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Abstract

Multivariate time series are the standard tool for describing and analysing measure-
ments from multiple sensors during an experiment. In this work, we discuss different
aspects of such representations that are invariant to transformations occurring in
practical situations. The main source of inspiration for our investigations are experi-
ments with neural signals from electroencephalography (EEG), but the ideas that
we present are amenable to other kinds of time series.

The first invariance that we consider concerns the dimensionality of the multivariate
time series. Very often, signals recorded from neighbouring sensors present strong
statistical dependency between them. We present techniques for disposing of the
redundancy of these correlated signals and obtaining new multivariate time series
that represent the same phenomenon but in a smaller dimension.

The second invariance that we treat is related to time series describing the same
phenomena but recorded under different experimental conditions. For instance,
signals recorded with the same experimental apparatus but on different days of the
week, different test subjects, etc. In such cases, despite an underlying variability, the
multivariate time series share certain commonalities that can be exploited for joint
analysis. Moreover, reusing information already available from other datasets is a
very appealing idea and allows for “data-efficient” machine learning methods. We
present an original transfer learning procedure that transforms these time series so
that their statistical distributions become aligned and can be pooled together for
further statistical analysis.

Finally, we extend the previous case to when the time series are obtained from
different experimental conditions and also different experimental setups. A practical
example is having EEG recordings from subjects executing the same cognitive task
but with the electrodes positioned differently. We present an original method that
transforms these multivariate time series so that they become compatible in terms of
dimensionality and also in terms of statistical distributions.

We illustrate the techniques described above on EEG epochs recorded during brain-
computer interface (BCI) experiments. We show examples where the reduction of
the multivariate time series does not affect the performance of statistical classifiers
used to distinguish their classes, as well as instances where our transfer learning
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and dimension-matching proposals provide remarkable results on classification in
cross-session and cross-subject settings.

For exploring the invariances presented above, we rely on a framework that parametrizes
the statistics of the multivariate time series via Hermitian positive definite (HPD)
matrices. We manipulate these matrices by considering them in a Riemannian man-
ifold in which an adequate metric is chosen. We use concepts from Riemannian
geometry to define notions such as geodesic distance, center of mass, and statistical
classifiers for time series. This approach is rooted on fundamental results of differen-
tial geometry for Hermitian positive definite matrices and has links with other well
established areas in applied mathematics, such as information geometry and signal
processing.
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Résumé

L’utilisation de séries temporelles multi-variées est une procédure standard pour
décrire et analyser des mesures enregistrées par plusieurs capteurs au cours d’une
expérience. Dans ce travail, nous discutons certains aspects de ces représenta-
tions temporelles, invariants aux transformations qui peuvent se produire en sit-
uations pratiques. Nos recherches s’inspirent en grande partie d’expériences neu-
rophysiologiques reposant sur l’enregistrement de l’activité cérébrale au moyen
de l’électroencéphalographie (EEG), mais les idées que nous présentons ne sont
pas restreintes à ce cas particulier et peuvent s’étendre à d’autres types de séries
temporelles.

La première invariance sur laquelle nous portons notre attention est celle de la
dimensionalité des séries temporelles multi-variées. Bien souvent, les signaux
enregistrés par des capteurs voisins présentent une forte dépendance statistique
entre eux. Nous introduisons donc l’utilisation de techniques permettant d’éliminer
la redondance des signaux corrélés et d’obtenir de nouvelles représentations du
même phénomène en dimension réduite.

La deuxième invariance que nous traitons est liée à des séries temporelles qui
décrivent le même phénomène mais sont enregistrées dans des conditions expéri-
mentales différentes. Par exemple, des signaux enregistrés avec le même appareil
expérimental, mais à différents jours de la semaine ou sur différents sujets, etc. Dans
de tels cas, malgré une variabilité sous-jacente, les séries temporelles multi-variées
partagent certains points communs qui peuvent être exploités par une analyse con-
jointe. En outre, la réutilisation des informations déjà disponibles à partir d’autres
jeux de données est une idée très séduisante et permet l’utilisation de méthodes
d’apprentissage automatiques dites «data-efficient». Nous présentons une procédure
originale d’apprentissage par transfert qui transforme les séries temporelles de telle
sorte que leurs distributions statistiques soient alignées et puissent être regroupées
pour une analyse statistique plus poussée.

Enfin, nous étendons le cas précédent au contexte où les séries temporelles sont
obtenues à partir de différentes conditions expérimentales et de différentes configu-
rations d’enregistrement de données. Nous présentons une méthode originale qui
transforme ces séries temporelles multi-variées afin qu’elles deviennent compatibles
en termes de dimensionalité et de distributions statistiques.

Nous illustrons les techniques citées ci-dessus en les appliquant à des signaux EEG
enregistrés dans le cadre d’expériences d’interface cerveau-ordinateur (BCI). Nous
montrons sur plusieurs exemples, avec des simulations et des données réelles, que la
réduction de dimension – judicieusement choisie – de la série temporelle multi-variée
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n’affecte pas les performances de classifieurs statistiques utilisés pour déterminer
la classe des signaux, et que notre méthode de transfert d’apprentissage et de
compatibilité de dimensionalité apporte des améliorations remarquables en matière
de classification inter-sessions et inter-sujets.

Pour explorer les invariances présentées ci-dessus, nous nous appuyons sur l’utilisation
de matrices Hermitiennes définies positives (HPD) afin de décrire les statistiques
des séries temporelles multi-variées. Nous manipulons ces matrices en consid-
érant qu’elles reposent dans une variété Riemannienne pour laquelle une métrique
adéquate est choisie. Nous utilisons des concepts issus de la géométrie Riemannienne
pour définir des notions telles que la distance géodésique, le centre de masse ou
encore les classifieurs statistiques de séries temporelles. Cette approche repose sur
les résultats fondamentaux de la géométrie différentielle pour les matrices Hermiti-
ennes définies positives et est liée à d’autres domaines bien établis en mathématiques
appliquées, tels que la géométrie de l’information et le traitement du signal.
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1

Introduction

We are surrounded by sources of activity that fluctuate in a more or less irregular
manner: temperatures changing in the course of a year, stock market prices oscillat-
ing during a day, brain activity varying in the scale of milliseconds. The goal of a
scientist is to quantify, understand, model, and predict the time evolution of such
phenomena. For this purpose, we use the concept of multivariate time series, which
represents measurements obtained from a set of sensors as a collection of vectors
indexed by time. For example, Figure 1.1 illustrates electroencephalographic (EEG)
signals recorded on three different electrodes placed over a person’s scalp. These
signals can be conveniently studied as a three-dimensional time series, where each
dimension represents the signal recorded on each electrode.
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Fig. 1.1: EEG signals recorded on electrodes Fz, Cz, and Oz, on a subject’s scalp
during a resting-state experiment. Data is from the ALPHA.EEG.2017-GIPSA
database [Cat+18].

A common way for analysing multivariate time series is to estimate a set of parame-
ters that describes its statistical behavior, such as its mean vector, its auto-covariance
matrices, or its cross-spectral density matrices [Pri83]. This assumes that the time
series are stationary and that their statistical behavior can be exhaustively described
by their second-order moments, i.e., that they are multivariate Gaussian processes.
Two multivariate time series may then be compared by defining a distance between
the sets of parameters describing their statistics. A principled way for doing so is
to study the intrinsic geometry of the space where the parameters are defined and
use the geodesic distance between them as a measure of similarity. Such approach
is based on concepts borrowed from Riemannian geometry (RG) and allows us to
manipulate multivariate time series as points in a metric space. This abstraction
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is inspired by what is done in information geometry, where statistical distributions
are seen as points in a statistical manifold and then compared using the geodesic
distance induced by a metric defined in it [Ama16]. A convenient outcome of this
approach is that it allows the development of new algorithms inspired by intuitive
geometric arguments, as well as a new understanding of classical algorithms that
were firstly developed in a purely analytical form and that can be reinterpreted
under the RG framework. Figure 1.2 gives a visual intuition of the RG framework
applied to multivariate time series.

Fig. 1.2: Visual representation of the RG framework. The statistics of each d-dimensional
multivariate time series (d = 3 in the figure) is described by its spatial covariance
matrix, with xi(t), xj(t), and xk(t), associated to Ci, Cj , and Ck, respectively.
These matrices are symmetric positive definite (SPD) and have dimensions d ◊ d.
They live in a manifold, the SPD manifold, denoted by P(d), and we use tools
from Riemannian geometry to manipulate them. P(d) has non-positive curvature,
which makes its geometry different from that of a flat Euclidean space. We have,
for instance, that the sum of the angles of a triangle in P(d) is not 180¶. Also, the
distance between two points in P(d) is given by the length of the geodesic path
connecting them, which is not necessarily a straight path.

Geometry-aware algorithms have gained increasing attention in the last few years. It
has been shown in a number of occasions that studying and understanding the intrin-
sic geometry of a set of features or data points gives considerable insight, allowing
for the development of new and more efficient algorithms. Some examples are the
recent surge of deep learning algorithms crafted for handling data defined in a mani-
fold [Bro+17] or the reinterpretation of classical methods for text classification using
concepts of Riemannian geometry [Leb05]. In the context of multivariate time series,
the Riemannian geometric framework has lead to major improvements in the field of
brain-computer interfaces (BCI) based on EEG signals, where classification methods
were traditionally known to have rather weak generalization properties [Lot+18].
In RG methods, the statistics of the EEG signals are parametrized via their spatial
covariance matrices, which are symmetric positive definite (SPD) matrices. Such
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matrices are defined in a Riemannian manifold with a well known intrinsic geome-
try [Bha09] and that can be used to define methods for manipulating the multivariate
time series via their statistical descriptors. A particularly interesting feature of the
SPD manifold is that we may define a geodesic distance which is invariant to affine
transformations. Consequently, the distance between two multivariate time series
parametrized by SPD matrices is not affected by the action of a linear transformation
applied to them. This is a very attractive property, since linear transformations can
be used to model different practical situations, such as the effect of slightly moving
the positions of electrodes on a subject’s scalp or the effects caused by the mixture of
different sources of activity in a person’s brain. The RG approach for classifying EEG
signals has, therefore, lead to new classification algorithms that have demonstrated
excellent results in practice and have become one of the state-of-the-art methods in
the BCI research community [Con+17; Yge+17; Lot+18].

Objective of the thesis
This thesis uses Riemannian geometry concepts to investigate invariances in multi-
variate time series. An invariance is “a property that remains unchanged regardless
of changes in the conditions of measurements”. This is a very powerful property of a
system, which reflects a notion of stability that is intrinsic to the phenomenom under
study and that allows for a profound interpretation of its behavior. Invariances are
at the core of many scientific fields, such as in classical mechanics, where the laws
of motion are the same in all inertial frames (also known as Galilean invariance),
and electromagnetism, where invariances and symmetries are commonly used to
determine expressions describing electric and magnetic fields. In image processing,
the use of invariant features for classification is a very active topic of research. For
instance, the scale-invariant feature transform (SIFT) [Low04] leads to an algorithm
that detects features which are invariant to changes in scale, illumination, and noise.
Such features are robust descriptors of images, and classification algorithms based
on them have demonstrated good generalization properties in practice. Invariances
in images are also at the core of convolutional neural networks, which are built to
exploit the fact that the output for a classifier to a given image should always be
the same regardless small deformations that it may undertake, such as translation,
rotation, and stretching.

In the context of multivariate time series, invariances may be related to different
aspects of the phenomena they represent. For instance, the statistical distribution
of samples gathered from different experimental sessions are usually different,
hindering their joint analysis with classical statistical methods. However, if the
experiments portray the same phenomena, it is reasonable to assume that the
samples of each session share invariant features. A concrete example is in EEG-based
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BCI, where the data from two subjects carrying out the same cognitive tasks, i.e. the
same BCI paradigm, may have very different statistical distributions, even if latent
information is clearly shared. Similarly, multivariate time series may be recorded
using different sensor setups – different positions of electrodes, different number of
sensors, etc. In this case, the dimensionality mismatch between time series makes
them, in principle, incompatible for joint statistical analysis. However, if they portray
the same phenomena, we expect that they share invariances that could be exploited.
In the context of EEG-based BCI, this is related to datasets that are recorded in
different laboratories using different experimental setups, but under the same BCI
paradigm. In Figure 1.3, we use a non-linear dimensionality reduction technique
called diffusion maps [CL06] to illustrate the differences between the descriptors of
multivariate time series associated to two subjects performing a BCI experiment. We
observe a clear difference in the distributions of data points, although the subjects
were asked to perform the same set of cognitive tasks. This mismatch explains why
a classifier trained on the dataset from one subject has poor performance when
applied to a dataset from another subject.

Fig. 1.3: Two-dimensional representation of the embedding obtained via the diffusion
maps algorithm applied to the recordings of two subjects in the Cho2017
database [Cho+17]; the axis Â1 and Â2 are eigenvectors of the Laplacian matrix
estimated from the data points with the diffusion maps algorithm [CL06]. Each
point corresponds to the EEG signal of an experimental trial and the distances
between the data points were calculated using the geodesic distance of the SPD
manifold.

Questions related to invariances in multivariate time series are very general and
applicable to several contexts. In this thesis, we give particular attention to examples
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with EEG data. We consider datasets obtained from different experimental paradigms,
such as brain-computer interfaces, sleep recordings, and resting-state experiments.
On the one hand, working with this kind of data is rather challenging because it often
has low signal-to-noise ratio and presents considerable variability between recording
sessions. On the other hand, EEG signals are very rich and carry physiological
information in its spectral content and waveforms, which can be used to cope with
the intrinsic limitations related to how it is recorded. Our results demonstrate that
the exploration of invariances in EEG time series is very fruitful and allows for the
design of new and better methods for their analysis and classification.

Organization of the manuscript
The text that follows is composed of five chapters.

In Chapter 2, we present the theoretical foundations on which all contributions of
this thesis rely. We begin by presenting the traditional approach for multivariate
time series analysis and show how it can be studied under a Riemannian geometric
framework. Then, we give a brief overview of the geometric properties of the
manifold where the statistical parameters of the multivariate time series are defined.
We conclude by showing how to apply the RG framework to EEG data and illustrating
its use on a few practical examples.

In Chapter 3, we consider problems related to the dimensionality reduction (DR)
of multivariate time series. For this, we investigate how DR techniques can be
used to exploit redundancies in multivariate time series and obtain more compact
representations for them. We first consider linear techniques and use an extension
of the classical principal component analysis to a context where the data points live
in a space which is non-Euclidean. We also consider non-linear DR techniques and
focus on the method of diffusion maps (DM). We apply DM to datasets containing
multivariate time series and show how this procedure can be used for unsupervised
analysis of such kind of data. The scope of our contributions in this chapter is rather
limited as compared to the following chapters, but it concerns an important practical
problem that deserves to be discussed. Furthermore, it illustrates an invariant
property of multivariate time series related to how two different representations of
the same phenomenon can convey the same information.

In Chapter 4, we consider the problem of transfer learning applied to multivariate
time series. Transfer learning is a very relevant topic in machine learning and
concerns the ability of a system to extract knowledge obtained from different sources
of information. This goes in line with discussions regarding the ‘data-efficiency’
of classification algorithms, which ponders on how information from different
datasets can be reused to avoid the need for generating new samples and, without
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loosing classification performance, avoid the need of redoing energy consuming
experiments, storing new data samples, etc. We present an original contribution
that uses the RG framework to adapt the statistics of mismatched datasets and
makes their joint analysis possible. Our method is an extension of the classical
Procrustes analysis [Ken89], which applies rigid transformations to data points
(i.e., translation, stretching and rotation) from two datasets in order to match their
statistical distributions. These transformations are carried out on points defined in
a Riemannian manifold, therefore, we call our method the Riemannian Procrustes
analysis (RPA). The works on this chapter have generated the publication:

P. L. C. Rodrigues, C. Jutten, and M. Congedo, “Riemannian procrustes
analysis: transfer learning for brain-computer interfaces", IEEE Transac-
tions on Biomedical Engineering, pp. 1–1, 2018.

In the numerical illustrations of Chapter 4, we apply RPA to data from EEG-based BCI
experiments and show that it yields very good results in cross-subject classification,
i.e., when the data from one subject is classified using a classifier trained with the
data from another subject. These results pave the way to new BCI systems able to
reduce (or even bypass) the calibration phase.

In Chapter 5, we extend the context of the preceding chapter and consider the case
of datasets containing multivariate time series of different dimensionalities and/or
registered with different sensor positions. This kind of situation represents the
common problem of trying to match datasets coming from different experimental
setups but representing the same phenomena. We present an original contribution
based on concepts from RG to match datasets obtained under this context. Our
proposal uses a two-step procedure that transforms the parameters describing the
statistics of multivariate time series so that they become matched in terms of di-
mensionality and statistics. In the dimensionality matching step, we use isometric
transformations to map the features of each dataset into a common space without
changing their internal geometric structures. Then, the statistical matching of the
dimensionality-matched data points is done using RPA. We have named this proce-
dure dimensionality transcending (DT) and we have submitted a paper describing
this proposal:

P. L. C. Rodrigues, C. Jutten, and M. Congedo, “Dimensionality tran-
scending: a method for working with datasets defined in different SPD
manifolds", submitted to IEEE Transactions on Pattern Analysis and
Machine Intelligence.

In the numerical illustrations of Chapter 5, we apply DT to BCI datasets recorded
using different experimental setups (for instance, different number and placement
of electrodes) but under the same paradigm. Our results demonstrate that it is
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indeed possible to extract common latent information from mismatched data and
use it to perform cross-subject classification even when the data come from subjects
associated to different databases. Our results bring the idea of ‘data-efficiency’ in
the BCI field to a new level, making it possible to reuse information from previously
incompatible sources of data.

In Chapter 6, we present our concluding remarks concerning the investigations
carried out during this thesis and discuss on future perspectives for what we have
developed. We split the perspectives into ‘short-term’ and ‘long-term’ goals and
give an overview of what are the most interesting paths of research that this thesis
opens.

In order to foster reproducible research, Python code for all methods discussed in
this thesis are available online on the public repository:

https://github.com/plcrodrigues/PhD-Code

Moreover, all numerical illustrations have been carried out on publicly available
datasets, some of which were developed at the GIPSA-lab.
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List of acronyms and notations of the chapter

EEG electroencephalography
BCI brain-computer interface
HPD Hermitian positive definite
SPD symmetric positive definite
RG Riemannian geometry

AIRM affine-invariant Riemannian metric
MDM minimum distance to mean classifier
ERP event-related potential
MI motor imagery

ROC receiver operating characteristic
AUC area under the ROC curve
DTFT discrete-time Fourier transform
Z set of integer numbers
Rd set of d-dimensional real vectors
x multivariate time series
C spatial covariance matrix
S cross-spectral density matrix
”E Frobenius distance between two matrices
”R AIRM-induced distance between two HPD matrices

H(d) set of d-dimensional Hermitian matrices
P(d) manifold of d-dimensional HPD matrices

TCP(d) tangent space to P(d) at point C

MX geometric mean of the HPD matrices in a set X
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2.1 Introduction
This chapter presents the theoretical foundations on which all contributions of this
thesis rely. Section 2.2 introduces statistical tools for the analysis of multivariate
time series and discuss two fundamental assumptions that are typically done re-
garding their statistics: stationarity and Gaussianity. These assumptions allow the
description of the full statistical behavior of a real multivariate time series via a set
of Hermitian positive definite (HPD) matrices. One may then compare two time
series by comparing the HPD matrices used to parametrize them.

The set of HPD matrices is known to have a particular intrinsic geometry and
in Section 2.3 we give an overview of its properties. Most importantly, we present a
distance between HPD matrices that is invariant to affine-invariant transformations
(e.g. the action of a matrix), a very useful property when parametrizing multivariate
time series. We also show how to model the statistics of a dataset containing HPD
data points and how to use statistical classifiers for discriminating between different
classes of HPD matrices. The combination of all these concepts is what we call the
Riemannian geometric (RG) framework for multivariate time series.

Section 2.4 describes how to apply the RG framework to recordings of electroen-
cephalographic (EEG) signals. We introduce basic concepts related to the electrical
activity in the brain (how it is generated, measured, and processed) as well as
some important markers that are often used to classify EEG signals. Then, we show
how to parametrize EEG signals via HPD matrices and give an overview of recent
brain-computer interface (BCI) applications that use the Riemannian geometric
framework.

Section 5.5 closes the chapter with numerical illustrations on EEG data of two kinds:
BCI and sleep recordings. All examples with BCI classification were carried out
using the MOABB framework [JB18], which is a Python library based mostly on three
other libraries: scikit-learn [Ped+11], MNE-python [Gra13] and pyRiemann1.
The scripts generating some of the figures in this chapter are available in the GitHub
repository for this thesis:

https://github.com/plcrodrigues/PhD-Code

2.2 Multivariate time series analysis
In this section, we define what is a multivariate time series and present statistical
tools for analysing it. We discuss some common assumptions regarding their statistics
and define a notion of distance between two multivariate time series.

1
http://pyriemann.readthedocs.io/
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2.2.1 Basic definitions and notation

We define a multivariate time series as a collection of d-dimensional vectors

x(t) =

S

WWU

x1(t)

...
xd(t)

T

XXV (2.1)

indexed by t œ Z, with ti ≠ ti≠1 = Ts its sampling period. Each dimension in x(t)

represents a different quantity that depends of the context where the time series is
defined. For instance, in stock market prediction, each dimension describes the time
evolution of a certain stock [Lut07], whereas for experiments with audio, xi(t) is
associated to what is recorded at microphone i [OS94]. In EEG recordings, each
time series in x(t) is related to the neural activity registered by one electrode placed
on a subject’s scalp [SC07].

The standard approach for studying multivariate time series is to consider each
sample x(t) as a random vector in Rd generated by some statistical law whose
probability density function is fix(t). One can then define basic statistical quantities,
such as the mean value of the time series at each time instant t,

µ(t) = E [x(t)] =

⁄

Rd
y fix(t)(y)dy , (2.2)

and its autocovariance between two time instants t and s,

R(t, s) = E
Ë!

x(t) ≠ µ(t)

"!
x(s) ≠ µ(s)

"H
È

(2.3)

=

⁄

Rd◊Rd

!
y ≠ µ(t)

"!
z ≠ µ(s)

"H
fi[x(t),x(s)](y, z)dydz , (2.4)

where fi[x(t),x(s)] is the joint probability density function for x(t) and x(s), and xH

denotes the conjugate transpose of x. Other statistical quantities may also be defined,
such as higher-order moments (kurtosis, skewness, etc.) [NM93] or the entropy of
the time series [BV00], but we will not consider them in this thesis.

2.2.2 Statistical assumptions

It is common to make assumptions regarding the statistics of the samples of a
multivariate time series x(t). When these assumptions are verified, one can obtain
better estimators for describing the statistical law of the samples (less bias and
smaller variance), as well as clearer interpretations about the underlying stochastic
process that generated them [Lut07].
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Stationarity. One of such assumptions is regarding how the statistics of x(t) evolves
in time. A common hypothesis is that of wide-sense stationarity (WSS), which
assumes that the mean of the multivariate time series is constant for all time samples,

µ(t) = µ , (2.5)

and that the autocovariance matrix for two time instants t and s depends only or
their lag difference · = t ≠ s,

R(t, s) = R(t ≠ s, 0) = R(·) . (2.6)

Under the WSS hypothesis, one can also define the notion of cross-power spectral
density of a multivariate time series, which is the discrete-time Fourier transform
(DTFT) of the sequence of auto-covariance matrices [Pri83]

S(f) =

+Œÿ

k=≠Œ
R(k)e

≠j2fifk
, (2.7)

where f œ [0, 1] is a normalized frequency and j is the imaginary unit2. The quantity
S(f) is a Hermitian positive definite matrix whose diagonal values describe how the
power (or variance) of each time series in x(t) is distributed along the frequency
domain; the out-of-diagonal values portray the statistical correlation between the
time series in each pair of dimensions in the frequency domain. For simplicity, in
the rest of this thesis, we will use interchangeably the terms ‘stationarity’ and ‘wide-
sense stationarity’, although ‘stationarity’ is often defined as a stronger property than
‘wide-sense stationarity’; in fact, wide-sense stationarity means stationarity up to
the second order, and hence is equivalent to stationarity for Gaussian time series.
See [Pri83] and [PW93] for more details.

Stationarity ensures interesting statistical properties on the time series, but it might
not always be adequate to assume it is true. In fact, there are many applications
where the goal is to identify changes in the statistics of the samples, such as detecting
changes in the behavior of financial time series [Tuc95; Lun+03], changes in neural
connectivity [Ast+08; RB15], changes in seismic activity [JK93; Mal+18], or, more
broadly, changes in the statistics of a dynamical system generating samples of a time
series [Bas88]. In this context, assuming WSS for the whole time series would be
contradictory. Nevertheless, a common approach is to assume that the changes in the
statistics are relatively smooth, so samples from small time intervals around a given
time sample t have approximately the same statistics. In this approach, one uses a
small sliding window containing a certain number of samples and considers that their
statistical behavior can be described by the same mean vector and autocovariance

2Note that, in practice, we have only access to a finite number of samples of a time series. Con-
sequently, the sum in Eq. (2.7) has always a finite number of terms and, therefore, is always
convergent.
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matrices. Then, the evolution of x(t)’s statistics is described by how its mean and
auto-covariance matrices evolve from one window to the next. Note that the choice of
‘how small’ the sliding window should be, depends on the sampling frequency and the
time-scale that one wants to consider in a given application; choosing a window that
is too small yields poor statistical estimators, whereas larger windows may blur the
dynamics that one is trying to reveal. There have been many works in the literature
for optimal segmentation of time series into windows. For instance, [Hal+17]
proposes a model-based clustering method for detecting samples whose statistics
may be described by the same covariance matrix, [Das+98] defines a motif discovery
algorithm based on pairwise distances between short windows, and [BB83] segments
statistically homogeneous strands of data based on distances between autoregressive
models estimated in each window. See [Lov+14] and [Keo+93] for surveys on this
topic.

Gaussianity. Another usual assumption concerns how the statistics of x(t) should
be characterized. Our approach in this thesis, and in most of the literature of time
series analysis [Lut07] and signal processing [Mar87], is to assume that fix(t) can be
approximated by a multivariate Gaussian distribution. Under this hypothesis, the
mean vector and sequence of autocovariance matrices (or, equivalently, the cross-
spectral density matrices) describe the full statistical behavior of x(t) [Pri83]. This
can be used for defining a notion of distance between two time series, as discussed
in Section 2.2.3. Equivalently, we say that the statistics of x(t) can be exhaustively
described via its second-order moments.

Note, however, that the Gaussian assumption is not always justified. For instance, the
statistics of rare events are better described by Poisson distributions, as is the case
for cosmic rays detection [Gib40] or the emission of particles in PET scans [LQ00].
In general, the use of non-Gaussian distributions to model data is appropriate when
one has some knowledege about the physical phenomena that generates its samples.
In most cases, though, such model does not exist, so one has to resort to the most
conservative assumption about the statistics of the data: the Gaussian assumption. In
fact, if several independent factors play a role in the generation of the data, one may
use the central limit theorem to argue that the sum of all their contributions yields
a statistical behavior that can be well described by a Gaussian distribution [PP02].
Another selling argument for the Gaussian assumption is a numerical one: parameter
estimation under the Gaussian model yields convex optimization problems that have
analytic solutions. Furthermore, it has been shown that the Gaussian distribution
leads to the largest Cramer-Rao bound (CRB) in a large class of parameter estimation
problems [SB11]. This means that algorithms that estimate parameters using a
variance minimization procedure based on a Gaussian model are in fact min-max
optimal, i.e., they attain the best CRB-related performance in the worst case scenario.
See [SB11] and [Par+13] for more details.

14 Chapter 2 Theoretical background



Parameter estimation. Assuming that x(t) is wide-sense stationary over T samples,
{x(0), . . . , x(T ≠ 1)}, we can write the estimators for (2.2) and (2.3) as

ˆµ =

1

T

T ≠1ÿ

t=0
x(t) (2.8)

and

ˆR(·) =

1

T ≠ |· |

T ≠1≠|· |ÿ

t=0

1
x(t + |· |) ≠ ˆµ

21
x(t) ≠ ˆµ

2T
. (2.9)

The cross-spectral density matrices can be directly obtained from the DTFT of ˆR or via
spectral estimation methods such as the periodogram or Welch’s method [PW93].

2.2.3 Distance between multivariate time series

A consequence of the assumptions above is that we can compare two time series,
xi(t) and xj(t), via the parameters used to describe their statistics. This is more
appropriate than directly comparing their samples on a given realization and leads to
superior results in classification and clustering tasks (see Section 2.5 for an example).
Without loss of generality, we will consider that all time series are zero-mean, so that
their parametrization may be done using just their cross-spectral density matrices.
Furthermore, we will assume that the time series have been bandpass filtered and so
their spectral content is supported on a set of frequencies denoted by F .

Cross-spectrum distance. We define the cross-spectrum distance between two time
series xi(t) and xj(t) as

dS

!
xi(t), xj(t)

"2
=

⁄

F
”

2!
Si(f), Sj(f)

"
df , (2.10)

where Si(f) and Sj(f) are the cross-spectral density matrices of xi(t) and xj(t),
respectively, and ” is some distance between matrices. The usual choice for ” is the
Frobenius distance

”

2
E(A, B) = ÎA ≠ BÎ2

F =

dÿ

k=1
⁄

2
k , (2.11)

where A and B are d-dimensional matrices and ⁄k are the eigenvalues of A ≠ B.
However, one can show that cross-spectral density matrices are Hermitian positive
definite matrices and, as such, they are usually treated in a Riemannian manifold
with an intrinsic geometry [Bha09]. Therefore, it is more natural to compare cross-
spectral densities using the geodesic distance of the HPD manifold, given by [Bha09]

”

2
R(A, B) =

..
log(A≠1/2BA≠1/2

)

..2
F

=

dÿ

k=1
log

2
(⁄k) , (2.12)
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where A and B are d-dimensional HPD matrices and ⁄k are the eigenvalues of
A≠1/2BA≠1/2 or, equivalently, A≠1B (the logarithm of a HPD matrix is defined
in Section 2.3.1). In Section 2.3, we give more details about the geometric features
of the HPD manifold, as well as a justification for expression (2.12).

Note that when ” = ”R in (2.10), we have for any invertible matrix A œ Rd◊d,

dS

!
Axi(t), Axj(t)

"2
=

⁄

F
”

2
R

!
ASi(f)AT

, ASj(f)AT "
df , (2.13)

=

⁄

F

dÿ

k=1
log

2
(µk(f))df , (2.14)

where µk(f) are the eigenvalues of matrix (ASi(f)AT
)

≠1
(ASj(f)AT

). But,

(ASi(f)AT
)

≠1
(ASj(f)AT

) = A≠T S≠1
i (f)Sj(f)AT

, (2.15)

which, by similarity, has the same eigenvalues of S≠1
i (f)Sj(f). Therefore,

dS

!
Axi(t), Axj(t)

"2
=

⁄

F
”

2
R

!
Si(f), Sj(f)

"
df = dS

!
xi(t), xj(t)

"2
. (2.16)

This shows that distance (2.10) is invariant to affine transformations of time series,
a property that is very useful in practice. For instance, it is invariant to the choice of
measurement scale, so the distance between two time series recorded in mV or µV is
the same. Moreover, it is not unusual to observe mixing effects when working with
data related to physical phenomena, such as the volume conduction in EEG [Con13]
or the crosstalk in audio signal processing [Vin+06]. When such mixings may be
approximated as the action of a linear operator, distance (2.10) is invariant to their
effects as well.

The idea of comparing two time series based on their cross-spectral densities is not
new and works have been developed in different research communities, such as in
speech processing [GM76], radars [Bar08], and EEG analysis [Li+12]. In [Bas89],
the author presents several distances between statistical distributions and shows
how to use them in the context of time series.

Covariance distance. In some applications, one may not have enough time samples
to obtain a good estimate of the cross-spectral density matrix. In such cases, it is
more judicious to condense the information contained in the spectrum into a single
parameter and then compare the corresponding parameters for each time series. One
can do this by noticing that the inverse DTFT applied to the cross-spectral density
matrices of a zero-mean F -bandpass filtered time series x(t) gives

⁄

F
S(f)df = R(0) = E[x(t)x(t)

T
] = C , (2.17)

16 Chapter 2 Theoretical background



which is the covariance matrix of x(t) and can be calculated without having to
estimate its spectrum [Con13]. We may then define the covariance distance between
time series xi(t) and xj(t) as

dC

!
xi(t), xj(t)

"2
= ”

2
R(Ci, Cj) , (2.18)

where Ci and Cj are the covariance matrices of xi(t) and xj(t), respectively.

An application that has demonstrated good results using (2.18) as distance is EEG-
based Brain-Computer Interfaces (BCI). In this kind of system, the realizations
of the time series are usually quite short (in the order of one or two seconds),
so the number of available samples is not large enough for ensuring good spec-
tral estimation [Con13]. Using only covariance matrices as descriptors for EEG
signals, [Bar+12] proposed a new framework for BCI classification and obtained
state-of-the-art performance. In Section 2.4.2, we discuss with more details the use
of distance (2.18) for comparing time series in EEG-related applications.

Hermitian positive definite matrices may be used to describe the statistics of other
kinds of data not necessarily related to multivariate time series. In fact, dis-
tance (2.18) has been used to classify textures in images [Tuz+06] and movements
in videos [Tuz+08], as well as detect structures in images [May06]. In [Pen06], the
authors comment on the advantages of using distance (2.18) for manipulating data
from diffusion tensor imaging (DTI), showing that ”R avoids the ‘swelling effect’
typically present with ”E – ‘when considering Euclidean geometry to interpolate
between two diffusion tensors, the determinant of the intermediate matrices may
become strictly larger than the determinants of both original matrices, which from a
physics point of view, is unacceptable.’ [Har+18].

It is worth noting that in some applications one may not have enough available
samples to expect a good estimate of the covariance matrix that describes the
statistics of the data. For instance, if x(t) œ R64 then its covariance matrix C has
dimensions 64 ◊ 64. Therefore, if we estimate C using the estimator in (2.9) with
· = 0, there should be at least 4096 samples available for the estimate ˆC to have
a chance of not being rank-deficient [Pri83]. A common approach for alleviating
such problem is to use a regularization term that adds a weighted Identity matrix
to ˆC, with the optimal weight being determined from the data. This technique is
often called ‘shrinkage’ in the literature and many methods have been proposed for
determining the weight to assign to the regularization term [Che+10]. More recently,
tools from random matrix theory have been applied to understand the statistical
distribution of the eigenvalues of high-dimensional covariance matrices and improve
algorithms based on them. See [CM14] for an overview of this topic and [Tio+19]
for a work that proposes a way of improving the estimation of distance (2.12)
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between two high-dimensional covariance matrices estimated from a limited number
of samples.

2.3 Riemannian geometry of the HPD manifold
In this section, we introduce the geometry of the manifold of Hermitian positive
definite matrices (HPD). We define some basic notions, such as geodesic distance
and center of mass, as well as more sophisticated ones, such as parallel transport
of tangent vectors and statistical descriptions of data points defined in the HPD
manifold. We also discuss how to perform classification tasks when a dataset is
composed of HPD data points.

2.3.1 Basic definitions and notation

Let P(d) be the set of d ◊ d Hermitian positive definite (HPD) matrices defined as

P(d) =

Ó
C œ Cd◊d

-- CH
= C, xHCx > 0, ’x œ Cd

, x ”= 0

Ô
, (2.19)

where CH is the conjugate-transpose version of C. It is known from basic linear
algebra that every matrix C œ P(d) can be decomposed as

C = Q�QH
, (2.20)

with � a diagonal matrix,

� =

S

WWU

⁄1 0

. . .

0 ⁄d

T

XXV and ⁄i > 0 , (2.21)

and QHQ = Id.

The application of an analytic function f : R æ R to C œ P(d) is defined as

f(C) = Qf(�)QH
, (2.22)

where f is applied to each eigenvalue of C. For instance, the square root of C is

C1/2
= Q�

1/2QH
, (2.23)

and its logarithm is
log(C) = Q log(�)QH

. (2.24)
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Fig. 2.1: The manifold P(d) is portrayed as a surface with non-positive curvature. The
drawn lines are the shortest paths between each pair of points in the HPD manifold,
also known as geodesics. Note that, in this space, the sum of angles in a triangle is
not 180 degrees.

HPD manifold. Matrices in P(d) lie in a manifold [Bha09], a set of points with the
property that the neighborhood of each C œ P(d) can be bijectively mapped onto
an Euclidean space, also known as its tangent space TCP(d). Intuitively, we say that
the neighbourhood of every point in the manifold is flat, but the whole manifold
has a non-positive curvature [Moa05], as portrayed in Figure 2.1. Because P(d) is
an open subspace of the set H(d) of hermitian matrices in Cd◊d, we can identify its
tangent space as simply being H(d) [Abs+09]. If we endow every tangent space
of a manifold with a metric that changes smoothly along its elements, we say that
we have a Riemannian manifold. In this case, fundamental geometric notions are
naturally defined, such as geodesic (shortest curve joining two points), distance
between two points (length of the geodesic connecting them), the center of mass of
a set of points, etc.

Affine-invariant Riemannian metric. There are several possible choices of metric
for P(d) and each one induces a different geometry that can be more or less adequate
according to the applications that we are interested in. A metric that is particularly
relevant is the one defined for tangent vectors ÷, › œ TCP(d) as

È÷, ›ÍC = tr
!
C≠1÷C≠1›

"
, (2.25)

where C œ P(d) and tr(·) denotes the trace operator. Note that, for any invertible
matrix M œ Rd◊d, we have

ÈM÷MT
, M›MT ÍMCMT = tr

!
(MCMT

)

≠1
(M÷MT

)(MCMT
)

≠1
(M›MT

)

"
,

= tr
!
M≠T C≠1M≠1M÷MT M≠T C≠1M≠1M›MT

)

"
,

= tr
!
C≠1÷C≠1›)

"
,

= È÷, ›ÍC . (2.26)
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Fig. 2.2: Depiction of the relation between the HPD manifold and a tangent space with
reference at point C.

Because of this property, metric (2.25) is named the Affine-Invariant Riemannian
metric (AIRM) and is known as the ‘natural’ Riemannian metric for the HPD man-
ifold [Bha09; Pen06; Moa05]. Another reason for its relevance is the connection
of the AIRM to the Fisher-Rao metric when considering zero-mean multivariate
Gaussian distributions [Ama16].

Tangent space. The map that transforms matrices in P(d) into tangent vectors in
TCP(d) is called the logarithmic map and, when AIRM is used as metric, it is given
by [Bha09]

LogC : P(d) æ TCP(d)

A ‘æ C1/2
log(C≠1/2AC≠1/2

)C1/2
.

(2.27)

Conversely, the map that transforms a tangent vector in TCP(d) into a matrix in
P(d) is called the exponential map, and is given by

ExpC : TCP(d) æ P(d)

› ‘æ C1/2
exp(C≠1/2

›C≠1/2
)C1/2

.

Figure 2.2 illustrates the concepts defined above.

Geodesic distance. Thus far, we have only considered the local geometry of the
HPD manifold. We will now extend our discussion to the whole geometry of P(d),
starting with the distance between two points in the manifold.

Let “ : [0, 1] æ P(d) be a differentiable curve defined in P(d). The length of “ is
given by [Bha09]

L(“) =

⁄ 1

0
Î“

≠1/2
(t)“̇(t)“

≠1/2
(t)Î2 dt , (2.28)
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where “̇(t) is the instantaneous speed vector of “(t). The geodesic distance between
two points in A, B œ P(d) is defined as

”R(A, B) = inf

Ó
L(“) such that “(0) = A and “(1) = B

Ô
, (2.29)

where the curve “ that attains the infimum is called the geodesic path between
points A and B. The explicit expression for (2.29) when AIRM is chosen as metric
for P(d) is

”R(A, B) =

...log

1
A≠1/2BA≠1/2

2...
F

(2.30)

and the geodesic path “ linking A and B is

“(t) = A1/2
1
A≠1/2BA≠1/2

2t
A1/2

. (2.31)

The reader is referred to [Bha09] for a demonstration of these results.

Distance ”R has many interesting properties. For instance, for every invertible matrix
M œ R

d◊d, we have that

”R(MAMT
, MBMT

) = ”R(A, B) , (2.32)

which is a consequence of the affine-invariance of the AIRM. It is also invariant to
inversion, so that

”R(A≠1
, B≠1

) = ”R(A, B) . (2.33)

Because of these and other properties (see [Bha09] for more of them), the AIRM-
induced distance has found great popularity in geometry-aware algorithms for
processing HPD matrices [MS00; WV05; Tuz+06; May06; Bar08; Li+09; Bar+12].

In this work, whenever we refer to P(d), we will be implicitly assuming that it has
been equipped with the AIRM. However, it is possible to define other distances in the
HPD manifold, which may have certain properties that justify their use instead of the
AIRM distance in some contexts. See [Ars+07] and [Bha+18] for two examples.

Center of mass. Once we have the expression for the distance between any two
points A, B œ P(d), it is natural to ask what is the HPD matrix that is equidistant
to A and B in terms of (2.11). We denote such matrix A#B and, from (2.28) for
t = 1/2, we obtain

A#B = A1/2
1
A≠1/2BA≠1/2

21/2
A1/2

, (2.34)

which is the mid-way point in the geodesic linking A and B. By definition, matrix
A#B satisfies [Bha09]

A#B = argmin

MœP(d)

1
”

2
R(A, M) + ”

2
R(B, M)

2
, (2.35)
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which, in words, means that it is the point in P(d) that minimizes the dispersion of A

and B. This is why A#B is also named the center of mass of points A and B. Note,
also, that when A and B are strictly positive scalars, A#B is their geometric meanÔ

AB. This explains why many researchers [Bha09; Con13; Arn+13; Mas+18]
adopt the term ‘geometric mean’ to refer to the center of mass of a set of HPD
matrices

We can extend the above definition to a set of K matrices,

X =

)
C1, . . . , CK

*
µ P(d) , (2.36)

so that

MX
= argmin

MœP(d)

Kÿ

i=1
”

2
R(M , Ci) . (2.37)

In the literature, matrix MX is sometimes called the center of mass of X , its
geometric means, its Fréchet mean, or also its Karcher mean [Bha09]. When K Ø 3,
there is no closed form solution for (2.37) in general, however, due to the non-
positive curvature of the HPD manifold, it is possible to show that there always
exists a solution for its optimization problem [Kar77]. With this in mind, many
researchers have proposed procedures for calculating the center of mass of a set of
HPD matrices iteratively. In [Bar08], the author uses an algorithm based on back-
and-forth projections between the HPD manifold and its tangent space in order to
converge to the solution of (2.37). More recently, [Con+17] proposed a fixed-point
algorithm for calculating the geometric mean as well as a whole family of other
means of HPD matrices called power means. See [Con+19] for applications of the
power means algorithm to BCI classification tasks.

Parallel transport. For a comparison between two tangent vectors to make sense,
they have to be defined in the same tangent space. When this is not the case, one has
to use the notion of parallel transport [Abs+09], which transforms tangent vectors
in a given tangent space into tangent vectors of another tangent space, without
changing the inner product of the transformed vectors.

The parallel transport taking tangent vectors from TAP(d) to TBP(d) is given by

P AæB : TAP(d) æ TBP(d)

÷ ‘æ
!
A#B

"
A≠1÷A≠1!

A#B
" (2.38)

and we have that, for any ÷, › œ TAP(d),

È÷, ›ÍA =

+
P AæB(÷), P AæB(›)

,
B

. (2.39)

We refer the interested reader to [Yai+19] for a demonstration of this expression.
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2.3.2 Statistics in the HPD manifold

When using HPD matrices as features to describe real data, it might be useful to
model the variability of such matrices by assuming that there is some statistical law
that generated the data points. A first option would be to model the HPD matrices
as coming from a Wishart distribution [Wis28], as it is traditionally done in the
statistics literature [LEE+94; LS97; HSJ10]. However, such distribution does not
consider all aspects of the intrinsic geometry of the HPD manifold.

Riemannian Gaussian. Recently, [Sai+17] has proposed the Riemannian Gaussian
distribution, which generalizes the notion of Gaussian distributions in Euclidean
space to the HPD manifold. In the same way as for its Euclidean counterpart,
Riemannian Gaussians are parametrized using two parameters: a HPD matrix
M œ P(d) describing the centrality of the distribution and a strictly positive scalar Á

describing its dispersion around the center. The expression for its probability density
function is given by

p(C) =

1

’(Á)

exp

A

≠”

2
R(C, M)

2Á

2

B

, (2.40)

where ’(Á) is a normalization factor that depends on Á. Building on the work
from [Pen06], the authors from [Sai+17] determined expressions for the maximum
likelihood estimators (MLE) of the parameters of a Riemannian Gaussian distribution.
We have that for a set of matrices generated by (2.40),

X = {C1, . . . , CK} µ P(d) , (2.41)

the MLE for M is the geometric mean of the set of matrices

ˆMK = MX
= argmin

MœP(d)

Kÿ

k=1
”

2
R(M , Ck) , (2.42)

and the MLE for Á is

Á̂K = �

A
1

K

Kÿ

k=1
”

2
R(

ˆMK , Ck)

B

, (2.43)

where � is a strictly increasing (and, therefore, bijective) function detailed in [Sai+17].

Ref. [Sai+17] has also presented the concept of mixtures of Riemannian Gaus-
sians distributions, which allows for more flexible models of the statistics of a set
containing HPD data points.

Parametrization. A simple assumption that one can make regarding the statistics
of the data points from a dataset X µ P(d) is that they are generated by a mixture
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of Riemannian Gaussian distributions, where each mixture is related to one of the
classes of the dataset and the dispersion around the class mean for all the mixtures
is assumed the same. More precisely, consider dataset

X =

Ó
(Ci, ¸i) for i = 1, . . . , K

Ô
, (2.44)

with data points Ci œ P(d) and class labels ¸i œ {1, . . . , L}. We assume that the
statistical distribution of X can be sufficiently well described by a set of a few
parameters and denote such description by

�X ≥
Ó

MX
, MX

1 , . . . , MX
L , ‡

X
Ô

, (2.45)

where MX is the geometric mean of all the data points in X , MX
1 , . . . , MX

L are the
geometric means of the points belonging to each class, and ‡

X is the dispersion of
the points in X around MX , defined as

(‡

X
)

2
=

1

K

Kÿ

k=1
”

2
R(Ci, MX

) . (2.46)

In the rest of this thesis, we use this parametrization to describe the statistics of a
dataset containing HPD data points.

Comparing statistics. The problem of comparing the statistical distributions of two
datasets, X and Y , has attracted much attention in the statistical literature for a long
time [KL51; AS66; Bas89; Ama16]. There are mainly two approaches: parametric
and non-parametric.

Non-parametric distances do not make any modelling assumptions regarding dis-
tributions �X and �Y and are mostly based on the pairwise distances between all
elements of datasets X and Y. Many distances have been proposed in this context,
such as the Kullback-Leiber divergence [KL51] (which is not really a distance), the
maximum-mean discrepancy [Bor+06] and the Wasserstein distance [PC19]. These
distances have found recent popularity in the neural networks community, being used
in generative adversarial networks (GAN), where the cost function to be optimized
is one that is based on the distance between the statistics of two datasets [Goo+14;
Arj+17].

Parametric distances are based on the distance between the parameters that describe
the statistics of the dataset. In the context of HPD matrices, description (2.45) may
be used to define a notion of distance between �X and �Y as

W2!
�X , �Y

"
= ”

2
R(MX

, MY
) +

Lÿ

c=1
”

2
R(MX

c , MY
c ) + log

2
A

‡

X

‡

Y

B

, (2.47)
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which is zero if, and only if, the statistical distributions of µX and µY are described
by the same set of parameters.

2.3.3 Classification in the HPD manifold

Classification is the action of assigning a class to an object. Some examples are:
deciding whether an image portrays a dog, a cat, or a sheep, if an EEG recording
corresponds to light sleep or deep sleep, to which category a given text extract should
be assigned to, etc. In mathematical terms, we say that there exists a mapping c that
relates elements from a set of objects O to labels from a set L and that our goal is to
find the function h : O æ L from a class of hypothesis H that ressembles the most
to c in some sense to be defined. We call the elements of H ‘classifiers’ and say that
a good candidate is one that maps the objects of O to L the same way as c.

We measure how well h œ H approximates c via the probability of the two functions
assigning different classes to the same x œ O. This is called the generalization error
(or risk), defined as

R(h) = Prob
)
h(x) ”= c(x)

*
= E

Ë
1{h(x) ”=c(x)}

È
, (2.48)

where the expectation is taken with respect to the statistical distribution of data
points x œ O and 1B is the indicator function for set B. The goal, then, is to
determine which hypothesis in H has the smallest generalization error. To do so, we
choose a method M that searches for a classifier

hM = argmin
hœH

R(h) . (2.49)

More concretely, choosing a method M involves choosing how the statistics of the
data points should be modelled, what is the class of hypothesis functions to be
considered, and which optimization algorithm should be used for solving (2.49).
Some examples of methods are logistic regression, support vector machines, and
neural networks [Bis07].

Note that, in practice, the generalization error of a hypothesis is never accessible,
since both the distribution of x and the map c are unkown. Still, if one has access to
a set of labeled examples,

X =

Ó
(xk, ¸k) for k = 1, . . . , K

Ô
µ O ◊ L , (2.50)

where ¸k = c(xk), a proxy for the generalization error may be defined: the empirical
error, given by

R

X
(h) =

1

K

Kÿ

k=1
1{h(xk) ”=c(xk)} . (2.51)
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Then, the classifier that approximates c when using method M to minimize the
empirical error on dataset X is

h

X
M = argmin

hœH
R

X
(h) . (2.52)

It is important to note that the classifier obtained from (2.52) does not minimize the
generalization error, but the empirical error, in a procedure that is called empirical
risk minimization under a supervised setting (because we consider having labeled
examples in X ) [SSBD14]. Consequently, the real goal of minimizing the generaliza-
tion error is never attainable in practice; we can only minimize the empirical error
and hope that it does not differ too much from the generalization error.

There has been many studies investigating the relation between the generalization
error of hM and h

X
M. From [SSBD14], we have that, with probability 1 ≠ ”,

R

!
h

X
M

"
Æ R

!
hM

"
+ 2

ı̂ıÙ log(|H|) + log

1
2
”

2

2K

, (2.53)

where the family of hypothesis H is assumed to be of finite size and |H| is how many
elements it has; K is the number of samples in X . A consequence of (2.53) is that
the larger the set of hypothesis H is, the looser the upper bound for R(h

X
M) is, and,

therefore, it is harder to know whether R(h

X
M) is close to R(hM) or not. In other

words, it is harder to control the empirical error of the classifier when the family
of hypothesis is ‘too rich’ [SSBD14]. Evidently, one might argue that, in reality, the
family of classifiers H is always infinite, since the parameters of most models used
in practice are continuous. However, it is possible to define a notion of ‘richness’ of
a family of classifiers which is infinite and use it to bound the difference between
empirical error and generalization error in a similar way to (2.53). See [SSBD14]
for more details.

Cross-validation. In practice, the generalization error of a classifier h

X
M is never

accessible, but one may get an estimate of R(h

X
M) by evaluating its empirical error

on a set of labeled data points that were not considered during the minimization
procedure leading to its estimation. Based on this idea, one may assess how good
the classifiers proposed by a method M are for a certain dataset X using a cross-
validation procedure [Bis07]:

• Partition X into F subsets containing (approximately) the same number of
elements and the same number of examples from each class in L. We have

X = X1 fi · · · fi XF . (2.54)
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• Define the train and test folds,

X (f)
train = X \ Xf and X (f)

test = Xf , (2.55)

and the empirical error calculated on each test fold,

R

(f)
M = R

X (f)
test

3
h

X (f)
train

M

4
. (2.56)

• Define the average performance of M on dataset X by

RM =

1

F

Fÿ

f=1
R

(f)
M , (2.57)

which is the average empirical error of the classifiers proposed by M on each
test fold; the expected value of RM is the generalization error of h

X
M [SSBD14].

MDM classifier. When O = P(d), there are mainly two approaches for obtaining
a classifier that predicts well the labels from the data. The first one is to consider
classifiers that take into account the intrinsic geometry of the HPD manifold and
work directly with the HPD matrices. An example is the k-nearest neighbors classifier,
which assigns to each data point xi œ P(d) the prevalent class among the k nearest
points to xi in the labeled dataset X . To respect the intrinsic geometry of the data
space, one may use the AIRM-induced distance to determine what are the k closest
points to xi. This kind of classifier has been used with HPD data in [Tuz+06]
and [Har+18] for classifying textures in images and in [Li+09] for classifying sleep
stages from EEG recordings.

A more robust classifier is one that estimates the center of mass for each class of
elements in X and assigns to an unlabeled data point the class of the closest class
mean. Traditionally, such method is called the nearest-centroid classifier [Bis07], but
it has also been named the minimum distance to mean (MDM) classifier by [Bar+12]
when data is defined in the HPD manifold. This type of classifier has been used
in [Bar+12] for BCI classification tasks and in [Bar08] for radar applications. It
is worth mentioning that the statistical modelling presented in Section 2.3.2 fits
well the implicit assumptions behind the MDM classifier, since it assumes that the
dataset can be sufficiently well described by its geometric mean, dispersion, and
class means.

Tangent space classifier. Alternatively, one may project the data points from X into
the tangent space of the HPD manifold at some reference point (usually the geometric
mean of the dataset) and then classify the tangent vectors. A clear advantage of this
approach is that the tangent vectors define a linear vector space that can be operated
using simple linear algebra. This, in turn, makes it possible to use classifiers from the
traditional pattern recognition literature defined in Euclidean space [Bis07]. On the
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other hand, the dimension of the tangent vectors for P (d) is d ◊ (d + 1)/2, which, in
practice, may lead to situations where one has tangent vectors that are bigger than
the number of samples and may cause problems for some classification algorithms.
Classification based on tangent vectors has been used in [Har+18] for classifying
textures in images, in [Tuz+08] for detecting pedestrians in videos, and in [Bar+12]
for BCI classification.

2.4 Riemannian geometry for EEG signals
In this section, we show how the Riemannian geometric framework presented in
previous sections can be applied to the analysis and classification of electroencephalo-
graphic recordings. We begin with a brief presentation of concepts related to the
electrical activity in the brain (how it is generated, measured, and processed) as
well as some important markers that are often used to classify EEG signals. Then,
we show how to parametrize EEG signals via HPD matrices and give an overview of
recent BCI applications that use the Riemannian geometric framework.

2.4.1 Basic concepts about EEG

Generation. Our brain is composed of billions of neurons that communicate with
each other mainly via synapses. This communication is based on the exchange of
chemical substances between the neurons and has the effect of producing electrical
activity at their membranes (difference of electric potential between the outer and
inner membrane). When neurons at a certain region activate together for some
particular reason (cognitive load, homeostasis, etc.), their electric activity tend to
synchronize and become measurable at a macroscopic scale. Equipements that
measure this electric activity are called electroencephalograms and the signals they
record are called electroencephalographic signals [Kan+91].

Measurement. In a typical EEG recording, the experimenter puts several electrodes
on different parts of the scalp of a subject and asks him or her to perform a sequence
of cognitive tasks. The recorded signals are then amplified (the typical amplitude
of the EEG activity of an adult is around 10 to 50 µV), filtered, downsampled, and
stored in digital form. To facilitate comparisons between experiments, it is common
practice to put the electrodes on standard positions. See Figure 2.3 for an example.

A fundamental assumption of experiments using EEG is that the activity recorded by
sensors at certain positions may serve as a sign of brain activity at that given location.
Based on this hypothesis, one may try to infer which cognitive task a subject is
executing just from the information coming from the EEG signals. For instance, it is
known that when a human closes his eyes, the occipital region (region related to the
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Fig. 2.3: Position of 16 electrodes used in an experiment at the GIPSA-lab (dataset
ALPHA.EEG.2017-GIPSA).

vision apparatus of the brain, located at the back of the head) generates EEG signals
oscillating at approximately 12 Hz, also known as alpha waves. Therefore, in an
experiment where a person closes his eyes during a few seconds and then opens it,
one might expect to detect relevant activity from signals recorded at electrodes O1,
O2 and Oz (see Figure 2.3). Unfortunately, though, EEG is known for its poor spatial
resolution: measuring electric activity in a given electrode does not necessarily mean
that the region of the brain located some centimeters underneath the electrode is
active. This happens because cortical current must go through several layers of brain
tissue with different conductivity before attaining the scalp. As a consequence, at
every spatial scalp position, the recorded activity is a mixture of the underlying brain
sources. This phenomenon is called volume conduction effect [NS05]. On the other
hand, EEG has very good temporal resolution, allowing the detection of changes
in brain activity in the order of milliseconds. Also, EEG signals are very popular
in experimental settings because of its relatively low price as compared to other
options (few hundred euros for an EEG setup versus several thousand euros for a
fMRI or MEG machine). Furthermore, there has been many works in the literature
investigating ways of inverting the volume conduction effect and recovering the
activity at the brain level with spatial precision [DPm99].

Processing. Once the EEG recordings are stored, one may use signal processing
tools to analyze the data. A first important step is to filter artefacts, otherwise
one may make conclusions about the activity of the brain based on elements that
are not physiologically relevant. Two artefacts that are commonly removed are:
the spectral peak at 50 Hz, due to the power line frequency, and perturbations,
affecting especially the frontal electrodes (eg. Fp1 and Fp2 in Figure 2.3), due to
eye-movements [SC07]. Then, the signals are bandpass filtered to some frequency
interval carrying physiological information relevant for the analysis being done. If
the EEG experiment consists of tasks that are repeated several times, the signals are
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cut into several epochs (also called trials), which can then be combined, averaged,
compared, etc.

Oscillations. There has been a great number of experiments where the EEG activity
of a subject was recorded while performing different tasks. Thanks to these studies,
certain features from EEG signals have been established as relevant for inferring
qualitative aspects of the brain activity that generated them. One of them is related
to how the EEG signals oscillate, i.e., their spectral content. It has been observed
that, for different cognitive tasks, the EEG in different parts of the brain oscillate
differently [Buz06]. Some examples of oscillations are:

• Delta waves are oscillations in the 0.5-4 Hz band, usually associated to a deep
state of sleep.

• Alpha waves are oscillations in the 8-12 Hz band, usually associated to a
relaxed state of mind (e.g. being with the eyes closed). These waves ap-
pear mostly in the occipital region of the brain (electrodes O1, O2, and Oz
in Figure 2.3).

• Mu waves are also oscillations in the 8-12 Hz band, but mostly linked to
voluntary motor activity. They appear in the motor cortex region (electrode Cz
in Figure 2.3).

• Beta waves are oscillations in the 12-30 Hz band and are associated to a
normal state of consciousness.

Figure 2.4 shows an example of the power spectral density of an EEG recording
obtained when a subject was asked to alternate between keeping his eyes open or
closed during a few seconds. We note a clear difference in the spectra around 10 Hz
for each state, due to the alpha rhythms that appear when the subject closes his eyes.

Other type of brain waves are the steady state visually evoked potentials (SSVEP) [Mor+96].
These signals are produced when a subject is visually stimulated by oscillations at
certain frequency values and engenders a synchonisation of the waves produced at
the visual cortex to the same frequency.

Event-related potentials. Another important pattern are event-related potentials
(ERP), perturbations appearing on the EEG signal triggered by external stimuli of
different types (visual, auditory, sensory, etc.). The traditional way of analysing
an ERP is to take its average along several trials [Luc14]. Then, the inspection of
some of its components at different latencies post-stimulus may be used to infer
the state of the subject’s brain. For instance, a very relevant marker is the P300
component, which is the value of the positive (hence P) peak of the ERP 300 ms after
a stimulus [CB64]. If the amplitude of the P300 marker is large and positive, it means
that the subject was concentrated on a target cue and was surprised by something
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Fig. 2.4: Power spectral density at electrode Oz of a subject executing the experiment de-
scribed in the text. The curves represent the average of the spectra along five trials
for each state; the lighter areas represent the confidence interval with plus/minus
one standard deviation. Data from the ALPHA.EEG.2017-GIPSA dataset [Cat+18].
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Fig. 2.5: The figures show the averaged ERPs for each condition on electrodes Cz and Pz.
Note that the amplitude of the variations are quite small in both conditions. Data
from the BI.EEG.2013-GIPSA dataset.

that changed on that cue (for instance, a visual cue that flashes). Figure 2.5 shows
examples of averaged ERPs obtained in a Brain Invaders experiment [Con+11].
In this experiment, a subject is presented to a screen displaying a 6-by-6 matrix
composed of pictograms of aliens. The subject is then asked to concentrate on
a target alien proposed by the interface, while all the aliens in the matrix flash
randomly. The EEG trials corresponding to when the target alien is flashed are
labeled ‘Target’. All other trials are labeled ‘Non target’. Note that in the figure the
P300 marker for the ERPs on the ‘Target’ condition are clearly higher as compared
to the ‘Non target’ condition, as it was expected from such an experiment.
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2.4.2 The Riemannian geometric framework

When working with EEG signals recorded on d electrodes, each dimension of a
multivariate time series

x(t) =

S

WWU

x1(t)

...
xd(t)

T

XXV , (2.58)

represents the electric activity measured by one sensor. These are filtered to a
frequency interval containing physiological information that is most relevant to the
analysis being done. Then, if the data consists of K trials with T time samples of
duration, the time series is epoched into several d ◊ T matrices denoted by Xk,
where k œ {1, . . . , K}. For a trial k starting at time sample tk, we have

Xk =

Ë
x(tk) x(tk + 1) · · · x(tk + T ≠ 1)

È
. (2.59)

Parametrization. Assuming the EEG epochs are (approximately) stationary and
that their statistics may be (sufficiently well) described by a Gaussian law, we can
parametrize the statistics of each Xk via its cross-spectral density matrices Sk. Note
that although frequency f in (2.7) is a real number, in practice we have only a finite
number F of frequencies in which the cross-spectral density matrix is evaluated
(determined by the spectral estimation algorithm used to calculate them). Therefore,
Sk may be seen as a block diagonal matrix containing F matrices with dimensions
d ◊ d, where the block element associated to frequency f is denoted Sk(f),

Sk =

S

WWU

Sk(1) 0

. . .

0 Sk(F )

T

XXV . (2.60)

To compare two epochs Xk and X¸, we use the AIRM distance between HPD
matrices (2.18) as in

D

2
S(Xk, X¸) = ”

2
R(Sk, S¸) =

Fÿ

f=1
”

2
R

!
Sk(f), S¸(f)

"
. (2.61)

Extensions. Although parametrizing time series via their cross-spectral density
matrices captures their full statistical information, it might not be feasible to estimate
them when the number of samples in the epochs is small. This is often the case
when working with EEG signals related to BCI tasks, since each trial corresponds to a
cognitive task that lasts just a few seconds. In this kind of situation, it is customary to
follow the approach presented in Section 2.2.3 and condense the spectral information
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of trial Xk into a single parameter, its covariance matrix Ck. The distance between
two epochs, Xk and X¸, is then calculated using Equation (2.18),

D

2
C(Xk, X¸) = ”

2
R(Ck, C¸) . (2.62)

An important downside of condensing spectral information into a single parameter is
that one loses all the fine-grain information that would be relevant for discriminating
two time series with, for example, the same covariace matrix but peaks of power in
different frequencies. One way of keeping at least part of the spectral information ac-
cessible is to apply a bank of N band-pass filters to x(n) containing non-overlapping
supports in the frequency domain. By doing so, one obtains N new time series,
whose spectral information can be condensed separately to form N covariance ma-
trices that parametrize x(n). For each epoch Xk we get N new bandpass filtered
epochs X1

k, . . . , XN
k , and estimate their covariance matrices C1

k, . . . , CN
k . We then

form a block diagonal matrix with the N covariance matrices, denoted C
(N)
k . The

distance between two epochs Xk and X¸ is then defined as
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(N)
¸ ) =

Nÿ

n=1
”

2
R

!
Cn

k , Cn
¸

"
. (2.63)

Event-related potentials are, by definition, non-stationary. Therefore, parametrizing
them using second order statistics is not well justified by the theory presented
in Section 2.2. Nevertheless, [BC14] has proposed to parametrize recordings from
P300 experiments via HPD matrices by simply concatening each epoch with a
prototype signal related to the P300 pattern. Mathematically, we have for each Xk

an extended version given by

˜Xk =

C
Xk

P

D

, (2.64)

where P is a d ◊ T matrix obtained from averaging all epochs related to the ‘Target’
class from the P300 experiment. Then, the HPD matrix that describes the epoch is
the covariance matrix ˜Ck estimated from ˜Xk. Note that if d electrodes are available,
the parametrization is done via 2d-dimensional HPD matrices. The distance between
two P300 epochs is then defined as

D

2
P300(Xk, X¸) = ”

2
R

!
˜Ck,

˜C¸

"
. (2.65)

Classification. Note that all distances defined above use the AIRM-induced distance
to compare two HPD matrices parametrizing two epochs. As such, one can directly
apply the Riemannian classifiers defined in Section 2.3.3 to classify EEG signals.
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2.4.3 An application: BCI classification

A Brain-Computer Interface (BCI) is a system that allows a person to interact with
a machine without any physical interaction. It works by extracting features from
neuro-physiological signals (e.g., the power spectral densities on certain frequency
bands) and assigning them to different classes. These classes may be associated to
cognitive states, sensory responses, etc., and the features are chosen so that they are
discriminative for each class. We call a paradigm the set of cognitive tasks that a
subject is asked to perform when using a BCI system; different paradigms activate
different brain mechanisms and yield different signal features that may be used later
as features for classification. The three most relevant paradigms in the BCI literature
are:

• Motor Imagery: in this paradigm, a subject is asked to imagine movement,
e.g. lifting his hands, feet or tongue when a visual cue is displayed on a screen.
The fact of voluntary imagining such movement produces Mu-waves in the
motor cortex that may then be identified by a classifier algorithm [PN01]. The
laterality of the imagined movement (e.g., lifting the left-hand or right-hand)
is reflected in the laterality of the production of Mu-waves, with different
EEG spatial patterns being observed for each class of imagined movement.
BCI systems using the motor imagery (MI) paradigm can be traced back
to [Wol+91] and [Kal+96] in the 90s and are still often used in practice. Since
the discriminant markers of the recorded EEG are related to oscillations in
the Mu-band, most classifiers in the literature use the power spectral density
of the signals in each electrode as features [Lot+18]. See [Wie+18] for a
comprehensive review of classification methods used in the motor imagery
paradigm.

• SSVEP: in this paradigm, the subject is exposed to different visual stimuli,
each oscillating at a given frequency. The frequency of the SSVEP induced
on the subject’s brain is then used to determine which visual stimulus he was
observing. As for the MI paradigm, the features of interest in an SSVEP are
oscillatory-based, so classifiers are fed with information gathered from the
power spectral density of the signals. See [Zhu+10] for a in-depth review of
BCI systems based on the SSVEP paradigm.

• P300: in this paradigm, the subject is presented to a screen with multiple visual
cues flashing in an apparently random manner and asked to fix his attention
on one of the cues (the flashing is perceived as random by the subject, but
they are controlled by the experimenters’ computer). The moment the ‘target’
cue flashes, an ERP containing a preponderant P300 component is detected at
the EEG recording. In this way, if each visual cue is associated to a semantic
class (e.g. names of persons, letters of the alphabet, etc.), the P300 marker
on the subject’s ERPs may be used as a feature for deciding at which class the
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Fig. 2.6: A block diagram with the sequence of transformations applied to an input EEG
epoch in a typical BCI system. Note that the order of the steps may be inverted
in some cases as well as done jointly by some algorithms (e.g. CSP does spatial
filtering and feature selection at the same time).

subject had his attention fixed. One of the first uses of the P300 paradigm
in BCI systems was proposed in [FD88], but not much attention was given
to it until the beginning of the years 2000. Nowadays, the P300 paradigm is
widely used in the BCI community due to the replicability of the physiological
phenomena responsible for its generation. Furthermore, the P300 paradigm
demands only a certain degree of attention from the subject, whereas motor
imagery usually involves training the subject and expecting a real cognitive
effort from him in generating the imagined movements. See [FR+12] for a
review of current trends around the P300 paradigm for BCI systems.

The standard way of operating a BCI system is to first callibrate it during an offline
training phase and, then, use it online for translating EEG patterns into semantic
classes. During the training phase, a classifier is optimized to discriminate between
the classes of the EEG epochs in the training dataset. This step is crucial and,
usually, the more data one gathers, the better are the results on the online phase
(we say ‘usually’ because certain drifts in the statistics of the data may have a
negative influence over the training phase; we will discuss further this concept in
later chapters). It is also important to choose with care which signal features are
to be used by the classifier and how they should be combined. For instance, in the
MI paradigm, it is very common to apply a spatial filtering step called common
spatial patterns (CSP [Ram+00]) before feeding the EEG signals into a classifier;
this method reduces the dimensionality of the data by combining the signals from
different electrodes in a way that separates their classes the most. Similarly, in the
P300 paradigm, xDawn spatial filtering [Riv+09] is widely used for improving the
signal-to-noise ratio of the features fed into the classifier. Traditionally, the classifiers
used in BCI systems are based on linear methods, such as linear discriminant analysis,
logistic regression, and support vector machines [Lot+07], and the feature vectors
are composed of the power of the EEG signals on different frequency bands. Recently,
there has been much interest in applying deep neural nets to the classification of EEG
patterns [CG11; MG15; Din+15], but the limited number of training data points in
BCI is a challenge for such systems. See [Lot+18] for a comprehensive review of
classification methods in BCI. Figure 2.6 summarizes the processing steps of a BCI
system.
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A major difficulty in BCI systems is that very often the features used for classifying the
signals do not generalize well between different subjects or even different recording
sessions of the same subject. Consequently, calibration phases are usually rather
long and cumbersome. However, it has been observed in practice [Con+17] that
when the Riemannian geometric framework is used for describing and classifying
EEG signals, the BCI system is usually more robust to changes in the statistics of the
dataset. This is mostly explained by the affine-invariance of the distance between
matrices in the HPD manifold, as discussed in Section 2.2.3.

The use of the Riemannian geometric framework for BCI classification has been
first advocated in [Bar+12], based on previous successful applications of such
approach on the classification of sleep stages in EEG [Li+12] and diffusion tensors in
biomedical image processing [Pen06]. Since then, many works have been proposed
using this type of classifier for BCI applications. See [Con+17] and [Yge+17] for
two comprehensive reviews. Additionally, the first author of [Bar+12] has been
able to demonstrate the power of the Riemannian geometric framework by winning
several competitions involving EEG data (see references in [Con+17]).

2.5 Numerical illustrations
This section shows the application of the Riemannian geometric framework to two
kinds of EEG data. In the first example, we consider data from BCI experiments
and compare several classification pipelines using EEG epochs as input feature. The
second example considers data from a sleep experiment and we show how the
Riemannian geometric framework can be used for classifying epochs belonging to
different sleep states. All datasets considered in this section are publicly available.

2.5.1 Example 1: BCI classification

As discussed in Section 2.4, the basic data point in a BCI experiment is an EEG epoch,
which we denote Xk for the k-th experimental trial; Xk is a d ◊ T matrix, where d

is the number of electrodes and T is the number of time samples in an epoch. We
consider BCI classification on two kinds of experimental paradigm: motor imagery
and P300.

Motor Imagery. In this example, we compare the performance in terms of area
under the ROC curve (AUC) [Bis07] of nine classification pipelines using the cross-
validation scheme explained in Section 2.3.3:

(1) epo+mdm-euc: MDM classifier with an epoch (epo) Xk as input feature;
Euclidean (euc) distance to compare data points
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Tab. 2.1: Main features describing the Motor Imagery datasets used in this section.

dataset subjects electrodes reference

Weibo2014 10 60 [Yi+14]
Zhou2016 4 16 [Zho+16]

BNCI2014004 9 6 [Lee+07]
BNCI2014002 14 15 [Ste+16]
BNCI2015001 12 13 [Fal+12]

Alex MI 8 16 [Bar12]

(2) epo+knn-euc: k-nearest neighbours (knn) classifier (k = 5) with Xk as input
feature; Euclidean distance to compare data points

(3) cov+dia+lda: linear discriminant analysis (LDA) classifier with the diagonal
(dia) of the covariance (cov) of Xk as input feature

(4) epo+csp+lda: reduce dimension of Xk via CSP [Ram+00] and classify with
LDA

(5) cov+knn-euc: estimate covariance of Xk and use k-nearest neighbours classi-
fier (k = 5); Euclidean distance to compare data points

(6) cov+knn-rie: estimate covariance of Xk and use k-nearest neighbours classi-
fier (k = 5); Riemannian (rie) distance to compare data points

(7) cov+mdm-euc: estimate covariance of Xk and use MDM classifier; Euclidean
distance to compare data points

(8) cov+mdm-rie: estimate covariance of Xk and use MDM classifier; Rieman-
nian distance to compare data points

(9) cov+tgs+lda: estimate covariance of Xk and project to the tangent space
(tgs) with reference at the geometric mean of the dataset; use LDA to classify
the tangent vectors

We apply these pipelines to 6 diffferent MI datasets, all available in the MOABB
framework [JB18]. See Table 2.2 for information on each dataset. Following the
usual approach in MI paradigm, we filter every epoch in the 8-35 Hz band and use
covariance matrices to parametrize their statistics. The results in the left column
of Figure 2.8 elucidate several interesting facts:

• As mentioned in Section 2.2, it is not a good idea to use directly the time series
epochs as features for a classifier based on distances between data points. This
is reflected in the poor performance of classifiers (1) and (2).

• In general, the k-NN classifier yields a rather poor performance. This can be
explained by the high-dimension of the features (d

2 dimensions when using
SPD matrices and dT for epochs) and the effects of the curse of dimensionality,
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which states that points in a very-high dimensional are never close to each
other [Has+09].

• Using a Riemannian distance to compare SPD data points is consistently better
than employing the Euclidean distance, as seen by the superior performance
of pipeline (8) over pipeline (7) on all datasets.

• Classification in the tangent-space – pipeline (9) – yields the best performance
on most datasets, along with another classic approach in BCI: the CSP+LDA
pipeline. Note, however, that CSP applies a supervised dimensionality re-
duction to data points before classification. One could conjecture, then, that
adding an equivalent dimensionality reduction step to pipeline (9) might
increase its performance; we explore this idea in Chapter 3.

P300. We consider nine classification pipelines for data from P300 experiments. The
performance is assessed via cross-validation and the scores are in terms of AUC:

(1) erpcov+mdm-euc: estimate extended covariance matrix of Xk with (2.64)
(erpcov) and classify with MDM; Euclidean distance (euc) to compare data
points

(2) erpcov+mdm-log: estimate extended covariance matrix of Xk and classify
with MDM; log-Euclidean (log) distance to compare data points

(3) erpcov+mdm-rie: estimate extended covariance matrix of Xk and classify
with MDM; Riemannian (rie) distance to compare data points

(4) xdwcov+mdm-euc: reduce dimension of epoch Xk with xDawn [Riv+09]
(xdwcov), estimate extended covariance matrix, and classify with MDM; Eu-
clidean distance to compare data points

(5) xdwcov+mdm-log: reduce dimension of epoch Xk with xDawn, estimate
extended covariance matrix, and classify with MDM; log-Euclidean distance to
compare data points

(6) xdwcov+mdm-rie: reduce dimension of epoch Xk with xDawn, estimate
extended covariance matrix, and classify with MDM; Riemannian distance to
compare data points

(7) erpcov+tgs+lda: estimate extended covariance matrix of Xk, project to the
tangent space (tgs) with reference at the geometric mean of the dataset, and
classify with LDA (lda).

(8) xdwcov+tgs+lda: reduce dimension of Xk with xDawn, estimate extended
covariance matrix, project to the tangent space with reference at the geometric
mean of the dataset, and classify with LDA.

(9) epo+xdw+lda: reduce dimensionality of epoch (epo) Xk with xDawn and
classify with LDA.
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Weibo2014
Zhou2016
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BNCI2014-002

BNCI2015-001
Alex MI

BI.EEG.2014A
BI.EEG.2013

BI.EEG.2012
BNCI2015-003

BNCI2014-009
BNCI2014-008

Fig. 2.7: Scores in terms of AUC for all 9 pipelines considered in the MI paradigm. The
colors are intended to help discerning between the bars and the numbers on the
left correspond to the index of each pipeline described in the text.
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Tab. 2.2: Main features describing the P300 datasets. All experiments consisted on ran-
domly flashing several visual cues and considering only one as ‘Target’ flash. The
ratio of ‘Target’ flashes was of 1 every 6 flashes for all datasets.

dataset subjects electrodes reference

BI.EEG.2014a 65 16 [Kor+19]
BI.EEG.2013 24 16 [Vai+18]
BI.EEG.2012 25 17 [VV+19]
BNCI2015003 10 8 [Gug+09]
BNCI2014009 10 16 [Ari+14]
BNCI2014008 8 8 [Ric+13]

We use six publicly available datasets (also available in the MOABB framework) to
illustrate the performance of the pipelines. The epochs in all datasets were filtered
between 1 Hz and 24 Hz and they last between 0.8 and 1.0 seconds. From the
results in the right column of Figure 2.8 we can conclude that:

• Once more, using the Euclidean distance to compare between SPD data points
yields inferior results as compared to both log-Euclidean and Riemannian
distances.

• Reducing the dimension of epochs with the xDawn algorithm before estimating
their covariance matrices yields consistently better results than not doing so, as
seen by the performance of pipelines (4)-(6) as compared to pipelines (1)-(3).

• Pipelines based on tangent space classification – pipelines (7) and (8) – are
again those yielding the best performance. Pipeline (9) is frequently used in
the literature and has inferior results to those obtained with the Riemannian
framework.

2.5.2 Example 2: Sleep-stage classification

In this example, we use data available at the Physionet database [Ter+01; Gol+00].
It contains recordings from 9 EEG electrodes of a subject sleeping for approximately
8 hours. The original sampling frequency was 512 Hz but we downsampled it to
128 Hz after band-filtering the EEG signals between 8 Hz and 35 Hz. A specialist
in sleep data analysis was responsible for cutting the recordings into several 30-sec
clips and then classifying them according to which sleep stage (S1, S2, S3, and REM)
they belonged. We ended up with a dataset containing K = 564 trials of T = 3840

samples each. We only considered conditions S2, S3, and REM in the rest of this
section, because the epochs in the S1 class have a rather high variability that is
not well captured by the Riemannian geometric framework (in fact, even for the
specialist it is hard to define what epochs should be in the S1 class).
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Fig. 2.8: Scores in terms of AUC for all 9 pipelines considered in the P300 paradigm. The
colors are intended to help discerning between the bars and the numbers on the
left correspond to the index of each pipeline described in the text.
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Fig. 2.9: Power spectral density estimated using Welch’s method. The plotted curves are
the average spectra among all epochs of each condition averaged over all nine
electrodes. Remember that the epochs were filtered between 8 and 35 Hz.

Sleep states tend to have different oscillatory patterns [SC07] and it is partly based
on this information that specialists are capable of assigning EEG epochs to different
classes. Our first manipulation was to perform a spectral analysis of the activity
recorded on all 9 electrodes, which is portrayed in Figure 2.9. We see that the REM
state (labeled ‘R’ in the figure) has a very different spectral pattern as compared
to S2 and S3, whereas the spectral content for S2 and S3 are similar but with an
apparent shift in frequency (S2 is slighty to the right of S3) and distinct intensity
levels.

We analysed the performance of the MDM classifier to classify EEG epochs in two
cases: when the multivariate signals are parametrized via their cross-spectral density
matrices and when they are parametrized simply by their covariance matrix. In
each case, the distance used for comparing data points was chosen following the
discussion in Section 2.4.2. Figure 2.10 shows the confusion matrices for the
MDM classifier, where the parameter ‘nfreqs’ indicates the number of frequencies F

in (2.60). We observe that:

• As expected, the classification performance is very good for epochs in the ‘R’
class, since its spectral content is very different to that of the two other states

• The results when epochs are parametrized via their cross-spectral density
matrices are, as expected, superior to when only covariance matrices are used

• In general, larger values of ‘nfreqs’ lead to better classification performance,
since one has more finesse in the description of the spectral content of the time
series
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Fig. 2.10: Confusion matrices for the MDM classifier on different cases: ‘covs’ is when the
epochs are parametrized just by their covariance matrices and ‘spec’ is when we
use the cross-spectral density matrices. The different values of ‘nfreqs’ indicate
how many points were used to discretize the spectra.
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2.6 Conclusion
This chapter has given an overview of concepts that serve as theoretical foundation
for all the contributions presented in the following chapters. Most importantly, we
have motivated and presented the Riemannian geometric framework for multivariate
time series, as well as illustrated its use on EEG data. A fundamental concept to
retain are the effects that choosing the AIRM-induced distance in the HPD manifold
have on the analysis of time series: for two time series, xi(t) and xj(t), band-
filtered in the frequency interval F , and whose statistics are parametrized via their
cross-spectral density matrices, Si(f) and Sj(f), we have that

”

2
S(xi, xj) =

⁄

F
”

2
R

!
Si(f), Sj(f)

"
df , (2.66)

where
”

2
R(A, B) = Î log(A≠1/2BA≠1/2

)Î2
F . (2.67)

The affine-invariance of (2.67) makes the comparison of time series invariant to, for
example, the choice of measurement scale (the distance between two time series
recorded in mV or µV is the same) and also to mixing effects when they may be
approximated as the action of a linear operator, such as some simplified models for
the volume conduction in EEG [Con13] or some cases of crosstalk in audio signal
processing [Vin+06].

In the following chapters, other invariant aspects of multivariate time series will be
discussed, such as invariances related to changes in the dimension of the data (e.g.,
using more or less electrodes to record the same phenomenon) and in time (e.g.,
how to model the drift in the statistics of the data from one recording session to the
next one).
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List of notations and acronyms of the chapter

EEG electroencephalography
BCI brain-computer interface
HPD Hermitian positive definite
SPD symmetric positive definite
RG Riemannian geometry

AIRM affine-invariant Riemannian metric
MDM minimum distance to mean classifier
DR dimensionality reduction
DM diffusion maps
PCA principal component analysis
MI motor imagery

ROC receiver operating characteristic
AUC area under the ROC curve
Rd set of d-dimensional real vectors
x multivariate time series
x¿ reduced-dimension multivariate time series
C spatial covariance matrix
C¿ reduced-dimension spatial covariance matrix
”E Frobenius distance between two matrices
”R AIRM-induced distance between two HPD matrices

P(d) manifold of d-dimensional HPD matrices
Od◊p set of d ◊ p orthogonal matrices
MX geometric mean of the HPD matrices in a set X
K number of data points
d dimensionality of original data points
p dimensionality of reduced data points
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3.1 Introduction
The age of big data has changed the way of doing experimental science, making it
easier and cheaper than ever to record physical phenomena simultaneously from
several different sensors. Data points gathered under these circumstances live in very
high-dimensional spaces and methods developed to process them are susceptible to
a number of challenging problems. In fact, the issues related to high-dimensionality
of data are termed the ‘curse of dimensionality’ [Don00] and may appear in different
contexts and forms, such as:

• Approximating functions in high-dimensional spaces with grid-based methods
requires a large number of samples, which quickly becomes prohibitive in
practice.

• Non-parametric statistical methods based on density estimations become im-
practical due to the excessive number of samples that they require.

• Norms in Rd, with d very large, are not numerically equivalent and so the same
function may have different degrees of smoothness under different norms.

• Algorithms become very slow for processing the data.

From these observations, one might have the tendency to say that, in fact, having
more dimensions to describe a physical phenomena might not be such a good idea
after all. However, in practice, the dimensions of high-dimensional data points are
not completely independent between each other. One clear example is the case of
electroencephalographic (EEG) recordings, where sensors located at close positions
of a subject’s scalp tend to record time series which are very correlated to one another.
These correlations imply that, in fact, a data point living in a high-dimensional space
does not have necessarily as many degrees of freedom as available sensors. In other
words, the true dimensionality of the data point is often much smaller than that of
its ambient space.

Assuming that the samples of a dataset have an intrinsic low dimensionality has
inspired many works in different research communities. The main goal in these
approaches is to determine a transformation of the data points in such a way that
their new representation is a more compact description of the phenomena that they
describe. This is usually called dimensionality reduction (DR). In information theory,
DR is related to compression and coding problems. In statistics, it is also called latent
variable analysis. In the field of pattern recognition, it is known as feature extraction.
Put in precise terms, DR is the problem of determining a mapping of points from
a set where the data points were originally described, into a new set where their
description is simpler. The difference in the proposals found in the literature resides
in what information one is ready to lose [CG15]. Also, different methods impose
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different constraints on the structure of the transformation. For instance, whether it
is parametric or not, if it is a linear transformation or not, etc.

In this chapter, we discuss dimensionality reduction in the context of multivariate
time series. We base our investigations on the assumption that time series recorded
from several sensors tend to present correlations between them. Consequently, one
may search for transformations that shall discard redundancies from the data points
and yield more compact representations of the phenomena under study. Related
to this assumption is the one of expecting commonalities between multivariate
time series that describe the same physical phenomenon, but use different numbers
and/or placement of sensors. Such invariance to dimensionality is a reasonable
one in practice and implies the existence of a canonical representation of the time
series to be determined from the data. We manipulate the time series using the
Riemannian geometric (RG) framework described in Chapter 2, that is, for a set of
K zero-mean d-dimensional multivariate time series, X Õ

= {x1, . . . , xK}, where d is
the number of sensors, we have a set of symmetric positive definite (SPD) matrices
with dimensions d ◊ d that describes the statistics of the time series, with

X =

)
C1, . . . , CK

*
, (3.1)

where Ci = E[xi(t)xi(t)
T

]. SPD matrices live in a Riemannian manifold denoted by
P(d) and whose dimensionality is d◊(d+1)/2 (that is, the number of degrees of free-
dom in a d ◊ d symmetric matrix). Our goal, then, is to determine a transformation
� : P(d) æ �, where � is some space of dimensionality p with p < d ◊ (d + 1)/2.

In what follows, we divide our discussion in two parts. Firstly, we consider linear DR
methods, where � = P(p) and transformation � is parametrized by a matrix. We
present classical approaches for DR in Euclidean space and show how they may be
adapted to take into account the intrinsic geometry of the manifold where the data
points are defined. We apply these methods to data from brain computer interface
(BCI) recordings and show that one may reduce the dimensionality of the time series
without decreasing, in average, the performance of a classifier trained to classify
the epochs. In the second part, we consider non-linear DR methods, where the data
points defined in P(d) are mapped into an Euclidean space. We focus our discussion
on the diffusion maps (DM) method and show how it may be applied to the analysis
of datasets containing multivariate time series as samples. As in Chapter 2, we
illustrate the methods on data from BCI experiments, but also consider EEG data
from sleep recordings and an EEG experiment on the resting-state condition.

3.1.1 Contributions

The content of this chapter is based on (and extends) the works presented in two
published papers:
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P. L. C. Rodrigues, M. Congedo, and C. Jutten, “Multivariate time-series
analysis via manifold learning", 2018 IEEE Statistical Signal Processing
Workshop (SSP), Freiburg, Germany, Jun. 2018.

and

P. L. C. Rodrigues, M. Congedo, and C. Jutten, “Dimensionality reduction
for BCI classification using Riemannian geometry", BCI 2017 - 7th Graz
Brain Computer Interface Conference, Graz, Austria, Sep. 2017.

It is worth mentioning that the scope of our contributions in this chapter is rather
limited as compared to the following chapters of this thesis. Nevertheless, DR is
a very relevant problem in practice and deserves to be put in perspective. Our
contributions have been to apply linear and non-linear dimensionality reduction
methods to the study of multivariate time series via their parametrization with
SPD matrices. In the case of linear DR, we have applied the method proposed
in [Har+17], which is a general method for reducing the dimensionality of SPD
matrices, to a context where these matrices describe the statistics of multivariate
time series. As for the non-linear DR, we have defined an adequate notion of
similarity between multivariate time series based on the geodesic distance between
the parameters that describe their statistics. As a result, we can build a kernel matrix
for a manifold learning procedure applied to a set of multivariate time series which
reflects well their intrinsic geometry. Python code implementing part of the examples
presented in the chapter is available at:

https://github.com/plcrodrigues/PhD-Code

3.2 Linear methods
In this section, we consider transformations � parametrized by a linear transforma-
tion W œ Rd◊p, where p < d. In this context, for a zero-mean multivariate time
series x(t) œ Rd parametrized by a SPD matrix C œ P(d), the transformation is
given by

C¿
= �W (C) = W T CW , (3.2)

where W T W = Ip and C¿ parametrizes the statistics of a zero-mean multivariate
time series x¿

(t) œ Rp given by

x¿
(t) = W T x(t) . (3.3)

Matrix W is an orthogonal matrix, so that (3.3) may be interpreted as a projection
from Rd onto Rp.
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In what follows, we present two important methods for linear dimensionality re-
duction in Euclidean space and extend them to multivariate time series. Then, we
make the transition to geometry-aware DR methods for SPD matrices and provide
details related to their implementation and optimization procedures. We close the
section with numerical illustrations on real electroencephalographic (EEG) data from
brain-computer interface (BCI) experiments. Our main result is that linear DR can
be used to reduce the dimensions of multivariate time series without affecting (in
average) the performance of statistical classifiers. This is relevant because it allows
reducing the complexity of a set of data points (and, therefore, reduce the compu-
tational cost for all succeeding calculations involving them) without significantly
losing discriminative power to classify the dataset.

3.2.1 Literature review

The usual setting for linear dimensionality reduction is one where the data points
are Euclidean vectors and each of its dimensions represent a different aspect (or
feature) of a given measurement. Because linear DR is a rather well known topic in
statistics and machine learning, we will assume that the reader is already familiar
with the classical setting and present the concepts considering that the data points
are d-dimensional zero-mean multivariate time series.

Principal component analysis. Probably the linear DR technique most commonly
used in statistical data analysis is the one proposed by Pearson [Pea01] and known
as principal component analysis (PCA). It is based on the idea of minimizing the
sum of squared residual errors between the projected data points and their original
counterparts. For a dataset consisting of K multivariate time series, as in X Õ

=

{x1, . . . , xK}, we have that

W PCA = argmin
QœOd◊p

Kÿ

k=1
E

Ë
Îxk(t) ≠ QQT xk(t)Î2

2
È

, (3.4)

where Od◊p is the set of d ◊ p orthogonal matrices (also known as the Stiefel mani-
fold). Matrix W PCA can be determined analitically, as shown in several references in
the literature [Has+09]. We have that,

W PCA =

Ë
w1 · · · wp

È
, (3.5)

with wk œ Rd obtained from the eigenvector relation,

A
1

K

Kÿ

k=1
Ck

B

wk = ⁄kwk , (3.6)
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where ⁄1 Ø · · · Ø ⁄p > 0. The {wk}1ÆkÆp form an orthonormal set of vectors, and
the {Ck}1ÆkÆK are the spatial covariance matrices of the multivariate time series
in X . Note that this form of PCA uses the arithmetic mean of a set of SPD matrices,
a quantity that is less adapted to the intrinsic geometry of the SPD manifold as
compared to the Fréchet mean, as discussed in Chapter 2 and recalled later in the
text (also known as the center of mass, or geometric mean, of a set of SPD matrices).
Gathering the data points into a matrix X(t) = [x1(t), . . . , xK(t)] œ Rd◊K , we may
rewrite (3.4) as

W PCA = argmin
QœOd◊p

E
Ë
ÎX(t) ≠ QQT X(t)Î2

F

È
, (3.7)

= argmin
QœOd◊p

E
Ë
tr

1!
X(t) ≠ QQT X(t)

"T !
X ≠ QQT X(t)

"2È
, (3.8)

= argmin
QœOd◊p

E
Ë
tr

1
X(t)

T X(t) ≠ X(t)

T QQT X
2È

, (3.9)

= argmax
QœOd◊p

E
Ë
tr

1
X(t)

T QQT X(t)

2È
, (3.10)

= argmax
QœOd◊p

Kÿ

k=1
E

Ë
(QT xk(t))

T
(QT xk(t))

È
, (3.11)

= argmax
QœOd◊p

Kÿ

k=1
E

Ë
ÎQT xk(t)Î2

È
, (3.12)

and so W PCA can also be interpreted as the orthogonal matrix that maximizes the
total dispersion (or variance) of the set of transformed data points (remember that
they have zero mean). In fact, PCA’s variance-maximization property is sometimes
indicated as the main motivation for defining it, although Pearson’s original idea
was to minimize the reconstruction error. We will use this interpretation later to
define a geometry-aware method for reducing the dimensions of SPD matrices.

Principal component analysis is a standard tool in statistical data analysis and has
found applications in several contexts, such as sound compression [CH91], image
processing and classification [TP91], and bioinformatics [Rei+08]. Its main force is
the fact of having an analytical form and being parametric, meaning that it can be
directly extended to new data points. A natural limitation is that it defines a linear
transformation on the data points, so it is only optimal when the elements in X live
in some low-dimensional hyperplane; when this is not the case, non-linear methods
may yield more adequate transformations (we will discuss them in Section 3.3).
Furthermore, PCA proposes the same linear transformation for all data points in X ,
meaning that it has no flexibility to take into account local information. There have
been many proposals for extending PCA to cases where the dataset does not live
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on a hyperplane but can be approximated as a ‘collage’ of several hyperplanes of
different dimensionalities; see [WH00] for a survey of such procedures.

Supervised dimensionality reduction. When the data points in X are accompa-
nied by labels determining to which class they belong to, dimensionality reduction
methods may be adapted to take such information into account and yield transfor-
mations that enhance the separability of the classes in the projected space. The most
popular method for supervised DR is probably Fisher’s linear discriminant analysis
(LDA), which is based on the idea of searching for a projector matrix that maximizes
the between-class variability of the projected data points while minimizing their
within-class variability. A notable adaptation of such technique to the context of
multivariate time series is known as common spatial patterns (CSP) [Kol+90] and
is a fundamental preprocessing technique in brain-computer interfaces [Lot14].
Recently, [Yge+15] has performed an empirical study comparing the performance of
classical CSP to a modified version using geometry-aware manipulations of the data
points. Their results demonstrated superior classification performance when the
geometry of the SPD manifold was taken into account; the exception was when the
SPD matrices were too big and Riemannian geometric methods started to perform
poorly due to numerical instabilities.

3.2.2 Geometry-aware methods

Recently, part of the computer vision community has been interested in devel-
oping geometry-aware dimensionality reduction techniques for data points de-
fined in the SPD manifold [Har+14; Har+17; Har+18]. In such works, the SPD
matrices describe the statistics of the pixels in patches of images [Tuz+06] or
patches of videos [Tuz+08], and typically have dimensionalities in the order of
100 ◊ 100 [Har+18]. An important work in this context is the one described
in [Har+18], where the authors propose both an unsupervised and a supervised
method for linear dimensionality reduction in the SPD manifold. In what follows,
we give a brief description of the unsupervised method considered in [Har+18] and
use it in a context where the SPD matrices are actually spatial covariance matrices
describing the statistics of multivariate time series. We refer the interested reader
also to [Hor+16] and [Dav+17], which have adapted the works in [Har+18] to
when the data points describe EEG epochs in brain-computer interfaces.

Ref. [Har+18] proposes a generalization of the principle of variance-maximization
from classical PCA to data points defined in the SPD manifold,

X = {C1, . . . , CK} µ P(d) , (3.13)
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with the projector matrix defined as

W rie-PCA = argmax
QœOd◊p

Kÿ

k=1
”

2
R(QT CkQ, QT MX Q) , (3.14)

where
”

2
R(A, B) =

...log
1
A≠1/2BA≠1/2

2...
2

F
(3.15)

is the geodesic distance between two SPD matrices, A, B œ P(d), and

MX
= argmax

MœP(d)

Kÿ

k=1
”

2
R(Ck, M) (3.16)

is the Fréchet mean of the data points in X . In contrast to classical PCA (which we
shall call ‘euc-PCA’ from now on), we are not aware of any analytical solution for
determining W rie-PCA directly from the matrices in X . Consequently, we resort to
numerical procedures adapted to optimization problems defined in matrix manifolds.
Such methods generalize classical optimization algorithms, such as steepest descent
and conjugate gradient, to a setting where the variables are defined in spaces with
some special structure, such as orthogonality constraints or low-rankness. We do
not intend to give a review of optimization on manifolds and refer the reader
to [Abs+09] for a wide presentation of the field. Nevertheless, we present some of
the details provided in [Har+18] on how to solve the optimization problem in (3.14)
using a conjugate-gradient method on the Stiefel manifold. Firstly, it derives an
expression for the Jacobian of the cost function frie-PCA(·) in (3.14), with

DQfrie-PCA(Q) =

Kÿ

k=1
DQfk(Q) , (3.17)

where
fk(Q) = ”

2
R(QT CkQ, QT MX Q) , (3.18)

and

DQfk(Q) = 4

1
CkQ(QT CkQ)

≠1≠MX Q(QT MX Q)

≠1
2

log

1
QT CkQ(QT MX Q)

2
.

(3.19)
Then, it proposes an iterative optimization procedure where, for each iteration,
we:

(1) Compute the gradient ÒQfrie-PCA(Q) of the objective function frie-PCA(Q) on
the Stiefel manifold at the current solution Qn using

ÒQn
frie-PCA(Qn) = DQfrie-PCA(Qn) ≠ Qn DQfrie-PCA(Qn) QT

n . (3.20)
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(2) Determine a search direction Hn by parallel transporting (see Chapter 2 for a
definition) the previous search direction (from iteration n ≠ 1) and combining
it with ÒQn

frie-PCA(Qn).

(3) Perform a line search along the geodesic at Qn in the direction of Hn and
determine Qn+1.

These steps are repeated until convergence to a local minimum, or until a maximum
number of iterations is reached. It is worth mentioning that optimization on mani-
folds is a rather mature topic in applied mathematics, partly due to the availability
of high-quality code implementing the algorithms developed by the research commu-
nity, such as the Python package pymanopt [Tow+16], which we use in all manifold
optimization procedures in this thesis.

Note that the cost function in (3.14) does not correspond exactly to the maximization
of the dispersion of the projected data points around their geometric mean, since

QT MX Q ”= argmax
MœP(d)

Kÿ

k=1
”

2
R(QT CkQ, M) . (3.21)

However, if we first re-center the points in X so that their geometic mean is the
identity, as in

Ck æ (MX
)

≠1/2Ck(MX
)

≠1/2
, (3.22)

we obtain a new expression

W rie-PCA = argmax
QœOd◊p

Kÿ

k=1
”

2
R

A

QT
1
(MX

)

≠1/2Ck(MX
)

≠1/2
2
Q, Id

B

, (3.23)

for which the cost function does maximize the dispersion of the projected points
around their geometric mean. We use this second formulation for all numerical
illustrations presented in Section 3.2.3.

3.2.3 Numerical illustrations

We investigate whether the geometry-aware linear DR technique presented above is
a good option for when the data points are multivariate time series parametrized
via SPD matrices. For this, we use the performance of a statistical classifier as proxy
for the adequacy of the DR procedure: if the classification score decreases after the
dimensionality reduction step, then it means that discriminatory information was lost
and the dimensionality reduction was too severe or not well executed. We consider
signals recorded from EEG-based brain computer interfaces (BCI), where the goal is
to determine which cognitive task a test subject executed on each experimental trial.
We use the Riemannian geometric framework presented in Chapter 2 to parametrize
the statistics of the EEG epochs via symmetric positive definite (SPD) matrices.
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The BCI data is in the form of d-dimensional multivariate time-series, where each
dimension represents an electrode. Each experimental trial i lasts a few seconds and
is associated to a matrix Xi œ Rd◊T , where T is the number of time samples defining
the trial. To every trial we associate a SPD matrix Ci describing its multivariate
statistics and a label ¸i indicating what was the task performed during the trial. The
dataset for each subject is composed of a set of couples (Ci, ¸i).

Classification pipelines. We classify unlabeled SPD data points via the minimum
distance to mean (MDM) algorithm. It determines the geometric mean of the
covariance matrices in each class of the training set and then assigns to each matrix
in the test set the class to which the distance to the mean is the smallest [Bar+12].
We compare five different pipelines for classification:

• MDM: No dimensionality reduction (DR) and classification using the MDM
algorithm.

• euc-PCA+MDM: DR using W euc-PCA to reduce the dimensionality of the time
series. Classification using MDM.

• rie-PCA+MDM: DR using W rie-PCA to reduce the dimensionality of the time
series. Classification using MDM.

• SELg+MDM: DR by choosing the electrodes the closest to the active regions
during cognitive tasks related to the BCI paradigm being considered (SELg:
good selection). Classification using MDM.

• SELb+MDM: DR by choosing electrodes placed in regions that do not give
much discriminatory information for the BCI paradigm under consideration
(SELb: bad selection). Classification using MDM.

The performance of each pipeline is assessed via a 10-fold cross-validation proce-
dure and compared by their AUC (area under the receiver operating characteristic
curve).

Dataset. We carried out our analysis on the Physionet database, a publicly available
database with recordings from motor imagery (MI) experiments [Gol+00] on 64
EEG electrodes from 109 subjects. We only used the data from tasks of imagined
hands and feet movement, which corresponds to approximately 44 trials per subject
(22 for each class). We filtered the EEG signals in the 8-30 Hz band and considered
each trial as a segment from 0.5 to 2.5s after each trial onset. We estimated the
spatial covariance matrices using Ledoit-Wolf regularization [LW04].

The selection of electrodes for the SELg+MDM and SELb+MDM pipelines took
into account the fact that the motor cortex is the most active region during BCI
experiments under the MI paradigm. As such, we have chosen the 12 electrodes the
closest to the motor cortex for SELg+MDM, which are the electrodes {F3, Fz, F4,
FC1, FC2, C3, Cz, C4, CP1, CP2, P3, P4}. They form a symmetric region and cover the
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Fig. 3.1: Position of the 12 electrodes selected for the SELb+MDM pipeline (in red) and
the SELg+MDM pipeline (in green).

motor cortex. For the SELb+MDM pipeline we have chosen electrodes far from the
motor cortex and that do not form a symmetric region: {FPz, FP1, AFz, AF3, AF7, F7,
F5, F3, F1, FT7, FC5, FC3}. Figure 3.1 provides a visual depiction of the position of
the EEG electrodes selected in each case.

Results and discussion. We have compared the performance of all classifica-
tion pipelines with a DR step (euc-PCA+MDM, rie-PCA+MDM, SELb+MDM and
SELg+MDM) to that of the MDM pipeline. Figure 3.2 shows the results when com-
paring pipelines euc-PCA+MDM and rie-PCA+MDM to MDM, for different values
of p, the dimension of the reduced SPD matrices. Figure 3.3 shows the comparisons
of all pipelines to MDM when p = 12. In both figures, each dot corresponds to one
subject of the dataset and the axis indicate the AUC scores of each pipeline.

Due to the large number of subjects available in the database, we were able to
perform statistical tests for assessing whether there was one pipeline that gave
better (or worse) results than MDM in average. For this, we have estimated a
linear regression model with zero intercept for each pair of pipelines in Figure 3.2
and Figure 3.3. If one of the methods is, in average, superior to the other, the
regression model should have an angular coefficient (m̂) different than one; if the
method on the y-axis is superior, m̂ is greater than one, if not, it is smaller. If we can
not reject the null hypothesis of m̂ being equal to one, then the two pipelines are
said to be equivalent. We have performed F-tests for each pair of methods and fixed
the threshold for the rejection of the null hypothesis to 1%. The results obtained
after this analysis are available in Table 3.1.

From these results, we conclude that when reducing ‘too much’ the dimensionality
of the data, e.g. with p = 6 or p = 8, the performance of the classification pipelines
are poorer than using all 64 available electrodes, as revealed by the values of m̂

smaller than one. This is mostly because with such reduction we may be discarding
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Fig. 3.2: Comparison of the classification scores of pipelines with a DR step versus the MDM
pipeline. We have considered multiple values for the dimension p of the reduced
covariance matrices. Each dot in the graph corresponds to the classification scores
of one subject of the database. The parameter m̂ is the angular coefficient of a
linear regression model applied to the scattered points. It indicates whether a
classification pipeline with DR has the same performance as compared to pipeline
MDM (m̂ = 1), or if it is superior (m̂ > 1), or inferior (m̂ < 1).

Tab. 3.1: Results of the statistical tests for each comparison between classification pipelines.
The parameter m̂ indicates whether a classification pipeline with DR has the same
performance as compared to a pipeline without DR (m̂ = 1), if it is superior
(m̂ > 1), or inferior (m̂ < 1). The nulll hypothesis being tested is that of whether
m̂ is statistically significantly different than one. The threshold for rejecting the
null hypothesis was fixed to 1% and the p-values were corrected for the multiple
comparisons problem via the Bonferroni method.

euc-PCA 
+

MDM

rie-PCA 
+

MDM
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Fig. 3.3: Comparison of the classification scores of pipelines with a DR step versus the MDM
pipeline. We have fixed p = 12 for the dimension of the reduced covariance matri-
ces. Each dot in the graph corresponds to the classification scores of one subject
of the database. The parameter m̂ is the angular coefficient of a linear regression
model applied to the scattered points. It indicates whether a classification pipeline
with DR has the same performance as compared to pipeline MDM (m̂ = 1), or if it
is superior (m̂ > 1), or inferior (m̂ < 1).
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too much content from the data, to the point where some important discriminatory
information might be lost. For p = 10, the rie-PCA+MDM pipeline already has
equivalent performance to MDM, whereas euc-PCA+MDM is still inferior. Such
result points out to the fact that by using the intrinsic geometry of the data points,
one might loose less information when reducing the dimensionality of the SPD data
points as compared to the Euclidean approach. This goes in line with the findings
in [Hor+16], which demonstrated superior results for geometry-aware unsupervised
DR techniques as compared to the their Euclidean counterparts. For p = 12, rie-
PCA+MDM and euc-PCA+MDM become equivalent to MDM, indicating that there
is a threshold value for p from which the DR techniques keep enough information
for assuring the same performance as for MDM. Note that although such regimes
are expected in any set of SPD data points, the exact values of p determining their
transitions is most likely dependent on the characteristics of each database.

The results with SELb+MDM and SELg+MDM indicate what may happen in two
opposing situations where the dimensionality of SPD matrices are reduced. In the
one hand, SELb+MDM selects only electrodes that do not provide much information
for the classification of the EEG epochs; consequently, the performance with such
pipeline is inferior to MDM. On the other hand, SELg+MDM attains results that are
superior to MDM, as indicated by m̂ > 1 in Table 3.1. This may be explained by
the fact that the electrodes chosen in the DR step are only those that provide the
maximum of physiological information related to the tasks in the BCI experiment,
whereas in MDM (where all 64 electrodes are kept) there is room for features that
are only linked to noise or are just not discriminative at all. It is worth mentioning
that pipelines rie-PCA+MDM and euc-PCA+MDM provide an automatic procedure
for reducing the dimensions of the SPD matrices, whereas SELg+MDM relies on
a priori information regarding the intricacies of the experiment that generates the
signals in the database.

Conclusions. We have demonstrated the possibility of reducing the dimensionality of
the covariance matrices that describe the statistics of EEG signals, while maintaining
good classification performance (i.e. the same as for when we use the full SPD
matrices). Moreover, we have shown that by carefully selecting the electrodes to be
kept, the classification performance may be even superior to that of using the whole
time series. A natural extension for this work would be to extend the geometry-
aware DR methods to take into account the physiological information conveyed by
the EEG signals. The goal would be to have an automatic method for reducing the
dimensionality that performs as if (or even better) we had selected the electrodes by
hand using a priori information.
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3.3 Non-linear methods
In this section, we consider non-linear methods for reducing the dimensionality
of data points. The mapping that we search is from the original data space (e.g.,
P(d) for a set of SPD matrices) to an Euclidean space of reduced-dimensionality.
There have been several proposals in the literature for doing non-linear DR and we
choose to focus our discussion on one of them, called diffusion maps [CL06]. In what
follows, we explain the reasons for this choice and present how the method works.
We show how to apply diffusion maps to when the data points are multivariate time
series and illustrate its use on examples with EEG data.

3.3.1 Literature review

Although linear dimensionality reduction techniques are widely used in machine
learning and other related fields, they have two important drawbacks [Laf04]:

(1) They only search for linear transformations on the data points, so they may
not be sufficiently rich to capture the geometric structure of datasets that live
in a manifold with non-zero curvature (i.e., different than an hyperplane);

(2) They try to find a global transformation that preserves both the local and global
geometries of the original dataset, a rather daunting task for a transformation
parametrized by a single matrix. Furthermore, preserving large distances
between data points is often irrelevant, since there is no interpretable difference
between the cases when two high-dimensional points are far from each other
or ‘very’ far from each other (see Chapter 2 of [Laf04] for a thorough discussion
on this matter).

Manifold learning. In view of the intrinsic limitations of linear DR techniques, there
have been several proposals in the literature for reducing the dimensionality of data
points via non-linear transformations, such as: local linear embedding (LLE) [RS00],
Laplacian eigenmaps [Bel03], local tangent space alignment (LTSA) [ZZ04], Hes-
sian eigenmaps [DG03], and diffusion maps [CL06](see [Maa+08] for a survey
on this topic and a comparison between methods). This collection of non-linear
dimensionality reduction techniques are often called manifold learning algorithms,
because of their shared assumption that, despite its high dimensionality, real-life data
often have an underlying structure that can be well described by a low-dimensional
manifold [Bel03; LL06]. Note that other approaches for non-linear DR without
the low-dimensional manifold assumption exist as well, such as t-SNE [MH08] and
UMAP [McI+18] .
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Consider we have a dataset X = {x1, . . . , xK} µ �, where � is an abstract space
for which we have defined a notion of similarity1: for x, y œ �, w(x, y) œ R, with
w(x, y) Ø 0 for all x, y œ � and w(x, y) = w(y, x). Non-linear DR methods search
for a mapping,

f : X æ Rp

x ‘æ f(x) =

Ë
f1(x) · · · fp(x)

ÈT
,

(3.24)

which preserves the local neighboord information from the data points in X . Note
that f is defined from X to Rp and not from � to Rp. This comes from the fact that
most nonlinear DR methods (and, more particularly, those that we consider here) are
transductive methods [Ben+04], meaning that they only learn an intrinsic mapping
for the points in the dataset X into Rp. Consequently, in principle, one would have
to redo the whole manifold learning procedure every time a new data point arrives.
However, there are methods based on the Nyström approximation [Fow+04] that
explore the regularity of the low-dimensional manifold where the data points live
and learn an approximation to f so that new samples can be directly mapped to
Rp.

In one way or another, the transformations given by the manifold learning methods
cited above are all obtained via the solution of an optimization problem of the
form: [CL06]

minimize
N(f)=1

ÿ

xœX
Qx(f) , (3.25)

where N and {Qx, x œ X } are symmetric, positive semi-definite quadratic forms
acting on functions defined in �. More specifically, Qx measures local variations
of f around x, whereas N acts as a normalization for f . The idea behind this cost
function is that one hopes to obtain an adequate transformation using overlapping
local information to capture the global structure of the space where the data points
live. The solution of (3.25) can be efficiently obtained via a generalized eigenvector
decomposition of the matrix defined by the quadratic form in the cost function.
See [Ham+04] for a connection of these methods to the more general problem of
kernel PCA [Sch+98].

In what follows, we will describe the diffusion maps (DM) method for nonlinear
dimensionality reduction, which is a manifold learning technique based on ideas
from diffusion processes in graphs and manifolds. We choose to focus on this method
because of the many mathematical results linking it to other areas of pure and
applied mathematics (we will mention only a few of them, but the interested reader
is referred to [CL06] and [Mém11] for further discussion), as well as the interesting

1The specific form of this similarity function is application-driven and should be crafted according to
the domain knowledge that we have about the space where the data points are defined
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probabilistic interpretation that it gives to the problem of finding a low-dimensional
embedding for a set of data points.

Random walk over a graph. The basic setting for the method of diffusion maps
consists in seeing the elements of X µ � as nodes of a graph G whose edges are
weighted by w(x, y). The graph G represents, then, our knowledge of the geometric
structure of X . The method of diffusion maps defines a Markov random walk over
G and uses the properties of such process to obtain an embedding of the data points
into an Euclidean space of lower dimensionality.

To define a Markov random walk on G, we first introduce the degree d(x) of a point
x œ X as

d(x) =

ÿ

zœX
w(x, z) , (3.26)

which describes a local measure of volume of the points around x. Then, by defining
a matrix P œ RK◊K , whose entries are

P ij =

w(xi, xj)

d(xi)
, (3.27)

we obtain a description for the transition probabilities of a random walk defined
over the graph. To see this, note that, by construction,

qK
j=1 P ij = 1, so the i-th row

of P may be seen as the probability distribution of the transitions of a random walk
from node xi to all other elements in X . In other words, we have, for xi, xj œ X ,

P ij = Pr{xt+1
= xj |xt

= xi} , (3.28)

where xt indicates in which point of the graph the random walk is at the time instant
t. Note that because it implicitly depends of the similarity function w, quantity P ij

reflects the first-order neighborhood structure of the graph G. By taking powers
of the matrix P , we let the random walk ‘run forward in time’ and, as a result, we
capture the structure of larger neighborhoods in the graph.

We denote by p(t, y|x) the probability distribution of a random walk landing at node
y at time t, given that it started at node x at time t = 0. It is a famous result from
Markov theory [Gal13] that if G is a connected graph (meaning that there is at least
one path that links every pair of nodes), then

lim

tæŒ
p(t, y|x) = „1(y) , (3.29)

where „1 œ RK is the left eigenvector of matrix P with eigenvalue ⁄1 = 1 and

„1(xi) =

d(xi)ÿ

xjœX
d(xj)

. (3.30)
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(Note that „1(xi) corresponds to the i-th coordinate of vector „1). This quantity is
known as the stationary distribution of the random walk over graph G and, as seen
from expression (3.30), it is proportional to the degree of each node, serving as a
measure of the density of the points in X .

Diffusion distances. Ref. [CL06] defines a metric between points of X based on
the behavior of random walks over the graph G. This metric is called the diffusion
distance at time t > 0, denoted by Dt, and its intuition is that two points xi

and xj should be considered close to each other if the corresponding conditional
distributions p(t, ·|xi) and p(t, ·|xj) are close in some sense. Mathematically, we
have that [CL06]

D

2
t (xi, xj) = Îp(t, ·|xi) ≠ p(t, ·|xj)Î2

1
„1

=

ÿ

yœX

1

„1(y)

1
p(t, y|xi) ≠ p(t, y|xj)

22
,

(3.31)
where the weights 1/„1(y) penalize more the discrepancies on regions of X with a
lower density of points. This notion of proximity reflects the intrinsic geometry of the
dataset X in terms of the connectivity of its data points in a diffusion process (i.e.,
the evolution of a random walk). The advantage of this concept over the standard
distance between points in the original space (e.g., the geodesic distance between
two points on a manifold) is that, while the classical distance between any pair of
points is independent of the location of all other points in the dataset, the diffusion
distance depends on all possible paths connecting them, including those that pass
through other points in the dataset. Consequently, the diffusion distance is more
robust to noise and small perturbations on the dataset, since it is an averaged value
over all paths connecting two points.

A remarkable result from the spectral theory of Markov processes is that the ex-
pression for the diffusion distance (3.31) can be decomposed as a sum of terms
involving the eigenvectors and eigenvalues of the probability transition matrix P .
From [CL06] we have that

D

2
t (xi, xj) =

Kÿ

k=2
⁄

2t
k

1
Âk(xi) ≠ Âk(xj)

22
, (3.32)

where, for k = 1, . . . , K, ⁄k and Âk are the right eigenvalues and eigenvectors of
matrix P , respectively (it can be verified that ⁄1 = 1 and that Â1 is a vector of ones,
which is why the sum in (3.32) starts at k = 2). The vectors Âk are normalized as in

ÎÂkÎ2
1/„1 =

ÿ

xœX
„1(x)Â

2
k(x) = 1 (3.33)

and we have that ⁄1 = 1 Ø |⁄2| Ø · · · Ø |⁄K |.
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Embedding data points via diffusion maps. Because of the decaying behavior of
the eigenvalues of P (the speed of this decay is related to the structure of the graph
G and there are many works on this topic [Chu96]) we may approximate D

2
t (xi, xj)

using a few terms of the sum (3.32): for a given numerical accuracy ”, and a fixed
value of t, there exists a dimensionality p(”, t) such that,

------
D

2
t (xi, xj) ≠

p(”,t)ÿ

k=2
⁄

2t
k

1
Âk(xi) ≠ Âk(xj)

22
------

Æ ” . (3.34)

This relation can be used to define a mapping from X to Rp defined as

�t : x ‘æ

S

WWU

⁄

t
2Â2(x)

...
⁄

t
pÂp(x)

T

XXV , (3.35)

so that
D

2
t (xi, xj) ƒ Î�t(xi) ≠ �t(xj)Î2

. (3.36)

The mapping �t can be interpreted as a parametrization of the dataset X as a
cloud of points in a lower-dimensional Euclidean space Rp. The Euclidean distance
between the embedded data points is an approximation of the diffusion distance
between the original data points: two points that are close in the embedded space
are close in terms of the diffusion distance.

Note that under the optimization framework given by (3.25), the diffusion maps
method yields a transformation f = �t which is the minimizer of

ÿ

xœX

Q

a
ÿ

yœX
w(x, y)

1
f(x) ≠ f(y)

22
R

b
, (3.37)

with the normalization constraint

ÿ

xœX
„1(x)f

2
(x) = 1 . (3.38)
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Algorithm 1 summarizes the diffusion maps procedure.

Algorithm 1: Diffusion maps
Input: a set of data points X = {x1, . . . , xK} µ � and the dimensionality p of the

space where we want to embed them.
Output: a set of embedded data points �t(X ) = {�t(x1), . . . , �t(xK)} µ Rp

1 Define a notion of similarity between two points xi, xj œ �. This similarity function,
w : � ◊ � æ R, is often called a kernel and it must satisfies two properties: w is
symmetric, w(x, y) = w(y, x), and w is positivity preserving, w(x, x) Ø 0.

2 Form the matrix K œ RK◊K for which Kij = exp

1
≠d2(xi,xj)

Á

2
.

3 Set D = diag(K1K), where diag(v) is a diagonal matrix whose values come from
vector v, and 1K is a K-dimensional vector filled with ones.

4 Form matrix P = D≠1K and obtain its set of left eigenvectors, {„k}1ÆkÆK , and
right eigenvectors, {Âk}1ÆkÆK , as well as their associated eigenvalues, {⁄k}1ÆkÆK .

5 Normalize the right eigenvectors so that we have, for k = 1, 2, . . . , K,

ÿ

xœX
„1(x)Â

2
k(x) = 1 .

6 Obtain a mapping for each data point x œ X given by

�t(x) =

S

WWU

⁄

t
2Â2(x)

...
⁄

t
pÂp(x)

T

XXV .

A common choice for w is the Gaussian kernel, defined as

w(x, y) = exp

A

≠d

2
(x, y)

Á

B

, (3.39)

where d(x, y) is some notion of distance defined in � (for Eucliden spaces, this can
be simply the Euclidean distance) and the scaling parameter Á sets a notion of ‘how
large’ are the neighborhoods that we consider in �. When Á æ 0, the Gaussian kernel
behaves as a Dirac distribution on X . There are many empirical ways of deciding
a value for Á that seems the most adequate for a given application. The R package
diffusionMap2 uses the median value of the distances of each element in X to its
pK nearest neighbor, where p is a percentage usually in the range of 1% to 5%.
A more mathematically justified approach was proposed in [Coi+08] and refined
in [Ber+15] for when � = Rd. Note that the matrix K defined in Algorithm 1 has

2available at: https://cran.r-project.org/web/packages/diffusionMap/ (last checked on June
18th, 2019)
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the same structure of what is often called a ‘kernel matrix’ in other machine learning
methods from the literature [Has+09]. In this work, however, we do not call K a
kernel matrix, because we can not guarantee that it will always be positive definite
for any choice of Á. This is a consequence of the results described in [Fer+15], which
studies the behavior of kernel matrices defined with different similarity measures.
Fortunately, the diffusion maps algorithm does not require K to be positive definite,
it only needs to be symmetric and all its values should be positive.

3.3.2 Manifold learning for multivariate time series

When applying diffusion maps to datasets consisting of several multivariate time
series, as in X Õ

= {x1, . . . , xK}, one needs to define an adequate notion of similarity
between the elements of the dataset. Using the Riemannian geometry framework
presented in Chapter 2, such similarity can be defined as

w(xi, xj) = exp

A

≠”

2
(xi, xj)

Á

B

, (3.40)

where the choice of ” depends on how the statistics of the time series are parametrized:

• If each xi is parametrized by its spatial covariance matrix Ci, then

”

2
(xi, xj) = ”

2
R(Ci, Cj) = Î log(C

≠1/2
i CjC

≠1/2
i )Î2

F . (3.41)

• If each xi is parametrized by its cross-spectral density matrices Si(f), with
f œ F (where F is some set of frequencies of interest), we have

”

2
(xi, xj) =

ÿ

fœF
”

2
R(Si(f), Sj(f)) . (3.42)

Manifold learning methods have been applied to sets of SPD data points [GV08],
but its use to study multivariate time series is relatively rare. In fact, works such
as [Tal+13] and [Hay+05] have applied diffusion maps to study time series only
in the univariate case, defining the similarity function based on the Mahalanobis
distance and dynamic time warping, respectively. Ref. [GC07] embeds EEG evoked
potentials into a lower-dimensional manifold, but with a similarity function based
on the Euclidean distance between the epochs. To the best of our knowledge, our
work in [Rod+18] is one of the first investigations where the Riemannian geometric
framework for multivariate time series is used with diffusion maps and applied to
study EEG signals.

In this chapter, we have used the results of the diffusion maps embedding mostly
for visualization purposes, but there are many other relevant applications for it on
time series analysis. For instance, one could apply DM in an unsupervised setting for
clustering epochs related to different experimental conditions (e.g., different sleep
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states); this is often called spectral clustering [Lux07]. Another use would be in a
semi-supervised context, where one has access to the labels of a few epochs in a
dataset and then propagates this information to other data points based on their
proximity in terms of the diffusion distance. Also, one could use the smoothness of
the low-dimensional manifold where the data points live as a regularization term in
regression and classification. This is called Laplacian regularization in the machine
learning literature [Bel03].

3.3.3 Numerical illustrations

In what follows, we apply the diffusion maps algorithm to analyse EEG signals
coming from three different experiments. We parametrize the time series via their
spatial covariance matrices (for BCI and resting-state datasets) and their cross-
spectral density matrices (for the sleep dataset). At each time, we generate scatter
plots representing the first two dimensions of the embedded data points (Â1 and Â2)
and use them for performing unsupervised explorations of the datasets.

BCI datasets. Our first example uses the same BCI database considered in Sec-
tion 3.2.3, where the EEG epochs are recorded on a motor imagery (MI) experi-
mental paradigm with 64 electrodes. Each one of these epochs lasts two seconds
(sampling frequency was 160 Hz) and is associated to one of two classes, ‘hands’
or ‘feet’. We start by discussing the qualitative differences between embeddings
obtained when the diffusion maps are defined with a kernel function measuring the
similarity of two EEG epochs, xi and xj , in two cases:

(1) Directly from the Euclidean distance between two T -sample realizations, i.e.,
Xi and Xj , both defined in Rd◊T . In this case, in Equation (3.40) we have

”

2
(xi, xj) = ÎXi ≠ XjÎ2

F . (3.43)

(2) From their spatial covariance matrices, Ci and Cj , using the geodesic distance
in the SPD manifold described in Equation (3.41).

The scatter plot in Figure 3.4 shows that the embedding of the epochs of each class
(represented in different colors) are significantly less separated when we use the
similarity function from Eq. (3.43) as compared to when we use the Riemannian
distance between SPD matrices. This result is not surprising and is related to the
fact that, when we directly compare Xi and Xj , we are actually comparing just two
realizations of a stochastic process, whereas the distance based on their statistical
descriptors compares their actual generating processes.

Our next example illustrates the effects of the linear DR procedures discussed
in Section 3.2 on the embedding of the data points with diffusion maps. We consider
four different cases:

3.3 Non-linear methods 67



Fig. 3.4: Embedding with diffusion maps of the epochs recorded during the BCI experiment
described in the text. Each point corresponds to a trial Xi œ R64◊320 and the
colors indicate to which condition it is associated (‘hands’ is blue and ‘feet’ is
red). We use two definitions for the similarity function: (left) Euclidean distance
between the Xi matrices and (right) Riemannian distance between the spatial
covariance matrices of each epoch.

(1) full: use the epochs Xi œ R64◊320 and their covariance matrices Ci œ P(64)

(2) rie-PCA: reduce the dimensionality of the epochs using a projector matrix
W (uns)

rie-PCA œ R64◊12 obtained via the optimization procedure discussed in Sec-
tion 3.2.2. The SPD matrices are defined in P(12).

(3) SELg: select 12 out of 64 electrodes from the epochs Xi which are the
most physiologically relevant for the cognitive tasks executed during a motor
imagery experiment (see Figure 3.1 for a visual depiction of the placement of
the electrodes). The SPD matrices are defined in P(12).

(4) SELb: select 12 out of 64 electrodes from the epochs Xi which we know do
not have much relevant information for separating the classes (see Figure 3.1
in page for a visual depiction of the placement of the electrodes). The SPD
matrices are defined in P(12).

The results of the embedding in each one of these cases is portrayed in Figure 3.5.
There are some interesting aspects to observe:

• The embeddings in the ‘full’ and ‘rie-PCA’ cases are very similar to each other.
This goes in line with what was expected from the objective function defining
W (uns)

rie-PCA.

• The classes of the data points in the ‘SELg’ embedding are more separated and
condensed as compared to the other cases. This can be directly linked to the
superior classification performances of the ‘SELg’ method that we observed
in Section 3.2.3.

• The embedding with ‘SELb’ yields data points whose classes are clearly not well
separated. This result is compatible with the poor classification performance
observed for the ‘SELb’ method in Section 3.2.3.
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Fig. 3.5: Embedding with diffusion maps of the EEG epochs recorded during the BCI
experiment described in the text. Each point corresponds to a trial and the colors
indicate to which condition it is associated (‘hands’ is blue and ‘feet’ is red). We
compare the four pipelines considered in Section 3.2.3. In ‘full’, the epochs are
left untouched, in ‘rie-PCA’ their dimensionality is reduced by applying a 64 ◊ 12

projector matrix (see text for details on how this matrix is obtained), in ‘SELg’
the 12 most physiologically relevant electrodes are selected on each epoch, and
in ‘SELb’ we choose 12 electrodes that do not carry discriminative information
regarding the classes of the experiment.

We perform a last analysis with the BCI dataset. Instead of embedding the EEG
epochs associated to each class, we use a sliding-window over the continuous
recording of the BCI experiment and obtain a sequence of small windowed epochs,
each one related to a small interval of time. We estimate the spatial covariance
matrices of these small windows and proceed with the diffusion maps method to
obtain a low-dimensional embedding. We use a window consisting of 160 points
(equivalent to one second) and slide it through approximately 20 seconds of raw EEG
signal (the sliding window has 95% overlap). During these 20 seconds, the subject
alternates between two states: a ‘resting state’, during which he has no particular
guideline to follow, and an ‘active state’, during which he is asked to perform an
imagined movement task. Figure 3.6 portrays the embedding with diffusion maps
of the set of spatial covariance matrices associated to each window of time. Each
dot represents the embedding of the SPD matrix that parametrizes the statistics
of one small interval of time, and the different colors indicate in which condition
the subject was (‘active’ or ‘rest’). We note that the embedded points related to
the ‘active’ state tend to concentrate in the same region of the embedded space,
whereas the ‘rest’ epochs are spread. This result was expected, since the subject’s
motor imagery signals in the ‘active’ state tend to have similar statistics, whereas in
the ‘rest’ state the EEG signals are not expected to have any statistical consistency
between them.

Sleep recordings. Our second example uses data available at the Physionet
database [Ter+01; Gol+00] and contains recordings from 9 EEG electrodes on
a subject sleeping for approximately 8 hours. The original sampling frequency
was 512 Hz but we downsampled it to 128 Hz after band-filtering the EEG signals
between 8 Hz and 40 Hz. A specialist in sleep data analysis was responsible for
cutting the recordings into several 30-sec clips and then classifying them according
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Fig. 3.6: Embedding with diffusion maps of a sliding window (160 points, 95% overlap)
applied to the BCI dataset described in the text. Each point corresponds to a
window and the color indicates the subject’s experimental condition during the
time of the window (‘active’ is red and ‘rest’ is blue).

to which sleep stage (S1, S2, S3, and REM) they belonged. We ended up with a
dataset containing K = 564 trials of T = 3840 samples each.

The embedding of this dataset with difusion maps is displayed in Figure 3.7. We did
not include the S1 sleep stage trials because they are associated to light sleep and
their statitical behavior is not well captured by the Riemannian geometric framework
that we use. We carried out the diffusion maps procedure using distances (3.41)
and (3.42) and observed a better separation of points with the latter. We link this
to the traditional way of doing classification of sleep stages, which relies on the
spectral content of the trials and indicates that their spectrum is an important feature
to classify them. These results are interesting because they show the possibility of
extracting information from a dataset containing sleep recordings based only on an
adequate notion of similarity between signals.

It could be argued that the quality of the clustering with each type of distance also de-
pends on the number of eigenvectors considered from the diffusion maps (Figure 3.7
shows the results with just the first two). To verify this hypothesis, we assessed the
quality of the clustering performed by a Gaussian mixture model (GMM) [Bis07] on
the embedded space considering an increasing number of dimensions. Assuming as
true labels the classes given by a specialist, we did not observe any improvement on
the modified Rand scores [HA85] when considering more eigenvectors for any of
the distances. The modified Rand score for a GMM clustering using distance (3.42)
on the two first eigenvectors is 0.65 (in a scale from 0 to 1, where 1 is the best). We
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Fig. 3.7: Diffusion maps embedding of the sleep data described in the text. Each point is a
30-sec clip and the colors indicate to which sleep stage it is associated. We used
diffusion maps with two types of similarity functions: (left) based on the distance
between spatial covariance matrices and (right) based on the distance between
cross-spectral density matrices.

consider this a satisfying score because very few assumptions about the dataset were
made and the classification was completely unsupervised.

Resting state. Our last example uses the ALPHA.EEG.2017-GIPSA database [Cat+18].
It consists of EEG recordings from 16 EEG electrodes of a healthy subject instructed
to alternate between keeping his eyes open or closed every eight seconds. The
sampling frequency is 128 Hz and the signals were filtered between 8 Hz and 40
Hz. For our analysis, we used a window with L = 128 points and slid it through
the EEG recordings with 75% overlap. To each window we associate one class
label (indicating whether the subject had his eyes open or closed) and we estimate
its covariance matrix, which serves as a descriptor of the instantaneous statistical
behavior of the time series. Figure 3.8 portrays the embedding via diffusion maps of
the set of windows, with each color representing one state. We observe a clear sepa-
ration between the embedded points from each condition, which can be explained
by the rather strong effect that the alpha waves produced in the brain’s occipital
region have over the EEG recordings when a person has his eyes closed. Figure 3.9
represents the values of the first axis of the diffusion maps embedding (i.e., the
values of the first eigenvector in the spectral decomposition described in Section 3.3).
We also plot a curve indicating whether the subject had his eyes open or closed
and observe that the values of the first eigenvector follow very closely the subject’s
state. This result shows that we may also use diffusion maps to track the time
evolution of the states of a dynamical system. In fact, studying the evolution of the
states of a dynamical system with a sliding window is a very common procedure
in nonlinear physics and, more particularly, in the study of chaotic systems [BK86;
Sau+91]. It is usually called a ‘time-lagged embedding’ and linear methods such
as multidimensional scaling and PCA are traditionally used for the embedding of
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Fig. 3.8: Diffusion maps embedding of the alpha waves experiment described in the text.
Each dot corresponds to a window with L = 128 samples which slides over the
recording with 75% overlap. The similarity function is based on the Riemannian
distance between SPD matrices. The color of each dot indicates whether the
subject had his eyes open or closed during the time associated to the window.

the samples. Recently, extensions of this approach to non-linear embeddings with
diffusion maps have been proposed in [GM12] and [Ber+13], but both are based on
Euclidean distances between short windows of univariate recordings. To the best of
our knowledge, the embedding displayed in Figure 3.9 (and also Figure 3.6) is the
first done in the context of multivariate time series recordings and using a principled
method for measuring the similarities between the windows.

3.4 Conclusion
In this chapter, we have considered the problem of dimensionality reduction (DR)
applied to multivariate time series. We have applied both linear and non-linear
methods to recordings of EEG data from different contexts. A remarkable result
was that of being possible to linearly reduce the dimensionality of multivariate time
series without decreasing, in average, the performance of classifiers applied to the
data points. Such result goes in line with what was expected from our discussion of
invariances and redundancies in multivariate time series, where two representations
of the same phenomenon, but with different dimensionalities, share commonalities
between them that can be explored. Another important result was the extension
of the method of diffusion maps to explore datasets consisting of multivariate time
series. This allows for different kinds of analysis of time series, such as clustering of
epochs related to different sleep states or tracking the evolution of latent parameters
that govern the statistics of a time series.
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Fig. 3.9: First dimension of the diffusion maps embedding of the samples in a sliding-
window (L = 128 and 75% overlap) running over the Alpha waves EEG data
described in the text. Each point of the blue curve corresponds to a different
window of time. The dashed line indicates when the subject had the eyes open (0)
and closed (1).

Our results also show that the parametrization of multivariate time series with SPD
matrices yields better results in dimensionality reduction. In the linear case, we have
shown that it is better to use the geometry-aware method proposed by [Har+17] to
reduce the dimensionality of SPD matrices as compared to the classical PCA, which
consider the matrices as elements of an Euclidean space. In the non-linear case, we
have shown that the similarity matrix based on the statistics of multivariate time
series gives much better diffusion maps embedding as compared to similarities based
on the Frobenius distance between realizations of the time series.

It is worth mentioning that we could have parametrized the multivariate time series
via their cross-spectral density matrices, which are Hermitian positive definite (HPD)
matrices. Such description is more complete than just using spatial covariance
matrices and has exactly the same geometry as for SPD matrices. However, we
have preferred to work with SPD matrices in this chapter for the sake of simplicity
of exposition. Note that one could directly extend the results described here to
a parametrization via cross-spectral density matrices by simply considering each
frequency of the spectrum independently.
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List of notations and acronyms of the chapter

EEG electroencephalography
BCI brain-computer interface
HPD Hermitian positive definite
SPD symmetric positive definite
RG Riemannian geometry

AIRM affine-invariant Riemannian metric
MDM minimum distance to mean classifier

TL transfer learning
OT optimal transport
RPA Riemannian Procrustes analysis
RCT re-centering
STR stretching
ROT rotation
DM diffusion maps
MI motor imagery

ROC receiver operating characteristic
AUC area under the ROC curve
Rd set of d-dimensional real vectors
x multivariate time series
C spatial covariance matrix
”E Frobenius distance between two matrices
”R AIRM-induced distance between two HPD matrices

P(d) manifold of d-dimensional HPD matrices
MX geometric mean of the HPD matrices in a set X
K number of data points
d dimensionality of data points
S source dataset
T target dataset
T¸ labeled partition of T
Tu unlabeled partition of T
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4.1 Introduction
Classical machine learning algorithms usually suppose that the statistical distribution
of the data points used to train a classifier is the same as that of the data points
to which the classifier is applied. However, in many practical cases, this is not
true. For instance, in BCI datasets the statistics of the EEG epochs of a subject may
vary between recording sessions and between different subjects. This happens also
in computer vision, where the statistics of the data may vary due to changes in
lighting conditions and acquisition devices, or in speech processing systems, where
the changes in background noise and the differences in speaker genders and voice
tonalities may affect the statistics of the signals.

In this chapter, we present and discuss methods for performing statistical analysis
on samples from a dataset (the target dataset) using information from another
dataset (the source dataset). A natural advantage of reusing samples from other
datasets is that it leads to algorithms which are ‘data-efficient’ and that can explore
all the available information that might be useful for accomplishing a certain task.
Furthermore, by reusing information that is already available, such algorithms
may be considered as ‘ecology-aware’, in the sense of avoiding unnecessary energy
consumption for obtaining and storing new data samples. Such concerns are very
relevant in machine learning and have uses in many contexts with different types of
data. The domain of research dealing with this kind of problem is called transfer
learning and has been covered in several works in the literature (see [PY10] for a
survey). The common argument in all such proposals is that the discrepancy between
the statistics of the datasets is the main responsible for the poor performance of
classifiers directly trained on a source dataset and applied to a target dataset. The
goal in transfer learning methods, then, is to determine a set of transformations
over the data points that minimizes the divergence between the statistics of the
datasets.

In what follows, we will be particularly interested in the case where the data points
of the source and target datasets are symmetric positive definite (SPD) matrices used
to describe the statistics of time series epochs. This is particularly relevant to EEG-
based brain computer interfaces (BCI), where the statistics of the data generated by
two subjects may be very different. This is reflected in how the SPD matrices used
to describe the EEG epochs are distributed in the SPD manifold. To analyse such
kind of data points, we use the Riemannian geometric framework for multivariate
time series presented in Chapter 2, which was then defined in the HPD manifold
and can be naturally particularized to the SPD manifold (we will abuse notation
and denote the SPD manifold of d ◊ d SPD matrices by P(d)). We propose, then,
a series of transformations over the two datasets with the goal of making their
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distributions become as similar as possible according to some notion of distance
between statistical distributions in the SPD manifold.

The basic assumption that we make in this chapter is that, although the time series of
two datasets may have different statistical distributions due to a number of factors,
if they are related to the same kind of physical phenomenom, then there should
be commonnalities that could be explored for a joint analysis. For instance, if two
subjects perform the same set of motor imagery tasks, even if the statistics of the EEG
epochs in each dataset are very different, the way that the classes distinguish between
each other should not be too different from one subject to the other. By exploring this
kind of invariance between time series, we propose a simple method for transforming
the SPD data points from a target dataset and make its statistical distribution more
similar to that of a source dataset. This procedure is called Riemannian Procrustes
analysis (RPA) and is the topic of most of the following discussion.

The remainder of the chapter goes as follows: we begin in Section 5.2 with a review
of the literature on transfer learning. Section 4.3 presents the method of Riemannian
Procrustes analysis. Section 4.4 and Section 4.5 discuss numerical illustrations on
simulated and real data, respectively. Section 4.6 concludes the chapter.

4.1.1 Contributions

The content of this chapter is based on (and extends) the works on two published
papers :

P. L. C. Rodrigues, C. Jutten, and M. Congedo, “Riemannian procrustes
analysis: transfer learning for brain-computer interfaces", IEEE Transac-
tions on Biomedical Engineering, pp. 1–1, 2018.

and

P. L. C. Rodrigues, M. Congedo, and C. Jutten, “‘When does it work ?’:
an exploratory analysis of transfer learning for BCI", BCI 2019 - 8th Graz
Brain Computer Interface Conference, Graz, Austria, Sep. 2019.

Our main contributions have been to propose the RPA method and investigate its
performance on a number of practical cases related to EEG-based brain computer
interfaces datasets. It is also worth mentioning the fact of having used the MOABB
framework [JB18] for downloading, processing, and analysing the EEG data, serving
as a practical illustration of this powerful benchmarking tool. Python code for the
RPA method is available in:

http://www.github.com/plcrodrigues/PhD-Code/
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4.2 Literature review
In this section, we present an overview of concepts related to transfer learning. We
start by commenting on how the discrepancy between the statistics of two datasets
affects the generalization error of a classifier trained with data points from one
dataset and used to label points from another dataset. Then, we present some
of the procedures proposed in the literature for coping with this kind of problem,
giving particular attention to a class of methods that do ‘distribution matching’.
We conclude with a review of the literature on transfer learning applied to brain
computer interfaces.

4.2.1 Learning from di�erent domains

In its essence, a machine learning algorithm is the process of extracting knowledge
from a dataset, the training dataset, and extrapolating this knowledge to another
dataset, the testing dataset. When both datasets have the same statistical distribution,
classifiers such as logistic regression, linear discriminant analysis and support vector
machines can be directly used as tools for determining the classes of unlabeled
samples in the testing dataset. However, when the statistics on the datasets are
different, one has to take into account this discrepancy before using the classifier.

Consider a binary classifier h : O æ {0, 1}, where O is the set of objects to which
the classifier assigns labels (e.g. images, time series, text, etc.). The generalization
error (or risk) of this classifier in a dataset X µ O whose statistical distribution is
DX and labeling function is fX : O æ {0, 1} is defined as

RX (h) = Ex≥DX

Ë
1{h(x) ”=fX (x)}

È
, (4.1)

that is, the probability of h assigning a label to a data point that is different than
what fX would give. Ref. [BD+09] expresses a relation between the generalization
error of a classifier trained with points from a source dataset S and applied to data
points in a target dataset T . We have that

RT (h) Æ RS(h) + d1(DS , DT ) + �(fS , fT ) , (4.2)

where the second term is a L

1 measure of divergence between statistical distributions,

d1(DS , DT ) = 2 sup

BœB
|PrDS (B) ≠ PrDT (B)| , (4.3)

with B the set of measurable subsets under distributions DT and DS . The term
�(fS , fT ) is related to discrepancies in the labelling functions of the datasets and is
expected to be small.
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Equation (4.2) shows that the difference in generalization error of a classifier in
the source and target datasets is small when the discrepancy between the statistical
distributions in each dataset is small. Thus, algorithms that gather information from
datasets with different statistics should, apart from minimizing the generalization
error of a classifier in each dataset, also transform the data points on both datasets
so that their statistical distributions become similar to one another. It is worth
mentioning that d1(DS , DT ) is a rather difficult quantity to estimate, because of its
combinatorial behavior related to the ‘sup’ operation [BD+09]. This is why different
works in the literature [BD+09; Man+09; Red+17] have proposed other bounds
similar to (4.2) but based on divergences between statistical distributions that are
easier to estimate.

The branch of Machine Learning that studies the effects of mismatches between
statistical distributions and how to cope with them, is called transfer learning. It
has been of great interest in several domains, such as in computer vision, where the
statistics of the data may vary due to changes in lighting conditions and acquisition
devices, in speech processing systems, where the changes in background noise and
the differences in speaker genders and voice tonalities may affect the statistics of the
signals, or in brain computer interfaces, where the statistics of the EEG data from
two subjects may be very different. Based on the taxonomy presented in [PY10],
transfer learning may be categorized into three large classes of algorithms:

(a) In inductive transfer learning, the tasks in the source and target datasets are
different. For instance, one may want to classify species of dogs in one dataset
and species of cats in another dataset. The statistical distributions on each
dataset may be the same or not.

(b) In transductive transfer learning, the tasks on both datasets are the same but
their statistical distributions are not.

(c) In unsupervised transfer learning, the tasks in each dataset are not the same
but are at least related (e.g. classification of dog species from images or from
barks). However, one does not have access to the labels from the source nor
from the target datasets.

In this thesis, we are mostly interested in problems related to transductive transfer
learning; more specifically, the paradigms of unsupervised and semi-supervised
domain adaptation, where one has access to all the labels from the source dataset
and, in the semi-supervised case, to a few labels from the target dataset.

There are many approaches for domain adaptation and they are all based on trans-
forming the samples from the source and target datasets. One such method is called
importance-weighting [Cor+10]. It relies on the idea of giving different weights
to each sample in the target dataset so that its statistical distribution gets closer
to that of the source dataset. Another approach is to learn a transformation for
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each dataset that maps their data points to a common space where the statistics
of the new data points are aligned; this is called subspace alignment in the litera-
ture [Fer+13]. Recently, methods based on the theory of optimal transport have
found great success in the machine learning community [Cou+17]. They promote
geometric transformations of the data points from both datasets in order to match
their statistical distributions, in an approach often called ‘distribution matching’; we
focus on this type of method in the next sub-section.

4.2.2 Distribution matching

We begin by considering a simple case of mistmatch between the statistics of two
datasets. Suppose that the source dataset (S) has data points which follow an
univariate Gaussian distribution with mean µS and variance ‡

2
S and that the target

dataset (T ) follows a Gaussian distribution with mean µT and variance ‡

2
T . For the

data points from T to be comparable to those from S (comparable in the sense of
being possible to do classification, clustering, or any other kind of statistical analysis
with data from both datasets), it is necessary to define a transformation that makes
the statistics of the data points the same. We define such transformation as:

TSæT : R æ R

x æ ‡T
‡S

(x ≠ µS) + µT ,

(4.4)

which makes any random variable sampled from S follow the same statistical
distribution as if it was sampled from T . We say that TSæT matches the statistical
distributions of the two datasets.

Optimal transport. The definition of TSæT in (4.4) relies on the knowledge of the
statistical laws that the datasets S and T follow precisely. However, in practice one
very rarely has access to such information, so a different method for matching the
distributions of the two datasets is in order. One possible approach is based on the
concept of optimal transport, which is a centuries old discipline in mathematics and
has recently gained considerable interest in the field of domain adaptation [Vil09;
Cou+17; PC19].

The optimal transport problem (OT) has been defined in various forms in the
literature. In this section, we present a version originally formalized by the French
mathematician Gaspard Monge in 1781. His motivation at the time was to study
the pratical problem of how to optimize the total amount of work of a group of
workmen when transforming a terrain with an initial landscape into a terrain with
a given target landscape. In mathematical terms, we may write this problem as:
consider two multivariate probability densities defined in Rd and denoted as ‹S

and ‹T (in fact, we could have chosen any two positive functions having the same
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normalization in Rd). We want to determine a mapping TSæT : Rd æ Rd that solves
the optimization problem

min

TSæT

⁄

Rn
c

1
x, TSæT (x)

2
‹S(x) dx , (4.5)

such that for every B µ Rd the transformation TSæT preserves the probability
measures in both spaces, as in

⁄

B
‹T (x) dx =

⁄

T ≠1
SæT (B)

‹S(x) dx . (4.6)

The cost function c(x, y) : Rd ◊ Rd æ R is related to some notion of ‘transportation
cost’ when moving elements from the support of ‹S to the support of ‹T (for Monge,
this cost was the cost of moving piles of sand from one place to the other). The
transformation T

ı
SæT that minimizes problem (4.5) is called the ‘transportation plan’

between distributions ‹S and ‹T .

When c(x, y) = Îx ≠ yÎp, with p Ø 1, one may define the p-Wasserstein distance
between ‹S and ‹T as

Wp(‹S , ‹T ) =

3
min

TSæT

⁄

Rn
Îx ≠ TSæT (x)Îp

‹S(x) dx

41/p

, (4.7)

which is an alternative way of comparing statistical distributions instead of the
Kullback-Leibler divergence or the maximum-mean discrepancy.

An interesting particular case for the OT problem is when ‹S and ‹T are multivariate
Gaussian distributions in Rd, denoted as N (µS , �S) and N (µT , �T ). In this case,
the solution for (4.5) is

TSæT : Rd æ Rd

x æ A(x ≠ µS) + µT ,

(4.8)

where
A = �

≠1/2
S (�

1/2
S �T �

1/2
S )

1/2
�

≠1/2
S . (4.9)

Note that this reduces to transformation (4.4) in the univariate case. The analytical
form of the 2-Wasserstein distance between two multivariate Gaussian distributions
is

W2
2 (‹S , ‹T ) = ÎµS ≠ µT Î2

+ Tr
1
�S + �T ≠ 2

!
�

1/2
S �T �

1/2
S

"1/22
. (4.10)

We refer the interested reader to [PC19] for a thorough presentation of several other
aspects related to optimal transport, such as existence and unicity properties, the
Kantorovich relaxation, numerical solutions, etc.
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Procrustes analysis. A very appealing aspect of using a transformation between
datasets based on optimal transport is that it makes no assumptions regarding the
distributions of the source and target datasets. Furthermore, when discretizing the
problem to real data, the solution of (4.5) is obtained via an optimization problem
that is well known in the applied mathematics literature [PC19]. However, due to
its lack of assumptions and, consequently, rather large class of possible solutions,
optimal transport may be sub-optimal in some cases. For instance, when one
has access to information regarding the structure of the datasets to be matched,
or regarding how the transformation from one dataset to the other is defined,
it might be more convenient to use methods that exploit such knowledge. An
important example is Procrustes analysis (PA) [GD04], a tool often employed in
statistical shape analysis [Ken89] with applications in text analysis [WM08], protein
alignment [WM08], and many other fields. PA considers the distributions of data
points in each dataset as shapes in a high-dimensional space. Then, it selects a set of
pairs of landmark points from the two different shapes and performs geometrical
transformations to get these landmarks as close as possible to each other. Because of
its linear nature in the Euclidean case, and the fact that the operations are always
global (the same rotation/translation/scaling is applied to all points each time),
the space of transformations that one can cover using Procrustes analysis does not
include all possible transformations between the statistics of datasets. Nevertheless,
the results obtained in several applied settings indicate that the set of transformations
applied via PA are rich enough to model the difference in statistics between datasets
in many situations [GD04; WM08; Rod+18].

4.2.3 Transfer learning for BCI

When considering data from experiments with brain-computer interfaces (BCI),
the source and target datasets may be from the same subject in different recording
sessions (cross-session) or from different subjects (cross-subject). These datasets
have often different statistical distributions and many works in the BCI literature have
investigated ways of characterizing such mismatches. In [Shi00], the phenomenon
responsible for the drift in statistical distributions of two datasets was termed
covariate shift and modelled by assuming that the distributions of the data points can
be different for the source and target datasets, but the conditional distributions of
the labels are the same. Ref. [Sug+07] presented examples on BCI experiments and
showed that the covariate shift describes well the changes in statistics for this kind of
application. In other recent papers, such as [Zan+17] and [Rod+18], the differences
between the distributions of points from two datasets were portrayed using nonlinear
dimensionality reduction techniques such as those presented in Chapter 3. Figure 4.1
uses the diffusion maps algorithm [LL06] to illustrate the drift in statistics between
EEG epochs from different recordings sessions of one same subject.
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Fig. 4.1: Two-dimensional representation of the spectral embedding obtained via the dif-
fusion maps algorithm applied to the recordings of one subject in the Cho2017
dataset (see Table 4.1 for a description). Each point corresponds to an EEG epoch
and the distances between the data points were calculated via the Riemannian
distance between the covariance matrices associated to each epoch. The different
colors indicate the experimental sessions related to each epoch.

Traditionally, most methods for transfer learning in BCI are based on two kinds
of approach [Lot+18]. One relies on the concept of ensemble classifiers [Bla+08;
Faz+09; Con+13; Way+16], where the information from multiple source datasets
are combined into a “global" classifier, which is then used to label the trials from
any other target dataset. Another approach uses Bayesian models to describe the
variability of the statistics on the source datasets and gather information from
multiple datasets [Jay+15]. A recent approach that builds upon such Bayesian
methods are the works in [Kin+14] and [Hüb+18], which propose a special form of
the P300 experimental paradigm to do classification with no calibration.

Recently, some works have used geometrical transformations to match the statistical
distributions of two datasets containing EEG recordings. Ref. [Gay+17] applies
optimal transport to datasets containing P300 recordings and [Cha+18] uses the
same tools on EEG data from sleep recordings. Our work in [Rod+18] is an
extension of [Zan+17], which adopts the Riemannian geometric framework for BCI
and transforms the data points in the source and target datasets so that they both
have the same geometric mean; [Yai+19] proposes a similar method where the
data points are re-centered to the midpoint between the geometric means of the
source and target datasets. Not long after publishing our work on the RPA method
in [Rod+18], ref. [Mam+19] proposed an extension for [Yai+19] that introduces a
moment alignement step that acts as a rotation on the tangent vectors of the SPD
manifold.
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It is worth mentioning that distribution matching tries to match as much as possible
the information from each pair of source-target datasets. Thus, it can be used in
addition to an ensembling approach to combine the information from multiple
matched-source subjects. Also, this kind of approach is paradigm-agnostic and does
not rely on any special modification of the experimental setup where the EEG signals
are collected (as opposed to [Hüb+18]), a feature that is appealing to a great
number of practionners.

4.3 Riemannian Procrustes analysis
In this section, we present a method for matching the statistical distributions of
a source and a target dataset composed of SPD data points. This procedure is a
generalization of the classical Procrustes analysis [GD04] to the case when the points
to be transformed are defined in the Riemmannian manifold of symmetric positive
definite (SPD) matrices, the SPD manifold. Because of its geometric-aware features,
the method is called Riemannian Procrustes analysis (RPA). To better understand the
steps involved in the RPA, the reader is referred to Chapter 2, where a review of
properties of the hermitian positive definite (HPD) manifold is presented (and are
the same as for the SPD manifold).

RPA can be seen as an evolution of the aforementioned procedures [Zan+17]
and [Yai+19], with the re-centering step corresponding to the first of a series of
geometrical transformations. Furthermore, [Zan+17] and [Yai+19] are completely
unsupervised, since they do not use any information from the labels of the data points,
whereas RPA benefits from the labels in the source session (which are all known
in advance) as well as from (at least part of) the labels that become sequentially
available in the target session trial after trial.

We begin this section by first formalizing the mathematical context in which the RPA
is defined. Then, we introduce the concept of Procrustes analysis on an Euclidean
setting and describe how to perform equivalent transformations on the SPD man-
ifold. We justify such operations with the help of a model relating the statistical
distributions of the source and target datasets. This model is the main theoretical
contribution of this chapter, since it gives a concrete justification for the geometric
operations done in the RPA procedure and allows for a better comprehension of
the assumptions that one has to make regarding the statistical distributions of the
datasets.
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4.3.1 Problem statement

We consider two datasets, the source (S) and target (T ) datasets. They are comprised
of couples

S =

Ó
(CS

i , ¸

S
i ) for i = 1, . . . , KS

Ô
,

T =

Ó
(CT

i , ¸

T
i ) for i = 1, . . . , KT

Ô
,

(4.11)

with CS
i , CT

i œ P(d) being data points, and ¸

S
i , ¸

T
i œ {1, . . . , L} their corresponding

class labels; KS and KT are the number of trials in the source and target sessions
respectively. We parametrize the statistical distribution of both datasets as described
in Chapter 2, with

�S ≥
Ó

MS
, MS

1 , . . . , MS
L, ‡

S
Ô

and �T ≥
Ó

MT
, MT

1 , . . . , MT
L , ‡

T
Ô

, (4.12)

where MS is the geometric mean of all the data points in S, MS
1 , . . . , MS

L are the
geometric means of the points belonging to each class in S, and ‡

S is the dispersion
of the points in S around MS (equivalent notation for the parameters in �T ).
The goal, then, is to define a set of transformations on S and T that yields two
new datasets, S(RPA) and T (RPA), such that distance W(�S(RPA) , �T (RPA)) is minimized,
where

W2!
�X , �Y

"
= ”

2
R(MX

, MY
) +

Lÿ

¸=1
”

2
R(MX

¸ , MY
¸ ) + log

2
A

‡

X

‡

Y

B

(4.13)

is a distance between statistical distributions defined in Chapter 2 and ”R is the
natural geodesic distance between two matrices A and B in the SPD manifold, given
by

”

2
R(A, B) = Î log(A≠1/2BA≠1/2

)Î2
F . (4.14)

We assume the semi-supervised transfer learning paradigm [PY10], where one has
knowledge of all the labels from the source dataset and access to a small subset of
labels from the target dataset. Put in mathematical terms, we assume knowledge of
all the labels from the elements in S and of a small subset T¸ µ T with

T = T¸ fi Tu and T¸ fl Tu = ÿ , (4.15)

where ¸ stands for labeled and u for unlabeled. We further assume that T¸ has at least
one example from each class. This setup describes well applications where a few
labeled calibration points from the target dataset can be used to guide the transfer
learning procedure. Another relevant case is online algorithms, where labels are
available sequentially and augment the T¸ dataset after each time step.
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4.3.2 An Euclidean motivation

When working with real data, one rarely has access to the actual statistical distribu-
tions that generated the data points of the source and target datasets. Because of
this, it is often more interesting to assume that the shapes described by these data
points in a high-dimensional space are related to the statistical distributions of each
dataset. Then, one can define transformations on the samples so that the shapes
of each dataset become as similar as possible. We introduce this approach by first
considering the case when the data points are defined in an Euclidean space.

A common method for matching Euclidean geometric shapes is the Procrustes
analysis [GD04], which works as follows: suppose we have two sets of landmark
points for describing the geometric shapes,

S =

)
xS

i œ Rn*m

i=1 and T =

)
xT

i œ Rn*m

i=1 , (4.16)

and assume there is a linear relationship relating the m pairs of landmark points as
in

xT
i ≠ mT

= s U
!
xS

i ≠ mS"
, (4.17)

where s œ R, mS
, mT œ Rn, and U œ Rn◊n is an orthogonal matrix. The goal of

the PA procedure is to determine the values of {s, mS
, mT

, U} so to obtain a new
set X (PA) containing points x

T (PA)
i that matches exactly with xS

i , where

x
T (PA)
i ≠ mS

=

1

s

UT !
xT

i ≠ mT "
. (4.18)

Note that the operations transforming xT
i can be interpreted as a re-centering to

zero (subtracting mT ) followed by a stretching or compression (division by s), and
a rotation (multiplication by UT ); the final re-centering to mS is optional, since it is
often more interesting to re-center the data points in both datasets to the origin and
consider only zero-mean shapes.

To apply Procrustes analysis to point clouds of two datasets coming from different
statistical distributions, one first has to decide what are the landmarks to consider. A
reasonable choice is to assume a linear relationship between the means of all the
points from the dataset as well as the means of each class. Figure 4.2 illustrates the
results of Procrustes analysis applied to a source and a target dataset defined in R2

and whose landmarks are based on the means of the datasets. We observe that a
linear classifier trained on the source dataset plotted in Figure 4.2A would clearly
fail in inferring the labels of the data points in the target dataset, as opposed to the
matched case in Figure 4.2D.

In the next section, we show how to adapt the traditional Procrustes analysis to the
case where the data points are defined in the SPD manifold.
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(A)

(C)

(B)

(D)

original recentering

stretching rotation

Fig. 4.2: Illustration of the sequence of operations of a Procrustes analysis applied to a
dataset consisting of two-dimensional Euclidean vectors (better visualized with
colors). The data was simulated with a mixture of two gaussians for each dataset.
Each point on the scatter plot represents a data point from the source dataset
(circles) or the target dataset (triangles). The colors blue and yellow indicate the
classes of the data points, whereas the black dot is the origin. (A) Distribution of
the data points in source and target datasets as they are originally available and (B)
after re-centering their means to zero. In (C) the distribution after the stretching
operation and (D) after the rotation.

4.3.3 Transformations in the SPD manifold

In order to apply Procrustes analysis on SPD data points, we have to adapt the steps
of re-centering, stretching and rotation according to the intrinsic geometry of P(d).
We call such procedure Riemannian Procrustes analysis (RPA) and describe its steps
here below.

Re-center to identity. In P(d), the Identity matrix plays the role of the origin of the
space. Therefore, the first step of RPA is to transform the matrices in S and T so
they are both centered around Id. This amounts to the transformation proposed
in [Zan+17] if the covariance matrices used to describe the resting activity of each
session were chosen to be the geometric mean of the trials of each dataset.

Due to the affine-invariance of the geodesic distance in the SPD manifold, the
geometric mean of a set of re-centered matrices,

C
S(rct)
i =

!
MS"≠1/2

CS
i

!
MS"≠1/2

, (4.19)
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is Id. Moreover, since ˆM
T

is estimated from a subset of points in T¸ µ T , the
geometric mean of the set of matrices

C
T (rct)
i =

!
ˆM

T "≠1/2
CT

i

!
ˆM

T "≠1/2 (4.20)

is approximately the identity matrix (it tends to the identity as the number of
elements in T¸ grows). We have then two new datasets consisting of re-centered
(rct) matrices

S(rct)
=

Ó
(C

S(rct)
i , ¸

S
i ) for i = 1, . . . , KS

Ô
,

T (rct)
=

Ó
(C

T (rct)
i , ¸

T
i ) for i = 1, . . . , KT

Ô
,

(4.21)

with the indices of the partition T (rct)
= T (rct)

¸ fi T (rct)
u being the same as in (4.11).

Equalize dispersions. The next step of RPA consists in rescaling the distributions
on both datasets so that their dispersions around the mean are the same. To do so,
we can see from the expression of the AIRM distance that

”

2
R

1!
CT (rct)

i

"s
, Id

2
= s

2
”

2
R

1
CT (rct)

i , Id

2
, (4.22)

which implies that one can modulate the dispersion of T (rct) by simply moving each
of its matrices along the geodesic that links it to the identity matrix. Note that
the parameter s plays the same role as the scaling factor in (4.17). We match the
dispersions from source and target by defining new stretched (str) data points

C
T (str)
i =

1
C

T (rct)
i

2s
, (4.23)

where we require s œ R to verify

s = ‡

S
/‡̂

T (4.24)

and ‡̂

T ƒ ‡

T is estimated from data points in T¸. We may then define two new
datasets

S(str)
=

Ó
(C

S(rct)
i , ¸

S
i ) for i = 1, . . . , KS

Ô
,

T (str)
=

Ó
(C

T (str)
i , ¸

T
i ) for i = 1, . . . , KT

Ô
,

(4.25)

where we note that the SPD matrices for the re-centered source dataset do not change
after the stretching step.

Note that the re-centering of matrices in Step 1 does not alter the dispersion of the
matrices around their geometric mean, which means that the stretching step could
have been done before re-centering the matrices in T . However, in this case, the
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geodesic move in (4.23) would have to be done with respect to MT , that is, we
would have to use a more involved relation

CT (str)
i =

1
MT

21/21
(MT

)

≠1/2CT
i (MT

)

≠1/2
2s1

MT
21/2

. (4.26)

Up to this point, no information from the trials’ classes has been used. We say then
that the re-centering and stretching operations form the unsupervised part of the RPA
method.

Rotate. The last step of RPA consists of rotating the matrices from T (str) around the
origin and matching the orientation of its point cloud with that of S(str) (see Fig-
ure 4.3D). To do so, we note that if U is an orthogonal matrix, then

”

2
R(UT CT (str)

i U , Id) = ”

2
R(UT CT (str)

i U , UT U) = ”

2
R(CT (str)

i , Id) , (4.27)

where the last equality is due to the affine-invariance property of ”R. This result
means that the effect of an orthogonal matrix over a set of matrices centered at
the identity is that of a rotation around their mean. We form a new dataset T (rot)

containing rotated (rot) matrices with

C
T (rot)
i = UT C

T (str)
i U , (4.28)

where U is an orthogonal matrix to be determined from the data. By the end of the
RPA procedure, we have two transformed versions of S and T ,

S(RPA)
=

Ó
(C

S(rct)
i , ¸

S
i ) for i = 1, . . . , KS

Ô
,

T (RPA)
=

Ó
(C

T (rot)
i , ¸

T
i ) for i = 1, . . . , KT

Ô
.

(4.29)

As we will see next, matrix U is determined using the labels from the trials, so we
say it corresponds to the supervised part of the RPA.

The orthogonal matrix U . The procedure to determine the matrix U comes up
naturally once the assumptions of the RPA method are written in mathematical form.
For simplicity, we will first assume that T¸ = T . We consider the geometric means
of the source and target datasets as landmarks to be matched, so one can write a
relation between the full geometric mean of the datasets,

MT
= A MS AT

, (4.30)

and between the class means of the datasets,

MT
¸ = A MS

¸ AT
, ¸ œ {1, . . . , L} , (4.31)
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where MS
, MT

, MS
¸ , MT

¸ are all defined in Section 4.3.1, and A œ Rn◊n is an
unknown invertible matrix that models the discrepancies between the statistics of
the source and target datasets. We can rewrite the relation in (4.30) as

1!
MT "1/2!

MT "1/22
= A

1!
MS"1/2!

MS"1/22
AT

, (4.32)

Id =

!
MT "≠1/2

A
1!

MS"1/2!
MS"1/22

AT !
MT "≠1/2

, (4.33)

Id =

1!
MT "≠1/2

A
!
MS"1/221!

MT "≠1/2
A

!
MS"1/22T

, (4.34)

UUT
=

1!
MT "≠1/2

A
!
MS"1/221!

MT "≠1/2
A

!
MS"1/22T

, (4.35)

where U is the n ◊ n orthogonal matrix that we want to determine. Matrix U can
then be simply written as

U =

!
MT "≠1/2

A
!
MS"1/2

, (4.36)

where MS and MT are directly estimated from the data points, and A remains
unknown. To determine an expression for U only in terms of variables that can be
estimated from the data, we use (4.36) in (4.31) to get

MT
¸ =

1!
MT "1/2

U
!
MS"≠1/22

M ¸

1!
MT "1/2

U
!
MS"≠1/22T

, (4.37)

!
MT "≠1/2

MT
¸

!
MT "≠1/2

= U
!
MS"≠1/2

MS
¸

!
MS"≠1/2

UT
. (4.38)

Defining the matrices

GS
¸ =

!
MS"≠1/2

MS
¸

!
MS"≠1/2 (4.39)

and
GT

¸ =

!
MT "≠1/2

MT
¸

!
MT "≠1/2

, (4.40)

we have

!
MT "≠1/2

MT
¸

!
MT "≠1/2

¸ ˚˙ ˝
GT

¸

= U
!
MS"≠1/2

MS
¸

!
MS"≠1/2

¸ ˚˙ ˝
GS

¸

UT
, (4.41)

GT
¸ = U GS

¸ UT
. (4.42)

It is worth noting that GT
¸ and GS

¸ have the same eigenvalues. To see this, we can
use the expression in (4.30) for MT to rewrite (4.38) as

GT
¸ =

!
MT "1/2

A≠T !
MS"≠1/2

GS
¸

!
MS"1/2

AT !
MT "≠1/2

, (4.43)

GT
¸ =

1!
MT "1/2

A≠T !
MS"≠1/22

GS
¸

1!
MT "1/2

A≠T !
MS"≠1/22≠1

,(4.44)
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and conclude that GS
¸ and GT

¸ are related via a similarity transform and, therefore,
have the same set of eigenvalues. We can then write the eigendecompositions

GS
¸ = (QS

¸ )�(QS
¸ )

T and GT
¸ = (QT

¸ )�(QT
¸ )

T
, (4.45)

so that (4.38) becomes

!
QT

¸

"
�

!
QT

¸

"T
= U

!
QS

¸

"
�

!
QS

¸

"T
UT

. (4.46)

Solving (4.46) for U we obtain, for any ¸ œ {1, . . . , L} (where L is the number of
classes),

U =

!
QT

¸

"!
QS

¸

"T
, (4.47)

which is ultimately an expression for the rotation matrix in terms of quantities that
can be directly estimated from the dataset.

Note that (4.47) is also the solution to the following optimization problem

minimize
UT U=Id

”

2
R

1
GT

¸ , UGS
¸ UT

2
, (4.48)

for any ¸ œ {1, . . . , L}, and so it can be interpreted as the orthogonal matrix that
acts to minimize the distance between a modified version of the class means of the
source and target datasets. Interestingly, Ref. [BC19] has shown that problem (5.42)
has the same solution when considering many other distances between symmetric
positive definite matrices, such as the Frobenius distance, the Bures-Wasserstein
distance, and the Bhattacharyya divergence.

Determining U from data. Until now, we have assumed that T¸ = T . In practice,
however, we have T¸ µ T , so the estimation of the class means of the target dataset
are only approximations of the real class means of the statistical distribution. Because
of this, instead of giving preference to a particular noisy estimate of a class mean
to determine U via (4.47), we prefer to obtain it as a solution to the following
optimization problem on the manifold of orthogonal matrices:

minimize
UT U=In

Lÿ

¸=1
”

2
R

1
GT

¸ , UGS
¸ UT

2
.

(4.49)

We solve (4.49) using a special form of the steepest-descent algorithm adapted for
optimization procedures on manifolds, as described in [Abs+09]. To do so, we first
rewrite each term of the cost function in (4.49) as

L(U) =

Lÿ

¸=1
f¸(U) with f¸(U) = ”

2
R

!
GT

¸ , UGS
¸ UT "

(4.50)
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and express its Jacobian as

DU L(U) =

Lÿ

¸=1
DU f¸(U) , (4.51)

with
DU f¸(U) = 4 log

1
GT

¸ UGS
¸ UT

2
U , (4.52)

where the derivative of the AIRM distance was obtained from [Moa05]. On each
iteration of the gradient descent procedure, the vector DU f¸(U) is projected onto
the tangent space of the manifold of orthogonal matrices (see [Abs+09] for de-
tails). We used the pymanopt package [Tow+16] for carrying out the optimization
procedure.

It is worth noting that in some cases the numerical minimization of problem (4.49)
via gradient descent may be computationally costly, specially when the SPD matrices
involved in the operations are big. An alternative solution is to rewrite (4.49) using
the Frobenius distance instead of ”R, as in

minimize
UT U=In

Lÿ

¸=1
ÎGT

¸ ≠ UGS
¸ UT Î2

.

(4.53)

In practice, we have observed that the classification performance of pipelines using
a rotation matrix estimated via the optimization problem in (4.53) is equivalent to
that when we use a rotation matrix from (4.49). Intuitively, we believe that this
comes from the fact that, as mentioned before, the solution for (4.49) and (4.53)
are the same when L = 1.

4.3.4 Summary of the RPA method

Algorithm 2 recapitulates the steps of a classification task using RPA for matching
the statistical distributions of the source and target datasets.

4.3.5 A statistical interpretation of the steps in RPA

We give now an interpretation of the steps of RPA in terms of the statistical distri-
butions of the datasets. Without loss of generality, we will consider that ‡

T
= ‡

S ,
since the dispersions can always be made equal prior to the transformations. We will
also assume that T¸ = T for simplicity of exposition.

The relations in (4.30) and (4.31) define which landmark data points we should
match in the RPA procedure, an approach that is justified from the fact that we
parametrize the statistics of S and T using their geometric means, as described
in Section 4.3.1. From this observation, one can also conclude that a simple approach
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Algorithm 2: Transfer Learning via RPA
Input: S, T¸ and Tu as defined in (4.11) and (4.15)
Output: accuracy of classification on Tu

1 Estimate MS and MT from the data in S and T¸

2 Re-center the matrices in S and T using (4.19) and (4.20), and form new datasets

S(rct) and T (rct)
= T (rct)

¸ fi T (rct)
u

3 Calculate the ratio of dispersions in S(rct) and T (rct)
¸ as in (4.24) and use it to form

the new datasets
S(str) and T (str)

= T (str)
¸ fi T (str)

u

with matrices as described in (4.23)

4 Estimate matrices MS
¸ and MT

¸ for ¸ œ {1, . . . , L} and obtain the orthogonal matrix
U as a solution from (4.49)

5 Rotate the matrices from T (str) as in (4.28) and obtain

S(RPA) and T (RPA)
= T (RPA)

¸ fi T (RPA)
u

6 Form the training dataset for a classifier with

Dtrain = S(RPA) fi T (RPA)
¸

and get the accuracy of classification on the data points from the test dataset

Dtest = T (RPA)
u
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for matching the statistical distributions of S and T would be to estimate matrix A

from the available data points and apply A≠1 to all the elements of T , as in

CT
i ‘æ A≠1CS

i A≠T
. (4.54)

From (4.36) we can write

A = (MT
)

1/2U(MS
)

≠1/2
, (4.55)

where MS and MT are estimated directly from the dataset, and the orthogonal
matrix U is determined as discussed in Section 4.3.3. Applying A≠1 to the matrices
in T , we get

A≠1CT
i A≠T

=

!
MS"1/2 Ë

UT
1!

MT "≠1/2
CT

i

!
MT "≠1/22

U
È !

MT "1/2
, (4.56)

which describes the same steps of RPA: re-center to identity, stretch with s = 1 (since
dispersions are the same) and rotate, followed by a translation of the mean back to
MS . From the expressions above, we see that the sequence of operations in RPA are
nicely justified by the assumptions of our statistical model for the data points.

4.3.6 Relation with optimal transport

The transformations defined by RPA are the same for all data points (re-center,
stretch, and rotation) and they minimize the distance W between the statistical
distributions of the source and target datasets. As mentioned before, these operations
are justified by the way that we parametrize the statistics of the two datasets, that is,
as mixtures of Riemannian Gaussians in the SPD manifold.

Remember that, in the case of Euclidean data points, the transport plan that mini-
mizes the Monge problem for two multivariate Gaussian distributions N (µS , �S)

and N (µT , �T ) is given by

TSæT : Rd æ Rd

x æ A(x ≠ µS) + µT ,

(4.57)

where
A = �

≠1/2
S (�

1/2
S �T �

1/2
S )

1/2
�

≠1/2
S . (4.58)

This can be interpreted as a re-centering of points in S to the origin (subtraction of
µS), a rotation and stretching (action of the matrix A) and a re-centering to the
new mean (adding µT ). We see, then, that the three rigid transformations used
in Procrustes analysis in the Euclidean space are in fact the solution to an optimal
transport problem between two Gaussian distributions. An extension for mixtures
of Gaussian distributions is a non-trivial problem and has been studied recently in
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the literature [Che+19], but no explicit solution for the transport plan between two
such distributions has been determined. We conjecture that the three geometric
operations done in RPA may be seen as analogous to those that solve the optimal
transport problem for Gaussian distributions in the Euclidean space but for statistical
distributions defined in the SPD manifold.

Unfortunately, optimal transport between statistical distributions defined in the
SPD manifold has not gained much interest in the literature yet, so confirming (or
disproving) our claim remains an open question. We refer the interested reader
to [McC01], where it was shown that a diffeomorphism (i.e., a bijective map)
connecting two probability distributions, ‹S and ‹T , defined in a general Riemannian
manifold M (e.g., the SPD manifold) may be factored as the composition of a volume-
preserving map (e.g., an unitary matrix in the SPD manifold) and a map which
is the transport plan solving the optimal transport (OT) problem relating ‹S and
‹T ; the cost function of this OT problem is the square of the geodesic distance in
M. Recently, [Yai+19] has used this result to justify their extension of the domain
adaptation via optimal transport proposed in [Cou+17] to the case when the data
points are defined in a SPD manifold.

4.3.7 A time series interpretation of the steps in RPA

A relevant application of the Riemannian geometric framework of SPD matrices
is when the data points parametrize the statistics of multivariate time series, as
described in Chapter 2. In this case, each SPD matrix C œ P(d) represents the
spatial covariance matrix of a time series x(n) œ Rd and the operations on the SPD
manifold can be interpreted as transformations over the dimensions of the time
series. We will now examine what are the interpretations of the steps in RPA under
this point of view. As in Section 4.3.5, we assume that ‡

S
= ‡

T .

We consider two zero-mean multivariate time series, xS
(t) and xT

(t), which we say
are ‘representative’ examples of datasets S and T in the sense that

MS
= E

Ë
xS

(t)xS
(t)

T
È

and MT
= E

Ë
xT

(t)xT
(t)

T
È

. (4.59)

Rewriting relation (4.30) in terms of these time series we have that

E
Ë
xT

(t)xT
(t)

T
È

= A E
Ë
xS

(t)xS
(t)

T
È

AT
, (4.60)

E
Ë
xT

(t)xT
(t)

T
È

= E
Ë
AxS

(t)

!
AxS

(t)

"T
È

, (4.61)

and, by inspection,
xT

(t) = AxS
(t) . (4.62)
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This means that RPA assumes xT
(t) and xS

(t) may be linearly related via a mixing
matrix A. Expanding the expression for A with (4.55), we also observe that

xT
(t) = (MT

)

1/2U(MS
)

≠1/2xS
(t) , (4.63)

which can be interpreted as a whitening step applied to xS
(t), followed by the action

of an orthogonal matrix (which could, for instance, be a permutation matrix that
reorders the dimensions of the time series on one dataset so that they are aligned
with the dimensions of another dataset) and, then, a de-whitening step to make the
new time series have covariance matrix MT .

4.3.8 RPA as an optimization problem

As mentioned before (see Section 4.3.1), the goal of RPA is to minimize the W
distance between the statistical distributions of the source and target datasets. Sup-
posing that the two datasets have the same dispersion (‡

S
= ‡

T ), one can rewrite
this objective function as an optimization problem

min

BœGLd(R)

3
”

2
R(MS

, BMT BT
) +

Lÿ

¸=1
”

2
R(MS

¸ , BMT
¸ BT

)

4
, (4.64)

where GLd(R) is the set of invertible d ◊ d real matrices. The solution Bı of (4.64)
is then used to transform the data points in the target dataset, T , and make their
statistical distribution similar to that of the source dataset, S.

The usual approach for solving (4.3.5) would be to use some gradient descent
technique to minimize its cost function. However, by assuming that there exists
some matrix A œ GLd(R) such that

MT
= A MS AT

,

MT
¸ = A MS

¸ AT
,

(4.65)

for ¸ œ {1, . . . , L}, the operations carried out by RPA end up directly determining
the matrix Bı

= A≠1 that makes the cost function in (4.64) equal to zero.

Note, however, that if the assumptions in (4.65) are not valid, the set of transfor-
mations in RPA might be sub-optimal and one could prefer to solve (4.64) via a
gradient descent procedure. Furthermore, if one wishes to impose some structure
on B, adding constraints to (4.64) would be the way to do so.
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4.4 Numerical illustrations: simulated data
In this section, we compare the performance of several pipelines for doing classifica-
tion using data from a source and a target dataset consisting of SPD matrices. We
investigate whether this kind of classification can be improved when using the RPA
method for matching the statistics of the datasets. Each pipeline trains a classifier on
a training dataset composed of different kinds of transformed data points (coming
from the source dataset and, in a lesser extent, from the target dataset). Then, the
trained classifier is used to classify unlabeled data points from the target dataset.
The performance of a pipeline is defined as being the area under the ROC curve
(AUC score) for the classification task on the unlabeled data points from the target
dataset.

4.4.1 The dataset

We simulated data for a source and a target dataset containing 2 ◊ 2 SPD matrices
belonging to two classes. Data points from the source dataset were generated as
follows:

(1) Generate a random SPD matrix MS
1 œ P(2) and define it to be the geometric

mean of class 1 in dataset S;

(2) Generate Nt = 100 random SPD matrices around MS
1 by mapping small ran-

dom tangent vectors (norm fixed to Á = 10) from TMS
1
P(2) back to the SPD

manifold. We associate to each of these matrices the label ¸

S
i = 1;

(3) Generate a random SPD matrix MS
2 whose distance to MS

1 is ÷ = 5. For this,
we generate a random SPD matrix and move it over a geodesic path starting at
MS

1 , until the distance between the matrices is the one we desire. This is the
geometric mean for class two in S;

(4) Generate Nt = 100 random SPD matrices around MS
2 by mapping small ran-

dom tangent vectors (norm fixed to Á = 10) from TMS
2
P(2) back to the SPD

manifold. These matrices have label ¸

S
i = 2 associated to them.

We generated the data points for the target dataset (T ) exactly as for the source
dataset, but added an extra translation step that ensured that the geometric mean
MS of all the matrices from S are at a distance ’ = 8 from the geometric mean MT

of T .

4.4.2 Illustration of the steps of RPA

We first used the algorithm of diffusion maps [CL06] explained in Chapter 3 to obtain
new representations of our data points using only two axis. Figure 4.3 illustrates
the distribution of data points after each step of RPA applied to the source and

98 Chapter 4 Transfer learning



(A)

(C)

(B)

(D)

original recentering

stretching rotation

Fig. 4.3: Representation of the sequence of operations of RPA applied to a dataset simulated
as described in Section 4.4.1 (better visualized with colors). Each point on the
scatter plot represents a SPD matrix and the axes for the figures were obtained
using Diffusion Maps [LL06]. The triangles represent the target dataset whereas
the circles are the source dataset. Each color represents a class and the black star
is the Identity matrix. (A) Distribution of the SPD matrices in the source and target
datasets as they are originally available and (B) after re-centering their geometric
means to the Identity. In (C) the distribution after the stretching operation and
(D) after the rotation.

target datasets. In this example, we consider that we know the labels of all matrices
from the target dataset, i.e., T = T¸. Figure 4.3A shows the point clouds of each
dataset, which are clearly unmatched. After re-centering (Figure 4.3B), stretching
(Figure 4.3C) and rotating (Figure 4.3D), the statistical distributions get matched
and the same classifier can be used on both datasets.

4.4.3 Classification accuracy after RPA

We compared the classification accuracy on the simulated dataset for six different
pipelines. In each of them, the training (Dtrain) and testing (Dtest) datasets were
different but we always used the minimum distance to mean (MDM) classifier
(see Chapter 2 for details on this classifier):

• direct (DCT): directly use the points from the source dataset to do classifica-
tion on the unlabeled points from the target dataset (i.e., no transformation
whatsoever),

DDCT
train = S fi T¸ and DDCT

test = Tu . (4.66)
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• re-centering (RCT): transfer learning considering only the data points of each
dataset re-centered to Id. This corresponds to step (1) in the RPA procedure
and is similar to what has been done in [Zan+17], with

DRCT
train = S(rct) fi T (rct)

¸ and DRCT
test = T (rct)

u . (4.67)

• parallel transport (PRL): transfer learning using the method proposed in [Yai+19].
The procedure is analogous to RCT, but with the SPD matrices being re-
centered to the halfway point along the geodesic path linking the geometric
means of each dataset instead of the Identity matrix.

• optimal transport (OPT): transfer learning using the optimal transport ap-
proach proposed in [Cou+17] and adapted to take into account the fact that
we have data points defined in the SPD manifold instead of Euclidean vectors.
See [Yai+19] for details.

• RPA: transform matrices using RPA as described in Section 4.3.3,

DRPA
train = S(RPA) fi T (RPA)

¸ and DRPA
test = T (RPA)

¸ . (4.68)

• calibration (CLB): classification using only the labeled trials available in the
target dataset, with no help from the data in the source dataset,

DCLB
train = T¸ and DCLB

test = Tu . (4.69)

We assessed the performance of each method via a randomized cross-validation
procedure consisting of:

(1) Select 2n random elements from T (n from each class). These data points
define T¸.

(2) Define Tu containing the other 200 ≠ 2n elements of T .

(3) Obtain the classification score of MDM for this particular partition of T .

(4) Repeat the above steps ten times and get the mean score for each method.

The results in Figure 4.4 show that the DCT pipeline gives classification results at
chance level (0.5) independently of the number of matrices available in T¸. We
also observe that simply using RCT already greatly improves classification accuracy,
as reported in [Zan+17]. Our RPA method further improves the results. We also
observe that PRL has virtually the same performance as RCT, which is not surprising,
since they are both unsupervised methods based on the idea of re-centering the
datasets to a common point in the SPD manifold. The results with OPT are equivalent
to RCT and PRL as well. The accuracy with CLB improves when the number of
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Fig. 4.4: Accuracy of the classification of unlabeled data points from the target dataset for
different methods of transfer learning. The curve shows how the accuracy for each
method evolves when the number of data points in T¸ increases. The generation
of the data points is explained in Section 4.4.1.

available labels in the target dataset increases, eventually converging to the same
performance as RPA. This result is not surprising, because with a sufficient amount
of data in T¸ it is already possible to train a good classifier without the need of doing
transfer learning.

Our observations in this session are in accordance with the theoretical results
of [BD+09], which says that “if there is enough target data, then no source data are
needed (...). This is because the possible reduction in error due to additional source
data is always less than the increase in error caused by the source data being too far
from the target data". Such a result points to the existence of a certain saturation
effect in the quality of transfer learning when too many trials are available in the
target session, a behavior that could be exploited to decide when to stop transferring
information from previous experimental sessions.

4.5 Numerical illustrations: real data
In this section, we consider the problem of cross-subject classification with data
from BCI experiments. We use the Riemannian geometric framework presented
in Chapter 2 to parametrize the EEG epochs via symmetric positive definite matrices.
Each pair of source-target datasets comes from a different pair of subjects and the
goal is to assess whether the transformations with RPA can improve this kind of
classification. As usual, the BCI data is in the form of d-dimensional multivariate
time-series, where each dimension represents an electrode. Each experimental trial
i lasts a few seconds and is associated to a matrix Xi œ Rd◊T , where T is the
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Tab. 4.1: Main features describing each dataset used in this work.

dataset paradigm subjects classes trials per class reference

PhysionetMI MI 109 2 22 [Sch+04]
Cho2017 MI 50 2 100 [Cho+17]
SSVEP SSVEP 12 3 8 [Kal+16]
P300 P300 24 2 72 and 360 [Con+11]

BNCI2014001 MI 9 4 72 [Tan+12]
BNCI2014002 MI 15 2 80 [Ste+16]
BNCI2015001 MI 13 2 100 [Fal+12]

MunichMI MI 11 2 150 [GW+09]

number of time samples defining the trial. To every trial we associate a SPD matrix
Ci describing its multivariate statistics and a label ¸i indicating what was the task
performed during the trial. The dataset for each subject is composed of a set of
couples (Ci, ¸i). Our investigation focus on the classification accuracy of a MDM
classifier that is trained with the data from a source subject plus a few labeled points
from a target subject and is used to classify the unlabeled signals from the target
subject. We compare the performance of such classifier using the different transfer
learning strategies described in Section 4.4.3.

4.5.1 The datasets

Our investigations were carried out on eight datasets covering three different BCI
paradigms. All motor imagery (MI) and P300 datasets are publicly available and
were downloaded and pre-processed using the MOABB framework [JB18]. The SSVEP
dataset was the same as the one presented in [Kal+16]. See Table 4.1 for a brief
overview of each dataset’s features. We estimated the SPD matrices parametrizing
the EEG epochs of each BCI paradigm differently, as discussed in Chapter 2: for MI
datasets, the SPD matrices were the spatial covariance matrices of the multivariate
EEG recordings. The signals of each trial in the SSVEP paradigm were filtered
using bandpass filters around certain frequencies of interest and its SPD matrices
were diagonal blocks concatenating the spatial covariance matrices of the filtered
signals [Con13]. For the P300, the SPD matrix of each trial was obtained using the
approach from [BC14], where one estimates a special form of covariance matrix that
captures the influence of event-related potentials in each trial.

4.5.2 Comparing cross-subject classification accuracies

We first compared the performance of a MDM classifier considering all pairwise
combinations of source and target subjects. The classification scores were assessed
using the same cross-validation scheme explained in Section 4.4.3.
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Seriation. We begin with a qualitative analysis of the cross-subject classification
scores using a tool from combinatorial data analysis called seriation [Lii10]. This
procedure sorts the lines and columns of a data matrix in order to make relevant
patterns appear. In our case, the matrix S to be re-ordered contains at its (i, j)

coordinate the accuracy of the classification using subject i as target and subject j as
source. Suppose that S œ RNT ◊NS , where NT is the number of target subjects and
NS is the number of source subjets. We proceed as follows:

(1) For each row i, obtain the sum along the columns of S, denoted by

Si,: =

NSÿ

j=1
Si,j . (4.70)

(2) Sort the rows of S in decreasing order according to Si,:. We obtain a new
row-sorted matrix Sr¿ where

Sr¿
1,: Ø Sr¿

2,: > · · · Ø Sr¿
KT ,: . (4.71)

(3) Obtain the sum along the rows for each column j of Sr¿, denoted by

Sr¿
:,j =

NTÿ

i=1
Si,j . (4.72)

(4) Sort the columns of Sr¿ in decreasing order according to Sr¿
:,j . We obtain a

new matrix S¿.

The output of this procedure is a new representation where the pairs of source-target
subjects with the best accuracy are located at the top-left region of the matrix, while
the worst pairs are at the bottom-right region. Figure 4.5 shows the results of this
seriation procedure on the PhysionetMI dataset for two sizes of T¸ (the number
of labeled target trials) and three different pipelines: DCT, RCT, and RPA. We
observe that with RCT and RPA there are more pairs of subjects with high values of
cross-subject classification than with DCT. In particular, for RCT and RPA we note
that there are a few target subjects that have very good accuracy on classification
for almost all possible source subjects, a feature that is possibly related to the
performance of each target subject to classify its own trials (intra-subject accuracy).
This can been interpreted as: subjects that are “good" for classifying their own data
should be “good" for receiving information from other source subjects. We also
observe a clear improvement in the average value of the cross-subject classification
accuracies when more points are available in T¸.

Average performance. Our next analysis consists in calculating the mean over all
cross-subject AUC’s (Area Under the ROC Curve) for each transfer learning pipeline
on each dataset. We used these values as quantitative measures for assessing whether
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Fig. 4.5: Accuracies of the cross-subject classification for three different transfer learning
procedures on the PhysionetMI database. The rows and columns of each subplot
were reordered using the seriation procedure explained in the text. The colormap
shows white for accuracies of 0.5 or less and black when it is 1.0. The compared
methods are described in Section 4.4.3 and we consider the cases when there are
one and ten labeled matrices in T¸.
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Tab. 4.2: Mean values of the cross-subject AUC (Area Under the ROC Curve) for five
pipelines (all described in Section 4.4.3) on eight different datasets. Parameter
N is the number of training points available on the target dataset on each situa-
tion. The best method in each instance is written in bold. The pipelines under
comparison were presented in Section 4.4.3.

MEAN	AUC

Ph
ys
io
ne
tM

I

N DCT RCT PRL OPT RPA
1 0.54 0.61 0.61 0.59 0.56
5 0.55 0.65 0.65 0.60 0.63
10 0.56 0.67 0.67 0.60 0.66
15 0.57 0.68 0.68 0.60 0.67

MEAN	AUC

SS
VE

P

N DCT RCT PRL OPT RPA
1 0.64 0.67 0.66 0.59 0.70
2 0.67 0.71 0.71 0.59 0.75
4 0.72 0.76 0.76 0.59 0.80
6 0.74 0.78 0.78 0.57 0.82

MEAN	AUC

Ch
o2

01
7 N DCT RCT PRL OPT RPA

1 0.54 0.59 0.58 0.57 0.54
5 0.55 0.61 0.61 0.57 0.59
10 0.55 0.62 0.62 0.57 0.62
25 0.57 0.64 0.64 0.58 0.66

P3
00
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6 0.57 0.56 0.56 0.58 0.55
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48 0.74 0.76 0.76 0.69 0.75
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N DCT RCT PRL OPT RPA
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18 0.61 0.76 0.76 0.65 0.76
36 0.64 0.78 0.77 0.66 0.79
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1 0.55 0.63 0.63 0.61 0.55
25 0.58 0.69 0.69 0.62 0.68
50 0.60 0.71 0.71 0.62 0.72
75 0.62 0.72 0.72 0.62 0.73
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one pipeline is better than the other on cross-subject classification. The scores are
shown in Table 4.2. We should mention that only the subjects whose intra-AUC
(i.e., classification of its own data) was above chance level were used in these
calculations. Figure 4.6 shows the results of statistical tests performed on each
pair of methods, allowing for a more substantiated assessment of the performance
of the methods. The statistical tests comparing method A versus method B were
carried out in the following way: (1) For each target subject i, we perform a signed
paired t-test comparing the scores of method A to method B along all source subjects.
Each of these tests yields a statistic Ti and a p-value pi is obtained via permutations
tests [EO07]. (2) We combine the p-values of all the target subjects using Stouffer’s
Z-score method [Zay11]. This yields a single p-value for the comparison between
methods as well as the direction to which the null hypothesis has been rejected (i.e.,
whether method A is better than B or vice-versa). (3) We adjust the p-values of each
pairwise comparison using Holm’s step-down procedure [Hol79] to account for the
multiple comparison problem.

The results in Figure 4.6 indicate that when there are enough points in T¸ (“enough"
depending on each dataset), transforming the data points with RCT, PRL or RPA
is always better than not doing any distribution matching (DCT). We also observe
that most of the time there is no statistical significance between the results with PRL
and RCT, as expected, since they both amount to re-centering the datasets to a new
point in the SPD manifold. For increasing values of N (the number of labeled trials
in the target dataset), RPA gets better in comparison to almost all other methods, as
expected and observed in Figure 4.4 for simulated data. Interestingly, OPT has very
poor results in comparison to all other methods, probably because it does not use
any prior hypothesis on the statistical distributions of the datasets and has to solve a
difficult optimization problem to determine its transportation plan. Lastly, during
our statistical analysis of the results, we have observed that better results on transfer
learning via RPA are often associated to good intra-subject accuracy, since in this
case the estimation of the class means is more stable and thus the rotation matrix U

is better estimated. This explains why for some databases (e.g. PhysionetMI) the
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Fig. 4.6: Results of the statistical tests on each pair of pipelines for all possible values of
N on each dataset as indicated in Table 4.2 (for instance, on Cho2017 we have
N1 = 1, N2 = 5, N3 = 10, and N4 = 25). The color/pattern of the squares indicate
whether there’s no statistical difference between two methods (white squares), if
the Left method is superior to the Right one (L and R in the legend) (dark gray
squares) or the contrary (squares with crossed patterns). All conclusions are with
p < 0.05 corrected via Holm’s adjustement [Hol79]. For instance, we see that
for dataset Cho2017, the method RPA is inferior to RCT when N = 1, but RPA
becomes superior when N = 25 (red circles). Furthermore, for this same dataset,
there’s no statistical difference in the comparison between PRL and RCT for any
N (green circles).

RPA is not necessarily the best method for transfer learning and an unsupervised
approach like RCT has better results.

Conclusions. We compared the performance of the RPA procedure for transfer
learning to that of other distribution-matching methods proposed in [Zan+17;
Yai+19] and [Cou+17]. The results demonstrate that the RPA yields a superior
classification accuracy in both simulated and real datasets. We also observe that, in
general, RPA needs a very small amount of labeled trials from the target dataset to
work well.

4.5.3 An exploratory analysis of cross-subject classification

We have observed in the previous section that although any pair of source–target
subjects can go through a transfer learning procedure, some pairs of subjects yield
better results in classification than others. We investigate now some of the factors
that might explain this variability and how one might try to predict beforehand
(i.e., before doing any matching of the datasets or classifying their data points)
the “compatibility" between the datasets. We consider three classification pipelines:
{DCT, RCT, RPA} (see Section 4.4.3 for a description).

Our exploratory analysis relies on the estimation of linear models and the study of
the statistical significance of the coefficients estimated for those models. We use
as explanatory factors the intra-scores for the source and target subjects (which is
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the cross-validated classification score using the subject’s dataset as training and
testing dataset), and distance W between the statistical distribution of the two
datasets as defined in (4.13) in Section 4.3.1. We observe that the intra-score for
the target subject plays an important role in determining how well the transfer
learning will work, as opposed to the intra-scores of the source subjects, which plays
no statistically significant role in most cases. We also observe that before doing
any transformation on the data points of the source and target datasets, distance W
between their statistical distributions plays a statistically significant role over the
performance of the transfer learning. However, once the RPA is applied, the distance
W between datasets becomes very small and no longer carries statistical information
to describe the variability of the cross-subject scores. This confirms the relevance of
the RPA method.

Linear regression models. Given a dataset, all cross-subject transfer learning
performance is summarized in a matrix S(m), where the S

(m)
ij element contains the

accuracy of the classification with method m œ {DCT, RCT, RPA} using subject i

as target and subject j as source. We use linear regression models to describe the
variability on the values of S

(m)
ij and estimate a different linear model L(m)

i for each
target subject i and method m. We do this because the cross-subject scores for two
different target subjects and the same source subject are statistically dependent,
which would undermine the estimation of a full linear model mixing all scores.
Moreover, the results after the RPA method are related to those for the RCT one,
since the latter includes the former as a processing step.

We define the linear model L(m)
i as:

S
(m)
ij = —

(m)
1,i Si + —

(m)
2,i Sj + —

(m)
3,i ÷

(m)
ij + ‘

(m)
i , (4.73)

where

• Si (Sj) is the intra classification score of target (source) subject i (j), obtained
via cross-validation with training and testing datasets coming from the same
subject. Note that since each model L(m)

i is estimated for one fixed target
subject i, Si is a constant in (4.73) and acts as a scaling for the intercept; thus,
it is not considered as an independent variable in the statistical analysis.

• Factor ÷

(m)
ij is the distance W between the statistical distributions of datasets

S and T after the operations of method m.

• Variable ‘

(m)
i stands for all residual factors that are not explained by the linear

regression model.
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Once the linear models are all estimated, we perform a set of hypothesis tests for each
target subject i. The goal is to assess the statistical significance of the coefficients of
each model. The first kind of test is a F -test for the omnibus null hypothesis:

H0 : —

(m)
2,i = —

(m)
3,i = 0 ,

H1 : —

(m)
k,i ”= 0 for at least one k in {2, 3} .

(4.74)

This is a standard test used for inspecting whether the set of independent variables
of a linear regression model, Sj and ÷ij in (4.73), is statistically significant for
explaining at least part of the variability of the dependent variable, S

(m)
ij in (4.73).

When the null hypothesis is rejected, we say that there is enough statistical evidence
for considering that the slope of at least one of the independent variables is different
than zero. In this case, we perform t-tests for checking which explanatory variable
in L(m)

i is statistically significant. We put:

H0 : —

(m)
¸,i = 0 ,

H1 : —

(m)
¸,i ”= 0 ,

(4.75)

for ¸ œ {2, 3}. When the null hypothesis of (4.75) is rejected for —

(m)
¸,i , we say that

there is statistical evidence for considering it different than zero and so it contributes
for explaining the variability of the dependent variable S

(m)
ij .

The statistical procedure explained above yields two sets of p-values for each method
m œ {DCT, RCT, RPA}. The first set contains the p-values for each F -test on each
target subject i, whereas the second set gathers the p-values of the t-tests. The results
presented next are based on the analysis of these sets of p-values and how they are
distributed along different source subjects for each method.

Dataset. We carried out our analysis on dataset Cho2017 presented in Table 4.1.
The dataset contains recordings of subjects performing BCI trials following a Motor
Imagery (MI) paradigm with 64 EEG electrodes (sampling frequency 512 Hz) from
52 subjects, each one performing 200 trials (100 of each class). We filtered the EEG
signals in the 8-30 Hz band and each trial was considered as a segment from 0.5 to
2.5 seconds after the trial onset. We used the approach described in Chapter 2 for
parametrizing BCI recordings under the MI paradigm: each epoch is associated to its
spatial covariance matrix. Not all subjects in Cho2017 have data which can be well
discriminated, so we kept only those whose the intra-score in terms of AUC (Area
Under the ROC-curve) is above chance level; this keeps 40 subjects out of the 52 in
total.

Cross-subject classification accuracy. Figure 4.7 shows the output of the seriation
procedure (described in Section 4.5.2) on the cross-subject transfer learning scores
for the Cho2017 dataset on three classification methods: DCT, RCT, and RPA. We
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Fig. 4.7: Accuracies of the cross-subject classification for three different transfer learning
procedures on the Cho2017 database. The rows and columns of each subplot were
reordered using the seriation procedure explained in Section 4.5.2. The colormap
varies from white (accuracy 0.5) to black (accuracy 1.0).
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Fig. 4.8: Normalized histograms of the cross-subject transfer learning scores for the three
methods described in the text. The vertical dashed line indicates chance level.

observe that, with RCT and RPA, there are more pairs of subjects with high values
of cross-subject classification than with DCT. In particular, we note that for RCT and
RPA there are many target subjects for which the classification accuracy is high for
almost all possible source subjects. To investigate the possible explanations for this
behavior, we perform a Spearman correlation test between the average cross-subject
score for each target (given by the average value along the rows of matrix S) and
the intra-subject accuracy of the corresponding target subject. For the RPA method,
we obtain a correlation of 0.58 (p < 10

≠3), whereas for RCT it is 0.44 (p < 10

≠2)
and DCT is 0.45 (p < 10

≠2). Similarly to what was obtained in Section 4.5.2 for
the PhysionetMI dataset, we interpret these results as: subjects that are “good”
for classifying their own data can better receive information from other source
subjects. We also provide a quantitative analysis of the results. Figure 4.8 portrays
the histograms of all cross-subject transfer learning scores S

(m)
ij (rows and columns

confounded) for each method and their means are displayed in Table 4.3. These
results show that the transformations over the source and target datasets do improve
the cross-subject classification scores on the average.
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Tab. 4.3: Average values of the cross-subject transfer learning scores and the W distance
between source and target datasets for each method.

Method (÷ij)avg (Sij)avg

DCT 0.63 0.53
RCT 0.01 0.58
RPA 0.01 0.76

Changes in W after each RPA step. We evaluate how the distance W between each
pair of source–target subjects changes after the re-centering step and the full RPA
procedure. Table 4.3 gives the average values of W for each method and shows that
there is a clear decrease after each transformation. This result is not surprising, since
each step of the RPA procedure was conceived exactly to make the distributions of S
and T closer in some sense and the W allows for a quantitative assessement of it.

Study of the linear models Li. After exploring the grand averages of the cross-
subject transfer learning scores and how they relate to a few explanatory factors, we
analysed the linear models Li defined in (4.73) and estimated on each target subject
i for the three methods of interest: DCT, RCT, and RPA.

We first plotted the p-values of the F -test for each model sorted in ascending order.
Under the omnibus null hypothesis for target subjects (that is, when the coefficients
of the linear model are all zero), the p-values follow an uniform distribution and,
thus, when sorted they will lie on a straight line [CB01]. By analysing the size of the
p-values (i.e., inspecting whether it is close to zero and, therefore, the null hypothesis
should be rejected) on the leftmost plot in Figure 4.9, we see that for almost all
subjects the variability of the cross-subject performance is well explained by the
linear model estimated for the DCT method and, in a lesser extent, for the RCT
method. It is worth remembering that the statistical significance of the coefficient
for the intercept, and, therefore, the influence of the intra-score Si on describing
the values of Sij , is not assessed via the F -test. This is why we have calculated the
Spearman correlation between the row-averaged Sij and the Si above in the text.

The distribution of the p-values in the center plot of Figure 4.9 shows that —2,i (the
coefficient associated to the source scores) has no statistical significance in the linear
model Li for any of the target subjects in the DCT and RPA methods. However, for
RCT it does seem to play a role for some target subjects. What we can conclude from
these observations is that RPA is able to make the cross-subject transfer learning
score independent of the choice of source subject (at least in terms of its intra score).
As a consequence, it makes it easier to find “good” source subjects for each target
subject, as it was already observed during our qualitative analysis of Figure 4.7.
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Fig. 4.9: p-values of different statistical tests over the linear models Li (each one associated
to a target subject i). Each circle represents the p-value of a given test on a given
target subject and the x-axis has been rearranged so that all the p-values are in
increasing order. The leftmost plot represents the results of the F -test of the full
linear model Li, whereas the center plot illustrates the p-values for the t-test of
the coefficient —2,i in Li (related to the intra-score of the source subject), and
the rightmost plot displays the p-values for the t-test on the coefficient —3,i in Li

(related to distance W between the statistical distributions of the source and target
datasets).

Finally, the distribution of the p-values of —3,i on the rightmost plot in Figure 4.9
shows that the distance W between source and target datasets plays a role in
describing the cross-subject transfer learning scores only for the DCT method. This
result is comforting, since it brings evidence to the fact that the operations in
the RPA procedure are capable of factoring out most of the differences between
the statistical distributions of S and T . As a consequence, we may say that any
further improvement that one might want to do on the transfer learning procedure
should take into account other aspects of the mismatch between datasets besides the
distance W between them.

Conclusions. In this section, we have investigated the influence of different factors
on the variability of cross-subject transfer learning scores. Our goal has been to assess
whether some basic explanatory variables, such as the intra-score of the source and
target subjects, play any role for determining the scores obtained in the cross-subject
classification. A simple, and yet important, application of this study is being able to
predict beforehand (i.e., before doing all transformations and then classifying the
trials) which source subject would be the most appropriate for doing classification
on a given target subject. It is our opinion that investigating the factors determining
the sucess of transfer learning is instrumental for devising new and more powerful
strategies for doing it. The present study is a little step in this direction. Future
works shall include the search for richer models for describing the cross-subject
transfer learning scores. Some approaches would be to consider non-linear relations
between the explanatory variables as well as adding new factors related to other
features of the source and target subjects.
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Fig. 4.10: Scatter plots comparing the accuracies of the cross-subject classification on the
MunichMI dataset for the RPA and CLB pipelines. We consider two sizes for T¸.
The percentage numbers indicate the proportion of dots above or below the
diagonal line.

4.5.4 The role of the size of T
¸

As pointed out in the simulation results from Section 4.4.3, when the size of T¸

increases, using transfer learning is no longer relevant, since one may already have
enough data to build a good classifier for the target subject. To investigate this
behavior on our real datasets, we compared the cross-subject classification accuracy
of RPA to that of CLB (calibration, which is when one uses only the labeled points in
T¸ for training a classifier).

Figure 4.10 shows a scatter plot comparing the classification accuracies on the
MunichMI dataset. We see that as T¸ grows, there are more pairs of subjects for
which using the CLB pipeline on the target subject is better than doing transfer
learning via RPA (28% to 34% of all the pairs of subjects). However, the location
of the cloud of points in the figure indicates that the transfer learning with RPA is
still superior to the CLB method for most pairs of subjects. We used a one-sided
paired t-test with random data permutation [EO07] to compare the accuracies of
RPA and CLB on each dataset for different sizes of the T¸. The null hypothesis of
equivalency between the two methods was rejected (p < 0.01) on almost all tests,
the only exception being for those on the BNCI2014001 dataset; for the tests where
H0 was rejected, we observed a superiority of RPA in comparison to CLB.

4.5.5 Combining information from multiple subjects

In this sub-section, we investigate how the matching of statistical distributions via
RPA affects the performance of two baseline methods for gathering information from
the data of multiple subjects: pooling and ensembling. The MDM classification for
each target subject is done using information coming from all other source subjects
available in the database. Following the same approach as in previous sections, we
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only considered source subjects featuring an intra-subject accuracy above chance
level, i.e., subjects in which it is meaningful to use transfer learning. The experiments
were done on PhysionetMI with |T¸| = 15 labeled trials available for each target
subject and Cho2017 with |T¸| = 25.

Pooling. The pooling strategy consists of gathering for each target subject the data
from all other source subjects into one big dataset. Then, a classifier is trained on
the pooled dataset and used to infer the trials from the target subject. We compared
the performance of a MDM classifier when the source subjects were pooled with no
transformation (DCT) to when the statistical distributions of each source subject
were matched to that from the target subject using RCT or RPA (PRL is not fit for
pooling, since the matrices are not all re-centered to the same place in the SPD
manifold). The boxplots in Figure 4.11 show the distributions of the classification
scores of each of the target subjects. Using pairwise one-sided paired t-test with
random permutations, the null hypothesis of equivalency between the scores of DCT,
RCT, and RPA were all rejected with p < 10

≠6 (adjusted for multiple comparisons).
The results show a clear improvement in the average score for the pooling strategy
when using a method for matching the statistics of the source and target datasets,
with differences of at least 15% between RPA and DCT for both datasets.

Ensembling. Our second analysis considered an ensembling strategy, where the
trials of each target subject were classified using a majority voting scheme. These
votes came from MDM classifiers trained on all other source subjects and were
weighted equally. The results in Figure 4.11 show the scores with each method
(including the PRL approach this time). To compare the scores of each method,
we used pairwise one-sided paired t-tests with random permutations (corrected
for multiple comparisons). The results of the statistical tests indicate that the
ensembling strategy with RPA is superior as compared to DCT in the PhysionetMI
dataset (p < 0.05) but they are equivalent for the Cho2017 dataset (p = 0.23). The
RCT method is superior to DCT for both datasets (p < 0.01) whereas the scores
with PRL are equivalent to DCT for both datasets. We see then that the ensembling
strategy can also be improved when adding an extra step for matching the statistics
of the datasets of each pair of source-target subjects.

Conclusions. Our tests have shown that one can achieve significant improvement in
classification when matching the statistics of the datasets for every pair of subjects.
The results with the pooling strategy show a significant improvement in the average
performance for all subjects, whereas with ensembling the improvement is smaller
but still present. Note that we did not make any selection or weighting on the
contribution of each source subject for the classification on the target subject. How-
ever, works like [Way+16] and [Jay+15] have demonstrated clear improvements
in cross-subject classification when this is done. We believe that, after the results
observed in this sub-section, further improvements to the referred methods could
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Fig. 4.11: Box plots with the distribution of the classification scores for the ensembling and
pooling strategies for different methods of statistical matching between datasets.
For the Cho2017 dataset we had 25 labeled trials in the target dataset and for the
PhysionetMI there were 15 labeled trials in it.

be attained if an extra step using RPA would be used for matching the statistical
distributions of each pair of source-target subjects.

4.6 Conclusion
In this chapter, we have presented a new method for overcoming the negative effects
of statistical distribution mismatch between datasets consisting of SPD matrices. Our
proposal consists of a sequence of geometrical transformations on the elements of the
datasets with the intention of making the shapes of the point clouds that they describe
in a high-dimensional space as similar as possible. The inspiration for this method
comes from Procrustes analysis, however, here the method has been adapted to the
case where the elements of the datasets live in a Riemannian manifold. A relevant
theoretical contribution is the mathematical framework proposed in Section 4.3.3,
which includes the methods in [Zan+17] and [Yai+19] and extends them, leading
to our RPA method. Such formalism allows for a better understanding of the
intrinsic assumptions regarding the statistics of the data points during the distribution
matching procedure.

When considering the SPD matrices as statistical descriptors of multivariate time
series, the RPA procedure may be interpreted as a method that learns a linear
transformation that mixes the dimensions of the time series in a target dataset so that
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their statistics are aligned with those from a source dataset. The basic assumption
behind this approach is that although the time series in two datasets may have
different statistical distributions, if they are associated to the same phenomenon (e.g.
the same cognitive tasks in a BCI experiment), then there should exist commonalities
that could be exploited for relating the two datasets.

On a more practical note, an important aspect of RPA is that it exploits the availability
of supervised information in the source session as well as the sequential nature of
the trials in the target session. It should be noted, however, that when no labels
are available for the target session, a re-centering of data points based solely on the
geometric means of each dataset (which does not rely on any supervised information)
already greatly improves the cross-session and cross-subject classification, as first
noted in [Zan+17] and observed in the results of Section 4.4 and Section 4.5 (the
RCT pipeline). This would be the case, for instance, in BCI applications for people
with extreme motor disability, where the labeling of classes is very challenging. In
this kind of situation, one may still perform the re-centering and stretching steps
of the RPA method for matching the statistical distributions, turning the transfer
learning procedure into an unsupervised one. Another relevant practical aspect to
mention is that, when applied to brain-computer interfaces, RPA provides a way of
thriving from information available in previous recording sessions and, therefore,
reducing energy consumption and calibration time spent by a subject in a new
session; this has a direct positive impact over the cost and feasibility of new BCI
systems.

We have assessed the superiority of the RPA method on several publicly available
BCI datasets and have used a heterogeneous panel of statistical tools to analyze the
results. Also, we have included in our study other recent contributions from the
literature, leading to a comprehensive comparison of the performance of state-of-the-
art methods. We hope that the breath of the analysis performed here will be useful
as a reference for future works related to transfer learning on the SPD manifold. In
order to foster reproducible research, complete Python code for the results in this
chapter is available at https://github.com/plcrodrigues/RPA.

Future perspectives shall include an online implementation of the RPA method,
where usual drifts in statistics from data points on the same recording session would
be corrected via distribution matching. An important challenge for such procedure
would be to detect when changes in the statistics occur, as well as when the number
of new trials is already large enough so that no information from data points drawn
from previous statistical distributions are needed. Another interesting line of work
would be to go further in the analysis of Section 4.5.5 by extending the methods
proposed in [Faz+09], [Jay+15], and [Way+16] with a statistical matching step
based on the RPA. Finally, another interesting topic to investigate would be to include
hyper parameters in some of the cost functions of the RPA procedure. For instance,
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the terms in the sum in (4.49) could be balanced by coefficients related to the
‘quality’ of the estimation of the geometric mean of each class on the target dataset.
Another possibility would be to have a coefficient for weighthing the contribution of
the data points from a source dataset as compared to the few labeled points from
the target dataset. These parameters would provide more flexibility to the RPA and
possibly yield better results.
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List of notations and acronyms of the chapter

EEG electroencephalography
BCI brain-computer interface
HPD Hermitian positive definite
SPD symmetric positive definite
RG Riemannian geometry

AIRM affine-invariant Riemannian metric
MDM minimum distance to mean classifier

DT dimensionality transcending
TL transfer learning

RPA Riemannian Procrustes analysis
RCT re-centering
STR stretching
ROT rotation
DM diffusion maps
MI motor imagery

ROC receiver operating characteristic
AUC area under the ROC curve
Rd set of d-dimensional real vectors
x multivariate time series
C spatial covariance matrix
”E Frobenius distance between two matrices
”R AIRM-induced distance between two HPD matrices

P(d) manifold of d-dimensional HPD matrices
MX geometric mean of the HPD matrices in a set X
KA number of data points in set A
dA dimensionality of data points in set A
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5.1 Introduction
When setting up an experiment for measuring some physical phenomenon, an
experimenter is faced with several practical choices, such as the kind and number
of sensors to adopt, where to place them, which sampling frequency to use, etc.
However, in general, it is reasonable to expect that the physical phenomenon under
study is invariant to such choices and that small changes in the experiment’s setup
should not have drastic consequences in its ability to describe how the system
evolves. For example, having 16 or 17 electrodes placed in similar positions on an
electroencephalography (EEG) experiment does not have much impact regarding
what activity one can observe from a subject’s brain. Similarly, if an electrode
presents a problem during the recording of an EEG epoch, it should be possible to
still use the information from the other sensors without having to discard the whole
epoch.

In traditional multivariate statistical analysis, the dimensionality of the data is always
considered as being the same for all samples. However, in some practical cases, it
might be useful to consider data samples that do not have the same dimensionality
but describe the same phenomenon. For instance, a dataset A may be composed of
three-dimensional samples describing the age, height and weight of the members
of a certain population and another dataset B may have two-dimensional samples
describing the age and the body mass index of people from the same population.
Although the samples of each dataset do not have the same dimensionality (nor the
same features), it is clear that they share some commonalities that could be jointly
exploited to study the statistics of the population that A and B describe.

In this chapter, we propose a method that transforms multivariate time series
recorded with different numbers of electrodes so that they become compatible in
terms of dimensionality and statistical distributions. By the end of the procedure,
the transformed datasets can be jointly used for performing different statistical
tasks. For example, with our method, two datasets containing signals from subjects
executing the same set of cognitive tasks for a brain computer interface (BCI), but
recorded with different electrode configurations, may be used together for improving
the classification performance of EEG epochs on the data from both experiments.
Another application is when one (or some) electrode from the EEG recording presents
a problem and the signal it registers must be rejected. The simplest approach would
be to discard the whole epoch, but our method fills the missing values from the
problematic channel in a way that the epoch can still be considered in the analysis.

Our proposal relies on the Riemannian geometric framework presented in Chapter 2,
in which the statistics of the multivariate time series are parametrized via symmetric
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positive definite (SPD) matrices1. The procedure consists of two steps : firstly, we
transform the dimensionality of the SPD matrices so that they all become data points
defined in the same space with a common dimensionality. Then, we apply geometric
transformations to the data points of these dimension-transformed datasets so that
their statistical distributions become as close as possible according to a distance that
we will define later in the text. In the end, we have datasets that are defined in the
same mathematical space and have compatible statistical distributions; this allows
us to perform different statistical tasks on the SPD data points, such as clustering,
classification, etc. Because it expands the dimensionality of the data points and
surpasses the intrinsic limitations related to dimensionality mismatch, we call our
method dimensionality transcending (DT).

The rest of the chapter goes as follows : Section 5.2 presents a literature review on
methods and ideas related to the problem of dimensionality mismatch in statistical
data analysis. Then, in Section 5.3, we present the dimensionality transcending
method by first formalizing it mathematically and demonstrating some important
properties. In Section 5.4, we describe how to apply DT to two practical problem
involving EEG multivariate recordings and in Section 5.5 we use publicly-available
datasets to illustrate these applications.

5.1.1 Contributions

The content of this chapter is based on (and extends) the works on two papers :

P. L. C. Rodrigues, C. Jutten, and M. Congedo, “Dimensionality tran-
scending: a method for working with datasets defined in different SPD
manifolds", under preparation

and

P. L. C. Rodrigues, M. Congedo, and C. Jutten, “A data imputation method
for matrices in the symmetric positive definite manifold", XXVIIème
colloque GRETSI, Lille, France, Aug. 2019.

Our main contributions in these works have been to propose the dimensionality
transcending method and investigate its performance on a number of practical cases
related to EEG-based brain computer interfaces datasets. It is also worth mentioning
the fact of having used the MOABB framework [JB18] for downloading, processing,
and analysing the EEG data, serving as a practical illustration of this powerful

1Chapter 2 also presents the parametrization of time series via their cross-spectral density matrices,
which are Hermitian positive definite (HPD) matrices. Such description is more complete than
just using the covariance matrices, but we will prefer the exposition with SPD matrices for the
sake of simplicity for the exposition. Note that one could extend the results to a parametrization
via HPD matrices by simply considering each frequency f of the cross-spectral density matrices
independently.
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benchmarking tool. Python code for the dimensionality transcending method is
available in:

http://www.github.com/plcrodrigues/PhD-Code/

5.2 Literature review
In spite of its practical relevance, there have not been many works in the literature
concerning the problem of using datasets with different dimensionalities for per-
forming joint statistical analysis. In fact, the most common approach in such cases is
to simply discard the dimensions of the data samples until they all share the same
features and are defined in the same space. A clear downside of such approach is
that it discards information that may be useful for extracting knowledge from the
datasets. An alternative approach is to expand the data samples until they all have
the same dimensionality and fill the new dimensions of the expanded data points
with values that are adapted to the statistics of the datasets. A similar, but more
general, method is to define transformations that map the data points with different
dimensionalities into a common space, where all transformed samples have the same
dimensionality and can be naturally compared. The method that we propose in this
chapter follows this approach.

Heterogeneous domain adaptation. The branch of machine learning concerned
with problems of statistical and dimensionality mismatch is called heterogeneous
domain adaptation. Most methods proposed in the literature are based on procedures
that learn the best projection of the datasets into a common latent space where
their dimensionalities are the same and their differences in statistical distribution
are minimized. An example is transfer component analysis [Pan+11], a method
that learns a projection of the datasets into a reproducible kernel hilbert space
and then searches for a transformation that matches the projected data points by
minimizing their maximum mean discrepancy. Although this method works rather
well in practice, it is not crafted for taking into account the intrinsic geometry of
the manifold where the data points might be defined. Furthermore, it relies on an
optimization procedure that solves a semi-definite programming problem, which can
be computationally costly in some cases.

Data imputation. A particular practical case in which the data points have different
dimensions is when a sample (or several of them) presents a problem in one (or more)
of its features; for instance, when building the dataset A as defined in Section 5.1,
one of the subjects in the population might have not been willing to inform his (or
her) weight, or maybe the person responsible for gathering the data forgot to write
down the age of one of the subjects, etc. When this happens, one may typically
fill the missing value using the average of the problematic feature along the rest
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of the population, in a procedure that is called mean imputation [Ber+18]. When
the dataset is composed of different clusters and the average of a feature does not
mean anything in particular, other imputation strategies may be in order. The field
in statistics concerned with handling problems related to missing values is called
‘statistical analysis with missing data’ and the methods associated to it are usually
named missing data imputation, or simply data imputation [LR02].

Comparing point clouds. A more abstract way of handling two datasets, A and B,
containing data points with different dimensionalities is to think of them as point
clouds defined in high-dimensional spaces of dimensions dA and dB, respectively.
One may then use concepts from computational geometry [MS04] to study the
geometrical properties of the datasets and investigate commonalities between them.
For instance, the Gromov-Haussdorf distance may be used to compare the geometry
of the set A to that of the set B. This distance first requires defining two isometric
transformations (i.e. transformations that preserve pairwise distances),

TA : RdA æ Rd
,

TB : RdB æ Rd
,

(5.1)

where d is the smallest dimensionality of a space that ensures the existence of iso-
metric transformations for the points in A and B into Rd (note that d Ø max(dA, dB)

always satisfies this condition). Then, after applying TA to the elements of A and TB

to those from B, we obtain two new sets of points, TA(A) and TB(B), defined in the
same space. These new sets have the same geometrical structure of sets A and B,
respectively, since the transformations defined in (5.1) are isometric transformations.
Therefore, measuring the distance between TA(A) and TB(B) in Rd is an adequate
proxy for determining how ‘close’ A and B are. The distance between TA(A) and
TB(B) is determined via the Haussdorf distance, which is a measure of similarity
between sets of points commonly used in topology and defined as [MS04],

”H
!
TA(A), TB(B)

"
= max

aœA

3
min
bœB

”(a, b)

4
, (5.2)

where ” is some distance in Rd.

Dynamical systems. When the data points are multivariate time series describing
the evolution of some physical system, the fact of handling data with different
dimensionalities may be interpreted as having recordings of a dynamical system
with different sets of observables. More precisely, consider two multivariate time
series, xA(t) œ RdA and xB(t) œ RdB , monitoring the same physical phenomenon.
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We may model them as transformations of a vector of state variables x(t) œ Rd that
evolves according to some physical law, as in

xA(t) = fA(x(t)) ,

xB(t) = fB(x(t)) ,

(5.3)

where fA : Rd æ RdA and fB : Rd æ RdB are functions that may be modelled
according to the physical laws that drive the system under study. It is clear, then,
that there are commonalities to be explored between the two time series. A practical
example is when the multivariate time series are EEG recordings using different
numbers of electrodes and/or placed in different locations over a subject’s scalp.
If the subject always performs the same task, it is reasonable to expect that the
data recorded on different experimental setups share common information useful
for describing the phenomena under study. Based on these assumptions, a recent
work [Eng+18] has investigated how the performance of a statistical classifier based
on random forests changes when using EEG data from different experimental setups.
The results of the study indicate that it is indeed possible to gather information
from different EEG databases with different electrode configurations and obtain
‘reasonably good’ classification scores.

The method that we present in this chapter considers the case when the data points
are multivariate time series coming from recordings with different numbers and/or
placement of sensors. Using the Riemannian geometric framework defined in Chap-
ter 2, the statistics of these time series are parametrized via symmetric positive
definite (SPD) matrices and our goal is to leverage from the information available
on the datasets even if they are defined on spaces of different dimensionalities. For
this, we proceed similarly to what was done for the Gromov-Hausdorff distance and
define isometric transformations defined over the data points of each dataset. The
new transformed samples live in the same space and preserve the intrinsic geometry
of the initial datasets. Then, we use a domain adaptation technique crafted for SPD
data points [Rod+18] to make the statistical distributions of the two transformed
datasets compatible. From that moment forward, the samples of the two datasets
live in the same space and have similar statistical distributions, so one can perform
statistical tasks using the data from both datasets.

Before continuing, we should mention another work from the literature (appeared
during the process of writing this thesis) that proposes a geometric distance between
SPD matrices of different dimensionalities [Lim+19]. The proposal is based on the
interpretation that SPD matrices may be associated to ellipsoids defined in high-
dimensional spaces and that, when they have different dimensionalities, they may
be compared with the help of embedding transformations. Note, however, that the
work in [Lim+19] only proposes a notion of distance between points and does not
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illustrate its use on practical problems, whereas we present a whole framework for
working with datasets defined in different SPD spaces.

5.3 Dimensionality transcending
In this section, we present our method for matching the dimensionalities and statis-
tics of two datasets consisting of matrices defined in symmetric positive definite (SPD)
manifolds of different dimensions. We first formulate the problem mathematically
and define a notation for it. Then, we discuss how to determine a transformation
between SPD manifolds so that (1) the expanded matrices are also SPD and (2) the
geometrical characteristics of a dataset containing expanded data points (e.g. its
center of mass and dispersion) are easily determined from the characteristics of the
original dataset. Finally, we recall the Riemannian Procrustes analysis (RPA) method
presented in Chapter 4 and summarize the whole procedure. Because it expands
the dimensionality of the data points and bypass the intrinsic limitations related to
dimensionality mismatch, we call our method dimensionality transcending (DT).

5.3.1 Problem statement

Consider two datasets,

A =

Ó
(CA

i , ¸

A
i ) for i = 1, . . . , KA

Ô
and B =

Ó
(CB

i , ¸

B
i ) for i = 1, . . . , KB

Ô
,

(5.4)
with data points CA

i œ P(dA) and CB
i œ P(dB), and class labels ¸

A
i , ¸

B
i œ {1, . . . , L},

where L is the number of classes. We denote MA and MB the geometric mean of
the matrices of each dataset, and ‡

A and ‡

B the dispersions around the geometric
mean (see Chapter 2 for a definition of these quantities). The class means for each
dataset are denoted MA

¸ and MB
¸ with ¸ œ {1, . . . , L}. Following the formalism for

statistical analysis in the SPD manifold presented in Chapter 2, we parametrize the
statistical distributions of the data points in A and B as

�A ≥
Ó

MA
, MA

1 , . . . , MA
L , ‡

A
Ô

and �B ≥
Ó

MB
, MB

1 , . . . , MB
L, ‡

B
Ô

(5.5)

and our goal is to define a procedure for transforming the elements of both datasets
so to make the statistical distributions of the transformed data points as close as
possible according to some notion of distance to be defined. Note that if dA = dB,
the problem reduces to that of transfer learning in the SPD manifold, which was
considered in Chapter 4. However, when the datasets are defined in spaces of
different dimensionality, one can not use directly the RPA to match their statistics.
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Our proposal consists of two parts : first, we transform the data points in A and
B so that they all become d-dimensional SPD matrices, where d Ø max(dA, dB)

2;
this expansion is an isometric transformation and preserves the geometry of the
datasets. We denote the new datasets Aø and Bø. Then, we apply the RPA on
the dimension-matched matrices so to make their statistical distributions as close
as possible according to a distance precised later in the text. By the end of the
procedure, we have two new datasets defined on the same manifold and for which
the distance between the statistical distributions has been minimized.

5.3.2 Expanding the dimensions of a SPD matrix

In what follows, we present the general problem of transforming a d

Õ-dimensional
SPD matrix into a d-dimensional SPD matrix (d > d

Õ). We show how such trans-
formation has to be defined in order to guarantee the positive definiteness of the
d-dimensional matrices and how certain geometric constraints can be imposed.

Choosing how to expand. Without loss of generality, we will first assume that
d = d

Õ
+ 1, so that expanding a matrix C œ P(d

Õ
) amounts to defining two parame-

ters v œ RdÕ and – œ R in

Cø
=

S

U
C v

vT
–

T

V œ R(dÕ+1)◊(dÕ+1)
. (5.6)

To guarantee that Cø is an element of P(d

Õ
+ 1), one can use the fact that a matrix is

SPD if, and only if, all of its principal minors have positive determinants. Since C is
SPD, the determinant of all of its principal minors are positive, so we can conclude
that Cø will be SPD if, and only if, its determinant is positive. From basic matrix
analysis, we have that

det

Q

a

S

U
C v

vT
–

T

V

R

b
= det (C) det

1
– ≠ vT C≠1v

2
, (5.7)

thus a necessary and sufficient condition for Cø being SPD is

vT C≠1v < – . (5.8)

Geometry of expanded points. Once we know the conditions for – and v, the next
natural question is regarding how the geometry of a set of data points A µ P(d

Õ
)

changes when its elements are expanded via (5.7) and forms a new set Aø µ P(d).

2Note that it may happen that the dimensions of the datasets do not describe the same features (for
instance, the EEG electrodes are placed in different positions in each dataset). In this case, even if
we have dA = dB, it is necessary to choose a d greater than both dA and dB.
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For this, we need to understand how the distance between two expanded data points
in P(d

Õ
) relates to their distance in P(d).

Consider we expand two SPD matrices Ci and Cj using (5.7). We will assume that
v respects condition (5.8) for both Ci and Cj , and, without loss of generality, that
– = 1. The Riemannian geodesic distance between the expanded matrices is given
by

”

2
R(Cø

i , Cø
j ) =

dÿ

k=1
log

2
(⁄

ø
k) , (5.9)

where sp((Cø
i )

≠1Cø
j ) = {⁄

ø
1, . . . , ⁄

ø
d} is the set of eigenvalues of (Cø

i )

≠1Cø
j . Similarly,

the distance between Ci and Cj is given by

”

2
R(Ci, Cj) =

dÿ

k=1
log

2
(⁄k) , (5.10)

where sp(C≠1
i Cj) = {⁄1, . . . , ⁄d}. Our goal is to be able to write ”

2
R(Cø

i , Cø
j ) in

terms of ”

2
R(Ci, Cj). For this, we write explicitly the expression for the expanded

matrix

(Cø
i )

≠1Cø
j =

S

WWWU

C≠1
i Cj + C≠1

i vvT C≠1
i Cj ≠ IdÕ

1 ≠ vT C≠1
i v

0dÕ◊1

vT
(IdÕ ≠ C≠1

i Cj) 1

T

XXXV , (5.11)

where 0r◊s is a r ◊ s dimensional matrix filled with zeros and IdÕ is a d

Õ-dimensional
Identity matrix. Because of the block structure of (Cø

i )

≠1Cø
j , it is easy to see that

sp
1
(Cø

i )

≠1Cø
j

2
= {1} fi sp

1!
(Cø

i )

≠1Cø
j

"
UL

2
, (5.12)

where
!
(Cø

i )

≠1Cø
j

"
UL is the upper-left block of (Cø

i )

≠1Cø
j .

Different choices of v lead to different sp((Cø
i )

≠1Cø
j ) and, consequently, different

relations between ”

2
R(Ci, Cj) and ”

2
R(Cø

i , Cø
j ). A particularly interesting case is

when v = 0dÕ◊1, so that

(Cø
i )

≠1Cø
j =

S

U
C≠1

i Cj 0dÕ◊1

01◊dÕ
1

T

V
, (5.13)

and, consequently,

sp
1
(Cø

i )

≠1Cø
j

2
= {1} fi sp(C≠1

i Cj) . (5.14)
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We have then,

”

2
R(Cø

i , Cø
j ) =

dÿ

k=1
log

2
(⁄

ø
k) =

dÕÿ

k=1
log

2
(⁄k) + log

2
(1) = ”

2
R (Ci, Cj) , (5.15)

which means that the expansion preserves the pairwise distances from the datasets
in P(d

Õ
) in the new space P(d). Furthermore, this choice of v ensures that (5.8) is

verified for any positive – and any pair of matrices Ci, Cj œ P(d

Õ
).

By induction, one can easily show that the same results hold for any d

Õ
> d and an

expansion given by

Cø
=

S

U
C 0dÕ◊p

0p◊dÕ Ip

T

V
, (5.16)

where p = d

Õ ≠ d.

An isometric transformation. From the results above, we see that transformation

EdÕæd : P(d

Õ
) æ P(d)

C ‘æ

S

U
C 0dÕ◊p

0p◊dÕ Ip

T

V
,

(5.17)

with p = d ≠ d

Õ, is an isometric transformation between manifolds P(d

Õ
) and P(d) in

terms of the AIRM distance between SPD matrices, that is,

”

2
R

1
EdÕæd(Ci), EdÕæd(Cj)

2
= ”

2
R (Ci, Cj) . (5.18)

An interesting consequence is that classification algorithms that use distances be-
tween data points as features (e.g., the MDM classifier) have exactly the same
performance when applied to the data points in P(d

Õ
) or to their transformed version

in P(d). Therefore, we are ensured that the dimensionality augmentation does not
affect (negatively nor positively) the discriminatory power of classifiers over the
transformed datasets.

Statistics of the expanded data points. Consider a set of SPD data points

A =

Ó
C1, . . . , CKA

Ô
µ P(d

Õ
) , (5.19)

with geometric mean MA and dispersion ‡

A. Expanding each element of A, we
obtain a new set of SPD matrices

Aø
=

Ó
Cø

1, . . . , Cø
KA

Ô
µ P(d) , (5.20)
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where Cø
k = EdÕæd(Ck). The definition of the geometric mean of Aø is

MAø
= argmin

MøœP(d)

KSÿ

k=1
”

2
R(Mø

, Cø
k) , (5.21)

= argminC
M 0dÕ◊p

0p◊dÕ Ip

D
œP(d)

KAÿ

k=1
”

2
R(M , Ck) , (5.22)

=

S

U
MA

0dÕ◊p

0p◊dÕ Ip

T

V
, (5.23)

where p = d ≠ d

Õ. This is to show that the geometric mean of the expanded matrices
can be written directly in terms of the geometric mean of the original matrices, such
as

MAø
= EdÕæd(MA

) . (5.24)

The dispersion around MAø
is

1
‡

Aø22
=

1

KA

KAÿ

k=1
”

2
R(MAø

, Cø
k) , (5.25)

=

1

KA

KAÿ

k=1
”

2
R

1
EdÕæd(MA

), EdÕæd(Ck)

2
, (5.26)

=

1

KA

KAÿ

k=1
”

2
R

1
MA

, Ck

2
, (5.27)

=

1
‡

A
22

, (5.28)

which is a direct consequence of the isometric property of transformation (5.17).
Note that if each element of A had a class label associated to it, the class means of
their expanded counterparts would be determined as in (5.24). We conclude that if
A is parametrized as

�A ≥
Ó

MA
, MA

1 , . . . , MA
L , ‡

A
Ô

, (5.29)

then

�Aø ≥
Ó

EdÕæd(MA
), EdÕæd(MA

1 ), . . . , EdÕæd(MA
L ), ‡

A
Ô

. (5.30)
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5.3.3 Matching the statistics of two datasets

Expanding the dA-dimensional data points from A and the dB-dimensional data
points from B yields two new datasets,

Aø
=

Ó
(CAø

i , ¸

A
i ) for i = 1, . . . , KA

Ô
and Bø

=

Ó
(CBø

i , ¸

B
i ) for i = 1, . . . , KB

Ô
,

(5.31)
where the CAø

i and CBø
i are all d-dimensional SPD matrices. The next step is to

transform the elements of each dataset so that their statistical distributions, �Aø and
�Bø , get as close as possible. To do so, we use the Riemannian Procrustes analysis
RPA, which was thoroughly discussed in Chapter 4 and we recapitulate now using a
notation that is more adapted for this chapter:

(1) Re-center the data points in Aø and Bø such as

CAø(rct)
i =

1
MAø2≠1/2

CAø
i

1
MAø2≠1/2

, (5.32)

CBø(rct)
i =

1
MBø2≠1/2

CBø
i

1
MBø2≠1/2

. (5.33)

This forms two new datasets, Aø(rct) and Bø(rct), whose statistical distributions
are parametrized by

�Aø(rct) ≥
Ó

Id, MAø(rct)
1 , . . . , MAø(rct)

L , ‡

A
Ô

, (5.34)

�Bø(rct) ≥
Ó

Id, MBø(rct)
1 , . . . , MBø(rct)

L , ‡

B
Ô

. (5.35)

(2) Stretch the dispersion around the mean for the points in Aø(rct) and Bø(rct) so
that they are equal to one, as

CAø(rct+str)
i =

1
CAø(rct)

i

21/‡2
A

, (5.36)

CBø(rct+str)
i =

1
CBø(rct)

i

21/‡2
B

. (5.37)

This yields two new datasets Aø(rct+str) and Bø(rct+str) with equal dispersions
and distributions parametrized as

�Aø(rct+str) ≥
Ó

Id, MAø(rct+str)
1 , . . . , MAø(rct+str)

L , 1

Ô
, (5.38)

�Bø(rct+str) ≥
Ó

Id, MBø(rct+str)
1 , . . . , MBø(rct+str)

L , 1

Ô
. (5.39)

5.3 Dimensionality transcending 129



(3) Rotate the data points from Bø(rct+str) to make its class means as close as
possible to the class means of Aø(rct+str). We have then

CAø(rct+str+rot)
i = CAø(rct+str)

i , (5.40)

CBø(rct+str+rot)
i = UT CBø(rct+str)

i U , (5.41)

with U obtained from the optimization problem

minimize
UT U=Id

Lÿ

c=1
”

2
R

1
UT MBø(rct+str)

c U , MAø(rct+str)
c

2
.

(5.42)

(4) Form two new datasets

Aø(RPA)
=

Ó
(CAø(rct+str+rot)

i , ¸

A
i ) for i = 1, . . . , KA

Ô
, (5.43)

and
Bø(RPA)

=

Ó
(CBø(rct+str+rot)

i , ¸

B
i ) for i = 1, . . . , KB

Ô
. (5.44)

By the end of the RPA procedure, we have two transformed datasets whose statistical
distributions are closer as compared to their original versions. This implies that the
distance between the two statistical distributions decreases at each step, as per

W2
(µAø(RPA) , µBø(RPA)) Æ W2

(µAø(rct+str) , µBø(rct+str)) Æ W2
(µAø , µBø) , (5.45)

where

W2!
�A, �B

"
= ”

2
R(MA

, MB
) +

Lÿ

¸=1
”

2
R(MA

¸ , MB
¸ ) + log

2
A

‡

A

‡

B

B

. (5.46)

5.3.4 Summary of the method

Dimensionality transcending may be summed up as the application of transforma-
tions,

TA : P(dA) æ P(d) and TB : P(dB) æ P(d) , (5.47)

to the data points of A and B, forming

ÂA =

Ó
(C

ÂA
i , ¸

A
i ) for i = 1, . . . , KA

Ô
and ÂB =

Ó
(C

ÂB
i , ¸

B
i ) for i = 1, . . . , KB

Ô
,

(5.48)
with

C
ÂA

i = TA
1
CA

i

2
œ P(d) and C

ÂB
i = TB

1
CB

i

2
œ P(d) , (5.49)
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where d Ø max{dA, dB}. Transformations TA and TB are formed by the composition
of two operations, a dimensionality augmentation step (described in Section 5.3.2)
followed by a distribution matching step (described in Section 5.3.3).

5.4 Application to BCI datasets
This section describes two pratical problems where dimensionality transcending
proves useful. Both examples are related to classification tasks with EEG signals from
brain computer interfaces, but they can be expanded to other types of multivariate
time series as well. We use the Riemannian geometric framework detailed in Chap-
ter 2 to parametrize the statistics of the EEG epochs via symmetric positive definite
matrices. The first example concerns the case when one (or several) electrode
presents a problem during an EEG recording and the signal it records has to be
rejected due to, for instance, high amplitudes, low signal-to-noise ratio, etc. In this
situation, one could either simply discard the problematic trial or try to fill the miss-
ing data with statistically relevant information. Dimensionality transcending is an
approach for the latter option, which is often called data imputation in the literature.
The second example considers the case when we have datasets from BCI recordings
containing different numbers and/or positions of electrodes, yet, we would like to
use information from one dataset to improve the classification performance of trials
on the other dataset (transfer learning). Dimensionality transcending provides a
way to do this.

5.4.1 Data imputation

In EEG experiments, it is not uncommon that the recording at some electrodes
present problems. When this happens, the simplest thing to do is to reject the
problematic trial. However, in BCI experiments, each data point is the recording of
the EEG activity of a subject that may last a few seconds. In this case, discarding a
trial because of only one or a few malfunctioning electrodes is not desirable.

The solution we work out here is to replace the corrupted measurements of problem-
atic trials with information that is statistically justified. Such approach is commonly
known as missing-data imputation [LR02] and is based on the idea of filling the miss-
ing values of data points in a way that preserves the statistics of the full dataset.

Consider we have two datasets, A and B, as defined in (5.52). Each data point CA
i is

a spatial covariance matrix estimated from a time series recorded over dA-electrodes,
which we denote XA

i . The data points from B are dB-dimensional SPD matrices
estimated from trials where p electrodes presented problems (dB = dA ≠ p) and are
denoted CB

i . We argue that dimensionality transcending can be used to transform
the data points in B so that they become matrices defined in a SPD manifold of the
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same dimension as A and whose statistical distribution is close to �A according to
distance (5.46).

Parameter estimation. Dimensionality transcending relies on the estimation of
parameters for describing the statistics of datasets A and B. However, in general one
has access to just a few data points in B, since the problematic trials are assumed
to be not too numerous. Consequently, one can expect rather poor estimates of the
statistical parameters that describe �B. To cope with this limitation, we discard
the same p problematic electrodes that define the elements in B from all the dA-
dimensional data points in A and estimate the spatial covariance matrices of these
reduced time series to form a new dataset A(≠p) µ P(dB). Then, we estimate the
parameters that describe the statistics of A(≠p) and use them as descriptors for �B.
This procedure relies on the assumption that the statistics for datasets A(≠p) and B
are similar to each other, which is justified by the fact that B was obtained during
the same experiment that generated the data points from A.

Time series interpretation. It is interesting to note that the imputation method
can be interpreted as filling p dimensions of a problematic multivariate time series
X œ R(dA≠p)◊T in a way that the second-order statistics of its expanded counterpart,
Xø œ RdA◊T , has some particular structure. Defining

Xø
=

C
X

xp

D

œ RdA◊T
, (5.50)

where xp œ Rp◊T is a T -sample realization of a p-dimensional time series with zero
mean and spatial covariance Ip, we have that

Cø
= E(dA≠p)ædA(C) , (5.51)

where C and Cø are covariance matrices estimated from X and Xø, respectively,
and EdædÕ is an isometric transformation from P(d) to P(d

Õ
) defined in (5.17).

An example. Suppose we have a dataset consisting of 4-dimensional EEG epochs
such that the dimensions of the multivariate time series correspond to electrodes
{Fz, C3, C4, Pz}, in this exact order (see Figure 5.1 for a visual depiction of the
position of these electrodes). We denote the set of time series epochs by AÕ and
estimate the spatial covariance matrices that parametrize their statistics, forming
dataset A µ P(4). Suppose, now, that we have an EEG epoch presenting problems
in the dimension corresponding to the signal recorded at electrode C3. The SPD
parametrization of this epoch defines a set B µ P(dA ≠ p), with dA ≠ p = 3. We
create a new dataset, A(≠1) µ P(3), consisting of SPD data points which parametrize
the statistics of the time series from AÕ that had their second dimension discarded
(dimension corresponding to electrode C3). We estimate the parameters describing
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the statistics of A(≠1) (that is, its full geometric mean, the class means, and the
dispersion) and use them as descriptors for the statistical distribution of the set B.
Finally, we apply the dimensionality transcending procedure to A and B to match
their dimensionalities and statistical distributions. At the end of the procedure,
we have a transformed version of the SPD matrix that describes the statistics of
the problematic EEG epoch; it lives in P(4) even though the time series is only
3-dimensional.

5.4.2 Matching datasets

Another use for dimensionality transcending is when gathering information from
experiments registered under the same BCI paradigm but with different electrode
configurations (e.g. different number of electrodes, different electrode positions).
This is interesting in practice because it allows working with datasets recorded
with different experimental setups in an unified way, sharing the information from
one dataset to classify the trials from another dataset. Note, however, that the
dimensionality transcending method does not add any new information : if the
electrodes originally chosen for a certain dataset do not have any discriminatory
power for a given BCI task, expanding the dimensions of the data points will not
improve the performance of classifiers trained on them.

In order to keep the exposition simple, we will consider the case with just two
datasets

A =

Ó
(CA

i , ¸

A
i ) for i = 1, . . . , KA

Ô
and B =

Ó
(CB

i , ¸

B
i ) for i = 1, . . . , KB

Ô
.

(5.52)
with data points CA

i œ P(dA) and CB
i œ P(dB), and labels ¸

A
i , ¸

B
i œ {1, . . . , L}. Sets

EA and EB contain the names and positions of the electrodes used for the recordings
in each dataset.

Suppose, at first, that dA Æ dB and EA ™ EB. To match the datasets, we first
use permutation matrices to make sure that the order of the electrodes in the dA

dimensions of each trial in A is the same as for the first dA dimensions in B. Then, we
apply the dimensionality augmentation procedure to the elements in A so that they
become dB-dimensional SPD matrices. Finally, we use RPA to match the statistics of
both datasets. Note that this situation is very similar to the one described for data
imputation in Section 5.4.1, however, here we assume that there are enough data
points in B for estimating its statistics.

A slightly more complicated case is when dA Æ dB and EA fl EB ”= {}, which
corresponds to when A has electrodes that are not present in B and vice-versa. To
match the datasets in this case, first we define a new set E = EA fi EB and use
permutation matrices to assure that the order of the dimensions of the trials in A and
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B are the same as that for an arbitrarily chosen order for E . Then, we augment the
data points in A and B so that they become d-dimensional SPD matrices (d = |E|)
and apply RPA to match their statistical distributions.

An example. Suppose we have two datasets, A and B, consisting of 4-dimensional
and 3-dimensional EEG epochs, respectively. The electrode sets for these two
datasets are EA = {Fz, C3, C4, Pz} and EB = {C4, C3, Cz}, with the ordering of the
names of the electrodes corresponding exactly to the ordering of the dimensions of
the EEG epochs. Our dimension matching procedure starts by defining a new set
E = EAfiEB = {C3, C4, Fz, Cz, Pz} whose order is considered as fixed. Then, we apply
the dimensionality augmentation step explained in Section 5.3.2 to the data points
in both A and B, so to have new SPD matrices defined in P(d), with d = |E| = 5. If
necessary, we change the ordering of the dimensions of the augmented matrices so
that they correspond to the order imposed by E (this ensures that the dimensions
from the expanded versions of A and B are comparable). Finally, we use the
Riemannian Procrustes analysis to match the statistics of the dimension-augmented
datasets.

5.5 Numerical illustrations
In this section, we illustrate the two pratical problems presented in the previous
section on real EEG recordings. For data imputation, we consider a motor-imagery
BCI dataset and simulate different situations where the signals on one (or several)
of the electrodes are discarded. We compare the performance of dimensionality
transcending with that of spherical spline interpolation [Per+89], the state of the
art method for replacing missing values in problematic EEG channels, which takes
appropriately weighted linear combinations of signals from electrodes located near
to the problematic channel. We illustrate the case of datasets defined on different
sets of electrodes using recordings from the motor imagery and P300 paradigms. All
datasets used in this section are publicly available on the MOABB framework [JB18].

5.5.1 Data imputation

The dataset. We use the database Cho2017 containing electroencephalographic
(EEG) recordings of an experiment with a brain-computer interface (this database
has already been used in previous chapters of this thesis; see [Cho+17] for its full
reference). The database contains recordings on 23 electrodes (selected out of 64) of
52 subjects executing a left-hand/right-hand motor imagery paradigm. The signals
are bandpass filtered between 8 Hz and 35 Hz (sampling frequency is 512 Hz) and
epoched into one hundred 3-second trials: 50 trials on the left-hand class and 50
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trials on the right-hand class. Such pre-processing yields for each subject a set of
EEG epochs

AÕ
=

)
XA

1 , . . . , XA
KA

*
µ Rd◊T (5.53)

where d = 23, T = 1536, and KA = 100. For each element in AÕ we estimate a spatial
covariance matrix using Ledoit-Wolf shrinkage [LW04], which helps controlling the
numerical conditioning of the estimated matrix. The set of spatial covariances forms
the dataset

A =

)
CA

1 , . . . , CA
KA

*
µ P(d) . (5.54)

An epoch with problems on p electrodes is a data point in R(d≠p)◊T . Without loss of
generality, we will consider that the dimensions related to these discarded electrodes
correspond to the p last dimensions of the data points in AÕ. The spatial covariance
matrix estimated from the problematic epoch is an element of B µ P(d ≠ p).

Classification procedure. In this (and the next) sub-section, every classification task
is performed using the minimum distance to mean classifier (MDM), which is a gen-
eralization of the nearest-centroid classifier to the space of SPD matrices [Bar+12].
It works by first estimating the geometric mean of the elements of each class in the
training dataset (the class means). Then, it assigns to each unlabeled data point
in the testing dataset the label of the nearest class mean according to the geodesic
distance in the SPD manifold. We use the area under the ROC curve (AUC) [Bis07]
as score for the classifier and report its average over 10 cross-validation folds. We
denote the training dataset on each fold by Atrain and the testing dataset by Atest.

We consider three situations:

(1) Firstly, we assume there is no problem on any electrode and call this the full
method. The MDM is trained on Atrain and tested on Atest.

(2) Then, we emulate the case when the data points in Atest have problems on
a set of p arbitrarily chosen electrodes (see Table 5.1 for some examples
of sets of electrodes considered as problematic). For this, we discard the
problematic channels from the time series epochs whose statistics are described
by the data points in Atest. Then, we apply the imputation method explained
in Section 5.4.1 to the SPD data points that describe the statistics of the
problematic epochs. This yields a new dataset ˜Atest. We train the MDM
classifier on Atrain and test it on ˜Atest. We call this the imputation method.

(3) Finally, we proceed similarly to what was done in (2) but augment the dimen-
sions of the problematic time series epochs via spherical spline interpolation.
The SPD data points describing their statistics are then estimated and form the
testing dataset. We call this the interpolation method.
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We use the cross-validated AUC of the MDM classifier on each of these cases as
proxy for evaluating the relevance of using dimensionality transcending for data
imputation.

Results. In the results described below, we have used knowledge of the neurophysi-
ology of BCI experiments in the motor imagery paradigm to consider settings with
different combinations of EEG electrodes as problematic. We chose channels located
in the motor cortex, which are known to carry important information for classifying
the trials (C3 and C4), as well as electrodes which are not relevant for this kind of
paradigm (Fz and Pz) [Con13]. See Figure 5.1 for a representation of the spatial
disposition of the 23 electrodes used for the recordings in the database.

F3 Fz F4

FC5 FC1 FC2 FC6

C6C4CzC3C5

CP5 CP3 CP1 CP2 CP4 CP6

P3 Pz P4

PO4PO3

Fig. 5.1: Diagram with the electrodes configuration. The gray area indicates where the
sensory motor cortex is approximately located, which is the region mostly involved
in motor imagery tasks.

Table 5.1 displays the classification scores for the imputation and interpolation
methods when different electrodes are considered as problematic. The score obtained
with the full method is 0.663 and serves as a reference for our comparisons.

Tab. 5.1: Average accuracy scores for the imputation and interpolation methods over the
52 subjects in the database (standard deviation inside parenthesis). The missing
electrodes column indicates which electrodes were discarded in each case. The
average accuracy for the full method was 0.66.

missing electrodes imputation interpolation

{Fz} 0.66 (0.11) 0.64 (0.10)
{Pz} 0.66 (0.10) 0.63 (0.10)

{Fz, Pz} 0.66 (0.10) 0.61 (0.10)
{C3} 0.65 (0.10) 0.63 (0.10)
{C4} 0.65 (0.10) 0.61 (0.08)

{C3, C4} 0.64 (0.09) 0.61 (0.09)

We observe that the scores with the imputation method when only the Fz and/or the
Pz electrodes are missing is not very different from that of the full method. In fact, a
paired t-test comparing the average score for each subject of the database indicates
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no evidence for rejecting the null hypothesis of equality for the two methods. Such
a result is not surprising, since the referred electrodes were not expected to carry
relevant information to discriminate between the classes of the experiment. However,
when the C3 and/or the C4 are missing, the important discriminative information
provided by these channels can not be replaced by our imputation method, so the
average classification score decreases.

We also note that the imputation method consistently yields better results, on
the average, as compared to the interpolation method. We performed paired t-
tests to compare the results of the two methods and the null hypothesis of equal
average scores was always rejected with p-values smaller than 10

≠3 (corrected for the
multiple comparisons problem via the Bonferroni method). A possible explanation
for this could be the diversity of information used by our imputation procedure
as compared to the interpolation method, since it adds new dimensions to the
problematic (d ≠ p)-dimensional CB matrix using information from the rest of the
dataset A, whereas spherical spline interpolation uses only information from the
time series XB from which CB is estimated. Furthermore, because the p dimensions
added to XB are simply linear combination of its d ≠ p time series, the rank of
XBø œ Rd◊T is just d ≠ p. As a consequence, although the estimated CBø

has no
zero eigenvalues (because of the Ledoit-Wolf shrinkage), some of its eigenvectors
point to directions which are not descriptive and may prejudice the classification
procedure.

It should be mentioned that the matrix augmentation scheme provided by our
imputation method is purely based on the distribution of the spatial covariance
matrices of each trial. This means that there is no physiological interpretation for
the time series obtained on the p added dimensions. However, one could try to
determine a physiologically plausible xp in (5.50) with the statistical properties
required by the imputation method. Such extension remains an open question and
is one of the future perspectives for this work.

5.5.2 Matching datasets

In this second example, we consider situations involving EEG data from two BCI
paradigms : motor imagery and P300. We demonstrate the relevance of dimension-
ality transcending through the performance of a MDM classifier trained on data from
one dataset and used to classify trials from another dataset with a different set of
electrodes (different number of electrodes as well as different positions over the
subject’s scalp).

Datasets. For the examples on the motor imagery paradigm, we use the Zhou2016 [Zho+16]
and BNCI2015001 [Fal+12] datasets. The first dataset consists of recordings on 14
electrodes from 4 subjects executing either a left-hand/right-hand or a feet/right-
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hand motor imagery task; we denote the datasets by Zhou2016-LR (LR for left-
hand/right-hand) and Zhou2016-FR (FR for feet/right-hand). Dataset BNCI2015001
is composed of EEG signals from 13 electrodes and 12 subjects (from which we have
selected 7 with the best self-scores, e.g., the score of a classifier trained and tested
on the same dataset), all executing a feet/right-hand motor imagery task; the two
classes on both datasets are balanced. The smallest set containing the names of all
electrodes from both MI datasets is of size 18. See Figure 5.2 for an illustration
showing where the electrodes of each dataset are placed.

The examples on the P300 paradigm use the BNCI2014009 [Ari+14] and BI.2013 [Vai+18]
datasets. The data in BNCI2014009 contains EEG recordings from 16 electrodes on
10 subjects (from which we have selected the 5 with the best self-scores). The EEG
signals in BI.2013 also come from 16 electrodes but they are placed in different po-
sitions as compared to BNCI2014009 (see Figure 5.2); we selected the best 9 subjects
in terms of self-scores out of 24 available subjects. The smallest set containing the
names of all electrodes from both datasets is of size 27. Note that the two datasets
are from recordings on P300 experiments with a 6-by-6 grid with flashing cues,
but the subjects’ cognitive tasks are slightly different: in BNCI2014009 they must
concentrate on letters to spell words, whereas in BI.2013 the subjects are asked to
fix their attention on target cues representing ‘aliens’ to be destroyed. The classes of
the trials are unbalanced, with one ‘target’ trial for every five ‘non-target’ trials.

Fig. 5.2: Diagrams with the electrode configurations of the four datasets considered in this
sub-section. We do not specify the names of the electrodes for visual simplicity,
but the reader is referred to the references associated to each dataset for such
information.

Analysis. Our goal is to show that dimensionality transcending allows a classifier
to leverage from discriminative information in EEG recordings from other subjects
even if they were obtained under different experimental setups. To demonstrate this,
we proceed in a similar manner to what was done in Chapter 4 for illustrating the
RPA method. We consider the cross-subject transfer learning case for BCI, where one
wants to determine the unknown labels from a target dataset (Tu) using information
from a few labeled trials in the target dataset (T¸), as well as the full information
available from a source dataset (S) containing recordings from another subject. We
consider the case when both subjects are from the same database (i.e. the same
experimental setup), which we call the ‘intra-base case’, as well as when the subjects
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come from different databases (the ‘inter-base’ case). We compare three classification
pipelines assuming that there are ncovs labeled data points from each class on the T¸

dataset:

• calibration: this is when the data points in Tu are classified using a MDM
classifier trained with only the labeled data points available in the T¸ dataset,

Dtrain = T¸ and Dtest = Tu . (5.55)

• DT-uns: this is when only the unsupervised steps of the RPA are used (recen-
tering and stretching) for matching the statistics of two dimension-matched
datasets. A MDM classifier is trained on a set containing the ncovs labeled
data points from the target dataset as well as the dimension-matched and
RPA-uns-transformed data points from a source subject,

Dtrain = T¸
ø(rct+str) fi Sø(rct+str) and Dtest = T ø(rct+str)

u . (5.56)

• DT: this is when the full RPA is used to match the statistics of two dimension-
matched datasets. A MDM classifier is trained on a set containing the ncovs

labeled data points from target dataset as well as the dimension-matched and
RPA-transformed data points from a source subject,

Dtrain = T¸
ø(RPA) fi Sø(RPA) and Dtest = T ø(RPA)

u . (5.57)

We use the area under the ROC curve (AUC score) for quantifying the classification
performance of the MDM classifier at each case. We randomly split the target dataset
into labeled and unlabeled subsets five times and average the classification scores
obtained in each realization. We assert that dimensionality transcending is useful for
cross-subject transfer learning when the score of the DT pipeline is superior to that
of the calibration pipeline, since it means that information from a source subject
improved the classification score on a target dataset.

Results on motor imagery. Figure 5.3 and Figure 5.4 portray the results of the
analysis described above for the two motor imagery datasets. In Figure 5.3, we
used the data from subjects in BNCI2015001 as target datasets and considered two
different cases for the source datasets : data coming from subjects in the same
database (the ‘intra-base’ case) or from the Zhou2016-FR database (named the ‘inter-
base’ case). Conversely, Figure 5.4 considers subjects from Zhou2016-FR as target
datasets and uses source subjects from Zhou2016-FR (‘intra-base’) or BNCI2015001
(‘inter-base’) as source datasets. The scores of the classification pipelines on each
target subject are displayed on different rectangular regions in which the vertical
line indicates the score for the calibration pipeline. The four rows of scatter points
in each rectangular box represent the cross-subject scores for each source subject
and each classification pipeline (different markers indicate different classification
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pipelines; see legend in the figure). The rectangular boxes are ordered according to
the score of the calibration pipeline when the size of the labeled part of the target
dataset is |T¸| = 2 ◊ ncovs (the datasets have two motor imagery classes). The values
on the first column on the right of the axis indicate the average value of the scattered
points for each target subject, whereas the second column indicates the score with
the calibration pipeline.

As mentioned before, our goal is to assess whether the scores of the pipelines using
dimensionality transcending are superior to that of the calibration pipeline. For
this, we examine where the scatter points are located relative to the vertical lines
indicating calibration scores. In both figures, we observe that the scores in the
‘inter-base’ case tend to be higher for target subjects where the calibration score
is higher; this goes in line with what was observed in Chapter 4, where the target
subjects with the best self-scores were also the best ‘receivers’ of data from source
subjects. We also observe that, in general, the results with DT-uns are inferior to that
of calibration, whereas those for DT are, for the most part, superior to calibration.
Interestingly, on both figures the average performance of the classification pipelines
in the ‘intra-base’ case (which boils down to simply using RPA to match the statistics
of a source-target pair) is similar to that on the ‘inter-base’ case, which shows that
transfer learning with dimensionality transcending manages to satisfactorily match
datasets that a priori would be completely uncompatible.

In addition to the qualitative analysis of the results in Figure 5.3 and Figure 5.4,
we also did a quantitative comparison of the pipelines’ scores based on statistical
hypothesis tests. The results are displayed in Table 5.2, where the average values of
the classification pipelines are taken over all the cross-subject classification scores for
all pairs of source-target subjects. We display only the comparisons for the ‘inter-base’
case, since the ‘intra-base’ case is already thoroughly discussed in Chapter 4.

To assess whether the performance of pipelines DT-uns and DT were statistically
significantly different than that of pipeline calibration, we used paired t-tests with
p-values obtained via permutation methods. The statistical procedure is similar to
the one used in Chapter 4 for comparing transfer learning pipelines. To compare
method A versus calibration we do :

(1) For each target subject i, we perform a signed paired t-test comparing the
scores of method A to calibration along all source subjects. Each of these tests
yields a statistic Ti and a p-value pi is obtained via permutations tests [EO07].

(2) We combine the p-values of all the target subjects using Stouffer’s Z-score
method [Zay11]. This yields a single p-value for the comparison between
methods as well as the direction to which the null hypothesis has been rejected
(i.e., whether method A is better than calibration or vice-versa).
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BNCI 2015001
Zhou2016- FR

BNCI 2015001

Fig. 5.3: AUC scores for cross-subject classification considering different target subjects in
BNCI2015001 (always with ncovs = 10 and |T¸| = 2◊ncovs = 20) and source subjects
from BNCI2015001 (‘intra-base’ case, represented in gray) and Zhou2016-FR (‘inter-
base’ case, represented in black). The cross-subject scores for each target subject
are represented inside rectangular boxes and the different scatter points inside
them indicate the scores obtained for each source subject; different markers indicate
different classification pipelines (triangles for DT-uns and circles for DT; see text
for a description of each pipeline). The vertical line inside each rectangular
box indicates the calibration score for the target subject when ncovs matrices are
available in T¸. The values on the first column to the right of the axis represent
the mean AUC scores for each line of scatter points, whereas the second column
contains the scores with calibration. Take target subject 1 as example: the AUC
for calibration is 0.82 and we see that the cross-subject scores for the DT pipeline
with source subjects in both the Zhou2016-FR database (‘inter-base’, black circles
and average score of 0.85) and BNCI2015001 database (‘intra-base’, gray circles
and average score of 0.84) are almost always superior to calibration; the pipeline
DT-uns performs better in the ‘inter-case’ (black triangles and average score of
0.84) as compared to the ‘intra-base’ case (gray triangles and average score of
0.78).
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Tab. 5.2: Mean values of the area under the ROC curve (AUC) score for cross-subject
classification using three pipelines, all described in the text; we consider only
the ‘inter-base’ case. For each database being used as target, we consider a list
with three values (labeled 1, 2, 3 in the table) for the size of the labeled part
of the target dataset, T¸. For BNCI2015001 this list is [10, 20, 50] and, for both
Zhou2016-FR and Zhou2016-LR, it is [5, 10, 15]. For the datasets in the P300
paradigm the lists are [12, 36, 48]. Parameter icovs indicates to which element of
these lists the value in the grid corresponds to. The fontstyle of the average scores
represented in the table are determined from the statistical tests that compare
their values with that of calibration; see text for an explanation on the statistical
procedure that we used. When the score of a pipeline is in bold, it means that
it is better than calibration in average, whereas a classification score that is
underlined indicates that the pipeline’s performance is inferior to calibration
in average; a score with no fontstyle is one that is not statistically significantly
different as compared to calibration. The letters ‘T’ and ‘S’ on the left of the table
indicate which database is used as target and source in each comparison.

calibration
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Zhou2016- FR
BNCI 2015001

Zhou2016- FR

Fig. 5.4: AUC scores for cross-subject classification considering different target subjects
in Zhou2016-FR (always with ncovs = 20 and |T¸| = 2 ◊ ncovs = 40) and source
subjects from BNCI2015001 (‘intra-base’ case) and Zhou2016-FR (‘inter-base’ case).
See the caption of Figure 5.3 for more details about the structure of the plot.

(3) We adjust the p-values of each pairwise comparison using Holm’s step-down
procedure [Hol79] to account for the multiple comparison problem.

Table 5.2 shows that pipeline DT-uns yields inferior results to that of calibration for
different sizes of the labeled part of the target dataset (determined by the values of
ncovs), being statistically equivalent in a few instances. This is not surprising, since
the supervised step in the RPA method (which is missing in DT-uns) is closely related
to how the electrodes on two datasets compare to each other. For instance, if the
source and target datasets contain exactly the same data, but have the names of their
electrodes in different order (and so the dimensions of the SPD matrices in different
order), RPA generates a permutation matrix for correcting this mismatch. On the
other hand, pipeline DT is better than calibration on most situations (or at least
equivalent), showing that it is indeed a good option for leveraging discriminative
information from other datasets.

We have also considered the slightly different situation where the databases do not
correspond to the same cognitive task: BNCI2015001 has trials for right-hand/feet
motor imagery tasks, whereas Zhou2016-LR has classes left-hand/right-hand. The
results in Table 5.2 show that dimensionality transcending yields poorer results
as compared to before, being always inferior (or sometimes equivalent) to the
pipeline calibration. This is an interesting result, since it shows that datasets con-
taining information which are not physiologically comparable can always go through
the dimension-expanding-RPA-transfomation procedure, but their discriminative
information remains uncompatible and can not be used for transfer learning.
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Results on P300. We redid the same analysis from above to the case with EEG
recordings in the P300 paradigm. Figure 5.5 and Figure 5.6 show that dimensional-
ity transcending works very well when using the full RPA procedure (pipeline DT),
yielding cross-subject classification scores that are much higher than calibration; Ta-
ble 5.2 shows that DT is superior to calibration also for different values of ncovs. As
with the motor imagery data, pipeline DT-uns yields inferior results as compared
to calibration in all instances (see Figure 5.5, Figure 5.6 and Table 5.2), demon-
strating that the supervised step from RPA is indeed essential in the dimensionality
transcending procedure.

An interesting aspect to note is that although the EEG signals were recorded during
experiments where the subjects were oriented to do slightly different cognitive tasks,
they both relied on the idea of asking the subject to concentrate on a given target
cue and, then, detect a P300 wave in the EEG when the cue flashes. This explains
why the dimensionality transcending works in this case, since the discriminative
aspects between the classes are the same for both datasets.

5.6 Conclusion
In this chapter, we have considered the problem of working with datasets that de-
scribe the same phenomenon but contain samples with different dimensionalities
and/or different features. We have been mainly interested in the case where the data
points are multivariate time series, so that having different dimensionalities come
from, for example, the fact of having recordings with different number and/or place-
ment of sensors. Using the Riemannian geometric framework described in Chapter 2,
the time series have been parametrized via SPD matrices and all data manipula-
tions respected the intrinsic geometry of the manifold where they are defined. We
presented a mathematical formulation for the problem and proposed a solution
consisting of two steps: dimensionality matching followed by statistical distribution
matching. The dimensionality matching part uses isometric transformations to map
data points defined in SPD manifolds of different dimensionality into a common
manifold where they can be naturally compared. The matching of statistical dis-
tributions is done via the Riemannian Procrustes analysis presented in Chapter 4.
Because our method surpasses the usual limitations due to dimensionality mismatch
between data points, we named it dimensionality transcending (DT).

We applied DT to two practical situations where multivariate recordings from EEG
experiments may have different dimensionalities. The first example considered the
case where one (or more) electrode presents a problem and the signal it records
has to be rejected. When this happens, one may simply discard the problematic
epoch or try to fill the missing values associated to the malfunctioning electrode.
Dimensionality transcending is a method for the latter option. We compared the
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Fig. 5.5: AUC scores for cross-subject classification considering different target subjects
in BI.2013, always with ncovs = 12 and |T¸| = 1 ◊ ncovs + 5 ◊ ncovs = 72 (this
comes from the fact that for each Target label in a P300 experiment, there are five
other Non-Target labels), and source subjects from BI.2013 (‘intra-base’ case) and
BNCI2014009 (‘inter-base’ case). See the caption of Figure 5.3 for more details
about the structure of the plot.
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DT-uns

DT

Fig. 5.6: AUC scores for cross-subject classification considering different target subjects in
BNCI2014009, always with ncovs = 12 and |T¸| = 1 ◊ ncovs + 5 ◊ ncovs = 72 (this
comes from the fact that for each Target label in a P300 experiment, there are five
other Non-Target labels), and source subjects from BNCI2014009 (‘intra-base’ case)
and BI.2013 (‘inter-base’ case). See the caption of Figure 5.3 for more details
about the structure of the plot.
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performance of a classification pipeline using this approach to that of spherical spline
interpolation, the standard approach in the EEG literature for replacing missing
values from malfunctioning electrodes. The pipeline with DT always performed
better.

The second example concerned datasets with EEG recordings from BCI experiments
using different electrode configurations. We considered two different BCI paradigms
(motor imagery and P300) and investigated whether DT could be used for doing
cross-subject classification, that is, train a classifier with data from a source subject
in one database and apply it to classify unlabeled data points from a target subject in
a different database. As explained in the text, the supervised distribution matching
step in DT (that is, the rotation part in RPA) depends on a few labeled data points
from the target dataset in order to find an adequate transformation to match the
datasets. Our goal was to show that a classifier trained on a set containing data
points from a DT-transformed source dataset plus a few labeled data points from the
target dataset had superior performance as compared to that of a pipeline using only
the labeled points from the target dataset at training time. The latter approach was
named ‘calibration’. The results with the datasets considered in the text showed that
a classification pipeline using DT always attained superior (or at least equivalent)
performance as compared to calibration, which is a remarkable result.

A natural question to ask regarding dimensionality transcending (DT) is whether it
would not be better to simply reduce the dimensionality of the data points into a
common space (using, for example, the methods presented in Chapter 3) and then
apply a procedure for statistical matching on the new data points (using, for instance,
RPA). Although this would avoid increasing the dimensionality of the data points, it
would have the risk of losing important discriminative information from the datasets,
since the dimensionality is chosen to satisfy datasets whose intrinsic dimensionalities
are not necessarily the same. Another relevant question is regarding the ‘transition
point’ for deciding whether two recording sessions should be matched with DT or if
we can apply directly RPA. For example, consider two recording sessions where the
electrodes are slightly moved. Should these electrodes be considered as different
features and, therefore, different dimensions? Should DT be used to match the
datasets or can we apply RPA directly? These questions remain unanswered and
shall be investigated in the future.

The topics considered in this chapter pave the way to many other interesting ques-
tions. For instance, one may consider the case when datasets describe the same
phenomena but are recorded using different recording modalities (e.g. fMRI and
EEG); the time series still share common features but the matching between them
may prove to be more involved as compared to what has been done in this work.
Other interesting line of work would be to consider pooling and ensembling strate-
gies which gather the EEG recordings from many different databases recorded with
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different electrode configurations and combine them to form a single robust classifier.
Finally, one could also envision different transformations in DT’s dimensionality
matching step. For instance, by relaxing the constraint of isometry one could craft
more involved transformations that would play in favor of a better separability
between the dataset’s classes.
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6

Conclusion

The role of invariances in statistical data analysis is analogous to that of a teacher
with a student. Although a student may learn the contents of a given course
reading a textbook, the insight provided by a teacher often allows the student to
understand the concepts faster. In science, invariances convey information about the
underlying process that generates a set of observed data points. This information
can be used to define statistical models that require fewer training samples to
attain good generalization behavior on unseen data points. In this thesis, we have
explored invariant properties of multivariate time series. These invariances reflect
characteristics of the physical activity represented by the time series and may be
used to study different practical problems. To perform such analysis, we have used
a geometric framework in which the statistical behavior of the multivariate time
series is parametrized by Hermitian positive definite (HPD) matrices. Under this
setting, we manipulate time series as points in a metric space and compare them
using concepts borrowed from Riemannian geometry (RG).

In Chapter 3, we have considered the invariances of multivariate time series in
terms of their dimensionalities. We have used a linear dimensionality reduction
technique that extends the classical PCA to reduce the dimensionality of multivariate
time series in a geometry-aware fashion. Our results show that statistical classifiers
applied to reduced time series attain, in average, the same classification performance
as compared to when they are applied to the original time series. This result reflects
the existence of some intrinsic information in the physical phenomenon recorded by
the time series that is invariant to the number of dimensions used to represent it.

In Chapter 4, we have presented an original transfer learning approach for multi-
variate time series called Riemmanian Procrustes analysis (RPA). Our proposal uses
the fact that, although time series recorded from different experimental recordings
may have different statistical distributions, if they represent the same physical phe-
nomenon, they are likely to share some latent information that can be exploited. We
have illustrated our method on EEG data from BCI experiments carried out with
different subjects and have observed promising results in cross-subject classification
with pipelines that use RPA to match the statistics of the datasets. Figure 6.1 gives
a visual depiction of the three transformations involved in RPA for matching the
distribution of the data points from two subjects; the data is the same as the one
used for Figure 1.3.
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Fig. 6.1: Two-dimensional representation of the embedding obtained via the diffusion
maps algorithm applied to the recordings of two subjects in the Cho2017
database [Cho+17]; the axis Â1 and Â2 are eigenvectors of the Laplacian matrix
estimated from the data points with the diffusion maps algorithm [CL06]. Each
subplot is related to one step of the RPA procedure. Each point corresponds to
the EEG signal of an experimental trial and the distances between the data points
were calculated using the geodesic distance of the SPD manifold. The colors of
the scattered points indicate the classes of the EEG epochs, ‘left-hand’ in red and
‘right-hand’ in blue, and the different markers indicate whether an epoch is from
subject one (circles) or subject two (triangles).

Finally, in Chapter 5, we have enlarged the scope of the invariant property discussed
in Chapter 4 and have considered the case when the experimental setup used for
recording the samples may also vary. This covers situations where the number
and/or the position of sensors in two recording sessions are different, leading to
multivariate time series with different dimensionalities and whose dimensions may
be associated to activities in different places. Using once again the fact that if the
recordings represent the same physical phenomenon, then they must share some
latent information, we have proposed an original method called dimensionality
transcending (DT). DT works by first applying isometric transformations to the
elements of each dataset so that they are taken into a space where all data points
have the same dimensionality. Then, it uses RPA to match the statistics of these
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transformed data points. We have used DT to perform cross-subject classification on
BCI data from experiments where the subjects performed the same set of cognitive
tasks, but with different electrode setups. Our results show the possibility of sharing
information between datasets that were, until then, incompatible.

It is worth mentioning that our original contributions, RPA and DT, are part of a much
larger effort in the research community with the goal of designing algorithms capable
of extracting information shared between datasets with different dimensionalities,
different statistical distributions, etc. The aim of such methods is to go against the
current state of affairs of the ‘big data era’, where large amounts of experimental
data are gathered by different laboratories with total disregard to whether they
can be jointly used for performing statistical tasks. On a societal point of view,
such methods may be seen as ‘ecological’, since they try to reuse information that
already exists and for which some effort has already been put into its generation, the
ultimate goal being to avoid the consumption of unnecessary energy for obtaining
new data points as well as for storing them.

Future perspectives
In the following paragraphs, we list a few perspectives for the works developed in
this thesis. We split the discussion in ‘short-term’ and ‘long-term’ perspectives, in
the sense that some ideas are rather well posed and easy to tackle, whereas other
proposals would need further investigation and reflection.

‘Short-term’ perspectives. Most machine learning algorithms have a set of param-
eters that can be adjusted to adapt their behavior to the nuances of the datasets
to which they are applied. In its original form, RPA does not have such flexibility,
but we believe that adding some hyper-parameters could lead to better results in
practice. An example would be to add a variable weight to the contribution of the
source dataset when training a classifier to label the data points from the target
dataset. Note that this parameter could also be used in an online implementation,
where labeled target data points arrive sequentially and the information from the
source dataset becomes less useful. It would also be advantageous to add weights
to each term of the cost function used to obtain the rotation matrix of RPA; such
weights could, for instance, reflect the quality of the estimation of the class means
on the target dataset.

Another interesting line of work would be to investigate how to combine the infor-
mation from several source datasets to classify data points from a target dataset using
RPA and DT. In the context of cross-subject classification in BCI, this is done using
pooling and ensembling strategies, where the contribution of each source subject
is weighted by an adaptive algorithm such as the one proposed in [Way+16]. By
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adding a step for matching the dimensionalities and statistics of the datasets, we can
expect that such pooling/ensembling strategies will yield better and more robust
classifiers.

Finally, it would be interesting to study the ‘transition point’ for deciding whether
two recording sessions should be matched with DT or if RPA can be directly applied.
For example, consider two recording sessions where the electrodes have slightly
moved. Should these electrodes be considered as different features and, therefore,
different dimensions? Should DT be used to match the datasets or can we apply RPA
directly?

‘Long-term’ perspectives. When working with a d-dimensional multivariate time
series x(t), the covariance matrix that describes its statistics have dimension d ◊ d

and its ij-th coordinate describes the statistical correlation between the signals at the
i-th and j-th time series of x(t). An interesting generalization would be to consider
this matrix as the discretization of a infinite-dimensional covariance operator that
describes the correlation between the activity at any two points in space. Such
abstraction could be used, for instance, to model how the covariance of the EEG
signals recorded over a subject’s scalp change when the position of the electrodes
change; a relevant first reference for this investigation would be [HQM16].

Another interesting line of work is the study of the dynamical behavior of multivariate
time series using the RG framework. For this, we could choose a time scale during
which x(t) is approximately stationary and use a sliding window to examine how
its statistical behavior evolves in time; an even better method would be to detect
automatically the moments when the statistics of the multivariate time series change
and must be parametrized by a different covariance matrix. Then, having a sequence
of covariance matrices that parametrize the statistics of the multivaraite time series
of each window, we may study the characteristics of the trajectory that they engender
in the SPD manifold and better understand the phenomena described by x(t). Notice,
however, that the estimation of covariance matrices with a sliding window may be
challenging, since the limited number of available samples may yield bad estimators.
A very relevant line of research would be to study the statistical behavior of these
poorly estimated covariance matrices and come up with a corrected version for the
expression of the geodesic distance between them in the small-sample regime. The
works in [Tio+19] and [CBG16] would be a good place to start.

Finally, we believe that a deeper understanding of the connections between RPA and
optimal transport on the SPD manifold could be very profitable. Such investigation
could lead, for instance, to an extension of RPA that would transform the data points
adaptively using local information instead of doing them in a global fashion.
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