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INTRODUCTION

This report, which constitutes a synthesis document of my research in preparation for
my Habilitation degree (Habilitation á Diriger des Recherches), presents my research
works since September 2013, when I joined the VAADER team of the IETR laboratory
at INSA Rennes as a teacher-researcher (“Maître de conférences”).

Since I worked on the quality assessment of medical images based on human per-
ception modeling during my PhD thesis (10/2009-11/2012), I have been going down
along this research theme (human perception modeling and its applications), which did
not exist yet in the VAADER team. The creation of this new theme is also desired by
our team, since it has a strong relationship with two of the four main topics of our team:

• image analysis and understanding;

• video representation and compression.

Note that whatever a new image analysis algorithm or a new video compression method
is, it is necessary to use a quality assessment method to validate this new technique
and "convince" the end-users. Meanwhile, the saliency information can benefit a wide
range of applications related to the main topics of our team, e.g. image quality as-
sessment, image segmentation, image compression, image rendering, object detec-
tion and recognition, visual tracking, etc. Thus I strengthened and extended the skills
in this theme within the team, by mainly working on the image quality assessment
and saliency detection. I taxonomically present my research themes and works in
Figure 1, as well as the postdocs, PhD students, master students I co-supervised (with
a supervision rate > 33%) on each topic.

For image quality assessment, I have been working on four image/video types:

• Medical images: there are two schools for the medical image quality assessment,
while one is the task-based approach, e.g. the anthropomorphic model observer
(MO), the core of my PhD work; the other is the adaptation of natural image
quality metrics. I then co-supervised three master students to further extend the
MOs I proposed in the PhD thesis to more medical modalities and applications;
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Image	Quality	
Assessment	

for	Medical	
Images	

M.	Ou8as	
(2015-2018)	

M.	Schmidt	
(2015)	

W.	Yuan		
(2015)	

T.	Xu		
(2016)	
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T.	Wang	
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for	3D	
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for	2D	Videos	
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(2015-2019)	
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(2019-2021)	

Figure 1: Research work synthesis, where postdoc supervisions are indicated in purple,
PhD supervisions are in red, non-official PhD supervisions (or collaborations) are in
green, and non-official master supervisions are in blue.

as well as one PhD student to explore the adaptation of natural image quality
metrics.

– with M. Schmidt, we worked on the application of the MO on the compression
of Magnetic Resonance (MR) images with JPEG2000. Three compression
ratios were used and five radiologists had done the detection-localization di-
agnostic task on the compressed images. The experimental results showed
that the model observer worked in a similar way as the radiologists. This
work is collaborated with my two PhD thesis supervisors and Angers Hos-
pital in France. (1 conference paper is published and 1 journal paper is in
preparation.)

– with W. Yuan, we worked on the mathematical extension of the perceptu-
ally relevant channelized joint observer (PCJO) to hyposignal task. While
the abnormality can appear as a hypersignal or a hyposignal for different
imaging modalities, sequences or organs, no MO has been proposed for the
hyposignals detection-localization task in the literature. To improve the clin-
ical relevance of the existing MO, we extended the PCJO’s capacity from
hypersignal-only to both hypersignal and hyposignal. This work is collabo-
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rated with Prof. Chen from Southeast University and radiologists from Nan-
jing First Hospital in China. (1 journal paper is published.)

– with T. Xu, we worked on the application of the MO on the comparison of
two different low-dose CT image reconstruction algorithms, a practical need
of Prof. Chen from Southeast University and radiologists from Nanjing First
Hospital. Since the abnormalities often appear as hyposignals on CT im-
ages, e.g. the hepatocellular carcinoma (HCC) - the target pathology here,
we recurred to the extended PCJO proposed in the previous work. (1 con-
ference paper is published.)

– A limitation of the MOs I proposed was that they need reference images. In
our studies, we took images captured from healthy people as the reference
images, which are not always possible and very time-consuming and expen-
sive. With M. Outtas (Algerian PhD, but working within the VAADER team
from 2015 to now), we explored firstly the usability of several no-reference
metrics proposed originally for natural images in the context of medical im-
ages. Then a modified Naturalness Image Quality Evaluator (NIQE) was pro-
posed, and applied on the comparison of different speckle noise reduction
methods and the image restoration oriented compression for ultrasound im-
ages. The speckle noise reduction methods were also evaluated by radi-
ologists from Nanjing First Hospital. Experimental results showed that the
modified metric performed better than the direct use of other no-reference
metrics proposed originally for natural images, but there is still plenty of room
for improvement. (4 conference papers and 1 journal paper are published.)

• 2D natural images: with T. Wang, we collaborated from 2014 when he was still
a PhD student in Southeast University until now when he is a lecturer in East
China University of Technology. Two full-reference metrics (based on perceptual
grouping and multi-scale representation) and two no-reference metrics (based on
natural scene statistics) have been proposed during our collaboration. (2 confer-
ence papers and 2 journal papers are published.)

• Videos in videophone applications: with I. Saidi, we conducted 2 laboratory ex-
periments and 1 crowdsourcing study for the subjective evaluation of audiovisual
quality in the videophone applications. We also compared the state-of-the-art
full-reference objective video metrics, as well as distortion-specific no-reference
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metrics in this context. In this report, several important works issued from this
thesis will be presented in detail in Chapter 2. This is the first industry-oriented
doctoral thesis (CIFRE PhDs) funding I got and the 1st thesis I co-supervised
officially. (7 conference papers and 1 journal paper are published.)

• 3D synthesized view images: with S. Tian, funded by China Scholarship Council,
we constructed a database focusing on the synthesizing distortions with more
recent synthesizing algorithms, and proposed 2 full-reference objective metrics
and 2 no-reference objective metrics. The details will be presented in Chapter 3.
(4 conference papers and 2 journal papers are published.)

Concerning saliency detection, I actually worked on both salient object detection
and saliency detection (the two notations will be differentiated in Chapter 4) for different
applications:

• Salient object detection for 2D videos: with Q. Wang, funded by China Scholar-
ship Council, we firstly proposed a traditional method where the low-level features
and priors are hand-crafted; then extended this method using a deep network
which achieved much better performances compared to its traditional version.
The usage of the deep network is based on our comparative/benchmarking study
of the state-of-the-art deep learning based methods. The details will be presented
in Chapter 5. (1 conference paper is published and 2 journal papers are submit-
ted.)

• Saliency detection for 360◦ (or omnidirectional) images: with F. Chao, funded by
the Ministry of France, we began the study of saliency detection methods for 360◦

images from October 2017. In her first year of PhD thesis, we got the 1st place
in ICME Grand Challenge “Prediction of Head+Eye Saliency for 360 Images” us-
ing a model based on a Generative Adversarial Network. We then extended this
model using multi-resolutional Field of View and adaptive weighting for the model
training. In the rest one year and a half of her PhD study, we will further exploit
the saliency detection for 360◦ videos. The details will be presented in Chapter 6.
(1 conference paper is published and 1 journal paper is submitted up to now.)

• Saliency detection for drone videos and its application on the drone video com-
pression: from 2018 to 2021, I’m leading the project “Automated Saliency Detec-
tion from Operators’ Point of View and Intelligent Compression of Drone videos”,
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funded by the ANR (French National Agency for Research) ASTRID (Specific
Support for Defence Research Projects and Innovation). This project allows our
three partners to recruit a postdoc for each. I co-supervise two of them: with A.
Perrin, who started from 01/2019, we are studying the usability of state-of-the-
art 2D video saliency detection methods on the drone videos. Considering the
specificities of the drone videos (including the bird-point-of-view, the loss of pic-
torial depth cues...), a new model is certainly necessary and is the objective of
this task; with G. Herrou, who will start from October 2019, we will work on the
compression of drone video using the saliency as the guidance, i.e. allocate more
bits on the saliency parts and less on other parts to optimize the rate-distortion.
(1 conference paper and 1 journal paper are submitted up to now.)

This HDR report is organized into three parts, of which the first two correspond to
my two research orientations mentioned above. But only four works issued from the
four theses I co-supervised officially will be detailed, as exemplars, in this report. Each
part begins with a short review of background material and then presents two works
related to the research orientation in detail. At the end of each work, we give the list
of our scientific contributions, as well as the perspectives. My research project for the
further works will be given in the last part. Note that, to ease the reading, parts as well
as chapters are self-contained.
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Image quality assessment
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CHAPTER 1

IMAGE QUALITY ASSESSMENT BASICS

The image quality assessment (IQA) occupies a very important position in numer-
ous image processing applications, e.g. image acquisition, compression, transmission,
restoration, etc. Since human beings are the ultimate receivers of the visual stimulus,
the ultimate test is the subjective IQA in which the image quality is evaluated by a panel
of subjects (human observers or participants). In this report, we focus on the IQA for
natural images, where the average of the values obtained from human observers is
known as Mean Opinion Score (MOS). The subjective IQA tests are however costly
and time-consuming, thus it is also necessary to develop objective IQA models which
can perform similarly to human observers and output quality scores closely related to
the MOS.

1.1 Subjective IQA basics

1.1.1 Common elements in test protocols

The implementation of a subjective IQA test must comply with the ITU recommenda-
tions [1, 2, 3] to ensure the reliability and reproducibility of the test. Although they are
intended for different measurements, the standardized methodologies that we present
share some common experimental protocols. These are the panel of observers, the
test environment and the global conduct of the sessions.

For the same observed sequence, the evaluation is not stable from one individual to
another. Several factors are responsible for this, such as the state of fatigue, knowledge
of the images, the observer’s general experience in the IQA, or personal appreciation.
In our subjective tests mentioned in this report we use only non-expert observers, i.e
they are not confronted with the IQA in their professional activity. All participants are
firstly examined for their visual acuity through the Snellen test and their color perception
defects through the Ishihara test. The observers passing our test should have a visual
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1.1. Subjective IQA basics

acuity of 10/10 for both eyes with or without correction. Moreover, we made sure that
all the subjects reported having a normal audition. For greater reliability of the results,
a panel larger than 15 participants will give statistically usable results [4, 5].

All the subjective tests mentioned in this report were performed in the laboratory
environment, conforming with the ITU recommendations [1, 2, 3], including the general
environment, the viewing conditions, and the device calibrations. We placed the display
screen in a distance equal to 3 × H (screen height) from the subjects and adapted
the ambient brightness of the rooms in order to limit the glare and the visual fatigue
of the observers; in order to calibrate our display devices, we have used a tool to
neutralize the display defects of the screen and to automatically adjust the hardware
settings (brightness, contrast, white point, etc.) so that the display device ensures that
it displays the widest range of possible colors.

Before the main test session, we should give an instruction to observers and con-
duct a training session with them. The instruction is an explanation of the type of
methodology, the scoring system, the presentation protocol and any useful elements. A
training session is often conducted before the main test session with a few typical con-
ditions to anchor the judgment of the observers. The scores of this training session are
not taken into account in the final results. The main test session consists of a variable
number of images, which corresponds to the evaluation of a perceived quality under
different conditions. For videos, the test sequences have generally a duration between
8 and 10 seconds in order to leave a sufficient time for observers to give a stable score.

1.1.2 Test Methodologies

There are several test methodologies proposed in the ITU recommendations [1, 2, 3]:
Absolute category rating (ACR) [P.910]; ACR with hidden reference (ACR-HR) [P.910];
Degradation category rating (DCR) [P.910]; Double-stimulus continuous quality-scale
(DSCQS) [BT.500]; Pair Comparison (PC) [P.910]; Subjective Assessment of Multime-
dia VIdeo Quality (SAMVIQ) [BT.1788]; Single stimulus continuous quality evaluation
(SSCQE) [BT.500]... We will only detail the methodologies used in the subjective tests
mentioned in this report in this section.

ACR : The ACR (also called single stimulus) method is a category judgment where
the test images/sequences are presented one at a time and are rated independently on
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a category scale. The method specifies that after each presentation the subjects are
asked to evaluate the quality of the sequence shown. This evaluation is performed on
a five- or nine-grade categorical scale that is explained by five items (Excellent-Good-
Fair-Bad-Poor). An illustration of 5-grade is given in Figure 1.1. The ACR method is an
inexpensive method from the point of view of its application, treatment and analysis of
the results. It also has the advantage of being able to qualify test systems and obtain
their ranking according to the level of quality associated with them.
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Bad Bad
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PoorFair

Fair
Good

Good

Excellent

Excellent

Figure 1.1: Scale of quality assessment (MOS) at 9 and 5 levels.

SAMVIQ : In the SAMVIQ protocol, there is much more freedom for the observers
who can view each image several times and correct the notation at any time they want.
The observers can compare the degraded versions with each other, as well as with the
explicit reference. In each trial, there is also a hidden reference which helps to evaluate
the intrinsic quality of the reference when the perceived quality of the reference is not
perfect. Each observer moves a slider on a continuous scale graded from 0 to 100
annotated by 5 quality items linearly arranged (excellent, good, fair, poor, bad). The
SAMVIQ results have a greater accuracy than the ACR scores for the same number of
observers (on average 30% fewer observers were required for SAMVIQ than ACR for
the same level of accuracy) [6].

1.1.3 Data Analyses

Subjects screening During a subjective quality assessment, a significant amount
of data is collected. It is then necessary to carry out some tests before translating
this data into results. Thus, inter-observer coherence is evaluated. As a result of this
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verification, the assessment scores of some observers may be rejected. This screening
step can therefore be critical in obtaining the results of a methodology since it requires
a minimum number of observers. The screening method defined in BT.1788 [3] has
been used for our subjective tests in this report.

Opinion Scores Once the tests are performed, the results are analyzed and com-
bined in a single note per image (or video sequence) describing its average quality. In
this report, for the subjective tests conducted using ACR, we calculated the MOS, i.e.
the average of the quality scores over the total number of participants; for the subjective
tests conducted using SAMVIQ, we used the Differential Mean Opinion Score (DMOS),
which is the difference between the score of the hidden reference image and the score
of the tested image. The confidence interval associated with each MOS/DMOS score
was also calculated. In order to easily compare each observer’s opinion about the
quality of images, a linear transform that makes the mean and variance equal for all
observers is often employed. The outcome of such transform is called Z-score.

Statistical test In order to evaluate if there is a significant difference between differ-
ent test conditions on the quality perception, statistical tests should be used. The data
should firstly be checked to see if the samples are normally distributed, e.g. using the
Shapiro-Wilk test or Kolmogorov-Smirnov test. If the hypothesis of the normal distri-
bution is not rejected, a parametric test can be used; otherwise, a non-parametric test
should be used. In this report, for the former case, the Fisher test is used; for the latter
case, the Mann-Whitney test is used.

1.2 Objective IQA basics

1.2.1 Classifications of IQA methods

According to the ITU studies [7, 8], objective metrics may be classified into five main
categories depending on the type of input data:

• Media-layer models use the audio or video streams to evaluate the perceived
quality. For these models the characteristics of the stream content and decoder
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strategies such as error concealment are usually taken into account. The model
ITU-T J.247 [9] for video quality assessment belongs to this category.

• Parametric packet-layer model use only the packet header (TCP, RTP, UDP, IP,
etc.) information without having access to the media signal. Such models are
well suited for in-service non-intrusive multimedia quality monitoring. Among this
category we may indicate the Recommendation ITU P.1201 [10].

• Parametric planning models use the quality planning parameters (bandwidth,
packet loss rate, delay, frame rate, resolution, etc.) for network and terminals
to predict the quality. For example, the models G.1070 [11] and G.1071 [12] are
parametric models for estimating video and audio qualities for video-telephony
and streaming applications respectively. The E-model (Rec. G.107) is a planning
model for audio quality.

• Bitstream-layer models predict the QoE based on both encoded bit stream and
packet-layer information without performing a complete decoding. These models
can be used in situations where one does not have access to decoded video
sequences. The Recommendations ITU P.1202[13] and P.1203 [14] are bitstream
layer models for video and audiovisual media streaming quality assessment.

• Hybrid models are a combination of two or more models from the preceding.
These models analyze the media signal, the bitstream information and packet
header to estimate the perceived quality. For instance, ITU J.343 [15]is on of the
developed hybrid models.

Figure 1.2: Overview of media layer models, figure from [16]
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As illustrated in Figure 1.2, the media-layer objective quality assessment methods
can be further categorized as full-reference (FR), reduced-reference (RR), and no-
reference (NR) depending on whether a reference, partial information about a refer-
ence, or no reference is used in assessing the quality, respectively. As explained in
[16], full- and reduced-reference methods are important for the evaluation in non-real-
time scenarios where both (1) the original (reference) data or a reduced feature data
set, and (2) the distorted data are available. For instance, during the development and
prototyping process of video transport systems, the original video can be delivered of-
fline for full-reference quality assessment at the receiver, or the received distorted video
data can be reliably (without any further bit loss or modifications) delivered back to the
sender. In contrast, for real-time quality assessments at the receiver without availability
of the original video data, low-complexity reduced-reference or no-reference methods
are needed.

1.2.2 Performance evaluation metrics

While there are more metrics can be used for the performance evaluation of the ob-
jective IQA metrics, we only introduce here the three commonly used metrics when
subjective scores are available [17]:

1. Accuracy prediction: refers to the ability to predict the subjective quality ratings
with low error. The Pearson Linear Correlation Coefficient (PLCC) was computed.
For two datasets X = {x1, x2, ..., xN} and Y = {y1, y2, ..., yN} with x and y the
means of the respective datasets, the PLCC is defined by:

PLCC =
∑(xi − x)(yi − y)√∑(xi − x)2

√∑(yi − y)2
(1.1)

2. Monotonicity prediction: refers to the degree to which the relationship between
the subjective quality ratings and the predicted measure can be described by a
monotone function. The Spearman Rank Order Correlation Coefficient (SROCC)
was used:

SROCC =
∑(Xi −X ′)(Yi − Y ′)√∑(Xi −X ′)2

√∑(Yi − Y ′)2
(1.2)

where Xi and Yi are the ranks of the ordered data series xi and yi respectively;
X ′ and Y ′ denote the respective midranks.
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3. Consistency prediction: measures the ratio of wrong predicted scores by the ob-
jective model to the total number of scores. The Root Mean Square Error (RMSE)
was computed. For a dataset {x1, x2, ..., xN}, with x is the mean value:

RMSE =
√

1
N

∑
(xi − x)2 (1.3)

The PLCC and RMSE are often computed after performing a non-linear mapping
on the objective measures using the cubic polynomial mapping function recommended
by the VQEG [17]. This function is used in order to fit the objective model scores to the
subjective scores.
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CHAPTER 2

PERCEIVED QUALITY FOR VIDEOPHONE

APPLICATION

2.1 Introduction

Over the years, multimedia applications have conquered many segments of the telecom-
munications industry. We are dealing today with multimedia services in many areas,
starting with the various digital television systems, video-telephony, video-on-demand
(VOD), Internet Protocol television (IPTV) or simply video-sharing services like YouTube
or Dailymotion. Multimedia services represent an important part of the global IP traffic
that is constantly growing. In the last statistics reported in [18], mobile video services
will generate three quarters of mobile data traffic by 2020. Among the most popular
multimedia services, the video conversational applications are in full development. In
a competitive market, various Over The Top (OTT) players are emerging: Skype, Mes-
senger, Facetime, WeChat, Duo, etc. For example, the statistics show that Skype has
more than 300 million monthly active users [19] with 3 billion minutes per day spend on
Skype video calls [20].

The development of appropriate methods for measuring and monitoring the per-
ceived quality of these new services becomes thus a major challenge for telecommuni-
cation operators. This chapter presents several of our efforts to investigate the issues
concerning the perceived quality for videoconferencing application, collaborated with
Orange.

• Wa have conducted two subjective experiments to assess the perception of video
conference service users under different conditions, and to constitute a sequences
database to evaluate the performance of the objective quality metrics. We inves-
tigate the video, audio and audiovisual quality and asynchrony perception under
two different situations: a non-interactive and an interactive conversational one.
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We analyze the effects of network impairments (packet loss, jitter, delay) on per-
ceived audiovisual, audio and video quality. We evaluate the impact of experi-
mental context and scene complexity on the quality perception in case of video
calls. Furthermore, we propose new acceptability thresholds of audio-video asyn-
chrony in video telephony context and study the effect of synchronization in the
presence and absence of network degradation.

• We surveyed the most recently developed objective full-reference (FR) video
quality metrics and we evaluate their prediction accuracy on four different subjec-
tive databases: the Live Mobile video quality Database, the EPFL database and
two videoconferencing databases developed by Orange Labs. We investigate the
assessment of video quality in the context of videoconferencing and video call
communications.

2.2 Non-interactive subjective test

In this section, we present a non-interactive audiovisual quality assessment experi-
ment. Before our study, there were few studies addressing the impact of the network
settings on perceived multimedia quality [21], and the combination of the network im-
pairments and non-synchronized audio and video had not been well studied.

2.2.1 Experimental set-up and recording

In order to generate our test database, we used a PC-based video conferencing soft-
ware internally developed in Orange. The reason of this choice is that it allows sharing
multimedia contents between two users and separating audio and video IP flows. Thus,
we were able to simulate degradations on audio and video independently. We used the
audio-visual communication protocol H.323 recommended from the ITU [22] to transmit
calls between two users.

To simulate network degradations, we used the NetDisturb software [23] which al-
lows disturbing flows over IP network by generating user-defined impairments (latency,
jitter, packet loss . . . ). The interest of using a network simulator, instead of the real
network, in our experience was to totally control the IP network degradation, provide
repeatable QoS on audio and video flows using predefined configuration mode and
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values, and re-create real world problems in the laboratory. We inserted a machine
equipped with NetDisturb between our two clients connected via an Ethernet local net-
work.

Once a conference call was set up, the client sender transmitted the original au-
dio, video or audiovisual files to the receiver (see Fig. 2.1). Then, we controlled the
packets transmission between them by adding packet losses, jitter and delay. At the
receiver side, we recorded the degraded sequences and captured IP packets traveling
over the network (pcap format). To ensure a perfect playback, all recorded multime-
dia sequences were processed and stored as raw YUV 4:2:0 for the video stream and
uncompressed Pulse Code Modulation (PCM) for the audio stream.

Figure 2.1: Simulation platform design.

2.2.2 Test conditions

The distortions we simulated reflect the range of IP network impairments including
packet loss, jitter and delay, of which the tested values are listed in Table 2.1, where a
negative value of asynchrony means that the audio stream is delayed according to the
video and a positive value means that it is advanced.

Video packet loss VPL ( %) 0, 0.5, 1, 2
Audio packet loss APL (%) 0, 2, 5, 20
Video jitter (ms) 0, 60
Audio jitter (ms) 0, 30
Audio-video asynchrony (ms) -400, -250, -150, 0, +50, +150, +400

Table 2.1: Experiment parameters
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Restaurant Desk Sofa

Poster Hall Park

Figure 2.2: Frame captures from the original sequences.

2.2.3 Methodology and test protocol

Six sequences (Restaurant, Desk, Sofa, Poster, Hall and Park, cf. Fig. 2.2) were se-
lected to represent different contexts of real life video calls and different levels of spatial
and temporal complexities. The duration of the sequences is 8 -10 seconds. The ex-
perimental conditions are summarized in Table 2.2.

Video Audio
Codec H.264/AVC Codec AMR Wideband

(constrained base-
line)

Bit rate 768 kbps Bit rate 23.85 kbps
Resolution VGA (640× 480) Channels 1
Frame
rate

15 fps Sampling 48000 Hz

GOP size 10 frames frequency
Video
color
scheme

16 bit YUV (4:2:0)

Table 2.2: Experimental conditions used in the subjective study

The experiment was organized in three sessions as detailed in Table 2.3. The ex-
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2.2. Non-interactive subjective test

perimental method was the 5-grade Absolute Category Rating (ACR). A total of 30 sub-
jects (13 male, 17 female) participated in the experiment. We realized the audio-only
and the video-only test with 15 subjects while the audiovisual test was carried out with
the other 15 subjects. They were provided with a high quality headphone (Stax SR-404)
for sound reproduction. The experiment was performed in an acoustically treated room
especially designed for audio and video quality tests. The signals were presented to
the subjects via an LCD computer monitor with a 1024× 768 resolution. The evaluation
score was indicated on a tablet next to the screen on the right of the subjects.

Test Duration Sequences Conditions Outputs
Audio only 10min 36 5 MOSA
Video only 10min 36 5 MOSV
Audiovisual 1h30 176 33 MOSAV

MOSAVA
MOSAVV
MOSsynch

Table 2.3: Three test sessions, where MOSsynch is the audio-video asynchrony score.

2.2.4 Results and discussions

The test results were summarized by computing the averaged MOS values for each
test condition over the six sequences. No subject was excluded after the screening.
The Mann-Whitney U test was used for the significance test, because our data does
not follow the normal distribution.

Audio-video quality Interaction The plots in Fig. 2.3 show the MOS scores aver-
aged over all sequences for both test sessions. They demonstrate that the experiments
have been properly designed, as the subjective rates uniformly span over the entire
range of quality levels. By plotting MOSV vs. MOSAVV and MOSA vs. MOSAVA , and
calculating their linear correlation coefficients ρ, we noticed that the perceived audio
and video qualities are weakly influenced by the audiovisual context. Mann-Whitney
test results revealed that there is no significant difference between scores of the two
sessions ( audio-only and video-only vs. audiovisual).

We are also interested in studying the mutual interaction between the individual
audio and video streams. A statistical test revealed that in an audiovisual context the
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(a) (b)

(c)

Figure 2.3: Mutual interaction between audio (a) and video (b) qualities and the impact
of audio and video quality on overall audiovisual quality (c).

impact of the video impairments on the perceived audio quality is not significant. On an-
other hand, the audio impairments have a small impact on the perceived video quality.
For the same video quality level, MOSAVV values decrease slightly with the percentage
of audio packet loss. This drop in MOS scores is more significant in the case of good
and average video quality levels (0%VPL, 0.5%VPL). When the video quality is already
poor (1%VPL and 2%VPL), quality judgment is not affected by the audio degradation
(there is not a significant difference).

Fig. 2.3 (c) shows the interaction between audio and video quality levels in influ-
encing the overall audiovisual quality. The presented results were averaged over all
delays (synchronous and not synchronous contents) and over all contents. It reveals
that for the same audio quality levels, decreasing the video quality generally results in
inferior audiovisual ratings. Alongside, for the same video quality, decreasing the audio
quality generally results in inferior audiovisual ratings. The impact of video impairments
on audiovisual quality at good audio quality level is more significant than at poor and
bad audio quality levels. Concerning the jitter condition, it had the biggest impact on
decreasing the audiovisual quality.
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(a) (b)

Figure 2.4: Synchronization acceptability chart.

Audio-video Synchronization Limited by the number of conditions and the dura-
tion of the test, we could not cross the 6 different values of delay with all the network
degradation levels which explained the lack of some points on Figure 2.4. But we are
still able to identify thresholds of synchronization acceptability. We set MOSsynch = 4
and MOSAV = 3 as the acceptability limits, corresponding to thresholds when the sub-
jects begin to be disturbed and when the audiovisual quality becomes poor. For audio
delayed with more than 250 ms and advanced with more than 150 ms, the desychro-
nisation becomes annoying and the audiovisual quality decreases. We also notice that
the presence of video packet loss impairments have a little, but not significant impact on
synchronization. The perception of audiovisual quality and synchronization is sensitive
to network degradation mainly related to video streams.

2.3 Interactive subjective test

To be closer to a real-life video-conferencing, we present an interactive conversational
subjective test in this section. Before our study, few studies have been conducted for
evaluating the audiovisual quality in conversational context [24, 25, 26].

2.3.1 Experimental set-up and recording

Figure 2.5 depicts this test platform. User PC1 and user PC2 are two identical systems,
placed in two separate rooms and connected via a local Ethernet IP network. Other
experimental settings are the same as in the non-interactive test.
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Figure 2.5: Simulation platform design.

2.3.2 Test conditions

Since the interactive takes longer time, we have less conditions here. We only gen-
erated two levels of audio and video packet loss which represent the extreme ranges
of quality: 1-hardly perceptible, 2-highly annoying. All conditions were symmetric so
that the test participants experienced the same quality on both ends of the connec-
tion. We randomized the order of the conditions. Table 2.4 provides an overview of the
transmission parameters evaluated in this study.

Video packet loss VPL ( %) 0, 0.5, 2
Audio packet loss APL (%) 0, 5, 20

Audio Delay AD (ms) 0, 250, 400
Video Delay VD (ms) 0, 150, 400

Table 2.4: Experiment conditions
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2.3.3 Methodology and test protocol

In order to consider the influence of scene complexity and keep the experiment time
within limits, we have configured the two rooms with two different levels of video com-
plexity:

• Room 1: where the background behind the subject is a simple white wall (cf. Fig.
2.6.a).

• Room 2: where the scene has a certain spatial and temporal complexity. A poster
and a plant behind the subject, and one Orange staff walk behind him from time
to time (cf. Fig 2.6.b).

The rooms have been acoustically treated and they have a similar audio background.

(a) (b)

Figure 2.6: Screen captures of the conversation in Room 1 (a) and Room 2 (b).

The test has been conducted in an interactive scenario. We proposed a game to
stimulate the conversation between the two subjects. For a subject, the objective of
the game, was to let its partner guess a word without using the word itself or five
additional words listed on a card. We gave each subject 20 cards. This conversation
task is similar to the Name-Guessing task from the ITU-T Recommendation P.920 [27].
The subjects could also discuss on their own topic if they prefer. The duration of each
conversation was around 3 or 4 minutes. Each discussion corresponds to a specific
set of impairments of audio and video. The subjects tested 9 different conditions where
the audio and video impairments are independent (limited by the test duration, the
interaction between the conditions was not tested).
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Twenty subjects (9 male, 11 female) participated in the experiment. They were all
inexperienced in evaluating audiovisual quality in such a context, but the majority had
already experienced a video-conference call. Subjects were asked to rate the perceived
overall audiovisual quality (MOSAV ), audio quality (MOSA) and video quality (MOSV )
and the audio-video synchrony annoyance (MOSsynch), using the 5-grade ACR.

2.3.4 Results and discussions

The results of the subjective experiment are summarized by averaging the scores as-
signed by the panel of participants for each conversation. For the comparison between
the interactive and non-interactive experiments and between the scenes with different
complexity, the Mann-Whitney U test [28] is used since the data does not follow the
normal distribution. We set the significant difference level to α = 0.05. Our screening
results show that no subject has to be excluded.

(a) (b)

(c) (d)

Figure 2.7: Interactive vs. non-interactive MOS scores

Influence of the experiment context: interactive vs. non-interactive We firstly
investigate the influence of the experimental context (non-interactive vs. interactive)
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on audiovisual quality (AVQ), video quality (VQ), audio quality (AQ) and audio-video
synchronization acceptability. Figure 2.7 shows the MOS scores obtained in the two
contexts averaged over all scenes.

By comparing the two plots in Figure 2.7.a, we observe that there is a significant
difference between MOSAV scores in case of 0.5% video packet loss and 20% audio
packet loss. This may indicate that subjects are more sensitive to low video impair-
ments when they communicate than when they passively watch an audiovisual se-
quence. The interactive task may make the subjects discriminant and severe in the
assessment of the audiovisual quality since the video impairments may have more
psychological impact on the visual communication they are involved in. However, for
important VPL (2%) the quality is poor enough that there is not a significant difference
between subjective scores in the two contexts. The subjects give a significantly higher
quality note in the interactive context than in the non-interactive context when the au-
dio quality is very low. This may indicate that their attention on the audiovisual quality
judgment may be diverted by the guessing game.

For the perceived video quality, Figure 2.7.b shows no significant difference be-
tween the two contexts. Subjects perception of the video quality and concentration on
the artifacts are the same. Nevertheless, we report a significant difference of perceived
audio quality between the two contexts (Figure 2.7.c). Considering the variances, we
note that for the interactive test there was not a significant difference between reference
and 5%APL condition, while for the non-interactive there was this significant difference
– indicating that the impairments are more noticeable in the non-interactive context.
The reason of this variance may be that the audio impairments are more noticeable
when the subjects are just viewing and listening to an audiovisual content. Then, they
are more concentrated and they are more able to notice the impairments.

Concerning the thresholds of desynchronization acceptability, as it can be seen in
Figure 2.7.d, there is not a significant difference between the two test contexts.

These results may be true for our tested conditions where only one source (video
or audio) was impaired at the time (no interaction between the conditions). Previous
studies showed that when both audio and video were impaired, differences in MOS
ratings were found [25].

Influence of scene complexity for interactive test We are also interested in the in-
fluence of the scene complexity on multimedia quality and audio-video synchronization
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(a) (b)

(c) (d)

Figure 2.8: Impact of scene complexity for interactive experiment context.

acceptability for the interactive test.

Figure 2.8 shows the MOSAV , MOSV , MOSA and MOSsynch scores associated
to 95% confidence intervals, according to the quality condition and scene complexity.
"R1" denotes the perception of the complex scene of Room 2 from Room 1; and "R2"
denotes the perception of the simple scene of Room 1 from Room 2.

We can see that generally the perceived AVQ is higher in a simple scene than that
in a complex scene at the same degradation levels (an average drop of MOSAV score
is about 0.5). The statistical test reveals that there is a significant difference between
subjective MOSAV scores for the two rooms. This may indicate that when a scene is
composed of complex spatial and temporal elements (presence of high frequencies
in the picture and high amount of temporal activity), the network impairments would
have a greater impact, and the artefacts (block loss and blockiness) would be more
visible. In fact, scenes with high temporal and spatial complexities require more bit rate
to be encoded. At a constant bandwidth, more encoding artefacts will occur and the
efficiency of the packet loss concealment algorithm is reduced [29].

For the video quality (Figure 2.8.b), there is not a significant difference between
Room1 and Room2. We have expected to have a significant difference in the results
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(a) (b)

(c) (d)

Figure 2.9: Impact of scene complexity for non-interactive experiment context.

because the complexity of the scenes is guessed to have a stronger impact on video
quality than on audio quality. This may be explained by the fact that the difference of
complexity between the scenes is not sufficient to have an impact on the perceived
video quality.

For the perceived audio quality (Figure 2.8.c), there is no significant difference be-
tween the results for the two rooms. This is logic since the spatial complexity is not
expected to have an effect on audio quality. Furthermore, the audio background de-
ployed in our experiment was the same when it comes to the both rooms used. Thus,
the used audio background did not allow to reveal any impact in this case.

Figure 2.8.d shows that the synchronization annoyance of the subjects is also influ-
enced by the spatial and temporal complexity of the perceived scene. The differences
in MOSsynch are statistically significant. These plots of synchronization acceptability
are coherent with the MOSAV results even if the difference of MOSsynch between the
two rooms is more important. This may indicate that an increased temporal activity has
a direct impact on perceived lip synchronization since the movements disturb subject
concentration.
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Influence of scene complexity for non-interactive test In order to stay coherent
with the conversational test we present in this part a comparison between subjective
results of the "Sofa" and the "Hall" scene. We chose these sequence scenes due to the
difference of spatial and temporal complexity between them and to the similarity they
have with the interactive scene content.

In Figure 2.9, MOSAV , MOSV , MOSA and MOSsynch scores are represented and
associated with 95% confidence intervals, according to the quality condition for each
scene. We report a significant difference in MOSAV scores between the sequences for
all the test conditions except the reference, 20%APL and 400 ms video delay. Thus,
compared with Figure 2.9.a, we deduce that overall quality perception is influenced by
the complexity of the perceived scene in both interactive and non-interactive context.
This observation affirms that the environment and the position of the person on the
video call is a parameter to take into account to evaluate the perceived communication
quality. This complexity impact could be studied through a non-interactive experiment.

For the video quality, there is a significant difference in MOSV (Figure 2.9.b). In fact,
the subjective scores of the complex scene ("Hall") are lower than that of the simple
scene. This observation is justified by the fact that video artifacts caused by packet
losses are more visible with sequence complexity. We notice that the SI difference
between the two scenes here is much bigger than that in the interactive context. This
may explain why we did not observe a significant difference in MOSV in the interactive
context.

As it can be seen in Figure 2.9.c there is not a significant difference of audio score
between the two scenes. This result is expected since scene complexity has not an
effect on audio quality perception, and consistent with the finding in the interactive
context.

Figure 2.9.d shows that the subjects’ reaction to desynchronization annoyance is
the same for the two scenes, no significant difference is noticed. Thus, unlike the in-
teractive context, in a non-interactive context the scene complexity does not impact
audio-video synchronization perception. Previous studies have shown that in a passive
context, large delay in the audiovisual signals does not necessarily impact the quality
perception as test subjects accommodate for it [30].
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2.4 Comparative study of existing FR VQA metrics

While the POLQA model has been widely accepted within Orange as the objective au-
dio quality metric, objective video metrics have not yet been tested for the videoconfer-
encing application. In this section, we present a survey of recently developed objective
FR video quality assessment (VQA) metrics and we evaluate their prediction accu-
racy on four different subjective databases: the Live Mobile video quality Database,
the EPFL database and two videoconferencing databases developed by Orange Labs.
We investigate the assessment of video quality in the context of videoconferencing and
video call communications. We choose these subjective database because of the na-
ture of the contents and the variety of the simulated impairment types: transmission
error (packet loss, jitter, freezing, etc.), coding (variable bit rates), and frame rate. Note
that these metrics had not been compared with each other before this study.

2.4.1 Tested FR VQA metrics

The selected algorithms which we studied have been widely cited in the literature and
reported to have good performances. Moreover, the authors of the selected metrics
have released the source codes. Therefore, the presented results are easy to repro-
duce. The ten FR video quality assessment metrics described in the following subsec-
tions include Peak Signal to Noise Ratio (PSNR), structural similarity index (SSIM) [31],
multi-scale structural similarity index (MS-SSIM) [32], video quality metric (VQM) [33]
(including its general model and videoconferencing model), Open Perceptual Video
Quality metric (OPVQ) [34], motion-based video integrity evaluation (MOVIE) [35] ,
ViS3 [36], SSIMplus [37] and video multi-method assessment fusion (VMAF) [38]. Ob-
jective MOS prediction metrics are also standardized by the ITU (J. series recommen-
dations) to assess the video quality. It would be interesting to compare their prediction
accuracy with the diverse full reference metrics. However, we do not have access to
these models because of their commercial licenses. For instance, the model J.247 is
owned by the company OPTICOM. We introduce in our study an open source imple-
mentation of this model named OPVQ [34] which does not implement the temporal
alignment part of J.247 due to its patent. In Tab. 2.5 we summarize the characteristics
of the surveyed metrics.
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Table 2.5: Comparison of the charasterisctics of the full reference objective metrics
Metric Approach Temporal

Pooling
method

Value
Range

Execution
time (nor-
malized
based on
PSNR)

Implementation

PSNR Mean square
error measure-
ment

Mean over the
frames

[0, 100] 1 MSU software
[39]

SSIM [40] Structural
distortion
measurement

Mean over the
frames

[0, 1] 1.05 MSU software
[39]

MS-SSIM
[32]

Multi-scale
structural
distortion
measurement

Mean over the
frames

[0, 1] 2 MSU software
[39]

VQM [33] Edge impair-
ment filter

Compute Tem-
poral Informa-
tion (TI)

[0, 1] 30 NTIA software
[41]

MOVIE [35] Gabor filter
bank

Temporal dis-
tortions index

[0, 1] 456 Source Code
[42]

ViS3 [36] detection-
based and
appearance
based strate-
gies of the
MAD algorithm

Spatiotemporal
dissimilarity
index

[0, 100] 23 Matlab code [43]

SSIMplus
[37]

Contrast sensi-
tivity function

Mean over the
frames

[0, 100] 4 SSIMwave soft-
ware [44]

VMAF [38] Machine
Learning

Temporal
information
among the
elementary
metrics

[0, 100] 26 Source code
[45]

OPVQ [34] ITU-T J.247 Mean over the
frames

[1,5] 19 OpenVQ Toolkit
[46]

2.4.2 Test databases

To investigate the performance of the above mentioned video quality metrics, we com-
pare the results on different subjective databases. With the aim of having large test
database with diversified conditions and impairment types which may be encountered
in videoconferencing applications, we selected four databases to work on: The LIVE
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mobile video quality database [47, 48, 49], the EPFL video database [50, 51] and two
Orange internal subjective test databases [52].

The Orange 1 database is obtained from our non-interactive test (cf. section 2.2).
The Orange 2 database is an internal Orange database, of which the initial aim is to
study the influence of coding bit rate and frame rate on the perception of video quality
in the context of videoconferencing and video-calling services. Three reference audio-
visual sequences are used. They were uncompressed (YUV 4:2:0 with pixel depth of 8
bits) in VGA resolution. These sequences have different levels of complexity in terms
of movement, details and texture. The video part of these sequences was encoded
using H.264 ( Baseline and High profiles) and H.265/HEVC codecs. Six video coding
bit-rates (64, 128, 256, 384, 576 and 768 kbps) were adopted in order to be represen-
tative of the common use case conditions. The test sequences were displayed on a
Nexus 6 phablet (5.96", 1440× 2560).

Table 2.6: Properties of subjective VQA databases
Live Mobile EPFL Orange 1 Orange 2

Nbr. of sequences 200 78 30 95
Nbr. of references 10 6 6 3
Resolution HD 1280× 720 CIF VGA VGA
Duration 10 s 8 to 10 s 8 to 10 s 10 s
Frame rate 30 fps 30 fps 15 fps 15 and 30 fps
Distortion types H.264 - 4 diff. bitrates packet loss Packet loss H.264 High profile

wireless packet loss Jitter H.264 Baseline profile
frame freezes H.265 encoding
rate adaptation
temporal dynamic

Encoder H.264 AVC H.264 AVC H.264 AVC H.264 and HEVC
Assessment method SSCQE with HR SS ACR ACR
Subjective scores DMOS [0, 5] MOS [0, 5] MOS[1, 5] MOS[1, 5]
Nbr. of subjects 36 40 15 22

2.4.3 Performance comparison

We evaluate the performance of the full reference metrics under study using three
statistical indicators (PLCC, SROCC and RMSE). The performance of all metrics are
summarized in Table 2.7.

All three statistical measures (PLCC, SROCC and RMSE) show that generally three
metrics (i.e. SSIMplus, ViS3 and VMAF) outperform the other metrics. The common
characteristic of these metrics is that they are video metrics that include the movement
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Table 2.7: Statistical correlations of full reference metrics with the MOS scores (the
best three performing metrics are highlighted in bold font for each test database and
each criterion).

PSNR SSIM MS-SSIM VQM-G VQM-V OPVQ MOVIE Vis3 SSIMplus VMAF
EPFL database

PLCC 0,88 0,89 0,89 0.90 0.89 0.91 0,87 0,92 0,93 0,91
SROCC 0,87 0,91 0,92 0.88 0.90 0.89 0,87 0,90 0,92 0,92
RMSE 0,68 0,66 0,65 0.61 0.65 0.60 0,71 0,58 0,54 0,55

Live Mobile database
PLCC 0,71 0,65 0,65 0.83 0.82 0.85 0,71 0,84 0.84 0,86

SROCC 0,65 0,60 0,65 0.79 0.77 0.82 0,64 0,75 0.76 0,77
RMSE 0,62 0,66 0,66 0.50 0.52 0.52 0,61 0,52 0.46 0,45

Orange database 1
PLCC 0,72 0,79 0,81 0.69 0.72 0.66 0,74 0,85 0,79 0,22

SROCC 0.68 0,71 0,77 0.72 0.74 0.67 0,72 0,82 0,74 0,23
RMSE 0.45 0.46 0,46 0.49 0.46 0.51 0,53 0.42 0,48 0,68

Orange database 2
PLCC 0.48 0.52 0.48 0.55 0.58 0.57 0.73 0.74 0.81 0.82

SROCC 0.57 0.63 0.62 0.32 0.37 0.54 0.53 0.91 0.75 0.76
RMSE 0.61 0.60 0.61 0.53 0.51 0.61 0.54 0.52 0.41 0.43

information in their quality assessment algorithms. On the other hand, classic image
based metrics (PSNR, SSIM and MS-SSIM) are the least correlated with the subjective
video quality judgment.

By comparing the two VQM models (NTIA general and videoconferencing model)
there is no significant difference between the correlation values when they are ap-
plied on typical distortion errors in video transmission (appearing in the Live Mobile
and EPFL databases). But VQM Videoconferencing model outperforms the NTIA Gen-
eral model when the video contents are close to a videoconferencing context where
subjective scores are more influenced by this context (cases in the Orange1 and Or-
ange2 databases). On the other hand, we note that both V QMG and V QMV models
performs worse when video sequences are encoded with H.265/HEVC (cf. results on
the Orange2 database). This may be interpreted by the optimization of these models
for video sequences encoded with H.263 and MPEG-4 [53].

Even though the OPVQ model provides support for only a limited set of spatial
resolutions (VGA, CIF and QCIF) and has been tested and validated for VGA reso-
lution only, our correlation results prove that it could be applied on HD sequences(cf.
their good performances on the EPFL and LIVE databases). Furthermore, the coef-
ficient parameters of the OPVQ model are trained on a data set containing quality
impairments related to H. 264, H. 264/SVC and MPEG-4 coding, transmission errors,
temporal dynamics (switches in video coding bit rates during the sequence). We find
thus that it has a good performance (a correlation value of 85%) for the cases including
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these degradations, such as in the Live Mobile database.

However, the model has lower performances for cases with new degradation types
(e.g. jitter, HEVC coding, frame rate changes) for which the model was not trained, cf.
the results on the two Orange databases.

The main strength of MOVIE is video quality estimation according to motion tra-
jectories. The metric is accurate in detecting distortions that appear in regions con-
taining movements. This explains its good performances for the EPFL and Orange 1
databases. In fact, it is known that unlike application distortions (coding, frame rate,
resolution, etc.) independent from the content, the transmission impairments (in par-
ticular the packet loss) infect objects on movement (which do not belong to the scene
background).

A previous review [16] in 2011 showed that MOVIE had the best correlation with
subjective opinions on LIVE video quality database, before the appearance of Vis3,
SSIMplus and VMAF. The major drawback of MOVIE is its extremely high calculation
complexity. MOVIE is the most complex metric in our experiment, which needs much
more time than any other metric. This prevents its practical use in operational context.

Results shown in Table 2.7 reveal that Vis3 is competitive against the other met-
rics. The spatio-temporal dissimilarity estimation based on the video decomposition
into spatio-temporal slices (STS) makes the algorithm less sensible to the temporal
alignment between the reference and the degraded sequences. In fact, due to the
videoconferencing software and the recording process used to generate the Orange
1 database, we notice a slight misalignment in frames of the reference and those of
the test videos. This difference impacts all the other objective metrics scores that are
based on frame by frame comparison except ViS3 which is based on the Group Of
Pictures (GOP) comparison. Thus, the most correlated metric for Orange 1 database
(in terms of PLCC and SROCC) is ViS3. Furthermore, the performance comparison of
ViS3 with the state-of-the-art video quality metrics by P.V. Vu and D.M. Chandler [36]
reveals that for IP packet loss impairments, VQM General model and MOVIE outper-
form Vis3 for some databases. However, we prove that for videoconferencing contents
ViS3 may be a good indicator for video quality in transmission error conditions too (cf.
results on EPFL and Orange 1 databases).

By comparing all the results we notice that generally, for all degradation types and
all the databases, SSIMplus is one of the most competitive metrics. Despite the fact that
we did not contain impairments in the range of device variability and viewing conditions
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in our experimental tests, the SSIMplus shows an accurate video quality prediction
ability. Note that the SSIMplus software version that we used was not designed to
handle the cases with freezes frames where there is a large temporal misalignment
between the reference and the degraded sequences. This explains why the SSIMplus
has lower performances on the LIVE Mobile database. But there is a feature built in
a commercial SSIMplus LIveMonitor software that automatically align frames up to 10
second difference.

Concerning the VMAF metric, it is highly correlated with the subjective results for
all the tested cases except when only network impairments (packet loss and jitter)
were simulated (the case of the Orange1 database) . We recall that the VMAF met-
ric approach is based on a machine learning algorithm. Consequently its prediction
accuracy largely depends on the characteristics of the training database: impairment
types, codec configuration, resolution, frame rate, etc. Indeed, this model has been
currently learned on sequences with only degradation caused by changes in resolu-
tion and different encoding bit rates. The EPFL database also contains only transmis-
sion errors but VMAF shows a good prediction accuracy (PLCC=91%, SROCC=92%,
RMSE=0.55). In fact, IP network video packet loss depends highly on the used degra-
dation simulator, the test bed and especially the video decoder and the jitter buffer.
For the Orange1 database, some experts visualized the sequences and chose those
with more perceived and annoying packet loss (degradation in regions of interest). Fur-
thermore, a random model was used to simulate packet loss degradation for Orange1
database while the Gilbert-Elliot model was used for EPFL database. This difference
between the models may explain the difference of the degradation perception.

Table 2.8 reports the statistical significance results of the F-test on the variance
of the objective models at a 95% significance level. Each entry in the table consists
of 4 symbols corresponding to the databases "EPFL", "LIVE Mobile", "Orange1" and
"Orange2". The symbol "+" indicates that the statistical performance of the VQA metric
in the column is superior to that of the metric in the row. The symbol "-" means the
opposite, while "0" indicates that the statistical performance of the metric in the row is
equivalent to that of the metric in the column. Generally, the statistical analysis shows
that at a 95% confidence interval, all other metrics outperform PSNR and SSIM. It also
proves that the most consistent results with a high accuracy have been achieved by
three metrics, i.e. ViS3, SSIMplus and VMAF.
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Table 2.8: Statistical significance table based on residuals between model predictions
and the MOS values for respectively the EPFL, LIVE Mobile, Orange1 and Orange2
databases. The symbol "+" indicates that the statistical performance of the VQA metric
in the column is superior to the one in the row. The symbol "-" means the opposite,
while "0" indicates that the statistical performance of the metrics in the row and in the
column are equivalent.

PSNR SSIM MS-SSIM VQM-G VQM-V OPVQ MOVIE ViS3 SSIMplus VMAF
PSNR 0 0 0 0 0 0 0 0 0 0 + 0 0 + 0 + 0 + 0 + 0 + 0 + 0 0 0 + 0 + + + 0 + + + + + - +
SSIM 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 + 0 + 0 + 0 + 0 + 0 + 0 + + + + + 0 + 0 + - +

MS-SSIM 0 0 - 0 0 0 0 0 0 0 0 0 0 + - + 0 + - + 0 + - + 0 + 0 + 0 + + + 0 + 0 + 0 + - +
VQMG 0 - 0 - 0 - 0 0 0 - + - 0 0 0 0 0 0 0 0 0 0 0 0 0 - + + 0 0 + + 0 + + + 0 + - +
VQMV 0 - 0 - 0 - 0 - 0 - + - 0 0 0 0 0 0 0 0 0 0 - 0 0 - 0 + 0 0 + + 0 + + + 0 + - +
OPVQ 0 - 0 - 0 - 0 - 0 - + - 0 0 0 0 0 0 + 0 0 0 0 0 0 - + + 0 0 + + 0 0 + + 0 0 - +
MOVIE 0 0 0 - 0 - 0 - 0 - 0 - 0 + - - 0 + 0 - 0 + - - 0 0 0 0 + + + + + + + + + + - +
ViS3 0 - - - 0 - - - 0 - - - 0 0 - - 0 0 - - 0 0 - - - - - 0 0 0 0 0 0 0 - + 0 0 - +

SSIMplus 0 - - - - - 0 - 0 - 0 - 0 0 - - 0 0 - - 0 0 - - - - - - 0 0 + - 0 0 0 0 0 0 - 0
VMAF - - + - 0 - + - 0 - + - 0 - + - 0 - + - 0 0 + - - - + - 0 0 + - 0 0 + 0 0 0 0 0

2.5 Conclusions and Perspectives

This chapitre presents two subjective audiovisual quality tests investigating audiovisual
quality in both interactive and non-interactive contexts and under different scene com-
plexities, as well as an updated survey of the state-of-the-art media-layer full reference
objective video quality models for videoconferencing application.

By comparing non-interactive vs. interactive test results, we found that statistically
there is no significant difference for MOSA, MOSV and MOSsynch scores between the
two experimental contexts. Nevertheless, considering MOSAV scores we noted a sig-
nificant difference between the two contexts. Thus, in future experiments we may rely
on non-interactive test only and apply their results (with the exception of the evalu-
ation of AV quality, for which interactive tests remain mandatory) to a conversational
context. But this result needs to be further validated. Because during the thesis work,
non-interactive test was conducted before the interactive test, the source sequences
are different in the two tests. For a more fair comparison between the two tests, it
would be better to redo a non-interactive test using the same sequences recorded in
the conversational context.

The subjective test results show that the scene complexity has an impact on the
perceived audiovisual quality in both contexts and on the perception of audio-video
synchronization in the interactive context. To add a precision detail and explain this
observation, we take two indicative sequences from the recorded conversations and
we calculate the SI and TI indexes: for the complex scene TI= 47 and SI= 79; for the
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simple scene TI= 29 and SI= 61. Thus, from this observation we might open a question
to discuss in a future study: from which difference of scene complexity we could detect
a significant difference in perceived video quality?

In all our subjective tests, we have limited ourselves to the evaluation of application
type and transmission impairments. It is obvious that a video telephony service is im-
pacted by other factors, such as context, psychological situation, type of terminal, OS
.... Enlargement to a wider spectrum of impairments and conditions would allow a finer
characterization of the quality of a video call service.

2.6 Contributions in this field

In general, our work led to a better understanding of audiovisual quality assessment
processes for videoconferencing services. The contributions are twofold: the constitu-
tion of subjective databases of audio visual sequences corresponding to a real scenario
of video call; the evaluation of the existing objective quality assessment tools for this
specific application.

Actually some other results for this field are not described in this manuscrit due
to limited space, i.e. the comparison between laboratory and crowdsourcing subjec-
tive tests, combinations of no-reference but distortion-specific metrics for global video
quality assessment using basic machine learning approaches, further analysis on the
perception of asynchrony. But these (as well as the described works) can be found in
the following related publications:

[1] I. Saidi, L. Zhang, O. Déforges, V. Barriac. “Laboratory and crowdsourcing stud-
ies of lip sync effect on the audio-video quality assessment for videoconferencing
application”. ICIP, September 2019, Taipei, Taiwan.

[2] L. Zhang, I. Saidi, S. Tian, V. Barriac, O. Déforges, “Overview of full-reference
video quality metrics and their performance evaluations for videoconferencing
application”. J. Electron. Imaging; March 2019; 28(2), 023001.

[3] I. Saidi, L. Zhang, O. Déforges, V. Barriac. “Machine learning approach for global
no-reference video quality model generation”. SPIE Optical Engineering + Appli-
cations, August 2018, San Diego, California, USA.
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[4] I. Saidi, L. Zhang, O. Déforges, V. Barriac. “Evaluation of single-artifact based
video quality metrics in video communication context”. QoMEX, May 31 - June 2,
2017, Erfurt, Germany.

[5] I. Saidi, L. Zhang, V. Barriac, O. Déforges. “Audiovisual quality study for videotele-
phony on IP networks”. IEEE Workshop on Multimedia Signal Processing (MMSP),
September 2016, Montreal, Canada.

[6] I. Saidi, L. Zhang, O. Déforges, V. Barriac. “Evaluation of the performance of ITU-
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CHAPTER 3

DIBR-SYNTHESIZED VIEW QUALITY

ASSESSMENT

3.1 Introduction

The past decade has witnessed the fast development of the 3D movie market. How-
ever, this stereoscopic video can only provide two viewpoint videos, the observer can
not get a stereoscopic perception at another viewpoint. On the contrary, Free-viewpoint
Video (FVV) allows the users to view a 3D scene by freely changing the viewpoints.
For example, Canon announced on September 2017 its Free Viewpoint Video System
that gives the users a better Quality of Experience (QoE) where they can view sport-
ing events from various different angles and viewpoints. However, containing much
more views, these applications require a huge size of data. At the same time, it is also
practically impossible to acquire images at all the viewpoints of a particular 3D scene,
which is instead captured by multiple cameras at different viewpoints. Thus, some of
the views have to be synthesized, often by using the Depth-Image-Based-Rendering
(DIBR) technique [54].

The idea of DIBR is to synthesize the virtual views by using the texture and depth
information at another viewpoint. There are two main kinds of DIBR view synthesis
algorithms (cf. Fig. 3.1): the single view based synthesis and the interview synthesis:
for the single view based synthesis, we use the one base view to synthesis another;
for the interview synthesis, we use two base views to render the middle one.

Recently, the DIBR becomes also a promising solution for synthesizing virtual views
in many other recent popular immersive multimedia applications, such as Virtual Reality
(VR) [55], Augmented Reality (AR) [56] and Light Field (LF) multi-view videos [57], etc.
For example, DIBR has already been used in a light field compression scheme where
only very sparse samples (four views at the corners) of light field views are transmit-
ted while the others are synthesized. This new scheme significantly outperformed High
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(a) interview synthesis (b) single view based synthesis

Figure 3.1: DIBR view synthesis

Efficiency Video Coding (HEVC) inter coding for the tested LF images [58]. Another
example concerns 360-degree and volumetric videos: two developing areas pointing to
how video will evolve as VR/AR technology becomes the mainstream [59]. Current 360-
degree videos allow viewers to look around in all directions, but only at the shooting
location: they do not take into account the translation (changes in position) of the head.
To achieve more immersive QoE, some companies propose to use DIBR to synthe-
size the non-captured views when users move from the physical camera’s position, as
proposed in Technicolor’s volumetric video streaming demonstration [60]. In the social
and embodiment VR media applications, where a VR media designed for 360-degree
videos mixed with real-time objects for multiple users, an eye-contact technique based
on the DIBR [60] can provide the users the viewpoint according to their eye positions,
which gives the users a better interactive QoE.

Although DIBR has a great potential, current DIBR algorithms may introduce some
new types of distortions (e.g. object shifting, ghosting effect, object warping, slight ge-
ometric distortion, stretching, blurry regions, crumbling, flickering, black holes, etc.)
which are quite different from those caused by image compression. Most compres-
sion methods can cause specific distortions [61], eg. blur [62], blockiness [63] and
ringing [64]. These distortions are often scattered over the whole image, while the
DIBR-synthesized artifacts (caused by distorted depth map and imperfect view syn-
thesis method) mostly occur in the disoccluded areas. Since most of the commonly

3. Source: https://developer.att.com/blog/shape-future-of-video

54

https://developer.att.com/blog/shape-future-of-video


3.2. FR metrics: SC-DM and SC-IQA

used 2D objective quality metrics are initially designed to assess common compres-
sion distortions, they may fail in assessing the quality of DIBR-synthesized images [65,
66].

This chapitre presents our contributions to the improvement of quality assessment
of DIBR-synthesized views, including two No-reference (NR) objective metrics and two
Full-reference (FR) objective metrics, as well as a new DIBR image database.

3.2 FR metrics: SC-DM and SC-IQA

3.2.1 SC-DM

In FR pixel-wise metrics (eg. PSNR, SSIM), the global shift in DIBR-synthesized views
is often easily penalized. To solve this problem, we propose a Shift Compensation
and Dis-occlusion based Model (SC-DM), which firstly compensating the global object
shift, and then using a disparity map as a mask to weight the final distortion. This
model can be combined with any pixel based FR metrics, but we only tested it on the
commonly used PSNR and SSIM. The SC-DM can be divided into two parts: global
shift compensation and dis-occlusion mask weighting.

Global shift compensation Fig. 3.2 (a) gives an example of the SSIM map between
the synthesized image and the reference image in the adopted database [67], it can
be observed that there is a great global shift between the synthesized image and the
reference image.

In this part, the global geometric shift is compensated roughly by a SURF [68]
+ RANSAC [69] homography approach. Firstly, SURF feature points in the reference
and synthesized images are detected and matched. Then, to be robust, the RANSAC
algorithm is used to refine the matching and estimate the homography matrix H. After
that, the pixels of the synthesized image are warped to the corresponding positions in
the reference image by H. The SSIM map before transform, the matched feature point
pairs and the SSIM map after transform are shown in Fig. 3.2.

We can observe that the global shift between the synthesized and the reference
images has been roughly compensated since only a limited number of regions gets
very low SSIM value (the black regions in Fig. 3.2(c)). Compared to the SSIM map
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(a) SSIM map before transform (b) optimized matched feature point pairs

(c) SSIM map after transform

Figure 3.2: Example of feature points matching and transform

before transform (Fig. 3.2(a)), the SSIM map after transform Fig. 3.2(c) shows that
most of the ghost effect in the SSIM map has been removed.

Figure 3.3: Example of dis-occluded mask
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Dis-occlusion Mask In this part, we use a dis-occlusion mask to weight the differ-
ence between the synthesized image and the reference image. As introduced in sec-
tion 3.1, the major problem of the DIBR method is the dis-occlusion: regions which
are occluded in the captured views become visible in the virtual ones. Due to the lack
of original texture information, a synthesized image often contains dis-occlusion holes
which significantly degrade the quality. Thus, we utilize a dis-occlusion mask to weight
the final distortion. The depth map in the original view-point (Deptho) is used to cal-
culate the dis-occlusion mask. In a rectified configuration, 3D warping process, the
horizontal disparity which is the horizontal displacement for each pixel can be obtained
by Eq. (3.1):

d = f × l
Z

(3.1)

where f , l, Z represent the camera focal length, the baseline distance between these
two views and the depth value of this pixel respectively.

The depth map in the synthesized view-point (Depths) given initial value to −1, then
the depth map in the original view-point (Deptho) is warped to the synthesized view-
point by Eq. (3.2):

Depths(i+ d, :) = Deptho(i, :); (i+ d), i ∈ [1,W ] (3.2)

where W is the image width, the colon “:” indicates all subscripts in this array dimen-
sion.

The dis-occluded mask dis_mask can then be obtained by extracting all the pixels
with value −1 in Depths, which is shown in Fig. 3.3. This mask is a binary image, the
while pixel’s value equals “1”, while the dark pixel’s value equals “0”.

Weighted PSNR and Weighted SSIM Generally speaking, the dis-occlusion mask
dis_mask, can be integrated into any existing full-reference metric as a weighting mask
since the DIBR view synthesis distortion mainly occur in the dis-occluded regions. We
propose and test the weighted PSNR (PSNR′) and SSIM (SSIM ′) as defined in the
following equations:

MSE ′ =
∑

(i,j)∈I(Isyn(i, j)− Iref (i, j))2 · dis_mask(i, j)∑
(i,j)∈I dis_mask(i, j) (3.3)
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PSNR′ = 10 · log10(255× 255
MSE ′

) (3.4)

SSIM ′ =
∑

(i,j)∈I SSIM(i, j) · dis_mask(i, j)∑
(i,j)∈I dis_mask(i, j) (3.5)

where Isyn and Iref denote the the compensated synthesized image and the reference
image respectively; dis_mask denotes the obtained disocclusion mask; SSIM denotes
the SSIM map between the compensated synthesized image and the reference image.

3.2.2 SC-IQA

In the previous model SC-DM, the global shift has not been compensated precisely,
thus later we proposed a Shift Compensation based Image Quality Assessment met-
ric (SC-IQA) for DIBR-synthesized views by using a multi-resolution block matching
method. Besides, it does not need the depth map. The block diagram is shown in
Fig. 3.4, in addition to the SURF + RANSAC homography transform, a multi-resolution
block matching is proposed to precisely compensate the object shift and penalize the
local artifacts. Besides, a saliency map is used as a weighting function to improve the
performance. The final overall quality scores are obtain by measuring the γ% worst
blocks since human observers are more sensitive to poor quality regions rather the
good ones.

Synthesize

d Image

Reference 

Image

Feature 

points

Feature points 

matching
Transform

Block 

matching

Extract worst 

γ% blocks 

Feature 

points

Saliency 

detection

Quality 

Score

First step shift compensation
Second step shift 

compensation

Figure 3.4: Block scheme of the SC-IQA metric

Multi-resolution block matching In this part, a multi-resolution block matching algo-
rithm is used to precisely compensate the shift and also to detect the large geometric
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(a) (b)

(c) (d)

Figure 3.5: Block matching: (a), (b) are the patches in the synthesized and the refer-
ence image; (c) block in the synthesized image; (d) matched block in the reference im-
age: for direct 8x8 block-matching (red block), or multiresolution block-matching (green)

distortions. We will see bellow on an example why a regular block-matching would
not be adequate. In the first step, we use a large block N1×N1 (N1 = 64) for primary
matching; then we use a small block N2×N2 (N2 = 8) for final matching. The matching
process can be described by the following steps:

1. Divide the synthetized view into a regular grid of N1×N1 blocks;

2. For each N1 × N1 block, search for the best matching block in the reference
view. The best matching block is the one showing the largest following similarity
criterion:

sim(s, r) = cov(s, r) + ε

var(s) + var(r) + ε
(3.6)

where s, r denote the blocks in the synthesized image and the reference image;
the operation cov and var denote the co-variance and variance respectively; ε is
a constant value to stabilize the division with weak denominator.

3. Each N1 × N1 block is divided into smaller N2 × N2 blocks and the process is
repeated with a smaller search window.
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Since the shift only occurs in the horizontal direction, we only search the blocks in
this direction for matching. We assume the biggest shift in the synthesized image to be
30, the search windows of N1 and N2 are restricted to 30 and 5 respectively.

The goal of this multi-resolution block matching algorithm is to compensate the
global shift and not compensate local geometric distortions, so that they will be penal-
ized. Now, if we directly use N2×N2 block for matching, and set the search window to
30 (the biggest shift range in the synthesized image), the computational complexity will
be much higher. Besides, as shown in Fig. 3.5, there exists great geometric distortion
in the red block (N1 × N1) in Fig. 3.5 (a) compared to its matched block in the refer-
ence image (the red block in Fig. 3.5 (b)). If we directly use 8 × 8 block for matching
and set the searching window to 30, the best matched block for the block in Fig. 3.5
(c) is the red block in Fig. 3.5 (d). There exists little difference between these two red
blocks, so the geometric distortion will not be penalized. On the contrary, if we use the
proposed multi-resolution block matching method, the matched block is the green one,
this geometric distortion will be surely penalized. The multi-resolution approach is thus
more efficient to find the real physically matching block, and detect wether there is local
distorsion within this block..

Saliency weighting In addition, a saliency detection [70] is also used as a weighting
map to improve the performance of the proposed metric. The distortion of eachN2×N2
block is measured by averaging the weighted mean square errors between the blocks
of the synthesized and the reference images, as shown in:

MSEB =
∑

(i,j)∈B (syn(i, j)− ref(i, j))2 × Sal_map(i, j)∑
(i,j)∈B Sal_map(i, j)

(3.7)

where B means the matched N2×N2 blocks; (i, j) denotes the pixel in the block; syn
and ref represent the blocks in the synthesized image and reference image respec-
tively; Sal_map represents the saliency map in this block.

Quality pooling Since humans tend to perceive poor regions in an image with more
severity than the good ones [71, 72], we only use the blocks with the worst quality to
calculate the final quality as shown in Eq. 3.8.

MSEW = 1
NW

∑
i∈W

MSEB(i) (3.8)
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where W represents the set of the worst γ% blocks in the image, NW is the number of
items in the set W. The final quality score is computed as the following equation:

ScoreSC−IQA = 10× log10(255× 255/MSEW ) (3.9)

where a higher quality score indicates a better quality.

3.3 NR metrics: NIQSV and NIQSV+

FR metrics always need the reference view which may be unavailable in some circum-
stances. Thus we also proposed two NR metrics for DIBR-synthesized views (called
NIQSV and NIQSV+).

3.3.1 NIQSV

The NIQSV (No-reference Image Quality assessment of Synthesized Views) metric
assume that a good quality synthesized view should present sharp and regular object
borders, smooth values inside the object and large discontinuities at the object borders.
Such “perfect” images are insensitive to opening and closing morphological operations
while some artifacts such as blurry regions around the object edges and crumbling in
the synthesized views are sensitive to such morphological operations. The crumbling is
small-sized artifacts which can be easily detected by the morphological operations with
Structural Element (SE) larger than their size; the blurry regions change much more
significantly after the opening and closing morphological operations compared to the
good quality images with sharp edges and flat areas. Thus, these properties could be
used to detect these artifacts.

The NIQSV’s block scheme is presented in Fig 3.6. It quantifies the distortions in lu-
minance component Y and chrominance components U, V using a set of morphological
operations. Then the 3 obtained distortions are pooled into one global distortion by a
weighted average. Furthermore, an edge image is utilized to weight the final distortion
since the distortions of synthesized views mainly happen around object edges.

The opening operation used on the synthesized image can help to remove some
thin blurry regions, and the following closing operation with a relatively larger Struc-
tural Element (SE) can fill the holes in the disoccluded areas. The distortion of each
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Figure 3.6: Block scheme of NIQSV

component is obtained by measuring the difference between the original component
IX and the processed component I ′X after the opening and closing operation. It can be
computed as follows:

I ′X = (IX ◦ SEo) • SEc, X ∈ (Y,Cb, Cr) (3.10)

DX = |I ′X − IX |, X ∈ (Y,Cb, Cr) (3.11)

where DX denotes the difference of each color component, IX is the corresponding
color component of the synthesized image, SEo is the SE used for opening and SEc is
the SE used for closing. In this paper, the shape of SEo and SEc is a circle, the size of
SEo and SEc is 3 and 8 respectively.

The overall distortion is obtained by the following equation:

D = (1− wc) ·DY + wc
2 · (DCb +DCr) (3.12)

which is a weighted sum of the distortions computed on each color component where
the weight is related to the parameter wc. The value of wc is set to 0.5 which means
that the distortion in luma component weights 50% in the overall distortion.

To reduce computational complexity, the edge image is firstly extracted by a pair of
morphological operators as described in Eq. (3.13). Then, they are normalized to [0, 1]
using Eq. (3.14):

E = (IY ⊕ SE)− (IY 	 SE) (3.13)

e = E/V max;V max = 255, e ∈ (0, 1) (3.14)

where SE is the structural element used for erosion and dilation, the symbols ⊕ and 	
denote the morphological dilation erosion operation respectively. The shape of SE is

62



3.3. NR metrics: NIQSV and NIQSV+

a circle and its diameter is set to 4. E/V max (where Vmax is the maximum value that
an edge-detector may provide for 8-bit images: 255) is used as the edge weight. The
final edge weight e is used to weight the overall difference D in the whole image. The
pixels with higher edge value have more weight on the distortion map. Especially, for
the pixels with no edge, the distortion on it will not be considered.

Finally, the overall image quality score NIQSV is computed as follows:

MSE ′ =
∑

(i,j)∈I e(i, j) ·D(i, j)2∑
(i,j)∈I e(i, j)

(3.15)

NIQSV = 10 · log10(255× 255
MSE ′

) (3.16)

Fig. 3.7 shows the processed images of one synthesized view in the “Newspaper”
sequence as an example.

3.3.2 NIQSV+: an extension of NIQSV

The NIQSV+, as an extension of NIQSV, is also based on the assumption that the
images with good quality are composed of flat regions separated by sharp and regular
edges. A block diagram of NIQSV+ is presented in Fig. 3.8. The proposed method
can be divided into three parts. Part A is designed to detect the blurry regions and
crumbling around the object edges, which has been introduced in the previous section
NIQSV; part B is related to the unfilled black holes in the dis-occluded areas; and part
C is the detection of stretching distortion which always occurs in the left or right side of
the synthesized view.

Detection of black holes In part B, the distortion of unfilled black hole pixels is taken
into consideration. Normally, most natural images do not contain pixels with 0 lumi-
nance value. Thus, we use the proportion of black hole pixels in the whole image to
measure this type of distortion, as defined in Eq. 3.17:

Zrate = NumofBHpixels/(W ×H) (3.17)

where NumofBHpixels denotes the number of black hole pixels in the whole images,
W and H are the width and the height of the image.
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(a) Synthesized image IY (b) Open and closed image (IY ◦ SEo) • SEc)

(c) Normalized edge weight b (d) Overall Difference D

Figure 3.7: Examples of intermediate results in the NIQSV measurement for one syn-
thesized view in the “Newspaper”sequence. The distortions marked in (a) are well de-
tected in (d), while in the non-distortion regions, such as the girl’s hair, the distortion
values are very low.
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Figure 3.8: Block Diagram of NIQSV+

Detection of Stretching In part C, a stretching measurement is defined, based on
the observation that the stretching may happen around the left or right side of the
image due to lack of the corresponding texture information, to estimate the level of
stretching in the synthesized image. The stretching is detected by measuring the crash
of horizontal gradient in the stretching area. Firstly, the horizontal and vertical gradients
are calculated with the Sobel operator. ∇ver = Iy ∗Gver

∇hor = Iy ∗Ghor

(3.18)

where Iy is the Y component of the synthesized image, Ghor and Gver denote the Sobel
horizontal and vertical gradient operator. The Average Horizontal / Vertical gradient (ḡH
/ ḡV ) in column are defined in Eq. 3.19. ḡH = ∑H

j=1∇hor/H

ḡV = ∑H
j=1∇ver/H

(3.19)

where H denotes the height of the image. Since stretching mainly happens in the
horizontal direction, the average horizontal gradient in the column can be used to detect
the stretched regions.

As shown in Fig. 3.9, the average values of the horizontal gradient in the stretched
area (in the right side) are very low. The Stretching Width (Ws) is obtained by calculating
the width of this area.

Ws =
0.1×W∑
j=1

S +
W∑

j=0.9×W
S (3.20)
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(a) Synthesized Image (W = 1024, H = 768)
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Figure 3.9: Synthesized Image and its corresponding average horizontal gradient

where S is a index to mark the stretching areas. Since the stretching artifacts only
occur in the left or the right side of the image, 0.1 ×W and 0.9 ×W are used to take
into account only the side portions of the image.

S =

 1, ḡH < ε

0, else
(3.21)

where ε is a threshold used to extract the stretching regions, its value is set to 50%
of the mean value of ḡH . However, even with the same stretching width, the percep-
tual annoyance could be different in different textures. In order to handle this issue, a
Stretching Rate (Rs) is defined by comparing the average gradient in the stretching re-
gions and those in the adjacent non-stretching regions with the same width, as shown
in Fig. 3.9. The more similar these two regions are, the less the stretching will be per-

66



3.4. Performance evaluation of four proposed metrics

ceptible. Since the mean horizontal gradient of these two regions is quite different, we
only compare the vertical gradients.

Rs = ∇ref −∇str

∇ref

(3.22)

where ∇str presents the average ḡV value in the stretching area, ∇ref is the average
ḡV value in the adjacent non-stretching regions with the same width. When the ∇str

and ∇ref values are closer, this type of distortion is less significant, and the SR value
is lower. The final stretching distortion is calculated as follows:

S_index = (log10(Ws + 1) + 1)× (Rs + 1) (3.23)

Overall quality measurement Finally, the integrated overall quality score is com-
puted as Eq. 3.24 since higher stretching and black hole rate indicate bad image qual-
ity.

NIQSV+ = NIQSV

S_index× (1 + kz × Zrate) + C
(3.24)

where kz denotes the weight of black hole distortion to the final measurement. Since the
black hole pixels hold a very low proportion in the whole image, kz should be a large
value. C is a constant used to adjust the difference between the images with “black
hole” or “stretching” artifacts and those without. The dependency of these two param-
eters (kz, C) are discussed in Section 2.3. The evaluation of the NISQ and NIQSV+
proposed metrics is presented in the next section.

3.4 Performance evaluation of four proposed metrics

The performances of the four proposed metrics are evaluated and compared to other
state-of-the-art metrics using IRCCyN/IVC DIBR image database [73, 67]. This database
contains frames from 3 different MVD sequences: Book Arrival (1024×768, 16 cam-
eras with 6.5 cm spacing), Lovebird1 (1024×768, 12 cameras with 3.5 cm spacing)
and Newspaper (1024×768, 9 cameras with 5 cm spacing). For each sequence, there
are four virtual views generated from another viewpoint using the following seven DIBR
synthesis algorithms A1-A7:

• A1 [54]: the depth map is filtered to remove depth discontinuities; borders are
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cropped and then the image is interpolated to reach its original size. This may
lead to shifting and global radial artifacts.

• A2: the depth map is pre-processed in the same way as in A1, and the borders are
in-painted as described in [74] instead of being cropped. This may induce blurring
and geometry distortions around the object discontinuities since the depth map
is pre-processed by a low-pass filter.

• A3: Tanimoto et al. [75] proposed a 3D view generation system which is adopted
as a reference software by the MPEG 3D video group. The blended mode was
not used, thus meaning only one image was used to interpolate the virtual view.
The in-painting method[74] is also used in A3, which may induce blur into the
disoccluded regions.

• A4: Muller et al.[76] proposed a hole filling method aided by depth information.
The corresponding depth values at the hole boundary are examined row-wise to
find background color samples to be copied into the hole. This may fail to recon-
struct the vertical or oblique structures and complex textures. Some foreground
color may be propagated into the hole owing to the depth estimation errors.

• A5: Ndjiki-Nya et al. [77] used a patch-based texture synthesis method to fill the
missing part in the virtual view. Since the used patches are rectangular, which
may lead to block artifacts and only straight edges could be accurately recon-
structed.

• A6: Koppel et al. [78] extended A5 by a background sprite which takes the tem-
poral information into consideration to improve the synthesis.

• A7: holes in virtual views are left unfilled.

For each of the synthesized viewpoints a reference view is available as the chosen
virtual viewpoints correspond to viewpoints also acquired with a real camera.

Here the objective quality scores are firstly mapped to the subjective scores using:

DMOSp = a · scores3 + b · score2 + c · score+ d (3.25)

where score is the score obtained by the objective metric and a, b, c, d are the parame-
ters of the cubic function. They are obtained through regression to minimize the differ-
ence between DMOSp and DMOS.
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For a fair comparison with the other metrics, we use a cross-validation scenario
to obtain the performance of the proposed metric: the adopted database is partitioned
into two non-overlapping sets with randomly selected 50% images as a training set and
the other 50% as a test set. This random train-test procedure was repeated 100 times
and the average performance on the test set across the 100 iterations was reported as
the performance of our proposed method.

The PLCC, RMSE, SROCC values are shown in Table 3.1, from which we can see
that NIQSV performs much better than PSNR and SSIM and achieves very closely to
the other three FR metrics: 3DSwIM, MW-PSNR and MP-PSNR, the SROCC value is
even a little better than 3DSwIM. Compared to NIQSV, NIQSV+ improves further the
performance a lot with additional steps (detection of black holes and stretching).

Table 3.1: PLCC, RMSE and SROCC between DMOS and objective metrics. (The best
four results are marked in bold), NIQSV+_s means NIQSV with stretching detection,
NIQSV+_b means NIQSV with black hole detection

Metric PLCC RMSE SROCC

NR 3D metrics

NIQSV+ 0.7114 0.4679 0.6668
NIQSV+_s 0.6886 0.4828 0.6497
NIQSV+_b 0.6423 0.5103 0.4806

NIQSV 0.6346 0.5146 0.6167
APT [79] 0.7307 0.4546 0.7157

FR 3D metrics

SC-IQA 0.8496 0.3511 0.7640
PSNR’ 0.8242 0.3771 0.7889
SSIM’ 0.5681 0.5478 0.5475

3DSwIM [80] 0.6864 0.4842 0.6125
MP-PSNR [81] 0.6729 0.4925 0.6272
MP-PSNRr [81] 0.6954 0.4784 0.6606
MW-PSNR [82] 0.6200 0.5224 0.5739
MW-PSNRr [82] 0.6625 0.4987 0.6232

VSQA [83] 0.6122 0.5265 0.6032

FR 2D metrics

PSNR 0.4557 0.5927 0.4417
SSIM [84] 0.4348 0.5996 0.4004

MS-SSIM [85] 0.5406 0.5602 0.5021
IW-PSNR [86] 0.3608 0.6210 0.3460
IW-SSIM [86] 0.5337 0.5631 0.4795

NR 2D metrics
NIQE [87] 0.4022 0.6096 0.3673
BIQI [88] 0.5273 0.5657 0.3555

BliindSII [89] 0.5331 0.5633 0.1800

We can see that the proposed weighted PSNR (PSNR’) and SC-IQA (γ = 1) per-
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form significantly better than other tested metrics. The PLCC gain of PSNR′ achieves
36.85% compared to the PSNR. The weighted SSIM (SSIM ′) achieves a gain of PLCC
13.33% compared to the SSIM.

Table 3.2: Execution time of each IQA metric normalized base on PSNR. The met-
rics A-Z indicate NIQSV+, NIQSV, APT, 3DSwIM, MP-PSNR, MP-PSNRr, MW-PSNR,
MW-PSNRr, VSQA, PSNR, SSIM, IW-PSNR, IW-SSIM, NIQE, BIQI and BliindS2 re-
spectively.

Metric A B C D E F G H
time 21 18 13k+ 90 100 35 12.4 9.6

Metric I J K L M N O P
time 140 1 7.4 75 75 45 67.5 6.8

As NR metrics, the proposed metric NIQSV+ and APT have good performances,
even better than most state-of-the-art FR 3D metrics (except PSNR’ and SC-IQA).
APT performs a little better than our proposed method (PLCC 0.019 higher), but the
proposed method executes much faster cf. Table 3.2.

3.5 A new database for benchmarking DIBR algorithms

3.5.1 Motivation of the new database

There are several DIBR related databases, cf. Table 3.3. Each database has its own
focus. The IVC databases focus on the distortions caused by different DIBR synthesis
algorithms, the MCL-3D and SIAT database investigate the influence of traditional 2D
distortions of original texture and depth map on the DIBR-synthesized views.

Our IETR database focuses on the distortions only caused by DIBR algorithms (like
the IRCCyN/IVC DIBR database), but with state-of-the-art DIBR algorithms. The “view"
or stimuli in this subjective test indicates an individual synthesized image. In total, we
tested seven DIBR algorithms, including both the interview synthesis and the single
view synthesis methods. We selected those DIBR algorithms which produce no longer
“old-fashioned” artifacts and of which the code sources were provided by their authors.
Note that the SIAT database focuses on the effect of texture and depth compression
on the synthesized views and it contains only one DIBR algorithm. Compared to the
MCL-3D and the IVY databases, the proposed new database (1) includes not only
virtual views generated by view extrapolation, but also by view interpolation; (2) tests
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3.5. A new database for benchmarking DIBR algorithms

more and newer DIBR algorithms; (3) shows the views on a 2D display to avoid the
3D display settings and configurations influences (same approach was used in the
IRCCyN/IVC DIBR database). The IRCCyN/IVC DIBR database also focuses on the
comparison of different DIBR algorithms, but it contains some “old-fashioned” DIBR
artifacts (eg. black holes) and it contains less source images than ours. In addition,
since machine learning (especially deep learning) based methods become more and
more popular for image quality assessment recently, larger data is essential for the
development of these methods and different databases are usually needed for the
cross-validation. The proposed database can be used along with the IVC database for
this type of usage.

3.5.2 Description of the new database

Ten MVD test sequences provided by MPEG for the 3D video coding are used in this
experiment. TheBalloons,BookArrival,Kendo, Lovebird1,Newspaper, Poznan Street
and PoznanHall sequences are natural images while the Undo Dancer, Shark and
Gt F ly are computer animation images, as shown in Fig. 3.10. The characteristics of
the sequences are summarized in Table 3.4.

Eight DIBR algorithm are used in this database, cf. Table 3.5. For each single view
based DIBR algorithm, a single virtual viewpoint is extrapolated from the neighbor-
ing two views separately. For the interview DIBR algorithms, the virtual viewpoint is
synthesized based on both neighboring views. We consider thus for each reference
image, 2 virtual views synthesized by 2 interview synthesis algorithms and 12 virtual
views synthesized by 6 single view based DIBR algorithm, which leads to 14 degraded
images.

Test protocol We choose to follow the SAMVIQ protocol because of its stability, reli-
ability and relatively higher discriminability. The experiment was conducted on a NEC
MultiSync PA322UHD monitor with resolution 3840×2160. The environment of the sub-
jective experiment was controlled as recommended in the ITU-R Rec. BT.1788 [90].
Altogether, 42 naive observers (28 males and 14 females with an age varying from 19
to 52 years old) participated in the subjective assessment experiment. One observer is
eliminated after the observer screening using the method recommended in the ITU-R
Rec. BT.1788 [90]. That leads to 41 observers finally for this database.
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(a) BookArrival (b) Lovebird1 (c) Newspaper

(d) Balloons (e) Kendo

(f) Dancer (g) GT Fly (h) PoznanHall

(i) Pozan Street (j) Shark

Figure 3.10: The used MVD sequences

Subjective scores The obtained DMOS score distributions and their confidence in-
tervals are shown in Fig. 3.11. Generally, the interview synthesis methods outperform
the single view based synthesis methods in most sequences. However in some se-
quences, such as BoolArrival, the VSRS1 get better results than VSRS2 and Zhu’s
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(b) Dancer
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(c) GT Fly
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(d) Lovebird1
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(e) Newspaper
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(f) PoznanHall
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(g) Pozan Street
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(h) Shark
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(i) Balloons
Kendo

V
S
R
S
2

Z
h
u

C
ri
m

in
is
i L

L
u
o L

H
H
F L

L
D
I L

V
S
R
S
1 L

A
h
n L

C
ri
m

in
is
i R

L
u
o R

H
H
F R

L
D
I R

V
S
R
S
1 R

A
h
n R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
M

O
S

(j) Kendo

Figure 3.11: DMOS distribution and confidence intervals of the synthesized views of dif-
ferent MVD sequences and different view synthesis methods. The x-labels are V SRS2,
Zhu, CriminisiL, LuoL, HHFL, LDIL, V SRS1L, AhnL, CriminisiR, LuoR, HHFR,
LDIR, V SRS1R, AhnR ordinally. The subscript L means this virtual view is synthesized
from the neighboring left view, while the subscript R means from the right. V SRS2 de-
notes the view interpolation inter-view mode of VSRS. The error bars indicates the
corresponding confidence intervals of the tested images. The bars referring to inter-
view synthesize views are marked by red, the left-extrapolated views marked by green,
and the right-extrapolated views marked by blue.
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3.5. A new database for benchmarking DIBR algorithms

methods, but not very significantly according to the corresponding confidence intervals.
One reason could be that, owing to the inaccuracy of depth map, the same object in
the two base views are rendered to different positions which results in a “ghost” effect
in the synthesized view. However, this situation does not happen in single view based
synthesis method VSRS1.

A statistical analysis (student T-test here) was also made over the obtained DMOS

scores, to show the statistical equivalence information of the tested algorithms. The
scores of single view based methods are obtained by averaging the scores of the two
images synthesized from the viewpoints at the two sides. The t-test results show that
the view interpolation methods (VSRS2 and Zhu’s), which use the two neighboring
views as reference views, perform much better than the single view based methods.
Among the single view based approaches, VSRS1 and Ahn’s methods are significantly
superior to the others.

Table 3.4: Introduction of the tested MVD sequences
Sequence Resolution Frame No. View ref. Position View sys. Pos. SI

BookArrival 1024 × 768 58 8, 10 9 60.2348
Lovebird1 1024 × 768 80 4, 8 6 64.9756

Newspaper 1024 × 768 56 2, 6 4 61.1012
Balloons 1024 × 768 6 1, 5 3 47.6410
Kendo 1024 × 768 10 1, 5 3 48.6635

Undo Dancer 1920 × 1088 66 1, 9 5 64.1033
GT Fly 1920 × 1088 150 1, 9 5 55.5549

Poznan street 1920 × 1088 26 3, 5 4 61.3494
Poznan Hall2 1920 × 1088 150 5, 7 6 23.5174

Shark 1920 × 1088 220 1, 9 5 48.6635

Table 3.5: Type of DIBR method
DIBR method inter-view or single view (extrapolation)
VSRS2 [91] inter-view
Zhu’s [92] inter-view

Criminisi’s [93] single view (extrapolation)
Luo’s [94] single view (extrapolation)
HHF [95] single view (extrapolation)
LDI [96] single view (extrapolation)

VSRS1 [91] single view (extrapolation)
Ahn’s [97] single view (extrapolation)
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3.5.3 DIBR algorithms benchmarking using our database

We also compared the performances of several existing objective IQA metrics on the
proposed database. The obtained PLCC, RMSE, SROCC values are given in Table 3.6.
It can be noticed at once that the performances of these metrics on the presented
database are quite bad (no PLCC value more than 70%). Among which, the proposed
metrics PSNR′ (SCDM), SC-IQA and the side view based FR metric LOGS perform
the best in terms of the PLCC on this database. Especially for NIQSV+, NIQSV, NIQE
and BliindS2 NR metrics, they show weak correlations with the subjective results.

Table 3.6: PLCC, RMSE and SROCC between DMOS and objective metrics, where
“SV FR metric” indicates the side view based FR metric

Metric PLCC RMSE SROCC

FR 2D metrics

PSNR 0.6012 0.1985 0.5356
SSIM 0.4016 0.2275 0.2395

MS-SSIM 0.6162 0.1957 0.5355
IW-PSNR 0.5827 0.2019 0.4973
IW-SSIM 0.6280 0.1933 0.5950

UQI 0.4346 0.2237 0.4113
PSNR-HVS 0.5982 0.1991 0.5195

FR 3D metrics

MP-PSNR 0.5753 0.2032 0.5507
MP-PSNRr 0.6061 0.1976 0.5873
MW-PSNR 0.5301 0.2106 0.4845
MW-PSNRr 0.5403 0.2090 0.4946

VSQA 0.5576 0.2062 0.4719
PSNR’ 0.6685 0.1844 0.5903
SC-IQA 0.6856 0.1805 0.6423

SV FR metric LOGS 0.6687 0.1845 0.6683

NR 3D metrics
NIQSV 0.1759 0.2446 0.1473

NIQSV+ 0.2095 0.2429 0.2190
APT 0.4225 0.2252 0.4187

NR 2D metrics
NIQE 0.2244 0.2421 0.1360

BLiindS2 0.2225 0.2422 0.1329
BIQI 0.4348 0.2237 0.4328

The scatter plot of each IQA metric (not shown here) shows that all methods are
incapable of predicting worse qualities (bigger DMOS value indicates worse quality),
which is however consistent with the results shown in Table 3.6 where no metric has
a PLCC value higher than 0.7. While some of them do sometimes succeed in their
prediction of high qualities (consistent with their PLCC values bigger than 0.5). Be
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similar to the results in Table 3.6, the NR metrics NIQSV+, NIQSV, NIQE and BliindS2
show little correction with the subjective results, there is large empty regions in the
corresponding scatter plots (consistent with their PLCC values smaller than 0.3).

3.6 Conclusions and Perspectives

This chapitre presents four proposed image quality assessment metrics for DIBR-
synthesized views (two FR and two NR), followed by our IETR database and a rel-
atively complete benchmarking of the state-of-the-art metrics using this database. All
the data of this presented database, including images, the ground truth depth maps
and their associated DMOS, is publicly accessible (https://vaader-data.insa-rennes.fr/
data/stian/ieeetom/IETR_DIBR_Database.zip), for the improvement of the QoE of DIBR
related applications.

The test DIBR-synthesized view dedicated quality metrics (including FR and NR)
perform much better on IVC database than on the proposed IETR database. Among
which, the performance of NR metrics decrease the most, which is consistent with
the results in Tab. 3.6. One reason of this cross datasets performance decrease could
be that the DIBR NR metrics NIQSV, NIQSV+ and APT tried to optimize their per-
formances on the IRCCyN/IVC DIBR database where “old-fashioned” artifacts exist.
On the new proposed IETR database, they cannot get a good performance when the
“old-fashioned” are excluded. This indicates that further work has to be done to exploit
deeply the characteristics of these specific distortions, for new objective metrics with a
better correlation with subjective scores.

In the current database, only the MPEG MVD source images are included. In the
future work, more source images, such as the images from Middlebury database [98],
should be considered to make the experiment results more reliable.

3.7 Contributions in this field

In general, our work contributes four new dedicated metrics for DIBR-synthesized view
quality assessment, and a new DIBR-synthesized image database for benchmarks and
further development of dedicated metrics for this field.

The publications issued from these works are listed below:
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CHAPTER 4

SALIENCY AND SALIENT OBJECT

DETECTION BASICS

4.1 Definitions

Visual saliency is the distinct subjective perceptual quality which makes some items
in the world stand out from their neighbors and immediately grab our attention. Eye-
tracking is a well-known technique for analyzing the visual fixations, based on which
the saliency map can be generated. The output of the saliency detection is a saliency
map, a grayscale image that shows the probability distribution of each pixel being under
attention. The heat map is a simple colored representation of the continuous saliency
map. The salient object detection (or salient object segmentation) aims at finding
the most conspicuous objects in an image that highly catches the user’s attention, for
which the ground truth is often a binary map where the white region corresponds to the
salient object(s). The difference between the salient object detection ground truth and
the saliency detection ground truth can be seen in Figure 4.1.

The works presented in this report only focus on the objective models which are de-
signed to predict where we look on an image or a video, by using the popular datasets
constituting a ground truth in the literature. We do not study how the fixation map is
generated from the raw data obtained the eye-tracking system, nor do we study how
the saliency/heat map is generated from the fixation map. We only use the ground-truth
provided in the literature here.
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Figure 4.1: From left to right, these are original image, salient object detection ground
truth, and the saliency detection ground truth.

4.2 Performance evaluation metrics for salient object

detection

For the Salient Object Detection (SOD), various metrics are used to measure the simi-
larity between the generated saliency map (SM) and the ground truth (GT). The more
commonly used metrics are:

• Mean Absolute Error (MAE): computed as the average absolute difference be-
tween all pixels in SM and Ground truth (GT). A smaller MAE value means a
higher similarity and a better performance.

MAE = 1
h1× w1

h1×w1∑
i=1
|GT(i)− SM(i)| (4.1)

where h1 is the frame height, w1 is the frame width.

• Precision-Recall (P-R) curve [99]: SM is normalized to [0, 255] and converted to a
binary mask (BM) via a threshold that varies from 0 to 255. For each threshold,
a pair of (Precision, Recall) values are computed which are used for plotting P-R
curve. The curve closest to the upper right corner (1.0, 1.0) corresponds to the
best performance.

Precision = |BM⋂GT|
|BM| , Recall = |BM⋂GT|

|GT| (4.2)

• F-measure: an adaptive threshold T is used to binarize SM to a BM, and then the
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pair of (Precision, Recall) values are fused to evaluate the global performance:

F−measure = (1 + β2)× (Precision× Recall)
(β2 × Precision + Recall) (4.3)

β2 is set to 0.3, and T is set to be the minimum value between T ′α and Tα as in
the method [100].

T ′α = max(SM(i)) 1 ≤ i ≤ h1× w1, Tα = 2
h1× w1

h1×w1∑
i=1

SM(i) (4.4)

A higher F-measure, Precision and Recall values mean a better performance.

For video SOD evaluation, the metrics values are firstly computed over each video, and
secondly computed the mean values over all videos in each dataset.

4.3 Performance evaluation metrics for saliency detec-

tion

Four popular metrics adopted in several benchmarking are used in this paper for eval-
uating the saliency detection performance.

The Kullback-Leibler Divergence (KLD) measures the dissimilarity under the loss of
information between predicted saliency distribution and ground-truth distribution. It is
defined as:

LKLD(P,QD) =
∑
i

QD
i log( QD

i

Pi + ε
+ ε), (4.5)

where P and QD indicate the predicted saliency map and the ground-truth density
distribution, respectively. i represents the ith pixel and ε is a regularization constant.
The lower value of KLD means the higher similarity of two distribution.

The Pearson’s Correlation Coefficient (CC) symmetrically calculates the linear re-
lationship between two distributions. It penalizes false positives and false negatives
equally. It is defined as

LCC(P,QD) = σ(P,QD)
σ(P ) · σ(QD) , (4.6)
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where σ(P,QD) is the covariance of P and QD, σ(P ) and σ(QD) are the standard
deviations of P and QD, respectively. The value of CC ranges from −1 to +1, where
+1 indicates a perfect correlation, and −1 indicates a perfect correlation in opposite
direction, and 0 indicates no correlation.

The Normalized Scanpath Saliency (NSS) measures the correspondence between
predicted saliency map and ground-truth binary fixation map via computing the average
of normalized predicted saliency map at fixation locations. NSS is defined as

LNSS(P,QB) = 1
N

∑
i

Pi − µ(P )
σ(P ) ·QD

i , (4.7)

where QB indicates the ground-truth binary fixation map, i indicates the ith pixel, and
N is the total number of fixated points. NSS of value 0 represents chance and positive
value represents the correspondence above chance and negative value represents
anti-correspondence.

The Area Under the receiver operating characteristic Curve (AUC) computes the
area under the curve of true positive rate versus false positive rate for various thresh-
olds referred to the ground-truth fixation map. In this report, we use the AUC-judd [101],
where true positive/negative values is the summation of saliency value above threshold
at fixated/unfixated pixels.
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CHAPTER 5

SALIENT OBJECT DETECTION IN 2D
NATURAL VIDEOS

5.1 Introduction

Salient object detection in images/videos plays an important role as a pre-processing
step in many image processing applications such as autonomous driving [102], video
re-targeting, surveillance and monitoring, person re-identification, ROI (region-of-interest)
based compression and visual tracking and quality assessment. For example, in image
quality assessment, the sensitivity of the human visual system to various visual signals
is important. As salient object detection and image quality assessment are both related
to how human vision system perceives an image, researchers incorporate saliency in-
formation to image quality assessment models aiming at improving their performance.
One usual way is to adopt salient object detection as a weighting function to reflect the
importance region in an image, like what we did in the SC-IQA (cf. section 3.2.2) for
the synthesized view quality assessment.

In [99], traditional methods for SOD are categorized in two different ways depending
on the types operation or attributes they exploit: 1) pixel/patch-based vs. superpixel/region-
based ; 2) intrinsic cues (from the input image itself) vs. extrinsic cues (e.g. user anno-
tations, depth map, or statistical information of similar images).

Recently, with the renaissance of deep learning techniques, there is a trend in the
SOD domain to use deep-learning based methods because its significant improve-
ment of performances. Since the first introduction in 2015, these algorithms have soon
shown superior performance over traditional methods, and kept residing the top of var-
ious benchmarking leaderboards.

To better understand the state-of-the-art, we conducted a survey of deep-learning
based methods for video SOD. In addition, two SOD algorithms were proposed: one
traditional method - Virtual Border and Guided Filter-based (VBGF) algorithm, and one
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deep-learning based method - an extension of the VBGF.

5.2 Comparative study of deep-learning based meth-

ods for video SOD

Table 5.1 lists the most relevant works, from which we can see that former works mainly
focus on traditional methods. Among the recent works related to deep-learning meth-
ods, the survey presented in [103] is only for images; and the benchmark [104] only
compares deep-learning methods proposed for images with traditional methods pro-
posed for videos. The survey of existing deep-learning methods for SOD in videos is
less explored. In this section, we taxonomically review the existing deep SOD methods
(before 2018) and assess their performance generality on the most popular large-scale
datasets :

• VOS [104] : a recently published large dataset for video SOD, which is based
on human eye fixation. These videos are grouped into two subsets: 1) VOS-E
contains easy videos which usually contain obvious foreground objects with many
different types of slow camera motion. 2) VOS-N contains normal videos which
contain complex or highly dynamic foreground objects, and dynamic or cluttered
background.

• FBMS [105, 106] : a dataset originally designed for moving object segmentation.
Moving objects attract large attention and thus can be regarded as salient objects
in videos.

• DAVIS 2016-val [107] : a popular video dataset for video foreground segmenta-
tion. It is widely used for video SOD, because of the foreground properties (most
of the objects in the video sequences have distinct colors, which can be regarded
as salient objects).

• DAVIS-2017-val [108]) : an extension of DAVIS-2016 dataset.

5.2.1 Taxonomy of deep video SOD methods

According to whether the used neural network has to be trained, existing methods can
be classified into two categories: 1) without-training models and 2) with-training
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Table 5.1: Comparison of the existing survey/benchmark for SOD
Year Benchmark Survey Traditional Deep-learning Video Image

[109] 2014 × X X × × X
[99] 2014 × X X × × X
[110] 2015 X × X × × X
[103] 2018 × X × X × X
[104] 2018 X × X X X X

models. The used deep representations of the first category are directly extracted
from existing deep networks. If the network is trained with a large-scale datasets, its
extracted deep features are supposed to have a good generality performance with the
methods of the first category. Thus, this is a simple way to directly use these deep rep-
resentations for further researches [111, 112]. In the second category, methods usually
get more efficient deep representations through their own training phase, where the
inputs-outputs relationship is learned by deep architectures. According to their utiliza-
tion degree of the labeled datasets, the with-training models can be further divided into
supervised and weakly-supervised models.

Supervised models need training datasets with pixel-wise annotations. According
to the domain of the learned deep representation, supervised methods [100, 113, 114,
115, 116, 117, 118, 119, 120, 121, 122, 123] can be classified into 1) spatial [100,
120, 122, 123]; 2) temporal [121]; 3) or spatio-temporal [118, 119, 113, 116, 117, 114,
115]. Due to the fact that current datasets have limited manually labeled ground truth,
some methods, e.g. [113], propose to generate simulated video data using synthe-
sizing methods. Different from supervised methods, weakly-supervised models train
the network without requiring all training datasets to have corresponding pixel-level
annotations. Some models learn to detect the salient object from spatial domain with
image-level annotations, based on the assumption that image-level tags can provide
the classes of the dominant objects which can be regarded as the salient foregrounds,
e.g. [124]. Sometimes, a small number of manually labeled data and a huge amount
of weakly labeled data are used together. For example, in [125], one seventh of the
frames in a video is manually labeled data and the rest is weakly labeled. Three exist-
ing SOD methods are used to generate the weakly labeled data, and their proposed
network is trained using both manually and weakly labeled data. Then the weakly la-
beled data is updated using their proposed network, as well as the three existing SOD
methods. Fig. 5.1 shows the classification of the deep-learning based SOD methods.
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SOD models

Without-training model With-training model

Weakly-supervised model Supervised model

Spatial saliency 

Temporal saliency

Spatio-temporal saliency

Figure 5.1: Methods classification according to the deep representations generation

5.2.2 Deep video SOD frameworks

This section gives detailed introduction of 11 representative methods, which the source
codes or saliency results are provided by the authors. Among them, Chen et al. [111]
propose a without-training model, and methods in [100, 121, 118, 119, 113, 120, 123,
124, 122, 125] are with-training models. Methods in [100, 121, 118, 119, 113, 120,
123, 122] are supervised models and with those in [124, 125] are weakly-supervised
models.

Firstly, the global framework for each method is described and then the deep net-
work designed in each method is analyzed.

Analysis of the frameworks of representative methods

As a matter of convenience, 11 methods are denoted as SCOMd [111], NRF [100],
DHSNet [122], OSVOS [120], NLDF [123], LMP [121], SFCN [113], SegFlow [119],
LVO [118], WSS [124], SCNN [125].

According to the involved tasks, these 11 frameworks can be divided into two cate-
gories: multi-task [124, 119] and single-task [111, 100, 121, 118, 113, 120, 123, 122,
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125].
The multi-task framework not only predicts the salient objects, but also evaluates

other tasks. It exploits the connections between the SOD task and other highly related
tasks (such as classification and optical flow), and then improves the SOD performance
by making use of the deep representation from these tasks. Specifically, Wang et al.
[124] propose a weakly-supervised network which has two subnetworks: one is de-
signed for classification and the other is designed for SOD. Firstly, using image-level
tags as the ground truth, detection stream is jointly trained with the classification sub-
network for classification prediction. Secondly, the saliency prediction of the detection
subnetwork is used as the ground truth for fine-tuning the detection subnetwork. An
iterative Conditional Random Field (CRF) is then built for a further refinement. Both
subnetworks share convolutional layers firstly and then are separated on the top of
the shared layers, as shown in Fig. 5.2 (a), Cheng et al. [119] propose a supervised
network which also consists of two subnetworks: the segmentation subnetwork and
the flow subnetwork. A bi-directional feature propagation is built between these two
networks as shown in Fig. 5.2 (b), and an iterative training is used for optimizing the
segmentation task.

Shared layers

SOD task

Classification task

Input

Prediction

Prediction

Segmentation task

Optical flow task

Input

Prediction

Prediction

(a)

Shared layers

SOD task

Classification task

Input

Prediction

Prediction

Segmentation task

Optical flow task

Input

Prediction

Prediction

(b)

Figure 5.2: Multi-tasks models: (a) WSS and (b) SegFlow.

The single-task framework is designed just for the SOD task. Among them, SFCN,
SCNN and OSVOS propose two Fully Convolutional Networks (FCN) with the same
architecture in their frameworks. From Fig. 5.3 (a), Wang et al. [113] use the first FCN
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for spatial saliency detection with the input of each frame, and use the other FCN
for spatio-temporal saliency detection with the input of adjacent frame pairs and the
detected spatial saliency results. The detected spatial saliency results is denoted as
SFCNs.

From Fig. 5.3 (b), Tang et al. [125] firstly employ one FCN to get a spatial prior
map, secondly generate temporal prior map from optical flow fields, thirdly combine
these two prior maps to be a spatio-temporal prior map which guides the second FCN
to generate the spatio-temporal saliency map. At last, the output saliency map is op-
timized by a CRF model. From Fig. 5.3 (c), Caelles et al. [120] use the first FCN as
a foreground branch and use the second FCN as a contour branch. The output of the
first FCN is combined with that from the second FCN to get the final foreground pre-
diction. Note that Cheng et al. [119] and Caelles et al. [120] apply online training step,
which improves the accuracy by using the ground truth of the first frame, but this is not
considered in this chapter.

The SCOMd, NRF, LMP, DHSNet and NLDF models only adopt one network in their
single-task frameworks. In SCOMd, the authors use the deep spatial features from the
network proposed in [126, 127], instead of the traditional features, to define a new
motion energy for SOD in video. In NRF, the authors firstly obtain the initial salient
object and background estimation with their complementary convolutional neural net-
work, and then construct a neighborhood reversible flow to propagate salient object
and background along the most reliable inter-frame correspondences. In LMP, the au-
thors detect motion patterns in videos with designed motion pattern network, and then
use the spatial objectness cue and a CRF model to refine the results. The SCOMd,
NRF and LMP are summarized in Fig. 5.4 (a). DHSNet and NLDF, as in Fig. 5.4 (b),
are end-to-end training networks without any other processing. While, In LVO, the au-
thors firstly use the network proposed in [128] to extract deep spatial features in the
appearance stream, and then adopt the network proposed in [121] to detect motion
patterns in the motion stream, and thirdly build a visual memory module which inputs
the concatenation of appearance and motion streams to get the prediction. At last, the
CRF model is applied to the network output. The LVO is shown in Fig. 5.4 (c).

In Table 5.2, above methods are summarized considering the detailed techniques
(deep-learning or traditional) used in each domain (spatial, temporal or spatio-temporal
fusion) for saliency detection.
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Figure 5.3: Single-task models: (a) SFCN, (b) SCNN and (c) OSVOS
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Figure 5.4: Single-task models: (a) SCOMd, NRF, LMP, (b) DHSNet, (c) NLDF, LVO.

Table 5.2: Techniques used in each domain for saliency detection(“x” indicates that the
method is not based on corresponding technique).

Methods Spatial Temporal Fused spatio-temporal
deep traditional deep traditional deep traditional

DHSNet[122] X x x x x x
NLDF[123] X x x x x x
WSS[124] X x x x x x

OSVOS[120] X x x x x x
SCOMd[111] X x x X x X
SFCN[113] X x x x X x
NRF[100] X x x X x X
LMP[121] x X X x X x

SCNN[125] X x X X X X
SegFlow[119] X x x x X x

LVO[118] X x X x X X

Analysis of the deep networks of representative methods

In this part, we analyze the networks designed in the representative methods.

A typical network for SOD is usually an encoder-decoder network, and hierarchical
features are generated layer by layer. According to the feature scales used for saliency
prediction, above networks can be divided into single-scale network and multi-scale
network. The former [113, 125] only employs the top-level feature maps for saliency
prediction as shown in Fig. 5.5.

The latter, e.g. [100, 119, 123, 120, 121, 124, 122], use skip connections [121,
119, 124, 120, 123, 122] or “À Trous” Pyramid Pooling (ASPP) [100] to employ multi-
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Figure 5.5: Single-scale network

scale feature maps for prediction. These multi-scale networks are illustrated in Fig.
5.6. Specifically, Tokmakov et al. [121] add skip connections from the encoder features
to the mirror decoder features, which benefits the decoder features with finer details.
Cheng et al. [119] and Wang et al. [124] mainly use feature maps from 3rd to 5th
layers for predicting the final output. Luo et al. [123] add multiple skip connections
to fully employ the deep information. Liu et al. [122] add skip connections between
mirror layers, but with multiple predictions. Four predictions in Fig. 5.6 (d) are used in
the training step. And only the last one is used to generate the final saliency result.
Caelles et al. [120] add skip connections from the low-level layer to the high-level layer.
Feature maps obtained from each layer are fused into a single output. Li et al. [100] use
three parallel modules with ASPP to capture the multi-scale information. The outputs
(Prediction1 and Prediction2 in Fig. 5.6 (f)) are both used to generate the saliency
result.

Table 5.3 summarizes the used backbone and training datasets for each mentioned
representative method.

Table 5.3: Backbone and Training datasets (“x” indicates that the method is not based
on any backbone or the method is without-training)

Methods Backbone Training datasets
SCOMd[111] VGG16 x

NRF[100] VGG16 HKU-IS,MSRA10K,CSSD,DUT-OMRON
DHSNet[122] VGG16 MSRA10K,DUT-OMRON
OSVOS[120] VGG16 DAVIS 2016-train,PASCAL-Context
NLDF[123] VGG16 MSRA-B
LMP[121] x FlyingThings3D

SFCN[113] VGG16 MSRA10K,SegTrackV2,DUT-OMRON,FBMS-training
SegFlow[119] ResNet101,FlowNetS DAVIS 2016-train,MPI Sintel[129],KITTI,Scene Flow

LVO[118] VGG16 DAVIS 2016-train
WSS[124] VGG16 DUTS
SCNN[125] VGG16 MSRA10K,SegTrackV2,FBMS-training
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Figure 5.6: Multi-scale networks: (a) [121], (b) [119, 124], (c) [123], (d) [122], (e) [120],
(f) [100].
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Networks for SOD often built the encoder network based on a backbone (i.e. an
existing trained model with published weights). Image classification networks (e.g. VGG
[130] and ResNet [131]) are commonly used as backbones. These networks [130,
131] are trained on large-scale image datasets and have a strong ability to learn both
low-level and high-level features. Note that various networks are proposed based on
VGGNet or ResNet for dense prediction. FlowNetS [132] is only used for estimating the
optical flow and the baseline in [119] to obtain the temporal feature.

Various training datasets are used for networks to learn deep representations: Im-
age SOD datasets (e.g. MSRA-B, MSRA10K [133], DUT-OMRON [134], HKU-IS [135]
and CSSD [136]) are used in most methods, e.g. [122, 123, 100, 113, 125]; image
object segmentation datasets (e.g. DUTS [124]) are used in [124]; video object seg-
mentation datasets (e.g. SegTrackV2 [137], DAVIS 2016-train) are used in methods
[120, 118, 113, 119, 125]; contour datasets (e.g. PASCAL-Context [138]) are used
in [120]; moving object segmentation datasets (e.g. FBMS-training [105]) are used in
methods[125, 113]; optical flow datasets (FlyingThings3D [139]) are used in [121]; and
datasets (MPI Sintel [129], KITTI [140], Scene Flow [106]) are used in [119]. Besides,
some methods generate new datasets from existing datasets: Wang et al. [113] create
synthesized video dataset due to the limitation of video SOD datasets, and Tokmakov
et al. [118] create training sequences which simulate cases where the object stops
moving.

During the training phase, a network learns all the parameters via minimizing errors
between the result and the ground truth. A loss function is used to compute this error.
The “cross entropy” is commonly used for SOD [122, 119, 118, 100, 123]. Given the
generated SM and GT, the cross entropy loss P is given by Eq (5.1).

P = −
h1×w1∑
i=1

(gilogsi + (1− gi)log(1− si)) (5.1)

where h1 is the frame height, w1 is the frame width, gi ∈ GT and si ∈ SM. Since
the numbers of salient and non-salient pixels are not balanced, the “weighted cross
entropy”, given by Eq (5.2), is more commonly used for SOD [125, 113, 120].

P = −
h1×w1∑
i=1

((1−R)× gilogsi +R× (1− gi)log(1− si)) (5.2)

where R is the ratio of the number of salient pixels in GT over that of all pixels in GT.
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Besides, motivated by the successful application of boundary Intersection over
Union (IOU) loss in medical image segmentation [141], Luo et al. [123] add a boundary
IOU loss, given by Eq (5.3), for SOD.

IOUloss = 1− 2 |CGT
⋂
CSM|

|CGT|+ |CSM|
(5.3)

where CGT and CSM are contours pixels of GT and SM respectively, which are obtained
using the magnitude of Sobel operator followed by a tanh activation. In order to prevent
learning high responses at all locations, Wang et al. [124] apply sparse regularization
on the generated saliency map (‖SM‖1) to reduce background noise during pre-training
phases.

5.3 Proposed methods for video SOD: VBGF and its

extension VBGFd

5.3.1 VBGF

In 2016, we firstly proposed a traditional method based on Virtual Border and Guided
Filter (VBGF). It belongs to pixel-based model with intrinsic cues, the main shortcom-
ing of which is that they cannot preserve well the contours of objects. This proposed
method tackled this problem.

The block-diagram of the proposed Virtual Border and Guided Filter-based salient
object detection for videos (VBGF) method is shown in Fig.5.7.

1) Spatial saliency detection (SD) part

In this part, Spatial saliency detection (SD), the virtual border-based distance transform
in spatial domain, is designed.

Virtual border building Instead of using the frame border pixels as the seed set, we
propose to add virtual borders around the original frame to obtain with-virtual-border
frame. The virtual border, calculated using original frame border pixel values, is used
to get the new seed set. Specifically, the virtual border is built in four steps (as shown
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Figure 5.7: The proposed block-diagram. SD: Spatial saliency detection; SSM: Spatial
saliency map; TD: Temporal saliency detection; TSM: Temporal saliency map; STSM:
Spatio-temporal saliency map.

in Fig.5.8): Frame Border Selection, Frame Border Division, Representative Pixel Se-
lection and Virtual Border Padding.

a) Frame Border Selection: it may suppose that the salient object could be con-
nected with two or more borders. However, from the existing video datasets we ob-
serve that: in usual cases if the salient object appears in the frame border, it is often
connected with only one border. Here for the sake of simplicity of the presentation, we
select one original frame border to build the virtual border by two steps:

• Fast iterative Minimum barrier distance transform algorithm (FastMBD) [142] is
applied to frame α to obtain the map M as Eq (5.4).

M = 1
3(M1

′ +M2
′ +M3

′). (5.4)

where M1
′, M2

′ and M3
′ are obtained respectively from three color channels of

frame α in the CIELab color space. For each color channel I with the size of
h1 × w1, M ′ is generated as follows: If the pixel x ∈ r1 (r1 being the border of
the frame α), its value in M ′ is 0. If pixel x ∈ r2 (r2 being the non-border of the
frame), its value in M ′ is initialized as∞. Let the 4-adjacent pixels around a pixel
x in the region r2 be xup (up pixel), xleft (left pixel), xdown (down pixel) and xright

(right pixel). Then M ′ is updated in three steps, by using two auxiliary maps τ and
ψ which are initialized by the pixel values in each channel of the original image.
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Virtual border building

Frame Border Selection Frame Border Division Representative Pixel Selection Virtual Border Padding

MeanMinimum SAD Ground Truth

Minimum SAD Median Ground Truth

Figure 5.8: Virtual border building: (1) the bottom left one: generating the divided border
from the highlighted frame border (with width u), h1 is the frame height, w1 is the frame
width and l is the ratio of the corresponding border length, four divided borders: the
DUB, the DDB, the DLB and the DRB are shown; (2) the bottom middle one: two
examples of the representative pixel selection, the red dotted line denotes the virtual
border padded with the selected representative pixel; (3) the bottom right one: building
and padding the virtual border (with size v) with representative pixel value, four virtual
borders: VUB, the VDB, the VLB and the VRB, are shown in four different textures.
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Firstly, M ′ and the auxiliary maps are updated in raster scan order using Eq (5.5).
Secondly, M ′ and the auxiliary maps are updated in inverse raster scan order like
in Eq (5.5) but y ∈

{
xdown, xright

}
. Thirdly, M ′ and the auxiliary maps are updated

in raster scan order again.

if M ′(x) > Oy(x)


M ′(x) = Oy(x)

τy = max
{
τy, I(x)

}
ψy = min

{
ψy, I(x)

}
y ∈

{
xup, xleft

} (5.5)

where Oy(x) = max
{
τy, I(x)

}
−min

{
ψy, I(x)

}
.

• The frame border nearest to the non-zero region in the map M is selected to build
the virtual border. Here, the threshold δ is used to determine the non-zero region.

b) Frame Border Division: after one original border selected, the corresponding di-
vided border is obtained from the original frame border (with width u). The DUB, the
DDB, the DLB and the DRB are shown in the bottom left part in Fig.5.8. The reason
lying behind this division is that: the region in the frame corner is often connected with
two borders and its feature is also related to these two borders. Thus, the irregular
shape connecting three borders is used to calculate the virtual border. The parameters
u and l are selected empirically. In this chapter, u is set to 5 and l is set to 18%. Pre-
liminary experiments showed that these values make the algorithm robust to various
background complexities.

c) Representative Pixel Selection: for the generated divided border, sum of absolute
differences (SAD) is computed for each pixel by summing all the absolute differences
between this pixel and other pixels in the divided border:

SAD(x) =
∑

x′∈DB
|I(x)− I(x′)| (5.6)

where DB ∈
{
DUB, DDB, DLB and DRB

}
, I is the feature channel. The pixel having

the minimum SAD is selected to represent the divided border. For color images, the
SAD is computed by summing the three color channels:

colorSAD(x) =
∑

x′∈DB

∑
i∈{r,g,b}

∣∣∣I i(x)− I i(x′)
∣∣∣ (5.7)
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We have also considered using the mean or median value of the border’s intensities
as the representative pixel value. Various experiments conducted on different frames
have shown that the minimum SAD choice performs better than the mean and the
median values in most of the cases (cf. the 1st example image in Fig.5.8 where the
representative pixel is chosen from the salient object instead of the background when
using the mean value of the border’s intensities). The same way, choosing the median
value of the border’s intensities as the representative pixel value fails, as can be seen
on the 2nd example image in Fig.5.8. As the minimum SAD performs better in most
cases and in order to be more robust in all situations, we adopt the minimum SAD in
the proposed method.

d) Virtual Border Padding: around the selected original frame border, we build the
corresponding virtual border with the above representative pixel to get the with-virtual-
border frame D. The VUB, the VDB, the VLB and the VRB are shown in the bottom
right part in Fig.5.8. Existing methods usually regard the border (with width 1) to be
background and seed sizes are set to be 1. Here we set the virtual border size v to
5, which helps the proposed “virtual border building” to be applied to other distance
transform based saliency detection methods.

Saliency computation After the “virtual border building”, the spatial saliency map
SSM is obtained by apply the FastMBD [142] to the with-virtual-border frame D and
then remove the virtual border from the resulted map to obtain the spatial saliency
map SSM. One example is given to show the process of spatial saliency detection in
Fig.5.9.

2) Temporal saliency detection (TD) part

In temporal saliency detection (TD), given an input video sequence, the movement
information is extracted from the whole video and then the salient object is detected
from this movement information. This part is related to the method we called TGFV and
published in TGFV17 [143].

Movement extraction The optical flow vectors between pairs of successive frames
are obtained using a fast optical flow method [144]. Then the optical flow vector is
mapped to Munsell color system [145] to produce the color optical flow map E.
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Virtual border buildingFrame

Spatial saliency map Ground truth

Figure 5.9: (Better viewed in color) An example of the spatial saliency detection. The
red dotted line denotes the virtual border.

Virtual border building Based on the backgroundness cue, the global motion is usu-
ally connected to E borders. The global motion is mainly generated by the background
and camera motion. Camera motion appears in the whole color optical flow map and
background motion has a high probability to be connected with E borders. Thus, E
borders can reflect the global motion caused by both the background motion and the
camera motion. The distance of each pixel to the border pixels of E calculated by the
FastMBD [142] can indicate its temporal saliency. The larger the distance, the higher
the temporal saliency value. As the same problem in the spatial saliency detection,
when the salient object touches frame borders, its movement information also touches
E borders. If we directly apply the FastMBD [142] on E, the salient object movement
part connected to E borders is hard to be detected. Thus, we add virtual borders on E
using the same procedure as described in the SD part to obtain the with-virtual-border
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color optical flow map F .

Feature fusion In our spatial saliency detection, only color and luminance features
are used to detect the saliency, while edges are inherent features of the image and
intrinsically salient for visual perception. Though some researches detect the salient
object by considering edges, their results may be still inaccurate. Thus we propose
a new Feature fusion way that fuses the spatial edge with the temporal information,
considering that: 1) the salient object movement is often bigger than the background
movement, thus the background and the salient object are often shown in different
colors in the color optical flow map; 2) if the movements within the salient object are
different, the salient object cannot be detected completely. If the spatial edges are
added onto F , the salient object edges will be enhanced. The pixel’s distance in blur
edges will be increased if the pixel belongs to the salient object or decreased if the pixel
belongs to the background. Thus we performed the guided filtering. The guided filter
[146] is a linear filtering process, which involves a guidance image C1, an input image
C2 and an output image C3. The C3 at a pixel i is computed using the filter kernel K
which is a function of C1 but independent of C2.

C3
i =

∑
j

Kij(C1)C2
j, (5.8)

where i and j are pixel indexes, and

Kij(C1) = (|ωk|)−2 ∑
(i,j)∈ωk

(1 + (C1
i − µk)(C1

j − µk)(σk2 + ε)−1), (5.9)

where ωk is the square window centered at the pixel k in C1, |ωk| is the number of pixels
in ωk, ε is a regularization parameter, and µk and σk2 are the mean and the variance of
C1 in ωk. The main assumption of the guided filter is a local linear model between C1

and C3. Thus, C3 has an edge if C1 has an edge.

The proposed method use with-virtual-border frame D as the guidance image and
with-virtual-border color optical flow map F as the input image to get the filtered image
G as Eq (5.10),

Gi =
∑
j

|ωk|−2 ∑
(i,j)∈ωk

(1 + (Di − µk)(Dj − µk)(σk2 + ε)−1)Fj, (5.10)
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where i and j are pixel indexes, ωk is the square window centered at the pixel k in Di,
µk and σk2 are the mean and the variance of Di in ωk. ε is set to be 10−6. |ωk| is decided
by the frame size. Large frame size needs large |ωk|. We use 20×20 for Fukuchi and
FBMS datasets, and use 60×60 for VOS dataset since VOS has larger average frame
size than that of Fukuchi and FBMS [104, 147].

Saliency computation The FastMBD [142] is applied on the filtered image G and
then the virtual border region is removed to obtain the temporal saliency map TSM. One
example is given to show the process of the temporal saliency detection in Fig.5.10.

Guided filtering

Frame1

Virtual border building

Temporal saliency map

Frame2

Color optical flow map

Ground truth

Figure 5.10: An example of the temporal saliency detection. The red dotted line denotes
the virtual border.

3) Spatial and temporal saliency maps fusion

Given the spatial saliency map SSM and the temporal saliency map TSM, the fusion is
made to obtain STSM by four steps:
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• SSM and TSM are firstly fused as Eq (5.11), where ratio1 = muT/(muS + muT ),
ratio2 = 1− ratio1.

STSM = ratio1 × SSM + ratio2 × TSM (5.11)

where muS and muT are respectively the mean entropies of all the spatial saliency
maps and all the temporal saliency maps for a video sequence (with κ the number
of frames) as Eq (5.12).

muS =
κ∑
j=1

(−
255∑
j′=1

(ProbSj

j′ × log(ProbSj

j′ )))/κ

muT =
κ∑
j=1

(−
255∑
j′=1

(ProbT j

j′ × log(ProbT j

j′ )))/κ
(5.12)

where ProbSj

j′ and ProbT j

j′ are respectively the normalized histogram of jth spatial
saliency map and jth temporal saliency map: Probj′ = numj′/(h1 × w1), numj′

is the number of pixel (equal to j′) in saliency map. Here, the idea is that mui
(i = S, T ) are used to decide the confidence of SSM and TSM. The disorder
degree of saliency map reflects the difficulty degree to detect the salient objects.
If mui (i ∈

{
S, T

}
) is larger, the saliency detection in this domain is worser.

• STSM is optimized using Eq (5.13)

STSM = SSM if muS < muT (5.13)

The frame is often more complex than the color optical flow map, which results
in that the disorder degree of SSM is usually larger than that of TSM. If muS is
smaller than muT , it means it is difficult to detect the salient object in TSM. Thus,
SSM has a high confidence.

• STSM is optimized using Eq (5.14)

STSM = SSM if σS > σT (5.14)

σS and σT are respectively the standard deviations of non-zero regions in two
grayscale images HS and HT , which are generated by the following steps: firstly,
converting frame α from RGB to HSI color space, then eliminating the hue and
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saturation information while retaining the luminance to get the grayscale images
α′; secondly, using a threshold δ to neglect the pixels with low saliency value from
the images SSM and TSM as in Eq (5.15)

HSij
=

0 if SSMij < δ

α′ij otherwise
HTij

=

0 if TSMij < δ

α′ij otherwise
(5.15)

where i and j are pixel indexes in the images. The appearance of the wrongly
detected background is mostly different from the salient object in the grayscale
image, which results in that Hi (i ∈

{
S,T

}
) contains more luminance values and

thus σi (i ∈
{
S,T

}
) is smaller. If σS is bigger than σT , it means SSM has a high

confidence.

• Low saliency value (lower than δ) in SSM is decreased to 0.1 times.

The pixels with low saliency value in saliency map are unimportant for visual
saliency but have a large influence in computing the detection confidence. Thus,
δ is used to decrease their affection and set to 70 here.

5.3.2 VBGFd

With the trend of the usage of deep networks for the video SOD, the VBGF has been
extended to VBGFd in 2017, of which the block-diagram is shown in Fig.5.11. It is
performed on an NVIDIA 1080 GPU, and is implemented in Python.

Compared with Fig.5.7, the “Virtual border building” in both “SD” and “TD” blocks
is removed. The “Saliency computation” in VBGF is a traditional methods, while the
“Saliency computation” in extension of the VBGF (VBGFd) is a deep-salient detection
method proposed in [122] - DHSNet (because of its top performances in our compara-
tive study). In VBGFd, the first two steps in the “Map fusion” part use the ratio between
the entropies for each frame in Eq.5.11.

5.3.3 Performance evaluation of VBGF and VBGFd

In this section, the large-scale video SOD dataset VOS and its two subsets VOS-E,
VOS-N are used to show the performance of VBGF and VBGFd.
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Input 

video

Saliency computation

Saliency computation

Movement extraction

TSM

SSM

Fusion

Guided filtering

SD

TD

STSM

Figure 5.11: The proposed block-diagram. SD: Spatial saliency detection; SSM: Spatial
saliency map; TD: Temporal saliency detection; TSM: Temporal saliency map; STSM:
Spatio-temporal saliency map.

Ablation study for VBGFd

In Table 5.4, we list the performances of VBGFd with different components. The 3th,
5th and 6th columns show the results of the spatial saliency map, temporal saliency
map and spatio-temporal saliency map. The 4th column shows the result of the tempo-
ral saliency detection without guided filtering. By comparing the 4th and 5th columns
in Table 5.4, the performance is better for all performance evaluation metrics with the
“guided filtering”. By comparing the 3rd, 5th and 6th columns in Table 5.4, the per-
formance is better for most evaluation metrics when the spatial saliency map and the
temporal saliency map are fused together.

Performance of VBGF and VBGFd on VOS dataset

The VBGFd and VBGF were compared with state-of-the-art models on the VOS dataset
and its two sub-datasets.

In Table 5.5, Table 5.6 and Table 5.7, we inserted the performance of our proposed
models into the the benchmarking table (cf. Table III in the paper [104]) provided with
the VOS dataset. Note that here we only list 13 state-of-the-art models (image-based
deep-learning and video-based traditional models) reported in [104]. 13 state-of-the-
art models are LEGS[148], MCDL[149], MDF[135], ELD[150], DCL[151], RFCN[152],
DHSNet[122], SIV[153], FST[154], NLC[155], SAG[156], GF[157] and SSA[104]. These
models are categorized into two parts: [I+D] for deep-learning and image-based, [V+U]
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Table 5.4: Comparison of the proposed VBGFd componets’ performance on dataset
VOS, VOS-E, VOS-N. proSSM: proposed spatial saliency map; proTSM: proposed
temporal saliency map; proSTSM: proposed spatio-temporal saliency map. The Bold
number indicates the best result in each line.

Dataset Metrics
Proposed VBGFd components

proSSM proTSM without proTSM with proSTSMguided filtering guided filtering

VOS-E

Precision↑ 0.863 0.398 0.528 0.881
Recall↑ 0.905 0.380 0.480 0.877

F-measure↑ 0.872 0.394 0.516 0.880
MAE↓ 0.049 0.189 0.154 0.046

VOS-N

Precision↑ 0.649 0.407 0.407 0.690
Recall↑ 0.851 0.389 0.392 0.806

F-measure↑ 0.686 0.403 0.403 0.714
MAE↓ 0.055 0.136 0.132 0.059

VOS

Precision↑ 0.753 0.403 0.466 0.783
Recall↑ 0.877 0.385 0.435 0.840

F-measure↑ 0.778 0.399 0.458 0.795
MAE↓ 0.052 0.162 0.143 0.053

Table 5.5: Performance benchmarking of VBGFd, and VBGF, and 13 state-of-the-art
models on the dataset VOS-E. The best three scores in each column are marked in
red, green and blue, respectively.

Models VOS-E
Precision↑ Recall↑ F-measure↑ MAE↓

[I+
D

]

LEGS 0.820 0.685 0.784 0.193
MCDL 0.831 0.787 0.821 0.081
MDF 0.740 0.848 0.762 0.100
ELD 0.790 0.884 0.810 0.060
DCL 0.864 0.735 0.830 0.084

RFCN 0.834 0.820 0.831 0.075
DHSNet 0.863 0.905 0.872 0.049

[V
+U

]

SIV 0.693 0.543 0.651 0.204
FST 0.781 0.903 0.806 0.076
NLC 0.439 0.421 0.435 0.204
SAG 0.709 0.814 0.731 0.129
GF 0.712 0.798 0.730 0.153

SSA 0.875 0.776 0.850 0.062
VBGF 0.797 0.773 0.791 0.085
VBGFd 0.881 0.877 0.880 0.046
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Table 5.6: Performance benchmarking of VBGFd, and VBGF, and 13 state-of-the-art
models on the dataset VOS-N. The best three scores in each column are marked in
red, green and blue, respectively.

Models VOS-N
Precision↑ Recall↑ F-measure↑ MAE↓

[I+
D

]

LEGS 0.556 0.593 0.564 0.215
MCDL 0.570 0.645 0.586 0.085
MDF 0.527 0.742 0.565 0.098
ELD 0.569 0.838 0.615 0.081
DCL 0.583 0.809 0.624 0.079

RFCN 0.614 0.783 0.646 0.080
DHSNet 0.649 0.851 0.686 0.055

[V
+U

]

SIV 0.451 0.523 0.466 0.201
FST 0.619 0.691 0.634 0.117
NLC 0.561 0.610 0.572 0.123
SAG 0.354 0.742 0.402 0.150
GF 0.346 0.738 0.394 0.331

SSA 0.660 0.682 0.665 0.103
VBGF 0.558 0.688 0.583 0.130

VBGFd 0.690 0.806 0.714 0.059

Table 5.7: Performance benchmarking of VBGFd, and VBGF, and 13 state-of-the-art
models on the dataset VOS. The best three scores in each column are marked in red,
green and blue, respectively.

Models VOS
Precision↑ Recall↑ F-measure↑ MAE↓

[I+
D

]

LEGS 0.684 0.638 0.673 0.204
MCDL 0.697 0.714 0.701 0.083
MDF 0.630 0.793 0.661 0.099
ELD 0.676 0.861 0.712 0.071
DCL 0.719 0.773 0.731 0.081

RFCN 0.721 0.801 0.738 0.078
DHSNet 0.753 0.877 0.778 0.052

[V
+U

]

SIV 0.568 0.533 0.560 0.203
FST 0.697 0.794 0.718 0.097
NLC 0.502 0.518 0.505 0.162
SAG 0.526 0.777 0.568 0.140
GF 0.523 0.767 0.565 0.244

SSA 0.764 0.728 0.755 0.083
VBGF 0.674 0.729 0.686 0.108

VBGFd 0.783 0.840 0.795 0.053
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for video-based and traditional. From these three tables, we can see that among the
tested 15 models, the VBGFd has the best score for 7 times, while the best bench-
marked model DHSNet has the best score for 5 times. In general, VBGFd performs the
best among the tested models.

5.4 Conclusions and Perspectives

This chapitre presents our work on the video SOD that aims at separating salient ob-
jects from background in each frame of a video sequence. We have done an overview
of deep-learning methods for this domain, where four popular datasets and five com-
monly used evaluation metrics were used and our results shows that the methods
DHSNet and NRF have the best performances over all the tested databases, before
2018. We also proposed a traditional method (VBGF), as well as its extension integrat-
ing the deep-learning technique (VBGFd). The VBGFd achieves the largest number of
highest scores for 4 metrics on the recent benchmarking dataset VOS at the moment
when it was proposed.

Some future works can be derived from the previous analyses:
- Improve the simple map fusion method in the proposed VBGF and VBGFd using

deep learning techniques.
- Employ more video saliency cues: it is valuable to investigate for other deep repre-

sentations that can improve the quality of video saliency detection. The image object-
level cue used in the VBGFd is the most popular choice. Human visual attention usu-
ally pays more attention on certain categories, thus the object classification cue can be
considered as another choice to detect the video SOD.

- Explore more temporal saliency features and spatio-temporal saliency features:
from our experiments, deep-learning technique performs well for detecting the salient
object from the spatial domain. Most of the existing video SOD mainly rely on the
spatial saliency detection and based on the backbone network. However the goal of
video SOD is to detect the object which is salient in the whole video sequence. Further
exploration for the direct usage of spatio-temporal networks need to be explored.

- Try weakly-supervised networks [125]: fully supervised models improve detection
performance but rely on large training dataset with provided ground truth. Weakly-
supervised models that do not rely on large pixel-wise labels attract much attention
in recent years. However, its accuracy is still far from satisfactory, and further accuracy
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improving is one topic to investigate in the future.

5.5 Contributions in this field

Following the trend in the video SOD field, we proposed a deep-learning based method
after a traditional method. An overview of the existing deep-learning based methods
has also been done, which helps to better understand the state-of-the-art and may
pave the way for future deep models.

Publications issued from the studies in this field:

[1] Q. Wang, L. Zhang, K. Kpalma. “VBGF: Virtual Border and Guided Filter-based
salient object detection for Videos”. Pattern Recognition, minor review.

[2] Q. Wang, L. Zhang, K. Kpalma. “An overview on deep-learning based methods
for salient object detection in videos”. Pattern Recognition, submitted.

[3] Q. Wang, L. Zhang, K. Kpalma. “Fast filtering-based temporal saliency detection
using minimum barrier distance”. ICME2017W, July 2017, Hong Kong, China.
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CHAPTER 6

SALIENCY PREDICTION FOR

OMNIDIRECTIONAL IMAGES

6.1 Introduction

Virtual Reality (VR), which is one of the fastest growing multimedia technology in the
entertainment industry, attracts many attentions due to its capability of providing users
the immersive experience in surrounding visual and audio environments. By wearing
Head-Mounted Displays (HMDs), users can freely explore the scene in all directions
simply by rotating their heads to different point of views when they watch the panorama
(or omnidirectional) images or videos which capture all the information in 360◦ longi-
tude and 180◦ latitude as a sphere. This interactive property enables users to feel like
being in a virtual world. At the same time, it gives rise to various new challenges, such
as transmission [158], compression [159], quality assessments [160, 161, 162], etc.
Those new challenges are dissimilar to the cases in 2D traditional media since users
can actively select the content they would like to watch with the HMD, while they are
only allowed to passively receive the given content in 2D traditional videos. Therefore,
the saliency (where users pay more attention) prediction in 360◦ content becomes es-
sential for user behavior analysis and could benefit 360◦ VR applications [163, 164].

Visual fixation prediction in 360◦ images can be separated into head movement pre-
diction and head+eye movement prediction [165]. The former predicts the center point
in every viewports [166] when users move their heads while watching 360◦ images.
The latter predicts viewer’s eye gaze [167]. Although the hypothesis that the center of
viewports are observer’s eye fixation is followed by [168, 169], Rai et al. [170] dis-
covered that the fixation distribution is like a doughnut shape distribution which has
probability peaks far away from center by 14 degrees. In our work, we focus on visual
fixation prediction based on head+eye movement of which the output is a gray scale
saliency map presenting the probabilities of every pixel being seen by viewers with no
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specific intention.
Compared to visual attention models for 360◦ images, those for 2D traditional im-

ages have been well developed in recent years [171, 172, 173]. Seminal methods
were proposed based on low-level or high-level semantic feature extraction from hand-
crafted filters [174, 175] or Deep Convolutional Neuron Networks (DCNN) [176, 177,
178, 179] thanks to the establishment of several large scale datasets [180, 181, 182].
Unfortunately, these models are not immediately usable for 360◦ images because of
the severe geometric distortion on the top and bottom areas in equirectangular projec-
tion. Furthermore, it is not practical to adjust 2D models by training and testing on 360◦

images because of 1) the lack of a sufficient large 360◦ image saliency dataset, and
2) the inherent high resolution problem in 360◦ images whose optimal resolution is at
least 3600× 1800 pixels recommended by MPEG-4 3DAV group [183] to provide favor-
able quality. This image resolution excesses the computational limitation of 2D models
based on DCNN.

In this Chapter, we proposed two new saliency prediction models for omnidirec-
tional images based on Generative Adversarial Network (GAN): SalGAN360 and its
extension MV-SalGAN360 using multi-resolutional Field of View (FoV) and adaptive
weighting losses.

6.2 SalGAN360: Saliency Prediction for omnidirectional

images with Generative Adversarial Network

Figure 6.1: Diagram of SalGAN360.
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6.2. SalGAN360: Saliency Prediction for omnidirectional images with Generative Adversarial
Network

The overall diagram of the SalGAN360 is shown in Figure 6.1. In its 1st part illus-
trated on the top of Figure 6.1, a fine-tuned SalGAN takes an entire 360◦ image as the
input to detect the global visual attention in all directions. The 2nd part (on the bottom),
divides a 360◦ image with Multiple Cubic Projection (MCP) method into several recti-
linear images from different viewports. The rectilinear image is given as input to the
fine-tuned SalGAN for the local visual attention detection. Finally, the outputs of all the
rectilinear images are integrated into a 360◦ saliency map with global saliency from the
1st part.

6.2.1 Multiple Cubic Projection

The most common projection of 360◦ images is equirectangular projection, which in-
duces distortion along with the elevation. This characteristic makes it inappropriate to
compute saliency probability directly, since it is far away from what observers actually
see. Another popular projection is cubic mapping, which preforms rectilinear projection
on 6 cube with 90◦ FoV each. In each cube face, the distortion is not as obvious as in
the equirectangular image, but there are still distortions close to the frontier caused by
the discontinuity between the cube faces. To simulate what observers actually see with
the Head-Mounted Displays (HMD), we transfer an equirectangular image into multiple
cubic maps by rotating the center of cube to multiple horizontal and vertical angles.
Figure 6.2 shows the projection from sphere to cube, then to equirectangular format.
From the expanded view of cube on the second row, we can see that the distortion of
each cube face is slighter than that in equirectangular image on the third row. However,
the frontier of cube faces is not continuous with each other. We then rotate the cube
direction horizontally and vertically to render other rectilinear images cross the fron-
tier (as shown in Figure 6.2(b)). Each rectilinear image is provided as an input to the
saliency prediction model independently to estimate local saliency maps.

6.2.2 Fine tuning of SalGAN

The central element of SalGAN360 is extended from the SalGAN, a Generative Adver-
sarial Network (GAN) composed of two Deep Convolutional Neuron Network (DCNN)
(namely generator and discriminator) to predict visual saliency map on traditional 2D
images. In order to solve the problem of the lack of a sufficient large 360◦ image
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(a) (b)

Figure 6.2: Illustration of Multiple Cubic Projection. The cube in (a) is centered the
same as equirectangular image. The cube in (b) is rotated 30◦ to the top and 60◦ to the
left.
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Table 6.1: Our Training Method on SalGAN
Generator

Block Layer Our Training Method
Conv1 2 conv, max-pool

Fix
Conv2 2 conv, max-pool
Conv3 3 conv, max-pool
Conv4 3 conv, max-pool
Conv5 2 conv, max-poo l
Uconv5 2 uconv, upscale

Fine TuneUconv4 3 uconv, upscale
Uconv3 2 uconv, upscale
Uconv2 2 uconv, upscale
Uconv1 3 uconv, sigmoid Randomly Initialize

Discriminator
Conv1 2 conv, max-pool FixConv2 2 conv, max-pool
Conv3 3 conv, max-pool

Fine TuneFc4 1 fc
Fc5 1 fc
Prob 1 fc

dataset, we fine tune the network by retraining SalGAN initialized with pretrained weights.
Table 6.1 details our training method. In generator, we fix the weights of encoder part
and fine tune the weights of decoder except the last deconvolutional layers which are
trained from random initialization to give more freedom to generate saliency map of
360◦ image patches. In discriminator, the lower two layers extracting basic features are
fixed while decision layers are fine tuned.

Saliency predictions are usually evaluated through different metrics to capture dif-
ferent quality factors. We propose a new loss function of generator given by a combi-
nation of three evaluation metrics to improve the performance on different factors. The
overall loss function is defined as follows:

L = µBCE + σBCE(L′) (6.1)

L′ = LKLdivnormal(Ŝ, Sden)− LCCnormal(Ŝ, Sden)

−LNSSnormal(Ŝ, Sfix) (6.2)

where Ŝ, Sden and Sfix are respectively the predicted saliency map, the ground truth
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density distribution and the ground truth binary fixation map. L′ combines three evalu-
ation metrics - KLD , CC and NSS - normalized as follows:

Lnormal(Ŝ, Sden) = L(Ŝ, Sden)− µ
σ

(6.3)

where µ and σ are mean and standard deviation computed from the scores of eval-
uation metrics on the saliency maps predicted from the SalGAN. During fine tuning,
eq.(1) is used to set the range of L′ the same as that of binary cross entropy (Binary
Cross Entropy (BCE)), which is defined as:

LBCE = − 1
N

N∑
j=1

Sdenj log Ŝj + (1− Sdenj ) log (1− Ŝj) (6.4)

As in [177], the final loss function for the generator during adversarial training can
be expressed as:

LGAN = αL− logD(I, Ŝ) (6.5)

where D(I, Ŝ) is the probability of fooling the discriminator. We use the hyperparameter
α = 0.05, the same as in SalGAN.

6.2.3 Fusion method

The proposed fusion method firstly re-project every 6 local saliency maps in the same
cube into equirectangular format. It should be noted that the cube is rotated back to
the same direction as that of the input 360◦ image. We overlap all the equirectangular
saliency maps from each cube by simply using the mean value (we assume that ob-
server pays attention to all the contents from different viewport in local saliency map).
Local saliency map is then combined linearly with global saliency map from the 1st part
of the SalGAN360:

Ŝ360 = 0.5ŜGlobal + 0.5ŜLocal (6.6)

where Ŝ360 is the final output of the SalGAN360, ŜGlobal and ŜLocal are the predicted
global and local saliency maps.
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6.3 MV-SalGAN360: A multi-resolutional FoV extension

of SalGAN360 with adaptive weighting losses

Figure 6.3: The overall diagram of our model. The architecture contains a 2D saliency
model fine-tuned with our proposed adaptive weighting loss function. It predicts
saliency maps in three FoVs and its diverse viewport images, respectively. The out-
put saliency maps Ŝ are linearly integrated to combine the saliency maps in different
FoVs.

Human visual saliency is highly related to the image scale. People tend to look at
fine details when the image is zoomed in and look at coarse details when the image is
zoomed out. When observers wear HMD, they do not see the entire 360◦ image in a
glance but only the content inside her/his current viewport. It is similar to the condition
that she/he takes a close look to a large image and rotates head to look at other parts
of this image. Hence, user visual attention is guided by the salient region not only
within the current viewport but also within the overall content in 360◦ image. According
to human visual physiology and the designation of the most common HMD, i.e. HTC
Vive [184] and Oculus Rift [185], on the market, we propose a tailor-made model taking
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advantages of three different FoV in low, middle, and high resolutions as input. 360◦

image is projected into three different FoVs and down-sampled into the same size.
Each image is processed by a 2D saliency model, and the estimated saliency map of
all the FoV images are linearly integrated to yield an 360◦ saliency map.

To alleviate the issue of size limitation of existing 360◦ image datasets, the 2D
saliency model used here is pretrained in a large scale 2D image saliency dataset
Salicon [181] first, then adjusted in a relatively small 360◦ image dataset via fine tun-
ing. Previous 2D saliency models [178, 179] used an uniform or manually weighting
sum of losses to take into account several evaluation factors including KLD, CC and
NSS simultaneously. It is time-consuming to tune an appropriate weights and the ef-
fectiveness of those weights have not been validated yet. To avoid the questionable
pre-defined weights in the loss function, as we defined in Eq. (6.1), we propose thus
an adaptive weighting loss function which updates the weights iteratively during the
fine tuning.

Fig. 6.3 demonstrates the overall architecture of our model.

6.3.1 Multi-resolutional FoV basis

Fixation prediction in 360◦ image can be regarded as eye movement in a single view-
port and head movement in an entire 360◦ image. Following eye movement in the
current viewport, the user’s head may rotate to neighboring viewport to look at differ-
ent contents. Fig. 6.41 presents the region of human visual FoV and the FoV provided
by HTC Vive and Oculus Rift. It shows that although the largest human visual FoV
in horizontal and vertical range is about 180◦ and 120◦, the FoV provided by HMD is
only about 120◦ horizontally and vertically. According to the theory of Peripheral Vi-
sion [186], which explains the vision occurs outside the fixation point, we define three
FoVs as:

1. Focusing FoV: Humans have the highest visual acuity in the region inside 60◦ in
diameter [186]. Since eye balls can move freely in HMD, we extend the region of
Focusing FoV to 90◦ horizontally and vertically from the center gaze point.

2. Perceived FoV: It is the FoV that observers perceive instantly in HMD before any
movement of eyes and rotation of heads. Hence it ranges 120◦ horizontally and

1. https://www.reddit.com/r/Vive/comments/4ceskb/fov_comparison/
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vertically as the designation of HMD.

3. Possible Focusing FoV: Observers are allowed to rotate their head to change
viewport. Therefore, all the possible FoV they can see is the entire FoV of 360◦

images which have 360◦ and 180◦ in horizon and vertical.

Figure 6.4: Region of human Field of View (FoV) and the FoV provided by HMDs. Red
circle presents FoV of 2 eyes in HTC Vive, where two strainght lines on the left and right
side are the edges of FoV of right eye and left eye, respectively. Two green rectangle
represent FoV of 2 eyes in Oculus Rift. The largest human FoV reaches 120◦ vertically
and 180◦ horizontally, but HMDs only provide 120◦ vertically and horizontally. Thus, we
define three FoV to describe the viewing condition when observers wearing HMD.

To enumerate all the possible points of views that users may look at, we transform a
360◦ images from equirectangular format to rectilinear images with respect to diverse
viewports in three FoVs, i.e. 90◦ × 90◦, 120◦ × 120◦, and 360◦ × 180◦. All these viewport
images are down-sampled to the same rectangular size, and served as the inputs to a
2D saliency model to capacitate the model to extract both fine and course features.

In Fig. 6.3, the input image is denoted as I. The viewport images are denoted as I ′

for 360◦ × 180◦ FoV, I ′′θ,φ for 120◦ × 120◦ FoV, and I ′′′θ,φ for 90◦ × 90◦ FoV, where θ and φ

represent the normal angles of viewport images. For I ′′′, we project the viewport plane
images in every 30◦ in longitude and latitude. All these viewport images are used to
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fine-tune the 2D saliency model pretrained using the SALICON dataset. Then the pre-
dicted saliency maps from all the viewport images are back-projected and averaged
into a equirectangular saliency map ŜI′′′. For I ′′, it is also projected from input image
in every 30◦ in longitude and latitude, but not used for training. The saliency maps
predicted by fine-tuned 2D model are back-projected and averaged into a equirectan-
gular saliency map ŜI′′. On the other side, the image I is downsampled to the image
I ′ which has the same size as that of the I ′′ and I ′′′ viewport image. The saliency map
of the downsampled 360◦ image is also estimated by the fine-tuned 2D model. Finally,
the equirectangular saliency map predicted from three FoVs are linearly integrated to
generate the final saliency map.

6.3.2 Adaptive Weighting

A plenty of evaluation metrics are available to score the predicted saliency map accord-
ing to the definition of the saliency and the representation of the ground-truth map [101].
In the databases used in this paper, the ground-truth for each 360◦ image includes a
binary fixation map recording user’s gaze positions and a continuous saliency map
which presents the probability distribution post-processed by convoluting each fixation
location with a Gaussian filter with its standard deviation equal to human visual angle.

For the purpose of accomplishing the best performance in most evaluation factors,
we combine three evaluation metrics (KLD, CC and NSS) together and propose an
adaptive weighting method to balance the influence of each component. Under the
hypothesis that when a metric’s scores are spread out over a wider range of values,
this metric should be less considered, our loss function is defined as:

L = 1
σKLD

LKLD(P,QD)− 1
σCC

LCC(P,QD)

− 1
σNSS

LNSS(P,QB) (6.7)

where σ can be seen as the relative weighting of each component. Large σ decreases
the impact while small σ increases the impact of its corresponding evaluation score.

In the process of fine-tuning, parameters initialized from pretrained model can be
learned with back-propagation according to the loss between output and ground-truth.
Using Equation (6.7) as loss function, predicted saliency map gradually approaches to
the ground-truth in every iteration. We measure the standard deviations of KLD, CC
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and NSS in each epoch and update them in the next epoch.
Along with more iterations are updated, the value of standard deviation σ decreases

and the value of loss function increases. An adaptive learning rate is used to pre-
vent excessive gradient decent. The decay rate of the learning rate is defined as
(1−iter/max_iter)0.9, where iter denotes the current number of iteration and max_iter
denotes the estimated total number of iterations. It becomes smaller and smaller during
training.

6.4 Performance evaluation of two proposed methods

Our model is implemented within the SalGAN [177] framework. It detects the saliency
map with GAN including a generator to predict saliency map and a discriminator to dis-
tinguish the authenticity of predicted map. In this section, we describe the experimental
settings, datasets and metrics used for evaluation, and analyze each component in our
architecture. Our method is compared with several state-of-the-art methods.

6.4.1 Experimental Setup

Datasets

To ensure a comprehensive comparison, we use 4 datasets with different image con-
tents, different acquisition equipments and saliency maps generated in different ways
to evaluate our method. We list the descriptions of these datasets in the following:

• Salient360! 2017 [187]: This dataset released 60 omnidirectional images to the
public for free-use, and 25 omnidirectional images for evaluating the saliency
models in ICME2017 challenge. In order to equally compare our model with
others, we follow the rules of this challenge to train our model with free-use
60 images and evaluate with 25 images used in the challenge. All the images
are in equirectangular format with resolutions ranged from 5376 × 2688 pixels
to 18332 × 9166 pixels. There are 20 images used for head movement and 40
images used for head+eye movement. Fixation locations and head positions of
each image are collected from at least 40 observers wearing HMD Oculus-DK2
and watching each image for 25 seconds. The starting position is set in the cen-
ter of images at the beginning of each visualization. A small eye-tracking camera
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is embedded in HMD to record fixation of dominant eye at 60 Hz. A Gaussian
of 3.34◦ visual angle is applied to blur all the fixation points within the viewport
plane, then back-projected to the final equirectangular saliency map.

• Salient360! 2018 [188]: It was built similar to Salient360! 2017 but the authors
improved some aspects of the processing of raw data and generation of saliency
maps (e.g. using information for the two eyes, and some more). That is why the
provided saliency maps are very different from the Salient360! 2017 dataset.
There are 101 equirectangular omnidirectional images and their saliency map
and fixation maps in this dataset. The ground-truth of 85 images was released to
public for the training and the validation purpose, while 26 images was kept se-
cretly for the test and the benchmark [189]. We give our method to the authors to
get its performance on the test images and compare it with other state-of-the-art
methods with known performance (on the benchmark website) but without paper
to be referred to.

• Stanford [190]: 22 panoramas including indoor and outdoor scenes are used to
record 122 users’ eye fixation under three different viewing conditions: viewed
with HMD in a standing or seating position in a non-swivel chair, and seated
in front of a desktop monitor. Users are more willing to move and rotate their
heads in the standing position. All the panoramas were viewed in 30 seconds
began in the different starting points. Fixations were recorded with a pupil-labs1
stereoscopic eye tracker installed in Oculus DK2 HMD at 120 Hz. Fixation maps
were convolved by a Gaussian with standard deviation of 1◦ visual angle to yield
continuous saliency maps. Panoramas viewed with HMD at the same start point
standing and seating are used in our comparison.

Evaluation Metrics

We execute 4 evaluation metrics which are KLD, CC, NSS and AUC-judd [101] are the
same as the demonstration in Section 4.3.

Note that it is incorrect to compare two saliency maps in equirectangular format
since it oversamples the points close to the north pole and south pole. Therefore, we
abide by the comparison method used in the Challenge Salient360! 2017 [187] and
Salient360! 2018 [188] which only compares predicted saliency map and ground-truth
map with the sampled points uniformly distributing on a sphere.
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Training and Testing

SALICON dataset is used to pretrain our method in SalGAN framework. The hyper-
parameters follow the suggestions from [177]. Our models are then fine-tuned on the
dataset Salient360! 2017 via transfer learning. 30 images in this dataset are used for
training, 10 images for validation and 25 images for evaluation. In validation and test
process, rectilinear images of Focusing FoV are projected in every 10◦ along with longi-
tude and latitude to enumerate all the possible viewport that observers may see. Then
predicted viewport saliency maps are back-projected and averaged into an equirectan-
gular map. To save computational cost, rectilinear images of Perceived FoV are only
projected in every 30◦, and back-projected and averaged into an equirectangular map
as Focusing FoV. A Gaussian filter is used here to slightly blur the prediction maps.
Two equirectangular saliency maps predicted from Focusing FoV and Perceived FoV
are linearly integrated with the saliency map estimated from the Possible Perceived
FoV into a final equirectangular map.

6.4.2 Ablation study for the MV-SalGAN360

Compared to the SalGAN360, the MV-SalGAN360 proposes two more components.
Thus in this section we firstly analyze each component in the architecture of MV-
SalGAN360 to show its contribution.

Multi-resolutional Field of View

Fig. 6.5 shows the comparison between models using Focusing FoV, Perceived FoV,
Possible Perceived FoV, and their integrations with and without fine-tuning. We use the
saliency map estimated from SalGAN directly for the models without fine-tuning. Re-
sults show that, compare to Focusing FoV with fine-tuning, the integration of Focusing
FoV and Perceived FoV with fine-tuning improves the performance in KLD, NSS and
AUC-Judd but slightly worsens the performance of CC. Moreover, the integration of
three FoVs with fine-tuning enhances the performance in CC, NSS and AUC-Judd, but
slightly worsens the performance of KLD. Taking account all the four evaluation metrics,
we conclude that the integration of three FoVs outperforms the others in Fig. 6.5.
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Figure 6.5: Comparison of three FoVs models with and without fine-tuning (FT). 90FoV,
120FoV, and 360FoV represents Focusing FoV, Perceived FoV, and Possible Perceived
FoV, respectively. Lower KLD value indicates a better performance, and a higher score
of other metrics means a better performance.

Fine-tuning with Adaptive Weighting

Table 6.2: Results of fine-tuning on viewport plane image
Method KLD↓ CC↑ NSS↑ AUC-Judd↑

without FT 2.722 0.424 0.476 0.616
FT with fixed

weighting
1.863 0.538 0.563 0.633

FT with
adaptive

weighting

1.410 0.533 0.548 0.644

In Table 6.2, we evaluate the results of the models with/without fine-tuning with
adaptive weighting loss function. The model fine-tuned with fixed weighting, which
parameters stay equal in training procedure, is also demonstrated. We can see that
fine-tuning, no matter with adaptive weighting or fixed weighting, enhances the perfor-
mance of the 4 metrics in a large margin. Comparing the adaptive weighting with the
fixed weighting, the former has a evident improvement on KLD and AUC-Judd but small
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Figure 6.6: Training plots showing convergence of the σ value of three evaluation met-
rics considered in our loss function with adaptive weighting and fixed weighting. The σ
of KLD converges more rapidly in the adaptive weighing case while the convergence
of the other two metrics has no evident difference.

decrease on CC and NSS. Fig. 6.6 illustrates the standard deviation values of 3 evalu-
ation metrics which are considered in our loss function. We can see that the standard
deviation of KLD in adaptive weighting model decreases more drastically than the one
in fixed weighting model and achieve lower value in the end of training. However, the
standard deviation tendencies of CC and NSS in adaptive weighting model and fixed
weighting model are quite similar. This might be the reason why the adaptive model
achieves a better result in a large margin on KLD but no better on CC and NSS. The
saliency maps predicted from the model without fine-tuning are more concentrated,
while the maps predicted from adaptive weighting model are more wide-spread in the
middle area than that from the fixed weighting model. This result is consistent with the
findings [170] that observers look at more on equator area in 360◦ images.

6.4.3 Comparison with state-of-the-art

We compare our two proposed models with the state-of-the-art methods on three
datasets (Salient360! 2017, Salient360! 2018 and Stanford).

Table 6.3 compares our models with 11 saliency prediction models in Salient360!
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2017 dataset. SalGAN is compared here to present the performance of 2D model used
in 360◦ images without any modification. The other 7 models listed in Table 6.3, which
are Maugey et al. [191], SalNet360[192], GBVS360 [193], BMS360 [193], Startsev et
al. [194], Ling et al. [195] and Zhu et al. [196], are the participants of the Grand Chal-
lenge Salient360! ICME2017. Their performance are validated by the organizers of the
challenge. Our models outperform the others on all the 4 evaluation scores, especially
on KLD and NSS. The MV-SalGAN360 has even better performances than the Sal-
GAN360.

Table 6.3: Comparison results on dataset [187] (the best and the second-best scores
are highlighted in bold style and blue color)

Method KLD↓ CC↑ NSS↑ AUC-Judd↑
Maugey et al. [191] 0.585 0.448 0.506 0.644

Xu et al.[197] - 0.409 0.699 0.659
SalNet360[192] 0.458 0.548 0.755 0.701
SalGAN[177] 1.236 0.452 0.810 0.708

Startsev et al. [194] 0.42 0.62 0.81 0.72
GBVS360 [193] 0.698 0.527 0.851 0.714
BMS360 [193] 0.599 0.554 0.936 0.736

SalGAN&FSM [169] 0.896 0.512 0.910 0.723
Zhu et al. [196] 0.481 0.532 0.918 0.734
Ling et al. [195] 0.477 0.550 0.939 0.736

SalGAN360 0.431 0.659 0.971 0.746
MV-SalGAN360 0.363 0.671 0.988 0.751

In the Salient360!2018 dataset, Table 6.4 compares our models with the other
three models participated ICME2018 Grand Challenge. We submitted our model to
the benchmark built by the challenge organizers. Thus, all the performance is validated
by them with their private test dataset. MV-SalGAN360 achieves the best results on all
the 5 indexes and has remarkably higher scores on NSS and AUC-Judd.

Table 6.5 presents the performances of our model and other 5 state-of-the-arts
in Stanford dataset. All the models listed here used the same training dataset and
parameters as those listed in Table 6.3. Our models have remarkably higher scores
than other tested models.

Fig. 6.7 and Fig. 6.8 illustrate the qualitative results obtained by the MF-SalNet360
and other state of the art models (SalGAN&FSM, Startsev et al. and SalNet360) on
Salient360! 2017 evaluation datasets and Stanford dataset. We can see that our model
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Table 6.4: Results of Benchmark [189] (the best and the second-best scores are high-
lighted in bold style and blue color)

Method KLD↓ CC↑ SIM↑ NSS↑ AUC-Judd↑
SJTU model 1.238 0.520 0.573 1.397 0.820

Wuhan University 0.899 0.607 0.612 1.617 0.822
SalGAN360 0.739 0.642 0.635 1.585 0.820

MV-SalGAN360 0.704 0.643 0.637 1.625 0.830

Table 6.5: Comparison results on dataset [190] (the best and the second-best scores
are highlighted in bold style and blue color)

Method KLD↓ CC↑ NSS↑ AUC-Judd↑
Startsev et al. [194] 5.666 0.431 1.148 0.754

SalNet360 [192] 5.849 0.390 1.200 0.772
SalGAN [177] 5.280 0.361 1.236 0.783

SalGAN&FSM [169] 5.333 0.375 1.286 0.794
SalGAN360 4.659 0.488 1.530 0.829

MV-SalGAN360 4.642 0.488 1.548 0.834

is capable of detecting high saliency regions on people, animals, and objects. The
predicted saliency maps from our model are also more concentrated on the salient
region. For the images which have no strong saliency contents, our model successfully
predicts equator area where humans tend to put more attention to.

6.5 Conclusions and Perspectives

We have firstly proposed the SalGAN360, a new model predicting the saliency map for
360◦ images. Then considering that 360◦ images are usually in high resolution and ob-
servers only see a part of content in current viewport in HMD, we thought about utilizing
multi-resolutional FoV to improve the performance of SalGAN360, via the integration of
salient features extracted from diverse viewport plane image in small (90◦×90◦), middle
(120◦× 120◦), and large (360◦× 180◦) Field of View (FoV). We show that the two models
have better performance than the tested state-of-the-art models on several datasets.

One perspective is to extend our model to 360◦ videos, thus we also need to explore
the usage of deep networks in the temporal domain and how to effectively fuse them
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Figure 6.7: Qualitative results and comparison with other state of the art models on
Salinet360! 2017 [187] test set (From top to down, each line corresponds to the original
image, the saliency maps from SalGAN&FSM [169], Startsev et al. [194], SalNet360
[192]and MF-SalNet360, and the Ground Truth).
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Figure 6.8: Qualitative results and comparison with other state of the art models on
Stanford dataset [190]. The view angle of Gaussian blur is set to 1◦ in this dataset, so
that the saliency regions in the ground-truth are much smaller than that in Salinet360!
2017 [187] dataset (view angle is 3.34◦). From top to down, each line corresponds to
the original image, the saliency maps from SalGAN&FSM [169], Startsev et al. [194],
SalNet360 [192]and MF-SalNet360, and the Ground Truth.
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together. In reality, observers’ visual attention could be attracted or changed by the
sound when they wear HMDs. Thus it will also be interesting to study the saliency
model when visual-audio signal is provided.

6.6 Contributions in this field

The first model we proposed, i.e. the SalGAN360, got the 1st place in ICME Grand
Challenge « Prediction of Head+Eye Saliency for 360 Images » in 2018. Two publica-
tions related to this topic are :

[1] F. Chao, L. Zhang, W. Hammidouche, O. Déforges. “SalGAN360: Visual Saliency
Prediction on 360 Degree Images with Generative Adversarial Networks”. ICME2018,
July 2018, San Diego, California, USA.

[2] F. Chao, L. Zhang, W. Hammidouche, O. Déforges. “A Multi-Field of View Viewport-
based Visual Fixation Model Using Adaptive Weighting Losses for 360◦ Images”.
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING (J-STSP),
special issue “Perception-Driven 360-Degree Video Processing”, submitted.

This relatively new topic is actually an on-going work, and I believe that we will
contribute more to this field in the short term.
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CHAPTER 7

RESEARCH PROJECT

I will continue to work on “Image Quality Assessment and Saliency Detection: Human
Perception Modelling and Applications” for the next five years.

Theme 1
ENTERTAINMENT IMAGE 
QUALITY ASSESSMENT

Theme 2
SALIENCY DETECTION IN 

IMAGES
Axis 1.1

Synthesized view quality 
assessment for light field images

Axis 1.2
360° image/video

quality assessment 

Axis 2.1
Salient objects detection 

in 360° image/video
Axis 2.2

Salient objects detection 
in drone videos

Application
Axis 4 

IMAGE COMPRESSION

Common fundamental study
MODELLING,

SUBJECTIVE TEST…

Action 1
Explainability&Interpretability in deep-
learning, Capsule network, GNN,…

Action 2
Subjective test, 

Database building

Theme 3
MEDICAL IMAGE QUALITY 

ASSESSMENT
Axis 3.1

Image quality assessment for 
computed tomography (CT)

Axis 3.2
Image quality assessment for 

whole slide imaging (WSI) 

Figure 7.1: Illustration of my research project (the axes with solid borders denote that
I have or will have a PhD funding for the topics, the axes with dashed borders denote
that I have a collaboration for the topics, the axes with dotted borders denote that no
funding/collaboration yet; the actions will be explored in each axis and may be used by
other axes; the results from Axis 2.2 can be used in Axis 2.1).

The research project described here focuses naturally on my three main research
interests, as illustrated in Figure 7.1:

• Theme 1: entertainment image quality assessment

• Theme 2: saliency detection in images

• Theme 3: medical image quality assessment
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In each theme, different image types (compared to previous works) and new challenges
will be tackled.

The fruits from the three themes can further be applied on the image compression,
which is the most renowned research activity (for now) of the VAADER team, for im-
provements. Note that nowadays the image compression community has realized that
the simple metric Peak Signal to Noise Ratio (PSNR) does not correlate with the per-
ceived image quality of end-users. I have reasons to believe that the trend will be the
development of compression algorithms evaluated and optimized by perceptual quality
metrics (like what Netfilx is doing). This is indeed the Axis 4 in my research project.

Except the fundamental study specific to each axis, there are some common points
that could be useful as tools for all the axes, e.g. the new deep networks studies and
the subjective test protocols. For example: 1) In the last decade, the deep-learning has
exploded with interesting and promising results. With major achievements in image
recognition, speech recognition and highly complex games, deep-learning continues to
disrupt society. As researchers, I think that we should be careful to use the black-box
deep-learning algorithms. It would be better if we can provide explanations of their deci-
sions in some level of detail, before applying or adapting them for our own applications.
Recently proposed deep networks (e.g. Capsule network, Graph neural network, etc.)
will also be studied and considered whether/how to be used in our own applications. 2)
On the one hand, the subjective test using human observers is the ultimate test for the
validation of our algorithms, since the three themes are all related to human perception.
Different test protocols should be studied and chosen for different applications. On the
other hand, for certain applications, maybe there is no database in the literature or the
number of images in the existing databases is not enough. In that case, we need to
build our own databases. Since we have already set up a standardized psycho-visual
room in our team and we have bought several acquisition and display devices, we will
have the necessary materials for the subjective tests.

7.1 Theme 1 Entertainment image quality assessment

With coming era of immersive media (estimated 2020-2023), the image quality assess-
ment metrics (IQMs) appear as crucial for improving the quality of the users’ immersive
experience and reducing the side effects during the users’ observation, whereas they
have been little exploited until now. A good objective IQM correlated with human MOS
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can directly guide the development of compression, representation and other process-
ing methods for immersive medias. The FR (or RR) metrics normally are easier and
have better performances (because of richer information), but their major limitation is
that they always need a reference which is unavailable in many circumstances. Thus, I
feel it’s urgent to work on objective IQMs (especially NR metrics) for two new imaging
modalities: light field images (LFI) and 360◦ images, where come from Axis 1.1 and
1.2.

7.1.1 Axis 1.1 Synthesized view quality assessment for light field
images

State of the art

Light field imaging has emerged as a technology allowing to capture richer visual in-
formation from our world. As opposed to traditional photography, which captures a
2D projection of the light in the scene integrating the angular domain, light fields col-
lect radiance from rays in all directions, demultiplexing the angular information lost in
conventional photography. On the one hand, this higher dimensional representation of
visual data offers powerful capabilities for scene understanding, and substantially im-
proves the performance of traditional computer vision problems such as depth sensing,
post-capture refocusing, segmentation, video stabilization, material classification, etc.
On the other hand, the high-dimensionality of light fields also brings up new challenges
in terms of data processing chain (capture, compression, content editing, and display).
On the one hand, the quality of LFIs can be distorted at each stage of the processing
chain. On the other hand, super multi-view light-field displays require input views ac-
quired at high angular resolution, covering a large field of view. Acquiring content with a
large number of real cameras is often economically and technologically prohibitive, so
interpolating intermediate views from those captured using sparse camera arrays has
been suggested to achieve the required high view density. However, such synthesized
views also suffer from several artifacts, which can severely affect the perceived quality.

Tamboli et al. [198] investigated limited distortions (Gaussian blur, additive noise
and JPEG) and proposed a IQM combining spatial information from each constituent
image and angular information (depth cues) from consecutive images. Later they ex-
tended this IQM to videos by integrating optical flow values. Another work of these
authors [2] focused on the quality of synthesized views rendered by VSRS, a depth-
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image-based rendering (DIBR) algorithm, and evaluated 2D and synthesized views
dedicated IQMs in this context. They mentioned the importance of the accuracy of the
depth map used for view synthesis. As a 1st step in this domain, the big limitation is
that they only used 3 scenes with very simple background (uniform wall) in [198] and
only 2 scenes in [199]. Kiran Adhikarla et al. [200] tried to include more scenes (9
synthetic and 5 real-world scenes) and more types of distortion (6 quantization steps
for 3D-HEVC encoder, 3 view synthesis methods and modeling the crosstalk between
adjacent views) in their database and evaluated several existing 2D IQMs. Using the
database [200], Fang et al. [201] then proposed a IQM by extracting local features from
LFIs and global features from epipolar plane images (EPIs) which contains both spa-
tial and angular information of LFIs, and showed that it has a better performance than
existing 2D IQMs. However, the view synthesis methods in [200] were too simple (with-
out any state-of-the-art method). Viola and Touradj [202] proposed a VALID database
focusing on the compression distortions, using 5 real-world scenes compressed by
HEVC and VP9 encoders at various bitrates. A more recent work [203] also focused
on the compression and noise distortions, and proposed an IQM based on depth map
feature and tested on 7 synthetic scenes with ground-truth depth maps.

Scientific challenges and Objectives

To the best of my knowledge, there are only 3 objective IQM [198, 201, 203] dedicated
to LFIs in the literature at the moment. All of them focused on the distortions which
also exist in the traditional 2D images (e.g. compression, noisy). However, the LFI spe-
cific distortions (e.g. the synthesized view quality and the depth map quality) have not
been considered in these studies. The related databases didn’t include the newest view
synthesis or depth estimation algorithms. That’s why two international standardization
groups, JPEG Pleno and MPEG-I Visual (working on the standard framework for the
LFI representation and compression, respectively) have mentioned the lack but the
importance of quality metrics for LFIs at the 2019 CLIM workshop. Jung from MPEG-I
Visual also mentioned that the problem of LFI is not a compression only problem, since
a light-field is needed to be rendered as dense as possible (without occlusions/holes
under sparse capture and transmission/compression constraints), which involves view
synthesis, which involves (often) depth estimation (http://clim.inria.fr/workshop.htm).

IQMs in [198, 201] are FR and IQM in [203] are RR, which need the original views
with the same position as the target synthesized view or the features from these original
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views, which are not available in real applications. These metrics are useful for the
benchmarking, but a NR IQM is in great need for many other applications.

For the subjective test, Light Field Display (LFD) is only used in [198, 200]. How-
ever, since this technology is still far to be a consumer level product, in the literature
2D displays are commonly used, where participants were shown a LFI of a certain
viewpoint or the LF contents as pre-recorded animations navigating between the per-
spective views in a serpentine order to mimic the parallax effect. Studies comparing the
synthesized view quality on 2D display and LFD will also be interesting for this topic.

The objectives of this axis are: 1) Conduct subjective tests where human observers
will assess different combinations of state-of-the-art depth estimation and view syn-
thesis algorithms (including their ground-truth as the reference). Depth map is an im-
portant feature for LFIs [6], the quality of depth maps influences a lot the quality of
the synthesized view. Thus, the 1st thing to be explored is the relation between the
depth maps quality and the synthesized view quality. 2) Propose NR synthesized view
quality metrics by exploring how to use the original views adjacent to the target syn-
thesized view (available in real applications) and their depth maps (can be estimated
in real applications). As a first step, ground-truth depth maps could be used, thus only
artifacts introduced by view synthesis algorithms will be evaluated; then a good depth
estimation algorithm would be selected and used in our metric for real-world scenes.

Fundamental studies

Fundamental study 1: Synthesized view quality assessment metrics - In the context of
S. Tian’s PhD thesis, we have proposed 2 FR and 2 NR metrics (4 published papers)
for the evaluation of depth-image-based rendering (DIBR) algorithms for free viewpoint
television (FTV) applications (where the baselines are large). Note that the view syn-
thesis is easier for dense light fields with narrow baselines, but more difficult for sparse
light fields with large baselines, where the quality evaluation may make a bigger differ-
ence. Thus, the 4 metrics could be tested on sparse LFIs as a first attempt. Our FR
metrics have already showed good performance; but the NR metrics performed well for
known and tested DIBR algorithms, but not very well for new view synthesis algorithms
(since they are distortion-specific, i.e. designed for known distortions). The information
we used in the 2 NR metrics was also very limited (only the target synthesized view
is used). Considering that there are more original views adjacent to the target synthe-
sized view in LF than in FTV and LF has more powerful capability of depth estimation,
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we may use more information (e.g. the original views adjacent to the target synthesized
view, as well as their depth maps) to improve our NR metrics or propose novel metrics
for LFIs.

Fundamental study 2: Database with depth maps and depth estimation - Recently,
I collaborated with ULB and proposed together a deep end-to-end network for light
field depth estimation, which is about 3 times smaller and 3 times faster than the cur-
rent top-performing depth estimation method Epinet, which may be a candidate for the
2nd objective. Note that the ground-truth depth maps are only available for synthetic
scenes. Both of the two existing synthetic databases HCI and CVIA-HCI imitate images
captured by micro-lens array based light field cameras. While light field camera arrays
can produce images with a much higher spatial resolution, no synthetic database sim-
ulating this type of images has been proposed before. To fill this gap, we constructed
such a database including 30 synthetic scenes using Blender. A paper on this work
has been submitted.

7.1.2 Axis 1.2 360◦ image/video quality assessment

State of the art

With the explosion of Virtual Reality technologies, the production and usage of omni-
directional images (a.k.a 360◦ images) is presenting new challenges in the domains of
compression, transmission and rendering. The evaluation of the quality of images gen-
erated by these technologies is therefore paramount. Several subjective evaluations
have been done in the literature for studying the influences of different compression
levels, geometric projection methods, head mounted displays (HMD), stalling patterns
during 360◦ video streaming. Existing objective IQMs can be divided into two cate-
gories: extension of traditional 2D IQMs and deep-learning based metrics. In 2015,
Yu et al. proposed a sphere based PSNR (S-PSNR), which computes PSNR for the
set of points uniformly distributed on a spherical surface instead of on the rectangu-
lar domain. In 2016, Sun et al. proposed the Weighted Spherical PSNR (WS-PSNR),
of which the weight is determined by how much the sampled area is stretched in the
representation; Zakharchenko et al. proposed the Craster Parabolic Projection PSNR
(CPP-PSNR). In 2018, Chen et al. proposed the spherical structural similarity index
(S-SSIM) for omnidirectional video quality evaluation, which calculates the luminance,
contrast and structural similarities of each pixel in the spherical domain. In 2019, the
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researchers in Facebook proposed SSIM360 and 360VQM to verify the performance
of 360◦ video pipeline on encoding and streaming; Kim et. al split the omnidirectional
image into a set of patches and estimated the local quality and weight of each patch
through an adversarial network which are summed to get the final quality score; Kim et
al. also proposed a deep generative model to predict the VR motion sickness score.

Scientific challenges and Objectives

Compared to LFI, there are more works on objective IQMs of 360◦ images, but still
limited. The existing IQMs mainly consider compression artifacts and geometric dis-
tortions occurring in the projection. Little work considered the human attention which
is especially important for 360◦ images, where human observers cannot look at the
entire image at a glance using the HMD. In addition, all the existing methods are FR
metrics. No NR metric has been proposed yet, while it may be a nice opportunity for
deep-learning based approaches.

The objectives of this axis are: 1) Deep-learning technologies has promoted the de-
velopment of IQM for 360◦ images and could actually be used to predict the subjective
quality score without using the reference image (thus a NR metric). There are already
several databases providing subjective quality scores in the literature (e.g. [204]) and
I know that several labs are also creating databases with more images and more dis-
tortion types, so there will be no problem of training data. I want to explore the usage
of different deep networks in this domain for proposing a NR IQM. 2) Human atten-
tion is highly related to the perceived quality of 360◦ images and has been used in
[205] where the NCP-PSNR model weighted the distortion of pixels according to their
locations in panoramic video and the CP-PSNR model assigns weights to pixel-wise
distortion based on the viewing direction predicted with respect to the content of om-
nidirectional video. However, the existing work used the gaze fixations as the human
attention guide, while humans naturally and intrinsically segment the images into ob-
jects in their human visual system. I think that it is more reasonable and effective to use
salient objects as the human attention guide in an IQM. For example, it is found that
the average location of gaze fixation from the center of the view-port varies between
14 and 20 visual degrees in [206], but it will be interesting to explore if the varied gaze
fixations belong to the same object. However, no study focusing on salient objects for
360◦ images has been done, that’s why I will begin this axis after the axis 2.1 of which
the results will serve as a fundamental study for this axis.
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7.2 Theme 2 Saliency detection in images

Visual saliency is the distinct subjective perceptual quality which makes some items
in the world stand out from their neighbors and immediately grab our attention. Eye-
tracking is a well-known technique for analyzing the visual fixations, based on which
the saliency map can be generated. The output of the saliency detection is a saliency
map, a grayscale image that shows the probability distribution of each pixel being under
attention. The heat map is a simple colored representation of the continuous saliency
map. Automatic saliency prediction model for 2D images is of great research interest
since a long time because of its wide range of applications. In 2010, there was a turning
point in this domain for 2D images: the 1st salient object detection model has been
proposed and attracted a lot of attention since then. The salient object detection aims at
finding and segmenting the most conspicuous objects in an image that highly catches
the user’s attention, for which the ground truth is often a binary map where the white
region corresponds to the salient objects (the ground truth can also be a grayscale
image, but the gray level of one object is the same and brighter means the object is
more salient). The main reason of this turning point is that the salient objects can be
directly used in the applications. For example, saliency information can be used to
guide and enhance the compression, where the salient parts will be given more bits
(a higher quality consequently) and non-salient parts will be given less bits. Of course,
it is more efficient to directly use salient objects, instead of the sparse saliency points
(the pixel-wise map needs to be converted into block-wise).

For the same reason, I believe that there will be the same turning point (from
saliency prediction to salient objects detection) for new types of images, e.g. 360◦ im-
age, drone or unmanned aerial vehicle (UAV) images, etc. That’s why I propose the
axis 2.1 and 2.2 in theme 2. I’ve already got the funding for the two axes, to have one
PhD student on each axis beginning from October 2019 (cf. section VI): one is funded
by the China Scholarship Council (CSC); the other is funded by the Directorate Gen-
eral of Armaments of French Government Defense (DGA, 50%) and Bretagne Region
(ARED, 50%).
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7.2.1 Axis 2.1 Salient objects detection in 360◦ image/video

State of the art

There are some (not many) works exploring the object detection for 360◦ images since
2017, but they detect all the objects without differentiating salient from non-salient.
One example is a recent work [207], in which a dataset consisting of 903 frames and
7199 annotated objects was proposed, two deep-learning based algorithms originally
proposed for 2D images (R-CNN and YOLO), as well as their multi-projection variant
of YOLO were compared on this dataset.

Scientific challenges and Objectives

There are several scientific challenges: 1) No annotated data with ground-truth salient
objects on 360◦ images in the literature. 2) No salient objects detection model exists
in the literature as a reference. 3) Compared to objects in 2D images, objects in 360◦

images often have severe geometric distortions (may be different for different projection
methods).

The objectives of this axis are: 1) Construct a database of 360◦ images with an-
notated salient objects, not based on human manually selection, but based on gaze
data got from eye trackers. As argumented in [208], the manual annotations without an
eye-fixation guided methodology do not reveal real human attention behavior. The au-
thors in [208] are the first to establish a visual-attention-consistent densely annotated
database for salient objects detection in 2D videos. Inspired by their approaches, I also
want to construct such a database for 360◦ images. But even as a first database in
this domain, I will use the eye-fixation as the guide. There is no lack of 360◦ content,
and there are more and more databases providing eye fixation data. In the case that
the eye fixation data is not enough from the literature, we have bought an HTC Vive
Pro Eye HMD with integrated eye-tracker in our psycho-visual room, thus we could
also conduct subjective tests in our lab to propose a large-scale database. How to
reasonably divide this database into training, validation and test set will also be consid-
ered. 2) Our large-scale database with annotated salient objects will pave the way for
exploring the application of deep networks in this domain. We may begin with the inter-
pretability problem by comparing and analyzing different deep networks’ performances
on our database (from successful CNN-based methods for 2D images, our successful
usage of GAN to new architectures like capsule network), determining which features
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in a particular input vector contribute most strongly to a neural network’s output and
the success/failure of the model. Based on these studies, we will propose our own
deep-learning based model for salient objects detection in 360◦ images/videos. 3) A
specificity for 360◦ videos is the spatial audio in 360-degree, which allows the viewers
experience a video’s sound in all directions, just like real life. The spatial audio signal is
considered as a powerful way of directing viewers’ attention, e.g. viewers tend to look
at the person who is speaking when there are several persons around. An interesting
way is thus to investigate the influence of spatial sound in videos on eye movement and
to propose an audio-visual model to predict salient objects in videos more accurately.
We’ve already started to explore the sound effect in the context of the PhD thesis of F.
Chao, and a subjective test is being conducted for providing saliency ground-truth with
spatial audio direction (the first study on 360◦ images in the literature). In the context
of this axis, we will continue to further explore this, for salient objects detection.

Fundamental studies

Fundamental study 1: Saliency prediction for 360◦ images - As a first step to under-
stand the human attention mechanism when observers watching the 360◦ images, I
firstly proposed to work on the saliency prediction (the PhD thesis of F. Chao), as
what the researchers did on 2D images. In the context of this PhD work, we have al-
ready summarized a list of existing databases regarding 360◦ images/videos; and pro-
posed two algorithms based on Generative Adversarial Networks (GAN) for predicting
saliency for 360◦ images: one gained the 1st place in the ICME 2018 Grand Chal-
lenge on Head+Eye saliency prediction (published); the other has a better performance
than the current top-performance model on the benchmark of “Prediction of Head+Eye
Saliency for 360◦ Image” (https://salient360.ls2n.fr/un-salient360-benchmark/results-
images/). Note that the majority of the existing works only consider head movements
as proxy for gaze data (since it is not always easily accessible), despite the importance
of eye movements in the exploration of omnidirectional content. We chose to work on
Head+Eye saliency prediction which reflect more human attention.

Fundamental study 2: Salient objects detection for 2D videos - In the context of the
PhD work of Q. Wang, we have also worked on traditional methods, as well as deep-
learning based methods for salient objects detection for 2D videos (1 published paper).
Though the priors commonly used for 2D videos (e.g. central-bias prior) are not appro-
priate for 360◦ videos, our experiences on how to use the temporal information may
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give us a clue for 360◦ videos model design. We also compared and analyzed different
architectures of deep networks and their influences on the salient objects detection
performances on 2D videos (1 submitted paper).

7.2.2 Axis 2.2 Salient objects detection in drone videos

State of the art

Despite the fact that the first attempts of drone development were connected to mili-
tary purposes, nowadays drones (one type of unmanned aerial vehicles (UAVs)) are
used in several applications. More specifically, drones can be used in a huge variety of
domains such as pilot training, disaster management, environmental protection, deliv-
ering services, etc. Among the existing applications, these connected with surveillance
tasks can be considered as the most perspective ones. Considering that the majority
of surveillance systems’ abilities aim to simulate human visual behavior, understanding
how UAV videos are perceived by human vision and proposing an automatic salient
objects detection model could deliver critical information towards such systems’ im-
provement. The ANR ASTRID project that I lead (“Saliency Detection from Operators’
Point of View and Intelligent Compression of Drone videos”) was proposed indeed for
surveillance task. This axis is closely related to this project, but focuses on salient ob-
jects which can be more directly used. In the literature, the 1st work goes back to 2010
[209] which uses an image contrast map derived from the combination of seminal work
in this area, multi-scale mean-shift segmentation with additional histogram enhance-
ment and additional multi-channel edge information. But the data was too small to
more realistically validate this algorithm. Nowadays, there are more databases with the
development of deep-learning based methods, but the deep networks were used for
saliency prediction or objects localization and tracking for drone or UAV videos, not yet
for salient objects detection.

Scientific challenges and Objectives

In ground-level platforms, many saliency models have been developed to perceive the
visual world as the human does. However, they may not fit a drone that can look from
many abnormal viewpoints. Indeed, this new-born image type is distinct from traditional
2D image type in many aspects, including the bird-point-of-view which modifies the se-
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mantic and size of objects, the loss of pictorial depth cues, i.e. the lack of horizontal
line, and the presence of camera movements. How to propose a salient objects de-
tection model considering these specificities is the biggest challenge for this axis. In
addition, the environmental background is an important cue for salient objects detec-
tion on drone videos, how to use it as a priori has not been explored.

The objectives of this axis are: 1) Construct a database of UAV videos with anno-
tated salient objects, not based on human manually selection, but based on our two
saliency databases with gaze data got from eye trackers. 2) From the fundamental
study 2, we found that deep learning models trained on traditional 2D contents show
the most promising results. This outcome is highly encouraging, so we can try firstly
state-of-the-art deep models for salient objects detection in 2D videos through fine-
tuning or training on our own UAV database planned for the Objective 1). 3) From the
fundamental study 2, we also found that the results are quite content-dependent. I
consider to classify the environmental background into different types of scenes as a
pre-processing, then used it as a priori to guide or refine the salient objects detection.

Fundamental studies

Fundamental study 1: Saliency databases of UAV videos - In the context of the ANR
ASTRID project, we have constructed 2 databases with ground-truth saliency, as well
as the raw data (fixation positions and durations), using an eye tracker. One is without
task (already published on ftp://ftp.ivc.polytech.univ-nantes.fr/EyeTrackUAV) and the
other is with task (detection of new appeared objects in the scene). The database with
task is much more similar to the surveillance task.

Fundamental study 2: Existing deep saliency prediction models comparison - In the
context of the ANR ASTRID project, we did a benchmark of state-of-the-art models
(originally proposed for traditional 2D videos) for saliency prediction. This benchmark
studies comprehensively two challenging aspects, namely the peculiar characteristics
of UAV contents and the temporal dimension of videos, and enables to identify the
strengths and weaknesses of current static, dynamic, supervised and unsupervised
models for drone videos. We also identified several strategies for the development of
visual attention in UAV videos.
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7.3 Theme 3 Medical image quality assessment

7.3.1 State of the art

Medical image quality assessment was my PhD thesis topic, and I’m always interested
by it because it is important for the improvement of health technology. The most reason-
able method in this domain is the task-based approach, where the image that enables
medical experts to gain a better task performance or to spend less time for interpreta-
tion with the same diagnostic reliability is said to have a better quality. The objective of
clinically relevant numerical observers is to approach the diagnostic task performance
of medical experts for the objective quality assessment of medical images. The numer-
ical observers have already been widely accepted in this domain. For example, when
medical companies want to release a new technology in the US, they are often required
by the Food and Drug Administration (FDA) to compare their new technology with oth-
ers using a numerical observer. The key problem of designing a numerical observer lies
in modeling the diagnostic process of radiologists, for which one commonly accepted
approach is to divide the diagnostic process into three tasks: detection, localization and
characterization. The detection task requires simply a confidence rating concerning the
presence of an abnormality, e.g. a lesion or a nodule. The localization task consists in
indicating the locations of abnormalities. The characterization task, related to assess-
ing the different elements of the abnormality appearance, normally involves a linguistic
response describing distinctive characteristics or essential features of abnormalities.
Different numerical observers have been proposed for detection and localization tasks,
but no one has been proposed for the characterization task. Another thing that should
be noticed is that deep learning methods have constantly updated state-of-the-art per-
formance results across different application aspects in medical imaging domain, but
they have not been used for medical image quality assessment.

7.3.2 Scientific challenges and Possible solutions

Compared to entertainment image data, the medical data was much more difficult to
obtain just several years ago. We could not even get the most recent medical data with-
out collaborations with hospitals. However, things are changing rapidly in recent years:
with the waves of deep-learning and grand challenges, there are more and more pub-
licly accessible medical data and there is a website making efforts gathering them (cf.
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https://grand-challenge.org/challenges/). Though most of them are for segmentation,
the original data is also provided.

After getting the data, we need annotations from medical experts, which is even
more difficult. Through the collaboration with Prof. Chen of Southeast University, who
has a close relationship with several hospitals in Nanjing, there is no problem to find
medical experts for subjective tests now. We have already conducted one test with
radiologists (who compared our denoising method with other methods on ultrasound
images) in the affiliated Hospital of Nanjing Medical University for the PhD thesis of
M. Outtas, who begins to work permanently in our team as a contracted teacher-
researcher since September 2019.

With the data boom, the available medical experts, and one more permanent person
working on medical images with me, I find it is a perfect time to restart to explore in
the medical image quality assessment theme. Before 2012, proposing a numerical
observer that can perform the characterization task may be too complex to be solved.
But today, this may be solved with the deep learning tools for which medical domain
may be a good application.

7.3.3 Studied modalities

There are different imaging modalities in the medical imaging domain, which will be
favorable for the diagnosis of different pathologies and present different specific physi-
cal and physiological phenomena. Thus, the studied modality should be chosen firstly,
then the studied pathology can be chosen by considering both the studied task and
the studied modality. In this theme, for the next 5 years, I plan firstly to focus on two
modalities: computed tomography (CT, Axis 3.1) and whole slide imaging (WSI, Axis
3.2).

Use of CT has increased dramatically over the last two decades in many countries
(including China), but the radiation used in CT scans can damage body cells, including
DNA molecules, which can lead to radiation-induced cancer. How to reduce radiation
exposure while maintaining image quality becomes thus a key point in CT imaging.
I collaborated with Prof. Chen of Southeast University for the 1st time because he
wanted to extend the numerical observer PCJO I originally proposed for MRI during my
PhD thesis to CT. This work was done by a master student we co-supervised in 2017,
which paves the way for our project creation on Low Dose CT Imaging in 2018, funded
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by the National Natural Science Foundation of China (2019-2022). In this project, deep-
learning methods will be explored for improving low dose CT imaging, as well as for CT
image quality metric design.

WSI is a modality I identified as a future work during my PhD defense, because the
automated quality control is extremely important for the adoption of digital pathology
workflows for clinical use. Clinical pathology is witnessing a paradigm shift by transfer-
ring from glass tissue slides (observed by optical microscopy) to digital slides scanned
with whole slide imaging (WSI) systems. In clinical pathology departments, hundreds
to thousands of digital slides (each with very high resolution ? about 80000 x 60000
pixels) are scanned each day and the number of cases has been steadily increas-
ing, creating a challenging workload for digital pathology. Routine diagnosis of pathol-
ogy slides requires high quality high-throughput images, which are directly affected by
the dynamic environment of the physical optics and sensor electronics of the scan-
ner. Many WSI scanners need a manual quality inspection of digital slides to deter-
mine whether an image needs to be re-scanned. In high-throughput scanning systems,
which contain hundreds of slides for processing, it is impractical to perform a manual
check for each individual slide. A robust and highly reliable automated solution is thus
in great need. At CVPR 2019, I saw a work proposing a digital pathology database
which comprises of 17668 patch images extracted from 100 slides annotated with up
to 57 hierarchical histological tissue types (HTTs) [210]. Their data is generalized to
different tissue types across different organs and aims to provide training data for su-
pervised multi-label learning of patch-level HTT in a digitized WSI. I think that we can a
similar database for the characterization task modeling, by constructing a hierarchical
taxonomy from medical experts’ characterization reports. Then a numerical observer
involving a state-of-the-art deep network trained on this characterization database may
be able to mimic medical experts’ characterization process, and be further used for
WSI image quality assessment and control. I plan to apply for a thesis funding on IQM
for WSI in 2020/2021.

7.4 Application - Image compression

A common application of image quality assessment metrics (IQMs) and salient objects
detection models is the image compression, the axis 4 in my research project.

My on-going project is about end-to-end trainable models for image compression,
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the PhD thesis topic of T. Ladune (to the end of 2021). Recent machine learning meth-
ods for lossy image compression have generated significant interest in both the ma-
chine learning and image processing communities since the work in [211], on which all
the current end-to-end networks are based. In these approaches, image compression
is achieved by first mapping pixel data into a quantized latent representation and then
losslessly compressing the latents. Within the deep learning research community, the
transforms typically take the form of CNNs, which learn nonlinear functions with the
potential to map pixels into a more compressible latent space than the linear trans-
forms used by traditional image codecs. To improve compression performance, recent
methods have focused on better encoder/decoder transforms and on more sophisti-
cated entropy models. Our objective in this project is to attain a better quality with a
certain compression ratio. There are two possible ways we will explore to improve the
existing models: 1) The current model is trained to minimize the PSNR, that’s why the
performance is not really related to subjective test results. We can try to minimize a per-
ceptual IQM, instead of the PSNR, to see if the perceptual quality can be improved at
the end. Another way is to integrate another CNN trained to learn the perceptual quality
in the compression scheme, thus the transform coding can be directly guided by the
perceptual quality. 2) At the workshop and challenge on Learned Image Compression
at CVPR 2019, I noticed that existing deep-learning based compression algorithms
perform actually very bad on salient regions for human perception (e.g. human face).
Hence, the perceptual quality has a great chance to be improved if we take into ac-
count the visual attention mechanism in the current quantization step. As faces play
an important role in entertainment images, a mixed saliency map model including face
detection will be a good choice.

With the development of IQMs and salient objects detection models in the 3 themes,
the fruits can also be applied on compression of the corresponding image types in the
same ways, e.g. light field images, 360◦ images, drone videos and medical images.
The works concerning light field images and 360◦ images would even be able to be
disseminated via contributions to two international standardization groups (JPEG Pleno
and MPEG-I Visual).
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