Fabienne

First and foremost, I

Traditionally, embedded computing systems are seen as relatively simple single-purpose devices, where software is subject to particular constraints, such as power consumption or real-time processing. Only simple operating systems (OS) or bare-metal applications generally run on top of these systems. However, as the computing abilities and resources of modern embedded systems continue to grow, they increasingly play the role of general-purpose systems. Nevertheless, some software-based systems, that were previously divided to provide different functions, are now merged into one platform. For example, some critical background services, in modern embedded devices, may run concurrently with some user-oriented applications for different systems. In addition, for embedded systems, there are still some conventional limitations, such as real-time constraints, limited battery capacity and limited resources. For example, on these systems, hardware resources are shared by multiple applications, whose execution is mostly independent. Thus, the allocation of resources and coherency of hardware tasks are critical problems to be solved.

An efficient way to deal with such issues is to consider virtualization [1]. With this technique, multiple operating systems enable concurrent execution, as if they were running on native environment. Virtualization makes it easy to port legacy software stacks to modern platforms and also allows modern embedded systems to integrate real-time operating systems (RTOS) and general-purpose operating systems (GPOS) on the same hardware platform [2]. Furthermore, the virtual and physical computing platforms are decoupled via a virtual machine (VM), which provides each hosted guest with a separate and secure execution environment. The guest OS runs on the virtual platform, while the actual physical layer is managed by an underlying hypervisor (or Virtual Machine Monitor (VMM)). In this case, applications can be developed and managed regardless of the amount of resources that are available, since these resources are virtual.

Additionally, virtualization can enforce the system security from several perspec-1 tives. One is due to isolation i.e the VMM guarantees that one domain does not compromise other domains' execution. Virtual machines are temporally and logically independent from each other and cannot affect the system. Meanwhile, the advances in the development of Internet of Things (IoT) applications [3] have raised concerns about the security vulnerabilities introduced by IoT devices. Within a few years, billions of such devices will be connected to the cloud to exchange information, making it possible for hackers to use their vulnerabilities to endanger applications connected to such devices. At this point, it is inevitable that virtualization will be a possible way to improve IoT security.

In addition to these software aspects, considering the growing demand of virtualization, the improvement of computing performance has become more and more difficult to manage with traditional methods. Enhancing embedded processor with an Field Programmable Gate Arrays (FPGA) fabric has been considered as a promising solution to improve performances [4] [5]. Embedded systems that are based on this type of platforms can benefit from the flexibility of processors and from the FPGA performances. In parallel, with the development of commodity FPGAs, the technique of reconfigurable computing has gained increasing attention for its potential in exploiting hardware acceleration [6]. Furthermore, the potential provided by reconfigurable architectures can be optimized by treating FPGAs as virtualizable resources, so that virtual machines can access reconfigurable resources independently. Some FPGAs allow the same reconfigurable region to be reconfigured multiple times enabling the time-sharing of hardware resources. This property is denoted as dynamic partial reconfiguration. In the case of several hardware accelerators that are only executed under certain specific conditions, these accelerators can be implemented in the reconfigurable region so as to be instantiated only when needed. This makes it possible to save resources and it avoids components that only work occasionally, while being permanently implemented in the static region of the FPGA. However, in most existing devices, it is difficult to replace or preempt hardware accelerators on-the-fly in a reconfigurable region since efficient mechanisms do not actually exist.

In the case of reconfigurable SoCs, it is clear that reconfiguration would become more efficient if OSs were allowed to suspend hardware resources and restart them at another time or another region of an FPGA. An issue of partial reconfiguration and context saving/restoring is that it is time consuming, because one must be able to preserve an hardware accelerator's internal state and its memory contents. This is obviously required for an hardware accelerator to continue its execution from its preemption point when it is resumed later.

For example, a real-time operating system (RTOS) generally makes it possible to jointly run some critical pieces of software with some low priority user-oriented applications. This means that the OS must have the ability to suspend a software task and switch to a higher priority task. Implementing an OS in such devices makes it also possible to abstract hardware resources and guarantee an efficient management of underlying peripherals.

The problem of this management is much more complex in devices such as Reconfigurable System-on Chip (RSoC), which features at least an embedded processor and a reconfigurable fabric that is considered to benefit from the flexibility of processors and from hardware performances. In this case, new mechanisms have to be proposed to handle resources in the FPGA and make them shareable to all virtual machines.

One of the main issues when dealing with shareable and dynamic resources is hardware preemption. Since OS and user tasks may have different priorities, a given task may need to reconfigure the hardware part with a new configuration. In this case, current hardware accelerators must be suspended and replaced by others.

In this thesis, we focus on small-scaled embedded hybrid systems, which are designed with limited resources. In this context, the challenges we focus on are briefly described as follows:

i) Based on a small-scaled embedded hybrid architecture that offers virtualization capabilities and real-time support, one challenge is to provide an automatic methodology to ensure the real-time capability for RTOS guest machines.

ii) In the case of limited resources, a challenge consists in providing effective virtualization resource management mechanisms while respecting the independence of virtual machines.

iii) With the DPR technique, a new challenge is to provide new mechanisms to preempt reconfigurable resources on-the-fly and reduce the context switch time between several hardware accelerators that share the same reconfigurable region.

Organization of the thesis

The remainder of this thesis is organized as follows: In Chapter 2, we introduce the general techniques and concepts used throughout this thesis. We first focus on the major theories of hardware virtualization technology in embedded systems. We then describe the concepts and principles of hardware preemption technology. We also overview the relevant researches in both partial reconfiguration and context switch for embedded systems. In Chapter 3, we introduce the background of our microkernel architecture, named Ker-ONE. We then introduce the methodology to enable real-time schedulability of RTOS on top of Ker-ONE. In Chapter 4, we present the mechanisms of hardware accelerators management in a virtualized environment, describing both sharing and security mechanisms and propose a way to enhance them.

In Chapter 5, we describe in details the proposed preemption mechanisms based on the Ker-ONE architecture. Fundamental structures and designs are presented and explained. In Chapter 6, we present the experiments to evaluate the performance and overhead of our mechanisms, as well as analyzing the results. We conclude this thesis and give the perspectives of our work in Chapter 7.

Chapter 2 Concepts and Related Works

The purpose of this chapter is to describe the motivation behind this work and the issues that need to be addressed. We first introduce the trend towards the use of computing architectures that integrate reconfigurable accelerators to improve their processing performance, which is the reconfigurable computing architecture. These architectures integrate FPGA devices that have shown potential to provide higher performance. To take full advantage of reconfigurable accelerators, it may be necessary to provide an effective management and a hardware context switch support.

Even though hardware context switch has been a research subject for over a decade, there are still some challenges that need to be tackled. In another section of this chapter, this support is described, especially in terms of extracting hardware accelerators context.

Reconfigurable Computing Architectures

Hardware Acceleration

The inexhaustible demand for higher processing performance has driven the development of modern computing architectures. One of the key to getting faster results in computation is parallelism. With the cost and energy being the primary constraints, it is necessary to run applications in parallel. In addition to relying on existing Central Processing Units (CPU), applications parallelism is also possible with the support of appropriate hardware resources. The term hardware acceleration has been used to describe the process of using hardware accelerators to speed up the computation of the CPU in a computing architecture.

A hardware accelerator is a specialized hardware unit that performs a set of tasks with better energy efficiency or higher performance than a traditional CPU [START_REF] Shao | Research Infrastructures for Hardware Accelerators[END_REF]. It may be Application Specific Integrated Circuits (ASIC), Graphics Processing Units (GPU), Digital Signal Processors ((DSPs), or reconfigurable devices like FPGAs. Hardware accelerators are dedicated to specific algorithms or functions that may be repetitive and cumbersome when executed in the CPU. When working together, CPU and hard-ware accelerators can reduce the execution time of an application.

Hardware Acceleration with Reconfigurable FPGAs

Among the various types of hardware accelerators, reconfigurable devices are known for their interesting features. They provide not only performance and concurrency advantages over software, but they can be reprogrammed inexpensively and easily, providing high flexibility. The idea of combining traditional CPUs and reconfigurable devices into a reconfigurable architecture to improve computing performance is nothing new. The reconfigurable accelerators have been widely used in many domains, such as wireless communication systems [START_REF] Rihani | Arm-fpga-based platform for reconfigurable wireless communication systems using partial reconfiguration[END_REF], High-Performance Computing (HPC) [START_REF] Vanderbauwhede | High-Performance Computing Using FPGAs[END_REF], image processing [START_REF] Batlle | A new fpga/dsp-based parallel architecture for real-time image processing[END_REF], neural networks [START_REF] Zhang | Optimizing fpga-based accelerator design for deep convolutional neural networks[END_REF], etc.

FPGAs are integrated circuits that can be reconfigured at run-time. In general, FPGA resources contain logic blocks and interconnects. Logic blocks can be configured to perform the complex arithmetic or simple logical functions. In most FPGAs, logic blocks also include Look-Up Table (LUT) and memory elements, which may be simple Flip-Flops(FF) or more complete blocks of memory [12]. The interconnect is the medium to forward data from one node of computation to another. Interconnects on an FPGA form a matrix structure which connects logic units through switch points.

Reconfigurable System-on-Chip

A reconfigurable System on Chip (RSoc) provides one or more CPUs and an FPGA domain that are independently implemented. Today, the concept of CPU-FPGA hybrid processors has become more and more popular in both academic and commercial worlds [START_REF] Todman | Reconfigurable computing: architectures and design methods[END_REF] [START_REF] Vipin | Zycap: Efficient partial reconfiguration management on the xilinx zynq[END_REF]. CPU-FPGA hybrid processors have several advantages. First, processors are able to implement complex and flexible computing systems, with a huge variety of applications. Second, FPGA accelerators offer a constant improvement in intensive computations and act as a powerful support for processors. Additionally, the dynamic partial reconfiguration (DPR) technology on FPGA continues to play an important role in high performance adaptive computing. An example is the Xilinx Zynq chip, which provides high data bandwidth between the CPU and the FPGA. In As an example, the Xilinx Zynq-7000 provides a feature-rich dual-core ARM Cortex-A9 MPCore based processing system (denoted as PS) and Xilinx programmable FPGA fabric logic (denoted as PL) in a single device [START_REF]Zynq-7000 all programmable soc technical reference manual[END_REF]. ARM MPCore CPUs are the heart of the PS which also includes on-chip memory, two Triple Timer Counters (TTC), a DMA Controller, and a rich set of I/O peripherals, etc. The PL includes either custom-designed computing blocks or commercial IP cores, which are imple-mented in the FPGA with different functionalities and fabric structures, such as AXI-TImer, AXI DMA, etc. Over the past few years, the global demand for a variety of applications, such as Automotive, Telecommunication, Consumer Electronics, Healthcare, has continued to grow, resulting in a significant increase in the use of SoCs. The adoption of the IoT (Internet of Things) technology across industrial, as well as consumer fields and the vast advancements in the field of networking services has also helped in broadening the scope of using SoC in consumer electronics. For example, as shown in Figure 2.4, the embedded system market size is expected to exceed USD 258.72 billion by 2023, growing at 5.6% during the next six years. In addition, embedded systems are small in size and consume low power. These benefits are expected to drive the growth of the market.

In order to improve the performance as well as to reduce the overhead in the communication between the CPU and FPGA in reconfigurable architectures [START_REF] Kareemullah | A survey on embedded reconfigurable architectures[END_REF],

vendors provide Reconfigurable System-on-Chip (RSoC) in their line of products.

RSoC integrates ASIC-based components in traditional SoC, such as, CPUs and other peripherals, and an FPGA into one chip, for example, Zynq FPGA from Xilinx [START_REF] Crockett | The Zynq Book : Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable SoC[END_REF]. Generally, it consists of the fixed SoC part, i.e., CPU, memory, peripherals, etc., which is shown in the Figure 2.5 as Processing System (PS), and the reconfigurable part or Generally, a RSoC architecture, is made up of at least an embedded processor and a reconfigurable fabric, offering flexibility and performances. and virtualization is an interesting idea to significantly accelerate applications and guarantee flexibility. While considered as quite promising, the exploitation of DPRenhanced virtualization also brings up new challenges. the sharing of FPGA resources among multiple virtual machines may increase the management complexity. This constitutes a real challenge for designers to guarantee real-time capability. In the next section, we will introduce extending virtualization with DPR resources management.

Reconfigurable Resources Management

In traditional systems, hardware accelerators must be exclusively used since no sharing underlying mechanism is provided between tasks or applications. Programmers have to deal with hardware resources management in their own applications, which constitutes a real issue. To simply resources management, virtualization turns out to be an ideal solution because it significantly simplifies software development by providing virtual accelerator access and by offloading the resource management to an hypervisor.

Basic Virtualization Theory

Virtualization techniques have received more and more attention in the field of embedded systems [START_REF] Pinto | Towards a trustzone-assisted hypervisor for real-time embedded systems[END_REF] [START_REF] Mathew | Performance analysis of virtualized embedded computing systems[END_REF]. Such techniques can help device vendors by simultaneously executing multiple operating systems, making it easy to port the legacy software stack to modern platforms, saving the expensive development and verification efforts. On the other hand, such techniques make it possible to use a set of virtual machines that run on a single hardware platform and they can also provide attractive benefits that may meet the emerging demands. They allow several applications to run as they would do on separate machines. These applications have access to isolated resources like memory and to a fraction of the real processor time that is available for each of them.

Taking advantage of their customizability and power efficiency, ARM CPUs have become an attractive choice across a wide range of computer systems, from their dominance in embedded systems and mobile to their increasing popularity in server systems. A growing number of companies are deploying commercial ARM servers to meet the needs of their computing infrastructure.

Generally, there are two main virtualization methods: full virtualization and paravirtualization. The full virtualization technique [START_REF] Iqbal | An overview of microkernel, hypervisor and microvisor virtualization approaches for embedded systems[END_REF] requires no modification of the guest software, and relies on the hypervisor to emulate the low-level features of the hardware platform. Such feature allows native OSs such as Linux or Android to directly run inside virtual machines. Since it does not rely on the OS code, even close-source software can be easily hosted. For example, KVM [START_REF] Qumranet | Kvm: The linux virtual machine monitor[END_REF] and VMware workstation [START_REF] Bugnion | Bringing virtualization to the x86 architecture with the original vmware workstation[END_REF] are two well-known VMMs that can support full virtualization. On the other hand, the para-virtualization [START_REF] Jones | Virtualization for embedded systems[END_REF] refers to the communication between the hypervisor and the guest software to implement virtualization. Such mechanism is mostly implemented by modifying the guest software codes. For example, Xen VMM [START_REF] Barham | Xen and the art of virtualization[END_REF] is known for its para-virtualization support.

Recognizing that virtualization is a key technique for successfully deploying ARM hardware [START_REF] Ul Haq | Transitioning native application into virtual machine by using hardware virtualization extensions[END_REF] [START_REF] Ko | Lightweight, predictable hypervisor for arm-based embedded systems[END_REF], modern ARM CPUs include ARM hardware support for virtualization, named the Virtualization Extensions (VE). Some popular ARM hypervisors, such as KVM/ARM [START_REF] Dall | Kvm/arm: the design and implementation of the linux arm hypervisor[END_REF] and Xen [START_REF]Xen arm with virtualization extensions[END_REF], provide full virtualization supports by exploiting new features.

Other researchers [29] [30] [31] also take advantage of the special security technique of ARM, the Trust-Zone, to implement full-virtualization. The Trust-Zone technique [START_REF]Programming arm trustzone architecture on the xilinx zynq-7000 all programmable soc : User guide[END_REF] refers to security extensions implemented in recent ARM processors, such as Cortex-A5/A7/A8/A9/A15 and the newly-released Cortex-A53/A57. For example, the authors [START_REF]Securing modern-day devices with embedded virtualization and arm trustzone technology[END_REF] leveraged this technique on Cortex-A15 by using the VEs to host multiple virtual machines and using Trust-Zone to host security applications.

However, virtualization on ARM-FPGA platform has some limitations. Note that traditional ARM processors are still used in most embedded devices currently, and may remain as mainstream due to their relatively low cost.

Especially in the domain of CPU-FPGA SoC, although the full-virtualization of ARM processors can provide ideal solutions by using ARM VE, its limitations are also obvious: it is highly dependent to hardware assistance and currently unavailable on ARM-FPGA platforms. In contrast, para-virtualization can be built on a wider range of systems. Therefore, in this thesis, we have decided to only focus on paravirtualization solutions on conventional embedded systems, which will be described in detail in Chapter 3.

FPGA Resource Virtualization

Due to the integration of both CPU and FPGA, current devices generally feature both software and hardware parts. On the software part, the processor usually executes an OS in order to manage multitasking [START_REF] Jozwik | Rainbow: An operating system for software-hardware multitasking on dynamically partially reconfigurable fpgas[END_REF] [35] [START_REF] Agron | Run-time services for hybrid cpu/fpga systems on chip[END_REF]. The OS may have access to the software part resources, which are limited (few timers, few DMA channels, etc.).

To circumvent this problem, it is also possible to benefit from the hardware part to implement custom peripherals or accelerators that can also be accessible from the OS and extend the capabilities of the software part.

Furthermore, software tasks running on top of the OS may also use the hardware part to run dedicated accelerators [START_REF] Viet | On-demand reconfiguration for coprocessors in mixed criticality multicore systems[END_REF] [START_REF] Agne | Reconos: An operating system approach for reconfigurable computing[END_REF]. Regarding the limited amount of resources in the hardware part, it seems also relevant to be able to share these accelerators among several tasks. Therefore, FPGA virtualization can bring benefits in many scenarios.

In order to increase flexibility in the embedded systems domain, hardware resource virtualization has currently become a hot topic. In computing domain, hardware resource virtualization refers to creating multiple logical hardware resources from a physical one. Virtualization techniques enable sharing one resource among many users. Therefore it helps optimizing resource utilization, reducing cost and increasing system flexibility.

Considering the growing demand of virtualization, hardware resource virtualization has become increasingly popular as a core technology within many commercial solutions and products over the past two decades. FPGA virtualization has been studied since the 1990s, but the motivations and methods have changed through time.

Compared to the earlier research on FPGA virtualization in 2004 by Plessl et al. [START_REF] Plessl | Virtualization of hardware -introduction and survey[END_REF], the definitions and techniques of FPGA virtualization have changed over time as application requirements changes [START_REF] Vaishnav | A survey on fpga virtualization[END_REF]. In their work, FPGA virtualization was categorized as: temporal partitioning, virtualized execution, and virtual machine.

Temporal partitioning was the first virtualization method when reconfigurable resources were too often insufficient. It splits large designs into smaller partitions and runs them sequentially on relatively smaller FPGAs. Time partitioning is still used for some applications, but most applications that require more FPGA resources than a single chip often need to execute the application in parallel, i.e. in the spatial domain with multiple FPGAs rather than using temporal partitioning [START_REF] Putnam | A reconfigurable fabric for accelerating large-scale datacenter services[END_REF], [START_REF] Pell | Maximum performance computing with dataflow engines[END_REF]. Therefore, temporal partitioning is nowadays usually used at task-level for large-scale data centers, where a task may span multiple FPGAs, but may be swapped with another task in time.

In the survey [START_REF] Plessl | Virtualization of hardware -introduction and survey[END_REF], virtual execution was used to define the method of splitting the applications into multiple communication tasks and managing them using a run-time system. The purpose of this was to support device independence within a device family. In recent years, it is used not only for device independence within a family, but also for improving design productivity, resource management and isolation.

A virtual machine was defined as a system that provides complete device independence using an abstract architecture. This architecture can be translated later into a native architecture through an interpreter or a remapping tool. This method is now particularly suitable for Overlays [START_REF] Kwok-Hay | Fpga overlays[END_REF], where the abstract architecture can be defined in a number of ways. Obviously, it is difficult to have a standard of FPGA virtualization at this moment.

Considering the FPGA virtualization that has been proposed frequently in both academia and industry to address issues such as acceleration, flexibility and security, this technique is becoming increasingly important for applying in embedded systems.

Nowadays, the objectives of FPGA virtualization are similar to the core objectives that result in the development of virtualization used in traditional CPU/software systems. Unfortunately, FPGA virtualization is extremely complicated. The virtualization techniques from the software domain may not be directly applicable to FPGAs. This is mainly due to the fundamental difference between CPU and FPGA. An FPGA is an array of thousands of computing resources connected by a programmable routing bus system, including registers, look-up tables, memory blocks and so on. For example, applications in FPGA are hardware circuits instead of a set of commands in assembly. This results in a variety of differences to be considered when designing FPGA virtualization.

Considering that FPGAs have already playing important roles in cloud computing, data centers, enterprise, network, it can be foreseen that in these domains, a significant portion of CPU workloads will be shifted from the CPU to the FPGA. In addition to the reprogrammability of FPGAs, partial reconfiguration may be the key to adoption in these domains.

DPR Resource Virtualization

The Dynamic Partial Reconfiguration(DPR) technology has been a trending topic during the last decade [START_REF] Becker | Dynamic and partial fpga exploitation[END_REF] [45] [START_REF] Nasiri | Dynamic fpga-accelerator sharing among concurrently running virtual machines[END_REF], which has been included in the recent mainstream FPGA vendor devices, such as Xilinx family. DPR is a technique breakthrough for FPGA devices. For traditional FPGA reconfiguration computing, one major drawback is the lack of flexibility, since the whole FPGA is required to be reconfigured even when the modification is only required for part of FPGA. As a result, even a partial modification or update of hardware functionality may cause power consumption and enormous time overhead. As a solution, DPR allows users to reconfigure particular regions of an FPGA, while the rest continues running, as shown in Figure 2.7. It turns out that this technique is quite prospective for embedded systems. However, on these platforms, DPR resources are shared by multiple users, whose execution is mostly independent. Therefore, the allocation of DPR resources and coherency of hardware tasks are critical problems to be solved. In traditional systems, the accelerator must be used exclusively. Such operations to support different users by continuously releasing and claiming accelerators may result in additional time overhead. In addition, such mechanism is not suitable for virtualization because virtual machines are isolated from each other, making the inter-VM DPR allocation even more expensive.

In this context, DPR resource virtualization has proven to be an ideal solution because it tricks software users by providing virtual accelerator accesses, which significantly simplifies software development. In order to virtualize DPR resources, the classic hardware virtualization challenges, such as memory sharing, the CPU/FPGA communication bandwidth, and hardware computation data preservation, have to be taken into consideration. These have been under enormous research in recent years [START_REF] Wang | pvfpga: Accessing an fpgabased hardware accelerator in a paravirtualized environment[END_REF] [48] [START_REF] Dondo | Persistence management model for dynamically reconfigurable hardware[END_REF]. Furthermore, in the following we introduce some research works that successfully employ DPR virtualization in their OS or virtual machine systems. DPR resource virtualization was implemented in the Linux OS in [START_REF] Huang | Hardware resource virtualization for dynamically partially reconfigurable systems[END_REF], by providing a framework called Operating System for Reconfigurable Systems (OS4RS). The virtual hardware allows the same hardware devices and the same logic resources to be shared between different software applications simultaneously, that is, a reconfigurable hardware function can be virtualized to support more software applications.

Logic resources can be dynamically linked to different DPR accelerators on the applications demand as many-to-one manner, so that the hardware resource can be shared by multiple applications.

This research mainly focuses on the multitasking level on a single OS. In some studies, techniques of FPGA resources virtualization moves a step forward to the virtual machine systems, where the guest OS or applications may be sharing FPGA resources. Compared to multiple tasks on single OS, VMs are more independent and isolated, and the required hardware accelerators can be more diverse. In this domain, researches tend to consider these FPGA accelerators as static coprocessors accessible by multiple VMs. For instance, one of the earliest researches in this domain is proposed in the study of pvFPGA [START_REF] Wang | pvfpga: Accessing an fpgabased hardware accelerator in a paravirtualized environment[END_REF]. Here, authors attempted to extend the Xen hypervisor to support FPGA accelerator sharing among VMs. However, this work focused on an efficient CPU-FPGA data transfer approach, with a relatively simple FPGA scheduler that offers a First-Come, First-Served(FCFS) sharing on the accelerator, without including DPR.

Meanwhile, DPR virtualization is more popular in data centers and cloud servers, which have a higher demand for computing performance and flexibility. By using DPR, the virtual FPGA (vFPGA) concept is provided as a virtual device to user custom hardware logic. For instance, Byma et al. used partial reconfiguration to split a single FPGA into several reconfigurable regions that are managed as a single Virtual FPGA Resource (VFR) [START_REF] Byma | Fpgas in the cloud: Booting virtualized hardware accelerators with openstack[END_REF]. This makes it possible to virtualize the FPGA and makes it a multi-user device. Users can then allocate one of these VFRs, and have their custom designed hardware placed within it. According to the similar idea, the research of RC3E provided selectable vFPGA models [START_REF] Knodel | Spallek. RC3E: provision and management of reconfigurable hardware accelerators in a cloud environment[END_REF], which allows users to access DPR resources as background accelerators, full FPGA, or virtual FPGA.

However, the target of our research is to implement efficient DPR accelerators sharing among VMs. We tend to isolate users through the development and implementation of hardware accelerators. Therefore, we will not discuss these studies in details in this thesis.

Nevertheless, due to the feature of DPR virtualization, a new challenge consists in providing an efficient management mechanism while respecting the independence of VMs. The reconfigurable resources have to be virtualized so that virtual machines can access them independently. This feature is critical in virtualization to ensure system security. However, though reconfigurable accelerators on conventional embedded systems have been studied in numerous researches, they are mostly implemented in simple applications and OSs, while the usage and management of the DPR technique in a virtualized environment remains an open problem. Furthermore, it is clear that reconfiguration would become more efficient if tasks were allowed to suspend hardware resources and restart them at another time or another region of an FPGA. Unfortunately, in most existing devices, hardware accelerators cannot be replaced or preempted on-the-fly. A key advantage of FPGAs is their ability to modify their operation at runtime and the ease with which they can be safely partitioned for sharing. An issue of partial reconfiguration and context saving/restoring is that it is time consuming, because one must be able to preserve an IP's internal state and memory contents. This is obviously required for an accelerator to continue its execution from its preemption point. To this end, novel techniques for managing hardware resources on FPGAs are required.

Context Switch

As mentioned before, we aim to support multitasking in reconfigurable architectures by managing the context switch operation between hardware tasks on the FPGA.

Since a reconfigurable architecture is made up of CPUs and FPGAs, two natures of tasks are identified: software tasks and hardware tasks. The former is considered to be programs that are fetched from the memory and run on CPUs. The latter runs in the form of IPs or digital circuits on FPGAs.

Context Switch in Software

A context switch is a process of switching from one process or task to another in order to temporarily share common CPU resources. A software context switch means to save a task's context, and then restore the saved context when the task resumes. A task's context in this case is the contents of the CPUs registers and program counter at any time. Figure 2.8 depicts a context switch between two tasks: T 1 and T 2 . T 1 context must be saved before the CPU execution is given to T 2 . After that, the execution of T 2 starts. When the context has to be switched back from T 2 to T 1 , the T 2 's context must first be saved, and then T 1 's context is restored. This is an effective way to support software multitasking.

Context Switch in Hardware

A hardware task running on an FPGA can be replaced by downloading a new bitstream. However, once the FPGA is reconfigured with another bitstream, the execution progress on the FPGA will be wiped out, which makes it impossible to resume the preempted task execution. In order to circumvent this issue, a hardware context switch support is necessary in the FPGA.

Nowadays, FPGAs integrate more heterogeneous elements such as Block Random-Access Memory (BRAM), DSPs, or even larger specialized Ultra Random-Access Memory (UltraRAM) [START_REF] Ahmad | A 16-nm multiprocessing system-on-chip field-programmable gate array platform[END_REF]. Such components are more complex and a context switch requires more efforts to be implemented in this case.A hardware context switch requires to save and restore the registers and memory contents of a given hardware task in the FPGA. Moreover, when a hardware task on the FPGA is replaced, a bitstream download may be necessary. Figure 2.9 shows a hardware context switch operation between two tasks (T 1 and T 2) that are executed in the same FPGA. After saving T 1 context, the FPGA is configured with T 2 before restoring T 2 context, and vice versa.

Most importantly, an additional mechanism is necessary to save and restore the context from hardware. Over the years, some researchers have proposed mechanisms to extract an hardware task context from FPGAs [START_REF] Jozwik | Comparison of preemption schemes for partially reconfigurable fpgas[END_REF]. In general, two main techniques may be considered. We will discuss them in details in the next section.

Hardware Context Extraction Techniques

In this section, we focus on these two techniques whose objective is to provide a hardware context switch from an FPGA. The first is to extract the state of the FPGA

Readback Technique

The first technique which reads back the hardware context, such as LUT, FF, routing, through the FPGA configuration port, is called Readback technique. Readback is the first and considered the most commonly used technique.

Back in 2000, the ideas of FPGA multitasking [START_REF] Levinson | Preemptive multitasking on fpgas[END_REF] [START_REF] Simmler | Multitasking on fpga coprocessors[END_REF] used readback technique on Xilinx XCV300, XCV400 and XCV1000. In their works, authors specified that the requirements of readback for FPGA multitasking requires FPGAs to have configuration and readback capabilities. Therefore, this technique is only available on certain FPGAs. In fact, circuit design and configuration are specific to the tools from FPGA manufacturer or vendor. For example, Figure 2.10 shows two models of FPGA architectures from different manufacturers. A complete control of the clock on FPGAs is necessary to suspend a task at a known and a restorable state. The bitstream extracted from FPGAs must contain the state of all internal registers and memory. Happe et al. [START_REF] Happe | Preemptive hardware multitasking in reconos[END_REF] proposed an approach that captures and restores the complete state of a reconfigurable design by performing the readback of all flip-flops and block RAMs. This approach does not require to modify the hardware architecture and thus no additional hardware is needed. Although using readback in hardware context switch enables multitasking operation on the FPGA, it also has some drawbacks. The useful information required to resume a task's execution after a context switch is actually less than 10% of the total readback data. The remaining unnecessary data must be filtered to get the task state from the readback bitstream. It is not really efficient since it has to parse the entire bitstream to extract the actual state information. In an alternative approach, authors [START_REF] Kalte | Context saving and restoring for multitasking in reconfigurable systems[END_REF] reduced the amount of readback data by only extracting portions that are used. Another drawback of readback is that the reconstruction process, which is a merging process of the extracted state and initial configuration. Actually, much of the extracted data is not needed because it is already present in the initial bitstream.

Therefore, this manipulation can be time consuming. To reduce the effort in reconstruction process, [START_REF] Landaker | Multitasking hardware on the slaac1-v reconfigurable computing system[END_REF] proposed a method to modify the bitstream using custom tools to restore the state of the FPGA.

Over the years, the readback technique has been improving the efficiency of FPGA multitasking, especially on Xilinx products. This technique is commonly dealt with by the Internal Configuration Access Port (ICAP) in Virtex technologies [START_REF]Vivado design suite user guide: Partial reconfiguration[END_REF]. The ICAP permits readback from within the FPGA. No extra design efforts and additional hardware consumption is required when readback access to the port that already exists on the FPGA. The reconfiguration throughput in readback can be increased using a solution such as the Fast Reconfiguration Manager [START_REF] Duhem | Farm: Fast reconfiguration manager for reducing reconfiguration time overhead on fpga[END_REF].

Nevertheless, the readback technique exclusives for Xilinx FPGAs. It is difficult to set up because readback technique is based on non released information of FPGA family bitstream encoding. For a hardware context switch in FPGA, a specific bitstream parser for each type of FPGA is necessary for parsing the context from the bitstream and thus for rebuilding the task that will be restored later. These challenges including the overhead in reconfiguration time and memory size are to be addressed to provide the multitasking feature on FPGAs.

Scan-chain Technique

Another technique that allows hardware context extraction on the FPGA is to add some structure directly to the circuit. In other words, the circuit embeds mechanisms that allows hardware context reading and writing. The most common mechanism is a scan-chain, which integrates additional structures into the hardware design to enable access the hardware design state stored in FPGA registers or memory. A multiplexer is added at the input of each flip-flop (FF) or another input is added to an existing multiplexer to route each FF signal to the next. The last FF of the chain acts as an output. Figure 2.11 shows an example of a 1-bit scan-chain insertion. This technique has a smaller memory footprint than readback since only FF values are extracted.

Compared to the readback technique, this method of extracting only the staterelated data without any redundancy also reduced the extraction time and lead to high data efficiency in hardware context extraction. Wheeler et al. [START_REF] Wheeler | Using design-level scan to improve fpga design observability and controllability for functional verification[END_REF] proposed a typical method of inserting scan-chains, and explained the resource consumption as a result of the use of design primitives, such as FFs and RAMs on FPGAs. Similarly, in [START_REF] Koch | Fpga architecture extensions for preemptive multitasking and hardware defragmentation[END_REF] described the design tool for using the register scan-path structures. This design tool significantly increases the average FPGA resource utilization. In addition, it also requires high efforts from the users. In [START_REF] Koch | Efficient hardware checkpointing: Concepts, overhead analysis, and implementation[END_REF], Koch et al. presented three access methods: scan-chain, shadow scan-chain and memory mapped method, and proposed a tool that uses checkpoint concept to allow automatic state extraction. This approach obtains higher efficiency during hardware preemption. A checkpoint state is a state that allows a context extraction from a hardware task on the FPGA. The checkpoint selection is able to benefit from the size of live variables, which may vary from one state to another. In [START_REF] Schmidt | Checkpoint/restart and beyond: Resilient high performance computing with fpgas[END_REF], authors provided a platform whose fault tolerance is ensured by a checkpoint context extraction mechanism. The extracted context of each register was copied into memory. By extracting the context only at the checkpoint states, a smaller sized hardware context can be obtained with a trade-off in the latency of preemption. Furthermore, the extra design efforts required to add such structures may be costly. The context can be extracted and restored by an additional interface of the task, which does not need to freeze the global clock on the FPGA [START_REF] Jovanovic | A hardware preemptive multitasking mechanism based on scan-path register structure for fpga-based reconfigurable systems[END_REF]. Therefore, the rest part of the FPGA can still work. Jovanovic et al. [START_REF] Jovanovic | A hardware preemptive multitasking mechanism based on scan-path register structure for fpga-based reconfigurable systems[END_REF] used a scan-path register structure for context saving and restoring of a hardware task's context to implement a hardware preemptive multitasking mechanism. This work has been improved in Bourge et al [START_REF] Bourge | Generating efficient context-switch capable circuits through autonomous design flow[END_REF]. In this work, the scan-chain method reduces the size of the context to be stored. They proposed a mechanism that reduces users effort in adding a scan-chain structure, while obtaining the efficiency offered by the checkpoint concept at the same time. Bourge, Muller, and Rousseau [START_REF] Bourge | Generating efficient context-switch capable circuits through autonomous design flow[END_REF] presented a mechanism which takes advantage of High-Level Synthesis (HLS) flow to reduce users effort in adding scan-chain structures to hardware tasks while at the same time obtaining the efficiency offered by the checkpoint concept.

These techniques perform context switch by modifying the hardware design itself, and produce overhead in hardware resource consumption. Furthermore, an additional bitstream reconfiguration is also required in addition to a context restoring if a hardware context switch operation involves different applications in FPGA. Scan-chain techniques can provide benefits in data efficiency, since the bitstream is not contained in the context extraction. Such technique is also independent of the FPGA. Therefore, any knowledge of bitstream or customized bitstream parser is not required when providing a context switch support in FPGA. As a result, this technique is faster than the readback technique. We should note that a bitstream reconfiguration is also required if a hardware context switch operation involves different IPs in FPGA.

Comparison of Readback and Scan-chain Techniques

Table 2.1 summarizes the main features of both techniques. It can be noted that they have complementary advantages and disadvantages. Since the readback technique cannot extract a completely relevant context, the readback bitstream has to be parsed to extract the actual state information, which results in a large data footprint. By means of adding a filtering step, the large data footprint may be reduced. In contrast, the scan-chain technique can reduce the amount of data to be extracted. The readback technique also relies on the functionality of the FPGA fabric, and the development of an application does not require any specific design efforts. Therefore, no additional resources are consumed on the FPGA. On the contrary, with a scan-chain technique, the designer has to modify the circuit and use other available hardware resources. Note that with this technique, the data footprint and the additional resources consumed are almost directly linked. In the end, the readback technique depends on the FPGA, No Yes that is, the bitstream formats are not the same for different FPGAs. This may not be the case for a scan-chain technique.

An Overview of Reconfigurable Operating Systems

Using DPR technology, hardware circuits can time-share resources, and can be swapped in / out of FPGAs when required in runtime. Therefore, the ability to preempt a running task on the FPGA and extract the task's context is essential in providing a hardware context switch support. Meanwhile, the hardware context management such as saving and restoring, as well as the communication between the CPU and FPGA is equally important in reconfigurable systems. In general, a CPU which runs a customized OS is needed to manage the communication between tasks, both in the CPU and FPGA. In this section, we will review existing reconfigurable operating systems that support tasks communication management and hardware context switch support.

Linux-based OS

In [START_REF] Vuletid | Seamless hardware-software integration in reconfigurable computing systems[END_REF], authors proposed a virtualization layer that allows hardware accelerators running on behalf of user applications to access the user space virtual memory. In this work, the virtualization is provided by a Linux OS module which also facilitates the communication between software and hardware. Using virtual memory, the CPU and FPGA can share the same address mechanism with the main memory. This method provides some benefits such as in prefetching or duplicating communication data with ease. However, this work does not support the hardware preemption context switch on the FPGA.

A similar method is implemented in a reconfigurable system with a hardware context switch support. The techniques can generally be applied to a reconfigurable architecture with the CPU which runs Linux OS. When a hardware task is context switched, the communication data can be safely stored in the main memory. How-ever, this method is strictly constrained to shared memory systems. Since hardware tasks are directly connected to the main memory in the system, there is a risk of inconsistency in hardware context switch [START_REF] Simmler | Multitasking on fpga coprocessors[END_REF].

BORPH

BORPH [START_REF] So | BORPH: An Operating System for FPGA-Based Reconfigurable Computers[END_REF] is another Linux extension operating system. In BORPH, the whole FPGA is used as a reconfigurable slot, which can easily lead to high reconfiguration time overheads and inefficient resource utilization, especially since FPGAs are not partially reconfigured. For communication, BORPH uses the SelectMap bus connection between one central control FPGA and four other user FPGAs, while the inter-FPGA communication is Point-to-Point (P2P) through a ring network.

Rainbow

Rainbow [START_REF] Jozwik | Rainbow: An operating system for software-hardware multitasking on dynamically partially reconfigurable fpgas[END_REF] is developed to support preemptive hardware tasks on the Operating System for Reconfigurable Systems (OS4RS). It provides the Application Programming Interface (API) that allows the synchronization and communication from software part. On the hardware part, it supports DPR and utilizes the readback technique to provide a preemption context switch. The communication data can be transferred between tasks utilizing a point to point message-based communication.

As described in Section 2.4.1, using readback technique in preemption context switch constraints the implementation to a specific FPGA. In other words, users must be aware of the knowledge of the hardware task execution on the FPGA and third-party use is generally avoided.

ReconOS

ReconOS is built on an existing real-time operating system, enabling transparent inter-thread communication regardless of the HW/SW partition [START_REF] Lübbers | Communication and synchronization in multithreaded reconfigurable computing systems[END_REF]. In ReconOS, an HW task is modeled as an independent executing thread, whose communication is controlled by the OS module. Thanks to the control from the OS module, flexible communication and synchronization mechanisms can be provided for multi-threaded HW/SW systems. In addition, these mechanisms are transparent to tasks. In this context, ReconOS only considers multithreading between HW/SW in the system and lacks the scalability in HW/HW communication. Moreover, the preemptive scheduling is not available for HW tasks on the FPGA portion.

A preemption context switch support in ReconOS was proposed later in [START_REF] Happe | Preemptive hardware multitasking in reconos[END_REF]. In this work, authors uses ReconOS to control the task context extraction on the FPGA using readback technique. However, they did not consider the consistency preservation when a hardware context switch occurs.

CPRtree

In [START_REF] Vu | Cprtree: A tree-based checkpointing architecture for heterogeneous fpga computing[END_REF], an infrastructure for managing a context switch on FPGAs is proposed. A task's context can be accessed at checkpoints by using scan-chain technique. The checkpoints and restart process in FPGA is controlled using APIs on the CPU. Although their work provides a preemption context switch support that works in a heterogeneous environment, the system only extracts/restores the I/O communication data inside an hardware task. But the communication FIFO outside the task is not taken into consideration. Thus, when a preemption request is given to a task with ongoing communication flows, the only way to maintain the communication consistency is to suspend the request until the task consumes all the I/O communication data.

Summary

In this chapter, we have introduced some of the typical existing techniques for hardware virtualization, hardware resources management, and context switch on reconfigurable platforms. Providing an hardware context switch support on the FPGA has been a research topic for over a decade. In order to perform a context switch between hardware tasks running on an FPGA, preemption management between tasks is required. Before extracting the hardware context of a running task, its execution must be safely preempted to preserve the data integrity, which should be maintained so that the execution of hardware tasks on the FPGA can be correctly resumed after a context switch. Unfortunately, these existing methods allow multiple hardware tasks preemption but no operating system has been used to manage the hardware context switch efficiently.

In our work, we focus on embedded hybrid systems, which are designed with limited resources, and may be used for small devices such as those in the Internet-of-Things (IoT). In our work, the target platform is the ARM-FPGA Xilinx Zynq-7000

SoC, which includes a dual-core Cortex-A9 processor and a 7-series FPGA architecture with dynamic partial reconfiguration (DPR) technology. This is one of the most commonly used ARM-FPGA systems. On this platform, we propose a lightweight virtualization solution that is appropriate for simple and small devices. In this context, the existing FPGA resources management are not ideal since their complexity is mostly higher than we expect.

Therefore, in our research we propose a new micro-kernel architecture that supports real-time virtualization with minimal software complexity : Ker-ONE. The properties of this custom micro-kernel are a small-sized Trust Computing Base (TCB)

and an accurate scheduling for real-time tasks. In this work, we extend our framework to apply DPR to virtual machine systems in CPU/FPGA architectures. The management of hardware resources is integrated as a user service in the micro-kernel.

Meanwhile, efforts have been made to develop an innovative preemption mechanism that is implemented in hardware to reduce the context switch time between several hardware IPs that share the same reconfigurable region.

Chapter 3

The Ker-ONE architecture

In this chapter, we first describe the Ker-ONE micro-kernel, which lays the foundation of our framework by offering virtualization capabilities. Ker-ONE is conceived to have a high virtualization efficiency, which means that the virtualization cost to host guest OS is kept has small as possible to reach a level of performance close to systems without virtualization. Ker-ONE outperforms other approaches since it is very small and fast. Furthermore, it provides enhanced real-time support. We also propose an automatic design flow that guarantees the real-time capability for RTOS guest machines on the Ker-ONE platform. To achieve this goal, we model the problem and the design space. With our methodology, this will make Ker-ONE more reliable and interesting for embedded systems.

Overview of the Ker-ONE Microkernel

In the embedded computing domain, the exploitation of DPR-enhanced virtualization has gained a lot of interest and also brought up new challenges. In virtualization, guest OSs usually run in strongly-isolated environments called virtual machines(VM).

Each VM has its own software tasks and virtual resources which abstract physical resources. In this context, the use of hardware accelerators by VMs must be dynamic and independent. Note that these accelerators could be shared by multiple VMs. This means that an abstract and transparent layer has to be provided so that the isolation of virtual machines will not be undermined.

Ideally, the actual allocation and management should be performed by an hypervisor, and should remain hidden from guest OSs. Furthermore, in addition to the complex problem of real-time scheduling that is often met in embedded systems, the sharing of FPGA resources among multiple VMs may significantly increase the management complexity. This constitutes a real challenge for designers to guarantee real-time capability.

Ker-ONE permits to address these challenges by featuring a new resource mapping and management mechanisms to provide transparent virtual FPGA resources to the VMs. Ker-ONE follows the principle of minimal authority and low complexity. The microkernel is the only component that runs at the highest privilege level, primarily in the supervisor mode. Only the basic features that are security-critical have been implemented in the Ker-ONE micro-kernel, such as the scheduler, memory management, the inter-VM communication, etc. All non-mandatory features have been eliminated, so that the micro-kernels Trust Computing Base(TCB) is reduced. The TCB corresponds to pieces of software and hardware on top of which the system security is built. Normally, a smaller TCB size corresponds to higher security since it reduces the systems attack surface. In our case the TCB is kept small, which leads to improved security.

The user environment runs in the user mode (see PL0 in Figure 3.1) and consists of additional system services, for example, VM bootloaders, device drivers, file systems, which run as server processes. Furthermore, this framework is designed to be scalable and easily-adaptable to extension mechanisms.

Guest OS implementation

Multiple VMs run on top of the user environment and Ker-ONE is based on paravirtualization, which was introduced in Chapter 2. In Ker-ONE, we attempted to limit the number of modifications of the guest OSs a much as possible. We para-virtualized a well-known OS, µC/OS-II, which is commonly used in education and research. With such para-virtualization technique, µC/OS-II is modified to explicitly make calls, such as hyper-calls, to the hypervisor or a virtual machine monitor (VMM) to handle privileged operations, as shown in Figure 3.2. Each VM may host a para-virtualized µC/OS-II or a software image of user application, which has its own independent address space and executes on a virtual piece of hardware. To easily manage partial reconfiguration requests from VMs, Ker-ONE also provides special-purpose services to control hardware accelerators in the partially reconfigurable FPGA fabric. Our Ker-ONE micro-kernel architecture and PRR management has already been described in details in previous papers [72] [73]. In the following, we briefly introduce several implementations in Ker-ONE.

Real-time capability

Ker-ONE has been designed to host one real-time OS (RTOS) and several generalpurpose OSs (GPOSs). The RTOS tasks are considered as critical with real-time constraints. We assume here that users are responsible for defining a scheduling strategy for the real-time task set with a suitable scheduler. Ker-ONE is responsible for guaranteeing real-time constraints with no or at least minimal modification of the original RTOS scheduling settings.

This requires several features: the scheduling accuracy for the RTOSs, the guarantee of efficient CPU bandwidth for these RTOSs and the compliance with the RTOSs original scheduler. In this chapter, we focus on the characteristic of real-time scheduling.

Real-time scheduling

Several researches on real-time scheduling in virtualization systems have already been led. For example, VMM schedulers based on compositional real-time framework [START_REF] Shin | Compositional real-time scheduling framework[END_REF] and server-based scheduler [START_REF] Xi | Rt-xen: Towards real-time hypervisor scheduling in xen[END_REF] have been designed to be used in RT-XEN and other micro-kernels. However, they either require additional model computation [START_REF] Shin | Compositional real-time scheduling framework[END_REF] or require modifications of the OS original scheduling interface, which is against our intention.

In our work, we assume that users have already designed a workable schedule for a given real-time tasks set executed on a native machine. The purpose of the VMM scheduler is to host real-time tasks according to the original scheduling settings. This strategy minimizes the additional workload on users, and simplifies the micro-kernel.

The VMM scheduler follows the concept of background scheduling, which is quite simple and reliable. Low priority tasks are only allowed to execute when high priority tasks are idle. Ideally, low priority tasks have no influence on the execution of high priority tasks, since only the idle time is donated.

In Ker-ONE, a priority-based preemptive round-robin strategy is applied, as shown The RTOS can always preempt the GPOSs as long as it is ready to run. The events evoking the RTOS include timer ticks pre-set by the RTOS scheduler and sporadic interrupts for the RTOS. In either case, the RTOS will be immediately scheduled and start running. Note that, system service threads automatically inherit the priority of the caller VM, so that system services are also preemptable and will not block the RTOS scheduling.

Dynamic Partial Reconfiguration Management

In this section, the CPU-FPGA architecture is studied, in which the CPU and the FPGA are tightly coupled. FPGA resources can be connected to a CPU through dedicated interfaces and can be mapped to their unified memory space. In our case, the role of Ker-ONE is to host multiple simple guest OSs with different priorities.

In Ker-ONE, we assume that all critical tasks are hosted in higher priority VMs, while non-critical tasks run in lower priority VMs, for which long latency and resource blocking can be tolerable.

To keep the behavior of critical tasks predictable, we also assume that FPGA resources are always sufficient for high priority VMs, whereas they can also be shared and re-used by lower priority VMs. This assumption seems reasonable in practice because critical tasks are pre-determined in most embedded systems.

In our system, reconfigurable accelerators are hosted in different partial reconfiguration regions (PRR), which can be seen as containers. These accelerators are denoted as hardware (HW) tasks. Each HW task is an instance of an accelerator

Hardware task model

HW tasks are associated with PRRs on FPGAs. PRRs provide FPGA resources to implement their algorithms. Such algorithm is denoted as a virtual device (VD), and completely abstracts the implementation details. Thus, there may be several HW tasks implementing the same algorithm, targeting different PRRs. A given PRR may not be compatible if its region is too small to implement the corresponding accelerator algorithm. Therefore, the compatibility information of HW tasks must be predicted

beforehand.

An HW Task Index Table is created to provide a quick look-up search for HW tasks, as listed in Figure 3.5. In this table, the compatible PRRs for each VD are listed. For each compatible PRR, a HW Task Descriptor structure is provided, which stores the information of the corresponding bitstream, including its identifier, memory address and size. This information is used to correctly launch PCAP transfers and perform reconfiguration. This table also stores the reconfiguration overheads of each HW task, whose values can be estimated by previous measurements. Note that, since a PR accelerator interface structure is implemented in the IF, its register values are persistent for the VM. When an IF is disconnected from a PRR, the state of the corresponding virtual device (e.g. results, status) is still stored in this IF and can be read by the VM. In this way, the consistency of the virtual device interface is guaranteed.

Hardware task preemption

Considering that multiple VMs share FPGA resources, the RTOS tasks may be unexpectedly blocked when resources are occupied by GPOS tasks. To guarantee the timing constraints of real-time tasks, the HW tasks should be preemptible so that resources can be re-assigned to RTOS tasks when necessary. We denote the VM corresponding to a HW task as a client.

HW tasks inherit the priorities of their VM clients, meaning that virtual devices in RTOS and GPOS have different priorities. In our policy, the execution of lowpriority HW tasks can be preempted when RTOS virtual devices require more FPGA resources. Note that HW tasks with the same priority level cannot be preempted.

The preemption mechanism requires to address several issues to make sure HW tasks can be safely stopped and resumed. First, to protect data integrity, accelerators may only be stopped when they reach some point in their execution, for example, the interval of data frames in communication processing. These points are denoted as consistency points where the execution path is safe to be interrupted and can be resumed without a loss of data consistency. Designers of HW tasks have to identify the consistency points that allow the accelerators execution to be preempted and to save the interrupt state.

We should note that, a context switch is provided when a HW task reaches the consistency points. It simplifies the design and can be implemented at a relatively low cost as accelerators run to completion. However, HW tasks cannot be stopped or preempted at any time. Compared to the previous preemption techniques that we listed earlier [START_REF] Xia | Mini-nova: A lightweight arm-based virtualization microkernel supporting dynamic partial reconfiguration[END_REF], in this thesis, new hardware preemption mechanisms are controlled by the OS, but all the HW tasks' contexts are managed in hardware. They extend the software OS mechanism to the hardware part. We will discuss these mechanisms in details in Chapter 5.

Problem Statement and Motivation

As described earlier, Ker-ONE provides a RTOS-support mechanism which is proposed to handle the real-time constraints of most applications. In Ker-ONE, one RTOS is hosted in a virtual machine, whereas one or more GPOS are running in other virtual machines. The FPGA fabric is divided into several partial regions (PR)

to run accelerator functions. These partial regions are shared by the RTOS and GPOS to implement and execute HW tasks, i.e. accelerator functions. Since the RTOS is assigned with higher priority level, it can always preempt the execution of GPOS' HW tasks, and use the preempted regions to run RTOS HW tasks. In this way, RTOS tasks will always get their required FPGA resources in a predictable amount of time, since it will not get blocked by the execution of GPOS. Its total execution time is thus predictable. Note that, hardware tasks of the same priority level cannot be preempted.

However, the analysis of real-time schedulability is based on the following assumptions:

Assumption 1 The FPGA resource is adequate for RTOS tasks.

In other words, whenever the RTOS tries to use an accelerator, there will always be at least one available PR in which to implement the required accelerator. This assumption is critical, because it guarantees that there will be no resource competition between two RTOS tasks. Otherwise, one RTOS task can be blocked by other RTOS tasks when it tries to use an accelerator, since the blocked task cannot preempt PR from other RTOS tasks.

Assumption 2

The overhead caused by the virtualization of FPGA resources is insignificant and have little effect on the original schedulability of RTOS tasks.

Therefore, if a real-time task set is schedulable on a native RTOS, it can be ported to the guest RTOS on Ker-ONE without violating the real-time capability.

However, these are loose assumptions which are not always true. The first assumption may easily fail with poorly designed PRs. The second assumption also requires further investigation, since the timing of real-time tasks do get changed when ported to the Ker-ONE virtualization environment. Ignoring such changes is dangerous and unacceptable for real world systems for which hard real-time capability is required.

To make Ker-ONE a reliable and practical platform for embedded systems, we must provide a design methodology which guarantees and proves the real-time capability of an RTOS on Ker-ONE. This leads us to the purpose of this research:

-Establish the modeling of real-time schedulability of the guest RTOS (see Section 3.3.5 for details).

-Establish the modeling of the relationship among different design factors and real-time schedulability (see Section ?? for details).

-Establish a design methodology, which is based on the above models, and is able to efficiently search the design space and find the optimal or near-optimal design (see Section 3.2 for details).

With the above modeling and design methodology, Ker-ONE is able to be deployed in real-world embedded systems. It is safe for users to port existing real-time systems to Ker-ONE, which will make Ker-ONE a reliable choice. Note that, our discussion is based on a single-CPU Ker-ONE platform.

Design Space Exploration

In this section, we focus on effectively exploring the design space and introduce our methodology.

Methodology scheme

The design space to explore is modeled in three dimensions < A, P, v >:

• Affinity matrix A: A determines the flexibility of system in terms of FPGA resource sharing. It is the key factor for the competition set Γ, which dominates the allocation latency.

• PR set P: P determines the reconfiguration overhead, which is a significant factor that influences the execution time.

• Dependency vector v: v describes which accelerators are used by the GPOS tasks. This is significant for the worst-case allocation overhead, since it influences the competition set. We propose an iterative automatic searching strategy to explore the design space, and find the optimal or near optimal solutions. The overall scheme is depicted as in Figure 3.7. The original RTOS design, including the task set and scheduler, will keep unchanged in our design flow, so that no extra effort from the user is needed. The key components are:

• Task Model is to update the timing model of real-time tasks according to the system design of Ker-ONE. The modeling in earlier section is used to calculate new execution time c and form < P, C , D >.

• Real-Time Sched Check is to verify the real-time schedulability of combination {< P, C , D >, A}. The checking algorithm is normally based on the specific scheduling algorithm, and have wide range available tools.

• Value Function is to estimate the metric of current designation and gives a value of score.

• Searching Algorithm is to search the design space for a solution with legal realtime features and high value.

The design flow is iterative. The design may start with a bad position, with low value function or with violated real-time schedulability. The idea is to loop between design update and evaluation so that we can reach somewhere in the design space that satisfies: first, guaranteed real-time schedulability; second, high score judged by the value function. This is a reliable and efficient automatic design methodology.

We believe this approach will greatly ease the development of Ker-ONE, and greatly accelerate the porting of existing real-time systems to Ker-ONE. In this thesis, we focus on the first feature. Before that, we first present the real-time system modeling on Ker-ONE.

Real-Time Virtualization System Modeling on

Ker-ONE

In this section, our discussion is based on a single-CPU platform with real-time support. First, we discuss modeling on native RTOS, and then we introduce RTOS modeling on Ker-ONE.

Task Modeling on native RTOS

Since real-time OSs require real-time tasks to always meet their deadlines, the VMM scheduling mechanism must guarantee the execution of real-time VM, while the application developers are responsible for defining a schedulable tasks set according to the the RTOS scheduling algorithm. On a native real-time system, the main part consists of tasks. A task is a computation performed by the CPU in a sequential manner: it is a sequential execution of code that does not suspend itself during its execution. We introduced real-time systems with certain constraints that concern more precisely the tasks. Therefore, a classic model is used to describe a periodic task: < p, c, d >, which stands for the period, execution time and deadline, respectively.

In the real-time theory, a RTOS hosts a set of real-time tasks: T = {t i } Each task t i composed of a 3-element tuple: < p i , c i , d i >. Each time of its invoke is defined as a job j. Since t i is a periodic software that will be invoked repeatedly, its life can be seen as a series of jobs {j 1 , j 2 , ...}. t i is considered a failure if at any job, its execution exceeds its deadline.

A task set T is considered as hard real-time schedulable if for every period p i , t i can complete its execution c i within its deadline d i . Otherwise, the scheduling fails.

For hard real-time systems, missed task deadlines may result in the failure of the whole system.

The Scheduler on native RTOS

A scheduler, or a scheduling algorithm, A, is used to schedule T by determining, at any given moment τ , which task is running on the CPU:

A(τ |T) = t τ , t τ ∈ T (3.3.1)
We consider that a task set T is real-time schedulable under scheduler A, if ∀t ∈ T never fails. Such a combination is noted as {T , A}.

Constraints

Now, we assume that we have a {T , A}, which is real-time schedulable on a native RTOS machine. However, the problem is that after that the RTOS is hosted as a virtual machine on top of Ker-ONE, the real-time capability of {T , A} has changed.

The question is : How can we determine this new capability ?

For a given real-time task t i , p i and d i are determined by the real-time scenario and are stable. For example, in a camera monitoring system, the decoding of frames are at a constant rate, e.g. 10 frames per second. Thus the period and deadline of decoding task is fixed. On the other hand, the execution time c i is determined by the underlying platform.

For a virtualized RTOS, being hosted in a VM, this may cause an extra overhead and the CPU bandwidth of a RTOS is influenced by scheduling. This may result in the collapse of a real-time tasks set that is actually schedulable on a native machine. Therefore, a dedicated scheduler is required to support RTOS tasks in virtual machines.

When porting from a native RTOS to a Ker-ONE virtual machine, with the competition for hardware resources, especially for FPGA resources, the execution time c i is increased. Thus, the original task model < P, C, D > is modified to be < P, C , D >, where C is the new execution time on Ker-ONE.

It is important to note that, {T , A} is guaranteed to be real-time only with the original task timings < P, C, D >. Therefore, A is not safe to use on the guest RTOS, unless it is proved to be legal for the new task model < P, C , D >.

This leads to the first problem: how to calculate the new task model < P, C , D >.

To do this, we need to analyze how the execution atop Ker-ONE changes the tasks' execution time C. Precise results, instead of vague analysis, should be made here.

After we have rebuilt the precise task model < P, C , D >, we then need to verify the correctness of the scheduler A on < P, C , D >. Normally, the verification process depends on the type of A. Ideally, {< P, C , D >, A} is still real-time capable and our work is done. Otherwise, we have to face the second problem: how to adjust our design so that task set T can be guaranteed to meet real-time constraints. Note that, we choose not to alter the scheduler A, as it is designed by the user and should be respected with the best effort.

The Scheduler on Ker-ONE

First, we assume that users have already designed a workable schedule for a given real-time tasks set executed on a native machine. The purpose of the VMM scheduler is to host real-time tasks according to the original scheduling settings. This strategy minimizes the additional workload on users, and simplifies the micro-kernel.

Although Ker-ONE is designed to minimize the extra latency cost on guest RTOSs, the virtualization environment will inevitably degrade performance. Therefore, regarding the schedulability of RTOS tasks, it is crucial to take into consideration the cost model that formalizes the extra virtualization-related overhead.

With the proposed scheduling policy on Ker-ONE, the influence on the original RTOS scheduler is minimized. The detailed evaluation and measurement results are given in earlier papers (less than 1µs) [START_REF] Tian | Embedded Real-Time Virtualization Technology for Reconfigurable Platforms[END_REF], and will then not be discussed in this thesis. We demonstrated that the virtualization overhead on the RTOS scheduler is negligible, and that the original scheduling settings are maintained.

System Modeling on Ker-ONE

In this section, we try to model Ker-ONE using graphs, which results in the following advantages:

-Graph theory gives a much simpler and clearer representation for the relationship between functions and PRs.

-The parallelism of real-time tasks can be verified more easily with graph modeling, compared to, such as the matrix format.

-The analysis of allocation overhead L can be easily transformed into graph theory, without adding complexity.

First of all, establishing models is essential because our researches and experiments are based on them. The necessary models include: Task model and system design model.

Tasks Model on Ker-ONE

In our earlier section, the execution time of real-time tasks on Ker-ONE has been analyzed. The overhead of the execution time of real-time tasks on Ker-ONE are mainly caused by two factors: the virtual machine environment and the FPGA resource allocation mechanism. The virtualizaiton overhead was measured and estimated as insignificant in earlier work (less than 1 µs) [START_REF] Tian | Embedded Real-Time Virtualization Technology for Reconfigurable Platforms[END_REF]. In this work, we ignore the virtualization overhead, and focus on the preemption overhead for functions, and reconfiguration overhead for PRs.

We define a complete function set F = {f 1 , f 2 , ...} for all available accelerator functions in the system. A task t i relies on a series of hardware accelerators to fulfill its computation, the required accelerators are noted as the dependency set D of t i :

D(t i) = {f 0 , f 1 , f 2 , ...} (3.3.2)
which is composed of all accelerators that t i is programmed to use.

We consider the worst-case execution of task t i , where each call of a hardware accelerator triggers an allocation process. We denote the worst-case overhead of a given accelerator function f k being allocated as allocation latency l(f k). The worstcase execution time (WCET) of t i on Ker-ONE can be written as:

c i = c i + L(t i) (3.3.3) L(t i) = f k ∈D(t i) l(f k) (3.3.4)
where c i is the native WCET. L(t i) measures t i 's total overhead caused by the competition of FPGA resources.

From Equation 3.3.4, it is clear that to obtain c it is essential to calculate the allocation latency of each accelerator. However, this value is closely related to the overall system design. Thus, we first build the models of system design, before calculating the allocation latency.

System Design Model

There are three design factors dealing with the management of FPGA resources:

-The partitioning of PR regions, which decides the reconfiguration time and the compatible accelerators.

-The compatibility between accelerators and PRs, i.e. which PRs can be used to implement certain functions.

-The guest OS' dependency on accelerators, including RTOS and GPOS tasks. This is because the amount of resources in a PR is linearly related to the size of reconfiguration bitstream.

Accelerator Function

The resource in PR also determines the compatibility. Consider a {pr i , f k } pair, if {pr i } has sufficient resource to host an accelerator function {f k }, then we term that

f k is compatible with pr i .
Function Affinity: An accelerator function can only be housed in a pre-determined set of PRs. This feature is called PR affinity. In the management of FPGA resources, an accelerator function can only be allocated to the PRs with affinity.

For a fixed PR set P, a vector is defined to indicate its function affinity of pr k :

a(pr) = [a 1 , a 2 , ..., a F] , a ∈ {0, 1}, F = |F| (3.3.5)
where the value of a i represents the affinity between pr and f i . In other words, a PR may be compatible with a function, but has no affinity with it.

a i = 1, if exists af f inity between pr and f i 0, else (3.3.6)
For all PR in P, we define a affinity matrix:

A =     a(pr 1) a(pr 2) ...     ∈ {0, 1} P ×F , P = |P|, F = |F| (3.3.7)
Matrix A is a global bitmap. In the affinity matrix A, as defined in equation 3.3.7, each column represents the list of PRs where the concerning function can be hosted. For a given function set F = {f k } and PR design P = {pr i }, we define the vertex set of graph as We can easily transform the affinity matrix into graph. To give an example, we describe the state of {pr, f } pairs in the format of affinity matrix:

V = {V f , V p }. V f = {v f 1 , v f 2 , ...}
A =       1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 0       (3.3.8)
The above topology relationship can be transformed into the Figure 3.8, where In the following we will leverage graph modeling to calculate the allocation latency.

Calculation of the allocation latency L

Using graph theory for modeling, we can also analyze the competition relationships among accelerator functions, and calculate the allocation latency L for all real-time tasks. For the real-time task set T rt , the accelerator functions being used are indicated in the dependency vector v(T rt), we term the corresponding function set as F rt .

Similarly, the functions being used by GPOS task set T gp are termed as F gp .

Assume we use two separate affinity matrix, A rt and A gp , respectively for T rt and T gp . Then we can merge the two affinity graphs

(G rt (V f rt , V p , E rt) and G gp (V f gp , V p , E gp)) into one graph G (V f rt , V f gp , V p , E rt , E gp)
, by aligning the PR vertices of both graphs. We define the concept of competition in a graph as: Definition 1 (Competition and Overlay) In an affinity graph G(V , E), two function vertices v i and v j are in competition if they share the same adjacent vertices. The shared vertices are termed as overlay of v i and v j , denoted as V p ol (v i , v j)

Then we can transform the merged graph G to a competition graph

G Comp (V f rt , V f gp , E Comp),
where the E Comp are the newly-generated edges. In specific, the transformation follows the steps below:

1. Remove all PR vertices V p and edges in G .

Generate an edge (v

i , v j) if v i ∈ V f
rt , and v i v j are in competition.

3. For each newly-generated edge (v i , v j), assume their overlay set is V p ol (v i , v j), we assign a weight to it with the following equation:

w (v i , v j) =      0, if v i and v j are the same accelerator max v∈V p ol (v i ,v j) cost(v) , else (3.3.9)
where cost(v) is the feature of PR vertex, standing for the reconfiguration overhead. If v i and v j are the same accelerator, then the overhead is exempted since no reconfiguration is required.

After transformation, we obtain the competition graph G Comp (V f rt , V f gp , E Comp), which is a weighted undirected acyclic graph. Note that there is no edge between two f gp vertices, since the competition among GPOS accelerators don't influence the real-time schedulability of T rt .

In the competition graph, v f rt vertex is competing with its neighborhood vertices for PR resources. For each neighbor, we calculate its preemption overhead as:

∆(v i , v j) = w (v i , v j) + cost(v j), if v j ∈ V f gp w (v i , v j), if v j ∈ V f rt (3.3.10)
where v i and v j are adjacent, and v i ∈ V f rt is trying to deprive the PR resource from v j . Note that the cost of forcibly stopping v j is exempted if v j ∈ V f rt . This is because by searching a workable affinity matrix A, it is guaranteed that real-time tasks won't compete for PR resources with each other.

Then we can easily get the worst-case allocation latency for a given real-time accelerator f k by picking the largest preemption overhead in its neighborhood, as:

l(f k) = max v∈G N (v f rt,k) ∆(v f rt,k , v) (3.3.11)
where v f rt,k is the corresponding vertex of accelerator f k , and G N (v f rt,k) is its neighborhood in the competition graph.

Therefore, for a real-time task t i , we can now calculate its L(t i) in Equation 3.3.4 as:

L(t i) = f k ∈D(t i) l(f k) = f k ∈D(t i) max v∈G N (v f rt,k) ∆(v f rt,k , v) (3

Optimal Real-time Virtualization on Ker-ONE

In the following we will discuss how to leverage these models to solve some of our problems. First, we concentrate on the schedulability, and then start to solve the problem of parallelism.

RTOS Schedulability Analysis

Considering the Assumption 1 mentioned earlier, for a real-time task set T rt , P should be able to concurrently host all accelerator functions that are potential for simultaneous execution.

The affinity matrix A is the most important factor in our methodology. It is directly related to the following matters:

• Parallelism. A should allow the parallel execution of accelerators which the real-time task T rt is likely to use concurrently, so that Assumption 1 is guaranteed. We consider A to be workable if it has sufficient parallelism.

• Real-time Schedulability. Matrix A is used to build the competition set Γ, which determines the allocation latency L. We have to adjust A if the real-time schedulability check of T rt fails on KER-ONE.

Real-time Schedulability Check

The major challenge in our methodology is to efficiently adjust A to reach an acceptable design.

The check of A may fail for two reasons: the failure of real-time schedulability and the failure of parallelism, both of which are related to T rt . Firstly, we focus on the real-time schedulability check.

Based on the new task model, use a schedulability-check tool to check the updated real-time tasks. If A fails the real-time schedulability check, then we should check the timing of T rt for the tasks that are possible to make the schedulability fail, as shown in Figure 3.10.

Parallelism Analysis

The problem of parallelism is more complex than the schedulability one. This problem can be explained using the following example. Consider T rt = {t 1 , t 2 , t 3 } has the following dependency vectors on

F = {f 1 , f 2 , f 3 , f 4 }: D(t 1) = [1, 0, 0, 0] D(t 2) = [0, 1, 0, 0] D(t 3) = [0, 0, 1, 1] (3.4.1)
So that we can have the set of parallel functions as:

F sub = {F s1 , F s2 } F s1 = [f 1 , f 2 , f 3] F s2 = [f 1 , f 2 , f 4] (3.4.2)
Consider some designs of A matrix

A 1 =     1 0 0 0 0 1 0 0 0 0 1 1     , A 2 =     1 1 0 0 0 1 0 0 0 0 1 1     , A 3 =     1 1 0 0 1 1 0 0 0 0 1 1     (3.4.3)
where each column represents the list of PRs where the concerning function can be hosted.

After observation we can say that it fails to satisfy the parallel execution of

F s1 = [f 1 , f 2 , f 3] with A 2 .
Because it is possible that f 1 is called by the RTOS task when pr 1 is used for running f 2 . Since real-time tasks cannot preempt each other, f 1 will be blocked. This breaks the Assumption 1. It is obvious that only A 1 and A 3 are workable.

For each design of A, its parallelism should be verified to make sure it is a workable solution for T rt , the checking process is noted as:

P arallel(A, T rt) = True, if

Parallelism Check

Given a real-time task set T rt and accelerator function set F, we find all combinations of accelerator functions that are potentially accessed in parallel for T rt . These combinations are denoted as

F sub (T rt) = {F s 1 , F s 2 , ...}. Each element F s k ∈ F sub (T rt)
represents a set of parallel functions, {f s k ,1 , f s k ,2 , ...}. The feature of parallelism is defined as:

Definition 2 (Parallelism) Given T rt , ∀F s k ∈ F sub (T rt), ∀f s k ,i ∈ F s k , f s k ,i can
always be hosted simultaneously with (F s k /f s k ,i) in the affinity matrix A.

Any design of affinity matrix A is considered workable only if the parallelism feature is verified.

(F s k /f s k ,i) is the remaining set of functions in F s k after element f s k ,i is taken out.

In other words, (F

s k /f s k ,i) = {f s k ,1 , ..., f s k ,i-1 , f s k ,i+1
, ...}. Therefore, to guarantee the parallelism feature, we need to judge if function set (F s k /f s k ,i) is possible to occupy all host PRs of f s k ,i .

More generally, the above judgment can be formulated as:

Assertion 1 (Assertion(f i , F) Assertion(f i , F) Assertion(f i , F))
For a given f i , whether the verification function set

F = {f 1 , f 2 , ...} can not occupy all host PRs of f i .
If the assertion is false for f s k ,i , then f s k ,i cannot be guaranteed to work simultaneously with (F s k /f s k ,i). In this case, we consider F s k fails the verification and A is not workable. In this case, solving the parallelism problem is to check if real-time tasks can use accelerator functions simultaneously, without blocking each other.

To solve Assertion(f i , F) Assertion(f i , F) Assertion(f i , F), obviously, for a large system, this is of significant complexity. Besides, this is not easily for efficient programming and implementation.

G v f 4 , (v f 1 , v f 2 , v f 3) for Assertion f 4 , (f 1 , f 2 , f 3) Assertion f 4 , (f 1 , f 2 , f 3) Assertion f 4 , (f 1 , f 2 , f 3) .
Therefore, in our work, we solve this problem in a graph model. We first solve the verification graph G v f i , V F . We denote the verification function set F in graph as vertex set V F .

To give an example, consider the graph presented in Figure 3.8(b), the verification If all PR vertices are occupied, the verification fails because f i is not guaranteed to be accessed concurrently with F.

graph for Assertion f 4 , F = (f 1 , f 2 , f 3) Assertion f 4 , F = (f 1 , f 2 , f 3) Assertion f 4 , F = (f 1 , f 2 , f 3) is shown in
Formally, we define the function's operation of occupation:

Definition 3 (Occupation) A function vertex performs an occupation by randomly keeping one of its edges and removing the other edges.

At this point, the problem of Assertion(f i , F) Assertion(f i , F) Assertion(f i , F) can be re-defined, based on graph modeling, into an equivalent problem:

Assertion 2 (Assertion G v f i , V F Assertion G v f i , V F Assertion G v f i , V F
) For a given G, after each function vertices performs a random occupation, at least one isolated PR vertex is remained w.p.1. More generally, we propose the following algorithm to make assertions for an arbitrary graph G. We will also give other algorithms in details in the appendix part.

If Assertion G v f i , V F Assertion G v f i , V F Assertion G v f i , V F is true, f i is
In Algorithm 1, we demonstrate how to solve the problem of

Assertion G v f i , V F Assertion G v f i , V F Assertion G v f i , V F .
Following are several clarifications about Algorithm 1:

• At Line 1, 10, we directly make assertions by comparing the number of PR and function vertices. This is obvious since if functions are less than PRs, it is not possible that all PRs can be occupied simultaneously.

• At Line 4, we can prove that it is safe to call DecomposeGraph() function to remove all leaf vertices and simple cycles in G, without changing the assertion result. See the proof in Appendix B.

• At Line 6, we directly make assertions if there exists isolated PR vertex after the transformation. The isolated PR vertex will never be occupied since it has no edge, therefore the assertion should be true.

• In most cases, the assertion of G can be solved by the end of Line 6. If the remaining graph is still hard to assert, then we go to the following steps.

• At Line 9, we clear all isolated vertices. From this point on, G is simplified to be a graph with no leaf, no simple cycle and no isolated vertex. A list of examples are listed in Figure 3.13.

• At Line 13 -23, we search in G for all possible PR groups of different numbers (staring from number 3). If there exists a PR set whose neighborhood has more function vertices, then the assertion is true. See the proof in Appendix B.

We can see that the proposed algorithm is quite suitable for graph data structures and is practical to be implemented in program. By using graph modeling as shown in this section, we can easily judge if a given affinity matrix (or affinity graph) is workable or not. The example of our methodology is described in details in Chapter 6.

Algorithm 1 Assertion(G): Solve the problem of Assertion

G v f i , V F Assertion G v f i , V F Assertion G v f i , V F Require: Graph, G = Assertion G v f i , V F Assertion G v f i , V F Assertion G v f i , V F ; Ensure:
Assertion result: T rue or F alse;

1: if AssertionByN umber(G) = T rue then 2:
Return T rue 3: else 4:

G = DecomposeGraph(G) 5:
Build vertex set V isolated , the set of all isolated vertices in G 6:

if V isolated includes at least one PR vertex then Count the number of PR vertices in G as N P 14:

for 3 ≤ n ≤ N P do 15:
Build PR vertex set {V pn 1 , V pn 2 , ...}, each V pn i includes n PR vertices.

16:

for

V pn i in {V pn 1 , V pn 2 , ...} do 17:
Count the number of adjacent vertices of all V pn i members as n f 18:

if n f < n then

19:

Return T rue

Chapter 4 Virtualization Acceleration Mechanisms on SoPC

Both hybrid platforms and microkernel-based hypervisors are becoming more common. As the growing demand on resources, they still face the issue of resourceconstrained. We can use the micro-kernel to abstract and virtualize software resources, as well as with the help of FPGA resources. However, in a virtualized environment, it is not easy to dynamically manage hardware resources among multiple guest OSs.

Since the design of the micro-kernel follows the principles of simplicity and efficiency, increasing complex software implementations should be avoided as much as possible.

The challenges not only rely in implementing the required hardware accelerators, but also in making the hypervisor scalable and easily-adaptable to extension mechanisms without affecting system performance. Meanwhile, the overhead from data transfer between the processing system and the programmable logic requires to be carefully considered and analyzed.

In this chapter, the subject of this research is to extend the software OS mechanism to the hardware part based on Ker-ONE, as well as tackling the issue of shared resources in a reconfigurable device. This means Ker-ONE can provide an effective and secure mechnism to manage limited amount of resources and ensure the independence and isolation of virtual machines. In this chapter, we will focus on two types resources extension virtualization mechanisms for resources: timers and DMA. We also describe how users may benefit from hardware to accelerate the access to hardware resources from software.

Resources Virtualization

In most recent FPGAs, manufacturers provide architectures in which CPU and FPGA domains are independently implemented and tightly connected by an on-chip bus and a network of interconnections. These hybrid processors benefit from the flexibility of processors and from the hardware performances.

Most of these devices generally feature an operating system (OS) that requires to interact with hardware resources such as accelerators or IP blocks. Software tasks that run on top of the OS may then access hardware resources concurrently and dedicated mechanisms have to be provided to manage resource sharing efficiently.

However, in a virtualized environment, this management is much more complicated, since multiple guest OSs run on top of abstract physical resources. The problem is even bigger if hardware resources are localized in a reconfigurable area that can implement various designs in time. Therefore, these resources have to be abstracted and virtualized so that guest OSs can access them independently.

Resources Virtualization Management

In general computing systems, resources management is implemented by generating interrupts that are processed via dedicated interrupt handlers in the OS. These handlers directly interact with the sources of interrupts by processing their requests and making responses, as shown in In virtual machine systems, the management of external interrupts or resources is much more complex. With virtualization, applications running on different OSs can access the same hardware resources. This is implemented by allowing multiple VMs to share the underlying hardware resources with each running a separate OS.

For example, hardware resources, such as timers and peripherals may be concurrently shared by multiple guest OSs. As an intermediate layer between guest OSs and the physical hardware resources, the Virtual Machine Monitor (VMM) must emulate these resources to the guest OSs, while guaranteeing that the resources of each guest OS are completely independent of the other guest OSs, as shown in Figure 4.1(b). Thus, the management of these resources may noticeably influence the overall performance.

In this section, based on the Ker-ONE micro-kernel, we propose to utilize reconfigurable FPGA devices to accelerate virtualization mechanisms. We study two innovative hardware resources virtualization approaches: timers virtualization and DMA virtualization mechanisms, that are implemented with low complexity and high adaptivity.

Timers Virtualization Mechanisms

In many operating systems, timers are frequently performed to schedule tasks, keep track of the time and measure performances. For example, a RTOS scheduler relies on timer ticks to determine if a specific task is ready to execute or suspend. In classic virtualization, a physical timer is managed by a VMM, and VMs are provided with software virtual timers that may be accessed by hyper-calls or traps. However, this method may cause problems: first, trapping into the VMM at each timer operation may imply high performance overhead [START_REF] Dall | Kvm/arm: the design and implementation of the linux arm hypervisor[END_REF]. Second, the VM timer resolution is bounded by the timer period of the VMM. For example, with a VMM period of 10 ms, a guest OS with 1 ms timer accuracy may not work correctly.

To solve these problems and reduce the performance overhead caused by traps or hyper-calls, we provide two types of timer virtualization mechanisms based on Ker-ONE. These mechanisms are mainly implemented on Ker-ONE on a hybrid ARM-FPGA platform to improve the schedulability of RTOS. We have briefly introduced the Xilinx Zynq-7000 architecture in Chapter 2, which features two Triple Timer Counters (TTC) in the PS and a set of AXI-Timers in the PL. Therefore, in this thesis, we focus on implementing these mechanisms based on ARM processors and FPGA, respectively.

Timer Virtualization in ARM

Compared to traditional software virtual timer solutions, Ker-ONE allows VMs to directly access and program timers without being trapped into the VMM. Three independent physical timers are provided: a system timer, a RTOS timer and a GPOS timer, as shown in Figure 4.2. The system timer is dedicated to the host and can only be accessed by the micro-kernel. The RTOS timer is exclusively used by the RTOS VM. The GPOS timer is shared by the other GPOS VMs.

Note that each timer interface corresponds to a 4K memory page in the address space. In this case, the ARM page table mechanism is used to create independent timers for VMs. For each VM, only one timer interface is mapped in its memory space, so that it can only access the allocated timer. A guest OS is free to configure its timer, e.g. the clocking period, the interval value and interrupts.

A major concern about this mechanism is the protection of the timer state when it is programmed by multiple GPOS VMs independently. The GPOS timer has to be virtualized to protect the timer state of each GPOS, which includes saving and restoring the timers registers values. That is, these configurations will be saved whenever a VM is preempted and restored whenever a VM is scheduled.

We use the Triple Timer Counter(TTC) in the ARM architecture as the VM timer. There are only two TTCs in the Zynq SoC architecture. In our application, we assumed that one is for RTOS VM, and the other is shared by the other GPOS VMs. The programming of the TTC is performed by discrete read/write operations on the configuration registers. Therefore, the programming sequence can be interrupted anytime and pursued later as long as the registers are properly resumed.

Although this TTC timer virtualization mechanism for GPOSs slightly increases the VM switch overhead , this mechanism is still preferred over traditional solutions, since it avoids frequent hyper-calls or traps and facilitates the VM timer emulation.

Timer virtualization in FPGA

In reconfigurable embedded systems, hardware accelerators are either custom-designed computing blocks or commercial IP cores, which are implemented with different functionalities and fabric structures in the FPGA. For example, in addition to TTC timers in the PS, a set of hardware timers may be available in the PL. It is then possible to add hardware resources in the PL side to extend PS functionality.

Based on Ker-ONE, we propose a hardware timer virtualization management using multiple AXI-Timers from Xilinx, which can be added in the PL side and connected to the PS side through an AXI interconnect. One benefit of this approach is the ability to support an arbitrary number of AXI-Timers so that each VM may exclusively have its own timer. This makes it possible to reduce the VM switch overhead, since it is not necessary to reload the timers registers' state after each context switch. The AXI-Timer just starts when the corresponding virtual machine is scheduled or stops when the corresponding virtual machine does not run any longer. Moreover, the AXI-Timer features an interrupt port, which requires a connection to the Zynq PS part through an AXI interconnect.

In this thesis, we assumed that FPGA resources are sufficient to implement as many AXI-Timers on the PL side as the number of VMs. The AXI-Timer just starts when the corresponding virtual machine is scheduled or stops when the corresponding virtual machine does not run any longer. Moreover, the AXI-Timer features an interrupt port, which requires a connection to the Zynq PS part through an AXI interconnect. The AXI-Timer can be configured to operate as either an up or down counter and to generate an interrupt signal once the preset value is reached.

From the processor's perspective, interrupts are triggered by hardware resources.

In Ker-ONE, all interrupts are trapped into the VMM, and the VMM is responsible for managing all hardware interrupts. The VMM first deals with the physical interrupt by acknowledging the interrupt and clearing the source. The VMM then sends a corresponding virtual interrupt to the targeted VM if necessary. In Ker-ONE, all hardware interrupts management is performed in the host space, so that the VMM remains in complete control of hardware resources. At the same time, VMs are free to configure their timer as if in a native machine. This mechanism causes a little overhead since FPGA PL accesses are required through the AXI bus. However, one benefit of this approach is the ability to support an arbitrary number of AXI-Timers so that each VM may exclusively have its own timer. This makes it possible to reduce the VM switch overhead, since it is not necessary to reload the timers registers' state after each context switch.

One concern about this mechanism is the protection of the AXI-Timer state when it is programmed by the corresponding user. We use AXI-Timers as VM timers, and the programming of AXI-Timers is performed by the corresponding VM. The VM cannot access other AXI-Timers except its own timer to ensure security. The goal of this approach is to create a efficient and secure hardware timers virtualization method for virtual machines.

Timer virtualization RTOS & GPOSs access

Ker-ONE provides a real-time virtualization mechanism which is proposed to handle the real-time constraints of most applications. Thus, it is designed to co-host one guest RTOS and several GPOSs. The RTOS is considered as critical with soft realtime constraints. In this case, we can take benefit from both TTC and AXI-Timers.

A TTC timer is allocated to the RTOS with direct access. In parallel, a set of AXI-Timers are allocated to the GPOSs without sharing, as shown in Figure 4.4.

Therefore, the TTC timer pass-through mechanism is especially advantageous for the RTOS since it fully controls a native physical timer directly. Without virtualization overhead, the performance of the RTOS scheduler is maximized. The performance measurement of our mechanisms will be presented in detail in Chapter 6.

Exchanging Data with Programmable Logic

Considering that using hardware resources can extend the functionality of the PS and be beneficial to improve resource utilization, we also study other hardware resources to benefit from the PL. In older systems, the processor would handle all data transfers between memories and devices. As the complexity and speed of systems increased over time, this method obviously was not sustainable, for example, the data throughput is typically way too high for the processor to deal with. Especially in order to make full use of the FPGA, data and signal transfer between PS and PL is required. The diversity of physical interconnects creates many possible ways to transfer data between PS and PL.

PS & PL: AXI Interconnects and Interfaces

The appeal of Zynq lies not only in the properties of its constituent parts, the PS and the PL, but also in the ability to use them in tandem to form complete, integrated The primary form of connection between the PS and PL of Zynq is via a set of nine AXI interfaces that provide high-bandwidth, low-latency links between both parts of the device, each consisting of multiple channels. As shown in Figure 4.5, these make dedicated connections between the PL, and interconnects within the PS. It is useful to briefly define these two important terms:

-Interconnect: A switch that manages and directs traffic between attached AXI interfaces. There are multiple interconnects within the PS, some of which are Although software instructions can be used to perform small on-chip data transfers, larger data transfers are typically implemented with special data transfer resources, such as Direct Memory Access (DMA). DMA was invented to remove the bottleneck and free up the processor from having to deal with transferring data from one place to another. In FPGA-based embedded systems, a DMA device is typically integrated as a software IP core and implemented through logic resources in FPGAs. DMA is typically employed for larger and higher real-time data transfers between the system memory and system peripherals on FPGAs.

Implementing DMA in PL

Xilinx provides extensive IPs support for the Zynq-7000 family. The AXI Direct Memory Access (AXI DMA) core provides a high-bandwidth direct memory access between the system memory and AXI4-Stream compatible peripherals via an AXI HP port. Implementing DMA in FPGA may sacrifice some PL resources. However, this drawback can be offset by numerous advantages:

-The Zynq-7000 features significantly more slave ports to the PL than master ones. Their parallel use would increase the aggregate bandwidth.

-The AXI DMA provides a higher throughput than Programmable I/O, as shown in Figure 4.7, without keeping the processor busy. This allows leaving the CPU and DMA controller in the PS free to perform other services while the AXI DMA performs the transfer.

-We obtain the flexibility exactly based on our specific needs. The capability of the DMA plays an important role in overall system performance. It would also have the benefit of reduced and more predictable latency.

DMA Virtualization Mechanisms

To transfer large amounts of data between the PS and PL based on Ker-ONE, the initial solution used CPU-accessible BRAM blocks implemented in the PL side. The issue was that the approach used a large amount of CPU time just for fetching the data from the PL to the PS, through the AMBA bus. Therefore, we mainly focus on using the AXI DMA from Xilinx in the PL for data transfer between the memory and hardware accelerators. The virtualization mechanism provides the benefits of AXI DMA transfers without CPU intervention and supports data-dependent memory transfers.

Data Transfer

The AXI DMA allows large data payloads in systems to transfer between different locations within the memory space or between a hardware interface and memory. For Generally, there is only one pair of input/output channels in a DMA core, but designers always expect to do as much work as possible in the DMA core. In [START_REF] Kidav | Architecture and fpga prototype of cycle stealing dma array signal processor for ultrasound sector imaging systems[END_REF],

authors presented a cycle stealing DMA, which consists in loading large pre-computed delay values from the external flash memory for Array Signal Processor. In [START_REF] Kavianipour | High performance fpga-based dma interface for pcie[END_REF], they use a DMA device for high-performance data transfers with PCIe interface design on the FPGA. In [START_REF] Rota | A pcie dma architecture for multi-gigabyte per second data transmission[END_REF], two DMA devices are used to transmit and receive data in a pair of ring-based in/out buffers for a PCIe core on the FPGA. In [START_REF] Kim | Multi-object tracking coprocessor for multichannel embedded dvr systems[END_REF], multiple DMA devices are used independently for movement of video stream data at different stages of object and event tracking algorithms on the FPGA. For hardware IPs with compute-intensive algorithms on the FPGA, DMA devices are typically used for large size data transfers from input and output buffers to reduce the total run time of algorithms [50] [11].

As shown in Figure 4.9(a), with only one DMA channel, the additional memory (such as DDR memory) is needed to store data when the computing process involves large amounts of data. For convenience in this section, DMA read operation means that the AXI DMA reads data from the memory to the accelerator, and DMA write operation means that the AXI DMA writes data from the accelerator to the memory.

The whole process is performed in three operations: DMA read, computation, and DMA write. From Figure 4.10, we can see that the AXI DMA devices are not fully used, since even though the DMA read channel is free, the next DMA read operation has to wait for all operations to finish.

In embedded systems, multiplex approach is commonly and effectively used to extend a single channel to multiple channels [START_REF] Attia | Optimizing fpga-based hard networks-on-chip by minimizing and sharing resources[END_REF]. We further upgraded our design with two AXI DMA channels, as shown in Although the pipeline operation in different cases may cause some issues, we only focus on the simple way to implement the pipeline operation in this thesis. In the next section, we propose an AXI DMA virtualization management to improve the efficiency of data transfer through a DMA context switch.

DMA Virtualization in FPGA

Let us consider that two guest OSs, GPOS1 and GPOS2, running on Ker-ONE, are requesting access to an FPGA accelerator simultaneously. The data processing time, for example, including data transfer time and computation time, required by GPOS1 and GPOS2 is T1 and T2, respectively, as shown in Figure 4.12(a). Assume that both T1 and T2 are longer than the communication latency of data transfer. Assume that the GPOS1 request comes first, and gets serviced before the GPOS2 request. Without AXI DMA context switch, the data processing time of GPOS2 is T1 + T2, as shown in Figure 4.12(b). The AXI DMA will not be assigned to GPOS2 until GPOS1 finishes, which results in a delay (T1) for GPOS2 to get its request serviced. Even if the DMA read channel becomes idle when the data is transferred to the accelerator for computation, GPOS2 has to wait until the accelerator on the FPGA finishes its computation of GPOS1 and returns the results back to GPOS1. This unnecessary delay can be eliminated via implementing a DMA context switch. In other words, once the GPOS1 finishes using the DMA read channel, an immediate context switch to GPOS2 will be implemented by Ker-ONE.

In Figure 4.12(c), we can see that the overall data processing time is reduced to T1, and the data processing time of GPOS2 is T2 plus the DMA context switch overhead T3. The DMA context switch overhead is minor, since only one parameter requires to be loaded to the DMA, that is, the address of the next DMA buffer descriptor.

Therefore, both GPOS2 and the overall data processing time are reduced by a DMA context switch. This improvement will be presented in details in our experiments in Chapter 6.

In order to support this mechanism, requests to access the accelerator require is removed from this queue, the DMA Manager will be invoked to check if the AXI DMA is idle and if there is a pending request in the queue. If so, the head request of the queue will be scheduled to transfer data. The DMA Manager mainly performs the following functions:

-1. Checking the status of both the DMA read and the DMA write channels, for example, if the DMA read channel is idle or in use.

-2. Scheduling the head request of the queue to use the DMA read channel (this may require a DMA context switch).

-3. Updating the request state, for example, when scheduling a request to use the DMA read channel, then the request state is updated with DWrite, and the current address is also updated.

-4. Removing the request from the queue once the request has finished transferring.

The DMA read channel status contains two states: IDLE and BUSY, as shown in state is in the IDLE, the DMA read operation will be initiated, the DMA read channel state will be modified to BUSY, and the request state will be modified to DWrite.

The DMA Manager is invoked in the following cases:

-A new request is inserted into the request queue.

-A Type I interrupt is received.

-After initiating a DMA write operation. When the DMA Manager is invoked, it checks if the DMA read channel is idle and the head request in the queue is in DRead state. If so, it will schedule the head request for a DMA read operation. When a DMA read operation completes, a Type I interrupt will be received from the FPGA accelerator to release the DMA read channel. The DMA read channel state is then modified to IDLE. In this case, if the head request in the queue is waiting for a DMA read operation, the DAM read operation can be initiated. When a Type II interrupt is received, a request context with DWrite state will be loaded to implement a DMA write operation.

After initiating a DMA write operation, there are two possible situations. One situation is that there is still untransferred data associated with the request in the DMA buffer. In this case, the request state will be modified to DRead after initiating the DMA write operation. The second situation is that a request has finished all its data transferring. The request state will be set to DFin, and the request will be removed from the queue.

On one hand, one of the benefits of using AXI DMA through AXI streaming interface is to achieve the maximum speeds between the PS and the PL side. On the other hand, the AXI DMA is commonly used for large data transfers where high throughput is attained as the overhead of setting up the transfer becomes insignificant against the data transfer time. All in all, we use the AXI DMA from Xilinx, which can be added in the PL side and widely used in embedded systems to reduce the workload on the processor and enhance the systems overall response.

Summary

In this chapter we introduced the virtualization mechanisms for hardware resources such as timers and DMA, based on the Ker-ONE micro-kernel. The major concern of these hardware resources is to provide secure and continuous processing so that virtual machines have consistent and independent execution environments. On the other hand, in hardware resources virtualization, we pay much attention to the emulation and control of behaviors since they influence the behavior of virtual machines. We also explained the motivation of our research, which is intended for benefiting from the implementation of HW IP to accelerate the access to resources based on smallscaled embedded systems. Both pros and cons were fully discussed in this part.

The implementation and evaluations of our methodology are described in details in Chapter 6.

In the next chapter, we demonstrate the extension of Ker-ONE, which focuses on a new preemption mechanism to reduce the reconfiguration time overhead and to be compatible with the timing constraints of most embedded applications.

Chapter 5

Efficient OS Hardware Accelerators Preemption Management in FPGA

In the past, several studies have dealt with preemption of hardware components in reconfigurable architectures. Most of them consist in reading the bitstream back or searching for some specific switchpoint(s) with dedicated hardware to implement hardware preemption. This results in the hardware preemption cannot be performed at an arbitrary point in time. Another point is that, to our knowledge, no operating system has been used to manage context switch efficiently and make it transparent to users.

Although hardware context switch has been a research subject for more than a decade, there are still some challenges that need to be overcome, especially in terms of preempting hardware tasks. Therefore, the objective of this chapter is to introduce the motivation behind this work and the issues that need to be addressed. To fully exploit the potential of reconfigurable accelerators on FPGAs, there is a need to virtualize these hardware resources by offering them a hardware context switch support.

In this chapter we address the issue that is the consistency when sharing PR resources among VMs. The framework automatically detects VMs requests for hardware resources and handles these requests dynamically according to a preemption mechanism.

The Problem

In this thesis, our work is mainly focused on the micro-kernel Ker-ONE. First, Ker-ONE supports preemptive scheduling of FPGA resources among multiple OSs and dynamic replacement of hardware accelerators, in the same reconfigurable region on the FPGA. But one of the biggest challenges in managing such resources is to be able to suspend hardware accelerators and restart them at another time and/or in another region of the FPGA.

Second, one major feature of virtualization is that VMs are totally independent from each other. In Ker-ONE, however, software OSs may also use the PL part to run dedicated accelerators. Regarding the limited amount of resources in the PL part, it seems relevant to share these reconfigurable resources among several OSs. This can unfortunately lead to resource sharing issues that are well known in computing systems. In traditional OSs, such an issue can be solved by applying synchronization mechanisms like spin-locks or semaphores. However, for our Ker-ONE, such mechanisms are not suitable since they may undermine the independence of VMs.

It is obviously that reconfiguration would become more efficient if hardware tasks were allowed to preempt or restart at any time. In order to satisfy the implementation on FPGAs, an hardware preemption management support must be provided.

Hardware Preemption Management

In Xia's work [START_REF] Xia | Hypervisor mechanisms to manage fpga reconfigurable accelerators[END_REF], to protect data integrity, accelerators may only be stopped when they reach some point in their execution, for example, the interval of data frames in communication processing. These points are denoted as consistency points where the execution path is safe to be interrupted and can be resumed without a loss of data consistency. Designers of hardware tasks have to identify the consistency points that allow the accelerators execution to be preempted and to save the interrupt state. In this case, the context switch is provided when a task reaches an execution checkpoint.

It simplifies the design and can be implemented at a relatively low cost as accelerators run to completion. However, hardware accelerators cannot be stopped or preempted at any time.

For this reasons, novel techniques for managing hardware resources on FPGAs are required. In contrast to previous preemption techniques, we have added hardware preemption mechanisms as an extension of the reconfiguration service. In this thesis, we extend the software OS mechanism to the hardware part, while supporting both dynamic reconfiguration mechanisms and automated hardware preemption mechanisms. They are controlled by the OS, but all the accelerator's context is managed in hardware. The hardware preemption mechanisms perform transparent preemption from an OS, and users do not have to intervene in the preemption process.

In this chapter, we only focus on hardware context switch on the FPGA. To this end, an hardware context switch may occur at any points in time on the FPGA.

First, we study two different ways of extracting the hardware context. These ways are described in the following sections. The JTAG is also the highest priority configuration interface, that can always be able to access the configuration module. However, the JTAG interface can program multiple devices in a serial chain. The JTAG interface is generally accessed from an external source with clock rates up to 66 MHz. Furthermore, due to equipment and cable constraints, most JTAG programmers operate at less than half of the maximum speed.

(b) SelectMAP: is a parallel, high-bandwidth interface with a bidirectional data bus. One of the advantages of the interface is that SelectMAP features the ability to configure multiple FPGAs in parallel. SelectMAP also can be used for high-speed clock rates up to 100 MHz. However, multiple I/O pins must be reserved during configuration via SelectMAP, and are therefore temporarily unavailable for user design.

(c) Internal Configuration Access Port (ICAP): is another option to perform configuration operations by programming the device from within the FPGA itself. ICAP is mainly used for users to partially or fully reconfigure the FPGA after completing the initial configuration. Like SelectMAP, one of the main advantages is the configuration speed, reaching up to 100 MHz. However, one disadvantage is that ICAP cannot perform the initial FPGA configuration.

(d) Processor Configuration Access Port (PCAP): is a unique interface that allows access to the configuration module from a hard processor. It is found only on the Zynq-7000 and the Zynq UltraScale+ MPSoC parts. PCAP provides configuration access to the on-chip ARM processing system. This feature allows software applications running on the processor rather than the FPGA design itself to deal with the interaction with the Xilinx configuration registers. One advantage of PCAP is that it provides a light API interface for software, and extensive built-in features to control the reconfiguration, including interrupts and encrypted transfers.

Besides, PCAP is also known for its high speed. its clock can run at frequency up to 500 MHz, although in most scenarios, it typically runs at frequency no higher than 100 MHz. However, unlike ICAP, it costs extra FPGA resources to get implemented.

Moreover, ICAP lacks the versatility of PCAP which makes it convenient for software development. In our system, PCAP is used to perform reconfiguration.

Ker-ONE is built on the ARM Cortex-A9 processor of Xilinx ZedBoard (i.e. the Zynq-7000 SoC). Based on the above research and analysis of interfaces, PCAP is used to perform configuration / reconfiguration and readback operations. The reasons for selecting the PCAP among all available reconfiguration peripherals are:

-It is designed by Xilinx for the specific scenario, that is reconfiguring the PL part using PS.

-It is built in the hardwired part of the Zynq, so no resource overhead in the PL part.

-It is a reconfiguration interface with the highest bandwidth provided by Xilinx, which is about 130MB/s, gets closer to the theoretical limit of 400MB/s.

PL Configuration via PCAP

PCAP is the gateway for the PS part to access the PL part. It also includes a DMA controller, an AXI bus interface for the communication, and a pair of FIFOs (one for transmitting and the other for receiving), as shown in Figure 5.1. This interface grants the PS easy access to perform configuration operations to the PL, such as configuring the bitstream.

There is another interface layer between PCAP and the processor known as Device Configuration Interface (DevC). The processor communicates with the DevC interface, and the DevC interface forms a bridge with the PCAP interface [START_REF]Zynq-7000 all programmable soc technical reference manual[END_REF] [83].

To configure / reconfigure the PL, the new bitstream is transferred to the PL using the DevC DMA unit. The PCAP is unique among configuration interfaces (unlike JTAG or SelectMAP), because it does not require dedicated cables or specialized I/O pins. On the contrary, users access PCAP through software using dedicated memorymapped registers. PCAP interacts with the PL through transferring a sequence of configuration commands directly to the configuration module, which deals with the command packets accordingly (see the data path blue line in Figure 5.1). The PCAP DMA controller acts as a host on the AXI bus interface. The controller transfers data blocks, for instance command sequences, from DDR memory to the transmit FIFO inside the PCAP interface. Then PCAP empties the transmit FIFO and sends the commands one by one to the configuration module on the PL. In this way, the PL can be configured using the PCAP interface through the PS software.

Users are free to configure or reconfigure the PL at any time, either directly after the PS boot using the FSBL/User code, or configuring the PL later using another image loaded into the PS memory. For example, Figure 5.2 shows the full flow to reconfigure an HW accelerator using PCAP. For example, Figure 5.

PL Bitstream Readback via PCAP

We can also use the PCAP interface to carry out a PL bitstream readback. To perform a readback operation, the PS must be running software that is capable of generating the correct PL readback commands. In this case, two DMA accesses are required to complete the PL configuration readback. The first access is used to issue readback commands to the PL configuration module. And the second is required to read the PL bitstream from the PCAP. The minimum amount of bitstream data that can be readback from the PL part is one configuration frame containing 101 32-bit words.

Readback command sequences are first processed via the DevC interface, and then subsequently transferred via the PCAP interface to the PL. To perform data transfers back via the PCAP/DevC interfaces, the receiver FIFO will be populated by the PCAP interface, which receives the readback data from the configuration module. After that, the DMA controller moves the data from the receiver FIFO to the target memory (see the data path red line in Figure 5.1). Note that when using PCAP, it must have an exclusive configuration module access. An overview of part of the command sequence to perform a readback of the configuration data is shown in Table 5.1 (see [START_REF] Stoddard | Highspeed pcap configuration scrubbing on zynq-7000 all programmable socs[END_REF] for more details of the PCAP readback sequences).

PCAP Limitations

There are some limitations when performing a PCAP readback transfer. When a readback is required, the returning data comes at a constant rate from the PL regardless of whether the PCAP receiver FIFO is ready. In order to prevent overflow of the receiver FIFO, PCAP has to transfer data from the receiver FIFO to the destination memory through the DMA over the PS AXI interconnect faster than the configuration module can fill up the receiver FIFO. The combination of the PCAP clock rate and the PS AXI interconnect determines the data rate.

When readback continuously, the DevC DMA must have sufficient bandwidth to deal with the PL readback. If too many frames are being read or these frames are readback too fast, the DMA controller may hang and freeze the AXI bus. There are two solutions, if adequate bandwidth cannot be allocated to the DMA. The first method is to decompose the readback into multiple smaller transactions. The other is to slow down the PCAP clock (by default, the PCAP CLK is 100 MHz).

Another limitation is that a single readback request cannot be split into several DMA accesses. For example, when sending a command requesting 505 words of readback data, it is impossible to read 404 words and then another 101 words. All 505 words has to be read in one transfer. Splitting into two DMA accesses may result in data loss and unexpected DMA behavior.

5.4 Hardware Context Switch using Scan-chain

Preemption Management Framework

The idea behind proposing this mechanism was to allow several VMs with different priority levels to access shared resources in PL. One of the biggest challenge in managing such resources is to be able to suspend hardware accelerators and restart them at another time and/or in another region of the FPGA. This challenge addresses both DPR and context switch in the hardware part. As a solution, we have proposed an efficient hardware preemption mechanism to store/restore the hardware accelerator's internal state without requiring any bitstream manipulation.

The proposed HW Controller

The HW Controller is implemented in the static part of the FPGA and connected to the corresponding HW accelerator whose internal state has to be stored. It cooperates with the HW Manager to coordinate the execution of software and hardware tasks. The Controller features a (CMD REG) register to receive commands from the HW Manager, and then decodes these commands to control the HW accelerator behavior.

The Controller is designed to provide a set of functions through a dedicated interface, such as starting/stopping, storing/restoring the internal state of an hardware accelerator. In this section, the HW Controller is implemented in two ways.

First Implementation: an HW Controller for each HW accelerator

In order to achieve a preemption mechanism, we first proposed that each HW accelerator has its own Controller. The controller also features some memory components to store the hardware accelerator states. The HW Controller is composed of two parts that are required to store the HW accelerator context.

The first part consists of a set of registers to store the state of the accelerator's registers. The second part is composed of memory to store the accelerators internal memory state of to store additional information if the number of registers is not sufficient (see Figure 5.5). By default, the HW Controller contains 32 registers of 32-bits.

It also features a 36 Kb of internal memory. Note that these values may differ according to the size of the accelerator's context. The HW accelerator's registers may be accessible in parallel and can be saved/restored simultaneously by the HW Controller, whereas all data can only be accessed sequentially when memory is used. The HW Controller also contains registers to store input and output DMA information, for example, the DMA source address, the DMA destination address, the length, etc.

This HW Controller is an efficient way to handle the context switch of hardware accelerators efficiently and quickly. However, the main drawback of this mechanism is that it has to store the internal state of the hardware modules in the FPGA part, which may use a significant amount of hardware resources. For this reason, we have reduced the number of HW Controllers to make the use of hardware resources more efficient. Furthermore, we have also added an on-chip memory on the FPGA to extend the Context Registers in the HW Controller, where the context of HW accelerators is

Second

The Controller State Machine

For simplicity reasons, the Controller implements a Finite State Machine (FSM) that manages the execution of the associated HW IP. In this work, the Controller may be in following states:

-Ready: The Controller is ready without any ongoing computation. -Busy: The PRR is in the middle of a computation.

-Preempt: The Controller stores the HW IP context to the corresponding regions once the currently running IP is stopped (preempted).

-Start: The Controller restores the HW IP context and resume its state from the preempted point.

-Reconfig: A PCAP reconfiguration transfer is launched for reconfiguration.

-To OnChip: The Controller copies the HW IP context stored in its registers to the on-chip memory.

-From OnChip: The Controller copies the HW IP context stored in the on-chip memory to its registers.

-To DDR: The Controller copies one HW IP context stored in the on-chip memory to the DDR memory.

-From DDR: The Controller copies one HW IP context stored in the DDR memory to the on-chip memory.

The Controller behaviour can be described according to these mentioned states. When a PRR is busy and the HW Controller receives a START command, it is responsible for the preemption process(such as the store/restore process).

If the required IP is not implemented in a PRR, a PCAP transfer will be launched for reconfiguration. Reconfiguration is typically performed using PCAP to transfer a partial bitstream into the corresponding PRR. Note that, in the DPR technology, the bitstreams' size is strictly determined by the size of the reconfigurable region.

Considering that the PCAP bandwidth is fixed, the reconfiguration time overhead of HW IPs, i.e. the download time, can be easily predicted. The Controller also enables to store/restore the IP context to/from the FPGA on-chip memory as needed. Both these processes can easily run in few nanoseconds, which is much less than the reconfiguration latency. Therefore, both processes can run in parallel with reconfiguration and have no influence on it.

If the on-chip memory is full, our mechanism also uses communication links between the on-chip memory and the DDR memory in the PS part. In our work, if there is not enough space on the on-chip memory, the DDR memory in the PS part is used to store some specified HW IP information. The collaboration between the HW Controller and the HW Manager can store the preempted HW IPs context in the appropriate position. In parallel, they also provide feedback to VMs, allowing them to check the current state of the HW IP if needed.

One advantage of the proposed context-switch mechanism is that it is performed in the PL part. The operation is transparent to VMs and there is no need to manually store/restore the context of a given HW IP. In addition, the hardware context switch is very simple and fast since most of HW IP registers may be stored/restored in parallel.

Another advantage of this mechanism is that it is independent from the FPGA fabric compared to others methods relying on bitstream manipulation.

On-chip Memory

In this thesis, we only have one HW Controller that contains one HW context registers component to store the needed IPs' context. However, the main limitation in this case is the limited number of HW registers that are available to store all IPs' states. In order to circumvent this issue, we have added an on-chip memory between the HW Controller, where the IP context is stored, and the DDR memory in the PS part. This memory can be seen as a cache memory.

Since the number of the IP's internal registers is fixed, the number of HW context registers in the Controller can be predicted. Additionally, the on-chip memory designed in this paper is partitioned into blocks of given size, which guarantees that it can store the context of the biggest IP.

It is also interesting to note that handling blocks with fixed size instead of variable ones reduces the impact of memory fragmentation. If an on-chip memory stores/restores Since the on-chip memory is limited, it is very likely that it will not have enough partitions to store all the IP contexts. Our mechanism makes the proper replacement decision to decide which partition(s) must be replaced in order to make space for the new incoming one(s). This will be discussed later in this paper in Section 5.4.7.2.

The IP Custom Interface

Hardware IPs that are designed to be implemented within the same partially reconfigurable region (PRR) must exhibit the same interface within this region. This is to avoid signal inconsistency when connecting static and reconfigurable regions. Therefore, for each IP, a custom interface (HW IF) is added, which shares exactly the same inputs and outputs. This interface is in charge of connecting the Controller with a reconfigurable IP in order to control it more easily. The HW IF also simplifies the process of designing an HW IP and ensures compatibility of HW IPs within the PRR.

A list of ports that are common to all IPs within a same PRR is given in Table 5.2.

Accelerator Requirements

To properly implement preemption, designers may have to manually modify the HW IPs to be able to store and restore the internal registers' state. The modifications are shown in Figure 5

The Proposed HW Manager

The HW Manager is a special service provided by Ker-ONE. This service runs as an independent VM and communicates with other VMs. It has a higher priority than other VMs and can preempt them once it gets scheduled. After its execution, it suspends itself and the VMM resumes the interrupted VM immediately. This service also stores all the HW task bitstreams in its memory.

The HW Manager handles the reconfiguration and allocation of hardware IPs are separated from VMs and is the only component that can launch PCAP reconfigurations.

The main task of the Manager is to communicate with VMs, to correctly allocate PR HW IPs to VMs and to manage these IPs through the HW Controller.

Any requests to reconfigure hardware IPs coming from the VMs are controlled and performed by the HW Manager, so that the hardware resources are isolated from other VMs, ensuring the the security of the FPGA fabric. For example, each time that a VM tries to access an HW IP, a request will be triggered and then handled by the HW Manager to search for an appropriate allocation plan. The request priority is equal to the priority of the calling VM. Then a command is posted to the corresponding HW Controller on the FPGA side. If any VMs try to access an unavailable HW IP, this will automatically be detected by the VMM, and then forwarded to the HW Manager.

In Figure 5.9, an example of the HW Manager's processing is depicted. As we described, when receiving the system call, Ker-ONE enqueues the HW Manager to preempt the caller guest OS, while passing the target HW IP ID and arguments to the HW Manager. The HW Manager then processes the requirement from the guest OS by reconfiguring the desired HW IP. The detailed process sequence is listed as following:

(a) First, according to the HW IP ID, the HW Manager obtains the information of the target HW IP through HW Task Index Table , i.e., its address of its bitstream file, its container PRR.

(b) The HW Manager then checks the status of the target IP's suitable PRRs to verify if its available to be reconfiguration. For example, PRR1 is chosen to implement IP1 since it is currently in IDLE state. Note that if the PRR is occupied by other VMs currently, the HW Manager returns to the caller guest as Busy state, which means that its requirement cant be processed right now.

(c) If the PRR is ready to be reconfigured, then the HW Manager launches a PCAP transfer to download the target bitstream file from the DDR into this PRR.

(d) In other cases, the PRR is not available, since the HW IP may be in the middle of data processing. However, the caller guest has a higher priority, and then the HW Manager writes commands to the CMD register in the HW Controller to perform preemption. The essential information of a HW IP is stored in a HW task index table, which is created to provide a quick look-up search for HW IPs in the HW Manager. In this table, the compatible IPs for each PRR are listed. This table also holds the information of the corresponding bitstream file, including its ID, memory address and file size. This information is used to correctly launch PCAP transfers and perform reconfiguration if the required IP is not implemented in the allocated PRR.

When a HW IP is required, the HW Manager first reads its PRR list and selects the appropriate PRR to host the target HW IP, and the allocation is totally transparent.

Second, on the FPGA side, the HW Controller receives commands and connects to the target IP that implements the corresponding computation. Note that a PRR can only be directly allocated to VMs when it is available. In other situations, the allocation process requires an extra overhead caused by the PCAP transfer or preemption.

In the preemption process, it means that no PRR can be directly allocated. The Manager communicates with the corresponding HW Controller to stop the target IP.

After preemption, the Manager can re-allocate this PRR to the target VM because the target PRR can be considered as an available allocatable component.

The Replacement Approach

Another issue caused by preemption is the FPGA memory resources. Recall that PR IPs can be preempted at any time and must store their context in the FPGA. If the FPGA does not feature enough storage resources, all IPs contexts cannot be stored in the FPGA at the same time.

Therefore, it is necessary to implement a replacement method. If a HW IP is rarely executed, it does not seem a good idea to store it in the HW Controller. Instead of that, only those HW IPs that are going to be regularly executed should be stored in the Controller. In this work, the HW Manager decides which HW IPs' contents must be replaced in order to make space for new incoming one(s).

In our work, the proposed method uses the well-known Least Frequently Used (LFU) replacement policy. The idea is simple: the HW IPs that are executed more frequently should not be replaced. The HW Manager contains a list of counters to ensure that each HW IP has its own counter to record the number of times it is executed. The corresponding counter is incremented after each execution.

When the replacement function is called, the HW Manager first reads its counter list to search for the LFU HW IPs and then writes the command to the corresponding HW Controller to move the contents of the register storing the HW IPs context to memory. Note that, in order to guarantee the correctness of RT VMs timing constraints, the contents of RT VMs should never be replaced.

Summary

In this chapter, we have introduced hardware preemption management which facilitate hardware resources for virtual machines on top of the Ker-ONE micro-kernel. Our mechanisms are intended to provide transparent preemption from an OS to contribute access to reconfigurable accelerators.

To this purpose, we proposed two ways to implement the HW Controller. First, each HW accelerator has its own HW controller. The main drawback of this approach is that it may use a significant amount of hardware resources. For this reason, we have reduced the number of HW Controllers (only one HW Controller) to make the use of hardware resources more efficient. It is a trade-off between resources and performance. In this thesis, we support both dynamic reconfiguration mechanisms and automated hardware preemption mechanisms. Users do not have to intervene in the preemption process. Dedicated management components, i.e. HW Task Manager and HW Controller are implemented on both software and hardware sides to handle preemption and allocation at run-time. Our mechanisms also guarantee the security issues for virtual machines that are caused by the sharing of PR accelerators.

One advantage of the proposed context-switch mechanism is that it is performed in the PL part. The operation is transparent to VMs and there is no need to manually store/restore the context of a given HW accelerator. In addition, hardware context switch is very simple and fast since most of HW accelerator registers may be stored/restored in parallel. Another advantage of this mechanism is that it is independent from the FPGA fabric compared to others methods relying on bitstream manipulation. The implementation and evaluations of our methodology are described in details in Chapter 6.

In the next chapter, we will demonstrate the advantages of our hardware virtualization and hardware context switch mechanisms with experiments. Overheads in both hardware virtualization and preemption will be analyzed. In our experiments, the system has been configured to host four guest OSs implementing the µC/OS-II OS on top of Ker-ONE. Guest OSs were either configured as GPOS or RTOS according to the experimental requirements. For all experiments, the VM switch is performed according to the VMM scheduling tick interval that is fixed to 33 ms. Each Guest OS is scheduled according to a 1 ms timer tick. Note that these values are common timing configurations for µC/OS-II. The detailed configuration information is shown in Table 6.2.

Resources Management Results

In this section, we first focus on the management of timer and DMA resources.

Timer Management Overhead Analysis

In Chapter 4, timer virtualization mechanisms have been explained in detail. In the following, we will evaluate the performance of our proposed mechanisms. In the experiment platform, there are two TTCs that are closely coupled to the ARM cortex A9 processor. Therefore, We reserve one TTC that can be used exclusively by the Furthermore, we can also note that using several AXI-Timers (one for each VM) is less time consuming that sharing one AXI-Timer. Although this may appear intuitive, we demonstrate that the gain is not negligible. Only 2.04 µs is needed to access the timers in this case.

Discussion

Table 6.3 presents the overhead results of the timer management, where minimal, average and maximum time overhead are given in microseconds. This time corresponds to the preemption latency that is required to stop the timer, and load another but they can also be deterministic. In this case, new mechanisms may be implemented to predict the need of a given IP.

In the CPU user space, we considered an application with several tasks running on top of the micro-kernel and that may access different PR resources. For demonstration purposes, we assume that tasks have different priority levels, so that preemptions may occur randomly. Tasks {T 0 , T 1 , ...} are created and periodically access IPs, which causes requests for run time allocations. The HW Manager is invoked whenever there is a request to access an IP, as shown in Figure 6.3. T preempt = T stop + T store + T rcf g + T restore (6.3.1)

where:

T stop is the latency starting when a task is called until the current running task stops.

T rcf g is the waiting time for the completion of a PCAP reconfiguration.

T store is the time required to store the preempted HW IP registers.

T restore is the time required to restore the resumed HW IP context.

In order to show the advantages of our HW context switch mechanisms, we have considered five different types of context switch and provided a comparison among them (as shown in Figure 6.4). The latency involved in operations depends on the cases to be considered:

Case 1 : The preemption overhead (T preempt) includes the time of using the software part to perform a readback of the bitstream file containing all IP 2 s' state to the PS part (T store), and the time of the PCAP reconfiguration of IP 3 (T recf g).

Therefore, in this case, T preempt = T store + T rcf g . Case 3 : T preempt is basically the same as in case 2, as shown in Equation 6.3.1.

The difference is that all operations are performed in the PL part to avoid the overhead caused by storing/restoring the registers into the PS part.

Case 4 : T preempt is basically the same as in case 3, as shown in Equation 6.3.1.

The difference is that there is only one Controller and an on-chip memory in the PL part. In this case, the operation that has to be added is to store the Controller's registers to the on-chip memory and then restore the corresponding HW IP context to the Controller's registers if its exists in the on-chip memory.

However, both processes can be performed in parallel with the PCAP transfer.

Case 5 : T preempt is basically the same as in case 4, as shown in Equation 6.3.1. The difference is that the corresponding HW IP context does not exist in the on-chip memory or the on-chip memory is almost full. In this case, the operation that has to be added is to restore the corresponding HW IP context from the DDR memory to the on-chip memory or to store the corresponding HW IP context to the DDR memory. However, the process can be performed in parallel while the HW IP is running. As an example, we propose that IP 1 is implemented in P RR 0 at t = 0. At t = t 1 , T 2 wakes up and need to access P RR 0 . A preemption has to be performed so that IP 2 may replace the existing IP 1 . The implementation is shown in Figure 6.5, which presents the different steps that are required for the HW Manager and the HW Controller during the context switch process. Two preemption points are shown: the first occurs at t = t 1 and the second at t = t 5 .

The basic preemption process (at t = t 1) includes the following steps: Furthermore, since the size of each partition in the on-chip memory is fixed, even if the size of the partition is larger than the context size of IP 5 , the unused part of the partition cannot be used by other IPs.

When the HW Manager detects that the on-chip memory is almost full, the least frequently used IP will be stored into the DDR memory according to the replacement method to make room. This process can be performed simultaneously while storing the Controller registers into the free partitions of the on-chip memory, so that it does not increase latency.

Practical Consideration

As an example, in order to provide a real use case and give an overview of the resources and performances in a common scenario, we have considered two types of IPs: an FFT IP and an FIR filter. Table 6.6 shows the amount of resources that are required for both the FFT and FIR. The table includes values for the original and modified FFT/FIR. The former contains the number of registers that need to be stored and the latter contains the custom interface used for the connection between the HW Controller and the HW IP.

According to this table, it can be seen that our preemption mechanism for HW IPs only requires few additional FPGA resources: (+1.6%) for the FFT and (+1.1%) for the FIR.

In addition, Table 6.7 shows the resource amount that is required for the HW Note that in the Case 1, the overhead of T rcf g and T restore (for readback) is linearly related to the size of the bitstream and therefore depends on the PRR size. For the other cases (Case 2 to Case 5), no bitstream manipulation is required and the number of data to be processed for context switching is much less.

In Case 2 and Case 3, the Controller needs to stop/start the HW IPs and store/restore their registers to the PS and PL part, respectively. The Controller requires 5 groups of 32 registers of 16-bits for the FFT IP. Note that only 32 clock cycles are necessary to store all the registers' state, since groups of 32 registers in the HW IPs can be accessed in parallel. For the FIR, the process is basically the same, but it only contains 738 registers. Only a small number of registers (3 groups of 32 (8-bit) registers) need to be implemented in the Controller. In Case 4, the preemption overhead is the same as in Case 3. Note that the number of HW Controllers has been reduced to optimize the use of hardware resources. In Case 5, although the context of the specified HW IP has to be stored/restored between the on-chip memory and the DDR memory, the overhead is still less than directly manipulating all registers as in Case 2. Table 6.8 shows that the preemption overhead is mostly caused by the stop/start operation and that the preemption (Store/Restore) takes obviously less time to process in PL than in PS. Moreover, the preemption latency in PS is significant. This is inevitably due to the fact that the operations to access the registers or memory from the PS causes extra overhead compared to the same operations in PL.

Our current implementation includes two hardware IPs, FFT and FIR, which can also be easily applied to other hardware accelerators. Based on the results obtained in this section, which can be used to analyze the real-time schedulability for RTOS.

RTOS Schedulability Analysis in Ker-ONE

In Chapter 3, we have illustrated how to model Ker-ONE using graph theory. Without going into details, we recall briefly the fundamental definitions. The vertex set of graph is defined as V = {V f , V p }. V f = {v f 1 , v f 2 , ...} include the vertices of function set F, and V p = {v p 1 , v p 2 , ...} stands for the set P. The edge set E is a set of undirected lines existing between function nodes and PR nodes. The role of edges is to indicate valid {pr, f } pairs in the graph. The dependency set D of t i means the task t i relies on a series of hardware accelerators to fulfill its computation. The dependency vector v(T) shows which accelerators are used in T . For RTOS tasks T rt , who is competing the FPGA resource with the GPOS, the state of v(T gp) is critical to determine the allocation latency of accelerators.

In this section, we give an example to describe our methodology in details. We have designed the PR set P = {pr 1 , pr 2 , pr 3 }, accelerator functions set F = {f 1 , f 2 , f 3 , f 4 }, GPOS task set T gp , RTOS task set T rt . In this case, these three partial reconfiguration regions(PRR) are implemented with different sizes. For each PRR, different hardware accelerators can be implemented.

In this case, for RTOS, we assume that t * ∈ T rt has the following dependency can be hosted.

The value of A rt is:

A rt =     1 1 0 0 1 1 1 0 0 0 1 1     (6.4.3)
The value of A gp is:

A gp =     1 0 1 1 1 0 0 1 1     (6.4.4)
We can easily transform the affinity matrix into graph, as shown in Figure 6.8.Then we merge two affinity graphs (G rt (V f rt , V p , E rt) and G gp (V f gp , V p , E gp)) into one graph G (V f rt , V f gp , V p , E rt , E gp), as shown in Figure 6.9. Note that functions in G rt and G gp are considered different vertices, even if they actually represent the same accelerator.

For example, QAM16 gp and QAM16 rt may represent the same hardware function.

Remember that each vertex keeps its feature information [type, cost], where type is V p , V f rt or V f gp , and cost is reconfiguration overhead for PR, and preemption overhead for functions.

G Comp (V f rt , V f gp , E Comp).
In the competition graph, the v f rt vertex is competing with its neighborhood vertices for PR resources. Based on our preemption mechanism proposed in Chapter 5, either each HW accelerator has its own Controller or one HW Controller for all HW accelerators, only 32 clock cycles are necessary. The preemption overhead results(0.6 µs = 0.50 + 0.05 + 0.05) can easily be obtained in Table 6.8(Case 3 or Case 4) in Chapter 6, which involves T stop , T store and T restore . For each neighbor, the results are then used to calculate the worst-case allocation latency for a given real-time accelerator.

The overhead of reconfiguration is determined by the size of PRRs, and can be predicted according to the implementation of PRRs. For the overhead of preemption, we also compare Tian Xia's work [START_REF] Tian | Embedded Real-Time Virtualization Technology for Reconfigurable Platforms[END_REF] with this thesis. The major difference between the Tian's work and this thesis is in the preemption overhead(T preempt). In Tian Xia's work, a running hardware accelerator cannot be preempted at any time, otherwise it may cause a loss of data consistency. The design of hardware accelerators must consist of a preemptive algorithm with consistency points pre-defined in its execution path. Therefore, the preemption overhead suffers from the influences of the positions of the consistency points. However, in this thesis, it can be clearly noticed that our hardware preemption mechanism can be executed at any time and can be efficiently performed with a 0.6µs(see in Table 6.8(Case 3 or Case 4)) latency. Table 6.9 presents the overhead results.

Summary

In this chapter we have introduced the implementation details based on Ker-ONE of extending the software OS mechanism to the hardware part, and evaluated the performance of both resources virtualization and hardware preemption mechanisms with experiments. The results have also been thoroughly discussed in the context of real-time embedded systems.

To present the implementation of resources sharing among virtual machines, we have described the target platform and the efforts to virtualize DPR resources. We have studied different configurations with timer and AXI DMA. Based on the obtained results, we have shown that our approach creates a transparent and secure resources management for virtual machines.

Then we have followed several experiments to evaluate the performance of hardware preemption mechanisms. By comparison with the existing approaches, i.e. performing readback bitstream and context switch operations in PS, we have shown that our mechanisms are very useful in dynamic partial reconfiguration and significantly reduces the hardware context switch overhead. Furthermore, we have also presented that our approach does not require too much hardware resources, which makes it easy to implement in current FPGA devices.

Furthermore, we attempted to analyze the real-time schedulability during dynamically allocating resources to multiple VMs. We modeled tasks, the system and the real-time schedulability of RTOS atop Ker-ONE using graph according to the mecha- Nowadays, embedded systems play an important role in our daily lives, ranging from customer products such as vehicles and smartphones, to industry domains. With such as an expanded range of purposes, embedded systems can be divided into different categories. There are systems with high computing power, which can support enormous resources and complex software stacks. There are also small-scaled embedded systems with limited resources, which are intended for low-cost simple devices, such as for the Internet-of-Things (IoT). Basically, most of these devices share common features such as low weight, low power consumption, and a small size.

At the same time, while the complexity of embedded systems is increasing, it is becoming more and more expensive to improve CPU performance through conventional approaches, such as ASICs. In this case, the concept of heterogeneous CPU-FPGA architecture has become a promising solution for SoC device vendors, due to the higher adaptability and relatively lower cost to improve the computation ability. The emerging convergence point of traditional CPU and FPGA computing makes it possible to extend traditional CPU virtualization techniques into the FPGA domain to take full advantage of the mainstream FPGA computing.

Current hybrid CPU-FPGA architecture generally feature both software and hardware parts. Multiple operating systems can be executed on the same hardware platform, and these OSs may have access to either software or hardware resources. The target of our research is small-scaled simple CPU-FPGA embedded systems, where the main limitations include computing resources, tight timing constraints, small memory size, and power budget. Considering the limited amount of resources, it is necessary to be able to share these resources among OSs while respecting the features of both software and hardware components. Furthermore, it is essential for such systems to guarantee the correctness of critical task timing constraints, because they may significantly influence the system safety. FPGA devices have demonstrated their capability to provide high performance and accelerate heavy computation. To take full advan-tage of the potential of these devices as hardware accelerators, it is also essential to provide a hardware context switch support.

In this thesis, the contribution are briefly described as follows:

i) We first propose an automatic design methodology to optimize the Ker-ONE platform. With the proposed methodology, we presented the overall process of modeling and designing a real-time virtualization system. Based on this scenario, we analyzed quantitatively how our method would influence the schedulability of guest RTOS in Ker-ONE. Besides, we believe that the problem we are trying to solve is actually generic. In cases of dynamically allocating resources to multiple users, the problems of dependency, timing and parallelism also exist.

By far, some interesting properties are discovered in our modeling. Hopefully, Our research may also be able to build up a more generic modeling and make a contribution to these related domains.

ii) We also propose a transparent, efficient and secure management for guest OSs.

With the proposed management, Ker-ONE is extended to the hardware part and benefited from the implementation of hardware accelerators to accelerate the access to resources. Our management significantly optimizes the use of reconfigurable FPGA resources and contributes to improve computing performances. The examples that have been considered in this thesis only deal with simple timers and DMA. This was mainly to show the interest of our approach but it is clear that our mechanisms may be proposed for various IPs that could be much more complex.

iii) We propose innovative hardware context switch mechanisms that are appropriate for a preemptive scheduling. These are implemented in hardware to reduce the context switch time between several hardware accelerators that share the same reconfigurable region. Our mechanisms make it possible to perform a context switch at an arbitrary point in time and significantly reduce the preemption overhead compare to traditional approaches. Furthermore, based on the preemption overhead results, we can make further analysis about the overall influence of system on the schedulability of real-time tasks.

In the first part of thesis, we introduced our work motivation and manuscript organization.

In Chapter 2, we introduced the fundamental theory the application of DPR technique in software and operating systems. In these approaches, hardware virtualization techniques are used for multiplexing FPGA resources among multiple users. Then, we also discussed the basic technical concepts and existing techniques of context switch and hardware context extraction. We have shown the features of these techniques, research efforts dedicated on hardware resources management in embedded virtualization system were not sufficient currently. At the end of this chapter, the motivation of our research was explained.

In Chapter 3, we described our architecture of micro-kernel Ker-ONE, which we have been built from the bottom-up, providing ARM para-virtualization, following the principle of a lowest complexity and high adaptivity. Ker-ONE micro-kernel also provides a custom management framework which allocates DPR accelerators. In this chapter, to analyze the real-time schedulability, we also proposed an effective and automatic design flow for optimizing real-time OS virtualization based on Ker-ONE.

Then in Chapter 4, based on Ker-ONE, we proposed an effective hardware resources management, which extends Ker-ONE, to reduce the development cost and to optimize the performance. We have studied several configurations with simple cases, timer and DMA. We have shown how to benefit from the implementation of HW IP to accelerate the processor and measured the overhead on a real platform.

Then we made specific discussions about the security of virtual machines in this case, indicating that the sharing of these DPR resources does not undermine the isolation.

In Chapter 5, we proposed an innovation context-switch mechanism to implement the hardware preemption management to ensure that all the IP's context is managed in hardware. It extends the software OS mechanism to the hardware part. Our mechanism provides efficient reconfigurable FPGA resource management among virtual machines, while meeting the potential challenges. In the proposed mechanism, we attempt to improve the hardware task security, to minimize the extra performance loss caused by hardware context switch, and to provide a unified user-transparent interface for FPGA reconfiguration resource accesses.

In the last part of thesis, we first measured the timer and DMA virtualization management overhead respectively. We examined the resources sharing management mechanism by determining the corresponding latencies and studying its influence on the virtualization efficiency. Then we measured the overhead of hardware preemption management and evaluated hardware resources required in the PL. It can be noticed in the end that our proposed mechanisms can be capable of dynamically and efficiently coordinate DPR accelerators for virtual machines. We modeled the real-time schedulability on RTOS atop Ker-ONE using graph. With our measured preemption overhead, we can easily create models that make it easy to analyze and verify the parallelism of real-time tasks. Build V leaf , the set of all leaf vertices in G 3: Remember that S is the set of all possible occupation states of G. If Assertion Assertion Assertion(G) is true, then ∃s * ∈ S is a full-occupation state of G. We denote s max ∈ S to be the states with the least number of isolated PR vertices. s max have multiple possibilities.

G (V f rt , V f gp , V p ,
for v i in V leaf
Any isolated PR vertex in s max have the following features: Theorem 15 ∀v p 0 is an isolated vertex in s max , its neighborhood in G is G N (v p 0) = {v f 0,1 , v f 0,2 , ...}, they follow the conditions below:

1. In s max , {v f 0,1 , v f 0,2 , ...} all have occupied PR vertices.

2. In s max , {v f 0,1 , v f 0,2 , ...} occupies PR vertices {v p 0,1 , v p 0,2 , ...}, while v p 0 = v p 0,1 = v p 0,2

3.

In G, {v p 0,1 , v p 0,2 , ...} have neighbor function vertices {G N (v p 0,1), G N (v p 0,2), ...}, which may have the same vertices with {v f 0,1 , v f 0,2 , ...}.

4. ∀v p 0,k ∈ {v p 0,1 , v p 0,2 , ...}, conditions 1-3 is still true considering v p 0,k as the new v p 0 .

The claim in Theorem 15 can be proved as the following: We use reductio ad absurdum in this proof.

If the claim of Theorem 15.(1) is false, then ∃v f 0,k ∈ {v f 0,1 , v f 0,2 , ...} is also isolated, meaning that it can occupy v p 0 , which makes s max not with the least number of isolated vertices.

If the claim of Theorem 15.(2) is false, then there are two possibilities:

• ∃v p 0,k ∈ {v p 0,1 , v p 0,2 , ...}, v p 0,k = v p 0 . This means v p 0 is not an isolated vertex in s max , which contradicts the assumption.

• ∃v p 0,i , v p 0,j ∈ {v p 0,1 , v p 0,2 , ...}, v p 0,i = v p 0,j . In this case, v f 0,i or v f 0,j are occupying the same PR vertex, meaning that one of them can be spared to occupy v p 0 , which makes s max not with the least number of isolated vertices.

If the claim of Theorem 15.(4) is false, then v p 0,k can be occupied by another neighbor other than v f 0,k , making v f 0,k capable of occupying v p 0 . Then s max not with the least number of isolated vertices.

More importantly, Theorem 15. (4) shows that the condition run recursively from isolated vertex v p 0 to its neighbors. This leads to a tree graph which shows the connection of PR vertex and its neighbors in s max . This is termed as a s max s max s max tree. In this tree, each PR vertex recursively meets the conditions in Theorem 15, while the root vertex is v p 0 . The tree stops growing after no new function vertex is added to the graph.

According to Theorem 15, at each recursion, new pairs of (v f , v p) are added into the graph. Therefore we always have more PR vertices in the tree, since the root vertex is PR. More formally, we have the following conclusion:

Theorem 16 If ∃s * ∈ S is a full-occupation state of G, then ∀s max , ∃ s max s max s max tree, where the number of PR vertices are more than their neighbors.

Therefore, Condition 1 is the necessary condition for the Assertion Assertion Assertion(G) being true.

Figure 2 .

 2 Figure 2.1 depicts an abstract overview of an FPGA architecture and a simple logic block with 4-inputs LUT (4-LUT). Many FPGAs can be reprogrammed to implement different logic functions, allowing flexible reconfigurable computing as performed in computer software.

Figure 2 . 1 :

 21 Figure 2.1: The basic structure of an FPGA.

Figure 2 . 2 ,

 22 Figure 2.2, we briefly describe the general architecture of such platforms. Based on such hybrid architectures, there are efforts to develop operating systems for reconfigurable hardware by abstracting FPGAs. The abstract layer VMM handles FPGA reconfiguration, hardware scheduling and the communication between hardware and software. Therefore, from the user's point of view, FPGAs may be seen as transparent.

Figure 2 . 2 :

 22 Figure 2.2: The general architecture of CPU/FPGA hybrid processors, with CPU and FPGA being implemented in independent packages.

Figure 2 . 3 :

 23 Figure 2.3: Zynq-7000 SoC Overview.

Figure 2 .

 2 Figure 2.5 depicts an abstract view of RSoC architecture from Xilinx, Zynq family.

Figure 2 . 4 :

 24 Figure 2.4: Demand for SoCs to Remain Strong in Application Segment.

Figure 2 . 5 :

 25 Figure 2.5: Abstract view of Xilinx reconfigurable SoC (Zynq).

 Figure 2.6 shows the CPU and hardware tasks (or IPs) on the FPGA built on the Zynq architecture. The internal AXI interfaces require fewer resources compared to other communication standards, such as PCIe. One or several hardware IPs can be located on FPGA of RSoC in a condition the FPGA has sufficient resources. The use of RSoC also provides a higher efficiency, especially in the configuration and hardware IP allocation from the CPU. Meanwhile, in the embedded computing domain, the combination of both DPR

Figure 2 . 6 :

 26 Figure 2.6: An illustration of hardware tasks built on Zynq architecture.

Figure 2 . 7 :

 27 Figure 2.7: The partial reconfiguration technology on Xilinx FPGA. Dynamic Partial Reconfiguration permits users to modify a given region of FPGA circuit onthe-fly, while the rest fabric functions normally.

Figure 2 . 8 :

 28 Figure 2.8: An illustration of a context switch in software.

Figure 2 . 9 :

 29 Figure 2.9: An illustration of a context switch in FPGA.

Figure 2 . 10 :

 210 Figure 2.10: Two examples of FPGA architectures from different manufacturers.

Figure 2 . 11 :

 211 Figure 2.11: Insertion of scan-chain into a simple circuit.

Figure 3 . 1 :

 31 Figure 3.1: Ker-ONE consists of a micro-kernel and of a Virtual Machine Monitor running at a privileged level. The User environment executes in a non-privileged level.

Figure 3 .

 3 Figure 3.1 depicts the key components of the Ker-ONE architecture. In the software domain, it is composed of both a host micro-kernel and a user-level environment.

Figure 3 . 2 :

 32 Figure 3.2: Para-Virtualization

Figure 3 . 3 .

 33 Figure 3.3. GPOSs run at an identical low priority level, while the RTOS is assigned a higher priority. Within the same priority level, the CPU is shared according to a time-slice-based round-robin policy.

Figure 3 . 3 :

 33 Figure 3.3: Priority-based Round-Robin Scheduling.

 algorithm and can be implemented in different reconfigurable regions by downloading the corresponding bitstream into the targeted area via the PCAP interface, as shown in Figure 3.4.

Figure 3 . 4 :

 34 Figure 3.4: The partial reconfiguration technology on Xilinx FPGA.

Figure 3 . 5 :

 35 Figure 3.5: HW task index table with HW task descriptors.

Figure 3 .

 3 Figure 3.6 depicts the model of HW tasks and its interaction with VMs. As shown in this figure, an interface component (IF) has been implemented on the FPGA side. This interface can be seen as an intermediate layer between logical virtual devices and actual accelerators. It is in charge of connecting VMs with accelerators so that software can control their behavior. Each IF is exclusively associated to a specific VD in a specific VM. Therefore, VMs access HW tasks via IFs. We proposed a standard interface structure to facilitate the multiplexing of PRR resources, denoted as the PR accelerator interface. It is implemented in both the HW task and the IF, and conveys the register values from the IF to HW task. Once the IF is connected to an HW task, a VM can operate on the IF registers to control the HW task behavior.

Figure 3 . 6 :

 36 Figure 3.6: Reconfigurable accelerator model.

Figure 3 . 7 :

 37 Figure 3.7: The scheme of an iterative automatic design methodology to explore the design space.

 Design: A function f k has two important factors: the worst-case preemption path and the resource requirement. The RTOS preemption path refers to the cost of the RTOS preemption at the current GPOS. The resource requirement is the FPGA on-chip resources required to implement the functionality, including LUTs, FFs, DSPs, etc. Both factors are considered as fixed factors in the thesis.FPGA Resource Partitioning: The FPGA fabric is divided into several partial regions. We define the set of all PRs as the set P = {pr i }. Each PR consists of a set of resources, which directly influences the reconfiguration overhead of the PR.

Figure 3 . 8 :

 38 Figure 3.8: The example of graph representation of affinity matrix. Note that (a) and (b) are equivalent graphs.

 include the vertices of function set F, and V p = {v p 1 , v p 2 , ...} stands for the set P. Each vertex has a feature vector oftwo elements h h h(v i) = [class, cost]. class is the type of vertex, which can be a function (∈ V f) or a PR (∈ V p).cost is the overhead of allocation, which is the preemption overhead for functions, and reconfiguration overhead for PRs. The edge set E is a set of undirected lines existing between function nodes and PR nodes. The role of edges is to indicate valid {pr, f } pairs in the graph. The whole graph is denoted as the affinity graph G = (V , E). In an affinity graph G = (V , E), a function vertex v f k ∈ V f is only adjacent to PR vertices V p , and vice versa.

Figure 3 .

 3 Figure 3.8(a) and Figure 3.8(b) are identical. In this figure, the compatible functions for each PRR are shown. For example, {pr 2 , f 3 } pair and {pr 2 , f 4 } pair imply functions f 3 and f 4 can be implemented in the pr 2 .

 .3.12) With the value of L(t i) known, we can successfully update the real-time task timing parameters, as described in equation 3.3.3. The updated real-time timing model < P, C , D >, as shown in Figure 3.9, can then be used to analyze the real-time schedulability of real-time task set T rt , after it is ported to the Ker-ONE guest RTOS.

Figure 3 . 9 :

 39 Figure 3.9: The scheme of updating task model.

Figure 3 . 10 :

 310 Figure 3.10: The Real-time Schedulability Check.

Figure 3 . 11 :

 311 Figure 3.11: The example of the verification graphG v f 4 , (v f 1 , v f 2 , v f 3) for Assertion f 4 , (f 1 , f 2 , f 3) Assertion f 4 , (f 1 , f 2 , f 3) Assertion f 4 , (f 1 , f 2 , f 3) .

Figure 3 . 11 .

 311 Note that G does not include vertices v f 2 and v p 4 since they are not related to v f 4 . And v f 5 is not included because it is not in the verification set F.The meaning in the verification graph G is quite obvious. Each PR vertices in G stands for a possible PR host for f i , and the function vertices in G are competing these PR resources with f i , simultaneously. At any given time, each function vertex can be connected to one of its neighbor PR vertices, indicating the PR resource is occupied.

Figure 3 .

 3 Figure 3.12: The example of the occupation operations on verification graph G. On the right side list all possible graph states after (f 1 , f 3) perform occupations.

G

 = Remove(G, V isolated) 10:if AssertionByN umber(G) = T rue then 11:

Figure 3 . 13 :

 313 Figure 3.13: The example of the remaining graph after Algorithm 1 Line 9. The assertion results of graphs (a)-(d) are: False, False, False, True.

 Figure 4.1(a).

Figure 4 . 1 :

 41 Figure 4.1: Resources management in native machines and virtual machine systems.

Figure 4 . 2 :

 42 Figure 4.2: Management of 3 independent physical timers by the VMM, RTOS and non-RTOSs respectively. For a single guest OS, only one timer interface is mapped in the corresponding memory space.

Figure 4 .

 4 3 depicts the different type of timers implemented in both the PS and PL parts.

Figure 4 . 3 :

 43 Figure 4.3: Timers implementation in the PS/PL Parts

Figure 4 . 4 :

 44 Figure 4.4: Timer management for RTOS & GPOSs

Figure 4 . 5 :

 45 Figure 4.5: The structure of AXI interconnects and interfaces connecting PS and PL.

Figure 4 . 6 :

 46 Figure 4.6: AXI Interconnect vs. Interface.

Figure 4 . 7 :

 47 Figure 4.7: AXI DMA vs. Programmable I/O.

 example, the processor and DDR memory controller are contained within the Zynq PS. The AXI DMA and the FPGA accelerator or the custom IP are implemented in the Zynq PL, as shown in Figure 4.8. This figure illustrates that a custom IP makes use of the AXI-Stream interface to simplify the data receiving and sending processes. The AXI-Stream (AXIS) channels are dedicated 32-bit point-to-point communication interfaces. In this case, the AXI DMA is used to transfer data from memory to the IP block and back to the memory.

Figure 4 . 8 :

 48 Figure 4.8: The block diagram of our design.

 Figure 4.9(b). This figure shows a simplified design to transfer data efficiently: one for AXI DMA read operations and the other for write operations. The DDR memory (top part of Figure 4.9(a)) can be removed for most applications, since one can perform simultaneously AXI DMA reads from the memory and writes to the memory.

Figure 4 . 9 :

 49 Figure 4.9: (a)The Design with one DMA channel. (b)The Design with two DMA channels.

Figure 4 . 10 :

 410 Figure 4.10: The AXI DMA Operations.

Figure 4 . 11 :

 411 Figure 4.11: The AXI DMA Pipeline Operations (b).

Figure 4 .

 4 Figure 4.12: Analysis of data transfer time: (a) processing time of GPOS1 and GPOS2 (b) data transfer time without DMA context switch (c) data transfer time with DMA context switch.

Figure 4 . 13 :

 413 Figure 4.13: The design of DMA Manager.

Figure 4 . 14 .

 414 Figure 4.14. The request state transition diagram is shown in Figure 4.14(b). When a request is received from a guest OS, the request is marked as DRead state, which means the request is waiting for a DMA read operation. If the DMA read channel

Figure 4 . 14 :

 414 Figure 4.14: (a) The DMA read channel state transition diagram. (b) The request state transition diagram.

Figure 5 . 1 :

 51 Figure 5.1: PCAP Interface and Data Transfer Paths.

 2 shows the full flow to reconfigure an HW accelerator using PCAP. At first, a full bitstream file is used to configure the whole PL with an initial configuration. When a reconfiguration is required, in this context by a VM, the PS part uses DevC/PCAP peripherals to load the required partial bitstream file from the DDR memory into the FPGA configuration memory.

Figure 5 . 2 :

 52 Figure 5.2: Partial Reconfiguration Using PCAP.

From an architectural point

 of view, a HW Manager and a HW Controller component are made available in both software and hardware parts of the FPGA. The HW Manager is a particular software service designed to detect and handle the requests coming from VMs that want to access the hardware accelerators. In the static part of the FPGA, the HW Controller is created and is in charge of maintaining the connections to custom interfaces. This HW Controller communicates with the HW Manager and dynamically preempts reconfigurable accelerators. A simplified block diagram of these elements in both software (PS) and hardware part (PL) is shown in Figure 5.3.

Figure 5 . 3 :

 53 Figure 5.3: Block diagram of a HW Manager and a HW Controller component.

Figure 5 .

 5 Figure 5.4 depicts the key components of the proposed HW Controller.

Figure 5 . 4 :

 54 Figure 5.4: The key components of the first proposed HW Controller.

 Implementation: one HW Controller for all HW accelerators In this section, there is only one HW Controller on the FPGA side. As for the part for storing the HW accelerator context is basically the same as the structure we mentioned earlier. The difference is only one HW Context Registers component within the HW controller (see Figure 5.6).

Figure 5 . 5 :

 55 Figure 5.5: Each HW accelerator has its own Controller.

Figure 5 . 6 :

 56 Figure 5.6: Only one HW Controller and only one HW Context Registers in FPGA.

Figure 5 . 7 :

 57 Figure 5.7: The key components of the second proposed HW Controller.

Figure 5 . 8 :

 58 Figure 5.8: Structure of the HW IP and custom interface in PL.

Figure 5 . 9 :

 59 Figure 5.9: An example of the HW Manager Process.

Figure 6 . 1 :

 61 Figure 6.1: TTC shared by VMs Overheads Results.

Figure 6 . 2 :

 62 Figure 6.2: AXI-Timers shared by VMs Overhead Results.

Figure 6 .

 6 Figure 6.2 presents the results of the experiment, where timer access times are given in microseconds. Note that sharing the same AXI-Timer cannot avoid the overhead caused by the timer state store/restore process that is time consuming. The resulting average latency value is more than 2.6 µs.

Figure 6 . 3 :

 63 Figure 6.3: Description of the HW Manager process

Case 2 :

 2 Each IP has its own HW Controller. T preempt consists of the duration starting when the IP 3 of T 3 is called until T 2 stops (T stop), the time required to store the IP 2 registers from the PL part to the PS part (T store), the time required to reconfigure IP 3 , and the time required to restore the IP 3 context of T 3 from the PS part to the PL part (T restore), as shown in Equation6.3.1.

Figure 6 . 4 : 5

 645 Figure 6.4: 5 Cases of context switch process.

Figure 6 . 6 :

 66 Figure 6.6: System Architecture

Figure 6 . 8 :

 68 Figure 6.8: The example of two affinity graphs (G rt and G gp).

Figure 6 . 9 :

 69 Figure 6.9: The example of merging two affinity graphs (G rt and G gp) into one graphG (V f rt , V f gp , V p , E rt , E gp).

Figure 6 . 10 :

 610 Figure 6.10:The example of transformation to competition graphG Comp (V f rt , V f gp , E Comp).

Figure 6

 6 Figure 6.11: The example of the verification graph G (QAM 16 rt, (QAM 64 rt, F F T 512 rt, F F T 1024 rt)) for Assertion QAM 16 rt, (QAM 64 rt, F F T 512 rt, F F T 1024 rt) Assertion QAM 16 rt, (QAM 64 rt, F F T 512 rt, F F T 1024 rt) Assertion QAM 16 rt, (QAM 64 rt, F F T 512 rt, F F T 1024 rt) .

Figure 6 .

 6 Figure 6.12: The results of the occupation operations of QAM16 rt on verification graph G.

Figure 6 . 13 :

 613 Figure 6.13: The results of the occupation operations of FFT512 rt on verification graph G.

6. 1

 1 TTC shared by VMs Overheads Results. 6.2 AXI-Timers shared by VMs Overhead Results. 6.3 Description of the HW Manager process 6.4 5 Cases of context switch process. 6.5 Description of the preemption process 6.6 System Architecture . 6.7 Experimental architecture for evaluation. 6.8 The example of two affinity graphs (G rt and G gp). 6.9 The example of merging two affinity graphs (G rt and G gp) into one graph

6 :: repeat 2 : 3 : 8 :GAlgorithm 7 1 : 3 : 1

 62387131 until V leaf = ø 7: Return G Algorithm 5 ReduceCycle(G): Recursively remove all simple cycles in a graph Require: Graph, G; Ensure: Updated graph, G ; 1Build {G C }, the set of all cycles in G for G C i in {G C } do 4: if G C i is a simple cycle (see Definition ??) then until {G C } = ø 9: Return G Algorithm 6 DecomposeGraph(G): Recursively simplify a graph = ReduceCycle(G) 5: until G = G * 6: Return G 124 AssertionByN umber(G): Make assertion by the number of vertices Require: Graph, G; Ensure: Assertion result: T rue or F alse; Count number of function vertices in G as N f , number of PR vertices as N p 2: if N f < N p then In G, ∃ PR set V p ∈ G, whose neighborhood has more function vertices than the number of PR vertices in V p .In this section, we prove the following theorem: Theorem 14 Condition 1 is the sufficient and necessary condition for the Assertion Assertion Assertion(G) being true.

Firstly, we

 prove Condition 1 is the sufficient condition for the Assertion Assertion Assertion(G) being true. Considering that any PR vertex can only be occupied by its neighbor function vertices. Given a PR vertex group whose neighbor hood has less neighbor function vertices than the PR vertices themselves, it is obviously impossible for the PR vertices to be all occupied. Second, we prove Condition 1 is the necessary condition for the Assertion Assertion Assertion(G) being true.

Table 2 . 1 :

 21 Comparison of Readback and Scan-chain Techniques

		Readback Scan-chain
	Data footprint	Large	Moderate
	Extra design efforts	No	Yes
	Extra resource consumption	No	Yes
	Technology independent		

 Any design of affinity matrix A is considered workable only if the parallelism feature is verified. Therefore, in order to gurarantee the parallelism feature, we need to judge if function set is possible to occupy all hosts PRs. In this case, solving the parallelism problem is to check if real-time tasks can use accelerator functions simultaneously, without blocking each other.

	workable	(3.4.4)
	False, if not workable	

Table 4 . 1 :

 41 Features of AXI4 Interfaces

	Interface	Features
	AXI4	Traditional address/data burst
	(MemoryMap/Full)	(single address,multiple data)
	AXI4-Lite	Traditional address/datano burst
	(Lite)	(single address,multiple data)
	AXI4-Stream	Data only,burst

systems. The key enabler is a set of highly specified AXI interconnects and interfaces that form the bridge between the two parts. We begin by introducing the AXI standard, upon which most of these connections are based. AXI stands for Advanced eXtensible Interface, and the current version is AXI4. The features of AXI4 interfaces are given in Table

4

.1.

Table 4 . 2

 42 In Table4.2 the structure of the AXI DMA descriptor is listed.

	In Ker-ONE, we propose a component named DMA Manager, which handles re-
	quests from different guest OSs accessing the FPGA accelerator. The essential com-
	ponents is shown in Figure 4.13, which mainly consists of two parts: request queue
	and DMA manager. The request queue is used for buffering requests to access the
	accelerator. When a new request arrived, it will be inserted into the request queue.
	When a request has been processed, an interrupt from the AXI DMA notifies to re-

: Contents of the AXI DMA descriptor data structure. Contents Description VM ID Indicates which VM the request comes from Request State Three possible request states: DRead, DWrite and DFin Address Specifies the address of current data buffer that needs to be transferred to the accelerator Size Specifies the size of current data buffer that needs to be transferred to the accelerator DRequest list A pointer to the next request. to become context-aware, so that DMA context switch can be performed. For each request from a guest OS, an AXI DMA descriptor is created to setup an executing context for AXI DMA. move this request from the queue. The DMA Manager is responsible for scheduling access requests through the AXI DMA. In this case, requests are scheduled using FCFS (first-come, first-served) policy. Either when a new request is inserted into the request queue, or a serviced request

 Joint-Test Action Group (JTAG): is a common, easy-to-use, serial interface that supports the IEEE 1149.1 standard for Test Access Port and boundary-scan architectures. The configuration commands via the JTAG interface has to be wrapped in special JTAG command headers and footers to sequence by the JTAG state machine protocol. This interface features the ability to be used requires only four pins, since JTAG hardware ports have been already built into all Xilinx FPGA boards.

	5.3 Hardware Context Switch using Readback
	5.3.1 Introduce to FPGA Configuration Interfaces
	Configuration/Reconfiguration is performed by downloading bitstream files into the
	FPGA. FPGAs are equipped with multiple configuration interfaces, since the designs
	of FPGA vary widely and have different application requirements, enabling users to
	select the interface that best fits their system requirements. As an example, the main
	Xilinx FPGA configuration interfaces are summarized below:
	(a)

Table 5 . 1 :

 51 Readback Command Sequence

	Command Word	Name
	0xAA995566	Sync Word
	0x30008001	Write CMD Register
	0x00000004	RCFG
	0x20000000	NO-OP
	0x28006000	Read FDRO
	0x48XXXXXX	Data Word Count

Table 5 . 2 :

 52 List and description of ports in HW IF different sizes, it may end up with a situation where several memory fragments are not large enough to store an IP context. In this case, the system cannot effectively benefit from the available on-chip resources. In this work, the Controller stores its registers contents into a free partition in the on-chip memory. It is important to note that even if a block is underutilized, it can only store one IP context.

	Register	Description
	CLK	clock input
	RST	reset input
	START	start flag
	STOP	stop flag
	DONE	done flag
	SEL INOUT list of registers to be stored from HW IP
	MEM INOUT	memory to be stored from HW IP
	DATA IN	data in from memroy to HW IP
	DATA OUT	data out from HW IP to memory
	IP contexts of	

 .8. The Controller contains several sets of 32 shift-registers of 32bits (by default) that can be accessed in parallel. For simplicity reason, we consider groups of 32 registers of 32-bits within the architecture. Within each group, each register is connected to a 32 to 1 multiplexer which is controlled by an external signal coming from the Controller. The state of the register to be restored is controlled by the 5-bit SEL INOUT input generated by the Controller. By incrementing the selector input of the multiplexer (SEL OUT in Figure5.8), only 32 clock cycles are required to store the state of a group of 32 registers into the Controller shift registers. Context restoring is performed through the input signal as depicted in Figure5.8. Note that it is up to designers to determine which HW IP registers must be stored according to the IP functionality. For example, an IP could be interrupted only at given breakpoints in their execution process, which could significantly reduce resources to be stored.

	Since the registers can be accessible in parallel, the store/restore operation is very
	fast. Restoring the registers' states is performed through a 1 bit configuration line
	that is connected to all registers within a group. Again, 32 clock cycles are required
	to restore the registers' states.								
	In this work, this preemption mechanism aims at storing all registers' state to
	external registers or memory in the Controller (through the output signal in Fig-
	/16 ure 5.8). /16	/16	/16	/16	/16 /16	/16	32		/16 ...	/5 HW IF /16	clk SEL_OUT rst stop start data_in done output	Controller
											data_out
										/16	input	HW Context Register ...
			/1	/1			/1	...	decoder /5	SEL_IN	FSM

Table 6 .

 6 The first experiment makes use of resources in the PS and PL part to identify the impact of sharing resources among several guest OSs. Several measurements, such as timer and DMA management, have been performed. In the second experiment, we measure and compare the overhead caused by different hardware preemption mechanisms, and evaluate resources that are required in the PL part to manage hardware preemption.

	2: Experimental Configuration Description
		Description
	RTOS	1
	GPOS	4
	VMM scheduler	33 ms
	Guest OS scheduler	1 ms
	CPU Frequency	100 MHz
	FPGA Frequency	667 MHz
	As described in Chapter 3, Ker-ONE supports a real-time virtualization mecha-
	nism and a priority-based preemptive round-robin scheduling, and ensures that VMs
	are completely isolated from PR resources. This can obviously lead to resource sharing
	and preemption issues. In this section, the overhead caused by hardware resources
	management and hardware preemption have been measured. Several experiments
	have been considered.	

 1. The HW Manager is invoked and sends a command to notify the HW Controller that a new HW IP (IP 2) is scheduled to execute (at t = t 1). In this case, since IP 3 has been previously executed, this means that it is necessary to restore the IP 3 context from the on-chip memory before executing IP 3 . The preemption follows basically the same process. The difference is that there are two context loads to retrieve the state of IP 3 . The first context is loaded from the on-chip memory to the Controller and the second copies the context data from the HW Context Registers into the corresponding IP 3 registers (at t = t 8). When all data are restored, the Controller sends a START signal to IP 3 , which may continue its execution from the state at which it was preempted. Note that the PCAP transfer time can overlap with the time required to store/restore the contents in the Controller to/from the on-chip memory. According to our scenario, at t = t 5 , a context switch is performed. In this work, we set the size of each partition in the on-chip memory to max{IP 0 REG, IP 1 REG, ...}, which guarantees that it can store the IP context with the largest number of registers.

		Hypervisor	T1	HW Manager		T2	HW Manager	T3	...
			t1	t2	t3	t4	t5 t6	t7	t8 t9	time
			Preemption				Preemption
	Case 1:	PCAP Transfer		Readback Bitstream to PS	Reconfig		Readback	Reconfig
	Case 2:	PCAP Transfer			Reconfig			Reconfig
		HW Controller	STOP		STORE to PS	STOP	STORE to PS	RESTORE from PS
	Case 3:	PCAP Transfer			Reconfig			Reconfig
		HW Controller	STOP		STORE to HW Controller 1	STOP	STORE to HW Controller 2	RESTORE from HW Controller3
	Case 4:	PCAP Transfer			Reconfig			Reconfig
		HW Controller	STOP		STORE			STOP	STORE	RESTORE
		On-chip Memory			STORE		STORE	RESTORE
	Case 5:	PCAP Transfer			Reconfig			Reconfig
		HW Controller	STOP		STORE			STOP	STORE	RESTORE
		On-chip Memory			STORE to PS	STORE	RESTORE from PS
		PRR	IP1				IP2		IP3	...
	2. The HW Controller sends the STOP signal through the HW IF to preempt the
	current executing HW IP (IP 1) to suspend (at t = t 2).
	3. The HW Controller sends a signal to store the HW IP (IP 1) context to the
	Controller's registers.					

4. The HW Manager launches the Processor Configuration Access Port (PCAP)

to reconfigure (at t = t 3) and at the same time the HW Controller starts storing Figure 6.5: Description of the preemption process the Controller's registers to the on-chip memory and then restoring the corresponding HW IP context to the Controller's registers if it exists in the on-chip memory. (In this case, since IP 2 is executed for the first time, there is no IP 2 context in on-chip memory, which means there is no need to restore IP 2 context). 5. The HW Controller sends the START signal to start the new HW IP (at t = t 4).

The second preemption (at t = t 5), assumes that the executing IP 2 will be replaced by a new HW IP (IP 3).

Note that the preemption latency is determined by the size of HW IPs context in the PRR on the FPGA, and may vary significantly depending on the IP. Generally, the size of these 10 IPs internal registers ({IP 0 REG, IP 1 REG, ...}) may be different.

Table 6 .

 6 Controller design. This usage depends on two cases. In the first case, each IP has its own Controller. The size of each Controller may differ according to the size of the IP's context. In the second case, there is only one Controller and an on-chip memory. The size of the Controller is fixed that can contain the context of the biggest IP. According to this table, it can be seen that the amount of FPGA resources for both Controllers is not significant.

		6: Hardware IP Resources
		IP	Number of Slices
			Original Modified
		FFT (512 points)	2,539	2,579
		FIR (32 Taps)	738	746
	Table 6.7: Hardware Controller Resources
		Resource Type Slice LUTs Slice Registers
	Case 1	FFT Controller FIR Controller	378 177	461 283
	Case 2	HW Controller On-chip memory	378 16	461 0

Table 6 .

 6 8 presents the preemption latency measurement results. To these results, the reconfiguration time of the IPs should be added in order to get a real idea of the tasks' execution time. In our experiment, the configuration time for different IPs is the same and is equal to 2.4ms since all IPs share the same PRR.

	Table 6.8: Preemption Overhead Measurement Results
			Overhead (µs)		
	FFT/FIR	T stop T store T rcf g T restore	T total
	Case 1	-	7,960 2,400	-	10,360
	Case 2 (for FIR IP) 0.50 50.64 2,400 56.97 2,508.11
	Case 2 (for FFT IP) 0.50 609.36 2,400 685.53 3,695.39
	Case 3 Case 4	0.50	0.05	2,400	0.05	2,400.6
	Case 5 (for FIR IP) 0.50 42.18 2,400 41.25 2,483.93
	Case 5 (for FFT IP) 0.50 222.67 2,400 223.7 2,846.87

Table 6 . 9 :

 69 Preemption and reconfiguration Overheads for DPR accelerators

		T preempt (µs)		T rcf g (µs)
		Tian's work in this thesis PR1 PR2 PR3
	QAM16	47.0	0.6	231 810	-
	QAM64	31.0	0.6	231 810 1,206
	FFT512	12.1	0.6	231	-	1,206
	FFT1024	21.6	0.6	-	-	1,206

 E rt , E gp). 6.10 The example of transformation to competition graph G Comp (V f rt , V f gp , E Comp).102 6.11 The example of the verification graph G (QAM 16 rt, (QAM 64 rt, F F T 512 rt, F F T 1024 rt) for Assertion QAM 16 rt, (QAM 64 rt, F F T 512 rt, F F T 1024 rt) Assertion QAM 16 rt, (QAM 64 rt, F F T 512 rt, F F T 1024 rt) Assertion QAM 16 rt, (QAM 64 rt, F F T 512 rt, F F T 1024 rt) . . 6.12 The results of the occupation operations of QAM16 rt on verification graph G. 6.13 The results of the occupation operations of FFT512 rt on verification graph G. Algorithm 4 ReduceLeaf (G): Recursively remove all leafs in a graph

	Require:
	Graph, G;
	Ensure:
	Updated graph, G ;
	1: repeat
	2:

gratefully acknowledge the funding sources that made my Ph.D. work possible.

I was funded by the China Scholarship Council (CSC) for 42 months. I would like to thank the CSC, not only for providing the funding which allowed me to undertake this research, but also for giving me the opportunity to

Biblography vi

Summary

In this chapter, we first introduced the overview of the Ker-ONE micro-kernel. We then described a framework that facilitates the DPR resources management for VMs on top of the Ker-ONE micro-kernel. This framework is designed to provide a highlyabstracted, transparent program interface to access reconfigurable hardware accelerators.

In this chapter we also discussed the motivation and scenario of our research, which is intended for optimizing real-time OS virtualization based on Ker-ONE. Based on this scenario, we declared the assumptions and limitations of our micro-kernel, as well as gave an overall introduction of modeling and designing the real-time virtualization system. With the proposed design methodology, the Ker-ONE platform will be greatly improved. As in real-world industry, the real-time quality is usually the most critical point when evaluating a technology, and it will be costly to build and verify a real-time system.

In the next chapter, we illustrate the extension of Ker-ONE. We pay much attention to the control and emulation of the resources virtualization, since they influence the behavior of virtual machines. As examples, we describe our emulation policies for timers and DMA.

Chapter 6 Implementation and Evaluation

The purpose of Ker-ONE is to provide a lightweight architecture for small-scaled embedded systems. We mainly pay attention to the system performances for the hardware resources virtualization and hardware preemption management. To perform an evaluation of our proposed management mechanism, it is necessary to measure the overhead caused by the accelerator management and hardware context switch and analyze them with thorough discussion. At the same time, it is also essential to discuss the real-time schedulability of virtual machines in this context.

In this chapter, we first present the implementation details of the proposed approach. Then we present the results of both timer and DMA management on the micro-kernel Ker-ONE to demonstrate the virtualization efficiency. We also measure the overhead of preemption to evaluate the management mechanism. At the end of this chapter, we discuss the real-time schedulability based on the experiment results.

Implementation

Experimental Description

In this section, we mainly implement our hardware design based on the Ker-ONE micro-kernel on the Xilinx ZedBoard, which provides a dual-core ARM Cortex-A9 processor and a partially reconfigurable FPGA fabric. The operating frequency of the CPU and FPGA logic has been set to 667 MHz and 100 MHz respectively. The detailed hardware information is shown in Table 6.1. In this timer virtualization management experiment, four cases have been studied.

Case 1 : Only one VM using only one TTC. In this particular case, there is no context switch, which means that no store/restore process is required. Case 4 : All VMs share the same AXI-Timer. This is typically the case when hardware resources are limited and that resources have to be shared among VMs.

TTC timer virtualization results -Case 1 & 2

Measurements have been performed when a virtual machine generates an interrupt to the VMM, or when a virtual machine is switched. Figure 6.1 presents the results of the experiment, where overheads are presented in microseconds for both cases (single VM and multiple VMs).

As shown in the results, the number of experiments represents the total number of VM switches. Note that for a single VM, the average time required is less than 2µs. This does not take into account VM switch since there is only one. Meanwhile, for GPOS VMs sharing one TTC, the average time required increases the overhead slightly, since the timer configurations have to be restored at each VM switch.

AXI-Timer virtualization results -Case 3 & 4

In this part, our evaluation has been led on the same platform and environment as in the TTC experiment. To avoid the overhead caused by saving and restoring the configuration when necessary. Obviously, the best situation occurs when a TTC timer is used by a single VM only.

Although very interesting, this situation is not possible when more than two VMs are required to run on top of the VMM: only two TTC timers are available in the Zynq-7000 platform.

Implementing custom hardware timers in the PL part implies a little overhead since PL requires additional time to be accessed. Table 6.4 shows the amount of resources that are required for an AXI-Timer. In addition, the AXI bus access is not as efficient as the TTC access. According to this table, it can be seen that it is a trade-off between resources and performance.

Another interesting result is that providing each VM with its own timer in the PL part is very efficient and even better than sharing a single fast TTC timer among several VMs. We may also note that the overhead is not significant (only 0.06µs) compared to the best case (one TTC timer for each VM).

AXI DMA Management Overhead Analysis

In Chapter 4, the AXI DMA virtualization management has been explained in details.

In this section, we aim to verify the improvement of this mechanism due to a DMA context switch, thereby reducing the overall time. To evaluate the performance, requests from two guest OSs running on Ker-ONE are set to access the same accelerator on the FPGA.

The system has been configured to concurrently host two µC/OS-II OS at the same priority level on top of Ker-ONE. In this AXI DMA management experiment, the following several cases have been studied. Case 2 : Two GPOSs transfer data with AXI DMA in serial.

Case 3 : Two GPOSs transfer data with a DMA context switch.

AXI DMA virtualization results

Measurements have been performed to obtain the total time of data transfer in all cases. Table 6.5 presents the measurements results of AXI DMA management, and all results are given in microseconds. This table shows the total time for two GPOSs to transfer different lengths of data between PS and PL parts simultaneously. In this case, we compared three different cases of transferring data based on Ker-ONE. The DMA Manager handles requests inserted into the request queue, and schedules the queue through the First Come First Served (FCFS) policy.

As shown in Table 6.5, obviously, data transfers with AXI DMA are better than without DMA. From the results above, we can see that Case 3 has an apparent improvement. With the proposed DMA virtualization mechanism, it helps to reduce the latency cased by waiting for the accelerator computations and the DMA write operation.

Preemption Management Performance Evaluations

In Chapter 5, the hardware preemption management mechanisms have been explained in detail. In this section, the evaluation will be performed to measure the overhead caused by our proposed management mechanism.

Experimental Description

In our system, tasks are completely isolated from PR IPs. This can obviously lead to resource sharing and preemption issues. In this work, the system introduces a HW Manager and a HW Controller to dynamically handle tasks request for PR resources.

Note that such requests can occur randomly and are unpredictable in this current work vector:

For GPOSs, we consider T gp has the following dependency vectors:

To provide a real use case, we have considered setting accelerator functions set

Update Task Model

We get two separate affinity matrix, A rt and A gp , respectively for T rt and T gp . In the affinity matrix A, each row represents the list of PRs where the concerning function Therefore, the new worst case execution time(µs) c for t * is: We can see that with graph modeling, the calculation of allocation latency can be well defined and efficiently performed, while presenting a more clear and intuitive format.

Real-time Schedulability Check

Based on the models defined above, the real-time task's model can be updated with the new tasks' execution time. In this case, we use a schedulability-check tool, Cheddar [START_REF]Cheddar: an open-source real-time scheduling tool/simulator[END_REF], which is an open-source tool for real-time checking in many widely used realtime schedulers, to check the updated real-time tasks. The tool covers several classical real-time scheduling algorithms, such as RM, EDF, and server-based scheduler.

Parallelism problem

Firstly, let's briefly review the definition of parallelism problem. Given a real-time We present a checking method to detect if a certain function f k can run in parallel with other tasks. As an example, we consider f k as QAM16 rt, and the graph presented in Figure 6.9. since they are not related to QAM16 rt, and v fgp vertices are not included because they will not compete for PR resources with real-time tasks. Then, the verification graph in Figure 6.11 can be asserted by considering the possible occupation states of QAM64 rt. Listing all possible graph states, as shown in Figure 6.12 indicates that after random occupations, either QAM64 rt may occupy PR1(see Figure 6.12(b)) or PR2(see Figure 6.12(a)). There is always an isolated PR vertex left after the occupation, that is, there is always an available PR that can be used for QAM16 rt.

The verification graph for

In this case, the result of assertion is true, since there are always isolated PR vertex left after the occupations. The result shows that the verification of QAM16 rt in (F = (QAM 64 rt, F F T 512 rt, F F T 1024 rt) passes.

Verify all functions in F in the same way. If all functions in F pass the above verification, we consider that the current A is workable for F. The process of verifying QAM64 rt is basically the same as QAM16 rt. Therefore, the verification of QAM64 rt in (F = (QAM 16 rt, F F T 512 rt, F F T 1024 rt) passes. However, the current A rt in this example is not workable, since the verification of FFT512 rt in F fails. From Figure 6.13, we can see that FFT1024 rt occupies p 3 , which results in no isolated PR vertex for FFT512 rt is remained after the occupation.

Perspectives and Future Works

The micro-kernel Ker-ONE provides a lightweight real-time virtualization approach with DPR support. Based on Ker-ONE, we extended several additional features and mechanisms, which led to high effective and low complexity. Moreover, we also proposed the design methodology to optimize real-time OS virtualization based on Ker-ONE, which can be greatly improved the Ker-ONE platform. Meanwhile, there are some future works may improve our architecture.

First, our research is currently focusing on the Zynq-7000 platform. With the development of the hardware virtualization extension features in ARM architectures, more and more embedded systems make use of CPUs with such features, such as ARMv8 Cortex-A53. In the future works, we would like to port Ker-ONE to more advanced ARM architectures to take full advantage of hardware virtualization extensions. With the dedicated hardware support, Ker-ONE may obtain a significant performance improvement, and better security.

Second, we have presented the OS management of hardware resources. We have also proposed new efficient hardware preemption mechanisms that does not need to manipulate bitstream. In this context, some simple cases have been considered, and

we have shown that our mechanisms are very useful in dynamic partial reconfiguration. In the future works, we would like to introduce more sophisticated preemption management so that much more complex hardware accelerators can be supported.

This will certainly extend the usage of Ker-ONE in both industry and academic domains.

Third, in our current research, we have modeled the problem and the design space and built up rules and strategies for building the automatic design to guarantee the real-time capability for RTOS guest machines on KER-ONE platform. However, the proposed design methodology has not been fully studied. It would be interesting to develop a more sophisticated search methodology to explore the complex design space and try to find the optimal design. By far, some interesting properties are discovered in our modeling. Hopefully, our research may also be able to build up a more generic modeling and make a contribution to these related domains.

In the end, we are very interested in implementing some real-world scenarios in Ker-ONE, such as applications in telecommunication, so that we can rationally evaluate Ker-ONE in practical situations.

List of Figures

List of Tables

Appendix B

In this part we prove Proof of algorithm 4,5 and 6 and the following theorem:

Theorem 1 Given a graph G, any operation to reduce its leaf vertex and simple cycles (by following Algorithm 4,5, 6) will not change the result of Assertion Assertion Assertion(G).

Based on the rule of occupation (in Definition 3), we use symbol s to represent the state of graph after all function vertices perform occupations. Apparently, s has many possibilities. We term the set of all possible s to be S. If in a s all PR vertices are occupied, we term it as the full-occupation state, s * . Then, according to the definition of Assertion Assertion Assertion(G) in Assertion 2, we can give the following rules:

At this point, the result of Assertion Assertion Assertion(G) is determined by the existence of the full-occupation state s * . In case we modify G to G , they have the same assertion result if they both have or both have not the full-occupation state. Therefore, we can give an important feature about s * is as following:

Theorem 3 If ∃s * ∈ S is a full-occupation state of G, then ∀v p i ∈ s * and its occupying function v f i , after we remove v p i and v f i to have s * -and G -, s * -is a full-occupation state of G -. Also, based on the rule of occupation (in Definition 3), and the topology feature in Theorem ?? and ??, we can give the following deduction: Theorem 4 A leaf PR vertex can only be occupied by its adjacent vertex. Remember that the state set S is the collection of all the possible graph states after random occupations are made by all function vertices. If we predetermine the occupation between v f i and v p i , then the possible graph states of random occupation S|(v f i , v p i) is the subset of S. Therefore, it is easy to give the following deduction:

In other words, if Assertion Assertion Assertion(G) is true, we can safely remove v f i and v p i and the assertion of the left graph G -is still true. More generally, we have the following theorem:

Theorem 13 If ∃s * ∈ S is a full-occupation state of G, then after remove any possible occupation (v f , v p) pair to have G -, ∃s * ∈ S -is a full-occupation state.

Therefore, according to Theorem 4,6,5,7, if Assertion Assertion Assertion(G) is true, we can safely reduce its leaf vertex and simple cycles. Abstract : The management of reconfiguration in FPGAs devices constitutes a hot topic in a lot of domains. In such devices, a reconfigurable fabric is generally combined with a processor to guarantee high computing performance with a limited amount of hardware resources. Most of these devices generally feature an OS that requires to interact with hardware resources. Software tasks that run on top of the OS may then access hardware resources concurrently and dedicated mechanisms have to be provided to manage resource sharing efficiently. The problem is even bigger if hardware resources are localized in a reconfigurable area that can implement various designs in time. Some IPs may be accessed from tasks with different priorities and preemption mechanisms have to be imagined, as in software.

In case of preemption, one issue consists in suspending the IPs and restart them from the very same point of preemption at another time and/or in another position of the reconfigurable part of the FPGA. An hardware accelerator must be able to preserved its internal state and its memory contents so that when it is resumed later, its execution can continue from its preemption point. However, one challenge of partial reconfiguration and context saving/restoring is that it is time consuming, especially as IPs are constantly being reconfigured. In this thesis, we first deal with the problem of sharing hardware resources in a reconfigurable device. Second, we proposed new preemption mechanisms on the RSoC to efficiently and safely manage these reconfigurable resources, which may reduce the reconfiguration time overhead to be compatible with the timing constraints of most embedded applications.