data (6.6). Using the
linear model in the Curve Fitting Toolbox in MATLAB on the right-hand side of
Figure 6.5 (red color plots), that fit the log(‖J∆x(·, t)‖L∞) and log(‖ρ∆x(·, t)‖L∞), the
decay seems to be exponential with rate ≈ 0.05 . See Remark 5.4.2 for connecting
this result with the theoretical results of Section 5.4.

Moreover, one can compute the order of convergence for the approximate so-
lution. Indeed, denote the order of convergence by α, for a fixed large time T, the
following holds true

‖J∆x(·, T)‖L∞ =
1

Nα
=⇒ α = − log ‖J∆x(·, T)‖L∞

log N
.

In Table 6.1, we compute the error and the order of convergence of the approximate
solution J∆x for N = 600, 800, 1000 at fixed time T = 60.

Test 3. (On-Off damping) Here we choose the same k(x), g(J) and the initial data
as in Test 2, while we assume that α(t) is given by (1.4), with T1 = 1, T2 = 2.

As in Test 2, we use Lambert W function to find the value of J∗j,n in equation
(6.2). In Figure 6.6, we plot the quantities ‖J∆x(·, t)‖L∞ and ‖ρ∆x(·, t)‖L∞ (blue
color) for t = tn with n = 1, · · · , 10000 and N = 100 with initial data (6.6). Again,
plotting the log(‖J∆x(·, t)‖L∞) and log(‖ρ∆x(·, t)‖L∞) the rate of decay seems to be
exponential with rate≈ 0.03. In this test we have investigated the L∞ decay of case
On-Off damping, the theoretical proof will be in a next work. See Remark 1.2.2–
(vi).
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FIGURE 6.5: Test 2: Decay of approximate solutions.
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FIGURE 6.6: Test 3: Decay of approximate solutions in the case On-
Off damping.
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Appendix A

A.1 Results from matrix theory

In this Appendix, we recall some earlier results related to Matrix theory that we
used to study the properties of the matrix B(γn). For more details, we refer the
reader to the books [40, 47, 41, 12, 10].

Definition A.1.1. (Permutation matrices). A square matrix P is a permutation matrix
if exactly one entry in each row and column is equal to 1 and all other entries are 0.
Multiplication by such matrices effects a permutation of the rows or columns of the matrix
multiplied.

Left multiplication of a matrix A ∈ Mm,n by an m-by-m permutation matrix P
permutes the rows of A, while right multiplication of A by an n-by-n permutation
matrix P permutes the columns of A. A permutation matrix applied to a vector v,
gives a vector whose components are a permutation of v.

The determinant of a permutation matrix is ±1, so permutation matrices are
nonsingular. Although permutation matrices need not commute, the product of
two permutation matrices is again a permutation matrix. Since the identity is a
permutation matrix and Pt = P−1 for every permutation matrix P, the set of n-by-
n permutation matrices is a subgroup of GL(n, C) with cardinality n!.

Definition A.1.2. (Stochastic matrix). A nonnegative matrix A ∈ Mn with the property
that Ae = e, that is, all its row sums are +1, is said to be a (row) stochastic matrix;
each row may be thought of as a discrete probability distribution on a sample space with
n points. A column stochastic matrix is the transpose of a row stochastic matrix, that is,
et A = et.

Such matrices arise in the intercity population migration model. Stochastic
matrices also arise in the study of Markov chains and in a variety of modeling
problems in economics and operations research.

Definition A.1.3. (Doubly stochastic matrix). A stochastic matrix A ∈ Mn such that At

is also stochastic is said to be doubly stochastic; all row and column sums are +1.
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A nonnegative matrix A ∈ Mn is doubly stochastic if and only if both Ae = e
and et A = et. The permutation matrices are the fundamental and prototypical
doubly stochastic matrices, for Birkhoff’s theorem says that any doubly stochastic
matrix is a convex combination of finitely many permutation matrices.

In the next two theorems, some properties of doubly stochastic matrix are stud-
ied. Birkhoff theorem concerns writing the doubly stochastic matrix as a finite sum
of permutations matrices. While, Gershgorin theorem consider the properties of
the eigenvalues of such matrix.

Theorem A.1.1. (Birkhoff). A matrix A ∈ Mn is doubly stochastic if and only if there are
permutation matrices P1, · · · , PN ∈ Mn and positive scalars t1, · · · , tN ∈ R such that
t1 + · · ·+ tN = 1 and

A = t1P1 + · · ·+ tNPN . (A.1)

Moreover, N ≤ n2 − n + 1.

Theorem A.1.2. (Gershgorin). Let A = [aij] ∈ Mn, let

R′i(A) = ∑
j 6=i
|aij| , i = 1, · · · , n , (A.2)

denote the deleted absolute row sums of A, and consider the n Gershgorin discs

{z ∈ C : |z− aii| ≤ R′i(A)} , i = 1, · · · , n .

The eigenvalues of A are in the union of Gershgorin discs

G(A) =
n⋃

i=1

{z ∈ C : |z− aii| ≤ R′i(A)} . (A.3)

Furthermore, if the union of k of the n discs that comprise G(A) forms a set Gk(A) that is
disjoint from the remaining n− k discs, then Gk(A) contains exactly k eigenvalues of A,
counted according to their algebraic multiplicities.

Theorem A.1.3. (The Cauchy-Binet formula). Let A ∈ Mm,k, B ∈ Mk,n, and C = AB.
Furthermore, let 1 ≤ r ≤ min{m, k, n}, and let α ⊆ {1, · · · , m} and β ⊆ {1, · · · , n} be
index sets, each of cardinality r. An expression for the α, β minor of C is

det C[α, β] = det A[α, γ]det B[γ, β] ,

in which the sum is taken over all index sets γ ⊆ {1, · · · , k} of cardinality r.
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Theorem A.1.4. (Rayleigh quotient). Let A ∈ Mn be Hermitian, let the eigenvalues
of A be ordered as λmin = λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn = λmax . Let i1, . . . , ik be
given integers with 1 ≤ i1 < · · · < ik ≤ n, let xi1 , . . . , xik be orthonormal and such that
Axip = λip xip for each p = 1, . . . , k, and let S = span{xi1 , . . . , xik}. Then

(i)

λi1 = min
x:0 6=x∈S

x∗Ax
x∗x

= min
x:x∈S and ‖x‖2=1

x∗Ax

≤ max
x:x∈S and ‖x‖2=1

x∗Ax = max
x:0 6=x∈S

x∗Ax
x∗x

= λik .

(ii) λi1 ≤ x∗Ax ≤ λik for any unit vector x ∈ S with equality in the right-hand
(respectively, left-hand) inequality if and only if Ax = λik x (respectively, Ax =
λi1 x) .

(iii) λmin ≤ x∗Ax ≤ λmax for any unit vector x ∈ Cn, with equality in the right-
hand (respectively, left-hand) inequality if and only if Ax = λmaxx (respectively,
Ax = λminx); moreover,

λmax = max
x 6=0

x∗Ax
x∗x

, and λmin = min
x 6=0

x∗Ax
x∗x

Theorem A.1.5. (Gelfand formula). Let ‖| · ‖| be a matrix norm on Mn and let A ∈ Mn
with spectral radius ρ(A). Then,

ρ(A) = lim
k→∞
‖|Ak‖|1/k .
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