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Introduction

Bacteria, also called prokaryotes, are autonomously replicating unicellular organisms
where all the processes take place in the same inner compartment, contrary to eukary-
otes where the genome is separated from the cytoplasm by a membrane. Among the
first living forms appearing on Earth, bacteria are involved in almost all habitats: in
water, soil, earth’s crust, even the more hostile like acidic hot springs, and deep down
the Mariana Trench. They live in symbiotic relationships with plants and animals (for
the latter especially in the gut), which thus depend on bacteria for their survival. On
the other hand, tuberculosis is responsible each year for two millions of human death
essentially in Africa.

Any kind of cell is confronted to the remarkable challenge of large information stor-
age in the form of the DNA molecules. The bacterial chromosome, a looped molecule
of linear size of the order of the millimeter, needs to fit into a cell of micrometer size,
i.e., three orders of magnitude smaller. On top of this remarkable compaction, the
genome is positionned precisely inside the cell and displays a hierarchical organization
involving namely Nucleated Associated Proteins (NAPs) and supercoiling. Not only
DNA has to be compacted, but, at the same time, it needs to be easily accessible in the
dense intracellular environment to adjust to the actual needs of the cell. These con-
straints are put under high evolutionary stress with bacteria: these cellular functions
have to be efficiently executed in the competitive environment constituted by other
bacterial strains. In Fig.1A, we show a population of E. coli in exponential growth.

The perpetuation of a species relies on the inheritance of the genomic information
to the offsprings. A few main steps of the processes of genetic inheritance are sketched
in Fig.1B and described in Ref.[125] in more details. Firstly, DNA is replicated: the
DNA double helix is opened, the two single strands are read by a processing RNA
polymerase in order to produce two identical DNA molecules. Secondly, DNA is seg-
regated: the replicated DNA molecules are separated and positioned at either side of
the cell division plane to ensure faithful DNA inheritage. Finally, cell division consists
in the constriction of a biopolymer at midcell position to litterally cut the mother cell
into two daughter cells. The two last examples share a same feature: the importance
of the physical positioning along cell axis, wether it is chromosomes at quarter-cell
position or the constricting polymer at mid-cell position.

These biological processes, among many others, need a strong, local, concentration
of proteins to catalyze biochemical reactions. One way to realize a fast reorganization
of intracellular proteins without compartmentalizing them with a membrane are phase
transitions. Intracellular phase transitions have been first shown with P-granules (RNA
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Figure 1: Main steps of the bacterial cell cycle. (A) Pictures of a population of bac-
teria E. coli at different times during an exponential growth (fluorescence microscopy,
credit: J. Rech). (B) Some of the main biological processes during bacterial cell cycle:
DNA replication, DNA segregation and cell division. This thesis is interested in the
process of DNA segregation, prototypical system combining intracellular phase transi-
tion and equipositioning of replicated DNA molecules along the cell axis.

and proteins-containing bodies) in eukaryotes in Caenorhabditis elegans [21]. Since
then, phase transtions have been shown in many other biological processes both in eu-
karyotes and, later on, in prokaryotes. Experimental tools need a much higher precision
to probe the behaviour of protein self-assemblies in bacteria (much smaller cells than
eukaryotes), namely with super-resolution microscopy at the scale of a single nanomet-
ric protein.

This thesis is mainly interested in the theoretical description of bacterial DNA seg-
regation, which offers a prototypical system of protein phase transition, as well as
positioning of macromolecular complexes in the cell cytoplasm. The prevalent bac-
terial partition system, so-called ParABS, is sketched in Fig. 2. ParABSis a widely
conserved mechanism: it is used by most of the known bacteria species to segregate
their genome (it has even been detected in some archaea). It is thus one of the most an-
cient liquid-phase separation system known in nature. From the biophysical modeling
point of view, ParABS provides a model system constituted only of three interacting
components: two proteins ParA and ParB, as well as the centromere-like sequence
parS.

The theoretical work presented in this thesis has benefited from collaborations with
experimentalists, experts in the field of molecular microbiology and super-resolution
imaging at the single protein resolution. It was possible to have access to first hand
accurate data and to design dedicated experiments to check the predictions of our
models. We have combined two powerful experimental techniques giving access to
complementary informations. Microscopy techniques (Super-resolution (PALM) and
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Figure 2: The three main steps of the segregation mechanism by ParABS. 1. A few
ParB proteins bind to the specific sequence parS. These few proteins serve as a nucle-
ation seed attracting a pool of a few hundreds of ParB, thus creating a region of high
concentration (∼ 10µM ). This ParBS assembly is called the partition complex. 2.
The high concentration of ParB in the ParBS complex catalyzes the ATP hydrolysis
of ParA. These interactions produce opposite forces that separate the two replicated
copies of DNA. 3. Once the two complexes are equipositioned along the cell axis, they
remain at their stable position, see Fig.3 for real imaging. The goal of this thesis is to
elucidate the molecular biophysical interactions involved in these three steps.

epifluorescence) give access to spatial position and size of the complex ParBS inside
the cell [112, 144], at the single protein resolution [81], as shown in Fig.3. It is thus
even possible to estimate the diffusion coefficient of single proteins. Molecular micro-
biology experiments so-called ChIP-sequencing are fragment protected experiments
coupled to high-throughput sequencing. They give access to the linear protein den-
sity along DNA [112]. Thus,these techniques give access to spatial and linear density
of ParB proteins along DNA, which will allow us to discriminate between different
physical models.

The first part of this thesis is concerned by the description of the ParBS complex.
We start with a phenomenological approach: the Stochastic Binding model. DNA is
modeled by a freely-fluctuating polymer inside a sphere attached at parS, represent-
ing the ParB condensate. The model is in excellent agreement with the long range
decay of ParB density along DNA in ChIP-sequencing experiments. This shows the
crucial role of thermal fluctuations in the organization of bacterial DNA [112, 32]. We
discuss in this context our recent work on the effect of supercoiling on DNA orga-
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nization. Secondly, we present a semi-phenomenological approach, the Looping and
Clustering model, which introduces the notion of interactions between ParB proteins
with a spreading interactions. Fitting the ChIP-seq data with the model, we are able to
give an estimate of this coupling. Thirdly, we use a microscopic approach where we
model ParB on the DNA by a Lattice Gas on a polymer with the Spreading and Bridg-
ing model. We solve this system with a mapping on a 1D Long Range Lattice Gas
and a variational approach: for biological parameters, the system ParBS falls in the
metastability region of the phase diagram. This metastability is an efficient biological
mechanism to turn on and off clusters of proteins with a small perturbation. Finally, we
conclude this first part with recent experiments of our collaborators showing evidences
of this phase transition scheme.

500 nm

Figure 3: Super-resolution microscopy experiments (PALM). Imaging of the ParB
proteins at the single particle resolution in E. coli in slow growth condition (each green
dot represents a ParB protein; credit: Marcelo Nollmann’s team, CBS, Montpellier).
We observe the clustering of ParBs around parS sequence (DNA is invisible here).
These experiments give access to the spatial extent and the positioning of the clusters,
as well as an approximate distribution of the diffusion coefficients of single proteins.

In the second part, we consider the dynamics of the segregation of the complexes
with model of reaction-diffusion between the ParBS complex and ParA [144]. The
complex displays two dynamical regimes: a regime of stability and a regime where it
moves according to travelling waves. In the stability regime, we show the existence
of two subregimes: a regime where the complexes are equipositioned along the cell
axis. We show that the biological system falls right in the equipositioning stability
regime (as observed in experiments), close to the dynamical instability. In this way, the
segregation is optimized: the complexes are equipositioned, and yet they benefit from
a quick segregation due to precursor fluctuations of the dynamical instability. This
mechanism is called proteophoresis: a volumetric chemical force inside ParBS due to
the coupling to the density field of ParA is driving the complexes to their expected
positions in the cell.



Chapter 1

Protein-DNA interactions:
application to the
ParBS complex

1.1 Introduction

The confinement of chemical species, such as RNA or proteins, within the cytoplasm is
essential for biochemical activities in the cell [60]. Cells compartmentalize the intracel-
lular space using either membrane vesicles or membrane-less organelles. For the latter,
cells may employ phase separation of chemical species in order to create localized high
density regions in which specific reactions may occur [62, 23]. Such biological phase
separation mechanisms often involve polymeric scaffolds like RNA or DNA to bind
the chemical species [24, 80, 93, 55, 77, 115].

In the past, bacteria were often viewed as homogeneous systems lacking the com-
plex sub-cellular spatial organization patterns observed in eukaryotes. The advent of
powerful labeling and imaging methods has enabled the discovery of a plethora of
mechanisms used by bacteria to specifically and precisely localize components, in
space and time, within its sub-cellular volume [117, 125]. These mechanisms include
pole-to-pole oscillatory systems to define the site of cell division (e.g. MinCDE), dy-
namic, ATP-driven polymerization to drive cell division and cell growth (e.g FtsZ,
MreB), recognition of cell curvature to localize chemotaxis complexes
(e.g. DivIVA [104]), ATP-powered translocation of membrane-bound machines to
power cell motility (e.g. Agl-Glt [45]), or nucleoid-bound oscillatory systems to lo-
calize chromosomal loci (e.g. ParABS [81]). More recently, it became apparent that
many cellular components (e.g. ribosomes, RNA polymerases, P-granules) ([131, 97,
105, 111]) display specific sub-cellular localization patterns, leading to the spatial seg-
regation of biochemical reactions (e.g. translation, transcription, or polyP biosyn-
thesis). Most notably, bacteria are able to achieve this precise sub-cellular compart-
mentalization without resorting to membrane-enclosed organelles. Recently, important

11



12 CHAPTER 1. PROTEIN-DNA INTERACTIONS

progress has been made in understanding the formation of membrane-less organelles
in eukaryotic cells [62]. A combination of in vitro and in vivo experiments demon-
strated that such compartments are formed by liquid-liquid phase separation (LLPS),
a mechanism similar to liquid demixing [62]. It consists of a thermodynamic pro-
cess through which attractive molecular interactions counterbalance entropy-driven ef-
fects. This phenomenon promotes the self-organisation of a condensed phase, in which
molecules are close enough from each other to experience their mutual attraction, in-
terfaced with a dilute phase. This mechanism provides advantages such as rapid as-
sembly/disassembly, absence of a breakable membrane, and has been shown to serve
fundamental biological processes such as regulation of biochemical reactions, seques-
tration of toxic factors, or to play the roles of organisation hubs [118]. The first evi-
dence that eukaryotic cells use LLPS came from examination of P granules in C. ele-
gans [21]. In this study, Brangwynne et al. observed different key signatures of liquid
droplets. They showed that P granules were spherical bodies that could fuse together,
drip and wet, and that their internal organisation was dynamic. Since then, many other
compartmentalizations have been shown form by LLPS [8]. More recently, it was dis-
covered that bacterial ribonucleoprotein granules assemble into LLPS droplets [4] and
that the bacterial cell division protein FtsZ forms condensates when in complex with
SlmA [99].

A prominent example in the bacterial realm may be the formation of localized
protein-DNA complexes during bacteria DNA segregation due to the in vivo ParABS sys-
tem [26, 112, 81, 144]. This clustering of ParB is essential for the interaction with ParA
because high concentration of ParB catalyzes the hydrolysis of ParA needed to split the
complexes (see next Chapter). Although the molecular components of this widely con-
served segregation machinery have been clearly identified, their dynamical interplay
and the mechanism that leads to the condensation of the complexes remain elusive.

After an introduction presenting the different molecular actors (sizes, interactions
etc.), the experimental methods used to confront the models, we will present three
models giving an explanation of experimental observations at different level: firstly,
we introduce the phenomenological approach of the Stochastic Binding model, an in-
termediate model that supposes a preexisting foci of ParB attached to freely fluctuating
polymer (without explaining the mechanism of their formation). The predictive power
of this model lies in the prediction of the DNA conformation in vivo and gives already
a clue on the importance of the polymers loops for the DNA-protein organization. Sec-
ondly, the Looping and clustering is a semi-phenomenological model, which introduces
the ParB-ParB microscopic interactions, but a strong hypothesis is performed to study
the system more easily. Finally we solve the Spreading & Bridging model, the most
general microscopic model of DNA-protein interactions for ParB, which offers an un-
conventional mechanism of phase transition for ParBS, modeled as a Lattice Gas on a
fluctuating and fractal substrate.

1.1.1 The ParABS system on plasmid and chromosomes of E. coli

In Fig.1.1A, we show the ParABS operon. An operon is a genetic unit that is tran-
scripted in one run of the RNA polymerase. It is composed by a promoter (black
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Figure 1.1: (A) The ParABS operon, the genetic unit in which the ParABS system,
is encoded and regulated, is composed by a promoter (black arrow), the gene parB,
and the gene parA coding for the proteins ParB and ParA, respectively. The sequence
parS is constitued, for the F plasmid of E. coli, of ten identical sequences of 43bp.
(B) Most of the eperiments presented in this thesis have been performed with E. coli,
displaying a chromosome of∼4.7Mb fitting in a bacteria of µm size. Experiments have
been performed on the F plasmid of length 60kb, and on modified chromosomes.

arrow) responsible for the initiation of transcription, two genes, parA and parB cod-
ing for the proteins ParB and ParA, respectively. The sequence parS is constitued, for
the F plasmid of E. coli, of ten identical sequences of 43bp, in the middle of which
a palyndromic sequence of 16bp is specifically recognized by ParB. The affinity of
ParB for these sequences is much stronger than non-specific DNA sequence. Most of
the eperiments presented in this thesis have been performed with E. coli sketched in
Fig.1.1B. E.coli displays a chromosome of ∼4.7Mb fitting in a bacteria of ∼ µm size.
On top of chromosomes, bacteria have auxiliary DNA molecules, so-called plasmids,
which can help the organism in case of stressful situation in order to acquire specific
skill, like antibiotic resistance. Experiments shown in this thesis have been performed
on the F plasmid of length 60kb, and on a modified chromosome (E. coli is one among
few bacterial strains which do not have ParABS on their chromosomes in Wild Type
(WT) conditions.). The advantage of plasmids is that, in case of genetic modifications,
we can follow their loss during generations without killing the organism. Moreover, the
F plasmid is linked to antibiotic resistance, thus it is possible to track the transmission
among a population just by adding antibiotic to the probe.

1.1.2 Characteristics of ParB foci

Previous studies have revealed that the partition complex is made of ∼300 dimers of
ParB [1, 16] and ∼10kb of parS-proximal DNA [107]. This complex is held together
by specific, high-affinity interactions between ParB and parS, and by low-affinity in-
teractions of ParB dimers with themselves and surrounding DNA that are essential for
the assembly of the partition complex (Fig. 1.2A) [32, 112]. However, technological
limitations have thwarted investigation of the structural and dynamic properties of the
partition complex. We addressed these limitations by first investigating the shape and
size of the partition complex, reasoning that the former should inform us on the role
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Figure 1.2: ParB is confined into spherical nano-condensates. (A) Schematic repre-
sentation of a ParB partition complex [112, 32]. Three types of interactions have been
reported: ParB-parS (high affinity, 2nM), ParB-non-specific DNA (low affinity, 0.3-0.5
µM), and ParB-ParB dimer (low affinity, 0.3-1 µM) [2, 112, 126]. (B) ParBS complexes
(N ≈990 ParBs per cell) were visualized by PALM at the single molecule resolution.
ParBS are equipositioned along cell axis (one complex at mid-cell, two complexes are
at quarter-cell etc.) [112]. (C) A three-dimensional reconstruction of the ParB partition
complex. Diameter was estimated with the full width at half maximum.

of the mechanisms involved in the maintenance of the complex cohesion while the
latter would enable an estimation of protein concentration within the partition com-
plex. To this aim, our collaborators from CBS, Montpellier, combined Photo-Activated
Localisation Microscopy (PALM) [47, 90] with single-particle reconstruction [110].
Partition complexes are positioned near the quarter cell positions (Fig.1.2B) [112], as
reported in Ref. [81]. Next, in Fig. 1.2C, we estimated the size of the partition complex
by calculating the mean full width at half maximum of the reconstructions obtained
from each single class average (43±7 nm), which is smaller than our previous estimate
∼ 150nm in Ref. [112]. Thus, from the size of the partition complex and the aver-
age number of ParB in each partition complex (∼300 ParB dimers) [1, 16], we can
estimate a local ParB dimer concentration of ∼10 mM. Remarkably, this extremely
high concentration is comparable to that of the total protein concentration in the bac-
terial cytoplasm (∼10mM, for proteins of the same size as ParB) [41], suggesting that
ParB dimers occupy a volume fraction of 25-30%, and most of the total protein volume
within a partition complex. ParB dimers interact together with sub-µM affinities (0.3-1
µM) [112, 126], thus we expect virtually all ParB dimers within a partition complex
to be interacting with another ParB dimer. Finally, these estimations predict a mean
intermolecular distance between ParB dimers of ∼3 nm, comparable to the size of a
ParB dimer itself (∼3nm, assuming its interaction volume to be a sphere) [114].



1.1. INTRODUCTION 15

1. Liquid culture 2. Formaldehyde cross-links 3. Sonication

4. Immunoprecipitation

5 10 15 20 25 30
genomic coordinates (Kbp)

10-1

100

Pa
rB

 d
en

sit
y

6. DNA sequencing and Analysis

5. Reverse cross-links

5 10 15 20 25 30
genomic coordinates (Kbp)

10-1

100

Pa
rB

 d
en

sit
y

A B

Figure 1.3: Sketch the experimental protocol of ChIP-seq. (A) ChIP-seq is a cross-
linking experiment that gives access to the local density of protein (here ParB) on
DNA. The cell is lysed after cross-linking of protein-DNA contact with formaldehyde.
DNA is sonicated in fragment of∼150bp, which are immunoprecipated by an antibody
displaying affinity with the protein ParB. The fragment are sequenced after reverse
cross-linking and a count of the fragments along the genome gives access to the local
density of proteins in vivo. (B) Typical ChIP-seq profile for the F plasmid of E. coli.

1.1.3 ChIP-sequencing experiments

On top of superesolution microscopy data, an important set of experimental data is
obtained by ChIP-sequencing experiments. These experiments are performed by my
collaborators at LMGM, Toulouse. These experiments give information on the linear
density along the DNA molecules. Thus we expect these density profiles to contain the
information on the probability density function of the polymer. Experiments have been
performed essentially on the F plasmid of E. coli, and its modified chromosome. Some
experiments have been performed on the chromosome I of Vibrio cholerae. The prin-
ciple of ChIP-seq experiments is shown in Fig.1.3(A). These are protected fragment
experiments allowing to count the number of proteins-DNA along the genome. Even-
tualy, these experiments give access to the linear density of proteins along the genome.
These profiles are directly impacted by the conformation of intracellular DNA, and are
thus complementary to the microscopy experiments. In Fig.1.3(B), we show a typical
density profile of ParB along the F plasmid of E. coli. The parS sequence is saturated
(density equal to one) due to the high affinity of ParB for parS. There is a drop in a few
hundreds of bp as soon as we step out of the specific binding region. finally, we see a
slower decrease over ∼ 10− 15kb on the rigt side of parS, and over ∼ 5kb on the left
side of parS. The left side displays a nucleoprotein complex hindering the binding of
ParB [112, 32]. This modeling will be performed on the right side for which the decay
of the signal is deeper.
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Figure 1.4: (A) Super-resolution microscopy (PALM) of a population of E. coli with
the F plasmid. (left) No parS sites on plasmids: ParBs are spread inside the cell;
(right) Same bacteria but with parS restored: ParBs condensate in droplets around
parS. (B) A small perturbation leading to a global reorganization of proteins is a fea-
ture of metastable system. The phase diagram of the liquid-vapor transition is shown.
(C) Sketch of the expected free-energy F of our scenario: in the metastable regime,
without parS, the system is trapped in a long-lived vapor metastable state compared
to the cell cycle. Adding parS accelerates the kinetics towards the minimum. [use fig
presentation]

1.1.4 Evidences of the metastability of the ParBS complexes
The formation of ParBS complexes is accelerated by parS. In Fig.1.4A, we show ev-
idences from microscopy experiments PALM of the sensitivity of the formation of
ParBS with respect to parS. On the left, a population of E. coli display a modified F
plasmid with two functionnal proteins ParA and ParB, but without the parS sequence.
Then we observe that ParB is homogeneously distributed inside the cell. On the right,
the sequence parS is restored, and the condensation of ParBS occurs. This high local
sensitivity of a system with respect to a small perturbation is reminiscent to a mech-
anism of metastability. In Fig.1.4B, we show the typical phase diagram of a Lattice
Gas as a function of the two variables: the occupation φ of a site and the absolute
temperature T . The vapour state is governed by entropy and is characterized by a ho-
mogeneous distribution of particles inside the volume. The liquid-vapour coexistence
regime is characterized by the formation of high density region governed by entropy
(droplets) in equilibrium with particles in the gas state. The metastability region be-
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tween the coexistence and the spinodal lines is a regime where the vapour state can
exist as a metastable state, even though it is not the minimum of the free-energy. In
Fig.1.4C, we plot a sketch of the free energy F as a fonction of the occupation φ in
the metastable regime: the vapour phase is a local minimum where, without parS, the
system can get trapped for a long time (compared to the cell cycle of the bacteria). We
expect the sequence parS to decrease the height of the free energy barrier between the
metastable state and the minimum of the free energy. Thus the kinetics is accelerated,
because the smaller the free energy barrier the more likely a thermal fluctuation will
lead to overcome this barrier. The sequence parS acts thus as a nucleation seed.

ParS, and low- and high-affinity ParB interactions are sufficient for phase separa-
tion. We performed a thermodynamic analysis and Monte Carlo simulations to find
the minimal set of assumptions that would be necessary to reproduce an equilibrium
between liquid- and gas-like phases. For this, we considered a minimalistic Lattice
Gas model that shows in mean field theory a generic Liquid-Liquid Phase Separation
(LLPS) diagram [54]. The ParB proteins are modeled by particles with a diameter
a = 5nm, which are located on the nodes of a simple cubic lattice representing seg-
ments of the nucleoid on which ParB is able to bind to or unbind from. The distance
between nearest-neighbour sites was as large as the size of a particle, i.e., 5nm . The
lattice is chosen to display the dimension of a bacterial nucleoid: Lx = Ly = 0.5µm
and Lz = 2µ (equivalent to Lx = Ly = 100a and Lz = 400a). The total number
of binding sites in the lattice is then NS = 4.106. To match the experimentally de-
termined number of ParB proteins per condensate, the particle number is fixed at 300.
Thus, the particle density is very low (ρ ∼ 10−4), placing the Lattice Gas (LG) model
in a configuration where only a first-order phase separation transition can occur. Par-
ticles can interact between each other when they are at adjacent sites on the sc lattice
(nearest neighbour contact interaction) with a magnitude J . For the LG model, the
total energy ε of the system is:

ε = −J
∑
〈i,j〉

φiφj +
∑

i∈parS
hiφi, (1.1)

where φi is the occupation variable at site i taking the value 1 if the site i is occupied or
0 if not. The sum

∑
runs over the pairs of nearest-neighbour sites 〈i, j〉 of the lattice.

The F plasmid is represented by a single, static, high affinity sequence of binding sites
within this lattice containing a repeat of 10 parS sequences (similar to the natural F
plasmid). ParB interacts with high affinity hi = 10kT with the parS cluster, with
low-affinity to other sites in the lattice (reference energy of the system), and with low-
affinity J with itself. The diffusing ParB random relocation defines the order of the
time unit of the Monte Carlo simulation as approximately one second: ParB proteins
diffusing atD ≈ 1µm2/s can move at any point on a∼ 1µm nucleoid after one second.

For this given density, we estimated the ParB-ParB coupling constant J = 4.5kT in
order to place the system in the metastable state (cf phase diagram in function of J in
Ref.[54] for details) and to match at best the number of ParB confined in condensate (∼
90%). The metastable regime is obtained numerically with Monte Carlo simulations
by varying J (increasing and decreasing pathways), thus giving access to the range
of coupling for which metastability occurs within the hysteresis cycle of the Energy
versus J .
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Figure 1.5: Centromeric sequences, and ParB-ParB interactions are required for the
nucleation and stability of ParB condensates. (A) The dynamics of 300 ParB proteins
is modeled by a LG: free diffusion (1 µm2/s), weak ParB-ParB dimer interactions
(J = 4.5kT ) and high-affinity ParB-parS interactions. Regardless of initial conditions,
ParB proteins formed a condensate in the presence of parS (gray, blue). In contrast, no
condensate is formed in the absence of a nucleation sequence (green). For simplicity,
parS+,− refers to a simulation with (without) parS, resp. (B) Representative single-
molecule tracking experiment of ParB in absence of parS. Static trajectories are shown
in blue and mobile trajectories in red. (C) Distribution of apparent diffusion coefficients
for static (blue, 50%) and mobile trajectories (red, 50%). The distribution for a strain
containing parS is shown as a dashed grey line for comparison. (D) Pairwise distance
analysis of static trajectories in absence of parS (green curve). The expected curve
for a homogeneous distribution is shown as a horizontal dashed line. The distribution
for a wild-type strain containing parS is shown as a dashed grey line for comparison.
Schematic representations of single-molecule ParB trajectories in the absence (top) and
presence of parS (bottom) are shown in the panels on the right.
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In Fig.1.5A, the system is initially set at t = 0+ in the metastable regime. The sys-
tem is then left to evolve under different initial conditions at t = 0− (pure gas-like or
liquid-like states) and in the presence or absence of parS. The system remains in a gas-
like phase in the absence of parS (Fig.1.5A, green curve). In contrast, in the presence
of parS, the system displays several transitions that involved parS binding, nucleation,
and stable co-existence of liquid- and gas-like phases (Fig.1.5A, blue curve). The sys-
tem evolved towards the same endpoint when the initial condition are a pure liquid-like
state (Fig.1.5A, gray curve). At this endpoint, 80% of the molecules are in a liquid-
phase and the remainder in a gas-like state, mirroring the proportions observed exper-
imentally [54]. These results suggest that the only required elements to reach a stable
coexistence between liquid and gas-like ParB phases are: low-affinity interactions be-
tween ParB dimers and non-specific DNA, and high-affinity interactions between ParB
and the nucleation sequence parS. Critically, ParB is unable to form a stable liquid-gas
coexistence phase in the absence of parS within physiological timescales (Fig.1.5A,
green curve). We experimentally tested this observation by performing sptPALM ex-
periments in a strain lacking parS. In contrast to our previous results, we frequently
observed mobile trajectories (Fig.1.5B-C). In fact, the proportion of this population
increased from ∼ 5% in the wild-type to ∼50% in the absence of parS. The persis-
tence of such a large proportion of static trajectories could suggest that ParB is still
able to assemble into liquid-like phases, but now in transient or instable condensates
(made possible by cryptic sequences for instance). To investigate this possibility, we
performed pair-correlation analysis of static trajectories (Fig.1.5D). Clearly, static tra-
jectories clustered together in the presence of parS (dashed curve), but were rather
homogeneously distributed in the absence of parS (green curve). These observations
are consistent with previous reports showing that ParB foci are not detectable in the ab-
sence of parS [43] or with parS-binding deficient ParB [112]. Overall, these data fully
agree with our simulations and indicate that the centromeric sequence parS is essential
for the assembly of stable liquid-like ParB condensates.

1.2 The Stochastic Binding model

1.2.1 Long range decay of density profiles along DNA

We start the description of the ParBS complex by a phenomenological approach, the
Stochastic Binding model, which offers a good description of ChIP-seq data and give
evidences on the importance of the loops in the bacterial DNA organization [112, 32].

ChIP-sequencing data offer an interesting tool to probe the local organization of
ParB along DNA. In the Fig. 1.6A, the red dots are experimental data obtained wih
the F plasmid of E. coli. The origin of genomic coordinate is set at the rightmost
parS binding site, and we show only the right side of the data (the signal on the left
side is perturbed by proteins complexes hindering the binding of ParB). We observe
a signal saturated at parS (probability density P (0) = 1), a fast drop down to ≈ 0.4
and a slow decay until 10kb. Two models have been proposed in the past to explain
the enrichment of ParB around parS: the Spreading model sketched in Fig. 1.6B, the
Spreading and Bridging in the strong coupling limit sketched in Fig. 1.6C, and our
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model, the Stochastic Binding in Fig. 1.6D.
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Figure 1.6: (A) ChIP-seq data can only be described by Stochastic Binding. We plot
the density profiles of ParB versus the genomic length fo the F plasmid of E. coli and
compare it to the prediction of the three models proposed: (B) the Spreading model
(1D Lattice Gas) (C) the Spreading and Bridging model in the strong coupling limit
and (D) the Stochastic Binding model, the single model abe to describe the trend of
ChIP-seq data (see text for a discussion of the parameters).

(i) The Spreading model (Fig.1.6B). The polymerization of ParB from the cen-
tromere along the plasmid is modeled with the spreading model, or equivalently the
one dimensional Lattice Gas [26, 112]. The particles can bind every 16bp, interact
weakly with a interaction of magnitude JS ∼ 6kT (where k is the Boltzmann constant
and T the absolute temperature) and are exchanged with a reservoir whose concen-
tration is fixed by the chemical potential (or binding parameter) µ [26, 112]. Due to
the high affinity εS of the particles with parS , we suppose that particles are always
bound on these sites. The protein distribution along the plasmid from parS can then be
computed using statistical physics models and arguments, namely by using the map-
ping between the one-dimensional Lattice Gas onto the Ising model in a field. In this
case the probability density to find ParB bound to a generic locus s is proportional to:
P (s) ∼ exp(−s/ξ) where ξ is the parameter that defines the characteristic length of
the distribution (correlation length, or the typical length of a cluster in unit of bp). As
expected for a 1D Lattice Gas, we obtain a fast exponential decrease of the density of
ParB to an average coverage value [26, 112], see black curve in Fig. 1.6A. Therefore,
the spreading effect from parS alone is clearly not able to describe the experimental
data on a range of 10kb.

(ii) The Spreading and Bridging model in the strong coupling limit (Fig.1.6C).
In this model, introduced in Ref. [26], the filament is a polymer embedded in space.
Due to the contact of the polymer with itself, ParB dimers can form bridges at large
genomic distance with a coupling constant Jb of the same order of magnitude as the
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spreading interaction JS . This bridging interaction at long distance induces in the
strong interaction limit a condensation of the ParBs in a single continuous filament
along the DNA. This filament can move as a whole on DNA with the constraint of
overlapping with parS. Therefore, the density of ParBs is expected to decrease linearly
as confirmed with numerical simulations [26]. The only parameter of the distribution
is the intersect with the horizontal axis, which gives the maximal extent of the cluster
from parS. Therefore, this value is fixed by the total number of ParB dimers avail-
able. This distribution is plotted in blue in Fig. 1.6A. Even if we suppose the maximal
expected value of 400 ParBs dimers, we cannot describe the ChIP-seq data [112].

(iii) The Stochastic Binding model (Fig.1.6D). We model the DNA molecule by a
Freely Jointed Chain (FJC) characterized by N freely rotating monomers of size a (to-
tal linear length L = aN ). The probability distribution P (r, s) to have two monomers
of a Gaussian polymer at a euclidean distance r and spaced by s monomers (linear
distance as) along the polymer is given by[34]:

P (r, s) =

(
3

2πR2(s)

)3/2

exp

(
−3

2

r2

R2(s)

)
, (1.2)

where R(s) = a
√
s is the averaged radius occupied by the polymer. In the same way,

we define the probability distribution function to find a particle ParB with a Gaussian
concentration centered at parS and with a width ρ corresponding to the averaged radius
of the foci occupied by proteins:

C(r) = κ exp

(
− r2

2ρ2

)
, (1.3)

where κ is an adimensional normalization constant setting the total number of ParB on
the DNA. Thus the occupation rate of a protein on DNA is given by:

P (s) =

∫ ∞
0

4πr2drP (r, s)C(r) . (1.4)

The integration of Eq.(1.4) gives:

P (s) =
κ(

1 + 1
3
a2

ρ2 s
)3/2

. (1.5)

Note that P (0) = κ, thus κ is setting the height of the drop between specific and non-
specific sites and can be estimated directly fom ChIP-seq data. When R2(s) � 3ρ2,
we recover a pure algebraic law P ∼ s−3/2. The theory is compared to ChIP-seq
experiments in Fig.1.6A. The best match is obtained with κ ≈ 0.4, ρ = 75nm [112]
and a ≈ 10bp [112]. The good agreement suggest that we need large loop of DNA
to explain the long range decay of the ChIP-seq signal, which is impossible with other
model based on srong binding interactions. The success of the SB model indicates that
the DNA is weakly constrain by the ParB-ParB interactions. We will see below that
microscopic models confirm the finding of this phenomenological approach.

The bacterium Vibrio cholerae has two chromosomes, and we will be interested
in the chromosome I, which uses ParABS for segregation. The ChIP-seq profile is
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Figure 1.7: (A) The chromosome I of Vibrio cholerae displays 3 parS sites spaced
by ∼ 4kb. The ChIP-seq profile (black curve) displays enrichment at each parS. The
simulations (red curve) are in good agreement with the data. (B) Simulations are per-
formed like the F plasmid of E. coli, but this time with three spheres centered on each
of the parS. The best fit is obtained with a = 16bp and ρ = 25nm.

shown in Fig.1.7A: it displays an enrichment aroung the three parS sites spaced from
each other by ∼ 4kb. We observe a different height of peak with different binding
affinities, which is interpreted as a difference in specific affinity of ParB for each parS.
The simulation have been performed with the Stochastic Binding, but this time we
need 3 spheres centered on each of the parS, see Fig.1.7B. The best fit is obtained with
a = 16bp and ρ = 25nm.

The Stochastic Binding model is in good qualitative agreement with ChIP-seq data
compared to other models based on strong energetic coupling, and gives important in-
formation on the conformation of DNA in vivo, which needs to be highly uncontrained
to form long loops. This model is matching well experimental data at the cost of un-
physical persistence length, which we will solve by the intoduction of supercoiling in
the next subsection.

1.2.2 The effect of supercoiling on long DNA molecules: towards
an estimation of supercoiling in vivo

Supercoiling has a strong effect in bacterial DNA organization, as sketched in Fig.1.8.
In most bacteria, DNA is underwound. Despite its critical role for genome structur-
ing [136] and coordination of gene expression [38], measurement of this negative su-
percoiling along chromosomes remains highly challenging, with both biological and
physical difficulties. Biological difficulties stem from the complex functioning of cells.
For instance, a large part of supercoiling is known to be absorbed by various histone-
like proteins [128]. The remaining supercoiling, which is responsible for the formation
of branched plectonemic structures [137], is usually referred to as “free” or “effec-
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tive” [14]. Physical difficulties are inherent to the dual nature of supercoiling. That
is, in absence of topoisomerases, a topologically constrained DNA molecule, as in the
case of a circular (plasmid) molecule or of a constrained linear domain [86], is char-
acterized by a constant linking number, Lk, equal to the sum of the twist (Tw), the
cumulative helicity of the molecule, plus the writhe (Wr), the global intricacy of the
molecule [149]. As a consequence, supercoiling, i.e. the change of Lk with respect
to Lk0, the value at rest, leads to changes in the mean values of both Tw and Wr.
Having access to only Tw, when using e.g. DNA intercaling agents, is thus a priori
insufficient to fully characterize the topological status associated with chromosomal
loci [74]. This explains why supercoiling density, σ = (Lk−Lk0)/Lk0 , has been esti-
mated quantitatively using plasmid reporters only (see [119] for an exception, although
the chromosomal measurement is global, not local). Note, in this regard, that a genetic
recombination-based system sensitive to the tightness of plectonemes has been devel-
oped to address variations of supercoiling density along the chromosome [15, 108].
The quantitative estimation of σ yet remains problematic because the method can only
be calibrated in vitro [15].

Figure 1.8: Stochastic binding model. When DNA enters the high concentration re-
gion of the parS-anchored cluster of ParB, cross-linking with ParB occurs with high
probability during the ChIP-seq protocol. Compared to relaxed DNA (A), supercoiling
DNA (B) tends to increase DNA compaction and, hence, cross-linking with DNA loci
far from parS.

Here, we investigate the possibility of measuring the effective chromosomal super-
coiling density using DNA binding properties of the centromere-binding protein ParB,
part of the active ParABS system of DNA segregation. Specifically, it has been ar-
gued that the capture by chromatin immuno-precipitation sequencing (ChIP-seq) of the
binding of ParB onto DNA in the vicinity of its specific binding site (parS) is driven by
stochastic binding involving DNA looping properties [112] (Fig. 1.8). More precisely,
ParB proteins cluster around parS [112, 32] through a phase separation-like mech-
anism [30]. In this context, it has been shown that only a process of looping, which
brings DNA loci inside the cluster, can explain the long range decay of the ParB binding
profile as the genomic distance to parS increases (black curves in Fig. 1.10) [112, 145].
Knowing that supercoiling properties strongly influence DNA looping properties, we
thus assess whether a quantitative reproduction of the ParB binding profile in the vicin-
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ity of parS is possible using a model with no other free parameter than DNA supercoil-
ing density (σ). To this end, we consider, on one hand, a realistic model of supercoiled
DNA that has been independently calibrated using single-molecule techniques and, on
the other hand, an independent estimation of the size of the ParB cluster using high-
resolution microscopic experiments.

Compared to the previous stochastic binding model where a very small DNA per-
sistence length (10bp), difficult to justify on physical grounds, was required to match
experimental data [112], here we show, using numerical simulations of realistic long
(i.e. ≥ 30kb) molecules, that DNA supercoiling indeed leads to a quantitative repro-
duction of ChIP-seq ParB binding profiles. In this context, we provide a bound for
the chromosomal supercoiling density, propose new experimental protocols to further
precise its exact values and demonstrate, for the first time to our knowledge, the consis-
tency between chromosomal and plasmid measurements. In addition, we provide novel
insights into the physical properties of ParB clusters. In particular, we predict a clus-
ter shape that differs from the usual sharp boundaries of liquid droplets. Namely, we
show that the cluster density profile display unconventional “leaky” boundaries, which
can be explained as a perturbation induced by a source of proteins located at the edge
of the cluster core. Altogether, our work thus offers insights into both bacterial DNA
organization and liquid-like protein condensates. It also offers a proof of concept for
measuring chromosomal supercoiling with high accuracy.

Self-avoiding rod-like chain model of DNA. We consider a realistic 30bp resolu-
tion polymer model of bacterial DNA, namely the self-avoiding rod-like chain (sRLC)
model [136] (detailed simulation procedure in [83]). Specifically, DNA is modeled
as a discrete chain of 10.2nm long (30bp of B-DNA) articulated hard-core cylinders,
with radius re = 2nm reflecting the short-range electrostatic repulsions of DNA for in
vivo salt conditions [84]. The chain is iteratively deformed using crankshaft elemen-
tary motions with Metropolis-Hastings transition rates, under the condition that it does
not cross itself. Each articulating site is associated with bending and torsional energies
such that the resulting persistence length (50nm or, equivalently, 147bp) and torsional
length (86nm) are typical of B-DNA for in vivo salt conditions [136, 121, 84].

Here, we discuss results obtained with a 30kb long chain by varying σ from 0 to
−0.08 slowly enough so that chain statistical properties are insensitive to the associated
rate of change (see simulation details in SM of Ref.[146]). Simulated conformations
are thus expected to reflect thermodynamic equilibrium, even at low values of σ where
plectonemes are tight. We further checked that our results did not depend significantly
on the length of the chain by performing additional simulations of 60kb long chains
(Fig. S2 of Ref.[146]). Note, here, that the motivation to work with σ ≥ −0.08 is
both biological and physical: in the worst case of topoisomerase mutants, the total
supercoiling density in E. coli has been shown to remain above −0.08 [14], while
recent work has revealed the existence of a transition toward a hyperbranched regime
occurring at σ ' −0.08 [72], which is beyond the scope of our discussion.

Leaky vs quenched cluster. Having in hand the corresponding Ps(r) for σ ∈
[−0.08, 0], we now consider the spatial distribution of ParB proteins associated with the
parS-anchored clusters. In this regard, high-resolution microscopic measurements [54]
suggest that these clusters result from a phase transition-like mechanism. Theoretical
models further suggest that this phase transition is unconventional as it implies a frame-
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Figure 1.9: Capturing chromosomal binding profiles. Root mean squared deviation be-
tween modeled binding profiles and ChIP-seq chromosomal data (curves can be found
in Fig. S3 of Ref. [146]); the redder the pixel, the smaller the deviation (arbitrary
scale). The horizontal dark band indicates ωexp(37nm± 5nm). (A) The best models
with quenched clusters imply a large cluster with ωbest =150nm. (B) In contrast, the
best models with leaky clusters imply cluster sizes very close to microscopic data when
σ . −0.04. In this regime, all best models indeed correspond to ωbest =44nm.

work of a lattice gas on a fluctuating polymer [30]. Moreover, the physical formation of
a cluster is likely to interfere with biological processes like, e.g., the production of ParB
close to the cluster, just as membrane proteins are often produced close to the mem-
brane. In other words, the spatial distribution of ParB proteins around parS remains
an open question.

Here, we investigate two extreme cases for the shape of these clusters, referred
to as quenched and leaky. A quenched cluster (Fig. 1.9A) is defined by C(0)

Q (r) =
θ(ω/2 − r), with θ the Heaviside function. It corresponds to the conventional sharp
interface of a droplet. A leaky cluster (Fig. 1.9B) further includes the stationary solu-
tion of a diffusion process where ParB proteins are continuously produced at the edge
of the cluster core and diluted due to cell growth and division [146]. That is, the leaky
cluster release proteins in excess, while C(0)

L = 1 for r ≤ ω
4 (cluster core) reflects the

saturation regime in which experiments are performed [32]. As a result, C(0)
L includes

a 1/r long range decay such that C(0)
L (r) = θ(ω4 − r) + ω

4r θ(r− ω
4 ). Note that for both

quenched and leaky cases, the full width at half maximum of C(0) is equal to ω.
We computed binding profiles for σ ranging in [−0.08, 0] and for values of ω be-

tween 10nm and 300nm. We compared them with profiles obtained for E. coli by
inserting parS along the chromosome (black curve in Fig. S3 of Ref.[146]) – only one
side of the chromosome is analyzed as the other side is distorted by the presence of
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Figure 1.10: Plasmid & chromosomal profiles vs Stochastic Binding with supercoiling.
The leaky models with ωbest =43nm (smooth curves) and σ ≤ −0.04 (green and red
curves) capture even better plasmid binding profiles (thick black curve). We notice that
model predictions for σ = −0.04 and σ = −0.08 are almost undistinguishable.

strong promoter regions [32]. In this experiment, 10 parS sites interspersed by 43 base
pairs, as found in the natural parS region, were inserted at xylE locus [32]. A careful
analysis of the binding properties among these parS sites actually revealed significant
variations of the ChIP-seq signal, which was thus normalized with respect to the max-
imum value. The origin of the curvilinear abscissa s was set right at the edge of the
most extreme parS site.

We are interested in explaining the global shape of the binding profile as it is ex-
pected to reflect generic polymer physics principles. To that end, we quantify the
explanatory power of each model by reporting the root mean square deviation with
respect to the experimental binding profile for s ∈ [ 1.5kb,9kb ]. Both the lower and
upper bounds at 1.5kb and 9kb, respectively, are used to avoid specific, reproducible
distortions of the signal associated with the presence of gene promoters and sites for
regulatory DNA proteins [32].

We find that both quenched and leaky clusters can accurately capture experimen-
tal data (Fig. S3 of Ref.[146]). However, the best quenched models are found at
ωbest =150nm (Fig. 1.9A), which is much larger than ωexp. In contrast, the best leaky
models are found at ωbest =44nm when σ . −0.04 (Fig. 1.9B). That is, they explain
data in the physiologically relevant plectonemic regime of bacterial DNA. They also
solve the small DNA persistence length issue associated with the previous version of
the stochastic binding model where DNA supercoiling was neglected [112] – a small
persistence length was indeed needed to “mimic” compaction due to plectonemes. In-
terestingly, compared to chromosomal parS data, ParB binding profiles in the vicin-
ity of a parS located on a plasmid (100kb long F-plasmid [32]) show less distortion
(Fig. 1.10) – just as for the chromosome, only one side of the plasmid is analyzed
as the other side is distorted by binding sites for a replication initiator [112]. In this
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context, the best leaky models lead to similar model parameters (ωbest =43nm when
σ . −0.04), while providing an even better match with the data (Fig. 1.10). Compared
to the chromosomal situation where the gene parB is located 750kb away from parS,
this better match might reflect a phenomenology of the plasmid fitting particularly well
the leaky situation, with parB located only 74bp away from parS [17]. The hypothesis
of a source located on the edge of the cluster core is indeed even more relevant since
the production of proteins in bacteria often occurs close to their gene.

σ-sensitive probes for strong supercoiling. While leaky models with experimen-
tally relevant ω capture experimental data rather well, resulting binding profiles are
almost indistinguishable for σ ∈ [−0.08,−0.04] (Fig. 1.10). This lack of sensitivity is
concomitant with a poor variation of the radius of gyration (blue curve in Fig. 1.11) in
the plectonemic regime. Note that, in contrast, branching properties can vary signifi-
cantly in this regime [137, 72]. For instance, we find that the number of plectonemic
branches reaches a maximum at σ ' −0.05 (orange curve in Fig. 1.11), in accord
with previous analyses with smaller molecules [137] and with a minimum value of the
hydrodynamic radius for 10kb long plasmids [148, 137, 72].

A natural question, then, is whether it is possible to build a probe that is sensitive to
variations of σ for strong supercoiling. Interestingly, we have found a possible solution
consisting of a system that senses intertwining properties of plectonemes, in the spirit
of the γδ recombination system [15]. In that respect, one would need a quenched (in-



28 CHAPTER 1. PROTEIN-DNA INTERACTIONS

0 2 4 6 8
0

0.5

1

1.5
B

(s
)

⇥10�2

s [kb]

� =

0

�0.02

�0.04

�0.06

�0.08

101 102 103

r [nm]

10�6

10�5

10�4

10�3

Ps=4kb(r)

Figure 1.12: A σ-sensitive probe. With a small quenched cluster (ω = 20nm), bind-
ing profiles are well separated for values of σ ∈ [−0.08, 0] differing by 0.01, which
would thus provide a reasonable precision for measuring supercoiling. Inset: in the
plectonemic regime (σ ≤ −0.04), the spatial distribution of distances between loci
differ significantly only at small distances associated with plectonemic intertwining
properties.

stead of a leaky) cluster that is small enough such that the binding properties of proteins
is sensitive to the diameter and pitch of plectonemes [92, 12]. For instance, our simu-
lations reveal a strong sensitivity of Ps(r), at the kb genomic scale for s, with respect
to all values of σ for spatial distances r on the order of 10nm (inset of Fig. 1.12). One
can verify, then, that a quenched cluster with ω =20nm provides well-distinct binding
profiles for σ ∈ [−0.08, 0] (Fig. 1.12). Notice the much smaller values of B(s) in this
case, compared e.g. to results in Fig. 1.10. ParB ChIP-seq experiments can nevertheless
report very low binding frequencies as demonstrated by titration assays [32].

Discussion and perspectives. We have shown that the binding profile of ParB pro-
teins in the vicinity of parS can be quantitatively explained considering a stochastic
binding process between a supercoiled DNA and proteins that are issued from a satu-
rated parS-anchored core cluster. To this end, we had to consider clusters from a non-
equilibrium, stationary perspective, with the presence of a spatially localized source
and sink. Biologically, the sink reflects protein dilution due to cell growth and di-
vision, while the source may arise from two effects: the continuous activity of genes
producing new proteins in a saturated cluster and the effect of an unconventional liquid-
like nature of the cluster. Namely, we predict the cluster core to result from a balance
between an influx of continuously produced proteins and an outflux of proteins in ex-
cess. In the plasmid, the situation may even be more prototypical with the production
of ParB occurring close to parS.
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In this context, and for the first time to the best of our knowledge, we provide
an upper bound (σ ≈ −0.04) for the in vivo supercoiling density at a chromosomal
location of a bacterium (E. coli during its exponential growth) and we show that it also
holds for plasmids. Interestingly, this value corresponds to the onset of the plectonemic
regime characterized by a poor variation of the radius of gyration, on one hand, and
a significant variation of branching properties, on the other hand. Importantly, we
also offer a proof of concept to obtain a finer estimate of the supercoiling density.
Specifically, in the spirit of existing genetic recombination-based probes [15, 108], we
demonstrate that a small quenched cluster provides a supercoiling-sensitive probe as it
”senses” physical properties of plectonemes.

Compared to ”biological” genetic recombination-based probes, our ”physical” ChIP-
seq-based probe is expected to be much less invasive. It should also be less sensitive
to molecular environment as it is based on generic (polymer) physics properties – for
instance, recombination-based systems depend on (slow) enzymatic recombinase reac-
tions, whose quantitative modeling has, to the best of our knowledge, remained elusive.
In practice, while genetic design of quenched clusters of ParB proteins might be tricky,
transcription factors could provide an efficient system. These proteins have indeed
the capacity of binding both cognate DNA sites strongly and other DNA sites non-
specifically with (short) millisecond residence times [40]. They could also be used in
conjunction with a DNA methyltransferase to generate methylation (instead of binding)
profiles without the need of crosslinking stages [106]. Finally, a sensitive system would
require having the designed artificial DNA devoid as much as possible of interfering
biological elements, such as gene promoters, which distort the utilizable physical sig-
nal. Along this line, one would like to have an explicit description of ParB nucleation
and diffusion properties to develop a detailed model of the interactions between ParB
and DNA using e.g. molecular dynamics approaches. In particular, the discrepancy
between experimental and modeling profiles below ∼ 1kb (Fig. 1.10) might be the re-
sult of our approximation of neglecting hard-core interactions between ParB proteins
and DNA. At large scales, cellular confinement of DNA should also be included in the
model. We note, nevertheless, that a complete picture would require studying the melt-
ing of a plectonemic tree-like structure at the chromosome scale, which is currently
beyond the capacities of numerical simulations.

1.3 The Looping and Clustering model
The Looping and Clustering model [145] introduces the coupling between ParB pro-
teins in an approximate manner, and is thus an interpolation between the phenomeno-
logical Stochastic Binding model (where the formation of the ParB cluster is not ex-
plained) and the full microscopic description given by the Spreading and Bridging
model.

Physically, the Spreading and Bridging model describes the collective behavior
of interacting proteins on a self-avoiding polymer chain. This model suggested that
ParB assembles into a three-dimensional complex on the DNA, as illustrated in Fig-
ure 1.13(A,B). In this model, each protein can interact with nearest neighbors along
the DNA through a 1D spreading interaction and, in addition, each protein can inter-
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act through a 3D bridging interaction with another ParB protein bound to a site that
may be distant on the DNA albeit close in 3D space. This Spreading & Bridging
model is supported by single molecule experiments, which provide direct evidence for
the presence of bridging interactions between two ParB proteins on DNA [53, 126].
Importantly, computational studies have shown that the Spreading & Bridging model
supports phase transitions [26].

In this Section, we propose a comprehensive theory to describe the distribution of
ParB proteins on the chromosome in terms of molecular interaction parameters. We
expand on the ideas of the Spreading & Bridging and the Stochastic Binding models
to provide a quantitative analytic approach to describe the genomic organization of
ParB that are bound around parS sites on the DNA. To this end, we develop a simple
model for protein-DNA clusters that explicitly accounts for the competition between
protein-protein interactions, which tend to favour a compact cluster, and the entropy
associated with the formation of loops, which favours a looser cluster configuration.
This Looping and Clustering model represents a reduced, approximate version of the
full Spreading & Bridging model that provides a clearer understanding and greatly
facilitates calculations of the distribution profile of ParB or other proteins that form
protein-DNA clusters.

1.3.1 The model
To theoretically describe the protein binding profiles of ParB on DNA, we first consider
a DNA polymer of length L that can move in space on a 3D cubic lattice and is in
contact with a “cytoplasm” containing a finite number of proteins. These proteins are
able to bind to/unbind from the lattice sites on the DNA along which the proteins can
freely diffuse. Importantly, in this model the DNA itself is also dynamic and fluctuates
between different three-dimensional configurations, which are affected by the presence
of interacting DNA bound proteins. When proteins are bound to the DNA, they are
assumed to be able to interact attractively with each other by contact interactions in
two distinct ways: (i) 1D spreading interactions with coupling strength JS , defined as
an interaction between proteins on nearest-neighbor sites along the polymer, and (ii) a
3D bridging interaction with strength JB between two proteins bound to sites on non-
nearest neighbor-sites on the DNA, but which are positioned at nearest neighbor-sites
in 3D space (see Figure 1.13(A,B)). Thus, these bridging interactions couple to the 3D
configuration of the DNA, while the 1D spreading interactions do not. In prior work,
we introduced this model for interacting proteins on the DNA, which was termed the
Spreading & Bridging model [26]. The Hamiltonian for this model is given by:

HS&B = −JS
L∑
i=1

φiφi+1 −
JB
2

∑
i,j

φiφjδ|ri−rj |,1, (1.6)

where the variable φi ∈ {0, 1} represents the occupancy by a protein of the i-th DNA
binding site, and the Kronecker delta δ|ri−rj |,1 is equal to one when binding sites i and
j with respective spatial locations ri and rj are positioned on nearest-neighbor binding
sites in space and it is zero otherwise. Note, this particular form of the Hamiltonian,
in principle, allows a valency of up to 4 bridging bonds per protein on a 3D cubic
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Figure 1.13: (left) Schematic illustration the models; (middle) a typical distribution
of ParB on extended DNA; (right) the average distribution profile. The Spreading &
Bridging model [26] is shown with (A) strong coupling JS →∞, where thermal fluc-
tuations cannot break the bonds between proteins such that all bridging and spreading
interactions are satisfied, and (B) Intermediate coupling where the energetic cost of
breaking a spreading bond is balanced by configurational and loop entropy. With the
Looping and Clustering approach presented here, we propose a simple analytic descrip-
tion for this regime. (C) The Stochastic Binding model assumes presented above [112]
can be seen as taking the limit of the spreading bond strength to zero (JS → 0), and
thus the formation of loops are not hampered by protein-protein bonds.
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lattice (2 bonds out of 6 are already used for spreading interactions). Single-molecule
experiments provide evidence for bridging bonds [53], but the actual bridging valency
of a ParB protein may be limited to one [82, 48]. To capture this, the Hamiltionian in
the Spreading & Bridging can be easily adjusted to reduce the valency for 3D bridging
bonds per protein. Even in the realistic limit where each protein can form two spreading
bonds and a single bridging bond, the system has been shown to exhibit a condensation
transition where the majority of the proteins form a single large cluster that can be
localized by a single parS site on the DNA [26].

While it is possible to perform Monte Carlo simulations of the Spreading & Bridg-
ing model for a lattice polymer, it remains challenging to perform analytical calcula-
tions within this framework. In this section, we are primarily concerned with describing
the average binding profile of proteins along the DNA (see right panels in Figure 1.13).
With this aim in mind, we can simplify our model by realizing that the configurations of
ParB proteins along the DNA are more sensitive to JS than to JB . While both spread-
ing and bridging bonds are necessary for the condensation of all proteins into a single
cluster, loop extrusion from the cluster is controlled by JS , and such loop extrusion
will strongly impact the binding profile of proteins on the DNA. Thus, we will assume
that JB is sufficiently large that approximately all available bridging bonds between
the proteins inside the 3D protein-DNA cluster are satisfied, leaving JS as the main
adjustable parameter in the model.

A contiguous 3D cluster of proteins on DNA with loops can effectively be rep-
resented by a disconnected 1D cluster along the DNA, where connections in 3D be-
tween the 1D subclusters are implied, and domains of protein-free DNA within the
disconnected 1D cluster represent loops that emanate from the 3D cluster (see Fig-
ure 1.13(B,C)). We can describe this system by a reduced model for the effective 1D
cluster in which we account for the entropy of the loops that originate from the protein-
DNA cluster. In this model, the spreading bond energy, set by the parameter JS , com-
petes with the formation of loops and will therefore play a crucial role in determining
the binding profile of ParB on DNA around a parS site.

To capture these effects, we propose the reduced Looping and Clustering (LC)
model, which offers a simplified description of 3D protein-DNA clusters with spread-
ing and bridging bonds. In this model a loop is formed whenever there is a gap between
1D clusters. We can make the connection between the gaps in the 1D cluster and the
number of loops extending from the 3D cluster explicit by writing down the partition
function for this model. The effective 1D cluster corresponding to a 3D cluster with m
proteins and n loops has a multiplicity:

Ωcluster =
(m− 1)!

(m− n− 1)!n!
, (1.7)

which counts the number of ways in which one can partition m proteins into n + 1
subclusters in 1D. In addition, we note that creating n loops will require breaking n
spreading bonds, and the probability at equilibrium for this to occur will include a
Boltzmann factor ∼ exp (−nJS), where the interacting energy is expressed in unit of
kBT . The loops that are formed are assumed to be independent, and thus modify the
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configurational entropy as [34]:

Sloop = −dν
n∑
i=1

ln(`i/`0) , (1.8)

where d is the spatial dimension, ν is the Flory exponent, and `0 is the lower cutoff of
loop sizes and approximately represents the persistence length of DNA. This entropy
is obtained by considering both the loops formed within the protein cluster and the
protein-free segment of DNA outside the cluster. Indeed, the number of configurations
associated with loop i for a Gaussian polymer is given by z`i`−dνi [34, 59], where
z is the lattice coordination number. Thus, there is also an extensive contribution to
the entropy given by kB`i log(z). However, when a loop of length `i forms, the same
length of polymer is removed from the DNA outside of the cluster, which also results in
a reduction of the entropy by kB`i log(z). Thus, there is a precise cancellation between
the extensive contribution to the entropy associated with the loop inside the cluster and
the extensive contribution due to effectively shortening the DNA outside the cluster.

It is now straightforward to write down the partition function of the Looping and
Clustering model:

ZLC =

m−1∑
n=0

(m− 1)!

(m− n− 1)!n!
exp(−nJS)

∫ `max

`0

d`1`
−dν
1 ...

∫ `max

`0

d`n`
−dν
n

`max→∞=

m−1∑
n=0

(m− 1)!

(m− n− 1)!n!
exp(−nJS)

[
`1−dν0

dν − 1

]n

=

(
1 + exp(−JS)

`1−dν0

dν − 1

)m−1

. (1.9)

where all lengths are measured in units of protein binding sites, and the bond interac-
tions are in units of kBT . In the partition function, it is convenient to set the upper
boundary of integration to infinity. Strictly speaking, the upper boundary should be
L−(m+`), where ` =

∑
i `i represents the total accumulated loop length. In practice,

however, for chromosomes, but arguably also for plasmids, L� m and the probability
to have a large loop is very small. For instance, if we consider the F plasmid of E. coli
with a length of 60 kb, it would correspond to L = 3750 in units of the ParB footprint
of 16 bp [19, 112]. For this system, Monte Carlo (MC) simulations of the LC model,
with m = 100 reveal that the average cumulated loop size is ` ≈ 140 for small cou-
plings (JS = 2) down to ` ∼ 10 for large couplings (JS = 5), which in both cases is
much less than the DNA length. Thus, for biologically relevant cases it is reasonable
to assume that the length of the DNA polymer is much larger than the footprint of the
whole protein complex on the DNA.

From the partition function, we can write down an effective 1D Hamiltonian for
the LC model, which explicitly accounts for the balance between spreading bonds and
loop entropy:

HLC = −JS
L−1∑
i=1

φiφi+1 + dν

n∑
i=1

ln(`i/`0). (1.10)
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This Hamiltonian is useful to perform Monte Carlo simulations of the model as a
benchmark for the approximations performed in the analytical approach described in
the next sections.

In summary, the LC model constitutes a simple statistical mechanics approach to
describe how proteins assemble into a protein-DNA cluster with multiple loops. To
calculate the average distribution of proteins along the DNA, we will assume that the
affinity of ParB binding to parS is sufficiently strong such that one of the proteins in
the cluster is always bound to a parS site.

In Ref. [145], we describe how to compute the ParB binding profile around this
parS site given a fixed number of loops with specified loop lengths. We then use the
statistical mechanics framework provided above to perform a weighted average over
all possible loop numbers and sizes to arrive at a simple predictive theory for the ParB
binding profile. For the sake of clarity, we present here only the main results and
conclusion.

1.3.2 Protein binding profiles from LC
Real protein-DNA clusters are expected to fluctuate with new loops forming and dis-
appearing continuously. To capture such fluctuations, we will use the expressions for
the binding profile of a static cluster with fixed loop length together with a statistical
mechanics description of the LC model to obtain average binding profiles for dynamic
clusters (see Ref. [145] and Appendix therein), including an ensemble average over
both the number of loops and the loop lengths.

To obtain a full binding profile averaged over all realizations, it is useful to inves-
tigate the statistics of loops that extend from the protein-DNA cluster and how these
statistics are determined by the underlying microscopic parameters of the model. We
start by considering the number of loops that extend from the cluster. Using the parti-
tion function in Eq. (1.9), it is possible to calculate the basic features of the LC model.
For instance, the moments of the distribution of the number of loops are given by:

〈nα〉 =
1

ZLC

m−1∑
n=0

nα
(m− 1)!

(m− n− 1)!n!
e−nJS

[
`1−dν0

dν − 1

]n
. (1.11)

From this, we easily find the average loop number is:

〈n〉 = (m− 1)
x

1 + x
∝

m�1
me−JS , (1.12)

where x = e−JS `1−dν0 /(dν − 1). The average loop number 〈n〉 is depicted in Fig-
ure 1.14(A), demonstrating the exponential dependence on the spreading energy JS .
In Figure 1.14(B), we plot 〈n〉 as a function of the total number of proteins m in the
protein-DNA cluster. Over a broad range of parameters, we observe the expected linear
dependence of the average loop number 〈n〉 on m.

The linear dependence on m reflects that, in the LC model, loops can form any-
where in the cluster. However, one would expect that loops can only form at the sur-
face of a 3D cluster. For a compact, spherical cluster, this would result in a dependence
〈n〉 ∼ m2/3. However, Monte Carlo simulations of the full S&B model have revealed
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Figure 1.14: (A) Average number of loops, 〈n〉, as a function of spreading coupling
strength JS obtained by numerical integration of Eq. (1.11). The different curves cor-
respond to protein number m = 100 (black), m = 200 (red), and m = 400 (green),
with loop-size cutoff `0 = 7.5. For large enough 〈n〉, we observe an exponential de-
crease 〈n〉 ∝ e−JS in accord with Eq.(1.12). Inset: Same data replotted with expected
dependence of average loop number onm scaled out. (B) Average number of loops 〈n〉
as a function ofm for JS = 2, 3, 4, and 5. The black solid curve is a guide to eyes with
a slope 1. The prefactor that determines the vertical shift between the different curves
scales with e−JS , as demonstrated in the inset of panel (A). (C) Average loop density,
ρ(s,m, `), as a function of the genomic coordinate with m = 200 and L = 1000 for
protein-DNA clusters with fluctuating loop number and loop lengths. Different curves
correspond to different spreading couplings JS = 2, 3, 4, and 5. The simple analytic
approximation(explained in Ref. [145]) (solid curves) is compared to MC simulations
(dashed curves).

that the protein-DNA clusters are not compact [26], but rather have a surface that scales
almost linearly in m, close to the behavior of the simplified LC model presented here.

The loop statistics of protein-DNA clusters are not easily accessible in experiments.
Perhaps the most relevant results for which this model can provide insight come from
ChIP-Seq experiments. In the LC model, the ParB density profile along DNA can be
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Figure 1.15: Binding profiles of ParB plotted versus the genomic distance s to parS for
(A) m = 100 and L = 1000, (B) 200 and L = 1000, and (C) 400 and L = 2000.
Analytic results from Eq. (1.13) are shown as solid curves and numerical results from
Monte Carlo simulations of the LC model are shown as dashed curves (averages over
106 configurations). In Eq. (1.13), the loop size integrals were calculated with an
upper cutoff of 7`0 and summations were truncated at n = 15. For this reason, the
convergence for m = 400 and Js ≤ 2 was not sufficient and is not displayed here.
Instead, we compare the ChIP-Seq data (grey) of the F-plasmid with MC simulations
with a black dashed line (JS = 1, m = 400, L = 2000).

calculated from:

PLC(s) =
1

ZLC

m−1∑
n=0

(m− 1)!

(m− n− 1)!n!
exp(−nJS)

∫ ∞
`0

d`1`
−dν
1 ...

∫ ∞
`0

d`n`
−dν
n Pn (s, {`i}) ,

(1.13)
where ZLC is given in Eq. (1.9). Here, Pn (s, {`i}) represents the multiloop ParB
binding profile with n loops with loop lengths {`i} = {`1, ..., `n}. For simplicity,
we approximate this multiloop profile by the analytical 1-loop conditional probabil-
ity, P1(s, `|loop@s), with the loop length equal to the accumulated loop length, i.e.
` → ∑

i `i, weighted by the loop probability p(loop@s) ≈ ∑n
i=1 `iρ(s,m, `i, `) (see

Ref.[145] for the full expression and the derivation). In the expression for the loop
probability, ρ(s,m, `i, `) is defined as the contribution to the loop density of a loop
of length `i to a cluster of m proteins with a total accumulated loop length `, and
we neglected correlations between contributions from different loops (see Appendix of
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Ref. [145]).

In the analysis above, we aimed to capture the effects of multiple loops in a simple
way by assuming statistical independence of the loops, and by using the analytical 1-
loop expressions to approximate the impact of loop formation on the loop density and
the ParB binding profile of the protein-DNA complex. To test the validity of these
approximations, we performed MC simulations of the complete LC model. We find
that the numerically obtained loop probability is in reasonable agreement with our
approximate expression for the multi-loop density, as shown in Figure 1.14(C). Thus,
despite the simplicity of our approach, the analytical model provided here captures the
essential features of looping in protein-DNA clusters.

The full protein binding profile P (s) around a parS site is calculated by averaging
the static binding profile for different total loop numbers and loop lengths using the
Boltzmann factor (see the partition function Eq. (1.9)) from the Looping and Clustering
model as the appropriate weighting factor. The resulting expression in Eq. (1.13) for
the protein binding profile of a protein-DNA cluster is our the central result. We use
this expression to compute binding profiles for the full LC model, which are shown in
Figure 1.15 as a function of the distance s to parS for m = 100 (A), 200 (B), and 400
(C). By construction, the site s = 0 corresponding to parS is always occupied, and thus
P (s = 0) = 1 for all values of the spreading energy JS . This feature of the LC model
captures the assumed strong affinity of ParB for a parS binding site. For JS = 5, the
binding profile converges to a triangular profile, implying a very tight cluster of proteins
on the DNA with almost no loops. The triangular profile in this case results from all the
distinct configurations in which this tight cluster can bind to DNA such that one of the
proteins in the cluster is bound to parS, and therefore the probability drops linearly to 0
at s ≈ m. The same triangular binding profile was observed for the S&B model in the
strong coupling limit JS →∞ [26]. Interestingly, as JS becomes weaker, we observe a
faster decrease of the binding profile near parS together with a broadening of the tail of
the distribution for distances far from parS. This behavior results from the increase of
the number of loops that extrude from the ParB-DNA cluster with decreasing spreading
bond strength JS . The insertion of loops in the cluster allows binding of ParB to occur
at larger distances from parS. Thus, the genomic range of the ParB binding profiles
is set by smax ≈ m + 〈`〉, where the average cumulated loop length 〈`〉 is controlled
by JS and m These results illustrate how the full average binding profile is controlled
by the spreading bond strength JS : the weaker JS , the looser the protein DNA-cluster
becomes, which results in a much wider binding profile of proteins around parS.

In the limit JS → 0, the LC model quantitatively reduces to the statistics of non-
interacting loops predicted by the Stochastic Binding model [112], See Ref. [145]. In
this case, the binding profiles exhibit asymptotic behaviour P (s) ∝ s−1.5 for large
s. Interestingly, when the number of cluster proteins m increases, we observe the
appearance of a second regime where P (s) ∼ s−α with α ≈ 0.5. We attribute this
weaker scaling P (s) with s at intermediate genomic distances to the reduced loop
density near parS (see Figure 1.14(C)). A similar behaviour was also observed for the
Stochastic Binding model: at small genomic distance from parS, the DNA is assumed
to be always inside the region of high ParB concentration, leading to a slower decay of
the binding profile of ParB near parS.
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1.3.3 Discussion

In the LC model, the formation of a coherent cluster of ParB proteins is ensured by
a combination of spreading and bridging bonds between DNA bound proteins, which
together can drive a condensation transition in which all ParB proteins form a large
protein-DNA complex localized around a parS site. We do not assume, however, that
this protein-DNA cluster is compact. Indeed, loops of protein-free DNA may extend
from the cluster, which strongly influences the average spatial configuration of proteins
along the DNA. In the LC model, the formation of loops in the protein-DNA cluster
is controlled by the strength of spreading bonds, i.e. the bond between proteins bound
to nearest neighbor sites on the DNA. Specifically, for every protein-free loop of DNA
that extends from the cluster, a single spreading bond between two proteins within the
cluster must be broken. Thus, if the spreading interaction energy, JS , is sufficiently
small, thermal fluctuations will enable the transient formation and breaking of spread-
ing bonds, thereby allowing multiple loops of DNA to emanate from the protein cluster
(See Figure 1.13). The LC model predicts a profile in good quantitative agreement
with binding profiles measured with ChIP-Seq on the F-plasmid of E. coli [112] with
JS = 1kBT and m = 400, as shown in Fig. 1.15(c).

The Looping and Clustering model, which we introduce to calculate the binding
profile of ParB-like proteins on the DNA, is a simple theoretical framework similar to
the Poland-Scheraga model for DNA melting [102, 44]. An important difference in
the LC model with respect to the homogeneous Poland-Scheraga model, is that trans-
lational symmetry is broken due to the presence of a parS site at which a protein is
bound with a high affinity such that loops are effectively excluded in the vicinity of
parS. We show that the binding profiles predicted by this model are sensitive to both
the expression level of proteins and the spreading interaction strength, which directly
controls the formation of loops in the protein-DNA cluster. Our model thus provides a
means to use binding profiles, measured for instance in ChIP-Seq experiments, to infer
molecular interaction strengths of the proteins that form large protein-DNA clusters.

Conceptually, the spreading bond interaction determines how “loose” the protein
DNA cluster is, which directly impacts the ParB binding profiles. When JS is large,
loop formation is unlikely, resulting in a compact protein-DNA cluster with a cor-
responding triangular protein binding profile centered around parS. At intermediate
JS , the protein-DNA cluster becomes looser with the formation of loops, resulting in
a binding profiles that are more strongly peaked around parS but with far-reaching
tails, which is in accord with high-resolution ChIP-Seq experiments [112]. In the limit
JS → 0, the loops can form at any position with no energetic cost. In this limit, the
binding profile JS → 0 is consistent with the Stochastic Binding model with a profile
of the form [112]: P (s) ∝ s−1.5 [145]. Thus, the Looping and Clustering model of-
fers a description for a broad parameter regime, connecting two limits investigated in
preceding studies [26, 112]. This model provides an insightful quantitative tool that
could be employed to analyze and interpret ChIP-Seq data of ParB like proteins on
chromosomes and plasmids.
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1.4 Spreading & Bridging model
Despite extensive numerical studies [26, 66, 145, 116], it is still unclear theoretically
how long 1D substrates like DNA polymers interact with particles to form 3D struc-
tures essential for the cellular cycle [24, 93, 69]. Interestingly, similar organizational
principles may apply to the higher-order folding of chromatin and the interactions be-
tween topological domains in eukaryotic cells [69, 11, 56, 67]. A common theme is
the mechanism of protein-induced polymer loop formation via bridging interactions
and the role played by these loops in structuring DNA and creating localized protein-
DNA complexes. Three different basic models have been studied, mainly using sim-
ple mean-field Flory-type approaches and simulations: (i) sparse but fixed interacting
sites [69, 116], (ii) non-interacting mobile bound particles that can bind simultaneously
to two polymer sites to form bridges [11, 116], and (iii) mobile bound particles that can
interact to form both nearest-neighbor (NN) and bridging bonds [26, 129]. However,
an analytical statistical mechanics framework is still needed to clarify the existence and
nature of phase transitions in such systems. Here, we present an analytical Hamilto-
nian approach to case (iii) by introducing a basic microscopic particle-polymer model
where all relevant physical parameters appear explicitly. From this model, we derive an
effective 1D lattice gas model with 1D temperature-dependent long-range interactions
that arise from the 3D conformational fluctuations of the polymer. We show that the
existence of a phase transition in this effective model depends on the exponent describ-
ing the asymptotic power law decay of the long-range interactions. We then propose
a variational method that goes beyond mean-field theory (MFT) to compute the mean
occupation-temperature phase diagram. Finally, for illustration, we apply our model
to the bacterial partition system ParABS and the formation of ParBS complexes. We
propose a plausible explanation in terms of metastability for experiments showing the
existence of high density ParB protein condensates only in the presence of specific
binding sites.

1.4.1 The model LRLG
In our approach (see Fig. 1.16), the polymer consists of N monomers (or sites) with
each monomer capable of accommodating one bound particle. The effective monomer
length lm corresponds to the footprint of one particle on the polymer, measured, for
example, in terms of base pairs for DNA. Each site i is characterized by its position
in 3D space Xi, its occupation Φi (equal to 1 if a particle is bound and 0 otherwise)
and its on-site binding energy εi. This energy allows us to implement local specific or
non-specific binding. In the particle grand-canonical ensemble, the energy of a state
[Φi,Xi] is

H[Φi,Xi] = HP[Xi] +HSRLG[Φi] +HB[Φi,Xi]. (1.14)

The first term HP[Xi] describes the polymer configuration energy. The second is a 1D
Short Range Lattice Gas (SRLG) Hamiltonian for bound particles,

HSRLG[Φi] = −J
N−1∑
i=1

Φi+1Φi −
N∑
i=1

(µ− εi) Φi (1.15)
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Figure 1.16: Schematic illustration of the coupled polymer-particle model. The poly-
mer in 3D is divided into N monomers, each having three attributes: a position vector
Xi, an occupation Φi, and a local adsorption energy εi. Loops form when particles far
apart along the polymer interact at short range in 3D.

with NN spreading interaction coupling constant J and chemical potential µ. The
contribution from 3D bridging interactions, giving the coupling between the bound
particles and the fluctuating polymer, takes the form

HB[Φi,Xi] =
1

2

N∑
i,j

′
ΦiU(Xij)Φj , (1.16)

with Xij = |Xi − Xj | and U(Xij) the potential of 3D spatial interaction between
particles. The prime on the sum means that |i − j| ≥ ninf , where ninf is the minimal
internal distance in number of sites over which two particles can interact at long-range.

The polymer conformational degrees of freedom can formally be integrated out,
yielding a highly non-linear 1D effective free energy for the bound particles including
two and all higher body interactions along the chain. Given the complexity of this
coupled model, we derive using a virial (cluster) expansion [95, 46] a more amenable
1D effective model that retains only short and two body long-range interactions:

Z
ZP

=
∑

{Φi=0,1}

e−β(HSRLG[Φi]−β−1 ln〈e−βHB[Φi,Xi]〉P)

≈
∑

{Φi=0,1}

e−βFLRLG[Φi] (1.17)

where β = 1/(kBT ), 〈·〉P denotes an average over polymer conformations, ZP is the
partition function of the bare polymer, and FLRLG[Φi] is a 1D long-range Lattice Gas
(LRLG) effective (temperature dependent) free energy:

FLRLG[Φi] = HSRLG[Φi]−
1

2

N∑
i,j

′
ΦiGijΦj (1.18)
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The second term of Eq. (1.18) is an effective 1D long-range bridging interaction be-
tween particles on the polymer that depends on the distance along the chain and arises
after the chain conformational fluctuations have been integrated out, giving rise to the
temperature dependence of FLRLG. The kernel,

Gij = 4πβ−1

∫ ∞
0

dRR2
[
e−βU(R) − 1

]
Pij(R), (1.19)

is obtained by performing a generalized virial expansion (assuming isotropy) with

Pij(R) = 〈δ(R− |Xi −Xj |)〉P (1.20)

the polymer distribution function. The effective free energy FLRLG is therefore com-
pletely defined by the polymer and particle parameters. The effective long-range in-
teraction encoded by the kernel Gij implicitly sums over all possible loops formed by
the polymer segment bounded by the two bridging particles. This approach accounts
exactly for two-body interactions and should therefore be valid for sufficiently low
polymer monomer 3D spatial density (as in Flory-type approximations [33, 34, 49]).
There will be no restriction, however, on the 1D occupation along the polymer.

The possibility that the LRLG model exhibit a phase separation, while the 1D
SRLG model does not, is thus completely dependent on the asymptotic behavior |i −
j| → ∞ of the kernel Gij . The asymptotic behavior of Pij(R) is [34]

Pij(R) −→
R
Rij
→0

c0
R3
ij

(
R

Rij

)g
, (1.21)

where c0 is a constant and Rij = 〈X2
ij〉

1/2
P = b|i − j|ν is the root-mean-square

monomer i-to-j distance with b the Kuhn length. The exponents ν and g depend on
the chosen polymer statistics. In the absence of the polymer, the monomers form an
ideal gas and Pij(R) is replaced by the inverse system volume V −1 in Eq. (1.19). The
above approach then reduces to the usual non-ideal gas virial expansion. By contrast,
particle-particle correlations arise from the polymer connectivity due to the presence
of Pij(R) in the kernel Gij . Bound particles closer on the chain thus experience en-
hanced two-body interactions down to a lower limit imposed by polymer rigidity and
self-avoidance.

By inserting Eq. (1.21) in (1.19), we obtain the asymptotic behavior of the long-
range interaction, Gij ∼ |i− j|−α with α = (3 + g)ν. The effective 1D LRLG model
clearly falls into the universality class of the well known 1D long-range Ising model
(LRIM) [87], aside from an additional NN interaction that also appears in the effec-
tive inverse square LRIM approach to the Kondo problem [5]. The exponent α is the
key parameter to predict phase transitions in the LRIM [39]. Ferromagnetic-like phase
transitions occur for a positive kernel and 1 < α < 2 (Dyson criterion) and critical
exponents are classical for 1 < α < 3/2 [100]. The case α = 2 leads to the 1D analog
of the Berezinky-Kosterlitz-Thouless phase transition [5, 71].

Interestingly, the Dyson criterion depends here only on the polymer properties and
it is straightforward to obtain the values of α for the Gaussian and self-avoiding poly-
mer (SAP) distributions. For a Gaussian polymer ν = 1/2 and g = 0, and therefore
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α = 3/2. For a SAP α ≈ 1.92, since ν ≈ 0.588 and g ≈ 0.27 [34]. Therefore, the
Dyson criterion for α is fulfilled and these two polymer models are expected to lead to
phase separation. For an infinite compact globular polymer, we expect Gaussian behav-
ior for interior monomers owing to internal screening of polymer self-avoidance [113].
Typical polymer conformational statistics therefore lead to a LR interaction decay ex-
ponent α that ensures the existence of a 1D phase transition for bound particles.

1.4.2 The variational approach
Using a variational method [46], we proceed by finding the coexistence and spinodal
curves to construct the entire LRLG phase diagram. Assuming homogeneous non-
specific binding, a constant εi can be absorbed into the definition of the chemical po-
tential, and we rewrite the free energy FLRLG as the sum of two parts by introducing a
variational parameter µ0:

FLRLG[Φi] = H0 + ∆H, (1.22)

where

H0 = −J
N−1∑
i=1

Φi+1Φi − µ0

N∑
i=1

Φi (1.23)

and

∆H = −1

2

N∑
i,j

′
ΦiGijΦj − (µ− µ0)

N∑
i=1

Φi. (1.24)

H0 is just the Hamiltonian of another 1D SRLG (see Eq. (1.15)) with an effective
chemical potential µ0 and therefore has the advantage of being exactly solvable. For
J = 0, the variational method is equivalent to the MFT one, which consists in moving
the NN interaction (term in J) fromH0 to ∆H (see [31]). MFT, which incorrectly pre-
dicts a 1D phase in the absence of bridging, is improved by the optimal choice for µ0

when J > 0, because correlation effects, missed entirely by MFT, are approximately
accounted for in the variational H0. This variational method is exact for the infinite
range lattice gas (or Ising model [70, 101]) and therefore we expect it to lead to rea-
sonably accurate results for the LRLG. The division in Eq. 1.22 leads to a trial grand
potential ΩV = Ω0 + 〈∆H〉0 ≥ ΩLRLG, where Ω0 is the grand potential related to H0

and 〈·〉0 denotes an average with respect toH0. In the thermodynamic limit (N →∞),
Ω0 = −NkBT lnλ+, where λ+ is the largest of the two eigenvalues λ± which arise
from the transfer matrix method applied to the SRLG model [88]:

λ± = eY
[
cosh(Y )±

√
sinh2(Y ) + e−βJ

]
, (1.25)

where Y = β(J + µ0)/2. The second term in ΩV,

〈∆H〉0 =
1

2

N∑
i,j

′
Gij〈ΦiΦj〉0 − (µ− µ0)

N∑
i=1

〈Φi〉0, (1.26)
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involves the mean occupation in the ensemble H0, Φ0 ≡ 〈Φi〉0, where

〈Φi〉0 = − 1

N

∂Ω0

∂µ0
=

1

2

1 +
sinh(Y )√

sinh2(Y ) + e−βJ

 , (1.27)

and the two-site correlation function,

〈ΦiΦj〉0 = Φ2
0 + Φ0 (1− Φ0) e−|i−j|/ξLG , (1.28)

in the thermodynamic limit with ξLG = −1/ ln rLG the SRLG correlation length and
rLG ≡ λ−/λ+. The optimization equation (∂ΩV/∂µ0)µ0=µ?0

= 0 gives the optimal
value µ?0 of µ0:

µ− µ?0 = 2Φ?0 [S′ − S]− S′

− Φ?0(1− Φ?0)(1− 2Φ?0)S′′β

(
∂Φ0

∂µ0

)−1

µ0=µ?0

(1.29)

with Φ?0 = Φ0(µ?0) and where the sums S, S′ and S′′, defined as S =
∑∞
k=ninf

Gk,
S′ =

∑∞
k=ninf

Gkr
k
LG, and S′′ =

∑∞
k=ninf

Gkk r
k
LG, depend crucially on the long-

range behavior of the kernelGij = Gi−j (see [31]). The best variational approximation
to the exact grand potential ΩLRLG is the optimal grand potential, Ω?V = ΩV(µ?0), from
which we obtain the average site occupation Φ ≡ −N−1∂Ω?V/∂µ. This last definition,
along with the optimization condition, leads to Φ = Φ?0 and since Eq. (1.27) can be
inverted to obtain µ?0 in terms of Φ?0, it is possible to write Ω?V entirely in terms of Φ
(see [31]):

Ω?V
N

=
Ω0(Φ)

N
+ Φ2 (S − S′)

+ Φ2(1− Φ)(1− 2Φ)βS′′
(
∂Φ0

∂µ0

)−1

µ0=µ?0

. (1.30)

We therefore obtain analytical variational expressions for the chemical potential µ, the
LRLG pressure P ≈ −Ω?V/(Nlm) as functions of Φ that can be used to obtain the
coexistence and spinodal curves [61] (see [31]).

For simplicity, we illustrate our results for the case of an attractive square well (SW)
particle interaction of depth u0, range a and hard core σ [69, 116]. The asymptotic long
distance behavior (for Rij/b � 1) is therefore given by Gij −→

|i−j|→∞
KSW|i − j|−α

where

KSW = 4πβ−1 c0
3 + g

(σ
b

)3+g

×
{(
eβu0 − 1

) [( a
σ

)3+g

− 1

]
− 1

}
. (1.31)

This result allows us to illustrate generic behavior for potentials with short range re-
pulsion and longer range attraction: KSW is positive (attractive) at low enough T and
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decreases monotonically with decreasing slope for increasing temperature, eventually
becoming negative (repulsive) at high enough T due to short range repulsion. In the
attractive regime of interest,KSW increases with u0 and a and decreases with the Kuhn
length b, σ, and polymer exponent g because chain stiffness and polymer self-avoidance
inhibit particle-particle bridging.

1.4.3 Application to biological systems
We apply our LRLG model with the SW potential to study phase separation in the
ParABS partition system. This molecular machinery is composed of three components:
a DNA sequence parS, and two protein species ParB and ParA. We focus on one of its
key elements: the formation of ParB aggregates around parS. ParB proteins can bind
to DNA non-specifically and specifically on the parS sequence [107]. Once bound to
DNA, ParB proteins can mutually interact through both spreading and bridging interac-
tions (see Fig. 1.16), which lead to the formation of ParBS partition complexes [26, 53].
Although we now have a better understanding of segregation dynamics [144], the con-
ditions of complex formation are still poorly understood.

With our model we are now positioned to investigate whether or not the forma-
tion of ParBS complexes could be the result of a 1D phase separation between states of
high and low ParB occupation on the DNA, qualitatively similar to conventional liquid-
vapor phase separation. The available data for ParB allow us to parameterize the LRLG
model at room temperature Tr = 300 K (See Fig. 1.17 and [31]). Figures 1.17AB
show the phase diagrams obtained using Gaussian polymer or SAP statistics. The co-
existence and spinodal curves are obtained from the equality of pressure and chemical
potential in the two phases and the divergence of the isothermal compressibility, re-
spectively. The critical temperature is found in the limit Φ → Φc = 1/2 (see [31]).
This leads to the variational critical temperature as a solution to the following implicit
equation:

TV
c

Tr
=

1

2kBTr

[
(Sc − S′c) exp

(
J

2kBTV
c

)
− S′′c

]
, (1.32)

where the subscript c indicates quantities evaluated at the critical point. We observe
that TV

c grows with J (Figs. 1.17CD) and that this effect is severely overestimated by
MFT, for which (see [31])

TMFT
c

Tr
=

1

2kBTr

[
J + S(TMFT

c )
]
. (1.33)

In the asymptotic kernel approximation adopted here

S(T ) =

∞∑
k=ninf

Gk ≈ KSW(T )

[
ζ(α)−

ninf−1∑
k=1

1

kα

]
(1.34)

with ζ the Riemann zeta function. A simple approximation based on the weak temper-
ature dependence of KSW(T ) for T > Tr and obtained by evaluating S in Eq. (1.33) at
Tr explains the linear dependence of TMFT

c on J for large J (see [31]). The temperature
dependence of the kernel is, however, crucial in determining the critical temperature for
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Figure 1.17: Phase diagrams for polymer-bound particles. Model parameters are
(see [31]): lm = 5.44 nm, σ = lm, b = 23.6 nm, ninf = 10, a = 2σ, and u0 = 3 kBTr.
Green star: biological conditions for the bacterial F-plasmid (Φ = 0.08 at room tem-
perature Tr). (A): Gaussian polymer. Solid (dotted) line represents the coexistence
(spinodal) curve for J = 0 (red) and J = 3 kBTr (blue). (B): Self avoiding polymer
(SAP) with J = 0 (red) and J = 5 kBTr (blue). (C): Critical temperature Tc for the
Gaussian polymer: variational approach (solid line) and MFT (dotted line). (D): Same
as (C), but for the SAP.

small J . The variational result for the critical temperature is also close to being linear
in J for large J and heuristically can be obtained from MFT by evaluating evaluating
S at Tr and replacing J by J/3.

The expression (1.34) indicates how the critical temperature is crucially determined
by ninf , the polymer persistence length in site number, by reducing the weight of the
LR interaction contribution [93, 145]. In Fig. 1.17, the lower Tc shown by the SAP
compared with the Gaussian polymer at constant J is due to the faster decay of the LR
interaction (larger α), despite the larger value of the SAP KSW (see [31]). Tc is non-
zero even for J = 0, but is far below room temperature. Therefore, the system does not
exhibit phase separation without spreading interactions at this temperature. Both short
range spreading with reasonable biological values for J (∼ 3-6 kBTr) and long-range
bridging interactions are thus required at room temperature to form ParB condensates
in our model, as suggested by Monte Carlo simulations [26] and experiments [32, 53].

The ParABS system ensures the segregation in E. coli of relatively short circular
DNA strands called F-plasmids. For an F-plasmid of linear size ∼ 60 kbp and an av-
erage number of 300 ParB [16], the mean occupation is Φ ≈ 0.08. Its position in the
phase diagram (green star in Fig. 1.17A-B) shows that for reasonable values of J the
system may exist in the low occupation metastable coexistence region at room tem-
perature, providing a plausible explanation for the experimental observations [112]:
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without the parS sequence, experiments show a homogeneous ParB distribution in the
cell, while with parS a ParBS complex forms. Thus, parS could provide the energy
required to overcome the nucleation barrier and allow the system to switch from the
metastable homogeneous state to the stable coexistence phase, in which ParB proteins
form a stable cluster on the DNA around parS. Experimentally, this system should
follow the conventional behavior of liquid-vapor phase transitions: (i) in the low occu-
pation metastable region, the system can form relatively high density ParBS complexes
with only a small total number of intracellular proteins, and (ii) ParB over- or under-
expression will favor or repress the formation of ParBS complexes depending on the
position in the phase diagram. Indeed, systems without parS but with sufficiently high
ParB occupation would be in the unstable coexistence area and should therefore form
protein (liquid) droplets spontaneously in a low occupation (vapor) background, the
homogeneous state being unstable in this case. On the contrary, systems with too few
ParB proteins would be in the low occupation vapor region, losing the ability to form
complexes even in the presence of parS.

In this section, we proposed a general theoretical framework for the physics of par-
ticles interacting on a polymer fluctuating in 3D that leads naturally to an effective
1D LRLG model. We established a criterion for the existence of a 1D phase transi-
tion based on the exponent α controlling the asymptotic decay of the LR interactions,
which depends only on the polymer exponents ν and g. Since this criterion is satisfied
for standard polymer models, the conformational fluctuations of linear structures like
DNA produce effective 1D long-range interactions between bound particles that lead
to 1D particle phase separation along the polymer. We used our theoretical approach
to construct the whole phase diagram of the ParBS bacterial DNA segregation sys-
tem and concluded that the formation of ParBS complexes results from activated phase
separation in the low ParB occupation metastable region. This general mechanism for
triggering the formation of polymer-bound protein complexes via small nucleation sites
may play an important role in membrane-less cell compartmentalization.

Our method may also be used to derive the 1D particle distribution along the poly-
mer and the 3D particle density of the condensate that forms around a specific binding
site, both of which are accessible experimentally [112, 32]. Finally, to facilitate quan-
titative testing of the present model, it would also be of great interest to find an in
vitro biomimetic system of interacting polymer-bound particles that could be studied
experimentally.



Chapter 2

Positioning of complexes in
liquid-like phase

Controlled motion and positioning of colloids and macromolecular complexes in a
fluid, as well as catalytic particles in active environments, are fundamental processes
in physics, chemistry and biology with important implications for technological appli-
cations [150, 94]. In this Chapter, we focus on an active biological system for which
precise experimental results are available. Our work is fully inspired by studies of one
of the most widespread and ancient mechanisms of liquid phase macromolecular seg-
regation and positioning known in nature: bacterial DNA segregation systems. Despite
the fundamental importance of these systems in the bacterial world and intensive exper-
imental studies extending over 30-years [50, 112, 81], no global picture encompasses
fully the experimental observations.

Partition systems encode only three elements that are necessary and sufficient for
active partitioning, as sketched in Fig.2.1: two proteins ParA and ParB, and a specific
sequence parS encoded on DNA. As explained in the previous Chapters, the pool of
ParB proteins is recruited as a cluster of spherical shape centered around the sequence
parS, forming the ParBS partition complex [112]. These ParBS cargos interact with
ParA bound onto chromosomal DNA (ParA-slow) [82, 18], triggering unbinding of
ParA by inducing conformational changes through stimulation of adenosine triphos-
phate (ATP) hydrolysis and/or direct ParB-ParA contact [133], and thereby allowing
ParA diffusion in the cytoplasm (ParA-fast) [81]. This process entails the oscillation
of ParA from pole to pole and the separation of the ParBS partition complex into two
complexes with distinct sub-cellular trajectories and long-term localization. Overall,
these interactions result in an equidistant, stable positioning of the duplicated DNA
molecules along the cell axis.

The specific modeling of ParABS systems falls into two categories: either “fil-
ament” (pushing/pulling the cargos, similar to eukaryotic spindle apparatus [50]) or
reaction-diffusion models [132, 133, 134, 63, 85, 124, 65, 115]. Recent superreso-
lution microscopy experiments have been unable to observe filamentous structures of

47
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Figure 2.1: The proteophoresis model consists in interactions between solely three
actors: (i) ParBS, the catalytic particles constituting the “cargo”, (ii) the DNA which
serves as a scaffolding for ParA and (iii) ParA (fast/ADP and slow/ATP), a motor pro-
teins constituting a substrate. ParA-fast and slow have respectively a diffusion coeffi-
cient D1 and D2 such that D2 � D1. ParA-fast can be converted in ParA-slow at a
rate k1 anywhere in the cell by recovery of ATP, whereas the hydrolysis of ParA-fast
occurs at a rate k2 at the contact with ParBS:the cargo catalyzes hydrolysis during a
transient attractive interaction.These elements are sufficient to lead to the equiposition-
ing of ParBS along the cell axis.

ParA [81, 85], disfavoring polymerization-based models [63]. Reaction-diffusion mod-
els have been mainly investigated numerically to describe experimental observations
like single or multiple ParBS complex positioning. In most cases, these models require
other assumptions - such as DNA elasticity [85, 124] - as simple reaction-diffusion
mechanisms are not sufficient to predict proper positioning. Other reaction-diffusion
models considered the dynamics of the partition complex on the surface of the nu-
cleoid [132, 133, 134, 65]. Recent experiments, however, demonstrate that partition
complexes and ParA translocate through the interior of the nucleoid, not at its sur-
face [81].

Recently, in the context of the active colloids literature, there have been attempts
to describe the ParABS system using models inspired by the diffusiophoresis [7, 6]
of active colloidal particles in solute concentration gradients [123, 94]. These works
have several important limitations for applications to ParABS, such as: rigid spherical
particles (with surface reactions only), the steady-state approximation, only one ParA
population, or reproducing equilibrium positioning only. The full dynamical behavior
of the coupled system (ParBS cargo coupled to ParA) has thus not been elucidated.

Here we propose a general model of reaction-diffusion for ParA coupled to the
overdamped motion of ParBS. Our continuum reaction-diffusion approach goes be-
yond the previous diffusiophoretic mechanisms [123, 63, 65, 124] by accounting for
the finite diffusion of ParA-slow and ParA-fast, as well as the interaction of ParA-
slow with the entire volume of ParBS partition complexes. Volumetric interactions are
suggested by our recently developed “nucleation and caging” model [112, 32], which
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accounts for both the formation of ParBS and the distribution of ParB in the spatial
vicinity of parS specific DNA sites : the conformation of the plasmid is well described
by a fluctuating polymer and the weak ParB-ParB interactions lead to foci of low den-
sity [112, 32]. The chromosome is thus likely to enter ParBS with bound ParA-slow
thereby allowing for volumetric interactions. Such a volumetric interaction should also
find useful applications in the field of porous catalytic particles. On the other hand,
allowing for finite diffusion coefficients permits describing analytically the global dy-
namical picture of the model, contrary to previous numerical studies often restricted
to a limited range of parameters. In particular this enables us to predict a dynamical
transition between stable and unstable regimes. We observe that biological systems
are generally close to the instability threshold. The ParABS system of the F-plasmid
lies just below, enabling efficient positioning and precursor oscillations of ParA. Other
ParABS systems ([124] and Refs. therein) could be just above, providing an explana-
tion for the observed out-of-phase ParBS and ParA oscillations. Our model accounts
for both these regimes.

Figure 2.2: One could say that DNA (in red) is surfing on proteins (blue circles).
Credit: Alexandra Jeuillard.

2.1 The Proteophoresis model

2.1.1 Definition
We translate the interactions sketched in Fig.2.1 into a model of reaction-diffusion.
The ParA protein population is described by two coupled density fields: u(r, t) for the
hydrolysed ParA-fast proteins, assumed to be unbound and diffusing rapidly within the
nucleoid, and v(r, t) for the non-hydrolysed ParA-slow molecules, which are bound
dynamically to the nucleoid and diffuse more slowly. These two species are cou-
pled via a system of reaction-diffusion equations: the rapid species u converts into
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the slow one with a constant rate k1, while the slow species v is hydrolysed in the
presence of the ParBS partition complexes located on DNA, with a rate k2 (typically
k1 ≈ 0.02 s−1 [132] and k2 ≈ 68.5 s−1 [63]). The ParBS assemblies form 3D-foci
complexes [112, 32] and interact with the ParA-slow proteins. The interaction prob-
ability is described by the profiles S(r − ri(t)) centered around the ParBS positions
ri(t). These profiles play a double role: (i) they act as catalytic sources in the reaction-
diffusion equations, triggering ParA-slow hydrolysis with the rate k2 and (ii) they deter-
mine a feedback “proteophoresis” (volumetric) force, in contrast with chemophoresis
forces that occur in general only at the complex surface. In what follows, the function
S(r), representing an idealized density profile of ParBS, is assumed to be symmetric
with a compact support of width σ and a unit value at its maximum. The dynamics of
the protein population is therefore described by the coupled reaction-diffusion equa-
tions:

∂u

∂t
=D1 ∆u− k1 u(r, t) + k2 v(r, t)

∑
i

S(r− ri(t)) ,

∂v

∂t
=D2 ∆v + k1 u(r, t)− k2 v(r, t)

∑
i

S(r− ri(t)). (2.1)

In these equations, in which we do not invoke the steady-state approximation (cf. [94]),
D1 and D2 represent the diffusion constants of the fast and slow species, respectively
u and v. The sum runs over the ParBS positions ri(t). The density fields are subjected
to reflecting boundary conditions ∇u · n|∂V = 0 and ∇v · n|∂V = 0, where n is
a unit vector normal to the cell boundary ∂V . The system described by Eqs.(2.1)
together with these boundary conditions on u and v ensure total ParA protein number
conservation. Note that ParA proteins can freely penetrate the partition complexes,
which do not form barriers for diffusion.

The nonlinear coupling in the system is introduced by the forces driving the par-
tition complexes, which are modeled as Brownian particles in an active medium. The
back reaction on each complex is described by a “proteophoresis force” due to the
ParA-slow concentration gradient acting on the whole volume of the complex. In the
viscous medium prevailing in a cell, we do not expect inertial terms to be important.
Neglecting in the first approximation the stochastic and confining forces, the dynamic
equation for the ith complex then read

mγ
dri
dt

(t) = ε

∫
V

∇v(r, t)S(r− ri(t)) d
3r. (2.2)

Note that no direct coupling between complexes has been introduced. The constant ε
represents the energy of interaction between a single ParA-slow protein and the ParBS
partition complex. Hence, the order of magnitude of ε is a fraction of the energy
released by the ATP hydrolysis (' 10kBT ). The drag force coefficient mγ is re-
lated to an effective diffusion constant of the complex Dpc by the Einstein relation
mγ = kBT/Dpc. Thanks to attractive protein-protein interactions (leading to hydrol-
ysis energy consumption) the interaction energy ε in (2.2) is positive, and the corre-
sponding proteophoresis force, and resulting motion, is in the direction of increasing
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ParA density gradient. In the following, we will use the dimensionless coupling con-
stant: α ≡ ε/mγ D2 = (ε/kBT )(Dpc/D2). From numerical simulations it appears
that the stochastic force does not affect crucially the main system dynamics. Superres-
olution microscopy [81] indicates that the partition complex motion is confined to the
cell symmetry axis, i.e. within the bacterial nucleoid. Therefore, in the minimal model
we limit the study of its dynamics to one dimension and denote by x the coordinate
along the cell axis, −L ≤ x ≤ L, where 2L is the cell length.

2.1.2 Restoring proteophoresis force
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Figure 2.3: Proteophoresis force (Eq.(2.7)) for different values of the screening length
η =

√
D1/k1 (variable k1) with the other biological parameters fixed (see below).

The curve in blue is plotted using physiological values (k1 = 0.04 s−1) and shows a
marked restoring force gradient toward mid-cell positions: for η = 0.32, 1.4 and 5 µm,
the force produces a parabolic potential well of depth ∼ 0, 6 and 4 kT , respectively,
over a half-width of 0.25 µm (note the non-monotonic behavior with the equilibrium
position restoring force vanishing for both zero and infinite k1, see text below). Inset:
Proteophoresis force field in the phase space (x1/L, x2/L) of two partition complex
positions leading to quarter-cell positions.

The model provides all the necessary ingredients for proper partition complex po-
sitioning. We first look for stationary solutions when a single partition complex is
present within the cell at position x1. In order to keep the algebra simple, we approxi-
mate the profile function S(x−x1) by a Dirac-delta distribution σδ(x−x1), where the
amplitude σ is the typical interaction volume of the complex. The stationary solutions
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of Eqs.(2.1) with reflecting boundary conditions then reads:
u(x) = A

cosh(q(L+ x))

cosh(q(L+ x1))
for −L ≤ x < x1 ,

u(x) = A
cosh(q(L− x))

cosh(q(L− x1))
for x1 < x ≤ L ,

v(x) = C − D1

D2
u(x) ,

(2.3)

where q ≡
√
k1/D1. The x1 dependent constants A and C in (2.3) can be easily

computed by the gradient discontinuity at x1,

D1(∂xu|x+
1
− ∂xu|x−1 ) = −k2 σ v(x1), (2.4)

and by the conservation of the total number of ParA monomers: ∂t
∫
V

(u+ v)d3r = 0.
We obtain:

A=
C0

D1

D2
+ ( 2Lk1

σk2
+ 1− D1

D2
) tanh(q(L+x1))+tanh(q(L−x1))

2qL

, (2.5)

and

C ==C0

D1

D2
+ D1q

σk2
(tanh(q(L+ x1)) + tanh(q(L− x1)))

D1

D2
+ ( 2Lk1

σk2
+ 1− D1

D2
) tanh(q(L+x1))+tanh(q(L−x1))

2qL

. (2.6)

For a delta-like complex profile, the force acting on a static partition complex located
at x1 is proportional to the mean value of the ParA-slow density gradient at x1:

F (x1) =
εσ

2
(∂xv|x+

1
+ ∂xv|x−1 ) ,

=
1

2
αmγσD1qA (tanh q(L− x1)− tanh q(L+ x1)) . (2.7)

This result shows that the unique equilibrium position of the complex is located
at the cell center, i.e. x1 = 0. An important feature of the resulting force mediated
by the ParA density distribution gradient is its finite range. Its screening length, given
by η = 1/q =

√
D1/k1, is illustrated in Fig.2.3, where the force F (x) is plotted for

different values of η. Clearly, the proteophoresis force, here estimated of the order of
the picoNewton (≈ 0.25 kT/nm), is sensed by the partition complex only if its distance
to the cell boundary or to a neighboring complex is less than η. Note that the above
quasistatic (adiabatic) analysis is valid only when the ParA distribution instantaneously
adapts to the complex position (cf. [94]). The restoring character of the force, Eq.(2.7),
then makes the symmetric position x1 = 0 stable.

For bacterial cells containing several partition complexes, the sum over their posi-
tions in Eqs.(2.1) generates an effective indirect interaction among them that, together
with the boundary conditions and protein number conservation, brings the system to
an equilibrium state with highly symmetric complex positions. For instance, when two
complexes are present within the cell (as would be the case after a DNA replication
event) the equilibrium positions are found to be located at x1 = −L/2 and x2 = L/2,
i.e. the “1/4” and “3/4” positions in terms of the cell axis length 2L. A phase portrait of
the system in the (x1, x2) coordinates (see inset of Fig.2.3) clearly indicates the stable
nature of these positions.
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2.2 Stability analysis
Analytical and numerical studies of Eqs. (2.1-2.2) show that stationary solutions (irre-
spective of the number of complexes) become unstable in cells where the ParA density
profiles can develop large gradients. The concentration profiles and the partition com-
plex start travelling together at a constant velocity cTW , as if partition complexes were
self-propelled by “surfing” on the ParA distribution wave they have themselves gener-
ated to eventually bounce back and forth in presence of cell boundaries. This strongly
suggests the existence of travelling waves (TW) in an unbounded system or in finite-
size cells whose length 2L is much larger than the screening length η.

2.2.1 Traveling Wave (TW) Ansatz

For one complex, we look for solutions of Eqs. (2.1-2.2) in the TW formvu(x, t) =
u(ξ); v(x, t) = v(ξ), where ξ = x − cTW t is the wave comoving reference coordi-
nate,vwith the asymptotic conditionsvu(ξ)→ 0 andvv(ξ)→ v∞ = C0 when ξ → ±∞.
The resulting system of ordinary differential equations admits analytical solutions for
a Dirac partition complex profile S(ξ) = σδ(ξ), and the equation of motion of the
partition complex (2.2) takes the form cTW = αD2

∫
∂ξv(ξ)S(ξ) dξ and provides a

nonlinear relation for determining the wave celerity cTW . The system to solve is:

D1u
′′ + cTWu

′ − k1u+ k2σvδ(ξ) = 0 , (2.8)
D2v

′′ + cTW v
′ + k1u− k2σvδ(ξ) = 0 , (2.9)

cTW =
αD2σ

2
(v′(0+) + v′(0−)) , (2.10)

where the primes denote ξ−derivatives. By symmetry, if a TW wave exits for cTW , it
exists also for −cTW . We therefore restrict ourselves to cTW ≥ 0. For more general
shapes than S(ξ) = σδ(ξ), solutions are easily obtained numerically.

2.2.2 TW solution

We solve Eq.(2.8) for u(ξ) requiring that u and its derivatives vanish at infinity. Inte-
grating Eq.(2.8) over a small interval around ξ = 0 shows that u is continuous at ξ = 0
but that its derivative verifies the jump condition:

D1(u′(0+)− u(0−)) = −k2σv(0) , (2.11)

leading to

u(ξ) = Aer−ξ, ξ ≥ 0 , (2.12)
u(ξ) = Aer+ξ, ξ ≤ 0 , (2.13)

where

r± =
−cTW ±

√
c2TW + 4D1k1

2D1
. (2.14)
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The prefactor A is obtained from the jump condition Eq.(2.11):

A =
k2σv(0)√

c2TW + 4D1k1

. (2.15)

We now solve Eq.(2.9) for v(ξ). We add Eqs.(2.8) and (2.9) and integrate once to
obtain:

D2v
′ + cTW v = cTW v∞ −D1u

′ − Cu , (2.16)

where the constant v∞ = C0 is the value of the field v at infinity which is the (nonzero)
concentration of v-particles (slow parA) away from the TW (note that this value cannot
be 0 unless the solution for v and u is identically 0). It equates the total ParA concen-
tration C0 since u vanishes at infinity. We require v to be bounded at infinity and as it
is continuous through ξ = 0, we obtain:

v(ξ) = v∞ +Be−
cTW ξ

D2 −AD1r− + cTW
D2r− + cTW

er−ξ , ξ ≥ 0 (2.17)

v(ξ) = v∞ −A
D1r+ + cTW
D2r+ + cTW

er+ξ, ξ ≤ 0 (2.18)

where B is given by the continuity condition of v at ξ = 0:

B =
AcTW (D2 −D1)

√
c2TW + 4D1k1

c2TW (D1 −D2)−D2
2k1

. (2.19)

Finally, using for instance Eqs.(2.18) and (2.15), we obtain:

v(0) =
v∞

1 + k2σ√
c2TW+4D1k1

D1r++cTW
D2r++cTW

. (2.20)

Using v(0) in Eq.(2.15) yields the constant A as a function of the parameters and
cTW only. This expression can then be used to determine B from Eq.(2.19). We have
therefore obtained an exact expression for u and v as a function of the TW velocity
cTW and the parameters defining the model.

For illustration, we plot typical ParA distributions calculated from Eqs.(2.12-2.13)
and (2.17-2.18) in Fig.2.4A.

2.2.3 Stability criterion
We obtain an equation for cTW with Eqs.(2.10) and (2.17-2.18):

cTW = −cTW
αD2σ

2

(
B

D2
+A

k1(2D1 −D2)

c2TW (D1 −D2)−D2
2k1

)
. (2.21)

(i) The static solution cTW = 0

Obviously, cTW = 0 is one of the solution of Eq.(2.21). This corresponds to
the static profiles is given by Eqs.(2.12-2.13) and (2.17-2.18) in the limit cTW → 0.
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In this limit, from Eqs.(2.15), (2.19) and (2.20) for A, B and v(0) resp., we have
v(0) → v∞/(1 + ∆/ν), A → v∞/(ν + ∆) and B → 0 with ∆ = D1/D2 and
ν = 2k1η/(k2σ) (η = q−1 being the screening length defined previously). The static
solutions are:

us(x) =
v∞
ν + ∆

e−q|x| (2.22)

vs(x) = v∞ −∆us(x) (2.23)

corresponding to the limit L→∞ in the system of equations (2.3).

(ii) TW solution cTW > 0

We solve Eq.(2.21) for cTW > 0 for α:

α̃ = ασC0 = c̃TW ν +
∆(
√

1 + c̃2TW + c̃TW ) + ν

(2∆− 1)
√

1 + c̃2TW + c̃TW
, (2.24)

with the dimensionless α̃ = ασC0 and c̃TW = cTW /(2
√
k1D1). For ∆ > 1 (biolog-

ically, ∆ ≈ 100), we can use the former expression in the limit cTW → 0 to calculate
the critical value αc determining the TW existence threshold. We obtain:

αc =
∆ + ν

C0σ(∆− 1/2)
, (2.25)

which takes the value αc ≈ 1/(C0σ) for the biological values ∆ ∼ 100� ν ∼ 1. We
plot in Fig.2.4B α̃ versus c̃ for ∆ = 100 and ν = 1.
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Figure 2.4: (A) Travelling wave (TW) profile u(ξ) versus the distance ξ from the com-
plex after Eqs.(2.12-2.13) and (2.17-2.18). Different curves corresponds to different
TW velocities v = 0 (K ≤ 1), 1, 2 and 10. (B) |c̃TW | plotted versus α̃ after Eq.(2.24)
for ν = 1 and ∆ = 100 (same order as biological values). A critical value α̃c = 1
share two regions: (i) for α̃ < 1, |c̃TW | = 0 corresponding to the stability regime and
(ii) for α̃ > 1, |c̃TW | > 0 and ParBS starts to move according to a traveling wave.
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We have studied a vast class of similar models derived from the present one, where
the analysis is made simpler by the presence of a single ParA density field. It turns out
that, in these simplified models, the stability of the static solutions is directly related
to the absence of travelling waves with non zero celerity. In the proteophoresis model,
the expressions for the velocities of the complex VS and of the ParA-fast distribution
Vv can be written, respectively, as follows. The “escape velocity” of the complex VS
is defined as the velocity of the complex when shifted from its equilibrium position
by a small quantity ε (i.e., at the position x1 + ε), the distribution of v being frozen
(quasi-static hypothesis). This velocity is obtained from the distributions of u and v in
Eqs.(2.3) using an unbounded system and again a Dirac profile for the density of ParB:

VS = Aασ qD1 =
ασ q C0D2

1 + 2 q D2

k2 σ

. (2.26)

Although it is not possible to define a velocity in a simple diffusion equation context, a
quantity homogeneous to a velocity Vv can be derived in the case of reaction-diffusion
equations. This quantity should be interpreted as a velocity of the ParA density dis-
tribution rearrangement after a perturbation. It is instructive to consider first a single-
component ParA system. The single-field equation (outside of the complex where
S(x− x1) is negligible), replacing the two-species system of Eqs.(2.1) is now:

∂v

∂t
= D

∂2v

∂t2
− kv , (2.27)

whose Green function is given by G(x, t) ∝ exp(− x2

4Dt − kt). This enables us to
identify a quantity homogeneous to a speed Vv = 2

√
kD. Vv is interpreted as the

spreading distance of the distribution during its life-time. In this case, the criterion of
stability can be shown to be exactly VS < Vv for an infinite system (L→∞).
For a two-component model, the exact condition in Eq.(2.24) can be written in the
same form as for the single-component model (VS < Vv) with the expression of VS
given by Eq.(2.26). This allows us to identify the expression for Vv:

Vv =

√
k1

D1
D2

1− 1
2
D2

D1

, (2.28)

which reduces to Vv ≈ qD2 for the biological condition D2 � D1. This produces the
stability criterium found in the stability analysis above:

α < αc =
1

σ C0

(
1 + 2qD2

k2σ

1− D2

2D1

)
≈ 1

σ C0
,

(2.29)

where the last approximation has been obtained from the inequalities D2 � D1 and
2D2q � k2σ, which are satisfied for the biological values of the model parameters
(see Table 2.1).
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2.3 Comparison with experiments

A reasonable set of values for the physical constants of our model has been taken from
the literature:

Table 2.1: Biological values for the parameters of the model from different methods:
experiments in vivo, in vitro and in silico. The linear density of ParA, C0 (expressed
as the number of proteins per inverse length in µm−1), is obtained by considering the
volumetric density of 2, 400 monomeric ParA proteins per µm3 averaged on the cell
cross-section. Here the celerity of the partition complex VS is given for the segregation
phase.

Physical quantity notation value methods & references

ParA-fast diffusion constant D1 ' 1µm2.s−1 simulations [63]
& in vivo [73, 81]

ParA-slow diffusion constant D2 ' 0.01− 0.05µm2.s−1 simulations [63]
& in vivo [81]

ParA-fast to ParA-slow
conversion rate k1 ' 0.02− 0.05 s−1 in vitro [132]
ParA-slow to ParA-fast
conversion rate on the complex k2 36 s−1 & ' 68.5 s−1 in vivo [2]

& simulations [63]
mean linear cell concentration
of monomeric ParA C0 ' 1, 200 µm−1 in vivo [16]
celerity of ParBS VS ' 0.007µm.s−1 in vivo [52]
half width of ParBS σ ≤ 0.035µm super resolution

microscopy [112]

Table 2.2: Numerical values used in the figures. In Fig.2.3, the results are obtained in
a quasi-static hypothesis, thus VS and α do not play a role. However, the interaction
energy ε sets the scale of the force. In Figure 2.5(a), the kymograph is obtained using
a single history of thermal noise with a random force of amplitude having a Gaussian
distribution with a width of the order of one picoNewton. In Figure 2.5(b), the size
of the cell is changing linearly with respect to time, to mimic the experiments in [81];
the density C0 is changing accordingly. Note that the quantities α and VS are not
independent, but we give both values for clarity.
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Quantity (units) Fig.2.3 Fig.2.5(a) and (c) Fig.2.6

L (µm) 1 [0.5; 1.5] (growing cell) 1
D1 (µm2 s−1) 1 1 1
D2 (µm2 s−1) 0.04 0.04 0.04
k1 (s−1) 0.04 (biological value),

0.5 and 10 0.04 0.04
k2 (s−1) 40 40 40
C0 (µm−1) 1200 1200 1200
VS (µms−1) – ≈ 2.10−3 (a) ≈ 2.10−3

(b) 0.005
(c) 0.1

σ (µm) 0.03 (Dirac) 0.03 (Gaussian) 0.03 (Square)
α undefined (ε = 4kBT ) 0.024 (a) α = 0 < αc

(b) 0.024 ≈ αc = 0.028
(c) 0.04 > αc

In the results of simulations presented in the Figures, we used the set of parameters
in Table 2.3.

We start to plot the density profiles with a more physical rectangular complex pro-
file in Fig.2.5. We note that the ParA distributions becomes unstable at a threshold
value αc Fig.2.5(b) and (c) with αc . α and αc � α, resp.

This result is in excellent agreement with experimental observations [81, 51], and
can describe even more complex experimental situations with multiple ParBS, see some
examples in Fig.2.6.

Bacterial segregation system is tuned near the instability threshold. We now estimate
the parameter α which controls the stability regime. The quantity α is directly re-
lated to the speed of segregation in Eq.(2.26), and thus this value is obtained from
experimental data in Table 2.1: C0 ∼ 1, 200µm−1 σ = 0.03µm, q =

√
k1/D1 =√

0.04s−1/1µm2 s−1 = 0.20µm−1,VS = 0.007µm s−1 and D2 = 0.04µm2 s−1. We
find the critical value αc ≈ 1/(σC0) ≈ 2.8.10−2, and the biological system displays
the value α = VS/C0σ q D2 ≈ 2.4.10−2. From the stability criterion Eq.(2.29), we
obtain α ≈ 0.9 × αc. Note, however, that our conclusion here is semi-quantitative: α
appears to be of the same order of magnitude as the critical coupling αc. This leads
us to suggest that the system is tuned to be near the critical dynamical threshold, per-
mitting us to account for the main experimental observation concerning the F-plasmid:
robust positioning of the partition complexes accompanied by precursor oscillations of
ParA. Biological systems very often evolve near stability limits in order to efficiently
switch between different regimes [62]. We can draw several conclusions from these
values:

(i) The value of the screening parameter q ' 0.20µm−1 and the corresponding
screening length η ' 5µm show that there is no screening in the volume of the cell for
theses values since the half-length of the cell is L ' 1µm. Segregation and equiposi-
tioning of the complexes are thus possible.
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Figure 2.5: Density profile of ParA-slow v (green), ParA-fast u (blue) and ParBS (red).
(a) α < αc: positioning in the middle of the cell. (b) weak coupling αc . α: ParBS
moves as a TW and is ”surfing” to the right on a protein wave. (c) strong coupling
αc � α: large asymmetry between the two sides of ParBS implying fast ”surfing”.

(ii) Plasmid diffusion in the relatively dense intracellular viscoelastic medium com-
posed of the cytoplasmic fluid, DNA, and proteins, etc. is a complex phenomenon and
we therefore estimate the plasmid diffusion coefficient from the above estimate for
the coupling constant α ≡ ε/mγ D2 = (ε/kBT )(Dpc/D2), the estimated value of
D2, and the energy ε. This energy represents a typical energy of interaction between
a ParA-slow (ATPase) and a ParB protein and its order of magnitude should be in
the range 5 − 10 kBT per ParA-ParB interaction. We therefore estimate the diffusion
constant of the partition complex Dpc to be in the range [10−5 − 10−4]µm2.s−1, in
agreement with [63, 85]. This suggests that pure Brownian diffusion is very inefficient
for partition complex segregation, and therefore justifies disregarding its effects in most
of the results presented here.

(iii) The following useful relation sets the order of magnitude of the rates k1 and
k2 needed in order to be in a non-trivial regime where two ParA species (slow or fast)
coexist,

k1 L

k2 σ
∼ O(1) , (2.30)

which requires that the fluxes of ParA-fast and ParA-slow be of the same order of
magnitude. It appears that this relation is fulfilled by the biological parameters of
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Figure 2.6: (a) Kymograph obtained from the model using an additional brownian
force acting on ParBS: the model describes ParBS equilibrium, segregation and posi-
tioning. (b) Example of an experimental kymograph, obtained from 10 min. timelapse
microscopy (frame every 10 sec.) of F-plasmids in E.coli, displaying a segregation
event from two to three ParBS over the length of the nucleoid. (c) Theoretical kymo-
graph obtained with growing cell (with an average over the stochastic noise). Trajecto-
ries are similar to experimental ones [81].

Table 2.1.
(iv) The equilibrium position restoring force for a partition complex vanishes for

both zero and infinite k1 (see Fig.2.3). In the limit where k1 tends to infinity, rebinding
is very fast and the ParA gradients extend only locally ( the screening length goes to
zero) preventing the complex from sensing the boundaries. When k1 tends to zero,
although the screening length diverges, the ParA gradients become weaker and weaker
and the restoring force again tends to zero. In between the equilibrium position restor-
ing force reaches a maximum at an optimal value of k1.

ParA in necessary drive ParB condensates out-of-equilibrium. At equilibrium, a pas-
sive system undergoing phase separation displays a single condensed phase: if ini-
tially multiple condensed phases are found, the lowest energy state comprises a single
liquid-separated phase that can be reached either by fusion or through Ostwald ripen-
ing [151]. Partition systems have specifically evolved to ensure faithful DNA segrega-
tion to daughter cells, which would be impeded by fusion into single, stable partition
complexes. At longer time-scales (tens of minutes), however, ParB condensates are
not only kept apart from each other but are also actively segregated concomitantly
with the growth of the host cell (Fig.2.7A). Previous reports have shown that the ParA
motor protein is necessary to ensure faithful positioning and segregation of partition
complexes [81]. This function requires both ParA’s ATP hydrolysis activity and its
stimulation by ParB [3, 81].

Thus, we reasoned that if ParA is the factor preventing fusion of ParB condensates,
then its slow removal should lead to the fusion of all ParB condensates in a cell. To test
this hypothesis, we generated a strain where ParA can be selectively degraded using
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A
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B

Figure 2.7: Degradation of ParA leads to the fusion of ParBS complexes. (A) Repre-
sentative time lapse experiment of a ParA strain without induction of ParA degradation.
Trajectories of ParB condensates (white dashed line) and a splitting event (white fork)
are shown. Scalebar represents fluorescence intensity. (B) Representative time lapse
experiment of a ParA strain upon induction of ParA degradation. Dashed lines repre-
sent the trajectories of two ParB condensates. A fork displays a fusion event between
two ParB condensates. (C) Quantification of the average number of ParB condensates
per cell in a ParA-ssra strain with (red circles) or without (blue circles) ParA degrada-
tion. The induction of ParA degradation was initiated at time 0. Note that the slight
decrease in foci number (∼ 20%) without ParA degradation after overnight (O/N) cul-
ture corresponds to the decrease in cell length (∼ 20%) [54].

a degron system [89, 54]. In this strain, we observed the almost complete disappear-
ance of ParA after 30 min of degron induction [54]. In the absence of ParA degra-
dation, this strain displayed typical ParB condensate separation dynamics (Fig.2.7A,
white traces). Strikingly, we observe the fusion of ParB condensates upon degrada-
tion of ParA (Fig.2.7B, white traces). Over time, the number of ParB condensates per
cell collapses to 0.6±0.7 ParB condensates/cell when ParA is degraded, but remains
at 2.9±1.0 ParB condensates/cell in the presence of ParA (Fig.2.7C). These data in-
dicate that the action of the ParA motor is required to keep ParB condensates out of
equilibrium by preventing their fusion.

2.4 Discussion

The existence of travelling waves with nonzero velocity is concomitant with the loss of
stability of the equilibrium positions of the partition complexes discussed above. Thus,
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we distinguish two dynamical regimes: (1) A stable regime without TWs (cTW = 0),
with stable (equidistant, if more complexes are present) equilibrium complex positions
independent of the initial conditions if the screening length η is large with respect to
the cell size, see Fig.2.5(a). This implies a transient translocation when the initial con-
ditions do not correspond to stable positions. This regime occurs for small values both
of the coupling constant α (obtained, e.g., for large values of the limiting diffusion
constant D2) and the ParA concentration, C0. When the screening length η is small,
then ParBS cargos remain at their initial positions, not necessarily equidistant and with-
out interaction between complexes. (2) A dynamical regime (cTW 6= 0) with unstable
equilibrium positions of the complexes and ParA density oscillations in the cell corre-
sponding to TWs in an unbounded domain, see Fig.2.5(b,c). This occurs for large val-
ues of both α and the initial ParA concentration C0. Since α is large for small values of
the diffusion constant D2, there results an apparently surprising phenomenon, namely
that slower ParA-slow kinetics leads to faster complex dynamics. This regime occurs
because the ParA-slow distribution variation in time is not rapid enough to follow the
partition complex and trails behind it. Indeed, the stability threshold corresponding
to the appearence of TWs at cTW = 0+ can be written as VS < Vv , where VS is
the escape velocity of the complex and Vv the speed of spatial rearrangement of the
ParA-slow distribution. When Vv > VS the ParA distribution rapidly reequilibrates
its symmetric profile with respect to the complex position and the system tends to the
stable stationary regime, while in the opposite case spontaneous symmetry breaking
and TW behavior occur. Using the expressions for VS and Vv , we obtain the stability
condition in the form: α < αc ≈ 1/(σC0). This reveals that large complex sizes, inter-
action energies ε, and ParA densities, as well as low ParA-slow diffusion coefficients
lead to the instability of the partition complex positioning. Importantly, a biologically
reasonable choice of model parameters shows that the system is not far below the insta-
bility threshold, leading to a not only robust but also relatively fast segregation process,
in agreement with experiment.

Our continuum reaction-diffusion approach significantly extends previous work
[123, 63, 65, 124]. Some of these [65, 124] failed to observe a stable equiposition-
ing regime because ParA-slow was not allowed to diffuse (D2 = 0): thus α diverges,
setting the system in the unstable regime. In [124], relative positioning occurs only
with multiple cargos as a crowding effect, whereas it is known that positioning can oc-
cur even with a single plasmid [3], as predicted by certain modeling studies [123, 63].
In line with the most recent experimental findings [81], we assume that partition com-
plexes evolve within the nucleoid volume near the axis of the rod-shaped bacterial cells,
in contrast with the translocation surface mechanism presented in [132, 133, 134, 65]
performed on large surfaces coated by ParA, lacking the confinement necessary for
equipositioning. Our proposed mechanism integrates explicitly a volumetric interac-
tion [112] with the partition complex (i.e. a length in 1D), placing the system close to
the stability threshold for the biological range of parameters. In the case of a surface
interaction, for which the volume is limited to the boundaries of the surface complex,
αc would thus take much higher values. This argument can be easily generalized to
higher dimensions D. Our approach also allows us to clarify analytically the physical
mechanism at play, by going beyond the numerical simulations usually performed in a
limited range of parameters, and to show explicitly that other effects like polymeriza-
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tion [63] and DNA elasticity [85, 124] are not needed to account for segregation.
These elements make the active system considered in our work unprecedented,

with genuine size and bulk-dependent effects, like the emergence of a critical coupling
constant controlling the stability and the TW regimes. Moreover, when multiple com-
plexes are present, they generate indirect inter-complex interactions mediated solely
by the “perturbed” medium. This leads naturally to proper equilibrium partition com-
plex positioning, as well as to spontaneous (left/right in 1D) symmetry breaking in the
travelling wave regime. To our knowledge this is the first model, in the context of
active bacterial segregation via ParABS systems, possessing very good qualitative and
semi-quantitative agreement with all experimental observations, including segregation
and position control of single and multiple partition complexes. The model robustness
also suggests its application to other biological processes, like macromolecule and or-
ganelle positioning in intracellular dynamics.

Beyond its biological inspiration, this model is a novel one for active particle dy-
namics (accounting for “proteophoresis”) and nonlinear physics with a very rich phe-
nomenology. Indeed, our model falls in the class of active particles (partition com-
plexes in the present case) which locally “perturb” a medium (composed here of ParA
proteins) that acts back on their dynamics and thus gives rise to particle self-propulsion.
Such a behavior also provides similarities with classical polaron systems [10]. In con-
trast with previous works [123, 63, 94] on the subject, as well as on the self-propulsion
of catalytic particles in active environments under chemical gradients [150], we do not
invoke specifically the well-known mechanism of diffusiophoresis (or chemiphoresis)
[36, 6, 7] or autochemotaxis, which involve surface interactions and (possibly asym-
metric) catalytic surface reactions [123] coupled to surrounding hydrodynamic fluid
flow relative to the particle surface (see [94, 150]). Future perspectives will include
more refined comparisons with experimental observations and biological parameters
and a generalization to higher dimensions.

to the community worldwide (>17,000 unique users/year).
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Conclusion

Cellular processes offer a fascinating playground for Physicists: new experimental
techniques are now able to probe biological processes at the molecular scale, offering
new classes of systems. This ranges from equilibrium system of binding and bridging
proteins onto DNA, as well as active, out of equilibrium processes needed for the cell
to create high concentration at a specific location of a given component, or simple to
move efficiently objects into the cell and overcome the slowness of diffusion.

The model presented above pave the way for broader extension: we have shown
application of the Spreading & Bridging in the case of ParABS, but it could in principle
be used for any system of DNA interacting with proteins, like the chromatin fiber into
eukaryotic cells.

We provide evidence in support of a new class of droplet-like-forming system with
unique properties that ensure the stable coexistence and regulated inheritance of sep-
arate liquid-condensates. Interestingly, the three components of the ParABS partition
system and the exquisite regulation of their multivalent interactions are required to ob-
serve this complex behavior: (1) High-affinity interactions of ParB and the parS cen-
tromeric sequence are necessary for the nucleation of the ParB condensate; (2) Weak
interactions of ParB with chromosomal DNA and with itself are necessary to produce
phase separation; (3) Finally, the ParA ATPase is required to counter droplet fusion
and generate segregation. In passive phase-separation systems, separate liquid droplets
grow by taking up material from a supersaturated environment, by Ostwald ripening,
or by fusion of droplets. Over time, these processes lead to a decrease in the num-
ber of droplets and an increase in their size. This reflects the behaviour we observed
for ParB condensates upon depletion of the ParA ATPase. Excitingly, in the presence
of ParA, ParB condensates remain well separated. Extensive evidence suggests that
this non-equilibrium state is maintained by the ability of ParA to hydrolyze ATP [81].
Recently, theoretical models have predicted mechanisms to suppress Ostwald ripening
to enable the stable coexistence of multiple liquid phases [152]. These mechanisms
require constituents of the phase separating liquids to be converted into each other by
nonequilibrium chemical reactions [153]. Notably, the ParABS system constitutes an
alternative and novel mechanism to actively control the number and size of droplets
within cells, as well as their fission, segregation and stable anchoring to specific sub-
cellular localizations. Interestingly, similar mechanisms – yet to be discovered – could
control the number and size of other droplet-forming systems such as P-granules [22],
stress granules [64], or heterochromatin domains [122].
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teractions between adjacent codons, Margot Bellenguez, Montpellier University
(2020).

◦ M2 project, Modeling translation with the TASEP model, Carole Chevalier,
Montpellier University (2018).

◦ M1 project, Study of active bacterial DNA segregation with a reaction-diffusion
model, Yvan Rousset, Montpellier University (2016).

◦ M1 project: Modeling proteins in interaction with proteins, Thomas Lavoisier,
Université Paris-Sud (2015).

◦ M1 project, Modelling of the dynamics of microtubules, Baptiste Guilhas, Mont-
pellier University (2013).

◦ M1 project, Simulations of zipping dynamics in lattice polymers, Hans Vande-
brœk, KULeuven, Belgium (2011).

• Bachelor projects:

◦ Bachelor project: Biopysical modeling of translation, Mohamed Haddouche,
Montpellier University (2019).

◦ Bachelor project: Introduction to TASEP, Panajot Kristofori, Montpellier Uni-
versity (2018).

◦ Bachelor project: A model for polymers on a Lattice, Michiel Laleman, KULeu-
ven, Belgium (2011).

◦ Bachelor project: Finite size effects in the 2D-Ising model, Michiel Laleman,
KULeuven, Belgium (2010).

• High School projects:

◦ Priscille Beaurain & Barry Ronca, 2019.
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3.4.3 Teaching experience
◦ Computational methods for modeling biopolymers in interactions with proteins:

application to the bacterial DNA segregation system, Master 2 students, Mont-
pellier University (2017, 2019).

◦ Numerical methods for Physicists for Bachelor students, Montpellier University
(2015–2017).

◦ Tutorial of mathematical methods for physicists: stochastic processes, complex
analysis, group theory and non-linear dynamics & chaos for Bachelor students,
KULeuven, Belgium (2010–2011).

• During the PhD thesis (2006–2009):

◦ Lecture and pratical works of electrokinetics in 2nd year; Practical works of
nuclear physics in 3rd year; Supervision of projects in 1st year; Lecture and
pratical works to prepare students for the school teacher examination; Tutorials
of mathematics for physicists in 3rd year.

3.5 Various collective activities
• Organisation of a workshop Supercoiling in Bacterial DNA at Sète, France (Novem-

bre 2019).

• Member of the organizing team Risques Psycho-Sociaux of the Laboratory Charles
Coulomb.

• Referee activity for J. Stat. Mech., Physica A, Physical Biology, Agence Na-
tionale pour la Recherche (ANR).

• Chairman at APS March Meeting Boston, session ”Active Matter in Biology”
(2019).

• Membre of a PhD Committee (2016, Hasselt, Belgium, Student: Hans Vande-
brœk, Supervisor: Carlo Vanderzande).

• Reach out in high school to explain the carreer of a Researcher.
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Chapter 4

Research Interests

I realized my PhD thesis in theoretical statistical physics on the topic of magnetic
spin systems at and out of equilibrium (2006–2009). During my different postdocs
(2010–2017), I transfered these skills to the field of the physical properties of polymers,
biopolymers and biological assemblies of macromolecules and proteins. In KULeuven
(2010-2011), I namely realised the design, analysis and modeling of experiments on
microarrays, which are device using the hybridization properties of DNA to measure
the concentration of unknown DNA strands in solution. In parallel, I had a long term
project on the fundamental aspects of the rotational dynamics of polymers wounds
around each other or around a fix cylinder (2011–2016). around a cylinder, as well as
the dynamics of hybridization of two complementary strands (2012–2017). I finally
dived into the description of cellular processes in vivo (2015–present): my most recent
studies concern the description of bacterial DNA active partition system during cell
division and the translation of messenger RNA by ribosomes in human cells. I am
using both numerical simulations (Monte Carlo, Molecular Dynamics) and analytical
methods to investigate the functioning of biological systems.

4.1 Spin systems at and out of equilibrium (2006–2012)

I realised my PhD on the topic of phase transition in magnetic systems at and out-of-
equilibrium. In a first part, I studied aging in 2D spin systems displaying frustration
(fully Frustrated Ising and XY models) during a themal quench between the high and
low temperature phase. The frustration of the interactions leads to a exponential de-
generacy of the ground state with respect to the system size. We have characterized the
universality class of the dynamics of these systems at and out of equilibrium by consid-
ering the symmetry breaking associated to the quench in temperature. In a second part,
I studied the finite size effects of the critical Ising model in high dimension (D > 4).
Finite size effects are called anormal and are explained by the renormalization group
with the existence of a scaling variable said “dangerous”. This mathematical analysis
is possible only for periodic boundary conditions, and evidences of this behaviour for
free boundary conditions was still lacking and debated. This issue of boundary con-
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ditons was essential to promote this anormal behaviour as an universal behaviour, i.e.,
independent of boundary conditons. I have shown with Monte Carlo simulations that
this is also true for free boundary conditions.

4.2 Description of polymers and biopolymers

4.2.1 Physical behavior of DNA Microarrays (2010–2011)

DNA microarrays allow, many other applications, to analyse large scale gene expres-
sion, diagnosis of the state of a cell (e.g. cancer, HIV), mutation of viruses etc. In
Figure 4.1, I illustrate the functioning of a DNA microarray. The physical behavior of
DNA microarrays, still largely unveiled, is important in order to use them in a quanti-
tative way. Our theoretical work is supported by experiments that we designed using
statistical criteria (optimal design). We have shown that under certain circumstances,
the equilibration time of the arrays exceeds the typical experimental time. We have
developed a model that allows metastable states where a strand in solution can bind
with many strands on the array. Experimental data are modelled successfully with our
model, containing a small number of free parameters [138]. Another aspect of my
work on DNA microarrays concerns the effect of the surface on the thermodynamic
of hybridization[57]. We have shown the limits of the nearest-neighbor approxima-
tion (used to estimate the hybridization free-energy) in a quantitative way for DNA
microarrays. We also discuss the effect of anti parallel GA mismatches displaying the
signature of a structural conformational change of the double helix. See my References
[138, 57] for more details.

(a)

(c)

(d)

(b)

Figure 4.1: Illustration of an experiment with DNA microarrays. Know strands are
synthesized and fixed to the surface. We put them into contact with an solution of la-
belled strands of unknow concentration. After reading the spot-dependent fluorescent
intensity on the microarray, it is possible to obtain the concentration of strands in so-
lution. Hiwever, many phenomena can occur, preventing microarray to be used into
a precise quantitative tool : (a) specific hybridization with matching strands (b) non-
specific hybridization (c) formation of loops (d) cross-hybridization. We have shown
that cross-hybridization slows down significantly the dynamics of hybridization.
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4.2.2 Winding and zipping properties of a polymer (2011–2016)

An important topic of research during these last years concerns the static and dynam-
ical properties of polymers in the framework of the description of bioploymer proper-
ties, namely DNA conformation and dynamics: winding and zipping properties. The
dynamics of DNA has direct implication in biological processes – the crowded envi-
ronment of the cells – like replication where the double helix has to unwind and unzip.
To get solid theoretical ground, we considered fundamental polymer physics questions:
(a) polymer wound around each other (b) a polymer wound around a fix cylinder and
(c) a polymer pulled in a rotational motion at constant angular velocity Ω, as sketched
in Figure 4.2. First, we have shown the interplay between the free-energy associated
to the winding angle and the relation dynamics according to a Langevin equation de-
scription [141]. We described precisely the total relaxation time which involves mul-
tiplicative logarithmic corrections. For the short time dynamics, the released winding
angle is also found to be in good agreement with the Langevin equation. We gave el-
ements related to the shape of the rotating polymer. This study has been performed
both with Monte Carlo simulations of polymers on a lattice and analytical calculation.
Subsequentely, we gave a theoretical framework to explain in details the dynamics of a
rotating polymer at constant velocity with the use of the blob picture introduced in the
context of polymer pulled by a constant force at one end. Our results apply to the case
of a polymer in rotation at constant velocity where we found different conformational
regime depending on the angular velocity. See References [139, 142, 143, 75] for more
details.

(a) (b) (c)

Ω
unwinding

rotation

Figure 4.2: Examples of rotational dynamics of entangled polymers. (a) The unwinding
dynamics of two polymer chains dissociating from each other; (b) the unwinding of a
single chain from a rigid rod; (c) the stationary conformation of a polymer attached to a
rod rotating with a constant angular velocity Ω. We have given a theoretical framework
for the dynamics of such system using the “blob picture” originally introduced for the
case of polymer pulled by a constant force at one end.

I also studied the aspect of zipping and unzipping of two polymers in interaction
with a contact potential [140, 109], see Figure 4.3. We can show that this interact-
ing system displays a critical point. At criticality, this process shows analogies with
translocation. Namely, we can map this problem on a one-dimensional Brownian par-
ticle whose coordinate corresponds to the position of the fork point where the two
strands starts to unzip. I gave evidences that the dynamics is described as a fractional
Brownian motion. Our conclusion is supported by the calculation of the distribution
probability of the position, the autocorrelation of the speed, and the survival probabil-
ity. This study has also been supported by Monte Carlo simulations on a lattice. In a
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subsequent paper, we solved analytically this model with an appropriate kernel moti-
vated by polymer physics. These analytical results are in full agreement (to the second
order) with numerical simulations. See References [140, 109] for more details.

O

O Y

O

Y

(a) (b) (c)

s

L−s

L−s

Figure 4.3: Zipping of two polymers interacting with a contact potential at complemen-
tary monomers. (a) Polymers are fully unzipped; (b) at the critical point, the polymers
are in average half-zipped. Violet line is the zipped part. The reaction coordinate of the
system is the linear position s of the fork point Y. We have shown numerically and an-
alytically that it displays a Fractional Brownian Motion with characteristic exponents;
(c) the polymers are fully zipped.

4.3 Collective behaviour of protein assemblies in the
cell (2014–present)

4.3.1 Organisation of the genome during active bacterial DNA seg-
regation

This project on active bacterial segregation is the main topic of the scientific part of
this thesis, thus we refer the reader to the previous Chapter. This project led to the
following publications in Refs.[112, 144, 145, 32, 30, 54].

4.3.2 Modeling the cytoplasmic active transport

Eukaryotic cells exploit different ways to transport matter in their interior such as
passive Brownian motion or active cytoskeletal transport driven by motor proteins.
The transportation of matter (such as proteins and organelles) is performed via a net-
work of filaments, the microtubules and the microfilaments (Fig.2, left). On these
filaments, motor proteins perform a walk using chemical energy from ATP (Adenosin-
Tri-Phosphate) hydrolysis. In this way, matter alternates diffusive motion (inefficient in
the crowded medium of cells) and active transport by motor proteins. Recent progress
in experimental approaches such as fluorescent microscopies and spectroscopies have
allowed a possibility to observe and quantify molecular events of transport. Exclusion
processes are known to be good candidates for understanding how collective and non-
equilibrium effects of large clusters of motors arise from the molecular properties of
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single motors. These models consist in particles which can jump (possibly asymmet-
rically) on a one dimensional lattice with the constraint of volume exclusion. Gener-
alization of these models for cytoskeletal transport include attachment and detachment
of particles in contact with a reservoir and bidirectional motion, for example.

Figure 4.4: (Left) The cytoskeleton of an eukaryotic cell: the microtubules (MT) are
shown in green, the actin filaments in red and the nuclei in blue. (Right) Model of
directed transport (TASEP-LK) coupled to a reservoir of diffusive particles. Filaments
(black segments) are immersed in a closed compartment constituting a reservoir. Un-
bound particles (in blue, at the concentration cu) are freely diffusing in the reservoir
and can attach at the rate ωA = ω̃Acu at any site, or at the entry at the rate α. Particles
bound can detach at the rate ωD, exit at the rate β and hop internally at a rate p.

The model we have used to model Microtubules is a TASEP filament with attach-
ment and detachment, also known as TASEP-LK (LK stands for Langmuir Kinetics).
A sketch of this model with the relevant parameters is shown in Fig.4.4 (right). In our
first paper, we present a model to study the fine balance between supply and demand for
molecular motors (such as kinesins, dyneins and myosins) during intracellular transport
processes. In particular, we generalise the TASEP-LK: in such a model motors with
finite processivity actively advance (with steric interactions) along a filament and de-
tach from the filament into a reservoir with unlimited resources, i.e. unlimited motors.
Since the amount of motors involved in active transport inside a cell is far from being
infinite, here we study a model with a homogeneous but limited reservoir of motors,
which explicitly takes into account the competition for particles (supply) between the
filament’s binding sites (demand). Our theoretical results allow to analytically study
the density profiles of motors bound on a filament as a function of the concentration
of binding sites (bound tubulin dimers in the case of microtubules). We have used
analytical calculations and extensive Monte Carlo simulations to study this model in
Ref. [27].
This work has led to a natural extension in the project part of this thesis: the transport
of ribosomes on messenger RNA during translation, namely in human cancer cells.


