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INTRODUCTION

Since the creation of the Internet in the early 90’s, people and societies opinions re-
garding it have been permanently evolving. Today we live in a world that is completely
dependent on the Internet, it is a part of everyone’s life. Therefore, the use of ma-
chines, computers, smart phones and connected devices is exponentially growing year
after year. Researchers and sociologists have even identified four types of Internet, the
Internet of content (Google, Wikipedia, etc.), the Internet of people (social media), the
Internet of things (clouds, connected objects, etc.) and the Internet of places (mobility,
Google maps, etc.) [ZH09; Sel+09; BG14]. As a consequence, connected machines
became the most targeted entry point for malicious agents. All connected machines
communicate via huge networks and servers that are governed by complicated sys-
tems. The more the systems become complicated the more the fraudulent exploit tech-
niques become sophisticated.

In most of nowadays real life jobs or applications, employees, workers, consumers and
users are using connected devices. Hence, they are prone to not only external exploits
but also internal misuse that can become dangerous. Consequently, it is important to
monitor the behavior of users and workers in their environment to ensure a "secure"
work flow. For instance, monitoring the behavior of truck drivers can allow the super-
visor to verify if they are getting enough rest time while on route. Computer scientists
have been putting a lot of effort in researches in order to build a safe perimeter in which
connected devices can be used [Wur+16; Abo+15]. In this work, we use behavior ana-
lytics in order to identify a normal behavior from a dangerous one while rating its level
of dangerousness. The key of establishing an adequate behavior analytic is a set of
faithful data recorded from the concerned system. In 2020 we generate in ten minutes
more data than the entire data that is recorded throughout history until 2003. Thus,
clearly we have no problems with generating data nor storing it, hence the problem is
the capability of extracting useful information from this huge amount of data. This is
where data mining techniques [Van11; Van14] come into play. In this thesis we do not
directly address this problem, however we emphasize on the importance of faithful data
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Introduction

because we use data-driven techniques.

This thesis was achieved in collaboration with GFI informatique group'. GFIl is an
international group that mainly proposes computer science solutions and expertise,
touching a wide variety of domains (banking, road safety, supervision, cloud, Al solu-
tions and many more). The Center of Innovation and Expertise (CIE) at GFI directs
many research and development projects (R&D). The main expectations of GFI about
this thesis are to explore behavior analytics including how it can be applied in security
or supervision, and to use innovative techniques in order to be distinguished from the
available market solutions.

GFI informatique group was actively involved in this work in order to contribute into
building new algorithms for detecting malicious behavior in software systems. There-
fore, GFI's vision was to evaluate the dangerousness of a behavior by comparing it to a
nominal behavior or a reference behavior. GFI motivated the use of Graphical Models
to represent behavior in order to avoid any black-box solution and have full control of
the process at all times. In this thesis, we present the approach and formalisms that
were used in this context.

In order to build a secure access to data in a real world system and to ensure its
safeness from any upcoming potential threat one should learn the dependencies and
behavior of the different components of the system, identify malicious ones and act at
the right moment to intercept them. Thus, we can start to see the importance of model-
based Machine Learning that allows to build a model of the concerned system based
on data or some prior knowledge about the system. Many types of modeling formalisms
exist in the literature, each developed for its own purpose. Some are better tailored for
the verification of given properties or hypothesis, others for learning behaviors and de-
pendencies; in this work we are interested in all of these aspects. Probabilistic finite
automaton, for example, were used in modeling and verification of known or desired
behaviors [Mao+11; SL94; Rab63]. Petri Nets [Pet77; Pet81] were used in modeling
and verification of several parallel tasks as well as in Process Mining [Van14]. Hidden
Markov models were widely used in speech and image recognition, as well as in evalu-
ating the quality of discovered processes [RVV08; KA98; VM98]. Probabilistic graphical

1. Website: gfi.world
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Introduction

models were used for machine learning and the representation of dependencies be-
tween the different variables of a system [MR02].

Each of these formalisms has its own advantages and disadvantages. Nonetheless,
all of the formalisms cited above and the ones that are in the same family have an
insufficiency with regards to our main objective: the discretisation of time. Instead, we
adopt a continuous time approach in this work since it represents some advantages
that will be discussed in the following, from a security point of view. The discretisation
of time can be described as a representational bias in the learning of these formalisms.
Indeed, every two consecutive events, there is a time step but there is no quantitative
measure of time that shows the actual elapsed time between events, the delay before
any event occurs in the beginning of a process nor the delay at the end of the pro-
cess. Thus, from a security point of view, it is better to use continuous time modeling
formalisms that allow knowing more precisely when to act and not only what action to
take; for example when predicting a system failure or forecasting future user tenden-
cies.

To explore the dynamics of a wide variety of systems behavior based on collected

event streams, there exist many advanced continuous time modeling formalisms: for in-

stance, continuous time Bayesian networks [NSK02], Markov jump processes [RT13],

Poisson networks [RGHO05] and graphical event models (GEMs) [GMX11]. In this work

we are particularly interested in Recursive Timescale Graphical Models

(RTGEMSs) [GM16] a sub-family of GEMs, that present advantages compared to the

other formalisms. In particular, they are designed to universally approximate any smooth,
non-explosive, stationary, multivariate temporal marked point process [DV07].

Appropriate learning and verification techniques should be adapted for the type of for-
malism that we wish to construct. Standard model checking, for example, is used as a
verification method [BKO8]. It has been applied to many formalisms, but to the best of
our knowledge, never adapted to RTGEMs. Another valid solution for verification are
approximation methods, such as Statistical Model Checking (SMC) [LDB10], which is
an efficient technique based on simulations and statistical results. SMC has been suc-
cessfully applied to graphical probabilistic models such as dynamic Bayesian networks
(DBNSs) in [Lan]. Therefore, SMC could be adapted to RTGEMs. When we consider
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Introduction

simulation-based techniques (such as SMC), one could think of using them directly
on the original data and not on the sampled data from a learned model. Nonetheless
in some cases, in order to perform precise formal verification (in particular for SMC)
we need to artificially generate more traces of data that typically represent the same
"source" of the original data. Moreover, the real data we collect may contain rare events
that we are interested in analyzing, thus possibly the data is hiding different scenarios.
As a consequence, it is important to learn a probabilistic model and sample data from
it, in order to apply simulation-based techniques like SMC for verification and to avoid
ignoring (completely or partially) certain scenarios. The latter is achieved by using tech-
niques like importance sampling that can be used on a model (not the original data)
to increase the frequency of appearance of rare events. However, another concern
emerges from a model-based approach, that is the model’s quality with regards to the
original data. As a consequence, we rely on a modeling formalism whose quality (with
regards to the input data) can be measured.

The main objectives of this work are first to build links between the graphical model-
based learning field and the formal verification field, in order to benefit from the advan-
tages of both for security assessments. The second objective is to seek a model that
is at the same time representative of the input data and safe from a security point of
view. We are not only interested in evaluating the fitness of the model using standard
scoring techniques but also in its suitability from a security point of view. In particular,
it is likely that the learned model does not satisfy given security properties. Hence,
we propose a strategy where we choose to learn the "fittest” RTGEM (the one that
is the most representative of the data) while controlling its complexity by penalizing
it. If our security standards are not verified on the learned model, we also propose a
search methodology to find another close model that satisfies them. To do so, an ap-
propriate model-based strategy is proposed and a distance measure is introduced in
order to compare two RTGEMs. By comparing the "fittest" model and the one found
in its neighborhood (if one exists) that satisfies the security standard, we are giving an
insight about the dangerousness of the detected (learned) behavior. Our approach is
generic with respect to the verification procedure and the notion of distance between
models. For the sake of completeness, the strategy we propose is then tested on syn-
thetic data. The outline of this thesis is given below.

12
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Thesis Outline

This thesis is composed of four chapters, each one is summarized in what follows.
The first chapter contains state of the art formalisms and techniques that inspired this
work. The second chapter contains necessary preliminaries for this thesis and the last
two chapters consist of the main contribution of this work.

In the first chapter, we establish a review on the state of the art about commonly used
discrete time formalisms. In particular we introduce, transition systems, Markov mod-
els, Dynamic Bayesian Networks, Petri Nets and Probabilistic Automata. We formally
recall the definition of each presented formalism, and discuss its advantages and dis-
advantages. We also present a synthesis about the expressive power, the evaluation
and the verification of each presented formalism. By proceeding as such, we notice
that the discretisation of time is actually a problem from a security point of view, and
that we should adopt a continuous time formalism in order to attain our objectives.
Furthermore, we formally define the type of properties that are later on used for defin-
ing the security properties mentioned above. Finally, we discuss two formal verification
techniques: Model Checking and Statistical Model Checking, as well as their advan-
tages and disadvantages. We also justify the choice of Statistical Model Checking as
the verification technique used in the rest of this work.

In the second chapter, we introduce basic prerequisites, definitions and notations that
are used in the rest of the work. We present and formally define marked point pro-
cesses and conditional intensity models. Most importantly, we describe the type of data
considered for this study. Furthermore, we introduce and formally define the different
families of Graphical Event Models, their learning procedures and limitations. The main
objective of this chapter is to justify the choice of Recursive Timescale Graphical Event
Models as a formal modeling technique, by balancing out their benefits and drawbacks,
and demonstrating their easy manipulability.

In the third chapter, we build the foundation of our contribution. We explicitly state
the problem and we formalize it. We propose a solution to the problem via a generic
model-based strategy presented in the form of an algorithm. We detail the strategy that
is proposed for learning and verification for security assessments. We also define a
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distance measure between graphical event models . Our strategy consists in learning
the model that is the most representative of the underlying system. It also consists in
checking if the learned model satisfies a given security property. If not, a search for a
close model that verifies the given security property is performed. Finally, we adapt a
distance measure that is computed between the two models to see how far the fittest
model is from verifying the property.

In the last chapter, we build tests to evaluate the performance of each step in the
proposed algorithm. We show the performances of the learning and sampling of RT-
GEMs, as well as the application of SMC on this formalism. Furthermore, we build a
pipeline of experiments in order to show that what we are proposing actually fulfills the
starting goals that we have set. We provide evidence that if we have data coming from
a secure system, the learned RTGEM will also be secure with regards of the security
property that we propose, and vice versa. We experimentally show that the neighbor-
hood exploration technique in order to find a close model that satisfies the property
(in case the learned model does not satisfy it) actually works. Finally, we show how in
practice, we can evaluate the dangerousness of a learned model in comparison to a
nominal behavior.

14



CHAPTER 1

LITERATURE REVIEW

In this chapter, we introduce Model Checking and Statistical Model Checking (SMC)
as formal model based verification techniques, in order to give an insight about how one
can formally verify certain properties (or queries) on models and what the limitations
are.

Also in this chapter, we present the state of the art concerning some discrete time
probabilistic and graphical probabilistic formalisms, as well as their functionality and
expressive power. This will help in understanding the importance of model based ma-
chine learning and the variety of models that can be learned. In addition, we describe
verification methods related to each formalism as well as some model evaluation tech-
niques. We give a brief illustration of model based learning in Figure 1.1, in which we
display possible prerequisites, e.g. assumptions, data, prior knowledge and others, that
could take part in model learning . In Figure 1.1, we also show a possible process of
improving the model, with regards to certain criteria (that are also discussed in this
chapter), before reaching the target model that best answers the initial prerequisites.

Assumptions

Prior knowledge
and expertise

Data Target Model
Model choice

Learning formalism and
selection criteria

Figure 1.1 — Example of a model based learning process.

In what follows, we start by defining a family of models called transition systems in
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Part , Chapter 1 — Literature Review

order to introduce the concept of a model and its formal definition. We also define the
concepts of atomic propositions and traces, which are important prerequisites to this
chapter.

1.1 A preliminary model definition

A transition system is usually represented as a directed graph, with states as ver-
tices and transitions as edges.

Definition 1.1.1 [BKO08] A transition system S is a tuple (S, I, R) such that
» S is a set of states;
« [ C S is a set of initial states;
e R C S x S is a transition relation.

A transition system is finite if S is finite and infinite otherwise. An execution of a transi-
tion system is a sequence of states of the form sg, s1, ... such that Vi, (s;, s;41) € R. An
execution can be finite or infinite. It is finite when we stop at a certain state s,, with n
the number of steps (or transitions), and infinite otherwise.

In practice, transition systems are equipped with atomic propositions AP (usually a
set of labels) that are associated with each state by the following relation: V : S — 247,
In other words, each state of the system carries the characteristics of the associated
atomic proposition(s).

Definition 1.1.2 A trace of a transition system S defined over a set of atomic propo-
sitions AP, is the projection on AP of an execution of the transition system. A trace
is finite if the corresponding execution is finite and infinite otherwise. A finite trace is
formally written as the sequence ay, a..., a,, With a; € 247 such that there exists an
execution s, ..., s, With¥0 < i < n,V(s;) = a;, where i represents a step in the trace
and n the total number of steps.

The concepts introduced above are illustrated in the following example.

Example 1.1.1 /n Figure 1.2, an example of a Kripke structure [GCP99] is shown,
which is a labeled transition system K = (S, I, R, V') defined over AP = {q,p}, a set of
atomic propositions, as follows

16



1.2. Model Checking

» S = {s1, 59,53} is afinite set of states;

« [ = {s,} is a finite set of initial states;

* R ={(s1,$2), (s2,51), (82, 83), (53, 53) } is the transition relation;

V= {(s1,{p,q}), (s2,{q}), (s3,{p})} is the function associating each state to a
set of atomic propositions.

{r,q} {a}

start

{r}

Figure 1.2 — An example of a Kripke structure transition system.

In order to generate a trace from this transition system, we consider a possible finite
execution: sy, ss, s1, S2, 83, 3 Which will correspondingly generate a trace, that is in this
case a succession of the atomic propositions: {p, q},{q},{p,q}, {4}, {pr}, {r}-

With this in mind, we introduce Model Checking along with properties specifications
and Statistical Model Checking in the next section.

1.2 Model Checking

Given a finite-state model of a system and a formal property, Model Checking is a
technique that systematically checks whether this property holds for all behaviors of
that model [BKO8]. Model checking is a "brute-force” method that analyses the entire
space of possible scenarios in regard to a certain query (or property); the form and type
of these queries will be elaborated later on. In other words, assuming that the model is
already created and the property to be checked is already formalized, a model checker
(the unit that performs model checking) checks if all possible behaviors of the model
satisfy the property.

17



Part , Chapter 1 — Literature Review

Depending on the nature of the property, when one stumbles upon a behavior that does
not verify the property, this information is used as counter example of why the property
is not satisfied, thus providing diagnostic information. Furthermore, many advantages
of Model Checking can be cited, such as the wide range of real life applications (that
can be modeled) on which it can be applied without a lot of prior knowledge or exper-
tise.

Many limitations or weaknesses of Model Checking can be identified, such as scal-
ability issues with large models in addition to the fact that it is more appropriate for
control applications. Thus, Model Checking is less suitable for any data driven system
that cannot be easily modeled [AK86].

In the following, we define formal properties that can be verified using Model Checking
and we show some examples.

1.2.1 Properties specifications

In this section, we introduce Linear Temporal Logic (LTL) as well as an illustrative
example. Temporal logic is the set of any rule (or logic) reasoning about propositions
in time, i.e. anything related to modal logics [Che80] combined with time. For example,
the sentences "I am always late for work" or "l will eventually be late for work some
day this week" are based on temporal logic. Linear Temporal Logic (LTL) in particular,
introduced by Pnueli in [Pnu77], is a formalism for trace properties. This formalism is
tailored to deal with reactive systems, whose correctness depends on their execution.

Atomic propositions (AP) represent a set of characteristics proper to each state of
the model, on which one can build the syntax of LTL formulae. AP are the basic ingre-
dients for LTL formulae, along with the Boolean connectors conjunction A, negation —
and basic temporal connectors next () and until . Formula ()¢ holds at the current
step in a trace, if ¢ is satisfied in the next step. Formula ¢, U - is satisfied at the cur-
rent step in a trace, if ¢ holds at all steps until ¢, holds in a future step.

18



1.2. Model Checking

Formally, the syntax of LTL formulae is defined as follows:

p n=true|alei Apa | —o | Op | 1 | 2

where a € AP. From this syntax, one can obtain the full power of propositional logic
by deriving other connectors, especially the disjunction Vv, the implication — and
the equivalence <— operators. Moreover, we define the eventually operator ¢ de-
scribing a property that will eventually hold in a trace and that is formally defined as:
Qv == true U p; and the always operator (] describing a property that holds globally
in every step of a trace and that is formally defined as: Cly ::= =0—¢.

For a better understanding of the LTL syntax, we use the example below.

Example 1.2.1 (example 1.0.1 revisited) Consider the Kripke structure from Exam-
ple 1.0.1 given in Figure 1.2, let o1 = (Oq be the property to verify on the model.
The property holds on every trace generated by the transition system, because the
transition system always starts in s, and then transitions to s, (whose label is {q}) in
the following step. The same applies for the property ¢, = [IOp, because p is occur-
ring infinitely often in any generated infinite trace (thus its negation -O0p is always
false). In addition, the property p3 = w2 N @1 IS also always true. However, a prop-
erty of the form o, = OUp is false in some generated traces, for instance the trace:

{p,a}. {a}. {p,a}. {a}. {p, a}. {a}. {p, q},{q}..., where we don’t reach the state s; in the
execution.

It is proven that the LTL-Model Checking problem is PSPACE complete [BK08] since
we need to explore all the possible scenarios until we find a counter example (or not).
Because it requires a complete representation of the model, this process suffers from
state-space explosion, which represents the main limitation of LTL-Model Checking.

In the following, we briefly review other temporal logics as well as another type of
formal verification: Statistical Model Checking (SMC).

1.2.2 Other temporal logics

Extensions and other families of Temporal logics exist in the literature, in particular
LTL with past operators [Gab+80; LPZ85] and bounded LTL [Bie+03], both of which will
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Part , Chapter 1 — Literature Review

be combined and used later on, in the purpose of defining a new type of properties
adequate to a certain family of models.

Other examples include the Computation Tree Logic (CTL) [CE81], a formalism used for
expressing properties over computation trees (a view of branches of time) and an ex-
tension focusing on qualitative properties: Probabilistic CTL proposed in [HJ94]. Qual-
itative properties are suited for probabilistic models, they will be detailed in Chapter 3.

For now, we have introduced some ingredients and recipes for formal verification, that
can be used in "classical" Model Checking. In the following, we introduce Statistical
Model Checking (SMC).

1.2.3 Statistical Model Checking

We recall that Model Checking suffers from complexity issues when the models are
large. Thus, the need for alternative formal verification techniques that scale up have
emerged. An approximate yet effective simulation-based technique named Statistical
Model Checking (SMC) is presented in what follows. One should note that SMC does
not deal with the same problem as Model Checking: in order to avoid the scalability
issue, SMC relies on simulations which only allows to estimate the probability of satis-
faction for a property on the concerned model; when Model Checking instead computes
the exact value.

Compared to Model Checking, Statistical Model Checking is easier to apply on cer-
tain models. SMC’s complexity depends on the size of the property to be verified rather
than the size of the model [LDB10]. Indeed, the core of SMC consists in executing sim-
ulations whose length depend on the size of the property. This is mainly why we use it
on complex systems (complex models). This approach, applied on stochastic models
(that will be introduced in the next section), does not compute the exact probability of
satisfying a given property, but rather estimates this probability. At the same time SMC
benefits from many advantages :
* Its application only requires that the system (model) is executable, i.e. that we
can sample from it even if it is a very large model or a black box [You05a] (one
should note that sampling can also be hard sometimes).
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1.2. Model Checking

* It is applicable using properties that cannot be verified with classical Model
Checking [CDLO08]. For instance, in [LDB10] three cases of properties (the nested,
the unbounded and the boolean combinations cases) are introduced whose
satisfaction cannot be decided except by an estimation technique (SMC for in-
stance).

« It is parallelizable, different independent samples can be retrieved at the same
time for a faster execution.

For a detailed overview about the different aspects of this technique one can refer
to [LDB10].

However, one should be aware of the limitations of SMC. As mentioned before, it is
an approximation technique and can only provide probabilistic guarantees about the
correctness of the algorithmic result. Furthermore, SMC relies on simulations so it
is mostly restricted to linear properties (i.e. trace properties), expressed in LTL for
instance. In addition, it only works on systems without any form of nondeterminism
(purely probabilistic) for the samples to be faithful. Finally, keeping in mind that we are
interested in model based model checking (particularly SMC), the main obstacle that
we confront in practice is that for an accurate result the sample size must be huge,
which can be very costly when handling certain types of models.

Let S be a stochastic system (regardless if it can be modeled using a certain formalism
or not) and ¢ a property that needs to be verified. Statistical Model Checking consists
in performing a series of simulation-based techniques that can answer two kinds of
questions. The first kind are qualitative questions of the type: Is the probability that S
satisfies ¢ greater or equal to a certain threshold? The second kind are quantitative
questions of the type: What is the probability that S satisfies ©? In both approaches,
the answer is given up to some correctness precision [Bas+10].

As previously mentioned, SMC is based on simulations, and each simulation is rep-
resented by a trace that has a binary outcome for satisfying the property: Yes or No.
Therefore, we consider a discrete random variable B; with a Bernoulli distribution of
parameter p, that is associated to each trace and can take two values: 0 (if the property
is not satisfied) and 1 (if the property is satisfied). Assume that Pr[B; = 1] = p is the
probability of satisfying the property and Pr[B; = 0] = 1—p is the probability of violating
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the property, SMC allows to either estimate p or decide if p is greater (or smaller) than
a fixed value.

Qualitative approach. The original qualitative approaches are proposed in [You05b;
SVA04], and are based on hypothesis testing. The idea is to test two hypothesis,
Hy : p < 6 against H; : p > 6, while bounding the probability of making an error.
A Type-| error is when we accept H, while H; holds and a Type-Il error is when we
accept H, while H, holds. Therefore, we define two parameters « and 3, with («a, )
the "strength” of the test, being the pair of bounding errors . An ideal performance of
the test is when the Type-I error is equal to « and the Type-Il error is equal to 5, and
both « and /5 are small. However, in practice it is impossible to ensure a low « and
simultaneously. In order to avoid this problem, an indifference region [po, p1| is defined.
Let p = Pr(y) the probability of ¢ being satisfied on the system S. In order to deter-
mine whether p > 6 (qualitative property, 6 being in [po, p1]), one can test H| : p < po
(instead of H, : p < ) against H| : p > p; (instead of H; : p > 6. However, the tuning
of the indifference region in practice is constrained by the loss of precision regarding
the estimation (when the size of the region increases) and by the fact that we cannot
conclude about the result if p is inside [po, p1]. Two hypothesis testing algorithms will be
presented, Single Sampling Plan (SSP) and Sequential Probability Ratio Test (SPRT).

Single Sampling Plan consists in specifying a constant ¢ and a number of simulations
n to test whether -, b; > ¢, where b; is the outcome of the Bernoulli random variable,
in order to see which hypothesis is accepted. Thus, the hardest part in this algorithm is
to compute values for the pair (n, ¢) with respect to the pair («, 5) and the indifference
region. The number n increases when we minimize the size of the indifference region
and the parameters a and S. An optimization algorithm was proposed in [You05b] in
order to determine a pair (n, ¢) where n is minimal.

Sequential Probability Ratio Test is an approach proposed by Wald [Wal45], consisting
in choosing two values A and B (A > B) ensuring the strength of the test and that are
computed using «, 5 and the indifference region. This approach takes into account the
observations made so far and tests whether the test result may change if we continue
the sampling; if we are sure that it does not change then we can stop sampling. If m
is the number of already performed observations, the test is based on the following
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metric :

P _ 7y PriBi=bilp=p) _ P (L —p)"
Pom =1 Pr(Bi=bip=po)  pir(1— po)m—in

with po, p1, B; as defined above, p the variable that is used to indicate which hy-
pothesis is accepted, and d,,, = >, ;. It is shown in [YouO5b] that we can accept H;
after m samples if L= > A and H, if &= < B. Using this approach we can reduce
the number of simulations in certain scenarios compared to the Single Sampling Plan
approach (where the number of samples is fixed to n), and avoid doing n — m useless
samples. However, when the value of the ratio 2 is always varying inside the indiffer-
ence region ([A, B]) it is very hard to converge using the Sequential Probability Ratio

Test, making the first approach more advantageous.

Quantitative approach. The purpose of this type of SMC is to compute the prob-
ability p (or an estimate) for S to satisfy . In the works of Peyronnet et al. [Hér+04;
Lap+07], a procedure based on the Chernoff-Hoeffding bound [Hoe94], was presented
in which an estimate p’ is calculated, given a precision ¢, such that [p’ — p| < ¢ and
Pr(|lp’ — p| > 0) < e with ¢ the probability of making an error. As a consequence, the
result p’ > 0+ ¢ means that the system S satisfies ¢ with a probability higher than # and
with a confidence of 1 — <. This has been applied in several works using different simu-
lation techniques, in particular Monte Carlo simulations and estimates, e.g. in [JSD17].

In the next section, we present some probabilistic formalisms with discrete times as
well as their specifications and proper use.

1.3 Probabilistic Graphical Formalisms with Discrete
Time

In this section, we introduce four state of the art formalisms as different definitions
of what we have already called a transition system. Graphical probabilistic models will
be concisely presented, as well as their respective expressiveness, evaluation and ver-
ification. The objective of this section is to show that the existing modeling formalisms
are means to different ends, i.e. a formalism exists because it is meant to be used in
a certain manner, in certain applications and that a universal formalism has not been
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found yet, to the best of our knowledge.

1.3.1 Discrete Time Markov Models

In this subsection, a family of formalisms obeying to the Markovian property are
introduced, and the latter is also explained. We begin with one of the most basic yet
very used models, discrete time Markov Chains (MC for simplicity) [KS76]. This type of
Markov models is defined below and an example follows.

Definition 1.3.1 A Markov Chain (MC) is a tuple (Q, qo, M), where
* () is a set of states;
* qo € Q is an initial state;
* M :(Q x Q) —[0,1] is a transition matrix, with:Vq, € Q,>,,co M(q1,q2) = 1.

This model is a stochastic process that evolves through time, changing from a state to
another in a probabilistic way. A Markov chain is finite if () is finite and infinite otherwise.
An example is shown in Figure 1.3, where we illustrate a finite MC with three states and
six transitions.

1/3

start —

Figure 1.3 — An example of an MC with 3 states.

Expressive power. The expressive power of such models resides in their ability to
display that every step along the way only depends on the step that came right before
it. In other words, knowing the present state, one does not need the past to predict an
outcome. We can easily compute the probability of having a certain result (or being
in a certain state) after i steps [BLNO4]. Furthermore, there exist higher order Markov
Chains [CFNO04], aiming to add more memory to the process by extending the de-
pendencies to previous steps also (not only the step that came right before). Markov
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Chains are essential to the understanding of random processes, because one can ex-
plicitly compute many quantities of interest [Nor98]. Mathematically, if X is the random
variable governing the random process represented in the MC, then the probability of
X; (the ith outcome of X') with regards to the Markovian property (order 1 in this case)
can be written as follows:

P(Xl = .CIZ'Z) = P(XZ = $Z“XZ',1 = Tij—1, ...,Xo = LE[)) = ID()(z = .I'Z"Xi,1 = .flj'ifl)

In addition, Markov Chains were used in simulation [Bré13], medicine [LD01], eco-
nomics [CR01] and many other fields that handle random processes, due to their power
of explicitly showing the different probabilities and paths of reaching or avoiding an ob-
jective (state) starting from a certain point. However, this modeling formalism is con-
fronted with a big limitation: the size of a Markov model can quickly increase in order
to model large systems (or random processes) making it hard to compute and handle.
This is what researchers call the state-space explosion problem.

In this thesis, the focus is on behaviors and security assessments and as mentioned
earlier, this type of model can be used for describing a series of transitions before
reaching a malicious state. As a consequence one can maybe predict the probability
of reaching a malicious state in future steps. However, from an expressiveness point of
view, it cannot describe the event (the action) leading to a malicious state or the events
describing safe behavior in the model.

Therefore, in order to have a clearer representation and a better use of the expressive-
ness of such formalism, many derivations or subfamilies were defined such as Labeled
Markov Chains (LMC) [Des+04] and Hidden Markov Models (HMM) [Edd96].

Labeled Markov Chains (LMC) are the first type of subfamilies, where a set of labeled
actions is defined and added to each transition in order to enhance the descriptive
power of an MC. In the following, we recall the definition of an LMC and we show an
example.

Definition 1.3.2 A Labeled Markov Chain (LMC) is a tuple (Q, qo, M, A, F'), where
e () is a set of states;
* qo € Q is an initial state;
* M :(Q x Q) —[0,1] is a transition matrix, with:Vq, € Q,>,,co M(q1,q2) = 1,
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» A is a set of actions;

« F:Q xQ — AU{L} is a function that assigns an action to each transition,
such that F(q,q') # L iff M(q,q') > 0, with L a symbol corresponding to the
absence of transitions.

This formalism grants more information than regular Markov chains, and can be
used for describing a series of actions (finite or infinite) and their consequences. This
extension could be used for behavior analytics in the service of security for instance. In
Figure 1.4, an example of an LMC with three states, six transitions and three actions is
given.

Az 1/3

start —

Figure 1.4 — An example of an LMC with 3 states and 3 actions.

Another type of subfamilies is Hidden Markov Models (HMM), that is represented as
a sequence of "hidden" states that are interconnected by state transition probabilities.
The main advantage about this formalism is that the same execution (over states) can
correspond to several observation sequences (traces). In other words, each state has a
symbol-emission probability distribution and can emit a number of observable symbols
(or observations). An HMM is defined below, and an example follows.

Definition 1.3.3 A Hidden Markov Model (HMM) is a tuple (Q,w, M, O, B), where
e () is a set of states;
« 7 : Q — [0,1] is an initial probability distribution, .o 7(q) = 1;
* M :(Q x Q) — [0,1] is a transition matrix, with : V¢ € Q.Y ,co M(q1,q2) = 1;
» O is a set of observations;
* B : (Q x O) — [0,1] is a function associating the observations probability
distribution to each state, such that :Vq € Q, Y ,co B(q,0) = 1.
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In Figure 1.5, an example of an HMM with three states and two possible observa-
tions is shown. Each state has to be associated with one observation (y; or ys in this
case) according to the probability distribution.

1/3

start —

1/3 213 1/2 172 1/4 4/5

hn Y2

Figure 1.5 — An example of a Hidden Markov Model with 3 states and 2 observations.

A description of HMM theory has been written by Rabiner [Rab89]. HMMs have
been widely used in the domains of speech recognition and more generically as a
general statistical modeling technique for linear problems in computational sequence
analysis [SWS93]. For instance it was applied in [WSS94] to the field of evolution in
protein structural modeling.

Example 1.3.1 /n Figure 1.6, we show a possible execution of the HMM illustrated in
Figure 1.5, showing the sequence of hidden states and their corresponding observa-
tions.

Remark that, for the same execution q1, 2, q3,q2,q1 we could have had a differ-
ent observation sequence (trace), for instance s, ys, y2, Y1, y1 With probability 2/45 or
Y1, Y1, Y1, Y1, y2 With probability 1/72 instead of ys, y1, ye, y1, y2 Whose probability is 4/45 .

For now, the characteristics of some Markov models have been discussed. How-
ever, in this framework, the evaluation of a model in regards to certain criteria (that
will be defined later on) is also very important, as well as the formal verification of a
model as already seen in the first section. The evaluation of a model is addressed
in this context as the measuring of the quality of a learned model compared to other
models or to the real world process that it represents. In contrast, formal verification
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is the process of checking whether the model satisfies a set of properties that are not
necessarily related to its quality. In the following, we overview the evaluation and the
formal verification of the presented models.

Evaluation. The evaluation of the Discrete Time Markov Models presented above is
about measuring the quality of a Markov Chain (respectively an LMC) with respect to
the real random process. In other words, the evaluation of such models consists in
comparing the model and the reality in order to have an insight about the represen-
tational quality of the model. Therefore, to measure the conformity of the MC with the
actual process, one can simulate data from the MC (which can be performed in linear
time using a naive algorithm) and compare it with the real world data. Otherwise, one
can calculate the likelihood of the real data knowing the MC, i.e. how much is it likely
that this data came from this MC. In consequence, the crucial need about evaluating
the quality of an MC (or LMC) is prior knowledge about the represented process (data,
expertise etc.). The same techniques apply for the evaluation of HMMs.

Formal verification. The formal verification of a Discrete Time MC (respectively a
Discrete Time LMC) has been studied extensively. For instance, a tool was developed
in [KNP11] for automatic verification and another tool was also developed in the con-
text of reliability modeling of various systems [Her+03]. In practice, any kind of ade-
quate formal verification technique like classical Model Checking, Probabilistic Model
Checking or Statistical Model Checking can be used with these models without major
constraints. The same also applies for HMMs but with a slight constraint: one should
be able to discern (if needed) states and transitions from observations while verifying

Hidden states: Q1 > 2 > Q3 > g2 > g1

Observations: Y2 Y1 Y2 Y1 Y2

Figure 1.6 — An example of an execution of the Hidden Markov Model of Figure 1.5.
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the model.

In the following, we present another type of discrete time formalisms called Dynamic
Bayesian Networks (DBN), an extension of Bayesian Networks (BN) that are useful for
a wide range of problems.

1.3.2 Bayesian Networks and Dynamic Bayesian Networks

Bayesian networks [Cha91; Nea+04] are a family of probabilistic models that are ca-
pable or concisely representing relationships between variables. Contrary to the pre-
viously introduced formalisms, Bayesian networks are static, thus the edges in their
graphs do not represent transitions but rather dependencies. In the following, we recall
the formal definition of a Bayesian Network and we show an illustration in Figure 1.7.

Definition 1.3.4 [Cha91] A Bayesian Network (BN) is defined as a pair (G,0) such
that
- G = (V,FE) is a DAG (Directed Acyclic Graph) where V' is a set of random
variables (V1, V4, ..., V,,) constituting the nodes of G and E is a set of edges.
0 = {P(V; | Pa(V;))} is the set of conditional probability distributions of each
node knowing its parents, with Pa(V;) the parents of V; in the graph G.

One can notice that a variable depends on its Markov Blanket (parents, children
and other parents of the children) in the DAG. In other words, the Markov blanket of
a node is the only information one needs to predict the behavior of that node and its
children. For instance, knowing the values of the parents random variables is all the
information one needs to compute the value of the child’s random variable. In addition,
the "root" nodes without any parent, are independent random variables with already
known distributions.

In Figure 1.7, we can see a BN with three random variables and their correspond-
ing conditional probability distributions. In this example each of the random variables
is Boolean and can only take two values, True or False, but in practice there are no
restrictions on the number of values that a discrete random variable can take.

Any complete probabilistic model must, either explicitly or implicitly, represent the joint
distribution, i.e. the probability of every possible event as defined by the values of all
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Figure 1.7 — An example of a Bayesian Network BN with 3 random variables.

the variables [Pea01]. Bayesian Networks achieve compactness by factoring the joint
distribution into local conditional distributions for each variable given its parents. Fur-
thermore, any joint distribution over a set of variables can be represented by a fully con-
nected Bayesian Network [Cha91]. The general interpretation of Bayesian Networks
states that the full joint distribution is written as:

P(Vi, Ve, ..., V) = [T P(Vi | Pa(V}))

=1

On a side note, data generated from a Bayesian network, or any other probabilistic
graphical model with dependencies, is said to be faithful if it correctly replicates the
independence properties of the model. Bayesian networks offer an appropriate way to
address many artificial intelligence problems, in which one would like to come to con-
clusions probabilistically rather than only as logic properties. The expressive power of
such models is that they concisely represent a lot of information, making it less prone
to state-space explosion problems. For instance in the work of [Phi0O6] Bayesian Net-
works are used in the learning and modeling of complex systems. This matter will be
discussed in the following. However, BNs do not provide direct means for representing
temporal dependencies, this is why alternatives have been proposed.
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With this in mind, we introduce, define and discuss Dynamic Bayesian Networks (DBNs),
an extension of Bayesian Networks for explicitly representing random processes.

Definition 1.3.5 The generic definition of a k time slice Dynamic Bayesian Network
(DBN) with Markov order k — 1 can be found in [MR0Z2]. We are interested in the two
time slice Dynamic Bayesian Network (Markov order 1) that is defined as (B, B_,),
with B, a BN representing the initial network and B__, also a BN with two time slices
t — 1 andt representing P(V; | V,_1) by a DAG, and such that:

P(Vi | Viiy) = ﬁIP(vi | Pa(V}))

with n the number of random variables, V;' the node V; at time t and Pa(V}) the
parents of V; in the graph at times t andt — 1 (while considering an order 1 Markovian
model). Remark that this formalism describes discrete time stochastic processes and
that the term "dynamic" only means that we are modeling a dynamic system, not that
the network itself is evolving with time. Remark also that the Markovian property holds
for Dynamic Bayesian Networks.

The joint probability distribution in this case is obtained on a sequence of length T,
and is written as : .

PVir) =11 PV} | Pa(Vy))

t=1i=1

Expressive power. The expressive power of BNs is transferred to DBNs, therefore
DBNs are capable of displaying a lot of information without being very complex. Be-
sides, DBNs can be compared to HMMs. For instance, it is shown in [MR02] that HMMs
can be represented using DBNs. More precisely, a DBN can represent an exponential
number of HMM states concisely. Furthermore, the nodes in a DBN represent random
variables, and each random variable can be observed or not. On the other hand, in an
HMM the hidden states are always the same. The latter shows that from an observabil-
ity point of view, DBNs offer more flexibility. Moreover, we show in Example 1.3.2 that
a DBN can be converted into a Discrete Time Markov Chain. A state in a DBN is the
combined observations (values) of all the random variables at a certain time ¢. Note
that for the sake of simplicity in what follows, we write V;, for variable V; at time t¢.

Example 1.3.2 Consider two random variables V; and V, with a Boolean outcome 0
(False) or 1 (True) with different probabilities. In order to represent the evaluation of
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these variables with a DTMC, we need to create a state for each combination of pair of
values (see Figure 1.8).
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Figure 1.8 — An example showing the B__, of a DBN (to the left) transformed into a DTMC (to the
right). Note that in the states of the DTMC the value on the left is for V; and the one on the right for V5.

The outcome of the random variable V; at time t depends on its own outcome at
time t — 1 as well as the outcome of V, at time t — 1 (see Figure 1.8). However, the
outcome of the random variable V, at time t depends on its own outcome at time
t — 1 as well as the outcome of V; at time t. The probabilities on the transitions
are computed using the conditional probability distribution for each variable. For ex-
ample, to compute the probability to go from state (1,1) to state (0,0) we multiply
Pr(Vi, = F|WV, , =T, Vs, , =T) =09 and Pr(Vy, = F|Vi, = F, V5, , =T) = 0.5. We
can notice that the size of the DTMC (number of states and transitions) grows expo-
nentially with the number of variables in the DBN.

We add that the Bayesian Network B, (representing the initial state) of the DBN on
the left can be used for computing the probabilities of each state in the DTMC to be
an initial state. We can deduce that DBNs represents advantages over DTMCs in this
case, where they can represent more concisely the same quantity of information. The
objective from this example is to show that each formalism is created for certain pur-
poses, but that does not mean that one is superior to another.

In practice, DBNs are traditionally used for answering probabilistic questions about
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the state of a system at a certain step in a time sequence. Let Y be the set of observed
variables (Y., are the observed variables ranging from 1 to ¢) and X the set of non
observed ones. Given [ > 0 and h > 0, the questions in practice are classified into
different categories:

* Filtering: compute P(X; | Y1), i.e. the unobserved variables at time ¢ using the
observed variables at times ranging from 1 to ¢ (all the observed information).

* Smoothing: compute P(X;_; | Y1), i.e. the unobserved variables at the previous
time step ¢ — 1 using the observed variables at times ranging from 1 to ¢ (all the
observed information).

* Prediction: compute P(X,.; | Y1), i.e. the unobserved variables at an upcoming
time step ¢ + h using the observed variables at times ranging from 1 to ¢ (all the
observed information).

* Decoding: compute argmazP (X1, | Y14), i.e. the most likely values for all of the
unobserved variables using all of the observed variables.

+ Classification: compute P(Y.), i.e. all the observed variables at times ranging
from 1 to t.

The learning of BNs and DBNs can be divided into two parts, structure (or depen-
dencies) learning and parameters learning [Gha97]. All learning techniques for these
models are inspired by the expectation-maximization (EM) algorithm [DLR77]. In partic-
ular, EMis applied when there is missing data. Otherwise classical statistical estimation
methods, e.g. Maximum Likelihood Estimate (MLE) or Maximum A Posteriori (MAP),
are used for parameter learning.

Evaluation. The evaluation of such models, in practice, is commonly made while
learning them. We identify three types of methods for structure learning: score-based,
constraint-based and hybrid methods [DSA11]. Using a score-based method like a
greedy search algorithm [Chi02] for instance, consists in searching for models and
consistently picking either the "best", or a "better", model using an evaluation or a se-
lection criterion like the Bayesian Information Criterion (BIC) or the Akaike Information
Criterion (AIC) [Sch+78]. This procedure only stops when a model that cannot be en-
hanced is found (thus the name greedy). Furthermore, we can evaluate such models
by comparing them between each others. To compare the structure there exist dis-
tance measures like the Structural Hamming Distance (SHD) [Ham50; Tra13; TBA06],
and to compare the parameters there exist metrics like the Kullback-Leiber Divergence
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(KLD) [VH14].

Formal verification. The verification of this type of models is very uncommon in the
Model Checking community, in a way that classical and probabilistic Model Checking
techniques are not adapted to them and almost never used, to the best of our knowl-
edge. However, Statistical Model Checking (SMC) was applied for formal verification of
certain properties on DBNs in [Lan], which was made possible by the fact that DBNs
are models that we can sample and that are purely stochastic, two sufficient conditions
for applying SMC.

To conclude this presentation of state of the art formalisms, two last families of models
will be defined next, as well as their expressive power, evaluation and formal verifica-
tion.

1.3.3 Other Formalisms

In this subsection, Probabilistic Automata and Petri Nets will be briefly introduced,
henceforth completing this survey on discrete time graphical probabilistic formalisms.

Probabilistic Automata (PA). Probabilistic Automata [SL94; Rab63] are a family of
transition systems that can allow non-determinism in addition to probabilities. In the
following, we define a Probabilistic Automaton (PA) and illustrate it using an example.
We write Dist(Q) for the set of probability distributions on the set @, i.e. the set of
functions 7 : Q — [0, 1] such that >~ ., 7(q) = 1.

Definition 1.3.6 A Probabilistic Automaton (PA) [SL94] is a transition system A =
(Q,m, A, P), where

e () is a set of states;

» my € Dist(Q) is the initial probability distribution over the states;

A is an alphabet of actions;

* P:(@Q x A— Dist(Q) is a probabilistic transition function.

Note that, depending on the application, a probabilistic automaton can have accepting
states, i.e. states in which the sequence of actions is allowed to end. A probabilistic au-
tomaton can also be equipped with a non deterministic probabilistic transition relation.
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The example shown in Figure 1.9 illustrates a finite PA with two states and five transi-
tions. We can notice that there exists non-deterministic behavior in the PA of Figure 1.9,
due to the non-probabilistic choice that has to be made between transitions a and b,
each leading to a different distribution. The non-deterministic decision is usually made
externally, by a certain technique (like schedulers [BK08]), and it leads to the probabil-
ity distributions for the following transitions. Subsequently, simulation-based techniques
like SMC are not adequate for such models.

0.2 0.8
a0.6
a4 1 b 1 2 ai
b1

Figure 1.9 — An example of a Probabilistic Automaton with two states.

This formalism is commonly used in the domain of grammatical inference, where it is
used for representing distributions over strings and is learned using different algorithms
like ALERGIA [De 10]. However, this type of formalisms is not adequate for modeling
behavior in our framework, because of additional techniques or parameters that should
be used for preventing non-determinism or to transform non-deterministic uncertainties
into pure probabilities.

Petri Nets (PN). Petri nets [Pet77; Pet81] are mainly used for describing concurrent
systems, which means that by definition this formalism allow non-determinism. As a
result, simulation based verification is out of the picture. Furthermore, in some cases
it is hard to adapt classical Model Checking techniques to this type of models. In what
follows, Petri Nets are formally defined and an example illustrating a Petri Net is shown
in Figure 1.10.

Definition 1.3.7 A Petri Net (PN) is a tuple R = (P, T, Pre, Post, M,) [Bra83], such that
P is a finite (non empty) set of places;
« T is a finite (non empty) set of transitions such thatT N P = (;
e Pre: T x P — N is the pre-incidence (or input) function;
e Post: P x T — N is the post-incidence (or output) function;
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M, € N¥ js the initial marking of the net.

A state of the PN is defined by the application M, attributing a marking to each
place, i.e. a number of tokens that are present in each place. M (p) is equal to the
number of tokens in the place p € P. The initial marking M, is the marking with which

we start the execution of the PN.
Py
7 E
Py
Py
o

Figure 1.10 — An example of a Petri Net with 5 places and 4 transitions.

13

15 1y

In Figure 1.10, a Petri Net with five places, four transitions and two tokens (one in
P, and one in P;) is illustrated. An execution of the PN consists in the successive firing
of allowed transitions, i.e. transitions having enough tokens in the Pre corresponding
places. When an allowed transition is fired, tokens are removed from the Pre corre-
sponding places and others are placed in the Post corresponding places. As a conse-
quence, a marking graph can be generated from the PN and can represent the latter
as a (potentially infinite) transition system. The evolution of this graph corresponds to
the execution of the PN.

Many types of Petri Nets exist in the literature, like high-level Petri Nets, colored Petri
Nets [JR12] and probabilistic extensions of Petri Nets (probabilistic Petri Nets [Alb+08]
and stochastic Petri Nets [BK98]). This formalism and its derivatives are commonly
used in Process Mining, learned by the alpha algorithm (and its extensions) [Van11]

36



1.4. Discussion

in order to learn processes using a certain type of data; do diagnostics and detect
problems; identify the sources of the problems; and finally recommend solutions for
the problems. It could seem like a good formalism to use in behavior analytics and
malicious event detection, however these models typically detect bottlenecks in a con-
current system and potential deadlocks in a process. Thus, the application of Petri Nets
is mainly industrial and is more relevant to the Business Intelligence domain [Van11].

1.4 Discussion

After this concise review, one can clearly induce, by taking a glimpse on the state
of the art presented in this chapter, that the first step in doing model based machine
learning is choosing the appropriate modeling formalism. The same applies for formal
verification. It is useless to learn a model that cannot be formally checked if this was the
initial objective. Several verification techniques and learning formalisms have been dis-
cussed in this chapter and, before moving to the next one, we propose a brief synthesis.

So far, based on what has been presented, one should have an insight about the
functionality and utility of some of the state of the art formalisms. Recall that one of the
main objectives of this thesis is to bring closer the learning domain and the formal ver-
ification domain. Therefore, before introducing the preliminaries and the models that
were directly used in this framework, we discuss similarities and inspirational works
that we already have explored in the literature.

Links have been established between several formalisms for different applications, e.g.
direct passages from HMMs to PAs were created in [DDEOQ5], allowing to apply learn-
ability results and induction algorithms developed in one formalism to the other. In
addition, regardless of complexity issues, Petri Nets can be represented as (potentially
infinite) transition systems, HMMs can be represented as DBNs and DBNs can be
represented as Markov Chains (with the risk of state-space explosion). Besides, con-
tinuous time extensions exist to the previously cited formalisms, like continuous time
Markov Chains for instance, that can be formally verified [Azi+96]; and continuous time
Bayesian Networks [NSK02] (that are not commonly used due to their complexity) on
which inferences could be done after transforming them into probabilistic timed au-
tomata [NSKO02]. Additionally, Dynamic Bayesian Networks have been used for formal
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verification using SMC in [Lan] which has been a major inspiration for the work in this
thesis.

Other works on model optimization heuristics with regards to a certain objective and
neighborhood search techniques were also notably inspiring for this work. For instance
in the works of [Mis+15], a heuristic was used for minimizing the outcome values of
observed variables in a hierarchical Bayesian model. Similarly, in [Lim+06; Lim+09]
substructural neighborhoods for local searches in the Bayesian optimization algorithm
were proposed. By exploring the literature, we had a better knowledge about the dif-
ferent domains. Furthermore, this exploration gives a better intuition on how to dissect
the problematic into several smaller problems in order to target them and resolve them
one by one.

To sum up, all of the discussed models in this chapter have multiple functionalities
and are widely used in the domain of data science, but as previously mentioned they all
have one common insufficiency in regards to the objective of this thesis: the discretiza-
tion of time. Furthermore, the practices that have been listed in this chapter do not
have the same objective and approach as the one adopted in this work. In chapter 3,
a formalized problem statement and a detailed description of the adopted strategy will
be presented. In the next chapter some continuous time formalisms will be presented
as a background with the required preliminaries for this work.
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CHAPTER 2

BACKGROUND

Each of the formalisms that have been introduced in the previous chapter has its
own advantages and limitations. Nonetheless, all of them have a common insufficiency,
the discretisation of time, which can be described as a representational bias in the
learning of these formalisms. Between every two consecutive events there is a discrete
time step. Therefore, there is no real measure of time that shows the actual elapsed
time between events, the delay before any event occurs in the beginning of a process,
nor the delay at the end of a process. A continuous time formalism ensures no loss
of information concerning time. This is important in our framework, especially when it
comes to learning behavioral models and verifying properties on them. In particular,
from a security point of view, it is better to use continuous time modeling formalisms
that allow knowing exactly when to act and not only what action to take; for example
when predicting a system failure or forecasting future user tendencies.

To explore the dynamics of a wide variety of systems behavior based on collected
event streams, there exist many advanced continuous time modeling formalisms: for in-
stance, continuous time Bayesian networks [NSK02], Markov jump processes [RT13],
Poisson networks [RGHO05] and graphical event models (GEMs) based on Conditional
Intensity Models [GMX11]. In this thesis we are interested in Recursive Timescale
Graphical Event Models (or RTGEMs) [GM16] a sub-family of GEMs, that present many
advantages compared to the other formalisms. In particular, they are designed to uni-
versally approximate a reasonable class of marked point processes (see [DV07] for
details).

In the following, marked point processes (m.p.p.) are briefly introduced as a
prerequisite for the framework. Graphical Event Models and their different subfamilies
are then defined and discussed.
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2.1 Marked Point Processes

Let S be atotally ordered set. A point process is a set of points that are positioned in
S. A marked point process is a point process that contains additional features at each
point. In other words, a marked point process (m.p.p.) is composed of a point process
and marks associated witch each point. If we consider a set of marks M, an m.p.p. can
be expressed as the pair:

{(s;,m;) :i=1,...,n}

where s; € S, m; € M and s; < s;.; forall 1 <i <n.
Henceforth, we assume that the space S that is used is the one-dimensional space of
time, and the marks are labels describing each point. Marked point processes are used
for expressing event streams in this framework, i.e. random labeled (marked) events
(points) that arrive at different times {¢;} (unidimensional space). The word point is
used for describing events as being instantaneous in the time dimension and for the
sake of simplicity, the notation [ for labels is going to be used instead of m for marks.

In practice, we tend to use a timeline to represent data that arrive at irregular intervals.
A timeline can be defined as a sequence of pairs {time, event} capturing the relative
frequency and ordering of events [WP13]. In figure 2.1, an example is shown of how a
timeline can be seen as a multivariate marked point process.

A B A C B c
| | | | l L
Time | | | | | |
A A
A @ @
O- O-
C C
C > o0—

Figure 2.1 — An example showing the decomposition of a timeline into a marked point process.

Time is often seen with an evolutionary character, i.e. what happens now could
depend on the past but surely not on the future. In the following, event streams are
defined as well as stochastic models that are capable of representing such an evolu-
tionary process.
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If we take a step back, a point process can be described by unrolling a stochastic
model that defines inter arrival times between different events, i.e. defining the time
of the next event based on all the times of previous events. In the following, we will
explore a family of stochastic models based on conditional intensity functions, called
Conditional Intensity Models (CIM). We start by defining the data type that is generally
used for learning these models.

Event streams. An event stream consists in a timed sequence of events with strictly
increasing timestamps. An event stream can be written as: (t1,1), ..., (t,, 1), With 0 <
t; < tivg < t*(t" =t,yq) foralll <i < n-—1and where [; are labels chosen from a
finite set of labels £. Hence, a single event is defined by the pair (t;, [;) but for the sake
of simplicity we sometimes refer to an event only by its label [ when the context is clear
enough. We note that in the following, ¢, = 0 and t* = ¢,,,, are used as conventions, as
well as the fact that two events cannot occur at the exact same time. In the following,
we use t* to denote the length (or size) of a given sample. An event stream can be
considered as an m.p.p. and the data that can be derived from it can be written as ;.
We write |z;+| for the size of our data z;- (the number of events in the sequence, here it
is n). The history at time ¢ is the set of all the events that occurred before ¢: h; denotes
the ith history h; = (t1,04), ..., (ti—1,l;—1). With this in mind, we define a conditional
intensity function. In the following, and for the sake of simplicity, data will sometimes
be written as =z, history as h and time as ¢, without indexing them explicitly at every
instance, but providing enough context to understand their use.

Definition 2.1.1 [DV07] A conditional intensity function, defines the risk of having a
given event at a certain time, depending on the observed history of events. We recall
that E[X] is the expected value of a random variable X. Mathematically a conditional
intensity function \ is written as:

E[N(t,t+ Ar)|hy]
Ar—0 Ay

where N (T') denotes the number of points (events) occurring in a time interval T .

In other words, the conditional intensity function can globally specify the mean inter
arrival times between two events in a process, because it defines the mean number of
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events that are occurring in a fixed time interval. Furthermore, we recall an important
assumption for the following about this approach: there cannot be more than one event
in an infinitesimal interval of time.

Before moving forward to the definition of a CIM, we start with an introductory example
about a common probability distribution based on an intensity function. Consider for
instance the Poisson distribution [Hai73], that is a probability distribution representing
a number of events occurring in a fixed interval of time under the assumption that any
event is independent with regards to the duration from the previous event. A Poisson
distribution is used for modeling processes such as the number of cars arriving to a
garage between two given times. The probability function of a random variable X that
follows a Poisson distribution of parameter A (where also the expectation and the vari-
ance are equal to \) is given by: P(X = k) = Ak,j!”. We note that in order to sample
from such distribution, the inter arrival times between every two events should be com-
puted. The inter arrival time follows the exponential distribution in the case of a Poisson
distribution, with a mean of 1/, i.e. the mean time between every two events in a Pois-
son distribution is 1/\.

A CIM that models a marked point process must treat each point (or event) individ-
ually, thus each label I € £ must be associated with its own conditional intensity func-
tion A (t | h). The conditional intensity function, describes the risk of having the event
[ at time ¢ given a certain history h of events (the totality of the events or a part of
them depending on the CIM). For instance, in a Markovian CIM where an event can be
particularly dependent from a set of events (called parents), the conditional intensity
functions satisfy the following property:

A(t | h) = N(t | [h]pagy)

where Pa(l) is the set of parents of I and []p,() is the history of the parents only.

Definition 2.1.2 [DV07] Formally, a CIM 6 is a set of indexed conditional intensity
functions {\,(t | x)}iec. The data likelihood function is the joint density function of all
the points in the m.p.p. that can be factorized into a product of all conditional intensity
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functions [DV07] and can be written as:

p(z]6)=1]] H No(ti | hy; 0)11) = Multalhise)

leLi=1

where Ay(t | h;0) = [; \i(1 | x;0)dr represents the compensator [DVO07] for the data
x and the indicator function 1,(1") is one ifI" = | and zero otherwise.

In the next subsection, Piecewise-Constant Conditional Intensity Models (PCIMs) are
briefly presented in order to give an insight about Graphical Event Models.

2.1.1 Piecewise-Constant Conditional Intensity Models

Piecewise-Constant Conditional Intensity Models (PCIMs) are based on the as-

sumption that intensity functions are constant in "pieces" or in time intervals. In other
words, there is a mapping associated with these models that assigns a parameter \ for
every label in £ according to an active state. The active state is determined in function
of the time ¢ and the data .
These models are important because they form the basis of graphical event models
and they ensure fast and efficient learning and inference. These models are related
to Poisson networks [Tru+05], since Poisson networks also contain piecewise constant
parameters in their mapping (for more details see the following and [GMX11]). How-
ever, it was experimentally shown in [GMX11] that PCIMs are in practice, by orders of
magnitude, faster to train than Poisson networks.

Definition 2.1.3 Let L be a set of labels. Each label | € L is associated to a set of
discrete states %.,. For each label | and each state s € ¥, we have a parameter \;;.
An active state s for each label (correspondingly the active parameter \;;) has to be
determined by a mapping o, : T x X — 3, (with T the set of all possible times
and X the set of all possible data). Therefore, a PCIM is defined by local structures
S1 = (X, 04(t, x)) and local piecewise constant parameters \;s. Let S = {5} and 6 =
{N\is }iecsex,, then the PCIM data likelihood knowing the structure and the parameters
in this case can be written as:

$ | S, 9 H H )\Mls e~ NsTis(2)

lel SGE[
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where M,(z) is the number of occurrence of events of type | while s is active in the
event sequence z, and T,;(x) is the total duration while s was active for event type .

In practice, the learning of a PCIM is divided into two processes: the local struc-
ture learning process that could be done using a decision tree to alternate between
active states and define adequate mapping from the data to the states set similarly
to [CHM97]; and the parameters learning process that uses statistical estimates de-
pending on the type of the model and knowing the structure. Commonly, a greedy
search is used (similarly to the learning of Dynamic Bayesian Networks) where for a
fixed structure (for instance a given decision tree and a given mapping for states) the
parameters are calculated, and the structure is continuously modified until we cannot
find a better model based on a selection criterion or a certain "gain".

The theory of CIMs is a root to many continuous time formalisms. It is an expres-
sive tool that can help build graphical models such as Poisson networks [RGH05] and
GEMs, that will be detailed later on. Moreover, PCIMs favor the discretization of states
instead of the discretization of time, creating a set of constant parameters associated
with each "scenario" in time and history of past events in which an event can occur.
In the following, we define a family of graphical models that is directly used in this
framework, based on the concepts that have been presented so far.

2.2 Graphical Event Models

Definition 2.2.1 A Graphical Event Model (GEM) is defined as G = ((L, E),0) where
(L, E) is a directed graph and 6 a set of parameters. A GEM can represent event
streams of the type = as defined in section 2.1, as well as the dependencies between
the different labels (or events) in time. In this case, the likelihood of the data knowing
the graph and its parameters is written as:

|24 | |24 |41

plae | )= [Laute [ h) T e " Liee Jiantrind .1)

with h,,.|+1 representing the entire history of the event stream including z;-. In figure
2.2, an example of a GEM is shown with four labels (nodes) A, B, C and D, each with
its corresponding parameter (conditional intensity function). The structure of a GEM
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(directed graph) has no constraints over cycles or loops, giving it a superior degree of
expressive power compared to other graphical models based on DAGs, like Dynamic
Bayesian Networks for instance, that cannot directly allow cycles or loops in a single
time-slice.

Ag(t | h) Aot | h)

Aa(t|h) (A '@ - C

Ap(t | h)

Figure 2.2 — An example of a 4 labels GEM.

In this formalism, one should note that the conditional intensity functions \;(¢ | h)
are not piecewise-constant, which means that they do not take constant values for a
certain period of time so the models are a family of CIMs and not PCIMs.

In this work we are only interested in Markov m.p.p.s with respect to a certain GEM.
The conditional intensity functions \;(¢ | 2) in this case satisfy the following property for
all t and h:

N(t | h) = N(t | [ paqy)

where Pa(l) are the parents of [ in G. This means that the conditional intensity of a cer-
tain label [ at time ¢ only depends on the history of the parents of [ and not the entire
history of the process.

The dependencies between the events can be easily depicted on the graph of the
GEM. In the graph of figure 2.2 for instance, one can identify that label B has two
parents A and D, hence \g(t | h) depends on the past history of A and D. However,
label (or node) D does not have any parents and subsequently has a constant rate
Ap(t | h) = Ap of occurrence.

It has been noted in Chapter 1 that any joint distribution over a set of variables can be
represented by a fully connected Bayesian Network. Likewise, a fully connected GEM
can represent any m.p.p. with labels in £ [GM16].
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In the following, we introduce a more interesting subfamily of GEMs that is more gran-
ular and can be more easily used in practice.

2.2.1 Timescale Graphical Event Models

A Timescale GEM (TGEM) is a subfamily of GEM where each dependency between
two events is defined for a given finite timescale which specifies the temporal horizon
and the granularity of the dependency represented by that edge. Formally, a timescale
is a set T" of half-open intervals (a, b] (with a > 0 and b > «) that form a partition of some
interval (c,t] (with ¢ > 0), where ¢, is the highest value of T" and is called the horizon
of an edge e.

Definition 2.2.2 A TGEM M = (G,T) consists ofa GEM G = ((L, F),0) and a set of
timescales T =T, corresponding to the edges E of the graph of G.

€(ecE)
We write ¢;(h,t) as the parent count vector of bounded counts (of occurrences) over
the intervals in the timescales of the parents of [ (in order to have bounded counts, a
maximum threshold should be fixed). We provide an example to explicitly show parent
count vectors and parameters (see Example 2.2.1).

The conditional intensity of a node (or a variable) labeled [ in the GEM only depends
on the history of the number of occurrences of its parents within the corresponding
timescale.

The conditional intensity functions now have parameters, which are piecewise-constant:

Mt R) = { e Feahiec-

We use C; to denote the set of all possible parent count vectors of label I. We note that
each edge has a timescale. For the following example (Figure 2.3), we consider that all
TGEMSs are bounded by 1 (making the parent count vectors binary), thus only the fact
that a parent has occurred (or not) within the corresponding timescale is important and
not the number of times a parent occurs.

Example 2.2.1 Consider the TGEM illustrated in Figure 2.3. We have L = {A, B,C, D},
so we can list the different parent count vectors in C; associated with each label:
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(0,2]

)\B,cl(h,t) )\C,cl(h,t)

1,3](3,10 0,20
Mty A( J( ]® (0,20] @

Figure 2.3 — An example of a 4 labels TGEM.

= {0,1}, Cp = {0,1} x {0,1} x {0,1}, Cc = {0,1} and Cp = ( . Thus, for the
event B for example, cg(h,t) = [0,1, 1] means that there was no A in [t — 3,t — 1),
there was an A in [t — 10,t — 3) and there was a D in [t — 5,t). Hence, the conditional
intensity functions for the variable B are of the form: \g oo0, AB.001, AB.010, AB.011, AB.100
AB1o1, Ao @nd g 111. The same applies to the rest of the variables, except the vari-
able D that is independent of all other variables, so its conditional intensity function is
written as \p. All conditional intensity functions are equal to constants making them
piecewise-constant depending on the corresponding combination of parents.

In the case of TGEMSs, the likelihood of the data in equation 2.1 is simplified and
written as follows:

H H )\"f 2, (@ex) *)\l,jdt*l,j(xt*) (22)

leL jeCy

.I't*

where the sufficient statistics n;-; ;(z;+) and dy+ j(x,+) are the count of /-events and
the durations, respectively, when the parent count vector was equal to j (a certain
combination of parents). In [GM16], the sufficient statistics are formally written as:

|z |

np 1,5 (24) Zl 1(ci(hiy t;) = 7)

|z e |41

dt*l] SEt* = Z / Cl h’MT ])dT

ti—

with ¢,,. .41 used to represent the duration d between the last event occurrence and the
final time t* in the data.
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2.2.2 Recursive Timescale Graphical Event Models

In practice, the learning process of GEMs is not an easy task, especially because
they are not piecewise-constant intensity models, thus the learning of the conditional
intensity functions can become hard (since they are not constants). The difficulty of
learning GEMs, along with the necessity of having a "universal" Graphical Event Model
that is easy to learn and to handle, led to the creation of a subclass of TGEMs called
Recursive Timescale Graphical Event Models (RTGEMSs).

Definition 2.2.3 The family of RTGEMs is defined recursively to be the finite clo-
sure of the empty model M, = ((L,{}),{}) under a set of allowed operators O =
{add, split, extend} (discussed in the following).

RTGEMs as described in [GM16] can universally approximate any smooth multivariate
temporal point process. RTGEMs are learned recursively using the set of operators
introduced above. More details will be given in the following.

Furthermore, it is proven in the works of [GM16] that using a greedy search algorithm
to learn this class of models always shows structural and parametric consistency. In
other words, the learned model converges in probability to the optimal model when the
learning data size is increased, unlike the more general cases of TGEMs and GEMs
for which, to the best of our knowledge, consistency has not been proven.

A finite consistent RTGEM learning procedure [GM16] is to do a forward greedy search
(for model construction) followed by a backward greedy search (for model refinement),
both based on model selection, and using data that is faithful (see Chapter 1). The
Bayesian Information Criterion (BIC) [Sch+78] is a very general model criterion that
has been adapted to select the "best" (or a "better") RTGEM when doing a greedy
search, and is written as follows for a model M:

Sﬁc(M) = 10g(p(xt* t*’ M, Xt*J,j(It*))) — Z | Cl | . 10g(t*),

lel

where the left term of the difference is the likelihood of the data knowing the history,
the model and the calculated maximum likelihood estimates (m.l.e.) of the X functions
(written ). The right term represents the complexity of the model, with Dim(M) =
Sier | Ci | as the dimension of an RTGEM, multiplied by the logarithm of the length of
the sample t* (¢* is also referred to as sample size in the following) used for learning to
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define the overall complexity.
Given a model M, the maximum likelihood estimate X of the A parameters for M (know-
ing its structure) is as follows [GM16]:

j\t*,l,j (.:Ct* ) — 7”1&*,[,‘7 (xt* )

N dt*l,j (Iﬁ)

Learning. The set of elementary operators allowed in the learning of RTGEMs in
a forward search algorithm is the following: Or = {add, split, extend}. The forward
search algorithm usually starts from an empty model (only containing nodes that are
not connected) . The "add" operator adds a non-existing edge to a model and its cor-
responding timescale 7" = (0, ¢|, with ¢ a constant (also called horizon). The "split"
operator splits one interval (a,b] in the timescale of a chosen edge into two intervals
(a, %£2], (%42, b]. The extend operator extends the horizon of a chosen edge by adding
the interval (5, 2t;], with ¢, being the previous horizon.

In the learning algorithm proposed in [GM16], a backward search follows a forward
search. This means that, implicitly, symmetric backward operators should be used.
For the sake of convenience, and since there are no further information in the literature
about these operators, one can write Op' = {reverse_add, reverse_split,
reverse_extend} for these symmetric backward operators.

The "reverse_add" operator removes a chosen edge with only one interval in its
timescale (to make it the exact inverse of the "add" operator). The "reverse_split" op-
erator is used for merging two consecutive intervals in a timescale on a chosen edge
that have been initially split. The "reverse_extend" operator removes the highest (the
last) interval in a timescale on a chosen edge only if the upper bound of this interval
was initially created by an extend.

If we explore more closely the dependencies in an RTGEM we can see that the num-
ber of dependencies that an edge represents is equal to the number of intervals in
its timescale. Therefore, removing an edge that contains more than one interval is not
an "elementary" operation: it is like removing multiple edges. This is why the operation
remove_edge (and analogously the add operator) can only be used for removing edges
(adding edges) with one interval in their timescale.
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Sampling. The sampling of such models is similar to the sampling of Poisson Net-
works [RGHO05] and it was also adapted on Continous Time Bayesian
Networks (CTBNs) [FS08]. The needed "elementary" sampling techniques are demon-
strated using the example in Figure 2.4 where different simple RTGEMs are shown.
In Figure 4.16a the sampling is straightforward since there is only a single constant
rate \4. In Figure 4.16b, the sampling of A is straightforward but the sampling of B will
depend on the sampling of A. As a consequence, A must be sampled before B, then
the active \g should be chosen respectively in regards to the occurrences of A along
the timeline, and finally B can be sampled using the corresponding Ap value in each
section of the timeline.

Aa Aao Aan

@ o (0,5] (0,4 (0,5
)\370 )\371 a )\B,O )\BJ

(@) (b) ()

Figure 2.4 — An example showing different RTGEMs to illustrate elementary sampling techniques.

Finally, in Figure 4.16c, things become more complicated: none of the variables can
be sampled straightforwardly because of the cycle between A and B. Therefore, some
sort of "competition" (based on the rejection sampling concept [FIu90]) is created be-
tween the variables and two time values 74 and 75 are sampled using the correspond-
ing rates A4, and A, (¢ is the corresponding parent configuration, ¢; = 0 initially).
The highest value (between 74 and 73) is rejected because the one that comes before
is supposed to change the corresponding conditional intensity function of the other
(making the latter one wrongly sampled). Note that the corresponding rates are the
conditional intensity functions that are active (with regards to the parents configura-
tion) at the moment of the sampling. Afterwards, the lowest value (between 7, and 7p)
is accepted if it is within the firing period. The firing period is the lowest interval on the
timescale of the edge entering the corresponding node (for A it is between 0 and 5),
because usually after that interval there’s a switch of parents configuration and subse-
quently a switch in the conditional intensity function.
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Using these elementary techniques, sampling can be generalized to a larger number of
nodes, but two operations (illustrated in Figure 2.5) need to be performed beforehand.

Lgtun

(b) (c) (d)

Figure 2.5 — An example from (a) to (d) showing how an RTGEM (we omitted the timescales for a
better representation) can be transformed into ordered SCCs.

The first operation is based on the concept of Strongly Connected Components
(SCCs). A Strongly Connected Component (SCC) in graph theory [Cor+01] is a di-
rected subgraph where there exists a path between every single pair of nodes. The first
operation is illustrated in Figure 2.5b where strongly connected components (nodes of
the same color) are brought together forming a new "node" locally and the directed
graph is transformed to a DAG at the end of the operation. The second operation (illus-
trated in Figure 2.5d) is topological ordering [Cor+01], and it defines an order that can
be used for sampling the new nodes of the DAG using the three elementary operations.
Note that the topological order is not unique, for instance 1 and 1’ could be sampled in
random order (1 before 1’ or vice versa).

The sampling procedure described above is called Forward Sampling due to the pro-
gressive sampling of the SCCs (one by one) following a topological order. Furthermore,
the sampling of each SCC is based on rejection sampling [FIu90] as previously de-
scribed. The sampling algorithm and the complexity of generating one sample from an
RTGEM will be defined in what follows (Algorithm 1). Algorithm 1 takes an RTGEM,
its ordered SCCs (SCC'_set) and a sample length ¢* as inputs and generates an event
stream of the form z;-. In our case, the computation of the SCCs is performed using
Kosaraju’s algorithm [Sha81], that has linear complexity with regards to the total num-
ber of nodes (n) and the total number of edges (¢) (O(n + e)). However, any other
algorithm that allows computing SCCs could be used instead.

Once SCCs are computed, the essence of sampling is to go through each SCC and
apply the rejection sampling technique within this SCC (it is straightforward in the case
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Algorithm 1 Forward Sampling RTGEMs
input: RTGEM,; SCC'_set; t*

output: z,.
1: for(i = 0;i < ng;i ++)
22 t=0
3:  while(t < t¥)
4 Rejection_Sampling(nodes|i))
5: Update_time(t)
6 if(t <t*)
7 Update_Stream ()
8 Update_Lambdas
o: else
10: break
11: endif
12.  endwhile
13: endfor

14: return x4

of SCCs with one node and no loops). The variable ¢ defines the time of the next event.
The function Rejection_Sampling takes as a parameter the nodes of the concerned
SCC and samples them as previously described. The function Update_time(t) updates
the value of ¢ as previously described in this section. In line 6 of the algorithm, we en-
sure the respect of the t* bound (desired sample length) while adding the one sampled
event in x;« (Update_Stream on line 9) and to update the active parameters (\) due to
the potential change of parents configurations (Update_Lambdas on line 10).

Let n, be the number of SCCs, n,, the maximum number of nodes in a single SCC
and \,... the highest ) value of the RTGEM. In the rejection sampling phase, the more
events we sample the more operations (Update functions) we trigger for each node
inside the SCC (thus we use n,, for the upper bound in the complexity evaluation). To
sample the maximum amount of events we need to compute the smallest arrival times
(1) for each node. The mean inter arrival times are defined as ; (as previously men-
tioned) for a Poisson distribution (which is the case for RTGEMSs). Therefore, the upper
bound for the maximum number of triggered operations is defined as l/j—m =" Mnaz-
Therefore, the complexity of Algorithm 1 can be evaluated as O(ng X n,, X t* - Ajpaz)-
Remark that, after a closer observation we can write the complexity as O(n x t* - A\jaz)

with n the total number of nodes. Indeed, the sampling process goes through all nodes
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a single time, and each node triggers a maximum of ¢* - A, constant time operations.

To the best of our knowledge, there is no published tool to learn and handle this type
of models. Besides, as mentioned before, it is experimentally proven that these mod-
els (type of PCIMs) are an order of magnitude faster to learn than other continuous
time modeling formalisms (in particular Poisson networks) [GMX11], and that they can
universally approximate any m.p.p. [GM16], making them very attractive to inquire into.
Moreover, we will emphasize, in chapters 3 and 4 on how we benefit from the different
advantages of RTGEMSs that were presented in this section.

2.3 Conclusion

As shown in this chapter, one cannot deny the importance of continuous time mod-
eling formalisms from an applicative point of view. Graphical Event Models are families
of models that can represent any event streams. In particular, for security assess-
ments, RTGEM can be built to explicitly represent and process a lot of information.
Furthermore, RTGEMs can be sampled, so they can be verified using Statistical Model
Checking (SMC).

Although the sampling of RTGEMs could become expensive (as previously shown), we
use it in our experiments to sample with a fixed target. In other words, we adapt a sim-
ulation technique that is described in Chapter 3 that allows us to reduce the sampling
time in practice. We have found that RTGEMs are adequate to do behavior analytics, in
order to distinguish malicious from normal behavior, because they can describe event
based and temporal dependencies between a sequence of actions.

In the following chapter, we describe the problem in details and properly formalize it. In

addition, we will introduce in details the strategy that we proposed in order to address
the problem.
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CHAPTER 3

GENERIC STRUCTURE OF A MODEL
BASED LEARNING AND FORMAL
PROPERTIES VERIFICATION STRATEGY

In this chapter, we give a brief contextualization of the problem we wish to solve in
order to reach the objectives of this thesis. In the following, we introduce the problem,
formalize it and propose a strategy that can solve it. We also propose a generic algo-
rithm describing the different steps of the strategy in details. Afterwards, we justify and
describe the methods that we chose in order to address each section of the algorithm.
Some of the results of this chapter have been presented in [ADL19].

Consider a real life system, like an E-store, a car rental service, an online bank, a
manufacturing system or a social network. These types of systems like many others
are observable, which means that by observing them we can collect data logs that de-
scribe the real behavior and evolution of the system (maybe in different executions).
We consider, for the following, that the data is as described in 2.1, so that our data
set D consists of timed events £ € L, L being the set of labels. Using this data set
we would like to learn the "fittest" model, that best represents the data. We recall that
learning a model is important from a security point of view because it allows easier
comparison with reference behavior models, enables broader applications of formal
verification (also broader types of properties to verify) and allows the sampling of more
data.

In the learning phase of a model, we want to learn the fittest model that best repre-
sents reality. Therefore, in order to select this fittest model, we tend to adapt scores
and metrics that evaluate the complexity and resemblance of different learned models
compared to the real data. From a security point of view, it is also important to verify if
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our model (that represents reality up to a certain degree) satisfies given security rules
or properties. If security properties do not hold on the model, we are also interested,
from a security point of view, in computing how far the current model is from verifying
them in order to have an insight on the "danger level" of the model. A possible approach
is to adapt a measure inspired by methods of model comparison that allows us to eval-
uate the dangerousness accordingly. By proceeding as such we can find (or estimate)
a model that is safe, i.e. that can generate data with "safe behavior".The probability
that a model M verifies a security query ¢ is written P(¢ | M). In order to stay co-
herent with the notations of the previous chapter, we write P(D | M) for the likelihood
of the data knowing the model (structure and parameters). Remark that the previously
mentioned likelihood (used to compute the maximum of likelihood) is different from the
marginal likelihood of the data knowing only the structure of the model. It was shown
in [CHM97] that AIC and BIC scores are approximations of the marginal likelihood (this
will be addressed in the following). The problem we are stating can be formalized as
follows:

M, M* = argmax(P(D | M)) with P(p | M) > c, (3.1)

with ¢ € [0, 1] a given constant.

The security properties we are looking to verify are qualitative and generally address
a limited number of events in our model. We denote L, the set of labels of the events
concerned by the security query . We write [, for a label in £,. Security properties
are explained and defined in details later on in the current chapter.

Intuitively we tend to address this kind of problems as optimization problems. How-
ever, the problem as stated in equation 3.1 cannot be solved using a multi-objective
optimization heuristics such as [Mir+16], because of the fact that a qualitative property
cannot be optimized, it is either true or false. In other words, we only have models that
are not secure (P(¢ | M) < ¢) and models that are secure (P(¢ | M) > ¢). For in-
stance, consider two models M and M’ that satisfy P(¢ | M) > cand P(p | M') > ¢
so that both are "secure"; having P(¢ | M) > P(¢ | M') does not mean that M is
"more secure" than M’. As a consequence Equation 3.1 cannot be optimized using a
multi-objective function, thus we decompose it and proceed otherwise.

We will be using a sufficiently generic algorithm to explicitly represent and detail the
adopted procedure step by step along this chapter.
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3.1 Proposed strategy

The strategy we propose can be represented using a generic algorithm consisting
in three main steps, where the first step is the learning phase, the second step is the
model space exploration phase and model verification, and the last step is the distance
computation between two models. Every step of the following Algorithm 2 is detailed
later on.

Algorithm 2 Proposed Strategy

input: D, ¢
output: M* A
1: M° = argmax P(D| M)

MeChosen_Formalism
N = Ne(Ne, (M)
M* =find{M e N, P(¢ | M) > c}
A = Distance(M?°, M*)

hrow

The first line of Algorithm 2 corresponds to the learning phase of a model. It consists
in choosing an adequate modeling language and learning the fittest model M°. The
choice of the formalism and its learning will be discussed in section 3.1.2. Lines 2 and 3
of Algorithm 2 correspond to the model space exploration phase and model verification,
where we seek a model M*, in the "close" neighborhood of /¢ written N.(N;, (M?)),
that verifies the security property. This step will be explained in details in sections 3.1.2
and 3.1.3. The last line of the algorithm consists in computing the distance between the
fittest model and the model that we select after the neighborhood search (if one exists).
The notion of distance we propose is later defined and explained in section 3.1.4.

3.1.1 Formalism choice and learning

The formalism we chose for this framework are Recursive Timescale Graphical
Event Models (RTGEMSs), due to the many advantages they offer. To begin with, they
are continuous in time, which guarantees no loss of time related information and in-
creases the reliability of verifying time related properties. On the other hand, as men-
tioned before, they are universal in the sense that they can represent any data set of
the form z (as seen in Chapter 2) consisting of events streams in time. Furthermore,
RTGEMs are simple to handle and easy to learn, which is mainly due to their "recur-
sive" type and straightforward structure. Finally, they were experimentally proven to
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be of orders of magnitude faster to train and more efficient than other formalisms, in
particular Poisson networks, as shown in [GMX11; GM16].

Learning. RTGEMs are learned using a two steps Forward-Backward Greedy search
technique. A Greedy search has by definition a "best" mode. This mode consists in
choosing the best model in every step.

The learning of RTGEMSs consists in starting from an initially empty RTGEM (only the
nodes (labels) are present in the graph without any edge), and iteratively applying mod-
ifications on the initial model, this phase is called the Forward search.

An iteration consists in separately testing all possible operators if we are in "best" mode
and some of the possible operators (and maybe all of them) if we are in "better" mode,
and henceforth picking only one operator to apply. Remark that not every operator is
possible in every iteration, for instance from the empty graph we can only apply the
"ADD" operator in the first iteration, in order to add an edge whose timescale can be
used in next iterations to split or to extend. Note that for the sake of simplicity, the ex-
pression "empty graph” is used in this framework to denote a graph that only contains
the nodes without any edge.

After each selected operator (either randomly or deterministically) a test is made based
on the Bayesian Information Criterion (BIC) [Sch+78] score before permanently apply-
ing the operator. Since we are in Greedy "best" mode, we test all possible operators
separately one by one on the empty graph and only apply the operator that gives the
best BIC score for the resulting graph. We stop the learning procedure when we cannot
improve the BIC score anymore.

In the Forward search phase, the allowed operators are the Or = {add, split, extend}
forward operators that allow to construct the graph and to increase its size by detecting
dependencies. In the Backward search phase the allowed operators are the reverse
Op' = {reverse_add, reverse_split, reverse_extend} backward operators that allow to
refine the model and reduce its complexity. Note that in a "best" mode Greedy Search
technique we choose the best graph at every step (highest BIC score), thus in practice
we rarely find backward operators in the Backward phase that improve the score.
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Let M = (G,T) be an RTGEM such that 7 is a set of timescales and G = ((L, E), 0)
where (L, F) is a directed graph and 0 the set of parameters. We recall the formula of
the BIC score for RTGEMs from Chapter 2:

£ M, A () = 3 | Cr | -log (7).

leL

S (M) = log(p(@y-

Remark that the BIC score can be decomposed into a sum of local scores on each
label as follows:

St* 10g (H H )\nt* l](xt* —)\ljdt*lj Tyx ) Z | Cl | log )

leL jeC, leL
=3 (g j(xee) log( M) — Mjdprj(2e-)) = Y | Cr | - log(t*)
IeL j€C, lec

Hence, there is no need to compute the entire BIC score after each modification con-
cerning a node (or its parents timescales) but only the local evolution of the score.
For instance, the local BIC score for node A having one parent with one interval in the
timescale can be written as n 4 o(4) log(Aao) — Aaodis a0(xe) +npe a1 (2e) log(Aag) —
Aa1de a1(ze+)). The only real obstacle in the learning of an RTGEM consists in choos-
ing a default horizon for the "add" operator. As already mentioned in Chapter 2, the
"add" operator adds an edge and its corresponding timescale T' = (0, ¢|, with ¢ the hori-
zon. In the works of [GM16], where RTGEM and their learning was first introduced, the
choice of the default horizon was never addressed. In practice, while conducting our
first experiments, we noticed that the choice of the horizon is critical for the learning.
Indeed, a small change in its value causes drastic changes in the BIC score and in
the detected dependencies, while a bad starting horizon leads to no learned edges. In
order to learn consistent models we must therefore add pertinent default horizon(s).

In our earliest experiments on learning RTGEMs we adopted a "universal" default hori-
zon that we used for all edges regardless of the destination and source nodes. As
we proceeded, we found better learning results when we started defining a specific
horizon for each edge to add between every pair of nodes. Since the "add" operator
adds a dependency within a certain time between two nodes (events), it seemed logi-
cal to specify a horizon by referring to the inter arrival times between the corresponding
events in the data set. We applied different data based heuristics (mean value, median
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value, mode value etc.) and tested them as specific horizons for every pair of nodes.
We found, during preliminary tests, that using the medians of inter arrival times as a
horizon for the "add" operator between the corresponding nodes gave the best overall
quality for learning. However, the time and space complexity of the algorithm for the
median heuristic are both quadratic in function of the number of events n in the data
(O(n?)). The number of events n is usually big, as a consequence this computation can
become costly.

However, in his Master thesis [Phi20] in collaboration with LS2N’s DuKe team, Philipp
Behrendt provided evidence that we can adapt a more powerful heuristic for calculating
specific horizons based on the work of [BS518]. In the works of [BS518], a new fam-
ily of Graphical Event Models was introduced called Proximal Graphical Event Models
(PGEMSs) destined to be used for representing real life systems whose events are con-
sidered "proximal". In other words, PGEMSs are specific to applications where an event
is most likely to depend on the event that is the closest to him in the past. Furthermore,
a method that is also data driven, was proposed in [BS518] for calculating a specific
and unique "proximal horizon" for each pair of nodes in the graph. They consider that
this horizon is optimal for the construction algorithm of their PGEMs (that only contain
one timescale on each edge).

The idea of this approach is to find a default horizon where the distribution of event
counts differs maximally from the corresponding duration across the parent configura-
tions (recall C; from Chapter 2). It is the value that maximizes the likelihood for their
learning (for a formal proof one should refer to [BS518]). In this work we use this "proxi-
mal heuristic" only to compute the starting horizons for the "add" operator, and then we
switch to the Greedy Forward-Backward algorithm to continue the learning procedure.

Now that we have justified the use of RTGEMs and detailed their learning procedure
we proceed to the model space exploration and formal verification procedures.

3.1.2 Model space exploration

The security properties we would like to verify address a number of particular labels
L, in our model. Hence, in practice, the number of targeted labels (events, nodes) is
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smaller than the overall number of labels. The notation N (M°), on line 2 of Algorithm
2, defines the neighborhood of A/ specified by the labels [, € L, that are concerned
by the security query ¢. The objective of the space exploration is to find a model in
the neighborhood of M° that satisfies the query ¢. Therefore, we seek to modify the
parameters A, of [, by altering the model, and henceforth disrupting the distribution
of events [,. The overall operations (modifications) that are allowed in the space ex-
ploration are the operators in the sets O and O, in order to stay in the same family
of models (RTGEMSs). We propose a space exploration technique where the explored
neighborhood is not constant and may vary after several iterations if we struggle to find
a model that satisfies .

We suggest that the initial neighborhood N (M°) consists of the nodes of the graph
corresponding to the concerned labels, as well as the nodes in the same Strongly
Connected Components as the concerned nodes (recall definition in section 2.2.2 of
Chapter 2). In Figure 3.1 we show an example of a Directed Acyclic Graph (DAG)
showing the seven SCCs of a given RTGEM, in order to give an illustration for a better
understanding of what follows. Note that in Figure 3.1, the blue SCCs are the ones
containing the target nodes in L.

We allow modifications that targets the initial neighborhood N (11°) (for the space
exploration). We name these modifications level 0 operators assuming that these op-
erators will not change the SCCs of the model. In other words, level 0 operators are
modifications that we do internally on the edges (dependencies) inside the SCCs of the
concerned labels [,,. Furthermore, in level 0 operators we disallow the adding of edges
between two concerned SCCs, even if it does not disrupt the SCCs of the model. In
practice, we choose to start with these level 0 operators, because in most scenarios
they have a direct effect on the parameters ), . Henceforth, they can contribute the
most in making the model satisfy the property. In some cases level 0 operators are not
enough. As a result we define another class of operators that we name level 1 opera-
tors.

Level 1 operators allow modifications on an updated version of A (M°), that now
also include the parents of nodes [, and their corresponding SCCs. In other words,
level 1 operators allow the addition and/or the editing of dependencies between the
concerned SCCs containing [, and P,(l,). In some extreme cases when we do not find
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a satisfying model using the first two levels, one can use level 2 operators that allow
every possible modification on the RTGEM. Level 2 operators are not recommended in
this framework, since they do not necessarily target the right nodes and are more likely
to disrupt other distributions that do not present direct advantages in the service of the

property .

The neighborhood N that we consider on the same line 2, is the transitive closure
(N,) of the previous neighborhood, limited to the number of allowed operators that is
fixed beforehand and should not be very high (in order to stay close to the fittest model).
The objective of the find function is to determine which operator to apply between the
allowed ones (level 0,1 or 2). We check if the initial model verifies the security property
in the first step of our find function before doing any space exploration. The idea of
the model space exploration (in line 3) consists in doing a finite number of operations
on the concerned labels £, of the model M°, while staying in A/, in order to find a

SCC,y
SCCy SCCs
SCCy
SCCs
SCCs SCCy

Figure 3.1 — An example of a DAG showing the strongly connected components of an RTGEM. The
SCCs in blue are the concerned SCCs.
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model that verifies the property. We check after each operation whether the obtained
model satisfies the property. The search stops immediately when we find such a model.

The find function can be defined using any search technique: it can be an exhaustive
technique like DFS (Depth First Search) or BFS (Breadth First Search) for example. It
can also be random, like the random walk technique or a greedy search with an objec-
tive to improve P(¢ | M) in order to make it higher than c¢. We provide more discussion
on the quality of the space exploration function in the perspectives.

In the following we define the security properties as well as the verification procedure.

3.1.3 Model verification

In practice, we are interested in two main types of queries that can be verified on
continuous-time graphical models. The first type of queries targets the order or number
of occurrences of given events. As an example "the event A occurs more than 10 times
in the last 20 time units", or "the event B follows the event A within an interval of (5,10]
time units more than 5 times in the last 1000 time units", or any conjunction of such
queries (even considering multiple variables). The second type of queries addresses
time or the timing of given events. As an example "the delay before the first occurrence
of A is more (or less) than 20 time units", or "the inter-arrival time between A and B,
in the last 1000 time units, is more (or less) than 20 time units", or any conjunction of
such queries. In addition, conjunctions of queries of the two types cited above can be
considered as a query. By adapting these queries to the system’s security standards
we obtain our security queries that allow us, depending on the answers we get (true
or false) on the traces we check, to classify a model as safe (or dangerous) from a
security point of view.

Certain types of queries, like the ones that do not include counting, can be formal-
ized using an extended version of LTL (Linear Time Logic) [BK08], with the addition of
past time intervals over the variables. For example we can write ('°C' A Ao 5 A Bo,10],
meaning that eventually, before 100 times units, we must have a C' preceded by an A
and a B within their respective intervals. Another example of an extended LTL query,
using the globally operator, can be written as 0'%°(C' = A5 A Bo,10]), meaning that
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all the occurrences of C' within the next 100 time units (if it ever occurs) must imply the
occurrence of A and B in the past within their respective timescales.

Our contribution is independent from the method that is chosen for verifying these
queries. These types of queries could be verified using exact verification methods like
standard Model Checking techniques [BKO08], but classical Model Checking is subject
to state space explosion and to the best of our knowledge was never adapted to Graph-
ical Event Models.

In our experiments we use Statistical Model Checking (SMC) [LDB10], hence we com-
pute for each model M; that we choose in the neighborhood A its optimal parame-
ters A = argmax, P(D | M;, \). We then simulate A/; in order to compute an estimate
P(g | M;, \) of P(¢ | M;,\) using the collected samples.

The only drawback about using SMC in practice is that the sampling of RTGEMs is
costly when there are cycles in the model. However, in our experiments, we gained
much time by using "targeted simulations" and only sampling the target events (more
details on this in Chapter 4). We have already introduced the sampling of RTGEMs in
chapter 2. The presented technique is called Forward sampling and is also common to
Poisson networks [RGHO05]. By definition, Forward sampling consists in ordering topo-
logically the different SCCs, before sampling them one by one. In other words, in order
to sample the SCC that has topological order 3 for instance, we first need to sample its
parents SCCs that have the orders 1 and 2. However, the sampling of the SCC that has
topological order 4 is not mandatory for the sampling of the SCC that has topological
order 3. In figure 3.2, we show an example of how we cut the graph into two parts, an
upper and a lower part with regards to the last concerned SCC’s topological order.

In our framework, when we are confronted with the example of Figure 3.2, we only
simulate the upper part of the graph (we call that sampling with early stopping) be-
cause the lower part does not give further information that are useful in our verification
technique. In other words, we are only interested in sampling the parents of the con-
cerned SCCs in order to sample the concerned SCCs afterwards and stop the sam-
pling. Therefore we are not obliged to sample SCCj in this example. Remark that the
SCCs are recomputed after each modification done by level 1 and 2 operators, be-
cause they can cause the disruption of the SCCs by changing the topological order or
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by adding/removing nodes from SCCs.

We formally define the above described procedure of the early stopping sampling in
Algorithm 3 below. The inputs needed are the targeted nodes £, and G (graph and
parameters) of the model (see Chapter 2). We then proceed to compute the set of
Strongly Connected Components (SCC) of the graph. The next step (line 2) consists
in computing a topological order of the SCCs. In the following (line 3) the function
Selectgcc is applied on each of the labels [, € L, in order to select the targeted
SCCs (containing the labels i,). Afterwards (line 4), the maximum of the topological
order of the targeted SCCs (imax) is computed using the function max_order. Hence,
imax consists in the new stopping criterion for the Forward Sampling. The notation
SCC_set[Topological_order[i]] denotes the SCC with topological order i. And the func-
tion Sample(SCC_set[Topological_order[i]]) consists in sampling the nodes inside of
the corresponding SCC as seen in Chapter 2.

SCCy
UpperGraph SCCy SCCs SCCy
SCCy
SCCs
LowerGraph
SCCs SCCy

Figure 3.2 — An example of a DAG that is cut into an upper and a lower part based on the last ordered
concerned SCC. For a faster sampling with the same outcome we can stop sampling at the last SCC in
the upper part.

65



Part , Chapter 3 — A model based learning and formal properties verification strategy

Algorithm 3 Targeted Sampling with Early Stopping
input: G, C,
1: SCC_set = Computescc (G)
2: Topological_order = Computerypological ()
VS eSCC_set
3: SCC_set, = Selectgcc (1)
Vi, €Ly,
imax = max_order{order/SCC_set[order] € SCC_set,}
1=1
while i < imax
Sample(SCC_set[Topological_order]i]])
i+
end while

© N g

In the following we define a distance measure that we adapted to RTGEMs in order
to give an insight about the differences between two RTGEMSs.

3.1.4 Distance between models

To the best of our knowledge, there is no existing metric between RTGEMs. The
most intuitive distance measure that comes to mind is the minimal number of opera-
tions needed to move from an RTGEM to the other since it is a recursive procedure.
However, such a distance is not accurate in our context because not all operators add
(or remove) the same information every time.

In the literature, the popular Hamming distance [Ham50] has been adapted for some
probabilistic graphical models such as Bayesian networks [TBAO6]. In the following,
we propose an extension of the Structural Hamming Distance (SHD), adapted to RT-
GEMs, where we evaluate the amount of differing information on two different edges.

A timescale in an RTGEM can be represented by a vector v = [0,q,b,¢,...] where
the values are the successive endpoints values. We write v; and v, for the values of
a timescale (on a given edge that is present in both graphs) of G; and G, respec-
tively. We write v;; = |v; N vy, for the identical endpoints in the two vectors; and
Unia = |1 \ v2| + |v2 \ v1], for the endpoints that are not identical in the two vectors.
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Consider two RTGEMs with the same set of labels £, G; = ((£, Ey),6,) and Gy =
((L, Es), 0,), we define

SHD(G1,Gs) = > 14+ > d(T(e,G1),T(e,G2)), (3.2)

e€Esq eEFinter

where E,; = {E; \ E2} U{E> \ E;} are the edges of each model that are not present in
the other one and E;,;., = F;1 N E5 is the set of edges that are present in both models.
T (e,Gy) and T (e, Go) are the lists of endpoints of the intervals on the timescales of the
corresponding edge e in graph GG; and G, respectively. Thus, we define the elementary
distance as follows :

AT (e, Gh), e, G)) = — 22— (33)

Unid 1 Vid
Equation 3.2 corresponds to adding 1 to the global distance when the edge (or the
dependency between two nodes) exists in a graph but not the other, and adding a value
d in [0,1) corresponding to the difference between the timescales when an edge exists
in both graphs. One can show that SHD is indeed a distance metric (i.e. satisfies dis-
tance axioms). A proof is given in Appendix B.

However, this distance measure suffers from a "scaling" disadvantage when it comes to
comparing quantitative information. For instance, consider three vectors v; = [0, 1, 2],
ve = [0,1.01,1.98] and v3 = 0,5, 10], representing the endpoints of three different
timescales to compare using the distance measure. By computing the elementary dis-
tances between (v, v;) and (v, v3) with respect to equation 3.3, we notice that they
are equal although v, and v, cover almost the same timescale compared to v; that
covers a different timescale. Therefore, Philipp Behrendt in his Master thesis [Phi20],
proposed an extension to this SHD where he takes into account the relative quanti-
tative differences inside the timescales to give a fairer distance measure, that is also
more adapted when using proximal horizons for the learning.

The idea is to find matches (if existing) between the endpoints of the two timescales
based on the mutual minimal absolute difference. In other words, consider two vectors
vy With size [ and v, with size k. A match is a pair (v;,, vo;) such that the closest element
from vy, € vy (withi =1,...,1) is vy, € vy (With j = 1,..., k) and that the closest element
from v, is also the same vy,. This proximal distance measure extension proposes a
refinement on the elementary distance. The set of matches is written V), for the sake
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of coherence. Formally for vectors v; and v, considered above, we can write:

V= {(vli,vgj) € vy X vy : cl(vy,,v9) = Vg, A Cl(Ugj,Ul) = vy, },

with cl a function that finds the closest element to vy, in vy cl(vy,, v2) = argminy, (Jvg, —
vy, |). The number of matched endpoints (considered identical) is written v; = |V;3| and
the number of unmatched endpoints v,,;5. The elementary distance can now be written:

d*(T(e,G1), T (e,Gz)) = ( > [ on — vy | ) 4 mid
(v1;,v2;

Unid + Vid )eVE\(0,0) min (v, va;) Unid + Vid
T

For each pair of matched endpoints, the sum of the relative differences (scaled by its

minimum) is taken into account in order to penalize the fact that it is not a one hundred

percent match (not perfectly identical). Furthermore, remark that if there are no de-

tected matches (except (0, 0)) we will have d*(T (e, G1), T (e, Ga)) = d(T (e, G1), T (e, G2)),
in other words we will have the same elementary distance and hence the same SHD

as presented before. Unfortunately, we show in Appendix B using a counter example

that this function does not satisfy the triangle inequality. It is therefore only a semimetric

and the term "distance" is an abuse of language.

In the rest of this work, we use this proximal distance measure written SH D* for the
sake of coherence, since we calculate the default horizons based on proximal horizons
for all models. The fact that SH D* is only a semimetric is not problematic in our con-
text. Before getting to the experimental chapter of this work, we show a toy example to
illustrate the application of the entire strategy proposed in this chapter.

3.2 Toy example

The purpose of the following example is to illustrate the interest of the proposed
strategy on a real life application and to show how we compute a distance measure
between two RTGEMs.

We consider a prepaid card online service, where a card owner should sign in to his
account in order to do a number of actions before signing out. The possible actions
are:
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— Recharge: add more money to his card account,

— Check account: check his card account’s balance,

— Transfer money: transfer money to his or to another bank account,
— Log out.

We suppose that the fittest RTGEM (A/°) that best fits the real behavior of users is
as shown in Figure 3.3. This corresponds to the first step of our procedure. A security
query ¢ that we can verify on this model could be of the form (1'% Transfer Money =
Recharge g 50 V Check account( ), and for instance we want the model to satisfy the
security property Pr(¢ | M°) > 0.8. In other words we would like to ensure a behavior
that we find normal for users on this service and safe from a security point of view: every
time a user wants to transfer money, an action where he checks his account must have
occurred right beforehand or a recharging of his account must have occurred not long
ago (because he may have made some purchases very recently after the recharge and
is aware of his balance). If our system does not verify this property we would say that
the average user should be more "careful" while using the service and that the global
behavior of the service is not secure. We note that the parameters of Log out are
omitted for the sake of simplicity because it forms an SCC that is not concerned and
that is of high topological order (it is not sampled in the targeted sampling technique
that we use).

One can see, only from looking at the model (parameters and structure), that
P(¢ | M?)is low and that the learned behavior has low chances of verifying the security
property mainly because of the missing dependency (edge) between "Check account"
and "Transfer money". Indeed, we conducted a small experiment where we use quan-
titative model checking (that is described in details in the next chapter) to calculate an
estimate to Pr(yp | M°) written p(¢ | M?). We compute p(¢ | M°) = 0.61. Hence, the
average users are transferring money without checking their accounts first. Further-
more, after recharging and using their card they never directly check their accounts but
they sometimes directly transfer money.

By doing a limited number of (allowed) operations on the labels that are addressed by
¢ (I, = {Transfer Money, Recharge, Check account}), we can obtain the RTGEM (M*)
of Figure 3.4 (step 2 of the proposed Algorithm 2), where the modifications are in red.
Intuitively, this obtained model structure has more chances of satisfying the security
property (step 2 of the proposed Algorithm 2), because we now have a smaller interval
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between "recharge" and "transfer money" that is taken into consideration and we have
added the edge between "check account" and "transfer money". In other words, using
the second (found) model structure we are more likely to satisfy the security prop-
erty. Indeed, we conducted the same quantitative SMC technique used on the learned
model, in order to compute an estimate to Pr(y | M*) written p(¢ | M*). We computed
Pl | M*) =0.85(> 0.8).

The distance is SHD*(M°, M*) = 1.333 in this case, because of the added edge and
the split on the interval (step 3 of the procedure). By following the steps of our proposed
algorithm in this example, we have found a model M° from data logs and a model M*,
which is intuitively more likely to verify the security property (and does verify it in prac-
tice) and that is at a distance of 1.333 from M?, after doing two allowed operations on
the concerned variables /.

This toy example is tailored to give an intuition on how the structure and the added/
refined dependencies can visibly play a role in the verification of a security property
on a model. In the following chapter, we conduct similar experiments and discuss the
calibration and the SMC techniques used in order to give proper results.
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3.3. Conclusion

3.3 Conclusion

In this chapter, we have proposed a detailed model-based strategy in learning and
verification for security assessments, as well as a distance measure between graphi-
cal models. Our strategy consists in learning the model that best represents given real
data (based on appropriate scores and metrics), in checking if a close model exists
that verifies a certain security property and in computing a distance, that we defined,
between the two models to see how far the fittest model is from verifying the property.
We recall that the strategy we are proposing is also generic with respect to the model’s
choice, the verification procedure and the notion of distance between models.

We justified in this chapter that what we are proposing is a very good combination
of techniques to apply in each step of our generic algorithm. We have worked on im-
proving some of them, in particular the sampling phase in SMC, in order to get a faster
version of the algorithm. The early stopping sampling allowed us to gain notable com-
putation time (this will be discussed in the next chapter). The next chapter contains the
experimental results on the tests we conducted to evaluate the advantages and the
complexity of the proposed strategy in systems verification.
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CHAPTER 4

GRAPHICAL EVENT MODEL LEARNING
AND VERIFICATION FOR SECURITY
ASSESSMENTS

In this chapter, we present a series of experiments validating and evaluating the
performance of each step of the previously defined strategy, as well as a complete
pipeline that validates the entire strategy. The only tool that is used in the following
experiments is a library/branch of PILGRIM called "evential" (see Appendix A) that was
created to handle Graphical Event Models. The library was implemented by a group of
the DuKe team in Polytech Nantes and the biggest part of it was tailored to fulfill the
main objectives of this thesis. | partially contributed in the earliest stages of implemen-
tation/architecture of the library and actively participated in the agile testing phase for
validation.

In the following sections, we give results and evaluations for the learning phase, the
model exploration phase and the verification phase.

4.1 Learning of RTGEMs

In the beginning of this section we present the results of an experiment that can
be described as follows: Many random graphs are generated (called references) with
a prefixed complexity. From these graphs, data samples of different sizes are simu-
lated. From each of the sampled data a graph is relearned using the Forward-Backward
Greedy search technique. The mean learning times are computed as well as the dis-
tances between each learned graph and the corresponding reference. The benchmark
of the collected data is shown in what follows.
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The purpose of the test above is to show the variations of the learning duration of RT-
GEMs in function of their complexities and the sample size. Similarly, we evaluate the
accuracy of the learning in function of the sample size and the different RTGEM com-
plexities.

In the following, we show some results about the performance of the learning phase.
The sample size for the this phase is defined by the "end time" t* of the sampling. Note
that all the sampling operations start from ¢, = 0 in this framework. There is no precise
time unit used in the data of this framework. As a consequence we use the default
"t.u." notation for the end time of the sample and for the endpoints of the timescales.
All the tests presented in this chapter have been executed on a Windows 10 Enterprise
i5 laptop, with a 2.3 GHz CPU and 8GB of RAM.

In a first experiment, a batch of fifty random RTGEMSs with a complexity (dimension) of
|C}| = 8 were generated using the random graph generator of the PILGRIM "evential" li-
brary. The random graph generator function is based on the Erdos-Renyi
model [AGW90]. The function takes 8 parameters: the number of desired nodes; the
density of having an edge for each possible (non existing) edge; a seed (in order to
reproduce the same model again); the maximum number of allowed parents; the prob-
ability of applying an operator to increase the number of intervals on a timescale; the
maximum number of allowed time intervals on a timescale; a restricted list of default
horizons from which one horizon is randomly assigned to timescales and a restricted
list of default parameters (\) to randomly assign to nodes. The random graph generator
function uses its parameters and the set of Forward operators to construct a random
RTGEM. We execute it several times (more than fifty) with pretested parameters in or-
der to generate graphs and only use the ones with a dimension |C;| = 8 (we eventually
need fifty graphs of dimension |C;| = 8). The idea of using pretested parameters is
to minimize the number of needed executions of the random generator before gather-
ing the target number of needed graphs with the same desired dimension. Event logs
are sampled from each generated model several times with different end times ¢*. Fi-
nally a model is then relearned from the sampled data and the distance between the
relearned model and the reference model is evaluated (see Figure 4.1, that will be de-
tailed in what follows).
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The mean values of learning times are computed and some of them are shown in
Table 4.1, where we can see the variations in learning duration depending on the size
of the sample and the complexity of the RTGEM. The same protocol was used for the
rest of the experiments for graphs with higher complexity, using the same sampling
and learning functions. Note that we fix the same number of nodes (in the random
graph generator) for every batch of graphs for the sake of convenience. In addition, we
choose the values of the restricted list of default parameters (1)) in a way not to bias the
tests (values between 0.1 and 1.5).

RO e —s | jal=12 | jal=32 0] = 44 G = 80
500 t.u. 0.3 sec 0.54 sec 1.72 sec 2.24 sec 4.21 sec
1000 t.u. 0.62sec | 0.94 sec 4.27 sec 4.74 sec 8.57 sec

10 000 t.u. 1.72 sec 6 sec 42 sec 1 min 6 sec 1 min 58 sec
20 000 t.u. 5 sec 14.35sec | 1min25sec | 2min32sec | 4 min 40 sec
25 000 t.u. 7.23sec | 18.97sec | 2min41sec | 5min38sec | 11 min 20 sec
50 000 t.u. 41.67 sec | 58.51 sec | 6 min 38 sec | 13 min 37 sec | 24 min 11 sec

Table 4.1 — Variations in learning time depending on the size of the sample and the
complexity of the model.

From these results we can conclude that the bigger the dimension and the sample
size, the more time consuming the learning is, which is not surprising. The time com-
plexity of the learning algorithm can be evaluated using the worst case iteration time
(upper bound). An upper bound for an iteration in a Greedy Search algorithm for RT-
GEMs can be defined in terms of the model’s specifications (structure and parameters)
and the input sample size. The Greedy Search process for RTGEMs goes through all
the possible operators and tests each operator. The testing of an operator consists in:
virtually applying it (we do not keep it, in order to test the rest of the operators one by
one and choose the best), updating the corresponding parameters (A\) and updating
the BIC score (change the local score for the label concerned by the operator). In order
to compute the complexity we must define a maximum number of possible operators
for a given RTGEM. Let e be the number of existing edges in the model and »n the num-
ber of existing nodes. Thus, the total number of possible edges is n* and the number
of non-existing edges is n? — e. Let maxys be the maximum number of time intervals
on a timescale in the given RTGEM. Let the maximum number of possible operations
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be N. N can be expressed in terms of e, n and mazrs. For each non-existing edge
corresponds one possible operator (an add operator). Consider the worst case where
each existing edge contains maxrg time intervals and that all time intervals are origi-
nally coming from the split operator (so we can reverse split them). In this case there
are maxrg possible split operators plus maxrs — 1 possible reverse split operators and
one possible extend operator. As a consequence the maximum number of possible
operators can be written as follows:

N = (n*—e)+(2-e-mazxrs)

The parameters update is relative to the computing of the sufficient statistics from the
input data (see Chapter 2). Following the same logic as in the sampling complexity (see
Chapter 2) for the upper bound, the most times we call the function to update the A is
defined by t* - \,,.... The update of the BIC score is done locally and in constant time.
Therefore, the complexity can be expressed as O(N x t* - A\az)-

In Figure 4.1, we show plots representing the variation of the mean of the normalized
distances in function of the size of the sample for different complexities. The standard
deviation is indicated by the shadowed curve around the plot for each complexity. The
normalized distance is the SH D*(reference,learned) divided by the maximum SH D*
for each batch of graphs that is equal to the square of the total number of nodes |£2|.

We write D(reference,learned) = SHD"(ref 7262766’16“med).

The main observations that can be made based on this plot is the common trend
between all graphs, from every complexity, to get closer to the reference model as the
sample size increases. Moreover, we can see that the more complex the reference
model is the harder it is to learn a model that is close to it (more data is needed). How-
ever, we can observe (mainly between ¢t* = 10000 and t* = 25000) some fluctuations
that are due to the learning of inaccurate models. We conjecture that this is happening
when there is enough data to select an RTGEM (best BIC score with regards to data,
see Chapter 3) that models inaccurate behaviors, but still not enough data to learn the
accurate dependencies. We did not further explore explanations for this observation
but we discuss it later in the perspectives.

An observation we have made while conducting the experiment, that could help con-
jecture the previous statement, is that for frequent events, the learning algorithm has
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Figure 4.1 — Mean normalized distances between learned RTGEMs with different complexities and
their corresponding references, in function of the sample size t*.

a tendency to learn "self loops" (a loop on the concerned node itself) even if they do
not exist in the reference model. As a consequence, knowing that the edges have the
most effect on the distance function we use, we observe a significant increase in dis-
tance between the learned and the reference model for this scenario. However, this
bias caused by the insufficiency of data is later on eliminated when we have more data
(as shown in the plots).

Many other "bad" learnings, that we did not observe while conducting the tests, may
have also occurred. In addition, many possible scenarios that we cannot intuitively
imagine could have happened with other batches of randomly generated graphs. Fur-
thermore, we have concluded from separate tests that in many cases correct edges
are harder to learn than correct timescales. In other words, when we learn the correct
dependency we often easily learn the correct timescales that go with it, but the correct
dependency is not always easy to learn.

As previously mentioned, the objective of this section is not to discuss the flaws of

77



Part , Chapter 4 — Graphical Event Model Learning and Verification for Security Assessments

the learning algorithm but to evaluate its performance. The observations we discussed
in the previous paragraph are not mathematically proven and correspond to a limited
amount of tested graphs. Furthermore, there are many hyper parameters that were
not taken into account when generating random models, such as the number of nodes
(that is prefixed for each complexity) and the parameters A that were carefully chosen
to avoid detailed balance (see [GM16]). Detailed balance is the analogy of faithfulness
for Dynamic Bayesian Networks (see [MR02]), it is when parameters are selected in
a biased way for the reference model that they may obscure certain dependencies. In
other words, when we sample from a reference model that contains detailed balance
in order to to relearn the model, the learning procedure is not consistent, meaning
that if the data size increases we do not guarantee a perfect learning. The last state-
ment is due to the obscured dependencies (by the choice of parameters) that will not
be learned. Thus, in order to make a complete study about the learning procedure and
draw a valid conclusion, one should study every possible variation of hyper parameters.

Now that we have presented the results we obtained when evaluating the learning
phase, we show results about the model exploration and formal verification phases.

4.2 Formal Verification and neighborhood exploration

In this section we will justify the choice and study the performances of the chosen
exploration and verification techniques. We recall that after learning a model, if it does
not satisfy a given property, we search in its delimited neighborhood for a model that
does satisfy the property. The chosen verification technique for this work is Statistical
Model Checking (SMC), which is a simulation based technique. The chosen search
technique is the Random Walk, where a random operator is chosen and applied. Note
that the operator is chosen from the set of allowed operators (see Chapter 3) that tar-
gets the concerned nodes.

In the following, we show a benchmark for the different sampling performances by com-
paring the normal sampling with the "early stopping" sampling we proposed in Chapter
3, in order to only simulate the events of interest. Similarly to the previous test, batches
of fifty RTGEMs for each fixed complexity were randomly generated and sampled using
this technique. In this test we compare the mean duration of normal sampling of a set
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of graphs and the mean duration of early stopping sampling of these graphs. Different
stopping points are considered for the sampling with early stopping. The standard de-
viation is shown by the shaded curve.

Three early stop cases are considered for each set of models, one where the last
concerned SCC has a low topological order meaning that the upper graph has a no-
tably smaller size (in number of SCCs) than the lower graph (see Chapter 3). Another
case is considered where the last concerned SCC has a mid topological order, i.e. the
upper and the lower graph have approximately the same size. A final case is consid-
ered where the last concerned SCC to sample has a high topological order, i.e. the
upper graph has a notably bigger size than the lower graph. Recall that cycles are the
most time consuming to sample (from the definition in Chapter 2). In this experiment,
we therefore made sure that the presence of cycles is balanced in the graph so that
it does not bias the tests. In order to do so, we added a condition before accepting
a randomly generated graph into the batch for the tests. In the added condition, we
detect cycles in all SCCs going from the first topological order until the & /2 (or k/2 + 1)
topological order, with & the highest topological order. We then compare the number
of previously detected cycles with the number of detected cycles in all SCCs going
from the k/2 (or k/2 + 1) topological order until the last topological order k. We reject
each random graph that does not have the same number of cycles in each half. It was
efficient in practice, in terms of rejection rate, since we also used pretested parameters
in the random generator (e.g. a maximum number of allowed parents fixed to 1). The
results are shown in the plots of Figure 4.2.

Note that the test for t* = 50000 for the most complex graphs was omitted because
of the high sampling duration.
We can conclude from the presented results that in most scenarios the sampling with
early stopping offers a big advantage in terms of computation speed, in comparison
to the normal sampling. The time saving gap is more visible when the targeted nodes
are situated in the upper part of the DAG representing the SCCs of the model. Further-
more, there are no disadvantages of using an early stopping technique while sampling
since we are only interested in the target nodes in this framework. We therefore use
the early stopping sampling in the rest of this work.

Now that we have an insight about the sampling performances, we can test the simula-
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Figure 4.2 — Plots comparing the mean sampling times between the normal stopping and the early
stopping sampling forthe different model complexities, in function of the sample size ¢*.

tion based Statistical Model Checking (SMC) performance on these models. To the best
of our knowledge, there are no published works that adapt Statistical Model Checking
to this type of formalism. As a consequence, we start by testing a simple property in
Example 4.2.1 by using a quantitative approach (with Monte Carlo simulations) and a
qualitative approach using the Sequential Probability Ratio Test (SPRT) defined in the

following (also see Chapter 1).
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Figure 4.3 — The RTGEM M; on which we apply Statistical Model Checking to verify the query ;.

Example 4.2.1 Consider the graph of the RTGEM M, in Figure 4.3 and the query
o1 = O'%9(BJ0,5]). We are looking to verify that for an event stream of 100 time units
we have a B that occurs at least every 5 time units. We want the model to satisfy
the security property Pr(p.|M;) > 0.80. For the sake of coherence we always use the
name security query for o that is checked on the samples (traces) of the model, and
the name security property for the qualitative inequality Pr(p|M) > ¢ with M the model
and c a threshold (c € [0, 1]).

The first test is for the quantitative approach based on Monte Carlo simulations. Con-
sider a stochastic system S, a formal property ¢ to check on the system and a proba-
bility v. We write Pr(¢ | S) = v when a random execution of S has the probability ~ to
satisfy ¢. When we apply SMC in practice, the probability v is unknown and our aim is
to compute it. However, we cannot compute the exact value of v but an estimate 4 due
to the nature of SMC that is an approximation method. We recall from Chapter 1, that
the estimate is given with a precision ¢, such that |7 —~| < dand Pr(|7 —v| > J) < ¢
with ¢ the probability of making an error. As a consequence, the result ¥ > 6+ ) means
that the system S satisfies ¢ with a probability higher than 6§ and with a confidence 1—-«.

The technique used for the approximation of + in this framework is the Monte Carlo
estimation. The Monte Carlo method consists in drawing »n independent samples w;
with i € {1,...,n} from the stochastic system S. Note that S must be purely stochastic
and governed by a unique probability distribution. Let the Bernoulli variable defining
the outcome of the samples with regards to ¢ be B. Hence, the possible values for a
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given sample (or trace) w; are b(w;) = 0 or b(w;) = 1. We can write:

with 37, b(w;) the number of times that S has satisfied ¢ (the number of successes).

We can see that this technique is straightforward and easy to apply. However, it re-
quires a large number of simulations to become precise and reliable. The method we
use in order to determine the required number of simulations is based on the work of
Chernoff [Che+52] and Okamoto [Oka59]. Based on the previously cited works, we can
define an Okamoto bound by:

(Pr(|7 — 7] > §) < 272

for any ¢ with 0 < § < 1. Therefore, by fixing € and §, the Okamoto bound can deter-
mine a minimum number N of simulations required to accomplish the above described
Monte Carlo estimation. From the Okamoto bound we have that e < 2¢(-27%) and hence
the formula we have been using in this work:

In(2) — In(e)
> 7 AT
Nz 202
The quantitative Monte Carlo approach presented above computes an estimate p(p1|M;)
to Pr(y:1|M,) with a certain precision. Unfortunately, to the best of our knowledge there
are no exact techniques that are adapted to this kind of formalism in order to compute
the real probability Pr(¢,|M;). Table 4.2 shows the results for this quantitative test.

| | 6 | € | N || Duration | 1| M) |
Test1 | 0.02 | 0.01 6622 5min54 sec | 0.9177 (> 0.80 property satisfied)
Test 2 || 0.008 | 0.005 | 46808 ||| 52 min 18 sec | 0.92179 (> 0.80 property satisfied)
Test 3 || 0.005 | 0.003 | 130044 2 hr 8 min 0.92182 (> 0.80 property satisfied)

Table 4.2 — Different results for quantitative Statistical Model Checking of query ¢; on
M, with Monte Carlo simulations.

Remark that although the property we are verifying is qualitative, it is also possible
to apply a quantitative approach, have a numerical estimate (with a certain precision)
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and afterwards compare the estimate with the desired threshold.
As expected, the results for this approach show that for a high precision (low ¢) and a
low relative error margin (low <) the number of required simulations becomes high.

We perform a second experiment in the following to test the qualitative approach. The
idea of taking observations into account when conducting a simulation based technique
was first introduced in [DR29]. The Sequential Probability Ratio Test (SPRT) that we
introduced in the literature review is based on the same logic, it minimizes the number
of required simulations when it comes to hypothesis testing (see Chapter 1). The ob-
jective of this section is to give a detailed description of the algorithm we use to apply
SPRT in our experiments.

Algorithm 4 describes the SPRT procedures for parameters o and /3, and probabili-
ties po and p; the endpoints of the indifference region (see Chapter 1). We recall that
the strength of the test is defined by the pair («, 3) of bounding errors. The notations
m and f,, respectively define the number of simulations and the SPRT score. The
score f,, is updated in function of the outcome (B;) of the Bernoulli variable B which
describes the SMC procedure (an outcome of 1 for success and 0 for failure). Remark
that in practice we use the log of the values in the tests to avoid handling large floats.

Algorithm 4 SPRT

input: (p07p1705a6)
m <— O,fm «—— 0

while log(:£) < f,, < log(:2)

m<+—m-—+1

fm+1 — fm + Bz 1Og(%) + (1 - Bl) 10g(%)
if £, < log(2:)

return H;
else

return H,

NSO RONM 2

We assume that SPRT gives the optimal number of needed simulations [YouO5b]
when it comes to qualitative SMC. More details about expected sample sizes and the
optimality of sequential tests are found in [YouO5b].

For this example, we use a centered indifference region of size §, and centered in
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0.8 (the target value). The number of simulations is not fixed beforehand, and thus
depends on the query and the outcome of the Statistical Model Checking on each
simulation. In other words, the number of simulations tends to increase if the stopping
criteria are hard to satisfy, and that is when the true probability of Pr(,|M;) (that we
are not explicitly computing in this approach) is inside the indifference region that we
have set.

We apply the SPRT on the previous example knowing that it computes a decision about
the security property Pr(pi|M;) > 0.8. Table 4.3 shows the results for this qualitative
test.

| [ 0 | o« [ B [ m || Duration [ Pr(e[M;) > 80% |
Test1 || 0.02 | 0.01 | 0.01 | 167 || 8.18 sec | Property satisfied
Test 2 || 0.008 | 0.005 | 0.005 | 275 ||| 16.21 sec | Property satisfied
Test 3 || 0.005 | 0.003 | 0.003 | 344 ||| 41.29 sec | Property satisfied

Table 4.3 — Different results for qualitative Statistical Model Checking of query ¢; on
model M; with Sequential Probability Ratio Test.

We test the same approaches with a more complicated property in Example 4.2.2.

Example 4.2.2 Consider the graph of RTGEM M, in Figure 4.4 and the query o, =
O%%(A — C[0,5] U D[0, 8]). We are looking to verify that over an event stream of 100
time units each time an A occurs, we should verify that we also have a C and a D
respectively within 5 and 8 units in the past. We want the model to satisfy the security
property: Pr(ps| M) > 0.50.

The results of the application of the quantitative and qualitative approaches are
shown respectively in Table 4.4 and Table 4.5.

| | 6 [ ¢ | N ]| Duration | P(pa| Ms) |
Test1 || 0.02 | 0.01 6622 5 min 31 sec 0.3978 (< 0.5 property NOT satisfied)

Test 2 || 0.008 | 0.005 | 46808 ||| 49 min 27 sec | 0.417879 (< 0.5 property NOT satisfied)
Test 3 | 0.005 | 0.003 | 130044 2 hr 2 min 0.417789 (< 0.5 property NOT satisfied)

Table 4.4 — Different results for quantitative Statistical Model Checking of query 5 on
M, with Monte Carlo simulations.
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Figure 4.4 — The RTGEM M, on which we apply Statistical Model Checking to verify the query ..

| | 06 | o« | B | m || Duration | Pr(p|Ms) >50% |
Test1 || 0.05 | 0.01 | 0.01 | 87 4.63 sec | Property NOT satisfied
Test2 || 0.02 | 0.01 | 0.01 | 124 ||| 6.17 sec | Property NOT satisfied
Test3 || 0.005 | 0.01 | 0.01 | 165 ||| 11.32 sec | Property NOT satisfied
Test 4 || 0.008 | 0.005 | 0.005 | 181 ||| 15.88 sec | Property NOT satisfied
Test 5 || 0.005 | 0.003 | 0.003 | 239 ||| 20.09 sec | Property NOT satisfied

Table 4.5 — Different results for qualitative Statistical Model Checking of query ¢, on
M, with Sequential Probability Ratio Test.

The number of simulations is independent from the property in the quantitative ap-
proach, and dependent on the property in the qualitative approach. Moreover, notice
that in these tests we did not have any conflicting results between the two approaches.

Remark that the two approaches cannot be empirically compared. They are situational
and each one is used for its own purpose. We previously mentioned that the properties
we are interested in verifying are qualitative. In a qualitative approach, the number of
simulations does not increase as fast as in a quantitative approach when we require
higher "reliability" for the test.

However, we will use both techniques in parallel in the following experiments to avoid
the excessive number of simulations in the qualitative approach when the true proba-
bility of the property is inside the indifference region. Accordingly, this allows to avoid a
number of simulations that could be "useless" in the quantitative approach. As a con-
sequence we make sure to combine the advantages of both approaches and that we
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eventually converge to an estimate if the qualitative approach fails to give an "early
decision" about the property. The algorithm is presented in the following.

We recall that SMC is the verification technique we use for formal verification of
models in our strategy. Furthermore, as a space exploration technique the find function
that we use in this framework is the Random Walk technique. The reason behind this
choice is that it is very practical and instantaneous, we simply choose an operator
between the allowed ones (from the allowed /evel and that are restricted by the targeted
nodes) and apply it to the model. Since no score calculation is done nor any testing,
the modifications are practically instantaneous. We do not further explore, in the scope
of this work, if this has a negative effect on the quality of the search compared to other
techniques. However, we know that it has the disadvantage of not being exhaustive, it
does not explore the entire space.

4.3 Testing the proposed strategy

In this section we test the proposed algorithm on synthetic data. We build a pipeline
to experimentally show that the proposed strategy attains the objectives discussed
in Chapter 3. We first begin by describing the experimental protocol and recalling the
objectives of this study. This section is divided into three parts, the first one is dedicated
to the description of the pipeline, the second one is reserved for the results and the last
one is for the interpretation and the discussion of the results.

4.3.1 Experimental protocol

The design of this experiment is introduced in what follows, and illustrated in Fig-
ure 4.5. This experiment is built in order to answer the following questions:
» Consider a set of data that is statistically secure (or not secure), with regards to a
security property, i.e. the data represents a safe behavior (or a dangerous one).
Does the learned model, from this data, satisfy (or not) the security property
accordingly?
» Consider a model that does not verify the security property. Can we find in its
neighborhood a model that does verify the property?
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» Consider a model that is far, in probability, from satisfying a given security prop-
erty. How hard is it to find a model in its neighborhood (if one exists) that satisfies
the property?

For the sake of simplicity, we refer to the first test as the OK case, the second test
as the KO, case and the third test as the KO, case. As shown in Figure 4.5 we begin
our pipeline by applying the proposed algorithm on a set of synthetic data that was
previously generated from a model that satisfies a security property with respect to
a security query . The first step is the learning of the model that best represents the
data for the O K case. We proceed by applying our chosen formal verification technique
(SMC), as described in this chapter, on the learned model. We then run the space ex-
ploration technique on the learned model if it does not verify the property. If a model
that verifies the security property is found in the neighborhood of the initial model, the
SHD* distance is then computed between the found model and the initial one (that
best represents the data). For what follows, we use the name proximal secure model
for a model that we find in the neighborhood of the learned model and that does verify
the security property.

We execute the same procedure again on two separate sets of synthetic data that were
previously generated from models that do not satisfy the security property (cases KO,
and K O,). The data that is used for learning the model in case KO, is supposed to be,
in probability, further than the data that is used for learning the model in case KO, from
verifying the security property. We note that for the sake of coherence, we sometimes
use the notation M* to denote the proximal secure model, via space exploration (if one
exists).

The description of the models, the security property, the calibration of the Statistical
Model Checking techniques and the results are shown in details in the next subsection.

4.3.2 Experimental results for the proposed strategy

The synthetic data sets used for learning the models contain event streams with la-
bels "Login", "Logout", "Check account", "Recharge" and "Transfer money". These sets
were generated from RTGEMs having different structures and parameters describing
different behaviors on a prepaid card online service. The security query that we use in
this experiment is: (1'% (Transfer Money = Recharge, 50 V Check account o), in order
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Learn Model Mg Learn Model M, Learn Model M},
from data from data from data

| l |

Model Mg Model M3, Model M.,

Check o on Mg Check ¢ on Mg, Check ¢ on M,

SHD*(Mp e, M3 ) SHD* (Mo, Mio,) SHD*(Mj0,, M0,)

Is ¢ satisfied? Is ¢ satisfied?

Model space exploration
via Random Walk

Model space exploration
via Random Walk

Model space exploration
via Random Walk

Model A+
found?

Model A+

Model M~
found?
YES

found?
Model Mj;, Model Mj;,

Figure 4.5 — Anillustration of the experimental protocol that is conducted in this section.

to stay consistent with the toy example presented in Chapter 3. We also want the model
to satisfy the security property: Pr(p|M) > 0.8.
For the experiments, the Statistical Model Checking techniques that we use are: the
qualitative Sequential Probability Ratio test and the quantitative estimation based on
Monte Carlo simulations in parallel (as previously mentioned). We present the proce-
dure in Algorithm 5. The idea is to have an additional break when we reach the number
of simulations (n) computed by the calibration of the quantitative Monte Carlo estima-
tion. By proceeding as such we make sure to converge to an estimated value (*=) of
the probability if the SPRT fails to gives an answer regarding the security property.
The SMC algorithms are calibrated as shown in Table 4.6. Remark that the maximum
number of simulations that we do is determined by the number of simulations corre-
sponding to the quantitative technique, in the case where SPRT does not converge
faster to a result.

In the first test, we run our algorithm on the corresponding set of data to learn the
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4.3. Testing the proposed strategy

Algorithm 5 SPRT + Monte Carlo estimation

input: (vaplv «, /Ba 57 E)

1: m(—O,fm<—O,n%l"(2)2%(E),sm%O

2: while (log(:£) < fin < log(£2)) && (m < n)

3: m<+—m-—+1

4 fmr1 < fm + Bilog(E2) + (1 — Bz‘)ZOQ(tiT)

5 Spma1 — Sm + B;

6: if fr, < log(:Z)

7 return H,

8: elseifm >=n

9: return >=

10: else

11: return H,

| | « | B | 6 | e [ Numberofsimulations |
SPRT 0.05 | 0.05 | 0.01 - Unknown beforehand
Monte Carlo simulations - - 0.01 | 0.05 18444

Table 4.6 — Calibration of the SMC techniques for the following experiments.

model Mg, . The obtained model is shown in Figure 4.6. For the sake of simplicity we
do not represent the parameters of the label "Logout" for all of the remaining figures,
since it is not a target node with regards to .
In Table 4.7, we show the obtained results after the completion of the first test.
The formal verification with SMC is repeated twenty times in order to establish mean
values for the required duration and number of simulations before acquiring a result.
We write ¢ for the mean duration and 7 for the mean number of simulations over twenty
executions for all remaining tests.

|

| Pr(e|M)>08 | t \

—

m

|

Mg || Property satisfied | 5 sec (+£0.43 sec) | 277 simulations (£49 simulations)

*
MOK = =

Table 4.7 — Results of the first test on Mg .

The learned model Mg, that best represents the data, verifies the security prop-
erty in this case. Hence, no further exploration is made and the test stops. We recall
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ACheck,o = 0.213
/\Check',l =0.81

Transfer

ALogin = 0.801 money

>\Rcchargc,0 =0.19 )\Tra,nsfmn,UU = 0.058

)\Recharge,l = 0.807 )\Tmnsfer,Ol =0.543
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Figure 4.6 — A representation of the learned model Mg, from the set of "secure behavior" data.

2.3 GHz CPU and 8GB of RAM. The RTGEM learning and sampling are coded in C++
under the main PILGRIM private library, consequently the code is not accessible. The
verification algorithms and the proposed strategy in this framework are coded on a
separate branch also using C++ and inheriting from the PILGRIM library. The complex-
ity of the used SMC algorithm (previously defined in this chapter) is the same as the
complexity of the sampling (see Chapter 2). The data that is generated during the SMC
process (samples for instance) is non-persistent.

For the second test, we run our algorithm on the corresponding set of data to learn
the model M7, . The obtained model is shown in Figure 4.7. The model M7, does
not satisfy the security property. Hence, the space exploration technique is repeated
twenty separate times in this test, in order to check whether every time we find a model
that satisfies the property. Similarly, we check whether it is the same proximal secure
model that is found every time or if there are different possible ones.
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4.3. Testing the proposed strategy

The space exploration is executed on the learned model Mg, and only one proxi-
mal secure model (M}, ) is found in its neighborhood (see Figure 4.8). As previously
mentioned, we use the Random Walk technique to explore the neighborhood of the
learned model. Based on preliminary experiments, a compromise number of twenty
five allowed modifications (chosen operators) is set for this test. The allowed operators
are level 0 and level 1 operators (see Chapter 3). Remark that the proximal secure
model changes reality to a certain degree by modifying the learned model (that degree
is defined by the SH D* distance with the learned model). We do not seek to explain
the structure or the dependencies of the proximal secure model, the essential idea to
withhold is that it is a combination of parameters (a mathematical object) that repre-
sents (and can simulate) safe behavior. So the idea of the space exploration is to find a
mathematical object, a combination of parameters, that provide samples of behaviors
which are "secure" with regards to the property, but that may not make sense with re-
gards to reality.

In Table 4.8, we show some results of the algorithm for this test. We write o for
the average number of applied modifications before finding a proximal secure model.
We write 7 the average duration of the space exploration process (plus the formal
verification at each step), and n for the number of distinct proximal secure models
found. The success rate is the number of times we found a proximal secure model
over the total number of executed Random Walks. We use the same notations for the
remaining test.

\ | o \ 7 | n | Success Rate | SHD*(Mj,, Mzo,) |
| Mo, || 12 operators (+2 operators) | 13 min 52 sec (+30 sec) | 1 | 20/20 \ 1 \

Table 4.8 — Some performances of the algorithm applied on the second set of data (see
Figure 4.5).

The last results for this test are shown in Table 4.9 after the completion of the
experiment. The formal verification with SMC is repeated twenty times for both A/3
and Mj, in order to establish mean values for the required duration and number of
simulations before converging on a result. Note that the SMC was executed only one
time for all the intermediate models obtained at each step of the exploration process
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Figure 4.8 — A representation of the found
model M, which satisfies the query ¢ in the
neighborhood of Mf -

Figure 4.7 — A representation of the learned
model Mz, from the corresponding set of "not
secure" data.

while constructing M, .

| I Pr(p|M) > 0.8 | t | m |
MY, || Property NOT satisfied | 1 min 2 sec (+11 sec) | 4018 simulations (£101 simulations)
Mo, Property satisfied 2 min 17 sec (+25 sec) | 5512 simulations (£122 simulations)

Table 4.9 — Results of the second test on Mp,, .

For the third and final test, we run our algorithm on the corresponding set of data to
learn the model M} ,,. The obtained model is shown in Figure 4.9. The model M7,
does not satisfy the security property. Hence, the space exploration technique is re-
peated twenty separate times in order to check whether every time we find a model
that satisfies the property. Similarly, we check whether it is the same proximal secure
model that is found every time or if there are different possible ones.

The space exploration is executed on the learned model Mp.,, and two proximal
secure models (Mj;(o21 and M;}OQQ) are found in its neighborhood (see Figure 4.10 and
Figure 4.11). Based on preliminary experiments, a compromise number of one hundred
allowed modifications in the Random Walk (chosen operators) is set for this test.The
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ACheck,00 = 0.712
Acheck,01 = 0.537
ACheck,10 = 0.148
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Figure 4.9 — A representation of the learned model My, from the corresponding set of "not secure”
data.

allowed operators are level 0, level 1 and level 2 operators (see Chapter 3).

In Table 4.10, we show some results of the algorithm for this test. We use the same
notations as before, however for the distance we show the two distance measures with
respectively the first and the second found proximal secure model. Notice that the suc-
cess rate is not perfect in this test, three times out of twenty we did not find a proximal
secure model (failure rate of 3/20). The proximal secure model Mjo,, (Figure 4.10) is
found twelve times and the proximal secure model Mo, (Figure 4.11) is found five
times.

\ [ 0 \ 7 | n | Success Rate | SHD*(Mj,, Myo,) |
| M3, || 88 operators (+8 operators) [ 1 hr 15 min (£9 min) | 2 | 17/20 \ 3-3.333 |

Table 4.10 — Some performances of the algorithm applied on the third set of data (see
Figure 4.5).
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Figure 4.10 — A representation of M., which Figure 4.11 — A representation Mj., which

satisfies the security property in the neighborhood satisfies the security property in the neighborhood
of Mg, - of M%o,-

The last results for this test are shown in Table 4.11. The formal verification with
SMC is repeated twenty times for M., and both Mj,, and Mj,, inorderto establish
mean values for the required duration and number of simulations before acquiring a
result. Note that also in this test, the SMC was executed only one time for all the
intermediate models obtained at each step of the exploration process.

| [ Pr(eM)>08 | t | m |
M?.o, || Property NOT satisfied | 3 min 22 sec (11 sec) | 2155 simulations (£69 simulations)
Mico,, Property satisfied 11 min 31 sec (£25 sec) | 7512 simulations (+136 simulations)
Mico,, Property satisfied 7 min 19 sec (+25 sec) | 4286 simulations (+114 simulations)

Table 4.11 — Results of the third test on A, .

Now that we have shown the different metrics and results we obtained from running
the pipeline we described in Figure 4.5, we proceed to the discussion and interpretation
of the results.

4.3.3 Discussion and interpretation of the results

In the OK case, we notice that the SPRT technique quickly converged to an an-
swer, which means that the model satisfies the security property with high probability
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(significantly higher than the threshhold of 0.8). When we verify that the model satis-
fies our security property we stop the procedure since we do not need to explore the
neighborhood of the learned model.

In the KO, case, the SPRT took longer to give a result because the model was not very
far in probability from satisfying the property. In other words, SPRT requires a low num-
ber of simulations and converges quickly when the probability that the model satisfies
the query is far from the given threshold. This explains why we assumed for KO, case
that the model is not very far from verifying the property in contrast to the KO, case that
is far from verifying the property. Therefore, in order to be sure that the latter statement
is true, we applied the quantitative Monte Carlo simulations technique (calibrated as
previously shown in this chapter) to calculate approximates of the exact probabilities.
We obtained the following values p(y¢ | Mg, ) = 0.728 and p(p | Mz, ) = 0.585.

A space exploration was then initiated twenty separate times in the objective of find-
ing a close model that does verify the property. The same model was found twenty
times, and is at a distance of 1 of the learned model. We cannot conjecture on the level
of dangerosity of the model by only having one reference distance. We need to have
more tests in order to define whether a distance of 1 is a big or a small distance. As
a consequence we performed a last test where we learn a model that is in probability
further away from satisfying the property. The experimental hint that the KO, case is
further in probability than the KO, case is that the SPRT technique converged quicker
to a negative result (as previously mentioned).

We recall that we do not seek to intuitively (based on the structure of the model it-
self) find an explanation to the reason why the models we find satisfy the property.
What matters most is that they are mathematical objects that offer samples of "safe"
behaviors, and from which we can compute a distance measure from the fittest model
to asses the dangerousness level. In the last case, we were lucky to find two models in
the neighborhood of the learned model that satisfy the property. We found one model
more frequently than the other, it was the one with the closer distance. We cannot be
sure that we always find the closest model more often (or first), since we use a Random
Walk technique. In the next chapter, we discuss in the perspectives other techniques
that can guarantee the finding of the closest model if one exists. We recall that all the
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found proximal secure models M* changes reality to a certain level and that we seek
to find mathematical objects that provide samples of behaviors which are "secure" with
regards to the property.

We now have all the observations needed to answer the questions we asked in the
beginning of this chapter. Based on the conducted experiments, we can see that if the
data comes from a secure (or not) behavior, the learned model is also checked as se-
cure (or not) accordingly. We can also see that we have found for both the KO, and
KO, cases, models in their respective neighborhood that verify the security property.
This last statement allows us to assume that it is possible to find "secure" models by
exploring nearby models. In addition, we have shown that more than one secure model
can be found by the space exploration method for the same learned model. And finally,
by comparing the last two cases, we can see that the process of finding a secure model
becomes harder and more time consuming (88 modifications versus 12 modifications
on average) when the model is further in probability from satisfying the property.

We can also deduce, by comparing the distances SH D*(M*, M°) in the last two cases,
that the third case corresponds to a more dangerous behavior than the second case.
This comparison allows us to give more meaning to the distance measure. On a side
note, we can see that the models we handled in case KO, are not very complex yet the
procedure can become costly. This is mainly due to the Forward sampling technique
for RTGEMSs that can quickly become time consuming. We also discuss in the next
chapter perspectives on how to reduce this cost.

Finally, note that it is irrelevant to cross-compare the SH D* distances between the
models obtained from different tests (compute the distance SHD*(Mj.,,, Mz,) for
instance) in order to try to find a certain correlation. A very simple counterexample
can be found by imagining two very distant models that both satisfy the same security
property. The distance measure is not in any way related to the security property. The
distance measure is only relevant in the scope of the same test when comparing the
reality (fittest model) to the model that satisfies our "standards". This allows us have an
insight about the danger level of the real behavior by showing how far it is from verifying
the security rules.
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4.4 Conclusion

We recall that the main objective of this thesis is to bring closer together the model
based learning and the formal verification fields of study, by using the advantages of
both to elaborate a useful application. To the best of our knowledge, what we have
proposed and presented in the last two chapters is a novel strategy to measure lev-
els of dangerous behaviors in event streams. This strategy is based on the learning
and manipulation of Graphical Event Models and the adaptation of a formal verification
technique. Furthermore, we conducted experiments in order to test the quality of the
proposed algorithm and answered questions related to its performance.

We previously justified in Chapter 3 the choices of formalisms and techniques we
adopt in the different steps of the proposed algorithm. In this chapter, we discussed
the performance of the adopted techniques and formalisms. We separately tested and
evaluated each step of the proposed algorithm on RTGEMSs. In addition, we have built
an experiment to validate the proposed strategy and to study its performance.

To end this chapter, we can draw two main conclusions about the RTGEMs and the
strategy we proposed. The first one concerns the flexibility and genericity, which are
positive traits of our strategy, that are introduced by the use of RTGEMs. The RTGEM
formalism is easy to learn and to manipulate. As we have seen in the experiments, their
only downside is the high cost of the sampling. We use a simulation-based technique
for formal verification so we are confronted with a high number of simulations, hence a
lot of computing time. However, we have shown a way of notably reducing this effect,
when we are applying Statistical Model Checking, by using an early stopping criteria
for the sampling.

The second conclusion we can draw is about the strategy. When we apply the al-
gorithm on the different proposed cases, aside from the main measure of distance that
we aim to compute, we have shown that many metrics and measures can potentially
be evaluated. As an example one can measure the number of different proximal secure
models M* that can be found in the defined neighborhood, each at a different distance.
In addition, we note that the difficulty of finding a proximal secure model can signif-
icantly increase when the model is "dangerously" further from satisfying the security
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property.

In the following we present perspectives for future works, and a global conclusion to
this work.
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CONCLUSION

In this work we have established a solid basis for working with Graphical Event Mod-
els for security assessments. And most importantly we have accomplished our goal of
combining the application of the probabilistic graphical learning and the formal verifica-
tion fields. The main problematic of this thesis is to use data generated from a certain
application in order to learn a model of behavior that is at the same time best represen-
tative of the data, and safe from a security point of view. We have managed to reach this
goal in practice, by providing experimental evidence that if the "fittest" learned model
does not satisfy a given security property, we are able to find in its neighborhood (if
one exists) a proximal secure model that does satisfy the security property. A distance
measure is adapted in order to compare the proximal secure model (if found) and the
fittest model. This measure gives an insight about how far the learned behavior is from
a secure behavior. The previous metric can then be used to rate the level of danger-
ousness of the real behavior. In what follows, we sum up the literature review and the
contributions of this thesis, and we present perspectives for future works.

In the first two chapters of this thesis we gave an introductory state of the art review,
showing the advantages and disadvantages of the discrete time probabilistic graphi-
cal modeling formalisms. The presented formalisms inspired this work and due to their
lack of time-related-information we have been pushed to explore continuous time prob-
abilistic graphical modeling formalisms. We have also discussed that continuous time
formalisms offer more benefits from a security point of view with regards to the data
type (event streams). In addition, we have presented Model Checking and Statistical
Model Checking (SMC) as formal verification techniques. Based on our desired ob-
jectives, we have justified the use of Recursive Timescale Graphical Event Models
(RTGEMSs) as a learning/modeling formalism and Statistical Model Checking (SMC) as
a formal verification technique.

In the last two chapters, we formalized the problem and proposed a solution in the
form of a generic algorithm. We then justified the choice of the methods and techniques
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used to fulfill the instructions provided by the algorithm. We chose the following com-
bination of techniques: RTGEMs as a modeling formalism, due to their easy learning
(compared to other continuous time formalisms) and manipulability; Statistical Model
Checking as a formal verification technique; the Random Walk as a space exploration
technique and the proximal distance measure as a measuring method. We have also
built a pipeline of experiments in order to provide evidence that the work is complete.
We provided answers to many questions that can resume the results we obtained by
performing the proposed experimental protocol. We recall that no further theoretical
proof has been established in order to formally demonstrate the following results and
that they are purely based on the tests we have performed. The answers to our ques-
tions that are also capable of summing up our results are listed below:

» With exemption of detailed balance, the bigger the data size the more accurate
the learning (see Chapter 4 and [GM16]).

» Excessive sampling of an RTGEM is costly especially if it contains cycles, but
we use targeted sampling with early stopping (as proposed in Chapter 3) when
possible in order to reduce the computing time.

« If the input data we use represents a safe behavior (or not) with regards to the
security property, then the learned model satisfies the security property when
formally checked (or not) accordingly.

* If the learned "fittest" model does not satisfy the given security property, a model
can be found in its neighborhood (sometimes after many instances of the search
technique) that does satisfy the property (named proximal secure model).

» The further the fittest model is, in probability, from satisfying the security property
the harder it is to find a proximal secure model in its neighborhood.

» The distance measure, used for rating the dangerousness of the fittest model by
comparing it to the proximal secure model, increases when the fittest model is,
in probability, far from satisfying the property.

» Sometimes while executing a Random Walk instance we do not find a proximal
secure model, in particular for more dangerous models.

In the last section of this thesis, we discuss perspectives in order to improve the
current work.
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Perspectives

To bring this work to a final point, we present several perspectives that we envisaged
for future works. To begin with, the learning process of an RTGEM could be explored
in more details. In other words, we noticed in our tests some odd fluctuations while in
the learning process (see Chapter 4). In order to explain this impression we tried to
build some small tests and realized that bigger tests must be done. These tests should
include the variation of the different possible hyper parameters when randomly con-
structing a graph (number of nodes, the parameters, the horizons, number of edges,
number of timescales, density of timescales, etc.) in order to have a complete diagnos-
tic for a better understanding. The first basic confronted difficulty in such a procedure
is the big cost of these operations. Another difficulty is the ability of finding explana-
tions/correlations while avoiding representational biases. In other words, the choice of
parameters and timescales on reference models must be done in a way not to obscure
certain dependencies (see Chapter 1 and detailed balance in [GM16]).

A perspective that is more directly related to the proposed strategy targets the For-
ward Sampling technique. As we have seen in Chapter 4, the sampling of RTGEM
could become costly even with the early stopping rule we proposed. Consequently, an
approach where we can abstract and approximate the totality of the effects that the
parents have on the targeted nodes can be considered. In other words, to have only
one parameter A\, .ss.cts for each concerned label [, € L, that is computed with a cer-
tain heuristic with regards to all the parents Pa,(l,). A method to accomplish that is to
disrupt dependencies (or remove them) in a way that can give us the desired structure
that we discussed above. By proceeding as such, we transform a given model M to
M' on which we can relearn the desired "abstracted" parameters using the same input
data that was used for learning the model M. The difficulty is to be able to find a formal
demonstration that the model M’ is a similar mathematical object to the model M to a
certain extent (or a precision measure to evaluate how much they are the same), from
a sampling point of view.

Another perspective concerning the space exploration technique can also be envi-
sioned. In this work we chose the Random Walk technique as an exploration method
due to its simplicity and relative efficiency. A more complete method could be used,
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like an exhaustive Breadth First Search (or Depth First Search) which guarantees the
exploration of all the possibilities. However, this technique could become costly if we
do not consider a smart approach where we create a caching memory to store the
already explored RTGEMs in the neighborhood. The reason behind that is the us-
age of operators and inverse operators for modifications. For instance, we can undo
a forward operator by doing a backward operator to fall back on a previously tested
model, and vice versa. A second space exploration technique can also be tested: A
Greedy Search method that would consider improving the security property in prob-
ability. In other words, a quantitative SMC technique should be associated with the
greedy search in order to compute the approximate probability of satisfying the secu-
rity query for a model after each possible modification. When a model that improves
the probability of satisfying the security property is found, it is selected as a new ref-
erence and the search continues. Although we are not sure about whether it is better
than the exhaustive search or the Random Walk, we think it is an interesting approach
to explore.

Finally, one last goal that we consider achieving in the near future is an experimen-
tation with real world data. Due to accessibility issues to real world faithful data, we
were not able to perform this kind of experiment yet. It is something we are planning
to do with GFI informatique on different use cases, particularly on data generated from
a road safety application. An approach for multi-task transfer learning for Timescale
Graphical Event Models that can be combined in practice with our proposed strategy
for this kind of application can be found in [ML19]. In other words, since the different
models of behavior are somehow supposed to be close in practice, transfer learning by
using previous information in order to do Model Checking might be accurate. Although
we think that there is a lot of data treatment to do in order to adapt it to the required
format, we think that our methods are mature enough to be now used in this context.
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A. DESCRIPTION OF THE "EVENTIAL"
LIBRARY

In this appendix section we briefly present the RTGEM library that is part of the
PILGRIM project. The main components of the library that were used in this work are
presented in this section. We give a description of the different parts of the library and
their respective functionality. This library was created in order to learn, sample and
handle RTGEMs. We recall that although there are a few published works on Graphical
Event Models (in particular RTGEMSs), there are no available libraries to handle these
formalisms. We use the doxygen documentation figures to explicitly show the different
components of the library. The code of PILGRIM and of the evential library is written
in C++. Note that not all the functionalities of the library are introduced in this section.
However, this library is intended to be used only for Recursive Timescale Graphical
Event Models and not any type of Graphical Event Models. The library is constructed
to only allow the construction of RTGEM, either with the learning procedure or manu-
ally or randomly.

We begin by exploring and illustrating the elementary classes of the library. The struc-
ture of the class RTGEM is shown in Figure 4.12. This class stores the structure (graph)
and the parameters (), also called the effects) of an RTGEM object. The three main
components of this class are the classes "SCCs", "Nodes" and "Edges". The class
"SCCs" is used for computing and storing the different strongly connected components
of an RTGEM object. The class "Nodes" contains the different nodes of the graph that
are either set manually or computed automatically from the "Events" class (see Fig-
ure 4.13). An adjacency matrix is computed from the nodes and the different existing
edges. The class "Edges" is used for setting manually or automatically (after the learn-
ing procedure) the list of edges and their corresponding status (existing, absent, used
to exist). The status of the edge is implemented because it is adequate for the Greedy
learning technique, where we need to test each operation separately (apply it then
remove it) and see if it improves the BIC score.
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Figure 4.12 — Anillustration of the RTGEM class components in the "evential" library.

The timescales are represented as trees in the Edge class. The tree structure al-
lows to better identify split and extend operators, in order to establish conditions for
reverse operators. The effects are computed depending on the structure and the initial
data that is either manually set or externally transmitted to the program. The effects
can also be set manually. In the sampling function, the object RTGEM is used for com-
puting the corresponding effect (A parameter) of a certain node in function of the date
in the timeline of the sample.

The core of the library is the Learning class illustrated in Figure 4.13. The name
"Learning" should not be misleading, because this class is not only used for learn-
ing RTGEMs. The Learning class consists of the "Neighbours" class whose methods
are used for computing the table of possible neighbors (possible modifications) of a
certain RTGEM. It also consists of the "Date" class that is mainly used for computing
the sample size ¢* of the input data (data used for learning the RTGEM and/or data that
is sampled from an RTGEM).
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In addition to the RTGEM class and the Events class that allows to import/export events
and/or use their labels to name the nodes, the Learning class also consists of the
"hrz_mat" class. The "hrz_mat" allows to compute the proximal horizons (see Chapter
2) for every pair of nodes and stores them into a matrix. Afterwards, the horizons are
passed accordingly only to the existing edges in the adjacency matrix.
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Figure 4.13 — An illustration of the Learning class components in the "evential" library.

The Random Walk function we use in our algorithm is implemented using mainly the
Neighbors class to construct a more strict table of Neighbors from which we can ran-
domly pick a possible modification. The early stopping function is implemented using
the SCCs class and the normal sampling function. The SMC functions and the formal

properties are implemented separately from the library but also in C++.

115






B. PROOF FOR THE SHD DISTANCE
METRIC

In this Appendix we prove that the SHD (SHD(Gi,G2) = Yeep,1 +
Y eeEme., A(T(e,G1), T (e,G2))) we propose in Chapter 3 is a distance metric. We re-
callthat £,y = {F1 \ B2} U{E, \ E;} are the edges of each model that are not present
in the other one and F,,.., = F; N E, are the edges that are present in both models.
T (e,G1) and T (e, G5) are the lists of endpoints of the intervals on the timescales of the
corresponding edge e in graph G, and G, respectively.

Consider three RTGEM graphs Gi, G, and Gj3, we illustrate in Figure 4.14 that £,
can be partitioned into {A;} U {412} U {43} U {A123}, E» can be partitioned into
{As} U {Ap} U {Ax} U {A3} and Ej into {As} U {A13} U {As3} U {A123}. We re-
call that the elementary distance on a corresponding edge e € A;; in any two RT-
GEM graphs G; and G; (i and j being indexes) can be written as: d(7 (e, G;), T (e, Gj))
= % where v, = |v; \ v;| + |v; \ v and v, = |v; N w;| with v; and v; the vectors

nid id

where the values of the successive endpoints of the timescale are stored.

Figure 4.14 — Intersections between the sets of edges of three RTGEM graphs.

We start by showing that the elementary distance measure is always positive and
satisfies the three following properties:
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1. VG1, VGy and Ve € Aqp: d(T (e,Gy), T (e, G3)) T (e,G1) =T (e, Gy))

2. VG1,VGy and Ve € Ap: d(T (e, G1), T (e,Gs)) = ( (e,Gs), T (e,G1))

3. VG1, VGy, VG5 and Ve € Aug: d(T(e,Gy), T(e,Gs)) < d(T(e,Gy), Tle,Gy)) +
d(T (e, Gs), T (e,G3))

To begin with, our elementary distance is always positive since v, and v?, are always
positive. For the first property, if d(7 (e, G1), T (e, Go)) = 0 then by definition v}2, = 0 im-
plying that all values on the timescales are identical, thus meaning 7 (e, G1) = T (e, Gs);
and it is analogical for the other way around (7(e,Gi) = T(e,G2)) =
d(T(e,Gy), T (e, Gg)) = 0). The second property is trivially satisfied since the compu-
tation of v!2, and v}? is done by comparing, value by value, two vectors of endpoints
which is a symmetric operation.

The third property is also satisfied on the elementary distance, let A,5; be the set
of edges that are in common between three RTGEM graphs G, G, and G5 (see fig-
ure 4.14). Consider an edge e € A;»3, we write for this edge: T (e, G1) = {11} U{T12} U
{T13} U{T1a3}, T(e,Go) = {To} U {T1o} U{To3} U{T1a3} and T (e, G3) = {13} U {To3} U
{T13} U {T123} for its corresponding timescales in G, G, and G5 respectively. The pos-
sible intersections between these timescales are represented in Figure 4.15. For the
sake of simplicity we write 7; (with ¢ an index) for the cardinals of the corresponding
above sets.

Figure 4.15 — Intersections between the timescales of the same edge in three RTGEM graphs.

The elementary distance on a given edge e € A;,3 (for the three RTGEM graphs),
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between G; and G5 can be written as:

v'rlli)) Ty + Ty + Tos + T
d(T(e,G1), T (e,G3)) = —3 d 1 12 23 3

_ = 4.1
v + Uzlj T1 + T12 + ng + T3 + T13 + T123 ( )

nid
For the third property we need to show that the above distance in equation 4.1 is

always smaller than d(7 (e, G1), T (e, G2)) + d(T (e,G2), T (e, G3)). In other words, we
need to prove the inequality:

d(T(e,G1),T(e,G3)) —d(T(e,G1), T (e,G2)) — d(T (e,G2), T (e,G3)) <0

We have:
T+ Tz +Tos+ 15

d pu—
(T(e,Gh),T(e,G3)) Ty 4+ Tis + Ty + 1o + Ty + Thog

and

Ty + T+ T3+ 13
d G G3)) =
(T(e’ 2>’ T(e’ 3)) T2 + T12 + T13 + T3 + T23 + T123

Let Fiy =T + Tho + Tog + 15 + T3 + Thos, Fo = Ty + T3 + Tog + 1o + 115 + Tho3 and
Fy = To+Ti9+ T3+ T3+ T3+ T123. After finding the common denominator, the numerator
can be written as:

(T1+ T+ Tos+T5) x Fox Fs—(Th + T3+ Tog+ 1) X Fy x Fs— (To+Tio+T13+T5) X Fy < Fy

(4.2)
By carefully developing equation 4.2 we can show that it is always negative (it only
contains negative terms with positive valued variables). Therefore, the elementary dis-
tance satisfies the desired properties.

In order to prove the triangle inequality on the SHD we need to prove that
SHD(G,,G3) < SHD(G4, Gy) + SHD(G+, G3). By referring to Figure 4.14, we can write:

SHD(GLG) = Y 1L+ Y () @y

13
{A1}U{ A5} U{A23}U{A12} {A15}U{Arzs) Unid T Vid

Similarly, let P = {Al} U {AQ} U {Agg} U {Alg}, Py = {AQ} U {A3} U {A13} U {Alg},

119



Q= {Alg} U {Algg} and Q9 = {A23} U {A123} we can write:

23

SHD<G17G2)+SHD GQ,Gg Zl + Zl + Z 12 md + Z(%)

vi2, 4+ vl2 S Vnia V23

(4.4)

We can see that (even without developing the equations) the terms that appear in

equation 4.3 also appear in equation 4.4. The sets {A;}, {As}, {423} and {A},} (the

entire left term of equation 4.3) appear in P; and P, along with other sets (on which we

do the sum of 1). In the right term of equation 4.3 we go through the set {43} to do

the sum of the ”d; s (Which is lesser than 1), contrarily to equation 4.4 where we go

through the set {Alg} to do the sum of 1 Finally, for the set {A123} that appears in both

equations we previously proved that i?;id s < o M =+ ﬁdﬁﬁ et After this identification

we can see that equation 4.3 is always lesser or equal to equation 4.4 and that the
SHD satisfies the triangle inequality.

The remaining distance axioms (Identity of indiscernibles and Symmetry) can also be
proven on the SHD. As a consequence, SHD is proved to be a distance metric.

However the SHD* measure is only a semimetric (not a metric), because it is positive
and only satisfies the identity of indiscernibles and the symmetry property analogically
to the SHD but does not satisfy the triangle inequality. We propose a counter example
in Figure 4.16.

(0,10](10, 20] (0,14] (14, 20] (0,16](16,20]
(a) RTGEM Graph G, (b) RTGEM Graph G, (c) RTGEM Graph G,

Figure 4.16 — Three RTGEMs graphs G, G, and G, with one edge e used as counter example for
the triangle inequality in SHD*

For the triangle inequality: consider the three vectors v, = [0, 10, 20|, v, = [0, 14, 20]
and v, = |0, 16, 20], corresponding to the edge e that is the same in the three graphs
G., Gy and G, of Figure 4.16 (e € A,,.). We recall that V3! = {(v1,,v3,) € v1 X vy :
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cl(vy,, v2) = vy, Acl(vy,,v1) = vy, }, with cl a function that finds the closest element to v;,
in vy cl(vy,, v2) = argmin,, (Jvi, —wvs,[). The elementary distance in this case is written:

1

_ 12

- | Y1 U2J' ‘ Unid
12 12 ~ 12 12
Unid T Vid (1,02, )EV2\(0,0) min(vy,, va) Vnid T Vig

d* (T (e,G1),T(e,Gsy)) =

Remark that in d* we count the found matches in v and not in v”,. We have

d* (T (e,Gy), T(e,G,)) =0+ % = 1/2 (no matches because 10 is closest to 16 but
nid id

16 is closest to 20), d*(T (e, G), T (e, Gy)) = § - sz +0 = 2/15 (matching 10 and 14)

and

d*(T(e,G,), T (e,G,)) = 1/21 (matching 14 and 16). Therefore, for this example we

have:

SHD*(G,,G.) = 0+ d*(T (e, Gy), T (e, G.)) = 1/2
SHD*(G,, G,) = 0+ d*(T (e, Gx), T (e, G,)) = 2/15
SHD*(G,,G.) = 0+ d*(T(e,G,), T (e,G.)) = 1/21

hence the triangular inequality does not hold because: SHD*(G,,, G,) > SHD*(G,, G,)+
SHD*(G,, G.).

121






RESUME

Depuis sa création au début des années 1990, la perception d’internet par les en-
treprises et le grand public n’a cessé d’évoluer. Le monde dans lequel nous vivons
aujourd’hui est totalement dépendant d’Internet qui est partie prenante de la vie de
chaque individu. Par conséquent l'utilisation de machines, d'ordinateurs, de smart-
phones et d’appareils connectés connait une croissance exponentielle d’année en an-
née. Les chercheurs et les sociologues ont méme identifié quatre types d’Internet. I
s’agit de I'Internet des contenus (Google, Wikipedia, etc.), de I'lnternet des personnes
(réseaux sociaux), de I'Internet des objets (cloud, objets connectés, etc.) et de I'lnternet
des lieux (mobilité, Google maps, etc.) [ZH09; Sel+09; BG14]. En conséquence, les
machines connectées sont devenues le point d’entrée le plus ciblé pour les agents
malveillants. Toutes les machines connectées communiquent via d'importants réseaux
et serveurs régis par des systemes complexes. Plus les systemes se compliquent, plus
les techniques d’exploitation frauduleuses deviennent sophistiquées.

Dans la plupart des emplois ou des applications de la vie courante, les employés,
les travailleurs, les consommateurs et les utilisateurs utilisent des appareils connec-
tés. Ceci les rend vulnérables non seulement a des exploits externes, mais également
a des abus internes qui peuvent devenir dangereux. C’est pourquoi il est important
de surveiller le comportement des utilisateurs et des travailleurs dans leur environ-
nement pour garantir un flux de travail « sécurisé ». Par exemple, la surveillance du
comportement des chauffeurs de camion peut permettre au superviseur de vérifier s’ils
ont eu suffisamment de temps de repos pendant le trajet. Les informaticiens ont dé-
ployé beaucoup d’efforts dans la recherche de construction de périmétres sdrs dans
lesquels les appareils connectés peuvent étre utilisés [Wur+16; Abo+15]. Dans ce tra-
vail, nous utilisons I'analyse comportementale afin d’identifier un comportement nor-
mal d’'un comportement dangereux tout en évaluant son niveau de dangerosité. La
clé pour établir une analyse de comportement adéquate est un ensemble de données
fideles enregistrées a partir du systeme concerné. En 2020, nous générons en dix
minutes plus de données que I'ensemble des données enregistrées par 'humanité
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jusqu’en 2003. Ainsi, il apparait que le probleme ne réside pas dans la génération des
données ou dans leur stockage mais dans notre capacité a extraire des informations
utiles de cette énorme quantité de données. C’est dans ce contexte que les techniques
d’exploration de données [Van11; Van14] révelent toute leur utilité. Dans cette thése,
nous ne traitons pas directement ce probleme, mais nous insistons sur I'importance
de la fidélité des données car les techniques que nous utilisons sont basées sur ces
données.

Cette thése a été réalisée en collaboration avec le groupe GFI informatique '. GFI
est un groupe international qui propose principalement des solutions et expertises in-
formatiques, touchant une grande variété de domaines (banque, sécurité routiére, su-
pervision, cloud, solutions IA et bien d’autres). Le Centre d’'Innovation et d’Expertise
(CIE) de GFI dirige de nombreux projets de recherche et développement (R&D). Les
principales attentes de GFI a propos de cette thése sont d’explorer 'analyse comporte-
mentale, y compris comment elle peut étre appliquée en sécurité ou en supervision, et
d’utiliser des techniques innovantes afin de se distinguer des solutions disponibles sur
le marché.

Afin de créer un acces sécurisé aux données dans un systeme réel et d’assurer leur
securité contre toute menace potentielle a venir, il faut connaitre les dépendances et le
comportement des différents composants du systéme. Ainsi on peut identifier les com-
portements malveillants afin d’agir au bon moment pour les intercepter. Nous pouvons
ici commencer a voir I'importance du Machine Learning qui permet de construire un
modele du systéme concerné sur la base de données ou de certaines connaissances
antérieures sur le systéme. De nombreux types de formalismes de modélisation exis-
tent dans la littérature, chacun de ces types ayant été développé avec un but précis.
Certains sont mieux adaptés a la vérification de propriétés ou d’hypotheses données,
d’autres a I'apprentissage des comportements et des dépendances ; dans ce travalil,
nous nous intéressons a tous ces aspects. Les automates finis probabilistes, par exem-
ple, ont été utilisés dans la modélisation et la vérification des comportements connus
ou souhaités [Mao+11; SL94; Rab63]. Les réseaux de Petri [Pet77; Pet81] ont été util-
isés dans la modélisation et la vérification de plusieurs taches paralléles ainsi que dans
le Process Mining [Van14]. Les modeles de Markov cachés ont été largement utilisés

1. Site Web : gfi.world
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dans la reconnaissance de la parole et des images, ainsi que dans I'évaluation de
la qualité des processus découverts [RVV08; KA98; VM98]. Des modeles graphiques
probabilistes ont été utilisés pour I'apprentissage automatique et la représentation des
dépendances entre les différentes variables d’'un systeme [MR02].

Chacun de ces formalismes a ses propres avantages et inconvénients. Néanmoins,
tous les formalismes cités ci-dessus et ceux qui sont dans la méme famille ont un dé-
faut commun, la discrétisation du temps. Ce dernier peut étre décrit comme un biais
de représentation dans I'apprentissage de ces formalismes. Entre chaque deux événe-
ments consécultifs, il y a un pas de temps mais il n’y a pas de mesure quantitative du
temps qui montre le temps réel écoulé entre les événements, le délai avant qu’un
événement ne se produise au début d’un processus, ou le retard a la fin du proces-
sus. Ainsi, du point de vue de la sécurité, il est préférable d’utiliser des formalismes de
modélisation temporelle continue qui permettent de savoir plus précisément quand agir
et pas seulement quelle action entreprendre; par exemple lors de la prédiction d’'une
défaillance du systéme ou de la prédiction des tendances futures des utilisateurs.

Pour explorer la dynamique d’'une grande variété de comportements de systemes
basés sur des flux d’événements collectés, il existe de nombreux formalismes avancés
de modélisation en temps continu : par exemple, les réseaux bayésiens a temps con-
tinu [NSKO02], les Markov jump processes [RT13], les réseaux de Poisson [RGHO05]
et les modéles d’événements graphiques (Graphical Event Models GEMs) [GMX11].
Dans ce travail, nous sommes particulierement intéressés par les Recursive Timescale
Graphical Models (RTGEMs) [GM16] une sous-famille de GEM, qui présentent des
avantages par rapport aux autres formalismes. En particulier, ils sont congus pour
approximer universellement tout processus ponctuel marqué (marked point process
m.p.p.) lisse, non explosif, stationnaire et multivarié [DVO07].

Les techniques d’apprentissage et de vérification formelle appropriées doivent étre
adaptées au type de formalisme que nous souhaitons construire. Le Model Check-
ing, par exemple, est utilisé comme méthode formelle de vérification [BK08]. Cette
méthode a été appliquée a de nombreux formalismes, mais d’aprés nos connais-
sances, jamais adaptée aux RTGEM. Une autre solution valable pour la vérification
sont les méthodes d’approximation, telles que la vérification du modéle statistique
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(SMC) [LDB10], qui est une technique efficace basée sur des simulations et des ré-
sultats statistiques. La SMC a été appliquée avec succes a des modeles graphiques
probabilistes tels que les réseaux bayésiens dynamiques (DBN) dans [Lan]. Par con-
séquent, la SMC pourrait étre adaptée aux RTGEM. Lorsque nous considérons des
techniques basées sur de la simulation (telles que la SMC), on pourrait penser a les
utiliser directement sur les données originales et non sur les données échantillonnées
a partir d’'un modele appris. Néanmoins, les données réelles que nous collectons peu-
vent étre bruyantes, rares ou incomplétes et peuvent ainsi masquer différents scénar-
ios rendant les techniques basées sur la simulation moins efficaces. C’est pourquoi,
il est important d’apprendre un modeéle probabiliste et d’en échantillonner les don-
nées pour éviter d’ignorer (totalement ou partiellement) certains scénarios. De plus,
des techniques comme I'échantillonnage d’importance (importance sampling) peuvent
étre utilisées sur le modéle pour augmenter la fréquence d’apparition d’événements
rares, ce qui ne peut pas étre réalisé directement sur les données d’origine.

Les principaux objectifs poursuivis au cours de ce travail sont d’abord la création de
liens entre le domaine d’apprentissage basé sur des modéles graphiques et le domaine
de vérification formelle, afin de bénéficier des avantages de chaque domaine pour les
évaluations de sécurité. D’autre part, la recherche d’'un modéle a la fois représentatif
des données d’entrée et sar d’un point de vue sécurité fat entreprise. Nous ne sommes
pas seulement intéressés par I'évaluation de I'aptitude d’un modeéle a 'aide de tech-
niques de notation standard mais également a son adéquation du point de vue de la
sécurité. En particulier, il est probable que le modéle appris ne satisfait pas les pro-
priétés de sécurité données. Par conséquent, nous proposons une stratégie ou nous
choisissons d’apprendre le RTGEM "le plus adapté" (celui qui est le plus représentatif
des données). Si nos normes de sécurité ne sont pas vérifiées sur le modéle appris,
nous proposons également une méthodologie de recherche pour trouver un autre mod-
ele proche qui les satisfasse. Pour ce faire, une stratégie appropriée est proposée et
une mesure de distance est introduite afin de comparer deux RTGEM. En comparant
le modele "le plus adapté" et celui trouvé dans son voisinage (s'il en existe un) qui
répond a la norme de sécurité, nous donnons un apergu de la dangerosité du com-
portement détecté (appris). Notre approche est générique par rapport a la procédure
de vérification et a la notion de distance entre modéles. Dans un souci d’exhaustivité,
la stratégie que nous proposons est ensuite testée sur des données synthétiques. Le
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plan de la thése est donné ci-dessous.

Cette thése est composée de quatre chapitres qui sont résumés dans ce qui suit.
Le premier chapitre contient les formalismes et les techniques de pointe qui ont inspiré
ce travail. Le deuxieme chapitre contient les préliminaires nécessaires a cette these et
les deux derniers chapitres constituent la principale contribution de ce travalil.

Dans le premier chapitre, une revue de I'état de I'art sur les formalismes temporels
discrets couramment utilisés est établie. En particulier, les systémes de transition, les
modeles de Markov, les réseaux bayésiens dynamiques, les réseaux de Petri et les
automates probabilistes sont introduits. Nous rappelons formellement la définition de
chaque formalisme présenté et discutons de ses avantages et inconvénients. Nous
présentons également une synthese sur le pouvoir expressif, I'évaluation et la vérifica-
tion de chaque formalisme présenté. En procédant comme tel, nous constatons que
la discrétisation du temps est en réalité un probleme d’un point de vue sécuritaire, et
gue nous devons adopter un formalisme temporel continu afin d’atteindre nos objec-
tifs. De plus, nous définissons formellement des propriétés linéaires qui seront ensuite
utilisées pour définir les propriétés de sécurité mentionnées ci-dessus. Enfin, nous dis-
cutons de deux techniques de vérification formelles : le Model Checking et le Model
Checking Statistique (SMC), ainsi que de leurs avantages et de leurs inconvénients.
Nous justifions également le choix du SMC comme technique de vérification utilisée
dans le reste de ce travalil.

Dans le deuxiéme chapitre, nous introduisons les prérequis, définitions et nota-
tions de base qui sont utilisés dans le reste du travail. Nous présentons et définissons
formellement les marked point processes (m.p.p.) et les modeles d’intensité condition-
nelle (Conditional Intensity Models CIMs). Plus important encore, nous décrivons le
type de données considérées pour cette étude. De plus, nous introduisons et définis-
sons formellement les différentes familles de modeles d’événements graphiques, leurs
procédures d’apprentissage et leurs limites. Lobjectif principal de ce chapitre est de
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justifier le choix des Recursive Timescale Graphical Event Models (RTGEMs) comme
technique de modélisation formelle, en équilibrant leurs avantages et leurs inconvénients,
et en démontrant leur facilité de manipulation.

Dans ce chapitre, nous définissons formellement un RTGEM comme étant une sous
famille de Timescale Graphical Event Models (TGEM) construite avec des opérateurs
récursifs prédéfinis. Un TGEM est un couple M = (G,7T) ou G est un Graphical Event
Model (GEM) G = ((£, E), 0) constitué d’un graph (£, F) (L ensemble des noeuds et
E ensemble des arcs) et d'un ensemble de parametres ¢; et T = T, ., un ensem-
ble de timescales correspondant aux arcs £ du graphe de G. On note que ce type de
formalisme est Markovien et que les noeuds dépendent des occurrences (historique)
de leurs parents dans le passé (vis-a-vis des timescales). On utilise la notation ¢;(h, t)
pour dénoter les combinaisons possibles d’'occurrences des parents (s’ils existent). Par
conséquent, pour un noeud il y a autant de paramétres que de combinaisons ¢; possi-
ble. Un noeud n’ayant pas de parent n’a qu’un seul parametre. Dans la figure 4.17 on
montre un exemple de RTGEM a quatre noeuds et quatre arcs. Les opérateurs avec
lesquels on construit un RTGEM sont divisés en deux groupes, les opérateurs Forward
(pour aggrandir le graphe) et les opérateurs Backward (pour raffiner le graphe).

AC,ci(ht)

(0,20] @

Figure 4.17 — Un exemple d’'un RTGEM & 4 noeuds et 4 arcs.

Les opérateurs Forward sont les suivants : Or = {add, split, extend}, I'opérateur
"add" ajoute un arc inexistant a un modéle et son timescale correspondant 7' = (0, ¢],
avec ¢ une constante (également appelée horizon). Lopérateur "split" fractionne un
intervalle (a,b] dans le timescale d’un arc choisi en deux intervalles (a, %], (42, b).
Lopérateur "extend" étend I'horizon d’un arc choisie en ajoutant l'intervalle (¢, 2t,], t5
étant I'horizon précédent. Les opérateurs Backward sont les suivants
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Op' = {reverse_add, reverse_split, reverse_extend}, 'opérateur "reverse_add" sup-
prime un arc choisi avec un seul intervalle dans son timescale (pour en faire I'inverse
exact de l'opérateur "add"). Lopérateur "reverse_split" est utilisé pour fusionner deux
intervalles consécutifs dans un timescale sur un arc choisi qui ont été initialement sé-
parés. Lopérateur "reverse_extend" supprime l'intervalle le plus élevé (le dernier) d’une
échelle de temps sur un bord choisi uniquement si la limite supérieure de cet intervalle
a été initialement créée par une extension.

Dans le troisieme chapitre, nous présentons les bases de notre contribution.
Nous énoncgons explicitement le probleme et le formalisons. Nous proposons une so-
lution au probléme via une stratégie générique basée sur un modéle présenté sous la
forme d’un algorithme. Nous détaillons la stratégie proposée pour I'apprentissage et la
vérification des évaluations de sécurité. Nous définissons également une mesure de
distance entre les modeles graphiques. Notre stratégie consiste a apprendre le modéle
le plus représentatif du systéme sous-jacent. Nous vérifions ensuite si le modele appris
satisfait une propriété de sécurité donnée. Si ce n’est pas le cas, une recherche d’un
modeéle proche qui vérifie la propriété de sécurité donnée est effectuée. Enfin, nous
adaptons une mesure de distance qui est calculée entre les deux modéles pour voir
dans quelle mesure le modéle fittest est capable de vérifier la propriété. A notre avis,
la combinaison de techniques que nous choisissons d’appliquer a chaque étape de
notre algorithme générique proposé est la meilleure, bien que certaines d’entre elles
puissent étre améliorées (ce qui est discuté dans les perspectives).

Dans la phase d’apprentissage d’'un modéle, nous voulons apprendre le modéle le
plus adapté qui représente le mieux la réalité. Par conséquent, afin de sélectionner ce
modele le plus adapté, nous avons tendance a adapter les scores et les métriques qui
évaluent la complexité et la ressemblance des différents modeéles appris par rapport
aux donnees réelles. D’un point de vue securité, il est également important de vérifier
si notre modeéle (qui représente la réalité jusqu’a un certain degré) satisfait les régles
ou propriétés de sécurité données. Si les propriétés de sécurité ne sont pas vérifiées
par le modéle, nous sommes également intéressés, d’'un point de vue sécurité, a cal-
culer dans quelle mesure le modéle actuel est loin de les vérifier afin d’avoir un apergu
du "niveau de danger" du modele. La probabilité qu’'un modéle M vérifie une requéte
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de sécurité ¢ s’écrit P(p | M). Afin de rester cohérent avec les notations du chapitre
précédent, nous écrivons P(D | M) pour la vraisemblance des données connaissant
le modele (structure et parameétres). Le probleme que nous posons peut étre formalisé
comme suit:

AM*, M* = argmax(P(D | M)) avec P(p | M) > ¢, (4.5)

avec c € [0, 1] une constante donnée.

Les propriétés de sécurité que nous cherchons a vérifier sont qualitatives et trait-
ent généralement un nombre limité d’événements dans notre modéle. On note L,
'ensemble des étiquettes des événements concernés par la requéte de sécurité .

Intuitivement, nous avons tendance a traiter ce type de problemes comme des prob-
léemes d’optimisation. Cependant, le probléme énoncé dans I'équation 4.5 ne peut pas
étre résolu en utilisant une heuristique d’optimisation multi-objectif telle que [Mir+16],
car une propriété qualitative ne peut pas étre optimisée, elle est soit vraie soit fausse.
En d’autres termes, nous n’avons que des modeéles qui ne sont pas "sars" (P(¢ | M) <
c) et des modeéles qui sont "sars" (P(¢ | M) > c). Par exemple, considérons deux mod-
eles M et M’ qui satisfont P(¢ | M) > c et P(p | M) > ¢ afin que les deux soient
"sécurises"; avoir P(¢ | M) > P(pmidM’) ne signifie pas que M est "plus sOr" que
M’. Par conséquent, I'équation 4.5 ne peut pas étre optimisée a 'aide d’'une fonction
multi-objectif, alors nous la décomposons et procédons autrement.

La stratégie proposée peut étre représentée a I'aide d’'un algorithme générique com-
posé de trois étapes principales, la premiére étape étant la phase d’apprentissage, la
deuxiéme étape étant la phase d’exploration de I'espace modeéle et la vérification du
modele, et la dernieére étape étant le calcul de la distance entre deux modéles.

Algorithm 6 Stratégie Proposée

input: D, ¢
output: M* A
1: M° = argmax P(D | M)

MeChosen_Formalism
. M* = find{M € N, P(¢p | M) > c}
. A = Distance(M?°, M*)

A 0D

La premiére ligne de I'algorithme 6 correspond a la phase d’apprentissage d’un
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modele. Elle consiste a choisir un langage de modélisation adéquat et a apprendre le
modele le plus adapté M° ("fittest model"). Les lignes 2 et 3 de I'algorithme 6 corre-
spondent a la phase d’exploration de 'espace modeéle et a la vérification du modeéle, ou
nous recherchons un modéle M*, dans le voisinage "proche" de M* écrit N (N, (M?)),
qui vérifie la propriété de sécurité. Cette étape est expliquée en détail dans ce chapitre.
La derniére ligne de I'algorithme consiste a calculer la distance entre le modele le plus
adapté et le modele que nous sélectionnons aprés la recherche de voisinage (s’il en
existe un). La notion de distance que nous proposons est définie et expliquée dans ce
chapitre.

Dans le dernier chapitre, nous construisons des tests pour évaluer les performances
de chaque étape de l'algorithme proposé. Nous montrons les performances de
I'apprentissage et de I'échantillonnage des RTGEM, ainsi que I'application de SMC sur
ce formalisme. De plus, nous construisons un protocole d’expériences afin de montrer
gue ce que nous proposons remplit réellement les objectifs de départ que nous nous
sommes fixés. Nous prouvons que si nous avons des données provenant d’un systeme
sécurise, le RTGEM appris sera également sécurisé en ce qui concerne la propriété de
sécurité que nous proposons, et vice versa. Nous montrons expérimentalement que la
technique d’exploration de voisinage afin de trouver un modeéle proche qui satisfasse
la propriété (au cas ou le modele appris ne la satisfait pas) fonctionne réellement. En-
fin, nous montrons comment, en pratique, nous pouvons évaluer la dangerosité d’un
modele appris par rapport a un comportement nominal.

La conception de cette expérience est présentée dans ce qui suit et illustrée dans la
figure 4.18. Cette expérience est construite afin de répondre aux questions suivantes:
» Considérons un ensemble de données qui est statistiquement sécurisé (ou non
sécurisé€), en ce qui concerne une propriété de sécurité, c’est-a-dire que les
données représentent un comportement sir (ou dangereux). Le modele appris,
a partir de ces données, satisfait-il (ou non) la propriété de sécurité en con-
séquence?
» Considérons un modeéle qui ne vérifie pas la propriété de sécurité. Peut-on trou-
ver dans son voisinage un modéle qui vérifie la propriété?
» Considérons un modéle qui est loin, probablement, de satisfaire une propriété
de sécurité donnée. Est-il difficile de trouver un modéle dans son voisinage (s'il
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en existe un) qui satisfait la propriété?

Par souci de simplicité, nous appelons le premier test le cas OK, le deuxieme test
le cas KO, et le troisieme test le cas KO,. Comme le montre la figure 4.18, nous
commengons notre pipeline en appliquant I'algorithme proposé sur un ensemble de
données synthétiques qui a été précédemment généré a partir d'un modele qui sat-
isfait une propriété de sécurité par rapport a une requéte de sécurité ¢. La premiere
étape est I'apprentissage du modele qui représente le mieux les données pour le cas
OK. Nous procédons en appliquant notre technique de vérification formelle (SMC)
choisie, comme décrit dans ce chapitre, sur le modéle appris. Nous exécutons ensuite
la technique d’exploration spatiale sur le modéle appris s’il ne vérifie pas la propriété.
Si un modeéle qui vérifie la propriété de sécurité se trouve dans le voisinage du modele
initial, la distance qu’on a proposé dans le chapitre précédent S H D* est alors calculée
entre le modéle trouvé et le modeéle initial (qui représente le mieux les données).

Nous exécutons a nouveau la méme procédure sur deux ensembles distincts de don-
nées synthétiques qui ont été précédemment générées a partir de modeles qui ne
satisfont pas la propriété de sécurité (cas KO, et KO,). Les données utilisées pour
I'apprentissage du modéle dans le cas KO, sont censées étre, en probabilité, plus
éloignées que les données qui sont utilisées pour I'apprentissage du modele dans le
cas KO, ont vérifié la propriété de sécurité. Nous notons que pour des raisons de
cohérence, nous utilisons parfois la notation M* pour désigner le modéle sécurisé, via
I'exploration spatiale (si elle existe).

Nous montrons brievement les résultats obtenus dans les tableaux suivants.
Dans le tableau 4.12, nous montrons les résultats obtenus apres la fin du premier
test. La vérification formelle avec SMC est répétée vingt fois afin d’établir des valeurs
moyennes pour la durée requise et le nombre de simulations avant d’acquérir un résul-
tat. Nous écrivons ¢ pour la durée moyenne et m pour le nombre moyen de simulations
sur vingt exécutions pour tous les tests restants.

| | Pr(e]M)>08 | ¢ \ m
Mg, || Propriété satisfaite | 5 sec (£0.43 sec) | 277 simulations (+49 simulations)
Mok - - -

|

Table 4.12 — Résultats du premier test sur Mg
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|

Model Mg

Check ¢ on Mg,
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Model space exploration
via Random Walk

Model space exploration
via Random Walk

Model space exploration
via Random Walk

Model M~
found?

Model M*
found?

Model M*
found?

Model Mj;, Model Mj;,

Figure 4.18 — Une schématisation du protocole expérimental proposé.

Quelques résultats du deuxieme test sont présentés dans le tableau 4.13. La véri-
fication formelle avec SMC est répétée vingt fois pour My, et My, afin d’établir des
valeurs moyennes pour la durée requise et le nombre de simulations avant de con-
verger vers un résultat.

| [ Pr(p|M) > 038 | t | m |
MFo, || Propriété NON satisfaite | 1 min 2 sec (+11 sec) | 4018 simulations (£101 simulations)
Mo, Propriété satisfaite 2 min 17 sec (+£25 sec) | 5512 simulations (=122 simulations)

Table 4.13 — Résultats du second test sur Mg, .

Quelques résultats du dernier test sont présentés dans le tableau 4.14. La vérifi-
cation formelle avec SMC est répétée vingt fois pour My, et M Koy, € Mico,, (deux
modeéles sécurisés trouvés dans ce cas) afin d’établir la moyenne pour la durée requise
et le nombre de simulations avant d’acquérir un résultat.
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[ Pr(e|M) > 0.8 | t | m |

M?.o, || Propriété NON satisfied | 3 min 22 sec (£11 sec) | 2155 simulations (£69 simulations)
Mieo,, Propriété satisfaite 11 min 31 sec (+25 sec) | 7512 simulations (+136 simulations)
Mo, Propriété satisfaite 7 min 19 sec (+25 sec) | 4286 simulations (+114 simulations)

Table 4.14 — Résultats du dernier test sur Mz, .

Pour conclure, nous rappelons qu’aucune preuve théorique n’a été établie afin de
démontrer formellement les résultats présentés et qu’ils sont uniqguement basés sur les

tests q

ue nous avons effectués. Les réponses aux questions posées précédemment et

qui sont également capables de résumer nos résultats sont énumérées ci-dessous:

A I'exception de "detailed balance", plus la taille des données est grande, plus
I'apprentissage est précis (voir Chapitre 4 et [GM16]).

Un échantillonnage excessif d'un RTGEM est colteux, surtout s’il contient des
cycles, mais nous utilisons un échantillonnage ciblé avec un arrét précoce lorsque
cela est possible afin de réduire le temps de calcul.

Si les données d’entrée que nous utilisons représentent (ou non) un comporte-
ment sdr en ce qui concerne la propriété de sécurité, alors le modele appris
satisfait la propriété de sécurité lorsqu’il est formellement vérifié (ou non) en
conséquence.

Si le modéle "le plus adapté" appris ne satisfait pas la propriété de sécurité don-
née, un modele sécurisé peut étre trouvé dans son voisinage (parfois aprés de
nombreuses instances de la technique de recherche) qui satisfait la propriété.
Plus le modele le plus adapté est, en probabilité, loin de satisfaire la propriété
de sécurité, plus il est difficile de trouver un modele sécurisé proximal dans son
voisinage.

La mesure de distance, utilisée pour évaluer la dangerosité du modele le plus
adapté en le comparant au modéle sécurisé, augmente lorsque le modele le
plus adapté est, en probabilité, loin de satisfaire la propriété.

Parfois, lors de I'exécution d’'une instance de la technique d’exploration, nous
ne trouvons pas de modele sécurisé, en particulier pour les modeéles plus dan-
gereux.

Finalement, nous présentons quelques perspectives que nous avons envisagées

pour d
pourra

e futurs travaux. Pour commencer, le processus d’apprentissage d’'un RTGEM
it étre exploré plus en détail. En d’autres termes, nous avons remarqué dans nos

tests quelques fluctuations étranges lors du processus d’apprentissage (voir chapitre
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4). Afin d’expliquer cette impression, nous avons essayé de construire de petits tests et
avons réalisé que des tests plus importants devaient étre effectués. Ces tests doivent
inclure la variation des différents hyper parametres possibles lors de la construction
aléatoire d’'un graphe (nombre de nceuds, parametres, horizons, nombre d’arcs, nom-
bre de timescale, densité d’échelles de temps, etc.) afin d’avoir un diagnostic complet
pour une meilleure compréhension. La premiere difficulté fondamentale rencontrée
dans une telle procédure est le colt élevé de ces opérations. Une autre difficulté est la
capacité de trouver des explications/corrélations tout en évitant les biais de représen-
tation. En d’autres termes, le choix des paramétres et des échelles de temps sur les
modeles de référence doit se faire de maniere a ne pas masquer certaines dépen-
dances.

Une perspective qui est plus directement liée a la stratégie proposée cible la technique
d’échantillonnage direct. Comme nous I'avons vu au chapitre 4, I'’échantillonnage de
RTGEM pourrait devenir colteux méme avec la régle d’arrét précoce que nous util-
isons. Par conséquent, une approche ou nous pouvons résumer et approximer la total-
ité des effets que les parents ont sur les noeuds ciblés peut étre envisagée. En d’autres
termes, pour n’avoir qu’un seul parameétre \;, .ss.s POUr chaque étiquette concernée
l, € L,, qui est calculé avec une certaine heuristique par rapport a tous les parents
Pa,(l,). Une méthode pour y parvenir est de perturber les dépendances (ou de les
supprimer) d’'une maniere qui peut nous donner la structure souhaitée dont nous avons
discuté ci-dessus. En procédant comme tel, nous transformons un modéle donné M
en M’ sur lequel nous pouvons réapprendre les parametres "abstraits" souhaités en
utilisant les mémes données d’entrée qui ont été utilisées pour apprendre le modele
M. La difficulté est de pouvoir trouver une démonstration formelle que le modéle M’
est un objet mathématique similaire au modele M dans une certaine mesure (ou une
mesure de précision pour évaluer combien ils sont les mémes), a partir d’un point de
vue d’échantillonnage.

Une autre perspective concernant la technique d’exploration spatiale peut également
étre envisagée. Dans ce travail, nous avons choisi la technique Random Walk comme
méthode d’exploration en raison de sa simplicité et de son efficacité relative. Une
méthode plus compléte pourrait étre utilisée, comme une recherche exhaustive en
largeur (ou profondeur en premier) qui garantit 'exploration de toutes les possibilités.
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Cependant, cette technique pourrait devenir colteuse si nous ne considérons pas une
approche intelligente ou nous créons une mémoire cache pour stocker les RTGEM
déja explorés dans le quartier. La raison derriére cela est l'utilisation d’opérateurs
et d’opérateurs inverses pour les modifications. Par exemple, nous pouvons annuler
un opérateur avant en faisant un opérateur arriere pour se replier sur un modéle
précédemment testé, et vice versa. Une deuxiéme technique d’exploration spatiale
peut également étre testée: une méthode de recherche Greedy qui envisagerait
d’améliorer la propriété de sécurité en probabilité. En d’autres termes, une technique
SMC quantitative devrait étre associée a la recherche Greedy afin de calculer la prob-
abilité approximative de satisfaire la requéte de sécurité pour un modéle aprés chaque
modification possible. Lorsqu’'un modéle qui améliore la probabilité de satisfaire la
propriété de sécurité est trouvé, il est sélectionné comme nouvelle référence et la
recherche se poursuit. Bien que nous ne sachions pas si c’est mieux que la recherche
exhaustive ou la Random Walk, nous pensons que c’est une approche intéressante a
explorer.

Enfin, un dernier objectif que nous envisageons d’'atteindre dans un avenir proche est
I'expérimentation de données réelles. En raison de problémes d’accessibilité aux don-
nées fideles du monde réel, nous n’avons pas encore pu effectuer ce type d’expérience.
C’est quelque chose que nous prévoyons de faire avec GFI informatique sur différents
cas d'utilisation, notamment sur les données générées par une application de sécurité
routiére. Bien que nous pensons qu’il y a beaucoup de traitement de données a faire
pour I'adapter au format requis, nous pensons que nos méthodes sont suffisamment
mares pour étre maintenant utilisées dans ce contexte.
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