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Abstract

Understanding the structure and mechanical behavior of materials on the microscopic

scales is crucial for the design of products with desired properties. This thesis fo-

cuses on obtaining microscopic insights into the properties, notably fracture, of oxide

glasses which are among the most widely used materials in the world. To this end,

we use state-of-the-art atomistic simulation techniques to investigate silica and sodium

silicates, i.e., the prototypical compositions for many oxide glasses. Using large-scale

molecular dynamics simulations, the dynamic fracture of the glasses is studied in depth.

We show that the mechanical properties of the glasses are considerably more sensitive

to the used interaction potential and simulation protocol than the structural properties.

Fracture of silica glass is found to be pure bond rupturing at the crack tip, whereas

fracture of Na-rich glasses is accompanied by the growth and coalescence of cavities.

We also reveal that the nonaffine atomic displacement is the microscopic reason for

the compostion-induced transition behavior in the stiffness of these glasses. It is found

that the surfaces generated by the fracture are considerably rougher than the melt-

formed surfaces and exhibit logarithmic-scaling at the nanoscale (≤ 10 nm). By using

first-principles simulations, the vibrational and electronic signatures of some structural

units that are abundant on the glass surface are identified. In addition, the ionicity

and strength of various types of bonds are inferred from these simulations. Finally, we

introduce a novel method to characterize the structure in liquids and glasses. Our anal-

ysis shows that these systems have a three-dimensional structure that is surprisingly

ordered.

Keywords: Oxide glasses, silica, sodium silicate, deformation, fracture, surface,

atomistic computer simulations, molecular dynamics, first-principle calculations, chem-

ical bonding, structural order
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Résumé

La compréhension de la structure et du comportement mécanique des matériaux à

l’échelle microscopique est cruciale pour la conception de nouveaux produits aux pro-

priétés spécifiques. Cette thèse vise à obtenir des informations microscopiques sur les

propriétés, notamment celles de la fracture, des verres d’oxydes qui sont parmi les

matériaux les plus utilisés au monde. À cette fin, nous utilisons des techniques de

simulation atomistique de pointe pour étudier la silice et des silicates de sodium, c’est-

à-dire les compositions représentatives pour de nombreux verres d’oxydes. À l’aide de

simulations de dynamique moléculaire à grande échelle, la fracture dynamique des ver-

res est étudiée de manière approfondie. Nous montrons que les propriétés mécaniques

des verres sont considérablement plus sensibles au potentiel d’interaction et au pro-

tocole de simulation utilisés qu’à leurs propriétés structurelles. La fracture du verre

de silice est due aux ruptures de liaisons en pointe de fissure, tandis que la fracture

des verres riches en Na s’accompagne d’une croissance et d’une coalescence des cavités.

Nous montrons également que l’origine microscopique du comportement transitoire

présenté par la rigidité des verres en fonction de leur composition se trouve dans le

déplacements atomiques non affines des atomes constituants. On constate que les

surfaces générées suite à la fracture sont considérablement plus rugueuses que les sur-

faces formées par fusion et présentent un comportement en loi logarithmique à l’échelle

nanométrique (≤ 10 nm). En utilisant des simulations premiers principes, les signa-

tures vibrationnelles et électroniques de certaines unités structurales, abondantes sur

la surface du verre, sont identifiées. De plus, l’ionicité et la force de divers types de li-

aisons sont extraites à partir de ces simulations. Enfin, nous introduisons une méthode

nouvelle pour caractériser la structure des liquides et des verres. Notre analyse montre

que ces systèmes ont une structure tridimensionnelle étonnamment ordonnée.

Mots clés: Verres d’oxydes, silice, silicate de sodium, déformation, fracture, surface,

simulations atomistiques, dynamique moléculaire, calculs premiers principes, liaison

chimique, ordre structurel
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Abbreviations

AFM Atomic force microscopy

AIMD Ab initio molecular dynamics

BAD Bond angle distribution

BLJM Binary Lennard-Jones mixture

BO Bridging oxygen

CN Coordination number

csBO Corner-sharing bridging oxygen

csSi Corner-sharing silicon

DFT Density functional theory

DT Delaunay triangulation

EDF Electronic degrees of freedom

eDOS Electronic density of states

ELF Electron localization function

esBO Edge-sharing bridging oxygen

esSi Edge-sharing silicon

FO Free oxygen

FS Fracture surface

GGA Generalized gradient approximation

LDA Local density approximation

LJ Lennard-Jones

MD Molecular dynamics

MS Melt-formed surface
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MSD Mean squared displacement

NBO Non-bridging oxygen

NSx Na2O-xSiO2 (Sodium silicate)

PBCs Periodic boundary conditions

PDF Probability distribution function

PS Phase separation

RDF Radial distribution function

SCL Supercooled liquid

TBO Threefold coordinated oxygen

VDOS Vibrational density of states

2D Two-dimensional

2M Two-membered

3D Three-dimensional

Conversion of units

Length 1 Å = 1× 10−1 nm = 1× 10−10 m

Time 1 fs = 1× 10−3 ps = 1× 10−6 ns = 1× 10−15 s

Pressure 1 GPa = 1× 109 Pa = 1× 109 N/m2

Energy 1 eV = 1.602× 10−19 J = 3.829× 10−20 cal (th)

Frequency 1 cm−1 = 2.998× 1010 Hz

Viscosity 1 Pa·s = 10 poise
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Chapter 1

Introduction

1.1 Motivation

The presence of glasses in nature and technology is very common [1–3]. Glassy products

such as window panes, tableware and optical fibers are well integrated in our everyday

life. Sometimes we do not even notice their presence because of their transparency.

The mentioned examples are glasses based on the chemical compound silica (SiO2),

which are the most familiar and historically the oldest types of glasses. Mechanical

reliability is a crucial requirement that underlies the diverse uses of modern glass

products. Failure of brittle materials like oxide glasses is most often seen through the

spreading of cracks. Understanding the fracture behavior of glass is thus of fundamental

importance for designing glass products with improved mechanical performance.

The complexity of cracking in oxide glasses lies primarily in the fact that fracture

is a multiscale phenomenon, i.e., different mechanisms operate across a large range

of length scales, see Fig. 1.1. The breakdown of a material can be traced down to

the breaking of chemical bonds at the nanometer and Ångstrom scales. Classical

fracture mechanics, pioneered by Griffith [4] and Irwin [5], has shown great success in

describing the stability and the slow growth of flaws within materials, particularly at

the macro- and meso-scales. However, it fails to describe fast crack propagation and

on the microscopic scales where the material can not be treated as a continuum [6].

Fundamental understanding of the latter requires insights from the atomic scale. This

is the first motivation of the thesis.

Fracture of glass is complex also due to the fact the mechanisms that underlie crack-

ing depend on the speed at which a crack forms as well as the type of loading (e.g.,

tension or shear) to which a material is subjected. Taking the crack velocity vc as an

example, as a crack radiates outwards from a flaw at the fracture origin, vc increases

rapidly (in microseconds) from nearly zero to 103 m/s [7, 8]. This process is accom-
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1. Introduction

panied by a progressive roughening of the fracture surface, which is often examined

in experiments to infer the causes and mechanisms related to glass failure [7]. The

aforementioned factors may partially account for the seemingly contradicting results

that one finds in the literature regarding the fracture behavior of oxide glasses [9–11].

Glass breaks when a flaw meets tension. We aim to understand this primary failure

mode and this becomes the second motivation of the current work.

Figure 1.1: Multiscale fracture of glass. Crack spreading in brittle solids such as oxide

glasses involves mechanisms that span a vast range of scales. (a) Macroscopic cracking of a

window glass caused by impact. (b) Micrometer scale evolution of a crack as measured by

atomic force microscopy. Image adapted from Pallares et al. [12]. (c) Nanometer scale details

of the crack geometry as obtained by atomistic modeling (this work). (d) Ångstrom scale

visualization of the volume charge density around broken Si-O bonds (this work).

The third aspect that contributes to the complexity of glass fracture is, not sur-

prisingly, due to its non-crystalline structure. Unlike crystals which are homogeneous

materials, glass exhibits inhomogeneities in structure and other properties on differ-

ent length scales. Understanding the interplay between a fast-moving (dynamic) crack

and heterogeneities at the microscopic scale is a very challenging task yet of practical

importance in the design of toughening strategies for glassy products. This constitutes

the third motivation of the present work.

An additional motivation of this thesis concerns a deeper understanding of the

structure of glass, and disordered systems in general. In both experimental and com-

puter simulation studies, the structure of liquids and glasses is mostly characterized by

two-point correlation functions such as the static structure factor and radial distribu-

tion function [3, 13, 14]. However, this type of structural measure is far from adequate

to provide a full spectrum of the structural features of these systems. We were thus

motivated to propose new approaches for obtaining more insights into the structure of

these disordered systems.

2



1.2. Objectives

1.2 Objectives

This thesis aims to obtain a fundamental understanding of the structure and fracture

behavior of oxide glasses on the microscopic scales. To this end, we combine atomistic

computer simulation techniques with different capabilities. The systems of primary

interest are silica and sodium silicate, both of which are prototypical compositions

for oxide glasses. In light of these global objectives, this thesis seeks answers for the

following questions:

� Interatomic potential: How sensitive is the mechanical behavior of glass to the

interaction potential? How does the simulation protocol affect the conclusions

regarding the nature of fracture? These questions will be addressed in Chapter

2.

� Cracking process: How the global stress-strain behavior of a glass depends

on the production history, loading condition and composition? How fast does

a dynamic crack propagate? Is fracture caused by cavitation on the nanometer

scale? To which extend are glass properties inhomogeneous on the microscopic

scales? Are these local properties correlated with each other? Does the crack

propagate along regions rich in network modifier? We will provide insights into

these questions in Chapter 3.

� Surface characteristics: How does melt-formed surface compare with fracture

surface? How do the surface structure and composition compare with the ones

of the bulk? How rough are the surfaces? What kind of scaling behavior do

the surfaces exhibit on the nanometer scale? Answers to these questions can be

found in Chapter 4.

� Chemical bonding: What is special about the structure of glass surface? What

are the vibrational and electronic signatures of the structural units on the surface?

How does the presence of Na influence the nature of chemical bonding and bond

strength? We will clarify these questions in Chapter 5 based on the results from

first principles calculations.

� Structural order: Are there nontrivial structural orders beyond short-range

distances in liquids and glasses? How can we characterize the structure of disor-

dered system by taking into account also angular dependence, i.e., using higher

order correlation functions? These questions will be addressed in Chapter 6.

The rest of the thesis is organized as follows. In the remaining of Chapter 1, we

give a brief introduction of the properties of oxide glasses and the basics of atomistic

3



1. Introduction

computer simulations. In Chapters 2-6, we present the results concerning the afore-

mentioned questions. Finally, we summarize the thesis and provide a outlook for the

future.

1.3 Facets of glass forming systems

The term glass, in popular usage, refers mainly to silicate glass, which is made of silica

(SiO2) and other metal oxides such as sodium oxide (Na2O) and calcium oxide (CaO).

These types of material are familiar to us as window panels and glass bottles. In a

broader sense, glasses can be made of a range of different kinds of materials other

than silica: metallic alloys, polymers, organic molecules, etc. Glass properties vary

depending mainly on the chemical composition and production history.

But what is a “glass”? A bit surprisingly, although humans have been producing

glasses for thousands of years, a consensus concerning the definition of glass has yet

to be reached [15–17]. Nevertheless, there are at least two features that most people

agree about glass: having a non-crystalline structure and exhibiting a glass transition.

The first feature is relatively easy to understand. Crystals have a structure defined by

a periodic arrangement of atoms or molecules (left panel of Fig. 1.2), i.e., the same

local structural order extends to infinitely large distances. Non-crystalline structure

therefore means that no such long range ordering exists. However, this does not mean

that the structure of glass is completely random since short-range (local) ordering

is usually present. (A closer look at the disordered packing of oranges, right panel

of Fig. 1.2, one may still find a well preserved local icosahedral (fivefold) symmetry).

Usually, glass structure represents a less efficient packing of atoms or molecules relative

to their crystalline counterparts. Take silica as an example, the stable crystalline phase

of silica α−quartz has a density of 2.65 g/cm3, whereas silica glass has a density of

2.20 g/cm2.

Figure 1.2: Order versus disorder. The analog of packing oranges.

Glass transition, on the other hand, can be considered as a phenomenon of a liq-

4



1.3. Facets of glass forming systems

uid that is cooled [18]. In the usual case, if a liquid is cooled down to its melting

temperature Tm, it crystallizes and a sudden change (i.e., a discontinuity) of volume

or enthalpy can be observed, see Fig. 1.3(a). This process is a standard first-order

phase transition. However, if one cools the liquid fast enough, crystallization at Tm

can be avoided and the liquid becomes supercooled. In the supercooled liquid (SCL)

region, the volume follows the liquid line and the relaxation time for atomic/molecular

rearrangements increases rapidly. The glass transition occurs when the relaxation time

scale and the experimental time scale of observation cross [19], and this process lasts

over a temperature range. As temperature is further decreased below Tg, called the

glass transition temperature, the SCL becomes a glass. (Tg is basically defined as the

middle point of this transformation T range). In practice, Tg can be defined as the

temperature corresponding to the inflection point in the T−dependence of properties

such as the (volumetric) thermal expansion coefficient

αV =
1

V

(∂V
∂T

)
P

(1.1)

and heat capacity

CP =
(∂H
∂T

)
P
, (1.2)

where V and H are the volume and enthalpy under constant pressure. In calorimetry

experiments, Tg is often measured on heating. For this case, Tg is usually assigned to

be the peak temperature of the CP curve.
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Figure 1.3: (a) Temperature dependence of a liquid’s volume or enthalpy at constant pres-

sure, respectively. Tm is the melting temperature and Tg is the glass transition temperature.

(b) Liquid viscosity as a function of scaled temperature Tg/T , showing Angell’s strong-fragile

pattern. The structural relaxation time τα has nearly the same T−dependence as the shear

viscosity.

It is important to note that the glass transition is primarily a kinetic phenomenon.

On cooling, the atomic motion becomes increasingly sluggish and the SCL becomes
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1. Introduction

too viscous to flow at Tg. For nonpolymeric glass formers, the shear viscosity η at Tg

is typically around 1012 Pa·s. This viscosity value is sometimes used to define Tg, see

Fig. 1.3(b). As the viscosity has such a large magnitude, the glassy state is essentially

a solid state at human time scale.

Another relevant quantity which may cause confusion with Tg is the fictive tem-

perature Tf , which can be defined as the temperature at which the supercooled liquid

has a structure similar to that of the relaxing glass [20, 21]. The fictive temperature

is usually measured on heating and is determined as the intersection of the glass line

and the extended liquid line. Due to aging of the glass, Tf is usually smaller than Tg.

Both Tg and Tf depend on the thermal history.

The viscosities of glass forming liquids may show very different T−dependence.

Within Angell’s concept of fragility, liquids can be classified into strong and fragile glass

formers. For strong glass formers, η increases in an Arrhenius manner as temperature

decreases, i.e.,

η = η0exp

(
E

kBT

)
, (1.3)

where η0 is a constant, kB is the Boltzmann constant, and E is an activation energy.

For strong liquids, E is (nearly) T−independent, whereas for fragile liquids it increases

significantly with temperature on approaching Tg (i.e., a “super Arrhenius” behavior).

Network oxides such as SiO2 are typical examples of strong glass formers. Organic

compounds such as o-Terphenyl (C18H14) can be classified as fragile glass formers [22].

Notice that even strong liquids will show some non-Arrhenius behavior at temperature

near their Tg, but it is more dramatic for fragile liquids [23].

1.4 Structure

Phase diagram of the Na2O-SiO2 system. As the binary sodium silicate (Na2O-

SiO2) system is of particular interest of this thesis, here we give a brief introduction

for the phase diagram of the Na2O-SiO2 system, see Fig. 1.4. For pure silica, as

the melt is cooled, it crystallizes in three varieties, cristobalite, tridymite, and quartz

at 1713, 1470 and 867 °C, respectively. (Quartz has α− and β−forms. The inversion

temperature is at 573 °C, below which α−quartz is the stable phase). The first eutectic

point, between the disilicate (Na2Si2O5) and quartz, appears at 793 °C when 24.5% of

Na2O is added. With further increasing Na2O concentration, the second eutectic point

between Na2Si2O5 and Na2SiO3 (sodium metasilicate) shows up at 37.9% Na2O and

846 °C. The melting points of Na2Si2O5 and Na2SiO3 were determined at 874 and 1089

°C, respectively [24].

Another important feature of the Na2O-SiO2 system is the phenomenon of phase
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Figure 1.4: Phase diagram of the Na2SiO3-SiO2 system at the atmospheric pressure

(Adapted from Kracek [24]). The mole percent of Na2O varies from 0 to 50%.

separation (PS). It should be noted that the occurrence of PS in silica-based glasses is

the norm rather than the exception [2]. The temperature at which PS occurs, Tc, is

determined by the thermodynamics of regular solutions (see the dashed line in Fig. 1.4),

whereas the extent of PS can range from the microscopic level to the macroscopic

level, depending on the kinetics. For the Na2O-SiO2 system, the PS is said to be

metastable1 since it occurs in the sub-liquidus region [2]. This usually means that the

process of separation into two co-existing phases will be slow so that the scale of the

microstructure may be undetectable by the naked eye. We note that the experimental

Tg of the Na2O-SiO2 system containing 5%-20% of Na2O is about 430-480 °C, i.e., lower

than Tc [25]. Despite this, the viscosity of the melt below Tc is already high so that

PS only occurs on a small scale2 in the final glass [2]. In computer simulations, the Tg

for the aforementioned compositions are actually higher than Tc, due to the relatively

fast quenching. Therefore, even microscopic PS is unlikely to happen.

Structural models for sodium silicate glasses. A number of models exist for de-

scribing the structure of silicate glasses. The most commonly used models are based on

the idea of Zachariasen [26], and are referred by the term random network theory [2].

For the case of vitreous silica, the silicon-oxygen tetrahedron with a coordination num-

ber of four, i.e., [SiO4], serves as the basic building block for the network. The short

1The term metastable or stable is attributed to the stability of the liquid phase in the phase

separation region.
2Generally, this means that the glass looks homogeneous to the naked eye and optical microscope.
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range order of the glass is preserved since these tetrahedra have a high degree of local

ordering (even in the liquid state). A continuous, three-dimensional network is formed

through the linkage of these [SiO4] units at all four corners (i.e., corner-sharing). Disor-

der in the structure is obtained by allowing the variability of the SiOSi angle connecting

adjacent tetrahedra, and the rotation of the tetrahedra. A two-dimensional (2D) rep-

resentation of such a structure is shown in Fig. 1.5(a).

Figure 1.5: Schematic two-dimensional glass structures: (a) silica; (b) sodium silicate. After

Hasanuzzaman et al. [27]

The addition of alkali oxides, e.g., Na2O, to silica results in breaking of the network

connectivity by creating non-bridging oxygens (NBO, bonded to only one Si). Each

NBO is in principle associated with a nearby alkali ions, e.g., Na+ to maintain local

charge neutrality. Glass density increases with increasing alkali oxide concentration

due to the increase in atomic packing density. A 2D drawing of such a structure for

sodium silicate is shown in Fig. 1.5(b).

An additional point to be noted regarding the structure is the formation of Na

pockets or channels in sodosilicate glasses. Since the earlier 80’s, there have been

some speculations about the existence of preferential ion conducting pathways in a

Si-O network [28, 29]. At present, there is certainly evidence from both experimental

studies and computer simulations to support such models [30, 31]. Figure 1.6(a)

shows the partial structure factors Sα,β(q) as obtained from MD simulations for sodium

trisilicate (NS3) in liquid and glass states. A well-pronounced peak at q ≈ 0.9 Å−1

corresponds to an inhomogeneous distribution of sodium ions on a length scale of 6-8 Å.
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The snapshot, Fig. 1.6(b), illustrates clearly a network of Na channels that percolate

through the Si-O network. (Note that the sizes of spheres do not mirror the real sizes

of the three atomic species). It is also found that the formation of Na-rich channels is

fairly unaffected by Na2O concentration, by temperature, or by a change of the density

in the melt [31]. These findings at the microscopic level give an explanation for the

observation that the viscosity of the Na2O-SiO2 system depends relatively weakly on

the Na2O concentration [25, 32]. It remains an open question how the presence of such

Na-rich channels and the related fast dynamics of Na+ affect the material’s response

to a mechanical load [33].

Figure 1.6: Formation of Na channels in sodium silicate glasses. (a) Partial structural

factors Sα,β(q) as obtained in molecular dynamics simulations in glassy and liquid sodium

trisilicate (NS3) at experimental density. SO,O+0.1 for clarity. (b) Snapshot of the structure

of NS3 at 2100 K. The blue spheres that are connected to each other represent the Na atoms.

The Si-O network is drawn by yellow (Si) and red (O) spheres that are connected to each

other. After Meyer et al. [31].

1.5 Mechanics

1.5.1 Stress-strain curve

As fracture is of major concern in this thesis, we introduce here briefly the typical

stress-strain (σ− ε) curve of a material under tensile loading. (Throughout the thesis,

tensile stress are positive and compressive stresses are negative. The sign convention for

strains is the same as that for stresses). Three characteristic points can be inferred from

the stress-strain curve, Fig. 1.7(a). The first one is the yield point at which nonlinear

(elastic+plastic) deformation begins. The yield stress (or yield strength) thus separates
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1. Introduction

elastic3 and plastic behavior of material. The second point is the failure point where

stress reaches a maximum. The stress at this point is thus called failure stress (or

maximum stress). After the failure point the material fails and eventually reaches

the fracture point, i.e., the point where the stress drops to zero rapidly. For ductile

materials, one observes necking of the material before fracture. In contrast, brittle

materials fracture without noticeable necking, i.e., the failure point is approximately

the fracture point. For a perfectly brittle material the three characteristic points should

coincide with each other [34]. The yield point and failure point can be easily identified

from the slope of the stress-strain curve, i.e., the tangent modulus,

Et =
∂σ

∂ε
. (1.4)

Et at ε→ 0 is known as the elastic modulus or Young’s modulus E. In the linear elastic

region, Et is a constant and is equal to E, see Fig. 1.7(b). In contrast to the yield and

failure points, the fracture point (for a ductile material in particular) is less easy to

define if the material does not show a clean drop of stress after failure.

Strain, ε
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tr

e
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, 
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Strain, ε

∂
σ

/∂
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Failure point

Yield point Fracture point

Necking

E

(a) (b)

Yield point

Failure point

Figure 1.7: (a) Typical stress-strain curve for a material under tensile stress. The shown

stress-strain curve is simply a combination of a linear and quadratic functions. (b) The

corresponding tangent modulus curve. The open circles indicate the three characteristic

points.

If E is large, then the material is said stiff. A less stiff material is also termed

flexible. Another mechanical concept which might cause confusion with stiffness is

hardness. Soft and hard are defined in mechanics with respect to yield strength, i.e.,

where plastic deformation begins. A material is said to be hard if it can withstand

high applied stress before yielding. Therefore, mechanically speaking, it is possible to

find a material that is stiff but soft.

3Elastic behavior is not always linear. Rubber under tension is a notable exception.
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1.5. Mechanics

1.5.2 Strength and toughness of silicate glasses

Silicate glasses are prototypical strong yet brittle materials where cracks, once initi-

ated, immediately propagate in an unstable, often catastrophic fashion. This brittle

fracture behavior is considered as the main drawback of glasses for many modern ap-

plications [33, 35].

Silica-based glasses are among the intrinsically strongest man-made materials that

can be produced on a large scale, see Fig. 1.8. For instance, a tensile strength of up to

26 GPa was measured for silica glass [36]. A theoretical strength of 32 GPa was also

calculated for a typical silicate glass4 [2]. (The theoretical strength is given by the force

which must be applied to overcome the maximum restorative force between two atoms,

and thus it should correspond to the failure stress as indicated in the σ − ε curve).

However, the practical strengths of glasses are usually far (orders of magnitude) less

than their theoretical values mainly due to the presence of surface flaws [37]. These

flaws act as stress concentrators which severely weaken the glass. Other factors affecting

the strength of glass include composition, working environment, fatigue, etc.

Figure 1.8: Strength-toughness relationship for engineering materials (figure adapted from

Ritchie [38]). Yield strength data shown for oxide glasses represent ideal limits. Data for

oxide glasses are from [39]. Diagonal lines (contours) correspond to values for the plastic-zone

radius, K2
c /πσ

2
y , where Kc is the fracture toughness and σy the yield strength.

4Exact composition unknown. We deduce that the glass should close to pure SiO2, based on the

given values of Young’s modulus= 70 GPa and surface energy= 3 J m−2.

11
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While strength may correspond to any of the three characteristic points on the σ−ε
curve [2, 37, 38], toughness is a measure of a material’s resistance to fracture. For the

opening mode of fracture in experiments, toughness is the critical stress intensity factor

KIc, which, according to continuum mechanics, can be determined by the expression [5]

KIc ∝ σr
√
a, (1.5)

where σr is the fracture stress of a sample with a pre-existing critical crack of length

a. KIc as measured for silicate glasses are usually smaller than 2 MPa.
√

m, which has

been considered as an indication of brittleness [40]. In a more general sense, toughness

is the energy needed (or absorbed) to cause fracture and is obtained by integrating the

area under the stress-strain curve [41]. This definition of toughness is also called work

of fracture [34].

It is generally true that harder (stronger) materials tend to be brittle, and lower

strength materials which can deform more easily tend to be tougher (see Fig. 1.8).

In other words, strength and toughness, two vital requirement for most structural

materials, tend to be mutually exclusive [38].

For the search of materials that are not only strong but also tough, the conflict

of strength versus toughness has to be resolved. Over the years, several toughening

strategies have been put forward for increasing the damage resistance of glass products.

Extrinsic toughening techniques such as thermal and chemical toughening create com-

press stress at the glass surface and thus effectively reduce (shield) the local stresses

and strains actually experienced at the crack tip (surface flaws). Intrinsic toughening,

on the other hand, is associated with making the cracking processes ahead of the crack

tip more difficult. This can be achieved through, e.g., introducing a second phase

and enlarging the plastic zone. Note that extrinsic toughening affects only the crack-

growth toughness, whereas intrinsic toughening increases both the crack-initiation and

crack-growth toughness. Extrinsic toughening is the primary source of toughening in

brittle materials (e.g., oxide glasses), whereas intrinsic toughening is the major source

of fracture resistance in ductile materials [33, 38].

1.6 Fracture of oxide glasses: State of the art

Fracture of glasses is a vast subject that has been studied for centuries. To give a com-

prehensive review of this topic would be impossible in the thesis. There are, however,

several good review articles providing more detailed description of various aspects of

this subject [42–46]. In this section, we instead give a comparative review of some

recent studies of glass fracture using both experimental and simulation approaches.
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1.6.1 The setup

To start, we show in Fig. 1.9 a simple analog that helps the visualization of different

modes of crack. Let us consider the spacing between the upper and lower beaks of the

“goofy duck” as a crack, which is initially closed, see Fig. 1.9(a). Depending on how

the duck moves its beaks, different modes of crack loading are generated, Fig. 1.9(b-d).

The opening mode (mode I), panel (b), is caused by a loading that is perpendicular to

the crack plane. The sliding mode (mode II), panel (c), is produced by forces parallel

to the crack plane and normal to the crack line. The tearing mode (mode III), panel

(d), is caused by forces parallel to the crack surface and to the crack line. The opening

mode of crack loading is the primary mode of experimental interest, and it will also be

the focus of this thesis.

Figure 1.9: “Goofy duck” analog for the three modes of crack loading. (a) Crack/beak

closed. (b) Opening mode. (c) Sliding mode. (d) Tearing mode. (Courtesy of M. H.

Meyers [34].)

A comparison between two experimental results is meaningful only if they have

been obtained under comparable conditions. The same rule applies to the compari-

son between experimental and simulation studies. Before discussing the results from

previous studies, we briefly introduce the experimental and simulation setups usually

used for investigating glass fracture, in particular fracture under tension. Some key

parameters will also be mentioned.

Experiements. In experiments, fracture of glass can either be investigated by direct

examination of the crack tip in situ or by post-mortem analysis of the fracture surface.

For both approaches, atomic force microscopy (AFM) is the experimental technique

that has become increasingly popular in recent years [47]. The measurement capa-

bility (or resolution) of AFM can reach ≈0.05 nm in the direction perpendicular to

the surface and 1-10 nm in the direction parallel to the surface [45]. With this tech-

nique, fracture study is often conducted in a stress-corrosive environment, i.e., water
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comes into play (different levels of humidities are maintained during the experiments).

The crack velocity vc can be controlled over a wide range (as low as 10−13 m/s [47])

but usually has a small magnitude (< 10 m/s [48]). To achieve slow (or subcritical5)

crack growth, one usually initiates a crack by applying an uniaxial compressive stress,

and then holds the load constant. The crack will propagate slowly due to the cor-

rosive action of water [10, 47] (a phenomenon also known as static fatigue [2]). It is

worth noting that, whilst water vapor promotes failure through the chemical reaction

SiO2+2H2O→Si(OH)4 (results in sharpening of the crack tip), liquid water actually

lead to crack blunting and thus increase the resistance to fracture.

Simulations. Computer simulations have been applied to study glass fracture for

decades. Atomistic simulations, among many simulation and modeling techniques, have

been frequently used to gain insight into the evolution of atomic scale details of fracture,

which is difficult to observe with most of the available experimental techniques. Here we

focus mainly on the fracture studies by using atomistic simulation techniques, notably

molecular dynamics.

There are in general two types of fracture simulation that can be found in the

literature: Dynamic fracture and quasi-static fracture. The first approach takes into

consideration the effect of thermal vibration, i.e., fracture at a given temperature. One

usually applies an external strain to the whole system by scaling the positions of all

the atoms every N time steps [50]. For N = 1, a tiny increment of strain is applied at

each time step. This is the method of choice for the current study and it has the merit

that it mimics the dynamic fracture of glass in experiments, e.g., testing the strength

of a glass rod under uniform tension. Applying uniform expansion to the sample is

ideal when using high strain rate since stress wave propagation can be avoid [51].

To meet a given strain increment, other methodologies do exist. For example, one

can choose to displace only atoms in the boundary layers that are normal to the pulling

direction. The system is allowed to relax for a certain duration at each step of increasing

strain in order to reach an “equilibrium” at the current strain state [9, 52–54].

The tensile strain rates reported in the previous simulation studies are usually larger

than 0.1/ns [50–59]. The resulting crack velocity, as reported for silica glass, is on the

order of 103 m/s. Such information for sodium silicate glasses, to our knowledge, has

not been reported yet.

In the second approach, i.e., quasi-static fracture, the thermal and dynamical effects

are neglected. A step-wise deformation is firstly applied to the sample. After that,

the sample (i.e., configuration) is subjected to an energy minimization which permits

to find the configuration corresponding to the local minima of the potential energy

5Crack velocity smaller than the onset velocity of dynamic fracture. For silicate glasses, this critical

velocity is usually smaller than 10−2 m/s [49].

14



1.6. Fracture of oxide glasses: State of the art

landscape [60, 61]. In this approach, the effective strain rate is zero. This approach

seems to mimic the subcritical crack growth under a low-temperature environment (i.e.,

the thermal and dynamical effects are small).

Another important point to be mentioned is the control of the simulation environ-

ment or conditions. More specifically, it concerns the atmosphere (vacuum or humid),

temperature and pressure in/at which the fracture simulation is performed. We note

that while fracture of glass is often studied with the presence of water in experiments,

such chemical-mechanical interactions are rarely studied in simulations. This is not so

surprising, since the chemical reactions between water and the glass network require

the description of the atomic interaction with quantum accuracy, which is computa-

tionally very demanding. To our knowledge, only very recently such simulations, i.e.,

water interacting with glass fracture, have been performed for silica with system sizes

of 104 ∼ 105 atoms [62–64]. However, we note that careful attention should be payed to

the influence of simulation setup and sample geometry, which was often uncommented

in previous simulations of glass fracture. We will discuss this point in more details in

chapter 2 and 3.

Also very important is the control of the ensemble used for the fracture simulation.

In the literature, fracture of glass is carried out either at a constant volume or a constant

pressure, which could lead to different conclusions regarding the fracture behavior. As

first reported in an earlier study of silica [56], constant volume simulation leads to a

more brittle fracture of the glass. To mimic the fracture of glass in experiments, a

constant pressure simulation should be used.

1.6.2 Key results and open questions

Is crack growth caused by cavitation? Silicate glasses have long been considered

as brittle materials. That is to say, fracture of glass (from a microscopic point of view)

is due to sequential breaking of atomic bonds at the crack tip. This brittle nature

of glass should exclude any possibility of cavitation, i.e., the growth and coalescence

of small voids ahead of the crack tip. This conventional picture was challenged by

Célarié et al. [10] in 2003 with a paper entitled “Glass Breaks like Metal, but at the

Nanometer Scale”. Based on in situ AFM observations on the sample surface, the

authors claimed the presence of nanoscale cavities ahead of the stress-corrosion crack

tip of an aluminosilicate glass. The size of the damage cavities reported were 20 nm long

and 5 nm deep. (The third dimension is missing since the observation was done only on

the sample surface). Later on they also carried out similar studies for silica glass and

found that the cavities have sizes of 125 nm×25 nm [65, 66]. Based on these results, they

claimed that the origin of such a nanoscale damage mode, i.e., cracks propagate by the

nucleation, growth and coalescence of cavities, is inherent to the amorphous structure,
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irrespective of glass composition. In 2004, Guin and Wiederhorn [11] questioned the

observation by Célarié et al. in a paper entitled “Fracture of Silicate Glasses: Ductile

or Brittle?”. They used a different experimental setup for investigating slow crack

growth in silica and soda-lime silicate glasses. In their work, AFM was used to acquire

the profiles of the post-morten fracture surfaces, which were subsequently examined

to check the possibility of cavity formation during fracture. The authors found that

the opposing fracture surfaces matched very well (The fracture surfaces matched to

a resolution of better than 0.3 nm normal to the surface and 5 nm parallel to the

surface), again irrespective of the compositions. Notwithstanding, they did not exclude

the possibility of cavities smaller than 5 nm. Note that in the work of Célarié et

al. the cracks were initiated by compressive stress whereas in the study of Guin and

Wiederhorn the cracks propagate due to pure tension.

On the other side, researchers have also tried to understand the damage mechanisms

of silicate glasses through computer simulations. Simmons and coworkers started the

fracture study of silica glass by using MD simulations in the early 80s [67]. Later on,

they studied the fracture behavior of silica under tensile loading and found only voids

with sizes smaller than 0.5 nm [50]. Rountree and coworkers [9, 68, 69] performed large

scale MD simulations of fracture of silica glass under tension and concluded that crack

propagation is accompanied by nucleation and growth of nanometer scale cavities up to

20 nm ahead of the crack tip. However, after a more careful reading of their papers one

realizes that important factors such as the sample geometry and strain rate are missing

or not fully explained. Later, fracture of more complex glass compositions were also

studied, using different interaction potentials and simulation setups [52, 56, 57, 70]. In

these simulation studies, the influence of glass composition on the fracture behavior

of glass at the nanoscale has been highlighted. Voids (or some times called ”critical

voids”) were found with sizes around 0.5 nm, weakly depending on glass composition

(silica, sodium silicate or calcium aluminosilicate). All the above mentioned simulations

were performed in vacuum, i.e., without interacting with water.

As mentioned by Wiederhorn et al. [45], careful attention should be payed when

comparing the results of stress-corrosive fracture with the simulation studies, con-

sidering the vast differences in crack velocities and chemical conditions in these two

techniques. Nevertheless, from a simulation perspective, there is always room for im-

provement in the simulation setup (to approach real experiments) and the analysis of

the simulation outputs. This is indeed what we aim to do in this thesis. We will present

a detailed analysis of the cavitation during glass fracture in section 3.3 and hopefully

provide some fresh insights on this question.

How large is the nonlinear zone near the crack tip? In experiements, the

nonlinear zone, or plastic zone, is usually characterized by measuring the crack tip
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opening displacement and comparing it with an linear elastic solutions. The early

measurement by Célarié et al. [10] showed that the nonlinear zone in a silicate glass is

on the order of 100 nm, but later this value has been proven to be inaccurate [45]. The

experimental study by Han et al. [71], based on the surface displacement field, suggested

that the nonlinear zone in silica glass should be smaller than 10 nm. Note that this

value is just an upper limit based on experimental observation. To our knowledge,

experimental measurements with better resolution and for other silicate compositions

have not been reported.

Continuum models such as the Dugdale-Barenblatt model have also been used to

estimate the size of the nonlinear zone. According to the Dugdale-Barenblatt model,

the size of the plastic zone at a crack tip in a continuum is given by [72, 73]

R =
π

8

K2
IC

σ2
y

, (1.6)

where KIC is the critical stress intensity factor, and σy is the yield strength of the

glass. For brittle materials (e.g. silica glass) the σy is very close to the maximum

tensile strength. For silica glass, the estimated nonlinear zone size is 1.6 nm [45, 74].

This is basically the minimum size of the nonlinear zone that can be estimated from the

elastic model. In experiments, particularly with AFM, reaching the accuracy level of

1-2 nm is a very difficult task. It is worth mentioning that the validity of these models

for glass fracture at the nanoscale (where continuum mechanics is not valid anymore)

is not so clear [45].

In computer simulations, the estimation of the nonlinear zone during glass fracture

was rarely reported. This is due to both the limited system size (< 10 nm usually) and

the lack of a rigorous definition of the interface between plastic and elastic deformation.

To our knowledge, only very recently, sensible measurements of the inelastic zone of

glass fracture have been made from simulations. Rimsza and coworkers [61] adopted a

quasi-2D geometry to study the propagation of a slit crack in silica glass. Based on the

estimation of stress fields and dissipation energies around the crack tip, they found that

the inelastic region is around 3 nm. Very recently, Chowdhury et al. investigated quasi-

2D crack propagation in silica glass under tension by using reactive force fields [54].

By comparing the various properties of the glass during loading and unloading, they

concluded that there is no traceable inelastic process zone in front of the crack tip.

Apparently, no consensus has been reached on this question so far. It is also unclear

how the simulation setup and the criteria for defining the inelastic zone will affect the

final conclusion regarding its size.

The role of network modifiers during glass fracture. Alkali atoms such as Na are

well-known to be able to modify the silica network by breaking Si-O bonds. However,

when the glass is put under mechanical load, the behavior of these network modifying
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atoms (or ions) is not so clear. Since alkali ions can diffuse in glass when a stress

gradient is present, some theories of failure have proposed that the stress gradient

at the crack tip can result in the migration of ions to the crack tip [75, 76]. This

stress-assisted diffusion of the ions effectively weakens the glass and can cause sub-

critical crack growth. Wiederhorn et al. [77] studied fracture of different oxide glasses

in vacuum and found that their is no direct connection between crack growth and the

presence of Na. Also the activation energy of Na diffusion in glass, 15-35 kcal/mol, is

much smaller than that observed for crack motion, 60 to 176 kcal/mol. Instead, they

proposed that crack growth depends on the crack-tip structure in the glass.

Further insight into the behavior of alkali ions during glass fracture was achieved

by analyzing the composition and structure of fracture surface. Kelso et al. [78] found

that the fracture surfaces of an alkali-containing silicate glass show layered distribution

of atomic species: Alkali atoms are in the outermost layer, followed by oxygen, while

Si atoms are drawn into the inner layers of the bulk. They further suggested that

bond breakage in these glasses is likely due to the cooperative rearrangements of atoms

which occur in the top several Å of the surface (in the case of a running crack, this

should mean several Å around the crack tip).

There are a couple of mechanisms (or driving forces) proposed for the rearrangement

of structure/composition near the fracture surface: 1) Higher mobility of alkali species

relative to the O and Si species; 2) Alkali ions move to the outermost surface layer for

charge compensating the dangling Si-O− bonds; 3) The stress gradient near the crack

tip drives the alkali ions from the process zone to the surface.

1.7 Basics of computer simulations

Computer simulations, notably atomistic simulations, have now been established as

standard techniques for exploring phenomena on the microscopic scales. The appli-

cation of computer simulations is vast, from fundamental scientific exploration to en-

gineering designs. Simulations can act as a bridge connecting theoretical models and

experimental results. By using simulations one can also explore physical conditions that

are difficult or impossible to realize in real experiments, such as extreme temperature

and pressure [14].

For exploring the mechanical response of a material, multiscale approaches have

become increasingly popular over the past two decades [9, 79]. To make contact be-

tween atomic and continuum length scales, one can choose modeling either by (i) a

full atomistic approach through simulating millions of atoms or more to approach the

continuum limit, or (ii) a hybrid method which couples atomic-scale simulations with

continuum-mechanics-based models. Clearly, atomistic simulations play a central role
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in both approaches.

There are two main atomistic simulation techniques, namely molecular dynamics

(MD) and Monte Carlo (MC) simulations [14]. MC does not have an intrinsic time

scale and is well-suited to investigate equilibrium states of a system. In contrast,

MD is more suitable for exploring nonequilibrium states (e.g. glass states) and time-

dependent properties. These simulation techniques provide a direct route from the

microscopic details of a system (e.g., atomic species and interaction between atoms) to

macroscopic properties that are of experimental interest (e.g., thermal expansion and

transport coefficients).

Since the first MD study of vitreous silica by Woodcock et al. [80], MD simulations

have been widely used to understand and predict the properties of oxide glasses. In

recent years, MD simulations, combined with empirical modeling, have been used to

accelerate the design of functional glasses which can now been produced at an industrial

scale [81]. It should be noted, however, that the main limitation of MD simulation

is the relatively short time and length scales in comparison with real experiments.

Nonetheless, these discrepancies are becoming smaller and smaller thanks to the rapid

development of computer hardware and efficient numerical algorithms.

Here we introduce the basics of MD simulations which have been used throughout

this thesis. We will start with classical MD simulations which use empirical poten-

tials to describe the interaction between atoms. Then we move on to ab initio MD

which treats the atomic interaction quantum mechanically and thus allows to explore

properties that are inaccessible by classical simulations.

1.7.1 Classical molecular dynamics

Equations of motion. In atomistic simulations, the goal is to determine the trajec-

tories of the atoms in the system, characterized by the atomic positions ri, the atomic

velocities vi, and their accelerations ai. Each atom is considered as a classical particle

that follows Newton’s second law, i.e.,

mi
d2ri
dt2

= Fi, (1.7)

where mi and ri denote the mass and position of particle i in a N particle system,

respectively. Fi is the total force acting on this particle. The total energy of such a

system is

E = K + V (1.8)
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where K is the kinetic energy of the entire system and V the potential energy. The

kinetic energy is given by

K =
1

2

N∑
i=1

miv
2
i , (1.9)

and the total potential energy is

V (r) =
N∑
i=1

Vi(r). (1.10)

Note that the potential energy of particle i depends on the position of itself ri and all

other particles in the system, denoted as r = {rj}, where j ∈ {1, ..., N}. The forces

can be determined from the gradient of the potential energy and hence the equations

of motion can be written as

mi
d2ri
dt2

= −∇iV (r). (1.11)

The exact solutions of Eqs. (1.11) are unknown when N > 2. In practice, the equations

can be solved by discretizing them in time, i.e., by using numerical algorithms called

integrators.

Integration. There exist many integration schemes that are frequently used in MD

simulations. The basic strategy is to develop a stepping method that gives new posi-

tions and velocities from the old ones, i.e.,

ri(t0)→ ri(t0 + ∆t)→ ri(t0 + 2∆t)... (1.12)

∆t is the time step for the integration. The initial positions r(t0) are often taken from

available crystallographic and structural data from the literature. The initial velocities

v(t0) are usually chosen to satisfy the Maxwell-Boltzmann distribution corresponding

to a prescribed temperature. Here we introduce a very popular integration scheme

called velocity Verlet algorithm. In this algorithm, the positions and velocities are

updated as

ri(t+ ∆t) = ri(t) + vi(t)∆t+
1

2
ai(t)∆t

2 +O(∆t4) (1.13)

vi(t+ ∆t) = vi(t) +
1

2
[a(t) + a(t+ ∆t)]∆t+O(∆t3). (1.14)

The corresponding errors for positions and velocities are of orders O(∆t4) and O(∆t3),

respectively. The time step ∆t for the integration has to be chosen carefully. In

principle, the smaller the time step the more accurate the solution to the equation of

motion becomes. Also, a smaller time step is crucial for guaranteeing conservation of

the total energy. In practice, however, small time step means that more computer time

is required for a given simulation time span. The goal is thus to find a operational

balance accuracy of the integration and computational cost. In this work we have
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chosen ∆t = 1.6 fs which is small enough to ensure a negligible energy drift and

fluctuation over a wide range of temperatures.

Interaction potential. It is evident from Eqs. (1.11) that the interatomic potential

is at the core of a successful MD simulation. The potential energy may be decomposed

into terms depending on the coordinates of individual atoms, pairs, triplets, etc. [14]:

V (r) =
∑
i

V1(ri) +
∑
i

∑
j>i

V2(ri, rj) +
∑
i

∑
j>i

∑
k>j

V3(ri, rj, rk) + ... (1.15)

where the notation
∑

i

∑
j>i indicates a summation over all distinct pairs i and j

without counting any pair twice. The first term, V1(ri), is the energy arising from

the particle itself, which is normally zero, unless there is an external field acting on

the system. The second term, V2(ri, rj), the pair potential, is the most important

one. (V2(ri, rj) can also be written as V (rij), where rij = |ri − rj|. That is, the pair

potential depends only on the magnitude of the pair separation rij). The V3(ri, rj, rk)

term represents three-body interactions between atoms. These three-body terms are

rarely included in computer simulations, since the calculation of these interactions is

usually very time-consuming and these terms contribute only a small proportion to the

total potential energy. Higher order terms are also neglected for the same reasons.

In most cases, the pairwise approximation gives a remarkably good description

of material properties since the effects of higher order interactions can partially be

included by fitting an “effective” pair potential. In the following we introduce a few

popular functional forms for these pair potentials that are widely used in the simulation

of liquids and glasses.

Pair potentials can usually be decomposed into short- and long-rang contributions:

V (rij) = VS(rij) + VL(rij) (1.16)

One of the simplest and idealized pair potentials commonly used in computer simulation

is the Lennard-Jones (LJ) 12–6 potential

V LJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (1.17)

where ε and σ are two potential parameters. The potential has a long-range attrac-

tive tail of the form −1/r6
ij and a steeply rising repulsive wall at short distances. If

the parameters are properly chosen, the LJ potential can describe quite reasonably

the properties of some simple systems such as argon. It is also a popular choice for

investigating general properties of liquids, and for comparison with theory.

For ionic systems such as silicates, the long-range term of the pair potential repre-

sents Coulombic interaction due to the electrostatic forces. The long-range interaction
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is thus given by

VL(rij) =
qiqj

4πε0rij
, (1.18)

where qi, qj are the charges on ions i and j, respectively, and ε0 is the vacuum permit-

tivity. Different functional forms for the short-range interaction can be found in the

literature. Two of the most common choices are the Buckingham potential

V Buck.
S (rij) = Aijexp(−Bijrij)−

Cij
r6
ij

, (1.19)

and the Morse potential

V Morse
S (rij) = Dij[1− exp(Aij(rij − r0))]2, (1.20)

where Aij, Bij, Cij and r0 are the parameters of the potentials. The Buckingham terms

are used in the SHIK potential [82–84], which will be the choice in this thesis for

performing classical MD simulations. The Morse term is implemented in the Pedone

potential which has been used to simulate silica-based systems [85].

In practice, one has to define a cutoff distance rcut, beyond which the interaction

between atoms are not counted. The choice of rcut is again a balance between accuracy

and computational cost. For simulations at high temperature and pressure, in order

to avoid the unphysical fusion of atoms at small distances (due to the -Cij/r
6
ij term),

one usually adds to the potential a strong repulsive term of the type Dij/r
n
ij, where

n is usually fixed (e.g., n = 24 in the SHIK potential) and Dij is a fitting parameter.

Note that the presence of this repulsive term induces only negligible variations of the

potential energy and thus of the forces acting on atoms.

Pairwise potentials are usually parameterized by fitting structural, mechanical and

vibrational properties from experimental data or quantum mechanical calculations.

Transferability may be a main drawback of these empirical potentials, since they usually

perform well only under certain composition and physical conditions.

Periodic boundary conditions. Atomistic simulations are usually performed for

a sample containing less than 107 atoms. This number is much smaller than the

sizes of real physical systems (which are of the order of 1023 atoms) that one usually

encounters in real life. As the system size used in simulations is small the surface

effects can be strong. The problem of surface effects can be overcome to some extent by

implementing periodic boundary conditions (PBCs). The original (central) simulation

box is replicated throughout space to form an infinitely large bulk sample. The atoms in

the periodic image cells move in exactly the same way as the atoms in the original box.

If an atom leaves the central box, one of its images will enter through the opposite side.

The atoms do not feel the existence of any wall or free surfaces. A two-dimensional

example of such a periodic system is shown in Fig. 1.10. The duplicate boxes are

labeled A, B, C, etc.
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The effects of PBC may depend on the interaction potential and the phenomenon

under investigation. For instance, the interaction between the atoms in the central cell

and replicate cells may have a stronger effect on mechanical behavior than structural

properties. Therefore, even with PBCs applied, it is still important to test if the prop-

erties of a simulated system and those of the macroscopic system which it represents

are the same.

Figure 1.10: A two-dimensional periodic system. Molecules/atoms can enter and leave each

box across each of the four edges. In a three-dimensional example, the four edges extend to

six faces. After Allen and Tildesley [14].

Statistical ensembles. Statistical mechanics builds the bridge between microscopic

states and macroscopic properties of a system. The central idea is the concept of the

statistical (thermodynamic) ensembles. The ergodic hypothesis6 states that for an

isolated system of total energy E, the ensemble average of a property A is equivalent

to the time average:

〈A〉Ensemble = 〈A〉Time (1.21)

where the symbol 〈·〉 denotes average. This relation allows the calculation of thermo-

dynamical properties by simply averaging over sufficiently long time trajectories. The

ensemble average of a property A is given by

〈A〉Time =
1

M

M∑
i=1

A(p, r), (1.22)

6The erogdic hypothesis is valid only for systems at equilibrium.
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with pi = mivi as the linear momentum of particle i, and p = {pi}, and M the number

of measurements taken.

Different statistical ensembles are available in MD simulations, see Fig. 1.11 for a

graphic representation. The microcanonical ensemble, NV E, is the “natural” ensemble

in an MD simulation. This is due to the fact that the total energy E of the simulated

system remains constant during the integration of the equations of motion (Eq. 1.11) for

a system ofN particles and a fixed volume V . In theNV E ensemble, the system evolves

along a path of constant energy in the phase space. Other ensembles such as canonical

ensemble, NV T , and isobaric-isothermal ensemble, NPT , are also frequently used in

MD simulations. The NV T ensemble corresponds to a collection of thermodynamic

states of the system characterized by a fixed number of particles N in a fixed volume

V at a fixed temperature T . In contrast, the NPT ensemble is characterized by a fixed

N , a fixed T and a constant pressure P (i.e., the volume becomes a dynamic variable).

The NPT ensemble, in principle, is the closest to real experimental procedures.

Figure 1.11: Visual representation of five statistical ensembles. (Image adapted from

Wikipedia)

The usage of these thermodynamical ensembles often requires to control the temper-

ature and pressure. In MD simulations, temperature is controlled through a thermostat

which acts as a source of thermal energy and exchange heat with the coupled system

whenever is necessary. Similarly, pressure is controlled by coupling the system to a

barostat which usually acts as a “pressure bath”. Several approaches are available in

MD simulations to maintain a target temperature and pressure [14]. In this thesis, the

ones developed by Nosé [86, 87] and Hoover [88, 89] are used for performing simulation

at constant temperature and pressure.

1.7.2 Ab initio molecular dynamics

In classical MD, the forces acting on atoms are obtained from an empirical potential

with an fixed functional form and a set of parameters. The ab initio approach, by
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contrast, requires no free parameters and the forces on the atoms are obtained from

their electronic degrees of freedom (EDF).

Usually, within an ab initio approach, one solves the time-dependent Schrödinger

equation which describes the EDF of the system and is given by

HeΨ = EΨ, (1.23)

where the complex many-body wavefunction Ψ({ri}; {RI}) depends on the positions

of the n electrons, {ri}, and the positions of the N nuclei, {RI} [90]. E is the total

energy, and the operator He can be expressed as:

He = −
n∑
i=1

1

2
∇2
i +

n∑
i=1

n∑
j>i

1

|ri − rj|
−

n∑
i=1

N∑
I=1

ZI
|ri −RI |

, (1.24)

where ZI denotes the charge of nucleus I which runs over the N nuclei. We note

that this equation is written in atomic units, which means that Planck’s constant,

the charge and mass of electrons are set to unity. The Laplacian ∇2 is given by

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. Equation (1.23) is called “Born-Oppenheimer” (or adiabatic)

approximation, which treats quantum mechanically only the EDF and not the ones

of the nuclei. This is quite reasonable since the mass of an electron is about 2000

times smaller than the lightest nucleus, i.e., the one of hydrogen. As the nuclei move

much slower than the electrons, one thus assumes that the nuclei are clamped at fixed

positions and the electrons are moving in the field of the nuclei.

To further reduce the computational complexity, one considers only the ground

state solution of Eq. (1.23), Ψ0, which correspond to the state of the lowest energy.

The interaction potential between the nuclei is given by

Φ({RJ}) = 〈Ψ0|He|Ψ0〉+
N∑
J=1

N∑
I>J

ZIZJ
|RI −RJ |

. (1.25)

The force acting on particle I is thus expressed as [91]

FI = −∇IΦ({RJ}). (1.26)

It is obvious from Eq. (1.25) that the key in the ab initio approach is to find the

ground state solution Ψ0 of the Schrödinger equation. There are two main methods

which can be used to achieve this goal. The first one is the quantum chemistry approach

which starts from the Hartree-Fock method and factorizes the many-body wavefunction

into one-particle wavefunction. One then has to searches numerically for Ψ0 of this

wavefunction.

The second method is the density functional theory (DFT) which exploits certain

ground state properties of a many-electrons system in an external field. The cur-

rent DFT formalism has been established in the early 60’s by Hohenberg, Kohn and
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Sham [92–94]. DFT replaces the many-body wavefunction Ψ({ri}) by the electronic

density ρ(r), effectively reducing the dimensionality of the problem from 3 × n (with

n being the total number of electrons in the system) to three:

ρ(r) =

∫
...

∫
dr2...drnΨ∗0(r, r2, ..., rn)Ψ0(r, r2, ..., rn). (1.27)

Within the Kohn-Sham approach, the total energy of the system can then be written

as:

EKS[ρ(r)] =− 1

2

n∑
i=1

∫
drφ∗i (r)∇2φi(r)+

∫
drρ(r)

[
1

2

∫
dr′

ρ(r′)

|r− r′|
−

N∑
I=1

ZI
|ri −RI |

]
+ Exc[ρ(r)].

(1.28)

The first term represents the kinetic energy of a system of n non-interacting electrons

having the same density as the real system exposed to the same external field. The

second term is the Coulomb interaction between electron-electron and electron-nuclei.

The third term denotes the exchange-correlation (XC) energy which accounts for all

quantum many-body effects due to the Pauli exclusion principle. Since no exact ex-

pression exists for this term, approximations needs to be made. Despite the fact that

Exc(ρ(r)) contributes much less than the other two terms to the total energy of the

system, its determination may be crucial for chemically complex systems [95, 96].

The simplest approximation for Exc[ρ(r)], originally proposed by Kohn and Sham [93],

is the local density approximation (LDA) which can be expressed as follows:

ELDA
xc [ρ(r)] =

∫
drρ(r)εLDA

xc [ρ(r)] (1.29)

where εxc[ρ(r)] denotes the exchange-correlation energy per particle of a uniform elec-

tron gas of density ρ(r).

A more advanced approximation for Exc[ρ(r)] is the generalized gradient approx-

imation (GGA). GGA makes use of the density gradient of mth order and is given

by

EGGA
xc [ρ(r)] =

∫
drρ(r)εGGA

xc [ρ(r);∇mρ(r)]. (1.30)

The GGA functionals have been very successful in past two decades. Popular ones

include PBE [97], BLYP [98], and PBEsol [99] (a revised version of the PBE functional

and is used in this thesis).

However, it is not always the case that functionals with higher approximation pre-

dict more accurately than the predictions of the LDA functional. Hence one should

choose the functional based on the properties of interest for a given system. It should

be noted that the standard LDA and GGA functionals may fail in predicting some
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material properties. A well-known problem is the underestimation of the band gap of

semiconductors and insulators. To fix this deficiency, a third class of approximation

for Exc[ρ(r)], hybrid functionals, were introduced [100, 101]. The hybrid functionals

combine orbital-dependent Hartree-Fock with conventional GGA functionals in a linear

manner (with a coefficient α determines the amount of the mixing).

Further approximation are required in order to reduce the computational cost for

calculating the forces on nuclei. As the chemical bonds between atoms are usually

related to the outer valence electrons and depend only weakly on the core electrons,

one can decouple the effects of core electrons with the ones of the valence electrons.

Therefore, the core electrons of an atom are treated as an entity and their effects are

replaced by an effectively potential, called “pseudo-potential”. The remaining valence

electrons are described by a pseudo-wavefunction [90, 91].

For the ab initio approach within the framework of DFT, the equations of motion

of the nuclei (particles) can be written as

MI
d2RI

dt2
= −∇IEKS,min[(ρ(r)], (1.31)

where MI and RI are respectively the mass and position of nucleus I, and EKS,min

is the Kohn-Sham energy (Eq. (1.28)) for the system ground state. The nuclei are

considered as classical particles and the integration scheme used in classical MD can

be equally applied here to obtain the trajectories of the particles over time. As the

particles move, the electronic structure changes. Therefore, in order to give a correct

dynamics of the system in configuration space, one has to calculate the electronic

ground state at each time step. This represents the Born-Oppenheimer molecular

dynamics approach [14, 91], which is used in this thesis and is referred as ab initio

molecular dynamics (AIMD) thereafter.

Explicit treatment of electronic degree of freedom makes AIMD computationally

very expensive. Consequently, both the system size and time span that are accessible

with AIMD are much smaller than in classical simulations. Notwithstanding, the merit

of using this approach is obvious: The atomic interaction are described with quantum

accuracy and one can obtain information that are inaccessible in classical simulations,

notably chemical bonding [102].

1.7.3 Property calculation

Many properties of experimental interest can be calculated from computer simulations.

Here we give a few examples. Other quantities concerning the structure, dynamics, and

mechanical properties of the simulated system will be defined once encountered later

in the thesis.
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Temperature. According to the equipartition theorem, the temperature T of a system

with N atoms is proportional to its kinetic energy K:

T =
2〈K〉
3NkB

, (1.32)

where kB is the Boltzmann constant.

Pressure. The pressure is given by the virial theorem:

P =
NkBT

V
+

1

3V

N−1∑
i=1

N∑
j>i

F(rij) · rij. (1.33)

The first term arises from the kinetic contributions and the second term stems from

the interatomic forces.

Pair distribution function. This function, denoted as g(r), is the simplest and is

widely used for characterizing the structure of a liquid or a glass. It gives the probability

of finding a pair of particles separated by a distance r, relative to the probability for

a completely random distribution at the same density. g(r) is usually obtained by an

ensemble average over pairs [14]

g(r) =
V

N2

〈N−1∑
i

N∑
j>i

δ(r− rij)

〉
, (1.34)

where rij = r− rj. For an isotropic system the result depends only on r = |r|.

Mean squared displacement. This quantity is often used to characterize the dy-

namics in a liquid. The mean squared displacement (MSD) at time t is defined as

r2(t) =
1

N

N∑
i=1

|ri(t)− ri(0)|2, (1.35)

where N is the number of particles to be averaged, ri(0) and ri(t) are respectively the

reference position and the position at time t of the ith particle.

From the MSD at long times and the Einstein relation, one can obtain the diffusion

constant D which is given by

D = lim
t→∞

r2(t)

6t
. (1.36)
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Chapter 2

On the critical role of interaction

potential and simulation protocol

The reliability of the interaction potential is at the core of a successful computer simu-

lation. There are two possibilities to describe these interactions: The ab initio approach

and the classical approach based on the use of effective potential. In the first approach

the interactions are calculated directly from the electronic structure of the system, a

procedure that is very accurate (although not exact) but computationally very expen-

sive [91]. We have used this approach to study the structural, vibrational and electronic

properties of glass surface, and the results will be detailed in chapter 5. In the second

approach, effective potentials allow to access significantly larger systems and longer

times, but with compromised accuracy and transferability. Despite the aforementioned

drawbacks, many numerical investigations are done with effective potentials since for

many studies one needs to have systems that are relatively large to avoid finite size

effects, e.g. to probe the mechanical properties of glasses.

In this work, we will use classical MD method to study the structure and mechanical

properties of glasses. Thus it is of great importance to use a potential that is reliable

for the investigated system (sodo-silicate) and the properties of interest (notably the

mechanical behavior of glass). As we will see later, a realistic description of the fracture

behavior of sodium silicate glass requires a system size of ≈ 105 atoms1 and a relatively

small cooling rate (e.g., 1 K/ps). These requirements make many-body interaction

potentials and reactive force fields computationally too expensive to use. Therefore,

here we will only focus on evaluating the performance of two-body effective potentials,

in particular the ones that have often been used in the past for the simulation of

sodo-silicate system.

1This number is only valid for bulk sample. For producing glass samples with free surfaces, the

required system size may be ten times larger.
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protocol

It is found that while most structural quantities show a relatively mild dependence

on the used potential, the mechanical properties such as the failure stress and strain as

well as the elastic moduli depend very strongly on the potential. Across the range of

properties examined, the best performance is achieved with the SHIK potential, which

will be our choice for the subsequent large scale simulations of sodo-silicate glasses.

2.1 Interatomic potentials

The compositions of concern are SiO2 and Na2O-3SiO2 (NS3), both of which are rep-

resentatives of oxide glass former. We consider several pairwise potentials, all of which

have the same functional form given by

V (rij) =
qiqje

2

4πε0rij
+ Aije

−rij/Bij − Cij
r6
ij

, (2.1)

i.e., the sum of a Coulomb and Buckingham term. (Here rij is the distance between

atoms i and j.) Thus the differences between the potentials are just the values for the

various parameters of the potential, i.e., qi, Aij etc. For SiO2 and NS3, we considered

the potentials proposed by Habasaki and Okada (HO) [103], by Teter et al. [104], by

Guillot and Sator (GS) [105], and by Sundararaman et al. (SHIK) [83, 84]. For the

SHIK potential, a version in its earlier development (unpublished), hereafter called

SHIK0 is also evaluated. We will show that these two versions of the SHIK potential

give very similar results for the sodo-silicate in both liquid and glass states. For silica

alone we also considered the potential by van Beest et al. (BKS) [106] since it is one the

most used empirical potentials for the simulation of silica. The parameters of various

potentials used in the present work are given in Table 2.1.

The presence of the Coulomb term in Eq. (2.1) makes the use of such potentials

computationally expensive since the Coulomb interaction has to be evaluated by means

of approaches like the Ewald summation [14]. One possibility to avoid this problem is

to use the approach proposed by Wolf et al. [107, 108], in which the Coulomb term is

replaced by

qiqje
2

4πε0rij
→


qiqje

2

4πε0

[(
1

rij
− 1

rc

)
+
rij − rc
r2
c

]
r < rc

0 r ≥ rc

, (2.2)

where rc is a cutoff distance. In this form the potential becomes thus short ranged

and hence computationally much more efficient. The SHIK potential was originally

developed by using the expression given by Eq. (2.2) as a substitution for the Coulomb

term. However, we note that the potential can predict equally well the properties of

30



2.1. Interatomic potentials

Parameters BKS GS Teter HO SHIK SHIK0

ASiO [eV] 1388.773 9022.853 1844.746 1742.1231 1120.529 1120.529

AOO 18003.76 50306.43 13702.91 10631.499 23107.85 23107.85

ASiSi 0.0000 0.0000 0.0000 865032008 2797.979 2797.979

ANaO 120304.6 4383.756 1854.3947 1127566 1146444

ASiNa 0.0000 0.0000 81407.619 495653 542345.9

ANaNa 0.0000 0.0000 2558.6814 1476.9 1401.567

BSiO [Å] 0.3623 0.2650 0.3436 0.3513 0.3457 0.3457

BOO 0.2052 0.1610 0.1938 0.2085 0.1962 0.1962

BSiSi 1.0000 1.0000 1.0000 0.0657 0.2269 0.2269

BNaO 0.1700 0.2438 0.2603 0.1450 0.1423

BSiNa 1.0000 1.0000 0.1175 0.1847 0.1869

BNaNa 1.0000 1.0000 0.1692 0.2935 0.2979

CSiO [eV·Å6] 175.0000 85.0927 192.580 212.9333 26.1321 26.1321

COO 133.5381 46.2981 54.6810 69.9590 139.6948 139.6948

CSiSi 0.0000 0.0000 0.0000 23.1044 0.0000 0.0000

CNaO 0.0000 30.7000 0.0000 40.5620 38.2298

CSiNa 0.0000 0.0000 0.0000 0.0000 0.0000

CNaNa 0.0000 0.0000 0.0000 0.0000 0.0000

qSi [e] 2.4 1.89 2.4 2.4 1.7755 1.7755

qNa [e] 0.4725 0.6 0.88 0.6018 0.5497

qO [e] -1.2 -0.945 -1.2 -1.28? -0.9328? -0.9180?

Rcut [Å] 5.5/12.0 11.0/12.0 8.0/12.0 8.0/12.0 8.0/10.0 8.0/10.0

Table 2.1: Parameters for the various potentials. The oxygen charges for the HO and

SHIK potentials are given for the NS3 composition (see text for details). For silica, the

oxygen charge is −qSi/2. Also included are the cutoff distances Rcut for evaluating the short

range/long range parts of the potentials.

the sodo-silicate system when switching back to the Coulomb interaction (Eq. (2.1)),

see Ref. [109].

Due to the van der Waals term in Eq. (2.1), the potentials have a singularity at

short distances. To prevent that particles fuse together in a unphysical manner, we

added to the potentials a short range repulsive term [84, 110]. We note that this

modification does not affect at all the properties of the system at intermediate and low

temperatures and hence can be considered to be just a computational trick to avoid

this singularity.

Finally we mention that for the HO and SHIK potentials, the charge of the oxygen

atoms depends on composition. To maintain charge neutrality of the system, one thus
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determines the charge of O by

qO =
(1− y) qSi + 2y qNa

2− y
, (2.3)

where y is the mole concentration of Na2O [84, 103]. The oxygen charges reported in

Table 2.1 were calculated for y = 0.25, which corresponds to the sodo-silicate compo-

sition (NS3) studied in the this chapter.

In Fig. 2.1 we plot the potential energy and the forces for the potentials considered.

These graphs demonstrate that the different potentials and forces depend strongly on

the chosen set of parameters which give thus a first indication that the predicted glass

properties will depend on the used potential.

2.2 Simulation methods

The systems we consider are pure silica and a sodium silicate with composition Na2O-

3SiO2 corresponding to a Na2O molar concentration of 25 %. The glass samples were

produced by using the conventional melt-quench method. We used cubic boxes (peri-

odic boundary conditions) that contained between 5000 and 600,000 particles, which

corresponds to sizes between 4 and 20 nm at room temperature. For the long-range

Coulomb interaction, the Wolf truncation method (see Eq. (2.2)) was employed only

when using the SHIK potential, while for the other potentials this interaction was eval-

uated with the particle-particle particle-mesh (PPPM) solver algorithm [111] with an

accuracy of 5× 10−5 (desired relative error in forces).

The samples were first equilibrated at a high temperature in the canonical ensem-

ble (NV T ) using a fixed volume that corresponds to the experimental value of the

density of the glass at room temperature, i.e., 2.20 g/cm3 for silica and 2.43 g/cm3

for NS3 [112]. These NV T runs were done at 3600 K for silica and 3000 K for NS3,

both for about 300 ps, a time that is sufficiently long to equilibrate the samples com-

pletely. These liquids were subsequently equilibrated in the NPT ensemble (constant

number of atoms, pressure, and temperature) at the same temperatures and at zero

pressure. The lengths of these NPT runs depended on the potential considered and

were sufficiently long to equilibrate the samples, i.e. the mean squared displacement

of the particles was more than 100 Å2 (see below). For the GS potential, the NPT

equilibration of the NS3 liquid was done at 2100 K since for higher temperatures the

samples became unstable because they were above the boiling point.

After equilibration, the liquid samples were quenched to 300 K in theNPT ensemble

at zero pressure. The cooling rate was 0.25 K/ps, i.e. a value that is relatively small

for MD simulations of sodium silicate glasses with a comparable system size. Previous
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Figure 2.1: Distance dependence of the various interaction potentials [panels a), c), and

e)] and their corresponding forces [panels b), d), and f)] for the SiO, SiSi and OO pairs,

respectively. Also included in the right panels are the corresponding pair correlation function

as predicted by the SHIK potential at 300 K (symbols).

simulation studies have shown that this cooling rate is small enough so that properties

of the system do not depend on the cooling rate in a significant manner [110, 113, 114].

The glass samples at 300 K were then annealed in the NPT ensemble for 160 ps before

being subjected to mechanical tests.
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To determine the mechanical properties of the annealed glass samples we strained

them in one direction using a strain rate of 0.5/ns. This value is sufficiently small to

obtain results that do not depend in a significant manner on the rate, see Fig. 3.5.

Mechanical loading for the glass was done both in the NV T and NPT ensembles. For

the NPT simulation, the pressures in the directions orthogonal to the loading direction

were set to zero and thus the corresponding box lengths were allowed to change. In

contrast, for the NV T simulations, the two orthogonal directions were not allowed to

change, i.e. the cross section was constant. From these simulations we can study the

mechanical behavior, particularly the stress-strain behavior of the glass under uniaxial

tension.

To calculate the stress-strain curve, we increased the dimension of the box in one

direction linearly in time, i.e.,

L(t) = L0(1 + ε(t)), (2.4)

where L0 is the original box length in the pulling direction and L(t) the length at time

t. The strain ε(t) is given by

ε(t) = ε̇t, (2.5)

where ε̇ is the strain rate. The stress tensor is calculated by the virial theorem using

the expression [115]

σ =
1

V

N∑
i=1

[mivi ⊗ vi + ri ⊗ fi] , (2.6)

where V and N are the volume and the total number of atoms of the simulation box,

respectively, while mi is the mass of atom i, and vi, ri and fi are the velocity, position

and force vector of atom i, respectively.

Temperature and pressure (for the NPT ensemble) were controlled using a Nosé-

Hoover thermostat and barostat [87–89]. All simulations were carried out using the

LAMMPS software [116] with a time step of 1.6 fs.

The results presented in the following sections have been obtained by using for each

potential only one sample per composition. The results regarding the structural and

dynamical properties were obtained by analyzing the samples containing 36,480 and

38,400 atoms for SiO2 and NS3, respectively. These numbers correspond to box sizes

around 8 nm at room temperature. These system sizes are sufficiently large to make

sample-to-sample fluctuations small.

2.3 Dynamical and structural properties

Firstly, we investigate the dynamics of the liquids by calculating the mean squared

displacement (MSD) (see Eq. (1.35)). In Fig. 2.2 we show the time dependence of the
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2.3. Dynamical and structural properties

MSD for Si, i.e., the species that moves the slowest. The temperatures are those at

which we have equilibrated the samples in the NPT ensemble. It can be seen that at

these temperatures, the dynamics is already somewhat glassy in that at intermediate

times the MSD has a plateau [3]. These graphs also show that at long times the MSD

is a linear function of time, i.e., that the particles have reached the diffusive regime,

indicating that the system is equilibrated. In agreement with previous results [117], we

find that the MSD at long times, and hence the diffusion constant, shows a very strong

dependence on the potential (more than a factor of ten). Since it can be expected

that the activation energy for the diffusion constant also depends on the potential

considered, the diffusion constant at lower temperatures will differ even more. For

NS3, panel (b), we note that the SHIK and SHIK0 potentials give very similar results

regarding the dynamics of the liquid.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

t [ps]

10
-2

10
-1

10
0

10
1

10
2

10
3

r S
i2 (t

) 
[Å

2 ]

SHIK
BKS
Teter
HO
GS

∝ t

(a) SiO2

T=3600 K

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

t [ps]

10
-2

10
-1

10
0

10
1

10
2

10
3

r S
i2 (t

) 
[Å

2 ]

SHIK0

SHIK
Teter
HO
GS

∝ t
(b)  NS3

Figure 2.2: Mean squared displacement for silicon in the silica (a) and the NS3 (b) samples

during the NPT equilibration at high temperatures and at zero pressure. The different curves

correspond to the potentials used and the dashed line shows the diffusive behavior at long

times. For SiO2 the temperature is 3600 K. For NS3 the temperature is 3000 K except for

the GS curve which is for 2100 K.

A further interesting quantity to look at is the density of the sample during quench-

ing. In Fig. 2.3 we show the temperature dependence of the density as predicted by

the various potentials. The quenching was carried out at zero pressure from high tem-

peratures to 0 K. These curves demonstrates that the T−dependence of the density

depends significantly on the potential: Not only the absolute value differ but also the

slope, i.e. the thermal expansion coefficient. For NS3 these slopes are larger than the

ones for SiO2, in agreement with the experimental findings [112].

Also included in the graphs are the experimental densities from room temperature

(300 K, left most symbol) to higher temperatures. The densities at higher temperatures
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Figure 2.3: Temperature dependence of the density during the quench at zero pressure for

silica and NS3, panels (a) and (b), respectively.

were calculated by using the formula

ρ =
ρ0

1 + 3α(T − T0)
, (2.7)

where ρ is the mass density at temperature T , ρ0 is the density at room temperature

T0, and α is the experimental thermal expansion coefficient [112]. For SiO2, it can be

seen that the Teter, HO, and GS potentials predict a density that is significantly too

high. A good agreement with the experimental data is achieved by the BKS and SHIK

potentials, not only at room temperature but also at higher temperatures. For NS3,

it is notable that the HO potential predicts perfectly well the T−dependence of the

density as given by the experimental data. The SHIK and SHIK0 potentials are in fair

agreement, wheres the GS and Teter potentials predict densities that are relatively far

from the experimental ones.

We note that the density at room temperature is influenced by the cooling rate of the

sample [110]. However, this dependence is relatively mild since the density is directly

related to the fictive temperature which depends only logarithmically on the cooling

rate. Thus the big discrepancy between the predicted density and the experimental

value cannot be rationalized by a too high cooling rate but must instead be considered

as a flaw of the used potential.

We now discuss the structural properties of the glasses. To start, we will look at

the static structure factor (as seen in neutron scattering experiments) which is the

weighted sum of the partial structure factors [3]:

Stot(q) =
N∑

α=Si,O,Na Nαb2
α

∑
α,β=Si,O,Na

bαbβSαβ(q) . (2.8)

Here q is the wave-vector, bα is the neutron scattering length [118] for species α and

the partial structure factor Sαβ(q) is defined as
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2.3. Dynamical and structural properties

Sαβ(q) =
fαβ
N

Nα∑
j=1

Nβ∑
k=1

〈exp(iq.(rj − rk))〉 , (2.9)

where α, β = Si,O,Na, with fαβ = 1 for α = β and fαβ = 1/2 otherwise, and N is

the total number of atoms. As can be seen from Fig. 2.4(a), for the case of silica the

two considered potentials agree very well with the experimental data. This is not that

surprising since in most cases the parameters of such potentials have been optimized to

reproduce the structure of the glass. Qualitatively the same conclusion can be drawn

for the case of NS3, panel (b). There is, however, one exception: The GS potential

shows a strong increase of the signal at small q. This behavior indicates the presence

of a phase separation, in this case the formation of large domains of Na atoms, and a

visual inspection of the sample shows that this is indeed the case, see Fig. 2.5. We note

that this defect of the potential is not readily seen in the radial distribution functions

and seems to have gone unnoticed so far, see Fig. 2.6.
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Figure 2.4: Static structure factor as seen in neutron scattering experiments for silica (a)

and NS3 (b) glasses at 300 K. Experimental data for silica are taken from Ref. [119] and for

NS3 from Ref. [120].

A further useful quantity to characterize the structure of silicate glasses is the bond

angle distribution (BAD). Of particular interest is the inter-tetrahedral angle SiOSi

since it gives information about the relative orientation of two neighboring tetrahedra.

In Fig. 2.7 we show the BAD of SiOSi of the glasses produced by using various po-

tentials. For the case of SiO2, panel (a), we recognize that both the BKS and SHIK

potential predict a position of the maximum of the distribution that is compatible with

the experimental estimate [121]. For NS3, panel (b), the BAD of SiOSi is basically

independent of the potential used. The only exception is the data obtained from the

Teter potential which peaks at a significantly larger angle.

37



2. On the critical role of interaction potential and simulation
protocol

Figure 2.5: Atomic structure of the NS3 glasses produced by using the SHIK (a) and GS

(b) potentials. O, Si and Na atoms correspond to red (small), blue (medium) and green (big)

balls, respectively.
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Figure 2.6: Radial distribution function for the Si-O pair of the NS3 glass at 300 K.
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Figure 2.7: SiOSi angle distribution for silica (a) and NS3 (b) glasses. The vertical green

lines indicate the range of most probable SiOSi angle extracted from previous experimental

studies (see Ref. [121]).
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The mean SiOSi angles are 144.5◦, 143.7◦, 152.3◦ and 147.7◦, and 147.2◦ for the

SHIK0, SHIK, Teter, HO and GS potentials, respectively. The prediction by the SHIK0

and SHIK potentials are in good agreement with experimental measurements [122]

which gives a mean SiOSi angle of 141.7◦. In addition, previous ab initio simula-

tions [123, 124] of very similar compositions predicted the peak positions of the BAD

to be close to 140◦. This value is compatible with the prediction of the SHIK, HO, and

GS potentials, but not with the Teter potential.

Finally we discuss two local structural quantities that probe the local environment

of an atom, namely the oxygen speciation and the distribution of the Qn tetrahedral

species in NS3. For the former we have used the first minimum in the radial distribution

function of the Si-O pair to determine the number of silicon atoms in the nearest

neighboring shell of a given oxygen atom, CNO, and thus to determine whether the

atom is free (FO, CNO = 0), non-bridging (NB, CNO = 1), bridging (BO, CNO = 2),

or threefold coordinated (TBO, CNO = 3). Fig. 2.8(a) shows that the considered

potentials all give the same distribution and it agrees very well with the experimental

measurements [125]. Thus, one can conclude that this quantity is very robust or in

other terms the oxygen speciation is not very useful indicator for testing the quality of

a potential.
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Figure 2.8: Distributions of oxygen speciations, panel (a), and Qn species, panel (b), for

the NS3 glass at 300 K. The experimental data in panels (a) and (b) is from Ref. [125], and

Ref. [126], respectively.

Things are different for the Qn species, i.e. the probability that a silicon atom

is connected to exactly n bridging oxygens, n = 0, 1, 2, 3, 4. These probabilities are

shown in Fig. 2.8(b) and one finds that the frequency of Q3 depends significantly on

the potential. In particular, one observes that the GS potential gives a probability

that is rather low relative to the other potentials and also to the experimental data.

This observation indicates that the fraction of the Q3 units can be used as an indicator

for evaluating the quality of a potential. In addition, we mention that the network

39



2. On the critical role of interaction potential and simulation
protocol

depolymerization depends also on the cooling rate: For sodosilicate glasses, it has been

shown that the percentage of Q3 increases with decreasing quench rate while the Q4

one decreases, and hence improve the agreement with the experimental data [114].

2.4 Mechanical properties

2.4.1 System-size dependence

In computer simulations, it is important to check that the system studied is large

enough to avoid boundary effects (or at least to maintain the effects at an insignificant

level). Often, the finite size effects also depend on which property of the system one

looks at. For example, structural properties of liquids and glasses can usually be

studied from simulations with a system size of 103 − 104 atoms. In contrast, elasticity

and fracture are associated with strongly non-local processes and hence finite size effects

can be prominent, as we will see in the following.

Figure 2.9 shows the stress-strain curve for fracture simulations with different (cu-

bic) box sizes. (These results are for the SHIK potential, but for the other force fields

a similar behavior has been found.) For the case of silica, panel (a), one finds that the

elastic regime is basically independent of L. However, once the failure point (i.e. the

strain at which the stress has a maximum) has been attained there are very strong

finite size effects in that the small systems break in a much gentler manner than the

large ones. Only if L has reached 10 nm, which corresponds to around 75,000 atoms,

the stress-strain curve becomes basically independent of the system size (see Refs. [127]

and [57] for related studies).
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Figure 2.9: Dependence of stress-strain curve on the system size for the SHIK potential.

(a) Silica and (b) NS3. The system size ranges from around 5000 to around 600,000 atoms,

corresponding to a cubic box size from 4 nm to 20 nm at room temperature density, before

starting to strain. The error bars were evaluated as the standard deviation of three samples.
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For the case of NS3, panel (b), the system size dependence is more pronounced in

that one has to use systems of about L = 16 nm, corresponding to about 300,000 atoms,

before the stress-strain curve converges. These stronger finite size effects are likely

related to the presence of the Na atoms which make a more heterogeneous structure in

the NS3 glass compared to that of SiO2 [29, 128]. Similar to the case of silica, we find

that for the small-strain region (i.e.,before the failure point) the curves superimpose

quite nicely and thus this region depends only weakly on system size.

In order to make a fair comparison of the behavior predicted by the different poten-

tials we have used in the following the same system size L = 8 nm, which corresponds

to N = 36480 and N = 38400 atoms for SiO2 and NS3, respectively. Although for this

system size one still can observe finite size effects, they are minor and hence do not

preclude to understand which potentials give rise to a realistic fracture behavior and

which ones do not.

2.4.2 Fracture behavior and elastic moduli

We now discuss the fracture behavior and the elastic properties of the glasses. In

Fig. 2.10 we show the stress-strain curves obtained in NPT ensemble by using the

various potentials. For silica, panel (a), it can be seen that the BKS glass is stiffer and

stronger than the SHIK glass, and it also breaks in a more ductile manner. Interestingly,

however, both potentials predict the same failure strain εf at ≈ 0.17, in excellent

agreement with the experimental value of 0.18 [129]. In addition, when compared with

experimental data, we find that the SHIK potential gives excellent prediction not only

for the stress-strain curve at small strains but also the fracture strength, whereas the

BKS potential significantly overestimate these quantities. This is also demonstrated in

panel (b) of Fig. 2.10, in which we compare the tangent modulus Et predicted by the

simulations with experimental results. The tangent modulus Et is defined as

Et =
dσ

dε
, (2.10)

where σ is the stress in the pulling direction and ε the strain. From the NPT simula-

tions, one can also obtain the Young’s modulus, which is given by

E = lim
ε→0

ENPT
t (ε) , (2.11)

Figure. 2.10(b) shows clearly that for all strains the BKS potential predict a tan-

gent modulus that is significantly larger than the one predicted by the SHIK potential

and the experimental data. The SHIK potential predicts for E a value ≈72 GPa, in

very good agreement with the experimental value ≈73 GPa [112]. The BKS potential

predicts a much larger value of ≈ 86 GPa, consistent with the findings from a previous
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Figure 2.10: Mechanical responses of the glasses under uniaxial tension. Panels (a) and

(b) show the stress-strain curve and the tangent modulus for silica, respectively. The green

symbols are the experimental data from Ref. [130]. The green dashed line in panel (a)

indicates the experimental strength of silica glass [129]. The green dashed line in panel (b) is

the polynomial fit from Ref. [131] to experimental data and its extrapolation to large strains.

Panels (c) and (d): Same quantities as in panels (a) and (b) for the case of NS3. The green

symbol in (d) is the experimental data taken from Ref. [132].

study [127]. For the failure strength, the BKS and SHIK potentials predict 17.6 GPa

and 12.8 GPa, respectively. The prediction of the SHIK potential is in excellent agree-

ment with the experimental value of 12.6 GPa [129]. All these values are also given in

Table 2.2.

The stress-strain curve of NS3 glass as predicted by the different potentials is shown

in Fig. 2.10(c). Surprisingly we find that under NPT conditions the HO and Teter

potentials show no sign of fracture even if the sample is stretched to 100%. This shows

that these potentials have a serious flaw in that they strongly overestimate the ductile

behavior of NS3. Also the stress-strain curve from the GS potential is not realistic

in that the stiffness in the elastic regime is strongly underestimated, the failure stress

is too small, and that the fracture is way too ductile. Hence we conclude that these
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three potentials should not be used to study the fracture behavior of NS3. A much

more reasonable stress-strain curves is found for the SHIK potential which shows a

relatively brittle fracture. This brittleness is, however, less pronounced that the one

found in SiO2, see panel (a), in agreement with the expectation that the addition of Na

will make the glass more ductile. The failure stress for the SHIK potential is around

6 GPa (see Table 2.2 for exact values), which is close to the experimental values that

are between 7.5 GPa and 11.7 GPa [133, 134] (this latter value is only an upper limit,

see Ref. [133]).

The predicted Young’s modulus of the NS3 glass is around 55 GPa by the SHIK, HO

and Teter potentials, in good agreement with the experimental value of 56 GPa [112],

while the GS potential predicts a value of only 26 GPa, thus way too small. A more

notable difference between the various potentials is found for the strain dependence of

the tangent modulus, shown in Fig. 2.10(d): While for the HO and Teter potentials,

Et decreases basically in a linear manner, the SHIK and GS potentials show at inter-

mediate strain a plateau before they decrease to zero. (Note that the data for the GS

potential has been multiplied by a factor of 2.0 in order to bring it on the same scale

as the other curves.) This plateau is also directly visible in the stress-strain curves

in that they show at around ε = 0.07 a marked bend, see panel (c). The microscopic

origins of this rapid change in the effective stiffness of the sample will be discussed in

more details in the next sections.

Quantity E C11 B G ν εf σf ρ

Unit GPa GPa GPa GPa GPa g/cm3

Silica

SHIK 72.1 80.6 40.8 29.9 0.205 16.89 12.84 2.221

BKS 85.8 99.0 52.3 35.0 0.226 17.18 17.65 2.241

Exp. 72.9a 78.0a 36.3a 31.3a 0.165a 18.00b 12.6b, 11-14c 2.201a

NS3

SHIK0 50.7 60.6 33.4 20.3 0.246 23.98 5.89 2.432

SHIK 55.7 66.2 36.4 22.4 0.245 22.43 6.05 2.472

HO 54.8 68.1 39.3 21.6 0.268 19.99 6.05 2.433

Teter 54.5 66.7 37.8 21.7 0.259 22.03 5.66 2.555

GS 25.9 31.4 17.5 10.4 0.252 25.09 2.72 2.348

Exp. 56.0f 69.5a 37.2a 24.3a 0.250f 20.85d 11.71d, 7.5e 2.431a

Table 2.2: Elastic constants (Young’s modulus E, longitudinal modulus C11, bulk modulus

B, shear modulus G), Poisson’s ratio ν, failure strain εf and stress σf , and density ρ at 300 K,

compared with experimental data. a Ref. [112].b Ref. [129]. c Ref. [135]. d Ref. [133]. (at

77 K, strength is overestimated, see discussion section in Ref. [133]). e Ref. [134] (strength

at 77 K). f Ref. [132].

The fact that neither the Teter nor the HO potential predict fracture of glass even if

strained to 100% is astonishing since, from a structural point of view, these potentials
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give reasonable predictions. Thus one might wonder whether this unrealistic behavior

is related to the ensemble used during the tensile loading. In Fig. 2.11 we thus show

the stress-strain curve predicted by the two potentials but now in the NV T ensemble,

i.e. the sample size orthogonal to the pulling direction is fixed. It can be seen that

the stress-strain curves obtained in the NV T ensemble are completely different from

the ones obtained in the NPT ensemble: The glass becomes much more brittle when

simulated in NV T ensemble. However, this enhanced brittleness is nothing else but

an artifact from the NV T ensemble. Pedone et al. found similar ensemble effect for

the case of silica [56]. For other potentials considered in this work, we also find that

fracture simulation in the NV T ensemble makes the glass more brittle and for some

potentials the glass will break at much smaller strain. Based on these results, we thus

conclude the NV T ensemble should be avoided for investigating the fracture behavior

of glass as it does not correspond to glass fracture in real experiments.
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Figure 2.11: Influence of simulation ensemble on glass fracture. The orange and red curves

are the same as in Fig. 2.10(c). The violet and blue curves are the data obtained in the NV T

ensemble.

With the stress-strain curves from the NV T simulation, one can estimate the lon-

gitudinal modulus C11 by the expression

C11 = lim
ε→0

ENV T
t (ε) . (2.12)

From E and C11 one can then obtain the bulk modulus B, the shear modulus G,

and the Poisson’s ratio ν using the following relations [112, 136]:

E =
9B(C11 −B)

(3B + C11)
(2.13)
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2.5. Summary

G =
3(C11 −B)

4
(2.14)

ν =
E

2G
− 1 . (2.15)

The estimated elastic constants, together with the failure stress and failure strain

and the glass density are summarized in Table 2.2. Overall, one can conclude that the

SHIK potential is likely the most reliable potential. Note that this potential has the

merit to be applicable not only to NS3 but, with the same set of parameters, also to

SiO2 and therefore also applicable for compositions in between the two systems [84].

We also note that the SHIK0 potential performs almost as good as the SHIK potential,

thus both of them are suitable for the simulation of glass fracture.

2.5 Summary

To summarize, we have investigated systematically the dependence of glass properties,

in particular mechanical behavior of glass, on the used interaction potential. The

simulations were set up to mimic the production and fracture of glass in real life, i.e.,

both of them should be conducted in constant pressure rather than constant volume.

Firstly, we find that the dynamics of the liquid and the density during quenching

show noticeable dependence on the potential. Secondly, it is found that the structural

features of glass show a relatively mild dependence on the interaction potential. The

only noticeable failure is found for the GS potential which predicts a phase separation

into sodium rich/poor regions, as indicated by the divergence of S(q) at small q.

For the fracture behavior of glass, the SHIK potential clearly outperforms the other

considered potentials in that it predicts for silica a stress-strain curve that is in excellent

agreement with experiments and for NS3 the prediction is also reasonable. A further

important result of this study is the system size dependence of the fracture behavior. It

is found that while the small strain region (i.e., before failure) is basically independent

of the system size, the fracture region (i.e., after the failure point) shows pronounced

system size effect. An insufficient system size may lead to the conclusion that the glass

is very ductile. Our results suggest that a reliable description of the fracture behavior

requires a box size on the order of 10 nm for silica and 16 nm for NS3. Finally, we

emphasis that close attention must be payed to the simulation ensemble. Fracture in

the NPT ensemble is more realistic, whereas simulation in the NV T ensemble can

result in artificial brittle fracture behavior.
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Chapter 3

Fracture of sodium silicate glasses:

Classical MD simulations

In this chapter, we investigate dynamic fracture of sodosilicate glasses under tensile

loading by using large scale molecular dynamics simulations. We introduce first the

simulation setups which mimic the fracture of glass in real life, i.e., cracks initiate

from surface flaws. We then explore the influence of various factors on the stress-

strain behavior of glass. Based on the stress-strain curve, we estimate the toughness

parameters and also the crack velocities for the glasses with varied compositions and

at different temperatures.

To obtain a deeper understanding of glass fracture on the microscopic scales, we

analyze first the cavitation process in silica and Na-rich glasses. Then, we explore

various local properties of the glasses during deformation and monitor the evolution

and quantified the correlations between different local quantities. We further analyze

the distributions of various local properties and explain at microscopic scale for the

transition behavior of the stiffness of the glasses as given by the tangent modulus.

The results presented in this chapter shine new light on several important questions

regarding the fracture behavior of oxide glasses on the microscopic scales.

3.1 Simulation protocol

We prepared two types of glass samples, namely bulk and sandwich (with free surface)

glasses, for pure SiO2 and Na2O-xSiO2 (NSx). As the simulation protocol for producing

the bulk glasses has already been described in chapter 2, here we only provide a brief

recap. The glasses were produced by using the conventional melt-quench procedure.

The sample containing up to ∼ 600, 000 atoms (corresponding to a cubic box of side

length L ≈ 20 nm with experimental glass density at room temperature) was firstly
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3. Fracture of sodium silicate glasses: Classical MD simulations

melted and equilibrated at a high temperature T1 (3600 K for silica and 3000 K for

Na-containing compositions). Subsequently, the liquid sample was cooled down (linear

ramp) to a low temperature T3 (usually 300 K) with a cooling rate γ. The glass sample

was finally annealed at T3 for 160 ps. The entire simulation of glass production was

performed in the NPT ensemble and at zero pressure, see Fig. 3.1(a).

In order to mimic glass fracture in real life, which usually starts from flaws and

defects on the surface of glass, we produced a second kind of glass with a sandwich

geometry. Two surfaces were firstly introduced by inserting free volumes on the top

and bottom sides of the sample in the liquid state. The z−direction is normal to the

two surfaces. The sample was subsequently equilibrated at a high temperature T1 for

1.6 ns, which is sufficiently long to ensure the reconstruction of the surface and hence

to equilibrate the sample. Following that, the liquid sample was subjected to a two-

stage quenching, with a slow cooling rate γ1 for the high−T range and a relatively

faster cooling rate γ2 (γ2 = 3γ1) for the low−T range. Finally the sample was annealed

at T3 for 800 ps. The temperature T2 at which the cooling rate changes depends on

composition. T2 is chosen to be at least 200 K below the simulation glass transition

temperature Tg (see Fig. 3.2(a)). At T2 we also switched the simulation ensemble from

NV T to NPT , see Fig. 3.1(b). Our simulation setup has the advantages that: 1)

Fast cooling below Tg saves computational time while retaining statistically the same

structure as slow cooling; 2) NV T simulation in the high−T range helps to retain

a regular shape of the sample. Below Tg the sample has more or less a fixed shape

and switching to the NPT ensemble (for the two directions parallel to the surfaces

only) allows to release internal stresses and facilitate local structural rearrangement.

Sandwich samples containing up to ∼ 2, 300, 000 atoms were produced.

Once the glass sample was prepared, we put the sample under uniaxial tension

with a constant strain rate, and monitor its changes in structural and mechanical

properties, see Fig. 3.1(c). For the sandwich sample we introduced also a notch on

the surface and then annealed the notched sample at an intermediate temperature

(600-800 K, depending on the composition) for 160 ps before putting the sample under

tension. During the mechanical loading, the glass sample is allowed to relax in the two

directions perpendicular to the pulling direction. We note that the current simulation

setup for the sandwich glass mimics the plane stress condition, i.e., a thin slab in the

z−direction with the stress component σαz = 0, for α = x, y, z.

Throughout the simulations, we used the SHIK potential which has been introduced

in chapter 2. Temperature and pressure (for the NPT ensemble) were controlled using

a Nosé-Hoover thermostat and barostat [87–89]. All simulations were carried out using

the LAMMPS software [116] with a time step of 1.6 fs.

Note that in this section we did not specific simulation parameters such as the
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3.1. Simulation protocol

Figure 3.1: Schematic drawing of the simulation procedures. (a) Preparation of the bulk

glass sample. (b) Preparation of the sandwich glass sample. (c) Glass fracture by uniaxial

tension. T1 denotes the high temperature for equilibrating the sandwich sample in the liquid

state. T3 represents the working temperature for deformation. T2 is the temperature at which

we switch from slow cooling procedure (cooling rate γ1) to a relatively fast cooling (cooling

rate γ2) in order to save computer time, and this temperature is chosen to be at least 200 K

below the glass transition temperature (Tg) (see Fig. 3.2).

dimensions of the sample, the cooling rate for glass production and the strain rate

for fracture simulation. We will discuss the influence of these parameters in the next

section in terms of stress-strain behavior, which is supposed to be much more sensitive

to the simulation parameters than structural properties (see also the discussion in
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Figure 3.2: (a) Temperature profiles for the simulations. The Tg was estimated for the

sandwich samples produced with a cooling rate γ1 = 0.13 K/ps. Total energy (U) versus T

was employed to measure Tg, i.e., the temperature at which the extrapolated liquid and glass

lines across. The uncertainty of the Tg estimation is about ±50 K. Also included in the graph

are the experimental Tg (filled circles) measured by using calorimetric method for Na2O-

xSiO2 [32] and for SiO2 [139]. ∆Tg = ±3◦C. Black and blue lines are miscibility-gap and

spinodal boundaries, respectively, calculated from modified regular-mixing equations [140].

(b) Re-plotting the experimental Tg for Na2O-xSiO2 as shown in (a) and the data are fitted

with a fourth order polynomial function (dashed line).

chapter 2).

Figure 3.2(a) shows the various temperatures that are related to our simulations.

For comparison, we included in the graph also the experimental Tg and the two lines

associated with phase separation in sodium silicate system. In Fig. 3.2(b), we plot only

the experimental Tg which shows that a plateau appears at ≈ 10 mole% of Na2O [32,

137, 138].

3.2 The big picture: Stress-strain behavior

3.2.1 Effects of cooling rate and strain rate

Firstly, we examine how the glass production history affects the fracture behavior of

glass. Here we focus on one of the most important factors for glass production, the

cooling rate γ. In Fig. 3.3 we show the stress-strain curves of bulk glasses produced

with different γ. We note that these system sizes are large enough to avoid significant

finite size effect (see Fig. 2.9). For both silica and NS3, faster cooling yields softer
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3.2. The big picture: Stress-strain behavior

glasses and more ductile fracture behavior. The graphs also demonstrate that once

γ < 0.3 K/ps, the stress-strain curves have more or less converged, i.e., the fracture

behavior of the glass will no longer depend on γ in a significant manner. Therefore, we

have chosen γ = 0.25 K/ps and γ = 0.125 K/ps for producing the bulk and sandwich

glasses, respectively, otherwise specified. Taking into account the fact that surfaces

have a faster dynamics than the bulk (thus require shorter relaxation time), γ1 = 0.125

K/ps allows the production of well-relaxed sandwich glasses.
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Figure 3.3: Cooling rate effect on the stress-strain behavior of bulk glasses at 300 K. (a)

Silica with a cubic box size of L = 20 nm. (b) NS3 with L = 20 nm. Note that these bulk

samples were produced using the same procedure for producing the sandwich glasses, i.e.,

consists of two cooling stages. The strain rate is 0.5/ns.

Nevertheless, in order to inspect visually what could happen if a fast cooling rate

is applied for the production of sandwich glasses, we show in Fig. 3.4 the atomic layers

close to the surfaces of the glass sample at 300 K. For the case of silica, it can be seen

that there are many atoms present in the vacuum between the two surfaces. (As PBCs

are applied, the two surfaces are actually facing each other in the direction normal

to the surfaces). With a cooling rate of γ = 0.125 K/ps only a few atoms are still

remaining in the vacuum. For NS3 the structural changes are not obvious. However,

the slow-quenched glass has larger remaining volume of the empty space, implying a

more relaxed (thus more compact) structure of the glass. Note that here we show the

results for two extreme compositions considered in this study, i.e., SiO2 and NS3 (25

mole% Na2O). For the other compositions between them, the same cooling rate effect

is seem.

For many materials, the stress-strain curves are sensitive to the strain rate ε̇.

The tensile tests in experiments are usually conducted in the range 10−4 s−1 < ε̇

<10−2 s−1 [34]. High-strain-rate tests are often utilized to obtain information on the
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3. Fracture of sodium silicate glasses: Classical MD simulations

Figure 3.4: Cooling rate effect on the atomic structure near the surfaces of the sandwich

glasses at 300 K.

performance of materials under dynamic impact condition. In computer simulations,

high strain rates are often adopted for testing the mechanical response of materials

(mainly due to the consideration of computational cost). Earlier simulation studies

of silica glass found high sensitivity of the stress-strain behavior to the strain rate at

2.0× 1011 s−1 < ε̇ < 4.0× 1011 s−1 [51, 55]. A recent study, using reactive force field,

investigated the stress-strain behavior of silica glass under tensile loading for strain

rates 2.3 × 108 s−1 < ε̇ < 1.0 × 1015 s−1 [58]. A transition strain rate was identified

at 2.5 × 1011 s−1 (i.e., 250/ns), above which a drastic increase of elastic modulus and

strength can be observed.

To examine the influence of strain rate on glass fracture, the bulk glasses at 300 K

were elongated uniaxially using five strain rates, ranging from 12.5 /ns to 0.02 /ns.

For both the silica and NS3 glasses, we observe that the strength of the glass decreases

with slower strain rate, Fig. 3.5. This phenomenon was also observed in experiments for

glasses and is known as dynamic fatigue [2]. If the loading rate is high, a higher stress

will be reached before sufficient structural changes (stress relaxation) occur to cause

failure. Amorphous materials such as oxide glasses show viscoelastic (or anelastic)

behavior, i.e., their mechanical behavior depends on both temperature and time [34].

Lowering temperature reduces the thermal effects thus can help to decrease the fatigue

rate.

In Fig. 3.5(c)-(d) we show the failure stress σf and strain εf as a function of strain

rate ε̇. The data are fitted using the expression: Y = A · ln(ε̇/ε̇0), where Y denotes σf

or εf , A and ε̇0 are two fitting parameters. One recognizes from the graphs that both

σf and εf show an logarithmic dependence on ε̇. Also one notices that the failure point
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Figure 3.5: Influence of strain rate ε̇ on the stress-strain behavior of the bulk glasses at

300 K. (a) Silica with a cubic box size of L = 12 nm. (b) NS3 with L = 16 nm. The cooling

rate γ = 0.25 K/ps. (c) and (d) are failure stress and strain versus strain rate, respectively.

The dashed lines are logarithmic fits (with parameters A and ε̇0) to the data points and are

extrapolated to small and large strain rates.

(for both the stress and strain) of the silica glass is more sensitive to strain rate than

that of the Na-rich NS3 glass.

For the simulated glasses at 300 K, we observe no substantial difference in the stress-

strain behavior (both before and after the failure point) with strain rate ≤ 0.5 /ns.

Therefore, for the reason of computational efficiency, we choose a strain rate of 0.5 /ns

for the production runs of the bulk and sandwich glasses (otherwise specified). It is

worth mentioning that we did not explore higher strain rates since we aimed to reach

a (more or less) convergence of the stress-strain behavior that is comparable to real

experiments.
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3. Fracture of sodium silicate glasses: Classical MD simulations

3.2.2 Effects of sample geometry and size

In many previous simulation studies of glass fracture, a quasi-2D sample geometry

has been adopted, i.e., the dimension of the sample in one direction is much smaller

than the other two directions (see for example Refs. [52, 54, 61, 141]). However, to

which extent this quasi-2D fracture can be compared with 3D fracture (which is the

case of glass fracture in real life) is not so clear. To better understand the effect of

sample geometry, we have evaluated the fracture behavior of the sandwich glasses with

different thickness (see Fig. 3.6). In practice, we have fixed the sample dimensions in

two directions to be ≈30 nm and 50 nm. (Note that these two lengths are for the glass

at zero strain. With increasing strain, these two dimensions will contract a bit and

thus become shorter). Interestingly, we find that for silica the thickness of the glass

does not affect the stress-strain behavior. The fracture of NS3, by contrast, depends

strongly on the sample thickness in that the glass can withstand more deformation

(i.e. it fails later and thus is tougher) with increasing the thickness of the sample. This

result indicates that the quasi-2D geometry may allow only a qualitative description of

glass fracture while quantitatively there is a strong dependence on glass composition.
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Figure 3.6: Effect of the sample thickness on the stress-strain behavior of the sandwich

glasses at 300 K. The inset in (a) shows that the sample dimensions have been fixed at 30 nm

and 50 nm in two directions. Note that these dimensions do not include the vacuum on the

top and bottom sides of the sample.

We recall that the objective of this thesis is not only to investigate the stress-

strain behavior, but also to obtain more insights into the fracture behavior and surface

properties of the glasses. Apparently, the quasi-2D fracture does not allow to achieve

the later. Therefore, we choose to study glass fracture using a 3D geometry, i.e., all

the sample dimensions are comparable to each other. For silicate glasses, since the

crack velocity during dynamic fracture is very high (≈ 103 m/s), we choose a cuboid
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3.2. The big picture: Stress-strain behavior

geometry for the sample with dimension in the direction of crack propagation larger

than the other two directions (L × 1.5L × 2.5L). The free surfaces are introduced in

the direction of the largest dimension.

In Sec. 2.4 we have shown the system size dependence of the fracture behavior of

bulk sodium silicate glasses. We have concluded that for silica a cubic box with a side

length L = 10 nm is required to reach convergence of the stress-strain behavior, whereas

for NS3 a cubic box with L = 16 nm is needed, thus highlighting the compositional

dependence of the system size dependence. In Fig. 3.7 we show the results for the

glasses with sandwich geometry and a fixed ratio of its dimensions (L× 1.5L× 2.5L).

It can be seen from Fig. 3.7(a) that L = 8 nm is enough to produce a brittle fracture

behavior of silica. With increasing system size, the glass becomes slightly more stiffer

and fails at a bit smaller strain, but the overall fracture behavior remains unchanged.

We note that these changes are mainly due to the presence of the free surfaces, whereas

for the bulk glass they do not exist. In contrast, Fig. 3.7(b) demonstrates that for NS3,

one has to use simulation box with L > 16 nm to obtain a clean stress-strain behavior

after the failure point (i.e., the point corresponds to maximum stress). It is worth

noting that although the stress-strain response after glass failure shows very strong

system size dependence, the small strain region, e.g., ε < 0.10 is hardly affected by the

system size, in agreement with the findings for bulk glasses (see Sec. 2.4). Finally, we

note also that the fracture strength of the sandwich glasses are smaller than the ones of

the bulk glasses (≈ 12.5 GPa for silica and ≈ 7 GPa for NS3) due to the presence of free

surfaces and thus more structural defects. This is consistent with the fact that glass

usually has much smaller practical strength in comparison to its theoretical strength

due to the presence of surface flaws [33, 41].
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Figure 3.7: Influence of system size on the stress-strain behavior of the notch-free sandwich

glasses at 300 K. The inset in (a) illustrates the rectangular cuboid geometry of the sample

with L the smallest dimension.
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Since we intended to investigate the deformation of glass both before and after

failure, a large system size is desired in order to avoid (or at least minimize) the finite

size effects. Therefore, in the following we will mainly discuss the deformation and

fracture behavior of sandwich glasses with L = 20 nm, unless otherwise specified.

3.2.3 Effec of notch geometry

In this section we examine the influence of introducing a surface notch on the stress-

strain behavior of the sandwich glasses. We have fixed the shape of the notch to have

a isosceles triangle as cross section and investigated the influence of the sharpness and

depth of the notch on the stress-strain response. Figure 3.8(a) shows for the case of

silica that at a fixed notch depth of a = 21 Å increasing the sharpness (i.e., smaller

b) results in a slight reduction of the glass strength. This result indicates that within

the range of b/a ratio examined, the notch sharpness has only a weak effect on the

strength. The influence of the notch depth a is shown in Fig. 3.8(b). One recognizes

that increasing a leads to a significant reduction of the glass strength. This effect is

more pronounced when a is relatively small.

We emphasize that our motivation for introducing a notch on the free surface is to

control the initiation of crack propagation. Therefore, based on the results discussed

above, we have chosen for the production runs a notch geometry of a = 21 Å and

b = 31.5 Å (b = 1.5a). The size of the notch is about 1/10 and 1/25 of the sample

dimensions in the pulling direction and the direction normal to the surfaces, respec-

tively. Note that we discuss here only the results for silica, but similar effects of notch

geometry are found for the Na-containing glasses.
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Figure 3.8: Influence of (a) the notch shape and (b) notch depth on the stress-strain behavior

of the sandwich silica glass at 300 K. The inset in (a) illustrates the isosceles triangular cross

section of the introduced notch on the glass surface. The parameters a and b control the

geometry of the notch.
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3.2. The big picture: Stress-strain behavior

3.2.4 Effect of temperature

We now discuss the influence of another important factor on the fracture of materi-

als, temperature T . As T increases, brittle materials can be transformed into ductile

materials. In Fig. 3.9, we show the influence of T on the stress-strain behavior of

the sandwich glasses. It can be seen from panel (a) that the strength of silica glass

decreases with increasing T but that the glass remains brittle (i.e. stress drops to zero

rapidly once the failure point is reached) if T is below 1600 K. With further increasing

T , the sample becomes very ductile in that the stress decreases very slowly and the

glass is able to withstand large strain before fracture. This behavior can be rational-

ized by considering the atomic movement and reorganization of the microstructure.

We note that 2000 K is approaching the glass transition temperature for the sandwich

glass (see Fig. 3.2). Atoms start to move very fast and are able to escape from their

local constrains and therefore the sample is able to accommodate large deformation.

For the NS3 glass, the T−dependence of the stress-strain behavior is more pronounced

than the silica glass. With increasing T , the glass becomes softer, i.e., the slope of the

curve at small strain region drops. The glass behaves very ductile when T is above

900 K, which is also approaching the glass transition temperature of the glass.

A further interesting result is found in the T−dependence of failure strain εf , see

panel (c). For silica, we find basically a monotonic decrease of failure strain with

increasing T . (The only exception seems to be the point at 2000 K, a temperature

that may induces pronounced viscous flow of the glass, and thus makes the sample

more deformation-tolerant). A similar T−dependence of εf is observed for the NS10

glass (≈ 9.1% Na2O). However, as one further increases the Na concentration, e.g., for

the NS3 glass (≈ 25% Na2O), one recognizes that the T−dependence of εf becomes

non-monotonic: Increasing T results in larger εf at the beginning, but when T is higher

than ≈ 300 K, the failure strain decreases. The T−dependence of εf for the Na-rich

NS3 glass may be rationalized by considering two thermal activated effects: Local

softening and global softening. As T is lower than a threshold value (around 300 K for

NS3), increasing T mainly promotes local softening due the the activated motion of Na

atoms. In this T−range the backbone of the glass, i.e., the Si-O network softens but

the local softening is more pronounced thus the glass can accommodate more strains

without failure. However, once T is higher than a critical value, the global softening

of the network becomes more pronounced (also possibly the locally soft regions start

to percolate) thus the glass structure tends to fail earlier, i.e., reach the failure point

at a smaller strain.

Also of interest is the T−dependence of failure stress σf , see panel (d). We notice

that all sets of data can be fitted very well by a linear function. The two exceptions

are for the highest T examined for the silica and NS10 glass. This result suggests that
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Figure 3.9: Influence of temperature on the stress-strain behavior of the sandwich glasses.

Dashed lines in (d) are linear fits to the corresponding data sets. Error bars represent the

standard error of the mean of six fracture samples.

σf decreases linearly with temperature when T is well below Tg. Most surprisingly, the

slopes of the three fitting lines are almost the same, implying that composition does

not influence how fast the failure stress (i.e., the strength of the glass) changes with

temperature.

3.2.5 Effect of glass composition

As glass fracture often happens at room temperature, we now fix the temperature of

fracture simulation at 300 K, and investigate the compositional dependence of glass

fracture. More specifically, we study how the fracture behavior of Na2O-xSiO2 (NSx)

glasses varies with sodium concentration.

In Fig. 3.10(a) we show the stress-strain behavior of the bulk glasses. It can be

seen that silica shows characteristics of brittle fracture in that it reaches the failure
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3.2. The big picture: Stress-strain behavior

stress in almost a linear manner and the stress drops to zero very rapidly after failure.

With increasing Na concentration, the glass becomes softer in that the slope of the

curves at small strain decreased considerably. Also one observes that the failure stress

shifts to lower value and the failure strain shifts to larger value, if more Na is added.

At larger strain, i.e., after the failure point, there is also a noticeable compositional

dependence. For the Na-poor compositions, i.e., from silica to NS10, the glasses remain

brittle. However, for the Na-rich compositions the stress drops relatively slowly with

increasing strain, implying that the crack is somehow arrested and thus advances only

slowly. For the NS3 glass, the fracture point is at ε ≈ 30% (i.e., after which the glass

will break rapidly), and the region of necking (crack arresting) has a width of around

8% strain.

The compositional effect on the deformation behavior of the NSx glasses is also

manifested in the tangent modulus (Et, see Eq. 2.10) of the glasses, see panel (b). One

recognizes an anomaly of silica in that Et increases at the beginning and decreases after

a critical strain at around 9% strain. This finding compares very well with experimental

results (see the discussion in chapter 2). With increasing Na concentration, the absolute

value of Et decreases, indicating that the glass becomes softer. Also the behavior of the

Et(ε) changes in that the overshooting of silica at small strain weakens and disappears

for NS10. With even more Na added, one notices that a plateau in the Et(ε) curve

shows up, and it becomes very pronounced for the Na-rich NS3 glass. We will show

in the next section that the strain dependence of glass stiffness as given by Et can be

related to the nonaffine part of atomic displacement.

Figure 3.10(c-d) show the stress-strain behavior of the sandwich glasses for various

Na concentrations. It can be seen that the sandwich glasses exhibit a similar compo-

sitional dependence as the bulk glasses. However, the sandwich glasses differ in that

the glass strength is reduced and the glasses (notably for Na-rich compositions) seem

more brittle due to the presence of notched surfaces. In panel (d), one observes again

the bending behavior in the Et − ε curves, indicating that this feature is independent

of the sample geometry.

Finally we show in Fig. 3.10(e-f) the failure strain and stress of the sandwich glasses.

In panel (e), we include also the experimental results as measured for glass fibers by

using two-point bending method [133]. It is found that the failure strain estimated for

the bulk glasses compare very well with the experimental data. The only exception

is the Na-poor region where our simulations do not show a minimum of failure strain

at around 5% Na2O. (The origin of this local minimum may be related to the 2-point

bending technique adopted in the experiments [133]. This technique creates a special

stress gradient in the specimen that one does see in the case of tensile loading.) In

panel (f), one recognizes that the strengths of the bulk glasses compare reasonably well
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Figure 3.10: Effect of composition on the stress-strain behavior of NSx glasses. (a) and (b):

Stress and tangent modulus of the bulk glasses at 300 K, respectively. In (b), the two open

symbols (circle for silica and square for NS3) at zero strain are experimental data [112, 132].

(c) and (d): Stress and tangent modulus of the notched sandwich glasses at 300 K, respec-

tively. (e) and (f) Failure strain and failure stress versus Na2O concentration, respectively.

The lines in panel (e) are fourth order polynomial fits to the data sets. The experimen-

tal data in (e) are from Ref. [133]. For panel (f), the experimental data are taken from

Refs. [129], [133], [134] for silica, NS4 and NS3, respectively. Error bars are standard error of

the mean of three and six fracture samples for the bulk and sandwich glasses, respectively.
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3.2. The big picture: Stress-strain behavior

with the experimental data. (The experimental data for NS4 may be overestimated

due to the experimental setup, see the discussion in Ref. [133]). In addition, one also

sees that the failure stress and strain show very similar compositional dependence as

the bulk glasses, but the absolute values are much smaller due to the introduction of

free surfaces and pre-notch.

From the stress-strain curves we have seen that the Na-rich glasses show a pro-

nounced ductility relative to the Na-poor ones. A further step is thus to quantify

the relative ductility of the glasses. Previous simulation studies, based on energetic

approach, have defined a brittleness index by the expression [52, 61]:

B =
Gc

Gel

, (3.1)

where Gc is the fracture energy (or critical energy release rate) and Gel is the elastic

contribution to the fracture energy. The difference between the two energies Gc −Gel

thus accounts for the energy dissipated due to any plastic (irreversible) deformation

process. Gc and Gel are proportional to the area under the σ− ε curve up to the failure

point and the fracture point, respectively. Based on this idea, we used the stress-strain

curve to define two toughness parameters: Fracture toughness Π0 and failure toughness

Πf . The parameter Π0 is given by integrating the area under the stress-strain curve,

i.e.,

Π0 =

∫ ∞
0

σdε, (3.2)

whereas Πf is defined by integrating the stress-strain curve only up to the failure strain

εf , that is

Πf =

∫ εf

0

σdε (3.3)

The ratio between failure toughness and fracture toughness is an indicator of the brit-

tleness of a material, and thus the brittleness index B is defined as

B =
Πf

Π0

. (3.4)

B = 1 means that the fracture perfectly brittle. The smaller the value of B the more

ductile the material is.

The two toughness parameters are shown for three different sample geometries in

Figs. 3.11(a) and (b). For the bulk glasses, one recognizes that Π0 decreases first

with the addition of Na and a minimum is reached at around 10% of Na2O. Further

increasing Na content leads to a greater value of Π0, i.e., the glass becomes tougher.

This increase in toughness can be attributed to the enhanced ductility. That is to

say, the Na-rich glasses become softer (lower strength), but at the mean time can

deform more easily to accommodate the applied load (i.e., the glass can survive at

larger strain). The results for the notched sandwich glasses show similar trend but the
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Figure 3.11: Composition dependence of the toughness and brittleness parameters of the

glasses. (a) Fracture toughness Π0. (b) Failure toughness Πf . (c) Brittleness index B =

Πf/Π0. The bulk and sandwich glasses correspond to the data shown in Fig. 3.10. In (a)

and (b) the data for the notched and notch-free sandwich glasses have been multiplied by

3.5 and 1.75, respectively. The lines in (a) are third order polynomial fits of the three data

sets. In (c), also included are the data from Wang et al. [52] and Rimsza et al. [61]. Error

bars are standard error of the mean of three and six fracture samples for the bulk and

notched sandwich glasses, respectively. For the notch-free sandwich glasses, only one fracture

simulation was performed for each composition.

minimum location is shifted to a higher Na concentration (around 17% Na2O), which

might be a consequence of the presence of notched surfaces. The data points for the

notch-free sandwich glasses show similar dependence on the Na content as the notched

sandwich samples.

The failure toughness Πf of the bulk glass decreases with increasing Na content.

Interestingly, it shows a noticeable slope change at around 10% Na2O, corresponding

well to the location of the minimum in Π0. Both the notch-free and notched sandwich

glasses show a minimum in Πf at around 17% Na2O.
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3.2. The big picture: Stress-strain behavior

Figure 3.11(c) shows the brittleness index estimated for the glasses together with

the results from previous studies for comparison. Taking into account the fact that

different potentials and simulation setups were used, our finding that B ≈ 0.8 for

the bulk and notched sandwich silica is in reasonable agreement with previous studies,

which have found a brittleness index of 0.88 [52] and 0.76 [61] for silica glass. For sodium

silicate glasses, it was reported that B = 0.73 for the glass with 30% of Na2O [52].

Our results are comparable to this finding if the data is properly extrapolated. The

data for the notch-free sandwich glasses are somehow larger than the values for the

bulk and notched sandwich glasses. These results indicate that the absolute value of B

depends somewhat on the sample geometry, but its dependence on composition seems

unaffected. One also notices that the value of B is much less affected by the sample

geometry than Π0 and Πf . Finally, we note that the birttleness index may show a

noticeable dependence on the strain rate as we will see a bit later.

3.2.6 Crack velocity

Based on the stress-strain behavior, we also estimated the crack velocity vc during glass

fracture by using the expression:

vc = Lc/(t0 − tm), (3.5)

where Lc denotes the total crack length and t0−tm is the duration of crack propagation,

i.e., stress drops from the maximum (at tm) to zero (at time t0). We note that this

definition of vc is sensible for the fracture of the sandwich glasses, since no noticeable

regions of crack arresting can be observed after the failure point, i.e., the failure point

can be considered as the fracture point.

As shown in Fig. 3.12(a), glass composition has a pronounced effect on vc. With

increasing Na concentration, we observe that vc decreased from ≈1800 m/s for silica

to ≈650 m/s for NS3. We also note that the dependence of vc on Na concentration

also changes, i.e., the slope of the curve also depends on composition. Figure 3.12(b)

shows the influence of temperature on crack velocity. Overall, we observe that silica

and NS3 exhibit similar T−dependence. With increasing T , vc increases firstly and

then tends to decreases at higher temperature. This result suggests a temperature

induced stiffening-to-softening transition of the fracture behavior.

Experimental studies have reported that the terminal crack velocity in SiO2-based

glasses ranges from 700 m/s to 2500 m/s, depending on composition and elastic proper-

ties [7]. The crack velocity generally decreases with decreasing SiO2 concentration. For

soda-lime-silica (74SiO2-13Na2O-11CaO, wt%) glass, the terminal vc was shown to be

≈ 1500 m/s [142]. It has also been suggested that the terminal vc can be reached in the
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Figure 3.12: Crack velocity as a function of composition (a) and temperature (b). Crack

velocity was measured for the notched sandwich glasses. Error bars are standard error of the

mean of six fracture samples.

mirror region1, which is the region we focus on. The magnitude of vc estimated from

our simulations as well as its composition-dependence are in agreement with experi-

mental results. We note that as cracks propagate with vc ≈ 1500 m/s, it is impossible

for our eyes to follow them. This is also the reason why computer simulations and

more advanced experimental techniques are required to study the dynamic fracture of

brittle materials such as oxide glasses.

Furthermore, we have investigated the influence of strain rate ε̇ on vc. We took

from the fracture simulation with ε̇ = 0.5/ns an atomic configuration before the failure

point as a starting point, and then applied different strain rates to it. The resulting

σ − ε curves are shown in Fig. 3.13. One notices that the strain rate effect is more

pronounced for the Na-rich NS3 glass than for the silica glass. A recent study of silica

glass using reactive force fields as interaction potential found for the strain rate of 5/ns

a terminal vc of ≈ 2200 m/s [54], a value that is comparable with the vc estimated in our

work. For sodium silicate glass, no such data was found in the literature. Additionally,

we note that as the brittleness index B (Eq. 3.4) is very sensitive to the change of the

σ − ε curve, one would observe a noticeable increase of B with decreasing strain rate.

The theory of linear elastic fracture mechanics predicts that mode I (tensile) cracks

propagating faster than the Rayleigh wave speed, vR, is forbidden, since for this case

the energy release rate would be negative [143]. To have an idea of how these crack

velocities compare with vR, we estimate for the sandwich glasses the vR using the

1This region is close to the fracture origin and is relatively smooth.
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Figure 3.13: Strain rate dependence of the crack velocity for the sandwich glasses having

dimensions of 20, 30, 50 nm. Strain rate changes during tensile loading. The circle in each

graph indicates the point where the strain rate switches from a constant value of 0.5/ns to

the values shown in the legend.

formula [144–147]

vR =
0.87 + 1.12ν

1 + ν

√
G

ρ
, (3.6)

where G is shear modulus, ν is Poisson’s ratio and ρ is density. For the sandwich

glasses the estimated values for these various quantities are listed in Table 3.1.

Glass Na2O (%) ν E G ρ vR (m/s) vc (m/s) vc/vR

Silica 0.0 0.200 63.0 26.3 2.20 3148 1860 0.59

NS20 4.8 0.195 54.5 22.8 2.26 2893 1795 0.62

NS10 9.1 0.185 47.2 19.9 2.28 2687 1686 0.63

NS07 12.5 0.205 42.9 17.8 2.31 2533 1506 0.59

NS05 16.7 0.210 39.3 16.2 2.35 2403 1085 0.45

NS04 20.0 0.215 38.2 15.7 2.38 2348 899 0.38

NS03 25.0 0.235 41.6 16.8 2.43 2418 672 0.28

Table 3.1: Na2O concentration (mole%), elastic properties (Poisson’s ratio ν, Young’s mod-

ulus E (GPa), shear modulus G(GPa)), experimental density ρ (g/cm3) at room temperature,

Rayleigh wave speed vR, crack velocity vc and the ratio between rc and vR. Sandwich glasses

at 300 K.

In Fig. 3.14(a) we compare the crack velocities with the estimated Rayleigh wave

speed, experimental transverse (vT ) and longitudinal (vL) wave speeds2 in sodium

silicate glasses. Also included in the graph are the vL and vT calculated based on the

2Rayleigh waves are a type of surface wave that travel along the surface of solids, whereas transverse

(shear) and longitudinal waves travel in the bulk.
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3. Fracture of sodium silicate glasses: Classical MD simulations

elastic constants in Table 3.1 using the expressions [146–148]

vL =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
vT =

√
G

ρ
. (3.7)

Overall we find that vL > vT > vR > vc. The transverse (vL) and longitudinal (vT )

wave speeds estimated from the simulations are lower (might be related to the cooling

rate) but do exhibit the same variation trend as the experimental ones. Figure 3.14(b)

shows that the ratio between crack velocity (vc) and Rayleigh wave speed (vR) reaches

a maximum at around 9% Na2O (NS10), i.e., the critical composition in the transition

behavior of Et (see Fig. 3.10). This finding implys that the mechanical responses before

failure also have consequences for the fracture process. In addition, for the Na-poor

compositions, i.e., Na2O%<13%, the estimated vc/vR is compatible with the value of

0.5 ∼ 0.6 that one usually finds in experimental measurements [7]. For the Na-rich

glasses, vc/vR is considerably smaller. The reduction of vc/vR can be related to the

fact that the local deviation of the crack front (crack arresting) is more pronounced

in these glasses, which is also reflected in the surface morphology as we will see in

the next chapter. Finally, we note that all the estimated vc/vR are smaller than the

experimental upper bound of 0.66 found for inorganic glasses [149, 150].
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Figure 3.14: (a) Crack velocity vc compared with various elastic wave speeds as esti-

mated from our simulations and measured from experiments. vc and vR are also listed in

Table 3.1. Experimental data were measured by using Brillouin light scattering at room tem-

perature (The data for silica and sodo-silicate glasses are taken from Refs. [151] and [136],

respectively). (b) rc/vR as a function of Na2O concentration. The dashed line indicate the

experimental upper bound found in inorganic glasses [149, 150].

We have discussed in this section the influences of important factors for glass frac-

ture in terms of the stress-strain behavior, which is rather a global picture of the
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mechanical response of glass. Based on the σ − ε curve, we also estimated the brit-

tleness parameters and the crack velocities. In the next section we will explore the

properties of the glasses on the microscopic scales, i.e., on the length scale of several Å.

We will see that the mechanical behavior of glass at the macroscopic scales can indeed

be better understood with the knowledge of structure, dynamics, and mechanics at the

microscopic scales.

3.3 Microscopic insights

3.3.1 Cavitation

Previous studies have pointed out the critical role of compositional change on the

stress-strain behavior of glass [52, 57]. However, a detailed analysis of the nanoscale

cavitation process (i.e., the formation and growth of cavities during deformation of

glass) is still missing. (A more detailed literature review can be found in chapter 1).

To understand the deformation and fracture behavior of glasses on the microscopic

scale, we explore first whether or not glass fracture is accompanied by the formation

and growth of voids (or cavities).

Here we define voids as the regions where no atom can be found in a probing sphere

with a radius Rc. All atoms are simply viewed as point-like objects, i.e., no volume is

assigned to the atoms. The probing sphere moves over the whole sample and the regions

where no atoms are contained in the sphere are thus defined as voids. In practice, a

3D grid with a unit size of 1.25 Å was used in the search of voids. Figure 3.15(a) shows

that the number of voids (Nvoid) in the unstrained glasses decreases in an exponential

manner with increasing Rc. In Fig. 3.15(b), the void density, ρvoid, is plotted as a

function of Na concentration. One observes that, for a chosen Rc, ρvoid decreases

exponentially with increasing Na2O content. Also interesting is the finding that ρvoid

decreases faster for larger Rc (the absolute value of the exponent increases with Rc).

As indicated by the intersection between the Nvoid curve and the green dashed

line, panel (a), a probing sphere of size Rc ≈ 4.0 Å is required in order to exclude

the free volumes in the glass samples been identified as voids for the glass samples

considered. These results also demonstrate that voids with radius up to ≈ 4.0 Å are

naturally present in the unstrained glasses. A previous study, using the same definition

of void, found that the largest void in silica glass has a radius of ≈ 3.5 Å [50]. We

suspect that the smaller value they have found might be a consequence of small system

size they have studied (cubic boxes with size of ≈ 37 Å). (Small simulation box leads

to insufficient statistics). As shown in Fig. 3.15, Nvoid at a given Rc depends on the

composition, i.e., Na-rich compositions tend to have fewer voids. This finding is related
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Figure 3.15: (a) Number of voids versus the radius of the probing sphere, Rc. In the

search of voids, the examined samples are the sandwich glasses which have dimensions of

20 nm×30 nm×50 nm. The green dashed line points to Nvoid=0.5, i.e., with 50% probability

to find only one void with size Rc in the unstrained sample. (b) Number of voids per nm3

versus Na2O concentration. The lines are exponential fits to the data, and the exponents α

are shown in the graph as well. Error bars are standard error of the mean of six fracture

samples.

to the fact that the atomic number density ρN of the glass increases with the addition

of Na. The structure of sodium silicate glasses can be viewed as a network of [SiO4]

tetrahedra with occasional breaks in connectivity. The Na atoms occupy the interstices

in the network, reducing the free volume of the structure. For the simulated glasses

at 300 K, ρN is 66.82 nm−3 for silica and 73.83 nm−3 for NS3. However, all of these

critical values are close to 4.0 Å. Therefore, in the present analysis, a critical value of

Rc = 4.0 Å was chosen for the search of voids during the deformation of the glasses.

With the threshold size of void determined, we now can characterize the fracture of

glass in terms of cavitation. Firstly, we show in Fig. 3.16 some snapshot corresponding

to specific strains during fracture of silica, panel (a), and NS3, panel b). To associate

these snapshots with the mechanical condition of the glass sample, we depict in panels

(c) and (d) the stress-strain curves of the corresponding glasses.

For silica, by visual inspection we find that a few (< 5) voids are present before

reaching the maximum stress (ε = 0.092), and these voids only have a size of R ≈ 4.0 Å.

They are also unstable as they do not survive if the strain is changed by a few percents,

i.e., their presence is due to the fluctuations of local structure and composition. Once

the failure point is reached, the crack propagates very rapidly through the sample.

During the entire fracture process, we did not observe growth and coalescence of the

voids. Our finding is thus in accordance with the traditional picture that silica is brittle

and the crack propagates by sequential rupturing of the atomic bonds at the crack tip.
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Figure 3.16: (a) and (b) Snapshots showing the empty volume during the fracture of the

silica (a) and NS3 (b) glasses (sample size 20×30×50 nm). A notch was introduced on the top

surface to initiate the fracture. Color coding is based on the coordinate in the y−direction.

(c) and (d) Stress-strain curves correspond to the fracture of the two glasses. (e) and (f) The

total number and volume of voids during fracture of the two glasses. The red circles in panels

(c-f) highlight the specific strain points as shown in the snapshots. The insets in panels (e-f)

show the ratio between the volume (nm3) and number of the voids.
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Quantitatively, we show in panel (e) for silica the number of voids, Nvoid and their

total volume Vvoid during the fracture of the glasses. We note that the curve showing

the number of voids and the curve for volume of voids collapse onto each other almost

perfectly. This is confirmed by the inset of panel (e), which shows that the ratio

Vvoid/Nvoid ≈ 0.286 nm3 over the entire strain range. This ratio corresponds to void

size R ≈ 4.1 Å, thus indicating that all the voids have the same size, during the

fracture process. The two noticeable jumps of the Vvoid/Nvoid at around 10% strain

are just (unstable) fluctuations. These quantitative results confirm our observation

from the snapshots, showing that silica breaks in a brittle manner and no growth and

coalescence of voids can be detected. This observation agrees with the finding of a

recent simulation study of the fracture of silica glass using reactive force fields [54],

and also is consistent with the post-mortem analysis of fracture surfaces of silica glass

by Guin and Wiederhorn [11].

For NS3, panel (b), we find again only a few unstable and small voids (R = 4.0 Å)

present before the failure point. However, once the crack starts to propagate, the

situation shows noticeable differences from the fracture of silica. Firstly, we observe

that the number of voids increases and at some specific points, e.g., ε = 0.172, small

voids near the crack tip will grow and then merge with the crack front. Also very

interestingly, we find that micro-branching of the crack may also show up at some

points (e.g., ε = 0.192) along the fracture path. But we note that the formation of

microcracks is rather a minor and transitory event and eventually these microcracks

will be invisible from the fracture surface.

From Fig. 3.16(f), we notice a drastic increase in the number of voids as the strain

approaches the failure point, and this trend also continues during the crack propagation.

As for the volume of voids, we find that the curve superimposes very nicely to the curve

of the number of voids before the failure point (see also the inset in same graph). This

result indicates that Nvoid increases with strain but each individual void is not growing

before the failure point. Once the crack starts to advance, one notices that the volume

of voids goes up faster than the number of voids, implying that some voids grow to

bigger sizes and may merge with their neighboring voids. This is also reflected in the

change of the ratio Vvoid/Nvoid (inset of panel(f)). All together, these results indicate

that the fracture of NS3 glass is accompanied by the growth and coalescence of cavities.

One also notices that Vvoid/Nvoid at its highest value is about twice the value of the

initial plateau, suggesting that on average the voids can grow to twice as large as their

initial size, i.e., reaching a size of R ≈ 5.0 Å assuming the voids are spherical in shape.

However the assumption that voids are spheres may not be appropriate as the

growth of voids might depend on the direction. In Fig. 3.17 we show an example of

irregular voids that appear at ε = 0.196. It can be seen that the biggest void has in the
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x−direction (parallel to the crack front) a dimension of≈3.5 nm, while only a dimension

of ≈1.5 nm in the y−direction (perpendicular to the fracture plane). This result clearly

indicates that with increasing strain, some voids will grow and merge with others to

form big voids with very irregular shapes. Taking into account the fact that the voids

may shrink after fracture due to the reversible part of the surface displacements, the

dimension of the voids in the out-of-plane direction (e.g. the y−direction) will become

even smaller [66]. These two effects together may explain why no remnants of voids were

detected by comparing postmortem fracture surfaces of soda-lime-silicate glass [11].

Figure 3.17: Enlarged view of the largest void found at ε = 0.196 for the fracture of the

NS3 glass.

Finally, we note that one may average over the results of multiple fracture samples

for small-strain region to improve the statistics. This operation will make smoother

the curves shown in Fig. 3.16 but the conclusions would be the same as above since

the glass sample is big enough to ensure only a negligible fluctuation in the small-

strain range. However, once the glasses are approaching the failure strain, we find that

one glass sample may fail and then break a bit earlier than the other samples (which

is a normal sample-to-sample fluctuation). Since the stress-strain curve looks very

steep during fracture, for a given strain in the fracture region (i.e., from the maximum

stress to zero stress) the corresponding stress may vary largely for different samples

(although the overall fracture behavior of different samples look qualitatively similar to

each other). As a consequence, average over multiple samples in this range will lead to

a large error bar in the y−axis. This could potentially wash out the true mechanisms

of glass fracture as show in the voids analysis in Fig. 3.16 which is shown only for one

representative sample.

3.3.2 Local properties

The mechanical behavior of glass on the macroscopic scale can be better understood

by probing the properties of the glass at the microscopic scales. In this section, we
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3. Fracture of sodium silicate glasses: Classical MD simulations

firstly quantify the local structural, dynamical and mechanical properties of the glasses

under tension. Then we discuss the evolutions and correlations between various local

properties.

First of all, let us give the definitions of the various local quantities that we explored:

� Mass density: ρm = m/V , where m is the mass and V the volume.

� Atomic number fraction: fi = Ni/Ntot, where fi is the number fraction of atom

specie i. Ni andNtot are the numbers of atoms of type i and all types, respectively.

The stoichiometric atomic number fraction of Na is equal to 0.167 in NS3 glass,

for example.

� Nonaffine displacement [152]: una
i = r i − r aff

i , where r i stands for the current

position of the particle i and r aff
i is the resulting position after the affine trans-

formation under an imposed strain of ε. For the transformation considered here

we have r aff
i = (1 + ε)r 0

i , where r 0
i denotes the reference (initial) position of

particle i. In the following we use u to represent the norm of una.

� Atomic shear strain: To quantify plastic deformation at the atomic level, here we

use the atomic local shear strain ηMises
i as first introduced by Shimizu et al. [153].

ηMises
i is a good measure of local plastic (or inelastic) deformation. Briefly, the ηi

is calculated by the following steps:

1) Calculate the separation vector between atom i and j by

dij = rj − ri, (3.8a)

where atom j is one of atom i’s neighbors within a prescribed cutoff radius rc.

2) Seek a local affine transformation matrix Fi (also called deformation gradient

tensor) that best maps {
d0
ij

}
→
{
dij
}
, ∀i ∈ N0

i , (3.8b)

where the superscript 0 means the reference configuration, and N0
i is the total

number of neighbors of atom i at the reference configuration. Fi is determined

by minimizing [154] ∑
j∈N0

i

|d0
ijFi − dij|2. (3.8c)

3) Calculate the atomic Green-Lagrangian strain tensor by

ηi =
1

2
(FiF

T
i − I). (3.8d)
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4) Based on the six components of ηi, one can compute atom i’s local shear

invariant as

ηMises
i =

√
η2
yz + η2

xz + η2
xy +

(ηyy − ηzz)2 + (ηxx − ηzz)2 + (ηxx − ηyy)2

6
. (3.8e)

ηMises
i is a measure of local inelastic deformation. The calculation of these atomic-

level strain tensors was realized by using the OVITO software [155].

� Atomic stress: We compute the symmetric per-atom stress tensor for atom i

using the following formula:

σabi =
1

Vi
(−miv

a
i v

b
i −W ab

i ), (3.9a)

where a and b takes on values x, y, z to generate the 6 components of the stress

tensor, and Vi is the volume assigned to atom i. In practice, this volume can be

represented by the Voronoi volume around the atom. On the right hand side of

Eq. (3.9a), the first term denotes a kinetic energy contribution for atom i, and

the second term is the virial contribution which is given by

Wab =
1

2

Np∑
n=1

2∑
m=1

rmaFmb +
1

2

Nb∑
n=1

2∑
m=1

rmaFmb

+
1

3

Np∑
n=1

3∑
m=1

rmaFmb +
1

4

Nd∑
n=1

4∑
m=1

rmaFmb

+
1

4

Ni∑
n=1

4∑
m=1

rmaFmb + fKspace.

(3.9b)

The first, second, third, fourth and fifth terms are pairwise, bond, angle, dihedral

and improper contributions for which atom i is part of, respectively. The last

term is for the K-space contribution from long-range Coulombic interactions (For

the SHIK potential with the Wolf approximation of Coulombic interactions, this

term is not required). Note that the stress for each atom is due to its interaction

with all other atoms in the simulation. More details concerning the computation

of the virial for individual atoms can be found in Refs. [115, 156]. The diag-

onal components of the per-atom stress tensor are of particular interest in the

present work. Note that the total pressure of the system can be calculated by

the expression:

P = − 1

3V

N∑
i=1

(σxxi + σyyi + σzzi )Vi (3.9c)

where N is the total number of atoms in the sample, V the total volume, and

σxxi the x−component of the atomic stress tensor for atom i. (Pressure is simply

the negative of hydrostatic stress). The calculation of the per-atom stress tensor

was realized by using the LAMMPS package [116].
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3. Fracture of sodium silicate glasses: Classical MD simulations

� Local temperature: The temperature is calculated by

T =
2

3

Ek
NkB

, (3.10a)

where Ek is the total kinetic energy of a group of N atoms, i.e.

Ek =
N∑
i=1

1

2
miv

2
i , (3.10b)

kB is the Boltzmann constant and T the temperature associated with the group

of N atoms. The limit of this local temperature is the per-atom temperature

(Ti), i.e., the temperature is calculated using only a single atom. Note that since

“temperature” can only be a well defined concept for a large group of atoms,

what we will be looking at is rather the instantaneous kinetic energy mapped to

a temperature scale.

� Coordination number: We compute the coordination number of Si (i.e., the num-

ber of O in the nearest neighbor shell of a given Si) and also the coordination

number of O (i.e., the number of Si in the nearest neighbor shell of a given O). The

cutoff distance for the search of nearest neighbor is chosen as the first minimum

in the radial correlation function of Si-O pair, i.e., gSiO(r).

� Change of inter-tetrahedral angle δθ: δθεi = θεi − θ0
i , where θ0

i is the SiOSi angle

of O atom i in the initial configuration (0% strain), θεi is the SiOSi angle of the

same O atom in the current configuration with ε applied strain. Note that it is

possible that a SiOSi connection at 0% strain does not exist anymore at strain

ε, since some bridging oxygens may become non-bridging oxygens. For this case,

we simply assign δθεi = 0.

For all aforementioned local quantities, we have subsequently applied a coarse-

graining procedure to obtain local maps. We have carefully examined the influence of

the coarse-graining length-scale ω and the weight function φ(r) for assigning weight

to each atom. We found that ω = 8 Å and a Gaussian weight function φ(r) =

exp(−r2/(2σ2)), with σ = ω/
√

2 performs reasonably well. We note that the cho-

sen coarse-graining length is also the choice of previous simulation studies [60, 70].

To start, we show in Fig. 3.18 the distribution of mass density (ρm) of the NS3

glass. For the unstrained glass (ε = 0), the ρm distribution has a Gaussian-like shape

and peaks at ρm ≈ 2.45 g/cm3, which is very close to the experimental density 2.43

g/cm3 at room temperature [112]. This agreement indicates that the analysis of glass

properties at the atomic scale based on a group of atoms does make sense. With

increasing strain, one observes that the distribution broadens and shifts to the left.

This is simply due to the fact that the glass network become more and more diluted
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Figure 3.18: Distribution of mass density of a sandwich NS3 glass at various applied strain.

ρcut is the threshold density that we used to exclude the empty spaces in the surrounding of

the glass sample.

with increasing strain. Once the glass starts to fracture, i.e., ε > 0.16, the distribution

will shift backwards, and eventually peaks at a position more or less the same as the

unstrained sample. But the distribution of the fractured sample is still broader since

the density near the two fracture surfaces will be smaller than the bulk density.

Note that the density distribution has a tail at ρm → 0 (not shown in the graph)

which corresponds to the empty spaces on the two surface sides of the glass. In order

to obtain a map that matches the glass matrix, it is preferred to get rid of the empty

spaces. However, unambiguous determination of the glass-vacuum interface is certainly

nontrivial. The strategy we applied here is to use a threshold density ρcut = 1.5 g/cm3.

All regions with density smaller than ρcut will be considered as empty space and thus

will be removed.

To justify the aforementioned strategy of approximation, we show in Fig. 3.19

snapshots of the glass network as well as the density map at various strains. It can be

seen that with ρcut = 1.5 g/cm3, the local density maps indeed match the glass sample

reasonably well at different applied strain. We emphasis that a slight adjustment of

ρcut will not change the profile of the maps significantly.

Distributions of local properties. In Fig. 3.20 we show the maps of several local

properties that are of interest during fracture of the NS3 glass. One clearly sees that the

local compositional, structural, kinetic and mechanical quantities all show pronounced

heterogeneity. To understand better these local properties, we first investigate the

distributions of these quantities. Figure 3.21(a) shows the stress-strain curve (with
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3. Fracture of sodium silicate glasses: Classical MD simulations

Figure 3.19: (a) Snapshots showing the evolution of a slice (10 Å in thickness) corresponding

to the middle plane of the NS3 glass under uniaxial tension. (b) Local density (g/cm3) maps

corresponding to the snapshots in panel (a). Regions with ρm < 1.5 g/cm3 are removed.

specific strain points highlighted) which corresponds to the fracture of the Na-rich NS3

glass. Figure 3.21(b) shows the distribution of local T at various strains and one sees

that the distribution remains unchanged before the failure point. Once the fracture

starts, one notices that the peak position of the distribution shifts to lower T whereas

the tails at large T raise. This result is consistent with the snapshots in Fig. 3.20 which

show the local heating near the crack tip. Once the fracture is done, the sample will

become again spatially homogeneous with respect to temperature. This corresponds

to the drop of the tails at large T and the shifting of the peak position to the initial

state, i.e., at ≈ 300 K. One also observes that the distribution of local T at ε = 0.25 is

broader than the one at ε = 0. This difference can be attributed to the fact that the

sample has not yet reached the real steady state with a constant temperature.

Figure 3.21(c) shows that, for small ε, the distribution of local shear strain ηMise

continuously shifts to larger value with increasing global strain, indicating that the

inelastic part of the deformation is accumulating. Once the crack starts to advance,

one sees that a tail appears at large ηMise and it becomes increasingly pronounced with

the advancing of the crack. This tail at large ηMise arises from the fracture surfaces

(see the snapshots in Fig. 3.20). Once the fracture is over, the tail in the distribution

remains basically unchanged since the fracture surfaces are no more evolving.

In Fig. 3.21(d) we plot the distribution of local tensile stress at various global

strains. With increasing global strain, one notes that the distribution shifts to larger

stress and broadens, indicating that the glass is increasingly stressed and also the lo-
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Figure 3.20: Maps of various local properties at (a) ε = 0.172 and (b) ε = 0.192 for the

NS3 sandwich glass. See the text for the definition of each quantity. These maps are shown

for the middle plane of the simulation box in the direction orthogonal to the crack front.

cal stress becomes more heterogeneous. Once the fracture begins, one observes that

the peak position at large stress remains unchanged whereas the peak intensity de-

creases. As the crack advances, another peak at small stress arises and it becomes

increasingly pronounced. Eventually the distribution looks like the one at ε = 0, i.e.,

a globally stress-free state. All these evolutions of the local stress distribution reflect

in a quantitatively manner the maps of local tensile stress as shown in Fig. 3.20.

Correlations between local properties. In addition to the distributions of these

local properties, we also notice that they are correlated to each other. Therfore, a

further step to understand these local maps is to quantify the correlations between

them. We note that as we have explored more than 20 different local properties (taking

into account the partials for each atomic species), the combinatorial possibilities are

over 100. Therefore, we will focus on a few pairs that could be more instructive for

understanding the deformation and fracture of sodium silicate glass at the microscopic

scales. In Fig. 3.22 shows the correlations between various local properties at the failure

point (ε = 0.162), panels (a-d), and during fracture ε = 0.192, panels (e-f). Note that

the correlation is evaluated for the whole sample, not just for the surroundings of the

crack tip. One recognizes the correlation between local Na fraction and Si fraction

(panel (a)) is very pronounced, whereas for the pair of local temperature and shear

strain (panel (f)), one observes a bimodal distribution (see the ellipses in the graph).

To be more quantitative, here we rely on the Spearman’s rank correlation coefficient,

rs [157], which is a measure of statistical dependence between the rankings of two
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Figure 3.21: (a) Stress-strain curve of the NS3 sandwich glass at 300 K. (c-d): Distributions

of local temperature, shear strain, and local tensile stress, respectively. Note that, for this

analysis, the layers (≈ 2.5 nm in thickness) near the free surfaces of the sandwich sample

were removed. In panel (a), the red circles indicate the various global strains shown in panels

(b-d).

variables. For a sample of size n, the ith observations of two variables Xi and Yi are

converted to ranks rgXi and rgYi , and rs is given by

rs =
cov(rgX , rgY )

σrgXσrgY
, (3.11)

where cov(rgX , rgY ) is the covariance of the rank variables, σrgX is the standard de-

viation of the rank variable rgX . If all n ranks are distinct integers, the coefficient rs

can be computed using the formula

rs = 1− 6
∑
d2
i

n(n2 − 1)
, (3.12)

where di = rgXi − rgYi , is the difference between the two ranks of the ith observations

for the variables X and Y . The coefficient rs is always in the range [-1, 1] and rs > 0

means positive correlation, i.e., Y tends to increase when X increases and vice versa. In
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Figure 3.22: Correlation between several pairs of local properties. See the main text for the

definition of each quantity. Note that in panels (a-d) the correlations are shown for ε = 0.162,

i.e., the failure point, whereas in panels (e-f) ε = 0.192, i.e., during fracture (see also the lower

panels in Fig. 3.20).

contrast, rs < 0 means anti-correlation, i.e., Y tends to decrease when X increases and

vice versa. The magnitude of rs indicates the degree of correlation, with rs = 0 means

no correlation between the two variables. In contrast to the Pearson correlation, which

only gives a perfect correlation when variables X and Y are related by a linear function,

a perfect Spearman correlation results when X and Y are related by any monotonic

function [158].

In Fig. 3.23, we show the correlations between various local quantities as functions

of the applied strain. First of all, we recognize from panel (a) that the local atomic frac-

tions are strongly correlated: Si and O are positively correlated with rs(Si,O) ≈ 0.75;

Si and Na are negatively correlated with rs(Si,Na) ≈ −0.94; A strong anti-correlation

is also found between O and Na with rs(O,Na) ≈ −0.90. These correlations are indeed

what one would expect for soda-silicate glasses, in agreement with previous simulation

work [60]. Moreover, we find that the correlation between the local compositions is

basically independent of the applied strain. These results make sense since the glass

structure is basically fixed at room temperature. It is unlikely to observe dramatic

changes of local composition and structure even if the glass is under external tensile

stress. This point is further confirmed by the correlation between local Na fraction,

fNa, and local coordination number of O, CNO, in panel (b). It can been seen that
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3. Fracture of sodium silicate glasses: Classical MD simulations

fNa and CNO are strongly anti-correlated, and their correlation coefficient is nearly a

constant. Their correlation suggests that Na-rich regions tend to have smaller CNO,

i.e., the glass network is less connected, in agreement with the local maps in Fig. 3.20.

Furthermore, one can also explore the correlation between local composition and

local mechanical properties. As shown in panel (c), overall, we note that fNa is posi-

tively correlated with local shear strain, while anti-correlated with local tensile stress.

This results can be understood by recalling that Na-rich regions are more flexible due

to the high mobility of Na and less connected network. Therefore, these regions can

deform more easily and thus are able to accommodate more strain and also reduce

stress. Very interestingly, the dependence of the correlations on the applied strain can

be divided into 3 regions, namely before fracture, during fracture, and after fracture

(as indicated by the dashed lines in the graphs). Before fracture (i.e., before the failure

point), we notice that the correlation between fNa and local stress and strain becomes

increasingly pronounced with increasing strain and the maximum is reached at the fail-

ure point. These results imply that the glass becomes more and more heterogeneous

in both composition and mechanics as it is deformed. Once the fracture starts, the

correlations decrease. This result suggests that the propagation of the crack helps to

release the constraints and heterogeneities that have been built before the failure point.

Thus the degree of correlations between these quantities will soon return to a small

value one the fracture is completed.

In panel (d), we show the correlations between shear strain and tensile stress. As

expected, we observe that they are anti-correlated, i.e., zones with large shear strain

tend to have small stress. We note that the largest correlation coefficient only has a

value ≈ 0.3 (at the failure point). This might be due to the fact that shear deformation

mainly happens at the vicinity of the crack tip. Averaging the correlation over the entire

sample will inevitably hide the true level of correlation near the crack tip. Nevertheless,

it is clear that shear strain and tensile stress are anti-correlated and their correlation

shows a similar three-stage strain dependent as the ones in panel (c).

Also very interesting is the correlation between local stress and local structural

changes, more specifically the change of the inter-tetrahedral angle. As can be seen

from panel (e), the correlation is very weak before the fracture (only a slight increase

of correlation can be noticed). Once the fracture starts, rs soars, reaching a value of

more than 0.5 in the middle of the fracture. The rationale is that upon elongating,

the linkage between neighboring tetrahedra will likely be stretched and thus increasing

the SiOSi angle. Therefore, the regions with larger δθ (i.e., more stretched) tend to

be under high stress. Once the fracture is done, the stress is released. Therefore, the

correlation between them decreases considerably.

A final interesting result we discuss here is the correlation between local temperature
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Figure 3.23: Spearman’s correlation coefficient (rs) for various pairs of local quantities in the

NS3 sandwich glass. (a) Correlation between local atomic fractions. (b) Correlation between

local Na fraction and O coordination number. (c) Correlation between local Na fraction and

local mechanical quantities. (d) Correlation between local tensile stress and shear strain. (e)

Correlation between local SiOSi angular change and local stress. (f) Correlation between

local temperature and shear strain. The layers (≈ 2.5 nm in thickness) near the free surfaces

of the glass sample were removed before the correlation analysis. The vertical dashed lines

correspond to the failure point (i.e., at maximum stress) and the fracture point (i.e., at zero

stress), respectively. Error bars are standard error of the mean of 10 slices orthogonal to the

direction of the crack front.
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and local shear strain. From the maps in Fig. 3.20 we have noticed that the local

temperature and shear strain are positively correlated during glass fracture. Fig. 3.23(f)

shows that rs is nearly zero before failure. However, once the crack starts to propagate,

rs increases continuously until the fracture complete. The rationale for this result is

that the breaking of the atomic bonds at the crack tip releases energy and thus results

in local heating. As the crack passes through the glass, more and more energy are

released and dissipated into the bulk, which then promotes plastic deformation of the

sample. Once the fracture is done, the sample will gradually cool down thus rs also

declines and eventually reaches value close to the ones before fracture.

Atomic-scale origin of glass stiffness. We recall that, in Fig. 3.10, a composition-

induced transition behavior in the tangent modulus has been revealed. Note that this

transition behavior is independent of sample geometry, i.e., it appears for both the

bulk and sandwich glasses. Below we will show that this transition behavior can be

attributed to the atomic scale nonaffine displacement.

Figure 3.24 shows the incremental nonaffine displacement ∆u for the Na-rich NS3

glass at different applied strain. To obtain ∆u, a sliding reference configuration was

used with the strain increment ∆ε fixed at 2%, i.e., if the current configuration is

at strain εc then the reference configuration is at εc-2%. In Fig 3.24, the strain εm

corresponds to the mid-point between the reference and current configurations. By

comparing the ∆u of the three species, panels (a-c), one recognizes that the ones for

Na are larger than the ones for Si and O (mainly in the tails of distributions). This is

due to the fact that Na has the highest freedom in the glass matrix thus can displace

more under deformation, whereas the motion of O and Si are largely constrained by

the glass network.

Very interestingly, one observes that for the first peaks in the probability distribu-

tion functions (PDFs), all species show the same strain dependence: For εf < 4%, the

peaks are basically independent of εm. The peak intensity decreases considerably at

4% and then becomes a constant again for 0.05 < εf < 0.13. Further increasing of εm

leads to a noticeable decrease of the first peak and also a significant rise of the curve

at large ∆u. The observed strain dependence of ∆u seem to coincide with the ones of

the tangent modulus curve as shown in Fig. 3.10.

The results shown in Fig. 3.24 imply that the strain dependence of the nonaffine

part of the atomic displacements might be the microscopic reason for the change in the

macroscopic stiffness, as given by the tangent modulus. If this is the case, then one

would expect that this quantity should also show a similar composition dependence as

the tangent modulus curves.

Figure 3.25 shows the average incremental nonaffine displacement 〈∆u〉 as a func-

tion of strain for the NSx bulk glasses. (The results for the sandwich glasses are similar
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Figure 3.24: Incremental nonaffine displacement ∆u for the NS3 sandwich glass.

to the bulk ones). Firstly, one recognizes that the total 〈∆u〉 exhibits a compositional

dependence that coincides very well with the behavior of the tangent modulus curves:

For silica, one observe 〈∆u〉 decreases with increasing Na%, meaning that the glass

becomes less and less deformable. This corresponds to the finding that the glass stiff-

ens (i.e., Et increases) with increasing strain. A minimum of 〈∆u〉 is reached when

εm ≈ 10%, after which 〈∆u〉 increases rapidly. This result is also consistent with the

behavior of Et. The critical compositions is found to be NS10, for which one observes

that 〈∆u〉 is essentially a constant in the small-strain range. For the Na-rich glasses,

e.g., NS3, 〈∆u〉 increases at small-strain range (εm < 8%), and then a weaker de-

pendence is found in the intermediate-strain range (8% < εm < 16%), after which a

drastic increase of 〈∆u〉 shows up. Based on all these observations, we conclude that

the nonaffine part of the atomic displacements dictate the stiffness of the glass on the

macroscopic scale.

A further interesting message from Fig. 3.25 is the behavior of the three partials,

panels (b-d). While the 〈∆u〉 of Si and O show basically the same behavior as the

ones of the total 〈∆u〉, the ones for Na demonstrate very different behaviors. Firstly,

one notices that the curves for the glasses with smaller Na content are higher than

the ones for the Na-rich glasses, indicating that the mobility of Na decreases with

increasing Na concentration. This result makes certainly sense as the addition of Na

reduces the free volume in the glass network, and the Na atoms themselves can also
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Figure 3.25: Per-atom incremental nonaffine displacement ∆u versus strain εm for the bulk

NSx glasses. The increment of strain is 2% and εm denotes the strain corresponding to the

mid-point of the reference and current configurations.

hinder the movement of each other. The network atoms (i.e., Si and O), by contrast,

becomes more mobile with increasing Na concentration due to the depolymerization of

the network. Secondly, the strain dependence of the 〈∆u〉 for Na does not show the

transition behavior as seen in panels (a), (b) and (d). For all glass compositions, 〈∆u〉
increases with increasing strain and a shoulder can be observed in the intermediate-

strain range. We note that although Na atoms behave differently from the network

atoms, in the end it is the total 〈∆u〉 that matters for determining glass stiffness.

3.4 Summary

To summarize, we have investigated systematically the dynamic fracture of sodium

silicate glasses under tension. We have adopted simulation protocols that mimic the

fracture of glass in real experiments. Two sample symmetries were considered, i.e.,

bulk glass and sandwich glass (with free surfaces). We have shown that many factors

(cooling rate, strain rate, temperature, composition, ...) can have a strong influence
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on the tensile stress-strain behavior of the glass. The sodium rich glasses are generally

more sensitive to the variation of these factors than silica. For the adopted simulation

setups, it is found that a cooling rate γ ≤ 0.3 K/ps and a strain rate ε̇ ≤ 0.5/ns

are required to reach a (more or less) convergence of the stress-strain behavior. In

addition, we find that while the stress-strain behavior of silica is unaffected by the

change in sample thickness, the Na-rich NS3 glass requires a thickness of ≈ 6 nm to

reach a saturation. This result indicates that a quasi-2D sample geometry may not

be sufficient to represent a realistic glass fracture and a 3D geometry is necessary.

Furthermore, we have shown that the failure stress decreases linearly with increasing

temperature (below Tg), independent of glass composition. In contrast, the failure

strain shows different T−dependence as the composition changes.

The compositional dependence of the stress-strain behavior and the tangent mod-

ulus curve exhibit an remarkable transition behavior at a critical Na2O concentration

of ≈ 10%, i.e., NS10. This behavior is also observed in the compositional dependence

of vc/vR, i.e., the ratio between the crack velocity and the Rayleigh wave speed, thus

indicating that the deformation behavior of the glass before failure also has conse-

quences on the fracture process. The estimated crack velocities show reasonably good

agreement with previous experimental and simulation works.

For obtaining insights on the microscopic scales, we have firstly probed the cavi-

tation process during glass fracture. It is found that voids as large as R ≈ 4 Å can

appear naturally in the unstrained glass, weakly depending on the composition. For

silica, no growth and coalescence of voids can be observed, i.e., the glass breaks in a

completely brittle manner. In contrast, the fracture of Na-rich NS3 glass shows some

degrees of ductility, which is demonstrated by the fact that voids do emerge and grow

ahead of the crack tip. Finally, we have found that, for the NS3 glass, the linear extent

of big voids may be direction-dependent. And the largest dimension of the voids is

found to be on the order of a few nanometers.

Furthermore, we have analyzed various local properties in the Na-rich NS3 glass

and quantified the correlation between different properties. We have found that as

long as local mechanical properties are concerned, the correlations can be divided into

three stages, i.e., before fracture, during fracture, and after fracture. The results show

that the correlations between Na concentration and local mechanical quantities (e.g.,

shear strain and tensile stress) increase with increasing strain and reach a maximum

at the failure point, i.e., the pre-notch starts to propagate in the sandwich glass. As

the fracture proceeds, the correlations decrease and eventually reach the same level

as the ones in the unstrained state. Finally, we have found that the nonaffine atomic

displacement seems to be the microscopic origin of the changes in the stiffness of the

glass as indicated by the tangent modulus.
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Chapter 4

Melt-formed and fracture surfaces:

Classical MD simulations

A fundamental understanding of glass surfaces is important for many practical ap-

plications such as pharmaceutical packaging and displays. In recent years, spectro-

scopic techniques such as low-energy ion scattering (LEIS) and atomic force microscopy

(AFM) have become popular choices for investigating the properties of glass surfaces

in experiments. LEIS has a unique sensitivity to the topmost 1-2 atomic layers of a

surface. Therefore, it has been used to probe the structure and composition of the

surfaces of silicate glasses [78, 159–161]. However a notable limitation of this technique

is the sputtering procedure that is usually performed to clean the surface (which could

potentially remove parts of the true features of the surface). On the other side, AFM is

mainly used to investigate the morphology and roughness of a surface. This technique

can hardly provide reliable information on the length scale of a few nanometers due

to instrumental noise [162]. Due to the limitations of these experimental techniques, a

good understanding of glass surfaces on the microscopic scales is still lacking.

In the past decades, computer simulations have also been used to probe the micro-

scopic (mostly atomic scale) features of glass surfaces. To characterize the surfaces,

the conventional approach requires defining a surface layer, the thickness of which is

usually several Å for example, based on properties such as the density profile in the

orthogonal direction [163–166]. However, defining such a surface layer only allows to

obtain averaged information near the surface, whereas, the characteristics of the true

surface, which in principle should be a monolayer of atoms, are rarely reported. The

objective of this chapter is thus to characterize and understand glass surfaces at the

monolayer level with atomic resolution.

This chapter is a follow-up of the results discussed in the previous chapter. We

present a comparative study of the characteristics of the melt-formed and fracture
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surfaces of silica and sodo-silicate glasses as produced by using large-scale MD simu-

lations. We introduce first the geometric method that was used for constructing the

two kinds of surfaces. We then discuss the composition and structure of the monolayer

surfaces as well as the depth profiles of these quantities with respect to the surface.

After that, we present results regarding the topographical feature, i.e., roughness and

height correlation of the surfaces. We mainly focus on compositional effect but the role

of temperature will also discussed. This study provides new insights toward a better

understanding of the nature of these two types of glass surfaces at the nanometer scale.

4.1 Construction of the geometric surface

In Sec. 3.1 we have introduced the simulation protocol in details. Here a brief recap

is given. A conventional melt-quench procedure was used in our computer simulations

to produce glasses. We introduced empty spaces on the top and bottom of the liquid

sample thus creating free surface on both sides. After equilibration we cooled down

the sample to room temperature thus obtaining glasses with two free surfaces, which

in the following we will refer as melt-formed surfaces (MS). After breaking the glass

under uniaxial tension, a second type of glass surface is generated, i.e. fracture surface

(FS). Figure. 4.1 shows a schematic representation of the simulation procedure. The

glass samples considered in this chapter have dimensions of 20 nm×30 nm×50 nm

(≈ 2, 300, 000 atoms). For the MS and FS, two and six independent surfaces were

averaged to obtain the results that will be presented below, respectively.

Figure 4.1: Schematics of the simulation procedure. Glass with free surfaces, i.e. melt-

formed surface (MS) is fractured under unixial tension, resulting in fracture surfaces (FS).

In atomistic simulations, the atoms that constitute a solid are often modeled as

point-like objects. Constructing the surface of a solid corresponds thus to construct

the geometric boundaries of a set of points in space which allows to divide space into

solid and open regions. In order to discern empty space in between a set of atomic

points, a probe sphere is usually needed. The open region can then be defined as those

parts of space that are accessible to the virtual probe sphere without touching any

of the atomic points. The radius of the probe sphere Rα is the length scale which
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determines how many details and small features of the solid’s geometric shape are

resolved by the method.

The algorithm that we used for constructing the surface mesh is based on the alpha-

shape method of Edelsbrunner and Mucke [167]. It starts with the Delaunay tetra-

hedrization (in 3D) of the input point set. To illustrate this geometrical method more

clearly, we give an example for the 2D case, i.e., Delaunay triangulation (DT) [168], see

Fig. 4.2. For a given set P of discrete points, the triangulation DT(P) is done in such a

way that no point in P is inside the circumcircle of any triangle in DT(P). For the 3D

case, the circumcircle extends naturally to a circumscribed sphere, which touches each

of the tetrahedron’s vertices. From the resulting tetrahedra, all tessellation elements

are then evaluated by comparing their circumspheres to the reference probe sphere,

which has a radius of Rα. These elements (with circumsphere radius R) which satisfy

R < Rα are classified as solid, and the union of all solid Delaunay elements defines

the geometric shape of the atomistic solid. A robust realization of this algorithm is

implemented in OVITO [169].

Figure 4.2: A Delaunay triangulation in the plane with circumcircles shown.

Once the geometric surface is constructed, i.e., the mesh points of the surface are

identified, we first fit a plane to the set of mesh points using least squares fitting

procedure. After that, the fitted plane and the set of points are rotated to horizontal,

i.e., the x−y−plane. Finally, a linear interpolation is applied to the scattered triangular

mesh to obtain an uniform grid. We conduct further analysis of surface morphology and

roughness based on this interpolated surface. See Fig. 4.3 for schematic representations

of the surface construction procedure.
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Figure 4.3: Schematics of the construction of the geometric surface. Left: Atomic model of

the sandwich sample at 300 K. Middle: Constructing polyhedral surface mesh. The resulting

surface, which consists of triangular faces, reflects the atomic steps that are typically present

on the surfaces of a solid. The shown sample is NS10 and the constructed surface is a melt-

formed surface. (The procedure for constructing the FS is similar. The main difference is

that, for the FS, layers of width ≈ 5 nm below the MS are cut out to eliminate the influence

of the MS.)

4.2 Surface composition and structure

One of the great advantages of the surface construction method that used here is that

it allows to identify the surface atoms explicitly. The triangular mesh points which

define the geometrical surface are actually the atoms on the outermost layer of the

surface. Therefore, we can study the composition and structure of the monolayer glass

surface.

Firstly, we examine how the surface composition depends on the choice of Rα.

Figure 4.4 shows the composition of the MS as a function of Rα. For the case of silica,

one recognizes that with increasing Rα, the fraction of O increases and the one of Si

decreases. The rationale for this finding is that more fine features on the surface are

excluded with increasing Rα, i.e., the surface becomes smoother. Consequently, both

the numbers of O and Si on the surface decrease with increasing Rα. However, since

Si atoms contribute mainly to these fine details of the surface layer, increasing Rα

results in a larger fractional change of Si than that of O. As a result, the fraction of O

increases while the one of Si decreases with increasing Rα. For the Na-rich NS3 glass,

one observes a less pronounced reduction of Si fraction and also a slight decrease of

O content (in contrast to silica). As a consequence, the fraction of Na increases with

larger Rα. These results can be understood by recalling the fact that the Na atoms

are more preferred to present on the outermost layer of the surface than the O and

Si atoms. Reduction of the total number of atoms on the surface with increasing Rα

results in a larger relative changes of Si and O than that of Na. At the end, the fraction

of Na increases with increasing Rα.

As the effect ofRα is clarified, in the following we choose to show the results obtained

for Rα = 3.2 Å (unless otherwise specified). We justify this choice by mentioning that:

1) SiO4-tetrahedra form the backbone of the glass network, and 3.2 Å approximately
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equals to the first nearest neighboring distance between two Si atoms; 2) By visual

inspection of the constructed surface, this value allows to resolve fine surface features

and avoid artificial holes in the constructed surfaces.

In Fig. 4.5(a) we compare firstly the composition between glass surfaces and the

bulk. (The bulk data are simply the stoichiometric results). Overall, it can be seen that

glass surfaces are rich in Na and O. Notably, the enrichment of Na is more pronounced

in the MS. The rationale is that MS is created at a relatively high temperature (in the

liquid state) and equilibrate for a relatively long time (1.6 ns). Both factors promote

the diffusion of Na from the near-surface region to the surface for the purpose of charge

compensation (to the dangling SiO bond) thus reducing surface energy. Also included

in the figure are experimental data for FS as measured by LEIS spectroscopy [160].

Also in that study, the enrichment of Na in the surface layer was observed, in agreement

with our findings. The behavior of O is somewhat unclear due to the large error bar

in the experiments.

Based on the elemental fraction, one can further calculate the per-atom atomic

charge Q, which is given by

Q =
∑

fαqα, (4.1)

where fα and qα are the fraction and charge of atom species α (α ∈ O, Si,Na). The

charges for Si and Na are the same for all compositions, whereas the charge for O

depends on composition in order to ensure charge neutrality (see the discussion in

chapter 2 and Table 2.1). Figure 4.5(b) shows the per-atom atomic charge versus Na

concentration for the two surfaces. Firstly, one recognizes that the surfaces are both

negatively charged, and the negativity is more pronounced for the MS. Secondly, the

surfaces become less negative with increasing Na content. For silica, one observes that

the MS is much more negative than the FS. However, this difference in charge becomes

smaller with the addition of Na, and eventually the two types of surfaces have charges
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Figure 4.5: Surface composition and structure. (a) Fraction of different atomic species on

the MS and FS. Experimental data are taken from Almeida et al. [160]. (b) Per-atom atomic

charge on the surfaces. (c) Fraction of BO and NBO species on the surfaces. (d) Fraction of

undercoordinated Si defects. Experimental data are taken from Nesbitt et al. [125]. Dashed

line in (d) is an exponential fit to the FS data. Error bars are standard deviation and are

smaller than the symbol size for all data points.

close to each other when Na2O%>12%.

To characterize the surface atomic structure, we further decomposed O into bridging

(BO) and nonbridging oxygen (NBO) and their fractions are depicted in Fig. 4.5(c).

Noticeably, both surfaces are rich in NBO, with the MS been more abundant in NBO

than the FS. The enrichment of NBO on the surface is directly related to the behavior

of Na as shown in panel (a). More Na on the surface results in the breaking of SiOSi

linkage thus creating more dangling bonds, i.e., more NBO.

Figure 4.5(d) shows the concentration of the under-coordinated (3-fold) Si, a typ-

ical structural defects for the two types of surfaces. We observe that for MS, Si3 is

nearly zero, whereas FS has a considerable amount of Si3 and its concentration strongly
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4.2. Surface composition and structure

depends on the composition. The presence of Si3 on the FS can be explained by the

fact that the glass was fractured at room temperature with a very high velocity (see

Fig. 3.12). Therefore, the damaged structure during fracture can hardly be healed,

leaving some Si under-coordinated. The fact that the fraction of Si3 is dependent on

the Na concentration demonstrates the critical role of Na in recovering the structural

damages during fracture.

Previous experimental studies of trisilicate glasss surfaces found that, for elevated

temperatures, some atomic species (O and alkali, but not Si) will evaporate from the

surface [159]. In our simulations we also monitored the number and fraction of different

atomic species during the melt-quench process, and the results are shown in Fig. 4.6.

From panel (a), it can be seen that the number of evaporated atoms remains nearly

constant at the equilibration temperature (i.e., 2000 K) for the liquid. Upon cooling

the evaporated atoms gradually return to the bulk and thus decreasing the density of

atoms in the vapor. As temperature is reduced to ∼1400 K, no atom will leave the

surface anymore. This temperature is very close to the glass transition temperature of

the current sample, see Fig. 3.2.
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Figure 4.6: Total number and fraction of different atomic species in the vapor of NS3

sandwich sample during the melt-quench process.

Figure 4.6(b) shows the fraction of different atomic species in the vapor. In agree-

ment with previous experimental observations by Kelso and Pantano [159], the main

constitutes of the vapor are O and Na, and the concentration of Si is negligible. Very

interestingly, we find that the fraction of Na and O are almost constant in the vapor

during the melt-quench process with a ratio of ∼3 between Na and O. This finding

indicates that overall the vapor is a positively charged medium. On the other side, by

analyzing the composition of the surface monolayer at room temperature, we found

that both the MS and FS are negatively charged. This result means that after all Na

in the vapor come back to the surface, it is still negatively charged. Therefore one can

conclude that the near-surface region has negative charge throughout the simulation.
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4. Melt-formed and fracture surfaces: Classical MD simulations

This non-neutrality of the surface could be another driving force for the diffusion of

Na towards the surface.

Another interesting characterization of glass surface is the depth profiles of compo-

sition and structure normal to the glass surface. While most experimental studies have

found difficulties in obtaining reliably such information, see for example Ref. [161], the

simulations can explore this easily once the surface monolayer has been defined.

In Fig. 4.7(a-b), we compare the depth profiles of various species normal to the MS

and FS of glasses. For both silica and NS3, the atomic fraction at r = 0 corresponds

the composition of the surface monolayer, which has also been discussed in Fig. 4.5.

For the atoms (by construction) below the surface, the distance r represents the length

of the shortest path from a given atom to any atom on the surface.

Overall, we note that the curves for the FS and MS are very similar. Notable

differences are mainly observed at small r, i.e., near the surface monolayer. For the case

of silica, with increasing r, we notice a big drop of O concentration is accompanied by

a huge jump of Si fraction, indicating that Si atoms dominate that atomic layer right

below the surface monolayer, in agreement with the findings of previous simulation

studies [164, 165]. With further increasing of r, we find alternating appearance of peaks

for O and and Si, indicating the heterogeneities (or segregation as noted in a previous

experimental study [161]) in composition in the near-surface region. These fluctuations

in atomic concentrations decay very quickly and become basically unnoticeable when r

has reached ≈ 2 nm. For the case of NS3, panel (b), similar compositional changes as

in silica are also observed for Si and O. Interestingly, one observes that the fluctuation

of the atomic fraction of Na washes out faster than the network-related species (Si and

O). The finding might be related to the high mobility of Na, which helps to disperse

the compositional segregation below the surface.

Figures 4.7(c-d) show the per-atom atomic charge versus the distance from the sur-

faces. One recognizes that the surface monolayer is negatively charged, irrespective of

composition and surface type. As r increases, one finds that alternating peaks/valleys

show up, a result that is directly related to the variation of atomic fractions as shown

panels (a-b). In addition, we notice that the charge fluctuations of NS3 seem to wash

out faster than the ones of silica. This observation is similar to the behavior of the

atomic fraction of Na.

Furthermore, in order to understand the decaying behavior of the atomic fraction

and charge, we have replotted the data on semi-log (not shown) and log-log scales. It

is found that for both the MS and FS, the atomic charge (also the atomic fraction)

exhibits power law dependence on the distance from the surface, see panels (e-f). The

straight line in panel (e) passes through most of the peaks and thus indicates how fast

the charge for silica decays. In order to make a comparison with the decaying of the
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Figure 4.7: (a) and (b): Depth profiles of elemental concentrations with respect to the

monolayer surfaces of the silica and NS3 glasses, respectively. In practice, the composition

at distance r is the mean of a 1.1 Å thick layer. (c) and (d): Depth profiles of the per-atom

atomic charge silica and NS3, respectively. (e) and (f): Log-log plots of the data in (c) and

(d), respectively. Note that the atomic charge is now shown in absolute value. The green

solid lines in the two graphs are guides to the eye and have the same slope.
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4. Melt-formed and fracture surfaces: Classical MD simulations

charge for NS3, a straight line with the same slope is also show in panel (f). One notices

that the charge for NS3 indeed decays faster than the one for silica as evidenced by

the gap between the charge and the straight line for 6 < r < 11 Å. The faster decaying

of the charge (also the composition) of NS3 can be attributed to the structural role of

Na as discussed earlier.

4.3 Surface morphology and roughness

The morphology and roughness of glass surface under different environments were stud-

ied in the past by using experimental techniques such as AFM. Gupta et al. reported

a comparative study of MS and FS of silica and E-glass1 [170]. The authors found

that, for the case of silica, the root mean squared (RMS) roughness is ≈ 0.18 nm and

0.34−0.40 nm for the MS and FS, respectively. Note that the glass was broken by fast

crack propagation under bending forces. It was also found that the MS of the E-glass

is approximately the same as that of silica, whereas the FS of the E-glass is consid-

erably rougher than the one of silica. Wiederhorn et al. investigated the roughness

of fracture surfaces of silica and soda-lime-silica glass produced by sub-critical crack

propagation [48]. It was found that, for silica, the RMS roughness decreases from ≈ 0.5

to ≈ 0.35 nm with decreasing crack velocity from 10−10 to 10 m/s. The roughness of

soda-lime-silica glass is larger than that of silica and shows also a decreasing trend

with increasing crack velocity. A recent study by Pallares et al. looked again at the

roughness of sub-critical fracture surfaces of oxide glasses [171]. They found that silica

surface has a RMS roughness of ≈ 0.4 nm, and it weakly depends on the stress intensity

factor KI (proportional to the loading stress). In contrast, the roughness of a sodium

silicate glass (25 wt% Na2O) shows a noticeable decreasing tendency with increasing

KI . All of the above mentioned studies used AFM to acquire surface profiles. In the

latter two studies, the sub-critical fracture surfaces are also shown to be self-affine, a

scaling property of glass surface that will be discussed in the next section.

Previous studies have attributed the roughness of the MS to the freezing of the

capillary waves of the melt at the glass transition temperature [170, 172, 173], whereas

the roughness of the FS has been related to the microscopic heterogeneities in structure

and mechanical properties [48, 170, 171].

We now discuss of the geometric features of the glass surfaces obtained from our

simulations. Figure 4.8 shows the morphology of the two types of glass surfaces at

the nanometer scale with atomic resolution. For the MS, upper panels of Fig. 4.8, we

observe no significant difference in the morphological feature and roughness between

1A low alkali glass with a typical nominal composition of SiO2 54%, Al2O3 14%, CaO+MgO 22%,

B2O3 10% and Na2O+K2O less then 2% (wt%).
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4.3. Surface morphology and roughness

silica and NS3 surfaces. In contrast, in lower panels of Fig. 4.8 we notice that the

NS3 surface has much larger fluctuations not only in the in-plane direction but also in

the out-of-plane direction, i.e., variation of the surface height. These results suggest

that the Na-rich NS3 composition has a rougher surface than silica. Therefore, we can

conclude from the surface images that the morphology of glass surfaces depends on

surface nature (FS or MS) as well as the composition.

Figure 4.8: Surface morphology. Upper panel: Melt-formed surface (MS). Lower panel:

Fracture surface (FS). Crack propagates along the negative y−direction.

A further step to characterize glass surfaces is to quantify their height fluctuation.

The first quantity that we will look at is the root mean squared (RMS) roughness of

the surface which is defined as

σ =

√〈
z2
〉
−
〈
z
〉2
. (4.2)

Experimentally, it has been observed that fracture surface becomes rougher as the

crack length (i.e., the distance between the fracture origin and the crack tip) increases,
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4. Melt-formed and fracture surfaces: Classical MD simulations

i.e., progressive roughening of fracture surface [7, 174]. With increasing distance from

the fracture origin, the fracture surface of brittle solids is generally divided into mirror,

mist and hackle regions [7]. The mirror region appears to be smooth when observed

by optical microscopy. For silica glass, the mirror region size was estimated to be ≈ 1

mm [175], a value that is much larger than the length scales that can be accessed by

atomistic simulations. Nevertheless, one would still wonder for our fracture samples

whether or not the surface roughness depends on the crack length. For the FS, as il-

lustrated in Fig. 4.9(a), the fracture surface is cut into four equal-sized segments along

the direction of crack growth. Figure 4.9(c) shows that, for a given composition, the

roughness of each segment (within the error bar) stays around a constant, indicating

that the surface roughness is independent of crack length. Also one can notice from

panel (c) that surface roughness depends on composition and this will be discussed

later. That the simulated surface does not show this roughening feature can be at-

tributed to the relatively small length scale, i.e., several tens of nanometers, that we

have explored. These FS are produced at the very initial stage of crack propagation,

and are thus belong to the smooth mirror region.

Figure 4.9: (a) Height map z(x, y) of a fracture surface of the NS3 glass. The surface is

divided into 4 equal segments along the crack propagation direction. (b) Gradient map |∇z|
corresponding to the surface image in (a). (c) RMS roughness of the surface segments along

the crack propagation direction. (d) Distributions of surface height z and gradient |∇z|. The

blue line is a Gaussian fit and the red line is an exponential fit for the data up to |∇z| = 6.

In addition, it has been shown experimentally that there is a strong (positive)

correlation between surface appearance (and also roughness) with crack velocity [8,

174]. Since we observe no significant changes of surface roughness as fracture proceeds,
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4.3. Surface morphology and roughness

we can make the hypothesis that the crack velocity remains almost a constant during

fracture. We thus can estimate the crack velocity based on the crack length and fracture

time (see Fig. 3.12).

For the FS of the NS3 glass, we show in Fig. 4.9(b) the map of surface height

gradient |∇z|, which is calculated via

|∇z| =

√(∂z
∂x

)2

+
(∂z
∂y

)2

. (4.3)

The bright regions of the map indicate the presence of cliffs, i.e., drastic change

of surface height. In Fig. 4.9(d) the distributions of surface height z and gradient

amplitude |∇z| are depicted. It can be seen that the distribution of z looks like a

Gaussian, whereas for |∇z| the distribution exhibits at large |∇z| an exponential decay.

We now compare the MS and FS in a more quantitative manner. Firstly from their

surface height distributions, Fig. 4.10(a) and (b), one can see that the MS is basically

independent of glass composition, whereas the FS exhibits a strong compositional de-

pendence. For the FS, with increasing Na content, the height distribution broadens,

suggesting that the surface becomes rougher.

More quantitatively, in Fig. 4.10(c) we show the standard deviation (i.e., RMS

roughness) of the height distributions. It can be seen that the roughness of the MS of

silica has a relatively small value of ∼ 0.25 nm, and shows a slight decreasing trend with

increasing Na concentration. For the FS, the RMS roughness is considerably larger and

its value increases from∼ 0.4 nm for silica to∼ 0.8 nm for NS3 (25% Na2O). Included in

the same graph are the experimental data measured by using AFM [170]. One observes

that the surfaces generated in our simulations seem rougher but still comparable to the

experimental values. The most probable reason that accounts for the differences is the

resolution of the acquired surface profiles. This factor affects also the surface scaling

property of the surface as we will see in the next section.

Very interesting is the finding that the roughness of the MS of silica is in excellent

agreement with the intrinsic roughness predicted by frozen capillary waves of the melt

at the glass transition temperature [170, 172]. According to this theory, the RMS

roughness of a pristine melt-formed surface can be expressed as

σ ≈

√
kBTg
γ0

, (4.4)

where kB is Boltzmann’s constant and γ0 is the surface tension at the glass transition

temperature Tg. Plugging in the experimental data of Tg ≈ 1500 K and γ0 ≈ 0.29

J/m2 [176], one obtains a roughness value of ≈ 0.26 nm for the MS of silica [170].

The good agreement between our result and the theoretical prediction indicates that
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Figure 4.10: (a) and (b): Surface height distribution as a function of composition. The

mean surface height
〈
z
〉

is equal to zero. The surface side with z > 0 is facing the vacuum,

while the side with z < 0 is facing the bulk. (c) RMS roughness of the surfaces. The dashed

lines are linear fits to the data sets. Experimental data were obtained for AFM images with

size 1 µm × 1 µm [170]. The triangle corresponds to the intrinsic roughness of silica surface

as estimated from the theory of frozen capillary waves. (d) Skewness of the surface height

distribution.

the assumption that capillary waves freeze at the Tg is a reasonable approximation

to account for the roughness of pristine melt-formed glass surface. We note also that

all the quantitative results in panel (c) are consistent with the observation from the

surface images. The distinct compositional dependence of the MS and FS implies that

their formation are due to different mechanisms. We will discuss this aspect in more

details later.

Another feature of great interest to explore is the symmetric property of the sur-

faces. In other words, the question to be answered here is whether or not the two

sides of the surface (one side facing the vacuum and another side facing the glass)

are statistically the same. For this we consider the skewness, γ1, of surface height
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distribution

γ1 =

〈
z3
〉

σ3
. (4.5)

Skewness is a measure of the asymmetry of a probability distribution. For a uni-

modal distribution (e.g., normal distribution), γ1 < 0 commonly indicates that the

tail is on the left side of the distribution, and γ1 > 0 indicates that the tail is on the

right. The parameter γ1 for the two types of surfaces are shown in Fig. 4.10(d). It

can be seen that, for the FS, γ1 > 0 and for MS γ1 < 0 and not clear compositional

dependence can be inferred. This results indicate that the MS and FS have different

asymmetric property. For the MS, the tail of surface height distribution is on the glass

side, implying that more deep holes present on the melt-formed surface. For the FS,

the distribution tail is on the vacuum side, indicating more high peaks appear on the

fracture surface. Again, these asymmetric properties of the surfaces are related to their

mechanisms of formation.

4.4 On the nature of glass surfaces: Scaling prop-

erties

The RMS roughness σ discussed above is a height parameter for characterizing the

surface. More insights can be obtained by considering also the height-height correlation,

which is defined as [177]

∆z(r) =
√〈

[z(r + x)− z(r)]2
〉
x

(4.6)

in one dimension, where ∆z is the height difference between two points separated by a

distance r, and x denotes the direction of the evaluated line profile. With this quantity

one can also explore the surface height correlation in different directions.

Since the pioneer work by Mandelbrot et al. [178], it has been reported for a wide

range of materials that fracture surface exhibits self-affine fractal property, i.e.,

∆z ∝ rζ , (4.7)

where ζ is called roughness exponent. Therefore for a self-affine surface one would thus

expect a power law dependence of ∆z on r. For melt-formed surface, the theory of

capillary wave predicts a logarithmic dependence of (∆z)2 on r [172, 173], i.e.,

(∆z)2 =
kBT

πγ
ln

(
r

λm

)
, (4.8)

where kB is Boltzmann’s constant, γ is the surface tension and λm denotes the lower

spatial cutoff of the capillary wave. For silicate glasses, λm is usually taken as the

length scale of a [SiO4] tetrahedron which is around 0.5 nm.
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4. Melt-formed and fracture surfaces: Classical MD simulations

Figures 4.11(a-b) show the 1D height-height correlation function for the MS and FS,

respectively. For the MS, one notices that the two curves corresponding to two different

directions collapse onto each other very well, indicating that the MS is isotropic. One

can also notice that the curves for silica and NS3 are close to each other, indicating

that they have nearly the same roughness. In contrast to this, for the case of the FS,

the curves for the two orthogonal directions show a pronounced difference, indicating

that the FS is, as expected, anisotropic. The curve for x−direction (i.e., parallel to the

crack front) is not only higher but also steeper than the one for y−direction (direction

of the crack growth), suggesting that the direction parallel to crack front is rougher

than the direction of crack propagation. These results are consistent with the finding

of an experimental study of the fracture surface of silica glass [179]. From panel (b),

one recognizes that the curves for NS3 are much higher than the ones for silica, in

accordance with the finding that the FS becomes rougher with the addition of Na.
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Figure 4.11: (a) and (b): Surface height correlation function (linear-log scale) for the MS

(a) and FS (b). (c) and (d): Re-plotting the data in (a) and (b) but on log-log scale. Note that

the ordinates for the left and right panels are not the same. The labels x and y correspond

to the direction parallel to the crack front and the direction of crack growth, respectively.
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For the scaling property of surfaces, we note that for the MS, (∆z)2 depends log-

arithmically on r. The exception is for large r where the data is affected by insuffi-

cient statistics. The observed logarithmic dependence is compatible with the predic-

tion of the frozen capillary wave theory, and agrees with the findings of experimental

work [170, 173]. For the FS, we find that the dependence of ∆z on r can be described

quite well with a logarithmic scaling (panel(b)) whereas power law scaling does not

work (panel (d)), indicating that there is no self-affine behavior at the length scales

that we investigated. Our conclusion disagree with previous experimental results which

have given evidence that the FS exhibits self-affine property at the nanometer scale

with the roughness exponent ζ ∼ 0.8 [171, 179]. A possible explanation to account for

this discrepancy with be given a bit later.

Assuming the validity of the observed logarithmic scaling behavior of the surfaces,

we then can estimate the rate at which ∆z (or (∆z)2) changes with r, i.e., the slope

parameter of the height-correlation function. We use expressions ∆z = a · ln(r/b) and

(∆z)2 = a · ln(r/b) to fit in the range r < 1 nm for the MS and FS, respectively. The

two fitting parameters a and b are plotted in Fig. 4.12. The slope parameter of the

MS, panel (a), depends neither on the composition nor the direction. In contrast, for

the FS, panel (b), one sees that a tends to increase with more Na added. One can

also notices that the values for the x−direction are higher than the y-direction ones.

The parameter b, panels (c) and (d), shows qualitatively similar compositional and

direction dependence as the slope parameter a. (Panel (c) seems to show an increasing

trend of b as Na concentration increases.)

To understand the difference between our simulation results and the experimen-

tal findings, we have investigated the effect of the spatial resolution2 on the scaling

property. Schmittbuhl et al. [180] found that local filters may introduce complicated

biases in the self-affine analysis. For example, for the measurement of the surface by

a mechanical tip, the finite size of the needle may result in distortion in the recorded

geometry of the surface. Note that this drawback can not be remedied by just taking

more points in the measurement. These artifacts inherent in the experimental data ac-

quisition will inevitably induce biases in the characterization of the surface. Therefore,

one would expect that the experimentally measured surface profile loses parts of the

geometric features of the real surface and hence may look smoother.

The aforementioned effect is illustrated in Fig. 4.13 for the case of silica. It can

be seen that if the spatial resolution is decreased, i.e., more smoothing is applied to

the original surface, the curves shift downward, meaning that the surface becomes

smoother. Additionally, one also can observe that the slope changes at small r. The

2Spatial resolution corresponds to how many spatial details can be captured by the measurement,

rather than the number of pixels in an image.
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Figure 4.12: Parameters of the logarithmic fit to the height correlation function of the

surfaces. (a) and (c) are for the MS, and (b) and (d) are for the FS. The fitting was performed

only for the data at r < 1 nm, see Fig. 4.11. The expressions used for the fitting are shown

in the graphs as well. x and y corresponds to the direction parallel to the crack front and

the direction of crack growth, respectively. The lines in (d) are linear fits to the data sets.

power law scaling gradually shows up with more smoothing. Eventually the exponent

of the power law behavior saturates at a value of ≈ 0.8, which is exactly the roughness

exponent reported experimentally for these length scales [171, 179]. Our results also

show that a smoothing length scale of 2.8 nm (in radius) can reproduce very well the

measurements from experiments, see Fig. 4.13(a). Therefore, we conjecture that the

self-affine properties found in experiments on glass surface at the nanometer scale could

be an artifact of the insufficient resolution in their measurements. Our results based

on the geometric surface with atomic resolution suggest that fracture surface exhibits

logarithmic scaling at the nanoscale, thus it can not be treated as a self-affine object.

It is worth noting that previous theoretical studies have already documented that
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4.4. On the nature of glass surfaces: Scaling properties
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Figure 4.13: Evaluating the smoothing effect on the surface height correlation for the FS

of silica glass. Panels (a) and (b) are for the direction of crack growth and the direction

parallel to the crack front, respectively. The original surface has a resolution of 0.1 nm. A

2D Gaussian filter was applied to smooth the surface. The smoothing operation was applied

up to a distance of 2σ from the central grid point. The curves labeled σ = 0 correspond to the

unsmoothed (original) data. Also included are experimental data from AFM measurements

of fracture surfaces produced by sub-critical crack propagation [171, 179].

for heterogeneous media, the fracture surface due to mode I (tensile) loading is only

logarithmically rough rather than a power law of the length scale [181, 182]. However,

these studies are only for simplified model systems. For realistic brittle materials such

as silicate glasses, to our knowledge, logarithmic scaling of the fracture surface has not

been reported before. Finally, we note that we do not exclude the self-affine behavior of

glass surface at larger length scales, but the effect of resolution is certainly something

that should be checked.

In chapter 3 we have shown that strain rate ε̇ has a pronounced influence on the

failure point of the glass under tension and also on the crack velocity. However, the

fracture behavior, i.e., after the failure point, depends only weakly on ε̇ once ε̇ ≤ 0.5 /ns.

In Fig. 4.14 we show the influence of strain rate on the geometrical properties of the

FS of silica. Panel (a) shows that decreasing ε̇ from 0.5 /ns to 0.05 /ns (a factor

of ten) only results in a ≈ 4% decrease of the surface roughness. That is to say, the

surface roughness is basically converged when ε̇ ≤ 0.5 /ns. Panel (b) illustrates that the

variation in strain rate does not change the logarithmic dependence of ∆z on r. This

result seems to suggest that the scaling property that we have found for the fracture

surfaces is independent of the applied strain rate.
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Figure 4.14: Influence of strain rate on the roughness and scaling property of the fracture

surface for the case of silica. The data are plotted on linear-log scale. In panel (b), x and

y correspond to the direction parallel to the crack front (dashed lines) and the direction of

crack growth (solid lines), respectively.

4.5 Temperature dependence of surface properties

So far the surface properties have only been discussed at room temperature (300 K

in our simulations). However, the effect of temperature on the surface is also of great

interest. In Fig. 4.15 we show such results regarding the influence of temperature on

the properties of glass surface. The upper and lower panels show the results for the

MS and FS, respectively.

For the MS, panel (a) shows that temperature has a strong effect on the roughenss

of NS3 surface, i.e., σ increases with increasing T , whereas silica is barely affected. In

panel (b), it can be seen that the slope of the small-scale scaling region shows a similar

T−dependence. One can also recognize from panel (a) and (b) that the temperature

effect is more pronounced for NS3 than for silica, particularly when T ≥ Tg. This

result might be related to the fact that NS3 has a more flexible structure due to the

presence of Na.

For the case of FS, within the T−range explored, no noticeable T−dependence of

the surface roughness can be found, independent of the composition, panel (d). The

same conclusion can be made for the scaling properties of the surface, panel (e). There-

fore, we conclude that at temperatures well below Tg, fracture surface is insensitive to

temperature, but instead strongly depend on the composition and structure of the

glass.

Figures. 4.15 (c) and (e) show the skewness of the surfaces at various temperatures.
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4.6. Summary

It can be seen that, for the MS, γ1 < 0 holds for all temperatures, whereas for the FS

one finds always γ1 > 0. These results clearly show that the asymmetric property of

the surfaces discussed earlier (Fig. 4.10) is independent of T .
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Figure 4.15: Effect of temperature on surface properties. Upper and lower panels are for the

MS and FS, respectively. (a) and (d): T−dependence of surface roughness. Vertical dashed

lines in (a) indicates the Tg of the silica and NS3 glasses (also shown in Fig. 3.2). (b) and (e):

Slope parameters as estimated from the logarithmic scaling behavior of height correlation

function at r < 1 nm. (c) and (f): The skewness indicates the asymmetric property of the

surfaces.

4.6 Summary

We have presented in this chapter a comparative study of the nanoscale features of

the melt-formed surface (MS) and fracture surface (FS) of soda-silicate glasses. The

adopted geometric method which is based on the Delaunay triangulation was shown

to be able to capture the real features of the glass surfaces with atomic resolution.

We find that both the MS and FS are enriched in Na in comparison with the

bulk composition. However, the enrichment of Na is more pronounced in the MS.

Additionally, we find that the MS is more abundant in NBO than the FS, which is

directly related to the behavior of Na. It is also found that the FS has a non-negligible

amount of under coordinated Si, Si3, whereas for MS the concentration of Si3 is nearly

zero. The differences between the MS and FS can be attributed to their production
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4. Melt-formed and fracture surfaces: Classical MD simulations

history: The MS is created at the liquid state and better relaxed, whereas FS forms

as a consequence of nanoscale structural/mechanical heterogeneities. It is also found

that both the MS and FS are negatively charged, which could be a driving force for

the diffusion of Na from the interior part of the glass to the surface. The depth

profile results show that the fluctuations in composition and charge decay quickly with

increasing distance r from the surface, reaching values of the bulk ones when r ' 2 nm.

Furthermore, we have investigated the morphology and roughness of the two types

of surfaces. We find that the MS is relatively smooth and isotropic. Composition has

little influence on its roughness. The surface height-height correlation function of the

MS exhibits ∆z2 ∝ ln(r), a result that is compatible with the frozen capillary waves

mechanisms. In contrast, the FS is relatively rough and exhibits anisotropy. With

increasing Na concentration, the roughness of the MS increases from ≈ 0.4 for silica

to ≈ 0.8 nm for the NS3 glass. In addition, our results show for the FS a logarithmic

dependence of ∆z on r. These results indicate that, unlike what was claimed experi-

mentally, fractal description does not work at the nanoscale (/ 10 nm). Furthermore,

we have investigated the effect of spatial resolution on the surface scaling property and

find that the experimental measurements might be biased by the insufficient resolu-

tion on the nano- and Ångstrom scales. Our results, based on geometric surfaces with

atomic resolution, suggest that both the MS an FS exhibit logarithmic scaling at the

nanoscale.

Finally we note that temperature also plays an important role in determining the

properties of glass surfaces. For the MS, we find that surface roughness increases with

increasing T , and this effect is much more pronounced at T > Tg and for Na-rich

glasses. For the FS, no noticeable T−dependence was found within the T−range that

we have explored, i.e., T < 1000 K. Also interesting is the finding that the asymmetric

properties of the MS and FS are independent of temperature. Therefore, this property

can be treated as an intrinsic property of a given type of surface and is mainly related

to the production history.
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Chapter 5

Surfaces of sodium silicate glasses:

First principles calculations

This chapter presents the results obtained by using ab initio molecular dynamics

(AIMD) simulations within the framework of density functional theory (DFT). The

main objective is to investigate the surface properties and the nature of chemical bond-

ing in sodium silicate glasses. ( Note that the latter is inaccessible by using classical

simulation). We will first introduce the models and simulation procedures for preparing

the silica and sodium silicate samples with free surfaces (sandwich geometry) in the

liquid and glassy states. Following that, we present results concerning the structural,

dynamical, vibrational and electronic properties of the samples. We will focus mainly

on the surface layer but the results for the interior (bulk-like) layer and bulk glasses

will also be shown for comparison. This work provides information regarding the vi-

brational and electronic signatures of some structural units such as two-membered ring

that are more abundant on the surface. The chemical bonding analysis shed some light

on bond strength and may help to understand the fracture of silicate glasses.

5.1 Models and simulation details

We performed AIMD simulations for three silica-based compositions, namely pure silica

(SiO2), Na2O-5SiO2 (NS5) and Na2O-3SiO2 (NS3). A schematic representation of the

simulation procedure is shown in Fig. 5.1. Some relevant simulation parameters are

summarized in Table 5.1.

For each sample, we placed randomly around 400 atoms into a cubic simulation

box with periodic boundary conditions applied. The side length of the simulation box

corresponds to the experimental density of the glass at room temperature [112], see

Table 5.1. The bulk samples were firstly melted and equilibrated at a high temperature

109



5. Surfaces of sodium silicate glasses: First principles calculations

T0. Following that, a vacuum layer was inserted at the top and bottom of the bulk

sample. The thickness of the vacuum (two sides combined) was chosen to be ≈ 18 Å, a

value that ensures that the surfaces from the two sides do not interact with each other.

The new configuration thus has a sandwich (or slab) geometry: The middle part is

bulk-like and the two ends are empty spaces.

Figure 5.1: Schematic drawing of the simulation procedures. See the main text for the

definitions of the various temperatures and cooling rates.

#atoms Na2O-mole% Lbulk (Å) ρbulk (g/cm3) T0 (K) T1 (K)

SiO2 384 0.0 17.96 2.20 3600 2500

NS5 414 16.7 18.07 2.35 3000 2000

NS3 396 25.0 17.62 2.43 2200 1500

Table 5.1: Simulation parameters. The side length (Lbulk) of the initial cubic simulation

box corresponds to the experimental glass density (ρbulk) at room temperature. See the main

text for the definitions of T0 and T1.

Starting from this sandwich sample, we carried out the conventional melt-and-

quench procedure. We note that, in contrast to the simulation of bulk sample, special

attention is needed for the equilibration of the sandwich sample at high temperature:

On the one hand, the equilibrating temperature should be high enough to allow an ad-

equate diffusion of the atoms within a reasonable amount of computer time. (AIMD is

orders of magnitude more computationally expensive than classical MD for simulations

with comparable system size and time span, see a more detailed discussion in Chapter

1). On the other hand, a too high temperature may result in a large expansion of the

bulk-like region and eventually the connection of the two surfaces. Therefore, we have

chosen 3600 K, 3000 K, and 2200 K as the equilibration temperature T0 for silica, NS5,

and NS3, respectively.
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5.2. Defining the surface region

The samples were maintained at T0 for more than 10 ps to allow the reconstruction

of the surfaces. After equilibration, the samples were firstly quenched down to an

intermediate temperature T1 using a nominal cooling rate of 5 × 1014 K/s (γ1), and

then to 300 K using a faster cooling rate of 2 × 1015 K/s (γ2). T1 was chosen to be

2500 K, 2000 K, and 1500 K for silica, NS5, and NS3 respectively. We note that these

temperatures are below the glass transition temperature Tg of the simulated glasses

due to the use of fast cooling rates. Finally the samples were relaxed at T2 = 300 K

for another 3 ps. The whole simulation was carried out using the NV T ensemble and

two independent samples were generated for each composition. For the analysis of the

properties of the samples, the initial 4 ps and 0.5 ps trajectories were discarded for the

runs at T0 and 300 K, respectively.

The AIMD simulations were performed by using the Vienna ab initio package

(VASP) [183, 184]. The electronic structure has been calculated by means of the

Kohn-Sham (KS) formulation of the density functional theory (DFT) [93, 185] using

the generalized gradient approximation (GGA) and the PBEsol functional [97, 99]. The

KS orbitals were expanded in a plane-wave basis at the Γ point and the electron-ion

interaction was described within the projector-augmented-wave formalism [186, 187].

The plane-wave basis set contained components with energies up to 600 eV. For solving

the KS equations, the residual minimization method-direct inversion was used in the

iterative space, and the electronic convergence criterion was fixed at 5× 10−7eV. The

time step was chosen to be 1 fs and a Nosé thermostat [86] was applied to control

the temperature in the canonical ensemble. We note that the simulation parameters

chosen here are similar to the setup of previous ab initio studies of silicate liquids and

glasses [83, 84, 188, 189], which have demonstrated that the simulated properties of

the liquid and glass compare very well with experimental results.

5.2 Defining the surface region

Figure 5.2 shows the atomic structure of the three glasses at 300 K. The sandwich

geometry of the sample is characterized by a glass network in the middle and vacuum

on the two sides. To define the surface and interior regions, we investigate first the

atomic distribution of the liquid and glass samples along the direction perpendicular

to the surfaces, i.e., the z−direction, Fig. 5.3. The center of mass of the sample is

considered as the origin of the coordinate system. Thus, the plane with z = 0 cuts

the sample into two parts with the same mass. For the liquids, one recognizes that

the mass density distribution of all three compositions show a relatively flat region for

|z| ≤ 6 Å, with density around 2.2 g/cm3, 2.3 g/cm3, 2.4 g/cm3 for silica, NS5 and

NS3, respectively (solid lines in panels (a-c)). These values correspond well to their
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5. Surfaces of sodium silicate glasses: First principles calculations

Figure 5.2: Snapshots of the atomic structur of the three glasses at 300 K. Si, O, and Na

atoms are balls in blue, red, and green, respectively. The sticks represent Si-O bonds with

bond length smaller than 2 Å.

bulk densities (see Table 5.1).
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Figure 5.3: Atomic distribution along the z−direction. Upper panels: (a), (b) and (c) are

the mass density profiles for silica, NS5 and NS3, respectively. Lower panels: (d), (e) and (f)

are the atomic number fraction along the z−direction for silica, NS5 and NS3, respectively.

In all graphs, the solid lines with symbols are for the liquids at T0, see Table 5.1. The dashed

lines are for glasses at 300 K and are shown only for NS5 for clarity. The vertical dashed

lines in all graphs indicate the boundary between the surface and interior layers.
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5.3. Dynamics of the liquids

Also included in Fig. 5.3(b) are the results for the NS5 glass at 300 K (dashed

lines). We note that the density distributions for the glass look very similar to ones

of their corresponding liquid. The difference between them is due to the contraction

during the quenching process. Consequently, the distribution for glass becomes slightly

narrower than that of the liquid. Meanwhile the density in the interior is slightly larger

than the liquid. These observations hold for all three compositions. For the sake of

simplicity, we use the sample criteria for defining the different regions for both liquids

and glasses: Regions in which |z| ≤ 6 Å belong to the interior part of the sample while

regions beyond this range are considered as surface layers.

Figures 5.3(d)-(f) show the profiles of atomic number fraction along the z−direction.

For the case of silica, one observes that the concentration of O in the surface regions

is higher than in the interior layer, indicating that the surface layers are enriched

in O, and this agrees with previous studies [163, 164, 190]. For the sodium silicate

compositions, i.e., NS5 and NS3, the surface layer is clearly rich in Na. Consequently,

the fraction of Si and O decreases. The enrichment of Na becomes very pronounced

when approaching the interface between the surface and the vacuum, indicating that

Na are more likely to locate at the outermost atomic layer of the surface. These results

are consistent with the findings from our classical MD simulations (see Fig. 4.5).

5.3 Dynamics of the liquids

With the surface regions defined, we can now investigate the properties of the surfaces

and compare them with the interior part of the sample. Firstly, we present the results

regarding the dynamics of the samples in the liquid states. Figure 5.4 shows the mean

squared displacement (MSD, see Eq. (1.35)) of different atomic species at T0. Firstly,

we observe that the curves for the surface layers are higher than ones for the interiors,

showing that the atoms in the surface region are more mobile. This finding makes

certainly sense since the atoms close to the surface are less confined by the network

and hence have more freedom. Secondly, we recognize that all species show at long time

r2(t) ∝ t, indicating that the system has reached the diffusive region at T0. Notably

the MSD of Na has reached a value 100 Å2, i.e., a displacement of more than 10 Å.

We thus conclude that the samples, in particular the surface regions have been well

reconstructed after their creation.

A further insight into the dynamics of the liquid samples can be obtained by decom-

posing the total MSD into the contributions from different directions. As an example,

we show in Fig. 5.5 the decomposed MSD for the NS5 sample. It can be seen that in

the interior, panel (a), the three axial components of the MSD are very close to each

other, independent of the atomic species. This result is reasonable since the interior is
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similar to the bulk sample, which is supposed to be isotropic. In contrast, we recognize

from panel (b) that, in the surface domain, the MSD in the z−direction is considerably

smaller than the other two directions. Notably for Na atoms, at long time the MSD in

the z−direction is only about one tenth of the MSD in the other two directions. The

rationale for this finding is that the atoms are restricted to move in the z−direction due

the presence of free surfaces. Obviously the atoms near the surface will be constrained

more than the atoms in the interior. This effect is more pronounced for Na since its

preferred location is the outermost of the surface layer.
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Figure 5.4: Mean squared displacement of the liquid samples at their corresponding equi-

libration temperatures T0. Panels (a), (b) and (c) are for silica, NS5 and NS3, respectively.

The solid lines are for the surface layer and the dashed lines are for the interior layer.
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Figure 5.5: Decomposition of the total MSD into contributions from the three axial direc-

tions. Panels (a) and (b) are for the interior and surface layers of the NS5 sample at T0,

respectively. The z−direction is perpendicular to the surfaces.
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5.4. Structure: Surface vs. interior

5.4 Structure: Surface vs. interior

We now discuss the structural properties of the silica and sodium silicate samples. The

The average fractions of different atomic species are summarized in Table 5.2. For both

the liquids and glasses, the surface domains are more enriched in non-bridging oxygen

(NBO) in comparison with the interior part. This indicates that the surface layer is

less polymerized and has more Si-NBO dangling bonds. Sodium atoms will move to

the surface for the reason of charge compensation, which is demonstrated in Table 5.2

as well.

Silica NS5 NS3

liquid glass liquid glass liquid glass

% int. / surf. int. / surf. int. / surf. int. / surf. int. / surf. int. / surf.

N0 65.8 / 34.2 66.7 / 33.3 58.6 / 41.4 60.7 / 39.3 58.5 / 41.5 62.9 / 37.1

Si 33.2 / 33.7 33.3 / 33.4 29.1 / 26 29.1 / 25.7 25.5 / 24.4 25.8 / 23.7

Si3 2.3 / 3.7 0 / 1.6 0.7 / 1.7 0 / 0 0.1 / 0.8 0 / 0

Si4 29.6 / 28.8 32.9 / 31.8 27.2 / 23.6 27.5 / 25.7 24.3 / 23.3 25.4 / 23.7

Si5 1.2 / 0.8 0.4 / 0 1.2 / 0.6 1.6 / 0 1.1 / 0.3 0.4 / 0

Q2 0.4 / 0.4 0 / 0 0.3 / 1.6 0.1 / 1.1 2.6 / 3.2 2 / 2.7

Q3 3.6 / 4.8 2.3 / 1.6 7.4 / 11.9 6.9 / 12.6 9.5 / 12.8 10.6 / 14.1

Q4 25.5 / 23.6 30.6 / 30.2 19.4 / 10.1 20.5 / 12 12.1 / 7.3 12.8 / 6.9

O 66.8 / 66.3 66.7 / 66.6 61.9 / 60 62 / 59.7 58.3 / 58.4 58.3 / 58.4

NBO 2.4 / 4.6 0 / 2.3 8.1 / 16.7 6.6 / 15.6 14.3 / 19.7 14.9 / 19

BO 64.4 / 61.7 66.7 / 64.3 53.8 / 43.3 55.4 / 44.1 43.9 / 38.7 43.5 / 39.3

esBO 4.9 / 11.1 1.4 / 12.8 3.4 / 7.5 1.6 / 9.8 1.8 / 4 0.8 / 4.1

esSi 4.6 / 11.3 1.6 / 12.5 3.3 / 7.1 1.2 / 10.5 1.6 / 4.1 0.4 / 4.8

Na 0 / 0 0 / 0 9.1 / 14 8.9 / 14.6 16.3 / 17.2 15.9 / 17.9

Table 5.2: Percentages of various atomic species in the interior and surface domains for

the silica and sodo-silicate samples. Liquids correspond to T0 (see Table 5.1). Glasses are

at 300 K. N0 denotes the percentage of atoms in the specific domain relative to the total

number of atoms of sample Ntot, whereas the rests are the percentages of specific atomic

species relative to N0. Sin means the Si is bonded to n oxygen atoms. Qm denotes Si4

connected to m bridging oxygens (BO, i.e., the O bonded to two Si). NBO denotes non-

bridging oxygen, i.e., the O bonded to only one Si. esBO and esSi denote edge-sharing BO

and edge-sharing Si, respectively. Note that the edge-sharing atoms form two-membered ring

structures.

We note that due to the creation of surface and relatively short time (in compar-

ison with classical MD) for the structural relaxation, structural defects are present

in the sample, especially on the surface. Notably we find that there are more under

coordinated Si in the surface layer than in the interior, but its concentration decreases
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5. Surfaces of sodium silicate glasses: First principles calculations

with the addition of Na. Another notable structural defect is two-membered (2M)

ring, which consists of two edge-sharing Si (esSi) and bridging oxygen (esBO) atoms.

One can notice from Table 5.2 that, there are considerable amount of such defects in

the sample, notably in the surface domain. For silica, the presence of such defective

structure on the surface has already been documented in previous studies, both in

simulations and experiments [164, 165, 191]. We also find that the percentage of the

edge-sharing atoms decreases with increasing Na content, indicating that Na plays a

critical role in modifying the network and consequently reducing the amount of de-

fective structures: 2M-rings are under strong tension. The presence of Na relieves

surface tensile stress by breaking some Si-O bonds. Interestingly, we find a significant

reduction of these defects in the interior layer with cooling, whereas the amount of

these defects in the surface domain is almost unaffected. The slight increase of the

concentrations of the esBO and esSi atoms in the surface layer upon cooling might be

simply due to the contraction of the sample, which by definition, leads to a smaller

number of atoms in the surface domain. In addition, the fast cooling rate that one

usually applies in AIMD may also have an effect.

Figure 5.6 shows top views of the surfaces of silica and NS3 glasses. The surfaces

are defined using the Voronoi tessellation method [169] with only the Si atoms being

evaluated. (The same method was applied to construct the geometric surface of the

classical sandwich samples, see Chapter 3). We show here only one surface layer and

leaving out the bulk-like region and the another surface layer on the opposite side of

the sample (which is statistically the same as the one shown in Fig. 5.6).

Figure 5.6: Top view outlining the structural motifs at the surfaces of (a) silica and (b)

NS3 glasses. Only the top most layer of Si and their nearest neighbors O and Na atoms are

shown (see the text for the method of construction). Bond length in Å. Two-membered rings

(containing four atoms in total) are highlighted with shades.
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5.4. Structure: Surface vs. interior

Firstly, for silica surface, one recognizes the presence of [SiO4]-rings with sizes that

vary from two- to nine-members (in terms of number of Si atoms in the ring). Previous

ab initio investigation of the (0001) α−quartz surface found the presence of three- and

six-membered rings in the most stable reconstruction [192–194]. The greater variation

in the ring size of the silica surface found here is likely due to the disordered nature of

the glass relative to their crystalline counterparts. Additionally, this top view clearly

shows the formation of 2M rings (shaded in grey and with a square-like shape) that

are strongly strained (mechanically speaking). As illustrated in panel (b) for NS3, the

addition of Na not only breaks the Si-O-Si linkages but also reduce the amount of

2M-rings at the surface, consistent with the results in Table 5.2. These results are also

compatible with Pauling’s third rule1 according to which corner-sharing atom is more

preferred [195].

To further understand the local structure of the glass samples, we have investigated

structural characteristics such as the interatomic distances and bond angles. For easy

comparison, we list in Table 5.3 the mean values of the bond lengths and bond angles

as found in the three glasses. The mean Si-Si and Na-O bonds are shorter in the

surface domain than the ones in the interior, whereas the Si-O bond is found to be

longer in the surface domain. The difference in Na-O bond length between the two

domains is related to the change of local environments of the Na atoms. In the interior,

a Na atom interacts equally with atoms from all sides. In contrast, a Na atom in the

surface domain is more influenced by the atoms below it than the ones above it (see

also Fig. 5.3). This is simply due to the fact that Na atoms are enriched in the outer

atomic layers of the surface domain. The differences in Si-Si and Si-O bonds between

the two domains are mainly due to the 2M-ring structure, which is more enriched in

the surface domain.

Further decomposition of the bond pairs shows that the length of the esSi-esSi

bond ranges from 2.4 to 2.6 Å (corresponding to the 2M-rings) which is considerably

shorter than the csSi-csSi bond which has a length of ≈ 3.05 Å. No significant difference

between the csSi-csSi and csSi-esSi bonds are found. In addition, we find that the Si-

esBO bond is the longest while the Si-NBO bond is the shortest among the Si-O bonds

(see also the color coding of bonds in Fig. 5.6). Also interesting is the finding that

the Na-NBO bond is about 0.2 Å shorter than the Na-BO bond. The bond length

together with the analysis of bond character have implications for bonds strength (see

section 5.6).

Figure 5.7 shows the distribution of the nearest neighbor distances for Si-related

pairs. For SiO, panels (a-c), one recognizes that in the liquid state the distribution of

1Pauling’s third rule states that the sharing of edges or faces by two anion polyhedra decreases the

stability of an ionic structure. This is due to the fact that sharing edges and faces places cations in

closer proximity to each other, so that cation-cation electrostatic repulsion is increased.
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5. Surfaces of sodium silicate glasses: First principles calculations

Glass Silica NS5 NS3

Bond or angle int. / surf. int. / surf. int. / surf.

Si-Si (Å) 3.041 / 2.928 3.041 / 2.927 3.021 / 2.986

csSi-csSi 3.048 / 3.006 3.041 / 3.059 3.023 / 3.024

csSi-esSi 3.055 / 3.058 3.189 / 3.000 2.956 / 3.108

esSi-esSi 2.443 / 2.483 2.370 / 2.616 2.437 / 2.408

Si-O (Å) 1.638 / 1.650 1.648 / 1.651 1.645 / 1.651

Si-NBO - / 1.563 1.578 / 1.576 1.588 / 1.585

Si-BO 1.638 / 1.652 1.652 / 1.664 1.655 / 1.670

Si-esBO 1.721 / 1.684 1.678 / 1.695 1.704 / 1.695

Na-O (Å) - 2.423 / 2.362 2.423 / 2.375

Na-NBO - 2.276 / 2.264 2.347 / 2.315

Na-BO - 2.526 / 2.531 2.545 / 2.494

Na-esBO - 2.332 / 2.497 2.542 / 2.423

OSiO (°) 109.4 / 109.5 109.2 / 109.1 109.3 / 109.2

SiOSi∗ 138.4 / 136.7 136.8 / 135.5 134.1 / 136.4

Table 5.3: Average bond lengths and bond angles for the sandwich glass samples at 300 K.

csSi and esSi denote corner-sharing and edge-sharing Si, respectively. SiOSi∗ denotes the

average SiOSi angle without considering 2M-rings.

rSiO in the interior and surface domain are broad and are very much alike. In contrast,

the curves for the glass are much shaper and one can also notice for the surface a

slight shift of the distribution to larger distance. This shift in the distribution can

be attributed to the enrichment of 2M-ring structures in the surface domain (see also

Table 5.3). In addition, the presence of Na leads to broader distributions of rSiO,

notably for the glasses.

For Si-Si, the distribution of rSiSi is shown in Fig. 5.7(d-f). The most noticeable

feature is the peak at around 2.4 Å, which originates from the 2M-ring structures as

also shown in Table 5.2. For the glasses, the main peak tends to shift to smaller values

when more Na is in the network. This is particularly noticeable for the interior domain

as the peak position shifted from ≈3.1 Å for silica to ≈3.0 Å for NS3. The overall

behavior of the surface resembles that of the interior. The reduction of rSiSi with

increasing Na content can be related to the changes in SiOSi angle, see Table 5.2. For

the interior domain, it is clear that increasing Na concentration results in the reduction

of the SiOSi angle. Since Si-O bond depends rather very weakly on the composition,

we can assume that rSiO is a constant (≈ 1.64 Å). Therefore, when adding more Na,

geometrically the Si-Si bond will become shorter in order to give a smaller SiOSi angle.

In Fig. 5.8 the bond angle distributions (BAD) for OSiO and SiOSi are shown. For

both angles, we observe a noticeable peak at ≈90°, which is again a signature of the
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Figure 5.7: Probability distribution function (PDF) of nearest neighbor distance. Upper

and lower panels are for Si-O and Si-Si pairs, respectively. From left to right the compositions

are silica, NS5 and NS3. The PDF are plotted for the interior (solid lines) and surface domains

(dashed lines).

2M-ring units (a square-like shape gives rise to 90°, see also Fig. 5.6). The BAD of

OSiO is quite stable and only the surface domain shows a slightly wider distribution

than the interior.

For the SiOSi angle, the influence of composition is more pronounced. Here we focus

only on the main peak which corresponds to the behavior of normal Si-O-Si linkages.

For the interior layer, we note that the main peak becomes sharper and shifts toward

smaller angle with the addition of Na, consistent with previous studies on the structure

of the bulk NSx samples [123]. For silica, the BAD of surface SiOSi is shifted to smaller

angle in comparison with the interior one, and thus the mean SiOSi angle of the surface

is smaller than that of the interior, see also Table 5.2. Interestingly, with increasing

Na concentration, one notices that the BAD of surface SiOSi gradually shifts to larger

angle relative to the interior one. Consequently, for the Na-rich NS3 glass, the average

SiOSi angle of the surface domain becomes larger than the one of the interior layer.

To summarize, in this section we have discussed in details the structural properties

of the silica and sodium silicate samples. It is found that surface domains are more

abundant in defective structures such as 2M rings than interior layers. The structural
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Figure 5.8: Bond angle distribution. Upper and lower panels are for OSiO and SiOSi

angles, respectively. From left to right the compositions are silica, NS5 and NS3. The BAD

are shown for the interior (solid lines) and surface domains (dashed lines).

signatures of the 2M-rings are rSiO ≈ 1.70 Å, rSiSi ≈ 2.4 Å, and θSiOSi ≈ θOSiO ≈ 90°.

Addition of Na reduces the amount of these defects in the sample by breaking some

Si-O bonds, notably those of the 2M-ring strcutures. The surface Si-Si and Na-O bonds

are found to be shorter than their interior counterparts. The relationship between the

bond length, bond character and bond strength will be discussed later.

5.5 Vibrational properties

A further property that can be explored within the ab initio approach is the vibra-

tional spectrum, which is considered as one of the most important quantities for de-

scribing atomic dynamics. In this section, we focus on the vibrational density of states

(VDOS) of the glass, which in computer simulations can be accessed either through

the diagonalization of the dynamical matrix of the glass structure (in a local potential

minimum) (method I), or the Fourier transform of the velocity autocorrelation func-

tion (method II). In principle, both methods should give essentially the same results

for a given simulation technique (i.e., classical or ab initio simulations). In practice,

computational time and complicity of the algorithm are key factors that need to be
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5.5. Vibrational properties

considered. Method I is computationally more complex and expensive but only one

atomic configuration (relaxed at 0 K) suffices for the analysis. In contrast, method II is

computational easier but it requires a relatively long simulation trajectory. Therefore

the former method is usually adopted in ab initio calculations, whereas the later is

often the choice of simulations using empirical potential. We note that the ab initio

approach usually reproduces the experimental VDOS much more accurately than the

classical approach [196–198].

As we used the ab initio approach, the VDOS is thus given by

g(ω) =
1

3N − 3

3N∑
p=4

δ(ω − ωp), (5.1)

where N is the total number of atoms in the sample, ω is the frequency and ωp is one

of the 3N eigenvalues obtained by direct diagonalization of the dynamical matrix. The

VDOS can further be decomposed into the contribution from different species, i.e., the

partial-VDOS,

gα(ω) =
1

3N − 3

3N∑
p=4

Nα∑
I=1

3∑
k=1

|eI,k(ωp)|2δ(ω − ωp), (5.2)

where α = Si, O and Na and eI,k(ωp) is the part of the 3N -component eigenvector e(ωp)

that contains the three components of the particle I. The so-obtained discrete spectra

have been convoluted with a Gaussian function with a full width at half maximum

of 30 cm−1 in order to obtain smoothed data. The results shown below have been

obtained by taking the average of two independent samples.

In Fig. 5.9, we show the total, panel (a), and partial VDOS, panels (b-d), of the

three glass samples. Firstly, one recognizes that the VDOS for all samples have three

main bands: a low-frequency band with ω < 500 cm−1, a mid-frequency band with

500 < ω < 900 cm−1, and a high-frequency band with ω > 900 cm−1. By comparing

with the pure bulk silica data [83], we note that the presence of surface results in

an intensity decrease of the main peaks. Also noticeable is the disappearance of the

double peaks at high-frequency. For the glasses with surfaces, one observes that with

increasing Na content, the intensity of the low-frequency band with ω < 300 cm−1

increases which is accompanied by a noticeable decrease in intensity of the bands at

≈ 400 cm−1 and ≈ 800 cm−1. A better understanding of the changes in the total VDOS

can be achieved by investigating the contributions from different atomic species. From

the three partials, panels (b)-(d), we find that O atoms contribute the most to the

total VDOS. The change of intensity below 300 cm−1 is mainly due the change in Na

concentration. This is confirmed by the fact that rescaling the two curves by their

corresponding Na fraction results in the collapse of the two curves.
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Figure 5.9: (a) Total vibrational density of states (VDOS) of the three sandwich glasses.

Panels (b)-(d) show the VDOS of Si, O and Na atoms, respectively. Also included in (a)

is the total VDOS for a bulk silica from ab initio calculations [83]. The total VDOS were

normalized to unity, which is equal to the sum of the partials as depicted in (b)-(d).

To better understand the effect of the surface on the vibrational spectra, we further

decomposed the VDOS into contributions from the different layers, and the results

are shown in Fig. 5.10. We note that the VDOS of the interior layer of the sandwich

sample is not equivalent to the one of the bulk sample, as can be inferred from Fig. 5.9.

This is not so surprising since atomic vibrations are more sensitive to the presence of

surface than the structural features.

For Si, upper panels of Fig. 5.10, we note that the VDOS of surface Si is slightly

more pronounced in the low-freqency range while less intense in the mid- and high-

frequency ranges. A noticeable feature for the surface Si is the appearance of small

peaks or shoulders to the left and right of the main peak at ≈ 750 cm−1. For BO,

panels (d-f), we observe that the surface BO shows a slight shift of the high-frequency

band to lower frequency. Similar to Si, we note for the surface BO the increase of the

intensity for the mid-frequency band and the presence of some small peaks in this range.

Understanding these features appearing in the mid-frequency range of the VDOS of

the surface requires further decomposition. For NBO, panels (g-i), one recognizes that

for the sodium silicate glasses the low-frequency bands corresponding to the surface

is more pronounced than the interior ones, whereas the high-frequency band for the

two domains are almost the same. These results indicate that the vibration of surface

NBO is softer than that of the NBO in the interior domain. Finally, we note that for

silica, NBO was only found in the surface layer. Still, we find for the surface NBO a
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Figure 5.10: Decomposition of the partial VDOS into contributions from the interior and

surface domains. (a)-(c) Decomposition of the partial VDOS of Si for silica, NS5 and NS3,

respectively. (d)-(f) Decomposition of the partial VDOS of bridging oxygen (BO) for silica,

NS5 and NS3, respectively. (g)-(i) Decomposition of the partial VDOS of nonbridging oxygen

(NBO) for silica, NS5 and NS3, respectively.

very intense peak at ω ≈ 100 cm−1.

Figure 5.11 shows the decomposed VDOS for surface Si and BO. One recognizes

from panels (a) and (b) that, the presence of the peak or shoulder at ≈850 cm−1 in the

VDOS of the surface Si is due to the presence of edge-sharing Si, which has an unique

vibrational signature at this very frequency. As for BO, we recognize from panel (d) for

the edge-sharing BO three characteristic vibrational modes, at ≈250 cm−1, ≈700 cm−1

and ≈850 cm−1. The last one is very close to the one for the edge-sharing Si and gives
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5. Surfaces of sodium silicate glasses: First principles calculations

rise to the peak/shoulder at ≈850 cm−1 in the VDOS of the surface BO. Therefore,

we conclude from the decomposed VDOS that the 2M-ring structure has its unique

vibrational signature at the frequency ≈850 cm−1.
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Figure 5.11: Decomposition of the partial VODS of the surface atoms. Panels (a) and (b)

are for corner-sharing and edge-sharing Si atoms, respectively. Panels (c) and (d) are for

corner-sharing and edge-sharing BO, respectively. Note that corner-sharing atoms constitute

2M-ring structures.

Finally we discuss the anisotropy in the vibrational spectra of the NSx glasses.

Figure 5.12 shows, as an example, the partial VDOS for NS3 glass in the three axial

directions. As indicated by the arrows in the graphs, the low-frequency band at ≈
100 cm −1 is more pronounced in the z−direction than the ones of the other two

directions, whereas for the high-frequency band at ≈ 1000 cm−1 an opposite trend is

found. This finding implies that the creation of surfaces makes the sample anisotropic

with respect to the vibrational properties, and the atomic vibration is slightly softer

in the z−direction, i.e., the direction normal to the surfaces.

To summarize, this section discusses the vibrational spectra of the three glasses. By

decomposing the total VDOS into contributions from the surface and interior layers,

we show that the surfaces show special features with respect to the interior layer and

bulk glass sample. Further decomposition of the VDOS identified that the 2M-ring has

a unique vibrational signature at frequency ≈850 cm−1. Finally we have shown that

the vibrational motion in the direction perpendicular to the surfaces are softer than

the motion in parallel directions.
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Figure 5.12: Decomposition of the partial VDOS into contributions from different directions

for the NS3 glass. Panels (a)-(c) are for Si, O and Na, respectively. The arrows indicate the

high- and low-frequency ranges where changes of the partial VDOS in the z−direction can

be observed.

5.6 Electronic properties

5.6.1 Electronic density of states

Investigating the electronic structure and the nature of chemical bonds in materials is

of fundamental importance for a better understanding of their structure-property re-

lationships. To characterize a material’s electronic structure, the most straightforward

quantity to look at is probably the electronic density of states (eDOS), which is es-

sentially the electronic “fingerprint” of the entire simulation cell drawn as a histogram

along the energy axis. Integrating the eDOS along the energy axis up to the Fermi level

yields the number of electrons in the system. The eDOS plot can reveal the location

and broadness of the electronic bands. It tells also whether the system is a conductor

or a insulator (and the width of the band gap).

We show first in Fig 5.13 the electron configurations and orbital diagrams of the

three constituent elements of sodium silicate. This information is important for the

discussion below.

Figure 5.14 shows the eDOS for the three glasses as decomposed into the interior

and surface domains. For the purpose of comparison, we include in panel (a) also

the data for a bulk silica glass. The assignment of various states for the case of silica

(crystals and glasses) has been well documented in the literature [199]: (i) the states at

about 20 eV are oxygen 2s states; (ii) the states from -10 to -4 eV are bonding states

between Si sp3 hybrids and mainly O 2p orbitals; (iii) the states above -4 eV until the

Fermi level are O 2p nonbonding orbitals. The main difference between the eDOS of

crystalline and vitreous silica is that the bands for the glass are generally broader than

the ones for the crystal, which can be attributed to the structural disorder of the glass.
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5. Surfaces of sodium silicate glasses: First principles calculations

Figure 5.13: Electron configurations and orbital diagrams for the three elements in the

sodium silicate.

Previous ab initio calculations have predicted a band gap of around 5 eV for silica

glass [199–201], and of about 2.8 eV for sodium tetrasilicate glass (i.e., 20 mol-% of

Na2O) [202]. For the sandwhich glasses, the estimated band gaps are 4.1 eV for silica,

2.9 eV for NS5, and 2.7 eV for NS3, compatible with the findings of previous studies.

It should be noted that the experimental band gap for silica is about 9 eV [203, 204].

DFT calculations substantially underestimate the band gap, a well-known problem of

this technique (see also discussion in Chapter 1). Nevertheless, here we are mainly

interested in the valence bands, which are more relevant for chemical bonding.

We discuss first the eDOS for the interior layers which are supposed to be bulk-like.

For the case of silica, one recognizes from Fig. 5.14(a) that the eDOS of the interior

layer has indeed a shape very similar to the one of the bulk. However, the main bands

for the interior layer are shifted to right around 1 eV relative to the bulk. This effect

might be attributed to the difference in the production history of the two glasses: The

bulk glass was first produced using a classical simulation and a relatively slow quench

rate, then further relaxed using the ab initio scheme at room temperature [83]. In

contrast, the sandwich glasses were prepared using pure ab initio simulations with a

cooling rate several order of magnitude greater than the classical approach (see 5.1).

Therefore, the sandwich silica glass is likely to be at a higher energy state relative to

the bulk glass, which may be responsible for the shifting of the eDOS as a whole to a

higher energy level. The eDOS for the two sodo-silicate glasses are similar and show

common features with the eDOS of silica. However, the influence of Na is clearly seen:

1) The eDOS shifts toward lower energy level with the addition of Na; 2) The intensity

of the main peaks and shoulders in the eDOS change, owning to modification of the

atomic structure.

The eDOS for the surface layers show similar features as their interior counterparts.

A noticeable difference between the two layers is the shifting of the main bands of the
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surface eDOS to higher energy level, which might be related to the defective struc-

tures in the surface layer. For the case of silica, we note that the splitting between

O sp−Si sp3 bonding and antibonding states seems to have disappeared in the eDOS

of the surface layer.
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Figure 5.14: Electronic density of states (eDOS) of the sandwich glasses at 0 K. (a)-(c) are

for silica, NS5, and NS3, respectively. The eDOS are decomposed for the sandwich glasses

with respect to the surface (surf.) and interior (int.) layers. The bulk eDOS is also included

in the graph for silica glass. The eDOS are normalized with respect to the number of atoms.

The Fermi level energy Ef is at 0 eV.

One of the primary interests of the present work is to better understand the re-

lationship between atomic structure and electronic properties. Therefore, we have

decomposed the eDOS of the surface layers, and the results are shown in Fig. 5.15.

For the silica surface, panel (a), two small peaks at around -14 and 2 eV are observed.

Further decomposition of the O and Si spectra shows that these peaks arise mainly

from non-bridging oxygen but also from a contribution of corner-sharing Si (csSi).

Thus these two peaks can be attributed to Si-O dangling bonds, in agreement with the

findings of previous first principles simulations [205]. The O 2s states (from around

-20 eV to -15 eV) can be further assigned to BO and NBO. An additional signature of
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5. Surfaces of sodium silicate glasses: First principles calculations

the NBO is at around -17 eV, see panel (b) and (e), which gives rise to a shoulder in

the eDOS of silica and a pronounced peak in the eDOS of the NS3 glass.

For the silica surface, we note that the main valence bands for the edge-sharing

atoms are shifted to higher energy. Consequently, the peaks and valleys of the corner-

sharing and edge-sharing atoms cancel out, resulting in the disappearance of the split-

ting between O 2p−Si sp3 bonding and O 2p nonbonding states in the total eDOS of

silica surface as shown in Fig. 5.14. For the NS3 surface, this effect is less pronounced,

which might be attributed to the better relaxed structure of the sample due to the

introduction of Na. The contribution of Na is mainly in the near-edge upper valence

band and in the conduction band. The results for NS5 are qualitatively similar to that

of NS3.
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Figure 5.15: Decomposition of the surface eDOS of the silica and NS3 glasses. Left panels:

Silica. Right panels: NS3. (a) Decomposition with respect to atomic species, i.e., Si, O and

Na. (b) Decomposition of O into NBO, csO and esO. (c) Decomposition of Si into csSi and

esSi. Panels (d)-(f): The decomposed results for the NS3 glass. The eDOS are normalized

with respect to the number of atoms. The Fermi level energy Ef is at 0 eV.

5.6.2 Atomic charge and bond character

The eDOS discussed above has allowed one to see where the electrons and orbitals are,

but not on how they engage in bonding. For understanding the later, electron counting

is needed since a chemical bond is essentially the attraction between atoms (for a atomic

system) due to sharing or transfer of electrons [206]. It is worth noting, however, that
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5.6. Electronic properties

a chemical bond is not a quantum mechanical observable. That is to say, empirical

concepts such as ionicity, bond strength and valence do not appear to correspond to

anything that is directly measurable. A bonded interaction can only be meaningfully

defined within the framework of a given model. For many of the proposed models,

measuring and dividing the electron density ρ(r) is at the center. Both experimental

and computational techniques are widely used to obtain electron density maps, based

on how atomic charges are usually interpreted.

However, as noted in a recent review article on chemical bonding [207], in the vast

majority of cases, there is overlap in the electronic density between atoms, determin-

ing the density associated with a particular atom is a non-trivial problem. (The only

case in which ρ(r) uniquely implies ionic charges is the case when the charge distri-

bution do not overlap [208]). Nevertheless, there are several plausible schemes that

are well-established and are widely used for partitioning electronic densities among the

constitute atoms.

In the present work, we adopt Bader’s ‘atom in molecule’ approach [209], which

analyzes topologically the electron density ρ(r). The Bader charge is given by

QBader
α = Zα −

∫
VBader

ρ(r)dV, (5.3)

where Zα is the number of valence electrons of an atom α, and VBader is the so-called

Bader volume around the atom. The Bader volume VBader is enclosed within a surface

S(r), which exhibits a zero flux property, i.e., the inner product ∇ρ(r) ·n = 0, where n

is the unit vector oriented perpendicular to S(r) [209]. In Table 5.4 we list the average

Bader charges of various atomic species found in the three glasses. In contrast to the

structural analysis, for the charge analysis we did not make distinctions between the

surface and interior layers as we found no noticeable differences between the two.

We discuss firstly the Bader charge of Si atoms, qSi. The average qSi of Si4 (i.e.

the Si bonded to four O) in the silica glass is about +3.18 e, in good quantitative

agreement with the result found in quartz (+3.20 e) [210]. Also the finding that qSi

increases with increasing coordination number of Si (i.e., n in Sin increases) agrees

qualitatively with the observation from a high-energy synchrotron-radiation study of

stishovite (the high-pressure polymorph of silica) [211]. We note that qSi depends also

on the character of the tetrahedron, Qm (where m denotes the number of coordinated

BO): qSi increases with increasing m. The edge-sharing Si, esSi, has a charge close to

the average Si charge in the system.

From Table 5.4, one also notices that qSi decreases with increasing Na concentration.

To illustrate this point more clearly, we plot in Fig. 5.16(a) the distribution of Si charge

and its dependence on n̄Na
Si , i.e., the number of Na found in the first coordination shell

of the Si-Na pair. The graph shows that qSi decreases with increasing n̄Na
Si .
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5. Surfaces of sodium silicate glasses: First principles calculations

Charge (e) Silica NS5 NS3

Si 3.154(0.151) 3.150(0.106) 3.146(0.025)

Si3∗ 2.458(0.469) 1.590 -

Si4 3.176(0.018) 3.156(0.024) 3.146(0.025)

Si5 3.201(0) 3.178(0.009) 3.158(0.027)

Q2 3.136 3.113(0.007) 3.105(0.017)

Q3 3.142(0.009) 3.133(0.018) 3.134(0.015)

Q4 3.177(0.018) 3.169(0.016) 3.168(0.015)

O -1.577(0.08) -1.586(0.055) -1.588(0.03)

NBO -1.106(0.243) -1.529(0.071) -1.543(0.01)

BO -1.587(0.014) -1.599(0.012) -1.606(0.011)

esBO -1.563(0.009) -1.584(0.012) -1.586(0.011)

esSi 3.144(0.013) 3.13(0.022) 3.119(0.025)

Na - 0.847(0.015) 0.84(0.016)

Table 5.4: Average Bader charge of atoms and various species found in the three glasses

at 0 K. Values given in parentheses are the standard deviation of their distributions. Cells

without parentheses means that only one such specie is found. Note that Si3∗ represents all

Si atoms with less than four O (not only three) in their nearest neighbor shell.
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Figure 5.16: Dependence of the Bader charge of (a) Si and (b) O on the presence of Na.

The A-Na coordination number n̄Na
A was obtained by counting the number of Na in the first

coordination shell of A, where A denotes O or Si. The cutoff distances for the search are

3.0 Å for O-Na and 4.3 Å for Si-Na, i.e, distances corresponding to the locations of the first

minimum of their corresponding pair correlation functions. The symbols show individual

values of the charges. The solid lines are linear fits to the data and help to see the overall

trend of variation.

For O atoms, the average charge of BO is found to be around -1.59 e, compared with

a value of -1.60 e in α−quartz [210]. One notices from Table 5.4 that the charge of BO
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is more negative than that of NBO, a deficiency of the Bader charge analysis that has

already been found in previous ab initio simulations, see for example Refs. [189, 201].

Baring in mind this deficiency, it is still instructive to discuss the atomic charges in

different systems using the same description. In particular, we mention that the edge-

sharing BO, esBO, has a charge smaller (i.e., less negative) than the one of ordinary BO.

Horizontal comparison suggests that the charges of O become slightly more negative

with the addition of Na. The same conclusion can be reached from Fig. 5.16, which

shows a slight decreasing trend of the charges with increasing n̄Na
O .

Finally we note that the Na charge has a value of ≈ +0.84 e and is basically

independent of the Na concentration. This result is in good quantitative agreement

with a previous ab initio simulation of a sodium borosilicate glass, where a Bader

charge around +0.83 e was found for Na ions [188].

Silicate materials are generally considered as covalently bonded networks with some

degree of ionicity. However, the degree of ionicity in these materials has been contro-

verisal [208]. Based on the results of atomic charge, we further analyzed the ionicity

(or covalency) of the bonds in the three glasses. The obtained atomic charges are used

to calculate bond ionicity according to the formula [212]

κA−B =
1

2

∣∣∣∣QA

νA
− QB

νB

∣∣∣∣, (5.4)

where QA and νA are the atomic Bader charge and the valence of atom A (i.e., +4

for Si, -2 for O and +1 for Na), respectively. The larger the κA−B the more inonic

the A − B bond is. It should be noted that this measure of ionicity only depends on

the magnitudes of the atomic charge, in line with chemical intuition of the concept of

ionicity.

The calculated κA−B for various types of bonds are listed in Table 5.5. One rec-

ognizes that the values vary in a quite large range and are clearly dependent on the

bond type and composition. We find that κSi−NBO is larger than κSi−BO (except for

NS3), indicating that the Si-NBO bond is more ionic than the Si-BO bond. However,

their difference in ionicity decreases with higher Na concentration. For NS3, the Si-BO

becomes even more ionic than the Si-NBO bond. Additionally, one notices that the

esSi-esBO bond is less ionic than the usual Si-BO bond, but both of them become more

ionic with increasing Na concentration. It should be noted that the character of Si-O

bond is an elusive subject for which many contradictory results can be found in the

literature [208, 213]. Nonetheless, the analysis of bond ionicity and length (Table 5.3)

provide some implications regarding the strength of the Si-O bond. The Si-NBO bond

is shorter and more ionic than the Si-BO bond, which implies that Si-NBO bond is

stronger than Si-BO bond. With the same logic applied, we thus conclude that the

Si-NBO is the strongest type of Si-O bond while the esSi-esO is the weakest one.
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5. Surfaces of sodium silicate glasses: First principles calculations

Si-NBO Si-BO esSi-esBO Na-NBO Na-BO

Silica 0.1178 0.0025 0.0022 - -

NS5 0.0115 0.0060 0.0048 0.0413 0.0238

NS3 0.0075 0.0082 0.0066 0.0343 0.0185

Table 5.5: Bond ionicity κA−B calculated based on the obtained Bader charges. The larger

the κA−B the more inonic the A−B bond is.

It is worth noting that the presence of bonding in a given system is not only de-

termined by bond strength but also by the requirement of stoichiometry and charge

neutrality. This explains why in silica (crystal or glass) one can only find Si-BO bonds

but no Si-NBO bonds. We Na2O is added to silica, the following reaction is thermo-

dynamically spontaneous:

Na2O +≡Si−O−Si≡ → 2(≡Si−O−Na). (5.5)

This reaction is a clear indication that the Si-NBO bond is more stable (i.e., with

higher strength) than the Si-BO bond.

Na-O bond are more ionic in character than the Si-O bond. We also find that the

Na-NBO bond is more ionic than the Na-BO bond, and both of their ionicity decrease

with the enrichment of Na in the system. Taking into account also the fact that the

Na-NBO bond is shorter than the Na-BO bond (Table 5.3), we thus conclude that

the Na-NBO bond has higher bond strength. (This might also imply that the Na

atoms bonded to NBO is less mobile than the Na atoms around BO, which might have

consequences in the VDOS as well).

5.6.3 Electron localization function

We have considered a second approach for investigating chemical bonding: The electron

localization function (ELF), which was introduced by Becke and Edgecombe in 1990

[214]. The ELF analyzes the probability distribution of electron pairs and is defined as

η(r) =

{
1 +

[
D(r)

Dh(r)

]2
}−1

. (5.6)

The functions D(r) and Dh(r) are given by:

D(r) =
1

2

N∑
i

|∇ψi(r)|2 − 1

8

[∇ρ(r)]2

ρ(r)
, (5.7)

Dh(r) =
3

10
(6π2)2/3ρ5/3(r), (5.8)
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where Dh correspond to the value for a uniform electron gas with spin density ρ(r)

which can be expressed as:

ρ(r) =
N∑
i=1

|∇ψi(r)|2, (5.9)

where the sum is over N singly occupied Kohn-Sham orbitals ∇ψi(r).

By definition, η takes in every point of space a value that lies between 0 and 1.

A value of 1 corresponding to perfect localization of electron pairs and a value of

0.5 corresponding to that of a uniform electron gas. The ELF provides a graphical

representation of the spatial localization of the probability distribution of electron

density as embodied in domains ascribed to localized bond and lone pair electrons.

Previous studies of the ELF of silicates have mainly been devoted to their crystalline

phases, whereas this kind of information for amorphous silica or silica-based materials,

to our knowledge, is still missing [215]. We are thus motivated in this study to conduct

the ELF analysis for silica and sodium silicate glass, which provides valuable insight

into the chemical bonding in these amorphous materials.

Results for silica glass. Firstly, we discuss the ELF results for the silica glass sample.

The structure of bulk silica is known to contain only bridging oxygens which link the

neighboring [SiO4] to form a rigid network. In the present study, the presence of free

surfaces for our glass samples results in the formation of more types of structural motifs,

thus allowing us to explore a broader variety of structures even for the case of silica.

In Fig. 5.17 we show the ELF results for some structural motifs on the surface

of the silica glass. Panel (a) shows the ELF isosurface around a [SiO4] tetrahedral

unit on the surface. (Note that the isosurface is shown for ELF=0.83, which is the

same as the value used in a previous study of earth materials [215]). We find for

the BO involved linkage, e.g. Si1O2Si2, a hemispherical isosurface as a discrete unit

along each Si-O bond. This domain is ascribed to a pair of bonding electrons. One also

observes that a banana-shaped isosurface is present on the reflex side and which orients

perpendicular to the plane of the SiOSi angle. This domain is assigned to two lone

pairs of electrons, i.e., the four valence electrons that are not involved in bonding. The

banana-shaped nonbonding domains associated with the BO atoms are substantially

larger than the bonded hemispherical domains along the Si-O bonds, in agreement with

the ELF mapping of the SiOSi linkage in quartz [215].

We now turn our attention to the NBO atoms. NBO is usually absent in bulk

silica but do present on the glass surface as it has already been documented in previ-

ous studies [164, 190]. A bond pair domain is also observed along the NBO-Si bond

vector, i.e., O1Si1. In contrast to the BO, one notices around the NBO a concave

hemispherical-shaped domain, which can be are ascribed to the nonbonding electrons.

One recognizes that the nonbonding electron domain for the NBO has a greater vol-

133



5. Surfaces of sodium silicate glasses: First principles calculations

0.0 0.4 0.8 1.2 1.6

r (Å)

0.0

0.2

0.4

0.6

0.8

E
LF

NBO-Si (0.683, 0.845)
BO-Si (0.698, 0.857)
BO-Si (0.722, 0.853) (interior)

0.0 0.4 0.8 1.2 1.6

r (Å)

0.0

0.2

0.4

0.6

0.8

E
LF

(g) (h)

esBO-esSi (0.701, 0.842)
csBO-esSi (0.693, 0.850)

Figure 5.17: Analysis of chemical bonding by using the electron localization function (ELF):

SiO2 surface. (a) The ELF map for a structural motif on the surface, highlighting a [SiO4]

tetrahedron bonded to one NBO and three BO atoms. The isosurface (in yellow) represents

an ELF value of 0.83. (b) and (c): 2D contour plots for the ELF in the planes defined by three

atoms. The increment of the contour plot is equal to 0.05. (d-f): The same representation

as in (a-c) but for a two-membered ring structure. (g) and (h): Average line profiles of the

ELF along the bond paths as shown in (a) and (d), respectively. Also included in (g) is the

average ELF profile of the BO-Si bonds that belong to a Si-BO-Si connection in the interior

domain (green line). The O atom is at the origin, i.e. r = 0. For each bond path the point

corresponds to the maximum ELF is indicated in the parenthesis. The arrows correspond to

the average Si-O bond length. The visualization of the ELF was realized by VESTA [216].

ume than the one of the BO. This result makes sense because presumably their are five

nonbonding electrons for the NBO while only four for the BO.
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More quantitatively, we show in Fig. 5.17(b) and (c) the two-dimensional (2D) con-

tour plots of the ELF corresponding to a Si-BO-Si and a NBO-Si-BO connection. The

aforementioned bonding and nonbonding domains are clearly visible from the contour

plots. In addition, one recognizes that the probability distribution of electron pairs

around the NBO is more spread out than that of the BO, panel (c). This observation

might be related to the fact that the NBO has more free volume on the vacuum side

than the BO atoms.

We now discuss another special structural motif, namely the 2M ring. As depicted

in Fig. 5.17(d), the 2M-ring has a square-like shape and consists of four atoms that are

almost in the same plane. One notices that the O atoms in the 2M-ring, esBO, have

electron pair domains similar to the ordinary BO atoms, e.g., O2 in panel (a).

Figure 5.17 (e) and (f) show the ELF contour plots corresponding to two Si-O-Si

linkages associated with the 2M-ring. Note that the Si-O-Si linkage in panel (e) involves

an edge-sharing Si, Si4. One sees that the Si3O5Si4 angle is much greater than the

one in panel (b), demonstrating that the strong angular constraint in the 2M ring also

affects its neighboring linkages. Consequently, the bond and lone pair domains around

the BO in panel (e) are not as well developed as the one in panel (b). Panel (f) shows

the ELF contour plots of the 2M ring structure. One observes that the bond and lone

pair domains are well developed as discrete domains. Another noticeable feature is

that the bond paths are no more axes of symmetry for the bond pair domains. This

is likely due to the strong repulsion of the electrons from the the two opposing esBO

atoms.

For a more quantitative comparison between the bonds, we show in Fig. 5.17(g)

and (h) the line profiles of the ELF along the bond paths starting from O atoms. Note

that all BO in panel (a) and (g) are the ordinary corner-sharing BO, csBO. From panel

(g), one notices that overall the ELF of the NBO-Si bond is smaller than the one of the

BO-Si bond, implying that the ELF around the NBO is more spread out, in agreement

with the contour plot in panel (c). In addition, as indicated in the parentheses, the

BO-Si bond peaks at a higher ELF value and a larger r relative to the Si-NBO bond.

In order to check if there are differences between the Si-BO-Si linkages in the surface

and the interior domains, we have chosen a Si-BO-Si linkage in the interior of the

sample and which has a angle close to the Si1O2Si2 linkage shown in panel (a). The

corresponding ELF line profiles are included in panel (g) as well. One recognizes

that the ELF profiles of the two types of BO-Si bonds are very similar to each other.

Nevertheless, we find that the bond length (indicated by the arrows) of interior BO-Si

is slightly smaller than the surface BO-Si (see also Table 5.3). This is due to the fact

that the bonds on the surface are under stronger tension.

In panel (h) we compare the ELF line profiles of the esBO-esSi and csBO-esSi
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bonds. Interestingly, one notices an overall shifting of the ELF of the esBO-esSi bonds

to a larger r relative to the csBO-esSi bonds. Consequently, we observe a slight shift

of the maxima location of the ELF from r ≈ 0.69 Å for the csBO-esSi to r ≈ 0.70 Å

for the esBO-esSi.

Results for a sodium silicate glass. Based on the information obtained for pure

silica, we now look at a glass composition containing Na, namely Na2O-3SiO2 (NS3).

The main objective here is to understand the influence of Na on the bonding of the

structures on the surface.

Figure 5.18 shows the ELF data for the NS3 glass surface, which are presented

similar to the ones for silica. As can be seen from panel (a), the presence of Na in the

neighborhood of the [SiO4] tetrahedra results in the formation of more NBO on the

surface. In addition to the structural modification, one can notice that the presence of

Na induces changes in bonding as well. Here we focus on the NBO-Si bond. Noticeably,

the bond pair domain becomes much smaller relative to the NBO-Si bond with no Na

around (Fig. 5.17(a)). From the contour plot in Fig. 5.18 (b), one observes that the

presence of Na also makes the lone pair domain of the NBO (i.e. O1) asymmetric. The

influence of Na is also seen by using the Na atom for constructing the contour plot,

panel (c).

We now turn our attention to the 2M-ring structure. It is worth mentioning that

the number of 2M-rings in the NS3 glass is considerably smaller than the silica glass

(see section 5.4 for detailed structural analysis). Nevertheless, there are still a few of

them present on the surface, allowing to investigate the influence of Na on this type

of structure. Figure 5.18(d) shows a NBO linked to the 2M-ring due to the presence

of Na. Apart from the bond pair domains that correspond to the O-Si bonds, there

are also domains in the directions of the Na atoms, which can be ascribed to the Na-O

bond pair interaction superimposed on the lone pair domains, panel (e). Similar results

were also found for earth materials containing alkali metals [215]. Figure 5.18(f) clearly

shows the banana-shaped lone pair domains. In addition, the effect of Na is also seen

as the esBO (O7) bonded to the Na is less spread out than the other esBO (O8).

Fig. 5.18(g) shows the average ELF line profiles of various types of O-Si bonds.

Notice that the NBO atom connected to an esSi atom is denoted as NBO2M. One

recognizes that the ELF profile of the NBO-csSi bond is very similar to the one of the

NBO2M-esSi bond, indicating that the NBO-Si bond character is basically independent

of the Si type. Furthermore, we find that the ELF values of the NBO-Si bonds are

smaller than that of the esBO-esSi bond, in accordance with the fact that the ELF

around the NBO is more spread out. For all the three NBO-Si bonds, the maximum

ELF is located at r ≈ 0.68 Å, independent of the bond type.

In Fig. 5.18(h) we compare the average ELF line profiles of various types of O-Na
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Figure 5.18: Analysis of chemical bonding by the electron localization function (ELF):

NS3 surface. (a) A map of the ELF for the structures on the surface, highlighting a [SiO4]

tetrahedron with Na atoms around. The dashed lines are the O-Na bonds with rO−Na < 2.5 Å.

The isosurface represents an ELF value of 0.83. The assignment of different domains are the

same as for silica. (b) and (c): 2D contour plots for the ELF in the planes defined by three

atoms. The increment of the contour plot is equal to 0.05. (d-f): The same representation

as in (a-c) but for a two-membered ring structure. (g) and (h): Average line profiles of the

ELF along the bond paths as shown in (a) and (d), respectively. The O atom is at r = 0. For

each bond path the point corresponds to the maximum ELF is indicated in the parenthesis.

The arrows correspond to the average Si-O or Na-O bond length. NBO2M denotes the NBO

bonded to an esSi.

bonds. We find that the maxima of the line profiles are located at r ≈ 0.61, 0.63 and

0.67 Å for the NBO2M-Na, NBO-Na, and esBO-Na bonds, respectively. This results
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5. Surfaces of sodium silicate glasses: First principles calculations

indicate that the character of the O-Na bond is more sensitive to the changes in local

environment than the NBO-Si bond. We note that the ELF maxima of the O-Na bonds

are closer to the O atoms (at r = 0) than the ones of the O-Si bonds. This finding

demonstrates the stronger ionic character of the O-Na bonds. Based on the locations

of the ELF maxima, it can be deduced that the esBO-Na bond is more covalent than

the NBO-Na bonds. This observation may be generalized by saying that the BO-Na

bond is more covalent than the NBO-Na bond as also indicated by the bond ionicity

in Table 5.5.

We notice that the maximum locations of the ELF profiles found for the NBO-

Si and esBO-esSi bonds are very close to the values found for the silica glass. This

similarity indicates that the presence of Na only weakly affect the position of the bond

pair domains of the O-Si bonds. Comparing with the ionicity results, we thus conclude

that the ELF perspective of bond character is less sensitive to compositional change

than the ionicity based on atomic charge. But the two methods do show qualitative

agreement with each other.

In this section we have explored extensively the electronic properties of silica and

sodium silicate glasses, with particular focus on their surfaces. The eDOS of the glass

surfaces show noticeable difference from the interior ones. Decomposition of the eDOS

reveals the electronic signature of surface structures such as NBO and 2M-rings. The

Bader charge analysis shows that the presence of Na affects more on the charge of

Si than O. The bond ionicity and the ELF analysis are compatible with each other,

showing that the NBO-Si bond is the most ionic type of Si-O bond while the esBO-esSi

bond is the most covalent one. Na-O bond is more ionic than the Si-O bonds, but the

degree of ionicity also depends on the type of O bonded. Based on the results of bond

length and ionicity, we deduce that the bond strength is in the order NBO-Si > BO-Si

> esBO-esBO > Na-NBO > Na-BO.

5.7 Summary

To summarize, we have investigated systematically the structural, dynamical, vibra-

tional and electronic properties of silica and two sodium silicate samples. The surfaces

of the glass samples are of primary interest. We have defined the surface and interior

layers for the sandwich samples based on the atomic distribution along the direction

perpendicular to the surface (i.e., the z−direction). It is found that the surface layers

are more enriched in O and Na for silica and the sodium silicate glasses, respectively.

We also find that in the liquid state, the surface layer has a faster dynamics than the

interior layer. In addition, the surface Na atoms are found to be much less mobile in

the z−direction than the other directions, which has been attributed to the constrains
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of the surfaces.

Structural analysis shows that the surface layer is less polymerized and has more

Si-NBO dangling bonds than the interior layer. In addition, structural defects such as

two-membered (2M) ring is more abundant in the surface domain than the interior.

The concentration of 2M-ring is found to decrease when more Na is added to the

sample. The structural signatures of the 2M-rings are rSiO ≈ 1.70 Å, rSiSi ≈ 2.4 Å, and

θSiOSi ≈ θOSiO ≈ 90°. The surface Si-Si and Na-O bonds are found to be shorter than

their interior counterparts.

The vibrational density of states show that 2M-ring has an unique vibrational sig-

nature at frequency ≈ 850 cm−1. Besides, it is found that the vibrational motion in

the z−direction is softer than the motion in the other two directions, indicating that

the creation of free surfaces results in anisotropic vibrational properties of the glasses.

Furthermore, we have analyzed the electronic properties of the glasses. The sig-

natures of surface structures such as NBO and 2M-rings in the electronic density of

states were identified. The Bader charge analysis shows that the charges of O and Si

are more sensitive to composition than that of Na. Using the electron localization func-

tion (ELF), we have analyzed bonding in the glasses, particularly for surface domains.

It is found that the the bond ionicity based on the Bader charge is compatible with

the ELF results. We further deduced that the bond strength is in the order NBO-Si

> BO-Si > esBO-esBO > Na-NBO > Na-BO. To our knowledge, this is the first time

such detailed bonding analysis is conduced for sodium silicate glasses. These knowledge

may be helpful for understanding the cracking process of the glasses on the microscopic

scales.
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Chapter 6

Uncovering hidden order in liquids

and glasses

Experimental and theoretical investigations indicate that disordered systems such as

liquids and glasses have a structural order on the length scale of a few particle diameters

but which then quickly vanishes at larger distances. This conclusion is, however, based

mainly on the behavior of two-point correlation functions such as the static structure

factor, S(q), and radial distribution function, g(r) [13, 217, 218]. These two-point

correlations functions are useful for obtaining a basic knowledge of the structure such as

the mean inter-particle separation and coordination number. However, these functions

project the whole three dimensional structural information onto one dimension which

inevitably results in a huge lost of the structural information.

In recent years, great efforts have been made to understand the relationship between

local structure and macroscopic properties of liquids and glasses. Two types of local

structural ordering have been identified for these systems: Energy-driven and entropy-

driven1 [219]. The former is commonly observed in tetrahedral liquids, such as water

and SiO2. The latter is often found in hard-sphere-like liquids (whose free energy is only

composed of an entropic term), such as the Kob-Andersen Lennard-Jones mixture [220].

Tens of local structural measures incorporating many-body effects have been pro-

posed to probe the structure in liquids and glasses (For a comprehensive list, the reader

is referred to a review article [219]). These structural quantities can be divided into two

categories, depending on whether or not they rely on local geometry of the structure.

One of the most well-known geometrical structural descriptors is the bond-orientational

order (BOO), which measures the local orientational order between a particle and its

nearest neighbors [221, 222]. It has been shown that the BOO parameters are able

1This classification is based on the fact that the influence of the free energy on local structures can

be decomposed into energy and entroy contributions.
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6. Uncovering hidden order in liquids and glasses

to distinguish between disordered (liquid-like) and ordered (crystal-like) environments

in hard-sphere-like glass-forming liquids. For tetrahedral liquids, the tetrahedrality of

the local structure (formed by a particle and its four nearest neighbors) is often eval-

uated [223]. The extension of this idea has allowed to identify the spatial correlation

between the polytetrahedral order and the slow dynamics in granular materials [224].

On the other hand, non-geometrical structural descriptors such as the local structural

entropy2 has recently been used as a local structural indicator in glass-forming sys-

tems [225, 226]. The local structural ordering as given by these structural descriptors

has frequently been connected to the slow glassy dynamics and glass-forming abil-

ity [219, 227].

It is worth noting that these local structural descriptors were proposed for specific

applications (i.e., for a given type of system and property). Therefore, one can hardly

tell which one of them is most efficient. These descriptors, particularly the ones based

on local geometry, have enabled us to obtain deeper insights into the local structural

ordering in disordered systems relative to what g(r) and S(q) can provide. However,

the structural information beyond the second coordination shell3 can hardly be inferred

from these local structural measures. This is the primary reason for the fact that the

knowledge regarding the structure of liquids and glasses beyond short range is still

very limited. Whether or not disordered systems have a structural order that extents

beyond a few particle diameters is therefore still an open question.

In this work, we extend the idea of many-body (higher order) correlation to a much

larger length scale which allows to reveal that liquids and glasses do have highly non-

trivial correlations up to distances well beyond the first few coordination shells. In

order to show the generality of our results, we consider two systems that have a very

different structure: A binary mixture of Lennard-Jones particles (BLJM) and silica.

The former liquid has a close packed local structure that is similar to the one of a

hard sphere system while the latter is a paradigm for an open network liquid with local

tetrahedral symmetry.

6.1 Simulation details

Silica. We perform molecular dynamics simulations for silica. The cubic simulation

box, with periodic boundary condition applied, contains around 120000 atoms. The

sample was firstly melted at 4500 K for 80 ps in the canonical ensemble (NV T ) to

2Local structural entropy is essentially a local version of the two-body excess entropy which can

be derived from the radial distribution function [219].
3The spherical shell corresponding to the distances between the first and second minima of the

radial distribution function.
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6.2. Model construction

completely remove the memory of the initial configuration. The liquid sample was then

equilibrated at various temperatures ranging from 2600 K to 4400 K in the isothermal-

isobaric ensemble (NPT ) and at zero pressure. The equilibration time of the sample

is temperature dependent. Therefore, we have carefully monitored the dynamics of

the system at each temperature and ensured that the system have become diffusive

before taking configurations for subsequent structural analysis. In order to compare the

structure of the glass with the one of the liquid, we have also quenched the equilibrated

liquid sample at 3000 K to 300 K with a cooling rate of 1 K/s. The temperature

and the pressure of the system are controlled by using a Nosé-Hoover thermostat and

barostat [87–89]. Throughout the simulations, we use a well-established two-body

effective potential named SHIK [83] which has already been introduced in chapter 2.

All simulations were realized using the LAMMPS package [116] with a time step of 1.6

fs.

Binary Lennard-Jones mixture. We study the equilibrium properties of the BLJM

in a temperature range in which the system changes from a very fluid state to a moder-

ately viscous one, i.e. 5.0 ≥ T ≥ 0.4. The system is a 80:20 mixture of Lennard-Jones

particles (type A and B) with interactions given by

Vαβ(r) = 4εαβ[(σαβ/r)
12 − (σαβ/r)

6], (6.1)

where α, β ∈ {A,B}, σAA = 1.0, εAA = 1.0, σAB = 0.8, εAB = 1.5, σBB = 0.88, and

εBB = 0.5 [220]. Here we use σAA, εAA as the units of length and energy. We set the

mass of all particles equal to m = 1.0 and the Boltzmann constant is kB = 1.0. Using

the LAMMPS package we simulate a total of 105 particles at constant volume and

temperature. The cubic simulation box has a side length of 43.68 which corresponds

to a density of 1.2. At the lowest temperature, T = 0.4, the run was 1.4 ·108 time steps

(step size 0.005) for equilibration and the same length for production, time spans that

are sufficiently large to completely equilibrate the system.

6.2 Model construction

To probe the three dimensional (3D) structure of the system we introduce a local

coordinate system as follows:

� SiO2: Take any Si atom as the origin and its bonding to a nearest neighbor O

(i.e.,
−−→
SiO) defines the z−direction. We then find another nearest neighbor O of

the Si and define the plane containing the three atoms as the z − x−plane. The

y−axis is thus normal to the z − x−plane.
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6. Uncovering hidden order in liquids and glasses

� BLJM: Take any three A particles that are nearest neighbors, i.e., they form

a triangle with sides that are less than the location of the first minimum in

the radial distribution function g(r). We define the position of particle #1 as

the origin, the direction from particle #1 to #2 as the z−axis, and the plane

containing the three particles as the z − x−plane. The y−axis is thus normal to

the z − x−plane.

This local reference frame allows to introduce a spherical coordinate system θ, φ, r

and to measure the probability to find any other atom at a given point in space, i.e. to

measure a four point correlation function (Fig. 6.1). Since this coordinate system is

adapted to the configuration by the three particles it allows to detect angular correla-

tions that are not visible in g(r).

Figure 6.1: The definition of the local coordinate system involves three atoms/particles

that are representatives of the local structure. (a) SiO2. (b) BLJM.

6.3 Radial distribution function

To establish a base for the subsequent discussion of the three dimensional structural

information, we show first the radial distribution functions g(r) (RDFs) of the two

considered systems. Figure 6.2 shows the partial RDFs of silica at three different

temperatures. The first peak for the SiO and SiSi correlations are located at r ≈
1.65 Å and r ≈ 3.10 Å, respectively. These distances correspond to the first nearest

neighbor distances of the two pairs and are only weakly dependent on temperature.

With increasing T , the most noticeable feature is the broadening of the peaks at varied

distances, indicating that the structure becomes less ordered.

Similarly, in Fig. 6.3 we show the partial RDFs of the BLJM system at various

temperatures. The temperature varies from a very fluid state (T = 2.0) to a moderately

viscous one (T = 0.4). For all four partials, one observes a slight shift of the main peaks

and also the decrease in peak intensity with increasing temperature. Note that the N
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Figure 6.2: Radial distribution functions of silica at different temperatures. (a) and (b)

are for SiO and SiSi correlations, respectively. 300 K is in the glass state and the other

temperatures are in the liquid state. The curves were obtained by averaging over 8 samples.
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Figure 6.3: Radial distribution functions of the BLJM system at different temperatures. All

temperatures are in the liquid state. The AA, AB, BB, and AN (N denotes A+B) correlations

are shown in panel (a)-(d), respectively. The different curves have been shifted vertically by

multiples of 0.2 for clarity. The curves were obtained by averaging over 20 configurations.
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6. Uncovering hidden order in liquids and glasses

represents the sum of A and B, i.e., all particles in the system. For the sake of simplicity,

we consider in the following only the AN correlation for the BLJM system.

Figure 6.2 and Fig. 6.3 illustrate that the T−dependence of g(r) is very smooth, in-

dicating that both systems are good glass-formers. Therefore, crystallization is unlikely

to happen either in the liquid or the quenched state (300 K for silica glass).

6.4 Three dimensional distribution of particles

Since g(r) is the spherical average of particle-particle correlations, the angular depen-

dence of the structural information is lost. As mentioned earlier, by introducing a local

reference frame we can explore angular correlations that are not visible in g(r). Here

we show first the 3D distribution of particles for the two systems.

Figure 6.4 shows the three dimensional normalized distribution ρ(θ, φ, r) of Si and

O atoms on the sphere of radius r from the origin (i.e., a Si atom by construction).

We recognize that ρ(θ, φ, r) has a noticeable angular dependence and which extents to

large distances, e.g. 14 Å at 300 K. Furthermore we notice that these density maps

all show pronounced tetrahedral symmetry. This observation is reasonable as [SiO4]

tetrahedron is the basic building black which forms the network of SiO2 structure. In

addition, both the O and Si density maps show noticeable temperature dependence,

i.e., the signal becomes more pronounced when temperature is decreased, implying that

the structure of the system becomes more ordered. This finding is in accordance with

the conventional knowledge that the glass state is more ordered than the corresponding

liquid state.

Similarly, for the BLJM system, based on the introduced local reference frame, the

three dimensional distribution of the particles can be probed. In Fig. 6.5 we show

firstly the distribution of the particle density for a distance that corresponds to the

first coordination shell of the central particle. The figure clearly shows that the density

distribution is anisotropic and has an icosahedral-like symmetry (as indicated by the

dashed line in (a)). We note that the icosahedral symmetry is due to the presence

of large proportion of icosahedra-like local structure that one would find for a hard-

sphere-like simple liquid. However, the icosahedral symmetry is not perfect since at

these small distances many local motifs coexist and the most favorable structure is a

bit different from icosahedron [228].

With the knowledge of the packing of particles in the nearest neighbor shell, we

now can explore the particle distribution at larger distances. Figures 6.6(a-c) show the

distribution ρ(θ, φ, r) for the BLJM at three temperatures. We recognize that ρ(θ, φ, r)

has a strong angular dependence not only at small distances but also at intermediate
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6.4. Three dimensional distribution of particles

Figure 6.4: Distribution of particles in 3D for silica. Density distribution ρ(θ, φ, r) for

different values of r, i.e., the distribution of the particles that are in a spherical shell of radius

r and thickness 1.0 Å around the central particle. (a) and (b) are for SiO correlations at 3000

and 300 K, respectively. (c) and (d) are for SiSi correlation at 3000 and 300 K, respectively.

Figure 6.5: Distribution of the particles in 3D in the nearest neighbor shell for the BLJM

at T = 0.4. Density distribution ρ(θ, φ, r) for r = 1.1.(a-c) are different perspectives of the

density distribution on the sphere (see orientation of the coordinate system). The dashed

lines indicate the connection between neighboring particles.
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6. Uncovering hidden order in liquids and glasses

ones, e.g., at r = 4.5, and at low T even at large ones, e.g., r = 8.0. Furthermore,

for r = 1.65, corresponding to the distance between the first minimum and the second

nearest neighbor peak in g(r), one finds a dodecahedral-like symmetry. This result can

be rationalized by recalling that a dodecahedron is the dual of an icosahedron, and vice

versa, see Fig. 6.6(d), and hence the local dip formed by three neighboring particles in

the first shell will be occupied by particles forming part of the second shell, thus giving

rise to a dodecahedral symmetry. The fact that this “duality mechanism” works even

at large distances is surprising since it is at odds with the standard view that in liquids

correlations are quickly washed out at large distances.

Figure 6.6: Distribution of particles in three dimensions for the BLJM system. In practice,

the density distribution ρ(θ, φ, r) represents the distribution of particles that are in a spherical

shell of radius r and thickness 0.4 around the central particle. (a), (b) and (c) are for

T = 2.0, 0.8 and 0.4, respectively. Depending on the distance r the high density regions

show an icosahedral or dodecahedral symmetry. (d) illustrates that an icosahedron is the

dual polyhedron of a dodecahedron and vice versa.
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Finally, we note that for geometrical reasons, at large r a region with high ρ(θ, φ, r)

is not a single particle, but a structure that grows linearly with r and hence is a whole

collection of particles, i.e., at a given distance the structure is given by patches with a

high density of particles that alternate with patches with low density.

6.5 Quantitative characterization

The standard way to characterize in a quantitative manner the structural order on

a sphere is to decompose the signal, here the normalized density distribution, into

spherical harmonics Y m
l ,

ρ(θ, φ, r) =
∞∑
l=0

l∑
m=−l

ρml (r)Y m
l (θ, φ), (6.2)

where the expression for the expansion coefficients ρml are given by

ρml =

∫ 2π

0

dφ

∫ π

0

dθ sin θρ(θ, φ, r)Y m∗
l (θ, φ) , (6.3)

where Y m∗
l is the complex conjugate of the spherical harmonic function of degree l and

order m [229]. In practice, this integration was done for silica by sampling the integrand

over up to 108 points for each shell of width 1.0 Å. The corresponding numbers for the

BLJM are 2 · 109 and 0.4. One can thus consider the angular power spectrum

Sρ(l, r) = (2l + 1)−1

l∑
m=−l

|ρml (r)|2. (6.4)

For SiO2, the component with l = 3 is the most prominent one, see Fig. 6.7(a), a

result that is reasonable in view of the tetrahedral symmetry that we find in the density

distribution. In contrast to the case of silica, we find that for the BLJM system, the

component with l = 6 is the most prominent one, independent of r, Fig. 6.7(b). This

result is reasonable since Sρ(6, r) represents well both icosahedral and dodecahedral

symmetries, which are also the symmetries that we find in the density plots.

In the following we will focus on the behavior of Sρ(l, r) for its strongest mode in

particular, and discuss the structural oder encoded in this quantity. Unless ortherwise

specified, the results shown below will be for the SiSi correlation in silica and the AN

correlation in the BLJM. For the other particle-particle correlations qualitatively the

same conclusions can be made.

In Fig. 6.8 we show the r−dependence of Sρ(l, r) for silica, panel (a), and the BLJM,

panel (b). One observes that for both systems Sρ(l, r) decays in an exponential manner

with increasing r. Despite the smallness of the value of Sρ(l, r) at large r, the function
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Figure 6.7: The angular power spectrum Sρ(l, r) for (a) the SiSi correlation in silica and

(b) the AN correlation in the BLJM. The temperature is 3000 K for silica and 0.5 for the

BLJM. One recognizes that the signal for l = 3 and l = 6, are the most pronounced modes

for silica and the BLJM, respectively.

can be determined with good accuracy up to large distances, in agreement with the

visual observation from the density plots. In order to probe the symmetry properties

of the density field, we consider also a normalized density field η(θ, φ, r), defined as

η(θ, φ, r) =
ρ(θ, φ, r)− ρmin(r)

ρmax(r)− ρmin(r)
, (6.5)

where ρmax(r) and ρmin(r) are the maximum and minimum of ρ(θ, φ, r), respectively.

The angular power spectrum of η(θ, φ, r), Sη(r), is included in Fig. 6.8(a-b) as well.

For the case of silica, panel (a), Sη(r) is high for small and intermediate distances,

but even in this range it decreases slowly, indicating that for this network liquid the

orientational symmetry is gradually lost with increasing r. For the BLJM, Sη(r) oscil-

lates around a constant value before reaching a threshold ξη(T ). For distances larger

than ξη(T ), Sη(r) decays quickly and soon reaches at large r a value that is determined

by the noise of the data. We will discuss the definition and the T−dependence of ξη(T )

a bit later.

Very interestingly, we find for the BLJM the height of the local maxima in Sη(r)

shows a periodic behavior in that a high maximum is followed by a low one. A visual

inspection of ρ(θ, φ, r) reveals that these high/low maxima correspond to distances at

which the distribution has an icosahedral/dodecahedral symmetry demonstrating that

these two geometries are not only present at short distances but also at large ones, in

agreement with the snapshots in Fig. 6.6. One thus concludes that the distribution of

the particles in three dimensions is given by shells in which the particles are arranged

in a pattern with alternating icosahedral/dodecahedral symmetry.

For distances larger that r ≈ 4 one finds that the radial position of these two
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Figure 6.8: The angular power spectra and radial distribution function for (a) the SiSi

correlation in silica at T = 3000 K and (b) the AN correlation in the BLJM at T = 0.4. For

SiO2 the arrows indicate the distances at which gSiSi(r) = 1. For the BLJM and r > 4.0 the

high/low maxima in Sη(r), labeled I and D, coincide with the minima/maxima (labeled M)

in |g(r) − 1| (blue line, right ordinate). This up-down behavior is related to the alternating

icosahedral/dodecahedral symmetry in the distribution of the particles when r is increased.

geometrical arrangements match well the locations of the minima/maxima in g(r).

This observation can be rationalized by the fact that a dodecahedron has 20 vertices

(i.e., regions in which ρ(θ, φ, r) has high values) and an icosahedron only 12, thus

making that the former structure corresponds to the maxima of g(r) and the latter to

the minima. In contrast to this one finds no noticeable correspondence between the

peaks in Sη(r) and g(r) for r < 3, indicating that the packing in the first few shells

around the central particle has not just a pure icosahedral or dodecahedral symmetry

but a more complex structure that is determined by steric and energetic considerations,
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6. Uncovering hidden order in liquids and glasses

a result that is in agreement with previous studies of similar systems that have probed

the geometry of the packing on small length scales [228, 230–232].

In contrast to the BLJM, we find that for silica, Fig. 6.8(a), the locations of the

maxima in Sρ(3, r) do not correspond to the ones in |gSiSi(r) − 1| but are instead

close to distances at which gSiSi(r) = 1 (as indicated by the arrows in the graph),

i.e. at a distance at which one expects no structural order. This shows that for liquids

which have an open network structure, the distances at which one finds the highest

orientational symmetry is not associated with a dense packing of particles, in contrast

to hard sphere like systems.

The 3D arrangement of these ordered zones extending to large distances are depicted

in Fig 6.9 for SiO2, panel (a), and the BLJM, panel (b), respectively. The BLJM system

is characterized by alternating icosahedral/dodecohedral symmetry, whereas silica is

dominated by four-fold tetrahedral symmetry.

Figure 6.9: Three dimensional representation of the layered structure extending to large

distances. (a) Silica at T = 3000 K. The high density regions form interlocked zones with a

tetrahedral symmetry. (b) BLJM at T = 0.4. The bluish/reddish colors correspond to the

locations of the high/low maxima in Sη(r) and thus to shells with icosahedral/dodecahedral

symmetry. The shown layers correspond to distances at which Sρ(r) has a local maximum.

Only regions with high density (covering 35% area of the sphere) are depicted.

For SiO2, Fig 6.10(a) shows that Sρ(3, r) strongly depends on temperature. At the

highest T , i.e., 4200 K, the signal decays rapidly and survives only up to a distance

of around 15 Å, indicating that the structure vanishes very quickly at such a high

temperature. With decreasing T , the intensity of these peaks increases considerably,

and at 2600 K (still in liquid state) the signal can survive beyond 20 Å. With further

cooling below the glass transition temperature (around 2000 K), the system becomes

even more ordered. At 300 K, the structural order can even be detected at distance

larger than 25 Å. For comparison, in Fig. 6.10(c) we show the T−dependence of |g(r)−
1| for the SiSi correlation. Clearly, the T−dependence of this quantity is weaker than
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6.5. Quantitative characterization

that of Sρ(3, r), and the signal of the curves can only survive at smaller distances.
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Figure 6.10: Temperature dependence of (a-b) Sρ(3, r) and (c-d) g(r) of silica. Regions I,

II, and III are obtained based on the T−dependence of the peaks of Sρ(3, r). (b) and (d) are

close-up views of the peaks in region I for Sρ(3, r) and |g(r)− 1|, respectively.

In addition, we note that Sρ(3, r) exhibits an interesting T−dependence in the

range 5 Å< r < 10 Å (region I). The first peak in this range seems independent of

temperature in the liquid state (from 4200 K to 2600 K), but a big jump shows up

when the system becomes glass, see the close-up view in panel (b). The rest of the

peaks in this distance range show a stronger dependence on temperature relative to the

first peak. The distinct behavior of the peaks at different distances implies that the

medium range structure changes in a complicated manner when varying temperature.

This temperature effect seems to propagate to larger distances (region II and III) but

becomes less and less pronounced with increasing r. The function |g(r)−1|, by contrast,

does not show such T−dependence in the medium and long ranges, see Fig 6.10(c-d).
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6. Uncovering hidden order in liquids and glasses

Extracting length scales. For the BLJM, we have realized from Fig. 6.8(b) that

one can define a length scale ξη based on the decaying behavior of Sη. To determine ξη

we have calculated the integral I(r, T ) =
∫ r

0
Sη(r

′, T )dr′ and in Fig. 6.11(a) we plot this

quantity as a function of r. For small and intermediate r the integral shows a basically

linear increase with r since the integrand Sη(r) is essentially a constant. Once Sη(r)

starts to decay I(r, T ) becomes a constant. Using a fit with two straight lines this

cross-over point can be determined accurately, giving thus ξη(T ).
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Figure 6.11: Extracting length scales in the BLJM system. (a): I(r, T ), the integral of

Sη(r). (b) and (c): Local maxima of Sρ(6, r) and |g(r)−1|, respectively. For both quantities,

the data in the range 2.8 < r < 6.5 are fitted with an exponential function to extract the

corresponding length scales. (d): Different length scales (on log scale) as a function of inverse

temperature. See the text for the definitions of the various length scales. ξη, ξρ, and ξg have

been multiplied by a scaling factor of 0.43, 2.58, and 1.29. Error bars are the standard error

of the mean of eight samples. The solid line is a guide to the eye and the arrow indicates the

location where T = 0.8. Also included are the dynamical length scale as obtained in previous

studies [233–235]. The data from Hocky et al. have been multiplied by a factor of three.

In addition, one can also extract length scales based on the behavior of Sρ(r) and

g(r). In 6.11(b) we show the r−dependence of Sρ for different temperatures. Note that

we plot only the local maxima of the function since these have been used to fit the data
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6.5. Quantitative characterization

at intermediate and large distances with an exponential function (see below). From the

graph one recognizes that the slopes of the curves decrease with lowering temperature,

indicating that the associated length scale increases. We thus obtain the length scale ξρ

by making a fit with an exponential of the form Sρ(r, T ) ∝ exp(−r/ξρ(T )). In 6.11(c)

we show the r−dependence of |g(r)− 1|. (Again only the location of the maxima are

shown). We see that also this dependence can be fitted well by an exponential function,

thus allowing to define a length scale ξg(T ).

Figure 6.11(d) shows the three (rescaled) length scales ξη, ξρ and ξg as a function

of inverse temperature and one recognizes that, after appropriate rescaling, the three

length scales collapse onto each other quite well. In the T−range considered, the scales

change by about a factor of two, i.e. a relatively modest value. From the graph one

recognizes two regimes: At high T the length scales increase quickly with decreasing T

whereas at low temperatures one finds a weaker T−dependence and which is compatible

with ln(ξ) ∝ T−1. Hence one concludes that a decreasing temperature leads to an

increasing static length scale, in agreement with previous studies that have documented

a weak increase of static length scales in glass-forming systems [227]. Surprisingly the

crossover between the two regimes occurs at around T = 0.8, thus very close to the

so-called “onset temperature” To [220] at which the relaxation dynamics of the system

crosses over from a normal dynamics to a glassy one [3]. The fact that also ξη and ξg

exhibit this crossover behavior in their T−dependence further support the existence of

To. This result shows that the change in the dynamical properties of the system has

a counterpart in the statics, giving hence support to the idea that the latter allows to

understand the former [236].

For the sake of comparison, we included in Fig. 6.11(d) also the results for the

dynamic length scales that have been obtained in previous works for exactly the same

model [233–235]. One observes that these dynamic length scales show a significantly

stronger T−dependence than the static ones that we have considered here, a result

that is consistent with earlier studies on this question [231].

Structure factor and compressibility. Since the T−dependence of ξg is very similar

to the one of ξη, Fig. 6.11(d), one can expect that also the intensity of the static

structure factor S(q) at small wave-vectors has the same T−dependence. Figure 6.12(a)

shows the q−dependence of S(q) for different temperatures. Because of the finite size

of the box, the smallest accessible wave-vector is 2π/L ≈ 0.144 and one has only three

independent wave-vectors with this modulus. In order to estimate with good accuracy

the T−dependence of S(q) at small wave-vectors we have averaged S(q) over the range

1 ≤ q ≤ 2 (see the inset). The so obtained averaged data for S(q), denoted as S0, is

plotted in Fig. 6.11(c). The straight line is a power-law fit to the low−T data. (At this

stage this functional form should be considered just as a parameterization of the data
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Figure 6.12: (a) and (b): Partial static structure factor S(q) for the AA pairs for the

simulations at constant volume (NV T ) and constant pressure (NPT ), respectively. The

insets show S(q) at small q. The two vertical dashed lines indicate the interval over which

S(q) was averaged. (c) S0(T ) as obtained for the two ensembles as a function of inverse

temperature. (d) Same data as in panel (c), now multiplied by (1/T )α, where the value of α

is given in the legend. The horizontal dashed lines are guides to the eye.

since we do not have a theoretical basis for it). In order to see better the T−range in

which this fit works well, we shown in Fig. 6.11(d) the ratio between S0 and this power-

law. One recognizes that this ratio shows a crossover at around the onset To ≈ 0.8, a

result that is coherent with the T−dependence of the extracted length scales.

The aforementioned results are obtained from constant volume (NV T ) simulations.

In order to confirm that the observed T−dependence is independent of the simulation

ensemble, we have also performed simulations at constant pressure (NPT ). The chosen

pressure was P = 8.0 since this corresponds to the pressure at the onset temperature

in the constant volume ensemble and hence it can be expected that the onset tem-

perature in the two ensembles are very similar. The resulting static structure factor

is presented in Fig. 6.11(b) and the corresponding S0 is included in Figs. 6.11(c-d) as

well. One observes from panel (d) that the data from the NPT simulations also show
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6.5. Quantitative characterization

at T ≈ 0.8 a change in its temperature dependence. This result demonstrates that the

T−dependence of the large scale structure (i.e., at small wave-vectors) shows at the

onset temperature a marked change which is independent of the considered ensemble.

For the NPT simulations we have determined also the compressibility

κ =
(∆V )2

kBTV
, (6.6)

where (∆V )2 is the variance of the volume fluctuation and kB the Boltzmann constant.

The obtained κ(T ) are presented in Figs. 6.11(c-d) as well. As expected, this quantity

shows a similar temperature dependence as S0, i.e., the description with the power-law

starts to break down at around T ≈ 0.8.

Based on the results shown in Fig. 6.11, one can conclude that a careful measure-

ment of the structure factor or compressibility allows to estimate the onset temperature

T0 with good accuracy, without referring to any probe of the dynamics.

Anisotropic radial distribution function. Since we have found that the distri-

bution of particles in 3D is anisotropic, Figs 6.4 and 6.6, it is of interest to consider

also the radial distribution functions in which one probes the correlations in a specific

direction with respect to the local coordinate system. We note that this type of infor-

mation is also accessible in experimental studies, e.g., confocal microscopy or scattering

experiments [237]. For both the BLJM and silica, the directions of particular interest

are the ones correspond to the vertices of the polyhedra that we have identified earlier,

see the snapshots in Figs. 6.13(a-b). Also interesting is the direction corresponding to

the mid-point of two neighboring vertices of the polyhedra, which is supposed to have

a smaller signal relative to other directions.

Quantitatively, Figs. 6.13(c-d) show for the BLJM this angular dependent corre-

lation function for the directions that correspond to the vertices of the icosahedra

(gD(r)) and of the dodecahedra (gD(r)). We recognize that for intermediate and large

distances, gD(r) has oscillations that are in phase with g(r) whereas gI(r) has oscilla-

tions that are in anti-phase. The amplitudes of the oscillations in gI(r) and gD(r) are

significantly larger than the ones found in g(r), a result that is reasonable since the

latter function is a weighted average of the two former ones and hence will be affected

by cancellation effects. We also show in the same graph the distribution function in

the direction that corresponds to the mid-point of the line connecting two neighboring

vertices of an icosahedron and a dodecahedron, g0(r). It shows significantly smaller

oscillations than g(r), a result that is expected since one probes the structure in a di-

rection which does not pass close to the locations that correspond to the vertices of the

icosahedra/dodecahedra. Panel (b) shows that the decaying behavior of g(r), gI(r),

and gD(r) is basically independent of the function considered, demonstrating that they

are indeed closely related to each other.
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Figure 6.13: Anisotropic radial distribution function. (a) and (b): Two density maps

showing the selected directions of probing for the AN correlation in the BLJM and (r = 4.5)

the SiSi correlation in silica (r = 4.15 Å), respectively. (c) and (d): The BLJM at T = 0.4.

Radial distribution function as measured in the direction of the vertices of the icosahedra,

gI(r) and the direction of the vertices of the dodecahedra, gD(r). The function g0(r) probes

the structure in the direction corresponding to the mid-point of the line connecting two

neighboring vertices of an icosahedron and a dodecahedron. Also included is the conventional

g(r), i.e., averaged over all directions. (e) and (f): Silica at T = 300 K. The function

gT1(r) and gT2(r) probe the structure in the two directions corresponding to vertices of the

interlocked tetrahedral symmetry. g0(r) is similar to g0(r) for the BLJM. (c) and (e) show

these functions on linear-linear scale, whereas (d) and (f) on log-linear scale.

158



6.6. Summary

Figs. 6.13(e-f) show for the case of SiO2 the angular-dependent g(r) in three di-

rections: T1 and T2 correspond to two directions of the vertices of the interlocked

tetrahedral symmetry (see the snapshot in Fig. 6.4(d) when r = 4.15 Å); T0 represents

the direction corresponding to mid-point of the line connecting T1 and T2. Similar

to the findings for the BLJM, one observes that also for this open-network system the

angular-dependent g(r) can be much more pronounced than the conventional g(r).

6.6 Summary

We have demonstrated firstly the fact that conventional g(r) (which takes spherical

average of the particle distribution) allows only a very basic understanding of the

structure of disordered systems. More insights into the structure, particularly beyond

the short range distances, require more than two-point correlation functions.

Our approach which takes into account the angular dependence of the structure

reveals that liquids and glasses have non-trivial structural symmetries that extend to

distances well beyond the first few nearest neighbors and which have gone unnoticed

so far. This conclusion is reached by looking at the 3D particle distribution and the

angular power spectrum of the density field for two very different glass-forming systems,

i.e., silica and the BLJM. We find that silica is dominated by a tetrahedral symmetry

whereas the BLJM system shows a interesting alternating icosahedral/dodecahedral

symmetries.

In addition, we find that, for silica, the T−dependence of Sρ(3, r) shows the sig-

nature of complex structural changes that are invisible from g(r). For the BLJM, by

looking at the T−dependence of various length scales, we find two regimes which cross

at around the onset temperature To, suggesting that the change in the dynamical prop-

erties of the system has a counterpart in the statics. This finding is further supported

by the fact that the static structure factor and compressibility of the system also show

a crossover in their T−dependence at around the To. We thus conclude that the To

can also be determined from careful experimental measurements.

Furthermore, based on the spherical density map, we have probed the structural

correlations in specific directions. We find that depending on the selected direction,

the anisotropic g(r) can be much more pronounced that the conventional g(r), thus

highlighting the importance of considering the angular dependence of the structure.
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Summary and outlook

Summary

This thesis aimed at obtaining microscopic insights into the properties, notably the

fracture behavior, of oxide glasses. Taking advantage of atomistic simulation tech-

niques, we have explored systematically the properties of silica and sodium silicate

in the liquid and glass states. Figure S1 summarizes the major research topics that

have been covered in this thesis. The results documented in this manuscript have

brought several new insights into the structure, surface, deformation and fracture of

oxide glasses.

In chapter 1, we briefly introduced the structure and mechanical properties of oxide

glasses. We also presented a comparative review of recent experimental and simula-

tion studies of glass fracture. A brief introduction of the fundamentals of atomistic

simulation techniques is included as well.

In chapter 2, we presented the results concerning the importance of interaction po-

tential and simulation protocol on a realistic description of glass properties. It is found

that the mechanical properties of the glasses are considerably more sensitive to the in-

teraction potential than the structural properties. In addition, as the deformation and

fracture of glass involve strongly non-local processes, simulations with relatively large

system size are required to minimize the finite size effects. Regarding the simulation

protocol, this study emphasizes that (Mode I) fracture simulation should be performed

under constant pressure, rather than constant volume.

In chapter 3, we investigated systematically the deformation and fracture of glasses

with bulk and sandwich geometries. The latter represents the glasses with surface flaws.

For the bulk glasses, both the stress-strain behavior and elastic constants are in good

agreement with the experimental results, indicating the reliability of the adopted po-

tential and simulation setup. To investigate the fracture process, the sandwich glasses

are notched on the surface. The stress-strain responses of the two types of glasses show

qualitatively the same compositional dependence, and exhibit an interesting transition

behavior in the macroscopic stiffness (given by the tangent modulus) as the Na2O
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Figure S1: Schematic summary of the research topics covered in this thesis. The structure

and properties of sodium silicate glasses are explored by using atomistic simulation techniques.

concentration reaches ≈ 10 mole%. Further exploration of the microscopic properties

reveals that this transition behavior originates from the nonaffine part of the atomic

displacement.

In addition, the cavitation analysis shed light on the fracture mechanism at the

microscopic scale. Voids with radius R ≈ 4 Å are detected in the unstrained glasses,

weakly depending on the composition. Fracture of silica glass is attributed to pure

rupturing of bonds at the crack tip, whereas fracture of the Na-rich NS3 glass is ac-

companied by the growth and coalesce of voids ahead of the crack tip. The estimated

crack velocities and various sound wave speeds are compatible with experimental mea-

surements and the theoretical predictions from linear elastic fracture mechanics.

Following chapter 3, we focused in chapter 4 on the nanoscale features of the two

types of surfaces of soda-silicate glasses, namely the melt-formed surface (MS) and

fracture surface (FS). It is found that the MS is more abundant in Na and NBO than the

FS, whereas the FS has more under-coordinated Si than the FS. The differences between
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the MS and FS are attributed to their production history. In addition, we find that the

fluctuations in composition and charge quickly wash out and become unnoticeable when

the distance from the surface is larger than≈ 2 nm. Further analysis of the roughness of

the surfaces show that the MS is relatively smooth (with a RMS roughness ≈ 0.25 nm)

and isotropic, whereas the FS is relatively rough (RMS roughness ranges from ≈ 0.4

to ≈ 0.8 nm) and anisotropic. Finally, our results regarding the scaling property of the

FS suggest that fractal description does not work at the nanoscale. We have also given

evidence to demonstrate that insufficient spatial resolution of the surface measurement

can lead to the wrong conclusion that the FS exhibits power-lawing scaling at the

nanoscale.

In chapter 5, we have used ab initio simulations to explore glass surface properties

that are otherwise less accurate or even inaccessible in classical simulations, i.e., vi-

brational and electronic properties. For the first time, the vibrational and electronic

signatures of the structural units that are more abundant on the surface, e.g., two-

membered ring, have been identified for silica and sodosilicate glasses. The analysis of

electronic property shows that the bond ionicity as calculated from the Bader atomic

charge is compatible with the conclusions from the electronic localization functions.

Together with the knowledge of bond length, we have deduced qualitatively the bond

strengths of various kinds of Si-O and Na-O bonds in sodium silicate glasses. These

information may facilitate the understanding of crack propagation in oxide glasses.

In chapter 6, we dealt with a fundamental question regarding the hidden structural

order in liquids and glasses. We have introduced a new approach for probing the

structure of disordered systems and demonstrated its versatility by applying it to silica

(open network) and a binary Lennard-Jones mixture (hard-sphere-like). It is found

that both silica and the BLJM have non-trivial structural symmetries that extend

to distances well beyond the short range. More specifically, silica is dominated by

a tetrahedral symmetry, whereas for the BLJM alternating icosahedral/dodecahedral

symmetries are found. The obtained results highlight the importance of considering

angular-dependent measures for probing the structure of liquids and glasses.

Outlook

This thesis opens many interesting prospects that can be pushed further to gain more

insights into the properties of glasses (or disordered materials in general). Several

directions are highlighted below.

Firstly, this work concentrates on the properties of silica and sodo-silicate systems,

i.e., simplified compositions for oxide glasses. However, the methodologies proposed

in this manuscript are certainly applicable to glass compositions of more commercial

163



Summary and outlook

interests, e.g., soda-lime-silica (window glass), sodium borosilicate (kitchenware). From

a simulation point of view, such extension requires the usage of reliable interactomic

potentials. For the aforementioned ternary systems, there are a few options that are

currently available [84, 238–242].

Secondly, further extension of this work can be done by introducing chemical-

mechanical interactions into the simulations, e.g. the interaction between the glass

network and water molecules. In fact, such simulations have been performed since

decades, but the considered system sizes are relatively small even with the current

available computational power. A proper evaluation of finite size effects and simula-

tion protocol is needed before one can gain useful insights from these simulations.

In chapter 3, the correlation analysis between various microscopic properties were

conducted for the Na-rich NS3 glass at 300 K. A very natural extension of this work

would be the exploration of how the correlations evolve with varying glass composition

(e.g., Na2O concentration or different types of alkali oxides). Also, one may want

to understand the thermal effects during the deformation of the glasses. Therefore,

further studies of these local properties at very low temperatures (minimizing the

thermal effects) or elevated temperatures will be interesting.

The method for structural characterization as introduced in charter 6 is also appli-

cable to other disorder systems such as colloidal and granular systems for which the

particle coordinates are accessible. The application of this method to other disordered

systems will provide useful insights regarding the nature of these systems. In addi-

tion to exploring the static structural features of a system, it is also worthwhile to

monitor the time-dependence of the proposed correlation functions. With this type of

information, one can elucidate better the relationship between statics and dynamics of

disordered systems.

To conclude, we believe that this work not only bring several original insights into

the properties of oxide glasses on the microscopic scales, but also paves the way for

further investigation on the properties of other disordered materials under various

environments.
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Motivations

Les matériaux vitreux tels que les verres à vitre, la verrerie de cuisine et les fibres

optiques sont une partie intégrante de notre vie quotidienne. Parfois, nous ne remar-

quons même plus leur présence en raison de leur transparence. La fiabilité mécanique

est devenue une exigence cruciale dans les utilisations diverses des matériaux vitreux

modernes. En effet, les verres d’oxydes sont des matériaux fragiles et cassants, ce qui

représente leur défaillance majeure caractérisée par l’apparition et la propagation de

fissures. La compréhension du comportement à la fissuration du verre est donc d’une

importance fondamentale pour la conception de produits en verre aux performances

mécaniques améliorées.

La complexité de la fissuration des verres d’oxydes réside principalement dans le

fait que la fracture est un phénomène multi-échelle, c’est-à-dire que des mécanismes

différents se produisent sur plusieurs échelles de longueur, voir Fig. S2. Cependant, tout

processus de fissuration implique en fin de compte la rupture des liaisons atomiques.

Ce processus à l’échelle atomique influence donc de manière critique la ténacité et

comportement global à la fissuration de ces matériaux. La compréhension fondamentale

de la fracture du verre nécessite des connaissances approfondies à l’échelle atomique.

Ceci représente ainsi est la motivation première de ce travail de thèse.

Une motivation supplémentaire de cette thèse concerne une compréhension plus

approfondie de la structure du verre et des systèmes désordonnés en général. Dans

les études expérimentales et les de simulations, la structure des liquides et des verres

est principalement caractérisée par des fonctions de corrélation à deux points telles

que le facteur de structure statique et la fonction de distribution radiale. Cependant,

ce type de mesure structurelle est loin d’être suffisante pour fournir une connaissance

complète spectre complet des caractéristiques structurelles de ces systèmes. Nous avons

donc été motivés à proposer de nouvelles approches pour obtenir plus d’information

sur la structure de ces systèmes désordonnés. Ce travail de thèse vise l’obtention

d’une compréhension fondamentale de la structure et du comportement à la fissuration
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Figure S2: Fracture multi-échelle du verre. La fissuration qui se propage sur dans des

solides tels que les verres d’oxyde implique des mécanismes qui s’étendent sur plusieurs gamme

d’échelles de longueur. (a) Fissuration macroscopique d’une vitre provoquée par un impact.

(b) Évolution à l’échelle micrométrique d’une fissure telle que mesurée par microscopie à force

atomique. Image adaptée de Pallares et al. [12]. (c) Détails à l’échelle nanométrique de la

géométrie de la fissure obtenue par modélisation atomistique (ce travail). (d) Visualisation

à l’échelle atomistique de la densité de charge volumique autour des liaisons Si-O cassées.(ce

travail).

des verres d’oxydes à l’échelle microscopique. À cette fin, nous combinons plusieurs

techniques de simulation atomistique et analyse. Les systèmes étudiés sont la silice

et des silicates de sodium, qui sont des compositions représentatives pour des verres

d’oxydes complexes.

Résultats

En utilisant des techniques de simulation atomistique, nous avons donc exploré

systématiquement les propriétés de la silice et des silicates de sodium à l’état liquide et

vitreux. La figure S3 résume les travaux de recherche principaux effectués durant cette

thèse. Les résultats présentés dans ce manuscrit apportent de perspectives nouvelles

sur la structure, la surface, la déformation et la fracture des verres d’oxydes.

Potentiel interatomique. Dans le chapitre 2, nous avons présenté les résultats con-

cernant l’importance du potentiel d’interaction et du protocole de simulation pour une

description réaliste des propriétés du verre. On constate que les propriétés mécaniques

des verres dépendent fortement du potentiel, ce qui n’est pas la cas pour leurs propriétés

structurelles. De plus, comme la déformation et la fissuration du verre impliquent des

processus fortement non locaux, des simulations avec des tailles de système relativement

grandes sont nécessaires pour minimiser les effets de taille finie. En ce qui concerne le

protocole de simulation, cette étude souligne que la simulation de la fracture (Mode I)

doit être effectuée à pression constante plutôt qu’à volume constant.
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Figure S3: Représentation schématique des études effectuées durant cette thèse. La struc-

ture et les propriétés de verres de silicate de sodium sont explorées en utilisant des techniques

de simulation atomistique.

Déformation et fracture. Dans le chapitre 3, nous avons étudié systématiquement

la déformation et la fracture des verres avec 2 géométries: une massique et une de

type sandwich (voir Fig. S4). La deuxième géométrie est plus appropriée pour des

verres présentant des défauts de surface. Pour les verres massiques, le comportement

contrainte-déformation et les constantes élastiques sont en bon accord avec les données

expérimentales, ce qui confirme la fiabilité du potentiel adopté et la configuration de

simulation. Pour étudier le processus de fracture, les verres avec une géométrie sand-

wich sont entaillés à la surface. Les réponses contrainte-déformation des deux types de

verres montrent qualitativement la même dépendance en fonction de la composition et

présentent un comportement de transition intéressant pour la rigidité macroscopique

(donnée par le module tangent) lorsque la concentration en Na2O atteint ≈ 10 mole%.

Une exploration plus approfondie des propriétés microscopiques révèle que ce com-

portement est dû aux déplacements atomiques non-affines des atomes constituants. De

plus, une analyse des cavités a mis en lumière le mécanisme de fracture à l’échelle

microscopique. Des cavités de rayon R ≈ 4 Å sont détectées pour les verres non con-
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Figure S4: Schéma des protocoles de simulation. (a) Préparation des échantillons de verre

massique et sandwich. (b) Fracture du verre par tension uni-axiale. La courbe contrainte-

déformation correspond à la direction de traction. Les taux de refroidissement appliqués sont

respectivement de 0,25 et 0,125 K/ps pour les échantillons massique et sandwich. Le taux de

déformation est de 0,5 /ns.

traints, en fonction de la composition. La fracture du verre de silice est attribuée à

la rupture des liaisons à la pointe de la fissure, tandis que celle du verre NS3 riche en

Na s’accompagne de la croissance et de la fusion des cavités en amont de la pointe de

fissure. Les vitesses de fissuration estimées et les différentes vitesses d’ondes sonores

sont compatibles avec les données expérimentales et les prédictions théoriques de la

mécanique de la fissuration élastique linéaire.

Caractéristiques des surfaces. Dans le chapitre 4, nous nous sommes concentrés

sur les caractéristiques à l’échelle nanométrique des deux types de surfaces des verres

de silicate de sodium, à savoir la surface formée par fusion (MS) et la surface formée

lors de la fracture (FS). On constate que la surface MS contient plus de Na et NBO

que la surface FS, alors que la surface FS a plus de Si sous-coordonné. Les différences

entre ces deux surfaces sont attribuées à leur historique de fabrication. De plus, nous

constatons que les fluctuations de composition et de charge disparaissent rapidement

et deviennent négligeables lorsque la distance par rapport à la surface est supérieure

à ≈ 2 nm. Une analyse plus approfondie de la rugosité des surfaces montre que la

surface MS est relativement lisse (avec une rugosité RMS ≈ 0.25 nm) et isotrope,

tandis que la surface FS est relativement rugueuse (la rugosité RMS varie de ≈ 0.4 à

≈ 0.8 nm) et anisotrope. Enfin, nos résultats pour la surface FS suggèrent que une

description fractale ne fonctionne pas à l’échelle nanométrique, et qu’un comportement

en loi logarithmique est plus approprié. Nous avons également fourni des éléments qui

mettent en évidence qu’une résolution spatiale insuffisante des mesures à la surface
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peut conduire à la conclusion erronée que la surface FS présente un comportement en

loi de puissance à l’échelle nanométrique.

Une liaison chimique. Dans le chapitre 5, nous avons utilisé des simulations

ab initio pour explorer les propriétés de la surface du verre qui sont autrement moins

précises ou même inaccessibles dans les simulations classiques, c’est-à-dire les propriétés

vibrationnelles et électroniques. Pour la première fois, les signatures vibrationnelle et

électroniques des unités structurelles abondantes à la surface, par exemple un an-

neau de taille 2, ont été identifiées pour les verres de silice et sodosilicatés. L’analyse

des propriétés électroniques montre que l’ionicité de la liaison obtenue à partir de la

charge atomique Bader est compatible avec les conclusions des fonctions de localisa-

tion électronique. En utilisant la connaissance des longueurs de liaison, nous avons

obtenu qualitativement les forces des liaisons Si-O et Na-O dans les verres de silicate

de sodium. Ces informations peuvent faciliter la compréhension de la propagation des

fissures dans les verres d’oxydes.

Ordre structurel. Dans le chapitre 6, nous avons traité une question fondamen-

tale concernant l’ordre structurel caché des liquides et des verres. Nous avons in-

troduit une nouvelle approche pour sonder la structure des systèmes désordonnés et

démontré sa polyvalence en l’appliquant à la silice (réseau ouvert) et à un mélange

binaire de Lennard-Jones (semblable à des sphères dures, BLJM). On constate que

la silice et le BLJM ont des symétries structurelles non triviales qui s’étendent sur

des distances bien au-delà de la courte portée. Plus précisément, la silice est dominée

par une symétrie tétraédrique, tandis que le système BLJM, présente des symétries

icosaédriques/dodécaédriques alternées. Les résultats obtenus mettent en évidence

l’importance de considérer des mesures dépendant des angles pour sonder la structure

des liquides et des verres.

Perspectives

Cette thèse ouvre de nombreuses perspectives intéressantes qui peuvent permet-

tre d’acquérir plus de connaissance sur les propriétés des verres (ou des matériaux

désordonnés en général). Plusieurs directions sont mises en évidence ci-dessous.

Tout d’abord, ce travail se concentre sur les propriétés des verres de silice et sodo-

silicatés, c’est-à-dire les compositions simplifiées pour les verres d’oxydes. Cependant,

les méthodologies proposées dans ce manuscrit sont certainement applicables aux com-

positions plus complexes utilisées dans les applications, par exemple pour les verres

sodo-calcique (verre à vitre), les borosilicates de sodium (verrerie de cuisine). Du

point de vue de la simulation, une telle extension nécessite l’utilisation de potentiels
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interatomiques fiables. Pour les systèmes ternaires mentionnés ci-dessus, des potentiels

sont actuellement disponibles [84, 238–242].

Deuxièmement, une extension supplémentaire de ce travail peut être effectuée

en introduisant des interactions chimio-mécaniques dans les simulations, par ex.

l’interaction du réseau vitreux avec des molécules d’eau. En fait, de telles simulations

ont été effectuées depuis des décennies, mais les tailles de système considérées restent

relativement petites, même avec la puissance de calcul disponible actuellement. Une

évaluation appropriée des effets de taille finie et du protocole de simulation est donc

nécessaire avant de pouvoir tirer des renseignements utiles a partir de ces simulations.

Dans le chapitre 3, l’analyse des corrélations entre plusieurs propriétés micro-

scopiques a été réalisée pour le verre NS3 riche en Na à 300 K. Une extension très

naturelle de ce travail serait l’exploration de l’évolution des corrélations en variant

la composition du verre (par exemple, la concentration en Na2O ou différents types

d’oxydes alcalins). Aussi, on peut vouloir comprendre les effets thermiques lors de la

déformation des verres. Par conséquent, d’autres études de ces propriétés locales à

des températures très basses (minimisant les effets thermiques) ou à des températures

élevées seront intéressantes.

La méthode de caractérisation structurelle décrite au chapitre 6 peut être également

utilisée pour d’autres systèmes désordonnées tels que les systèmes collöıdaux et gran-

ulaires pour lesquels les coordonnées des particules sont accessibles. L’application de

cette méthode devra fournir des informations utiles sur la nature de ces systèmes. Au

delà de l’exploration des caractéristiques structurelles statiques d’un système, il est

également utile d’étudier l’évolution temporelle de ces fonctions de corrélation. Avec

ce type d’information, on peut mieux élucider le lien entre les propriétés statiques et

dynamiques des systèmes désordonnés.

Pour conclure, nous pensons que ce travail comporte non seulement résultats orig-

inaux sur les propriétés des verres d’oxydes aux échelles microscopiques, mais ou-

vre également la voie à des recherches plus approfondies sur les propriétés d’autres

matériaux désordonnés dans des environnements divers.

170



Bibliography

[1] C. A. Angell. “Formation of glasses from liquids and biopolymers.” Science, 267,

1924–1935, 1995.

[2] J. E. Shelby. Introduction to glass science and technology. Royal Society of

Chemistry, 2005.

[3] K. Binder and W. Kob. Glassy materials and disordered solids: An introduction

to their statistical mechanics. World Scientific, 2011.

[4] A. A. Griffith. “The phenomena of rupture and flow in solids.” Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 221, 163–198, 1921.

[5] G. R. Irwin. “Analysis of stresses and strains near the end of a crack transversing

a plate.” Trans. ASME, Ser. E, J. Appl. Mech., 24, 361–364, 1957.

[6] T. L. Anderson. Fracture mechanics: Fundamentals and applications, Fourth

Edition. CRC Press, 2017.

[7] G. D. Quinn. “Fractography of ceramics and glasses: A NIST recommended

practice guide.” Special Publication 960-16. Washington, DC: National Institute

of Standards and Technology, 2007.

[8] R. C. Bradt. “The Fractography and Crack Patterns of Broken Glass.” Journal

of Failure Analysis and Prevention, 11, 79–96, 2011.

[9] C. L. Rountree, R. K. Kalia, E. Lidorikis, A. Nakano, L. V. Brutzel, and

P. Vashishta. “Atomistic Aspects of Crack Propagation in Brittle Materials:

Multimillion Atom Molecular Dynamics Simulations.” Annual Review of Mate-

rials Research, 32, 377–400, 2002.
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T. Rouxel. “Towards Ultrastrong Glasses.” Advanced Materials, 23, 4578–4586,

2011.

[34] M. A. Meyers and K. K. Chawla. Mechanical behavior of materials. Cambridge

University Press, 2008.

[35] L. Wondraczek. “Overcoming glass brittleness.” Science, 366, 804–805, 2019.

[36] C. Kurkjian, P. Gupta, R. Brow, and N. Lower. “The intrinsic strength and

fatigue of oxide glasses.” Journal of Non-Crystalline Solids, 316, 114–124, 2003.

[37] R. E. Mould. “The strength of inorganic glasses.” In Fracture of Metals, Poly-

mers, and Glasses. Springer, 1967.

173



Bibliography

[38] R. O. Ritchie. “The conflicts between strength and toughness.” Nature Materials,

10, 817–822, 2011.

[39] M. F. Ashby. Materials Selection in Mechanical Design. Pergamon Press, 1992.

[40] T. Rouxel and S. Yoshida. “The fracture toughness of inorganic glasses.” Journal

of the American Ceramic Society, 100, 4374–4396, 2017.

[41] A. K. Varshneya. “Stronger glass products: Lessons learned and yet to be

learned.” International Journal of Applied Glass Science, 9, 140–155, 2018.

[42] M. Tomozawa. “Fracture of glasses.” Annual Review of Materials Science, 26,

43–74, 1996.

[43] J. Fineberg and M. Marder. “Instability in dynamic fracture.” Physics Reports,

313, 1–108, 1999.

[44] M. Ciccotti. “Stress-corrosion mechanisms in silicate glasses.” Journal of Physics

D: Applied Physics, 42, 214006, 2009.

[45] S. M. Wiederhorn, T. Fett, J.-P. Guin, and M. Ciccotti. “Griffith Cracks at the

Nanoscale.” International Journal of Applied Glass Science, 4, 76–86, 2013.

[46] E. Bouchbinder, T. Goldman, and J. Fineberg. “The dynamics of rapid fracture:

instabilities, nonlinearities and length scales.” Reports on Progress in Physics,

77, 046501, 2014.

[47] S. M. Wiederhorn, J.-P. Guin, and T. Fett. “The Use of Atomic Force Microscopy

to Study Crack Tips in Glass.” Metallurgical and Materials Transactions A, 42,

267–278, 2011.
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