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propitious to my researches.

I would like to express my gratitude to all my students, from bachelor to Ph.D. ones,
for the extraordinary inputs they have provided me during the last years. A special thanks
goes to Amy Felty and Sabine Moisan for having decided to share with me the adventure of
supervising Ph.D. students.
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Chapter 1

Curriculum Vitae with Publication List

1.1 Identification

First name: Elisabetta

Last name: DE MARIA

Date of birth: 15/10/1981

Position: Associate professor (Maitre de conférences)

Establishment: Université Cote d’Azur, France

Research laboratory : Laboratoire d’Informatique, Signaux et Systémes de Sophia An-
tipolis (UMR 7271 UNS/CNRS), France.

1.1.1 Professional Background

September 2018 - August 2020. On-leave at INRIA Sophia Antipolis Méditerannée,
France, STARS team.

Since September 2011. Associate professor at Université Cote d’Azur, France.

April 2009 - August 2011. Post-doctoral fellow at INRIA Rocquencourt (Paris) under
the supervision of Frangois Fages. The first year of my post-doctoral studies was
funded by ERCIM (European Research Consortium for Informatics and Mathemat-
ics), an organization that annually selects talented researchers for post-doctoral fellow-
ships encouraging mobility. The second year was funded by the international project
ERASysBio+ C5Sys on the cell cycle and circadian clock in tumor processes.

1.1.2 Diplomas

March 2009. Ph.D. in Computer Science at University of Udine, Italy. Title of the thesis:
"Computer Science Logic for Structure Prediction, String Comparison, and Biological
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Pathway Analysis". Mention: excellent. Director: prof. Angelo Montanari. Commit-
tee: prof. Angelo Montanari (president), prof. Anthony Jameson (member), and dr.
Sebastian Will (secretary).

July 2005. Master degree in Computer Science at University of Udine, Italy. Grade:
110/110 cum laude. Title of the report: "Verifica di schemi di workflow con vin-
coli temporali mediante automi temporizzati" (Verification of workflow schemes with
time constraints using timed automata).

July 2003. Bachelor degree in Computer Science at University of Udine, Italy. Grade:
110/110 cum laude. Title of the report: "Gestione di vincoli temporali in sistemi di
workflow" (Management of time constraints in workflow systems).

July 2000. Scientific high school diploma after five years at "Liceo Scientifico Statale G.
Marconi", Conegliano (TV), Italy. Grade: 100/100.

1.2 Teaching Activities

In 2019/2010 and 2010,/2011, during my post-doctorate at INRIA Rocquencourt (Paris), I
taught the following courses:

Fundamentals of Computer Science, tutorial classes, bachelor in Computer Science,
2nd year, University of Versailles-Saint-Quentin-En-Yvelines, France. Course that cov-
ers the basics of the C programming language.

Computer Methods for Systemic and Synthetic Biology, lecture course, Master
Parisien de Recherche en Informatique (MPRI), France. Course focused on formal
methods for bio-informatics.

Since September 1st, 2011 I work for the Department of Computer Science at Université
Cote d’Azur, France, for which I taught the following courses:

Introduction to functional programming, lecture course and practical exercises,
bachelor in Computer Science, 1st year. Course focused on the Scheme programming
language.

Introduction to databases, lecture course and practical exercises, bachelor in Com-
puter Science, 2nd year. Course focused on relational databases.

Compilers, tutorial classes and project, bachelor in Computer Science, 3rd year.
Course centered on lexical analysis, syntactic analysis, and code generation.

Model checking, lecture course and tutorial classes, Master de Recherche en Infor-
matique Fondamentale (RIF). Course that covers temporal logics, model checking al-
gorithms, and their complexity.



In addition, my skills in bioinformatics led me to teach the following courses for the
Department of Life Sciences at Université Cote d’Azur:

Bio-informatics, project, bachelor Biologie-Informatique-Mathématiques (BIM), 2nd and
3rd year. I supervised some projects based on the statistical analysis of spike trains
and some projects on the development of an environment for modeling, simulating,
and verifying bio-chemical systems.

Algorithmic for biology, lecture course and tutorial classes, bachelor Biologie-
Informatique-Mathématiques (BIM), 2nd and 3rd year. Course that aims at giving an
overview of algorithmic problems and highlights applications to biology.

Databases for biology, lecture course and tutorial classes, master Biologie-Informa-
tique-Mathématiques (BIM), 1st year. Course focused on the design and implementa-
tion of databases with a biology-related application domain.

Gene regulatory networks, lecture course, master in Computational Biology and Bio-
medicine (CBB), 2nd year. Course that covers the use of formal methods of computer
science to verify bio-chemical systems.

1.3 Publications and Scientific Production (after obtain-
ing my Ph.D.)

Editorial Duties.

e Elisabetta De Maria, Ana Fred, and Hugo Gamboa: Proceedings of the 13th In-
ternational Joint Conference on Biomedical Engineering Systems and Technologies
(BIOSTEC 2020) - Volume 3: BIOINFORMATICS, Valletta, Malta, February 24-26,
2020. SciTePress, (2020).

e Ana Cecilia Roque, Arkadiusz Tomczyk, Elisabetta De Maria, Felix Putze, Ro-
man Moucek, Ana L. N. Fred, Hugo Gamboa: Biomedical Engineering Systems and
Technologies - 12th International Joint Conference, BIOSTEC 2019, Prague, Czech Re-
public, February 22-24, 2019, Revised Selected Papers. Communications in Computer
and Information Science 1211, Springer, (2020).

e Elisabetta De Maria, Ana Fred, and Hugo Gamboa: Proceedings of the 12th In-
ternational Joint Conference on Biomedical Engineering Systems and Technologies
(BIOSTEC 2019) - Volume 3: BIOINFORMATICS, Prague, Czech Republic, Febru-
ary 22-24, 2019. SciTePress, (2019).



Book.

e Elisabetta De Maria: Systems Biology Modelling and Analysis: Formal Bioinfor-
matics Methods and Tools. Contract signed on February 6th, 2020 with the editing
house Wiley. Chapters: Introduction, Petri Nets, Boolean Networks, Process Algebras,
Rule-based Languages, Pathway Logic, Answer Set Programming, Timed and Hybrid
Automata, Ordinary and Stochastic Differential Equations, Conclusion.

Book Chapters.

e Elisabetta De Maria, Joélle Despeyroux, Amy Felty, Pietro Lio, and Carlos Olarte:
Computational Logic for Systems Biology, Biomedicine, and Neuroscience. Accepted
for publication as a chapter in an "ISTE-Wiley" book, (2020).

e Elisabetta De Maria, and Cinzia di Giusto: Inferring the Synaptical Weights of
Leaky Integrate and Fire Asynchronous Neural Networks modelled as Timed Au-

tomata. Communications in Computer and Information Science 1024, Springer 2019,
149-166, (2019).

e Giovanni Ciatto, Elisabetta De Maria, and Cinzia di Giusto: Spiking Neural Net-
works as Timed Automata. Proc. of the Thematic Research School on Advances in
Systems and Synthetic Biology (ASSB), EDP Sciences, (2017).

International Peer-reviewed Journals.

e Elisabetta De Maria, Morgan Magnin: Introduction to JBCB Special Issue on CSBio
2019. Journal of Bioinformatics and Computational Biology, World Scientific Publish-
ing Europe Ltd, to appear, (2020). Impact factor: 0.845.

e Elisabetta De Maria, Cinzia Di Giusto, and Laetitia Laversa: Spiking neural net-
works modelled as timed automata: with parameter learning. Natural Computing,
1-21, https://doi.org/10.1007/s11047-019-09727-9, (2019). Impact factor: 1.330.

e Elisabetta De Maria: Introduction to JBCB Special Issue on BIOINFORMATICS
2019. Journal of Bioinformatics and Computational Biology 17 (5), World Scientific
Publishing Europe Ltd, (2019). Impact factor: 0.845.

e Elisabetta De Maria, Francois Fages, Aurélien Rizk, and Sylvain Soliman: Design,
optimization and predictions of a coupled model of the cell cycle, circadian clock,
DNA repair system, irinotecan metabolism and exposure control under temporal logic
constraints. Theoretical Computer Science, 412(21): 2108-2127, (2011). Impact factor:
0.718.



International Disclosure Reviews.

e Francois Fages, Gregory Batt, Elisabetta De Maria, Dragana Jovanovska, Aurélien
Rizk, and Sylvain Soliman: Computational systems biology in BIOCHAM. ERCIM
News, 82, (2010).

Conference and Workshop Papers with Peer Review.

e Elisabetta De Maria, Thibaud L’Yvonnet, Sabine Moisan, and Jean-Paul Rigault:
Probabilistic activity recognition for serious games with applications in medicine. Pro-
ceedings of the Seventh International Workshop on Formal Techniques for Safety-
Critical Systems (FTSCS’19), Springer International Publishing, 106-124, (2020). Se-
lected for publication in the journal Science of Computer Programming.

e Abdorrahim Bahrami, Elisabetta De Maria, and Amy Felty: Modelling and Veri-
fying Dynamic Properties of Biological Neural Networks in Coq. Proceedings of 9th
International Conference on Computational Systems Biology and Bioinformatics (CS-
BIO 2018), ACM, Article No. 12, 1-11, (2018).

e Elisabetta De Maria and Cinzia Di Giusto: Parameter Learning for Spiking Neural
Networks modelled as Timed Automata. Proceedings of 9th International Conference
on Bioinformatics Models, Methods and Algorithms (BIOINFORMATICS 2018), 17-
28, (2018). Finalist paper for the Best Paper Award.

e Elisabetta De Maria, Daniel Gaffé, Cédric Girard Riboulleau and Annie Ressouche:
A Model-checking Approach to Reduce Spiking Neural Networks. Proceedings of 9th
International Conference on Bioinformatics Models, Methods and Algorithms (BIOIN-
FORMATICS 2018), 89-96, (2018).

e Elisabetta De Maria, Cinzia Di Giusto, and Giovanni Ciatto: Formal Validation
of Neural Networks as Timed Automata. Proceedings of 8th International Conference
on Computational Systems Biology and Bioinformatics (CSBIO 2017), ACM, 15-22,
(2017).

e Elisabetta De Maria, Thibaud L’Yvonnet, Daniel Gaffé, Annie Ressouche, and
Franck Grammont: Modelling and Formal Verification of Neuronal Archetypes Cou-

pling. Proceedings of 8th International Conference on Computational Systems Biology
and Bioinformatics (CSBIO 2017), ACM, 3-10, (2017).

e Elisabetta De Maria, Alexandre Muzy, Daniel Gaffé, Annie Ressouche, and Franck
Grammont: Verification of Temporal Properties of Neuronal Archetypes Modeled as
Synchronous Reactive Systems. Proceedings of Hybrid Systems Biology (HSB 2016),

LNCS 9957: 97-112, (2016).



e Elisabetta De Maria, Joélle Despeyroux, and Amy P. Felty: A Logical Framework
for Systems Biology. Proceedings of Formal Methods in Macro-Biology (FMMB 2014),
LNCS 8738: 136-155, (2014).

Posters.

e Elisabetta De Maria, Francois Fages Fages, Aurélien Rizk, and Sylvain Soliman:
Design, Optimization and Predictions of a Coupled Model of the Cell Cycle, Circa-
dian Clock, DNA Repair System, Irinotecan Metabolism and Exposure Control under
Temporal Logic Constraints. Poster at 9th European Conference on Computational
Biology (ECCB 2010), (2010).

Research Reports.

e Elisabetta De Maria, Alexandre Muzy, Daniel Gaffé, Annie Ressouche, and Franck
Grammont: Verification of Temporal Properties of Neuronal Archetypes Using Syn-
chronous Models. INRIA Research Report, (2016).

¢ Elisabetta De Maria, Joélle Despeyroux, and Amy P. Felty: A Logical Framework
for Systems Biology. INRTA Research Report, (2014).

Under Review.

¢ Elisabetta De Maria, Abdorrahim Bahrami, Thibaud L"Yvonnet, Amy Felty, Daniel
Gaffé, Annie Ressouche, Franck Grammont: On the Use of Formal Methods to Model
and Verify Neuronal Archetypes. Under revision at the journal Frontiers of Computer
Science.

1.4 Tools

During my post-doctorate, I contributed to the development of the BIOCHAM software.
More specifically, I worked on exporting (resp. importing) Biocham models to (resp. from)
other formalisms for modeling biochemical systems (e.g., SBML, ODE, Matlab).
http://contraintes.inria.fr/BIOCHAM

1.5 Doctoral and Scientific Supervision

March 2012 - August 2012. Supervision of the 2nd year master internship of the student
Barghavi Varaprasad, International Research Master CBB (Computational Biology
and Biomedicine), Université Nice-Sophia Antipolis. Title of the report: Tests for
Gene Regulatory Networks.

June 2014 - September 2014. Supervision of the 1st year master internship of the stu-
dent Steven Roumajon, Master in Computer Science RIF (Recherche en Informatique
Fondamentale), Université Nice-Sophia Antipolis. Title of the report: Discrete opti-
mization and temporal logic for neural networks.
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June 2016 - December 2016. Supervision of the 2nd year master internship of the stu-
dent Giovanni Ciatto, Laurea Magistrale in Ingegneria Informatica, Universita di Bolo-
gna, Italy. Title of the report: Modeling Third Generation Neural Networks as Timed
Automata and verifying their behavior through Temporal Logic.

January 2017 - June 2017. Supervision of the 2nd year master internship of the student
Thibaud L’Yvonnet, Master in Life Sciences BIM (Biologie-Informatique-Mathémati-
ques), Université Nice-Sophia Antipolis. Title of the report: Modelling and verifying
neuronal archetype compositions.

February 2017 - June 2017. Supervision of the 1st year master internship of the stu-
dent Cédric Girard-Riboulleau, Master in Life Sciences BIM (Biologie-Informatique-
Mathématiques), Université Nice-Sophia Antipolis. Title of the report: Probabilistic
models and verification of neural networks with Prism.

July 2017 - September 2017 Supervision of the 1st year master internship of the student
Laetitia Laversa, Master in Computer Science RIF (Recherche en Informatique Fon-
damentale), Université Nice-Sophia Antipolis. Title of the report: Parameter learning
for neural networks modelled as timed automata.

Since July 2017. Co-direction and supervision of the Ph.D. student Abdorrahim Bahrami,
University of Ottawa, Canada. Title of the Ph.D.: Modelling and verifying dynamical
properties of biological neural networks in Coq.

Since December 2018. Co-direction and supervision of the Ph.D. student Thibaud
LYvonnet, INRIA SAM. Title of the Ph.D.: Relations between human behaviour

models and brain models - Application to serious games.

1.6 Dissemination of Scientific Work

June 2009. Research stay of one week and invited talk at Centrum Wiskunde & Informatica
(CWI), Amsterdam, Netherlands. Scientific contact: Joke Blom. Title of the talk:
Computer Science Logic for Structure Prediction, String Comparison, and Biological
Pathway Analysis.

August-September 2009. Presentation of a paper at CMSB2009 (6th International Con-
ference on Computational Methods in Systems Biology), Bologna, Italy. Title of the
paper: On Coupling Models Using Model-Checking: Effects of Irinotecan Injections on
the Mammalian Cell Cycle.

September 2009. Research stay of one week and invited talk at Fraunhofer Institute for
Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany. Scientific con-
tact: Martin Hofmann-Apitius. Title of the talk: On Coupling Models using Model-
Checking. Effects of Irinotecan Injections on the Mammalian Cell Cycle.
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April 2010. Invited talk at the pole "Modéles Discrets pour les Systémes Complexes"
(MDSC) of Laboratoire d’Informatique, Signaux et Systémes de Sophia-Antipolis (I3S),
France. Title of the talk: Computer Science Logic for Structure Prediction, String
Comparison, and Model Coupling.

June 2010. Participation at "Ecole Jeunes Chercheurs: Modélisation formelle de réseaux
de régulation biologique", Ile de Porquerolles, France.

July 2010. Inwvited speaker at the session "Applications of Operational Research in Net-
work & Systems Biology" at the conference EURO2010 (24th European Conference of
Operational Research), Lisbon, Portugal. Title of the talk: A Temporal Logic Con-
straint Solving Approach to Model Coupling. Case Study on the Effects of Irinotecan
Injections on the Mammalian Cell Cycle.

September 2010. Presentation of a paper at the French-speaking conference SFC2010
(42¢me Congrés annuel de la Societé Francophone de Chronobiologie), La Colle sur
Loup, France. Title of the talk: A coupled model of cell cycle, circadian clock, DNA-
damage repair mechanism, and Irinotecan metabolism.

September 2010. Presentation of a poster at the international conference ECCB10 (9th
European Conference on Computational Biology), Gand, Belgium. Title of the poster:
Design, Optimization and Predictions of a Coupled Model of the Cell Cycle, Circa-
dian Clock, DNA Repair System, Irinotecan Metabolism and Exposure Control under
Temporal Logic Constraints.

November 2010. Invited talk at "Institut de Recherche en Communications et Cyberné-
tique de Nantes" (IRCCyN), France. Title of the talk: Computer Science Logic for
Structure Prediction, String Comparison, and Model Coupling.

February 2011. Invited talk at "Institut de Recherche en Informatique et Systémes Aléa-
toires" (IRISA-INRIA), Symbiose team, Rennes, France. Title of the talk: Computer
Science Logic for Structure Prediction, String Comparison, and Model Coupling.

March 2011. Invited talk at "Laboratoire d’Informatique, de Robotique et de Microélec-
tronique de Montpellier" (LIRMM), MAB team, Montpellier, France. Title of the
talk: Computer Science Logic for Structure Prediction, String Comparison, and Model
Coupling.

February 2012. Presentation of my research topics at Université de Nice-Sophia Antipolis,
France, during the visit of a delegation of students from Universitad di Bologna, Italy.

May 2012. Invited talk at Imperial College (United Kingdom), Faculty of Engineering,
Department of Electrical and Electronic Engineering. Scientific contact: Erol Gelembe.
Title of the talk: On Coupling Models using Temporal Logic Constraints. Effects of
Irinotecan Injections on the Mammalian Cell Cycle.
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July 2014. Invited talk at "5th Workshop on Logic and Systems Biology" associated to
CSL/LICS 2014, "Vienna Summer of Logic", Vienna, Austria. Title of the talk: A
logical framework for systems biology. Talk given by my co-author Joélle Despeyroux.

June 2016. Talk at the annual meeting of the interdisciplinary research axis MTC-NSC
(Modélisation Théorique et Computationnelle en Neurosciences et Sciences Cognitives)
of Université de Nice Sophia-Antipolis, France. Title of the talk: Verification of Tem-
poral Properties of Neuronal Archetypes Modeled as Synchronous Reactive Systems.

October 2016. Presentation of a paper at the international conference HSB 2016 (Hybrid
Systems Biology 2016), Grenoble, France. Title of the paper: Verification of Temporal
Properties of Neuronal Archetypes Modeled as Synchronous Reactive Systems.

June 2017. Talk at the national workshop "Workshop CQUCA 2017" (Cerveau, Cognition,
Comportement, Collectif, Clinique, Computationnel), Fréjus, France. Title of the talk:
Modelling and Formal Verification of Neuronal Archetypes Coupling.

December 2017. Presentation of two papers at the international conference CSBIO 2017
(Computational Systems Biology and Bioinformatics 2017), Nha Trang, Vietnam. Ti-
tles of the papers: 1) Formal Validation of Neural Networks as Timed Automata, 2)
Modelling and Formal Verification of Neuronal Archetypes Coupling.

January 2018. Presentation of two papers at the international conference BIOINFOR-
MATICS 2018 (Bioinformatics Models, Methods and Algorithms), Madeira, Portugal.
Titles of the papers: 1) Parameter Learning for Spiking Neural Networks modelled as
Timed Automata, 2) A Model-checking Approach to Reduce Spiking Neural Networks.

February 2019. Invited speaker at the opening panel of BIOSTEC 2019, Prague, Czech
Republic, on the theme "IoT and Biomedical Data: Challenges and Opportunities".
BIOSTEC 2019 (12th International Joint Conference on Biomedical Engineering Sys-
tems and Technologies) is composed of five co-located conferences: Biodevices 2019,
Bioimaging 2019, Bioinformatics 2019, Biosignals 2019, and Healthinf 2019.

June 2019. Invited talk at "School of Electrical Engineering and Computer Science", Uni-
versity of Ottawa, Canada. Title of the talk: Parameter Learning for Spiking Neural
Networks Modelled as Timed Automata.

September 2019. Invited talk at "Center of Modeling, Simulation, and Interactions" (MSI),
Université Cote d’Azur, France. Title of the talk: Parameter Learning for Spiking Neu-
ral Networks Modelled as Timed Automata.

1.7 Ph.D. Committees

September 2014 - December 2017. Member of the Ph.D. follow-up committee of Emna
Ben Abdallah, MeForBio team (Formal Methods for Bioinformatics), IRCCyN (In-
stitut de Recherche en Communications et Cybernetique de Nantes), Ecole Centrale
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de Nantes, France. Title of the thesis: Analysis of behavioural characteristics and
perturbations in biological regulatory networks.

March 2017. Examiner for the Ph.D. defense jury of Marie Defay Favre, LIMOS
(Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systémes), Uni-
versité Blaise Pascal, Clermont-Ferrand, France. Title of the thesis: Reconstruction of
extended ' -deterministic Petri Nets from y~ time series.

June 2019. Member of the Ph D. proposal defence jury of Abdorrahim Bahrami, Univer-
sity of Ottawa, Canada. Title of the thesis: Verifying Dynamic Properties of Neural
Networks in Coq.

1.8 Scientific Responsibilities

Autumn 2009. Reviewer for the special edition of AMAI (Annals of Mathematics and
Artificial Intelligence) on "Application of Constraints to Formal Verification and AI",

(2009).

Spring 2010. Reviewer for the workshop CS2Bio 2010 (1st International Workshop on
Interactions between Computer Science and Biology), Amsterdam, Netherlands.

May 2014. With two colleagues in computer science and a colleague in biology, I applied (as
coordinator) for a call of the interdisciplinary research axis MTC-NSC (Modélisation
Théorique et Computationnelle en Neurosciences et Sciences Cognitives) of Université
de Nice Sophia-Antipolis, France, to supervise an M1 internship. Project title: Discrete
optimization and temporal logic of neural networks. We obtained the funding and the
internship took place between June and September 2014.

August 2014. Reviewer for the conference SAT /CSP-ICTAI-2014 (Special Track on SAT
and CSP technologies, 26th IEEE International Conference on Tools with Artificial
Intelligence), Limassol, Cyprus.

September 2016. With two colleagues in computer science, two colleagues in electronics,
and a colleague in biology, we applied for a call of the Excellence Academy "Réseaux,
Information et Société Numérique" of Université Cote d’Azur, France. Title of the
project: Modeling, verification, simulation and material implant of artificial neural
networks. The project was ranked first out of 25. Funding: 19000€ for internships,
missions and equipment.

Summer 2017. Member of the program committee of BAIQIJCAI 2017 (workshop on
Bioinformatics and Artificial Intelligence), held in conjunction with IJCAI (26th Inter-
national Joint Conference on Artificial Intelligence), Melbourne, Australia.

December 2017. Reviewer for the conference POST 2018 (7th International Conference
on Principles of Security and Trust), Thessaloniki, Greece.
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January 2018. Chair of the session "Pattern Recognition, Clustering and Classification"
at the international conference BIOINFORMATICS 2018, Madeira, Portugal.

Summer 2018. Member of the program committee of the ICML/IJCAI 2018 Workshop
on Computational Biology, Stockholm, Sweden.

Spring 2018 - spring 2019. Program chair of the international conference BIOINFOR-

MATICS 2019 (10th International Conference on Bioinformatics Models, Methods, and
Algorithms), which is part of BIOSTEC 2019 (12th International Joint Conference on
Biomedical Engineering Systems and Technologies), Prague, Czech Republic.
Tasks: Drafting of the "Call for papers", definition of the program committee, assign-
ment of the received papers to the program committee members for review, choice
of acceptance/reject for border-line papers, definition of the conference program with
organisation into thematic sessions, organisation of special sessions, choice of the best
papers for publication in a special issue of the JBCB journal, choice of the best paper
award and the best poster award, edition of the conference proceedings, participation
as invited speaker in the BIOSTEC 2019 introductory panel on the theme "IoT and
Biomedical Data: Challenges and Opportunities". Acceptation rate of full papers at
the conference : 12.5%.

Winter 2018 - winter 2019. General chair and program co-chair of the international

conference CsBio 2019 (10th International Conference on Computational Systems-
Biology and Bioinformatics), Nice, France.
Tasks: drafting of the different funding applications, booking the conference rooms,
management of the conference budget, drafting of the "Call for papers", definition of
the program co-chair and the program committee, selection of the invited speakers,
application for publishing in the "ACM digital library", choice of acceptance/reject for
border-line papers, definition of the conference program, choice of the best papers for
publication in a special issue of the JBCB journal.

June 2019. Facilitator of the brainstorming of the strategic axis "Humain-Biologie" during
the meeting of the I13S Laboratory, Fréjus, France.

Summer 2019. Guest editor of the JBCB journal (Journal of Bioinformatics and Com-

putational Biology) for the review process of selected papers for the special issue on
the conference BIOINFORMATICS 2019.

Spring 2019 - spring 2020. Program chair of the international conference BIOINFOR-
MATICS 2020 (11th International Conference on Bioinformatics Models, Methods, and
Algorithms), which is part of BIOSTEC 2020 (13th International Joint Conference on
Biomedical Engineering Systems and Technologies), Valletta, Malta. Same tasks as for
Bioinformatics 2019.

Spring 2019. Member of the program committee of the ICML Workshop on Computa-
tional Biology 2019, Long Beach, CA, USA.
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Science Administration

June 2013. Member of the organizing committee of the thematic CNRS school "Modéli-
sation formelle de Réseaux de Régulation Biologique", Ile de Porquerolles, France (30
participants).

1.9 Other Activities and Responsibilities
The items in this section are presented in decreasing order of importance.

September 2011 - June 2013. Coordinator of the International Master Program
Computational Biology and Biomedicine of Université Nice-Sophia Antipolis, France.
Tasks: course timetable, redefinition of the study program, international recruitment
with telephone interviews, reception of foreign students and assistance with accommo-
dation, organization of juries, presence at all the internship defences, administrative
aspects for the award of scholarships, promotion of the master program abroad, etc.

Spring 2017. Member of the selection committee for the associate professor position UNS
MCF 389 (Constraint programming, foundations of computer science), Université Nice-
Sophia Antipolis, France.

Spring 2014. Member of the selection committee for the associate professor position 27-
MCF-0864 Galaxie 4236 (Algorithmic and applications), Université Nice-Sophia An-
tipolis, France.

May 2018. Examiner for the promotion of Jamil Ahmad from Assistant Professor to Tenured
Track Associate Professor at RCMS, NUST, Islamabad, Pakistan.

March 2014 - March 2018. Elected member of the management board of the Science
Faculty, Université Nice-Sophia Antipolis, France.

September 2013 - May 2016. Elected member of "Comité Permanent des Ressources
Humaines" (CPRH), section 27, Université Nice-Sophia Antipolis, France.

November 2010. With three colleagues, I represented INRIA at "Atrium des métiers"
organized by Université Pierre et Marie Curie (UPMC), Paris, France. On this occasion
we collected and classified more than 100 curricula vitae of Master level students.

September 2012 - August 2013. As part of the program EMMA (Erasmus Mundus Mo-
bility with Asia), supervisor of the student Sarker Md. Sohel Rana, International
Master Program "Computational Biology and Biomedicine", Université Nice-Sophia
Antipolis, France.
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Chapter 2

Formal Methods for Systems Biology:
Contributions

2.1 Introduction

This manuscript is devoted to the researches I performed after obtaining my Ph.D. thesis, in
the lapse of time that goes from March 2009 to March 2020. My contributions concern the
use of formal methods of computer science in the domain of systems biology, which is a field
that brings together researchers from biological, mathematical, computational, and physical
sciences in order to study, conceive, simulate, and make advanced analysis of biological
systems [40]. To this aim, biological knowledge is often extracted from high-throughput
"omics" (genomics, transcriptomics, proteomics, metabonomics, etc.) data generated thanks
to next-generation molecular technologies. The obtained pieces of information are then
integrated into interaction maps or networks, which represent the interactions among the
involved biological compounds. In these networks, nodes represent the modelled entities, and
edges stand for their interactions. Several kinds of biological networks are in the scope of
systems biology: gene regulatory networks (which represent genes, their regulators, and the
regulatory relationships between them), protein-protein interaction networks (which model
the physical contacts between proteins in a cell), metabolic networks (which represent the
biochemical reactions catalyzed by enzymes in a cell), biological neural networks (which
describe how neurons in the brain communicate through their synapses), ecological networks
(which model the biological interactions of an ecosystem), etc. These networks help in having
a global view on data, turning data from individual pieces to pieces that connect to form a
system.

As stated by Kitano in [46], to understand biology at the system level, we must examine
the structure and dynamics of cellular and organismal function, rather than the character-
istics of isolated parts of a cell or organism. The core of systems biology actually consists
in turning data into networks to which we want to give a dynamics. As a matter of fact,
these networks are considered as dynamical systems, and we want to study the evolution of
their components according to the time evolution. The time dimension is thus crucial: it is
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relevant to link the topology of these networks to their dynamics [69].

It behoves me to underline that the dynamical systems we treat in systems biology are
quite different from the ones studied in physics. The main complication derives from the fact
that the large-scale data we get are often incomplete, heterogeneous, and inter-dependent
(dependencies are usually hidden). Furthermore, the data in our possession are too few
with respect to the search space. In fact, the search space grows exponentially with the
number of measured compounds, which gives an explosion on the number of parameters.
As a consequence, it is almost impossible to obtain a unique model from a given data set,
and a system is generally described by a family of abstract models [81]. The use of formal
methods of computer science is then helpful to reason over these families of models and to
discriminate models according to the biological properties they satisfy [31].

The fundamental role of formal methods for systems biology will be more extensively
discussed in the following sections. In this manuscript, I will show how formal methods
greatly helped me in addressing some real biological and medical issues/concerns :

e understand the functioning of some processes which are central in cancer treatments
(cell cycle, circadian clock, DNA-damage repair mechanism) in order to optimize time
and dose injections of an anti-cancer drug;

e identify some crucial neuronal networks of our brain and study their biological dynam-
ical properties (under several different conditions), which is an important step towards
the substantiation of the hypothesis that big neural networks' of our brain can be
expressed as the composition of some canonical networks, and more generally towards
a better understanding of the human brain.

2.2 Why Do We Write Models?

Systems biology seeks at pointing out the emergence of biological phenomena (a system is
more than the sum of its parts), and it would be reductive to consider the modelling task as
a way to store as more information as possible concerning a biological system. Models are
rarely an end in themselves, and they are very often written in order to answer some specific
questions. During my last decade of researches, I could identify the following main reasons
for writing formal models of biological systems.

Validating/refuting a biological hypothesis. Biologists often get in touch with com-
puter scientists, mathematicians, and/or physicists because they conjecture an hy-
pothesis concerning a biological system and they need help in validating/refuting this
hypothesis. In this case, we need to formalize not only the biological system at is-
sue, but also the associated (set of) hypothesis. Tools such as model checkers [15] or
theorem provers [5] are then employed to test whether the hypothesis holds or not in
the system. For instance, in [24] the authors model a mitogen-activated protein kinase

'In neuroscience, the term neuronal is used for small networks made by a few neurons while the term
neural is often employed for big networks.
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(MAPK) cascade, whose structure corresponds to a sequence of activation of three
kinases in the cytosol of a cell, and use model checking techniques to answer to the
following question: is the activation of the second kinase of the cascade compulsory for
the cascade? In other words: is the presence of the second kinase necessary to produce
the output of the cascade? The answer is that the complexes containing this kinase
are only needed to regulate the cascade, but they are not mandatory for the signal
transduction.

Making predictions. To avoid to perform wet experiments in laboratory, models can be
exploited for their predictive power. In this regard, irrespective of whether experiments
can be expensive, time consuming, and intrusive for living creatures, we should con-
sider that wet experiments are sometimes unsatisfactory for lack of operability (some
compounds cannot be manipulated) and observability (the expression of some com-
pounds cannot be observed). Models can thus help in predicting the values of some
entities that cannot be observed. They can also predict the reactions the system will
have under some special conditions, for example when confronted with external factors
such as disease, medicine, and environmental changes |76]. For instance, in [51] we
consider a coupled model of the mammalian cell cycle and the circadian clock and
predict how the cell cycle reacts to circadian gene/protein mutations. The predicted
behaviours need to be formally specified to automate reasoning on them.

Associating parameters with biological phenomena. Biologists often expect biologi-
cal systems to display some known behaviours, but they do not always know under
which conditions these behaviours can be observed. To tackle this problem, it is needed
to write a model formalizing the biological knowledge concerning the system at issue,
and to look for parameters such that the expected dynamical properties are true in the
model (these properties are often encoded using formal methods). Parameter search
is crucial in artificial intelligence, and techniques from this domain are employed in
systems biology to infer parameters of biological systems. For instance, in the al-
ready cited [51]|, we search for parameters that allow to fix the exposure times of an
anti-cancer drug such that its efficacy on damaged cells is maximized. Observe that
parameter search can also be exploited to find parameters such that a given model
can reproduce some given execution traces (data-fitting). Again, these traces can be
formally encoded.

Whatever the reason for writing a model is, formal methods are thus important for having
deep insights on the system(s) involved. Of course they can also be exploited to wvalidate
models w.r.t. some already acquired biological knowledge, i.e., to verify whether the encoded
models can display some behaviours they are supposed to show (and do not display some
unwanted behaviours). Also in this case the behaviours to be checked should be formally
encoded.

In systems biology, models are not static and they are often the object of modifications to
incorporate new biological knowledge. Discovery passes through unceasing rounds between
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modeling and experiments. Therefore it is like a cycle in which experiments lead to propo-
sition of new improved models and in turn these models suggest enhanced experiments and
so on (see Figure 2.1). Formal methods are again necessary to verify the new information is
correctly encoded, and consistent with the previous knowledge.

—

Model Experiments

‘\_/

Figure 2.1: Cycle between modeling and experimentation.

To summarize, I would say formal methods are unavoidable to understand and control
biological systems, and more generally, to automate reasoning on the different behaviours of
biological systems.

2.3 Modelling and Validating Biological Systems: Three
Steps

As stated before, formal methods greatly help in understanding how complex biological
systems work. Formal approaches for systems biology usually follow the next three steps:

1. describing the system at issue using a formal language;

2. formalizing the biological properties to be verified using a formal language, which is
not necessary the language used at step 1);

3. using a tool to (automatically) test whether the encoded properties are verified by the
modelled system, or to learn the conditions allowing the property satisfaction.

As far as the first step is concerned, a biological system can be modeled as graph (tran-
sition system) whose nodes represent the different possible configurations of the system and
whose edges encode meaningful configuration changes. Most of the formal languages em-
ployed in systems biology allow to (directly or indirectly) represent a biological system as a
transition system. These formalisms are discussed in Section 2.4.

Concerning the second step, a biological property concerning the temporal evolution of
the biological species involved in the system can be encoded using formal languages such as
temporal logics. These formalisms are introduced in Section 2.5. In these first two steps, the
quality of interactions between biologists and computer scientists/mathematicians is very
important. A gap between different terminologies often arises, and deep discussions are
needed to find a common language.

As far as the third step is concerned, tools such as model checkers and theorem provers
are largely used to verify that specific properties of a system hold at particular states. These
tools are presented in Section 2.6.
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2.4 Modeling Biological Systems

As far as the modelling of biological systems is concerned, in the literature we can find
both qualitative and quantitative approaches. In Subsection 2.4.1 we introduce qualitative
formalisms for systems biology while Subsection 2.4.2 is devoted to quantitative formalisms.

2.4.1 Qualitative Formalisms

To express the qualitative nature of dynamics, the most used formalisms are the following
ones.

Petri nets. They are directed-bipartite graphs with two different types of nodes: places
and transitions. Places represent resources of the system, while transitions correspond
to events that can change the state of resources. Thanks to their graph-based struc-
ture, Petri nets are a mathematical formalism allowing an intuitive representation of
biochemical networks [65, 11]. They are based on synchronous updating techniques.
As an example, Figure 2.2 displays a Petri net modelling the influence of the Raf Ki-
nase Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK)
signalling pathway [36].

Figure 2.2: Petri net for the core model of the RKIP pathway [36]. It consists of 11 places
(represented by circles) and 11 transitions (represented by rectangles).

Boolean networks and Thomas’ networks. They are regulatory graphs, where nodes
represent regulatory components (e.g,. regulatory genes or proteins) and signed arcs
(positive or negative) stand for regulatory interactions (activations or inhibitions). This
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graph representation is further associated with logical rules (or logical parameters),
which specify how each node is affected by different combinations of regulatory inputs
[78]. They can be other synchronous (Boolean networks [44, 71|) or asynchronous
(Thomas’networks [77]). An example of Boolean network with a synchronous updating

scheme is given in Figure 2.3.

(a) Network structure (c) Truth tables
B-(GF 63] Ba{ﬁ ﬁ3} B,(a,)
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(k) Boolean functions (d) State transition graph
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Figure 2.3: A simple Boolean network model [82]. (a) The network structure. The edges with
sharp arrows represent positive effects and the edges with blunt arrows represent negative
effects. (b) The Boolean functions allowing to compute the values of each variable. (c) The
truth tables of the Boolean functions given in (b).
Boolean model constructed using a synchronous updating scheme.

Reaction rules. Dedicated rule-based languages allow to model biochemical reactions, defin

(d) The state transition graph of the

ing how (sets of) reactants can be transformed into (sets of) products, and associating
corresponding rate-laws [10]. The Systems Biology Markup Language (SBML) is the
most common representation format for models of biological processes. It is based on
XML and it stores models as chemical reaction-like processes that act on entities [39].
The main rule-based modeling tools, namely Biocham [24] and BioNetGen [6], provide
both a textual and graphical format and are compatible with SBML. An example of
Biocham biochemical reaction rule is the following one: CycB + CDK => CycB-CDK,
where CycB and CDK are two proteins and CycB-CDK is their complex.

Process algebras. They allow to specify the communication and interactions of concurrent
processes without ambiguities. There is a strong correspondence between concurrent
systems described by process algebras and biological ones: biological entities may
be abstracted as processes that can interact with each other and reactions may be
modelled as actions. The most widely used process algebras in systems biology are
pi-calculus |68, where processes communicate on complementary channels identified
by specific names, bio-ambients [66], which are based on bounded places where pro-
cesses are contained and where communications take place, and process-hitting [27],
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where biological components are abstracted as sorts divided into different processes,
interactions between components are represented as a hit from one process of a sort
to another process of another sort, and some cooperative sorts allow to represent the
combined influences of multiple components on a single target. An intuitive view of
pi-calculus processes and channels is given in Figure 2.4.

wl

Z: Z:

fl: channel z < channel y
E channel x [ channel w

Figure 2.4: pi-calculus and channels: an intuitive view [67]. There are three processes, P, Q,
and R (ovals), with four communication channels (inputs and outputs have complementary
shapes).

Languages for reactive systems. These languages allow to model reactive systems, that

is, systems that constantly interact with the environment and which may have an
infinite duration. Since many biological systems can be seen as reactive systems con-
tinuously reacting to some stimuli, languages for reactive systems such as Nusmv [33] or
Lustre [54] are suited to model them. For instance, let me consider the following Lustre
equation modelling the potential value of a single input neuron: p = if pre(Spike)
then w else pre(p)+w. It says that the current potential value p only takes into
account the weight w of the input edge if a spike was emitted at the previous time unit
(pre(Spike)), while it also takes into account the previous time-unit potential value
pre(p) if no spike was registered at the previous time unit.

Pure logics. Different extensions of Linear Logic, such as HyLL [20] and SELL [61], allow

to specify systems that exhibit modalities such as temporal or spatial ones. In these
logics, propositions are called resources, and rules can be viewed as rewrite rules from a
set of resources into another set of resources, where a set of resources describes a state
of the system. Thus, biological systems can be modeled by a set of rules of the above
form. Higher-order logic (HOL [64]) can be also conveniently exploited to formalize

reaction kinetics. Pathway Logic uses rewrite theories to formalize biological entities

and processes [75]. As an example of rule in logics, the Hyll rule active(a,b) dlef

pres(a) — (pres(a) ® pres(b)) describes the fact that a state where a is present
can evolve in one step into a state where both a and b are present.
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Logic programming languages. Declarative problem solving languages belonging to the
family of logic programming languages, such as Answer Set Programming (ASP), allow
to model biological systems with inherent tolerance of incomplete knowledge, and to
generate hypotheses about required expansions of biological models [29, 80, 25]. As
an example, the ASP activation rule act (Y, T+1) <« act(X, T), activates(X, Y,
T) says that protein Y will be active at time step T+1 if protein X is active and there is
an activating connection between X and Y at the previous time step.

During my post-doctoral researches, I had the chance to use a number of qualitative
formalisms to model biological systems. I exploited the rule-based language available in
Biocham [24], even contributing to develop the software in order export/import Biocham
models to/from other formalisms for modelling biochemical systems (e.g., SBML, ODE,
Matlab), the synchronous language for reactive systems Lustre [34], the probabilistic lan-
guage for reactive systems PRISM [47], the Hybrid Linear Logic Hyll [20], and the language
Coq |5], which implements an expressive higher-order logic.

2.4.2 Quantitative Formalisms

To capture the dynamics of a biological system from a quantitative point of view, the most
used approaches are the following ones.

Ordinary or stochastic differential equations. The most classical quantitative models
resort to ordinary differential equations. The interaction between components is cap-
tured by sigmoid expressions embedded in differential equations. Both positive and
negative regulations can be considered. Models based on ordinary differential equations
can hardly be studied analytically, but are often employed to simulate and predict the
answer of a biological systems.

To track not only individuals but total populations, stochastic differential equations
are often used [74]. A typical stochastic differential equation is of the following form:
dX = b(t, X;)dt +v(t, X;)dW,, where X is a system variable, b is a Riemann integrable
function, v is an integrable function, and W is a continuous-time stochastic process
(more precisely, a Brownian Motion). As an example, the growth of tumors under
immune surveillance and chemotherapy can be studied using the following stochastic
differential equation [43]: % = roz(1 — £) — 1’?;2 + (1 — %)Agcos(wt) + (1 — %) W4,
where x is the amount of tumor cells, Agcos(wt) denotes the influence of a periodic
chemotherapy treatment, rq is the linear per capita birth rate of cancer cells, K is the

carrying capacity of the environment, and  represents the influence of immune cells.

Hybrid Petri nets. They are characterized by the presence of two kinds of places (dis-
crete and continuous) and two kinds of transitions (discrete and continuous) [37]. A
continuous place can hold a non-negative real number as its content, and a continuous
transition fires continuously at the speed of an assigned parameter. Biological pathways
can be observed as hybrid systems, showing both discrete and continuous evolution.
For instance, protein concentration dynamics behave continuously when coupled with
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discrete switches. An example of Hybrid Petri net modeling the lac operon gene reg-
ulatory mechanism in the bacterium FEscherichia coli is graphically depicted in Figure
2.5.

Glveolytic
Pathway

Figure 2.5: Hybrid Petri net for the lac operon gene regulatory mechanism in Escherichia
coli [57]. Filled rectangles stand for discrete transitions, empty rectangles for continuous
transitions, simple circles for discrete places, and double circles for continuous places. Dashed
edges represent test arcs, which do not consume any content of the source place of the arc
by firing.

Timed automata and hybrid automata. Timed automata [50] are finite state automata
extended with timed behaviours: constraints allow to limit the amount of time spent
within particular states and the time intervals in which transitions are enabled. They
are suited to model time aspects of biological systems, such as time durations of activ-
ities. Hybrid automata [9] combine finite state automata with continuously evolving
variables. A hybrid automaton exhibits two kinds of state changes: discrete jump tran-
sitions occur instantaneously, and continuous flow transitions occur when time elapses.
The presence of both discrete and continuous dynamics makes this formalism appealing
to model biological systems [8]|. In Figure 2.6 I report a hybrid automaton modelling
the Escherichia coli bacterium.
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Figure 2.6: Hybrid automaton modelling Escherichia coli, a bacterium detecting the food
concentration through a set of receptors. It responds in two ways: RUNS (it moves in a
straight line by moving its flagella counterclockwise [CCW]|) and TUMBLES (it randomly
changes its headings by moving its flagella clockwise [CW]). w is the angular velocity, taking
discrete values +1 for CW and -1 for CCW.

Stochastic process algebras. They are process algebras where models are decorated with
quantitative information used to generate stochastic processes. The most exploited for-
malisms are stochastic pi-calculus [63], where each channel is associated with a stochas-
tic rate, and process algebras such as Bio-PEPA [14], which allows the specification of
complex kinetic formulae. As an example, Figure 2.7 represents a stochastic pi-calculus
model of a gene with inhibitory control.

+ ?a.7y.Gene(a,b)

jb Gene(a,b) = 1¢.(Gene(a.b) | Protein(b))
d

Protein(b) = b.Protein(b) + 14

Figure 2.7: A stochastic pi-calculus model of a gene with inhibitory control |7]. The gene
can transcribe a protein by first doing a stochastic delay at rate t and then executing a
new protein in parallel with the gene. Alternatively, it can block by doing an input on its
promoter region a, and then unblock by doing a stochastic delay at rate u. The transcribed
protein can repeatedly do an output on the promoter region b, or it can decay at rate d. The
gene is parameterised by its promoter region a, together with the promoter region b that is
recognised by its transcribed proteins.
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Rule-based languages with continuous/stochastic dynamics. They allow to write
mechanistic models of complex reaction systems, associating continuous or stochastic
dynamics to rules [45]. In the popular tool Kappa [19], entities are graphical struc-
tures, rules are graph-rewrite directives, and rules fire stochastically, as determined by
standard continuous-time Monte Carlo algorithms. As an example, Figure 2.8 illus-
trates a basic kinase-phosphatase model consisting of three Kappa rules. There are
three agents: a Kinase, a Target, and a Phosphatase. A phosphorylation event is sim-
ply described by three elementary actions (binding, modification, and unbinding) and
their corresponding rules.

Kinase Kinase Kinase
Ca D A Ca D Ca D B
—> o e
Kinase Kinase A Kinase(a), Target(x) -> Kinaseia'l), Target(x'l) @ 1.0
o C o 'B' FKinaseia'l), Targetix~u'l) -> Kinaseia'l), Target(x~p'l) @ 10.0
ct Finaseia'l), Target(x'l) -> Kinase(a), Targeti(x) @ 5.0
e

Figure 2.8: The three rules describing a phosphorylation in the kinase-phosphatase model
[83]. A) The Kinase binds its Target at site x; B) the Kinase phosphorylates the site at which
it is bound; C) the Kinase dissociates (unbinds) from its target. In the textual notation,
internal states are represented as ~u (unphosphorylated) and ~p (phosphorylated), and
bindings as ! with shared indices across agents indicating the two endpoints of a link. Every
rule is associated with a rate constant, which controls the probability of the rule firing during
the simulation.

Among these quantitative formalisms, during my post-doctoral researches I have exploited
timed automata (encoded with the tool Uppaal [4]) and the Biocham language with continous
dynamics [23].

As stated before, systems encoded with the above qualitative and quantitative formalisms
can be directly seen as transition systems, or explicitly converted into transition systems. For
instance, the Boolean semantics of Biocham associates to a reaction rule model a transition
system where the set of states is the set of all tuples of Boolean values denoting the presence
or absence of the different biochemical compounds, and the transition relation is the union
(i.e., disjunction) of the relations associated to the reaction rules.

Before concluding this section, it is important to underline that a new important trend
of the last years consists in automatically inferring the topology of biological systems from
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time series data. In [1], the authors provide a logical approach to infer biological regulatory
networks based on given time series data and known influences among genes. In [56|, the
authors propose a statistical learning algorithm to learn both the structure and the reaction
rates of chemical reaction networks.

2.5 Specifying Biological Systems

The most widespread formal languages to specify properties concerning the dynamical evo-
lution of biological systems are temporal logics. They are formalisms for describing sequences
of transitions between states [21].

The Computation Tree Logic CTL* [15] allows one to describe properties of computation
trees. Its formulas are obtained by (repeatedly) applying Boolean connectives, path quanti-
fiers, and state quantifiers to atomic formulas. The path quantifier A (resp., E) can be used
to state that all paths (resp., some path) starting from a given state have some property. The
state quantifiers are the next time operator X, which can be used to impose that a property
holds at the next state of a path, the operator F (sometimes in the future), that requires
that a property holds at some state on the path, the operator G (always in the future), that
specifies that a property is true at every state on the path, and the until binary operator U,
which holds if there is a state on the path where the second of its argument properties holds
and, at every preceding state on the path, the first of its two argument properties holds.

The Branching Time Logic CTL [16] is a fragment of CTL* that allows quantification
over the paths starting from a given state. Unlike CTL*, it constrains every state quantifier
to be immediately preceded by a path quantifier. The Linear Time Logic LTL |72] is another
known fragment of CTL* where one may only describe events along a single computation
path. Its formulas are of the form A, where ¢ does not contain path quantifiers, but it
allows the nesting of state quantifiers. The Probabilistic Computation Tree Logic PCTL [35]
quantifies the different paths by replacing the E and A modalities of CTL by probabilities.

During my post-doctoral researches, to analyze in deep biological systems, I exploited the
logics CTL, LTL, PCTL, and some of their extensions, such as Constraint-LTL [22|, which
enriches LTL with arithmetic constraints.

Other formalisms, such as languages for reactive systems or logics, provide a unified
framework to encode not only biological systems but also temporal properties of their dy-
namic behaviour. For instance, the language Lustre [34] offers an original means to express
properties as observers. An observer of a property is a program, taking as inputs the in-
puts/outputs of the program under verification, and deciding at each instant whether the
property is violated or not.

In the last years, I could encode dynamical properties of biological systems using the
language Lustre [34], the modal linear logic Hyll [20], and the higher-order logic implemented
in the Coq theorem prover [5].

I will discuss later the advantages/drawbacks of temporal logics versus logics. At this
step, I can say that properties encoded in temporal logics (or equivalent formalisms) can be
automatically proved thanks to the use of model checkers. On the other hand, properties
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formalized in pure logics can be proved thanks to theorem provers but an expert is needed
and the proofs can be time consuming. However, model checking suffers from the state space
explosion problem, which sometimes prevents it from terminating in a reasonable amount
of time unless specific parameters are chosen. Theorem provers allow to prove more general
properties, without having to fill in some of the universal quantifiers with specific values for
parameters.

2.6 Validating Biological Systems

Until the eighties, the most common validation techniques for software and hardware systems
were simulation and testing, which consist in injecting some signals in a given system at some
given times, let the system evolve, and observe the output signals at some given times. The
problem is that controlling all the possible interactions and all the bugs of a system using
these techniques is rarely possible (too many executions should be considered).

Formal verification was initially introduced in the eighties to prove that a piece of software
or hardware is free of errors [15] with respect to a given model. The field of systems biology
is a more recent application area for formal verification, and the most common approaches
to the formal verification of biological systems are model checking [15] and theorem proving
[5].

In order to apply model checking, the biological system at issue should be encoded as a
finite transition system and relevant system properties should be specified using temporal
logic. Formally, a transition system over a set AP of atomic propositions is a tuple M =
(Q,T, L), where @ is a finite set of states, T C @) x ) is a total transition relation (that
is, for every state ¢ € @ there is a state ¢ € Q such that T'(q,q')), and L : Q — 247 is
a labeling function that maps every state into the set of atomic propositions that hold at
that state. Given a transition system M = (Q,T, L), a state ¢ € @, and a temporal logic
formula ¢ expressing some desirable property of the system, the model checking problem
consists of establishing whether ¢ holds at ¢ or not, namely, whether M,q = ¢. Another
formulation of the model checking problem consists of finding all the states ¢ € @) such that
M, q = . Observe that the second formulation is more general than the first one. There
exist several tools to automatically check whether a finite transition system verifies a given
CTL, LTL, or PCTL formula, e.g., NuSMV [13], SPIN [38|, and PRISM [47|. Probabilistic
model checkers such as PRISM allow to directly compute the probabilities for some given
temporal logic formulae to hold in the system (provided that some probabilities are associated
to the modeled transitions).

Theorem provers are formal proof systems providing a formal language to write mathe-
matical definitions, executable algorithms and theorems, together with an environment for
the development of machine-checked proofs. Formulas are proved in a logical calculus and
some tactics can be exploited to perform backward reasoning and replace the formula to
be proved (conclusion or goal) with the formulas that are needed to prove it (premises or
subgoals). To be able to prove properties of biological systems using theorem provers, both
systems and specifications should be encoded in the logic implemented by the theorem prover.
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State-of-the art theorem provers are Coq [5] and Isabelle/HOL [60].

Let me compare more in detail model checking and theorem proving. The main strength
of model checking relies on the fact that it is a press-button methodology. The user just
has to encode the system and the temporal logic formula he wants to test, and to press a
button to query the tool. Model checkers give a Boolean answer (the formula holds or not
in the system), and the user does not have to care about the proof (the proof is transparent
to the user). On the other hand, when proofs are involved, theorem provers often do not
make them automatically (recent advances in both proof theory and systems often provide
us with a partial automation of the proofs).

When a property is not satisfied, model checkers provide us with a counter-example,
that is, an execution trace showing the falsification of the property. This trace can give
some insights about modifications to do in the system to make the property hold. In a
symmetric way, let us suppose theorem provers allow us to prove a property of the system
which is not desirable. In this case the proof we get can help us in understanding what
should be modified in the system so that the property is not satisfied. More precisely, we
can look for the rules to be removed/modified among those that have been used in the
proof. Furthermore, a successful proof of a given property can be exploited to prove similar
properties with theorem provers.

A strength of theorem proving with respect to model checking is that, when we prove
an existential property using certain rules of a model, we have the guarantee that all the
models containing such rules satisfy the property. This is important because in biology we
often deal with incomplete information. It is also worth noting that in model checking, all
objects must be finite: both the number of states, and the number of transitions in the
transition system. In logics, objects can potentially be infinite; in particular, we can have an
infinite number of states. Thus, although being time consuming and requiring the presence
of humans to complete proofs, theorem provers often allow to prove properties with a higher
level of generality.

2.7 Contributions

This section describes my main contributions concerning the application of formal methods in
systems biology. A subsection is devoted to each selected work. While the first contribution
deals with metabolic networks, the other ones focus on biological neural networks (the word
"biological" is important because these networks are supposed to be much closer to the
brain functioning than the networks used in artificial intelligence). For each contribution, I
highlight how formal methods play an important role.

2.7.1 A Coupled Model of the Cell Cycle, Circadian Clock, DNA
Repair System, Irinotecan Metabolism and Exposure Control

My first selected contribution is:
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Elisabetta De Maria, Francois Fages, Aurélien Rizk, Sylvain Soliman. Design, optimization
and predictions of a coupled model of the cell cycle, circadian clock, DNA repair system,
wrinotecan metabolism and exposure control under temporal logic constraints. Theoretical
Computer Science 412(21): 2108-2127 (2011).

The complete paper appears in Chapter 4. In this work we address the coupling of some
models that play a role in cancer therapies. Recent advances in cancer chronotherapy tech-
niques support the evidence that there exist important links between the cell cycle regulation
and the circadian clock genes. Modeling these links is crucial to better understand how to ef-
ficiently target malignant cells depending on the phase of the day and patient characteristics.
We propose an approach to the investigation of the influence of an anti-cancerogenic drug
(irinotecan) on the mammalian cell cycle which is motivated by the following considerations:
(i) There are some phases of the cell cycle when irinotecan is more toxic and other phases
where it produces less DNA damage. The most toxic phase is synthesis. (ii) Healthy cells
are untrained by the circadian clock while cancer cells are often not synchronized. The key
idea is thus to inject irinotecan when it is less toxic for healthy cells. In this way, healthy
cells should not be sensibly damaged but some tumor cells that happen to be phase shifted
could be killed. This concept is at the heart of a collaboration with the oncologist Francis
Lévi, CNRS-INSERM, Hopital Paul Brousse, Villejuif, France.

To study the impact of the drug on the cell life, we consider the following four models.

Irinotecan (Ballesta et al. 2011, [2]). This drug is extracted from the cortex and the
leaves of a Chinese tree, called the happiness tree. The model describes how irinotecan
injections cause DNA damage in presence of an enzyme called Topoisomerase 1.

p53-based DNA-damage repair network (Ciliberto et al. 2005, [12]). p53 is a tu-
mor-suppressor protein that is normally present in cell nuclei in small quantities and
whose concentration increases when DNA damage occurs. The idea is that, in normal
conditions, protein Mdm2 controls that the concentration of protein p53 in the cell
nucleus is feeble. DNA damage increases the degradation rate of protein Mdm2, so that
the control of this protein on p53 becomes weaker and p53 can exercise its functions. In
case of DNA damage, the concentrations of protein p53 and Mdm2 have an oscillating
trend.

Mammalian cell cycle (Zamborszky at al. 2007, [42]). The mammalian cell cycle is
traditionally divided into four distinct phases: (i) the synthesis phase, which is the
period of DNA replication, (ii) the G2 phase, which is the temporal gap between
synthesis and mitosis, (iii) the mitosis phase, when replicated DNA molecules are
segregated to daughter cells, and (iv) the G1 phase, which is the temporal gap between
mitosis and synthesis. The cell cycle is regulated by several checkpoints, which are
moments when the cycle progression is stopped to verify the state of the cell and, if
needed, to repair it before damaged DNA is transmitted to progeny cells. The proper
alternation among the phases of the cell cycle is coordinated by a family of key proteins
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called cyclins. Roughly speaking, each phase is characterized by the high concentration
of one of these proteins.

Circadian clock (Leloup et al. 2003, [49]). The circadian clock is a biological clock
that regulates the synchronous progression of cells through each stage of the cell cy-
cle. The model we consider mainly describes the negative feedback loop between two
protein complexes. This loop originates some sustained oscillations with a period of
approximately 24 hours.

The four models we consider consist of ordinary differential equations and are established
models in the literature. As a matter of fact, we re-use already existing models in a systematic
way, which is a challenging issue in systems biology. In fact, many models are still developed,
refined, simplified or coupled with respect to other models by hand, with no direct support
from the tools to re-use models in a systematic way.

As a first step, we encode the four models in Biocham [24], a programming environment
that allows to model bio-chemical systems thanks to a rule based language. As a second
step, we draw them into a coupled model. In a succinct way, the expected behaviour of the
coupled model is the following one (see Figure 2.9): irinotecan injections cause DNA damage;
this triggers the action of protein p53, which blocks the cell cycle at a checkpoint; if DNA
damage is not too serious, protein p53 repairs it, otherwise the cell is led to die (apoptosis).

Block cell cycle
CPT11 — ... —> DNA-Dam —» p53 —»

Figure 2.9: Expected behaviour of the coupled model.

—>» Apoptosis

To couple the four models, we do not only juxtapose their rules, but we decide how to
make them interact. More precisely, we complete the models with some linking rules and
find suitable values for the new kinetic parameters so that some specifications are satisfied.
To this aim, we review the literature about known links among the four building blocks.
For instance, in the literature we find evidence of the fact that, if irinotecan is injected in
a cell during the synthesis phase of the cell cycle, then more DNA damage is caused with
respect to the other phases of the cell cycle. We provide a characterization of the synthesis
phase in terms of the concentration level of a cyclin and we insert in the irinotecan model a
dependence from the synthesis phase of the kinetic parameter involved in the production of
DNA damage: such a parameter takes a high value during DNA replication and a low value
out of synthesis. This links the models of cell cycle and inirotecan. Links between the other
models are added in a similar way.

Discrete simulation traces of Biocham models can be easily obtained by means of nu-
merical integration methods (considering the corresponding systems of ordinary differential
equations). To apply formal methods, we consider transition systems which are simulation
traces over a time window of 100 hours extended with the first derivatives of the involved
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variables. To query simulation traces, we use the logic constraint-LTL [22]|, which extends
LTL with arithmetic operators and allows to reason not only on concentration values but
also on their derivatives. We also exploit a parameter learning procedure that allows to find
parameter values that make specifications true. This procedure consists in computing a
violation degree for each formula (euclidian distance between the formula and its validity
domain), and using such a violation degree as a cost function for a stochastic optimization
algorithm.
More precisely, we use formal methods to perform these three different steps.

Specify the linking rules. We look for the kinetic parameters underlying the linking rules
such that some given temporal logic formulae are satisfied. While searching for param-
eters for the new linking rules, we are led to adjust the already known parameters, and
thus to modify/improve the single sub-models.

Validate the links. Once we have obtained our coupled model, we check whether some
given expected temporal logic formulae are verified by the coupled model.

Find optimal drug control laws. We consider healthy cells and look for irinotecan in-
jection times and maximum amount that keep DNA damage under a given threshold
(this is expressed by a temporal logic formula). Then we keep the amount of injected
irinotecan constant and maximize toxicity, getting a 12-hours phase shift in injection
times. With this phase shift, which could be attained by unynchronized cells, DNA
damage increases of 70%.

This contribution lays the groundwork for the automation of model coupling and research
in the field of chronotherapeutics. In [3], the authors point out the need for diagnostic and
delivery algorithms enabling treatment individualization of cancer patients. They review re-
cent works, including our one, with emphasis on circadian timing system-resetting strategies
for improving chronic disease control and patient outcomes.

Remark. For the sake of compactness, I selected a limited number of post-doctoral works.

I would like to cite at least another work related to the study of the DNA damage repair
system:
Elisabetta De Maria, Joélle Despeyroux, and Amy P. Felty. A Logical Framework for
Systems Biology. Proceedings of Formal Methods in Macro-Biology (FMMB 2014), LNCS
8738: 136-155, (2014). Acceptation rate: 58%. In this work, we use a modal linear logic to
encode a model of the P53/Mdm2 DNA damage repair mechanism and several properties
that are important for such a model to satisfy. We formalize the proofs of these properties
in the Coq Proof Assistant, with the help of a Lambda Prolog prover for partial automation
of the proofs.

2.7.2 Parameter Learning for Spiking Neural Networks Modelled
as Timed Automata

My next selected contribution is:
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Elisabetta De Maria, Cinzia Di Giusto, and Laetitia Laversa. Spiking neural networks
modelled as timed automata: with parameter learning. Natural Computing, 1-21,

https://doi.org/10.1007/s11047-019-09727-9, (2019).

The paper is reported in Chapter 5. In this work we propose a novel technique to infer
parameters of biological neural networks. We deal with Spiking Neural Networks (SNNs)
[30], which are also referred as third generation networks. They are actually considered
closer to the brain functioning than other generation models, and this is mainly due to the
fact that they carefully take into account time-related aspects. We show how SNNs can
be mapped into timed automata and how this formalization can be exploited to learn the
parameter values of a neural network such that the network can display a given behaviour.

Spiking Neural Networks can be seen as directed graphs whose nodes represent neurons
and whose edges represent synaptical connections. A weight is associated with each edge:
positive (resp. negative) weights stand for excitatory (resp. inhibitory) synapses. Neurons in
a network can be distinguished into input neurons, which can only receive as input external
inputs, intermediary neurons, and output neurons, whose output is considered the output
of the network. Several spiking neural models exist: in this work (and in the next selected
contributions) we focus on the Leaky Integrate and Fire (LI&F) model [48], which is a
computationally efficient approximation of a single-compartment model and is abstracted
enough for the application of formal techniques. According to this model, the dynamics
of each neuron is governed by its (membrane) potential, which represents the difference
of electrical potential across the cell membrane. Each neuron emits a spike whenever its
potential value exceeds a given firing threshold. We present a discrete version of the LI&F
model: at each time unit, the potential value of a neuron can be computed as a function of
its current weighted inputs and of its previous time unit potential value (weakened by a leak
factor). After each spike emission, the neuron potential is reset to zero. This model also
allows to take into account the refractory period, a lapse of time immediately following the
spike emission in which the neuron is quiescent (i.e., the neuron cannot emit spikes).

As a first step, we map neural networks into timed automata networks. Timed automata
are finite-state machines extended with clock variables that allow to measure time. It is
possible to define the synchronous product of a set of timed automata that work and syn-
chronize in parallel. This leads to a network of timed automata, whose component automata
can synchronize thanks to some input and output labels. We provide a full implementation
of neural networks as timed automata networks via the Uppaal tool [4], which allows to
encode and simulate timed automata networks and provides an integrated model checker to
automatically verify whether some given temporal logic formulae are satisfied by the encoded
systems.

Given a neural network consisting of a set of input, intermediary, and output neurons, we
add a set of input generator neurons, which are fictitious neurons connected to input neurons
that generate input sequences for the network, and a set of output consumer neurons, which
are fictitious neurons connected to the output of each output neuron that aim at consuming
their emitted spikes (see Figure 2.10). To obtain the corresponding timed automata network,
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we build an automaton for each neuron of the network and we consider the synchronous
product of the obtained automata.

Figure 2.10: Neural network extended with input generator and output consumer neurons.

In [41], the author proposes a classification of the main spiking neuron models according
to some behaviours they are able to reproduce or not (a behaviour is a typical response to
an input pattern). The LI&F model is supposed to verify three of these behaviours (tonic
spiking, excitability, and integrator). To show that our mapping is correct, we prove that
our model satisfies these three behaviours and does not satisfy the other ones (behaviours
are formalized as temporal logic formulae).

Once we have an encoding of neural networks which is formally validated, we can exploit
it to examine the learning problem, which consists in finding a parameter assignment for a
LI&F network with a fixed topology and a given input such that a desired output behaviour
is displayed. The parameters we focus on in this work are the synaptical weights of the
network. For the algorithm we propose, we borrow inspiration from a variant of the back-
propagation algorithm [70]|, which aims at training networks to produce a given output
sequence for each class of input sequences. We also rest on the spike timing dependent
plasticity rule [73], which aims at adjusting the synaptical weights of a network according
to the time occurrences of input and output spikes of neurons.

In the algorithm we develop, the learning process is led by some supervisors, which are
connected to output neurons. Supervisors compare the expected output behaviour with the
actual behaviour of the output neuron they are connected to. Thus either the neuron behaves
consistently or not. In the second case, the supervisor back-propagates advices to the output
neuron depending on two possible scenarios: (i) the neuron remains quiescent, but it was
supposed to fire a spike; (ii) the neuron fires a spike, but it was supposed to be quiescent. In
the first (resp. second) case, the supervisor addresses a should have fired (resp. should not
have fired) advice. Then each output neuron modifies its ingoing synaptical weights and in
turn behaves as a supervisor with respect to its predecessors, back-propagating the proper
advice. The algorithm basically lies on a backward depth-first visit of the graph. When the
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advices reach input generators, they are ignored. The process ends when all the supervisors
do not detect any more errors.

We propose two different implementations for our learning algorithm. The first one, which
is model-checking oriented, consists in iterating the learning process until a desired temporal
logic formula is verified. At each step of the algorithm, we make an external call to a model
checker to test whether the network satisfies the formula or not. If the formula is verified, the
learning process ends; otherwise the model checker provides a trace as a counter-example;
such a trace is exploited to derive the proper corrective action for each neuron, should have
fired or should not have fired. With the second approach, which is simulation-oriented,
the synaptical weights are modified during the simulation of the network. In this case,
supervisors are defined as timed automata. After the simulation starts, supervisors expect a
certain behaviour from the output neurons they are connected to. If the behaviour matches,
the simulation proceeds; otherwise a proper advice is back-propagated in the network. When
the advice reaches input generators, the simulation is restarted from the beginning with the
modified weight values. The process ends when all the supervisors detect that output neurons
learned to reproduce the proper outcome.

Observe that formal methods play a crucial role in our approach:
e they allow us to validate the mapping of neural networks into timed automata networks;

e they are an integral part of our learning algorithm (expected behaviours are expressed
as temporal logic formulae in the model checking approach, as timed automata in the
simulation approach).

In this work, we treat several case studies dealing with non trivial networks featuring
excitatory and inhibitory edges and cycles (e.g., a mutual inhibition network, where each
neuron inhibits all the other neurons).

Our novel technique to infer the synaptical weights of SNNs adapts machine learning
techniques and formal methods to bio-inspired models. This makes our approach original
and complementary with respect to the main other projects aiming at understanding the
human brain, such as the Human Brain Project [18|, which mainly relies on large scale
simulations. Future work on this project includes the definition of sophisticated supervisors
allowing to compare the output of several neurons and the generalization of the learning
procedure to the other key parameters of biological neural networks (firing threshold, leak
factor, etc).

2.7.3 Formal Methods to Model and Verify Neuronal Archetypes

In this subsection I focus on my contributions in the field of formal modelling and verification
of neuronal archetypes, which are associated with the following three works:
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(i) Elisabetta De Maria, Alexandre Muzy, Daniel Gaffé, Annie Ressouche, and Franck
Grammont. Verification of Temporal Properties of Neuronal Archetypes Modeled as Syn-
chronous Reactive Systems. Proceedings of Hybrid Systems Biology (HSB 2016), LNCS
9957: 97-112, (2016).

(i) Elisabetta De Maria, Thibaud L’Yvonnet, Daniel Gaffé, Annie Ressouche, and Franck
Grammont. Modelling and Formal Verification of Neuronal Archetypes Coupling. Proceed-

ings of 8th International Conference on Computational Systems Biology and Bioinformatics
(CSBIO 2017), ACM, 3-10, (2017);

(iii) Abdorrahim Bahrami, Elisabetta De Maria and Amy Felty. Modelling and Verifying
Dynamic Properties of Biological Neural Networks in Coq. Proceedings of 9th International
Conference on Computational Systems Biology and Bioinformatics (CSBIO 2018), ACM,
Article No. 12, 1-11, (2018).

These works are the fruit of a cooperation with the neurophysiologist Franck Grammont,
Laboratoire J.A. Dieudionné, Nice, France. In Chapter 6, I report, extend, and compare
these three works (the version of the paper reported in Chapter 6 has been submitted to
the journal Frontiers of Computer Science). The biological starting hypothesis is that, in
our brain, neurons tend to form some mini-circuits with recurrent structures that we call
archetypes. Each archetype presents a particular class of behaviours and several archetypes
can be coupled to constitute the elementary building blocks of bigger neural circuits. For
instance, we know that the different walking ways in animals are controlled by some mini-
circuits, called Central Path Generators [58], which are able to generate some oscillations.

The aim of our works is to formally study the behaviour of a significant set of basic
archetypes and their couplings. Archetypes can be metaphorically seen as the syllables of
a given alphabet. The composition of two syllables can give either an existing or a non
existent word. At the same way, the composition of two archetypes can give a network
displaying a behavior which is biologically meaningful or not. Again, two different syllable
compositions can give two words with the same meaning: at the same way, two different
archetype compositions can present the same biological behaviour.

The basic archetypes we study are the following ones (see Fig. 2.11): (i) Simple series:
it is a sequence of neurons where each element of the chain receives as input the output of
the preceding one; (ii) Series with multiple outputs: it is a series where, at each time unit,
we are interested in knowing the outputs of all the neurons; (iii) Parallel composition: it is
a set of neurons receiving as input the output of a given neuron; (iv) Negative loop: it is
a loop consisting of two neurons: the first neuron activates the second one while the latter
inhibits the former one; (v) Inhibition of a behavior: it consists of two neurons, the first one
inhibiting the second one; (vi) Contralateral inhibition: it consists of two or more neurons,
each one inhibiting the other ones.
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Figure 2.11: The basic neuronal archetypes.

As in the previous subsection, we rely on Spiking Neural Networks where the neuron
electrical properties are described via the LI&F model. Neural networks can be seen as re-
active systems, which are systems that constantly interact with the environment and which
may have an indefinite duration. The behaviour of neural networks can indeed be repre-
sented as a sequence of reactions to some stimuli. The synchronous paradigm is suited to
model reactive systems. It is based on the notion of logical time: time is considered as a
sequence of discrete instants. At each instant, it is possible to observe some inputs, to make
some computations, and to produce some outputs. In the first two cited papers, we use the
synchronous language Lustre to encode neural networks and to express some expected prop-
erties concerning their dynamical evolution. Then model checkers allow us to test whether
the formalized properties are satisfied (for some given parameter classes). More precisely, in
the first work we deal with neurons and archetypes, and in the second work we make a step
further and focus on archetype coupling. We consider two ways to couple two archetypes:
concatenation, where the output(s) of an archetype is (are) connected to the input(s) of an-
other archetype, and nesting, where one archetype is nested inside another archetype. Our
results show that archetype coupling can either modulate the behaviors displayed by the
single archetypes (e.g. extend an oscillation period), or clearly give rise to new behaviors.
Furthermore, several different couplings turn out to display the same behavior (whatever
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their input sequences are).

In the third work, we rely on the Coq Proof Assistant to prove important properties of
neurons and archetypes. Coq implements a highly expressive higher-order logic in which we
can directly introduce data types modeling neurons and archetypes, and express properties
about them. As a matter of fact, one of the main advantages of using Coq is the generality of
its proofs. Using such a system, we can prove properties about arbitrary values of parameters,
such as any length of time, any input sequence, or any number of neurons. As a drawback,
these properties could not be proved automatically, and our expertise was required.

Formal methods of computer science are thus necessary in the above-mentioned works
to formalize and prove properties concerning the time evolution of neurons, archetypes, and
their couplings.

As a short-time goal, we intend to translate our implementations of neurons and archetypes
into the VHSIC Hardware Description Language (VHDL) to make it run on a field-program-
mable gate array (FPGA) [26], that is, an integrated circuit configurable by the customer.
This would allow to have a real physical implementation of our models validated through
formal techniques.

As a long-term goal, we would like to substantiate the claim that whatever neural circuit,
even complex, can be expressed as a composition of archetypes, as far as all words can be
expressed starting from a given set of syllables on an alphabet.

2.7.4 A Model Checking Approach to Reduce Spiking Neural Net-
works

The last contribution I decided to highlight is:

Elisabetta De Maria, Daniel Gaffé, Cédric Girard Riboulleau and Annie Ressouche. A
Model-checking Approach to Reduce Spiking Neural Networks. Proceedings of 9th Interna-
tional Conference on Bioinformatics Models, Methods and Algorithms (BIOINFORMAT-
ICS 2018), 89-96, (2018).

The corresponding paper appears in Chapter 7. In this work we introduce a new algorithm
for reducing the number of neurons and synaptical connections of a given neural network.
The proposed reduction preserves the desired dynamical behavior of the network, which is
formalized by means of PCTL temporal logic formulae and verified thanks to the PRISM
model checker [47].

We choose to rely on the discrete Leaky Integrate and Fire (LI&F) model already in-
troduced in the previous subsections, but this time the LI&F model is augmented with
probabilities. More precisely, the probability for a neuron to emit a spike is driven by the
difference between its membrane potential and its firing threshold. We discretize the dif-
ference between the membrane potential and the firing threshold into a certain number of
positive and negative intervals and we associate a probability to each interval. For positive
(resp. negative) values of this difference, the higher its absolute value is; the higher (resp.
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lower) the probability to emit a spike is. Probability values are chosen in order to conform
to a sigmoidal function.

Thanks to the modeling language at PRISM user’s disposition, LI&F probabilistic net-
works are encoded as Discrete-Time Markov Chains (DTMCs), which are transition systems
augmented with probabilities. Their set of states represents the possible configurations of
the system being modeled, and transition between states model the evolution of the system,
which occurs in discrete-time steps. Probabilities are associated to transitions.

The reduction algorithm we propose supposes the neural network at issue to be imple-
mented as a DTMC in PRISM, and makes several calls to the PRISM model checker to
retrieve the probability relative to the satisfaction of some temporal logic formulae. The
algorithm takes as input a LI&F network and a PCTL property concerning the dynamical
behaviour of the output neurons of the network. Only intermediary neurons are affected
by the reduction process, that is, input and output neurons cannot be removed. As a first
step, intermediary neurons are visited following a depth first search in order to remove wall
neurons, that is, neurons that are never able to emit, even if they receive a persistent se-
quence of spikes as input. When the algorithm detects a wall neuron, it removes not only the
neuron but also its descendants whose only incoming synaptical connection comes from this
neuron, and its ancestors whose only outgoing edge enters the neuron. As a second step, the
algorithm performs another DFS traversal of the remaining intermediary neurons to identify
and remove neurons whose removal has a law influence (i) on the probability for the PCTL
property to be satisfied and (ii) on the spike rate. As in the previous step, descendants and
ancestors of these neurons are consistently removed.

The use of formal methods is thus crucial to:

e formalize the expected behaviour of the network (as a PCTL property);

e automatically retrieve the probability for the behaviour to be displayed when removing
some neurons (thanks to several calls to the PRISM model checker).

Our experiments show that the application of this algorithm can drastically reduce the
number of states and transitions of the transition system corresponding to the DTMC at
issue. For instance, we show that the removal of one neuron from a network of four neurons
reduces (in average) the number of states and transitions of a factor 20.

The actual version of the algorithm finds a reduction which conforms to the expected
behaviour of the network. It is not necessarily the optimal solution, that is, it does not nec-
essarily minimize the difference of behaviour between the complete and the reduced network,
and we plan to address this issue in our future work.

Observe that, besides its utility in lightening models, our algorithm for neural network
reduction has a forthright application in the medical domain. In fact, it can help in detecting
weakly active (or inactive) zones of the human brain.
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Chapter 3

Formal Methods for Systems Biology:
Position on Current and Future
Directions of Research

3.1 What is the Best Formal Method for
Systems Biology?

During my post-doctoral researches I had the chance to apply formal methods to make ad-
vanced analysis on several biological systems. In particular, I could experiment the use of the
two most common approaches for formal verification: the model checking approach and the
theorem proving approach. The study of biological neural networks gave me the possibility
to directly compare the benefits of these two different techniques for the formalization and
proof of dynamical properties of neuronal archetypes.

In absolute terms, I could not say one of the two approaches is strongly preferable with
respect to the other for the formal study of the dynamics of biological systems. As already
explained, the main advantage of the model checking methodology is that it is completely
automatic: once a given property has been correctly encoded, the user just needs to press
a button to know whether the property is verified or not. So the presence of an expert
is not needed to obtain a proof. Another strength of model checking is that, in case a
property does not hold in a given model, a counter-example is automatically provided. Such
an execution trace can give hints in understanding what should be modified in the system
so that the property is satisfied. Furthermore, even if the transition system corresponding
to each model is exponential with respect to the number of variables, several model checkers
exploit some advanced features to improve scalability, and their answers are often immediate
for our models and properties.

On the other hand, model checkers often cannot prove properties at the desired level of
generality. As a matter of fact, the use of a proof assistant guarantees that the properties
we prove are true in the general case, such as true for any input values, any length of input,
and any amount of time. Another advantage of the theorem proving approach is that, since
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we have access to proofs, a successful proof of a given property can be exploited to prove
similar properties. The drawbacks are that proofs can be long and an expert is needed to
make them.

My feeling is that, to perform formal advanced analysis of biological systems, the model
checking and theorem proving approaches should be used together in a pragmatic way. When
trying to prove a given property, the idea is to first test its validity for some crucial given
parameter intervals using model checking, and eventually refine the model thanks to the
provided counter-examples so that the property holds in the defined context. Once some key
tests have passed, the theorem proving technique can be exploited to prove the property in
a more general context. The complementarity of these two powerful techniques could allow
significant advances in the study of the dynamics of biological systems.

3.2 Hot Issues: Model Composition and
Model Reduction

As the reader may have noticed, model composition and model reduction are two key issues
playing an important role in all my post-doctoral researches.

3.2.1 Model Composition in my Works

As far as model composition (or coupling) is concerned, it is at the heart of [51]|, where
we propose a coupled model of the cell cycle, the circadian clock, the DNA repair system,
and the irinotecan metabolism and exposure control. One of the main aims of this work
is to show how the walidation of a coupled model and the optimisation of its parameters
(with respect to biological properties of the coupled system) can be done automatically using
model checking and parameter learning techniques. To couple our models, we complete them
with some linking rules and find suitable values for the kinetic parameters such that some
specifications are satisfied. Notice that it is often not possible to find parameter values for the
new kinetic rules without changing some parameters in the original models. Thus coupling
models can help in better understanding and improving the original models. Furthermore,
coupling models can help in detecting some lacks in the original models. For instance, a
missing metabolic pathway in a model can be detected by coupling it with another model.

Model composition is also at the basis of [54], where we compose (couple) several neuronal
archetypes to study the behavior of the resulting network. In this context, crucial questions
underlying our study are:

e Are the properties of the resulting network simply the conjunction of the individual
constituent archetype properties or something more? In other words, does the resulting
network satisfy only properties that were already satisfied by the constituent archetypes
or are there new properties that are also satisfied by this composition?

e Can we understand the computational properties of large groups of neurons simply as
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the coupling of the properties of individual archetypes, as it is for syllables and words,
or is there something more again?

Model composition is present in [53] too, even if in a less explicit way than in the previous
cited works. In this work, we model biological neurons as timed automata and we compose
them to obtain timed automata networks whose neurons work and synchronize in parallel
(formally, this can be seen as the synchronous product of a set of timed automata).

3.2.2 Model Reduction in my Works

As far as model reduction is concerned, it is crucial in systems biology, especially in the
scope of the attarnment of models which are suitable for formal verification. Model reduction
motivates our work in [52|, where we propose an algorithm to reduce the number of nodes and
edges of a given biological neural network while preserving the desired dynamical behavior of
the network. Roughly speaking, a node (and its incoming and outcoming edges) is removed
if its deletion has a low impact on the probability for a given temporal logic formula to
hold. Such an algorithm could be easily adapted to the reduction of other kinds of biological
networks.

Notice that we also cope with model reduction in [54], where we deal with biological
neuronal archetypes. In this work we write a Lustre observer to verify whether two given
networks always display the same behaviour, whatever their input sequences are. For in-
stance, we exploit such an observer to verify whether two simple series of different length
have the same output sequences, whatever their input sequences are. A short series having
the same behaviour than a longer series can replace the former one in a biological network,
thus contributing to reduce the size of the network.

We also deal with model reduction in [53], even if less explicitly than in the other cited
works. In this work, we propose an algorithm to infer the synaptical weights of a given
network such that the network can display a given behaviour. This algorithm may lead us to
set some synaptical weights to zero, which corresponds to removing some connections, and
thus lightening the initial network.

3.2.3 Model Composition and Model Reduction in Systems Biology

Model composition and model reduction are central issues in systems biology, and tech-
niques to automatize these processes are more and more needed. Of course our works are
not the only ones attacking these topics. Concerning model composition, in [17]| the authors
propose a web-based solution to facilitate the process of merging biological models encoded
in SBML (Systems Biology Markup Language), and in [32| the authors apply system en-
gineering methods to compose continuous models of biological systems. Concerning model
reduction, emblematic examples can be found in [59], where the authors propose a method-
ology to reduce regulatory networks preserving some dynamical properties of the original
models, such as stable states, in [28]|, where the authors study model reductions as graph
matching problems, or in [62], whose author considers finite-state machines and proposes a
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technique to remove some transitions while preserving all the (minimal) traces satisfying a
given reachability property.

My feeling is that model composition and model reduction will be at the heart of deep
researches in the next years, and I intend to continue to contribute to the study of these hot
topics with the help of formal methods. As for model composition, one of the most hard
tasks will be to formulate the properties of the composed models starting from the properties
of the constituent models, which is often not straightforward. As for model reduction, the
main difficulty may consist in selecting the most suited reduction when several alternatives
exst.

3.3 Current Work and Perspectives

In the previous sections I described my main contributions and ideas in the field of formal
methods for systems biology. I would like to underline that the works I presented and the
opinions I exposed derive from the strong interactions I had (and continue to have) with
my master and Ph.D. students and from chairing three conferences in the field of systems
biology and computational biology more in general (BIOINFORMATICS 2019, CSBio 2019,
BIOINFORMATICS 2020). These scientific duties gave me the possibility to read in detail
a big number of papers, to listen to the corresponding presentations, and to compare them
to make some critical decisions (choice of the best papers, selection of papers for publication
in a journal, review of extended versions, etc). This allowed me to get a broad-spectrum
view on systems biology, which goes beyond the research topics I specialized on, and which
I believe will be useful for the follow-up of my researches.

As far as my current and future researches are concerned, my firm intention is to continue
to exploit formal methods to perform a deep analysis of biological neural networks. As
already mentioned, the use of formal techniques makes my researches quite original and
complementary with respect to the main international projects aiming at understanding the
brain functioning, which are mainly based on large systems of differential equations [18].

My main long term project consists in focusing on neuronal archetypes and try to substan-
tiate the theory that whatever biological neural network can be expressed as a composition
of some canonical archetypes. I am currently working on this topic with the associate pro-
fessor Franck Grammont from Laboratoire J.A. Dieudionné, Nice, France, the Ph.D. student
Abdorrahim Bahrami, and the full professor Amy Felty from University of Ottawa, Canada.
Abdorrahim Bahrami is supposed to defend his Ph.D. thesis by the end of Autumn 2020,
and to keep focusing on the formal study of neuronal archetypes thanks to a post-doctoral
contract under my supervision. Concerning the study of biological neural networks, I also
intend to keep working on the development of algorithms for both reducing the size of net-
works and automatically finding their crucial parameters. For this last point, a combination
of formal methods and machine learning techniques, as described in [53], seems to be highly
suited.

Another research axis in which I started to be involved recently deals with bio-medicine
and results from the co-supervision of the student Thibaud L’Yvonnet, who started his
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Figure 3.1: Display of the Match Items game.

Ph.D. program in December 2019. In this Ph.D. thesis, we deal with "serious games" for
health, which are used by medical doctors to evaluate the performances of patients affected
by neuro-degenerative pathologies such as the Alzheimer disease [79]. Behavior, emotions,
and performance displayed by patients during these games can indeed give indications on
their disease. An example of serious game to analyze the behavior of Alzheimer patients is
the Match Items game (see the screenshot in Figure 3.1). In this game, patients interact
with a touch-pad. They are asked to match a random picture displayed in the center of the
touch-pad with the corresponding element in a list of pictures.

In the first part of the Ph.D. thesis, we proposed a formal approach to model serious
games, taking into account possible variations in human behavior. Starting from an activity
description enriched with event occurrence probabilities, we translate it into a corresponding
formal model based on discrete-time Markov chains [55]. We use the PRISM framework and
its model checking facilities to express and test interesting temporal logic properties (PCTL)
concerning the dynamic evolution of activities. In particular, we retrieve probabilities for
the patients to follow some given crucial classes of paths. This phase is necessary to validate
our approach and to explore the kind of properties that model checking can achieve, before
performing clinical tests on real patients.

We intend now to validate our formal approach thanks to four serious games selected with
the help of the team of the medical doctor Philippe Robert from Institut Claude Pompidou,
Nice, France. These serious games have been represented with PRISM models, and will be
used in clinical experimentation. The configuration for different reference profiles (such as
Mild, Moderate, or Severe Alzheimer) will be set up with the participation of clinicians.
Then, several groups of patients will play these games and their results will be recorded.
We will compare these results with the ones of our models to calibrate the models and to
perform new targeted clinical tests.

Each game has been chosen because it targets a specific cerebral function (e.g., inhibitory
control or episodic memory), and in the last part of the thesis we will compare the results
obtained in the previous phase with some biological neural networks describing the cerebral

41



functions targeted by the games. This last part of the thesis, more prospective, has two
purposes: (i) study how to model some given neural networks to keep some deviating be-
haviors into account (which parameters to change and how), and (ii) predict the behaviours
associated to some specific neuronal configurations. This part of the work, where we try to
cross behavioral models and brain models, is more ambitious and well fits with my strong
will of better understanding the behaviour of the human brain. There will certainly be some
intersections between this work and the study of neuronal archetypes I am going to conduct.
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Abstract

In systems biology, the number of available models of cellular processes
increases rapidly, but re-using models in different contexts or for different
questions remains a challenging issue. In this paper, we study the coupling
of different models playing a role in the mammalian cell cycle and in cancer
therapies. We show how the formalization of experimental observations in
temporal logic with numerical constraints can be used to compute the un-
known coupling kinetics parameter values agreeing with experimental data.
This constraint-based approach to computing with partial information is il-
lustrated through the design of a complex model of the mammalian cell
cycle, the circadian clock, the p53/Mdm2 DNA-damage repair system, the
metabolism of irinotecan and the control of cell exposure to it. We discuss
the use of this model for cancer chronotherapies and evaluate its predictive
power with respect to circadian core gene knock-outs.

Keywords: model coupling, temporal logic, model checking, constraint
solving, parameter learning, cell cycle, DNA damage, irinotecan

1. Introduction

In systems biology, the number of available models of cellular processes
increases rapidly. To date, most of the effort has been devoted to building
models and making them freely available, through the design of standard ex-
change formats, such as for instance the Systems Markup Language SBML
[29], the making of model repositories, such as for instance Biomodels?, the

!This article is an extended version of [17].
’http://biomodels.net/
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making of biological ontologies to establish the links between molecular syn-
onyms, species, units, etc., and the development of modeling tools, such as
Cell Designer, Biocham [8], BioNetGen [6], Pathway Logic [19], Bio-ambients
[40], etc. Despite these efforts however, re-using models in different contexts
or for different questions remains a challenging issue. In practice, most of
the models are developed, refined, simplified or coupled with respect to other
models by hand with no direct support from the tools to re-use models in a
systematic way using a specification of the global behavior of the system.

Coupling biological models is necessary to study how the building blocks
interact together and make predictions on the global system’s behavior.
Model coupling is also a method to better understand and improve the com-
posite models. The knowledge acquired from the global view provided by
a coupled model can indeed lead to modify the single model components in
order to satisfy some observed property of the global system. In particular,
coupling models can help identifying lacks in the model components, like a
missing node in a pathway for instance.

In this paper, we show how the formalization of experimental observations
in temporal logic with numerical constraints can be used to automatically
find parameter values for the coupling kinetics agreeing with experimental
data. We illustrate this constraint-based approach to computing with par-
tial information, through the coupling of existing biochemical models of the
mammalian cell cycle, the circadian clock, the p53/Mdm2 DNA-damage re-
pair system, and irinotecan metabolism. Finally, we discuss the predictive
power of the obtained coupled model with respect to circadian core gene
knock-outs.

Mammalian cell cycle

Irinotecan is an anti-carcinogenic inhibitor of topoisomerase-1 which start-
ed to be used in clinical treatments approximately twenty years ago [34]. It
shows significant efficacy against a variety of solid tumors, including lung,
colorectal, and cervical cancers. Scientists are currently trying to optimize
the irinotecan therapy in order to understand how to limit its toxicity on
healthy cells and to increase its efficacy [2]. In this context, it is crucial to
comprehend how the administration of this medicament influences cellular
proliferation. For this purpose, the observed effects of the circadian rhythm
on the toxicity and efficacy of anti-tumor drugs should be taken into account.
In fact, the effectiveness of anti-cancer drugs on a healthy as well as tumor-
ous cells is dependent on the phase of the cell cycle in which those cell lie
[2]. Under the hypothesis that the cell cycle in healthy tissues is mainly en-
trained by the circadian clock, it is possible to reduce the toxicity on healthy
cells by injecting antitumor drugs in precise periods of the circadian clock.



On the other hand, tumorous cells are either phase-shifted (slow-growing
tumors) or not entrained any more (rapidly growing or advanced stage tu-
mors). A rhythmic drug exposure can thus limit toxicity on healthy cells
while maintaining efficacy on tumour cells.

In this paper, we develop a complex model of the mammalian cell cycle,
circadian clock, p53/Mdm2 DNA repair system and ironotecan metabolism
to investigate the influences of irinotecan on cell proliferation. There are in
the literature many models of the mammalian cell cycle [35, 25] and of the
circadian biochemical clock [32, 24], a few ones of the cell’s DNA-damage
repair network [13, 12], and recently some preliminary models of irinotecan
intracellular pharmacodynamics [18, 4]. However these modules need to be
composed in a coherent way to make meaningful predictions.

Modeling under temporal logic constraints

Our approach to modeling in systems biology consists in formalizing the
relevant properties of the behavior of the global system in temporal logic,
and in using model-checking, constraint solving and continuous optimization
algorithms to compute unknown parameters and validate the model with
respect to its temporal specification. This temporal logic based approach is
at the heart of our modeling platform, the Biochemical Abstract Machine
Biocham [8, 23].

Model-checking is the process of algorithmically verifying whether a given
state transition structure is a model for a given temporal logic formula [15].
In the literature, there are now various applications of model-checking tech-
niques to biology. In [10, 19], temporal logic was first introduced as a query
language for biochemical networks and for validating boolean models of bio-
logical processes. Some experimental results were obtained on a large scale
with Kohn’s map [31] of the mammalian cell cycle control [11] (800 reac-
tion rules, 500 variables) using the symbolic model-checker NuSMV, and on
a small ordinary differential equation (ODE) model using the constraint-
based model checker DMC. This approach to verifying biological processes
has pushed the development of model-checking techniques for quantitative
properties, and continuous, stochastic or hybrid models.

For (non-linear) ODE models, numerical integration techniques provide
numerical traces on which formulae of Linear Time Logic with numerical con-
straints over R, named LTL(R) , can also be evaluated by model-checking
[7]. Simpathica [3] and Biocham are two computational tools integrating
such model-checkers for quantitative models. This approach has been fur-
ther developed in Biocham by generalizing model-checking to a temporal
logic constraint solving algorithm [22], allowing for efficient kinetic parame-
ter optimization [41] and robustness analysis [42] w.r.t. quantitative temporal



properties formalized in LTL(R) [21].

Related work concerns stochastic models and parameter uncertainty stud-
ies. In [28], Heath et al. apply the probabilistic model-checker PRISM to
the study of a complex biological system, namely, the Fibroblast Growth
Factor (FGF) signalling pathway. In [14], Clarke et al. apply statistical
model-checking on a stochastic model of a T-cell receptor. In [5] Batt et
al. develop a modeling framework based on differential equations to analyze
genetic regulatory networks with parameter uncertainty. The values of un-
certain parameters are given in terms of intervals and dynamical properties of
the networks are expressed in temporal logic. Model-checking techniques are
then exploited to prove that, for every possible parameter value, the modeled
systems satisfy the expected properties and to find valid subsets of a given
set of parameter values (such an approach is exploited in RoVerGeNe, a tool
for robust verification of gene networks). In [37], Piazza et al. propose semi-
algebraic hybrid systems as a natural framework for modeling biochemical
networks, taking advantage of the decidability of the model-checking problem
for Timed Computation Tree Logic.

In this paper, we focus on the use of LTL(R) temporal constraints for
integrating biochemical models. In order to compose the different modules,
we assume a finite set of hypotheses concerning the structure of the links.
The unknown kinetic parameter values are then computed by solving the
temporal logic constraints using an evolutionary continuous optimization al-
gorithm [41] in order to make the model components interact in a proper
way. For this, the biological properties of the global system are formalized
as LTL(R) constraints, and solved so that the expected properties are auto-
matically satisfied by the coupled model.

Organization of the paper

The paper is organized as follows. In Section 2 we introduce the temporal
logic with numerical constraints LTL(R) used to specify relevant properties
of both the composite models and the coupled model. Section 3 describes the
elementary cell processes considered, their models taken from the litterature
and their specification in LTL(R) . Section 4 presents the coupling of these
elementary models and the specification of the global properties of the system
in LTL(R) . Section 5 gives some performance figures for the evaluation of
the parameter optimization method and the inference of parameter values
. Then Section 6 shows how the coupled model and the parameter search
method can be used to derive an optimal control model for maximizing the
volume of irinotecan under non-toxicity constraint in synchronized (healthy)
cells. Finally, in Section 7 we illustrate the predictive power of our coupled
model by investigating the effects of clock genes knock outs on the cell cycle



in silico and comparing the results with the literature. All the models and the
temporal logic formulae used are available in (SBML compatible) Biocham
format at 3.

2. Preliminaries on rule-based modeling and LTL(R) temporal logic
specifications

The Systems Biology Markup Language (SBML) is a widely used rule-
based formalism to describe systems of biochemical reactions. SBML is a
useful format for exchanging models between modelers, and has been adopted
for large repositories of models, such as for instance biomodels.net.

The rule-based language of Biocham for describing reaction models is
compatible with SBML. Biocham adds a specification language based on
temporal logic for formalizing the global properties of the system observed
in biological experiments, under various conditions or gene mutations. Hav-
ing formal languages not only for describing biochemical reaction models,
but also for specifying their behavior, opens a whole avenue of research for
designing automated reasoning tools to help the modeler [20].

The biological properties of quantitative models can be formalized in
Biocham by formulae of the Linear Time Logic with numerical constraints
over the reals LTL(R) [7, 21, 41]. LTL(R) formulae are formed over first-
order atomic formulae with equality, inequality and arithmetic operators
ranging over real values of concentrations and of their derivatives, using the
logical connectives and the usual temporal operators of LTL(R) : in particu-
lar operator G for “always in the future”, F for “sometimes in the future”,
the next time operator X, and the binary operator until U.

For instance, F([A] > 10) expresses that the concentration of A eventually
gets above the threshold value 10 and G([A] + [B] < [C]) states that the
concentration of C is always greater than the sum of the concentrations of
A and B. Oscillation properties, abbreviated as oscil(M, K), are defined as

The abbreviated formula oscil(M, K,V') adds the constraint that the
maximum concentration of M must be above the threshold V' in at least
K oscillations while period(M, P) states that M oscillates at least 3 times
and has a period P for the last three oscillations. It is worth noting that
this expression of oscillations in temporal logic does not impose us to fix the
phase and period of oscillations as in curve fitting.

LTL(R) formulae are interpreted in linear state transition structures which
represent either an experimental data time series or a simulation trace, both

3http://contraintes.inria.fr/supplementary material/TCS-CMSB09/.



completed with loops on terminal states. Given the ODE corresponding to
a reaction model, under the hypothesis that the initial state is completely
defined, a discrete simulation trace can be obtained by means of a numeri-
cal integration method (namely Rosenbrock method for stiff systems). Since
constraints refer not only to concentrations, but also to their derivatives,
traces of the form

(< to, o, dxo/dt >, < t1,x1,dry/dt >,...)

are considered, where at each time point t;, the trace associates the con-
centration values x; to the variables, and the values of their first derivatives
dx;/dt. It is worth noting that in adaptive step size integration methods of
ODE systems, the step size t; 1 - t; is not constant and is determined through
an estimation of the error made by the discretization. The notion of next
state refers to the state of the following time point in a discretized trace, and
thus does not necessarily imply a real time neighborhood. The rationale is
that the numerical trace contains enough relevant points, and in particular
those where the derivatives change abruptly, to correctly evaluate temporal
logic formulae.

Beyond verifying whether an LTL(R) formula is satisfied in a numerical
trace (model-checking), an original algorithm for solving LTL(R) constraints
[22, 21] has been introduced to compute a continuous satisfaction degree
in [0,1] for LTL(R) formulae [41], opening up the field of model-checking
to optimization. This is implemented in Biocham using an evolutionnary
continuous optimization algorithm [ for optimizing parameter values with
respect to LTL(R) properties.

3. Elementary Cell Process Models and Temporal Specifications

In this section we introduce the biological processes we deal with, giving
temporal logic formulae to specify the behaviour of each of them. FEach
property is expressed first in natural language, then formalized in LTL(R) .

3.1. Mammalian Cell Cycle Control

Cells reproduce by duplicating their contents and then dividing in two.
To produce a pair of genetically identical daughter cells, the DNA has to be
faithfully replicated, and the replicated chromosomes have to be segregated
into two separate cells. The duration of the cell cycle varies greatly from one
cell type to another; in many mammalian cells it lasts about 24 hours. The
cycle is traditionally divided into the following four distinct phases [1]: the
G1-phase, that is the temporal gap between the completion of mitosis and



the beginning of DNA synthesis, the S-phase (synthesis), that is the period
of DNA replication, the G2-phase, that is the temporal gap between the end
of DNA synthesis and the beginning of mitosis, and the M-phase (mitosis),
when replicated DNA molecules are finally separated in two daughter cells.

The cell cycle is regulated by different checkpoints, that are moments
when the cell progression is stopped to verify the state of the cell and, if
needed, to repair it before damaged DNA is transmitted to progeny cells.
DNA damaging agents trigger checkpoints that produce arrest in G1 and
G2 stages of the cell cycle. Cells can also arrest in S, which amounts to a
prolonged S phase with slowed DNA synthesis. Arrest in G1 allows repair be-
fore DNA replication, whereas arrest in G2 allows repair before chromosome
separation in mitosis.

The proper alternation between synthesis and mitosis is coordinated by
a complicated network that regulates the activity of a family of key proteins.
These proteins are composed of two subunits: a regulatory subunit, a cyclin,
and a catalytic subunit, the cyclin-dependent kinase, cdk for short. A cdk
has to associate with a cyclin partner to form a dimer and has to be appro-
priately phosphorylated in order to be active. The progression through cell
cycle is orchestrated by the rise and fall of the Cdk/cyclin dimers which are
characteristic of each phase.

In this work we refer to the model of mammalian cell division proposed
by Novik and Tyson in [35] and extended by Zamborszky et al. in [45]
to include the regulatory activity of Weel, a kinase that delays or prevents
mitosis by phosphorylation of the Cdkl/CyclinB complex. The extended
model comprises 22 differential equations and 4 steady-state relations.

This is the specification for a 100-hours simulation of the model:
F.i: CycA is greater than 2 in at least 4 oscillations and CycB is greater
than 3.5 in at least 4 oscillations and CycD is greater than 0.4 in at least 4
oscillations and CycE is greater than 1 in at least 4 oscillations.
LTL(R) : oscil([CycAl,4,2) A oscil([CycBl,4,3.5) A oscil([CycD],4,0.4) A
oscil([CycE], 4,1).

3.2. Mammalian Circadian Clock

In many living organisms, the activity of some genes and proteins spon-
taneously display sustained oscillations with a period close to 24 hours. A
biochemical clock present in each cell is responsible for maintaining these
oscillations at this period. In mammalian cells, two major proteins are tran-
scribed by clock genes in a circadian manner, CLOCK and BMALI1, which in
turn bind to form a heterodimer responsible for the transcription of PER (Pe-
riod) and CRY (Cryptochrome). The two newly-formed proteins then bind
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Figure 1: Simulation plot of the cyclin concentrations during the mammalian cell cycle.

as soon as the activity of the complex reaches a threshold. PER/CRY asso-
ciates with the complex CLOCK/BMALTL to inhibit its activity and therefore
the transcription of the two proteins PER and CRY. This negative feedback
loop gives rise to sustained oscillations.

The adaptation of biological organisms to their periodically varying en-
vironment is mediated through the entrainment of circadian rhythms by
light-dark (LD) cycles. Light can entrain circadian rhythms by inducing
the expression of the PER gene.

The model of the circadian clock considered in this work is the one pro-
posed by Leloup and Goldbeter in [32], that consists of 19 differential equa-
tions incorporating the regulatory effects exerted on gene expression by the
PER, CRY, BMAL1, CLOCK, and REV-ERBa proteins, as well as post-
translational regulation on these proteins by reversible phosphorylation, and
light-induced PER expression.

The cyclic behaviour of the main compounds of the system is specified
by the following formula:

Foo: mPER, mCRY, mBmall, and mREVERB oscillate with a period
equal to 24 (in the last three oscillations).
LTL(R) : period(mPER,24) A period(mCRY, 24) A period(mBmall,24) A
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Figure 2: Simulation plot of the mammalian circadian clock genes expression.

period(mREV ERB, 24).

Some recent researches showed the existence of biochemical links between
the circadian and the cell cycle. In particular, Matsuo et al. [33] proved that
a cell cycle regulator, Weel, is directly regulated by clock components.

3.3. P53/Mdm2 DNA-damage Repair System

The third model is devoted to the description of protein p53, a tumor
suppressor protein which is activated in reply to DNA damage. P53 has
the capability to arrest the cell cycle in the different phases and to lead to
apoptosis, i.e. cell death. P53 can be activated in many ways, in particular
in response to DNA damage.

In normal conditions, the concentration of p53 in the nucleus of a cell is
feeble: its level is controlled by another protein, Mdm2. These two proteins
present a loop of negative regulation. In fact, p53 activates the transcription
of Mdm2 while the latter accelerates the degradation of the former. DNA
damage increases the degradation rate of Mdm2 so that the control of this
protein on p53 becomes weaker and p53 can exercise its functions. This pro-
tein is responsible for the activation of many mechanisms: in an indirect way,
it stops the DNA synthesis process, it activates the production of proteins



charged with DNA reparation, and can lead to apoptosis.

When DNA is damaged, Mdm2 looses its influence on p53 and one can
observe oscillations of pb3 and Mdm2 concentrations. The response to a
stronger damage is a higher number of oscillations. Oscillations have a very
regular period. In literature, several models have been proposed to model
the oscillatory behaviour of proteins p53 and Mdm2, most notably the ones
proposed by Chickermane et al. [12], by Ciliberto et al. [13], and by Geva-
Zatorsky et al. [26]. In this work we build upon the one described in [13],
that consists of 6 differential equations.

The following three properties concern the behaviour of proteins p53 and
Mdm2.

Fy j53: In case there is no DNA damage, p53 and Mdm2 are constant func-
tions.

LTL(R) :G([DNAdam] = 0) — G(d([p53])/dt = 0 A d([Mdm2 :: n])/dt =
0).

F; p53: Sustained DNA damage causes at least one oscillation of proteins p53
and Mdm2.
LTL(R) :G(([DNAdam| > 0.2) — F(oscil([p53], 1) ANF(oscil ([M dm2],1)))).

F3 53t pd3 oscillations are alternated by Mdm2 ones.
LTL(R) : G(oscil([p53],1) — X((—oscil([p53],1))U(oscil([Mdm2 :: n], 1)))).

3.4. Irinotecan Metabolism

Camptothecins are substances that can be extracted from the Chinese tree
“Camptotheca acuminata Decne” and are mainly used for the treatment of
digestive cancers. Their anticancerogenic properties have been discovered at
the end of the Fifties but the first clinical tests have been interrupted owing to
heavy effects due to the toxicity of the substances. In the Eighties researchers
discovered that camptothecins are inhibitors of topoisomerase-1 (Topl for
short), an essential enzyme for DNA synthesis. Afterwards, they started to
focus on some semi-synthetic derivative of water-soluble camptothecins, such
as irinotecan and topotecan. Irinotecan is pro-medicine and must be trans-
formed in its active metabolite, SN38, to be effectively cytotoxic. In fact the
anticancerogenic activity of irinotecan (CPT11) is approximately 100 times
less effective than the one of SN38. The activation is due to carboxylesterase,
an enzyme mainly located in the liver, in the intestine, and in the tumoral
tissues. SN38 is then detoxified through glucorono-conjugation: this realizes
uridine diphosphate glucoronosyl transferase 1A1.
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Figure 3: Simulation plot of the P53/Mdm2 DNA-damage repair system.

Mechanisms through which irinotecan damages the cell are very complex
and have not been completely explained yet. It is sure that DNA lesions ap-
pear after the inhibition of Topl by SN38. Topl is a protein which is present
in all living organisms and which checks DNA replication and transcription.
It intervenes to modify the DNA winding degree, acting on one strand. More
precisely, Topl links itself to the extremity 3’ of DNA forming a transitory
cleavage complex and cuts a DNA strand, that in such a way is able to unroll.
Then such a complex dissociates and a new ligature comes up. In normal
conditions, the connection process is favored with respect to the cleavage
one. The target of irinotecan, and above all of its active metabolite SN38,
is the complex Topl-DNA. SN38 links to the complex through a covalent
bond, preventing in such a way from the ligature of the DNA strand. As
clearly written in the title of [38], SN38 acts like a “foot in the door”: it
keeps opened the DNA strand to which Topl is linked as to prevent a door
from closing. These complexes are still reversible and do not cause DNA
lesions. However, they favor them: some lesions can rise as a consequence
of the possible collisions with the transcription complexes or with the repli-
cation fork. This induces the arrest of the cell cycle. In this case we speak
of irreversible complexes. Lesions due to the inhibition of Topl are therefore
consecutive to the stages of the cell metabolism. It means that irinotecan
injections must be repeated and abundant in order to be effective. Besides
irinotecan is more effective during the DNA replication phase [36, 46]. Fur-
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thermore, the inhibition of the DNA synthesis takes rapidly place (in a few
minutes) and lasts several hours.

Defence answers of cells subjected to irinotecan injections are multiple
and vary according to the drug dose. The administration of a very light dose
suffices to slow down the S phase of the cell cycle and to delay the G2-M
transition. If the dose is more substantial, the lag time in the S phase is
much more significant and the cell cycle arrest in the G2-M transition can
last more than sixty hours or even be permanent. In this latter case, some
genes responsible for the cell cycle arrest (as an example, p21) and involved
in the aptototic pathway are over-expressed. These genes are activated by
p53, and this suggests the intervention of the protein in reply to a DNA
damage due to the dissociation of Topl from DNA [46].

In this work we refer to a pharmacokinetics/pharmacodinamics (PK/PD)
model of irinotecan developed by Dimitrio [18] and currently further elabo-
rated by Ballesta [4], that takes aim at representing the action of the drug on
the body (pharmacodinamic) and the action of the body on the drug (phar-
macokinetic), and thus the drug metabolism and its transformations. This
model is made up of 8 differential equations. The following two formulae
specify the behaviour of this model.

Fi irin: In case there is no irinotecan, DNA damage equals 0.

LTL(R) :G([CPT11] = 0) — G([DN Adam| = 0).

F5 iin: If the irinotecan concentration is greater than 10, then there exist a
future state when DNA damage exceeds the value 0.7 and then stays high.
LTL(R) :G([CPT11] > 10) — FG([DN Adam| > 3.5).

3.5. Irinotecan Exposure Control

In a cancer chronotherapy, an anticancer drug such as irinotecan is in-
jected according to some control law over time. The control law can be repre-
sented by a series of parameterized events defining injection times and doses.
An event is associated to the beginning and to the end of each injection.
Parameters are used to characterize the lapse of time between consecutive
injections. The injection control law is part of the system and represented
as a component in its own right in the system.

The aim chosen here will be to minimize the toxicity (i.e., DNA damage
on healthy cells, that are synchronized) while maintaining a fixed efficacy
(the cancer cells lack circadian synchronization and thus efficacy will be sup-
posed constant when the total amount of Irinotecan injected is constant,
which is the assumption that the clinicians we collaborated with made). The
parameters will thus be those defining a periodic step function with a fixed
total area.
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Figure 4: Similuation plot of irinotecan metabolism.

Note that since the model considered only focusses on cellular pharma-
cokinetics (PK) and pharmacodynamics (PD), and not full-body PKPD, the
law to be optimized is the exposure law instead of the injection law. Op-
timization of the injection law would follow a similar procedure but for a
model with a defined target tissue and the corresponding PKPD.

4. Coupled Model Specification
4.1. Model Alignment

The first step of model coupling is model alignment for putting the models
in the same format and normalizing molecule names. SBML versions of the
irinotecan and p53/Mdm2 modules being available, they were imported in
Biocham. The renaming of the variable representing DNA-damage was the
only modification necessary in this precise case. More generally it would be
necessary to rely on existing databases and ontologies to match corresponding
entities in different models.

For the other models, we looked in parallel at the corresponding set of
ordinary differential equations and at the available diagrammatic notation
to write a set of Biocham reaction rules. Since ODEs can be automatically
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Figure 5: Schematic behaviour of the coupled model.

extracted back from the reactions, one can easily check that the reaction rule
models are indeed coherent with the original ODE ones.

4.2. Structural Coupling

The literature provides information about known structural links between
the different building blocks to assemble them and compose the coupled
model. Before that, let us examine the expected behaviour of the cell which
is graphically depicted in Figure 5. Injections of irinotecan (CPT11) induce
DNA damage. In reply to this, the cell reacts by activating protein p53, which
blocks the cell cycle at a checkpoint. This arrest aims at repairing critical
damage before DNA replications occurs, thereby avoiding the propagation
of genetic lesions to progeny cells. Thus, while the cell cycle is arrested,
the protein p53 will activate the DNA-damage repair mechanisms. If it is
possible for the cell to recover, the cell cycle will be restarted; otherwise, if
the damage is too extensive, the cell will undergo apoptosis.

As remarked in Section 3, literature provides evidence for the fact that, if
a cell is exposed to irinotecan during the S phase of the cell cycle, then more
DNA damage will be caused with respect to the other phases of the cell cycle
[36, 46]. Keeping this fact in mind, we provided a characterization of the
S phase in terms of the concentration level of CycA/Cdk2 (CycA for short)
and we inserted in the irinotecan model a dependence from the S phase of the
kinetic parameter involved in the production of DNA damage generated by
the ternary reversible complexes SN38-Topl-DNA (Toplcc for short): such
a parameter assumes a high value during DNA replication and a low value
out of synthesis. In this way we linked the cell cycle model to the irinotecan
one.

The structure of the coupling of the five models together is illustrated in
Figure 6.

The link between the irinotecan model and the p53/Mdm2 one is given
by DNA damage. In fact, irinotecan exposure causes DNA damage, which in
turn triggers the activity of protein p53, that tries to recover DNA damage.
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Figure 6: Global schema of the coupled model.

The link between the cell cycle and circadian clock models comes from
the experiments of [33] and is reflected through a direct influence of CLOCK-
BMAL1 (Bmall) on the synthesis of Weel, a kinase that delays or prevents
entry into mitosis by phosphorylation of the Cdk1/CyclinB complex. This
link uses the same structure as [9] since the Circadian clock model is the
same. [45] relied on a slightly different coupling that also modified, for unclear
reasons, the reaction of CyclinB synthesis, whereas the aim here is to search
for a coupling as simple as possible and satisfying the specification. Note
that experimental results direct at a G2/M-transition focussed coupling but
that for these experiments the cell-cycle model considered, even if it displays
the four different phases, is centered around the restriction point following
G1/8.

Bmall is also involved in the transcription of Topl [44]: this provides a
link between the circadian clock and irinotecan models.

In order to link the p53/Mdm?2 and cell cycle models, we inserted in the
p53/Mdm2 model a rule which fixes that p53 activates p21, and two further
rules imposing that p21 inhibits CycA and CycE, respectively. It is worth
noting that we also investigated the possibility to abstract the previous ex-
panded rules by letting p53 directly inhibit CycA and CycE. In the following,
we will refer to this last version of the link as to the contracted one.
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4.3. LTL(R) Specification of the Coupling

In this section, we show how the integration of temporal logic constraints
and parameter optimization techniques can be used to compute kinetics for
the coupled model. It is worth noticing that for this purpose, one can take
advantage of LTL(R) formulae to express numerical constraints in a much
more flexible way than by curve fitting, especially for oscillation constraints
for instance.

The state transition structure is constituted of a simulation trace over a
time window of 100 hours, containing the values of the system’s variables of
their first derivatives at discrete time points obtained by numerical integra-
tion (using Rosenbrock’s implicit method for stiff systems).

We directly considered the model made up by the five components and
all the linking rules, as illustrated in Figure 6, to perform the parameter
research. For the sake of clarity, we will separately introduce each linking
rule and the corresponding specification, but as a matter of fact we executed
Biocham’s parameter optimization procedure only ones to infer the unknown
kinetic parameter values leading to the satisfaction of the conjunction of all
the formulae given in the following.

The link between the circadian clock and irinotecan models (see Figure
6) has been encoded by means of the following reaction rule, that specifies a
mass action law kinetics with parameter kbmaltop for the synthesis of Topl:
MA (kbmaltop) for _=[Bmall nucl]=>TOP1.

The irinotecan model already included the following rule for the synthesis of
Topl:

topl for _=>TOP1.

To keep the Topl production limited and to constrain the correlation be-
tween the concentration values of Topl and Bmall, suitable values for topl
and kbmaltop such that property F1 holds have been found out.

F1: Topl is always lower than 1.5 and, whenever Bmall gets over 1 (before
85 time units), there exists a future state where Topl is greater than 1.
LTL(R) : G([TOP1] < 1.5 A ([Bmall-nucl] > 2.5) A Time < 85 —
F([TOP1] > 1)).

Results: we found out that the values top1=0.212 and kbmaltop=0.207
make F1 true.

The following Biocham rule encodes the link between the circadian clock
and cell cycle models:

(ksweemp+ksweem* [Bmall nucl])/(kweem+kwpcn* [PER nucl-CRY nucl])
for =[Bmall nucl]=>Weel.

While the cell cycle compounds oscillate with a period of approximately 23
hours, the circadian compounds exhibit a period close to 24 hours. To make
the cell cycle properly be entrained by the circadian cycle, the cell cycle
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Figure 7: Simulation plot of the cell cycle (CycA, CycB) and circadian clock (mPER) with
entrainment knock-out (no coupling). The cell cycle exhibits a free period of 23 hours.

compounds have been required to oscillate with a period of approximately
24 hours, that is, we searched for values for the kinetic parameters involved
in the above reaction rule so that property F2 is satisfied (see Figures 7 and
8).
F2: The period of CycA and CycB is 24.
LTL(R) : period(CycA,24) A period(CycB, 24).
Results: the values we found are ksweemp=0.521, ksweem=0.5, kweem=1,
and kwpcn=2.

Hereafter the Biocham rules introduced to link the p53/Mdm2 and cell
cycle models are reported:
MA(k5321) for _=[p53]=>p21.
MA(kA21) for CycA=[p21]=>_.
MA(kA21) for CycE=[p21]=>_.
As for the contracted version, the encoding is the following one:
MA(kA53) for CycA=[p53]=>_.
MA (kA53) for CycE=[p53]=>_.
Again, suitable parameter values for k6321 and kA21 (kA53 in the second
case) have been searched so that property F3, that expresses the CycA os-
cillating behaviour exhibited by the cell cycle model when entrained by the
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Figure 8: Simulation plot of the entrainment of the cell cycle by the circadian clock through
coupling on Weel. The period of the cell cycle is 24 hours.

circadian clock, is conserved when the p53/Mdm2 module is added but there
is no irinotecan exposure.
F3: Within a time interval of 100 time units, CycA is greater than 2.7 in at
least 4 oscillations.
LTL(R) : oscil([CycA],4,2.7).
Results: suitable parameter values are k5321=0.487, kA21=0.00507, and
kA53=0.283. Property F3 also turned out to be true when there is exposure
to irinotecan but the p53/Mdm?2 model is not taken into account. In fact,
as expected, even if DNA damage occurs, when protein p53 does not act,
the cell cycle is not affected, and thus CycA exhibits a regular oscillating
behaviour.

Finally, to link the cell cycle and irinotecan models, the following rule has
been considered
MA(kdam) for TOP1cc=>DNAdam.
already included in the irinotecan model and we made the parameter kdam
depend from the S phase: it assumes a first value v1 during replication, a
second value v2 out of replication, where v2 > v1. We searched for suitable
values v1 and v2 for kdam so that the next property holds.
F4: Whenever Toplcc gets above 0.2, there exists a future state when the
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first derivative of DNAdam gets above 0.15.

LTL(R) : G([TOPlcc] > 0.2— > F(d([DN Adam])/dt > 0.15)).

Results: the property is verified for v1 equal to 1.42 and v2 equal to 1.89.
The combination of temporal logic constraints and parameter optimiza-

tion techniques can also be used to validate the resulting model. As an

example, the next property ascertains that, in case of repeated irinotecan

exposure (and thus of sustained DNA-damage) the oscillations of CycA are

affected.

F5: When there is sustained DNA damage (after an initial period), the am-

plitude of CycA decreases before 73 time units and then stays low.

LTL(R) : F((Time < 15) A G([DNAdam] > 0.4)) — F((Time < 73) A

G([CycA] < 2.15)).

Results: with the expanded version of the links the amplitude of oscilla-

tions gradually decreases, satisfying the property. With the contracted one,

oscillations are very irregular, as graphically depicted in Figure 9 (bottom

panel).

5. Evaluation of the Parameter Search Procedure

The method used in Biocham to optimize parameter values with respect
to LTL(R) properties consists in computing a continous satisfaction degree
in [0, 1] for a temporal logic formula on a given simulation trace [41], using
an algorithm for computing validity domains of LTL(R) constraints with
free variables instead of constants [22, 21] and then using the continuous
satisfaction degree as fitness function for a continous optimization method.

Biocham uses the state-of-the-art nonlinear optimization method of Hansen
and Ostermeier [27] named Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES). A population of new candidate solutions is sampled accord-
ing to a multivariate normal distribution of the parameters. The covariance
matrix adaptation is a method to update the covariance matrix of this dis-
tribution. This method is a generalization of the approximate gradient and
Hessian of a quasi-Newton method to an evolutionary algorithm for opti-
mization problems with a black box fitness function on which no assumption
is made. CMA-ES performs parameter search given an initial solution, stop
and restart criteria, and a given search space. The search stops either when a
given number of violation degrees have been computed or when the violation
degree gets below a given threshold.

We searched for parameter values satisfying all F'1 to F5 properties, each
property being evaluated for a given set of models. The overall fitness of a
parameter values set is the sum of the fitness of all these properties. This
computation is done in parallel as well as the computation of the fitness of
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Parameter | Value | Formula

kbmaltop | 0.207 F1
topl 0.212 F1
ksweemp 0.521 F2
ksweem 0.5 F2
kweem 1.12 F2
kwpcn ) F2
k5321 0.486 F3

kA21 0.00507 F3
kA53 0.283 F3
vl 1.42 F4
v2 1.89 F4

Table 1: Parameter values learned in Biocham, values found, and temporal logic formulae
used for learning them.

the population of solutions defined by CMA-ES. One 100h simulation of the
complete model takes about 100s on a 3GHz processor and thus the evalua-
tion of the 5 properties combined can take up to 500s. It took around 1000
evaluations of these five properties combined to find a satisfactory solution.
The execution time was 4 hours on 64 3GHz cores.

Such a temporal logic constraint approach proved to be effective, allowing
us to express relevant biological properties of the model (and concentration
values that make specifications true) that could not be easily encoded as
curve fitting problems for instance. This is the case in Figures 7 and 8 which
depict the behavior of the cell cycle when it is respectively entrained and
not entrained by the circadian clock. While in the first case a period of
approximately 23 hours is exhibited by CycA and CycB, in the second one
the two compounds assume the same period of the circadian cycle, that is,
approximately 24 hours. In Figure 7, the disruption of the first oscillation is
due to the knock out of the entrainment reaction.

The set of the linking parameter values learned in Biocham with this
procedure, together with the temporal logic formulae used for learning them,
are recapitulated in Table 1

6. Optimal Control of Drug Exposure

The properties of this subsection deal with the control laws of irinotecan
exposure. In order to deal with chronotherapeutics optimization for healthy
cells while maximizing efficacy for tumor cells, we aimed at finding irinotecan
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exposure times and maximum amount that maintain toxicity low for healthy
cells. More precisely, we modeled irinotecan exposure as rectangular boxes
and we looked for maximum irinotecan quantity and for first exposure time,
interval time between consecutive exposure and boxes width and height that
keep DNA damage below a given threshold.

6.1. Fvaluation of pulsatile exposure

In Figure 9 we show the behavior of the p53/Mdm2 DNA damage re-
pair module when exposure is repeated every 24 hours. The plot puts in
evidence how DNA damage increases after every exposure period. The oscil-
lating trend of proteins p53 and Mdm2 is well highlighted. Furthermore, it
is possible to notice the irregular behaviour assumed by CycA after exposure
to irinotecan if the contracted link is used (bottom panel).

6.2. Optimization of the drug exposure law

To find the most efficient exposure law, we searched for the optimal sched-
ule and the maximum amount of irinotecan such that DNA damage remains
below a given threshold.

F6: DNAdam is always lower than 1 and total irinotecan exposure is
greater than 50.

LTL(R) :G([DN Adam| < 1) A totalinjection > 50.

We searched for parameter values that make F6 be satisfied with the lowest
error, i.e., the values that maintain DNA damage below 1 and that minimize
the distance between total irinotecan exposure and value 50. To avoid too
short injections, the minimal injection length has been set to 1.

Results: the maximum irinotecan exposure maintaining DNA damage low,
are rectangular boxes with a width 1 (e.g., the lower bound we set to injection
length) and a height of approximately 7. The first exposure should happen
23h30 after the initial state (chosen with CycA very low, i.e., in G1 phase),
and a new exposure every cell cycle oscillation should then be done (see
Figure 10, where the macro KDAM delineates the synthesis phase of the cell
cycle).

It is worth noting that the formation of the ternary reversible complexes
SN38-Topl-DNA (Toplcc) responsible for DNA damage follows the irinote-
can exposure by a few hours and that the choice of irinotecan exposure de-
scribed above corresponds at having Toplcc peaks out of the synthesis phase
(remember that the production of DNA damage from Toplcc is higher during
the S phase). On the other hand, the presence of Toplcc peaks during the
replication phase leads at maximizing toxicity. Figure 11 shows the effect of
the same exposure than for Figure 10 but with a 12h phase shift. With this
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Figure 9: Simulation plot of DNA damage under pulsatile exposure to irinotecan every
24 hours with the p53/Mdm2 module. In the bottom panel, the contracted link is used,
which results in very irregular CycA oscillations.
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Figure 10: Maximum exposure preserving DNA damage under threshold 1.

phase shift, which can be attained for unsynchronized cells, DNA damage
attains 1.7, that is a 70 percent increase compared to synchronized cells.
The next specification regards the DNA repairing power of the cell.
F7: After an exposure to irinotecan is performed, DNA damage is able to
go under the threshold of 0.1 before the next exposure.
LTL(R) : G(([CPT11] > d) v (([CPT11] < d)U([DNAdam] < 0.1))).,
where d depends on the dose of irinotecan.
Before testing the property, we decided to parameterize the lapse of time
between consecutive irinotecan exposures. Then we took advantage of the
procedure learn parameters to find the minimum k such that, if one 10-
units-exposure is performed every k hours, then property F7 is true.
Results: we found out that the minimum & multiple of 12 which makes F7
true is 36. Thus, one exposure every 36 hours should be performed in order
to allow DNA damage to be recovered before the next exposure. Then we
tried to see what it happens if, at each exposure, we double the irinotecan
dose, that is, we expose to 20 units. In this case, one exposure every 48 hours
should be done.
The last property requires the oscillating trend of proteins p53 and Mdm?2
to stop before a new exposure.
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Figure 11: DNA damage produced on phase-shifted cells with the same exposure law as
in Figure 10.
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F8: When exposed to irinotecan, p53 and Mdm?2 are in a steady state, that
is, their derivatives approach 0.

LTL(R) : G(([CPT11] > d) — ((d[p53] < 0.05) A (d[p53] > —0.05)

A (d[Mdm2 :: n] < 0.05) A (d[Mdm2 :: n] > —0.05)))., where d depends on
the dose of irinotecan.

As for the previous specification, we parameterized the lapse of time between
consecutive irinotecan exposures and we used the procedure learn_param-
eters.

Results: the minimum & multiple of 12 which makes F8 true is 48.

7. Model Predictions for Circadian Clock Genes Knock-outs

7.1. Setup

Hereafter we describe how the cell cycle reacts to circadian gene/protein
mutations in our coupled model.

This really amounts to verifying the predictive power of the model since,
as already explained, the circadian entrainment is focussed on the G2/M
transition, whereas the cell cycle model is focussed on the restriction point.

We explore what happens when a given compound is missing, that is,
its concentration equals zero. To this aim, it is possible either to set the
compound synthesis at zero, or to make the compound be absorbed by a
“super-inhibitor” (e.g., the knock-out of a given compound C' can be modeled
by inserting in the model the rule Inhibitor + C' — Inhibitor-C, where the
initial concentration of Inhibitor is very high). As a matter of fact, both the
alternatives have the same impact on the behavior of the coupled model. The
mutations we take into consideration concern the mRNAs mPER, mCRY,
and mBmall. The simulations we provide in the following are up to 100
hours.

mPER=0. As shown in Figure 12, in this case the cell cycle period
becomes bigger (approximately 28.5 hours), that is, the cellcycle is slowed
down. Furhermore, the mean value of Weel is higher with respect to the one
of the wild type phenotype.

mCRY=0. In this case the behavior of the model is approximately the
same of the previous one (see Figure 12).

mBmall=0. As illustrated in Figure 13 in this mutant the mean value
of Weel is lower with respect to normal conditions and the cell cycle period
is slightly smaller (approximately 23 hours).

7.2. Comparison with the Literature

In the following we itemize some facts we found in literature concerning
the dependence of the cell division cycle on circadian rhythmicity /mutations
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Figure 12: Simulation of the coupled model with mPER=0.
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Figure 13: Simulation of the coupled model with mBmal1=0.
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and, when possible, we discuss the consistency with our results.

e The expression of several mammalian cell-cycle genes, including c-myc,
Cyclin-D1, and mWeel, is regulated in a circadian manner [30]. As
expected we also observe the circadian entrainment of cell-cycle genes
in our in silico model.

e Overexpression of PER1 leads to apoptosis whereas inhibition of PER 1
inhibits apoptosis. It appears that PERI antagonizes the cell cycle in
an oscillatory fashion similar to the manner in which it antagonizes the
function of Clock-Bmall [30]. According to our experiments, a PER
inhibition produces an increase of Weel, an thus a mitosis inhibition.
Note however that we observe a lengthened period and not a complete
stop of the mitosis.

e In CRY deficient cells, the circadian rhythmicity is lost [43], Weel,
over-expressed, and CyclinB, less active, loses rhythmicity [33]. The
effect on Weel and CyclinB is roughly consistent with our results.

There are also some KOs that were not directly comparable with our re-
sults since our model does not incorporate yet detailed DNA-damage path-
ways with ATR/ATM, Chk1/2 or cMye:

e PERI and TIM seem implicated on the DNA-damage response because
both can be found complexed with the ATM and ATR kinases and the
checkpoint kinases Chk2 and Chk1, respectively [30].

e The oscillatory expression of c-myc is abolished in mPER2 mutant
mice, which could then result in an alteration of the p53 function [30].

7.8. Gene KOs Conclusion

We observe that for most of the knock-outs, the results of our coupled
model are in accordance with experimental data, which considering the very
simple specification used for the coupling is a quite interesting result.

For other mutations that should result in a complete stop of the mitosis,
the result does not agree with the data since our model exhibits a slow down
of the cell cycle but not an arrest in mitosis. This points out a weakness
of the mammalian cell cycle model we have used. It is indeed driven by a
constantly growing mass variable and focusses on the restriction point with
few details on the G2/M transition. While this control of the mitosis by
the mass variable is realistic in yeast, it limits the possibility of controlling
the cell cycle in mammalian cells, it is thus virtually impossible to block at
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the corresponding checkpoint, even with a strong circadian coupling. These
considerations motivate the use of cell cycle control models independent of the
mass variable [25, 39] allowing for more accurate predictions in this respect
[16].

This evaluation of the model predictions on gene knock-outs also show
that model-checking and parameter search are useful at the prediction stage:
not finding any satisfactory parameter set when trying to strengthen the
coupling in order to agree with the experimental result, indeed reveals a
weakness in the structure of the individual models, which needs be revised
in order to make the specification satisfiable.

8. Conclusion and Perspectives

In this paper, we have presented a coupled model of the mammalian cell
cycle, circadian clock, p53-based DNA-damage repair, irinotecan intracellu-
lar PK/PD, and irinotecan exposure control, in order to study the influence
of irinotecan drug in cancer chronotherapies. The coupling of the composite
models has been achieved in Biocham using an original method based on
LTL(R) temporal logic constraint solving, for representing the expected be-
havior of the coupled system, and on a continuous optimization evolutionary
algorithm for inferring the values of the unknown coupling kinetic parameters
of the models, as well as the exposure control parameters.

The maximization of antitumor effects and the minimization of the tox-
icity on healthy cells is the aim of any cancer therapy. The rationale of
irinotecan chronotherapies is its toxicity on the cells in S phase only, the
synchronization of the cell cycle by the circadian clock in healthy tissue cells,
and the circadian disruption in mutated cancer cells. The resulting coupled
model provides a valuable tool to investigate the drug influence on the cell
cycle, reveal some weaknesses in the models, and ultimately infer some prop-
erties concerning the drug therapy and optimal exposure times and doses.

The predictive power of the coupled model was tested with respect to a
limited set of mutants of the circadian clock genes. In the case of genes knock
outs, we succeeded in considering temporal logic constraints over different
traces corresponding to the mutations of different genes, that is, the initial
condition of the trace relative to the knock out of a given set of genes is
characterized by setting at 0 the parameters involved in the synthesis of the
genes.

Although preliminary, the results obtained are very encouraging for our
coupling method. In particular they showed that mass-entrained models
of the cell-cycle have a limited possibility of entrainment by the circadian
molecular clock. This motivates the use of non mass entrained cell cycle
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models like [25, 39, 16] which should not suffer from this limitation. The
results also showed that the p53-Mdm2 DNA damage repair model of [13]
should be improved in order to introduce a threshold above which the DNA
is no longer repaired and the cell enters apoptosis. Last but not least, a
PK/PD model of irinotecan in the body is missing to link the irinotecan
injection law to the cell exposure model and optimize the drug injection law
directly.
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Annex

In the following we give the reaction rules for the five models. The pa-

rameter values and initial conditions are omitted. The complete models can
be retrieved at
http://contraintes.inria.fr/supplementary material/TCS-CMSB09/.

9.1. Mammalian Cell Division Cycle Control

epsilon*k15/(1+([DRG]/J15)"2) for _=>ERG.

MA (k16) for ERG=>_.

MA(epsilon *k17p) for _=[ERG]=>DRG.
epsilon*k17*([DRG]/J17) "2/ (1+([DRG]/J17)"2)  for _=[DRG]=>DRG.

MA (k18) for DRG=>_.

MA (epsilon*k9) for _=[DRG]=>CycD.
MA(V6) for _=[CycD-Kip1]=>CycD.
MA(k10) for CycD=>_.

(MA (k24) ,MA(k24r)) for CycD+Kipl<=>CycD-Kipl.
MA (V6+k10) for CycD-Kipl=>_.
epsilon* (k7p+k7+E2F_A) for _=>CycE.

MA (V8) for CycE=>_.
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MA(V6) for _=[CycE-Kip1]=>CycE.

(MA (k25) ,MA (k251)) for CycE+Kip1<=>CycE-Kip1.
MA (V6+V8) for CycE-Kipil=>_.
epsilon*k29*E2F_A*mass for _=[massT]=>CycA.

MA (k30) for CycA=[Cdc20]=>_.

MA (V6) for _=[CycA-Kip1]=>CycA.
(MA (k25) ,MA (k25T)) for CycA+Kipl<=>CycA-Kipl.
MA(V6) for CycA-Kipl=>_.

MA (k30) for CycA-Kipi=[Cdc20]=>_.
epsilon*kb for _=>Kipl.

MA (V6) for Kipl=>_.

MA (k10) for _=[CycD-Kip1]=>Kipl.
MA(V8) for _=[CycE-Kip1]=>Kipl.
MA (k30) for Cdc20+CycA-Kip1=>Kip1+Cdc20+CycA-Kipl.
k22*xE2F _T for _=>E2F.

MA (k22+k23p) for E2F=>_.

MA (k23) for E2F=[CycAl=>_.

MA (k23) for E2F=[CycBl=>_.
epsilon*klp for _=>CycB.
epsilon*k1*([CycB]l/J1)~2/(1+([CycB]l/J1)"2) for _=[CycB]l=>CycB.

MA(V2) for CycB=>_.
(k3p+k3*[Cdc20] ) *(1-[Cdh1])/(J3+1-[Cdh1]) for _=[Cdc20]=>Cdh1l.
V4x*[Cdh1]/(J4+[Cdh1]) for Cdhi=>_.

epsilon*kllp for _=>Cdc20_T.

MA (epsilon*k11) for _=[CycB]=>Cdc20_T.

MA (k12) for Cdc20_T=>_.
k13*[IEP]*([Cdc20_T]1-[Cdc20])/(J13+[Cdc20_T]-[Cdc20]) for _=[IEP]=>Cdc20.
(k14/(J14+[Cdc20])+k12)*[Cdc20] for Cdc20=>_.

epsilon*k33 for _=>PPX.

MA (k34) for PPX=>_.
k31*[CycB]*(1-[IEP])/(J31+1-[IEP]) for _=[CycB]=>IEP.

k32* [PPX]* [IEP] / (J32+[IEP]) for IEP=[PPX]=>_.
k27*mass* (if Rb_hypo/Rb_T >0.8 then 0 else 1) for _=[massT]=>GMT.

MA (k28) for GMT=>_.
epsilon*mu*nbcells* [GMT] for _=[GMT]=>massT.

% Steady-state relations

macro(PP1_A, PP1_T/(1+K21*(Phi_Ex([CycE]+[CycA]l)+Phi_Bx[CycB]))).

macro(Rb_hypo, Rb_T/(1+(k20*(lambda_D*CycD_T+lambda_E#* [CycE]+lambda_A*[CycA]+lambda_B*[CycB]))
macro(E2F_A, (E2F_T - E2FRb)*[E2F]/E2F_T).

macro(E2FRb, 2+E2F_T*Rb_hypo/ (E2F_T+Rb_hypo+L+((E2F_T+Rb_hypo+L) "2 - 4*E2F_T*Rb_hypo)~(1/2))).

% Definitions

macro(V2, k2p*(1 - [Cdh1])+k2*[Cdh1]+k2s*[Cdc20]) .

macro(V4, ké4*(gamma_A*[CycA]+gamma_B* [CycB]+gamma_E* [CycE])) .

macro(V6, k6p+k6*(eta_E*[CycE]l+eta_Ax[CycA]l+eta_B*[CycB])).

macro(V8, k8p+(k8x(Psi_Ex([CycE]+[CycA])+Psi_Bx*[CycB]))/(J8+CycE_T)).

macro(L, k26r/k26+k20/k26%* (lambda_D*CycD_T+lambda_E*[CycE]+lambda_A*[CycA]+lambda_B*[CycB])) .
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add_event ([Cdh1]>0.2,nbcells, nbcells*2).

macro(mass, [massT]/nbcells).
macro (GM, [GMT]/nbcells).

% Make CycB synthesis proportional to mass
delete_rules(_ => CycB).
epsilon*klp*mass for _ => CycB.

delete_rules( _=[CycB]=>CycB).

epsilon¥k1x*([CycB]l/J1)~2/(1+([CycB]l/J1) "2)*mass for _ =[CycB]=> CycB.

% Change the cell division trigger
delete_event ([Cdh1]>0.2,nbcells,nbcells*2).
add_event ([CycB]<0.2,nbcells,nbcells*2) .

% Add Weel/Cdc25 machinery
macro(V2, k2p*(1 - [Cdh1])+k2x[Cdh1]+k2s*[Cdc20]) .

MA (kweelp) for CycB => CycB"{p}.

MA (kweels) for CycB =[Weell=> CycB"{p}.
MA (kcdc25p) for CycB™{p} => CycB.

MA (kcdc25s) for CycB™{p} =[Cdc25al=> CycB.
MA(V2) for CycB~{p} => _.

(MA (kw5p) ,MA (kw6)) for _ <=> Weel.

MA ((kw2p+kw2s* [CycB])/(Jw2 + [Weel])) for Weel => Weel™{pl}.

MA(kw1/ (Jwi+[Weel™{p}]1)) for Weel™{p} => Weel.

MA (kwd) for Weel™{p} => _

(kc3p+ke3s*[CycB])*(1 - [Cdc25a])/(Jc3 + 1 - [Cdc25al)
for _ => Cdc2ba.
MM (kc4,Jc4d) for Cdc25a => _

% Specification
check_1t1(oscil([CycAl,4,2) & oscil([CycB],4,3.5)
& oscil([CycD],4,0.4) & oscil([CycE]l,4,1)).

9.2. Mammalian Circadian Clock

% mRNA
vsP*[Bmall_nucl] "n/(KAP n+[Bmall_nucl] "n)
for _=[Bmall_nucl]=>mPER.

vmP* [mPER] / (KmP+ [mPER] ) +kdmp* [mPER]
for mPER=>_.

vsCx[Bmall_nucl] “n/(KAC n+[Bmall_nucl] "n)
for _=[Bmall_nucl]=>mCRY.
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vmC* [mCRY] / (KmC+ [mCRY] ) +kdmc* [mCRY]
for mCRY=>_.

vsB*KIB"m/ (KIB"m+ [REVERB_nucl] "m)
for _=>mBmall.

vmB* [mBmal1]/ (KmB+ [mBmal1])+kdmb* [mBmali]
for mBmall=>_.

vsR*[Bmall_nucl] “h/(KAR"h+[Bmall_nucl]"h)
for _=[Bmall_nucl]=>mREVERB.

vmR* [mMREVERB] / (KmR+ [mREVERB] ) +kdmr* [mREVERB]
for mREVERB=>_.

% Proteins
ksP* [mPER]
for _=[mPER]=>PER_cyto.

V2P* [PER_cyto~{p}]/ (Kdp+[PER_cyto~{p}])
for PER_cyto™{p}=>PER_cyto.

kad* [PER_cyto-CRY_cyto]
for PER_cyto-CRY_cyto=>PER_cyto+CRY_cyto.

V1P*[PER_cytol/ (Kp+[PER_cytol)
for PER_cyto=>PER_cyto~{p}.

kdn* [PER_cyto]
for PER_cyto=>_.

ka3*[PER_cyto]*[CRY_cyto]
for PER_cyto+CRY_cyto=>PER_cyto-CRY_cyto.

kdn* [PER_cyto~{p}]+vdPC* [PER_cyto~{p}]/(Kd+[PER_cyto~{p}])
for PER_cyto~{p}=>_.

ksC* [mCRY]
for _=[mCRY]=>CRY_cyto.

V2C* [CRY_cyto~{p}]/ (Kdp+[CRY_cyto~{p}])
for CRY_cyto™{p}=>CRY_cyto.

V1C*[CRY_cytol/ (Kp+[CRY_cytol)
for CRY_cyto=>CRY_cyto~{p}.

kdncx [CRY_cyto]
for CRY_cyto=>_.
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vdCC* [CRY_cyto~{p}]/ (Kd+[CRY_cyto~{p}])+kdn* [CRY_cyto~{p}]
for CRY_cyto~{p}=>_.

V2PC* [(PER_cyto-CRY_cyto) "{p}]/ (Kdp+[(PER_cyto-CRY_cyto) "{p}1)
for (PER_cyto-CRY_cyto) "{p}=>PER_cyto-CRY_cyto.

V1PC*[PER_cyto-CRY_cytol / (Kp+[PER_cyto-CRY_cytol)
for PER_cyto-CRY_cyto=>(PER_cyto-CRY_cyto) “{p}.

ka2* [PER_nucl-CRY_nucl]
for PER_nucl-CRY_nucl=>PER_cyto-CRY_cyto.

kal*[PER_cyto-CRY_cytol
for PER_cyto-CRY_cyto=>PER_nucl-CRY_nucl.

kdn* [PER_cyto-CRY_cyto]
for PER_cyto-CRY_cyto=>_.

V4PCx [ (PER_nucl-CRY_nucl) “{p}]/ (Kdp+ [ (PER_nucl-CRY_nucl) "{p}]1)
for (PER_nucl-CRY_nucl) "{p}=>PER_nucl-CRY_nucl.

V3PCx [PER_nucl-CRY_nucl]/ (Xp+[PER_nucl-CRY_nucl])
for PER_nucl-CRY_nucl=>(PER_nucl-CRY_nucl) "{p}.

ka8* [In]
for In=>Bmall_nucl+PER_nucl-CRY_nucl.

ka7*[Bmall_nucl]*[PER_nucl-CRY_nucl]
for Bmall_nucl+PER_nucl-CRY_nucl=>In.

kdn* [PER_nucl-CRY_nucl]
for PER_nucl-CRY_nucl=>_.

vdPCC* [ (PER_cyto-CRY_cyto) “{p}]/ (Kd+[(PER_cyto-CRY_cyto) “{p}])+kdn* [ (PER_cyto-CRY_cyto) “{p}]
for (PER_cyto-CRY_cyto) "{p}=>_.

vdPCN* [ (PER_nucl-CRY_nucl) “{p}]/ (Kd+[(PER_nucl-CRY_nucl) “{p}]) +kdn* [ (PER_nucl-CRY_nucl) "{p}]
for (PER_nucl-CRY_nucl) “{p}=>_.

ksB* [mBmalil]
for _=[mBmall]=>Bmall_cyto.

V2B [Bmall_cyto~™{p}]/(Kdp+[Bmall_cyto~{p}])
for Bmall_cyto~{p}=>Bmall_cyto.

V1B*[Bmall_cyto]/(Kp+[Bmall_cyto])
for Bmall_cyto=>Bmall_cyto™{p}.
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ka6* [Bmall_nucl]
for Bmall_nucl=>Bmall_cyto.

kab5* [Bmall_cyto]
for Bmall_cyto=>Bmall_nucl.

kdn* [Bmall_cytol
for Bmall_cyto=>_.

vdBC* [Bmall_cyto~{p}]/(Kd+[Bmall_cyto~{p}])+kdn*[Bmall_cyto~{p}]
for Bmall_cyto™{p}=>_.

V4B* [Bmall_nucl™{p}]/(Kdp+[Bmall_nucl~{p}])
for Bmall_nucl™{p}=>Bmall_nucl.

V3B* [Bmall_nucl]/(Kp+[Bmall_nucl])
for Bmall_nucl=>Bmall_nucl~{p}.

kdn* [Bmall_nucl]
for Bmall_nucl=>_.

vdBN* [Bmall_nucl”{p}]/(Kd+[Bmall_nucl”{p}])+kdn* [Bmall_nucl”{p}]
for Bmall_nucl~{p}=>_.

vdIN*[In]/(Kd+[In])+kdn*[In]
for In=>_.

ksR* [mREVERB]
for _=[mREVERB]=>REVERB_cyto.

kal0* [REVERB_nucl]
for _=[REVERB_nucl]=>REVERB_cyto.

(ka9+kdn) * [REVERB_cyto] +vdRC#* [REVERB_cyto] / (Kd+[REVERB_cyto])
for REVERB_cyto=>_.

ka9* [REVERB_cyto]

for _=[REVERB_cyto]=> REVERB_nucl.

(ka10+kdn) * [REVERB_nucl] +vdRN* [REVERB_nucl] / (Kd+ [REVERB_nucl])
for REVERB_nucl=>_.

% Light-dark entraining

macro(vsP,sq_wave(vsP_light,12,vsP_dark,12)).

% Specification
check_1tl(period(mPER,24) & period(mCRY,24) & period(mBmall,24)
& period(mREVERB,24)) .
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9.3. P53/Mdm2 DNA-damage Repair System

% pb3

(ks53,MA(kd53p)) for _ <=> p53.

MA(kf) for p53 =[Mdm2::n]=> p53~{u}.
MA(kr) for p53~{u} => pb&3.

MA (kd53p) for p53~{u} => _

MA(kf) for p53~{u} =[Mdm2::nl=> p53~{uu}.
MA(kr) for p53~{uu} => p53~{u}.
(kd53+kd53p) * [p53~{uu}] for p53~{uu} => _

% DNA damage
(kDNA*IR,MM(kdDNA*p53tot,Jdna)) for <=> DNAdam.

add_event (Time>=10,IR,1).
add_event (Time>=20,1IR,0) .

% Mdm2
(ks2p,MA(kd2p)) for _ <=> Mdm2::c.

ks2*p53tot~mp/ (Js "mp+p53tot“mp) for _ =[p53]=> Mdm2::c.

(kph* [Mdm2: : c]/ (Jph+p53tot) ,MA(kdeph)) for Mdm2::c <=> Mdm2~{pl}::c.
MA (kd2p) for Mdm2~{p}::c => _

(MA (ko) ,MA(ki)) for Mdm2::n <=> Mdm2~{p}::c.
kd2p_n*[Mdm2: :n] for Mdm2::n => _

[Mdm2: :n] * [DNAdam] *kd2pp_n/ (Jdam+ [DNAdam] ) for Mdm2::n =[DNAdam]=> _

% Specification

check_1t1(G([DNAdam]=0) -> G(d([p53]1)/dt = 0 & d([Mdm2::n])/dt = 0) &
G(([DNAdam]>0.2) -> F(oscil([p53],1) & F(oscil([Mdm2],1)))) &
G(oscil([p53],1)-> X((! o0scil([p53],1)) U (oscil([Mdm2::n],1))))).

9.4. Irinotecan Metabolism

injection for _ => CPT11.

k1*[CPT11]*CES/ (Km1+[CPT11]) for CPT11 => SN38.

k2*UGT1A1* [SN38] "nir/(Km2 nir+[SN38] "nir) for SN38 => SN38G.
kpgp2* [ABCG2] * [CPT11]/ ([CPT11]+Kpgp2) for CPT11 =[ABCG2]=> _

kpgpl* [ABCG2]* [SN38]/ ([SN38]+Kpgpl) for SN38 =[ABCG2]=> _
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(MA (kcompl) *DNAfree,MA (kdecompl) ) for SN38 + TOP1 <=> TOPilcc.
MA (kdam) for TOPlcc => DNAdam.

MA (kd3) for SN38G => _

MA(kdtopl) for TOP1 => _

topl for _ => TOP1.
delete_rules(_ => DNAdam).
delete_event(Time>=10,IR,1).
delete_event (Time>=20,IR,0).

% Specification
check_1t1(G([CPT11]=0) -> G([DNAdam] = 0) &
G([CPT11]>10) -> FG([DNAdam] > 3.5)).

9.5. Irinotecan Injection Control

add_event (Time>=1,injection,0) .

add_event (Time>=interval,injection,10).
add_event (Time>=interval+l,injection,0).
add_event (Time>=2*interval,injection,10).
add_event (Time>=2*interval+1l,injection,0) .
add_event (Time>=3*interval,injection, 10).
add_event (Time>=3*interval+1l,injection,0).
add_event (Time>=4*interval,injection, 10).
add_event (Time>=4*interval+1l,injection,0).
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Abstract In this paper we address the issue of automatically learning parameters
of spiking neural networks. Biological neurons are formalized as timed automata
and synaptical connections are represented as shared channels among these au-
tomata. Such a formalism allows us to take into account several time-related as-
pects, such as the influence of past inputs in the computation of the potential value
of each neuron, or the presence of the refractory period, a lapse of time immedi-
ately following the spike emission in which the neuron cannot emit. The proposed
model is then formally validated: more precisely, we ensure that some relevant
properties expressed as temporal logical formulae hold in the model. Once the
validation step is accomplished, we take advantage of the proposed model to write
an algorithm for learning synaptical weight values such that an expected behav-
ior can be displayed. The technique we present takes inspiration from supervised
learning ones: we compare the effective output of the network to the expected one
and backpropagate proper corrective actions in the network. We develop several
case studies including a mutual inhibition network.

Keywords Neural Networks - Parameter Learning - Timed Automata, Temporal
Logic - Model Checking.

1 Introduction

The brain behaviour is the object of thorough studies: researchers are interested
not only in the inner functioning of neurons (which are its elementary compo-
nents), their interactions and the way these aspects participate to the ability to
move, learn or remember, typical of living beings; but also in reproducing such
capabilities (emulating nature), e.g., within robot controllers, speech/text/face
recognition applications, etc. In order to achieve a detailed understanding of the
brain functioning, both neurons behaviour and their interactions must be stud-
ied. Several models of the neuron behaviour have been proposed: some of them
make neurons behave as binary threshold gates, other ones exploit a sigmoidal
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transfer function, while, in many cases, differential equations are employed. Ac-
cording to [30,27], three different and progressive generations of neural networks
can be recognised: (i) first generation models handle discrete inputs and outputs
and their computational units are threshold-based transfer functions; they include
McCulloch and Pitt’s threshold gate model [29], the perceptron model[16], Hop-
field networks [22], and Boltzmann machines [1]; (ii) second generation models
exploit real valued activation functions, e.g., the sigmoid function, accepting and
producing real values: a well known example is the multi-layer perceptron [9,33];
(iii) third generation networks are known as spiking neural networks. They extend
second generation models treating time-dependent and real valued signals often
composed by spike trains. Neurons may fire output spikes according to thresh-
old-based rules which take into account input spike magnitudes and occurrence
times [30].

The core of our analysis are spiking neural networks [17]. Because of the intro-
duction of timing aspects they are considered closer to the actual brain functioning
than other generations models. Spiking neurons emit spikes taking into account
input impulses strength and their occurrence instants. Models of this sort are of
great interest, not only because they are closer to natural neural networks be-
haviour, but also because the temporal dimension allows to represent information
according to various coding schemes [31,30]: e.g., the amount of spikes occurred
within a given time window (rate coding), the reception/absence of spikes over dif-
ferent synapses (binary coding), the relative order of spikes occurrences (rate rank
coding), or the precise time difference between any two successive spikes (timing
coding).

Several spiking neuron models have been proposed in the literature, having
different complexities and capabilities. In [25], Izhikevich classifies spiking neu-
ron models according to some behaviour (i.e., typical responses to an input pat-
tern) that they should exhibit in order to be considered biologically relevant. The
leaky integrate & fire (LI&F) model [26], where past inputs relevance exponen-
tially decays with time, is one of the most studied neuron models because it is
straightforward and easy to use [25,30]. On the other end of the spectrum, the
Hodgkin-Huxley (H-H) model [21] is one of the most complex being composed
by four differential equations comparing neurons to electrical circuits. In [25], the
H-H model can reproduce all behaviours under consideration, but the simulation
process is really expensive even for just a few neurons being simulated for a small
amount of time. Our aim is to produce a neuron model being meaningful from a
biological point of view but also amenable to formal analysis and verification, that
could be therefore used to detect non-active portions within some network (i.e.,
the subset of neurons not contributing to the network outcome), to test whether a
particular output sequence can be produced or not, to prove that a network may
never be able to emit, to assess if a change to the network structure can alter
its behaviour, or to investigate (new) learning algorithms which take time into
account.

In this paper we focus on the leaky integrate & fire (LI&F) model originally pro-
posed in [20]. It is a computationally efficient approximation of single-compartment
model [25] and is abstracted enough to be able to apply formal verification tech-
niques such as model-checking. Here we work on an extended version of the discre-
tised formulation proposed in [14], which relies on the notion of logical time. Time
is considered as a sequence of logical discrete instants, and an instant is a point in
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time where external input events can be observed, computations can be done, and
outputs can be emitted. The variant we introduce here takes into account some
new time-related aspects, such as a lapse of time in which the neuron is not active,
i.e., it cannot receive and emit. We encode LI&F networks into timed automata:
we show how to define the behaviour of a single neuron and how to build a network
of neurons. Timed automata [2] are finite state automata extended with timed be-
haviours: constraints are allowed to limit the amount of time an automaton can
remain within a particular state, or the time interval during which a particular
transition may be enabled. Timed automata networks are sets of automata that
can synchronise over channel communications.

Our modelling of spiking neural networks consists of timed automata networks
where each neuron is an automaton. Its behaviour consists in accumulating the
weighted sum of inputs, provided by a number of ingoing weighted synapses, for
a given amount of time. Then, if the potential accumulated during the last and
previous accumulation periods overcomes a given threshold, the neuron fires an
output over the outgoing synapse. Synapses are channels shared between the timed
automata representing neurons, while spike emissions are represented by broadcast
synchronisations occurring over such channels. Timed automata are also exploited
to produce or recognise precisely defined spike sequences.

As a first main contribution, we analyse some intrinsic properties of the pro-
posed model, e.g., the maximum threshold value allowing a neuron to emit, or
the lack of inter-spike memory, preventing the behaviour of a neuron from being
influenced by what happened before the last spike. Furthermore, we encode in
temporal logics all the behaviours (or capabilities) a LI&F model should be able
to reproduce according to Izhikevich and we exploit model checking to prove these
behaviours are reproducible in our model. Izhikevich also identifies a set of be-
haviours which are not expected to be reproducible by any LI&F model. We prove
these limits to hold for our model, too, and we provide, for each non-reproducible
behaviour, an extension of the model allowing to reproduce it.

As a second main contribution, we exploit our automata-based modelling to
propose a new methodology for parameter inference in spiking neural networks. In
particular, our approach allows to find an assignment for the synaptical weights of
a given neural network such that it can reproduce a given behaviour. We apply the
proposed approach to find suitable parameters in mutual inhibition networks, a
well studied class of networks in which the constituent neurons inhibit each other
neuron’s activity [28].

In this work we do not intend to treat classical classification problems of artifi-
cial intelligence, but we to focus on biological neural networks and aim at studying
the behavior of small circuits. The basic biological hypothesis is that neurons in
our brain tend to form some mini-circuits with a relevant structure and behavior,
which are often referred as archetypes [14]. These small circuits (e.g., simple series,
parallel composition, negative loop, inhibition of a behavior, etc.) can be seen as
the constituting bricks of bigger networks. We are interested in finding parame-
ters such that these small graphs behave as expected (e.g., for suitable parameters
a negative loop exhibits an oscillating trend), not to compete with (simulation)
approaches dealing with big networks.

This paper is an extended and revised version of the conference papers [11]
and [12]. In particular, in section 5 we propose a refined version of the Advice
Back-Propagation algorithm. Furthermore, we add a second learning technique
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that is based on simulation instead of model checking. We also show that the two
techniques can be combined.

The rest of the paper is organised as follows: in Section 2 we recall definitions
of timed automata networks, temporal logics, and model checking; in Section 3 we
describe our reference model, the LI&F one, and its encoding into timed automata
networks; in Section 4 we study some intrinsic properties of the obtained model and
we validate it against its ability of reproducing or not some behaviours; in Section
5 we develop the novel parameter learning approach and we introduce several case
studies; in Section 6 we give an overview of the related work. Finally, Section 7
summarises our contribution and presents some future research directions.

2 Preliminaries

In this section we introduce the formal tools we adopt in the rest of the paper,
namely timed automata and temporal logics.

2.1 Timed Automata.

Timed automata [2] are a powerful theoretical formalism for modelling and verify-
ing real time systems. A timed automaton is an annotated directed (and connected)
graph, with an initial node and provided with a finite set of non-negative real vari-
ables called clocks. Nodes (called locations) are annotated with invariants (pred-
icates allowing to enter or stay in a location), arcs with guards, communication
labels, and possibly with some variables upgrades and clock resets. Guards are con-
junctions of elementary predicates of the form z op ¢, where op € {>,>,=,<, <},
x is a clock, and ¢ a (possibly parameterised) positive integer constant. As usual,
the empty conjunction is interpreted as true. The set of all guards and invariant
predicates will be denoted by G.

Definition 1 A timed automaton TA is a tuple (L, 1°, X,
X, Arcs, Inv), where

— L is a set of locations with [° € L the initial one

— X is the set of clocks,

— X is a set of communication labels,

— Ares C L x (GUX UU) x L is a set of arcs between locations with a guard
in G, a communication label in X' U {¢}, and a set of variable upgrades (e.g.,
clock resets);

— Inv : L — G assigns invariants to locations.

It is possible to define a synchronised product of a set of timed automata
that work and synchronise in parallel. The automata are required to have disjoint
sets of locations, but may share clocks and communication labels which are used
for synchronisation. We restrict communications to be broadcast through labels
bl,b? € X meaning that a set of automata can synchronise if one is emitting; notice
that a process can always emit (e.g., b!) and the receivers (b?) must synchronise if
they can.
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Locations can be normal, urgent or committed. Urgent locations force the time
to freeze, committed ones freeze time and the automaton must leave the location
as soon as possible, i.e., they have higher priority.

The synchronous product TA; || ... || TAn of timed automata, where TA; =
(Ly, l?,Xj, X, Aresj, Inv;) and L; are pairwise disjoint sets of locations for each
j €[1,...,n], is the timed automaton

TA = (L,1°, X, X, Arcs, Inv)
such that:

—L=L1 X...xLyand!°

:( - ) XﬁU?:lXJF EZU;ﬂEgﬁ
- Vi=(l1,...,ln) € L: Inv(l) =

j nv](l])
— Arcs is the set of arcs (I1,...,ln) =—> gy (Ih,...,1,) such that for all 1 < j < n
then I = I;.

Its semantics is the one of the underlying timed automaton TA with the fol-
lowing notations. A location is a vector | = (I1,...,ln). We write ([l /1,5 € S] to
denote the location [ in which the j*" element l;j is replaced by l;-, for all j in some
set S. A valuation is a function v from the set of clocks to the non-negative reals.
Let V be the set of all clock valuations, and vo(z) = 0 for all x € X. We shall
denote by v E F the fact that the valuation v satisfies (makes true) the formula F.
If r is a clock reset, we shall denote by v[r] the valuation obtained after applying
the clock reset r C X to v; and if d € Ry is a delay, v + d is the valuation such
that, for any clock z € X, (v + d)(z) = v(z) + d.

The semantics of a synchronous product TA; || ... || TA, is defined as a timed
transition system (S, so, —), where S = (L1 X,... X L) X V is the set of states,
So = (lo, vp) is the initial state, and —C S x S is the transition relation defined
by:

(silent): (I, v) — (I, 1) if there exists I; Z=5 11, for some i, such that I = 1[I} /L],

vEgand v =v[r],

— (broadcast): (I,v) — (I’,v) if there exists an output arc [; 950 l; € Ares;
and a (possibly empty) set of input arcs of the form I, kT I}, € Arcsy, such
that forall k € K = {k1,...,km} C {l1,...,ln}\{l;}, the size of K is maximal,
vE Neeruijy 9k UV'=1[l/lk, k€ KU{j}] and v/ = v[ri, k € KU {j}];

— (timed): (I,v) = (l,v+d) if v+ d E Inv(l).

The valuation function v is extended to handle a set of shared bounded integer
variables: predicates concerning such variables can be part of edges guards or
locations invariants, moreover variables can be updated on edges firings but they
cannot be assigned to or from clocks.

Ezample 1 In Figure 1 we consider the network of timed automata TA; and TAs
with broadcast communications, and we give a possible run. T A; and T Az start
in the I and I3 locations, respectively, so the initial state is [(I1, I3); = = 0]. A
timed transition produces a delay of 1 time unit, making the system move to state
[(11, I3); = 1]. A broadcast transition is now enabled, making the system move
to state [(l2, I3); « = 0], broadcasting over channel a and resetting the z clock.
Two successive timed transitions (0.5 time units) followed by a broadcast one will
eventually lead the system to state [(l2, l4); = = 1]. o



6 Elisabetta De Maria et al.

G:z=1
gza! 0 G:z>0
X i= .
2 ODR
T <2 T <2
[(l1, 13); 2 =10]
1
G : true
; ’—» (1, I3); = =1]
g;a? 0 G:z=1 TA2 1
= .
CANS [(t2, 13); @ = 0]
U-, ~L
(a) The timed automata network TA; || TAsz. [(l2, l3);¢:c =0.5]
(2, l3); z=1]
1
[(l2; la); = =1]

(b) A possible run.

Fig. 1: A network of timed automata with a possible run.

Throughout our modelling, we have used the specification and analysis tool
Uppaal [4], which provides the possibility of designing and simulating timed au-
tomata networks on top of the ability of testing networks against temporal logic
formulae. All figures depicting timed automata follow the graphic conventions of
the tool (e.g., initial states are denoted with a double circle).

2.2 Temporal Logics and Model Checking

Model checking is one of the most common approaches to the verification of soft-
ware and hardware (distributed) systems [8]. It allows to automatically prove
whether a system verifies or not a given specification. In order to apply such a
technique, the system at issue should be encoded as a finite transition system and
the specification should be written using propositional temporal logic. Formally, a
transition system over a set AP of atomic propositions is a tuple M = (Q,T, L),
where @ is a finite set of states, T' C @ X @ is a total transition relation, and
L : Q — 24F is a labelling function that maps every state into the set of atomic
propositions that hold at that state.

Temporal formulae describe the dynamical evolution of a given system. The
computation tree logic CTL™ allows to describe properties of computation trees.
Its formulas are obtained by (repeatedly) applying boolean connectives (A, V, =,
—), path quantifiers, and state quantifiers to atomic formulas. The path quantifier
A (resp., E) can be used to state that all the paths (resp., some path) starting
from a given state have some property. The state quantifiers are X (next time),
which specifies that a property holds at the next state of a path, F (sometimes
in the future), which requires a property to hold at some state on the path, G
(always in the future), which imposes that a property is true at every state on the
path, and U (until), which holds if there is a state on the path where the second
of its argument properties holds and, at every preceding state on the path, the
first of its two argument properties holds. Given two formulas 1 and @2, in the



Spiking Neural Networks modelled as Timed Automata 7

rest of the paper we use the shortcut @1 ~ 2 to denote the liveness property
AG(p1 — AF2), which can be read as “p1 always leads to 2 7.

The branching time logic CTL is a fragment of CTL™* that allows quantification
over the paths starting from a given state. Unlike CTL*, it constrains every state
quantifier to be immediately preceded by a path quantifier.

Given a transition system M = (Q,T, L), a state ¢ € @, and a temporal logic
formula ¢ expressing some desirable property of the system, the model checking
problem consists of establishing whether ¢ holds at ¢ or not, namely, whether

M,q = .

3 Leaky Integrate and Fire Model and Mapping to Timed Automata

Spiking neural networks [27] are modelled as directed weighted graphs where ver-
tices are computational units and edges represent synapses. The signals propa-
gating over synapses are trains of impulses: spikes. Synapses may modulate these
signals according to their weight: excitatory if positive, or inhibitory if negative.

The dynamics of neurons is governed by their membrane potential (or, simply,
potential), representing the difference of electrical potential across the cell mem-
brane. The membrane potential of each neuron depends on the spikes received
over the ingoing synapses. Both current and past spikes are taken into account,
even if old spikes contribution is lower. In particular, the leak factor is a measure
of the neuron memory about past spikes. The neuron outcome is controlled by
the algebraic difference between its membrane potential and its firing threshold:
it is enabled to fire (i.e., emit an output impulse over all outgoing synapses) only
if such a difference is non-negative. Spike propagation is assumed to be instan-
taneous. Immediately after each emission the neuron membrane potential is reset
and the neuron stays in a refractory period for a given amount of time. During this
period it has no dynamics: it cannot increase its potential as any received spike is
lost and therefore it cannot emit any spike.

Definition 2 (Spiking Integrate and Fire Neural Network) A spiking in-
tegrate and fire neural network is a tuple (V, A, w), where:

— V are spiking integrate and fire neurons,

— A CV x V are synapses,

— w:A— QnNJ[-1,1] is the synapse weight function associating to each synapse
(u, v) a weight Wy, .

We distinguish three disjoint sets of neurons: V; (input neurons), Vin: (intermedi-
ary neurons), and V, (output neurons), with V' =V; U Vin: U Vs,
A spiking integrate and fire neuron v is characterized by a parameter tuple

(01)’ Tv, Avvp’b'? y’U)a
where:

— 0, € N is the firing threshold,
— 7, € NT is the refractory period,
— X € QN 0,1] is the leak factor.

The dynamics of a spiking integrate and fire neuron v is given by:
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— pv: N = QF is the [membrane] potential function defined as

pot) = {Z:n:l wi - xi(t), if pu(t—1) =6,
> wi - xi(t) + Av - po(t — 1), otherwise.
with p,(0) = 0 and where z;(t) € {0,1} is the signal received at the time
t by the neuron through its " out of m input synapses (observe that the
past potential is multiplied by the leak factor while current inputs are not
weakened),
— yu : N — {0, 1} is the neuron output function, defined as

%@:{1ﬁmm>&

0 otherwise.

As shown in the previous definition, the set of neurons of a spiking integrate
and fire neural network can be classified into input, intermediary, and output
ones. Each input neuron can only receive as input external signals (and not other
neurons’ output). The output of each output neuron is considered as an output
for the network. Output neurons are the only ones whose output is not connected
to other neurons.

We present here our modelling of spiking integrate and fire neural networks
(in the following denoted as neural networks) via timed automata networks. Let
S = (V,A,w) be a neural network, G be a set of input generator neurons (these
fictitious neurons are connected to input neurons and generate input sequences
for the network), and O be a set of output consumer neurons (these fictitious
neurons are connected to the broadcast channel of each output neuron and aim at
consuming their emitted spikes). The corresponding timed automata network is
obtained as the synchronous product of the encoding of input generator neurons,
the neurons of the network (referred as standard neurons in the following), and
output consumers neurons. More formally:

151 = CI],,, clmal) I €

wevrlo I CllL o)

Input generators. The behaviour of input generator neurons is part of the spec-
ification of the network. Here we define two kinds of input behaviours: regular and
non-deterministic ones. For each family, we provide an encoding into timed au-
tomata.

Regular input sequences. Spike trains are “regular” sequences of spikes and pauses:
spikes are instantaneous while pauses have a non-null duration. Sequences can be
empty, finite or infinite. After each spike there must be a pause, except when the
spike is the last event of a finite sequence. Infinite sequences are composed by two
parts: a finite and arbitrary prefix and an infinite and periodic part composed
by a finite sequence of spike—pause pairs which is repeated infinitely often. More
formally, such sequences are given in terms of the following grammar:

G = P.(P)Y | P(d).9.(P)*

® = s.P(d).D | e
with s representing a spike and P(d) a pause of duration d. It is possible to generate
an emitter automaton for any regular input sequence:
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) @b @) |
P\ P 3

() [@1.(22)~]

(©) [e] (d) [s-P(d).2']

Fig. 2: Representation of the encoding of an input sequence

Definition 3 (Input generator) Let I € £L(G) be a word over the language gen-
erated by IS, then its encoding into timed automata is [I] = (L(I), first(I), {t},
{y}, Arcs(I), Inv(I)). It is inductively defined as follows:

— 1= By.(B2)Y
— L(I) = L(®1) U L(P2), where last(P2) is urgent
— first(I) = first(P1)
— Ares(I) = Ares(P1) U Ares(P2) U
{(last(®1), true, e, 0, first(P2)),
(last(®1), true, e, 0, first(P2))}
— Inv(I) = Inv(P1) U Inv(D2)
—if I .= P(d)‘fpl.(QQ)w
— L(I) ={Po} UL(P1) U L(P2), where last(P2) is urgent
— first(I) =Py
— Arces(I) = Ares(P1) U Ares(P2) U
{(Po,t <d, ,{t =0}, first($1)),
(last(®1), true, e, 0, first(P2)),
(last(®1), true, e, 0, first(P2))}
— Inv(I) = {Po — t < d} U Inv(P1) U Inv(P2)
—ifd:=¢
~ L(®) = {E}
— first(®) = last(P) = E
— Arcs(®) =0
— Inv(®) =10
— if ®:=s5.P(d).9’
— L(®) = {S,P} U L(®)
— first(®) =S, last(®) = last(P')
— Ares(®) = Ares(®') U {(S, true, y!, 0, P),
(P,t =d, e, {t =0}, first(®'))}
— Inv(®) ={P —t < d} U Inv(P')

Figure 2 depicts the shape of input generators. Figure 2(a) shows the generator
[L], obtained from I := @;.(P2)®. The edge connecting the last state of [P2] to
the first one allows @2 to be repeated infinitely often. Figure 2(b) shows the case
of an input sequence I := P(d).®1.(P2)“ beginning with a pause P(d): in this
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case, the initial location of [I] is P, which imposes a delay of d time units. The
remainder of the input sequence is encoded as for the previous case. Figure 2(c)
shows the induction basis for encoding a sequence @, i.e., the case ¢ := ¢. It is
encoded as a location E having no edge. Finally, Figure 2(d) shows the case of
a non-empty spike-pause pair sequence ® := s.P(d).®’. It consists of an urgent
location S: when the automaton moves from S, a spike is fired over channel y and
the automaton moves to location P, representing a silent period. After that, the
automaton proceeds with the encoding of &’.

Non-deterministic input sequences. This kind of input sequences is useful when no
assumption is available on neuron inputs. These are random sequences of spikes
separated by at least Ty, time units.

Such sequences can be generated by an automaton defined as follows:

Definition 4 (Non-deterministic input generator) A non-deterministic in-
put generator I, 4 is a tuple

(L,B, X, X, Arcs, Inv),

with:

— L ={B, S, W}, with S urgent,
- X = {1}

- Y=z

— Arcs = {(B,t =D, z!,0,S), (S, true, ¢, {t := 0}, W),
(Wt > Trin,x!,0,S)}
— Inv(B) = (t < D)

where D is the initial delay.

The behavior of such a generator depends on clock ¢t and broadcast channel z,
and can be summarized as follows: it waits in location B an arbitrary amount of
time before moving to location S, firing its first spike over channel x. Since location
S is urgent, the automaton instantaneously moves to location W resetting clock t.
Finally, from location W, after an arbitrary amount of time ¢, it moves to location
S, firing a spike. Notice that an initial delay D may be introduced by adding the
invariant ¢ < D to the location B and the guard ¢t = D on the edge (B — S).

Standard neurons. The neuron is a computational unit behaving as follows: i)
it accumulates potential whenever it receives input spikes within a given accu-
mulation period, ii) if the accumulated potential is greater than the threshold, it
emits an output spike, iii) it waits during a refractory period, and restarts from
i). Observe that the accumulation period is not present in the definition of neuron
(Definition 2). It is indeed introduced here to slice time and therefore discretise
the decrease of the potential value due to the leak factor. We assume that two
input spikes on the same synapse cannot be received within the same accumula-
tion period (i.e., the accumulation period is shorter than the minimum refractory
period of the input neurons of the network). Next, we give the encoding of neurons
into timed automata.

Definition 5 Given a neuron v = (0,7, A, p, y) with m input synapses, its encod-
ing into timed automata is N' = (L, A, X, Var, 3, Arcs, Inv) with:
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S LQ

(a) Neuron model. (b) Output consumer au-
tomaton.

Fig. 3: Automata for standard neuron and output consumer.

— L={A,W,D} with D committed,

- X ={t}

— Var ={p,a}

- Y={zi|ie[l.m]}u{y},

— Ares = {(A,t < T,z;7,{a :=a+w},A) | i€ [L.m}U{(A,t =T, ,{p:=
ot p)},D),

(D,p <0, ,{a:=0},A),(D,p=0,y!, , W),
(W,t=r7, ,{a:=0,t:=0,p:=0},A)};
— Inv(A) =t <T,Inv(W) =t < 7, Inv(D) = true.

The neuron behavior, described by the automaton in Figure 3(a), depends on
the following channels, variables and clocks:

x; for 4 € [1..m] are the m input channels,

y is the broadcast channel used to emit the output spike,

p € N is the current potential value, initially set to zero,

a € N is the weighted sum of input spikes occurred within the current accu-
mulation period; it equals zero at the beginning of each round.

The behaviour of the automaton modelling neuron v can be summed up as
follows:

— the neuron keeps waiting in state A (for Accumulation) for input spikes while
t < T and, whenever it receives a spike on input z;, it updates a with a :=
a + wy;

— when ¢ = T, the neuron moves to state D (for Decision), resetting ¢ and
updating p according to the potential function given in Definition 2:

p=a+ |\ p|

Since state D is committed, it does not allow time to progress, so, from this
state, the neuron can move back to state A resetting a if the potential has not
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reached the threshold p < €, or it can move to state W, firing an output spike,
otherwise;

— the neuron remains in state W (for Wait) for 7 time units (7 is the length of
the refractory period) and then it moves back to state A resetting a, p and t.

Output consumers. In order to have a complete modelling of a spiking neural
network, for each output neuron we build an output consumer automaton O.
The automaton, whose formal definition is straightforward, is shown in Figure
3(b). The consumer waits in location W for the corresponding output spikes on
channel y and, as soon as it receives the spike, it moves to location O. This location
is only needed to simplify model checking queries. Since it is urgent, the consumer
instantly moves back to location W resetting s, the clock measuring the elapsed
time since last emission, and setting e to its negation, with e being a boolean
variable which differentiates each emission from its successor.

Definition 6 (Output consumer) An output consumer is a timed automaton

N = (L,W,X,Var, X, Arcs, Inv)

with:
— L ={W,0} with O urgent,
- X = {5}
— Var = {e}

Y ={yi | yi is an output neuron}
Ares = {(W,,y?,,0),
(0,s:=0,,{e:=not(e)}, W)}
Inv(W) = true, Inv(O) = true.

We have a complete implementation of the spiking neural network model pro-
posed in the paper via the tool Uppaal. It can be found on the web page [6]. We
have validated our neuron model against some characteristic properties studied
in [25] (tonic spiking, excitability, integrator, etc.). These properties have been
formalised in temporal logics and checked via model-checking tools.

Observe that, since we rely on a discrete time, we could have used tick automata
[19], a variant of Biichi automata where a special clock models the discrete flow of
time. However, to the best of our knowledge, no existing tool allows to implement
such automata. We decided to opt for timed automata in order to have an effective
implementation of our networks to be exploited in parameter learning algorithms.

4 Validation of the model

In this section we show some properties of the neuron model of Definition 5. The
first group of properties are structural. We can compute a minimum value such
that any neuron, having a threshold greater than or equal to it, will never be able
to fire.

Property 1 Let N' = (0,7,\,p,y) be a neuron and amqe be the maximum value
received during each accumulation period. Then, if § > §=ez, the neuron is not
able to fire.
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Proof Without loss of generality, we suppose that, during each accumulation pe-
riod, NV receives the maximum possible input amqz. Then, its potential function
is:

Pn = Qmazx + I_)\ . pn—lJ
which is always lower than or equal to its undiscretized version:

Pn < pln = Gmaz + A - p:L—l

The same inequality can be written in explicit form:
pn<p, = Zanfk AR
k=0

and, since we assumed the neuron always receives amaaz, Gn—k is constant and does
not depend on k:

n
p'n S Amazx * Z )\k

k=0
The rightmost factor is a geometric series:
1-A"
Pn < Gmag ﬁ

which reaches its maximum value ﬁ for n — oo, therefore:

Amazx

n < .
—1-X

p

Thus, if 6 > §==z, it is impossible for the neuron potential to reach the threshold

and, consequently, the neuron cannot fire. O

In what follows, we only consider neurons that respect the previous constraint.

Apart from the minimum threshold, we can also quantify the amount of time
that the neuron requires to complete an accumulate—fire-rest cycle. We show that
there exists a minimum delay between neuron emissions.

Property 2 Let N = (6,7, \,p,y) be a neuron. Then the time difference between
successive firings cannot be lower than T+ 7.

Proof Let A, = Zgzl aj+t, be the sum of weighted inputs during the n-th accu-
mulation period, then the neuron behaviour can be described as follows:

which is the potential value after the m-th accumulation period. If the neuron
eventually fires an output spike, then there exists 17 > 0 such that:

A = argmin{pn : pn > 0}
neN

i.e., the firing will occur at the end of the n-th accumulation period, which means
during the t-th time unit since to, thus:

t=n-T+to
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where to is the last reset time, i.e., the last instant back in time when the neuron
completed its refractory period. Then the next reset time t’, i.e., the next instant
in future when the neuron will complete its refractory period, after having emitted
a spike, is:

t'=t+r=n-T+1+to

At instant ¢’, the neuron quits its refractory period, n is reset to 0, to is set to ¢/,
and 7, £ and ¢’ must be consequently re-computed as described above.
Such a way to describe our model dynamics allow us to express the inter-firing
period as a function of n:
t'—to=n-T+rT

So, the minimum inter-firing period is 7'+ 7 for n = 1. O

Such a property can also be verified as follows: let Z be the non-deterministic
input generator having Tp,in = 1 and, without loss of genemlityl7 let the initial
delay D = T'+7. Then the timed automata network Z||N||O satisfies the following
formula:

AG(statep(O) — evalp(s) > T+ 1)

where s measures the time elapsed since last firing, meaning that, whenever the
output consumer receives a spike, the time elapsed since the previous received
spike cannot be lower than 7" + 7.

The next fact states that only positive stimulations are necessary for the neuron
to produce emissions.

Fact 1 Let N = (0,7, \,p,y) be a neuron, a(t) the sum of weighted inputs received
during the current accumulation period, and p(t — 1) the neuron potential at the
end of the previous accumulation period. If p(t — 1) < 0 and a(t) < 0, the neuron
cannot fire at the end of the current accumulation period. Moreover, if p(t) > 6
then a(t) > 0.

The neuron potential is affected by every input spike it received since the last
reset time, but every event that occurred before that instant is forgotten: i.e.,
neurons are memoryless.

Definition 7 (Inter-emission memory) Let N be a neuron, Zs its reset times
set, and I an input sequence. Then N has inter-emission memory if and only if
there exist two different ¢,t € Z,r such that the output sequences produced by N
as a response to I starting from ¢ and ¢’ are different.

Property 3 Neurons have not inter-emission memory.

Proof When the neuron moves from location W to A, it resets clock ¢ and variables
p and a, making them equal to their initial values. This entails that the neuron, if
subjected to the same input sequence, will always behave in the same way. O

Next, we validate the neuron model against its ability of reproducing or not
some behaviours, as described by Izhikevich in [25]. We introduce first three be-
haviours that are verified by our model.

1 the initial delay is required in order to make the formula hold for the first output spike
too
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Tonic Spiking. Tonic spiking is the behaviour of a neuron producing a periodic
output sequence as a response to a persistent excitatory constant input sequence.

Property 4 (Tonic spiking) Let N' = (0,7,\,p,y) be a neuron having only one
ingoing excitatory synapse of weight w and let Z be the input source connected
to N producing a persistent input sequence. Then A produces a periodic output
sequence.

The property holds by construction. It can be tested via model checking in
the following way. Let Z be the fixed-rate input generator having arbitrary initial
delay D, and let O be an output consumer. Then the timed automata network
Z||IN|O satisfies the following formulae:

stateo (0) A evalp(e) ~ stateo (0) A —evalo(e)

stateo (0) A mevalp(e) ~ statep(O) A evalo(e)
where O is the location that the consumer automaton O reaches after consuming a
spike and e is an alternating boolean variable whose value flips whenever O moves
into location O. So, whenever automaton O reaches location O, it will eventually
reach it again.

One may also find the value P of the period of some given neuron A/ by means

of simulations, thus the periodic behaviour can be proven verifying the following
formula:

AG(stateo(O) A evalp (f) — evalp(s) = P)

where s is the clock measuring the time elapsed since last spike consumed by O,
and f is a boolean variable of automaton N which is initially false and is set to
true when edge (W — A) fires (i.e., it indicates whether A/ has already emitted
the first spike and waited the first refractory period or not).

Integrator. Integrator is the behaviour of a neuron producing an output spike
whenever it receives at least a specific number of spikes from its input sources in
the same accumulation period.

Property 5 (Integrator) Let N'= (6,7, A, p,y) be a neuron having m synapses with
maximum excitatory weight R and a threshold n < m. Then the neuron emits if
it receives a spike from at least n input sources during the same accumulation
period.

As in the previous case, we can use model checking tools and test the formula
stating that, if at least n generators are ready to emit (location S) while N is in
A, then O will eventually capture an output of N:

(Z state;(S) > n) A statepnr(A) ~ stateo (O)
i=1

Notice that, since potential depends on past inputs too, the neuron may still
be able to fire in other circumstances, e.g., if it keeps receiving less than n spikes
for a sufficient number of accumulation periods, then it may eventually fire.
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Vi=1,...,m Vi=1,...m
G:t<T G:t<T

S :ax;? Sa?
U:a:=a+w; U:a:=a+w;

G:t=T&&
a>0
U:t:=0

LSRR
coco

Fig. 4: The extended neuron model for phasic spiking.
Additions are colored in blue.

Excitability. Ezcitability is the behaviour of a neuron emitting sequences having
a decreasing inter-firing period, i.e., an increasing output frequency, when stimu-
lated by an increasing number of excitatory inputs.

Property 6 (Fzcitability) Let N' = (0,7, X, p,y) be a neuron having m excitatory
synapses. Then the inter-spike period decreases as the sum of weighted input spikes
increases.

Proof If we assume the neuron is receiving an increasing number of excitatory
spikes, generated by an increasing number of input sources emitting persistent
inputs, then a; is the non-negative, non-decreasing and progressing (i.e., Vu 3t :
a¢ > u) succession representing the weighted sum of inputs within the ¢-th time
unit. Consequently, A, = Zfil ak+t, is the non-negative, non-decreasing and
progressing succession counting the total sum of inputs within the n-th accumu-
lation period. Since A,, is positive and Property 2 holds, we can prove that the
inter-spike period t,, — t,—1 decreases. O

The following behaviours are not satisfied by the LI&F model, we show that
our encoding cannot verify them as well.

Phasic Spiking. Phasic spiking is the behaviour of a neuron producing a single
output spike when receiving a persistent and excitatory input sequence and then
remaining quiescent for the rest of it. Such a behaviour depends on the neuron to
have inter-emission memory.

Property 7 Neurons cannot reproduce the phasic spiking behaviour.

Proof The phasic spiking behaviour requires the neuron to ignore any excitatory
input spike occurring after its first emission. This means producing different out-
comes, before and after the first emission, as a response to the same input sequence,
which is impossible for a memoryless neuron, as stated in Property 3. O
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We can extend our model to reproduce phasic spiking, see Figure 4. This variant
makes the neuron able to “remember” if it is receiving a persistent excitatory input
sequence. After each refractory period, the neuron moves to location Ay, instead
of A. The only difference between Ay and A is that Ay ignores positive values
of a at the end of each accumulation period. Conversely, a non-positive value of a
(denoting the end of the persistent input), at the end of some accumulation period,
leads the neuron back in location A.

Bursting. A burst is a finite sequence of high frequency spikes. More formally:

Definition 8 A spike output sequence is a burst if it is composed by spikes having
an occurrence rate greater than 1/7, with 7 being the refractory period of the
neuron.

A burst sequence is a sequence composed by bursts, subject to the following
constraint: the time difference between the last spike of each burst and the first
spike of the next burst it greater than 7.

Property 8 Neurons cannot produce bursts.

Proof A neuron N cannot emit spikes having a rate greater than 1/(T + 7), as
stated by Property 2, so it cannot produce bursts. O

In order to reproduce bursts our model can be extended by allowing several
subsequent emissions in an interval period smaller than 7. After this period all
clocks and variables are reset and the accumulation-fire-rest cycle can start again.

Several bursting behaviours are described in [25]. Here we discuss only three
of them, as all impossibility results depend on Property 8 and all the automata
extensions are similar.

Tonic Bursting is the behaviour of a neuron producing a burst sequence as
a response to a persistent and excitatory input sequence. Phasic Bursting is the
behaviour of a neuron producing a burst as a consequence of a persistent excitatory
input sequence and then remaining quiescent. Obviously the preceding behaviours
require the ability of producing bursts.

Bursting-then-Spiking is the behaviour of a neuron producing a burst as re-
sponse to a persistent excitatory input sequence and then producing a periodic
output sequence. Such a behaviour, similarly to Phasic and Tonic Bursting, de-
pends on the neuron ability of producing bursts. Moreover it requires inter-emission
memory, in order to detect the beginning of a persistent sequence.

Property 9 Neurons cannot exhibit the Tonic Bursting, Phasic Bursting and Bursting-
then-Spiking behaviours.

Proof Follows from Property 8. O

Spike Frequency Adaptation. Spike Frequency Adaptation is the behaviour
of a neuron producing a decreasing-frequency output sequence as a response to
a persistent excitatory input sequence. In other words, the inter-emission time
difference increases as the time elapses. This behaviour requires the neuron to
have inter-emission memory as it should be able to keep track of the time elapsed
since the beginning of the input sequence.
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Fig. 5: The extended model for Spike Frequency Adaptation behaviour. Additions
are colored in blue.

Property 10 Neurons cannot reproduce the Spike Frequency Adaptation behaviour.

Proof The Spike Frequency Adaptation behaviour requires the neuron to detect
the beginning of an excitatory input sequence and to increase the time required
to fire a spike, after each emission. This means the neuron will produce different
outcomes as response to equal inputs, which is impossible, as stated in Property
3. ]

An extended neuron model able to reproduce Spike Frequency Adaptation
behaviour is shown in Figure 5. This variant allows the refractory period to increase
after each neuron emission, thus making the output frequency decrease.

Spike Latency. Spike Latency is the behaviour of a neuron firing delayed spikes,
with respect to the instant when its potential reached or overcame the threshold.
Such a delay is proportional to the strength of the signal which leads it to emission,
i.e., the sum of weighed inputs received during the accumulation period preceding
the emission. This behaviour requires the neuron to be able to postpone its output.

Property 11 Neurons cannot reproduce the Spike Latency behaviour.

Proof The property holds by construction. As location D is committed, no firing
can be delayed. O

An easy solution to extend our model is to introduce a delay between the
instant the neuron reaches or overcomes its threshold and the actual emission
instant. Such a delay § depends on the sum of weighted inputs received during the
last accumulation period. If the potential is greater than or equal to the threshold,
the neuron computes the delay duration 6(a), assigning it to an integer variable d,
and then waits in location Del for d time units before emitting a spike on channel
y. The extended version is depicted in Figure 6.
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Fig. 6: The extended model for the Spike Latency behaviour. Additions are colored
in blue.

Fig. 7: The extended model for the Threshold variability behaviour. Additions
colored are in blue.

Threshold Variability. Threshold variability is the behaviour of a neuron allow-
ing its threshold to vary according to the strength of its inputs. More precisely, an
excitatory input will rise the threshold while an inhibitory input will decrease it.
As a consequence, excitatory inputs may more easily lead the neuron to fire when
occurring after an inhibitory input.

Property 12 Neurons cannot reproduce the Threshold Variability behaviour.
Proof By construction the neuron threshold never changes. O

The neuron model can be extended allowing the threshold to vary after each
accumulation period according to the current sum of weighted inputs (see Figure
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Fig. 8: The extended model for Bistability behaviour.
Additions are colored in blue.

7). The threshold variable initial value is fp. On every firing of edge (A — D),
the threshold variable is increased of A(a), where a is the sum of weighted inputs
occurred during the last accumulation period and A(a) is an integer value whose
sign is opposite to the sign of a and whose magnitude is proportional to the
magnitude of a.

Bistability. Bistability is the behaviour of a neuron alternating between two op-
eration modes: periodic emission and quiescence. Upon reception of a single exci-
tatory spike, it emits a periodic output sequence and switches to a quiescent mode
(no emission) as soon as it received another spike. Such a behaviour requires the
neuron to (i) be able to produce a periodic output sequence, even if no excitatory
spike is received, (ii) be able to remain silent when no spike is received, and (iii) be
able to switch between the two operation modes upon reception of an excitatory
spike.

Property 13 Neurons cannot reproduce the Bistability behaviour.

Proof The only possibility of obtaining a periodic output as a result of no exci-
tatory input spike is to set ¢ = 0. This is a limit case of Property 4. Since, by
construction, the threshold cannot vary, the neuron cannot switch between the
two operation modes. O

The neuron model can be modified as shown in Figure 8. This variant makes
its threshold switch between 0 and a positive value at the end of any accumulation
period during which it received an excitatory sum of weighted inputs a. A null
threshold would make the neuron emit even if no input is received. Conversely, a
positive threshold would prevent the neuron from emitting, if no input is received.
Thus, on every firing of edge (A — D), the threshold value 6 is computed by the
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function bist(-):
0 if0>0ANa>0
bist(0,a) =0 if 0=0Aa>0
9 if a<o.

Inhibition-induced activities. This is the behaviour of a neuron producing a
spike output sequence as a response to a persistent inhibitory input sequence. We
thus require the neuron to be able to emit as a consequence of some inhibitory
input spikes.

Property 14 Neurons cannot reproduce the Inhibition-induced Spiking behavior.

Proof Follows from Fact 1. ]

An easy extension to our automata is to consider the absolute value of all inputs
instead of their signed values.

Rebound activities. Rebound Spike is the behaviour of a neuron producing an
output spike after it received an inhibitory input. Similarly to Inhibition-induced
activities, this behaviour requires the neuron to emit as a consequence of an in-
hibitory input spike.

Property 15 Neurons cannot exhibit the Rebound Spiking behaviour.
Proof Follows from Fact 1. O

We can modify our encoding by setting the neuron potential to be always
non-negative and by fixing the threshold to be 0 as response to an inhibitory
stimulation. Recall that a null threshold would make the neuron emit even if its
potential is 0. Thus, on every firing of the edge (A — D), if the current sum of
weighted inputs a is negative, the threshold 6 is set to 0, otherwise it is set to a
0 > 0. This will allow an inhibitory stimulus to produce a rebound spike.

5 Parameter inference

In this section we examine the Learning Problem: i.e., how to determine a pa-
rameter assignment for a network with a fixed topology and a given input such
that a desired output behaviour is displayed. Here we only focus on the estimation
of synaptic weights in a given spiking neural network; the generalisation of our
methodology to other parameters is left for future work.

Our analysis takes inspiration from the SpikeProp algorithm [5], which deals
with fully connected feedforward networks of spiking neurons with layers and aims
at attaining a set of target firing times of the output neurons for a given set of input
patterns. An error function is obtained by computing the least mean squares of
desired spike times and actual firing times; such an error is then back-propagated
in the network. In a similar way, we detect the errors of output neurons and
back-propagate them. The main differences between the SpikeProp approach and
our ones are: (i) the SpikeProp rule deals with multi-layered cycle-free continuous
spiking neural networks while our networks are discrete and not multi-layered; (ii)
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Algorithm 1 The advice back-propagation algorithm

1: function ABP

2 discovered = 0

3 for all N € Output do

4 if N ¢ discovered then

5: discovered = discovered U N
6

7

8

9

if EVALUATE(N)) = SHF then
SHF (V)

else if EVALUATE(N)) = SNHF then
SNHF(N)

the Spikeprop rule does not treat negative edges (for this, inhibitory and excitatory
neurons are introduced) while our connections are allowed to contain a mix of both
positive and negative edges.

In the technique we propose here, the learning process is led by supervisors.
Differently from the previous section, each output neuron N is linked to a super-
visor instead of an output consumer. Supervisors compare the expected output
behaviour with the one of the output neuron they are connected to (function
EVALUATE(N) in Algorithm 1). Thus either the output neuron behaved consis-
tently or not. In the second case and in order to instruct the network, the su-
pervisor back-propagates advices to the output neuron depending on two possible
scenarios: i) the neuron fires a spike, but it was supposed to be quiescent, ii) the
neuron remains quiescent, but it was supposed to fire a spike. In the first case the
supervisor addresses a should not have fired message (SNHF) and in the second one
a should have fired (SHF). Then each output neuron modifies its ingoing synap-
tic weights and in turn behaves as a supervisor with respect to its predecessors,
back-propagating the proper advice.

The advice back-propagation (ABP), Algorithm 1, basically lies on a depth-
first visit of the graph topology of the network. Let A; be the i-th predecessor of an
automaton N, then we say that N; fired, if it emitted a spike during the current or
previous accumulate-fire-wait cycle of A'. Thus, upon reception of a SHF message,
N has to strengthen the weight of each ingoing ezcitatory synapse and weaken the
weight of each ingoing inhibitory synapse. Then, it propagates a SHF advice to
each ingoing excitatory synapse (i.e., an arc with weight greater than 0: Wt > 0)
corresponding to a neuron which did not fire recently (-F(N) ), and symmetrically
a SNHF advice to each ingoing inhibitory synapse (WT < 0) corresponding to a
neuron which fired recently (see Algorithm 2 for SHF, and Algorithm 3 for the dual
case of SNHF). When the graph visit reaches an input generator, it will simply
ignore any received advice (because input sequences should not be affected by the
learning process). The learning process ends when all supervisors do not detect
any more errors.

There are several possibilities on how to realise supervisors and the ABP algo-
rithm. We propose here two approaches. The first one is model checking oriented
and it is based on the idea that supervisors are represented by temporal logic
formulae. The second one is simulation oriented, and the implementation of the
algorithm is embedded into the timed automata modelling of the neuron.
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Algorithm 2 Should Have Fired algorithm

1: procedure SHOULD-HAVE-FIRED(N)
2 if N € discovered U Output then
3 return

4 discovered = discovered U N
5: for all M € PrReD(N) do
6

7

8

9

if M ¢ Input then
if Wr(M,N) >0 A-F(M) then

SHF (M)
. if Wr(M,N) <0 A F(M) then
10: SNHF(M)
11: INCREASE-WEIGHT (M, N)
12: return

Algorithm 3 Abstract ABP: Should Not Have Fired advice pseudo-code

1: procedure SHOULD-NOT-HAVE-FIRED (neuron)
2 if N e discovered U Output then

3 return

4 discovered = discovered U N’

5: for all M € PREDECESSORS(N) do

6 if M ¢ Input then

7 if Wr(M,N) >0 A F(M) then

8

9

SNHF(M)
: if Wo(M,N) <0 A- F(M) then
10: SHF (M)
11: DECREASE-WEIGHT (M, N)
12: return

Model-checking-oriented approach. Such a technique consists in iterating
the learning process until a desired CTL property concerning the output of the
network is verified. The hypothesis we introduce are the following ones: (i) input
generators, standard neurons, and output consumers share a global clock which
is never reset and (ii) for each output consumer, there exists a clock measuring
the elapsed time since the last received spike. The CTL formula specifying the
expected output of the network can only contain predicates relative to the output
consumers and the global clock. At each step of the algorithm, we make an external
call to the model checker to test whether the network satisfies the formula or not.
If the formula is verified, the learning process ends; otherwise, the model checker
provides a trace as a counterexample. Such a trace is exploited to derive the proper
corrective action to be applied to each output neuron, that is, the invocation of
either the SHF procedure, or the SNHF procedure previously described (or no
procedure).

More in detail, given a timed automata network representing some spiking
neural network, we extend it with a global clock t4 which is never reset and, for
each output consumer Of relative to the output neuron Ny, we add a clock s
measuring the time elapsed since the last spike consumed by O. Furthermore, let
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statep, (O) be an atomic proposition evaluating to true if the output consumer
Ok is in its O location, and let evalp, (sx) be an atomic proposition indicating
the value of the clock si in Og. In order to make it possible to deduce the proper
corrective action, we impose the CTL formula describing the expected outcome of
the network to be composed by the conjunction of sub-formulae respecting any of
the patterns presented in the following.

Precise Firing. The output neuron N}, fires at time ¢:
AF (ty =t A statep, (O)).
The violation of such a formula requires the invocation of the SHF procedure.
Weak Quiescence. The output neuron Ny is quiescent at time ¢:
AG (ty =t = -statep, (0)).
The SNHF procedure is called in case this formula is not satisfied.
Relaxed Firing. The output neuron N fires at least once within the time window
[1f17 to ]:
AF (t1 <tg <t A stateo, (0)).
The violation of such a formula leads to the invocation of the SHF procedure.
Strong Quiescence. The output neuron N}, is quiescent for the whole duration of
the time window [t1, t2]:
AG (t1 <tg <ty = —statep, (0)).
The SNHF procedure is needed in this case.
Precise Periodicity. The output neuron N}, eventually starts to periodically fire a
spike with exact period P:
AF(AG(evalo, (sk) # P = —stateo, (0))
N AG( statep, (0) = evalo, (sx) = P)).
If Ny fires a spike while the s clock is different than P or it does not fire a
spike while the si clock equals P, the formula is not satisfied. In the former
(resp. latter) case, we deduce that the SNHF (resp. SHF) procedure is required.
Relaxed Periodicity. The output neuron Ny eventually begins to periodically fire
a spike with a period that may vary in [ Pmin, Pmaaz |:
AF(AG(evalo, (sk) & [ Pmin, Pmaz] =
—statep, (0)) A
AF(statep, (0) =
Prin < evalok (Sk) < Pnaz ) )
For the corrective actions, see the previous case.

As for future work, we intend to extend this set of CTL formulae with new formulae
concerning the comparison of the output of two or more given neurons. Please
notice that the Uppaal model-checker only supports a fragment of CTL where the
use of nested path quantifiers is not allowed. Another model-checker should be
called in order to fully exploit the expressive power of CTL.

Simulation-oriented approach. In this second approach, parameters are modi-
fied during the simulation of the network. This entails that the encoding of neurons
needs to be adjusted in order to take care of the adaptation of such parameters.
Algorithm ABP is realised by a dedicated automaton ABP — alg, that is depicted
in Figure 9, and the role of supervisor is given to output consumers, that are
modified as in Figure 10.

The idea is that, according to the function EVALUATE, if the corresponding
output neuron misbehaves, then its output consumer sets whether it has to be
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G : handle[n]
U:SHF(n)

S : restart!
U :rreesssz“() G : handlenot[n]

U: SNHF(n)

Fig. 9: The automata responsible of the ABP — alg

S x4?

S :restart?

U : reset() G : s <=20AnbS4 >= 100

S :ok!
U:s:=0

G:s<=20
U:s:=0;nbS4+ +;

Fig. 10: Example of an output consumer in the simulation approach for the dia-
mond structure

treated according to the SHF or the SNHF function. Furthermore, it signals to
the ABP — alg through the message bad! that some adjustments on the network
have to be done. Then the ABP — alg automaton takes the lead and it recursively
applies the function SHF or SNHF (this is achieved by setting a proper variable in
a vector named handle) on the predecessors of the output neuron. Once there is no
more neuron to whom the algorithm should be applied (for instance all neurons in
the current run have been visited), the simulation is restarted in the network with
the new parameters. If the output consumer does not recognise any misbehaviour,
than it sends an ok! message to the ABP — alg automaton, that in turn moves to
an accepting state A.
More formally:

Definition 9 (Output consumer for the simulation approach) An output
consumer for the simulation approach is a timed automaton

N =(L,A, X, Var, X, Arcs, Inv)

with:
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— L ={W,0} with O committed,
- X ={s}
— Var = {nb, handle[N], handlenot[N]}
— Y ={x; | ; is an output neuron} U {bad, restart, ok},
— Arcs = {(W, s < Tmin, bad!, {SHF()}, W),
(W, restart?, {s := 0,nb := 0}, W),
(W,,2:7,,0),(0,s > Tmas, bad!, (SNHF()}, W),
(O, ,restart?,{s := 0,nb := 0}, 0),
(O, good_pattern, ok!,{s := 0}, W),
(O, good_not_finished,,{s := 0}, W)} ;
— Inv(W) =s<T, Inv(O) = true

where the functions SHF and SNHF modify the global variables handle; and
handlenot; respectively, that are used in the ABP — alg automaton.

Notice that the precise definition (for instance the value of parameters good_pattern,
good_not_finished, Trin, Tmaz) of the output consumer depends on the expected
behaviour of the supervisor. As an example, in Figure 10, that depicts the output
consumer for the diamond network (see the details in the next subsection), we
expect the output neuron to emit a spike within each window of 20 seconds for at
least 100 times.

More in detail, the cycle from W to W is taken whenever a spike has not been
sent before T time units. Thus the automaton sends to the ABP — alg automaton
a bad message (signalling that an adjustment to the network should take place),
and the update part handles the fact that we should perform the SHF algorithm
(a variable corresponding to the concerned output neuron is set to true in the
array handle). From the same state, whenever the message restart is received,
all the variables of the automaton are reset to 0. When a spike from the output
neuron z is received, the output consumer moves to the state O. In this state,
if the spike was received too late (and similarly as in the previous case), a bad
message is sent to the ABP — alg. Otherwise, if everything was received on time
and if the expected pattern has been completely verified, then an ok message is
sent and the automaton moves to the initial state.

In the following, we give the formal definition of the ABP — alg automaton:

Definition 10 (ABP — alg automaton)

— L ={A,B,R} with R committed,

X=0

Var = {handle[N], handlenot[N]}

Y = {bad, ok, restart},

Ares = {(B,,0k?,,A),(B,,bad?, ,R)

(R, handle[n],, SHF (n),R)

(R, handlenot[n],, SNHF(n),R)

(R, finished?(),restart!, reset(),B)} ;

— Inv(A) = true, Inv(B) = true, Inv(R) = true.

The arc from the state B to the accepting state A is taken whenever the Output
consumer has finished the analysis of its pattern. Conversely, the arc from the state
B to R is adopted when one of the output neurons has misbehaved (signalled by
the reception of the message bad). In the committed state R, the parameters of
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Fig. 11: Example of a neuron in the simulation approach for the diamond network

U:a:=a+w;
G:t==
U:R tT S : restart?
 Reset() U : Reset()
G:t== G:p<¥b
U:p:=a+[\p] U:a:=0

G:p>0 C
Syl

the neural network are changed accordingly to the Algorithms 2 and 2. The arrays
handle (respectively handlenot) have the information on the neurons to which
the Algorithm for SHF (respectively SNHF) has to be applied. Once the cycle
of updates finishes (checked through the function finished?()), the simulation is
restarted by broadcasting a message restart to all the neurons and the output
consumer.

Last, we give the definition of the changes induced in the standard neuron. As
the update of the neuron parameters is done at the level of ABP — alg, the only
change concerns the treatment of the signal restart. To this aim an arc handling
the reception of the message is added to the states W and A.

Definition 11 ( Standard Neuron for the simulation approach) Given a

neuron v = (6,7, A, p,y) with m input synapses, its encoding into timed automata
isN = (L,A,X,Var, X, Arcs, Inv) with:

— L={A,W,D} with D committed,

- X ={t}

— Var ={p,a}

- Y={zi|ie[l.m]}U{y},

Ares = {(A,t < T,z;7,{a:=a+wi},A) |i € l.m]}U{(A,t =T, ,{p:=
a+ |Ap]}, D),

t:= :
(A, ,restart?, {a” =0,t :=0,p := 0}A),
(W, ,restart?, {a” =0,t:=0,p:=0}A)};
— Inw(A) =t < T, Inv(W) =t < 7, Inv(D) = true.

Notice that the algorithm can be refined by setting some priorities on the
neurons. For instance, if any additional information is known in advance on the
behaviour of a specific neuron, its actions can be constrained and the corrective
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-

@J

Fig. 12: A neural network with a diamond structure.

operations could be ignored. In some cases, the type of synapse (excitatory or
inhibitory) can also be set, disallowing the possibility of changing its nature (e.g.,
from inhibitory to excitatory).

Notice that, as the application of the ABP algorithm in the simulation approach
is non-deterministic, the parameters we found may depend on the precise execution
and several solutions are therefore possible.

5.1 Examples

In this section we show several examples where we have applied our approaches to
determine a parameter assignment. The complete encoding of the examples shown
here can be found at [13].

Turning on and off a diamond structure of neurons. This example shows
how the ABP algorithm can be used to make a neuron emit at least once in a
spiking neural network having the diamond structure shown in Figure 12. We
assume that A7 is fed by an input generator Z that continuously emits spikes.
No neuron in the network is able to emit because all the weights of their input
synapses are equal to zero and their thresholds are higher than zero. The initial
weights and parameters are:

wo,1 | W12 | W1,3 | W2,4 | W3,4
0.1 0.1 0.1 0.1 0.1

Neuron ‘ T ‘ 0 ‘ T ‘ A
M 2 1035(3]7/9
Na 2 1035|3]7/9
Ns | 2]035]3|7/9
Na 21055 |31 1/2

We want the network to learn a weight assignment so that Ay is able to emit,
that is, to produce a spike after an initial pause.

At the beginning we expect no activity from neuron Ny. As soon as the initial
pause is elapsed, we require a spike but, as all weights are equal to zero, no emission
can happen. Thus a SHF advice is back-propagated to neurons N2 and N3 and
consequently to A7. The process is then repeated until all weights stabilise and
neuron N is able to fire.



Spiking Neural Networks modelled as Timed Automata 29

-
S -
o<
P ~
L ~

Fig. 13: Structure of the XOR network. Dashed (resp. continuous) edges stand for
inhibitions (resp. activations).

Here we apply the model-checking approach. We expect Nu to spike every 20
time units. After three cycles of the algorithm (i.e., three checks of the formula
and modifications of weights), we reach the following weight assignment:

Wo,1 | W12 | W1,3 | W24 | W34
0.3 0.3 0.3 0.3 0.3

The XOR problem. The XOR problem is a classic problem in neural networks.
It is used to classify inputs interpreting the outputs as the result of the logic XOR
between the inputs (a logic XOR returns true if the two inputs are not equal and
false otherwise). The problem is interesting because it can be solved only within a
multilayered architecture. Figure 13 shows an example of such structure. Although
typical in neural networks, this example is not adapted to our setting. Our networks
expect as input streams of spikes and, as mentioned in the introduction, we do
not aim at classifying specific inputs.

To adjust the XOR problem to our setting, we consider a network where neu-
rons have no memory (the leak factor is 0) and the refractory period is also 0. As
input we consider two finite sequences I1 = P(8).s.P(3).s and I> = P(4).s.P(7).s
encoding the sequence of bits 0 0 1 1 for I; and 0 1 0 1 for /2. The expected output
is S = P(5).s.P(4).s encoding the sequence of bits 0 1 1 0. Figure 14 shows the
realisation of the output consumer. The other parameters are T'=1 and © = 1
while the weights are

wr,1 | W2 | W1 | W, 2 | W10 | W2,0
0.1 —0.1 0.1 —0.1 0.1 0.1

With the simulation approach we reach the following assignment:

w1 | wr2 | w1 | WhL2 | wio | w20
1 —-0.1 1 —0.1 1 1

A negative loop. In this example, we show a network that is meant to oscillate
and we use our learning algorithm to find parameters for a specific oscillation
period. The network is showed in Figure 15, it consists of two neurons N; and Na:
the first one excites the second one while the second one inhibits the first one. We
expect Nz to fire each 3 time units.

In this example we use a mizture of the two approaches described above. We
model the network following the simulation approach and we check the formula
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S : bad!
U:SNHF
G:8<t<10
S:o? S : ok!
M)
Git>6 G:t>10 C
S : bad! S S : bad!
U:SHF() U:SHF()

Fig. 14: The output consumer for the XOR network.

B (e

Fig. 15: A simple negative loop network.

Fig. 16: We denote neurons by N;. The network is fed by an input generator Z
and the learning process is led by the supervisors S;.

AG-state app (A) stating that it is not possible to reach the accepting state in
the ABP automaton. The formula, as expected, is false and the counterexample
provides a weight assignment.

For both neurons, we have T'=1, § = 1, A\ = 1, and no refractory period. The
initial weights are:

wr;1 | wWi,2 w2,1

)

0.3 0.5 | 0.7

and the counterexample provides the following weights:

wr .1 w1,2 w2,1

s

0.5 1 —0.5
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H—0

Fig. 17: A second neural network with ”winner takes all” behaviour

Mutual inhibition networks. The last example is about mutual inhibition net-
works, where the constituent neurons inhibit each other neuron’s activity. These
networks belong to the set of Control Path Generators (CPGs), which are known
for their capability to produce rhythmic patterns of neural activity without receiv-
ing rhythmic inputs [23]. CPGs underlie many fundamental rhythmic activities
such as digesting, breathing, and chewing. They are also crucial building blocks
for the locomotor neural circuits both in invertebrate and vertebrate animals. It
has been observed that, for suitable parameter values, mutual inhibition networks
present a behaviour of the kind ”winner takes all”, that is, at a certain time one
neuron becomes (and stays) activated and the other ones are inhibited [14]. These
networks are similar to the continuous switch networks used in modelling of the
development [7].

We consider a mutual inhibition network of four neurons, as shown in Figure
16. This example, although being small, it is not trivial as it features inhibitor and
excitatory edges as well as cycles.

We look for synaptical weights such that the ”winner takes all” behaviour is
displayed. We assume each neuron to be fed by an input generator Z that contin-
uously emits spikes. At the beginning, all the neurons have the same parameters
(that is, firing threshold, remaining coefficient, accumulation period, and refrac-
tory period), and the weight of excitatory (resp. inhibitory) edges is set to 1 (resp.
-1). We use the ABP algorithm with the model checking approach to learn a weight
assignment so that the first neuron is the winner. More precisely, we find a weight
assignment such that, whatever the chosen path in the corresponding automata
network is, the network stabilises when the global clock ¢4 equals 70. The weight
of the edges from the input generator Z to the four neurons equals 0.041. The
weight of the edges inhibiting A7 (resp. N2, N3, and Ny4) is -0.719 (resp. -0.817).

For the simulation approach, we used a smaller network with 3 neurons only,
depicted in Figure 17. As before, we require a “winner takes all” behaviour where
N1 is the winner. We expect that A7 spikes every 10 time units at most, and the
neurons N2 and A3 do not spike. We consider a network with the following initial
parameters:
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Neuron ‘ T 0 ‘ T ‘ A
M 21075 | 3]1/2
Na 21075 |3]1/2
N3 2107 | 3]1/2

Wey | Z| N | Na | N3
T 0|01} 01|01
M |0 0 |-0.1]-01
No [ 0]-01| 0 |-01
Nz | 0] 01 ] 0.1 0

We obtain the following weights in 5 executions of the ABP algorithm:
Wey | Z| M | Na | N3

z 006 | 01 ] 01
Nt |0 0 -0.1 | -0.1
No [ 0]-01 0 -0.1
N3 [ 0] 06 | 01 0

6 Related Work

To the best of our knowledge, there are few attempts of giving formal models for
LI&F. Apart from the already discussed approach of [14], where the authors model
and verify LI&F networks thanks to the synchronous language Lustre, the closest
related work we are aware of is [3]. In this work, the authors propose a mapping
of spiking neural P systems into timed automata. The modelling is substantially
different from ours. They consider neurons as static objects and the dynamics
is given in terms of evolution rules while for us the dynamics is intrinsic to the
modelling of the neuron. This, for instance, entails that inhibitions are not just
negative weights as in our case, but are represented as forgetting rules. On top of
this, the notion of time is also different: while they consider durations in terms of
number of applied rules, we have an explicit notion of duration given in terms of
accumulation and refractory period.

As far as our parameter learning approach is concerned, we borrow inspira-
tion from the SpikeProp rule [5], a variant of the well known back-propagation
algorithm [33] used for supervised learning in second generation learning. The
SpikeProp rule deals with multi-layered cycle-free spiking neural networks and
aims at training networks to produce a given output sequence for each class of
input sequences. The main difference with respect to our approach is that we are
considering here a discrete model and our networks are not multi-layered. We also
rest on Hebb’s learning rule [20] and its time-dependent generalisation rule, the
spike timing dependent plasticity (STDP) rule [34], which aims at adjusting the
synaptical weights of a network according to the time occurrences of input and
output spikes of neurons. It acts locally, with respect to each neuron, i.e., no prior
assumption on the network topology is required in order to compute the weight
variations for some neuron input synapses. Differently from the STDP, our ap-
proach takes into account not only recent spikes but also some external feedback
(advices) in order to determine which weights should be modified and whether they
must increase or decrease. Moreover, we do not prevent excitatory synapses from
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becoming inhibitory (or vice versa), which is usually a constraint for STDP im-
plementations. A general overview on spiking neural network learning approaches
and open problems in this context can be found in [18].

7 Conclusion

In this work timed automata networks are proposed as an effective tool to model
spiking neural networks. More precisely, we focus on LI&F networks. The model
we describe has been fully implemented in Uppaal and is available at the pages [0]
and [13]. In our modeling framework, we take into account exact spike emission
times of neurons rather than spike rates. The formalism we selected turned out
to be very suited to model spiking neural networks: as a matter of fact, timed
automata allow to model with precision several time-related aspects, such as the
exact spike emission occurrences and the refractory period, a time interval which
follows the spike emission and is characterised by a restricted emission capability.

In this work, model checking techniques are used to automatically prove our
mapping of LI&F networks into timed automata is able to display a certain number
of expected behaviours (i.e., typical responses to an input pattern), that is, tonic
spiking, excitability, and integrator. Formal verification turned out to be very
suited to validate our modelling framework. As for future work concerning the
modeling aspects, we intend to propose automaton-based formalisations for more
sophisticated spiking neuron models, such as the theta-neuron model [15] or the
Izhikevich model [24]. We also plan to enrich our model with propagation delays,
which seem to play an important role in spiking neural networks [30]. At this aim,
we intend to add new states and clocks to model synapses. Finally, we intend
to identify the neuron parameters which influence most the satisfaction of some
crucial temporal logic properties. For this, a robustness analysis of the obtained
model will be performed.

As key contribution, we proposed a novel technique to infer the synaptical
weights of spiking neural networks. At this aim, we adapted machine learning
techniques to bio-inspired models, which makes our work original and comple-
mentary with respect to the main international projects aiming at understanding
the human brain, such as the Human Brain Project [10], which mainly relies on
large-scale simulations.

For our learning approach, we considered a basic kind of supervisors: each su-
pervisor only focusses on the output of a single neuron, neglecting the other neu-
rons. However, observe that the algorithm we propose still holds when supervisors
compare the output of several neurons. As for future work, we plan to encode more
complex supervisors which consider the behaviour of groups of neurons. Addition-
ally, to enhance our learning technique, we could adapt some interesting results
coming from the gene regulatory network area, where some necessary and suffi-
cient conditions linking the structure of the network and its dynamics are given

[32].
To conclude, we program to generalise the ABP algorithm to infer some new
parameters of neural networks, such as the leak factor or the firing threshold.

Acknowledgements We are grateful to Giovanni Ciatto for his preliminary implementation
work and for his enthusiasm in collaborating with us.
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Abstract Some specific neuronal graphs are known for
having biologically relevant structures and behaviors and
we call them archetypes. These archetypes are supposed
to be the basis of typical instances of neuronal informa-
tion processing. In this paper we report and compare
two key approaches to the formal modeling and verifi-
cation of neuronal archetypes. The first one exploits a
synchronous programming language dedicated to reac-
tive systems, the second one relies on a theorem prover.
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1 Introduction

In the last years, much attention has been directed
towards the study of the structure and function of brain
networks. This research is often grouped under the now
well-known keyword of the (human) connectome project
[1, 2, 3]. However, although the research in this field
claims to do graph analysis of the connectome at micro
and macro scales, it mainly focuses on macro scales and
is mostly based on diffusion or functional MRI data in
humans [4].

Here, we want to promote a more fundamental and
formal approach to the study of specific neuronal micro-
circuits, namely neuronal archetypes. From the biological
point of view, the theory of neuronal archetypes postu-
lates that the most primitive circuits that emerge during
phylogenetic and ontogenetic evolution (i.e., in the first
living systems and mostly in the mammal spinal cord and
brain stem, or homolog in other phyla) are elementary

circuits of a few neurons fulfilling a specific computa-
tional function (e.g., contralateral inhibition; see Section
4). The idea is that archetypes constitute the normal-
ized form of potentially bigger and topologically more
complicated neuronal circuits, but not more complex, in
the sense that they do not perform computations other
than the reference archetype itself does. In other words,
every micro-circuit, even with many neurons, can theo-
retically be reduced to one of the few existing archetypes.
Archetypes can be coupled in different ways. If the re-
sulting circuit does not perform a more complex function
in terms of neuronal information processing, it means
that it should theoretically be reducible to a smaller
archetype. If a new specific function, biologically rele-
vant, is identified, then it can be categorized as a new and
bigger archetype. From the informational point of view,
neuronal archetypes would thus constitute the words of a
finite dictionary. Following this analogy, neurons would
be the letters that form the syllables constituting words.
Some words can be coupled, thus acquiring a more or less
different meaning, and all the words can be concatenated
to build (meaningful) sentences.

As an example of well-known archetype, locomotive
motion and other rhythmic behaviors are controlled by
specific neuronal circuits called Central Generator Pat-
terns (CPG) [5]. These CPGs have the capacity to gen-
erate oscillatory activities, at various regimes (under var-
ious different conditions), thanks to some specific prop-
erties at the circuit level.

It is relevant to investigate the dynamic behavior of
all the possible archetypes of 2, 3 or more neurons, up to
considering archetypes of archetypes. The aim is to see
whether the properties of these archetypes of archetypes



simply are an addition of the individual constituent
archetypes properties or something more. Since it would
not be feasible to prove the properties of archetypes ex-
pected from the biological theory through real biological
experiments, we exploit formal methods, and this is our
originality. Formal methods thus help us is answering
to some questions related to theoretical Neurosciences.
In this paper, we report and compare the first attempts
in the literature to apply formal methods of computer
science to model and verify the temporal properties of
fundamental neuronal archetypes in terms of neuronal
information processing. We focus on the behavior of dif-
ferent basic archetypes and, for each one of them, we
propose one or two representative properties that have
been identified after extensive discussions with neuro-
physiologists [6, 7, 8]. From an electronic perspective, we
consider archetypes as biologically inspired logical oper-
ators, which are easily adjustable by playing with very
few parameters.

To model neuronal archetypes, we focus on Boolean
Spiking Neural Networks where the neurons electrical
properties are described via the leaky integrate and fire
(LI&F) model [9]. Notice that discrete modeling is well
suited to this kind of model because neuronal activity, as
with any recorded physical event, is only known through
discrete recording (the recording sampling rate is usually
set at a significantly higher resolution than the one of
the recorded system, so that there is no loss of informa-
tion). We describe neuronal archetypes as weighted di-
rected graphs whose nodes represent neurons and whose
edges stand for synaptic connections. At each time unit,
all the neurons compute their membrane potential, ac-
counting not only for the current input signals, but also
for the ones received along a given temporal window.
Each neuron can emit a spike when a given threshold is
exceeded. This kind of modeling is more sophisticated
than the one proposed by McCulloch and Pitts in [10],
where the behavior of a neural network is expressed in
terms of propositional logic and the present activity of
each neuron does not depend on past events.

Formal verification was initially introduced to prove
that a piece of software or hardware is free of errors [11]
with respect to a given model. The system at issue is
generally modeled as a transition graph where each node
represents a state of the system and each edge stands for
a transition from a source to a destination state. Model
checkers or theorem provers are often used to verify that
specific properties of the system hold at particular states.
The field of systems biology is a more recent application
area for formal verification, and such techniques have
turned out to be very useful so far in this domain [12].
A variety of biological systems can be modeled as graphs
whose nodes represent the different possible configura-
tions of the system and whose edges encode meaning-
ful configuration changes. It is then possible to define
and prove properties concerning the temporal evolution

of the biological species involved in the system [13, 14].
This often allows deep insight into the biological system
at issue, in particular concerning the biological transi-
tions governing it, and the reactions the system will have
when confronted with external factors such as disease,
medicine, and environmental changes [15, 16].

The first formal approach we focus on, which was in-
troduced by a subset of the authors of this paper [6, 7],
is based on the modeling of neural networks using a syn-
chronous language for the description of reactive systems
(Lustre). Spiking neural networks can indeed be consid-
ered as reactive systems: their inputs are physiological
signals coming from input synapses, and their outputs
represent the signals emitted in reaction. This class of
systems fits well with the synchronous approach based
on the notion of logical time [17]: time is considered
as a sequence of logical discrete instants. An instant
is a point in time where external input events can be
observed, along with the internal events that are a con-
sequence of the latter. Inputs and resulting outputs all
occur simultaneously. The synchronous paradigm is now
well established relying on a rigorous semantics and on
tools for simulation and verification.

Several synchronous languages respect this syn-
chronous paradigm, and all of them have a similar ex-
pressivity. We choose Lustre [17], which defines operator
networks interconnected with data flows and it is partic-
ularly well suited to expressing neuron networks. It is a
data flow language offering two main advantages: (1) it
is functional with no complex side effects, making it well
adapted to formal verification and safe program trans-
formation; (2) it is a parallel model, where any sequenc-
ing and synchronization depends on data dependencies.
Moreover, the Lustre formalism is close to temporal logic
and this allows the language to be used for both writing
programs and expressing properties as observers [18]. An
observer of a property is a program, taking as inputs the
inputs/outputs of the model under verification, and de-
ciding at each instant whether the property is violated or
not. The tools automatically checking the property sat-
isfaction/violation are called model checkers. There exist
several model checkers for Lustre that are well suited to
our purpose: Lesar [19], Nbac [20], Luke [21], Rantan-
plan [22] and kind2 |23, 24]. After comparing all these
model checkers [6], the most powerful one turned out
to be kind2, which relies on SMT (Satisfiabitily Modulo
Theories) based k-induction and combines several reso-
lution engines.

The second approach we report on, which was also in-
troduced by a subset of the authors of this paper [§], is
a theorem proving approach. It is based on the use of
the Coq Proof Assistant [25] to prove important proper-
ties of neurons and archetypes. Coq implements a highly
expressive higher-order logic in which we can directly in-
troduce datatypes modeling neurons and archetypes, and
express properties about them. As a matter of fact, one



of the main advantages of using Coq is the generality of
its proofs. Using such a system, we can prove properties
about arbitrary values of parameters, such as any length
of time, any input sequence, or any number of neurons.
We use Coq’s general facilities for structural induction
and case analysis, as well as Coq’s standard libraries that
help in reasoning about rational numbers and functions
on them. Our development does not depend on advanced
features of Coq like dependent types or the hierarchy of
universes, and thus can likely be translated into other
theorem provers like the PVS Specification and Verifica-
tion System [26] and Isabelle [27] quite easily.

To the best of our knowledge, the two approaches
reported in this paper (the model-checking oriented
approach and the theorem proving approach) are the
only approaches to the formal verification of neuronal
archetypes. The paper is organized as follows. In Sec-
tion 2, we present the state of the art concerning neural
network modeling and, more generally, modeling and for-
mal verification of biological systems. In Section 3, we
present a discrete version of the LI&F model. Section 4
is devoted to the description of the neuronal archetypes
we take into consideration. In Section 5, we briefly in-
troduce the Lustre Language and model checking tech-
niques. In Section 6, we show archetype behaviors (en-
coded in Lustre) and in Section 7, we tackle the next
logical step and deal with some archetype couplings. In
Section 8, we introduce the Coq Proof Assistant. In
Section 9, we present the Coq model for neural net-
works, which includes definitions of neurons, operations
on them, and combining them into archetypes. In Sec-
tion 10, we present and discuss the Coq specification
and proof of three representative properties (the first two
properties are intentionally two of the properties of Sec-
tion 6). Finally, in Section 11, we summarize and com-
pare the two proposed approaches on the formal verifica-
tion of neuronal archetypes and give some future research
directions. This paper has the value of rigorously com-
paring the approaches proposed in the conference papers
[6, 7, 8]. Furthermore, it extends these papers by intro-
ducing new archetype definitions and properties. The
first author of this paper belongs to the intersection of
the author lists of the cited papers.

2 Related Work In the last decades, there has

been much promising research in the field of formal mod-
elling and verification of biological systems. As far as the
modelling of biological systems is concerned, in the liter-
ature we can find both qualitative and quantitative ap-
proaches. To express the qualitative nature of dynamics,
the most used formalisms are Thomas’ discrete models
[28], Petri nets [29], p-calculus [30], bio-ambients [31],
and reaction rules [32]. To capture the dynamics from a
quantitative point of view, ordinary or stochastic differ-

ential equations are often used. More recent approaches
include hybrid Petri nets [33] and hybrid automata [34],
stochastic p-calculus [35], and rule-based languages with
continuous/stochastic dynamics such as Kappa [36]. Rel-
evant properties concerning the obtained models are then
often expressed using a formalism called temporal logic
and verified thanks to model checkers such as NuSMV
[37] or PRISM [38].

Concerning the theorem proving approach, in [39] the
authors propose the use of modal linear logic as a uni-
fied framework to encode both biological systems and
temporal properties of their dynamic behavior. They fo-
cus on a model of the P53/Mdm2 DNA-damage repair
mechanism and they prove some desired properties us-
ing theorem proving techniques. In [40], the Coq Proof
Assistant is exploited to prove two theorems linking the
topology and the dynamics of gene regulatory networks.
In [41], the authors advocate the use of higher-order logic
to formalize reaction kinetics and exploit the HOL Light
theorem prover to verify some reaction-based models of
biological networks. Finally, the Porgy system is intro-
duced in [42]. Tt is a visual environment which allows
modeling of biochemical systems as rule-based models.
Rewriting strategies are used to choose the rules to be
applied.

As far as neuronal networks are concerned, their mod-
eling is classified into three generations in the literature
[43, 44]. First generation models, based on McCulloch-
Pitts neurons [10] as computational units, handle dis-
crete inputs and outputs. Their computational units
consist of a set of logic gates with a threshold activa-
tion function. Second generation models, whose most
representative example is the multi-layer perceptron [45],
exploit real valued activation functions. These networks,
whose real-valued outputs represent neuron firing rates,
are widely used in the domain of artificial intelligence.
Third generation networks, also called spiking neural net-
works [44], are characterized by the relevance of time as-
pects. Precise spike firing times are taken into account.
Furthermore, they consider not only current input spikes
but also past ones (temporal summation). In [46], spik-
ing neural networks are classified with respect to their
biophysical plausibility, that is, the number of behav-
iors (i.e., typical responses to an input pattern) they can
reproduce. Among these models, the Hodgkin-Huxley
model [47] is the one able to reproduce most behaviors.
However, its simulation process is very expensive even
for a few neurons and for a small amount of time. In
this work, we choose to use the leaky integrate and fire
(LI&F) model [48], a computationally efficient approxi-
mation of a single-compartment model, which proves to
be amenable to formal verification.

In addition to the works reviewed in this paper
[6, 7, 8], there are a few attempts at giving formal mod-
els for spiking neural networks in the literature. In [49],
a mapping of spiking neural P systems into timed au-



tomata is proposed. In that work, the dynamics of neu-
rons are expressed in terms of evolution rules and dura-
tions are given in terms of the number of rules applied.
Timed automata are also exploited in [50] to model LI&F
networks. This modeling is substantially different from
the one proposed in [49] because an explicit notion of
duration of activities is given. Such a model is formally
validated against some crucial properties defined as tem-
poral logic formulas and is then exploited to find an as-
signment for the synaptic weights of neural networks so
that they can reproduce a given behavior.

3 Discrete Leaky Integrate and Fire
Model

In this section, we introduce a discrete (Boolean) ver-
sion of LI&F modeling. We first present the basic bio-
logical knowledge associated to the modeled phenomena
and then we detail the adopted model.

When a neuron receives a signal at one of its synaptic
connections, it produces an excitatory or an inhibitory
post-synaptic potential (PSP) caused by the opening of
selective ion channels according to the post-synaptic re-
ceptor nature. An inflow of cations in the cell leads to an
activation; an inflow of anions in the cell corresponds to
an inhibition. This local ions flow modify the membrane
potential either through a depolarization (excitation) or
a hyperpolarization (inhibition). Such variations of the
membrane potential are progressively transmitted to the
rest of the cell. The potential difference is called mem-
brane potential. In general, several to many excitations
are necessary for the membrane potential of the post-
synaptic neuron to exceed its depolarization threshold,
and thus to emit an action potential at its axon hillock
to transmit the signal to other neurons.

Two phenomena allow the cell to exceed its depolariza-
tion threshold: the spatial summation and the temporal
summation [51]. Spatial summation allows to sum the
PSPs produced at different areas of the membrane. Tem-
poral summation allows to sum the PSPs produced dur-
ing a finite time window. This summation can be done
thanks to a property of the membrane that behaves like
a capacitor and can locally store some electrical loads
(capacitive property).

The neuron membrane, due to the presence of leakage
channels, is not a perfect conductor and capacitor and
can be compared to a resistor inside an electrical circuit.
Thus, the range of the PSPs decreases with time and
space (resistivity of the membrane).

A LI&F neuron network is represented with a
weighted directed graph where each node stands for a
neuron soma and each edge stands for a synaptic con-
nection between two neurons. The associated weight for
each edge is an indicator of the weight of the connec-
tion on the receiving neuron: a positive (resp. negative)

weight is an activation (resp. inhibition).

The depolarization threshold of each neuron is mod-
eled via the firing threshold T, which is a numerical value
that the neuron membrane potential p shall exceed at a
given time ¢ to emit an action potential, or spike, at the
time ¢ + 1.

The membrane resistivity is symbolized with a numer-
ical coefficient called the leak factor r, which allows to
decrease the range of a PSP over time.

Spatial summation is implicitly taken into account.
In our model, a neuron u is connected to another neuron
v via a single synaptic connection of weight w,,. This
connection represents the entirety of the shared connec-
tions between u and v. Spatial summation is also more
explicitly taken into account with the fact that, at each
instant, the neuron sums each signal received from each
input neuron. The temporal summation is done through
a sliding integration window of length o for each neuron
to sum all PSPs. Older PSPs are decreased by the leak
factor r. This way, the biological properties of the neu-
ron are respected and the computational load remains
limited. This allows us to obtain finite state sets, and
thus to easily apply model checking techniques.

More formally, the following definition can be given:

Definition 1 Boolean Spiking Integrate and Fire
Neural Network. A spiking Boolean integrate and fire
neural network is a tuple (V, E, w), where:
e V' are Boolean spiking integrate and fire neurons,
e ECV xV are synapses,
e w:E — Qn[-1,1] is the synapse weight function
associating to each synapse (u, v) a weight Wy,.

A spiking Boolean integrate and fire neuron is a tuple
(1,7,p,y), where:

e 7 € QT is the firing threshold,

e r€QnNJ0,1] is the leak factor,

e p: N — Q is the [membrane| potential function
defined as

b S, i)
PUTASE i ait) +r-p(t = 1), otherwise

where p(0) = 0, m is the number of inputs of the
neuron, w; s the weight of the synapse connect-
ing the it" input neuron to the current neuron, and
x;(t) € {0,1} is the signal received at the time t
by the neuron through its it" input synapse (observe
that, after the potential exceeds its threshold, it is
reset to 0),

e y: N — {0,1} is the neuron output function, defined

v fp()
1 afpt) =T
y(t) = {0 otherwise.

(for the Lustre implementation, we sety =1 if
p(t—1) > 7 in order to prevent neurons from receiv-
ing and emitting signals at the same time unit.)



The development of the recursive equation for the mem-
brane potential function and the introduction of a sliding
time window of length o lead to the following equation
for p (when p(t—1) < 7): p(t) = >0 o7 e wi-zi(t—
e), where e represents the time elapsed until the current
one.

4 The Basic Archetypes

The six basic archetypes we study are the following
ones (see Fig. 1). These archetypes can be coupled to
potentially constitute a bigger one.

e Simple series is a sequence of neurons where each
element of the chain receives as input the output of
the preceding one.

e Series with multiple outputs is a series where,
at each time unit, we are interested in knowing the
outputs of all the neurons (i.e., all the neurons are
considered as output ones).

e Parallel composition is a set of neurons receiving
as input the output of a given neuron.

e Negative loop is a loop consisting of two neurons:
the first neuron activates the second one while the
latter inhibits the former.

e Inhibition of a behavior consists of two neurons,
the first one inhibiting the second one.

e Contralateral inhibition consists of two or more
neurons, each one inhibiting the other ones.

~ -~

(a) Simple series

-

(b) Series with multiple outputs

S2

(d) Negative loop
e
s

(f) Contralateral inhibition

(c) Parallel composition

@@9

(e) Inhibition of a behavior

Fig. 1 The basic neuronal archetypes.

5 The synchronous language Lustre and

Model Checking

As explained in Section 1, we adopt the synchronous
language Lustre [17] to describe neuronal behaviors with
a declarative modeling approach. Such a programming
language is based on the synchronicity hypothesis, which
is characterized by the concept of logical time. Lustre
considers time as a sorted discrete flow of signals. At
each time unit (clock value), systems react to inputs and
generate outputs at the same instant. A Lustre code
displays time dependencies between signals and explains
them thanks to a set of equations. This mechanism al-
lows to express time as an infinite sequence of (natural)
values. A Lustre program behaves as a cyclic system:
all the present variables take their nth value at the nth
execution step.

The basic structure of a Lustre program is the node.
In a Lustre node, equations, expressions, and assertions
are used to express output variable sequences of val-
ues from input variable sequences. Variables are typed:
types can be either basic (Boolean, integer, real), or com-
plex (structure or vector). Complex types are defined by
the user. Usual operators over basic types exist: +, -,

.; and, or, not; if then else. These data oper-
ators only work with variables sharing the same clock.
The result shares the same clock too. Furthermore, Lus-
tre disposes of two main temporal operators to handle
logical time represented by clocks. These operators are
pre and —:

e pre (for previous) reacts as a memory: if
(1,62, ey €ny ... ) is the flow E, pre(E) is the flow
(nil,e1, e, ...;n,...), where nil is the undefined
value denoting uninitialized memory.

e — (meaning “followed by”) is used with the pre
operator and prevents from having uninitialized

memory: let E = (ej,e2,..., €,,...) and F =
(f1,f2y--+s fny.-.) be two flows, then E—F is the
expression

(617f27"',fn?"‘)‘

Equations define output variables in nodes. Moreover,
assertions can be exploited to force variable values. As-
sertions allow to take the environment into account by
making assumptions which consist in boolean expres-
sions. These expressions must always be true. For in-
stance, the assertion:
assert (true — (not x) or (pre(mot x))) saysthat
in the value sequence of =, no two consecutive true exist.
Lustre is a unifying framework: one the one side, it
allows to model reactive systems, on the other side it
gives the possibility to express some temporal properties
concerning the modeled systems. These properties are
written as Lustre nodes called observers [18], which ver-
ify the outputs of the program under verification for each
possible instant, and return true if the encoded behav-
ior is satisfied, false otherwise. The tool kind2 [23, 24]



allows to make automatic verifications. We have chosen
it for its compatibility with the Lustre syntax and for
its efficiency compared to other model checkers such as
Lesar [19] and Nbac [20]. If the given property is not
true for all possible input variable values, then kind2
gives a counterexample, which consists in an execution
trace leading to the violation of the property.

6 Encoding Neuronal Archetypes and
Temporal Properties in Lustre

Lustre allows to easily model and encode neuron be-
haviors. An input matrix (mem) is used to record present
and past received signals. For each instant, the leftmost
column of this matrix stores the (weighted) current in-
puts and, for the other columns, values are defined as
follows: (i) they are equal to 0 at the first instant (ini-
tialization) and (ii) for all the next instants, they are
reset to 0 in case of spike emission at the previous in-
stant and they take the preceding time unit value of their
own left column (for the corresponding row) otherwise.
This process implements a sliding time window and is
encoded with the pre operator. Such an input matrix
is multiplied, at each instant, by a vector of remaining
coefficients (rvector) and, whenever the firing thresh-
old is reached, a spike is emitted (at the next time unit).
The code defining a Lustre neuron with one input data
stream is given below:

node neuron (X: bool; w:int) returns(Spike: bool);
var threshold, V: int;
rvector: int~5;
mem: int~5;
localS: bool;
let
threshold=105;
rvector[0..4]=[10,5,3,2,1];
V=mem [0] *rvector [0] +mem[1] *rvector [1]+
mem [2] *rvector [2] +mem [3] *rvector [3]+
mem[4] *xrvector[4];
localS=(V>=threshold);
mem[0]=if X then w else O0;
mem[1..4]1=[0,0,0,0]->if pre(localS) then O
else pre(mem[0..3]);
Spike= false -> pre(localS);
-- reaction at the next instant
tel

All the values are multiplied by ten in order to work in
fixed point precision, and thus have better model check-
ing performances. Notice that all the constants of this
Lustre node can be given as parameters as follows:

node neuron (X: bool; w, threshold: int;
rvector: int~5)

returns (Spike: bool);

Lustre is a modular language and, thanks to this feature,
archetypes can be directly encoded from basic neurons.

In the rest of the section, we focus on relevant proper-
ties of neurons and archetypes (we use 1 to denote true
and 0 to denote false).

6.1 Single Neuron

Firstly, we concentrate on single neuron behaviors.
Whatever the parameters of a neuron are (input synaptic
weights, firing threshold, leak factor, length of the inte-
gration window), it can only behave in one of the two
following ways: (i) the sum of the current entries (multi-
plied by their weights) allows to reach the threshold (and
thus, for each time units when the neuron gets enough
input signals, it emits a spike at the next instant), or (ii)
several time units are required to overtake the thresh-
old. More formally, given a neuron with a unique input,
property 1 has been checked thanks to kind2:

Property 1 [Single neuron.] Given a neuron receiv-

ing an input flow on the alphabet {0,1}, it can only ex-

press one of the two exclusive following behaviors:

Delayer effect. It emits a 0 followed by a flow identical
to the input.

Filter effect. It emits at least two occurrences of 0 at
the beginning and can mever emit two consecutive
occurrences of 1.

From a biological point of view, in the first case (delayer)
we can speak of instantaneous integrator and in the sec-
ond case (filter) of long time integrator. In the case of a
delayer, the neuron just emits a sequence identical to the
input one, with a delay of one time unit. In the case of a
filter, the neuron only transmits one signal out of z (1/z
filter). Note that if the neuron is not able to overtake its
threshold (wall effect), we have a limit case of the filter
effect. The Lustre observer of property 1, consisting of
an exclusive conjunction between a delayer and a filter,
is given in the code below.

node delayer (X: bool; w: int) returns(OK: bool);
var
SX, Out, S1, verif, preverif: bool;
let
Out = neuron(X, w);
S1 = true -> QOut;
SX = false -> pre(X);
verif = true->if SX then S1 else false;
preverif = true->pre(verif);
0K = if preverif and verif then true else false;
tel

node filter (X: bool; w: int) returns(OK:
var
Out: bool;
let
Out = neuron(X,w);
0K =true -> if Out then not pre(Out)
else not Out;

bool) ;

tel



node propl (X: bool; w: int) returns (OK: bool);
var
S1,S2, Verif: bool;

let
S1 = delayer(X, w);
S2 = filter(X, w);
Verif = S1 XOR S2;

0K = confirm_property_2_ticks(X) or Verif;
tel

6.2 Simple Series (see Fig. 1(a))

A simple series of length n behaves according to the neu-
rons composing it. There are two cases: (i) the series
contains n delayers (and in this case it acts as a delayer
of n time units), or (ii) it contains at least one filter (it
thus shows a n-delayer effect composed of a filter effect).
More formally, the following property can be given:

Property 2 [n-delayer or n-delayer/filter.] Given
a series of length n receiving an input flow on the alpha-
bet {0,1}, it can only express one of the two exclusive
following behaviors:

n-delayer effect. It emits a sequence of 0 of length n
followed by a flow identical to the input one.

n-delayer /filter effect. It emits a sequence of 0 of
length at least n + 1 and can never emit two con-
secutive 1.

A consequence of property 2 is that a simple series
cannot constitute a permanent signal, e.g., if it receives
an oscillatory signal as input, it is not able to emit a
sequence of 1 as output. We can also point out that
filter neurons do not commute in a simple series. For
instance, if in a series of two neurons a 1/2 filter (that is,
a neuron emitting a 1 every two instants when receiving
a sequence of 1) precedes a 1/3 filter, the result is a 1/6
filter. If the two neurons are inverted, the result is a
wall effect (no signals are emitted). In order to avoid
wall effects, the most selective neurons should thus be
the first ones.

6.3 Series with Multiple Outputs (see Fig. 1(b))

In a series with multiple outputs, the emission of each
neuron depends by the emissions of the preceding neu-
rons. Furthermore, the following property is valid:

Property 3 [Exclusive temporal activation in a
series with multiples outputs.] When a series of n
delayers with multiples outputs receives the output of a
1/n filter, only one neuron at a time overtakes its thresh-
old (and thus emits a spike).

As a consequence, in the configuration of Property 3 two
neurons can not emit at the same time.

6.4 Parallel Composition (see Fig. 1(c))

As far as the parallel composition is concerned, the num-
ber of spikes emitted in parallel at each instant is in
between a given interval, whose upper bound is not nec-
essarily the number of neurons in parallel (because, even
if each single neuron has the capability to emit, the par-
allel neurons can be unsynchronized, that is, not able to
emit simultaneously).
Moreover, the following relevant property holds:

Property 4 [Parallel composition of n filters.]
Given a parallel composition with a delayer connected
to n filters of different selectivity connected to the same
delayer, it is possible to emit as output a sequence of 1
of length k, with k > n.

To have a sequence of 1 of length k, the key idea is to
take the parallel composition of n filters of different se-
lectivity 1/X;, where i € {1,.,n} and Xi,...,X,, is the
set of prime numbers in between 2 and k. Moreover,
the parallel composition can be exploited to constitute a
permanent signal from a not permanent one.

6.5 Negative Loop (see Fig. 1(d))

If, without considering the inhibiting edge, the two neu-
rons of a negative loop operate as delayers, then the two
neurons show an oscillatory output behavior (provided
that a permanent signal is injected in the archetype).
More precisely, the following property is verified:

Property 5 [Oscillation in a negative loop.] Given
a negative loop composed of two delayers, when a se-
quence of 1 is given as input, the activator neuron oscil-
lates with a pattern of the form 1100 (and the inhibitor
expresses the same behavior delayed of one time unit).

6.6 Inhibition of a Behavior (see Fig. 1(e))

For a large class of neuron parameters (that is, firing
threshold, leak factor, and length of the integration win-
dow), property 6 holds:

Property 6 [Fixed point inhibition.] Given an in-
hibition archetype, if a sequence of 1 is given as input,
at a certain time the inhibited neuron can only emit 0
values.

6.7 Contralateral Inhibition (see Fig. 1(f))

It has been shown that there is a set of neuron parame-
ters for which the following behavior can be observed.

Property 7 [Winner takes all in a contralateral
inhibition.] Given a contralateral inhibition archetype
with two or more neurons, if a sequence of 1 is given as
iput, starting from a given time one neuron is activated
and the other ones are inhibited.



The intuition is that the most excited neuron becomes
the most inhibitory one, and even if it is itself inhibited,
it necessarily is less than its neighbors.

Some additional properties related to the different
archetypes can be found in [52]. We are currently study-
ing some supplementary archetypes such as the positive
loop, where a first neuron activates a second neuron,
which in turn activates the former one. While the nega-
tive loop is very frequent and allows to regulate systems,
the negative loop is less frequent. On one hand, it allows
to extend signals in time, on the other hand it can pro-
voke a chain reaction where the system activates itself
up to reaching its maximum, without having the capa-
bility of leaving it. It is interesting to find the conditions
under which this phenomenon can be observed.

7 Archetype Coupling in Lustre

Two archetypes can be coupled in the following ways:
(i) by connecting the output(s) of one archetype to the
input(s) of the other one, that is, by making a concate-
nation, (ii) by nesting one archetype within the other
one. In this section we introduce some representative
couplings among the ones we treated. In the following
figures, these acronyms are used: A for activator, I for
inhibitor, D for delayer, F for filter, G for pattern gen-
erator, S for series, and C for collector.

7.8 Simple Series within Negative Loop

We start considering a series of n delayers nested be-
tween the activator and the inhibitor of a negative loop,
as illustrated in Figure 2. We remind that, when a se-
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Fig. 2 Series of n delayers nested between the activator and the
inhibitor of a negative loop.

quence of 1 is injected in the negative loop archetype,
an oscillating output of the form 1100 is produced (see
Property 5). The addition of the series involves an aug-
mentation of the oscillation period, which passes from 2
to n. More precisely, the following property holds:

Property 8 [Oscillation period extension.| Given
a stmple series of delayers of length n within a negative
loop, if a sequence of 1 is given as input, the output of

the activator is of the form : 0(1"T20"*2)~ (we recall
that ¥ denotes the repetition of x for y time units and
x¥ denotes the infinite repetition of x.)

7.9 Concatenation of Simple Series and Negative Loop

We consider now a series of n delayers preceding a neg-
ative loop, as illustrated in Figure 3. In this case, the
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Fig. 3 Series of n delayers connected to the activator of a negative
loop.

oscillation period is not modified but the beginning of
the oscillation is delayed. More in detail:

Property 9 [Oscillation delay.] Given a simple se-
ries of delayers of length n connected to the activator of
a negative loop, if a sequence of 1 is given as input, the
output of the activator is of the form : 0™(1100)%.

As a next step, it is important to identify all the in-
put patterns of the negative loop producing an oscilla-
tory trend output. Since the simple series is only able
to transmit or filter signals (see Property 2), in the next
subsection we present a neuron combination which is able
to produce all the patterns of a fixed length on the al-
phabet {0,1}.

7.10 Concatenation of Periodic Pattern Generator and
Negative Loop

Let us consider the system which is graphically depicted
in Figure 4. As input of the system, a sequence of 1 is
received by a 1/n filter connected to a series of n de-
layers with multiple outputs, which is then connected to
a collector delayer neuron. One can choose to activate
or deactivate each one of the edges linking the neurons
of the series to the collector. We could prove that this
system can generate all the patterns of length n on the al-
phabet {0, 1}. To get the different patterns, the intuition
is to play with the activation/deactivation combinations
of the edges connecting the neurons of the series to the
collector neuron.
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Fig. 4 Generator of periodic patterns based on a series with mul-
tiple outputs.

Another example of pattern generator is illustrated in
Figure 5.
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Fig. 5 Generator of periodic patterns based on a parallel com-
position.

In this system, a 1/n filter is connected to n simple
series of delayers, of increasing length from 1 to n. The
edges linking the filter to the series can be activated or
deactivated (the key idea is that the activation of the
series of length z allows the emission of a 1 in the z-
position of the pattern). While the first generator has a
number of nodes and edges which is linear with respect
to the length of the pattern to generate, in the second
generator the number of nodes and edges is quadratic.
For this reason, we employ the first generator for our
studies.
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Fig. 6 Generator of periodic patterns connected to the activator
of a negative loop.

For different values of n, we connected the pattern
generator to the input of the negative loop (see Figure
6) and we retrieved all the patterns able to produce os-
cillations. We take into account not only strict Square
Oscillations, where the number of 1 equals the number
of 0, but also Pulse Wave Modulations with a ratio of
almost fifty percent (where the difference between the
consecutive number of 1 and the consecutive number of
0 is at most 2).

For instance, for n = 5, the pattern 11001 generates
oscillations of the form 11000 as output of the negative

B

loop (we recall that a simple series getting a sequence of
1 as input cannot emit a pattern of the form 11001).

7.11 Series within Contralateral Inhibition

In this subsection we study the integration of a simple
series of n delayers within a two neurons contralateral
inhibition to defer the inhibition of the losing neuron. At
this purpose, we use a first neuron N7 acting as a delayer
(if inhibitions are neglected) connected to a simple series
Sy, of n delayers, which inhibits a second neuron Ns. The
second neuron (which is a delayer too) inhibits N; and
the second inhibition is weaker than the first one (see
Figure 7).
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Fig. 7 Series of n delayers within a contralateral inhibition of
two neurons.

The goal is to understand how the winner takes all
behavior (see Property 7) is affected when the inhibition
of the loser neuron is deferred. We verify that, for several
inhibitor edge weights, the delayer series introduction
makes the system stabilize later. Furthermore, as shown
Figure 8, the stabilization is preceded by n + 1 damped
oscillations of period n + 2.
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Fig. 8 Output of N1 and N2 for a simple series of n = 6 delayers
nested in a two neurons contralateral inhibition (see Figure 7).

The first oscillation of N7 consists of one 1 and a num-
ber of 0 equal to n + 1. For each subsequent oscillation,
the number of 1 (resp. of 0) increases (resp. decreases)
of one unit. After its last oscillation, N7 emits an infinite
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sequence of 1. The behavior of Ny is symmetric (its first
oscillation is composed of one 0 and n + 1 occurrences of
1).

The following property has been modeled as a Lustre
observer and proved for multiple inhibitor edge weights:

Property 10 [Winner takes all delay.] Let us con-
sider a delayer neuron N1 connected to a series of n de-
layers Sy, inhibiting a delayer neuron N, which in turn
inhibits N1. The edge inhibiting No has a higher abso-
lute value than the one inhibiting N1. Let us suppose a
sequence of 1 is given as input of the archetype composi-
tion. When N7 emits a sequence of 1 as long as the first
sequence of 1 emitted by No, then, after the emission of
a 0 by N1, N1 (resp. Nz) only emils a sequence of 1
(resp. 0).
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Fig. 9 \Verification of the winner takes all behavior for the differ-
ent values of the inhibiting weights of the two neurons in a simple
contralateral inhibition.
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Fig. 10 Verification of the winner takes all behavior for the dif-
ferent values of the inhibiting weights of the two neurons in a con-
tralateral inhibition with two neurons and the insertion of one sin-
gle delayer.

The two diagrams of Figure 9 and Figure 10 allow to

make the behavioral comparison between a two neuron
contralateral inhibition and the same archetype equipped
with a single delayer. In both plots, the y-axis (resp. x-
axis) represents the weight of the edge inhibiting the first
(resp. second) neuron. Blue (resp. red) points represent
pairs of weight values for which the stabilization is (resp.
is not) reached within the first four time units. We can
identify that, passing from the first (Figure 9) to the sec-
ond diagram (Figure 10), the red zone (non satisfaction
of the winner takes all property) increases. Moreover,
the growth of the red zone is asymmetric, which reflects
the asymmetry of the archetype composition. Contrary
to what is expected, the neuron proved to win more of-
ten within the first four time units is the one preceding
the delayer series (even if its output inhibitor signal is
delayed of one time unit).

Notice that the current observers we propose deal with
infinite values but cannot cover the whole parameter
space. In the future, we intend to define more subtle
observers to improve the space covering. For instance,
we plan to prove the stability (or the linear growth?) of
the red regions of Figure 9.

7.12 Concatenation of Pattern Generator and Inhibi-
tion

As last representative example, we propose to concate-
nate the pattern generator with the inhibition archetype
(see Figure 11).

A
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Fig. 11 Pattern generator followed by inhibition
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Fig. 12 Classes of maximal inhibitory weights allowing the in-
hibition behavior. The orange color corresponds to palindrome
patterns (Pal), the blue color corresponds to patterns whose twin
is in the same class (PaC), and the yellow color stands for patterns
whose twin falls in another class (PaS).

As a first step, we kept the neuron parameters and
edge weights obtained for the inhibition archetype alone,
and searched for the input patterns able to entail the de-
sired behavior (that is, starting from a given time, the
inhibited neuron stops emitting spikes, see Property 6).
With the previous parameters, the permanent sequence
of 1 is the only pattern allowing to get the given behav-
ior. We then succeeded in finding other patterns giving
the inhibition property when the weight of the inhibiting
edge is strengthened. We checked the property for ev-
ery pattern of length n < 8. Patterns are classified with
respect to the maximal inhibitor edge weight allowing
to obtain the given behavior (histogram of Figure 12).
We can see that, if a given pattern is not a palindrome
(that is, its reading from the left to the right and from
the right to the left is different), it necessarily has a twin
pattern (which is obtained by scanning the given pattern
from the right to the left, and is different from the given
pattern). There are several cases in which a pattern and
its twin are not in the same weight class. For instance,
for n = 7, the pattern 0110100 and his twin 0010110 are
in two different (neighbor) classes. We can deduce that
in a pattern, the number of zeros and ones is not the
only important feature: the way zeros are interleaved by
ones is relevant.

8 The Coq Proof Assistant

In this section, we introduce the main Coq features
we exploit for neural network modeling. Additional in-
formation on Coq can be found in [25, 53|. The full im-
plementation of our model along with the properties and
their proofs described in this section, the next section,
and the appendix are available at

http:
//www.site.uottawa.ca/“afelty/coq-archetypes/
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Coq is a formal proof management system that
implements the Calculus of Inductive Constructions
[54], which is an expressive higher-order logic [55].
Such a system allows users to formalize and prove
properties in this logic. Expressions in the logic include
a functional programming language. Such a language is
typed (every Coq expression has a type). For instance,
X:nat says that variable X takes its value in the domain
of natural numbers. The types we employ in our
model include nat, Q, bool, and list which denote
natural numbers, rational numbers, booleans, and lists
of elements respectively. These types are available in
Coq’s standard libraries. All the elements of a list must
have the same type. For example, L:1ist nat expresses
that L is a list of natural numbers. An empty list is
denoted by [] or nil in Coq. Functions are the basic
components of functional programming languages. The
general form of a Coq function is given below.

Definition/Fixpoint Function Name

(Inputqi: Type of Inputy) ...

(Input,: Type of Input,): Output Type :=
Body of the function.

The Coq keywords Definition and Fixpoint are
used to define non-recursive and recursive functions,
respectively. These keywords are followed by the func-
tion name. After the function name, there are the input
arguments and their corresponding types. Inputs having
the same type can be grouped. For instance, (X Y Z:
Q) states all variables X, Y, and Z are rational numbers.
Inputs are followed by a colon, which is followed by
the output type of the function. Finally, there is a
Coq expression representing the body of the function,
followed by a dot.

In Coq, pattern matching is exploited to perform case
analysis. This useful feature is used, for instance, in re-
cursive functions, for discriminating between base cases
and recursive cases. For example, it is employed to dis-
tinguish between empty and nonempty lists. A non-
empty list consists of the first element of the list (the
head), followed by a double colon, followed by the rest of
the list (the ¢ail). The tail of a list itself is a list and its
elements have the same type as the head element. For
instance, let L be the list (5::2::9::nil) containing
three natural numbers. In Coq, the list L can also be
written as [5;2;9], where the head is 5 and the tail is
[2;9]. Thus, non-empty lists in Coq often follow the
general pattern (h::t). In addition, there are two func-
tions in Coq library called hd and t1 that return the head
and the tail of a list, respectively. For example, (hd d
1) returns the head of the list 1. Here, d is a default
value returned if 1 is an empty list and thus does not
have a head. Also, (t1 1) returns the tail of the list 1
and returns nil if there is no tail.

Another Coq data type is natural numbers. A
natural number is either 0 or the successor of another
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natural number, written (S n), where n is a natural
number. For instance, 1 is represented as (S 0), 2
as (8 (S 0)), etc. In the code below, some patterns
for lists and natural numbers are shown using Coq’s
match...with...end pattern matching construct.

match X with

| 0 = calculate something when X = 0

| S n = calculate something when X is successor of n
end

match L with

| [0 = calculate something when L is an empty list

| h::t = calculate something when L has head h
followed by tail t

end

In addition to the data types that are defined in
Coq libraries, new data types can be introduced. One
way to do so is using Coq’s facility for defining records.
Records can have different fields with different types.
For instance, we can define a record with three fields
Fieldnat, FieldQ, and ListField, which have types
natural number, rational number, and list of natural
numbers, respectively. Fields in Coq records can also
represent constraints on other fields. For instance, field
CR in the code below states that field Fieldnat must be
greater than 7. The Coq syntax for the definition of the
full record is shown in the code below.

Record Sample_Record
Fieldnat: nat;
FieldQ: Q;
ListField: list nat;
CR: Fieldnat > 7 7.

:= MakeSample {

S: Sample_Record

A record is a type like any other type, and so for example,
variables can have the new record type. Variable S with
type Sample_Record is an example. When a variable of
this record type gets a value, all the constraints in the
record have to be satisfied. For example, Fieldnat of S
cannot be less than or equal to 7.

9 Encoding Neurons and Archetypes in
Coq

We start illustrating our formalization of neural net-
works in Coq with the code below.

Record Neuron := MakeNeuron {
Output:list nat;
Weights:1list Q;
Leak_Factor:Q;
Tau:Q;
Current:Q;
Output_Bin: Bin_List Output;
LeakRange: Qle_bool O Leak_Factor true /\
Qle_bool Leak_Factor 1 = true;

PosTau: Qlt_bool O Tau = true;
WRange: WeightInRange Weights = true }.

Fixpoint potential (Weights: list Q)
(Inputs: list nat): Q :=
match Weights, Inputs with
| nil, _ => 0
| _, nil => 0
| hi::t1, h2::t2 => if (beq_nat h2 O%nat)
then (potential t1 t2)
else (potential t1 t2) + hi
end.

To define a neuron, we use the Coq record structure.
This record consists of five fields with their correspond-
ing types, and four fields representing constraints that
the first five fields must satisfy according to the LI&F
model defined in Section 3. A neuron output (Output)
is represented as a list of natural numbers, with one entry
for each time step. The weights linked to the inputs of
the neuron (Weights) are stored in a list of rational num-
bers (one for each input in some fixed order). The leak
factor (Leak_Factor), the firing threshold (Tau), and
the most recent neuron membrane potential (Current)
are rational numbers. As far as the four conditions are
concerned, PosTau states that Tau must be positive (i.e.,
Qlt_bool 0 Tau = true is the Coq representation for
0 < 7, which encodes the condition 7 € QT from Defini-
tion 1). Q1t_bool and other arithmetic operators can be
found in Coq’s rational number library. The other three
conditions state, respectively, that Output contains only
0s and 1s (it is a binary list), Leak_Factor is between 0
and 1 inclusive, and each input weight is in the interval [-
1, 1]. We do not provide the definitions of Bin_List and
WeightInRange used in these statements. The reader
can consult the accompanying Coq code for details.

For each neuron N, we write (Output N) to denote
its first field, and similarly for the other fields. To
define a new neuron with values 0, W, L, T, and C
with the suitable types, and proofs P1,..., P4 of the
four constraints, we write (MakeNeuron 0 W L. T C P1
P2 P3 P4).

The next definition in the above code computes the
weighted sum of the inputs of a neuron, which is fun-
damental for the calculation of the potential function of
a neuron (see Definition 1). In this recursive function,
there are two arguments: Weights, which represents
some number m of weights wy,...,w,,, and Inputs,
which represents m inputs x1,...,z,,. The function re-
turns an element of type Q. Its definition employs pattern
matching on both inputs at the same time. In the body of
the definition there are booleans, the if statement, and
the equality operator on natural numbers (beq_nat),
all from Coq’s standard libraries. Natural number con-
stants, such as 0%nat above, are given with their types
to differentiate them from rational number constants,
whose types are omitted. Although, the potential func-



tion is always called with two lists of the same length,
Coq requires functions to be total; if two lists have dif-
ferent length, we return a “default” value of 0 in the base
case. Furthermore, when this function is called, Inputs,
which is the second argument of the function, must be a
binary list (that is, it can only contain the natural num-
bers 0 and 1). Thus, when the head of the list h2 is 0,
we do not need to add anything to the final sum because
anything multiplied by 0 is 0. In such a case, we just call
the function recursively on the remaining weights and
inputs t1 and t2, respectively. On the other hand, if h2
is 1, we add hi1, the head of Weights, to the final sum,
which is the recursive call on t1 and t2. We need to
implement the potential function in this way because h1
and h2 cannot be multiplied in Coq because they have
different types. Recall that hi is a rational number and
h2 is a natural number.

The following code illustrates the NextPotential
function, which computes p(¢) from Definition 1.

Definition NextPotential
(N: Neuron) (Inputs: list nat): Q :=
if (Qle_bool (Tau N) (Current N))
then (potential (Weights N) Inputs)
else (potential (Weights N) Inputs) +
(Leak_Factor N) * (Current N).

Recall that (Current N) is the most recent potential
value of the neuron, which is p(t — 1) in Definition
1. (Qle_bool (Tau N) (Current N)) represents 7 <
p(t — 1), and we use the potential function defined be-
fore to compute the weighted sum of the neuron inputs.
Finally, the last line computes r - p(t — 1).

The following code gives two important definitions.

Definition NextOutput
(N: Neuron) (Inputs: list nat): nat :=
if (Qle_bool (Tau N) (NextPotential N Inputs))
then 1%nat
else OY%nat

Definition NextNeuron

(N: Neuron) (Inputs: list nat): Neuron :=

MakeNeuron
((NextOutput N Inputs)::(Output N))
(Weights N)
(Leak_Factor N)
(Tau N)
(NextPotential N Inputs)
(NextOutput_Bin_List N Inputs (Output_Bin N))
(LeakRange N)
(PosTau N)
(WRange N).

The first definition calculates the next output of
the neuron, which is y(t) in Definition 1. Re-
call that (NextPotential N Inputs) computes p(t).
The expression (Qle_bool (Tau N) (NextPotential
N Inputs)) thus encodes the constraint 7 < p(t).

13

In our model, the state of each neuron is represented
by the Output and Current fields. The Output field of
a neuron in the initial state is [0%nat], which repre-
sents a list containing one 0. The Current field denotes
the initial potential value, which is set to 0. A neuron
changes its state by processing its inputs. After treat-
ing a list of n inputs, the Output field becomes a list
of length n + 1 containing 0’s and 1’s, and the Current
field is set to the value of the potential after process-
ing these n inputs. A state change occurs by applying
the NextNeuron function reported in the above code to
a neuron and a list of inputs. We represent a neuron at
its later state by generating a new record with the new
values for OQutput and Current, and other values directly
copied over. We store the values in the Output field in
reverse order, which helps making proofs by induction
over lists easier in Coq. Thus, the most recent output of
the neuron is at the head of the list. This can be seen
in the above code, where the new value of the output
is ((NextOutput N Inputs)::(Output N)). The next
output of the neuron is at the head, and is followed
by the previous outputs. (NextPotential N Inputs)
is the new value for (Current N). Recall that (Current
N) is the most recent value of the potential value of the
neuron, or p(t —1). So, for computing the next potential
value of the neuron or p(t), the NextPotential function
must be called.

Proofs of the four constraints result from the new
values for each field of the neuron. The first one re-
quires a lemma NextOutput_Bin_List (statement omit-
ted) proving that the new longer list is (still) a binary
list. Proofs of the other three constraints are carried over
exactly from the original neuron, since they concern some
components of the neuron that remain unchanged.

The ResetNeuron function is employed to reinitialize
a neuron to the initial state.

Definition ResetNeuron
(N: Neuron): Neuron
([0%nat])

(Weights N)
(Leak_Factor N)
(Tau N)

0)
(Reset_Output)
(LeakRange N)
(PosTau N)
(WRange N).

:= MakeNeuron

This function takes any Neuron as input, and returns
a new one, where the Output, Current, and Output_Bin
fields are reset, while the other fields are unchanged. The
Reset_Output property is a simple lemma stating that
[0%nat] satisfies the Bin_List property.

So far, we have presented the encoding of single neu-
rons in isolation from other neurons. We next consider
archetypes. In general, our approach is to encode the
particular structure of each archetype as a Coq record.
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Using a record for each archetype facilitates stating and
proving properties about them. Recall that archetypes
are functional structures of neural networks. Defining
them in this abstract way helps us to present their basic
functions. To illustrate this approach, we introduce now
the encoding of two archetypes, the simple series in Fig-
ure 1(a) and the negative loop in Figure 1(d). As shown
in Figure 1(a), a simple series consists of a list of sin-
gle input neurons. The first neuron receives the input of
the archetype and sends its output to the second neuron.
Starting from the second neuron each neuron receives its
input from the previous neuron and sends its output as
the input of the next neuron in the series. The last neu-
ron produces the output of the series. The NeuronSeries
record defined below represents this structure in Coq.

Record NeuronSeries {Input: list nat} :=
MakeNeuronSeries

{
NeuronList: list Neuron;
NSOutput: list nat;
Allsingle: forall (N:Neuron),
In N NeuronList ->
(beg_nat (length (Weights N)) 1%nat) = true;
SeriesOutput: NSOutput =
(SeriesNetworkOutput Input NeuronList);

Records can have input parameters, similar to func-
tions in Coq, and here the list of inputs to the simple
series is Input: list nat. Thus NeuronSeries is ac-
tually a function from a list of natural numbers to a
record. Curly brackets around input arguments is Coq
notation for implicit arguments, which are arguments
that can be omitted from expressions as long as Coq
can figure out the missing information. Its use here al-
lows us to write more readable Coq code. NeuronList
is a field in the record representing the list of neu-
rons in the simple series. The first element in this list
is the first neuron is the series, etc. NSOutput repre-
sents the list of outputs of the series. In other words,
it is the output list of the last neuron in the series,
which is also the last neuron of NeuronList. There are
also two constraints for this archetype. AllSingle ex-
presses that all neurons in the series are single input
neurons. The functions In and length are defined in
Coq’s list library and define list membership and size
of a list, respectively. SeriesOutput expresses that the
output of the series is equal to the output of the func-
tion SeriesNetworkOutput. This function takes the in-
put of the series and list of neurons in the series and
produces the output of the series. We leave out its
definition and just note here that it expresses the de-
tails of the input/output connections between the ele-
ments of NeuronList, and in the degenerate case when
NeuronList is empty, NSOutput is set to the input. (See
the definition in our accompanying code.)

The Coq definition of the negative loop is shown be-
low.

Record NegativeLoop {Inputs: list nat} :=
MakeNegativeLoop {

N1: Neuron;

N2: Neuron;

NinputN1: (beq_nat (length (Weights N1)) 2Jnat)
= true;

NinputN2: (beq_nat (length (Weights N2)) 1%nat)
= true;

PWi: 0 < (hd O (Weights N1));

PW2: (hd 0 (t1 (Weights N1))) < 0;

PW3: 0 < (hd O (Weights N2));
Connectionl: Eq_Neuron2 N1
(AfterNArch2N1 (ResetNeuron N1)
(ResetNeuron N2)
Inputs);
Connection2: Eq_Neuron2 N2
(AfterNArch2N2 (ResetNeuron N1)
(ResetNeuron N2)
Inputs)

There are only two neurons in this archetype. These
neurons are represented by N1 and N2 in the definition.
The rest of the fields are constraints defining the prop-
erties and connections of the archetype. NinputN1 ex-
presses that N1 has two inputs. Similarly, NinputN2
states the number of inputs for N2. N2 is a single input
neuron. As mentioned earlier, in Figure 1(d), the solid
black circle for an input arrow means that the input has
a negative weight and the absence of this circle means
that the input has a positive weight. These properties
are expressed by constraints PW1 and PW2. In particular,
the first input acts as an activator for N1 and the sec-
ond one is an inhibitor for N1. PW3 expresses that the
only input of N2 has a positive weight and so is an ac-
tivator for N2. Connectionl defines the connection of
the output of N2 to the second input of N1 using the
AfterNArch2N1 function. This function returns a neu-
ron that represents the status of N1 after applying all
inputs in the input list. Again, we leave out the details
of the formal definition and refer the reader to the ac-
companying Coq code. We simply note here that in order
to compute this result, three arguments are required—
the initial status of N1, the initial status of N2, and the
list of inputs to the archetype. Similarly to the defi-
nition of NeuronSeries, Inputs is an argument of the
record NegativeLoop. The Eq_Neuron2 function (whose
definition is also omitted, see the code) checks equal-
ity of neurons by checking equality of each individual
field. Connection2 defines the connection of the output
of N1 to the only input of N2 and is defined similarly to
Connectionl. Connection?2 uses AfterNArch2N2, which
is the same as AfterNArch2N1 except that it returns N2



after applying all inputs in the input list.

10 Properties of Archetypes and their
Proofs in Coq

Some of the properties presented in Section 6 concern-
ing neuron and archetype behaviors have already been
fully verified in Coq. The most important ones are: the
delayer and filter effects for a single neuron (Property 1),
the n-delayer effect for a simple series (Property 2), and
fixed-point inhibition for an inhibition archetype (Prop-
erty 6). For illustration, we report on the Coq proofs of
the first two, plus provide one supplementary property.
We give their complete proofs to show the structure of
the main inductions as well as to show other high-level
mathematical proof strategies used in the proofs. Many
such strategies can be mapped to Coq proof commands
called tactics; some examples that can be seen in the
code include, induction, inversion, and destruct.

In the statement of the properties we present, we omit
the assumption that the input sequence of the neuron is
a binary list containing only Os and 1s. It is, of course,
taken into account in the Coq code. We adopt many
other conventions to enhance readability when stating
properties and presenting the corresponding proofs. We
state the properties using pretty-printed Coq syntax,
with some abbreviations for our own definitions. For
instance, we use mathematical fonts and conventions
for Coq text, e.g., (Output N) is written Output(N),
(Tau N) is written 7(N), (Weights N) is written w(N),
(Leak_Factor N) is written 7(N), and (Current N) is
written p(NN). In addition, if w(N) is a list of the form
[wi;...;wy] for some n > 0, for ¢ = 1,...,n, we often
write w;(N) to denote w;. Furthermore, we use notation
and operators from the Coq standard library for lists.
For example, length and + are list operators; the latter
is the notation used here for list concatenation. In ad-
dition, although for a neuron N, the list Output(N) is
encoded in reverse order in our Coq model, we use for-
ward order when presenting properties and proofs here.

10.13 The Delayer Effect for a Single-Input Neuron

Recall that the delayer effect of Property 1 of Subsection
1 concerns a single neuron having only one input. Since
a neuron is in an inactive state initially, its output at
time 0 is 0. When a neuron has only one input, and the
corresponding weight is greater than or equal to the neu-
ron activation threshold, then the neuron transfers the
input sequence to the output without any modification
(except for a “delay” of length 1). For example, if a single
input neuron receives 0100110101 as its input sequence,
it will produce 00100110101 as output. Neurons with
this property are mainly just transferring signals. Hu-
mans have some of this type of neuron in their auditory
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system, associated to a chemical synapse. This property
is formalized as Property 11.

Property 11 [Delayer effect for a single-input
neuronf

V(N : neuron)(input : list nat),
length(w(N)) =1Awi (N) > 7(N) —
Output(N') = [0] + input

In the above statement, N’ denotes the neuron ob-
tained by initializing N and then processing the in-
put (using ResetNeuron and repeated applications of
NextNeuron). Observe that in Definition 1, p is a func-
tion of time. Time in our Coq model corresponds to the
position in the output list. If Output(N) has length ¢,
then p(NN) stores p(t — 1) from Definition 1. By applying
NextNeuron to N and to the next input obtaining N’,
we obtain that Output(N’) has length ¢ + 1 and p(N”)
stores the value p(t) from Definition 1.

In order to prove Property 11, we require the follow-
ing lemma, which states that when a neuron has one
input and the input weight is greater than or equal to
the threshold, then the potential value of that neuron is
always non-negative.

Lemma 1

V(N : neuron)(input : list nat),
length(w(N)) =1Awi (N)>7(N) = p(N') >0

As previously explained, p(N’) is the most recent
value of the potential function of neuron N, i.e., the
one obtained after processing all the input values. The
proof of this lemma is in the accompanying Coq code.
We use it here to prove Property 11.

Proof 1 (of Property 11) The proof is by induction
on the length of the input sequence as follows.

Base case: input = || (the empty list). If there is no
mput in the input sequence, the neuron will keep its ini-
tial status, i.e., N = N'. So, Output(N') = [0]. There-
fore, Output(N') = [0] = [0] + [] = [0] + input.

Induction case: We assume that the property is true
for input and we must show that it holds for some input’
of the form (input + [h]) for some additional input value
h. Let N’ be the neuron resulting from processing input,
and let N” be the neuron after processing input’. By the
induction hypothesis, we know Output(N') = [0] + input
and we must prove that Output(N") = [0] + input’.

Note that T(N) = 7(N') = 7(N") and similar equali-
ties hold for r and wy, so we use them interchangeably.
Because input is a binary list, we know that h = 0 or
h = 1. We break the proof into two different cases, de-
pending on the value of h.

First, we assume that input’ = input + [0] and we
prove that Output(N"") = Output(N')+[0]. In this case,
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the most recent input to the neuron is 0. Again, to relate
this to Definition 1, let t be the time at which we process
the last input. We calculate p(N"'), which corresponds
to p(t), i.e., the potential value of the neuron at time t;
also the value p(N') represents p(t —1) in this definition.
Using the first and second clauses of the definition of
p(t), respectively, the value is one of:

p(N")y=wi (N')-0=0 or

p(N") =wi(N') -0+ r(N') - p(N').

In the first case, p(N") = 0 and we know 0 < 7(N),
because T(N) is always positive. So, by the second clause
of the definition of y(t), the next output of the neuron will
be 0. The other case, which comes from the second clause
of the definition of p(t), has the same result. In this case,
the condition on this clause says that p(N') < 7(N') and
we must show that p(N") =r(N')-p(N') < 7(N). Recall
that v(N'), the leak factor of the neuron, is between 0
and 1. So, multiplying any number, that is less than
a positive number, by a value between 0 and 1, gives a
value that is smaller than or equal to the original number.
Therefore, by the definition of y(t), the next output of
the neuron will be 0 again. We can conclude now that
by adding 0 to the input sequence, a 0 will be produced
in the output. Thus, Output(N") = Output(N') + [0].
Using our induction hypothesis, we have: Output(N") =
Output(N') + [0] = [0] + input + [0] = 0 + input’.

Second, we assume that input’ = input + [1] and we
will prove that Output(N") = Output(N') + [1]. In this
case, the most recent input of the neuron is 1. Again, we
calculate the potential value of N” the definition of p(t):
p(N") =wi(N')-1=wi(N') or
p(N") = wi(N') -1+ 7r(N') - p(N') = wi(N') + r(N) -
p(N').

In the first case, when p(N") = w1 (N'), we know that
w1 (N) > 7(N) by assumption in the statement of the
property; we know that wy(N) = wi(N') as discussed,
and thus p(N") > 7(N). So by the definition of y(t),
the next output of the neuron will be 1. In the second
case, p(N') > 0 according to Lemma 1, and it is always
the case that r(N') > 0, so we can conclude that r(N') -
p(N') > 0. Because wi(N) > 7(N) and adding a non-
negative value to the greater side of an inequality keeps it
that way, we can conclude that p(N") = w1 (N')+7(N')-
p(N') > 7(N). Therefore, again by the definition of y(t),
the next output of the meuron will be 1 again. Thus,
we can conclude in both cases that by adding 1 to the
input sequence, a 1 will be produced in the output. Thus,
Output(N") = Output(N') + [1]. Using our induction
hypothesis, we have: Output(N") = Output(N') + [1] =
[0] 4+ input + [1] = 0 + input’.

This completes the proof.

10.14 The Delayer Effect for a Simple Series

Here we revisit the delayer effect for the simple series in
Figure 1(a) (Property 2 of Subsection 2). If we have a

series of n single input neurons and all of them have the
delayer effect, then the output of the whole structure
is the input plus n leading zeros. In other words, this
structure transfers the input sequence exactly with a de-
lay marked by the n leading zeros, denoted as zeros(n) in
the statement of the property below. The NeuronSeries
record defined in the previous section to represent a sim-
ple series is denoted NeuronSeries here. This property
is expressed as follows.

Property 12 [Delayer effect for a simple series]

V(input : list nat)(Series : (NeuronSeries input))(n : nat),

length(NeuronList) = n A
Vi=1,...n, length(w(NeuronList[i])) =1 A
Vi=1,...n, wi(NeuronList[i]) > T(NeuronList[i]) —
Output = zeros(n) + input

In this statement, Series is a variable of record type
(NeuronSeries input), where input is the argument to
the NeuronSeries function, which builds a record. For
readability, we abbreviate (NeuronList Series), which
represents the first field of Series, as NeuronList. Also,
NeuronList[i] denotes the i*" neuron in NeuronList
and Output abbreviates (NSOutput Series), which is
equal to (Output (NeuronList[n]))

Proof 2 (of Property 12) The proof this time is by
induction on the length of NeurlonList.

Base case: N = 0. This is the degenerate case where
there are no neurons in the series and the output of the
series is set to the input. (In particular, recall that the
SeriesOutput constraint of the NeuronSeries record is
defined using the SeriesNetworkOutput function, which
is defined so that it returns the input list.) Thus in this
case, Output = input = zeros(0) + input.

Base case: N = 1. In this case, there is only one
neuron in the series and we know that this neuron has the
delayer effect. According to Property 11 proved earlier,
we can conclude that Output = [0] + input = zeros(1) +
input.

Induction case: We assume that the property holds
for NeuronList of length k. Let Output’ be the output
of this series of length k. Thus by the induction hypoth-
esis, Output’ = zeros(k) + input. We must show that
the property holds for a NeuronList 4+ [M], where M
is a neuron such that length(w(M)) = 1 and wy (M) >
7(M). Let Output” be the output of this series of length
k+ 1. The input sequence for M is the final output of
NeuronList, which is zeros(k) +input. By the assump-
tions of this property, all neurons in NeuronList + [M]
satisfy Property 11, i.e., have the delayer effect, includ-
ing the last one M, which means that its output is equal
to its input plus a leading 0. In other words, Output” =
[0] + zeros(k) + input. Therefore, we can conclude that
Output” = [0] + zeros(k) +input = zeros(k+1) +input.

This completes the proof.



10.15 The Spike Decreasing Property for a Single-Input
Neuron

The spike decreasing property states that a single input
neuron cannot produce in its output sequence more 1s
than the number of 1s in its input sequence. For exam-
ple, if the input sequence is 11100110101, which contains
seven 1s, the output of the neuron will have less than or
equal to seven number of 1s. This property is a conse-
quence of the fact that a single input neuron has either
the delayer effect or the filter effect, and both of them
do not increase the number of 1s. It is an important
property of LI&F neurons and is expressed as property
13.

Property 13 [Spike decreasing property for a
single-input neuron|

V(N : neuron)(input : list nat),
length(w(N)) =1 —
count(input, 1) > count(Output(N'),1)

In this property, count is a function that calculates the
number of occurrences of the number given as the second
argument in the list given as the first argument. So,
count(input, 1) returns the number of 1s in the input list
and count(Output(N'), 1) computes the number of 1s in
the output list of the neuron N’. Recall that here N is
the neuron after initializing N and then applying all the
inputs in the input list.

A lemma is needed to prove this property. The fol-
lowing lemma expresses that when a single input neuron
receives a 0 as input at any point in time, it cannot pro-
duce 1 in the output as follows.

Lemma 2

V(N : neuron)(input : list nat),
length(w(N)) = 1 Ainput = [0] — last(Output(N')) =0

In the statement of this lemma, last represents the
last element of a list and N’ represents the neuron ob-
tained from NN by processing a single 0 as the next in-
put. (In other words, N’ is obtained from N by a sin-
gle application of NextNeuron without first applying
ResetNeuron.) Thus, p(N') represents the value used
to calculate last(Output(N')), which is the last out-
put value of the neuron. The proof of this lemma is
a straightforward consequence of Definition 1.

Proof 3 (of Lemma 2) Since the input is a single 0,
we know from Definition 1 that p(N') = wi(N) -0 or
p(N') = w1(N)-0+7(N)-p(N). Simplifying the multipi-
cation by 0, we have these two cases: p(N') = w1 (N)-0 =
0 orp(N') =wi(N)-0+7r(N)-p(N)=r(N) -p(N). We
know that T(N') = 7(N) > 0. Thus, in the first case,
p(N') =0 < 7(N"). According to Definition 1, the next
output of the neuron will be 0 because its potential value
p(N') is less than its activation threshold T(N').
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In the second case, when p(N') = r(N)-p(N), we know
that p(N) < 7(N) = 7(N'). Also, for every neuron,
the leak factor is between 0 and 1. In other words, 0 <
r(N) = r(N') < 1. If p(N) < 0, multiplying it by a
positive number will produce a negative value which is
less than T(N). So, p(N') =r(N)-p(N) < 0 < 7(N) =
T7(N'). On the other hand, if p(N) > 0, multiplying it
by a number between 0 and 1, will produce a smaller
number. So, p(N') = r(N) - p(N) < p(N) < 7(N) =
T(N'). As can be seen, p(N') < 7(N') in this case also
and thus the next output of the meuron will be 0. This
completes the proof.

We can now use this lemma to prove property 13.

Proof 4 (of Property 13) The proof is by induction
on the length of the input sequence as follows.

Base case: input = [| (the empty list). If there is
no input in the input sequence, the meuron will keep
its initial status, i.e., N = N’. So, Output(N') =

[0]. Therefore, count(input,1) = count([]],1) = 0 >
count(Output(N'),1) = count([0],1) = 0.

Induction case: We assume that the property is true
for input and we must show that it holds for some
input’ of the form (input + [h]) for some additional
input value h. Let N' be the neuron resulting from
processing input, and let N” be the meuron after pro-
cessing input’. By the induction hypothesis, we know
count(input,1) > count(Output(N'),1) and we must
prove that count(input’, 1) > count(Output(N"),1).

Because input is a binary list, we know that h =0 or
h =1. We break this into two different cases, depending
on the value of h.

First, we assume that input’ = input + [0]. Because 0
is added to the input list, we have count(input’,1) =
count(input, 1). According to Lemma 2, that we
just proved, having 0 as the last input in input’
cannot produce 1 as the last output in the out-
put list. So, we can conclude that Output(N") =
Output(N') 4 [0]. Similarly, because 0 is added to the
output, count(Output(N'),1) = count(Output(N"),1).
Therefore, count(input’,1) = count(input,1) >
count(Output(N'),1) = count(Output(N"),1).

Second, we assume that input’ = input + [1]. In this
case, 1 is added to the input list. Because the number
of 1s is increased, it is not important that this new input
produce 0 or 1 in the output list. The number of 1s in the
output list will remain unchanged or increase by 1. So,
count(Output(N"),1) is at most count(Output(N'),1)+
1. Also, we know that count(input’, 1) = count(input +
[1],1) = count(input, 1)+ 1. By the induction hypothesis
we know that, count(input,1) > count(Output(N'),1).
By adding 1 to both sides of the inequality, we will
have count(input,1) + 1 > count(Output(N'),1) + 1.
Therefore, count(input,1) + 1 = count(input’,1) >
count(Output(N"),1).

This completes the proof.
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11 Comparison of the Proposed Ap-
proaches and Future Work

In this paper we proposed two formal approaches
to study some key properties concerning the dynamic
evolution of neurons, some basic archetypes, and some
archetype couplings. These formal approaches are orig-
inal and complementary with respect to the main in-
ternational projects aiming at understanding the human
brain, such as the Human Brain Project [56], which is
mainly based on large systems of differential equations.

We provide a full implementation for both approaches.
As far as the model checking approach is concerned, the
Lustre code for all the archetypes and properties can be
found at

https://redmine.i3s.unice.fr/projects/
archetypes/repository.

As far as the theorem proving approach is concerned, as
mentioned, the Coq code for the archetype implementa-
tion, properties, and proofs is given at

http:
//www.site.uottawa.ca/“afelty/coq-archetypes/

First of all, we should underline that both approaches
are likely to be improved. Concerning the model check-
ing technique, before checking the validity of a property,
we actually fix an interval of values for each parame-
ter and we ask to the model checker whether the prop-
erty holds for the chosen parameter set. We are aware
of a research group working on the integration of Lin-
ear Decision Diagrams (LDD) within the model checker.
This would allow to automatically infer parameter sets
for which properties are verified. Concerning the theo-
rem proving technique, although the proofs we have com-
pleted require some sophisticated reasoning, there is still
a significant amount that is common between them. As
we continue, we expect to encounter more complex in-
ductions as we consider more complex properties. Thus,
it will become important to automate as much of the
proofs as possible, most likely by writing tactics tailored
to the kind of induction, case analysis, and mathemati-
cal reasoning that is needed here. Furthermore, defining
general relations that can be specialized to specific pat-
terns will likely also be very useful for the kinds of prop-
erties that are important for more complex networks.

In absolute terms, we could not say one of the two
approaches presented here is strongly preferable with re-
spect to the other one for the formal study of the dynamic
properties of neuron archetypes. The main advantage of
the model checking methodology is that it is completely
automatic: once a given property has been correctly en-
coded, the user just needs to press a button to know

whether the property is verified or not. So the presence
of an expert is not needed to obtain a proof. Another
strength of model checking is that, in case a property
does not hold in a given model, a counter-example is au-
tomatically provided. Such an execution trace can give
hints in understanding what should be modified in the
system so that the property is satisfied. As another ad-
vantage, we should underline that for our application
domain model checking is not time consuming. In fact,
even if the transition system corresponding to each model
is exponential with respect to the number of variables,
we could get an immediate answer for all our properties
because the chosen model checker, kind2 [24], exploits
some advanced features to improve scalability, such as
modular reasoning (each node can be assigned its own
properties and verified individually. The results of the
verification process can be reused in the analysis of other
components calling that node).

On the other hand, model checkers often cannot prove
properties at the desired level of generality. As a matter
of fact, the use of a proof assistant guarantees that the
properties we prove are true in the general case, such
as true for any input values, any length of input, and
any amount of time. As an example, let us consider
the simple series. With Lustre, we were able to write
a node which encodes the expected behavior of the cir-
cuit. Then, we could call the kind2 model checker to
test whether the property at issue is valid for some in-
put series with a fixed length. With Coq we can prove
that the desired behavior is true whatever the length and
the parameters of the series are. Another advantage of
the theorem proving approach is that, since we have ac-
cess to proofs, a successful proof of a given property can
be exploited to prove similar properties. The drawbacks
are that proofs can be long and an expert is needed to
perform them.

Coming back to the biological issue that motivated our
study, our results until now show that archetype coupling
can either modulate the behaviors displayed by the single
archetypes (e.g. extend an oscillation period) or clearly
give rise to new behaviors. Furthermore, several different
couplings turn out to display the same behavior (what-
ever their input sequences are). As a next step, we intend
to make a systematic study of all the possible archetypes
and couplings, even including several archetypes, and
classify their respective properties. The number of con-
strained graphs of a few elements and, concomitantly, the
number of elementary behaviors is reduced, both from a
logical and biological standpoint. To use again the anal-
ogy of words, few syllables allow to build thousands of
currently used words and a quasi-infinity of sentences.
Moreover, beyond a certain number of neurons and above
all a certain level of connectivity, other functional pro-
cesses different from archetypes are supposed to emerge,
like cell assemblies [57, 58]. So the composition process
should stop after a finite and limited (compared to the



size of the brain) number of iterations. We should thus
rapidly fall back on already studied behaviors, but ex-
pressed through various instances of neuronal networks,
reducible to few neuronal archetypes. This means that,
at a certain point, this approach should allow to express
any relevant neuronal network as an archetype (a basic
one or the result of a concatenation procedure).

Our feeling is that, to perform a formal advanced
analysis of archetypes and their composition, the model
checking and theorem proving approaches should be used
together in a pragmatic way. When trying to prove a
given property, the idea is to first test its validity for some
crucial given parameter intervals using model checking,
and eventually refine the model thanks to the provided
counter-examples so that the property holds in the de-
fined context. Once some key tests have passed, the the-
orem proving technique can be exploited to prove the
property in a more general context. The complemen-
tarity of these two powerful techniques could make us
advance rapidly in the study of the fundamental struc-
tural and functional properties of the elementary bricks
of brain and cognition.
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In this paper we formalize Boolean Probabilistic Leaky Integrate and Fire Neural Networks as Discrete-Time

Markov Chains using the language PRISM. In our models, the probability for neurons to emit spikes is driven
by the difference between their membrane potential and their firing threshold. The potential value of each
neuron is computed taking into account both the current input signals and the past potential value. Taking
advantage of this modeling, we propose a novel algorithm which aims at reducing the number of neurons and
synaptical connections of a given network. The reduction preserves the desired dynamical behavior of the
network, which is formalized by means of temporal logic formulas and verified thanks to the PRISM model

checker.

1 INTRODUCTION

Since a few decades, neurobiologists and bioin-
formatics researchers work in concert to model neu-
ral networks, aiming at understanding the interactions
among neurons, and the way they participate in the
different vital functions of human beings. Models be-
come bigger and bigger, and the necessity of reduc-
ing them while preserving their expected dynamics
emerges, especially in the scope of the obtention of
models which are suitable for formal verification. In
this paper we tackle the issue of neural network re-
duction.

In the literature neural network modeling is of-
ten classified into three generations [ s

]. First generation
models, represented by McCulloch-Pitts one [

], deal with discrete inputs and
outputs and their computational units are a set of
logic gates with a threshold activation function. Sec-
ond generation models, whose most known one is the
multi-layer perceptron [ ], exploit real
valued activation functions. These networks, whose
real-valued outputs represent neuron firing rates, are
extensively used in the domain of artificial intelli-
gence and are also known as artificial neural net-
works. Third generation networks, also called Spiking
Neural Networks | 1,
stand out for the relevance of time aspects. Precise

spike firing times are taken into account. Further-
more, they consider not only current input spikes but
also past ones. In [ ], Spiking Neural
Networks are classified with respect to their biophys-
ical plausibility, that is, to the number of behaviors
(i.e., typical responses to an input pattern) they can
display. Among these models, the Hodgkin-Huxley
model [ ] is the one able
to reproduce most behaviors. However, its simulation
process is really expensive even for a few neurons.

In this work we choose to rely on the Leaky In-
tegrate and Fire (LI&F) model [ ], a
computationally efficient approximation of a single-
compartment model. Our LI&F model is augmented
with probabilities. More precisely, the probability
for neurons to emit spikes is driven by the differ-
ence between their membrane potential and their fir-
ing threshold. Probabilistic neurons are encoded as
Discrete-Time Markov Chains thanks to the model-
ing language at PRISM user’s disposition. PRISM
[ ] is a tool that allows not
only to model different probabilistic systems (with
discrete or continuous time, with or without nondeter-
minism), but also to specify their expected behavior
thanks to the use of temporal logics, a formalism for
describing the dynamical evolution of systems. Fur-
thermore, PRISM provides a model checker [

], which is a tool for automatically verify-
ing whether a given system satisfies or not a property



expressed in temporal logic. In case the property does
not hold in the system, the user can have access to a
counter-example, that is, an execution trace falsify-
ing the property at issue, which often helps in finding
modifications in the model for the property to be sat-
isfied. In order to apply model-checking techniques
efficiently, the model to handle should be as small as
possible.

Taking advantage of this modeling and verifi-
cation framework, we introduce a novel algorithm
which aims at reducing the number of neurons and
synaptical connections of a given neural network.
The proposed reduction preserves the desired dynam-
ical behavior of the network, which is formalized by
means of temporal logic formulas and verified thanks
to the PRISM model checker. More precisely, a neu-
ron is removed if its suppression has a low impact on
the probability for a given temporal logic formula to
hold. Observe that, other than their utility in lighten-
ing models, algorithms for neural network reduction
have a forthright application in the medical domain.
In fact, they can help in detecting weakly active (or
inactive) zones of the human brain.

The issue of reducing biological networks is not
new in systems biology. Emblematic examples can
be found in [ ], where the authors
propose a methodology to reduce regulatory networks
preserving some dynamical properties of the original
models, such as stable states, in [ 1,
where the authors study model reductions as graph
matching problems, or in [ ], whose au-
thor considers finite-state machines and proposes a
technique to remove some transitions while preserv-
ing all the (minimal) traces satisfying a given reach-
ability property. As far as neural networks are con-
cerned, to the best of our knowledge the core of the
existing reduction approaches only deals with second
generation networks. Several methods to train a net-
work that is larger than necessary and then remove
the superfluous parts, known as pruning techniques,
are explained in [ ] . Finally, in [

] the authors introduce an ora-
cle learning methodology, which consists in using a
larger model as an oracle to train a smaller model in
order to obtain a smaller acceptable model. With ora-
cle learning, the smaller model is created initially and
trained using the larger model, whereas with pruning,
connections are removed from the larger model until
the desired size is reached.

The paper is organized as follows. In Section 2
we introduce a probabilistic version of the Leaky In-
tegrate and Fire Model. Section 3 is devoted to the
PRISM modeling language and the temporal logic
PCTL (Probabilistic Computation Tree Logic). In

Section 4 we describe our modeling of neural net-
works as Discrete-Time Markov Chains in PRISM.
Finally, in Section 5 we introduce the novel algorithm
for the reduction of neuronal networks, and in Section
6 we discuss some future research directions.

2 PROBABILISTIC LEAKY
INTEGRATE AND FIRE
MODEL

We model neuron networks as Boolean Spiking
Networks, where the electrical properties of neurons
are represented through the Leaky Integrate and Fire
(LI&F) model. In this modeling framework, neural
networks are seen as directed graphs whose nodes
stand for neurons and whose edges stand for synap-
tical connections. Edges are decorated with weights:
positive (resp. negative) weights represent activations
(resp. inhibitions). The dynamics of each neuron is
characterized through its (membrane) potential value,
which represents the difference of electrical potential
across the cell membrane. At each time unit, the po-
tential value is computed taking into account present
input spikes and the previous decayed potential value.
In order to weaken the past potential value, it is mul-
tiplied by a leak factor. In our probabilistic LI&F
model, the probability for each neuron to emit an ac-
tion potential, or spike, is governed by the difference
between the potential value and a given firing thresh-
old. For positive (resp. negative) values of this dif-
ference, the more its absolute value is big, the more
(resp. the less) is the probability to emit a spike. Af-
ter each spike emission, the neuron potential is reset
to zero. In the literature, other ways exist to incorpo-
rate probabilities in LI&F models, such as the Noisy
Integrate and Fire models [ s

], where a noise is added to the
computation of the potential value.

More formally, we give the following definitions
for probabilistic LI&F networks.

Definition 1 (Boolean Probabilistic Spiking Integrate
and Fire Neural Network). A Boolean Probabilis-
tic Integrate and Fire Neural Network is a tuple
(V, E,w), where:
e V are Boolean probabilistic spiking integrate and
fire neurons,
o E CV xV are synapses,
o w:E — QnN[—1,1] is the synapse weight function
associating to each synapse (u, v) a weight wy,.
We distinguish three disjoint sets of neurons: V; (input
neurons), Vi, (intermediary neurons), and V, (output
neurons), with V. =V; UV, UV,,.



Definition 2 (Boolean Probabilistic Spiking Integrate
and Fire Neuron). A Boolean Probabilistic Spiking
Integrate and Fire Neuron v is a tuple (T,r,p,y),
where:

e T € N is the firing threshold,
e r€QnNJ0,1] is the leak factor,

e p:N— Qa' is the [membrane] potential function
defined as

Yrowiexi(t), ifpt—1)=1
pi)= Y wi-xi(t)+r-pt—1), otherwise

where p(0) = 0, m is the number of inputs of the
neuron v, w; is the weight of the synapse connect-
ing the i'" input neuron of v to the neuron v, and
xi(t) € {0, 1} is the signal received at the time t by
the neuron v through its i’ input synapse (observe
that, after the potential overcomes its threshold, it
is reset to 0),

e y:N—{0,1} is the output function of the neuron.
Supposing to discretize p(t) — T in k+ 1 positive in-
tervals and k+ 1 negative intervals, the probability
for the neuron v to emit a spike can be described as
follows:

1 if plt)—1>1
P if e <p(t)—t <l

prs1 if 0<p(r)—t<ly
peif —Lh<pl)—t<0

D1 if —I gp(t) —T< —l_
0 if pt)—t<—I

D
with {11,...,lk} - Nt such that I < li+1 Vi €
{1,....,k—1}and {p1,...,pu} C10,1]NQ such that
pi<pip Vie{l,...;2k—1}.

In our implementation, the probability values are cho-
sen in order to conform to a sigmoidal function.

3 THE PROBABILISTIC MODEL
CHECKER PRISM

The probabilistic model checker PRISM
[ ] is a tool for formal
modeling and analysis of systems with a random or
probabilistic behavior. It supports several types of
probabilistic models: discrete ones, namely discrete-
time Markov chains, Markov decision processes, and

probabilistic automata, and continuous ones, namely
continuous-time Markov chains, probabilistic timed
automata, and priced probabilistic timed automata.
In this work we rely on discrete-time Markov chains,
which are transition systems augmented with prob-
abilities. Their set of states represent the possible
configurations of the system being modeled, and
transitions between states model the evolution of
the system, which occurs in discrete-time steps.
Probabilities of making transitions between states are
given by discrete probability distributions. Markov
chains are memoryless, that is, their current state
contains all the information needed to compute
future states (Markov property). More precisely, the
following definition can be given:

Definition 3 (Discrete-Time Markov Chain). A
Discrete-Time Markov Chain (DTMC) over a set of
atomic propositions AP is a tuple (S, Sy, P,L) where:

S is a set of states (state space)

Sinit C S is the set of initial states

P:S xS —[0,1] is the transition probability ma-
trix, where Y ucgP(s,s') =1 forall s € §

o L:S — 24 is a function labeling states with
atomic propositions over AP.

An example of DTMC representing a simplified
neuron is graphically depicted in Figure 1, where the
neuron can be either active or inactive.

=(O=0

Figure 1: Example of a two-state DTMC representing a
simplified neuron. When the neuron is inactive (state 0), it
remains inactive with a probability of 0.5, and it becomes
active, and thus emits a spike (state 1), with a probability of
0.5. When it is active, is becomes inactive with a probability
of 1.

3.1 The PRISM Modeling Language

PRISM provides a state-based modeling language in-
spired from the reactive modules formalism of [

]. A model is composed by a
set of modules which can interact with each other. At
each moment, the state of each module is given by the
values of its local variables, and the global state of the
whole model is determined by the local state of all its
modules. The dynamics of each module is described
by a set of commands of the form:

[lguard — prob; : update; + ...+ prob, : update;

where guard is a predicate over all the variables of the
model, indicating the condition to be verified in order



to execute the command, and each update indicates
a possible transitions of the model, to be achieved
by giving new values to the variables of the module.
Each update is assigned to a probability and, for each
command, the sum of probabilities must be 1. The
PRISM code for the DTMC of Figure 1 is given in
Figure 2. In such a simple module, the square brack-
ets at the beginning of each command are empty but
it is possible to add labels representing actions. These
actions can be used to force two or more modules
to make transitions simultaneously. In this work, we
take advantage of this feature to synchronize neurons
in networks. Finally, PRISM models can be extended

dtmc / Discrete-Time Markov Chain

module simplified neuron

s/ Declaration of the integer variable y
v: [0..1] imit 0O;

A7 Commands

[1 %=0 -» 0.5:(y'=0) + 0.5:(v'=1):
[1w=1-> L:(y'=0):

endmodule

Figure 2: PRISM code for the DTMC of Figure 1. The
only variable y, representing the state of the neuron, ranges
over [0..1]. Its initial value is 0. When the guard is y = 0,
the updates (y' = 0) and (' = 1) and their associated proba-
bilities state that the value of y remains at 0 with probability
0.5 and passes to 1 with probability 0.5. When y = 1, the
variable changes its value to O with a probability of 1.

with rewards | ], which al-
low to associate real values to states or transitions of
models. As an example, in Figure 3 we show how to
augment the simplified neuron code of Figure 2 in or-
der to add a reward each time the neuron is active, and
thus to count the number of spike emissions.

rewards "v"
v=1: 1:
endrewards

Figure 3: Addition of a reward to the PRISM code for a
simplified neuron. Each time y = 1 (spike emission), the
reward increases of one time unit.

3.2 Probabilistic Temporal Logic

PRISM allows to specify the dynamics of DTMCs
thanks to the temporal logic PCTL (Probabilistic
Computation Tree Logic) introduced in [

], which extends the logic CTL (Com-
putation Tree Logic) [ ] with time
and probabilities. The following state quantifiers are
available in PCTL: X (next time), which specifies that
a property holds at the next state of a given path,

F (sometimes in the future), which requires a prop-
erty to hold at some state on the path, G (always in
the future), which imposes that a property is true at
every state on the path, and U (until), which holds
if there is a state on the path where the second of
its argument properties holds and, at every preced-
ing state on the path, the first of its two argument
properties holds. Note that the classical path quan-
tifiers A (forall) and E (exist) of CTL are replaced
by probabilities. Thus, instead of saying that some
property holds for all paths or for some paths, we
can express that a property holds for a certain frac-
tion of the paths [ ]. The
most important operator in PCTL is P, which al-
lows to reason about the probability of event occur-
rences. The property P bound [prop] is true in a
state s of a model if the probability that the prop-
erty prop is satisfied by the paths from state s sat-
isfies the bound bound. As an example, the PCTL
property P= 0.5 [X (y = 1)] holds in a state if the
probability that y = 1 is true in the next state equals
0.5. All the state quantifiers given above, with the
exception of X, have bounded variants, where a time
bound is imposed on the property. For example, the
property P> 0.9 [F<=10 y=1] is true in a state if the
probability of y being equal to 1 within 10 time units
is greater than 0.9. Furthermore, in order to com-
pute the actual probability that some behavior of a
model is displayed, the P operator can take the form
P=? [prop], which evaluates to a numerical rather
than to a Boolean value. As an example, the property
P =2 [G (y = 0)] expresses the probability that y
is always equal to 0.

PRISM also allows to formalize properties which
relate to the expected values of rewards. This is pos-
sible thanks to the R operator, which can be used in
the following two forms: R bound [rewardprop],
which is true in a state of a model if the expected re-
ward associated with reward prop when starting from
that state meets the bound, and R=? [rewardprop],
which returns the actual expected reward value. Some
specific operators are introduced in PRISM in order
to deal with rewards. In the rest of the paper, we
mainly exploit C (cumulative-reward). The property
C<=t corresponds to the reward cumulated along a
path until ¢ time units have elapsed. As an exam-
ple, consider the reward y of Figure 3. The property
R{"y"} =2 [C <= 100] returns the expected value
of the reward y within 100 time units. PRISM pro-
vides model-checking algorithms [ ]
to automatically validate DTMCs over PCTL proper-
ties and reward-based ones. The available algorithms
are able to compute the actual probability that some
behavior of a model is displayed, when required.



4 NEURONAL NETWORKS IN
PRISM

This section is devoted to the modeling of Boolean
Probabilistic LI&F neural networks as DTMCs using
the PRISM language. As a first step, we introduce
an input generator module in order to generate input
sequences on the alphabet {0,1} for input neurons.
Such a module deals with one only Boolean variable
whose value is 1 (resp. 0) in case of spike (resp. no
spike) emission. We provide several instantiations of
such a module to be able to generate different kinds
of input sequences: persistent ones (containing only
1), oscillatory ones, and random ones.

We then define a neuron module to encode LI&F
neurons. The state of each neuron is characterized by
two variables: a first Boolean variable denoting the
spike emission, and a second integer' variable repre-
senting the potential value, computed as a function of
the current inputs and the previous potential value, as
shown in Definition 2. The difference between the
potential value and the firing threshold is discretized
into k+ 1 positive intervals and k + 1 negative inter-
vals and a PRISM command is associated to each one
of this intervals: if the neuron is inactive and the dif-
ference between the potential and the threshold meets
the guard, the neuron is activated with a certain prob-
ability p (a bigger difference gives a higher probabil-
ity). The neuron remains inactive with a probability
equal to 1 — p. The aforecited commands share the
same label (to). To complete the modeling of a single
neuron, we add a command acting when the neuron is
active: with a probability of 1 it resets the potential
value and makes the neuron inactive. Such a com-
mand is connoted by a new different label (reset),
that turns out to be useful to synchronize the output of
neurons with the input of the following ones. Thanks
to a module renaming feature at PRISM user’s dispo-
sition, neurons with different parameters can be easily
obtained starting from the standard neuron module.

We then model the synaptical connections be-
tween the neurons of the network. In order to avoid a
neuron to be reset before its successor takes its acti-
vation into account, we introduce a transfer module
consisting of one only variable ranging over {0,1}
and being initialized at 0. Thanks to synchronization
labels, at each reset of the first neuron this variable
passes to 1 first, and then goes back to 0, synchroniz-
ing with the second neuron (label t o), which takes the
received signal into account to compute its potential
value.

I'we exploit integer rather than rational numbers in order
to have efficient model-checking performances

The PRISM code for the neuron and the transfer
modules can be found in [ 1,
where the PRISM model has been validated against
several PCTL properties.

S MODEL-CHECKING BASED
REDUCTION ALGORITHM

In this section we introduce a novel algorithm
for the reduction of Boolean Probabilistic LI&F net-
works. The algorithm supposes the network to be im-
plemented as a DTMC in PRISM [

] and makes several calls to the PRISM model
checker, in order to retrieve the probability relative to
the satisfaction of some PCTL formulas and the value
of some rewards.

As a first step, the algorithm aims at identify-
ing, and thus removing, the wall neurons, that is, the
neurons that are not able emit, even if they receive
a persistent sequence of spikes as input. More for-
mally, a neuron can be characterized as a wall one if
its probability to be always quiescent (inactive) is 1:

P=1 [G (y=0)]. When the algorithm detects a wall
neuron, it removes not only the neuron but also its
descendants whose only incoming synaptical connec-
tion comes, directly or indirectly 2 from this neuron,
and its ancestors whose only outgoing edge enters, di-
rectly or indirectly, the neuron.

As a second step, the algorithm aims at testing
whether the suppression of the remaining neurons
preserves or not the dynamics of the network. The
removal of a neuron (and its associated ancestors and
descendants) is authorized if the following two quan-
tities are kept (modulo a certain error):

Quantitative criterion. The reward computing the
number of emitted spikes (within 100 time units)
of each output neuron.

Qualitative criterion. The probability for a given
PCTL property (concerning the output neurons)
to hold.

The number of spikes emitted by a neuron
within 100 time units can be computed thanks
to the following reward-based PRISM property:
R{"y"} =2 [C <= 100]. An example of key
property concerning the qualitative behavior of a
neuron is the following one, expressing an oscil-
lating trend: P=? [G((y=1 => (y=1 U y=0))&
(y=0 => (y=0 U y=1))) 1. Such a formula requires
every spike emission to be followed by a quiescent
state (not necessarily immediately) and viceversa.

2By one only edge or a path



Formulas comparing the behaviors of several neurons
can be written as well. Observe that the respect of
both quantitative and qualitative criteria is needed for
a neuron removal. In fact, the output neurons of two
different networks could exhibit the same spike rate
but display a completely different behavior. On the
other hand, their could exhibit the same qualitative
behavior (e.g., an oscillatory trend), but have quite
different spike rates.

The pseudo-code for the proposed reduction al-
gorithm is given in Algorithm 1. It takes as input a
Boolean Probabilistic LI&F network G = (V, E, w) as
given in Definition 1, a PCTL property Prop concern-
ing the dynamical behavior of the output neurons of
the network, and an allowed error value €. Only in-
termediary neurons are affected by the reduction pro-
cess, that is, input and output neurons cannot be re-
moved. Intermediary neurons are first visited follow-
ing a depth first search (DFS) in order to remove wall
neurones (and their associated ancestors and descen-
dants). We opt for a depth first visit instead of a breath
first visit to avoid expensive backtracking. Further-
more, DFS is better suited to our approach because it
allows to quickly take into account all the descendants
of a node and cut them if necessary.

The procedure in charge to remove a neuron
(and its associated ancestors and descendants) is
REMOVAL (see Algorithm 2). Another depth first
traversal of the (remaining) intermediary neurons is
then performed to identify (and thus remove thanks
to the REM OVAL procedure) neurons whose removal
has a low influence (according to €) on the probabil-
ity for Prop to be satisfied and on the rate spike. It
is possible to see that, for each traversal, each edge
is visited at most twice, once forward and once back-
ward.

An example of application of the algorithm to a
neural network composed of eight neurons and nine
edges is graphically depicted in Figure 4. The reduc-
tion process leads to a reduced network consisting of
four neurons and three edges.

In Table 1 we consider several neural networks
composed of four neurons (with only one input and
output neuron) and their corresponding reduced net-
work, consisting of three neurons. For each network,
we give the spike rate of the output neuron, and the
number of states and transitions of the corresponding
PRISM transition system. For an average error lower
than 0.65 in the spike rate, we have an average re-
duction of the state number of a factor 19.6 and an
average reduction of the transition number of a factor
19.64 when passing from the complete to the reduced
network.

Algorithm 1 LI&F REDUCTION (G, Prop, €)

1: $$We distinguish input, intermediary, and output
neurons
LetV = ViUVintUVo
for all v; € V;,, in a DFS visit do
Set to 1 all the input signals of v;
$$ Call to the PRISM model checker
if P =1[G(y; =0)] $$ y; is the output of v;
then
7: REMOVAL(v;) $$ V;,; and E are modified
by REMOVAL

8: Set to 1 all the input signals of the neurons of V;

9: forallv, €V, do

10: Compute r, = spike rate of v, thanks to
PRISM rewards

11: Compute p = Prob(Prop is TRUE) thanks to
PRISM

12: for all v; € V;,, do

13: Let V' =V \{v}, E'=E\{(vi,vj))U (v, vi)}
st.vj,vy eV

14: LetG' = (V/,E',w)

15: for allv, €V, do

16: Compute 7, = spike rate of v, in G’
thanks to PRISM rewards

17: Compute p’ = Prob(Prop is TRUE) in G
thanks to PRISM

18: if |r), —r,| <eforallv, €V, and |p' — p| <€
then

19: REMOVAL(v;)

AR A A

Complete network (4 neurons) Reduced network (3 neurons)
spikes states transitions spikes states transitions
6.75 252 820 565 068 6.72 16 816 37510
7.93 148 480 319549 7.92 10255 22029
6.11 291 002 653 121 6.07 19903 44 559
9.55 280719 608 641 9.54 12 062 26 109
6.75 225 169 500 245 6.72 15 005 33254
5.86 265 683 591 546 5.48 19571 43 542
8.75 149 641 325 890 8.65 9418 20 466
7.39 193 897 425 447 7.37 12951 28 341
8.16 961 701 2142739 8.16 21829 48 547
5.84 60 422 129 583 5.84 7239 15516
9.50 196 433 427391 9.50 12768 27762
10.26 333952 715179 10.26 10 841 23101
8.13 192 456 424 269 8.13 12634 27 809
7.77 273 260 602 205 7.72 13 946 30 657

Table 1: Comparative table of some complete and re-
duced networks. We consider 13 different (with differ-
ent parameters) networks composed of four neurons and the
corresponding networks obtained thanks to the reduction al-
gorithm. All the reduced networks consist of three neurons.
We give spike rates of output neurons, and the number of
states and transitions of the corresponding PRISM transi-
tion systems. The last row refers to averages.



Algorithm 2 REMOVAL(v;)

1: $$ It suppresses a neuron v; and all the neurons
only having v; as ancestor or descendant
2 Vine = Vi \ {Vi}
 E= E\ {(Vi,Vj) U (Vk,\/,')} S.t.vj,v €V
: Gyork = (VinhE)
: for all v; descendant of v; in a DFS visit of G do
$$ If v; has no incoming edges in Gyork, We
remove Vv; and its exiting edges
if {(vi,vj)} = @ then
Vine = Vime \ {Vj}
E=E\{(vj,vp)}st.v eV
: for all v, ancestors of v; in a DFS visit of G do
$$ If v, has no outgoing edges in Gk, We
remove v and its incoming edges
12: if {(Vk,VZ)} = & then

WA W

=2 0 x

—_

13: Vine = Vine \ {Vk}
14: E=E\{(vl,vk)} st.vyevV
15: G = Gyork

6 CONCLUSIONS

In this paper we have formalized Boolean Prob-
abilistic Leaky Integrate and Fire Neural Networks
as Discrete-Time Markov Chains using the language
PRISM. Taking advantage of this modeling, we have
proposed a novel algorithm which aims at reducing
the number of neurons and synaptical connections of
a given network. The reduction preserves the desired
dynamical behavior of the output neurons of the net-
work, which is formalized by means of temporal logic
formulas and verified thanks to the PRISM model
checker.

This work is the starting point for several future
research directions. From a modeling point of view,
the use of labels entails a break time during which the
different modules communicate but all the other func-
tions are stopped. Namely, in our model the reset
label causes a break time after each spike emission.
A big number of spikes leads thus to a big number of
break times and we intend to minimize these times.
We also plan to model the refractory time of neurons,
a lapse of time following the spike emission during
which the neuron is not able to emit (even if it con-
tinues to receive signals). At this aim, we may need
to take advantage of Probabilistic Timed Automata,
which are at PRISM user’s disposition.

Concerning the reduction algorithm, for the mo-
ment we show our approach to be efficient for small
networks, i.e., the removal of only one neuron drasti-
cally reduces the size of the transition system. As for
future work, we intend to scale our methodology.

(a) Initial network

(c) Second reduction

(d) Reduced network

Figure 4: Application of the reduction algorithm on a
neuronal network of eight neurons. The only input neu-
ron is v; and the only output neuron is v,. The other neurons
are numbered according to a DFS order. The neuron 1 is
identified as a wall one. The first reduction step (4(b)) con-
sists in removing the neuron 1 and, consequently, the neu-
ron 2, because its only ingoing edge comes from the neuron
1. No other wall neuron is detected. The second reduction
(4(c)) is due to the fact that the removal of neuron 4 influ-
ences neither the satisfaction of Prop nor the spike emission
rate of v,. The neuron 3 is also removed because its only
output edge enters the neuron 4. The final reduced network
is given in 4(d).

The actual version of the reduction algorithm finds
a reduction which conforms to the expected behavior
of the network. We find one solution among several
possible ones, but this solution is not necessary the
optimal one, that is, it does not necessarily minimize
the difference of behavior between the complete and
the reduced network. In order to help the research
of optimal solutions, we intend to perform a sensitiv-
ity analysis of our networks, aiming at identifying the
parameters playing a most important role in the veri-
fication of some given temporal properties.
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