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1.1 Context and problematic

In the last decade, there have been concerted efforts to transform algebraic topology from
an abstract mathematical field into a more concrete domain. These efforts have motivated
mathematicians and scientists to apply the concepts of this branch of mathematics and
develop them. Applications to engineering problems led to the resolution of a lot of chal-
lenges and helped to enlarge the research bridge between mathematics and engineering.

Algebraic topology is often considered a difficult and abstract theory but it’s starting to
find a significant number of applications in a large number of scientific domains, and in
particular in data analysis. Therefore, the choice of this theory as a tool for the treatment
of data provided by images is natural. However, it is necessary that the topological
space of the data could be represented combinatorially to be usable by algorithms and
implemented by a machine.

The algebraic topology allows to answer these requests because it uses the well developed
tools of linear algebra. One of the main profits of algebraic topology is its ability to
construct spaces on points with notion of neighborhood that represent the data, which
make it very useful on the level of image processing. Indeed, algebraic topological tools
provide features about spaces, which are insensitive to continuous deformations. Applied
to images, the topological analysis could reveal important characteristics: how many
connected components are present, which ones have holes and how many, how are they
related one to another, how to infer from local coherent information to a global vision,
ete.
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Some tasks of image processing like segmentation, object tracking and data fusion are
complex and limited by many considerations. Choosing the size of an object or a specific
intensity for a threshold can enormously change the result of an image processing method.
The diversity in the background can make results mixing the salient objects with the
background. The specificity of the applications make them in a lot of cases not able to
detect the overlaid objects. However the choice of prior parameters, the suppression of
background influence and the processing of superposition of objects, that generally occur
in image processing tasks, don’t affect algebraic topology approaches and techniques.

1.2 Contributions of the thesis

We propose in this work methods based on algebraic topology in order to solve some
of the main challenges in image processing. Noting that algebraic topology comes not
to eliminate the use of other techniques in image processing but to complete or to be
associated to them when needed.

More precisely, we propose methodologies and approaches using persistent homology,
which is one of the most powerful tools in algebraic topology, and sheaves theory which
is a complex but promising part of algebraic topology in applications.

First, a known technique to segment images is to compute features inside windows and
classify then in order to get the image segmentation. It would be interesting to see if the
algebraic topology can add features that are more pertinent and eventually can improve
the quality of segmentation.

Second, classical methods used in object segmentation fail in many cases to identify only
the interesting objects because of the presence of the noise. They depend also on the
background level, which make them weak in detecting overlaid objects. Several classical
methods depend highly on some choices of parameters like volumes or sizes of objects.
Since algebraic topology studies the presence of holes and voids using one of its powerful
invariant, which is homology groups, it would be interesting to see if it is able to segment
the objects. The advantage of computing cycles and homology classes is their insensitivity
to background changes and independence from prior parameters.

Next, object detection and tracking are usually regarded as one of the major and challeng-
ing tasks in the pipeline of image processing and pattern analysis. Most of the existing
techniques are non generic methods based mainly on complex algorithms controlled by
many parameters and metrics. Since construction of topological complexes is possible on
pixels of 3D images, and as well as on 2D+t images, algebraic topology can be a simple
solution of these challenges. The relative version of homology can detect movement of
objects without the use of prior parameters.

Finally, a totally novel concept in association of algebraic topology to image processing is
the use of sheaf theory. Utilization and applications of this theory are still not elaborated
on the level of image processing. It could be worthful to initiate some of these applications
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trying to interpret them using the cohomological analysis.

1.3 Structure of this document

In the next chapter “Topology, algebraic topology and applications”, we make a brief
description of some of image processing techniques and their limits. Then we detail basic
notions of topology and mostly the algebraic topology and explaining the purpose of their
use in image processing. Computation of homology groups is next explained and the
chapter ends with the tasks of image processing that we are interested in this work.

The following chapter “Persistent homology and applications to images” represents the
main contributions in proposing several methodologies of algebraic topology constructions
on images. Beginning by descriptions of persistent homology and its computation, we
explain how to transform images to combinatorial representations. Then we propose new
methods in image segmentation, multidimensional object segmentation using pixels and
superpixels and we end this chapter by presenting a new method for tracking of objects
in motion using the relative homology.

We initiate a framework of image analysis based on sheaf theory in the chapter “Sheaf
theory and its image applications”. First, the concept of the sheaf theory is described then
we explain a methodology of data fusion using sheaves. We show how we can associate
these concepts to image tasks. And we finish by its association to image processing and
analysis like construction of sections on colored images, scale analysis and localization.

The last chapter concludes this work and presents a several number of perspectives on
short and long term. These are partly linked with developments of our work like con-
tinuation of the application of sheaves on real images but concern also the use of other
aspects of the algebraic topology, in particular the Morse theory in order to associate
critical points of different dimensions or the multidimensional persistence, to integrate
many factors in the filtration scheme construction.
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Our works are interested mainly in developing tools issued from algebraic topology to
achieve image processing tasks and approaches. This is why this chapter attempts to
make a quick state of art about some of the image processing techniques and extend some
of the tools employed by topology and algebraic topology in scientific problems. Detailed
explanations on homology theory and computation of homology groups are presented
giving some explications of their contributions in applications.

For this purpose, the section 2.1 presents some of the methods applied in image processing
tasks such as image segmentation, object segmentation and track detection. We talk in
this section about problems faced in image processing and why the algebraic topology
methods is useful. Then, the section 2.2 focuses on introducing of some notions of topology
and presents a state of the art of the applications of topology in engineering problems
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and image processing tasks. The section 2.3 concentrates on introducing some theories
of algebraic topology like homology, Morse theory and sheaf theory. Then it extends
the combinatorial representation of topological spaces and explains in details notions of
homology theory and finishes by developing the state of the art applications on engineering
problems. Afterward, the section 2.4 explains the image processing problems that our
methods try to solve. Finally, the section 2.5 concludes the chapter.

2.1 Image processing context

In this section, we aim to explain some of the methods and techniques used in image pro-
cessing specially in image segmentation, object segmentation and object tracking because
our main applications will be concentrated on these fields.

Image segmentation is a challenging task that has been considered as a key step in image
processing and remaining as a long-standing problem in the field with a massive liter-
ature, see [MC15, ZMC16] for thorough surveys on this topic. The objective of image
segmentation is to partition an image into non-overlapping homogeneous regions or to
locate objects of interest in the image. This tool permits to simplify image representation
into other form which makes it easier for further processing of higher level tasks. Object
segmentation on the other hand is the process of extracting an object in an image from
its other aspects. These techniques carry a variety of applications that include many
sciences topics like computer vision [LST16, YSA16], image analysis [MFC13, Mah14],
medical image processing [LWD14, PCO16] and remote sensing [TGGP15, SZ17].

A lot of reasons make the segmentation a hard and challenging task. Mainly the complex-
ity of the used algorithms that depend on many parameters and metrics that control the
segmentation procedure and that cause the lack of generic “off-the-shelf” solutions. The
proposed techniques and solutions depend hugely on types of applications and images in
question.

A large variety of segmentation techniques and methods have been discussed and devel-
oped in the literature. The classical ones are mostly based on mathematical or statistical
methods. In other class, we find the clustering and soft computing techniques that involve
image segmentation.

Mathematical and statistical methods

e Thresholding: the values of pixels belonging to image objects are different from
the values of the pixels belonging to the background or other background in many
applications of image processing. This make thresholding a simple but effective tool
to separate those foreground objects from the background. The intensity value of
each pixel is compared to a suitable threshold value and thus can be assigned to
a class of the image [XCG17, CYC*14, GMACA14]. Thresholding techniques are
grouped into local thresholding techniques that depend on the local properties of
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the pixels and their neighborhoods, and global techniques that segment an image
basing on information obtained globally by using image histogram or global texture
properties. Otsu thresholding remains one of the classical thresholding techniques
that optimize the best threshold to segment the image [GBY'18]. Noting that the
choice of the the threshold is affected highly by noise in the image, and the nature
of thresholding doesn’t allow to detect overlaid objects. Moreover, maximally stable
regions [NSO8] represent also one of the most used thresholding techniques, but it
depends on th choice of previous parameters. We will detail this technique in the
next chapter.

Mathematical morphology: it is dedicated to extract information from images that
concentrates on the geometrical structure and forms [SL16, PTS14]. Most of its
operations are based on dilation of the topological and geometrical continuous space
concepts of images such as shape, size, connectivity and geodesic distance.

Wavelet transformations: it is a mathematical tool that is widely applied in extract-
ing information from signals [LLY17, SZS*13]. Its framework provides accurate
tools for multi-scale image analysis and representations since it works in both time
domain and frequency domain comparing to Fourier Transform that works with
only time domain. For image segmentation tasks, wavelet transformation performs
mainly features extraction to find edges in images or input to clustering algorithms
for example. But the wavelet transformation is limited by its complexity, it’s hard
to choose the proper wavelets for a specific purpose in application, knowing that it’s
computationaly intensive.

Graph partitioning methods: the pixels of an image can be manipulated as a graph
which is defined as a group of objects and their relations designed by vertices and
edges. Graph partitioning methods aim to model the image as a weighted graph us-
ing the impact of pixel neighborhoods on a given cluster of pixels. Many approaches
are used in this method like Markov random fields [LWD17, KZ12|, optimization
algorithms [AP13], etc.

Partial differential equations (PDE): since an image is seen as a function defined
in a continuous space, segmentation techniques can be derived from solving partial
differential equations extracted from this function [KKFT13, LWE*15]. Paramet-
ric method specialized in parameterizing the contours such as snakes introduced
in [KWTS88] and level set methods that address the problem of curve and surface
propagation and initiated in [OS88] are typical of PDE based techniques in image
and object segmentation.

Watershed transformations: the watershed transform consider a gray-scale image
as a topological surface, where the values of f(x,y) are interpreted as heights. The
role of watershed transform is to find the catchment basins and peak lines in signals
such as grayscale image. Regarding the problem of image segmentation, the key
concept is to change the input image into another one whose catchment basins are
the objects or regions we want to identify [GMP*15, LZW10).
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Clustering and soft Computing techniques

e Basic clustering techniques: clustering is the division of data into groups of similar
elements so that the elements in different classes are as different as possible and
elements that belong to the same cluster are as analogue as possible [WCV12] There
are many types of clustering techniques like partitioning algorithms that include K-
mean, probabilistic algorithms, hierarchical algorithms, grid based algorithms. All
these techniques can be used in image segmentation in order to group the pixel in
the image into different classes.

e Neural networks: a neural network is a way to process information inspired by the
mechanism of biological nervous systems that is learned by example. Its diverse
forms are widely used in image segmentation [MVM*16, PPA16]. Convolution neu-
ral networks for example aim to compute convolved features from the image to
achieve image segmentation [SLD17]. These computed features, for example on
windows, will segment the image depending on their similarities.

e Fuzzy logic approaches: fuzzy logic is a technique of computing based on degrees of
truth that belong to the [0, 1] interval rather than the usual true or false (1 or 0)
boolean logic on which the modern computer is based. These degrees of truth are
suitable to formalize reasoning when dealing with vague terms in image processing
techniques specially in image segmentation [JRG16, STJ*16] since they can divide
data points into clusters or homogeneous classes.

e Genetic algorithms: they represent an intelligent use of a random search handled to
solve optimization problems and hence reduce the complexity of the studied problem.
They rely deeply on probabilistic tools. Recently the genetic algorithms have been
very effective on the level of image segmentation due to its robustness to image
noise [WLL*14, MST"16]. They can be used for the modification of the parameters
in existing segmentation algorithms and are viewed as function optimizers.

Moreover, object detection and tracking are usually regarded as another major and chal-
lenging tasks in the pipeline of image processing and pattern analysis. The objective of
tracking is to pursue the movement of an object through the time changing. Most of the
existing techniques are non generic methods based mainly on complex algorithms con-
trolled by many parameters and metrics. The “one-size-fits-all” universally appropriate
tracking method doesn’t exist at this time according to the study made in [CSAC™*14].
Many techniques have been proposed and developed in the literature, see [LWZ08, PF08|
for thorough explanations. These techniques differ in aim, motivation and used algorithms
such as:

e Frame differencing: tracking objects is widely performed by frame difference method.
The purpose of the technique is to detect the moving objects from the difference

between the existing frame and the reference frame. It uses the pixel-based difference
to find the moving object [RYK14, AC17].

e Point detectors: for each new frame in the image sequence, an interest point detector
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is used to detect candidate points for tracking. Then a feature descriptor is com-
puted for each of the candidate points. The goal then is to seek for this descriptor
to match with those of previously computed features [GKK*15, ZMAT16].

e Background subtraction: it is a method that aim to localize the connected pixels
moving on the foreground despite the prior information of the sequence in order to
get the initial estimate of motion [YQF*14, THV16].

e Supervised learning: it is a technique that search to link input variables to an
output variable and that uses algorithms to learn the mapping function from the
input to the output [TT12, BDA16]. Recently, supervised learning techniques like
random forests, convolutional neural networks, including deep learning approaches
have been widely used in the tracking process of objects.

It exists other image processing techniques such as image preprocessing, image enhance-
ment, feature extraction, image classification. We will not provide deep explanations of
these tasks since our applications didn’t contribute in.

But we must note that in summary these methods and techniques face a lot of problems
that control its capabilities, taking for example, at the technical level:

e Depending on prior parameters: the use of prior parameters is essential in many
image processing techniques and specially in segmentation. The size of objects, the
intensity for thresholding, the compactness, circularity and many other parameters
must be taken into account as prior parameters to the suggested methods.

e The problem of background: variations in background and foreground still a trouble
in image processing. Discriminating the objects from noisy backgrounds for exam-
ple is a very hard task, and not to forget the cases of dynamic backgrounds and
illumination changes.

e Overlaid objects: objects that are inside each others are very hard to discriminate
automatically without specific parameters for the specific applications. A lot of
methods succeed in segmenting the big objects or the smaller ones but so rarely to
find a one that can do both.

And at the general level:

e Accuracy: the results obtained are never satisfying, this is the common problem
between all the researchers in image processing. The efficiency of a certain technique
can be questionable from a specialist to another.

e Absence of generic solutions: it doesn’t exist one method that fit all the applications.
Each application needs its appropriate technique that can fit with it and doesn’t be
accurate with another.

e Diversification: the presence of many possible solutions for a given problem. The
choice of the better solution that corresponds for the desired application is a hard
task because of the diversity of the techniques in the literature.



10 CHAPTER 2. TOPOLOGY, ALGEBRAIC TOPOLOGY AND APPLICATIONS

40
80

100

120
0 40 80 100 120 0 40 80 100 120

Figure 2.1: Synthetic image and its Otsu segmentation.

To take a feeling of these problems we illustrate a simple example that show the problems
of Otsu thresholding which is the best known global thresholding method. We have built
a 2D grayscale synthetic image of size 120 x 120 pixels shown in figure 2.1 on which Otsu
thresholding was applied. We remark that such method is not able to segment some
objects in the image as the one in bottom left nor small objects that are overlaid in bigger
one as in the bottom right. Moreover, this method depends on the background level, the
objects not being extracted correctly. A detailed explanations and comparisons will be
discussed in the next chapter.

We propose to develop methods from algebraic topology to overcome the issues of image
processing such as the one explained above. In fact, topology and algebraic topology
represent an interesting field that produce powerful techniques in analyzing images [Car14,
Ghr08a]. It gives the advantage of the dependency from prior parameters like volume or
intensity values, and does not demand preprocessing steps. Also its strengths are revealed
in their invariance to continuous deformations. The same results would be obtained if the
image was rotated, stretched, rescaled, etc. All these criteria makes it suitable to achieve
more general tasks than the existing methods.

For this purpose we will present in the next sections, the concepts issued from topology
and algebraic topology and specially the homology theory to explain their constructions
on spaces of points like pixels. In the next chapters, we will see how algebraic topology
succeeded in developing many appropriate techniques for image processing.

2.2 Topology

After developing some of the techniques used in image processing tasks, we aim in this
section to explain some notions of general topology and to extend some of the applications
of topology in engineering applications and in image processing field. Noting that topology
is divided to many subfields such as general topology or point set topology, combinatorial
topology, algebraic topology and differential topology which have relatively many concepts
in common.
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2.2.1 Notions of topology

Topology is a more invariant approach of geometry that is concerned in the study of
all different sorts of spaces [Mun75]. The most important thing that differs topology
from other kinds of geometry is the type of transformations allowed before considering
something changed. It is called “rubber-sheet geometry” because objects in topology are
allowed to be stretched and contracted without regard to size and absolute position like
rubber but must not broken. A famous quote says that the topologist is a man who does
not know the difference between a coffee cup and a donuts.

In this context, topology aims to study qualitative properties of objects called topological
spaces that are invariant under continuous transformations and deformations [Cro05]. In
an explicit way, topology analysis the shapes and their properties like connectedness and
compactness, deformations of these shapes and mappings between them. So it looks for
holes and their properties, the boundaries of mathematical objects and to extract general
information from spaces.

Concerning the relation of topology and the study of images, topology aims to interpret
spaces with the notion of neighborhood between points [AF08]. This notion of neighbor-
hood must be taken in the large sense; it does not necessarily depend on a given metric
because it will produce quantitative results. This notion of proximity is encoded due to a
set of subsets, where the entire space is stable by union, by finite or infinite intersections
and by complementary which define the notion of topology. These subsets are called the
opens of the space and describe the topology.

The continuous functions are functions between spaces that respect the topology, in other
words, the notion of neighborhood of the domain is transported to the the codomain.
If these notions are equivalent for the domain and codomain spaces, the spaces are said
homeomorphic and the function as homeomorphism. Topology provides very flexible
invariants on the spaces like the number of connected components, the compactness, the
type of surfaces. This flexibility comes from the generality of continuous functions.

We introduce now some basic and formal notions useful for constructions and tools in
analyzing the images. The book [Bou66] is one of the first in understanding general
topology, also in [Mor89] the author provides a yearly updated modern reference of general
topology. There is also a formal definition for topology defined in terms of set operations.

Topology: A topology on a non empty set X is a collection T' of subsets of X if the
subsets in T" are conform to the following properties:

1. The empty set ) and the set X are in T
2. The intersection of finite number of sets in 7" belongs to T
3. The union of finite or infinite sets in 71" is belongs of T'.

The sets that belong to the topology T are called open sets and the pair (X, T") of a set
X and a topology T is a topological space. Referring to this pair, the T" will usually be
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omitted, and X will be used to refer to the space and the set when there is no ambiguity.
These opens carry several topological characteristics and the topological spaces can be
related by functions that have several properties:

e Neighborhood: a set of X is called a “neighborhood” of an element a of X if it
contains an open set of T' containing a.

e Open cover: An open cover of X is a family of opens sets O, such that each O,
is an element of T"and X C Y O,,.

Relations between topological spaces are provided by functions that may transport topo-
logical properties from a space to another. We can distinguish:

e Continuous functions: a function f : X — Y is continuous if for every open set
OinY, f71(A) is open in X.

e Homeomorphisms: a function f : X — Y between two spaces X and Y is called
a homeomorphism if it is bijective, and f and its inverse are both continuous. In
this case, we say that X and Y are homeomorphic.

e Topological invariants: it’s any property of topological spaces that is invariant
under homeomorphism. Connectedness is an example of topological invariants. Two
points a and b are said to be connected in a space X if there exists a path from a to
b consisting entirely of points included in X. Connectedness in X is an equivalence
relation and the classes defined by this relation are called the connected components
of X.

In addition, types of topological constructions, can be seen from metric or distance point
of views that are analogue to the notions of opens and neighborhood:

e Metric A metric or distance function d : X x X — R is a function satisfying the
following axioms:

1. Positivity: For all z,y € X, d(z,y) > 0.

2. Non-degeneracy: If d(x,y) = 0, then z = y.

3. Symmetry: For all z,y € X, d(z,y) = d(y, ).

4. The triangle inequality: For all z,y,z € X, d(z,y) + d(y, z) < d(z, 2).

e Open ball: the open ball B(a,r) with center a and radius r > 0 with respect to
metric d is defined to be B(z,r) = {y|d(z,y) < r}.
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2.2.2 Applications of topology

Recently, topology has become an interesting and valuable component of applied math-
ematics, with many mathematicians and scientists employing and engaging concepts of
topology to model and understand real world structures and phenomena. Topological
methods have shown in the past decade to be a promising new paradigm for analyzing
and manipulating many scientific and engineering problems.

Engineering problems

e Image processing: topological methods have been broadly used in image process-
ing because of the structures given by pixels, objects shapes, and forms of the
image specially in biomedical applications. As a strong advantage, they permit to
build a space formalism that allows a construction of methods and algorithms inher-
ently invariant to transformations such as stretching, rescaling and other continuous
transformations [XZC"16].

Hence, involving topology in image segmentation can considerably improve the seg-
mentation accuracy and reliability. For example, in [WLW™15] the authors propose
an automatic segmentation method for spinal canals by extracting their topology
represented by a medial line that is computed using the connectedness properties
of curves. An object segmentation tool is discussed in [DSM12] and integrates the
topology preserving of the active membrane with its architecture ans shape.

Moreover, digital topology deals with the topological properties of the numeric rep-
resentation of images. Considering the images as discrete arrays in two or more
dimensions, it presents the theoretical foundations for many image processing op-
erations such as connected component labeling and computation, contour filling,
boundaries following etc. The authors in [SSB15] provide a survey on many digital
topology techniques used in the literature such as connectivity and tracking, distance
transformations, local topology, minimal path computation and object characteri-
zation etc.

e Signal processing: topology has contributed in many signal processing aspects such
as wireless sensor networks, communications systems and network protocols etc.
The authors in [LZL15] propose a topology control algorithm for signal irregularity
to solve the control problem of underwater wireless sensor networks.

The problem of moving entities with models that exhibit static topology is solved
by proposing time-varying topologies that use the notions of neighborhood and
metric and overcome the classical work flows proposed in this problem [Barl6).
A topology discovery protocol for an independent path that reduces not only the
topology updating time but also traffic to the controller is proposed in [CKL17].

e Artificial intelligence: topology have helped recently in modeling and predicting the
work of intelligent machines. In [KM16], the authors uses artificial neural network,
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distances between agents and topologies of structure networks to predict opponent
movements in fighting games. A study of the shortest path internet protocol routing
using artificial intelligence and topology is evaluated in [SNK17].

e Electrical engineering: a robot must often have a path planning to its environment
that contains many obstacles and candidate partners and neighbors. Capturing and
representing the topological properties of the space in which the robot may move
or studying the neighbors with whom it may communicate are of major interest.
The work in [NHZ"17] is concerned with the collective behaviors of robots beyond
the nearest neighbor rules when robots interact with others by applying angle tests.
In [AARI16], the authors propose a path planning algorithm for robots using topo-
logical notions to avoid collisions with other robots.

e Pattern analysis: topology have played an interesting role in the automatic detection
of patterns in data. In this sense, the authors in [PK15] study the pattern detection
of geological faults like seismic movements using topology and shape optimization.
A method for investigating designs of interlocking geometric shapes as inspiration for
structural topologies that can be used in lightweight temporary sheltering systems
is discussed in [TWST16].

Sciences problems: topological tools were significantly employed in scientific fields
such as biology, chemistry and physics. For example, the authors in [ABB*15] elaborate
rigorously the relation of topological methods on chemical concepts. Also modeling protein
chains using topology is a well developed concept in the biological field [BTM16].

Social sciences: topology had contributed in resolution in many social and economic
problems. In [ZPR"16], the authors analyze the topology of the network of credit card
transactions data and their confidentiality and sensitivity aspects. Also topology had
been involved in connectivity studies of social networks like in [BQC*17].

While topology is developed basically to deal with intuitions about spaces, connectivity,
continuity and notions of distances and proximity, algebraic topology, which is a subfield
of topology, aims to add to the topological concepts an algebraic flavor using algebraic
structures such as groups and vector spaces in order to remove the ambiguity in under-
standing spaces.

2.3 Algebraic topology

This section is dedicated to the developing of some notions and concepts of algebraic
topology. More precisely, we will extend in details some types of cell complexes and
concepts of homology theory. For this purpose, we begin by a brief introduction to some
of the theories of algebraic topology and how topological spaces can be manipulated to
different types of cell complexes. Then we explain how we can transform topological spaces
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issued from input data to a combinatorial representation into cell complexes and chain
complexes. A detailed explanations of homology groups of different dimensions in their
absolute and relative forms are discussed afterward. Next, we describe a technique for
computing these homology groups and we illustrate it by a complete example. We finish
by presenting some applications of algebraic topology in the state of the art applications.

2.3.1 Panorama on algebraic topology

From the several topological methods in the literature, some methods used in studying
topological spaces are given by algebraic topology [Mas91, Hat01]. Algebraic topology
studies the global properties of spaces, but uses algebraic objects such as groups and rings
to answer topological questions. While the general topological methods are concentrated
on connectivity and connections between spaces, the algebraic topology methods are more
concrete. It tries to transform a topological problem into an algebraic problem that is
easier to solve or to compute. For example, each space can be associated to a group called
a homology group. We can distinguish the torus and the Klein bottle from each other
because they have different homology groups. The combinatorial structure of spaces are
often used by algebraic topology to calculate the various groups associated to that space.

Algebraic topology was introduced by Poincaré towards the end of the XIXth century and
the beginning of XXth century for quantifying the topological spaces with more general
objects than only numbers like a) homotopy, fundamental groups and b) homology groups.
It exists many relations between the homotopy and homology groups as the abelinazation
of fundamental group and homology groups of first dimensions.

Recently, algebraic topology have emerged and contributed in many applications of real
world and specially in understanding efficiently engineering problems [Ghr14]. Concern-
ing the applications of methods and tools issued from algebraic topology, they consist of
associating some discrete algebraic structures like homology classes or sheaves to topo-
logical spaces such as cell complexes built on set of pixels or any point cloud in order to
understand their connectivity issues in any dimension such as the number of holes, voids,
tunnels etc.

Homotopy and fundamental groups: Homotopy is a continuous deformation be-
tween two continuous functions f and g from a topological space X to another Y. It’s an
approach to analyze topological spaces by examination of different paths, whether they're
loops or not, that exist in the spaces and their behavior within its holes. The map that
relates X to Y can define a homotopy class and we say that X and Y are homotopy equiv-
alent. Homotopy is a topological invariant since homotopy equivalence between spaces X
and Y is preserved under homeormophism. Fundamental groups study the structure of
homotopic loops or paths that start and end at same point, thus it can be more powerful
in detection of holes.
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Even though homotopy and fundamental groups carries important information concern-
ing the studied topological spaces, they are hard to compute. Homology as topological
invariant is more useful in applications even if it’s less precise because it’s easier to com-
pute.

Homology theory It is one of the fields that give well understood tools that can be
functional on the applications level. It represents a principal part of algebraic topology
which accomplishes the connection between topological and algebraic concepts. Homology
theory takes advantage of the properties of groups and their homomorphisms to analyze
the properties of spaces and functions by relating to each space a certain sequence of
groups, and to each continuous functions of spaces, homomorphisms of the respective
groups. For example, such properties include the study of holes and voids of different
dimensions of the spaces and the connections between dimensionalities insured by bound-
aries. This is a brief introduction to homology theory and we will talk in details about
concepts of homology theory and homology groups in the rest of the section.

The appropriate reduction of a specific space may not produce changes in homology
groups. This reduction can be realized using another theory issued from algebraic topology
which is discrete Morse theory.

Discrete Morse theory The homology groups aren’t modified if the base space makes
retractions. More precisely, a space X and a retraction A have isomorphic homology
groups. A retraction A is here a subspace of X obtained by a continuous function F' :
W x [0,1] — X such that F(0,.) is the identity on X and F(1,X) € A. Since F is
continuous, no “holes” can appear or disappear during the deformation of retraction. If
the deformation is well chosen, the computation of homology groups of A becomes more
simple than the initial space X.

The most simple method to describe this deformation consists of using a vector field on
the surface X. This vector field is created by a potential function f sufficiently regular;
the field is given by the opposite of the gradient of f. This differential aspect of Morse
theory corresponds to a discrete version that facilitates the use of algorithms. The basic
idea of the discrete Morse theory is to construct a discrete vector field that indicates
how to reduce the initial space. This equivalence is done by transforming the vectors to
pairs of incident cells, which ensure the transformation of the differential aspect of Morse
theory to a discrete version. These concepts were introduced by Forman in [For98, For02]
and made possible the use of discrete Morse theory in algorithmic way. Moreover, the
simplification of functions using the connection between persistent homology and discrete
Morse theory permitted to eliminate the noise from functions [BLW12] which made the
input functions more simple and easy to manipulate.

Recently the mathematics of sheaves focused on many aspects of engineering and data
understanding and many results have make this field a promising force at this level.
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Sheaf theory Sheaf theory which is an abstract field of pure mathematics is derived
from category theory. It is known by its ability to codify rather complicated concepts
in topology and analysis. Recently, Ghrist has been a driving force behind applying the
sophisticated sheaf theory to practical problems [Ghr08a]. Using the cellular sheaves, the
global inference of data is concluded by transforming local information to more higher
aspects [Rob14b]. We will not extend sheaves concepts in this paragraph since the chap-
ter 4 will present the transformation of sheaf theory from pure topological concepts to
applied ones.

2.3.2 Cell complexes and their types

The computational approach of topology and these theories remains hard on general
spaces. It becomes necessary to make the spaces manipulable and thus defined combina-
torially. The classic procedure is to approach a given continuous space in the form of a
variety, differential or not, by a cell complex.

Given a finite set of points M, the general procedure used in computational topology
implicates two steps. We first must approximate the topological space X of the set of
points M associated with a notion of neighborhood with a combinatorial structure K. This
can be done for example by a cubical or simplicial complex. We will cover the approaches
of this step in the next paragraphs. At the second step we compute the topological
invariants of K, the homology groups, which will provide us a close information about
the topological properties of the space X. In the next chapter, we will concentrate on the
most essential topological invariant in our methodologies for the applications on images:
the persistent homology.

We present now the important combinatorial structures that we used in construction of
the topological spaces.

Cell complex We start by the generalization of the combinatorial form of topological
spaces were we construct n-blocks called n-cells using attaching maps to build the cell
complex. We begin by defining a n-cell to be a space which is homeomorphic to B,,, the
ball in dimension n, which will give the approximation of blocks to the term of topological
spaces.

A cell complex or a CW complex is constructed by induction from XY that is a discrete,
finite set of points of M regarded as O-cells or vertices. Then we form the n-skeleton X"
from X"~ ! by attaching n-cells who are regarded as open balls because of the homeomor-
phism via attaching maps from the boundary of the n-cell to the n — 1 skeleton. This
process ends and X" = X, for some finite n € N for the cell complexes and for any n € N
for CW complexes. In our case, we will stick to cell complexes since the spaces that we
build on images are finite.
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L L o o
0 1 2 3

Figure 2.2: Cubical complex of dimension 1.

We will present now some types of cell complexes such as cubical and simplicial complexes
that are used in our applications:

Cubical complex A cubical complex is a type of cell complexes that can be manipu-
lated naturally in Euclidean space by n-dimensional blocks, the n-cells. The approach to
decomposition of the cubical complex, in any dimension, is deduced from the cell complex
principles to the following: the n-dimensional space is composed of cells in such a way
that p-cells are attached to each other along (p — 1)-cells, for p = 1,2, ..., n.

Starting with the dimension 1, in figure 2.2 a 0-cell or a vertex is n withn = ..., -2, —-1,0,1,2,3, .. ;

a 1-cell or an edge is (n,n+ 1) withn = ... —2,—1,0,1,2,3,... the 1-cells are attached
to each other along 0-cells.

For the dimension 2, cubical cells are defined for all integers n, m as:

e a vertex, or a 0-cell, is n X m;
e an edge, or a 1-cell, is n x (m,m+ 1) or (n,n+ 1) x (m);
e a square, or a 2-cell, is (n,n + 1) x (m,m + 1).

The 2-cells are attached to each other along 1-cells, and 1-cells are still attached to each
other along 0-cells.

For example, as shown in figure 2.3, the 1 x 2 is a O-cell ; (2,3) x 1 and 2 x (2,3) are
1-cells and (1,2) x (1,2) is a 2-cell.

Concerning the 3 dimensional cubical complex, for all integers n, m, k we have:
e a vertex or a O-cell, is n x m X k;
e anedgeor a l-cellisn x (mym+1) xk, (n,n+1)xmxk,nxmx (k+k+1);

e a square, or a 2-cell, is (n,n+ 1) x (mym+1) x k, (n,n+ 1) x m x (k+k+1) or
nx(mm+1)x(k+k+1);

e a cube, or a 3-cell, is (n,n+ 1) x (m,m + 1) x (k, k+1).

Simplicial complex As a type of cell complexes, simplicial complex provides a good
way for representing combinatorial aspects of topological structures.

A given set of points {ag, a1, ...,aq} € R"™ is geometrically independent, or affinely inde-
pendent, if the equations Z?:o o;a; = 0, and Zf:() «a; = 0, where a; are constants, hold
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Figure 2.3: Cubical complex of dimension 2

only if each a; = 0. In R?, we can have at most d — 1 geometrically independent points.
A combination x = Z?:o o;a; 18 a convex combination if Z?:o o; = 1 and all a; are non
negative. The convex hull of a given point set {ag,aq,...,aq} is the set of all convex
combinations, denoted as Conv({ag, ai,...,aq}) = {X%  aia;| X%, = 1 and a; > 0}.

A d-simplex 7 is the convex hull of d+ 1 geometrically independent points {ag, a1, ..., aq},
ie., 7= Conv({ag,a,...,aq}). We can also say that the point set {ag, a1, ...,aq} spans
7. The d is called dimension of o, denoted as dim o = d. The first dimensional simplices
hold their own names: O-simplex, 1-simplex, 2-simplex, and 3-simplex are also called
vertex, edge, triangle and tetrahedron, respectively, shown in figure 2.4.

Any non-empty subset S of a point set {ag,ai,...,aq} spans a simplex ¢’ C o called a
face of o.

After defining the notion of simplex and its faces, we can describe a simplicial complex
K as a collection of simplices such that:

1. If 0 € K, then for any face o; of ¢ we have 0; € K,
2. For two simplices 0; , 0; € K, 0; N 0, is either () or a face of both o; and o;.

The set of simplices shown in figure 2.5 at left is a simplicial complex, whereas the one
at right is not a simplicial complex because it doesn’t satisfy the second condition cited
above. According to definition, we can see K as a combinatorial representation of a
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Figure 2.4: Simplices of different dimensions.

topological space. The dimension of K is the highest dimension of any of its simplices.

Simplicial complexes can be hard to deal with. The requirement presented is that for
anything other than small complexes, there are a big number of simplices which have
to intersect in specific ways, as required by definition of simplicial complexes. Abstract
simplicial complexes allow us to avoid this complication.

Abstract simplicial complex An abstract simplicial complex K is a pair (V, S), where
V is a finite set, whose elements are vertices, and S is a set of nonempty finite subsets
of V. These subsets are simplices, such that all singleton subsets of V' are in S and if
a € K and 5 C «a, then f € K. Noting that the abstract simplicial complex is a purely
combinatorial description of the simplicial complex and does not need the property of
intersection of simplices.

One of the most well known abstract simplicial complexes is the Cech complex that relies
on the notion of balls and distances.

Cech complex Given an open cover of a set of points V, O = {Oi}ieny, where [ is
some indexing set, the nerve of O is the nonempty set, denoted by Nerve, given by:

) € Nerve
if N O; # 0 for J C I then J € Nerve.

jeJ

Nerve(O) = (2.1)

The Cech complex of S, given a strictly positive number ¢, is isomorphic to the nerve of
the collection of balls B(a;,€). Cech(e) = {o s.t. | Blas;e€) # 0 for a; € S}.
a;€o
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(a) A simplicial complex. (b) Not a simplicial complex.

Figure 2.5: A simplicial complex comparison.

In this manner, two intersecting balls of the same radius will define an edge and three
of them define a triangle and so on. Hence éech(e) is simply the abstract simplicial
complex whose p-simplices correspond to non-empty intersection of (p+ 1) balls of radius
¢ and centered at the (p + 1) distinct points of V. The figure 2.6 illustrates the Cech
complexes C’ech(el) and C’ech(ez) with €; < ey built on a set of points. It’s obvious that
éech(el) C C’ech(@). The choice of a specific € will reduce the information issued from
the complex. This issue is studied by the notion of persistence as we will see in section 3.1.

It exists many other examples of simplicial complexes like Vietoris-Rips complex [Zom10b],
alpha complexes [Koz07], Delaunay complexes etc [EH10].

2.3.3 Combinatorial representation

The spaces in our works must be represented by combinatorially using simplicial complexes
or cubical complexes in order to be manipulated by algorithms. These spaces are directly
defined by a set of points, then a set of edges, then a set of 2-cells, triangles or squares
followed by cubes or tetrahedron.

A space X of dimension n is decomposed into cells of dimension 0,1 to n. The gluing
between these cells is done via the notion of boundary: the boundary of a cell of dimension
k is a set of cells of dimension £ — 1. A cell 7 on the border of the o is called a face of o
while o is a coface of 7.

Spaces given by point clouds with a notion of neighborhood like images can be manip-
ulated as combinatorial spaces or topological complexes that permit the computation of
homology classes. These spaces defined combinatorially permit the use of algorithms.
Algorithms that are gathered within a new branch of topology known as combinatorial
algebraic topology [Koz07]. Noting that since topological spaces aren’t always a cubical
or simplicial complex, we can use the more generalized term, the cell complex.
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(a) Cech complex corresponding to radius (b) Cech complex corresponding to radius
€1 €2

Figure 2.6: Cech complexes with two different ball radii.

In a cell complex, disks, squares, triangles are 2-cells; circles, edges, are 1-cells; while
vertices are O-cells. The relation between these patches are given by their boundary. For
example, the boundary of a triangle is given by its edges, which are patches of lower
dimension. The set of all patches and the gluing information provided by the boundary
will form the cell complex [Hat01].

The figure 2.7 shows a decomposition of an annulus with two holes to a cell complex.
This annulus will serve as an example for our explanations on homology groups. This
decomposition is composed from:

e 14 cells of dimension 0, its vertices: (a), (b), (c¢), (d), (e), (), (g), (h), (i), (§), (k),
(1), (m), (n).
e 21 cells of dimension 1, its edges: (ab), (bc), (cd), (de), (ef), (af), (ag), (bk), (cm),
(dn), (ej), (fh), (gh), (g1), (bj), (1j), (k), (kI), (Im), (mn), (n).
e 6 cells of dimension 2: (aghf), (abkjig), (bcmlk), (cdnm), (dnlkje), (efhij).
The boundary of a 2-cell is composed from its edges. For example the boundary of (cdnm)

is the sum of (c¢d), (dn), (nm) and (e¢m). The vertices don’t belong to the boundary of
(cdnm).

Data structures that allow manipulation of combinatorial spaces are especially relying on
the border relationship. Indeed, it suffices to retain the cells and the relation of incidence
between faces and between cofaces [BM12].

The topological invariants proposed by the general topology are often qualitative and
therefore difficult to calculate for a computer. The algebraic topology [Mas91, Hat01,
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Figure 2.7: Example of a combinatorial space containing 0-cells, 1-cells and 2-cells.

Koz07] responds to this by calculating more flexible invariants. These invariants are not
necessarily scalar values but rather groups, vector spaces or other algebraic structures.

We are interested mostly in homology groups as topological invariants for our combinato-
rial construction on images. The topological structure of a complex is encoded by vector
spaces used by homology theory. We can build a linear structure on top of the complex
by defining p-chains ¢, as formal sums of p-cells. We also choose a coefficient group. The
coefficient of chains is often taken as integer or belong to a field. Moreover, the use of the
binary field Zs permits to omit the orientation of the cells because an element is the equal
of its opposite. Thereafter, when the loss of orientation information is not primordial in
our case we can use the binary field.

A chain is therefore represented as a collection of cells. For example, on figure 2.7,
combinations a, a+d and e+ f are O-chains. In a more general manner, each p-chain may

np
be expressed uniquely as ¢, = 3 «;0; where o; represents p-cells, n, is the number of p-

1=
cells in the space and a; belong to the chosen field, taking into account the corresponding
sign with the orientation in the space.

The set of all p-chains together with the operation of addition form a vector space C,.
The collection of the (p — 1)-dimensional faces of a p-cell o, which is a (p — 1)-chain, is
the boundary d,0 of 0. The boundary of the p-chain ¢, is the sum of the boundaries of

n

the cells o; in the chain, i.e. d,c, = i a;0,(0;) where n, is the number of cells in the
i=1

chain c,.

Relations between chains is insured by its boundaries. The boundary operator 9, is a
linear map between chains of different dimensions, 0, : C, = C,_1. The set of vector
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spaces C, and the boundary operator d, between them are called a chain complex and is
noted: ) ) ) (
0 o B e, 2B 002 o B0, (2.2)

Since the complex is of dimension n, it doesn’t exist a cell of dimension n+1. Consequently,
the vector space C), 1 is trivial which explain the null vector space at left of 2.2. As well
as the dimension —1 is here non-existent hence a trivial space for C'_; and the presence
of the second zero of equation 2.2.

The fundamental relation of a chain complex is that the boundary of a boundary is void,
that is, 0,0,41 = 0 for all p. Intuitively, the boundary of a disk is a circle that has no
boundary. This relation will play a striking role in definition of homology groups.

The linearization of the space of interest into a series of vector spaces and the linearization
from the notion of boundary to a linear operator makes it possible to use linear algebra
to compute the homology invariant.

2.3.4 Homology groups

Homology is the topological invariant that is often employed in practice because of its
ability to be computed by linear algebraic methods in all dimensions, and thus by matrices
manipulated by algorithms. This algebraic group describes the connectivity of a space X
through the structure of its holes. This mechanism is executed by using equivalence classes
of cycles called homology classes. However, the calculation of these classes is difficult and
computationally complex. The linearized version system that relies on the complexes
presented in subsection 2.3.2 is much more accessible because it depends only on linear
algebra, but it is less powerful because it discriminates less the topological spaces.

The complexes make it possible to represent a sub-space by a vector. However, all the
sub-spaces are not necessary interesting in algebraic topology; homology groups keep
the essential aspects of the interesting subspaces while removing the subspaces without
interest.

After describing the combinatorial representation of the studied data into a chain complex,
we introduce the intuitive concept of homology groups giving some examples to illustrate
it.

2.3.4.1 Definitions of homology groups

First, we start by homology groups of zero dimension to get a feeling of the intuitive
purpose of homology. The homology group Hy(X) tries to capture the notion of con-
nectivity of the complex X. For example, on the figure 2.8 we see that the red chain
c = (ab) + (bk) + (kj) connects the vertex (a) and vertex (j). Therefore, (a) and (j)
belong to the same connected component.
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Figure 2.8: Example of chains of one dimension.

It remains to transport what we see towards linear algebra. The boundary of the chain
c is de = J(ab) 4+ O(bk) + 0(kj) = (b) — (a) + (k) — (b) + (§) — (k) = (j) — (a) since we
have remained general and have taken into account the orientation of the cells. This last
equation is written also (j) = (a) + Oc or (j) — (a) = Oc which expresses the fact that
the vertex (j) is reached from the vertex (a) by following the chain of edges ¢. We find
therefore the notion of connection between (a) and (j); in other words, (a) and (j) are
equivalent. Similarly, (d) and (h) are equivalent because the second chain, in blue, the
figure 2.8 connects them.

An arbitrary chain of edges ¢ connects its vertices de. Consequently, the subspace of
Cy given by the image of 9C} provides the set of vertices connected to each other. The
boundary of a vertex is always zero because dy = 0. So all the vertices are in ker dy, hence
Im 0 C ker dy. The homology group Hy(X) is written

Ho(X) = ker 80/ Im 31, (23)

which is a vector space whose elements are equivalent vertices as (a) and (j) are.

As all the vertices of the figure 2.8 are reachable from (a) by following a chain, the
group Hj is a vector space of dimension 1 which means that there is only one connected
component.

For other higher dimensions, naturally homology is a way to uncover p-dimensional holes
in a cell complex. The idea is to find chains that surround holes without being able to be
reduced continuously to zero. Noting, for the need of example, B, R and G as the three
chains of dimensions 1 in the figure 2.9, which are in strong blue, red and green lines
respectively. First of all a chain that surround a subspace or a hole is necessarily without
boundaries. Boundaryless p-chains are interesting and form a subgroup of C;, that we call
the p-th cycle group Z,. The set Z, of all p-cycles is defined as the subspace of C, of
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Figure 2.9: Example of a cell complex containing cycles and boundaries.

chains without boundary:

Z,={x € C, | 0pxr =0} =kerd,. (2.4)

Among these cycles, we consider the ones that are boundaries of other chain of higher
dimension while staying on the surface. It means intuitively that they can be collapsed
into a point. They form a subgroup called the p-boundary group B,:

B,={re€C,|3ye€Cpi1,0p1y =2} =Im0,. (2.5)

For example, the chain in green G = (cd) + (dn) + (nm) + (mc) displayed on figure 2.9, is
a 1-cycle, because 0G = 0. Chains B and R in figure 2.9 are also 1-cycles. Thus, they all
belong to Z;. Cycle G is a boundary of the 2-chain (cdnm), the dark surface in figure 2.9,
and it belongs to B;.

Since the boundary of a boundary is void, B, is a subgroup of Z,, thus a quotient group
can be created. Figure 2.10 shows schematically the relationship between the different
vector spaces concerned by homology. The goal of homology is to discard cycles that are
also boundaries because it can not contain voids and thus reduced to zero.

To this purpose, we build an equivalence relation on Z,. The equivalence relation ~
defined above partitions the p-cycles Z, into a union of disjoint subsets, called homology
classes. A chain that belongs to Z, and B, at the same time, meaning that it is a cycle
that doesn’t contain a void, will be reduced to zero and is not interesting, contrary to a
chain that belongs to Z, but not to B, because it is a cycle that contains a void and isn’t
a boundary of a p + 1-cell, thus it is interesting.

The homology group H, keeps the count of cycles that are interesting by distributing
them into equivalent classes. Thus, an element of H, gathers together these equivalent
cycles which can be deformed continuously one onto the other and a class of H, will be
represented by generators cycles.
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Figure 2.10: Chains, cycles and boundaries between dimensions.

Algebraically speaking, two cycles z; and zy € Z, are said homologous or equivalent,
written z; ~ 29, if they differ by a boundary, i.e., 21 — 20 € B,. We say that z; and 2z
belong to the same class [z]. We let [z] denote the homology class of z € Z, and define
the p-th homology of a space as the quotient of the vector space Z, by the subspace B,
which is a set of homology classes:

H, = Z,/B, = cycles/boundaries = {[z],z € Z,}. (2.6)

For example, the chain G on figure 2.9 does not surround a hole. Indeed, it can be shrunk
into a point without being blocked by a hole. It belongs to Z; and B; and hence it is
reduced to zero. Thus, this cycle is not of primary interest. On the other hand, chains R
and B encircle a hole. They can not be shrunk while remaining on the space and they are
not boundary of any 2-chain because of the hole. Hence, they belong to Z; but not to B;.
Also, the interesting 1-cycles R and B are inherently the same, they’re said homologous
as they surround the same hole. The difference between both cycles is a boundary of a
2-chain. Thus, the red cycle can be deformed continuously into the blue one. In fact R =
B+T where I' € By and I' = (ab)+ (bk)+ (kl)+ (In)+ (nd) + (de) + (ej) + (ji) + (ih) + (ha).
Unfortunately, there are no canonical representatives, which means R and B are both valid
for representing the hole in the annulus.

The dimension of H, is called the p-th Betti number. For a 3D space, the zeroth Betti
number counts the number of connected components. The first and the second Betti
numbers counts the number of “holes” and enclosed “voids” respectively.

As a functorial property [Pie91, Mac71], every continuous map between topological spaces
f X — Y induces an homomorphism between homology groups H,(f) : H,(X) —
H,(Y) of these topological spaces at a dimension p. This functoriality means that we
can associate algebraic data to each space and then attempt to transfer this information
from space to space in order to make a comparison in homology classes. In this sense,
homology vector spaces H,, transform continuous maps into linear ones. In addition, this
functoriality will play a major role in persistent homology as we will see in section 3.1.
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Figure 2.11: Examples of relative cycles where A is the subcomplex of vertical lines.

All computations involving homology groups can be easily handled using standard matrix
manipulations given a combinatorial representation of the chain complex.

2.3.4.2 The relative homology group

Sometimes it’s useful not to take into consideration a subcomplex A of the space X to
compute the homology groups. We talk about another version of homology involving the
dump of a subcomplex A that yield to the relative homology H,(X, A).

It is necessary for this purpose, to completely reduce the subspace A so that it “disappears”
during the computing. The relationship of sub-part A C X is represented by a subcomplex
relation of C,(A), which is the complex that represents the space A at dimension p,
and the complex C,(X), which is the linearization of X. We will refer to the classical
homology described before as the absolute homology or simply the homology if we want
to distinguish it from relative homology.

For that, we will note C,(X,A) = C,(X)/C,(A) as the quotient complex and 9, as
the boundary operator, taking into consideration that A is always a subcomplex of X.
Reducing C,(A) in C,(X) amounts to considering that the chains of C},(A) are null. The
quotients vector spaces C,(X)/C,(A) play this role. The elements of these vector spaces
are chains of C,(X) where the cells of C,(A) are not taken into account. Thus, certain
cycles may appear in C,(X)/C,(A) whereas they did not exist in C,(X) and all cycles
completely included in C,(A) disappear.

Therefore, taking chains on X modulo chains on A shrinks the requirement of a chain to
be called a cycle, namely whenever its boundary is contained in A. This is illustrated in
figure 2.11, where A represents the subspace containing the blue vertical lines at left and
right. At left, the red chain is a cycle detected by relative homology since its boundaries
lie in A. This also includes the case when the boundary is empty, which can be detected
also by absolute homology. In the same way as the p-boundaries, relative p-boundaries
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are defined as B,(X, A) = Im d,,,. Similarly, relative p-cycles are Z,(X, A) = ker 9, and
correspond to p-chains ¢, that satisfies d,c, € C,—1(A) or d,¢, = 0.

The relative homology groups H,(X, A) are computed as the homology groups that use
these new vector spaces C,(X)/C,(A). As in the absolute case of homology, we have
B,(X,A) C Z,(X,A) and the p-th relative homology groups is defined by H,(X,A) =
Z,(X,A)/B,(X,A). However, for the previous definition of relative homology and its
computation, it is necessary that C,(A) be either a subcomplex and in particular that the
boundary of a chain of Cj,(A) belongs to C,(A).

2.3.4.3 Technique of computing homology groups

The calculation of the homology groups is done by matrix reduction [EH10]. If the
coefficients of homology are in an algebraic field then the reduction is similar to a Gauss
elimination and if the coefficients are integers then a reduction in Smith’s normal form is
possible but more demanding in cost of calculation. We now restrict ourselves to the first
case since it’s more simple.

If the boundary operator is expressed in a suitable base, the generators of the homology
groups are read directly in the matrix representation of 9. Since the matrix of this operator
is given in a non-necessarily interesting base, we must make an intelligent base change
that is provided by a matrix reduction.

This reduction can be computed by an algorithm equivalent to a Gauss elimination, and
uses only elementary operations on the columns of the matrix @. The pseudo-code is
given on the algorithm 2.1 where M .; means the i-th column in the matrix M and the
rank of 0 is computed to help in finding the reduced matrix Q).

These elementary operations can be written in the form of matrix multiplication to the
right and can be inverted in the same form. Noting that the rank helps here in finding
the rank of 0 and thus the rank of (). These operations are:

e adding a multiple of the column j to the column ¢;

e cxchanging the columns ¢ and j;

e multiplying the column ¢ by a scalar a.
Thanks to the reduction of @ we can find two matrices Q and V' such that [Q | 0] =9,V

where the columns of @ are independent between them and V' is an identity matrix in
origin that registers the operations made on 0 during the reduction operation. More
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Algorithm 2.1: Reduction by column reduced echelon form
Input : Boundary matrix @ of size m x n
Output: Matrices @ and V such that @ = dV and @Q under reduced form and
the rank of 0

Data: rank
Data: first: table of n indices

Q<+ 0
V1,
rank < 0
for : <+ 1 to m do
¢ < i-th column of Q
/* Reduction of vector c x/
for j < 1 to rank do
if Cfirstfj) 7 non zero then
/* Set to Zero Csy */
8 C < ¢ — Chirstli) Q5
9 Vi< V,-— Cirst][i] Q
10 end

[SLTN NI R

=N o

g

11 end
12 Q.,+—c

/* update rank if necessary */

13 if ¢ # 0 then
/* ¢ is an independent vector of previous ones */

14 rank < rank + 1
15 first[rank] <— index of first non zero coefficient ¢
16 Sorted by ascending order first
17 Perform the same permutations on the columns of V'
18 end

19 end
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precisely, the former decomposition can be written in the form

bl ... bn 0 DY 0 U]_ .« .. /I-]TL Z]_ ... Zm
[ I A % T O 0 R
Bp,1 6Zp 8_1Bp_1 Zp
dim Cp—1 dim Cp,
By a direct reading, the vectors z1, ..., z, form a basis of cycles Z,. Similarly, the vectors

b1 to b, are independent by construction and generate all boundaries of dimension p — 1,
which gives the relation dim C), = dim B,,_; + dim Z,,.

The previous reduction applied to the boundary operators permits to recover a base for
all B, and Z,. The calculation of H, = Z,/B,, consists about reducing the base of Z, to
that of Bj. This reduction is obtained for example by putting in reduced column form
the matrix [B | Z], where the columns of B and Z are the vectors of bases of B, and
Z, respectively, to retrieve a matrix of form [B | H | 0] where the columns of H are
representative independent generators of H,,.

All previous reductions can be made in a single operation on a large matrix containing
all the boundary matrices. The only reduction of this large matrix permits to directly
recover the homology groups. It should be noted that this approach can be usable because
the boundary matrices are very hollow matrices. Using this specificity and the adapted
algorithms of reduction, the result can be manipulated in the memory of a computer.

2.3.4.4 Example of homology groups computing

In order to make the explanations above more concrete, we propose to compute the groups
Hy, Hy and H, of the cell complex of the figure 2.12. Noting that this space is in one
piece with two holes and has no cavities, thus the number of connected component or (3,
is one. The number of one dimensional holes (3 is two, while the voids of two dimensions
do not exist, i.e. f5 = 0.

The representing cell complex of the space in figure 2.12 is composed of three vector spaces.
We will not make the distinction by the notation between a cell ¢ and its associated vector

(€)-

e The vector space Cy is of dimension 14 and is generated by the vertices (a) to (n).
A chain is therefore of the form ¢, (a)+ ¢, (b) +c.(¢)+- - -+ ¢, (n), where ¢ represent
coefficient of the cell in the chosen algebraic field. The vector (d)+3(i), for example,
represents the union of the vertex d and the vertex ¢ with a coefficient of 3 if the
field is Z for example;

e () of dimension 21 is generated by the edges (ab), (bc),.... For example, the chain
(ab) + (bc) + (ed) + (de) + (ef) + (fa) represents the turn of the outer circle;
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Figure 2.12: Example of a surface with two holes.

e (5 of dimension 6 has as base the chains (abkjig), (bemlk), (cdnm), (dejkin),
(efhij) and (fhga) corresponding to the different cells abkjig, bemlk, cdnm, dejkin,
efhij and aegd.

In the natural base of the cells, the boundary matrices are the incidence matrices of vertex-
edge or edge-(2-cell). However, the coefficients will be taken as integers in our example
to take into account the orientation of the cells which has been fixed and represented by
the arrows on the figure 2.12.

The boundary of the edge (ab) is formed by its vertices a and b but by taking into account
the orientation, we have 0;(ab) = (b) — (a). This same process makes it possible to obtain
the boundary matrix 9.
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(2.8)

where — indicates the entry —1, + corresponds to the coefficient +1 and a point to 0. The
orientation is chosen so that, from the notations, the arrow goes from vertex of the smallest
identifier to the vertex of the largest identifier within the alphabetical order. Taking for
example the first column represented by the 1-cell (ab) its boundary is (b) — (a) then the
entry corresponding to the row b is + and that corresponds to row a is —. This convention
makes it possible to avoid difficulties related to the memorization of the orientation and

our implementations on machine follow it.

Similarly, following the orientation defined in the figure 2.12, the boundary operator is

represented by the matrix 0s:
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The orientation is chosen according to the trigonometric direction, all the edges of the
boundary of a cell that follow this direction are counted positively and the others nega-
tively.

From the boundary matrix @i, thanks to a reduction of columns in echelon form, we
have a representation of the given form by the equation (2.7). By applying this reduction
to (2.8), noting that V; is a square matrix, we find the decomposition Q, = 8, V'; given
by:
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Firstly, we remark that the first thirteen columns of @ are non zero and independent,
because they’re in echelon form. These columns represent then a base of By = Im0;.
On the other hand, the eight last columns of @, are null, thus the eight last columns of
V1 that are associated with them have empty boundary. It follows that these last eight
columns form a base of Z; = ker 0.

The same procedure of column reduction applied on the boundary matrix of @, gives the
following decomposition Q, = 02 V',

(abkjig) (bemlk) (ednm) (dejkin) (efhij) (fhga) ]

(ab) +

(af) : +

(ag) - -

(be) :

(bk) + :

(cd) : +

(cm) - :

E;i;i)) N J_r . (abkjig) [— - - - - -
o D )
) i (efhij) | - - - - _
(g0) B ' (fhga) | -+ ]
(hi) : +

(i7) - + 4+

G | - +

(ki) —

(Im) - .

(In +

( .

3
E/ ~—
|

(2.11)

We remark that 0, is of full rank. Therefore the columns @, are vectors of the base of
Bl = Imﬁg and Z2 = ker 82 = 0.

Once the basis of By, By, Z; et Zy are known, it remains the calculation of Hy and H;.
Knowing that Hy = Zy/ By and Hy = Z/ By, therefore they represent the basis of Z; and
7, that cannot be written in form of the basis of By and B respectively. For this, it is
enough to project the vectors of Zy = Cy on the base By and the vectors of Z; on the
basis of B;. To do this, the reduction of columns can be reused. In fact, the matrix B,
which contains the columns of a base of Im 0; ,under non-zero matrix of @, is already in
echelon form. So if we want to reduce the matrix [B; | Z1], we obtain a matrix of form
[By | H, | 0], where H provides the representatives of H; generators since they cannot
be expressed in terms of basis of Bj.
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Using this method on our example, we find
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Also, the calculation of representatives of Hy using the same approach will provide,

(a) (b) (c) (d) (e) (f) (g) (h) (@) (7) (k) (I) (m) (n)
HT = [. o, +}, (2.13)

In other words, Hy is a vector space of dimension 1 generated by the equivalence class
(n) + By. That is, the complex is composed of a single connected component.

The group H is, for its part, of dimension 2 and generated by the two vectors (gh)+ (hi) —
(ig) + By and (Im) + (mn) — (In) . The two representatives cycles u = (gh) + (hi) — (ig)
and v = (Im)+ (mn)— (In) that surround well the two holes in the space of the figure 2.12.

The group H, is zero because there are no cycles of dimension 2; Z5 = 0. In other words,
there is no cavity in the space of the example.

It should be noted that the order of the columns of the boundary matrices 8; and 9-
greatly influences the representatives obtained by our algorithm. Indeed, it is possible
that the algorithm returns, while remaining correct, that Hy is generated by (a) + By.

Similarly, a change in order of the cells could provide as representatives of H; the vectors
(ab)+(bc)+(cd)+(de)+(ef)—(af) and (gh)+(hi)—(ig). Here, the first cycle « surrounds »
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the two holes and the second only the hole to the left of the Figure 2.12. There is no
set of canonical representatives, that is to say, naturally defined. Similarly, no basis is
canonical, for example {u,v} forms a base just as valid as {u + v, v} or {u,u + v}.

The dimensions of Hy and H; give respectively the number of Betti 5 = 1 and 3 = 2.

2.3.4.5 Cycles optimization

Since homology groups are quotient groups H, = H, = kerd,/Imd,;; , the computed
generators are not the unique representatives. It means that all the cycles surrounding
the holes of dimension p and equivalent to a generator ¢ are of the form & = ¢+ 0y where
x and c belong to ker 9, and Oy to Im 0,;.

It is sometimes interesting to find the cycle equivalent to a generator ¢ which minimizes
its size. This permits, for example, to locate a hole by knowing the vertices that are on
its boundary. This optimization is written in the form
min size(x)
r (2.14)

such that © = ¢ + Jy.

The size of a cycle x is not necessarily well defined because it can be the number of
cells that form its base or the sum of its values according to the application. This type of
approach is studied in [DHK11] and [Eril1] which propose to transform these optimization
problems in linear programming.

These cycle optimization problems were discussed for applications to coverage holes for
example [TSJ08]. Their approach is not combinatorial as here because the authors use
the isomorphism between the kernel of the operator of Laplace-Beltrami A; and the group
H,(X) by the discrete Hodge theory [MEO06]. Thus, it becomes possible to distribute the
computation of the homology group generator and to optimize its length by methods of
decreasing gradient.

The article [DSW10] pursues the same objective but considering a complete basis of
the homology group and the notion of size derives directly from the notion of distance
underlying to the space for which the cell complex is an approximation.

Finally, the article [CF10] defines the notion of size by a very general and typically topolog-
ical approach. No geometric notion is required. The idea is to have a set of sub-complexes
that serve as stallions for size measurement. An algorithm for calculating a minimal basis
is then provided.

All these algorithms are interesting but depend strongly on the application. Moreover,
the choice of the cells that represent the optimal basis seems very complex because they
require a global knowledge of the groups 2y, Z5, By and Bs.

In our application, we intended to use algorithms that ensure a legible basis for the object
segmentation in images. These algorithms consist on separating the homological basis in
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2D and 3D cases as described extensively afterwards in the chapter 3 in subsections 3.3.5
and 3.3.6.

2.3.5 Applications of algebraic topology in engineering

After explaining in the previous section some notions of algebraic topology and after
expanding in details the purpose of homology groups and how to compute them, we aim
in this section to develop some hottest directions of applications of algebraic topology in
different topics.

Relations between discrete and continuous worlds Recently, many developments
that bridge the discrete and continuous worlds have appear in scientific researches for
understanding the topological and geometrical aspects of networks and discrete metric
spaces. Topological and geometrical tools help in treating discrete metric spaces as de-
scribed in Gromov’s work [Gro06.

The interface of algebraic topology and computer science gives birth to schemes that ex-
cessively progressed the comprehension of functions between discrete samples from metric
spaces within structures such as algebraic sets and Riemannian manifolds. Studying the
structure of large networks is done using these two approaches. Networks that represent a
very important topic in engineering, computer science and social sciences are manipulated
as simplicial complexes.

Considering these networks as topological spaces after enrichment of their structures per-
mits to use tools from algebraic topology in biological, engineered and social networks.
For example, the authors in [WMS13] propose a method to reduce the number of sim-
plices that represent network structures. This reduction will simplify homology and hole
location computations using isomorhphisms between homological groups that contribute
to a collapse from bigger groups to smaller ones.

Sensing and communication Algebraic topology concepts have been involved in sens-
ing and communication. The computation of optimal processing elements with limited
local connectivity in systems that include multi agent robotics, sensor networks and cell
phones is innovated in the transformation from local to global ensured by robust algo-
rithms from algebraic topology principles. These principles solve the problem of perform-
ing whole system analysis by collecting local information to deduce or infer global results.
This include detecting homology based coverage holes in wireless sensor networks, as the
work initiated by de Sliva and Ghrist in [SG07] where homology groups of first dimension
are computed to detect coverage holes, and those of second dimension for sensor selec-
tion, or as in [YMD14], where a measure of the accuracy of Rips complex in addressing
coverage holes problems is proposed. Also the study of network data optimization and
aggregation is ensured by sheaf theory [Rob13b] that extends locally defined structures
to globally accurate interpretations.
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Dynamics and differential equations Algebraic topology is also explored and ana-
lyzed by dynamics and differential equations. Invariants of dynamical systems that are
well adapted to numerical methods can be computed thanks to homological quantities
and characterizing the qualitative behavior of dynamical systems is ensured by algebraic
topology invariants. Examples cover recording patterns of nodal domains [MWO07], mod-
eling vector field topology using Morse decomposition on a manifold surface transformed
to simplicial complex [SZ12], homology based methods that measure dynamical finite size
effects in spatiotemporally chaotic convective flows [HKS11] and techniques of time series
analysis that solve the non stationarity problem using computational topology [Rob00].

Molecular biology Many fundamental questions in molecular biology are based on phe-
nomena raised from topological features of metric geometry of proteins. Many challenges
in biology need the qualitative outcome that topology ensures. Persistent homology have
been used to analyze the protein structure, flexibility and folding, the authors in [XW14]
introduce a technique for obtaining molecular topological fingerprints depending on the
persistence of molecular topological invariants computed from persistent homology. A
way for protein-ligand binding affinity prediction that integrate persistent homology with
machine learning techniques is proposed in [CW17]. Studying behavior of genes using
persistent homology helped in detecting cancer forms in [LK15].

Homology and cohomology The dual version of homology called cohomology handles
many applications where the usual homology doesn’t find the expected results. Algebraic
structures on the cochain complex that consist of transforming chains by a coboundary
maps from low dimensions to higher dimensional structures. Recent applications of coho-
mology in analyzing the families of forms in electrodynamics and fluid dynamics focuses
on creating new ways of computing cohomology generators [DS13]. Identificatin of inter-
esting circle structures in data is addressed in [dSMVJ11a]. Persistence of cohomology
classes are used combined with integration to get the circle valued functions in order to
solve a problem of non linear dimensionality reduction.

Notable advances have been marked in connecting cochain complex to issues of stability
in finite element methods [AFWO06]. The relation of cohomology with Hodge-De Rahm
theory is the core of many topics of cohomology computation using the hodge laplacians
on graphs [Lim15]. In our work, we relied on the notion of sheaves cohomology in chapter
4 to deduce inferences in scale analysis and localization.

Homotopy theory Homotopy theory was largely applied in engineering applications.
Predictions of paths for robots and machines have been considered also by homotopy the-
ory [HCR15, DAVLHM*17]. Homotopy classes aids in automatic path planning methods
that pass obstacles neighborhood and ensure the optimal path.

For example, in [OK13] a method that uses homotopy and algebraic topology concepts
is used to assist people in maintaining very complex systems by ignoring unnecessary
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details. This approach called incrementally modular abstraction hierarchy (IMAH) and
that relies on the fact of hiding information and managing complexity at the same time
of making individuals work independently at each level of the hierarchy. It is widely
used in computer science and information technology. The authors use a combination
of homotopy theory, category theory and set theory to derive general concepts derived
from algebraic topology and accessible by non mathematician community. They involve
pullback and pushout morphisms instead of homotopy and employ them when dividing a
system or integrating two subsystems and when descending and ascending an abstraction
hierarchy which are very important operations in IMAH.

Persistent homology Latterly, many techniques have appeared to try to deduce al-
gebraic properties of a space from finite metric subspaces of sampled points. Computing
approximations of homology of manifolds is a basic problem in large data like images.
An important issue in this topic is the dependence of the topological invariants computed
from parameters or fixed threshold levels. This is the role of persistent homology.

Like homology, persistent homology concepts try to understand the relationship between
the underlying geometry of the space in question and sampling procedure. This type
of difficulty is classical in methods of data analysis based on certain geometry where a
scale parameter is often required to know the best representative space of the data. The
topological data analysis [Car09, Carl4, Ghr17] provides a very elegant solution thanks to
the use of homological persistence. The idea is to build the complex as previously while
labeling the cells in the complex by certain values. The concept is to build subcomplexes
using these values in a way to have sub-complexes of simplexes labeled by a value below
the threshold. Therefore, by varying the threshold, we can construct a scheme called
filtration on the complete simplicial complex.

This filtration will be very relevant for our application as we will see uin the next chapter.
The complete complex and the filtration makes it possible to calculate the persistence of
the homology groups. This topological invariant has led to a large number of analysis
explanations of data like in molecular biology as we have seen, neuroscience [Baal7], fluid
dynamics [KLJ*16], etc.

2.4 Application objectives of the thesis

In this work, we aim to apply algebraic topology concepts to analyze images specifically
and to solve some of the problems faced by the majority of image processing techniques
at the level of prior parameters, background and overlaid objects etc.

We aim in this section to explain some of the application objectives of this thesis how topo-
logical invariants computation can help in image processing tasks specially in biomedical
aspects.
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Figure 2.13: An image of prostate gland.
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Figure 2.14: Sample of real images for object segmentation.
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Figure 2.15: Example of an instant of a time lapse image.

As a first objective we may use the topological features that we compute on biomedical
images as the image that represents a prostate gland in figure 2.13. We will segment this
gland into it different components using these topological features computed on squared
windows in order to distinguish the cells, the stroma, etc.

Secondly, we have images that contain objects as shown in figure 2.14(a) or cells in the
biomedical case as in figure 2.14(b). We will prove that our methods relying on algebraic
topology are not affected with the backgound/foreground discrimination as in the case of
image of figure 2.14(a) where the intensity of dots is very close to the non homogeneous
background and they are very different in size and form. Also our method is able to
segment the cells in figure 2.14(b) , as marked in red color in the figure, and/or find its
components, as with the blue color, without the use of prior parameters, while the most
existing methods can’t execute these two tasks together, or need the existence of these
parameters. We will prove the efficacy of this method on 2D as well as on 3D images like
the biomedical image of nucleolus in figure 3.36 on page 90 using topological constructions
on pixels and superpixels which will give the method a generic flavor.

Moreover, detection of moving object from a sequence of frames captured from a static
camera is one of the missions of applying the algebraic topology tools in this thesis. The
goal in this case is to track the movement of cells and vesicles through time from the first
to the last frame of the image sequence.

The figure 2.15 is a biomedical image taken by a time-lapse technique using the SID4Bio
quantitative phase imaging system introduced in [BMWO09]. This image of this sequence,
that we represent by one instant, is of size 500x500 and contains plenty of biomedical
objects like vesicles, trains of vesicles and cells. We will track the movement of these
objects during the image sequence like the image in 3.40 on page 96 that shows the
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movement of a vesicle and a train of vesicles.

2.5 Conclusion

In this chapter, we intended to make an overview on some of the image processing tech-
niques. Then we discussed some general topological notions and how topology is applied
in scientific world and image processing. In the next section we plunged in the world
of algebraic topology, we discussed some of its theories, then we explained in details the
homology theory in its absolute and relative form and how to compute homology groups.
This was followed by a state of art applications of algebraic topology in scientific prob-
lems. Finally we addressed the requirements of this thesis on the type of images that we
have and how the topological methodologies can be applied in order to perform image
processing tasks.

On the other hand, we have seen that homology is an effective tool in capturing topo-
logical characteristics of static spaces. But what if these characteristics are not of major
importance for deducing the inferences in images? And what if we wanted to increase the
topological space where the homology is computed? This is why we present in the next
chapter, the persistent homology, a way to detect resistance of homology classes in face
of variations of topological spaces. And we see how this tool is suitable for achieving the
tasks and requirements needed in section 2.4.
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In chapter 2 we developed some notions used in topology and we introduced some theories
issued from algebraic topology, then we focused on homology theory giving some state
of the art applications of this theory in engineering problems and specially in image
processing domain.

In this chapter, we extend the homology theory to a more suitable phase for data under-
standing and inference conclusions in image analysis. This phase consists about computing
variations of homology during modifications of topological spaces by a procedure called
filtration. We talk about persistent homology where the goal is to detect homology classes
that persist during variations within the topological spaces.

The importance of this procedure relies on the concept that topological features detected
over a range of varying scales are more suitable to represent correct features of the studied
data instead of detecting noise or using a particular choice of parameters. Applications
of persistent homology depend highly on the construction of the cell complexes. We show
in this chapter different applications of homology theory in image processing like image
segmentation, object segmentation and detection and object tracking.

We develop the idea and concepts of homological persistence in section 3.1 by extending
and explaining in details the workflow of computing persistent homology. Then we de-
scribe in 3.2 some state of the art applications of persistent homology in engineering and
image applications. In section 3.3, we propose a combinatorial representation of pixels
and superpixels into cell complexes suggesting a filtration scheme associated to these com-
plexes. We first execute the use of this combinatorial representation in section 3.4 where
we rely on the workflow of the computation of lifespans of homology classes on pixels in
order to achieve image segmentation using a combination of topological and statistical
features. In section 3.5, we explain how to apply persistence concepts on pixels to perform
object segmentation then we extend this application to superpixels for 2D and 3D object
segmentation. In section 3.6, we propose a method relying on relative homology in its
persistence form to develop an object tracking and detection technique during variation
of time. The relative homology adds to the absolute homology the capability to detect
cycles in more desired spaces used as quotient spaces for the cell complex. We finish this
chapter by a conclusion that draws a summary for this chapter.

3.1 Persistent homology

Among the algebraic topology tools, homology represents a way for talking in an unam-
biguous manner about how a space is connected. It associates algebraic objects such as
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Figure 3.1: Workflow of computing persistent homology.

abelian groups to topological spaces like cell complexes built on the set of pixels. Pixels’
values of an image arise like a natural function to develop this tool on. Alternatively, it
can detect the connected components, tunnels, voids etc., which represent image clusters
or features of any dimension.

Furthermore, persistence is the state of occurring or existing for a long time despite the
changes in the studied space. Thus, it measures the endurance of an image feature and its
importance through the variation of a scale parameter built on pixel intensity for example.
Persistent homology represents one of the most powerful algebraic yet computationally
feasible tools in measuring topological features of functions. It is an algebraic invariant
that captures topological features at varying spatial resolutions. More precisely, persistent
homology probes topological properties of a space from a set of sampled points like pixels.
It can track the birth or appearance and death or disappearance of a topological feature
despite the changes in the nested space constructed by an operation called filtration in
which a parameter scale, the pixels intensity in our case, is increased to detect the changes
in the studied space.

The procedure of persistent homology computation follows a workflow illustrated in fig-
ure 3.1 that consists in two big steps. The combinatorial representation permits to convert
the image to a topological space, the cell complex. Then the filtration scheme construct
a nested sequence of cell complexes where persistent homology is computed at the end to
provide to persistence its features.

We have explained in section 2.3.3 how to represent a set of points into a combinatorial
form in order to be able to be manipulated by algorithms. After this transformation,
the procedure of computing persistent homology begins by a spatialization of the given
space in order to construct a filtration scheme of the induced topological spaces that will
contribute to compute the persistent homology by algorithms available by linear algebra.

3.1.1 Spatialization

The input data is manipulated as a measure function. The spatialization of the data
and its combinatorial representation permit to construct a topological space called cell
complex as we have seen in chapter 2. Boundary maps between the cell complexes allow
the construction of chain complexes that ensure the computation of homology groups.
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A

Figure 3.2: A Morse function with four critical points.

Each of these steps is described in extent below and the reader can refer to [Hat01, EH10]
for more explanations on the following descriptions.

The input data is viewed as a continuous function from a domain D C R"” into the space
of real numbers R i.e. f: D — R. This point of view is correct for 2D and 3D grayscale
images since the domain D is a subset of R? or R3. The spatialization allows to use the
notions of surface and neighborhood using the associated function.

The topology of a space is related to the sublevel sets that consist of all points of D whose
value does not exceed a level a: U, = {x € D/f(x) < a}.

Taking into account the sublevel sets for increasing threshold values, Morse theory high-
lights that changes in topological features can only appear at so-called critical points for
well behaved functions [Mil63]. For example, in figure 3.2, the function f has four critical
points from A to D. These critical points correspond to changes in the structure of ho-
mology groups. Persistent homology ensures this connection between Morse theory and
homology.

The sublevel sets could be ordered by their level a under inclusion, that is, U, C U,
when a < b. Under mild hypothesis, the topology of the sublevel sets change in the
neighborhood of a critical point. In other words, the topology of the sub-level sets evolves
only when crossing a critical point. We can define the filtration as the nested sequence of
spaces

pcU,cU,C...CcU,CD. (3.1)

The topological changes observed between the levels of the filtration, such as holes ar-
rival /extinction or components arrival/extinction, can be computed thanks to the topo-
logical tools described below.
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Figure 3.3: A non noisy hole versus a noisy one.

3.1.2 Filtration and persistence

Before diving into persistent homology, we will try to briefly motivate the concept. In
subsections 2.3.1 and 2.3.4.1, we introduced some methods for constructing cell complexes
from point data and computing its corresponding homology groups. We can compute the
homology H,(U,) for all sublevel sets U, of (3.1) in order to depict the evolution of the
number of topological features of an input data. However, we lose the information con-
cerning the evolution of each particular cycle. Detecting the evolution of these topological
features along the procedure of filtration described in (3.1) can give more important de-
tails like lifespans of homology classes and, the most significant, the independence from
intensity values. Indeed, the topological features of a complex may be due to noise and
computing the homology of a single sub-level set is not rich enough to describe the signifi-
cant topological feature that we look for. For example, in figure 3.3, homology can detect
the big hole alone and the hole with its noisy holes on its borders. We will now see how
persistent homology solves this problem starting with the spatialization idea described
in 3.1.1.

Given a cell complex K, let f : K — R be a non decreasing function, which means that
if o is a face of 7, then f(o) < f(7). The level subcomplexes are then defined to be
K(a) = f~'(—00,a]. Denoting by a; the values of f on cells of K in increasing order, the
corresponding level subcomplexes define a filtration of K as in (3.1). Let K = K(a;),
then we have an analogue filtration of (3.1):

PcK°cK'c...cK'c...CK. (3.2)

Persistence As the scale parameter increases, new cells are added until we obtain the
entire complex K. For every i < j, we get an inclusion map from K* to K7. This contin-
uous map is transformed to a linear one which will lead to an induced homomorphism of
homology noted f!7 : H,(K*) — H,(K’) for every dimension p of the whole complex K.

Hence, by tracking the topological evolution of the filtration using these homomorphisms,
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we get a sequence of homology groups that are connected by linear maps H,(.) induced
by inclusions

Hy(K%) — H,(K") < ... = H,(K") — ... — H,(K). (3.3)

Going from K° to the whole complex K through these maps will cancel the need to
a specific intensity value as a parameter. These maps in (3.3) will perturb the life of
homology classes through the filtration. Considering the step from H,(K") to H,(K"™),
changes can occur: new homology classes that represent holes can be created or already
existed homology classes can merge or vanish signifying the fill of the hole.

Persistent homology provides tools to track the appearance or disappearance of classes
in this sequence. It detects homology classes that are present through many steps in the
filtration procedure and considers those non bounding cycles which remain non-bounding
along these steps. Thus, it can separate noisy classes from important ones with no need
to fix an intensity value.

Algebraically talking, persistence can be defined by two ways. Given a filtered complex,
each complex K" is associated with a boundary operator 9 and groups C} that represents
the chains of the complex, Zzi?’ B;, and H; = H,(K"). Then the k-persistent p — th
homology group of K*, meaning the homology groups of dimension p and that exist in
1+ k, is:

HY =Z) /B 2. (3.4)

This definition considers non-bounding cycles which remain non-bounding for k steps in
the filtration. Moreover, this equation is well defined since both groups in the denominator
are subgroups of C;f’“ . The intersection of these two groups is also a group, which is a
subgroup of the numerator. The rank of the subgroup H]’;k is called the k-persistent p-
th betti number. Intuitively, Hgk illustrates the p-dimensional holes in K*** created by
the subcomplex K*. These holes exist for all complexes K7 in the filtration with index
1< <i+k.

Also, persistence can be explained following a more concrete procedure that consists in
taking f27 : H,(K") — H,(K7). The k-persistent p — th homology groups are the images
of the homomorphisms induced by inclusion, H;';k = Im f;k for 0 < i < k. This definition
is equivalent to (3.4) since Im f2* = ZI/Bi** N Z!. We say that a class a € H,(K") is
born in H,(K") if it does not belong to H;™"* = Im f,~"". We say that a dies at H,(K”)
if f277Y o) ¢ H)7W 7 but fi7(a) € Hy7'. If there is a class a born in Hy(K") that dies
in H,(K*), we record this as a persistence pair (4, ).

Algebraic structure of persistence and its visualization We have seen in the
previous paragraph that persistent homology tries to relate topological features between
two different complexes in a filtration. In this paragraph, we make a different view
of homological persistence in order to understand its formation and its relation with
persistence diagrams.
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We begin to explain the persistence complex by combining the homology of all the com-
plexes that exist in the filtration into one algebraic structure. A persistence complex K is
a family of chain complexes K';>¢ over a field F, together with chain maps that associate
them: f*: K — K. We show below a part of the persistent complex with the expan-
sion of chain complexes. The index that designs the filtration increases horizontally to
the right under the chain maps f’. And under the boundary operators d,, the dimension
decreases vertically to the bottom.
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Now, we form a relation that reveals a simple characterization over fields. Most important,
we highlight that the standard homology of a graded module over a polynomial ring
represents the persistent homology of a filtered complex.

The p-th persistence module J7,, where p designs the dimension, is the family of p-
th homology F-modules H; = H,(K") together with module homomorphisms f,**! :
H,(K") = H,(K™).

For example, the homology of the persistent complex defined above {K*, f'} can also be
seen as a persistent module where f? maps a homology class to the one that contains it.

This connection between the persistent complex and persistent module gives birth to the
p-th persistence module. As a correspondence this persistence module can be accorded
the structure of a graded module over the polynomial ring F'[x]:

T = @HI’;, (3.6)
i=0

meaning that 77, is the direct sum of H}, i.e. . is generated by groups of H). The
structure theorem over the principle ideal domain [Hun80] (PID) F[x] reflects the decom-
position of the p-th persistence module into homology generators:

n m

Ay = Pt Flz| PEP x" (Flz]/z% .Flz])). (3.7)

i J
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The first part of the direct sum represents the homology classes that appear at ¢; and
persist forever. And the second part represent homology generators that appear at r; and
persist until r; + s;.

This decomposition represents a complete discrete invariant [CZC04]. It gives n half-
infinite intervals [t;,00) and m finite intervals [r;,r; + s;). The visualization of the al-
gebraic structure of the persistence will be done via a barcode [CZC04] or a persistent
diagram [Zom10a]. Thus, the representation of persistent homology of a filtered cell
complex will be done by these two invariants.

The barcode represents the persistent homology classes with an horizontal line that begins
at the first filtration level when the class appears (birth time) and ends at the filtration
level of its disappearance (death time). While a persistent diagram marks a point for
each homology class with its abscissa, that represents the birth time and its ordinate for
the death time.

We can summarize the visualization by a persistent diagram or a barcode by the following;:

e Each occurrence of a component, hole, and void which represent 0, 1 and 2 -
dimensional homology classes respectively is represented by a bar in the barcode
or a point in the persistent diagram.

e The starting point of the bar and the abscissa of the point in a persistent diagram
correspond to the value of the level of filtration at which the homology class appear,
the birth time. The ending point of the bar and the ordinate of the point in the
persistent diagram corresponds to the value of the level line at which the homology
class disappear, the death time.

e The position and length of the bar and the difference between the abscissa and the
ordinate of a point in persistent diagram represent the lifespan of the corresponding
component, hole and void.

For example, the life duration of homology classes of dimension zero derived from the
Morse function in figure 3.4 (a) that is born at level 5 on the critical point A will die at
level 35 on D. The cycle born at level 25 on B will die at C at level 30. Also a cycle of first
dimension is born at D at level 35 and never dies, for visualization purposes we refereed
to 0o as its death level. The cycles of dimension zero that may be homology classes have
30 and 5 as lifespans respectively. All these cycles are represented on the diagram and
the barcode on the figures 3.4(b) and (c).

Following this manner, a class having a long service life will be topologically more in-
formative whereas a class of short life will be due to noise. This motto is supported
by the stability of the lifespans of classes under continuous deformations [CSEHO07] like
stretching, translation etc.
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Figure 3.4: A Morse function and its associated persistent diagram and barcode.

3.1.3 Computing persistent homology

At each step of the filtration scheme, it turns out from the algebraic information above
that only two kinds of changes could happen. Adding a new cell ¢ at the level j and
dimension p will disrupt the topology of the complex. A new homology class can thus be
created and we call o' a creator. An existing class o of level i and dimension p — 1 can
also be destroyed, that is, it can be made homologous to zero, and in this case we call
o a destroyer. Each negative cell ¢’ is associated to a unique positive cell o with levels
© < 7, which corresponds to a persistence pair.

This allows us to define the persistence of a topological feature as the difference (e.g.
in function value or ordering index) between its death and its birth in the construction,
and also to organize the critical points in pairs of creators and destroyers of topological
features. The lifespan of the homology class will be equal to the level difference between
destroyer and creator, j — i. The long life homology class, that is associated with a
creator /destroyer pair, is a major point of interest for us as we will see its abilities in image
processing applications specially in identification of interesting objects in the image, while
the short ones will represent the noise in the image.

On the level of computation, persistent homology can be computed very efficiently. Sim-
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Figure 3.5: Simple filtration example.

ple matrix elimination procedure is able to compute homology classes with chains in field
Zy and their lifespans by a given cell ordering of the cell complex. We propose a combi-
nation between the algorithms described in [Zom10a, CC11, dSMVJ11a], to compute the
persistent homology operation and to get the basis of homology classes and their lifespans.

To detail the methodology that we have proposed, we use a compatible ordering of the
cells, in a manner that the sequence of cells oy, 09,... is ordered by dimension of cells
then by their function value. If o; is a face of o; then it’s necessary having a value less
or equal to o;. Such an ordering exists because the function that asserts the values to
f is monotonic. In this way, every cell complex of the filtration will be a subcomplex of
another complex with higher level in the filtration.

This sequence is used for setting up the boundary matrix 0 of the filtration that stores
all cells of all dimensions in one matrix and so an entry (7, j) is 1 whenever o; is a face of
0j, i.e. 0; € Ooj and 1 otherwise.

We clarify the notions with a simple example. Let K consists of the final complex in the
figure 3.5 at level 7. In this figure we build a filtration showing in left boxes the level or
the time of the filtration, and in right box the cells that are added at this level. Noting
that this level of filtration is decided by a function that assign values to the cells. In this
way an edge will not appear before its vertices, and a 2-cell before its edges and thus
we're respecting the subcomplexes inclusion condition in filtration. For the boundary
matrix that represents the filtration we order the cells, first by their dimensions, then by
their values or level in the filtration then by alphabetic order as shown in equation (3.8).
Noting that the boundary of a point is null, so we put a 1 in the entry in the column of
the vertex and in row 0.
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The algorithm that manipulates the boundary matrix uses column operations to reduce
it to another matrix D. Let lowest(j) be the row index of the lowest one in column
j. We don’t define lowest(j) if the entire column is zero. D is considered as reduced
if lowest(j) # lowest(i) whenever j # i specify two non-zero columns. And so the
algorithm reduces 0 by adding columns from left to right. We store in a matrix D the
column additions that we made to 0 to be reduced to D.

After applying the algorithm, we remark the case in which column j ends up to have all
zero numbers from the other case in which it has a lowest one.

e In the first case when the column j of D is zero, we call o; the cell that represents
a positive cell because its addition during the filtration scheme has caused the birth
to a new homology class.

e In the second case, where the column j of D is a non zero it definitely keeps the
boundary of the chain that grew and accumulated in column j of matrix D" and
thus is a cycle. In this case, o; is called a negative cell because its penetration in the
filtration indicates the death of a homology class. This accumulated cycle is born
at i, the time of the cell of the lowest one in column j, with i = lowest(j).
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From this construction it is understood that the lowest ones in the matrix D corresponds to
points in the diagram that represents the negative-positive pairs and called the persistent
diagram. This persistent diagram registers the level of births and deaths of homology
classes. Literally, if we have i = lowest(j), then (z,y) is a point in the persistent diagram,
where x and y designs the level of the filtration when o, and o; are added respectively.

Not to forget that naturally homology classes of long lifespans will indicate the presence of
interesting topological features in the data, since they resisted to the topological changes
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in the space, while those with small lifespans are considered as topological noise.
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Back to the example in the figure 3.5 and the boundary matrix shown in (3.8). We reduce
this matrix to D and get the decomposition as in 3.9. In matrix notation, the algorithm
computes the reduced matrix as D = 9D’ , where D’ is an invertible upper-triangular
matrix with Z, coefficients that stores the operations made on 0 to get reduced. For
example, at column (d) of D' we look for operations made on column (d) of 9. These
operations are adding column (a) to column (d) and thus we register 1 in the rows (a)
and (d) of column (d) of matrix D’ and so on for other columns of D’.

As we can see in D, the first lowest one is in row 0 and column (a). This row corresponds
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Figure 3.6: Persistence diagrams of 0 and 1 dimensions.

to a (-1)-dimensional homology class that dies when the vertex (a) is added. The second
lowest one is in row (d) and column (ad). It means that the vertex (d) gives birth to the
0-cycle that the edge (ad) kills. The column (bc) has a lowest one in row (¢) and thus the
vertex (c) gives birth to the 0-cycle that the edge (bc) kills. Also the column (ab) has a
lowest one in row (b) and thus the vertex (b) gives birth to the 0-cycle that the edge (ab)
kills.

Adding the edges (cd) and (bd) don’t kill anything, which is obvious in the matrix D since
their columns are zeros. In fact, adding the edge (cd) corresponds to a 1-cycle obtained
by adding the columns (cd), (bc), (ab) and (ad) as showed in column (cd) of D'. Thus,
the edge (cd) gives birth to a 1-cycle formed by edges (cd), (bc), (ab) and (ad) of added
columns which is killed after by the triangle (bcd). Similarly for the 1-cycle is created by
the edge (bd) and killed by the triangle (abd).

With this example, we showed that we can recover homology classes and their lifespans
from the reduced boundary of the filtration. In addition, considering the function value
of cells as their indices, the figure 3.6 illustrates the persistence diagrams of dimensions
0 and 1 with arrows indicating their lifespans, and in analogue manner the lifespans are
represented in a barcode as in figure 3.7. For example, the 0-cycle that is born by vertex
(d) at level 0 is killed at level 3 by the edge (ad) when it is added to the filtration. Similarly
for the O-cycle that is born by vertex (b) at level 1 is killed at level 4 by edge (ab), and
the 0-cycle that is born by vertex (c) at level 2 is killed by edge (bc) at level 3. For this
we have the points (0,3), (1,4) and (2, 3) in the persistent diagram of 0 dimension that
represent these cycles in figure 3.6 (a) and the bars in the barcode that begin with birth
time of the cycle and ends with its death time in figure 3.7 .

In addition, the 1-cycle born by the edge (cd) at level 4 is killed when the triangle (bed)
is added at level 7 and the 1-cycle born by edge (bd) at level 5 is killed when the triangle
(abd) is added at level 6. For this we have the points (4,7) and (5,6) in the persistent
diagram of first dimension in figure 3.6 (a) and the associated barcode in figure 3.7.

Other algorithms that compute persistent homology profit from the duality between ho-
mology groups and cohomology [dSMVJ11a], or reduce the initial complex before the
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Figure 3.7: Barcode of homology classes of 0 and 1 dimensions.

effective calculation [MW10, WCV12]. Also other algorithms rely on discrete Morse the-
ory like [MN13] or on the possibility to distribute the algorithm for more speed [BKR14].
The illustrated algorithm above remains the most basic and the simplest one and can be
associated with many other variations in the algorithm like the twist in [CC11] or with
combinations of algorithms.

3.2 Applications of persistent homology

Variety of applications include the need of topological persistence for deriving inferences
from the studied data. For example in [VRT16], the authors propose a novel structure for
dynamical analysis of human actions from 3D motion capture data employing topological
persistence. An algorithm for topological clustering based on relative persistent homology
is introduced in [PGK16] to cluster trajectories with varying end-points based on the same
simplicial complexes used for the classification of trajectories with fixed start and end
points. In [ESM15], the authors propose a new framework for extracting the characteristic
points of the peripheral pressure wave based on persistent homology.

The idea of topological persistence has been also used in recent years in computer vision to
perform image processing tasks. Persistent homology returns and numerical results may
be used on images to accomplish classification of studied data. In [ARC14], the authors
represent a methodology of classifying hepatic lesions using persistent homology, the bot-
tleneck distance, and a support vector machine. Also, a combination of image processing,
geometry topology and machine learning are used in [DELT16] to classify patterns of
stomach images. In this work, the pixels are binarized depending on a threshold in order
to compute persistent homology. A novel tumor detecting tool is presented in [QSNT16],
using the novel idea of persistent homology profiles computed on binarized pixels after
selection of patches manipulated by convolutional neural networks. In these works, the
lifespans of homology classes form the tool of the classification step.

On the level of image segmentation, a split-and-merge algorithm is studied in [LF07].
Edge detection is first performed using a wavelet-based detector. Then the image is split
into regions using persistent homology. Finally, regions with similar topological features
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Figure 3.8: Set of pixels and their cubical complex.

are selected and merged in order of topological persistence. Noting that the accurate
split and merge operations are controlled by two parameters that must be right chosen to
perform the segmentation aimed for.

An algorithm that perform hierarchical segmentation of images using the mean shift
method and topological persistence is discussed in [PD07]. After grouping pixels whose
feature points are in the same mode of a density function, the authors merge pairs of
clusters depending on the persistence of the boundary between the two modes. This is
equal to the simplification of a Morse Smale complex and the hierarchy of merging is built
depending on a positive threshold. The creation of this hierarchy must be controlled by
modification of density function and persistence. As in [LFO07], this work doesn’t intend
to build a topological complex on the pixels and they consider the density function as a
height function of the Morse Smale complex.

3D segmentation of point clouds is discussed in [BP16]. First, the authors rely their
segmentation method on a filter representation of 2D images removing all outlying points
and those that belong to planar models. Then they downsample the remaining point
cloud using a voxel grid. Using a Vietoris Rips complex, the zeroth homology groups are
computed to find clusters of points and eventually perform segmentation of connected
components.

After briefly analyzing the state of art of the use of persistent homology in image applica-
tions, we present now the way that we developed in construction of the filtration scheme
and the cell complexes that we built on pixels and superpixels.

3.3 Filtration defined on images

In this section, we will show that the methodology issued from homology theory and
persistence and described extensively in the section 3.1 can be successfully applied on
grayscale images of different dimensions in order to perform image processing tasks.
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Figure 3.9: Set of voxels and their cubical complex.

3.3.1 Combinatorial representation of pixels’ cell complex

In order to find the long lifespan homology classes in images, we must follow the pipeline
of the computation of persistent homology by building the desired cell complex and asso-
ciating the filtration to obtain the nested sequence of complexes. Before explaining the
way we assign cells in the cubical complex, we define the neighborhood relation N,. If
x = (21,m9) € 2%, Ny(2) = {y = (y1,42) € Z%, [yr — w1| + [y2 — w2 < 1},

An image is a set of points named pixels arranged on a rectangular grid of 2D or 3D
matrix. Thus, the cubical complex [KMMO3] built from the image depends on its pixels
and it is constructed as follow:

1. Beginning the construction by vertices or O-cells. Each pixel in the image will be
considered as a vertex,

2. Then, we build the 1-cells or edges from each two adjacent pixels taking into con-
sideration the four neighbors of a pixel that satisfy the N, neighborhood relation.

3. We then adjoin squares as 2-cells where we have 4 adjacent pixels,
4. In 3D images, we form the 3-cells or cubes from the corresponding 6 adjacent squares.

At the end, the cubical complex K will be formed by squares and their components,
edges and vertices, in the 2D case as illustrated in figure 3.8, or by cubes and their parts,
squares, edges and vertices in 3D images as in figure 3.9.

For large images, a method consisting in reducing the initial cell complex can be applied.
It consists in computing superpixels by a technique such as SLIC technique introduced
in [ASL"12], as explained later the cell complex being constructed on the resulting su-
perpixels which are not this time a rectangular grid.

3.3.2 Construction of the filtration of pixels’ cell complex

In order to compute persistent homology of this complex, we must determine a filtration
on the cell complex K built on the image. We begin by assigning a value to each vertex
in K. The pixels’ intensities arise like a natural function to develop this strategy on. In
this manner, vertices of K will carry the pixels’ intensities as values.

Naturally, this can be represented by a function f : D — R where D C R? and f
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represents typically the pixels’ intensities as described in 3.1. This function will order the
cells of K by their increasing values.

For our filtration structure, the value of a p-cell will be the maximum of values of its

(p — 1)-cells that represent its boundary. Indeed, if 7 is a k-cell then f(7) = r%aic) flo).
o€0p(T
Following this procedure, the vertices hold the value of its grayscale intensity, the value

of an edge is the maximum of surrounding pixels, a square’s value is the maximum of its
enclosing edges, and the cubes will have the highest value of its 6 squares as shown in
figures 3.10 and 3.11. For example in 3.10, the first 4 pixels in top left of the images and
encircled by a dashed circle have the grayscale values 4, 1, 5, 9. The edge, for example
between pixel 4 and pixel 1 has the value 4 because it holds the maximum of its vertices
and the square or the 2-cell holds the value 9 as it’s the maximum of its edges. Of course,

4, 0 1 1
o——e——0o o
5 9 8 g |3
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Figure 3.10: Value assigning in 2D case.

other possibilities for the function that control the filtration scheme can be taken into
consideration, like means of vertices values for the value of edges or medians of edges
values for squares but they must take into account the subcomplex relation in filtration
scheme. Taking the maximum values of vertices for an edge or of edges for a 2-d cell will
ensure that an edge won’t appear before its vertex nor a 2-d cell before one of its edges.

Inspired by the filtration in equation (3.2), we represent the grayscale values of an image
by ¢ where tin < 1 < iyayx, considering that i,,;, and ¢, are the minimum and maximum
values of pixels’ intensities of the image.

A cell complex K; include all the cells o with values less or equal to i,

K = {o| f(o) <i}. (3.10)

Noting that all kinds of filtration must take into account the fact that K; is a subcomplex
of Kj,i.e. K; C K; whenever ¢ < j. In our application, we will have an intensity filtration
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Figure 3.12: Pixels’ complex subfiltration for the 2D case presented in figure 3.10.

built on the studied image and we will call it intensity subfiltration since it depends on
sublevels of pixels’ intensity:

=K. (3.11)

PCcK,;,, CK,,1C...CK,C...CK,

min

Reversing the inequality in equation (3.10) will allow us to use another filtration in our
complex and we will refer to it as intensity superfiltration:

0 c Kimax C Kimax—l cC...CK,cC... K’imin =K. (312)

An example of the intensity subfiltration the image shown in 3.10 on which we explained
the cell complex construction is displayed in figure 3.12. The dark and colored cells
represent the cells that enter the pixels’ complex subfiltration at its corresponding level
while the transparent one are not yet in the complex. Note that superfiltration can be
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(a) A set of superpixels with their centers (b) The cell complex created from these
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Figure 3.13: Simple example of superpixels combinatorial representation.

constructed in a similar way as in figure 3.12 but beginning from the greatest value in a
decreasing way.

We notice that in this filtration, in K5 a cycle is born, indicating the presence of a whole.
This cycle will die at Ky when it’s fully covered by 2-cells. Thus, the lifespan of this cycle
is9—5=4.

During the computation of persistent homology of an image using the methods and al-
gorithms described in section 3.1, we will obtain as result p-cycles that represent the
p-persistent homology classes. These p-cycles that are p-classes and their corresponding
lifespans will be of major interest for our image processing tools in segmentation and
tracking.

3.3.3 Combinatorial representation of superpixels’ cell complex

As we said before, beside its usual pixel-grid form, a large image can be reduced to a set of
superpixels. Superpixels are regions or clusters that group “similar” pixels into meaningful
atomic regions that can be used to replace the rigid structure of the pixel grid. They
capture similarities mainly by jointly considering color and spatial proximity and thus try
to provide a concise and semantic image representation [JCH16] by grouping pixels into
meaningful segments. Thanks to its various advantages, the superpixels segmentation
is an increasingly popular image preprocessing technique used in many computer vision
applications.

There are two primary reasons for the performance gains of superpixels representation.
The first is that superpixels reduce the computational primitives significantly without
obvious information loss. The second is that they can appropriately respects the boundary
of different objects in the image, preserving the region based consistency of pixels.

Superpixels partition the image into segments that group the “similar” pixels. First, we
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assign a vertex to each superpixel, we will refer to it as (5;). We will have a set of points
that we begin our construction with. In order to add higher dimension cells to the cell
complex K that we want to construct to compute persistent homology, we follow this
procedure:

We pivot over the 8-connected pixels of each pixel, in each superpixel (S;). The choice
of the 8-connected pixels increase the number of one cells in the complex and thus the
number of candidate homology classes. If at least one of these neighbors belong to other
superpixel (5;), we add an edge (5;5;) to the complex. Similarly, if two of the neighbors
belong to two other superpixels (5;) and (Si), we add a 2-cell (5;5;S}), that represents a
triangle as shown in figure 3.13.

In the three dimension case, the superpixels will swing over the depth of the image as each
superpixel will belong to different depths. We pivot over the 26-connected pixels of each
pixel, we add the 1-cells and the 2-cells in the same way as in the 2D dimensions case.
Additionally, a 3-cell is added to the complex when three of the 26 neighbors belong to
other superpixels to three other superpixels (5;), (Sk) and (.5;), we add a 3-cell (5;5;5%5)),
that represents a tetrahedron.

3.3.4 Construction of the filtration of superpixels’ cell complex

In order to construct a nested sequence of subcomplexes, we begin by assigning a value
to each vertex S; in the complex K. The values of vertices can be the mean, the variance
of pixels’ intensity in each superpixel or other criteria. Many measures can be affected to
p-cells in the procedure of filtration, as we explained before, like the mean of their p — 1
cells, their variance or their median etc. For our application, the values of vertices will be
the mean of pixels’ intensities in each superpixel and the p-cells can hold the maximum
values of its boundary as described previously in section 3.1 The figure 3.14 shows the 6
superpixels shown in figure 3.13 with their values. The centers of neighbors superpixels
are connected with edges holding the maximum values of the centers and triangles with
maximum values of edges.

We will obtain a nested sequence of subcomplex in an analogue way to equation (3.11) or
equation (3.12). After the computation of persistent homology on this nested sequence
of topological complexes, we can gather the interesting homology classes, elements of H,,
the main tool of our segmentation process.

3.3.5 How to deal with nested homology classes in 2D images

We have talked in section 2.3, that for the computation of homology groups there is no
set of canonical representative. For that we can have an homology class encircle two holes
No basis is canonical, and many basis can be valid. For this purpose, we proposed an
algorithm that deals with the homology classes of first dimension in 2D images and that
are inside each others in order to separate them. Noting that homology classes of first
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Figure 3.14: Superpixels complex value assigning.

dimension are one chains, thus they are edges that connect vertices or the pixels or centers
of superpixels in our case. The steps of this algorithm are described as follows:

1. Recognize which classes have common edges, i.e. those that are intersecting,

2. From the intersecting classes, we recognize those that are inside each others using
the coordinates of the vertices of edges to see if they are inside other classes. It
is sufficient to see if one vertex of one of the non common edges is inside the class
or not since two intersecting classes are whether completely inside or outside each
others.

3. We separate the classes that are inside each others and we get a new contour C using
C =(AUB) — (AN B) where A and B design two homology classes with B C A.
Noting that when we say A B it means the edges that belong to homology classes
A and B and not the zone that is inside it.

4. We repeat his procedure until we get contours that don’t contain other classes inside
them.

3.3.6 How to deal with nested homology classes in 3D images

In the 3D case, the computed basis for homology classes is not canonical so we developed a
specific algorithm for the separation of second dimension homology classes. This algorithm
that depends on algebraic topology techniques and tests if a point is inside a polyhedron.
We are thus able to detect the including criteria of the homology classes and separate
them in 3D images. These classes are 2D chains thus they are triangles since we work
with superpixels that form simplical complex in the 3D case. Thus, the homology class
is a polyhedron or an R3 surface. The steps of separating the classes are quite similar to
2D case but the way that we know here if two homology classes are inside each others is
more complicated.
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It’s essential to know if two polyhedron, or second homology classes, are inside each others.
For this purpose, we must know how to recognize if a point is inside a polyhedron or not.
We use an algorithm that compute the “winding number” of a closed oriented surface S
around a point I not on S. The winding number of the closed oriented surface S around
a point I not on S is the number of times that the surface encloses that point.

More precisely for a polyhedron, like in our case, the winding number will be 1 for points
inside the surface and 0 for points outside. According to [SZ05], the mapping of the
vertices to R? gives a continuous map from the simplicial complex C' of S to R3 — I. And
this in turn gives a map on homology groups of second dimensions: this winding number
can be defined as Hy(C,Z) — Ho(R® — O,Z). The image of S by this map will give the
winding number.

In summary, the steps of the proposed separation algorithm are the following:
1. Recognize which classes have common triangles, i.e. those that are intersecting,

2. From the intersecting classes, identify those that are inside each others. Noting that
all homology classes of second dimension that are intersecting are completely inside
or outside each others only. This step is composed from several steps in its turn:

e Make the orientation of the triangles in the classes to prepare them for the
winding number computation.

e For two intersecting classes A and B, take one point I inside of one of them.

e Compute its winding number with respect to the other class in order to know
if it’s inside or not.

e [f it’s inside, then the whole polyhedron where it belongs is inside the other
and outside otherwise.

3. We separate the classes that are inside each others and we get a new contour C using
C =(AUB) — (AN B), where A and B design two homology classes with B C A.
Noting that when we say AJ B it means the 2-cells that belong to homology classes
A and B and not the zone that is inside it.

4. We repeat his procedure until we get contours that don’t contain other classes inside
them.

3.4 Image segmentation using lifespans of homology
classes

In this section we propose our first application of the persistent homology on grayscale
images. We show that the combination of topological features with classical statistical
ones leads to new ways of grayscale image segmentation. We will develop in 3.4.1 the tools
and techniques that we used in our methodology, then in 3.4.2 we show some results that
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Figure 3.15: Image segmentation methodology plan.
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illustrate two applications of this methodology in order to perform image segmentation
on a satellite grayscale image and on unstained tissue section imaged by a quantitative
phase imaging system.

3.4.1 Description of the method

Since homology is originally investigated to detect holes and voids in images, it can
be very efficient in detecting cells or biological aspects in images during the scheme of
filtration. For our image segmentation method, we analyze the images with superposed
sliding windows. For each window we build a cubic complex whose vertices are the pixels,
the edges connect the neighbor pixels, while the squares complete 4 neighboring edges.

The vertices weights for filtration are given by grayscale values while the edges and squares
hold the maximum values of their vertices and edges respectively as described in 3.3.1 as
shown in the figure 3.10. This filtration then builds a series of nested sub-complexes on
which persistent homology is calculated. This allows to find homology classes and their
lifespans.

In each window, we compute then several classical characteristics, the average and the
variance of the gray levels to which are added topological characteristics, the means and
variances of the lifespans of the homology classes of dimensions 0 and 1 and their persistent
entropies.

Entropy in general is the average amount of information produced by a probabilistic
source. The measure of entropy associated with each possible data value is the negative
logarithm of the probability mass function for the value. Thus, the data source with
a lower-probability value carries more information than the source with high probability
value. The latter is defined in [MRS15] for every dimensions by £ = — 2; p; log p;, where [
1€
represents the range of lifespans, p; = [;/L, ;= date of disappearance - date of appearance,
and L = lel Thus E can be formulated as E = log(L) — + ZILilog(li).
S 1€

Noting that we will consider intervals that extend all the way to the end of the filter are
denoted by [a, 00], and we will replace them by [a, m] where m is the maximum value of
the function that controls filtration.

Therefore, we will have 8 characteristics in each window, the mean and variance of zero
dimension homology classes, the mean and variance of one dimension homology classes,
the persistent entropies of zero and one dimension, and the mean and variance of pixel
values inside each window.

These 8 characteristics: form vectors associated with each window. The figure 3.15 shows
in its first step this assigning.

Then, all these characteristic vectors are classified in K classes. For simplicity, we con-
sidered an unsupervised classification by the K-means method, other supervised or non-
supervised methods being feasible.
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K-means is one of the simplest unsupervised classification algorithms aiming to partition-
ing a dataset X = {z;/x; € Rd}?zl, with n objects composed of d features, into K dis-

joint clusters, P(X, K) = {P.}1—, (also called partition), represented by their centroids,

C = {ck/cr € ]Rd}kK:l. These clusters are estimated by minimizing the total within-cluster
variation defined as:

where [ is the indicator function defined as: I(x; € P;) = 1 if x; € P, and 0 otherwise;

2
and H:c] — ckH is the squared Euclidean distance between the j-th object x; and the k-th
centroid cg.

The K-means objective function D(C') is locally optimized by the following iterative al-
gorithm:

Step 1: Initialize the K cluster centers C' by choosing randomly K different objects of X.
Step 2: For each j = {1,...,n}, assign the j-th object z; to the m-th cluster p,, such as

' 2
m = arg mlnkzl,...,K<{ij - C’fH b

Zm]-GPk Zj

Step 3: For each k = {1,..., K}, update the k-th cluster center ¢, using ¢ = N

where N} is the number of objects belonging to the k-th cluster P.

Step 4: Repeat steps 1 to 3 until convergence of the algorithm.

After the application of K-means, each window is then classified into a class as shown in
the second step of the figure 3.15, which permits to achieve the segmentation of the image
because we can affect each window in the image to a class.

3.4.2 Real applications

First we applied this methodology on a real grayscale image taken by a satellite shown
in 3.16 (a) of size 929x960 pixels. This image is distributed into the snow at the middle,
forest at left of snow and mountains at right. We processed the image with an overlapping
square sliding window of size 30 x 30 pixels and the overlapping to 10 pixels. In 3.16
(b) we show the segmented image with the use of statistical characteristics only, the
mean and the variance of the pixels, while 3.16 (c¢) exhibits the result obtained with the
8 characteristics listed in 3.4.1, i.e. combining the topological characteristics with the
statistical ones. It’s obvious that the former result doesn’t success in discriminating the
three classes of the image since the gray color that represents the forest at the left passes
the snow and emerges in the mountain. The association of topological features permits to
discriminates the 3 classes of the image and don’t allow this immersion. This fact proves
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Figure 3.16: Satellite image segmentation.
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Figure 3.17: Biomedical image segmentation.
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that these characteristics give more refined measures than only using statistical ones in
sake of detecting texture features of images.

This methodology was also applied on a quantitative phase image of a prostate gland
shown in the figure 3.17 (a), the grayscale levels reflect the refractive index map of the
unstained histopathology slide. The same 8 charachteristics were computed, the six topo-
logical ones and the two statistical. We processed the image with an overlapping square
sliding window of size of the window was chosen to 50x50 pixels and the overlapping to
10 pixels. Then the windows are classified using K-means to 4 classes. Noting that these
measures can vary depending on the construction and the nature of application. The eight
features were calculated for each window after filtration of non-interesting cycles. The
segmentation of the gland shows four classes corresponding to the main types of tissue
areas.

We show in figure 3.17 (b) the segmentation results of the gland using only the statistical
charachteristics while the figure 3.17 (c¢) shows the results of segmentation using the 6
topological characteristics associated with the 2 statistical ones. For example, we see that
the patches of the class represented in white do not discriminate between border of the
tissue and its cells using the statistical characteristics while this distinction is respected
depending on the topological characteristics associated with the statistical ones.

Moreover, to see the impact of persistent entropy for example on the segmentation pro-
cedure, we show in 3.18 the histogram of persistent entropy of first dimension for each
class. We see clearly that the values of persistent entropy define four distinct distributions
according to the classes, which shows the contribution of the topological characteristics
in image segmentation. For example, patches of the colored class in blue have an entropy
close to 0, those colored in black, red and white are close to 4, 4.5 and 5 respectively. This
permits to isolate the tissue and to identify the cells and stroma when this characteristic
is accompanied by the others presented for example.

The results discussed in this section were presented in an international conference [AGV16a)
and published in a journal [AGV16b].

3.5 2D and 3D object segmentation using homology
classes

In contrast to works that focus on partitioning the image to non-overlapping homogenous
regions that segment the entire image, we are looking in this section to object segmenta-
tion by finding interesting parts in the studied image. The purpose is to define an object
segmentation methodology based on the persistent homology. We will show the poten-
tiality of the homology classes that form the significant topological features persisting for
a long time in the filtration procedure in order to perform object segmentation in any
dimension.
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Figure 3.18: First persistent entropy distribution with respect to classes.

In some of the works, the binarization of the pixel intensity during of the process of
filtration reduces the functionality of raw pixels’ intensity all along the construction of
the topological complex. As well, other methods are based on a topological study that
depends solely on the values of the input function without the benefit of the construction
of topological complex on the pixels’ image [LF07, PDO7].

Unlike the methods that depend their construction on many parameters like objects sizes
or intensities, our tool doesn’t need the use of a prior parameter. Moreover, while the
existed methods perform segmentation on images of specific dimension, we benefit from
homological persistence in the methodology described in this section for processing image
segmentation to support multidimensional tasks.

On the other hand, other works benefit from the statistical outcome of the lifespans of
the persistent topological features and use its results to perform classification on image
patterns [ARC14, DEL"16], or like the methodology we proposed in previous section 3.4,
instead of looking for its algebraic effects in order to perform image segmentation.

This section demonstrates also that the methodology that we based our approach on has a
multidimensional efficiency. It can be successfully applied on 2D grayscale images as same
as on 3D images. A combination between the methodological topological construction and
image superpixels can also be executed successfully to achieve the segmentation aimed
for.
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Figure 3.19: A synthetic image.

Moreover, this technique had shown its various advantages over existing methods. It is
independent from prior parameters and metrics and doesn’t demand preprocessing steps.
Also its strength is revealed in its invariance to continuous deformations. The same results
would be obtained if the image was rotated, stretched, rescaled, etc. All these criteria
makes it suitable to achieve more general tasks than the existing methods.

We start by representing some images, a synthetic and real images, each one represents
difficulties in object segmentation on different levels. Then we explain classical methods
of object segmentation like Otsu thresholding and Maximally Stable Extremal Regions
(MSER). We show the results on the synthetic image and the other images then we pass
to our method to prove its efficiency and its advantages.

3.5.1 Synthetic and real images

Returning to the application, we want to make a comparison between our method and
other existing methods. For this purpose, we made a synthetic image of size 240x120
pixels shown in figure 3.19, that contains objects of different sizes, shapes and intensities
as well as some noise. Some of these objects are overlaid in other ones and all object are
overlaid on a slightly variable background. The objectives here is to find all the objects,
with the overlaid ones and discriminating them from the background without the use
of prior parameters. Other images having the same problems will be the center of the
application of our method in the rest of this section.

As a sample of real images, we have an image of dots of size 513x282 shown in figure 3.20.
The dots don’t have same sizes, forms or intensities and some of them are hard to dis-
tinguish by naked eye. Their intensity is very close to the non homogeneous background.
Moreover a simple image of size 300 x 246 containing 10 coins shown in figure 3.21 will
be also considered. This image is simple having some features on its coins with an homo-
geneous background and can play the role of a witness to object segmentation methods.



3.5. 2D AND 3D OBJECT SEGMENTATION USING HOMOLOGY CLASSES

100

200

0 100 200 300 400 500
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Figure 3.21: 10 coins image.
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Figure 3.22: Results of Otsu segmentation on coins image.

3.5.2 Otsu thresholding

Thresholding is the simplest segmentation method. The pixels in the image are partitioned
depending on their intensity value. Global thresholding consists on binarizing an image
using an appropriate threshold 7

_Jvif f(o,y) > T,
9(.y) = {0 it flz,y) <T (3:13)

Otsu thresholding [GBY 18] is one of the very well known and very effective methods of
global thresholding. The goal in Otsu threshold is to find the threshold that minimizes
the spreads of two clusters of images by optimization of the best threshold. We start by
defining the within-class variance as the weighted sum of the variances of each cluster:

Tiyitnin(T) = n5(T)o5(T) + no(T)o5(T) (3.14)

-1
where ng(T') = Y p(i) such that p(i) = nb of pixels of intensity i/total number of pixels;
i=0

N-1
no(T) = 3 p(i); o%(T) is the variance of the pixels below the threshold; o3 (T) is the
i=T

variance of the pixels above the threshold and [0, N — 1] is the range of intensity levels.
Subtracting the within-class variance from the total variance of the combined distribution,
will allow to get the between-class variance:

U%etween(T) =0’ — Ui%Vithin(T) = nB(T)nO (T) [IU’B(T) — Ho (T)]2 (315)

where 02 is the combined variance and p is the combined mean.

So, for each potential threshold T we do the following steps:
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Figure 3.23: Otsu’s thresholding result on the synthetic image

1. According to the threshold, we separate the pixels into two clusters

2. Then we compute the mean of each cluster.

3. We square the difference between the means.

4. Multiply by the number of pixels in one cluster times the number in the other.

The value that maximizes the between-class variance or, conversely, minimizes the within-
class variance will be the optimal threshold.

First we apply the Otsu’s method on the image of 10 coins, we get the results in figure 3.22.
We remark that the results of segmentation are pretty good but a single coin represents a
weak points since it contains pixels with intensities below the threshold, which will make
them seen in green color.

On another hand, the figure 3.23 shows the results using the Otsu thresholding on the
synthetic image of figure 3.19. We remark that this method is not able to segment the
small objects that are overlaid in the bottom right but not this big object because of the
use of an unique threshold.

Another application of Otsu’s method that show its disadvantages is the image of dots
in figure 3.24. The dots don’t have same sizes, forms or intensities and some of them are
hard to distinguish by naked eye. Also, the spaces between these dots contain plenty of
noise. We remark that Otsu segmentation didn’t succeed in detecting all the dots in this
image because of its depending on intensities in the specified image. We will see after
how our method based on the persistent homology successfully detected and segmented
all the dots in this image.

3.5.3 MSER technique

To overcome the use of an unique threshold, the Maximally Stable Extremal Regions
(MSER) method described in [GMACA14] uses different thresholds to iteratively detect
objects and store them into a hierarchy or tree-like structure. Hence, for the lowest thresh-
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Figure 3.24: An image of dots and its otsu thresholding result.

Figure 3.25: Results of MSER on coins image.

old only background is detected. With increasing threshold, some objects are detected
and if their volumes fall into a specific range, these objects are extracted and stored into
the tree-like structure. If the same object is detected with different thresholds, this object
is stored into a branch of the three then the best object from this branch is extracted.
For MSER it is the object having minimal volume variation between two thresholds. In
case an object will be divided into smaller objects at higher threshold, a division will be
created into the tree-like structure. Best detected objects for each branch are computed
and displayed in different channels in the final results image.

Applying the MSER on the coins and dots images in figures 3.22 and 3.24 we get the
results in figures 3.25 and 3.26. These images correspond to the superposition of the
objects detected in the three branches of the tree-like hierarchy that we obtain for the
initial images. The obtained results show the potential of this method.

We now turn to the complex image that contains objects of different sizes and intensities
and with a non homogeneous background, the synthetic image. Using the MSER, and
considering the entire tree structure, we get the result in figure 3.27(a). In the first
channel shown in figure 3.27(b), this method identifies some of the objects with different
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Figure 3.26: Results of MSER on dots image.

sizes. However, this method identifies also the small dots corresponding to the noise as
well as a part of the background on the bottom-right. In the second channel shown in
figure 3.27(c), that contains bigger object emerging from the merging of smaller objects,
two other objects that are the base of the smallest ones are highlighted. In the third
channel shown in figure 3.27(d), these two objects as well as the object with the greatest
size from the first image are embedded into another part of the background.

This method falls to identify only the interesting objects since the noise is detected to.
Moreover, this method depends on the background level, the objects not being extracted
correctly. One way to segment overlaid objects with their bases and to avoid the noise is
to put a specific range of volumes as parameter. In this manner, the MSER will achieve
segmentation depending on the given corresponding information. Only objects that accord
to the corresponding range volume will be detected. For example, figure 3.27(e) shows
the objects that corresponds to the range of volume 100 —1000. A part of the background
isn’t eliminated, and not all objects can be identified. Moreover, if the volume parameter
is lowered in order to extract the small objects, the noise will appear too. If the volume
parameter is large enough, we cannot extract the small object which are overlaid over
other objects.

3.5.4 Proposed method
3.5.4.1 Synthetic image

Considering our method, a topological complex is first built directly on the pixels of the
image in figure 3.19 as we explained before. In an analogue way to the tree, the filtration
scheme is constructed. Points, edges and 2-dimensional cells are added to the complex
as the intensity increases until we get the whole complex. Computing the persistent
homology on this complex gives the persistence diagram of the homology classes. This
persistence diagram, shown in figure 3.28(a) is the main output of our method since it
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) All MSER detected objects. ) First channel of the image in (a
) Second channel of the image in ( ) Third channel of the image in

(e) Objects in volume range 100-1000.

Figure 3.27: Results of MSER method on the synthetic image.
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Figure 3.28: Results of the proposed method on the synthetic image.

indicates the births and deaths of homology classes of first dimension. Each point carries
all the information necessary to homology classes. The importance of the points and what
they represent is proportional to their distance from the diagonal. Thus, points that are
close to the diagonal have a small lifespan meaning that they correspond to the noise,
while those that are far are interesting.

It must be noted that having the construction of the complex, we can find for each point
in the persistence diagram the x-y coordinates of the corresponding class. For example,
the homology class represented with a * in figure 3.28(a) corresponds to the class that
identifies the object shown in blue in figure 3.28(b), the homology class represented with
* to the one corresponding to the object in red, etc. Highlighting the homology classes
in the persistence diagram allows then to select interesting objects by imposing a parallel
threshold to the first diagonal. For example, the homology classes that represent points
above the parallel (1) are highlighted in figure 3.28(b) by their corresponding colors.
Pulling down the parallel to (¢3) will allow to highlight other homology classes that are
represented by all points above (¢5) as in figure 3.28(c).

Our method allows to compute all the homology classes in a single pass and to highlight
them by simply changing a posteriori threshold. It’s insensitive to continuous transforma-
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Figure 3.29: Results of the proposed mehod after scaling and rotating the synthetic image.

tions of the images as rotation, stretching or scaling etc. For demonstration purposes, the
figure 3.29(a) shows the persistence diagram of first dimension after scaling the synthetic
image in figure 3.19 to 150% and 120% of the initial width and height respectively. Also,
we show in 3.29(c) the persistence diagram of first dimension after rotating the synthetic
image by 30 degrees.

Using the same threshold (¢5), the same objects as previously are segmented. Indeed,
the corresponding homology classes are colored stars in the scaled and rotated image in
figures 3.29(b) and (d). The same important homology classes are obtained after scaling
or rotating the image. Some slight changes have occurred in lifespans of classes and the
presence of some noisy classes of null lifespans, due to the differences in the intensity
values caused by scaling and rotation. However, these slight changes don’t affect the
result, the same threshold (¢5) highlighting the same classes into original, rotated and
scaled images.

Moreover, the homology classes are not optimized as MSER does by choosing objects
with specific volume range. This can be done as a post processing by classical methods
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Figure 3.30: Results of object segmentation on coins’ image.

like active contour or thresholding techniques in order to obtain a pertinent segmentation
for a specific application. Active contours start with an initial guess for the contour
represented by a closed curve, which is moved after to the boundaries of the desired
objects. This can be executed by operations of shrinking or expansions that depend on
the constraints of the image. Noting that these operations are done by simulation of
partial differential equations [OS88] or by the minimization of an energy function. While
thresholding techniques, can start with the boundary of the created homology class to
classify their interior into object or non object using the histogram of pixel values [PG87].

3.5.4.2 Real applications

This part is dedicated to the presentation of the results obtained by the proposed method
on the real images. We apply first our algorithm on the image of ten coins shown in
figure 3.21. Computing the persistent homology on this complex, will provide as a result
the persistence diagram shown in figure 3.30 (b).

It seems clear that the coins will be holes of the subcomplexes in the nested sequence
for a long time. These holes are detected by the persistence tool as can be seen on the
persistence diagram. The advantage of the persistence diagram is his capability to present
the surviving duration of an homology class. It can present its times of birth and death
on the horizontal and vertical axes respectively. We can find all the information necessary
to homology classes behind each point in the persistence diagram. The homology classes
that are born to form the cycles that encircle the holes at a level ¢ will die after, when
they are filled by 2 dimensional cells at another higher level j going through the filtration
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Figure 3.31: Results of our method on a biomedical image.

scheme. The basis of these classes are composed by 1D chains of edges. Highlighting the
basis of the most persistent homology classes of first dimension as shown in figure 3.30
(a) will achieve the segmentation aimed for. The lifespans of the homology classes is
proportional to their distance from the first diagonal. As an advantage, we can control
the significance of a class by sliding a parallel to the diagonal of the diagram as threshold.
In this manner, the ten points on upper left corner above the threshold are far away from
the diagonal and we highlight their homology classes by a red color figure 3.30 (b) while
other points are considered as noise.

As another real application, we consider a biomedical image of size 400x300 pixels shown
in figure 3.31(b), taken by a technique that uses the SID4Bio quantitative phase imaging
system introduced in [BMWO09]. The result of our method is a persistence diagram shown
in figure 3.31 (a) that represents the homology classes of first dimension highlighted on
the image and executed in 13.4 seconds. For visualization purpose, we highlight the most
persistent classes that are represented by points above the dashed parallel with their
corresponding colors to segment the salient objects in figure 3.31 (b).

Another application on a classical grayscale image of cells also obtained by the SID4Bio
quantitave phase imaging of size 210x220 is shown in figure 3.32. As described before, the
most persistent homology classes are highlighted by their corresponding color in persistent
diagram to segment the salient objects in the image. Points above the threshold (¢;)
represent classes that segment entire cells, each point represented by its corresponding
color. Moving down the threshold to (¢2), the method is able to detect cells components
as we can see the classes in green. This technique permits to find all the homology classes
in the same time and to visualize more or less important details by simply varying a
threshold on the persistence diagram, which permit to segment biological objects and
their constituents. These results were represented in an IEEE International Conference
on Advances In Biomedical Engineering in Beirut [AGK17b]
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Figure 3.32: Results of the proposed method on a biomedical image that shows compo-
nents segmentation.

3.5.5 Object segmentation based on superpixels

Now, we benefit from the advantages given by superpixels, specially in the reduction of
the constructed spaces, to perform object segmentation and we apply our methodology
on images presegmented to superpixels using the SLIC technique [ASL*12].

3.5.5.1 SLIC method

Before merging into our application, we will provide a brief introduction into SLIC super-
pixels method. The authors in [ASLT12] claim that the algorithm “simple linear iterative
clustering” (SLIC) is fast, easy to use and more robust than state of the art existing super-
pixels method. The algorithm SLIC uses the 5-D space composed by x, y pixel coordinates
and L, a,b values of the CIELAB color space to execute a local clustering. To reinforce
compactness and uniformity in superpixel architecture that smoothly fits grayscale and
color images, the authors propose a new distance measure in their algorithm.

Assuming that n is the number of pixels in the image and k& the number of desired
superpixels, then the desired interval grid S = \/m and pixels that are linked with
each initiated cluster center Cy = [li, ax, bg, Tk, yx| lies within a 25 x 2S5 area around
the superpixel center. In their algorithm, first they begin by sampling K regular spaced
cluster centers, then they move them to the locations that correspond to the lowest
gradient position in a 3 x 3 neighborhood. This gradient is computed as:

Glay) = | (x +1.y) = 1w = Ly + |1,y + 1) — I,y — 1) (3.16)

where I(z,y) is the Lab vector color space corresponding to the (z,y) position of pixel
and [|.|? is the L? norm. Then for each cluster center they assign the best matching pixels
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Figure 3.33: Results of the proposed object segmentation method on the synthetic image
using a SLIC space reduction.

from the 25 x 25 square neighborhood around the cluster center according to the distance
measure defined as:

dlab = \/(lk — ll)Q + (ak — CLi)2 + (bk — 61)2

Aoy = /(21 — 20)° + (s — 1) (3.17)

m
Ds = dlab + gdxy

A variable m is introduced in D, to allow the control of compactness of superpixels and
it’s equal to 10 in default. After associating the pixels with their nearest cluster centers,
a new cluster center is computed as the average of labxy vector of all the pixels in the
cluster.

3.5.5.2 Synthetic image

We propose to apply this approach first on the synthetic image in figure 3.19. As described
in section 3.3.3, we build our topological complex on the set of superpixels, then we apply
the steps of computation of persistent homology on this complex. FEach superpixel is
represented by a 0-cell (.S;) in our topological construction. These 0-cells are represented
by centers of their associated superpixels and they will hold the mean value of their
corresponding pixels. Each 1-cell (5;5;) in the homology class will be an edge connecting
(S;) and (S;), the centers of two neighbor superpixels, and will take the maximum value
of its corresponding 0-cells. The higher dimensional cells follow the same construction.

After presegmentation of the image 2000 superpixels instead of 240x 120 pixels, the births
and deaths of these homology classes of first dimension extracted from the set of super-
pixels are shown in figure 3.33(a). Some slight differences are observable as comparing
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them with the homology classes shown in figure 3.28(a). These differences are due to the
fact that the values of 0-cells are not the same since a superpixel realize an averaging
of several raw pixels. However, we found the same number of homology classes of first
dimension, represented by *, as well as the same distribution of the topological noise.

Imposing the same threshold as previously, the same objects as in figure 3.28(j) are seg-
mented, as shown the results in figure 3.33 (b) that represents the object segmentation
by keeping the classes represented by *. We notice that the outlines of the segmented
objects are roughest, which is explained by the fact that the 0-cells are the centers of
superpixels that are more spaced out than the raw pixels. However, the computation
time is substantially shorter (2.876 seconds instead of 7.134 for raw pixels) because we
compute persistent homology over 17278 cells instead of 114481 and the amount of the
required memory for the computation is lower.

3.5.5.3 Real 2D images

Here we represent some results after topological constructions obtained on superpixels of
2D real and biomedical images to demonstrate the potential of our method.

As a real image application, we consider employing the method on superpixels of the
image of dots of size 513x282 shown in figure 3.20. As a result of computing persistent
homology on the set of the 5000 superpixels, we have the lifespans of homology classes
of first dimension illustrated by the persistent diagram in figure 3.34(a). The persistent
diagram demonstrates the 28 homology classes far from the diagonal and that represent
the dots. We highlight in figure 3.34(b) these homology classes that represent the dots
of the image. Depending on the nature of the input image, this methodology can also
be applied using the superfiltration procedure by starting from the maximal intensity
in a decreasing way and in an analogue way to subfiltration as described in section 3.3.
Applying the method on the superpixels of the image after reversing the intensities values,
we will get the same homology classes of first dimension as shown in figure 3.34(a) and
we highlight the most persistent between them to get the image in figure 3.34(c).

As a biomedical application, we consider a 500x512 classical image of cells of 16 bits as
shown in figure 3.35(a). We build our topological complex on the superpixels set and
we compute the persistent homology. As same as explained before, we highlight the
most persistent homology classes of first dimension. The persistent homology gives us an
extra information about the including criteria of homology classes that segment objects
in biomedical images.

As explained in chapter 2, there’s no canonical representatives for the homology classes,
thus we can face homology classes that are nested in each other and thus that contain
many interesting objects. We proposed in subsection 3.3.5, a method to deal with those
that are nested in 2d images. In figure 3.35(b), we remark that the classes of bigger
lengths, as the class (7) are born before the smallest, as (8) and (9) and dying after them,
thus they have bigger lifespans. Using the information derived from homology classes, and
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Figure 3.34: Results of the proposed segmentation method on the image of dots and its
inverse using a SLIC space reduction.
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(a) The initial biomedical image (b) Results of segmentation on the
biomedical image

Figure 3.35: Segmentation results of the proposed method on a 2D real biomedical image
using SLIC space reduction.

the algorithm of separation of homology classes of 2D case described in subsection 3.3.5,
we can know the following including scheme of classes, for example: (9) C (8) C (7) and
(11) C (2) and eventually separate them to have one contour to each object.

3.5.5.4 Real 3D images

In order to demonstrate the multidimensional aspect of our method, we present in fig-
ure 3.36 a segmentation of a 3D biomedical grayscale image of nucleolus using the su-
perpixels and persistent homology combination construction. This figure represents the
results of segmentation of 61x249x308 grayscale biomedical image of nucleolus at z = 0,
15, 30, 40, 50 and 60 respectively. The homology classes of second dimension are chains
of 2-cells or triangles (5;5;5%).

We highlighted the seven most persistent homology classes formed by 2-chains or sums
of triangles. Using the algorithm of separation of homology classes of 3D case that we
proposed in 3.3.6, we were able to detect the including criteria of the homology classes
and separate them.

As a result, we obtain in figure 3.36 four essential objects. The homology classes that
represent them and mentioned in increasing order of lifespans are highlighted in red (the
bottom right), green, blue, red (the top left). Our tool is capable to detect the interesting
objects inside them and that have smaller lifespans using the proposed algorithm. As
shown in figure 3.36, the old blue homology class that detect the essential objects contains
two other younger classes highlighted in red and green, while the green one contains a
younger blue class. The separation algorithm is capable to know the inclusion criteria for



90 CHAPTER 3. PERSISTENT HOMOLOGY AND APPLICATIONS TO IMAGES

Figure 3.36: Results of the proposed segmentation method on a 3D image.
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all these classes as shown in the results.

The methodology described in this section and a part of the results motivated the sub-
mission of the article [AGV™17] to the Pattern recognition letters journal .

3.6 Object tracking using relative persistent homol-
ogy

In this section, we introduce a new way of 2D+t object detection for grayscale images
based on relative persistent homology. The power of this method is revealed also in its
independence to prior parameters, the generability that characterizes its construction and
its insensitivity to continuous deformations of the image. Detecting interesting objects
is done by highlighting the 2D squares of long life second relative homology classes as
explained in 3.6.1. This technique can also be restricted to 2D images as well as extended
to greater dimensions.

The potential of this method is shown on a synthetic example 3.6.2. The two spheres that
don’t appear on the first and last frames can be identified by a classical absolute homology,
while the two moving rectangles in all frames are identified only by the relative homology.
In 3.6.3 we apply our method on two real grayscale image sequences. This method allows
identifying interesting parts and detecting the temporal evolution of vesicles along the
sequence. A comparison made with other tracking tools demonstrates the capability of
our approach over some of the state of art methods.

3.6.1 Description of the method

Object detection and tracking are usually regarded as one of the major and challeng-
ing tasks in the pipeline of image processing and pattern analysis. There are many
techniques that have been proposed and developed in the literature, such as frame dif-
ferencing [AC17, RYK14], point detectors [ZMAT16, GKK*15], background subtrac-
tion [THV16, YQFT14], supervised learning [BDA16, TT12] and deep learning tech-
niques [CHTH15, ZPL16] see section 2.1 for thorough explanations.

The quick advancements in image processing tools and approaches ensure the development
of new methods for their analysis. In this context, algebraic topology can be a very
interesting field that produce alternative techniques in object tracking [Ghr08b, Carl4].

The purpose in this section is to propose a novel, generic and parameter free way of
performing 2D+t track detection in grayscale images based on the relative persistent ho-
mology. This method identifies the interesting parts in an image and detects temporal
evolution of objects in time sequences of images using the most relative persistent ho-
mology classes of second dimension. A nested sequence of subcomplexes is built from
the set of pixels of the image. Then relative persistent homology is computed through
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Figure 3.37: The “worm hole” and sphere detection by relative homology.

this sequence. This augmented version of absolute homology allows to detect objects in
images’ sequences from the first to the last frame by highlighting the persistent classes.

As far as we know, relative persistent homology has not been applied until now to the
processing of images. However, it has been probed in other engineering applications.
In [PGK16], the authors present an algorithm for topological trajectory clustering of
robots and vehicles based on relative persistent homology. A study of the susceptibility
to jamming of wireless communication networks by building of simplicial complex models
is studied using the relative homology in [Robl4a].

Our proposed method follows the worlflow of computing persistent homology classes de-
scribed in 3.1. This requires imposing an algebraic structure on a constructed topological
complex called cubical complex and described in 2.3.1 on page 15.

As we work with 2D+t grayscale images, we need to model our construction on a 3D
based concept since we need the temporal neighbors of each voxel. We will work on a
cubical complex that we will abusively call it the vozel’ complex, where cells are attributed
according to the combinatorial representation described in 3.3.1.

The input data of the image sequence is viewed as a function from a domain D C N? into
the space of real numbers R i.e. f: D — R where D = {(z,y,1)]|0 < z < width,0 <y <
height, 0 < z < s}, where ¢; represents the number of 2D frames in the sequence.

For 2D+t case, the chain complex is:

®—>038—3>02%018—1>00%®. (318)

Highlighting the basis elements of Hy allows to detect interesting objects in the image.

On another side, sometimes it’s useful not to take into consideration a part A of the
space X to compute the homology groups. We talk about another version of homology
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involving the dump of a subcomplex A that yields to the relative homology H,(X, A).
For this purpose, we will note C,(X, A) = C,(X)/C,(A) as the quotient chain complex
and 0, as the boundary operator. More explanations on relative homology groups, cycles
and boundaries were presented in 2.3.4.2 on page 28.

Taking chains on X modulo chains on A shrinks the requirement of a chain to be called a
cycle, namely whenever its boundary is contained in A. This is illustrated in figure 3.37,
where A represents the subspace containing all the cells that belong to t = 0 and ;. As
we see, the border of red cylinder that belong to A are collapsed to a point since we work
on the quotient groups C,(X)/C,(A). This concept allows to detect objects in all frames
of the image like the “worm hole” illustrated by the red cylinder. This also includes the
case when the boundary is empty, as the object in green, which can be detected also by
absolute homology.

Relative persistent homology comes from the ideas of filtration and the functionality of
relative homology described above. Following this manner, we will note K; as the voxels’
complex that contains cells whose values don’t exceed the integer 7. Hence we get a
filtration of K in an analogue manner to equation (3.11) as follows:

lCcKyCK;.. CK. (3.19)

By tracking the topological evolution of this filtration using relative homology, we get
a sequence of homology groups connected by linear maps induced by inclusions for any
dimension p:

H,(Ky, A) —» H,(K1,A) —» ... — (3.20)
Hy(K;,A) = ... = Hy(K, A). '
Note that these relations can be restricted to absolute homology by considering A as an
empty set. Highlighting the most persistent basis elements of H, allows to detect the
interesting objects in the image sequence since we work on 2D+t case.

3.6.2 Synthetic image

First, we have built a 2D+t grayscale synthetic image of size 15 x 32 x 32 to prove the
efficacy of our method. This image carries two “worms’ holes” constructed by moving
rectangles that pivot over all the sequence of the image and change in size. Two spheres
that don’t appear on the first and last frames are also present.

As mentioned in previously, after engaging the filtration procedure and the computation
of relative persistent homology procedure in the process, we are able to compute homol-
ogy classes and their basis in dimensions 0, 1 and 2. We are interested in Hs elements
specifically. These elements consist of equivalence classes of 2-cycles of chains that are
sums of 2-squares and that are not boundaries of any 3-cell or cube. We color the pixels
that form these squares with different colors for relative and absolute persistent homology.
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Figure 3.38: Results of the proposed relative persistent homology method on a synthetic
2D+t image of 15 frames.

The figure 3.38 illustrates how persistent homology in its relative version is capable with-
out the need of prior parameters to capture interesting objects in first and last frames of
the sequence and to follow their temporal evolution. In this figure, we show track detec-
tion results on a grayscaled toy image sequence. The red color represents the persistent
classes computed by relative persistent homology while the green by both absolute and
relative homology. While methods like frame differencing and background subtraction
rely on parameters like pixels’ intensity or objects sizes, this method don’t depend on a
prior parameter to be executed. It can be applied directly on the input image.

Taking A as the subcomplex containing the cells that belong to these frames and comput-
ing the corresponding relative homology will ensure the detection of boundaryless 2-chains
and those with boundaries lying in A. This allows to spot objects movements in image
sequences and to identify them from its start to its end. Pixels that belong to the squares
that form the relative homology classes are colored in red, while green ones represent
those able to be detected by the 2 kinds of homology.

3.6.3 Real applications and comparisons

As a real application, we consider two biomedical images taken by a time-lapse technique
using the SID4Bio quantitative phase imaging system introduced in [BMWO09]. The ob-
jective here is to detect the vesicles that move from first to last frames.

The rate of importance of computed homology classes is proportional to its surviving time.
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Figure 3.39: Persistence diagram of H, elements of the 2D+t sequence shown in fig-
ure 3.40.

As an advantage, the persistence diagram can be very efficient on the choice of interesting
persistent classes. Points far from the diagonal are interesting while those lying along the
diagonal are considered as a topological noise.

Following this manner, we chose the two classes above the graded line in figure 3.39 that
represents the persistent diagram of the image in figure 3.40 of size 12 X 77 x 88 encoding
their times of births and deaths. Highlighting these two elements will detect the objects
of the image shown in Fig. 3.40. Using the relative persistent homology object detection
method, we are able to identify a moving vesicle (top) and the small train of vesicles
(bottom) that increases in size and moves from the first frame in the sequence to the last
one, as shown on figure 3.40. Also, other results shown on figure 3.41 on a 2D+t image of
size 12 x 50 x 70 prove the potential of this method. The two moving vesicles are detected
by our tool from the first frame until the last one.

Contrary to the most existing methods, this technique doesn’t depend on a specific pa-
rameter or attribute like the size of the vesicles, their form or intensity values, etc.

Concerning the other tracking techniques in the state of the art, the method described
in [SK05] for example depends on a feature point tracking algorithm for automated detec-
tion of particles. This algorithm is based on the choice of three parameters that change in
each frame: the approximate radius of the particles, the score cut-off for the non-particle
discrimination, and the percentile that determines which bright pixels are accepted as
particles.

The success of this method that relies clearly on the appropriate choice of the parameters
is very limited on the case of 2D+t sequence shown in figure 3.40 since the sizes of the
two objects are very different and the difference of luminosity with their background is
very slight. To overcome the problem of the choice of the appropriate algorithms and
parameters, the authors in [TPST17] propose a tool named “TrackMate” that may offer
a versatile solution for the large variety of the characteristics and needs of the image
sequence. The benefit of “TrackMate” is strengthened through its ability to be customized
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Figure 3.40: Results of relative persistent homology proposed method on a real grayscaled
2D+t biomedical image.

Figure 3.41: Results obtained on a real grayscaled 2D+t biomedical image using the
relative persistent homology showing two moving cells.
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Figure 3.42: Results of the state of the art “TrackMate” tool on the 2D+t sequence shown
in figure 3.40.
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to meet specific tracking problems. The user may change the algorithms and parameters
of the technique steps to find the suitable ones for its applications.

The results obtained by using this tool on the image in figure 3.40 are shown in figure 3.42.
This results was obtained using four bundles (a), (b), (c), and (d) of parameters and
algorithms on the image sequence. In the first step of the use of the tool, we choose for
all the four bundles the standard parameters for the spatial and temporal calibration of
the data that design the pixels’ width, height and depths. For the second step we must
pick the detection algorithm.

The Laplacian of Gaussian segmentation (LoG) detector applies a plain LoG segmentation
on the image. All calculations are made in the Fourier space which makes it optimal for
intermediate spot sizes. The Downsample LoG detector (DoG) uses the LoG detector,
but decreases the size of the image by an integer factor before filtering. This makes it
optimal for large spot sizes. We used the LoG detector for (a) and (b) and the DoG
detector for (c¢) and (d). For the third step, we picked 10 pixels for (a) and (¢) and 50
pixels for (b) and (d) for the radius of the detected particles. For the last step a quality
feature is calculated to the candidate features of the image. We selected an automatic
threshold as a value for this quality feature for the four bundles.

As shown in the figure 3.42 (a), using the LoG algorithm, the tool is capable to detect the
small vesicle at the top while many inaccurate objects are detected instead of detecting
the whole train of vesicles. By increasing the radius of the spots from 10 to 50, the tool
detects the vesicle of train as shown in figure 3.42 (b) while it cannot detect the small
vesicle in all frames of the image and specially in the first and the last ones.

Changing the detection algorithm to DoG instead of LoG in figure 3.42 (c) didn’t allow
to detect the train of vesicles. If we increase the radius from 10 to 50 in figure 3.42 (d),
the tool detected the train of vesicles in the first frame and failed to track its movement
afterward, as well as it didn’t detect the small vesicle at the top.

The dynamic processes of moving objects need their own specialized tracking techniques
that make use of specific aspects of the objects such as their shapes, sizes and luminosity
etc. These facts make the issue of expanding a general and non-complex tracking tool
an exigent and challenging task. Consequently, one approach that works well for a given
problem is expected to fail for another one. In this context, our approach proposes a new
generic and free parameter tool for object detection and tracking as shown the comparison
of results in figure 3.40(our method) and figure 3.42 (state of the art method).

3.7 Conclusion

This chapter started by explaining the concept of persistent homology and how it differs
from homology of a static topological space, starting from transforming the set of points
into cell complexes until the persistent homology classes computation. Then, a state of
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the art study of the persistent homology applications in engineering and image processing
was made in section 3.2.

In section 3.3 we proposed a method to build the cell complex and its associated filtra-
tion scheme on the set of the pixels and superpixels of the image. Then, we initiated
the applications of persistent homology on grayscale images in section 3.4 by introducing
a novel method to image segmentation using the lifespans of homology classes. In sec-
tion 3.5, we profited from the algebraic outcome of homology classes to segment salient
objects in 2D and 3D images using topological construction on pixels and superpixels.
Unlike the methods that rely their construction on the presence of prior parameters like
objects sizes or intensities, our methods don’t need this requirement. Moreover, while
the existed methods are applied on images of specific dimension, we profit from homol-
ogy to accomplish segmentation to support multidimensional tasks. Then an augmented
version of homology in its absolute form, which is the relative homology is used in our
applications in section 3.6. We have taken advantage from relative persistent homology to
detect tracks of moving cells in time lapse images from the first until the last frame of the
image. The power of this method is present also in its independence to prior parameters
and the generability that characterizes its construction. Noting that our methods have
proven their capability to solve many well known issues in image processing like the back-
ground /foreground discrimination, the overlaid objects, the multidimensional efficacy, the
prior parameters etc. In chapter 4, we will see some techniques in deriving inferences from
images using the sheaves theory, trying to detect global aspects of the image from local
information and we see how to use interpretation of sheaves cohomology whether to scale
analysis or localization.
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In the chapter 2, we had focused on general notions of topology and algebraic topology and
their applications explaining types of cell complexes and homology groups computation.
In the chapter 3, we shifted to another kind of homology, more appropriate to image
processing, which includes the concept of persistence. We have proposed methodologies
that realize image processing tasks like image segmentation, object segmentation and
object tracking. In this chapter, we extend another theory issued from the algebraic

101
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topology. This concept that has contributed in the last five years in many engineering
applications that depend on data fusion and translating the local information to global
aspects. The sheaf theory founded by J. Leray [Mil00] is an abstract field of algebraic
topology theory that mainly concern topologists in its basic aspects [Serb5, Swa64] or
in its more modern forms [Bre97]| because of its relations with the study of topological
spaces and open sets. However, it can be a driving force in the world of data analysis and
engineering.

In section 4.1, we represent how the sheaf theory can be used to analyze and extract
general inferences from spaces of data. Then we start by defining sheaves over topological
spaces in section 4.2. In section 4.3 we develop the notions of cellular sheaves explaining
the concepts of sections. This section ends with computation of sheaves cohomology and
its interpretation. In section 4.4, we explain the construction of sheaves over partially
ordered sets, and the explanation of cohomological analysis and its computation. Then
we make a look on the state of art applications of sheaves in section 4.5. Our initiation to
the applications of sheaves on images is elaborated in the section 4.6, we propose firstly
an application using sheaves on Cech complexes, then we explain how the sections of
sheaves can serve in analyzing color images. This section ends with proposing techniques
of scale analysis and localization using cohomology of sheaves. The section 4.7 concludes
this chapter.

4.1 Introduction to sheaf theory

This section introduces the purpose and the goals of using sheaf theory in analyzing data
and their inferences. The sheaf theory was introduced in the mid 1940s as a part of
algebraic topology to arrange the collation of local data on topological spaces, note this
old theory is built on general topological spaces. This theory is now essential in modern
mathematics because of its richness through the relation between topology and algebraic
geometry. The generalization in manipulating local to global conversions permitted ap-
plications to the science and engineering fields. For example, in the field of scientific data
analysis, integration of heterogeneous systems [Henl4] is a popular problem that needs
strong and robust theories to deal with. Whence the necessity of a mathematical frame-
work for heterogeneous integration that should be general enough to correctly illustrate
the data in all its richness and be efficient in summarizing data into its essential and
meaningful features.

In this context, the use of a mathematical construction, that takes into consideration local
properties and transfer them to global inferences but, at the same time, not theoretically
complex, is essential.

The suitable structure to do that is that of a sheaf. Robert Ghrist and its students have
taken sheaves and other sophisticated constructs from pure mathematics and applied
them to practical problems such as network coding [GH11], electronics [Rob12], signal
processing [CGR12, Rob14a], sampling [Rob15], etc.
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Despite the fact that it’s regarded as an abstract concept, a sheaf can be simply regarded
as a technique to appoint several kinds of data that may be categorified into sets to
each part of a topological space and to inspect the consistency of this data between
neighbors in this space. Basically, sheaves, in its applied version represents, according
to one of its initiators Michael Robinson [Rob17b], the correct way of data construction
that stocks the local data and the appropriate summarization of a topological model by
cohomological summaries. Moreover, sheaves cover the fact that the consistent mutuality
of the information over two overlapping regions results in the validity of the information
over the union of those two regions, and giving it the capability to globalize the studied
data.

In addition, sheaf theory ensures computational methods that follow the general structure
and has been occasionally emerged in applications [GH11, JHR14, Rob16]. The combi-
natorial progress [She85, Curl3] have make possible the manipulation of data structures
into sheaves point of view.

Thus, we think that the sheaves theory can integrate information in images from a local
perspective to a global version. For that, we pass through the process of encoding existing
data into sheaves called Sheafification in order to obtain capabilities enabled by sheaves
which are sections and sheaves cohomology. The proposed steps of the use of sheaf theory
and its invariants are:

1. Designing the base topological space and the multiway interactions between data
sources.

2. Sheafify: building the model of relations between data sources.

3. Categorify: placing the data streams in vector spaces to aid in computation and
analysis.

4. Compute cohomology: globalizing the data to find robust invariants.

4.2 Sheaves of topological spaces

We define here the sheaves over topological spaces. Considering that X represents a
topological space and R a commutative ring.

Preasheaf A Preasheaf P on X is built according to the following construction:
e For each open subset U C X, we assign an R-module P(U)
e For each pair V C U C X, we assign an R-module linear map fyy : P(U) — P(V)

e fyy =1dy and fyy o fyvy = fwy foral W C V C U, with idy as the identity map:
PU) = P(V) and fwv o fvv =PU) = P(V) = P(W).
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/U,

T~ — h/U

Uy U

Figure 4.1: Representation of sheaves of continuous functions.

Elements s of P(U) are called sections on P(U) and fyy(s) is called the restriction of s
from U to V. We will explain the concept of sections in their local and global aspects in
detail in the next section.

Sheaf A presheaf P on X is a sheaf when it satisfies the following:

e Forall open sets U C X and any open covering U = |J U;, and any section s € P(U),
i€l

if fy,u(s) =0 then s = 0 with [ an index set.

e For all open sets U C X, and any open covering U = | U;, for all families s; € P(U;)
iel
that satisfy fv,nv,)v(s:) = fnu,v(s;) for all pairs (4,7), it exists s € P(U) such
that fy,u(s) =s; forall i € 1.

A well known example of sheaves is the sheaves of continuous functions, where restriction
maps are function restrictions. In figure 4.1, the second condition expresses that having
an open set U C X and the open covering U = U; U Us, and the function f and g defined
over Uy and Uy that satisfy f|y,nu, = 9lu,nu, then it exists a common function h over their
union U = U; UU,. This is equivalent to say that whenever two continuous functions with
overlapping domains are equal on the overlap, then they extend to a common continuous
function over the union.

The construction of sheaves over topological spaces is a generalization of their structure
on cell complexes or partially ordered sets since these spaces can be topologized to fit the
definitions of sheaves over topological spaces as we will see in extend below.

4.3 Cellular sheaves

The topological version of sheaves described in section 4.2 is the source of a more combi-
natorial version that uses vector spaces in sections [She85, Curl3] that allows the trans-
formation of the topological invariant problems to linear algebra.
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Figure 4.2: Topological base space for sheaf construction.
S(A) R R

S(D) /
o /
s 2
S(AB) /("\ S(cp) R ~ / \ /
N

5(C 2 K
s\\BC‘ — RS
S(B)

Figure 4.3: Stalks assigning to the cell complex.

4.3.1 Sheaf of vector spaces

A sheaf § of vector spaces or simply a sheaf on a cell complex X as the one shown in 4.2
is considered by [She85] as the base space that corresponds with the assignment of

1. A vector space S(o) to each cell of X called the stalk. For example, in figure 4.3
the stalks assigned to A and B are R and R? respectively.

2. A linear map S(o ~ 7) : S(0) — S(7) that is called restriction along o ~» 7
whenever o is a face of higher dimensional cell 7, o C 7 and such that the restriction

of o to itself is the identity map. If o is a face of 7 (o ~ 7) and 7 is a face of w
(1~ w) then, S(7 ~ w)o S(c ~ 7) = §S(0 ~ w). For example, in figure 4.4

1 01

S(B ~ [AB]) = [O 11

R2. Note that in figure 4.4 we assign restrictions that respect these conditions and
that serve our continuous example in this section.

] which is 2 x 3 matrix since it’s a restriction from R? to
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Figure 4.4: Restrictions assigned to each cell inclusion.

Then restrictions go from low dimensional cells to higher dimensional ones. When maps
go from higher dimensional cells to lower ones, we call them extensions and we have
a cosheaf. We call the built specification a sheaf, but many others call it a presheaf
however every presheaf can be uniquely realized as a sheaf.

Each edge in this example is consistent so this is globalized. If no global consistency
check, there can be conflicting information.

4.3.2 Local, global and pseudo sections

A local section of a sheaf is an element s in @  S(o) which is the direct sum of the
o is a cell

stalks in the base space and o belongs to a subspace Y of X, ie. 0 € Y C X. The term
local section is defined only locally over a subspace of the space X. This element must
satisfy the consistency relation S(o ~ 7)(s(0)) = s(7) for all ¢ C 7 for all ¢ € 7 in the
subspace Y of X, where S(o ~» 7) is a linear restriction map, s(o) is an element of S(o),
and s(7) is an element of S(7).

A global section is specifically an assignment of values from each of the stalks that is
consistent with the restrictions as shown in figure 4.5. When we say consistent we mean
that information coming from vertices to their common edge must be the same. Formally,
the global section on an edge e satisfies this relation:

S(vy ~ e)s(vy) = S(vg ~> e)s(vg), (4.1)
0

where v; and vy, are the vertices of the edge e. For example, taking the section |1| at
0

1 0 2
21 -1

vertex C' in figure 4.5 who is transformed by the restriction S(C' ~ [C'D]) = l

1
to lﬂ and the section |0| at vertex D who is transformed by the restriction S(D ~-
0
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Figure 4.5: Sections consistent with restrictions.

001 0
D)) = [1 0 O] to H
we have a global section that is extended everywhere this relation is satisfied.

we remark that S(C ~» [C'D)])s(C) = S(D ~» [CD])s(D), then

Noting that the process of sheaf construction is done after assigning the stalks and re-
strictions going up in cells after the respect of the local sections criteria.

Sections of sheaves are fundamental element in our work because they permit to globalize
consistently information across data sources, but they seem to require exact matches
between data sources, which is undesirable especially in noisy data. For this, what if
instead we want consistency checks that are approximate, to a certain tolerance?

For example, consider that we are measuring the temperature of a particular object and
we have two independent measurements, we can build a sheaf in this way:

Sheaf: R%RER. (4.2)

If these two measurements say that the temperature of the object is 100°C and the object
itself is 100°C then the associated data is:

Data:  100°C — 100°C « 100°C. (4.3)

So we do not have a section, since the consistency is available and we have identity maps.

But what if the first measurement is 99°C and the second is 101°C and the actual object
is 100°C in this way:
Data :  99°C' — 100°C «+ 101°C. (4.4)

So we do not a section, since the consistency check is false. But if we take the variance
of the pieces of data coming together to the edge, which is variance{99°C,100°C,101°C'}
and check if it’s less than 10% for example, we will consider that we have a pseudosec-
tion. Like this we're accepting an error tolerance and consider that these measurements
are self consistent. Every function that takes these three values and returns a truth
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value, true when they are consistent and false when they are not will express the pres-
ences of a pseudosection like the fact that variance{99°C,100°C,101°C'} < 10% or
{99, 100, 101} € [90,110] for example.

Relaxing matching requirements for sections gives birth to the notion of pseudosections.
The basic modeling idea is to identify for a non vertex cell which data is needed to check
for consistency at that cell. For an edge, we need to check for consistency of data coming
from the two vertices and already we have data on that edge. So at every cell, we can
have a function that checks for consistency and gives true and false values. The true value
means the presence of a pseudosection.

Thus, existence of pseudosections require consistency structures. A consistency structure
reposes on a triple (X;S; C) where X is a cell complex and S is a sheaf over X. C is the
assignment to the non vertex cell a € X of dimension k of a function:

C, = (S(a))*dma —5 £0,1}. (4.5)

So the consistency structure C, returns 1 whenever the data at non vertex cell a are
consistent.

A (X;S; C)-pseudosection p on a non vertex cell a and that belongs to @ S(a) satisfies
everywhere it’s defined:

C.(p(a), (S(vg ~ a),...,S(vg ~ a)) =1, (4.6)

where v; are faces of a.

By [Rob15], sheaves can be built by pseudosections with preserving the same purpose of
its constructions, which is the transformation from the local to the global information. A
sheaf built by pseudosection can be extended in a way that its pseudosections are sections
in the classical concept of sections of sheaves. And also, like local sections, we must have
consistent pseudosections all over the complex in order to have global section.

4.3.3 Categorification

Sheaves can support faithful models information integration problems. Indeed they are
canonical, but sometimes they can become too complicated to be useful and to be repre-
sented by vector spaces. In the general case stalks are sets so the manipulation of these
sets and assigning restrictions will cause problems contrary to the specific case where
stalks are vectors so they are easy to use linear algebra tools.

If we want to derive actionable, relevant summaries of sheaves, they must be sheaf in-
variants and computationally tractable. The problem here is how to encode data for
convenient computation. This is where category theory can interfere to transfer sets to
vector spaces able to be manipulable algorithmically.
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4.3.3.1 Introduction

We will develop this idea refereeing to the tutorials of Michael Robinson [Rob18] on the
sheaves theory applications. Consider any function between sets f : A — B and let R(A)
be the vector space generated by A. The basis of R(A) is the set of elements of A so the
dim(R(A)) = cardinality(A) and every element of R(A) is a linear combination of the
elements of A (similarly for B) and f lifts uniquely to a linear map Rf:

R(A) —L R(B)

T . “Xﬁ (4.7)

(1)
A—— B

where maps (1x) interpret elements of A and B as elements of vector spaces. Taking an
element of A and applying (1x), we will have a vector whose components are zero except
for that element.

For example, consider that A = {cat,dog,bird} and B = {mammal,not mammal},
then f(cat) = mammal, f(dog) = mammal and f(bird) = not mammal. R(A) = R3,
R(B) =R? and Rf : R® — R? is a 2 x 3 matrix:

cat dog bird
mammal 1 1 0
not mammal [ 0 0 1 ] (4.8)
So taking the vector cat and applying the Rf we have:
! 1
v o = [ ] (19)
0 0

with (1) a basis element for R(B). This kind of construction though allows to turn a

set of valued function to a linear map.

Adding a quantitative data as the number of cats, dogs and birds this will give the number
of mammal and not mammals. For example, for 3 cats, 2 dogs, and 1 bird, we will have:

Rf _ m (4.10)

N > W
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qep peqer

(a) Composition of two morphisms. (b) Associativity of composition.

Figure 4.6: A composition of morphism and its associativity scheme.

In order to find R(A), R(B) and Rf, functions on sets are transformed into functors
on categories. We will explain this notion extensively below. Before starting in with
precision, we must note that there may be several possible categorifications for a given
set. Choosing the best one is still an art and this process allows us to normalize a sheaf
with many different data types into a sheaf with just vector data.

4.3.3.2 Changing types using functors

A category C' consists of a class Ob(C') of objects and a class Mor(C') of morphisms for
which:

e Each morphism m has a source and target object, usually written m : A — B.

e Morphisms can be composed: if p: A — B and q : B — (| then there is an unique
morphism gop: A — C called their composition, as shown in figure 4.6 (a).

e Composition is associative: (pog) or =po (qor), as shown in figure 4.6 (b).
e There is an identity morphism 1, for every object A for which po 14 = p and
laog=gq.

For example, taking a category of sets, we will have an object of set noted Ob(set),
which is a collection of sets and a morphisms of sets noted Mor(set), which are functions
that respect the previous axioms. Similiraly for category of vector spaces vec, where the

Ob(vec) are vector spaces and Mor(vec) are linear maps between space of the same field
F.

Now, we can manipulate categories using functors. If C' and D are categories, a covariant
functor F': C' — D assigns:

e An object F(A) in D for each object A in C.

e A morphism F(m) : F(A) — F(B) in D for each morphism m : A — B in C so
that composition is preserved F(mon) = F(m) o F(n).
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v, e (2

Figure 4.7: A simple base space for sheaf construction.

The lifting in equation (4.7) is a functor where the category C' is the category of sets and
category D is the category of vector spaces. Indeed, we can take a set of {cat, dog, bird}
and turn it into an object of the other category D, which is the vector space R3. The
morphism from {cat, dog, bird} to {mammal, not mammal} got turned into a linear map
between R? and R2. So functors helps in changing types of data in order to translate types
to vector spaces or other algebraic structures depending on methods from representation
theory.

4.3.4 Cellular sheaf cohomology and interpretation

Hubbard states in his appendix on sheaf theory [Hub06] “It is fairly easy to understand
what a sheaf is, especially after looking at a few examples. Understanding what they
are good for is rather harder; indeed, without cohomology theory, they are not good for
much.” If we want to derive actionable, relevant summaries of sheaves, these summaries
are called sheaf invariants and should be computationally tractable. This is the case of
sheaves cohomology as we will see in extend below.

Some faults or redundancy cannot be detected by the space of global sections. Another
topological invariant may help in this issue. This invariant is born from the idea of
rewriting the basic condition for a global section s of a sheaf S.

In figure 4.7, we have a cell complex, formed by the two vertices v; and v, and the edge
connecting them is e. The sheaf constructed on this complex is as follows:

S(v1 we)\

S(v1) S(e) S S(wy). (4.11)
The global section on this sheaf must satisfy: S(v; ~ e)s(v1) = S(va ~ €)s(ve) then
+S(vy ~ e)s(v1) —S(vg ~> €)s(vy) = 0. This proposes that (v; ~ e) and (ve ~~ ¢€) should
be assigned opposite signs during constructions and the concept of orientation makes this
assignment precise. Putting the last equality in a vector spaces form we will have:

[+S(i~e)  —S(a~e)] H”l)] = 0. (4.12)

s(v9)

This will help to reduce the question of finding the global section to finding the ker-
nel of a matrix. This brings us back to the idea of homology that is a kernel of a
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Figure 4.8: The coboundary that represents the coboundary map d?

chain boundary modulo the image of the higher dimensional chain boundary, i.e. H, =
ker 0,(C,)/Im 0,41(Cp1). We have seen that homology is dealing with transforming data
from higher dimensional aspects to lower ones and this transformation is based on a chain
complex as seen in (2.2) on page 24. For sheaves, we are dealing with the inverse sense
transformation with data going down from higher dimensional cells to lower ones. This
will give birth to the notion of cochain complex for a sheaf S.

Supposing that S is a sheaf of abelian groups on a cell complex X. The p-th cochain group
CP(X,S) of S is the direct sum of the stalks over the p-cells of X. They are represented
by

C*(X,S)= & S(o). (4.13)

oeXP

Keeping in mind that elements of C?(X,S) represent functions from the p-cells to the
stalks over those cells. Similarly to chains, relations between cochains are given by
coboundary maps. Coboundary maps work like discrete derivatives and compute dif-
ferences between functions on higher dimensional cells. The p-th coboundary map d? is
the homomorphism d? : C?(X,S) — CT*Y(X,S) given by:

(dPf) (1) = Z [0 :7|S(0 ~ 7)f(0), (4.14)

oeXP

where 7 € XPT1 f € CP(X,S8), and [0 : 7] represents the orientation between o and T
expressed by +1, —1 or 0. Here d” acts on a particular element of C?, knowing that a
cochain of C?(X,S) is a vector and also a function. We want to ask what is the stalk
associated to CPT(X,S). Hence we're looking for the value of dP(f) on an element 7 of

CPH(X,S).

We show in figure 4.8 the matrix that represents the coboundary map described in equa-
tion (4.14). The columns represent cells with dimension p while the rows are indexed by
(p + 1)-cells. Elements of the matrix that corresponds to column ¢ and row 7 under the
form [0 : 7]S(0 ~» 7) are filled by restrictions maps between o and 7.
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The set of vector spaces C? and the boundary operator dP between them are called a
chain complex and is noted:

(X, 8) L 0M(X,8) L XX, S)...CP (X, S) L (X, S). (4.15)

Since in chain complexes the emptyness boundary of a boundary gave birth to homol-
ogy groups, the coboundary of coboundary of cochains is also a void by [She85], hence
Im d*! C ker d*.

Cellular sheaf cohomology The facts cited above gives birth to the cohomology of
cellular sheaves defined by:

HP(X,S) = kerd?/Im d"". (4.16)

Hence, the sheaf cohomology group of dimension p represents cochains that exist in di-
mension p but were not already present in p — 1. Noting that p here deals with the
dimension of cells and not the stalks.

As interpretations of sheaf cohomology:

e The space of global sections of a sheaf S on a cell complex X is isomorphic to
HY(X;S8) =~ ker d°.

e The H'(X;S) may represent the new sections that are not present as global sections
when using only edges. Some references call it data loops or misinformation gaps.
So it’s a power invariant since it describes what happens when we don’t have the
full story.

e HP(X;S) represents information gaps of higher dimensions depending on the nature
of application and problem.

4.4 Sheaves on partial orders

Other than constructions on cellular spaces, like simplicial complexes or others, sheaves
can also be constructed on partial orders [Rob17a]. These partial orders are represented
by a general relation that may include many aspects if they satisfy the conditions of the
relation.

4.4.1 Definitions of sheaves over posets

A partial order on a set E is a relation < built on that set and that respect the following
characteristics:
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Figure 4.9: A poset and its dual.

1. Reflexivity: x < z for all z € FE.
2. Antisymmetry: if z <y and y < x then z = y.
3. Transitivity: if x <y and y < z then z < z.
The pair (E, <) is called a partially ordered set or a poset.

We will refer to this pair as F = (E, <) when it’s clear from the context. This partially
ordered set has a dual partial order defined by the relation <°? on E, where x < y if
and only if y < z. The partially order set defined by this duality £ = (E, <°) is called
the dual poset to E. The figure 4.9 shows an example of a poset E and its dual.

Every topological space (X, T') can define a poset noted Open(X,T) = (T, C) on its open
sets that are partially ordered by the subset relation.

In a poset (E, <), the collection of upper level sets of the form O, = {y € F such that x <
y} for each x € F forms a base for a topology that is called Alexandroff topology [Ale37]
as shown in the figure 4.10. Noting that every intersection of opens sets in the Alexandroff
topology on a poset E is open.

The definition of the sheaf comes from the diagram of a poset, shown in 4.9 (a), where
the vertices represent elements and arrows are pointing from lesser elements to greater
ones. We will replace each vertex by a set or a space and each arrow by a function.

Sheaves of sets: A sheaf . of sets on the poset E with the Alexandroff topology consists
of the following requirements:

1. Assigning a set .¥(x) for each x € E called the stalk at x as shown in figure 4.11

(a).
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Figure 4.10: Alexandroff topology on E where arrows are inclusions.

2. Assigning a function S (z < y) : S (z) — S (y) for each pair x < y € E. This
function is called a restriction as shown in figure 4.11 (a),

3. Verifying that . (z < z) = S (y < z) o L (x < y), for each triple x <y < z € E.

Noting that when the stalks are vector spaces, we will obtain a sheaf of the type that
preserve this structure which are linear functions in this case.

Similarly, the sheaf of sets € over the dual poset E°? with the Alexandroff topology shown
in figure 4.9 (b) is expressed in an analogue way to the sheaf of poset F just reversely:

1. Assigning a set €(x) for each z € EP called the stalk at = as shown in figure 4.11
(b),

2. Assigning a function €' (z < y) : €(y) — € (z) for each pair x < y € E° as shown
in figure 4.11 (b). This function is called an extension,

3. Verifying that € (z < z) =€ (x < y) o €(y < z) for each triple x <y < z € E.

A global section of a sheaf .# on a poset E consists in an element s of the direct product

[T -“(z) such that for all x <y € E we have . (x < y)(s(z)) = s(y). Here, the direct
zel
product is not the direct sum since F may be infinite. A local section is defined in the

same way but on a subset F' C E.

In a dual way, we may define a global section of a sheaf ¥ on the dual poset E°? by an

element t of the direct product [] % (x) such that for all z <y € E then t(z) = € (z <
€L

y)(t(y)). A local section is defined in the same way but on a subset F' C F.

For the categorified point of view, a poset E defines a category on which the objects are
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(a) Stalks on the poset E and (b) Stalks on the dual poset of
restrictions. E and restrictions.

Figure 4.11: Stalks on a poset and its dual with restrictions.

elements of £ and a unique morphism between two elements x and y of F exists if x < y.
The proprieties of the comparison < correspond to those of morphisms of categories. A
sheaf on a poset F can be seen as a functor between the category E and the category set
or vec depending on the type of data on stalks.

4.4.2 Cohomological analaysis of sheaves over posets

If a specific system is encoded as a sheaf, its analysis can be done using cohomological
concepts. Sheaves built over posets with stalks represented by vector spaces and whose
restrictions are linear, or extensions in the dual poset, have topological invariants that can
be computed automatically. If the constructed sheaf is not linearized, then it is necessary
to use the categorification to transform the data to linear spaces in order to be manipulated
in matrices as described above. Noting that the computation of cohomology of sheaves
on posets is not natural as much as cohomology of cellular sheaves, some complexity is
behind the scene.

If .7 is a sheaf of vector spaces having linear restriction maps over a poset E, then the
p-cochain space CP(.) of .7 is the direct product of stalks at the end of chains of length

p:

CPE, )= I “L(x). (4.17)

z0<...<ZTp

So CP(E,.) = [ (x,)|" where n, is the number of chains of length p when the poset
E is finite. Elements of C? are represented by chains in F of length p, and can therefore
be considered as a function s from the collection of chains in E. Noting that a chain of
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length 1 is expressed by every two comparable elements like x < y or x < t and chains of
length 2 are under the form z <y < zor x < z < t.

The p-coboundary map d? : CP(E,.) — CPTY(E,.%) is described by the formula:

P
dPs) (g <...<x s(rg < .. T;<...<x
( )( 0 p+1 ; 0 p+1) (4.18)

+(=1)P S (2, < 2pr)(s(@o < ... < 3p)).

where (29 < ... < zp41) € CPT s € CP(E,.) and T; means the omit of an element z;.

Noting that Z 3(:150 < ...<Z; <...<xp) eliminates z; from the cochain zp < ... <
T <...< po from 0 to p and keeping z,1; always. Also, d” acts on a particular element

of C’p knowmg that a cochain of CP(E,.%) is a vector and also a function. Noting that
we want to ask what is the stalk associated to CP™!(E,.). Hence we're looking for the
value of dP(s) on an element (zg < ... < x,.1) of CPTH(E,.7).

By equation (4.18), (d°s)(z¢ < z1) = s(z1) — S (xo < 21)8(20), d° compares s(z;) with
s(zo) brought back on x1 by & (zg < 7). (d's)(xg < 11 < 13) = s(z1 < T2)—s(7g < 22)+
S (1 < 13)s(xo < x1) and d' compares s(xg < z3) on this scheme 1 To

\/’

with s(z1 < x2) + (21 < z2)s(zo < x7).

We represent in the equation (4.19) a simple coboundary matrix for (d°s)(x¢ < z;) where
cochains of length zero are on columns and those of length one on rows. The equation
(4.20) represents (d's)(zo < w1 < ) where chains of length one are on columns and
those of length two are on rows.

o T
(dOS)(I'O < l‘l) = T < I1 {—5’(;1:0 < 371) 1 } (419)
To < X7 To < Tg 1 < T2
(dIS)(QfQ < < fﬂg) = T < T < T2 {Y(ml < Ig) —1 I } (420)

The cohomology of the sheaf . over the posets is defined in the same way as cellular
sheaves as the kernel of d? modulo image of dP~!:

HP(E,) =kerd”/Imd"". (4.21)

In a similar way to the interpretation of cohomological cellular sheaves, the cohomology
of sheaves over poset of dimension zero HY(E,.7) is isomorphic to the space of global
sections of .. This means that the space of global sections returns to compute the kernel
of the matrix of the coboundary map of dimension zero since the image of dimension —1
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doesn’t exist, which is natural since the kernel checks the local consistency of sections.
The higher degree sheaf cohomology spaces can hold useful information. By [Rob17b], a
nontrivial element of H?(E;.’) describes observations on the p-way intersections of source
domains that are consistent on further restriction to (p+1)- way intersections, i.e. kernels
of d?, but do not arise from any observations from (p — 1)-way intersections, i.e. image
of dP~!. Therefore, it exists many classes of limited consistency that cannot be included
in global sections. Hence H'! designs sections that are not present as global sections and
reveals the values of data or variables that are consistent not across all models.

After presenting the notions of cellular sheaves, the concepts of sections, the construction
of sheaves and computation of sheaves cohomology, we briefly present some applications
of sheaves in engineering problems.

4.5 Applications of sheaf theory

On the level of signal processing, [Rob15] addressed a new overview and perspective to the
sampling theorem that builds a connection between continuous-time signals and discrete-
time signals. The author admits that the appropriate algebraic way to model sampling
from classes of non-bandlimited functions is the sheaf because of its sensitivity to topology
and its ability to transfer from local constructions to global conclusions. He used sheaf
morphisms to generalize the process of sampling by transformations of samples to vector
values of different dimensions.

In [Rob13al, the classical Nyquist- Shannon sampling theorem was recovered and extended
by sheaf cohomology. Moreover, the author proves the interference of sheaves cohomology
for sampling theorem of higher dimensions. The null cohomology of an associated sheaf
that models the sample makes possible the reconstruction from this sample.

Another example of the application of the sheaf theory is in optimization domain: the
classical max-flow-min-cut theorem is discussed from an algebraic topology point of view
using sheaves in [GK13]. This theorem is modeled via sheaf theoretical concepts, that
formulate the flow and cut values via sheaves cohomology and cosheaves homology.

Sheaves has also been used for studying networks. A new way of sheaf theory application
on network coding problems is proposed in [GH11]. The authors represent a general
multi source coding scheme by network sheaves. In this representation, they compute
several designs of sheaf cohomologies. After demonstrating that the sheaf cohomology is
equivalent to the information flows on the network, and basing on concepts from homology
theory and exact sequences, this assumption is applied to popular problems in network
coding like data fusion and global prolongation.

Data and its aggregation was largely studied by the applied view of sheaves. In [JHR14],
the authors employ topology, category theory and combinatorics to build techniques of so
called topological data modeling. They used these techniques to study problems in infor-
mation fusion to get well understood data sources. The pairwise properties of analytics
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and their multiple communication are represented by set systems and different kind of
cell complexes that are suitable to check the consistency of information across the con-
structed topological complex. This construction will help in discovering reveal recurrent
dependencies amongst data sources where misleading information might not be able to
be diagnosed.

Instead of the cohomology of sheaves, an alternative reduction technique using the rela-
tion with Euler integrals is proposed in [CGR12]. The study of data aggregation over a
domain can be realized using the proposed alternative of the cohomology of an associated
constructed sheaf over the same domain.

Now we will proceed to the proposed methods of sheaves applications in images.

4.6 Proposed applications of sheaf theory on images

4.6.1 Application of cellular sheaves on images

Here we describe the strategy of building sheaves on a data source, which is the images
in our case, recapitulating the concepts and the notions detailed in section 4.3. An
application on an image will demonstrate how we are applying the concept of cellular
sheaves on images.

When we build a sheaf over a complex, the process of assigning stalks and restriction
maps is fundamentally a task of modeling. As such, it is a balance between being able
to represent the data sufficiently, and being tractable for analysis, but we must keep in
mind that:

1. If we build our base space in a systematic way, so that pixels or group of pixels
lie on vertices, usually we can figure the stalks over the vertices without too much
hassle.

2. We need to figure out how to assemble stalks over the “rest” of the complex. If

we are working with a cell or CW complex, we now need to assign stalks over each
1-dimensional cell, then over each 2-dimensional cell, and then up the dimensional
chain. For a given cell, we look at the stalks of its faces to try to discern the “best
fit” common space for both. Often, there is an obvious choice, like common columns
from a database, that works. But sometimes, we need to poke around a bit, to find
what is common.

3. One of the big payoffs of using sheaves over purely global approaches is that they
work locally, and this is often much easier to model. It may be hard to figure
out “what is common” between many sources of information like pixels or group of
pixels, but usually we can figure out what’s common between two! That’s all we
need in order to go up by one dimension in the cell complex.
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Figure 4.12: An image containing two glued objects.

4. If it is not entirely obvious what to pick for stalks on the intermediate faces, the
thing to do is taking a step back and looking at the way we built the base space in
the first place. If it’s a Cech complex, and most are, then the vertices can also be
thought of as open sets on which each data source “lies”. Moving up in dimension
means that we move to a smaller open subset, retaining only what is common to all
larger sets containing that subset. This viewpoint is particularly useful for images,
since the “open set” really is a set of pixels or locations in the scene.

5. Finally, since we only need to work locally, the restriction maps need only act on
pairs of stalks: one input and one output stalk. Sometimes, the restriction maps are
obvious: forming a mosaic of several images uses fairly constrained image warps and
crops as the restriction maps and these are often linear maps, since they transform
the pixel values linearly, or they work like extracting columns from a table. But
sometimes, they’re a bit more involved.

Now, once we have got a sheaf, we can ask about global sections. Any given sheaf may
or may not have global sections, and it can be hard to figure out what they are with
no further constraints on the problem. But if all the stalks are vector spaces and each
restriction map is linear, then we can compute cohomology. The nice consequence is that
computing cohomology will automatically compute the space of global sections, regard-
less of whether this space is trivial or not. But, cohomology gives us potentially more
information. Interpreting this information requires some reference back to the original
problem: to see the purpose of building this sheaf and how we assigned restrictions on
this sheaf and also to relate to the application task as we will see in this example below
where we are trying to detect the presence of two different glued objects.

We explain thereafter how to apply this methodology on images. Here we present an
application of our method on an image represented in 4.12 of size 100 x 100 pixels. In
this image, we try to find a way to detect the two glued objects using cellular sheaves co-
homology. Classical methods like thresholding and our proposed method using homology
classes are not able to detect the presence of these two glued objects. The base space, is
based here on the natural complex for sheaves over images, which is the Cech complex.
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(a) Salient keypoints given by the  (b) The image with the open balls
SIFT method. centered at its key points.

Figure 4.13: The keypoints of the image in figure 4.12 with the open balls.
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Figure 4.14: The base space for the construction of sheaves.

To build the Cech complex, we must choose some points in the image. We based this
choice on the concept of keypoints. In image processing, keypoints represent interesting
locations in the image. They’re invariant with respect to images changes such as rotation,
scaling, translation, etc. A technique to find these salient key points is the Scale Invariant
Feature Transform (SIFT) method [Low04].

The steps of SIF'T algorithm are the following. Determine approximate location and scale
of salient feature points (also called keypoints), refine their location and scale, determine
orientation(s) for each keypoint, and determine descriptors for each keypoint. We see
in figure 4.13 (a) the keypoints of the image computed using the SIFT method. These
keypoints were noted from a to e.

Now we must construct the Cech complex. We start from the idea that sheaves translate
the common information between two spaces to the union of these two spaces. So we
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thought in constructing two opens at each key point. The first open is a ball of radius 6
and the second is of radius 17 as shown in figure 4.13(b). The balls in yellow will be noted
as U, = B(z,6) = {y|ld(z,y) < 6}, and those in blue V,, = B(xz,17) = {y|d(x,y) < 17}
where z,y € R?. Of course, the choice of the opens and its radii can change depending on
the desired application. The purpose here is to present an example of how to construct
cellular sheaves on images.

Once we assigned the complex, we can have the base space for the Cech complex con-
structed shown in figure 4.14. Vertices U, and V, represent the opens at a specific point z.
Each 2 vertices are connected by an edge if their intersection is non empty. For example
each U, will be connected to V, since their intersection is non empty. V, is thus connected
to V4, Uy to V. ete. For 2 dimensional faces, when 3 opens are intersected, we will add a
triangle like the case of Uy, V; and V.

We choose the stalks over the vertices. The chosen stalks are the most natural character-
istics over the opens on these vertices. For that, we have chosen the means of intensity
values and of gradient values in this open, so the vector space associated is R?. On the
level of the edges, we will look on the intersections of the 2 opens and compute the same
values, like the values inside V, NV} for example. For the triangles, we look for the values
inside the 3 intersected opens like in Uy V3N Ve. In summary, all the cells in the com-
plex will hold R? as a vector space over their stalks since we look only for mean of pixels
values and gradients. Of course, other characteristics can be studied like the variance, the
maximum value in each open and even homology classes for example.

Now we want to find the restrictions from lower dimensional cells to higher ones. These
restrictions have R? as input and output so they will be matrices of the form R?*2. Since
we're looking for coherence over the sheaf space, we will compare the data over the low
dimensional cells and their higher dimensional ones. But this time it’s accompanied by a
pseudosection definition introduced before in 4.3.2.

Taking for example an edge e with values {eq, e; } associated with its vertices a and b with
values {ag, a;} and {by, b1} respectively

Data:  a:{ag,a1} = e:{eg,er} < b:{bo,b1}. (4.22)

Of course, if ap and by are the mean pixel values inside V, and V}, for example and ¢ is
the mean pixels value inside their intersection, then eg is definitely different from ay and
bo. So it’s necessary to use the tolerance introduced by the pseudosection concept.

For this, we will check if the value e is between ag and by. The same for eq, a; and by. If
so, we will have a truth value and eventually a pseudosection and so we are accepting
to have a tolerance and consider that these measures are consistent.

Like in the example of subsection 4.3.3 of cat/dog/bird and mammal/not mammal, we
choose A = {x,y} where x and y represent the mean pixel values and the mean gradient
values inside an open represented by a cell. Also B = {coherent,not coherent}, we need
a functoriality to transform these sets into vector spaces like described before. Noting
that the cell represented by A is of lower dimension than B.
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VNV Vo Ve

Figure 4.15: The sheaf base space with the restrictions.

We will try to lift the function between these two sets to a linear one like in equation (4.7):

“X)T x) (4.23)

A—— B

R(A) —L R(B)
(1
f

Here R(A) = R?, R(B) = R? and Rf : R? — R? is a 2 X 2 matrix.

If the mean pixel values on a specific cell is between the mean pixel value along its
boundaries then f(z) = 1 and its 0 otherwise. And so the same for f(y) but for mean
gradient values.

Suppose that we have the following values on the edge V; NV, and its vertices V; and V,
represented in equation (4.24):

Data: Vj:{148.3,235.4} — VyNV, : {98.6,228.8} « V, : {69.7, 247.4}.
Sheaf over data : V; : {z,y} % VyNV, : {coherent, notcoherent} <~ V, : {z',y'}.

(4.24)
where ry and 7 are restrictions from vertices V; and V, to edge V; N V..
Then in this case Ry = ro =1 € R?, its matrix is represented by:
ry
coherent 10
not Coherent[ 0 1 ] (4.25)

We represent in figure 4.15 the restrictions from low dimensional cells to their higher
dimensional attached ones. Of course the restrictions will belong to R?*? since we're
transforming the data from R? to R? from low dimensional cells to higher ones.
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Now we will get coboundary maps d° and d* using

(@ f)(r)= > [o:7]S(o ~ 7)f(0) (4.26)

oceXP

and we’re able to compute sheaves cohomology of zero and one dimensions over this
complex using this equality H?(X,S) = kerd?/ImdP~!. In this case we have H® =<
U, Up,U., U, > and H' =< UjVy+ U V. + V4V, U Vy + UV, + UV, >, where < ... >
includes the vectors generators of the cohomology group. We notice that H! detects some
kind of incoherence between opens Uy, Vy, U,, V. which indicate an inconsistency between
them and the absence of U; in H® and so in the space of global section, that represent
consistent sections, may justify this interpretation.

Even though H° and H*' do not bring a lot of information in this case, but some kind of
inconsistency is detected at the level of H'. Other ways of modeling of the sheaf may bring
an important information like the detection of the two glued objects by interpretation of
H'. Noting that the choice of the vertices, like chosing them manually, the radii of opens,
the stalks over the vertices and restrictions is a task of modeling and affect the value of
the cohomology. The right choice will lead to the detection of these glued objects.

4.6.2 Sections on RGB images

We have seen that sheaves also can be seen as sections of sheaves without their cohomo-
logical computations. These sections are useful on colored images. In fact, colored images
have pixels with values belonging to R? which correspond to the RGB channel. Each pixel
will represent a vertex on the base space. First we construct a Cech complex to have a
base space for our sheaf. The centers of the open balls will be naturally the pixels and the
radius is 1/2 + € supposing that the distance between vertices is 1 and 0 < € < (@ — %),
in a way that two diagonal opens don’t intersect. In this way we have only intersections
between two opens and not 3, and thus only edges and not 2 dimensional faces as shown

in figure 4.16.

® ° ® ° | ° [ °
o o o S | . A
(a) 6 pixels/vertices. (b) Opens over the 6 pixels.

Figure 4.16: 6 pixels with their opens with radius 1/2 + .
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The stalks over the vertices and edges will be R? as shown in figure 4.17. Now we must
look for sections. As data over the vertices, we have chosen the RGB channel (r;, g;, b;)
for each vertex in the base space. For edges, we assign the difference of the values coming
from vertices (r;—7;, gj—gi, b;—0b;). The restrictions from vertices to edges will be matrices
of the form R3*3 as shown in the example in figure 4.18 that contains two vertices with
restrictions to their common edge.

3 3 3 3 3

. o o T R T R T

R3 R3 R3

o () ® R3 R3 R3 R3 R3
(a) The Cech complex of figure 4.16. (b) Stalks assigning to the base space.

Figure 4.17: The Cech complex and the stalks over it.

It’s clear that these restrictions respect the property of local sections described in subsec-
tion 4.3.2 and showed in these equations:

% -1 . 0 0 T Tj — T
0 &-10 g = |9—u (4.27)
0 0 %1 b b, — b
L gz -
-5 0 0 s ri— 1y
0 0 1-% b, b — by
L gJ -

With these restrictions we get for the stalks assignment in figure 4.17 the sections that
are consistent with the restrictions as shown in figure 4.19.

After the construction of these sections over the one dimensional space, we can compute
the persistent homology on the image. Values over the edges can be ||X|,, where X' =
(r; —14,9; — 9i, b; — b;) are the stalks value over the edges. The value of the 2 dimensional
face can be the maximum of the values over the edges. Of course, any other criteria and
assigning can be taken into consideration to construct the filtration scheme in order to
compute persistent homology.

Noting that all the data resources can be different than pixels, like superpixels or anything
that gives measures and values can be different than RGB values, or any ontology. All
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Figure 4.18: Sections over two vertices and one edge of the complex.
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Figure 4.19: Sections consistent with restrictions over the 6 pixels.
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Figure 4.20: Local sections over 2 pixels with identity maps as restrictions.

Figure 4.21: Consistent components according to the sheaves giving a partition of the
image.

these criteria depends highly on the nature of the desired application and can change
depending on their specific utilization.

Another way to benefit from sections on images is using identity matrices as restrictions
on RGB values of pixels. This gives local sections all over the image. In figure 4.20, we
build a section on two pixels/vertices and restrictions are identity maps of the form R3*3
since we're transforming stalks from R? to R3. It’s a local section since it satisfies the
relation S(o ~» 7)(s(0)) = s(7) for ¢ C 7. This local section may globalized if it respects
consistency, i.e. when it satisfies S(v; ~ e)s(vy) = S(vy ~> €)s(vy), where v; and v, are
vertices of the edge e. It means when the information coming from vertices on an edge is
the same, i.e. if r; = r;, g; = g; and b; = b; and may rest local otherwise.

We will associate an edge between two pixels/vertices whenever we have the consistency
respected. In this way the data coming directly from image are encoded as a local section.
Other section “globalize” this data as edges until non consistency as shown in figure 4.21
where vertices are connected by edges when the sections are global.

Another example is to associate the Luma component, which designs the brightness in
an image, to edges between pixels/vertices. The Luma component value of a pixel is
Y’ = 0.299R +0.587G + 0.114B where RGB designs the three channels of a pixel in a col-
ored image. So restrictions are matrices of the form R*3 and equal to (0.299,0.587,0.114)

7\ (0.299,0.587,0.114) (0.299,0.587,0.114)
(gi (0.2997, + 0.587 g, + 0.1114 b;) (0.2997; +0.587 g, + 0.1114 b;) «
b;

Figure 4.22: Local sections over 2 pixels with Luma maps as restrictions.
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B
Figure 4.23: Three opens A, B and C.

since we're transforming stalks from R? to R as shows the example on 2 pixels in fig-
ure 4.22. These sections respect the condition of a local section. We have a global section
whenever the information coming from vertices is equal. We can associate an edge between
two pixels/vertices in the same as previous example whenever we have the consistency
respected in a local section.

Of course other constructions can be done on superpixels or any other aspect of images
or data sources. Pseudosections can be taken into account to relax the consistency check
in order to globalize the sections and also categorification may be used to transform the
stalks that are sets to vector spaces.

4.6.3 Interpretation of sheaves of models

Models and their relations have many interactions. The most immediate characteristic
of a multi model system is its topology. Modeling the topology of these models will
allow to specify spaces and maps in accordance with the topology. This construction
is based on sheaves. Sheaf theory is able to ensure techniques to construct and predict
inferences described by equations. This will allow to manage local information into a
consistent whole. For this purpose models can be represented by diagrams where sheaves
are assigned to make inferences of models. These diagrams are manipulated by partially
ordered sets.

We try in this subsection to create a tool that helps in understanding constitutes and
characteristics of spaces in increasing nested order or decreasing one. This tool will
permit to more understand and analyze the scaling of these spaces and the localization of
objects or features inside them. Thanks to the cohomological analysis, or the homological
in cosheaf case, we are able to create a prospective tool that permit an automatic analysis
of data.

Constructing the sheaf models over the nested spaces will allow the analysis of the topo-
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G=AUBUC

D=AUB E=AUC F=BUC

Figure 4.24: The poset £ with arrows meaning inclusions.

logical invariants depending on the following steps:
1. Using the sheaf over a poset to encode diagrams of models as described in section 4.4
2. Linearising the data if necessary,
3. Computing the coboundary maps of this sheaf,

4. Computing cohomology to summarize the sheaf models and interpret them.

4.6.3.1 Scale analysis using sheaves on posets

Sheaves on posets can be used to perform inferences for scale analysis. Suppose that we
have 3 opens A, B and C, as shown in figure 4.23.

Here we will go up in opens in an increasing way. We will note D = AUB, E = AUC,
F=BUCand G=DUFEUF. Of course D, E, F' and G define a topology on the
set £ ={A,B,C,D,E,F,G}. As we have seen, that every topological space can define
a poset on its open sets that are partially ordered by the subset relation. This poset is
presented in 4.24 where arrows are pointed in increasing direction.

4.6.3.1.1 Example 1 Suppose we have the following model:
e A three opens like A, B and C.

e A cycle or an homology class that exist in D = AU B as shown in 4.25 but not in
E=AUCnor F=BUC.

Now we will construct a sheaf . of sets on the poset £ with the Alexandroff topology.
For this, we must respect the three conditions mentioned in section 4.4. The figure 4.26
(a) shows the general form of the stalks and restrictions over this sheaf.
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avavl

B
Figure 4.25: The opens with the cycle a in AU B.

<ag >

25

Z(A) 7' (8) Z(C) N i <ap <ac
(a) General form of stlaks and restrictions over (b) Stalks over the sheaf . of the poset &.
the poset £.

<ay > <ag > <ag>
(c) Restrictions over the sheaf .7 of poset £.

Figure 4.26: The sheaf over the poset £.
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0 0
) Global section generated by a 4. ) Global section generated by ap.
0

%N

) Global section generated by ac.

Figure 4.27: Global sections of the sheaf . over poset £.

Stalks over the cochains of length 0 are isomorphic to R and generated by a. The vector
space generated by a is noted < a > and we will refer to < ay >, < ap >,< a¢g >, <
ap >, < ag >,< ap >,< ag > to stalks over A, B,C, D, E, F, G respectively as shown in
figure 4.26 (b).

There is a restriction . (z < y), for each pair x < y in the poset £. It will transform a stalk
a to 0 when it does not exit in the open so (A < D) :ay — 0, ¥ (B < E) :ag — 0, etc.
because a doesn’t exist in A nor B. If an element exists in two cochains it will be under
the form ap — ag since the cycle a exists in D and G. The figure 4.26 (c) illustrates
these restrictions all over the sheaf . over the poset £.

Now we study the sections. The sections over the opens that do not contain the cycle a
are 0, hence the sections . over A, B, C, E, F are 0. While the sections over the opens
that contain the cycle a are a so the sections over D and G are ap and ag. It’s clear that
a4, ag and a. are generators of the global section since their assigning is compatible with
the consistency check of global section all over the sheaf . i.e. for all z <y € £ we have
L (x < y)(s(x)) = s(y). We show in figure 4.27 the global sections generated by ax, ap
and a. respectively and that are prolonged all over the sheaf ..

As a local section we have the section shown in 4.28. This section is defined in the same
way as the global section but only on a subset F C &, thus this local section cannot be



132CHAPTER 4. SHEAF THEORY AND ITS APPLICATION IN IMAGE PROCESSING

ag

LN

Figure 4.28: A local section on the sheaf .7 over the poset £ which can not be extend to
a global section.

extended all over the sheaf . and remains limited in a subspace of £.

This interpretation of global and local section can be done automatically using sheaves

cohomology. The cohomological analysis of this sheaf will allow us to interpret and un-

derstand the studied model. The cochain space is C?(€,.) = I .#(x,), hence:
<..<

zo Tp

o CVE,.7) =(A)@(B)®(C)® (D)@ (B)® (F) (G).

e C1&,)=(A<D)@A<E)®@B<D)@(B<F)®(C<E)®(C<F)®(A<
G B<GE®eC<G@®e(D<G)e(F<G)e(F<a).

e (%&,S)=(A<D<GF)RA<E<G®(B<D<G®B<F<G®((C<
E<G)®(C<F<Qq).
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Using the equation (4.19) on page 117, the coboundary matrix dy, ; of this sheaf is:

d°(&,7) =

4.29)

!
A\
8
|
o+
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And by equation (4.20) on page 117 di. s, is:

dH(&,7) =

(A<D) (A<E) (B<D) (B<F) (C<BE

S (D < G)

S (E < G)

S(D < G)

S(F < G)

S (E < G)

(C<F<G) (C<E<G) (B<F<G) (B<D<G) (A<E<G) (A<D<G)

S (F < G) -1 I

(A<D)(A<E)(B<D)(B<F)(C<E)(C<F)(A<G)(B<G)(C<G)(D<G)(E<G)(F<G)

(A<D<G) + - +
(A<E<G) . — +
_ (B<D<Q@G) + - +
_(B<F<G) . - . +
(C<E<@G) - +
(C< F<@G) — . +
) (4.30)

Knowing that the value of (A < D) is zero because it’s translating a, to 0 since
S (A< D):as— 0 and so on for the others who are similar. The value of .7 (D < G)
is 1 because it’s translating ap to ag since (A < D) :ap — ag.

Once we have the coboundary matrices d°(€,.¥) and d'(€,.#), we can compute the
cohomology of zero and one dimension. Recall that H?(E,.¥) = kerd”/ImdP~', then
HY(E,¥) =%kerd"/Imd~" = ker d".

Thus H°(E,.7) is generated by < au,ap,ac >, which is the space of global sections of
this sheaf model. This reveals the consistency of these elements across the sheaf which is
normal since ay4, ag and ac are transformed via null functions.

On another side H'(€,.¥) =< ac<g, ac<r >, which are sections of cochains of length 1
that are not present as global sections and may give extra information and inference of
the model at the level of cochains of length 1. The presence of ac-p and accp in H*

(C<F) (A<G)(B<G)(C<G)(D<G)(E<G)(F<G)_
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B
Figure 4.29: The opens with the cyclea € AU BUC.

means that there are obstructions to the extension of the global sections at the level of
the cochains C' < F and C' < F.

Interpreting the results of H°, we conclude that the cycle a doesn’t exist in any of the big
opens A, B and C. For H', a is not included in £ = AU C nor F' = BUC, which let us
deduce that this element is in D = AU B.

Now we will try to change the study a little bit. Let the cycle a be in the union of all the
opens and not included in any other open as shown in figure 4.29.

4.6.3.1.2 Example 2 Supposing we have the following model:
e A three opens like A, B and C.

e A cycle or an homology class that doesn’t exist in D = AUB, E = AUC nor
F = BUC as shown in 4.29 but rather in G = AU BUC.

Now we will construct a sheaf .’ of sets on the same poset £ with the Alexandroff
topology. For this, we must respect the three conditions mentioned in section 4.4. The
general form of this sheaf .’ is as same as the one described in described in example 1
in figure 4.26 (a).

As in example 1, stalks over the cochains of length 0 are isomorphic to R and generated
by a. The stalks over A, B,C, D, E, F, G respectively are the same as shown in figure 4.26

(b).

There is a restriction .'(xz < y), for each pair x < y in the poset £. It will transform a
stalk a to 0 when it doesn’t exit in the open so /(A < D) :ay — 0, ag — 0, ap — 0
etc. because a doesn’t exist in A, B nor D. The figure 4.30 illustrates these restrictions
all over the sheaf .’ over the poset £.

Now for the sections, The sections over the opens that do not contain the cycle a are 0.
Hence, the sections . over A, B, C, ,D, E and F are 0. While the sections over the opens
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<ag >

<ay > <ag > <ac>
Figure 4.30: Restrictions over the sheaf . of poset £.

g

LN

Figure 4.31: A local section on the sheaf .#” over the poset £ which can not be extend to
a global section.

that contain the cycle a are a so the section over G is ag. Like in example 1, it’s clear
that a4, ap and a. are generators of the global section since their assigning is compatible
with the consistency check of global section all over the sheaf .7, ie. forall z <y € &€
we have . (z < y)(s(z)) = s(y). The figure 4.27 of example 1 shows the global sections
generated by a4, ap and a. respectively and that are prolonged all over the sheaf ..

As a local section for this example 2 we have the section showed in 4.31. This section
is defined in the same way as the global section but on a subset F C &, thus this local
section cannot be extended all over the sheaf .# and remains limited in a subspace of £’.

We will see these interpretation automatically using sheaves cohomology. Concerning
d® and d', the only difference in d° and d' is .#/(D < G) which is equal to 0 in this
case. Computing the sheaves cohomology over this poset will lead to H°(E,.7") =<
as, ag, ac >= H°(E,) and HY(E,.¥) =< ap<p, ac<g, ac<r >. The presence of
ap<p, acep and accp in H' means that there are obstructions to the extension of the
global sections at the level of the cochains B < D, C' < E and C < F. As same as
example 1, H° let us conclude that the class a doesn’t exist in any of the big opens. The
interpretation of cohomology of one dimension over poset £ at the level of cochains of
length 1 leads to verify that a is not in any of D = AUB, F = AUC and FF = BUC(C
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B

Figure 4.32: The opens with the cycles a, b and ¢ for the case of example 3 in scale
analysis.

< ag, bg, cg >

< ap, bD’ Cp > ag, bE, Cp > < ag, bF' CF

LN

<ay,bp > <apg,bg,cpg > <ag b, ce >
(a) Stalks over the sheaf .7 of poset &.

<aA,bA,CA > <aB,bB,CB > <aC,bC,CC >
(b) Restrictions over the sheaf .#” of poset €.

Figure 4.33: The sheaf .#” over the poset £.
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0 0
) Global section generated by ba. ) Global section generated by ap.
0 e
) Global section generated by ac. ) Global section generated by ca+cp +

Cc+CD+CE+CF+CG

Figure 4.34: Global sections of the sheaf .#” over poset €.

andsoainin G=AUBUC.

Now, we will move to a more sophisticated model described in the next example.

4.6.3.1.3 Example 3 Suppose we have the following model:
e A three opens like A, B and C.
e Cyclesa,c€ A, b,c € B and b,c € C as shown in figure 4.32.

Now we will construct a sheaf .#” of sets on the poset £ with the Alexandroff topology.
Again the figure 4.26 (a) shows the general form of the stalks and restrictions over this
sheaf.

Stalks over the cochains of length 0 are isomorphic to R now and generated by a, b and c.
The vector space generated by a, b and ¢ are noted < a >, < b > and < ¢ > respectively
and we will refer to < aa,ba,cqa >,< ap,bg,cg >, < ac,bc,cc >,< ap,bp,cp >,<
ag,bg,cp >, < ap,bp,cr >,< ag,bg, cg > to stalks over A, B,C, D, E, F, G respectively
as shown in figure 4.33 (a).
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G=ANBNC

/N

D=ANB E=ANC F=BNC

Figure 4.35: The poset £ with arrows in decreasing direction.

Restrictions of this sheaf .” look also for the existence of an element between two cohains
as same as examples 1 and 2. The figure 4.33 (b) illustrates these restrictions all over the
sheaf .” over the poset .

Now we study the sections. The sections over the opens that do not contain the cycle a
are 0, and it’s a otherwise, for example the section over A is (a4,0,c4) since it contains
the cycles a and ¢ and does not contain the cycle b. The same assigning is done for the
other opens in the poset.

Generators of the global section are sections consistent all over the sheaf that respect the
condition of consistency, i.e. for all z <y € £ we have ./"(z < y)(s(x)) = s(y). The
figure 4.34 illustrates these global sections generated by b4, ap, ac and ca4 + cg + co +
¢p + cg + cp + c¢ since their assigning is compatible with the consistency check of global
section all over the sheaf .” and thus extended on all the sheaf.

Computing the sheaves cohomology on this sheaf .” we get H(E,.#") =< by, ap, ac, (ca+
cg + cc +cp +cg + cp + cg) >. H° indicates the absence of b in A and @ in B and C,

it also indicates the presence of ¢ all over the scale increasing which produce a cocycle.
H? is the space of global sections so it resumes consistent stalks across the sheaf. In the
case of ba, aa, ac, they are transformed via null functions and the case of elements of
(ca+cp+cc+cp+cg+cr+ce) that are transformed via identity maps all the way so
they respect the global section conditions at the level of cochain of length 0.

For the one dimension, H' =< cacq + Cpec + cocc + Cpec + Cpeq + Creq >, which
confirm the existence of the cocycle even in length 1 cochains, and the presence of ¢ at
these cochains.

4.6.3.2 Localization using sheaves on posets

Sheaves on posets can be applied to localize objects or other characteristics over the posets
in a decreasing way. Suppose the sheaf model is built on a poset £ in the way described
in figure 4.35.

Here we will go down in opens in a decreasing way. We will note D = ANB, E = ANC,
F=BnNnCand G=DNENF. Of course G, F, E, D, C, B and A define a topology
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Figure 4.36: The opens with the cycles a, b and ¢ for the localization example.

< ag, bG’CG >

< aD,bD,CD > aE,bE,CE > aF,bF, CF

LN

< aA’bA’CA > < aBl bB) CB > < ac, bc, CC
(a) Stalks over the sheaf .7 of poset £’.

< ag bg cg >

<ap by ca >  <agbgcg> <agbgce >
(b) Restrictions over the sheaf . of poset £’.

Figure 4.37: The sheaf .# over the poset £’
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on the set £ = {G, F,E,D,C, B, A}. The superset relation on these defines a relation of
partial order on £ which makes it a poset. This poset is presented in figure 4.35 where
arrows are pointed in decreasing direction.

Suppose we have the following model:
e A three opens like A, B and C.
e Cyclesa,c€ A, b,c € B and b, c € C as shown in figure 4.36.

Now we will construct a sheaf . of sets on the poset £ with the Alexandroff topology.
Again the figure 4.26 (a) serves as a general form of the stalks and restrictions over this
sheaf.

Stalks over the cochains of length 0 are isomorphic to R?® now and generated in the same
way as shown in figure 4.37 (a).

Restrictions of this sheaf .# look also for the existence of an element between two cohains
as same as examples3. The figure 4.37 (b) illustrates these restrictions all over the sheaf.
over the poset &£’

Now we study sections. Generators of the global section are sections consistent all over
the sheaf that respect the condition of consistency, i.e. for all z < y € & we have
S x < y)(s(z)) = s(y). The figure 4.38 illustrates these global sections generated by
aa, ba, ag, bp +bc +brp and ca + cg + co + ¢p + cg + cr + cg since their assigning is
compatible with the consistency check of global section all over the sheaf .” and thus
extended on all the sheaf.

Constructing the sheaf in the same way as the previous descriptions, the values over
the opens follow their existence and the restrictions between them respect this criteria.
After computation of d° and d', we are able to compute the space of global sections.
H® =< ay, ba, ap, a., bg+bo, ca+cg+co+cp+cg+cp+ce>. In the decreasing
way, vectors of H° may indicate the absence of this element like by, ap and a. or its
presence followed by an absence like a4 because they are transformed by null functions
which make them consistent and thus appearing in global sections. While vectors of
many elements indicate the presence of these elements across the cochains of length 0 like
(bp+bc) and (ca+cp+cc+cp+cg+ crp+ co) because they are transformed via identity
maps which make them also consistent sections that respect the global section condition.
(bp + bc) makes b in B and C while (¢4 + ¢cg + cc + ¢p + cg + ¢p + ¢¢) makes ¢ present
in all opens, cochains of length 0, including A N B N C' and thus we make sure that by
indicates the absence of b in A.

H' = {ap<p,bp<p,ac<p,bo<p,ac<r}. A lot of information can be deduced from H!
since vectors with one element indicate the absence of this element in cochains of length
one. We will see also if it can discriminate the case when a vector with one element in
H° indicates the presence or the absence of the element like the case of a4, ap and ac.
The vector represented by ag.p indicates the absence of a in D = AN B, ac<g and ac<p
means also that a isnotin E =ANCnor E=BnNC.
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0 0
) Global section generated by a4. ) Global section generated by b4.
0 0
) Global section generated by ap. ) Global section generated by bp + bc +
bp.
Cq

0N

) Global section generated by c4 + cp —I-
Cc+CD—|-CE—|-CF—|—CG

Figure 4.38: Global sections of sheaf .# over poset &'
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In turn, bg.p and bep indicate that b is not in D = AN B nor in E = AN C then
we're sure that it is in ' = BN C. cisn’t any element of H! so it’s in D = AN B,
E=ANC,and F = BNC thusit’s in G = AN BN C which verify the interpretation of
H°. As we have seen cohomological analysis verify the data and detect the propagation
of characteristics across it which permit to localize them.

Remarking that these opens can be any open structures in the image that respect the
Alexandroff topology like windows of pixels, superpixels, adjacent spaces etc. and char-
acteristics can be any object or feature inside these opens.

4.7 Conclusion

In this chapter, we tried to dive into a new aspect of the applied algebraic topology that
relies on sheaves theory. We started by an introduction into sheaves in section 4.1 fol-
lowed by the basic aspect of sheaves on topological spaces 4.2. This fundamental aspect
is translated to cellular spaces. We provide in section 4.3 the concept of cellular sheaves
describing how to construct a sheaf on a cell complex and getting therefore cochain com-
plexes associated with coboundary maps. These coboundary maps allow to compute
sheaves cohomology in order to get a topological invariant that transform the local in-
formation into general inference. The section 4.4 introduced the construction of sheaves
over partially ordered sets and its cohomological analysis. Next the section 4.5, developp
the state of art of sheaves applications.

The final part 4.6, extends our contribution in this chapter. We initiated applications of
cellular sheaves on image examples and we sheafify a Cech complex constructed on some
keypoints of this image. The coboundary maps over this complex allowed to compute
cohomology and deducing inferences. Changing the base space and restrictions may allow
the detection of glued objects. Moreover sections of sheaves permitted to compute per-
sistent homology on color images with RGB channels because of benefit from the vector
spaces genereated by these channels. We set up the basics of scale analysis and local-
ization over spaces using cohomological analysis over partially ordered sets. We tried
to better understand and predict contents of the sheaf model and then verifyin it using
sheaves cohomology. Not to forget, that constructing sheaves is a task of modelling, so
it depends highly on the application and many criteria and way of constructions can be
taken into consideration. Applications of these concepts on real images is one of the major
perspectives on the court term.
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5.1 General conclusion

Topology and algebraic topology feed the development of several methodologies to an-
swer engineering problems. This mathematical theory is particularly interesting, and its
applicability is mainly due to the possibility to return a computable part and represented
on a real system. For example, for image processing tasks, simplicial homology in its
persistence aspect and its relative form, and sheaf theory have been particularly effective.
Lifespans of persistent homology classes give rise to a new way of image segmentation,
while highlighting the most persistent homology classes that resisted the variations of
spaces permitted to segment the objects in 2D and 3D dimensions. Not forgetting the
relative version that allows to dump a subspace in the complex and thus to enlarge the
notion of cycle for tracking of moving objects. Sheaf theory allowed to infer from lo-
cal perspectives global invariants that may serve the solution of some issues in image
processing.

The success of these topological approaches is due to the flexibility of the manipulated
spaces. Indeed, a simple notion of neighborhood is required. This is transformed into
a list of cells and boundaries relationship between them through a boundary operator.
Once these data are provided, it is possible to compute several invariants measuring var-
ious quantities that are not necessarily scalar as the homology groups. The quantities
resulting from the topology describe the shape of the space and give a qualitative rep-
resentation. These topological invariants associated with their qualitative representation
where profitable on the level of image processing. Lifespans of persistent homology classes
for example permitted to segment images while visualization of most persistent homology

145
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classes allowed to segment objects in images without the need of prior parameters like
sizes or intensities of the objects.

The difficulty of using algebraic topology wasn’t focused on the tools and the techniques
but on the spatialization of the problem and the interpretation of the invariants. For
example in chapter 3, the way of constructions of combinatorial presentation and the
filtration depend highly on the studied space and data. The way of forming the simplicial
complex in not immediate and linking the computed homology groups to the origin of
the problem requires some work. But the gain is important, no previous hypothesis are
required if we’re starting from raw pixels for example or superpixels as in chapter 3, and
no assumptions about the size of the objects or intensities values are required.

The topology is often called “geometry of rubber”, but its subfield, the algebraic topology,
is providing mathematical tools allowing the passage from the local to the global, that is,
to say the passage from a simple local notion of proximity into complex and more general
notion of global shape of space. The tools that allow this integration of the local to the
global are well performing and can give rise to several algorithms of image understanding
and analysis as we have seen in this work. For example, the sheaf theory allowed to
transform information from local to global aspects using cohomology of sheaves. The
interpretation of the scale analysis and localization permitted to predict and understand
the studied data on the global aspect.

Not to forget to mention that even if the results are not perfect for scientists working in
image processing field, specially in the biomedical aspect, our work that translates the al-
gebraic topology to the image processing presents a completely novel change of paradigm
that still needs more room to discuss and move forward.

Beginning with image segmentation, we proposed a technique that associates the compu-
tation of topological features using lifespans of homology classes with statistical features
in overlapping windows. These features were classified using the K-means method giving
an image segmentation methodology. The results of this methods were presented in an
international conference [AGV16a| and published in a journal [AGV16b].

Additionally, the algebraic returns of the most persistent homology classes were used to
achieve object segmentation in images. A construction of the filtration scheme on raw
pixels allows to segment interesting objects such cells and their components in biomedical
images.

Another idea was to use the combinatorial presentation of superpixels in order to seg-
ment objects in large images of 2D and 3D without the use of prior parameters. This
technique was presented in national conference [AGK17a] and illustrated in an article
under review [AGVT17]. Moreover an article on the applied aspect of this technique that
permits to find components of cells in biomedical images was accepted for presentation
to an international conference [AGK17b].

The movement of cells along sequences of images was at the origin of the development
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of a technique that detected and tracked objects from the first to the last frame. This
technique uses the relative homology that relaxed the principle of homology to more
spaces. The object of this technique was resumed in an article under review [AGK™17c].

Also we have initiated the use of the sheaf theory on images in order to transform in-
formation from local to global aspects. Sheaves on cellular spaces and on posets allow
to transform algebraic aspect of sheaf to a linear one. This construction permit the
cohomological analysis of the sheaf, which allows to better understand and predict the
characteristics of spaces. This interpretation is profitable in the scale analysis of increasing
spaces and localization in decreasing ones.

5.2 Perspectives

The perspectives that our work open are numerous, since the methods issued from alge-
braic topology are just beginning to appear. We can quickly turning them into short-term
and long-term perspectives.

In the first place, it would be interesting to continue to work on the case of glued objects to
try to detect the presence of these two objects using sheaf theory and variations of vertices
coordinates, radii of opens and restrictions. Moreover, we can associate our approach on
the scale analysis using sheaves theory to separate homology classes that are inside each
other in 2D and 3D case. Sheaves cohomology will allow to detect the precise place of
cycles inside the opens.

Moreover, the persistent homology that uses only the intensity values have faced problems
in detecting glued objects. We intend to use the multidimensional persistence to solve
this problem. Even if there isn’t any complete topological invariant for multidimensional
persistence [CZ09], the authors in [ML15] succeeded to create a tool for visualization of
their lifespans. This tool that depends highly on the combinatorial construction must
be adapted to the given problem. We have however attempted this approach without
real immediate success but a more constructed approach will surely be beneficial. Also
there still a big work on ways of computing the homology classes in multidimensional
persistence.

In another aspect, it would be important to improve the cycles that segment the objects.
The optimization of these cycles may be done by applying another theory from algebraic
topology which is discrete Morse theory [Mil63, Koz07]. Following the flow that helped
in construction of Morse complex using the discrete vector fields, we can associate critical
points to get a contour that may reduce radically the contour that segment the objects.

Not to forget the use of zigzag persistence [CASMO09] that depends on level sets complexes
and may studies several problems that may be not covered by usual persistence.

Algebraic topology is not restricted to homology. In the longer term, it would be inter-
esting to develop other parts. For example cohomology, while it’s a dual of homology,
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studies a space by studying the local coherence of defined functions on the latter. The
inconsistencies are therefore very informative. For example, having the information on
higher dimensional aspects it’s useful to use cohomology to translate information to lower

dimensions [dSMVJ11b].
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A.1 Chapitre 1: Introduction

A.1.1 Contexte et problématique

Au cours de la derniere décennie, des efforts concertés ont été déployés pour appliquer
la topologie algébrique, qui est un champ mathématique abstrait, a des domaines plus
concrets. Ces efforts ont motivé les mathématiciens et les scientifiques a appliquer et a
développer des concepts s’appuyant sur cette branche des mathématiques. Les applica-
tions aux problemes d’ingénierie ont permis de résoudre de nombreux défis et ont aidé a
élargir les liens entre les mathématiques et I'ingénierie. La topologie est souvent considérée
comme une théorie difficile et abstraite, mais elle commence a avoir un nombre important
d’applications réelles dans un grand nombre de domaines scientifiques, en particulier dans
I’analyse des données. Par conséquent, le choix de cette théorie comme un outil pour
le traitement des données, notamment des images, est tout a fait justifié. Cependant,
il est nécessaire que l'espace topologique des données puisse étre représenté de maniere
combinatoire pour étre utilisable par des algorithmes et programmé sur un ordinateur.

L’un des points forts de la topologie algébrique est sa capacité a construire des espaces
autour des points qui représentent les données, ce qui la rend tres utile pour le traitement
des images. En effet, les outils topologiques algébriques fournissent des caractéristiques
sur les espaces, qui sont insensibles aux déformations continues. Appliquée aux images,
I’analyse topologique pourrait révéler des caractéristiques importantes : combien de com-
posants connectés sont présents, lesquels ont des trous et combien, comment sont-ils liés
les uns aux autres, comment transformer information cohérente locale a une information
globale, etc.

Certaines taches de traitement d’images comme la segmentation, le suivi d’objet et la
fusion de données sont complexes et limitées par de nombreuses considérations. Choisir
la taille d’un objet ou spécifier le niveau pour un seuil peut changer facilement le résultat
d’une méthode de traitement d’images. Les variations de ’arriere-plan peuvent conduire
a une extraction incomplete des objets saillants. La plupart des méthodes sont incapables
de segmenter des objets superposés. En revanche, les approches et les techniques de
topologie algébrique ne sont pas affectées par des parametres a priori, par la variabilité
de l'arriere-plan ou par la superposition d’objets, comme c’est généralement le cas des
algorithmes existants de traitement d’images.
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A.1.2 Contributions de la theése

Nous proposons dans ce travail des méthodes basées sur la topologie algébrique pour
résoudre certains des principaux défis dans le traitement d’images. La topologie algébrique
ne va pas remplacer I'utilisation d’autres techniques éprouvées de traitement d’images,
mais elle va compléter ou va étre associée a ces dernieres si nécessaire.

Nos travaux se concentrent sur 1'utilisation des concepts de topologie algébrique pour
des taches de traitement d’images. Nous proposons des méthodologies et des approches
utilisant d’une part I’homologie persistante, qui est I'un des outils les plus puissants en
topologie algébrique, et d’autre part la théorie des faisceaux, qui est une notion complexe
mais prometteuse pour traiter certaines applications.

Une approche classique pour segmenter les images consiste a calculer des caractéristiques a
I'intérieur de fenétres glissantes puis a les classer pour obtenir une segmentation de I'image.
Nous allons voir que la topologie algébrique peut apporter d’autres caractéristiques qui
sont plus pertinentes et qui permettent d’améliorer la qualité de la segmentation d’images
naturelles.

D’autre part, les algorithmes a seuillage ou les algorithmes adaptatifs utilisant des con-
cepts d’arbres sont souvent utilisés pour la segmentation d’objets. Ces méthodes n’arrivent
pas, et cela dans de nombreux cas, a identifier uniquement les objets intéressants. Le
bruit est souvent détecté et le résultat dépend du niveau de l'arriere-plan qui fausse la
détection des objets superposés. En outre, elles dépendent fortement des parametres a
priori comme le volume ou la taille d’objets a identifier. Puisque la topologie algébrique
étudie la présence de trous et des vides en utilisant des invariants puissants, qui sont les
groupes d’homologie, nous allons voir qu’elle est capable de construire des cycles (ou des
classes d’homologie) qui ne sont pas sensibles aux variations de l'arriére-plan et qui ne
dépendent pas des parametres a priori. Ces méthodes permettent de segmenter les objets
intéressants, y compris des objets superposés.

La détection et le suivi d’objets sont généralement considérés comme I'un des principaux
défis dans le traitement et I'analyse d’images. La plupart des techniques existantes sont
des méthodes spécifiques basées principalement sur des algorithmes complexes controlés
par de nombreux parametres et métriques. Puisque les complexes topologiques peuvent
étre construits directement sur les pixels d'une image, aussi bien 2D que 3D, ainsi que
sur des séquences d’images 2D+t, la topologie algébrique est une des solutions aux défis
actuels en traitement d’images. La version relative de ’homologie permet de détecter le
mouvement des objets sans 1'utilisation de parametres a priori.

Par ailleurs, un concept totalement nouveau dans ’association de la topologie algébrique
au traitement d’images est 1'utilisation de la théorie des faisceaux. L’utilisation et les
applications de cette théorie ne sont qu’a leur début et le domaine du traitement d’images
pourra en tirer profit. Il est donc utile d’initier la mise en ceuvre de ces notions dans le
contexte du traitement d’images notamment a travers l’analyse cohomologique.
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A.1.3 Structure de ce document

Ce mémoire est organisé de la fagon suivante.

Dans le chapitre suivant “Topologie, topologie algébrique et applications”, nous faisons
une breve description de certaines techniques de traitement d’images et de leurs lim-
ites. Ensuite, nous détaillons des notions basiques de topologie et surtout la topologie
algébrique en expliquant brievement comment on peut les utiliser en traitement d’images.
Le calcul des groupes d’homologie est ensuite expliqué puis on termine par les taches de
traitement d’images auxquelles nous sommes intéressés par ce travail.

Le chapitre “Homologie persistante et applications aux images” présente les principales
contributions. Plusieurs méthodologies de constructions de la topologie algébrique sur des
images sont proposées. Nous commencons par la présentation de I’homologie persistante
et de son calcul, puis nous expliquons comment transformer des images en représenta-
tions combinatoires. Ensuite, nous proposons de nouvelles méthodes de segmentation
d’images et de segmentation d’objets multidimensionnels. Nous montrons que les com-
plexes topologiques peuvent étre construits directement sur les pixels d’une image, aussi
bien 2D que 3D, mais également sur des superpixels, ce qui permet de réduire le temps de
calcul et les ressources nécessaires. Nous terminons ce chapitre en présentant une nouvelle
méthode qui permet de suivre des objets en mouvement et qui utilise I'homologie relative.

Nous introduisons des concepts issus de la théorie des faisceaux dans le chapitre “La
théorie des faisceaux et ses applications d’images”. D’abord, nous expliquons le concept
de la théorie des faisceaux, puis nous expliquons une méthodologie de fusion de données
a I'aide de faisceaux. Nous montrons comment nous pouvons associer ces concepts a des
taches de traitement d’images. Nous finissons ce chapitre en montrant comment on peut
utiliser ces notions dans le traitement et 'analyse d’images : la construction des sections
sur les images couleur, I'analyse d’échelle et la localisation.

Le dernier chapitre représente la conclusion de ce travail et présente un plusieurs perspec-
tives a court et a long terme. Celles-ci sont liées a la continuité de ce travail, mais concer-
nent également l'utilisation d’autres aspects de la topologie algébrique, en particulier la
théorie de Morse. Nous pouvons en effet tirer profit de la persistance multidimensionnelle
pour intégrer de nombreux facteurs dans la construction de la filtration.

A.2 Chapitre 2: Topologie, topologie algébrique et
applications

Nos travaux s’intéressent principalement au développement d’outils issus de topologie
algébrique pour réaliser des taches de traitement d’images. C’est pourquoi ce chapitre
commence par une étude rapide de I’état de I'art des techniques de traitement d’images.
Nous présentons ensuite les outils employés par la topologie et la topologie algébrique
dans les problemes scientifiques. Des explications détaillées sur la théorie de I’homologie



A.2. CHAPITRE 2: TOPOLOGIE, TOPOLOGIE ALGEBRIQUE ET APPLICATIONS155

et le calcul des groupes d’homologie sont présentées en donnant quelques pistes en ce qui
concerne leurs applications.

A.2.1 Le traitement d’images

Le domaine du traitement d’images comporte beaucoup de taches. La segmentation
d’images est une tache difficile qui a été considérée comme une étape clé dans le traite-
ment de I'image. Elle reste un probléme de longue date dans le domaine avec de nombreux
travaux. Le lecteur pourra consulter [MC15, ZMC16| pour des analyses approfondies sur
ce sujet. L’objectif de la segmentation d’images est de partitionner une image en régions
homogenes non superposées de maniere a localiser des objets d’intérét dans I'image. De
nombreuses raisons font que la segmentation d’images est une tache difficile. La complex-
ité des algorithmes utilisés dépend de nombreux parametres qui controlent les algorithmes
de segmentation et qui causent le manque de solutions génériques “ sur étagere”. Les tech-
niques et les solutions proposées dépendent énormément de ’application visée.

Une grande variété de techniques et de méthodes de segmentation a été discutée et dévelop-
pée dans la littérature. Les approches classiques sont principalement basées sur des méth-
odes mathématiques ou statistiques. Selon une autre classification, nous trouvons des
approches de classification (le clustering) et des techniques de soft computing.

La détection et le suivi d’objets sont considérés comme une tache spécifique du traitement
d’images. La plupart des techniques existantes ne sont pas génériques et les méthodes
existantes sont basées principalement sur des algorithmes complexes controlés par de
nombreux parametres et métriques. La “taille unique” universellement appropriée aux
méthodes de suivi n’existe pas selon 'étude faite dans [CSAC14].

Nous notons que ces méthodes sont dépendantes des parametres a priori, de la variabil-
ité de I'arriere-plan d’une image, de la superposition des objets, etc. Par ailleurs, ces
méthodes sont en général complexes et relativement imprécises. Prenons I'exemple de la
méthode OTSU qui est une méthode de seuillage global robuste. Nous appliquons cette
méthode sur une image synthétique. Nous remarquons que cette méthode n’est pas en
mesure de segmenter certains objets dans 1'image, comme celui en bas a gauche ou les
petits objets qui sont superposés sur 'objet le plus grand comme en bas a droite. De
plus, cette méthode dépend du niveau de l'arriere-plan, les objets n’étant pas extraits
correctement comme on le voit en bas a gauche.

Pour contourner ces problemes, nous proposons dans cette these des méthodes basées les
concepts de topologie algébrique. Cette théorie est indépendante des parametres tels que
le volume ou les valeurs d’intensité, et ne demande pas d’étapes de prétraitement. Cette
théorie permet également de construire des outils invariants a des déformations continues.
Tous ces criteres rendent les méthodes utilisant les concepts de topologie algébrique aptes
a réaliser des taches plus génériques que les méthodes existantes.
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Figure A.1: Une image synthétique et sa segmentation a l’aide de la méthode OTSU

A.2.2 Panorama des méthodes utilisant la topologie algébrique

Plusieurs méthodes topologiques ont été proposées dans la littérature. Certaines méthodes
utilisées dans I’étude des espaces topologiques sont données par la topologie algébrique
[Mas91, Hat01]. La topologie algébrique, en tant que topologie, étudie les propriétés
globales des espaces, mais utilise des objets algébriques tels que des groupes et des anneaux
pour répondre a des questions topologiques. Alors que les méthodes topologiques générales
sont concentrées sur la connectivité et les connexions entre les espaces, les méthodes de
topologie algébrique sont plus concretes. La topologie algébrique essaie de transformer
un probléme topologique en un probleme algébrique plus facile a résoudre et a calculer.

Chaque espace peut étre associé a un groupe appelé un groupe d’homologie. Nous pouvons
distinguer par exemple le tore et la bouteille de Klein les uns des autres parce qu’ils ont
différents groupes d’homologie. La structure combinatoire des espaces est souvent utilisée
par la topologie algébrique pour calculer les différents groupes associés a ces espaces.

La topologie algébrique récente a émergé et contribué dans de nombreuses applications
du monde réel [Ghrl4]. Concernant les applications des méthodes et des outils issus
de la topologie algébrique, celles-ci consistent a associer quelques structures algébriques
discretes comme les classes d’homologie ou des faisceaux a des espaces topologiques tels
que les complexes cellulaires. Ces complexes peuvent étre construits sur un ensemble de
pixels ou sur un nuage de points afin de comprendre les problémes de connectivité dans
n’importe quelle dimension telle que le nombre de trous, de vides, de tunnels, etc.

A.2.3 Représentation combinatoire

L’homologie est un moyen de mesurer la connectivité d’un espace pour différentes dimen-
sions notamment pour la découverte et I'analyse des “trous”. Cela implique d’imposer
une structure algébrique sur un espace topologique construit.

Il existe de nombreux types de complexes cellulaires : les complexes cubiques, dans le
cas d’utilisation de pixels d'une image, les complexes simpliciaux (qui représentent des
triangulations de 'espace) dans le cas des superpixels, etc. Nous n’allons pas fournir des



A.2. CHAPITRE 2: TOPOLOGIE, TOPOLOGIE ALGEBRIQUE ET APPLICATIONS157

Figure A.2: Exemple d'un complexe cellulaire.

explications détaillées sur les types de complexes cellulaires et leurs constructions préférant
rediriger le lecteur vers [Hat01]. Dans la suite de ce mémoire, les complexes considérés
sont soit cubiques soit simpliciaux. Ils sont alors composés de : points qui peuvent étre vus
comme des cellules de dimension zéro, d’arréts ou de cotés qui peuvent étre vus comme des
cellules de dimension un, ainsi que des carrées ou des triangles qui peuvent étre vus comme
des cellules de dimension deux. La structure topologique d’un espace combinatoire X est
algébriquement encodée par des espaces vectoriels et par des applications linéaires qui sont
associés sous la forme d'un complexe. En effet, nous pouvons définir I'espace vectoriel
Cyp(X) des p-chaines comme étant celui des séries formelles des cellules de dimension p,
avec des coefficients dans Z,, et munis d’une opération d’addition naturelle. Les relations
entre les chaines de différentes dimensions sont assurées par les opérateurs de bords.
L’opérateur de bord 0, : C,(X) — C,_1(X) entre Cp(X) et C,_1(X) est une application
linéaire qui associe a une k-chaine la somme des chaines aux bords de chaque cellule de
dimension inférieure. Par exemple, a un triangle est associée la somme de ses trois arétes.
Par construction, les opérateurs de bords satisfont 9,0,,1 = 0. Le complexe de chaine est
la séquence C,(X) avec les applications Oj:

ANy RNy RN = NNy NI NN () (A1)

A.2.4 Groupes d’homologie

Pour d’autres dimensions supérieures, I’homologie est un moyen naturel pour découvrir
des trous p-dimensionnels dans un complexe cellulaire. L’idée est de trouver des chaines
qui entourent les trous sans étre capables d’étre réduites continuellement a zéro. Notant,
pour exemplifier, B, R et G comme trois chaines de dimensions 1 sur la figure A.2 qui
sont illustrées par des lignes bleues, rouges et vertes, respectivement. Tout d’abord, une
chaine qui entoure un sous-espace ou un trou est nécessairement sans bords. Les p-chaines
sans bords sont intéressantes et forment un sous-groupe de C,, que nous appelons le groupe
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Figure A.3: Les groupes des cycles et des bords.

de p-cycles Z,. L’ensemble Z, de tous les p-cycles est défini comme le sous-espace de C,
de chaines sans bords :
Z,=A{x € C, | 0yx =0} =kerd,. (A.2)

Parmi ces cycles, nous considérons ceux qui sont les bords d’autres chaines de dimensions
supérieures tout en restant a la surface. Cela signifie intuitivement qu’ils peuvent étre
réduits en un point. Ils forment un sous-groupe appelé le groupe p-bords B,,.

B,={re€C,|3yeCpi1,0p1y =2} =Im0d,y. (A.3)

Par exemple, la chaine en vert G = (cd) + (dn) + (nm) + (mc) affichée sur la figure A.2,
est un 1 -cycle parce que G = 0. Les chaines B et R dans la figure A.2 sont également
des 1-cycles. Ainsi, elles appartiennent toutes a Z;. Le cycle G est une limite de la chalne
2 (cdnm), la surface sombre dans la figure A.2, et il appartient a Bj.

Puisque le bord d'un bord est nul, B, est un sous-groupe de Z,, donc un groupe quotient
peut étre créé. La figure A.3 montre schématiquement la relation entre les différents
espaces vectoriels concernés par ’homologie. Le but de 'homologie est de distinguer les
cycles qui sont aussi des bords parce qu’ils ne contiennent pas des trous et ne peuvent
donc pas étre réduits a zéro.

Les groupes d’homologie H,, conservent le nombre de cycles essentiels qui sont intéressants
en distribuant tous les cycles en classes équivalentes. Ainsi, un élément de H, regroupe
ces cycles équivalents qui peuvent étre déformés continuellement 1'un sur l'autre et une
classe de H), sera représentée par un seul cycle.

Algébriquement, deux cycles 21, 2z € Z, sont dites homologues ou équivalentes, écrites
21 ~ Zy, s'ils different par un bord, c’est-a-dire z; — 2o € B,. Nous disons que z; et 2,
appartiennent a la méme classe [z]. Nous laissons [z] dénoter la classe d’homologie de
z € Z, et définissons I'homologie de dimension p d'un espace par le quotient de ’espace
vectoriel Z, par le sous-espace B, ce qui est un ensemble des classes d’homologie:

H, = Z,/B, = cycles/bords = {[z],z € Z,}. (A.4)
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Tous les calculs impliquant des groupes d’homologie peuvent étre facilement réalisés en
utilisant des manipulations matricielles standard a travers une représentation combina-
toire du complexe de chaines.

A.2.5 Homologie relative

Il est parfois utile de ne pas prendre en compte un sous-complexe A de 'espace X pour
calculer les groupes d’homologie. Nous parlons dune autre version de I’homologie impli-
quant la réduction d'un sous-complexe A qui aboutit a 'homologie relative H,(X, A).

Il est nécessaire alors de réduire completement le sous-espace A pour qu’il “disparaisse”
lors du calcul. La relation de sous-partie A C X est représentée par une relation de
sous-complexe de C,(A), qui est le complexe représentant ’espace A a la dimension p, et
le complexe C,(X) qui est la linéarisation de X.

Pour cela, nous notons C,(X,A) = C,(X)/C,(A) comme le complexe quotient et 0,
comme 'opérateur de bord, en prenant en compte que A est toujours un sous-complexe
de X. Réduire Cy(A) en C,(X) revient a considérer que les chaines de C,(A) sont nulles.
Les espaces vectoriels quotients C,(X)/C,(A) jouent ce role. Les éléments de ces espaces
vectoriels sont des chaines de C,(X) ot les cellules de C},(A) ne sont pas prises en compte.
Ainsi, certains cycles peuvent apparaitre dans C,(X)/C,(A) alors qu’ils n’existaient pas
dans C,(X) et tous les cycles completement inclus dans C,(A) disparaissent. Par con-
séquent, prendre des chaines sur X modulo chaines sur A réduit 'exigence d’une chaine
pour étre appelé un cycle, a chaque fois que son bord est contenu dans A.

Cela inclut également le cas ou le bord est vide, ce qui peut étre détecté aussi par
I’homologie absolue. De la méme manieére que le p-bords, p-bords relatifs sont définis
comme B,(X,A) = Imd,,;. De méme, les p-cycles relatifs sont Z,(X, A) = kerd, et
correspondent a p-chaines ¢, qui satisfait d,c, € C,—1(A) ou J,c, = 0.

Les groupes d’homologies relatives H,(X, A) sont calculés comme les groupes d’homologie
qui utilisent ces nouveaux espaces vectoriels C,(X)/C,(A. Comme dans le cas absolu de
I’homologie, nous avons B,(X,A) C Z,(X,A) et 'homologie relative de dimension p est
définie par H,(X,A) = Z,(X, A)/B,(X, A).

A.2.6 Conclusion

Dans ce chapitre, nous avons fait un tour d’horizon des techniques de traitement d’images
qui existent dans la littérature. Ensuite nous nous sommes intéressés a la topologie
algébrique. Avant de développer les concepts d’homologie, nous avons expliqué com-
ment représenter de maniere combinatoire des ensembles de points. Puis, nous avons ex-
pliqué cette théorie dans sa version absolue et relative et la fagcon de calculer les groupes
d’homologie.
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Nous avons vu que I'homologie est un outil efficace pour extraire des caractéristiques
topologiques des espaces statiques. Mais que faire si ces caractéristiques ne sont pas
d’une importance majeure pour déduire les inférences dans les images ? Et si nous voulions
augmenter ’espace topologique ot I’homologie, comment fait-on ? C’est pourquoi nous
présentons dans le chapitre suivant I’homologie persistante qui est un moyen de détecter
la persistance des classes d’homologie face aux variations d’espaces topologiques. Nous
allons voir comment cet outil est adapté pour effectuer des taches de traitement d’images.

A.3 Chapitre 3: L’homologie persistante et ses ap-
plications

Dans ce chapitre, nous étendons la théorie de I’homologie a une phase appropriée pour la
compréhension et I'inférence des données dans I'analyse d’images. Cette phase consiste a
calculer les variations d’homologie au cours des modifications d’espaces topologiques par
une procédure appelée filtration. Nous parlons d’homologie persistante ou 'objectif est
de détecter les classes d’homologie persistantes pendant les variations dans les espaces
topologiques.

L’importance de cette procédure repose sur le concept que les caractéristiques topologiques
détectées sur un intervalle d’échelle variable sont plus appropriées pour représenter les car-
actéristiques des données étudiées. Elles sont insensibles au bruit et ne nécessitent pas un
choix particulier de parametres. Les applications de I’homologie persistante dépendent
fortement de la construction des complexes cellulaires. Nous montrons dans ce chapitre
différentes applications de la théorie de I’homologie dans le traitement d’images, notam-
ment en ce qui concerne la segmentation d’images, la détection d’objets et le suivi des
objets.

Grace a la notion de filtration et a la notion de I’homologie, il est possible de suivre
I’évolution des “trous” dans une séquence d’espace a travers I’homologie persistante.

A.3.1 Filtration

Une filtration est simplement une suite finie d’espaces topologiques imbriqués :

XoC...CX;C...CX;C...CX. (A.5)

La construction d’une filtration est souvent réalisée par une fonction numérique f : X —
R. Dans ce cas la droite réelle R est partitionnée en intervalles |t;_1,t;] et les espaces X;
de la filtration sont les ensembles de sous-niveaux, les hypographes, X; = f~! (] — 00, tl])
Ainsi, la condition X; C X, est naturellement vérifiée.

Dans le cas d'un espace X combinatoire comme un complexe simplicial ou cubique, la
fonction f est représentée comme un poids associé a chaque cellule, par exemple a la valeur
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de pixel. Les hypographes X; sont alors ’ensemble des cellules de poids inférieurs a un
seuil t;. Toutefois, il faut que les X; soient aussi des sous-complexes de X pour pouvoir
utiliser les groupes d’homologie. Cette contrainte est vérifiée si les poids des cellules de
dimension k sont supérieurs a ceux de leur bord. Cette condition sera mise en ceuvre
dans la suite en fixant le poids d’une cellule de dimension k& comme étant le maximum
des poids de ses bords. Ce faisant, la fonction f est completement définie sur X a partir
des valeurs associées aux sommets.

A.3.2 Persistance

En suivant I’évolution topologique d’une filtration via I’homologie, on obtient une séquence
de groupes d’homologie qui sont reliés par des applications linéaires induites par les in-
clusions :

Hp(Xo) = ... = Hp( X)) — ... — Hip(X). (A.6)

On peut calculer 'homologie Hy(X;) pour tous les niveaux 7 afin de connaitre les classes
d’homologie. Mais nous perdons alors l'information concernant 1’évolution de chaque
classe particuliere. Or, la mesure de la “durée de vie” des classes d’homologie lors de
la filtration est plus riche. En effet, au cours de la filtration, ’addition d’une cellule de
dimension k peut modifier la topologie selon deux scénarios. Soit il “remplit” un trou de
dimension k — 1 soit il en “crée” un de dimension k. Ainsi, les “trous” apparaissent et
disparaissent pendant la filtration. Des dates d’apparition et de disparition peuvent alors
leur étre associées. Celles-ci sont calculables grice a la suite de groupe d’homologies (A.6)
par des algorithmes dédiés [EH10, Zom10a].

Les classes d’homologie ayant une grande durée de vie indiquent la présence de phénomenes
topologiques intéressants, tandis que celles de courtes durées de vie sont vues comme du
bruit topologique. L’évolution des classes d’homologie peut étre visualisée a I'aide d'un
diagramme de persistance. Une classe d’homologie y est représentée par un point dont
I’abscisse fournit la date d’apparition et I'ordonnée celle de sa disparition. Par con-
séquent, sa distance a la diagonale indique la durée de vie. Les points éloignés de la
diagonale représentent des objets topologiquement significatifs tandis que ceux qui sont
proches sont considérés comme du bruit. Ce mécanisme est renforcé par la stabilité de
diagramme de persistance sous les transformations continues de I'image [CSEH07].

A.3.3 Segmentation d’images utilisant les durées de vie des classes
d’homologie

Pour la segmentation, nous analysons les images avec des fenétres glissantes superposées.
Pour chaque fenétre nous construisons un complexe cubique dont les sommets sont les
pixels, les cotés relient les pixels voisins, tandis que les carrées completent 4 c6tés voisins.
Les poids des sommets pour la filtration sont donnés par le niveau de gris, tandis que les
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cOtés et les carrées portent la valeur maximale de leurs sommets et cotés respectivement.
Dans chaque fenétre on calcule ensuite plusieurs caractéristiques classiques qui sont la
moyenne et la variance des niveaux de gris, auxquelles s’ajoutent des caractéristiques
topologiques comme la moyenne et la variance des durées de vie des trous de dimensions
0 et 1 ainsi que leurs entropies persistantes. Cette derniere est définie dans [MRS15]
pour chaque dimension par — > p; log p;, ou I représente les intervalles des durées de vie,
icl
p; = l;/L, l;= date de disparition - date d’apparition et L = Y [;. Ces 8 caractéristiques
i€l

forment des vecteurs associés a chaque fenétre.

Ensuite, I’ensemble de ces vecteurs caractéristiques est classé en N classes. Pour simplic-
ité, nous avons considéré une classification non supervisée par la méthode k-moyennes,
d’autres méthodes supervisées ou non étant envisageables. Chaque fenétre est alors classée
dans une classe, ce qui permet de réaliser une segmentation de l'image.

La figure A.4 montre le résultat obtenu sur une image biomédicale. Nous avons traité
I'image avec des fenétres carrées glissantes qui se chevauchent. La taille de la fenétre a été
choisie a 50 x 50 pixels et le chevauchement a 10 pixels. Ensuite, les fenétres sont classées
en utilisant I'algorithme k-moyennes a 4 classes. Il faut noter que ces mesures peuvent
varier en fonction de la construction et de la nature de 'application. La segmentation de
la glande montre quatre classes correspondant aux principaux types de zones de tissus.

Nous montrons dans la figure A.4 (b) les résultats de la segmentation de la glande en
utilisant seulement les caractéristiques statistiques tandis que la figure A.4 (¢) montre
le résultat de la segmentation en utilisant les 6 caractéristiques topologiques associées
avec les 2 statistiques. Par exemple, on voit que les patches de la classe représentée
en blanc ne font pas de distinction entre la bordure du tissu et ses cellules en utilisant
les caractéristiques statistiques alors que cette distinction est respectée en fonction des
caractéristiques topologiques associées aux caractéristiques statistiques.

A.3.4 Segmentation d’objets en utilisant les classes d’homologie

Cette sous-section démontre que la méthodologie surlaquelle nous avons basé notre ap-
proche est efficace en construisant des complexes topologiques sur des pixels. Cette
méthodologie a montré son efficacité dans le cas d’images pré-segmentées en superpix-
els. Une combinaison entre la construction topologique méthodologique et 1'image des
superpixels peut étre exécutée avec succes pour atteindre la segmentation visée.

A.3.4.1 Segmentation basée sur un complexe cubique de pixels

Considérant notre méthode, un complexe topologique est d’abord construit directement
sur les pixels de I'image affichée dans la figure A.5, comme expliqué précédemment. En-
suite le schéma de la filtration est construit. Points, cotés et cellules de dimensions 2 sont
ajoutés au complexe quand l'intensité augmente jusqu’a ce que nous obtenons le complexe
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0 400 800 0 40 80
(a) Une image biomédicale. (b) Segmentation de l'image utilisant
des caractéristiques statistiques.

0 40 80
(c) Segmentation de limage util-
isant des caractéristiques statistiques
et topologiques.

Figure A.4: Segmentation d'une image biomédicale.
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Figure A.5: Une image synthétique.

entier. Le calcul de 'homologie persistante sur ce complexe donne le diagramme de per-
sistance des classes d’homologie. Ce diagramme de persistance, montré sur la figure A.6
(a) est le résultat principal de notre méthode, car il indique les naissances et la disparition
de classes d’homologie de premiere dimension. Chaque point porte toutes les informations
nécessaires aux classes d’homologie. L’importance des points et ce qu’ils représentent est
proportionnelle a leur distance de la diagonale. Ainsi, les points proches de la diagonale
ont une petite durée de vie, ce qui signifie qu’ils correspondent au bruit, tandis que ceux
qui sont loin sont intéressants.

Il faut noter qu’ayant la construction du complexe, nous pouvons trouver pour chaque
point dans le diagramme de persistance les coordonnées x-y de la classe correspondante.
Par exemple, la classe d’homologie représentée par un * dans la figure A.6 (a) corre-
spond a la classe qui identifie I'objet représenté en bleu dans la figure A.6 (b), la classe
d’homologie représentée avec * correspond a I'objet en rouge, etc. Les classes d’homologie
dans le diagramme de persistance permettent ensuite de sélectionner les objets intéres-
sants en imposant un seuil parallele a la premiere diagonale. Par exemple, les classes
d’homologie qui représentent des points au-dessus de la parallele (¢1) sont mises en év-
idence dans la figure A.6 (b) par leurs couleurs correspondantes. Imposer une droite
parallele & la diagonale au niveau (t3) permettra alors de mettre en évidence d’autres
classes d’homologie qui sont représentées par tous les points au-dessus de (ty) comme
dans la figure A.6 (c).

A.3.4.2 Segmentation basée sur complexe cellulaire de superpixels

Autre que sa forme de grille de pixels habituelle, une image peut étre simplifiée par
un ensemble de superpixels. En effet, nous pouvons regrouper des pixels voisins s’ils
partagent un méme critére (par exemple de luminance) et ainsi réduire la dimension de
I'espace de départ. Chaque superpixel est représenté par un sommet qui est son centre.
Nous construisons notre complexe topologique sur ces superpixels. Ainsi, nous considérons
deux superpixels comme voisins si un pixel de I'un est adjacent a un pixel de I'autre et cela
en analysant les 8 voisins de chaque pixel. Nous relions les deux sommets des superpixels
par un coté tandis que 3 cotés adjacents forment un triangle. Ensuite, nous attribuons la
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Figure A.6: Résultats de méthode proposée sur 'image synthétique.
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(a) L’image de points.
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(b) Diagramme de persistance de dimension 1. (c) Résultats de la segmentation.

Figure A.7: L’image des points et les résultats de la segmentation.

moyenne des valeurs de pixels contenants dans chaque superpixel .S; pour les sommets et
nous construisons le complexe simplicial. En suivant les étapes de calcul de I’homologie
persistante, nous obtenons les classes d’homologie de dimension 1 qui apparaissent et
disparaissent tout au long de filtration. La mise en évidence des classes qui ont la plus
grande durée de vie permet de détecter des objets dans 'image.

Nous illustrons cette méthode sur une image test de 513 x282 pixels comportant 24 pieces
de taille, texture et niveaux de gris moyen différents comme le montre la figure A.7. On
calcule I’homologie persistante apres la pré-segmentation en 5000 superpixels en utilisant
la technique appelée SLIC décrite dans [ASL*12]. Nous réduisons donc I'espace de départ
de 513x282 = 144666 pixels a 5000 superpixels. La technique SLIC génere des superpixels
d’une manieére plus rapide que les autres méthodes existantes, est plus efficace en termes
de mémoire nécessaire et dépasse les autres en ce qui concerne 'adhérence des bords.
Les points éloignés de la diagonale désignent les 24 pieces de monnaie. Les chaines qui
représentent ces classes sont colorées en rouge, ce qui permet de détecter les pieces dans
la figure A.7. Le résultat obtenu est

Afin de démontrer I'aspect multidimensionnel de notre méthode, nous présentons sur la
figure A.8 une segmentation d’une image biomédicale 3D en niveaux de gris en utilisant
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Figure A.8: Résultats de segmentation pour une image 3D.
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Figure A.9: La détection de “trou de ver” et de la sphere par homologie relative.

la combination de la construction sur des superpixels I'homologie persistante. Cette figure
représente les résultats de la segmentation d’une image biomédicale de dimensions 61 X
249 x 308 acquise a différents instants : z = 0, 15, 30, 40, 50 et 60 respectivement. Les
classes d’homologie de deuxieéme dimension sont des chaines de 2 cellules ou de trian-
gles (5;5;5k). Nous avons mis en évidence sept classes d’homologie les plus persistantes
formées par 2 chaines ou sommes de triangles.

A.3.5 Suivi d’objets en utilisant ’homologie persistante relative

La détection et le suivi d’objets sont généralement considérés comme une des taches
majeures et difficiles dans le domaine du traitement et de I’analyse d’images.

Comme nous travaillons avec des images 2D + t en niveaux de gris, nous devons modéliser
nos constructions sur un concept basé sur 3D puisque nous avons besoin des voisins
temporels de chaque voxel. Nous allons travailler sur un complexe cubique que nous
appelons abusivement le complexe vozel.

Les données de la séquence d’images sont considérées comme une fonction d’un domaine
D C N? dans l'espace des nombres réels Rie. f: D — Rou D = {(z,y,1)|0 <z <
largeur,0 < y < hauteur,0 < z < t;}, ou t; représente le nombre de cadres 2D dans la
séquence.

Pour le cas de 2D-+t, le complexe de chaines est:

0—Cs 302002 0y 20, (A7)

Prenant des chailnes sur X modulo chaines sur A réduit I'exigence d’une chaine a étre
appelée un cycle, a chaque fois que son bord est contenu dans A. Ceci est illustré dans la
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Figure A.10: Résultats de I’homologie relative persistante sur une 2D+t image réelle
biomédicale.

figure A.9, ou A représente le sous-espace contenant toutes les cellules qui appartiennent
at = 0ett;, Comme nous le voyons, la frontiere du cylindre rouge qui appartien-
nent a A s’effondre a un point depuis que nous travaillons sur les groupes de quotients
Cp(X)/Cp(A). Ce concept permet de détecter des objets dans tous les cadres de I'image
comme le “trou de ver” illustré par le cylindre rouge. Cela inclut également le cas ou le
bord est vide, comme 1’objet en vert, qui peut étre détecté aussi par I’homologie absolue.

La mise en évidence de la base des éléments de Hy permet de détecter des objets intéres-
sants dans la séquence d’images. En suivant I’évolution topologique de cette filtration en
utilisant ’homologie relative, nous obtenons une séquence de groupes d’homologie reliés
par des cartes linéaires induites par inclusions pour toute dimension p:

H,(Ky,A) = Hy(K1,A) = ... —

Hy(K;, A) = ... — Hy(K, A). (A.8)

Comme application réelle, nous considérons une image biomédicale prise par une tech-
nique dite de suivi temporel utilisant le systeme d’imagerie quantitative de phase SID4Bio
décrite dans [BMWO09]. L’objectif ici est de détecter les vésicules qui se déplacent de pre-
mier au dernier cadre.

En utilisant la méthode de détection d’objet d’homologie relative persistante, nous sommes
capables d’identifier une vésicule en mouvement (en haut) et le petit train de vésicules
(en bas) qui augmente en taille et se déplace du premier cadre de la séquence au dernier,
comme indiqué sur A.10.
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A.3.6 Conclusion

Dans ce chapitre, nous avons commencé par expliquer le concept de ’homologie persis-
tante a partir de la transformation d’un ensemble des points dans les complexes cellulaire
jusqu’au calcul de classes d’homologie persistante.

Ensuite, nous avons appliqué I’homologie persistante sur les images en niveaux de gris en
introduisant une nouvelle méthode de segmentation des images qui utilise les durées de
vie des classes d’homologie. Puis, nous avons utilisés les notions de classes d’homologie
pour segmenter des objets saillants dans des images 2D et 3D. Pour cela, nous avons
réalisé la construction topologique sur les pixels et les superpixels, le dernier cas perme-
ttant de simplifier 'espace d’origine et par conséquent de réduire le temps de calcul et
les ressources nécessaires. Contrairement aux méthodes de segmentation existantes qui
nécessitent des parametres a priori, comme la taille ou 'intensité des objets, nos méth-
odes n’ont pas besoin de parametres a priori. Les classes de homologies sont calculées
et les cycles intéressants sont sélectionnés a posteriori, sans refaire le calcul, en imposant
un seuil. De plus, alors que les méthodes existantes sont appliquées sur des images de
dimension spécifique, 'homologie persistante peut étre utilisée pour segmenter des images
multidimensionnelles.

En outre, une version augmentée d’homologie dans sa forme absolue, qui est I’homologie
relative, a été utilisée dans nos applications. L’homologie relative peut détecter les trajets
de cellules en mouvement dans les séquences d’images et cela du premier au dernier cadre.
Cette méthode ne nécessite non plus des parametres a priori et est générique dans sa
construction. Nous avons montré que nos méthodes permettent de résoudre de nombreux
problémes bien connus dans le traitement d’images liés a la variabilité de 'arriere-plan, a
la superposition des objets, a l'efficacité multidimensionnelle, aux parametres a priori, etc.
Dans le chapitre suivant, nous verrons quelques techniques qui permettent d’en déduire
des inférences a partir d’'images en utilisant la théorie des faisceaux, que ce soit par analyse
d’échelle ou par localisation.

A.4 Chapitre 4: Théorie des faisceaux et applications
sur les images

Dans le chapitre 2, nous nous sommes concentrés sur les notions de topologie et topologie
algébrique et leurs applications et nous avons passé par les complexes cellulaires et le calcul
des groupes d’homologie. Dans le chapitre 3, nous avons détaillé les notions d’homologie
qui comprennent le concept de persistance et nous avons développé différentes méthodolo-
gies utilisant cette notion de topologie algébrique. Nous avons montré que la topologie
algébrique peut étre utilisée pour des taches de traitement d’images comme la segmenta-
tion d’images, la segmentation des objets ou le suivi des objets. Dans ce chapitre, nous
présentons une autre théorie issue de la topologie algébrique qui a été utilisée au cours
des cinq dernieres années dans des applications d’ingénierie. Celle-ci permet la fusion des
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données et la transmission de I'information locale aux aspects globaux. Plus précisément,
il s’agit de la théorie des faisceaux fondée par J. Leray [Mil00] qui est un champ abstrait
de la théorie de la topologie algébrique qui concerne principalement la topologie dans ses
aspects fondamentaux [Ser55, Swa64] ou sous ses formes plus modernes [Bre97] a cause
de ses relations avec ’étude des espaces topologiques et des ensembles ouverts. La théorie
des faisceaux est une notion de plus en plus utilisée dans le monde de ’analyse de données
et en ingénierie.

A.4.1 Introduction a la théorie des faisceaux

Malgré le fait qu’il est considéré comme un domaine abstrait, un faisceau peut étre sim-
plement considéré comme une technique qui associe plusieurs types de données pouvant
étre catégorisées en ensembles a chaque partie d’'un espace topologique et d’inspecter
la cohérence de ces données entre les voisins dans cet espace. Fondamentalement, les
faisceaux dans leurs versions appliquées représentent, selon un de ses initiateurs Michael
Robinson [Rob17b], la bonne fagon de construire une représentation qui stocke les données
locales et récapitule un modele topologique par des résumés cohomologiques. Les faisceaux
couvrent le fait que la réciprocité de l'information sur deux régions qui se chevauchent
entraine la validité de I'information sur I'union de ces deux régions, et cela lui donne la
capacité a globaliser les données étudiées.

En outre, la théorie des faisceaux assure le calcul des méthodes qui suivent la structure
générale et commence & émerger dans les applications [GH11, JHR14, Rob16]. De plus,
le progres combinatoire [She85, Curl3] a rendu possible la manipulation des structures
de données de point de vue des faisceaux.

Nous pensons donc que la théorie des faisceaux peut intégrer des informations d’une
perspective locale dans les images a une version globale exemptée des informations inutiles.
Pour cela, nous passons par un processus de codage des données existantes en faisceaux
appelés Sheafification afin d’obtenir des éléments des faisceaux qui sont les sections et
la cohomologie des faisceaux.

Les étapes proposées de 'utilisation de la théorie des faisceaux et de ses invariants sont :

1. Conception de l'espace topologique de base et d’interactions multivoies entre les
sources de données.

2. Sheafifier : construire le modele de relations entre les sources de données.

3. Catégoriser : placer les flux de données dans les espaces vectoriels pour aider au
calcul et a I'analyse.

4. Calcul de cohomologie : globaliser les données pour trouver des invariants robustes.
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Figure A.11: Affectation des fibres au complexe cellulaire.
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Figure A.12: Restrictions affectées pour chaque inclusion de cellule.

A.4.2 Faisceaux cellulaires

Par [She85], un faisceau S d’espaces vectoriels ou simplement sur un complexe cellulaire
X qui est considéré comme 'espace de base, correspond a 'affectation de :

1. Un espace vectoriel S(o) pour chaque cellule de X et appelé fibre, comme montré

dans la figure A.11.

2. Une application linéaire S(o ~» 7) : S(o) — S(7) qui est appelée restriction le
long de o ~~ 7 a chaque fois que ¢ est un bord d’une cellule de plus grande dimension

7, 0 C 7, comme montré dans la figure A.12 et tels que

3. La restriction de ¢ a lui méme est 'application identique, et si ¢ est un bord de 7
(0~ 7) et 7 est un bord de w (7 ~» w) donc S(7 ~» w) 0o S(o ~ 7) = S0 ~ w).
Une section locale d'un faisceau est un élément s dans &) S(o) qui est la
oest ne cellule

somme directe des fibres dans l'espace base. Cet élément doit satisfaire la relation

S(o ~ 1)(s(0)) = s(7) pour chaque 0 C 7, o S(o ~ 7) est une restriction linéaire
s(o) est un élément de S(o) et s(7) est un élément de S(7). Donc une section locale est
spécifiquement une attribution de valeurs de chacune des fibres qui est cohérente avec les
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Figure A.13: Sections consistantes avec les restrictions.

restrictions, comme montré dans A.13. Une section globale est une section qui est tenue
sur tout 'espace X.

Si nous voulons obtenir des résumés pertinents et exploitables des faisceaux, ces résumés
sont appelés invariants de faisceaux et devraient étre traitables par calcul. C’est le cas de
la cohomologie de faisceaux comme nous le verrons ci-dessous.

Supposons que S est un faisceau des groupes abéliens sur un complexe cellulaire X. Le
groupe cochaine de dimension p, C?(X,S) de S est la somme directe des fibres sur les
p-cellules de X. Ils sont représentés par :

CP(X,S) = P S(o) (A.9)

oeXP

De méme pour les chaines, les relations entre cochaines sont données par les fonctions de
cobord. Les fonctions de cobord fonctionnent comme des dérivées discretes et calculent

les différences entre les fonctions sur les cellules de dimensions plus élevées. La fonction
de cobord de dimension p est 'homorphosime dP : C?(X,S) — CPT1(X,S) donnée par:

(@ f)(r) = >_ [o:7]S(o ~ 7)f(0) (A.10)

oeXP

Les notions citées ci-dessus donnent naissance a la cohomologie des faisceaux cellulaires
qui est définie par:

H?(X,S) =kerd”/Imd’~". (A.11)

D’ou le groupe de cohomologie de faisceaux de dimension p représente les cochaines qui
existent dans la dimension p, mais n’étaient pas déja présents dans p — 1. De plus, nous
pouvons voir des cycles comme des cochaines compatibles qui respectent les conditions
des sections.
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Figure A.14: Un poset et son dual.
Comme interprétations de la cohomologie des faisceaux, nous avons:

e L’espace des sections globales d’'un faisceau S sur un complexe cellulaire X est
isomorphe & H°(X;S) ~ ker d°.

o Le HY(X;S) peut représenter les nouvelles sections qui ne sont pas présentes en
tant que sections globales lorsque vous utilisez uniquement des arétes. Certaines
références appellent cela des boucles de données ou des lacunes de désinformation.
Donc c¢’est un pouvoir invariant, car il décrit ce qui se passe quand nous n’avons pas
I’histoire complete.

A.4.3 Faisceaux sur les posets

Autres que les constructions sur les espaces cellulaires, comme des complexes simpliciaux
ou autres, les faisceaux peuvent étre construits sur des ordres partiels [Rob17a].

La définition du faisceau sur les posets provient du diagramme d’un poset, montré dans A.14
(a), ou les sommets représentent les éléments et les fleches pointent des éléments les plus
petits aux plus grands. Nous remplacerons chaque sommet par un ensemble ou un espace
et chaque fleche par une fonction.

Faisceaux d’ensembles: Un faisceau . d’ensembles sur le poset E avec la topologie
d’Alexandroff comprend les exigences suivantes:

1. Affectation d’un ensemble . (x) pour chaque z € E appelé fibre sur x.
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2. Affectation d’une fonction . (z < vy) : S (z) — .#(y) pour chaque paire x <y € F,
cette fonction est appelée une restriction,

3. L(x<z2)=S(y <z)oS(x <y), pour chaque triplet x <y <z € FE .

Si un systéme spécifique est codé en tant que faisceau, son analyse peut étre faite en
utilisant des concepts cohomologiques. Les faisceaux construits sur des posets avec des
fibres représentées par des espaces vectoriels et dont les restrictions sont linéaires ont
des invariants topologiques qui peuvent étre calculés. Si le faisceau construit n’est pas
linéaire, alors il est nécessaire d’utiliser la catégorification pour transformer les données
en aspects linéaires afin d’étre manipulées dans des matrices.

Espace des cochaines des posets: Si .% est un faisceau d’espaces vectoriels et ayant
des fonctions de restriction linéaire sur un poset E alors 'espace de p-cochaine C?(.) de
7 est le produit direct des fibres a la fin des chaines de longueur p:

La fonction des p-cobords: dP : CP(E,.7) — CPH(E,.7) est décrit dans la formule:

(dPs)(xog < ... < Tpp1) = f:s(xo <TG < mp ) H (DI S (2, < ) ({0 < L < 1)),
- (A.12)

1

De plus, la cohomologie du faisceau . sur les posets est définie de la méme maniere que
les faisceaux cellulaires:

HP(E,) =kerd’/Imd"'. (A.13)

D’une maniere similaire a l'interprétation de cohomologie des faisceaux cellulaires, la
cohomologie des faisceaux des posets [Robl7b| exprime qu'un élément non trivial de
HY(F;.#) décrit des observations sur les intersections de p dimension des domaines sources
qui sont compatibles avec d’autres restrictions aux intersections de dimension p+ 1, c¢’est-
a-dire les noyaux de dP, mais ne proviennent pas d’observations a partir des intersections
(p — 1), c’est-a-dire I'image de dP~'.

A.4.4 Applications sur les images
A.4.4.1 Applications sur les complexes de Cech

Nous présentons ici une application de notre méthode sur une image de taille 100 x 100
pixels montrée dans A.15.

Pour construire un complexe de Cech sur cette image, il faut choisir quelques points
dans I'image. Nous avons basé ce choix sur le concept des points clés dans 'image en
traitement. Les points clés représentent des emplacements intéressants dans I'image. Ils
sont invariants par rapport aux changements d’images tels que la rotation, mise a 1’échelle,
la traduction, etc. Une technique pour trouver ces points clés saillants est la méthode
SIFT (Scale Invariant Feature Transform) [Low04].
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(a) L’image des objets collés avec les  (b) L’image avec les boules ouvertes
points clés. centrées sur les points clés.

Figure A.15: Les points clés avec les boules ouvertes.

Maintenant, nous devons construire le complexe de Cech. Il faut noter que les faisceaux
traduisent I'information commune entre deux espaces a I'union de ces deux espaces. Nous
avons donc pensé a construire deux ouverts a chaque point clé. Le premier est une
boule de rayon 6 et le second est de rayon 17 comme le montre la figure A.15 (b). Les
boules en bleu seront notées comme U, = B(z,6) = {y|d(z,y) < 6}, et ceux en vert
V, = B(z,17) = {y|d(z,y) < 6} ot z,y € R% Bien sfir, le choix des ouvertures et de ses
rayons peut changer en fonction sur I'application souhaitée. Le but ici est de présenter
un exemple de la facon de construire des faisceaux cellulaires sur les images.

Une fois que nous avons attribué le complexe, nous pouvons avoir ’espace de base pour le
complexe de Cech construit. Il est montré dans la figure A.16. Maintenant, nous choisis-
sons les fibres sur les sommets. Les fibres choisies sont les plus naturelles caractéristiques
sur les ouvertures sur ces sommets. Pour cela, nous avons choisi la moyenne des valeurs
d’intensité et des valeurs de gradient dans cet ouvert, de sorte que I'espace vectoriel asso-
cié est R?. Au niveau des bords, nous allons regarder sur les intersections des 2 ouverts et
calculer les mémes valeurs. Pour les triangles, nous recherchons les valeurs dans les 3 ou-
vertures intersectées. En résumé, toutes les cellules du complexe contiendront R? comme
espace vectoriel sur leurs tiges puisque nous regardons seulement la moyenne des valeurs
de pixels et des gradients. Bien siir, d’autres caractéristiques peuvent étre étudiées comme
la variance, la valeur maximale dans chaque ouverte et méme les classes d’homologie par
exemple.

Maintenant, nous voulons trouver les restrictions allant des cellules de dimension in-
férieures aux plus élevés. Ces restrictions ont R? comme entrée et sortie donc ils seront
des matrices de la forme R?*2. Puisque nous recherchons la cohérence sur ’espace des
faisceaux, nous allons comparer les données sur les cellules de faibles dimensions et sur
leurs dimensions supérieures.

Nous représentons dans la figure A.16 ces restrictions. Bien siir, les restrictions appar-
tiendront a R?*2.
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Figure A.16: L’espace de base des faisceaux sur les restrictions.

Maintenant, nous allons obtenir des fonctions de cobord d° et d* en utilisant

(@ f)(r)= > [o:7]S(o ~ 7)f(0) (A.14)

oceXP

Nous sommes ainsi capables de calculer la cohomologie des faisceaux de dimensions zéro
et dimension 1, sur ce complexe en utilisant cette égalité H?(X,S) = kerd?/Im dP~.
Méme si H° et H! n’apportent pas beaucoup d’informations dans ce cas, autres facons de
modéliser le faisceau peuvent apporter une information importante comme la détection
des deux objets collés par I'interprétation de H'. Sachant que le choix des sommets et des
ouvertures, les fibres sur les sommets et les restrictions sont une tache de modélisation et
représentent la valeur de la cohomologie.

A.4.4.2 Sections sur les images RGB

Nous avons vu que les faisceaux peuvent également étre considérés comme des sections
des faisceaux sans leurs calculs cohomologiques. Ces sections sont utiles sur les images en
couleur. En réalité, les images colorées ont des pixels avec les valeurs appartenant a R?
correspondant au canal RGB. Chaque pixel représentera un sommet sur I’espace de base.
Nous construisons d’abord un complexe de Cech pour avoir un espace de base pour notre
faisceau. Les centres des boulles ouvertes seront naturellement les pixels et le rayon est
1/2 4+ € en supposant que la distance entre les vertices est 1 et 0 < € < (? — %) De cette
facon, nous ne ferons que des intersections entre deux ouvertures et non trois, et donc
seulement des arétes et non des faces bidimensionnelles comme le montre la figure A.17.

Les fibres sur les sommets et les arétes seront R comme le montre la figure A.18. Main-
tenant, nous devons chercher les sections. Comme données sur les sommets, nous avons
choisi le canal RGB (74, g;, b;) pour chaque sommet dans I’espace de base. Pour les bords,
nous assignons la différence des valeurs provenant des sommets (r; —r;, g; — gi, b; —b;). Les
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(a) 6 pixels/sommets. (b) Opens over the 6 pixels.

Figure A.17: 6 pixels avec leur ouverts avec rayons 1/2 + e.

restrictions des sommets aux arétes seront des matrices de la forme R?**3 comme indiqué
dans la figure A.18.

A.4.4.3 Interprétation des faisceaux des modeles
Construire les modeles de faisceaux sur les espaces imbriqués permettra l'analyse des
invariants topologiques en fonction des étapes suivantes:
1. Utilisation du faisceau sur un poset pour encoder des diagrammes de modeles.
2. Linéarisation des données si nécessaire,
3. Calculer les fonctions de cobord de ce faisceau,
4. Calcul de cohomologie pour résumer les modeles et les interpréter.
Supposons que nous ayons le modeéle suivant :
e Trois ouverts comme A, B et C.

e Un cycle ou une classe d’homologie existe en D = AU B comme indiqué dans A.19,
mais pas dans F = AUC ni F=BUC.

L’analyse cohomologique de ce faisceau nous permettra d’interpréter et comprendre le
modele étudié. Une fois que nous avons les matrices de cobords d°(&,.%) et d'(€,.7),
on peut calculer les cohomologie de dimensions zéro et un. Rappelons que H?(E,.) =
ker d?/Im dP~!, alors H*(E, ) = kerd’/Imd ! = ker d".

Ainsi H°(E,.7) est généré par < as,ap,ac >, qui est le Pespace des sections globales de
ce modele de faisceau. Cela révele la cohérence de ces éléments a travers le faisceau qui
est normal puisque 0.a4, 0.ap et 0.ac sont transformés via des fonctions nulles.

D’un autre coté, HY(E,.) =< ac<p,ac<r > sont des sections qui ne sont pas présentes
en tant que sections globales et peuvent donner des informations supplémentaires et in-
férence du modele. Pour interpréter les résultats de H°, nous concluons que la classe a
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Figure A.18: Sections consistantes avec leurs restrictions sur les 6 pixels.
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Figure A.19: L’espace entier avec le cycle a.
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n’existe pas dans 1'un des grands ouverts. Pour H', a n’est pas inclus dans F ni dans F,
ce qui laisse en déduire que cet élément est dans D = AU B.

Bien siir, autres modeles peuvent étre construits et nous pouvons les analyser par des
interprétations cohomologiques.

A.4.4.4 Conclusion

Dans ce chapitre, nous nous sommes intéressés a un nouvel aspect des approches de la
topologie algébrique qui repose sur la théorie des faisceaux. Nous avons commencé par une
introduction suivie de la présentation de certains aspects fondamentaux des faisceaux sur
des espaces topologiques. Ces aspects fondamentaux ont été traduits aux espaces cellu-
laires. Le concept des faisceaux de cellules décrit comment on peut transformer un faisceau
sur un complexe cellulaire et comment on peut obtenir des complexes de cochaine associés
a des fonctions de cobord. Ces fonctions de cobords permettent de calculer la cohomologie
des faisceaux afin d’obtenir un invariant topologique qui transforme l'information locale
en une information globale. De plus, nous introduisons la construction de faisceaux sur
des ensembles partiellement ordonnés pour aboutir a son analyse cohomologique.

A.5 Chapitre 5: Conclusion et perspectives

A.5.1 Conclusion générale

La topologie et la topologie algébrique peuvent étre utilisées pour développer plusieurs
méthodologies utiles aux probléemes d’ingénierie. Cette théorie mathématique est partic-
ulierement intéressante et son applicabilité est principalement due a la possibilité calculer
et de représenter des notions sur un systeme informatique. Pour les taches de traitement
d’images, I’homologie persistante et sa forme relative, ainsi que la théorie des faisceaux,
sont particulierement efficaces. Les durées de vie des classes d’homologie persistantes
donnent lieu a une nouvelle fagon de segmenter les images. Mettre en évidence les classes
d’homologie les plus persistantes qui ont résisté aux variations des espaces permet de
segmenter des objets dans les dimensions 2D et 3D. Sans oublier la version relative qui
permet de vider un sous-espace dans le complexe et donc d’élargir la notion de cycle pour
le suivi d’objets en mouvement.

Le succes de ces approches topologiques est di a la flexibilité de la manipulation des
espaces. En effet, une simple notion de voisinage est requise. Celle-ci est transformée
en une liste des cellules et des relations entre eux a travers un opérateur de bord. Une
fois ces données extraites, il est possible de calculer plusieurs invariants mesurant di-
verses quantités qui ne sont pas nécessairement scalaires comme les groupes d’homologie.
Les quantités résultant de la topologie décrivent la forme de 'espace et donnent une
représentation qualitative. Bien que cet aspect qualitatif semble tres faible par rapport
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aux séries quantitatives de valeurs, nous retenons la flexibilité de I'approche. Grace a
cela, I’homologie persistante permet par exemple de segmenter les objets dans les images
sans avoir besoin de parametres préalables comme les tailles ou les intensités des objets.

La difficulté d’utiliser la topologie algébrique réside principalement dans la spatialisation
du probleme et l'interprétation des invariants. Par exemple, au chapitre 3, le moyen
des constructions de la présentation combinatoire et de la filtration dépend fortement
de l'espace et des données étudiés. La facon de former le complexe simplicial n’est pas
immeédiate et relier les groupes d’homologie calculés a l'origine de probléme nécessite un
peu de travail. Mais le gain est important, aucune hypothese précédente requise si nous
commencons a partir de pixels bruts par exemple ou superpixels comme au chapitre 3, et
aucune hypothese sur la taille des objets ou des valeurs d’intensités n’est requise.

La topologie est souvent appelée "géométrie du caoutchouc", mais son sous-champ, la
topologie algébrique, fournit des outils mathématiques permettant le passage du local
au global, c¢’est-a-dire le passage d’une simple notion locale de proximité a notion plus
générale de la forme globale de I'espace. Les outils qui permettent cette intégration du
local au global sont performants et peuvent donner lieu a plusieurs algorithmes d’analyse
d’images comme nous avons vu dans ce travail. Par exemple, la théorie des faisceaux a
permis de transformer I'information des aspects locaux aux aspects globaux en utilisant
la cohomologie des faisceaux. L’interprétation de l'analyse d’échelle et la localisation
a permis de prédire et comprendre les données étudiées sur I'aspect global. Le travail
réalisé dans cette these, qui a consisté a translater les notions de topologie algébrique
au traitement d’images présente un paradigme de changement complétement nouveau et
qu’il faut approfondir.

Commencant par la segmentation d’images, nous avons proposé une technique qui associe
le calcul des caractéristiques topologiques utilisant des durées de vie de classes d’homologie
avec des caractéristiques statistiques dans les fenétres glissantes. Ces caractéristiques ont
été classées en utilisant la méthode K-moyennes donnant une méthodologie de segmen-
tation d’image. Les résultats de ces méthodes ont été présentés dans une conférence
internationale [AGV16a] et publiés dans un journal [AGV16b].

Les notions algébriques des classes d’homologie les plus persistantes ont été utilisées pour
réaliser la segmentation d’objet dans les images. Une construction du schéma de filtration
sur pixels bruts permet de segmenter des objets intéressants tels que les cellules et leurs
composants en images biomédicales.

Une autre idée a été d’utiliser la présentation combinatoire des superpixels pour seg-
menter les objets dans de grandes images de 2D et 3D sans 1'utilisation de parametres
a priori. Cette technique a été présentée dans une conférence nationale [AGK17a] et il-
lustrée dans un article actuellement en cours de revision [AGV17]. En outre, un article
sur l'aspect appliqué de cette technique qui permet de trouver des composants de cel-
lules dans les images biomédicales a été accepté pour la présentation dans une conférence
internationale [AGK17b].

Le mouvement des cellules le long des séquences d’images a été a l'origine du développe-
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ment d'une technique qui détecte et suit les objets de la premiere a la derniere image.
Cette technique utilise I’homologie relative qui détend le principe de I'homologie a plus

d’espaces. L’objet de cette technique a été repris dans un article actuellement en cours
de révision [AGK'17¢].

Nous avons également initié 1'utilisation de la théorie des faisceaux sur les images afin
de transformer 'information du local au global. Les faisceaux sur les espaces cellulaires
et sur les posets permettent de transformer l'aspect algébrique du faisceau en un aspect
linéaire. Cette construction permet 1’analyse cohomologique du faisceau, qui permet de
mieux comprendre et prédire des caractéristiques des espaces. Cette interprétation est
utile dans I'analyse d’échelle de 'augmentation des espaces et localisation en espaces
décroissants.

A.5.2 Perspectives

Les perspectives que notre travail ouvre sont nombreuses, puisque les méthodes issues de
la topologie algébrique commencent tout juste a apparaitre. Nous pouvons rapidement
les classer perspectives a court terme et perspectives a long terme.

En premier lieu, il serait intéressant d’associer notre approche a l’analyse d’échelle en
utilisant la théorie des faisceaux pour séparer les classes d’homologie qui sont a l'intérieur
I'une de l'autre en 2D et en 3D. De plus, il serait important d’améliorer les cycles qui
segmentent les objets. L’optimisation de ces cycles peut étre faite en appliquant une autre
théorie de la topologie algébrique qui est la théorie de Morse discrete. En fait, la théorie
de Morse discrete [Mil63, Koz07] permet de simplifier un espace combinatoire X sans
dénaturer sa structure topologique. Cette simplification est complétée par 'utilisation
d’un champ vectoriel discret V. Puisque les groupes d’homologie H,(X) sont isomorphes
au complexe de Morse, leur calcul est beaucoup plus simple. Apres le flux qui a aidé a la
construction du complexe Morse en utilisant les champs de vecteurs discrets, nous pouvons
associer des points critiques pour obtenir un contour qui peut réduire radicalement le
contour qui segmente les objets.

Dans un autre aspect, ’homologie persistante qui utilise uniquement les valeurs d’intensité
a été confrontée a des problemes dans la détection des objets collés. Nous avons l'intention
d’utiliser la persistance multidimensionnelle pour résoudre ce probleme. Méme s’il n'y a
pas d’invariant topologique complet pour persistance multidimensionnelle [CZ09], les au-
teurs de [ML15] ont réussi a créer un outil de visualisation de durées de vie des classes
d’homologie. Cet outil qui dépend fortement de la construction combinatoire doit étre
adapté au probleme donné. Nous avons cependant tenté cette approche sans réel suc-
ces immédiat, mais une approche plus construite sera stirement bénéfique. Aussi, il y
a encore un gros travail sur les moyens de calculer les classes d’homologie persistante
multidimensionnelle.

La topologie algébrique n’est pas limitée a I’homologie. A plus long terme, ce serait intéres-
sant de développer d’autres parties. Par exemple la cohomologie, alors que c¢’est un dual
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d’homologie, étudie un espace en étudiant la cohérence locale des fonctions définies sur ce
dernier. Les incohérences sont donc tres informatives. Par exemple, avoir I'information
sur aspects dimensionnels plus élevés, il est utile d’utiliser la cohomologie pour traduire
I'information aux dimensions plus basses [dSMVJ11b]. Ne pas oublier l'utilisation de
la persistance en zigzag [CASMO09] qui dépend des complexes des ensembles de niveaux
et peut étudier plusieurs problemes qui peuvent ne pas étre couverts par la persistance
habituelle.
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Approches de topologie algébrique pour 'analyse d’images

La topologie algébrique, bien que domaine abstrait des mathématiques, apporte de nouveaux concepts pour le traitement d'images. En effet,
ces taches sont complexes et restent limitées par différents facteurs tels que la nécessité d’utiliser un paramétrage, l'influence de l'arriere-plan
ou la superposition d'objets. Nous proposons ici des méthodes dérivées de la topologie algébrique qui different des méthodes classiques de
traitement d'images par l'intégration d’informations locales vers des échelles globales grace a des invariants topologiques. Une premiere
méthode de segmentation d'images a été développée en ajoutant aux caractéristiques statistiques classiques d’autres de nature topologique
calculées par homologie persistante. Une autre méthode basée sur des complexes topologiques a été développée dans le but de segmenter les
objets dans des images 2D et 3D. Cette méthode segmente des objets dans des images multidimensionnelles et fournit une réponse a certains
problémes habituels en restant robuste vis a vis du bruit et de la variabilité de I'arriere-plan. Son application aux images de grande taille peut
se faire en utilisant des superpixels. Nous avons également montré que I'homologie relative détecte le mouvement d’objets dans une
séquence d'images qui apparaissent et disparaissent du début a la fin. Enfin, nous posons les bases d’un ensemble de méthodes d'analyse
d'images basé sur la théorie des faisceaux qui permet de fusionner des données locales en un ensemble cohérent. De plus, nous proposons
une seconde approche qui permet de comprendre et d'interpréter la structure d’une image en utilisant les invariants fournis par la
cohomologie des faisceaux.

Topologie algébrique, homologie persistante, théorie des faisceaux, segmentation d’images, segmentation d’objets.

Algebraic topology approaches for image analysis

Algebraic topology, which is as an abstract domain of mathematics, can bring new concepts in the execution of the image processing tasks.
Indeed, these tasks might be complex and limited by different factors such as the need of prior parameters, the influence of the background,
the superposition of objects. In this thesis, we propose methods derived from algebraic topology that differ from classical image processing
methods by integrating local information at global scales through topological invariants. A first method of image segmentation was developed
by adding topological characteristics calculated through persistent homology to classical statistical characteristics. Another method based on
topological complexes built from pixels was developed with the purpose to segment objects in 2D and 3D images. This method allows to
segment objects in multidimensional images but also to provide an answer to known issues in object segmentation remaining robust regarding
the noise and the variability of the background. Our method can be extended to large scale images by using the superpixels concept. We also
showed that the relative version of homology can be used effectively to detect the movement of objects in image sequences. This method can
detect and follow objects that appear and disappear in a video sequence from the beginning to the end of the sequence. Finally, we lay the
foundations of a set of methods of image analysis based on sheaf theory that allows the merging of local data into a coherent whole.
Moreover, we propose a second approach that allows to understand and interpret scale analysis and localization by using the sheaves
cohomology.

Algebraic topology, persistent homology, sheaves theory, image segmentation, object segmentation.
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