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Abstract

Resonant interactions between waves and particles often play major roles in collisionless,
or high-temperature plasmas. In this manuscript, I focus on a kinetic nonlinear effect, due to
these resonances : the self-trapping of charged particles by their own electrostatic potential.
This self-trapping leads to a formation of structures resembling vortices, in the phase-space
of the particle distribution function (real space + velocity space). Based on the dynamics
in phase-space, we clarify the mechanisms of phenomenon that can seem counter-intuitive
from the point-of-view of an observer in real-space. This manuscript focuses on three types
of waves : waves driven by supra-thermal particles in fusion plasmas, ion-acoustic waves
in space plasmas, and drift-waves driven by trapped particles in tokamaks. I describe the
impact of phase-space structures on stability and the nonlinear evolution of waves, as well
as turbulence properties, particle transport, anomalous resistivity, and turbulent heating
associated with these waves. I propose several experimental applications of phase-space
structures as diagnostic and mean of control. Finally, I describe the outline of a long-term
research project, which aims at developing a turbulence theory in a regime dominated by
phase-space structures.

Résumé

Les plasmas chauds sont souvent le lieu d’importantes interactions résonantes entre ondes
et particules. Dans ce manuscrit, je me focalise sur un effet cinétique non-linéaire, lié à
ces résonances : l’auto-piégeage de particules chargées par leur propre potentiel électrique.
Cet auto-piégeage conduit à la formation de structures semblables à des vortex, mais dans
l’espace des phases de la fonction de distribution des particules (espace réel + espace des
vitesses). En étudiant la dynamique des particules dans l’espace des phases, je propose de
clarifier les mécanismes de phénomènes qui semblent contre-intuitifs du point de vue d’un
observateur de l’espace réel. Je me concentre sur trois types d’ondes : les ondes engendrées
par des particules supra-thermiques dans les plasmas de fusion, les ondes acoustiques ioniques
dans les plasmas astrophysiques, et les ondes de dérives dues aux particules piégées dans
les tokamaks. Je décrie l’impact des structures de l’espace des phases sur la stabilité et
l’évolution non-linéaire des ondes, ainsi que sur les propriétés de la turbulence, le transport
de particules, la résistivité anormale, et le chauffage turbulent associés à ces ondes. Je propose
également quelques applications expérimentales des structures de l’espace des phases comme
diagnostic et moyen de contrôle. Enfin, je décris les grandes lignes d’un projet de recherche
sur le plus long terme qui vise à développer une théorie de la turbulence dans un régime
dominé par les structures de l’espace des phases.
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A.2.1 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.2.2 Objectif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.2.3 Approche numérique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.2.4 Approche expérimentale . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2.5 Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2.6 Autres activités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

iii



Chapter 1

Introduction

This manuscript is a review of my main contributions to the research on instabilities,
turbulence and transport in high-temperature and collisionless plasmas, and in particular on
underlying nonlinear mechanisms. It is based on kinetic models, which take into account the
statistics of particle dynamics in phase-space. My research mainly focuses on the context
of magnetic confinement thermonuclear fusion, which is introduced in this chapter, but also
finds applications in space plasmas and laser/plasma interactions.

Although this manuscript includes some unpublished work 1 it is in large part based on
a selection of published peer-reviewed papers, which I authored or co-authored. I selected
the papers which together form a coherent structure (albeit not as self-coherent as phase-
space structures...). We emphasize both useful analogies and essential differences, and use
self-consistent notations throughout.

Let me first introduce the context and basic concepts.

1.1 Hot plasmas

1.1.1 Plasmas: ubiquitous, electromagnetic fluids

Unlike neutral gases, plasmas are electromagnetic in nature. They are characterized by
a significant degree of ionization, a process by which electrons ”free” themselves from their
atomic orbits. Therefore a plasma can be thought of as a collection of free, negative and
positive charge-carrying particles (and a fraction of neutral particles, very small in the case
of a hot plasma). Although quasi-neutral as a whole, a plasma responds to, and generates, an
electromagnetic field, in a self-consistent way. Collective effects dominate plasma behaviour:
the motion of a typical particle is governed by electromagnetic interactions with a very large
number of distant particles, rather than by binary Coulomb interactions with neighbours.
This can be opposed to the strong coupling between individual particles, which governs the
behaviour of neutral fluids.

1.1.2 Hot plasmas, and the Vlasov equation

Temperature is a property of the energy distribution of particles. In a plasma, we con-
sider the temperature of each species separately (e.g. electrons only, or hydrogen ions only).
When the frequency of collisions is high enough, the particles of a species are smoothly
distributed in energy, in a way very similar to neutral gas. A fluid-like description of the
plasma, where the energy distribution of each species is replaced by a few of its moments
(e.g. density, mean velocity and temperature), is then accurate. In hot plasmas, however, col-
lisions are extremely rare. More precisely, the collisional mean-free-path (the average length
it takes a particle to have its direction significantly changed by binary interactions with
other particles) is much larger than the wavelengths of dominant electromagnetic waves. As

1. Unpublished parts can be found in particular: in chapter 2 on quasilinear and nonlinear analysis of
the Vlasov equation, in subsection 4.3.4 on chirping lifetime, in subsection 4.3.6 on analysis of MAST data,
in subsection 6.1.3 on recent developments of the TERESA code, and the projects I propose in chapter 7
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a consequence, particles interact resonantly with waves, thereby introducing additional de-
grees of freedom in the energy distribution and leading to strong departures from a smooth,
fluid-like, Gaussian velocity-distribution. Such mechanisms must be described by a kinetic
model. In the collisionless limit, the plasma is adequately modeled by the Vlasov equation
(along with Maxwell equations), which describes the time evolution of the particle distribu-
tion function, f , in a 6D phase-space (3 positions and 3 velocities). The gyrokinetic model
is a variant of the Vlasov-Maxwell system in magnetized plasmas, where the fast cyclotron
motion is averaged out, taking advantage of the presence of a strong magnetic field, which
guides the particles on the lowest order. This leads to a 5D model, with a 4D phase-space
parameterized by an invariant of the motion.

Vlasov plasmas are relevant in astrophysical, space, laser, and magnetic confinement
plasmas. In interplanetary and interstellar media, the absolute temperature is high enough
that the thermal kinetic energy is much larger than the potential energy of interaction
between charged particles, owing to the low density. In the literature, the terminology
can be: ”hot”, ”weakly coupled”, ”Vlasov”, or ”collisionless” 2. In magnetic confinement
experiments, the temperature of the core is up to the order of 100 million degrees (for both
ions and electrons), one order-of-magnitude higher than the Sun’s core. Such plasmas are
confined in a strongly inhomogeneous configuration (over a few meters, the temperature
varies by 5 orders-of-magnitude) by strong magnetic fields. The collisional mean-free-path
is measured in kilometers. Such plasmas are often far out of thermodynamical equilibrium.
They feature rich and complex dynamics, both transitively and in asymptotic times (quasi-
steady state). This is not limited to fluctuations. The mean fields of plasma (e.g. local
means of density, temperature, magnetic fields) are highly dynamical as well.

1.2 Turbulence

1.2.1 Turbulence in hot plasmas

Laboratory experiments and satellite measurements have long demonstrated that most
hot plasmas of interest are turbulent: they feature microscopic fluctuations on a broad range
of scales, with energy flowing between scales. Resulting from these fluctuations, the particle
motion is chaotic, with similarities to a random walk. In inhomogeneous plasmas, one
expected impact is the diffusion of mean field gradients. Indeed, experiments demonstrate
that microscopic turbulence has major macroscopic impacts on the mean fields, such as

— the transport of particles, momentum and heat (turbulent mixing), anomalous diffu-
sion,

— the formation of mesoscale and macroscale structures (turbulent structure formation),
such as zonal flows 3,

— the coupling between different directions of mean flows.

Hot plasma turbulence plays a key role in a broad range of contexts. The present work
is more closely linked to:

— magnetic confinement fusion plasmas (in particular drift wave, and interchange tur-
bulence)

— laser-plasma interactions (in particular Rayleigh-Taylor turbulence)
— the solar wind, which permeates the space between the Sun and the Earth.
— structure formation (stars, accretion disks around black holes) in the interstellar

medium.

Turbulence theories attempt to model the statistics of microscopic fluctuations of the
whole plasma and fields. The starting point is the whole plasma setup (the mean plasma
fields and electromagnetic fields, the boundary conditions, and external sources and sinks of
particles and energy). The goal is to predict the statistics of microscopic fluctuations, and
their macroscopic impacts, including large-scale structure formation, and turbulent mixing.

2. For the title of this manuscript we choose the term ”hot” by default, since other denominations are
not fool-proof either

3. Zonal flows (like the flows visible on the surface of Jupiter) are of particular interest because they act
like barriers, which locally suppress turbulent mixing
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1.2.2 Socio-economic impacts of a successful theory of hot plasma
turbulence

A distilled understanding of this physics is key in the future of clean energy generation,
space weather, space travel, space plasma physics, and astrophysics. Let us describe a few
examples, relevant to our long-term objectives.

— Controlling turbulence in the core of magnetic confinement plasmas would be a major
step in enabling viable fusion reactors [OKWZ16]. The design of the largest fusion
experiment (ITER) was based on the extrapolation of empirical laws, which were ob-
tained by measurements in much smaller devices. A theory capable of predicting the
macroscopic impacts of turbulence, would mitigate the risks of extrapolation, yield
new means of control [KLP+97], expedite the design of future commercial reactors,
and significantly reduce their cost. Indeed, the minimum size of a tokamak is de-
termined by turbulent transport. We can make a very rough estimation in a simple
limit where heat transport is described by a heat diffusion coefficient χ. Then the
radius must be proportional to χ1/2, and the machine cost very roughly proportional
to χ3/2. In this sense, a 10% reduction of turbulence is potentially worth billions of
euros.

— Inertial confinement is an alternative approach to fusion, where a small solid target is
impacted by an array of powerful lasers. The target turns into a plasma and implodes.
A better understanding of turbulence is crucial to optimize the experimental setup
and design the target.

— The design of electric propulsion thrusters, such as Hall effect thrusters, suffers from
a lack of understanding of anomalous (turbulent) erosion of a key component. Pre-
dicting this macroscopic impact of plasma turbulence would expedite their design
and lead to an increase in range of space missions [Che07].

— Understanding turbulence in the solar wind [BC13], coupled with solar flares [JAD15],
is crucial in the emerging discipline of space weather. Space weather could provide
early warnings of: 1. solar radiation storms, which have been shown to damage
electronic equipment in satellites, and cause radio blackouts on EarthHF radio, GPS
systems and power grid ; and 2. geomagnetic storms, which cause beautiful auroras,
but temporarily degrade the accuracy of GPS systems, and can impact power grid
operation, even far from the poles.

1.2.3 Conventional turbulence theories

In the early years, plasma turbulence theories were based on concepts of self-similarity
by analogy with neutral fluid turbulence: cascades in wave-number space [Kol41b], coupled
with mixing-length estimates in real space [Pra25]. Decades of progress showed that hot
plasma turbulence theory had to depart from fluid turbulence theories, due to important
kinetic effects. In particular, quasi-linear theory was developed to include resonant energy
exchanges between waves and particles [DP61, VVS61]. Lowest-order nonlinear corrections
were later included in weak-turbulence and strong-turbulence theories [Kad64]. In the fol-
lowing decades, sophisticated formalisms have been built, which furthered the understanding
of nonlinearities and high-order statistics in plasma turbulence [YII02b, DII10, Kro15].

These theories are extremely valuable in specific cases, in particular to predict the self-
organisation of macroscale flows (a challenge that brute-force numerical simulations are
struggling with). However, in terms of fluctuation statistics, and macroscopic impacts in
general, the agreement (even qualitative) with experimental observations is limited. Quasi-
linear and alike theories cannot address essential aspects of turbulent mixing, such as abrupt
events, non-local transport, and the impacts of electrostatic trapping, which are described
in this manuscript.

In parallel, direct numerical simulations of the gyrokinetic equations have been applied to
investigate the phenomenology of turbulent transport. However, agreement between simula-
tion and experiment remains exceptional, local in space, and rely on arbitrary adjustments
of input parameters as well. The origin(s) of these discrepancies is (are) unclear. In my
research, I focus on an important caveat of conventional turbulence theories and modelling:
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Figure 1.1 – Cartoon of the framework of phase-space turbulence and granulation. ”Real
space structures” include e.g. zonal flows. Conventional turbulence theories, which assume
that plasmas respond to perturbations as an ensemble of random-phase waves (wave turbu-
lence), take a questionable shortcut represented here by a dashed arrow.

they do not properly account for non-wave-like, microscopic structures in phase-space (PS),
such as PS vortices [RB67]. Fig. 1.1 illustrates the limit of the framework of conventional
turbulence theories.

Since the gyrokinetic model includes the full nonlinearity of wave-particle interactions,
gyrokinetic simulations should in principle include microscopic PS structures. However that
is only true in a limit of low numerical diffusion, and accurate discretization of the whole
phase-space. In practice, this makes microscopic PS structures inaccessible to heavy gy-
rokinetic codes, given current computation capabilities. Analytic theories don’t suffer from
numerical diffusion, but to make calculations tractable, they assume that the plasma re-
sponds to perturbations as an ensemble of waves with random phases (except to describe
nonlinearities in wave-number space - e.g. mode-mode coupling). This wipes out PS struc-
tures.

1.3 Phase-space structures

1.3.1 Phase-space holes

Figure 1.2 – Phase-space hole.
(a) Ion density fluctuation. (b)
Electrostatic potential. (c) Ion
trajectories.

PS structures are well known in contexts other than
micro-turbulence: e.g. the two-beam instability, the bump-
on-tail instability, Weibel instabilities. We describe several
kinds of PS structures throughout this manuscript. The
most ubiquitous PS structure is a vortex-like island of neg-
ative phase-space density fluctuation, δf < 0, which is
called a PS hole. PS holes result from the localized trap-
ping of particles by their own electrostatic potential, which
is a fundamental kinetic nonlinearity in the Vlasov equa-
tion. Fig. 1.2 illustrates this mechanism for an ion hole
in a 1D plasma. A PS hole is akin to a Bernstein-Greene-
Kruskal (BGK) mode [BGK57], however it is not locked to
the resonant velocity. On the contrary, PS holes display
rich dynamics. Interestingly, PS holes self-organize in a
way strongly analogous to self-gravitating matter.

PS holes were predicted by simulation [RB67], in-
terpreted by theory [Sch79, Dup82], and experimentally
observed in a wide range of space and laboratory plas-
mas [ES06]: linear and toroidal plasma devices, magneto-
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sphere, interplanetary space, and during magnetic reconnexion. In homogeneous plasmas,
numerical simulations have shown that when a few PS holes of similar size are present, they
can interact and merge [RB67]. Most simulations studied regimes with only a handful of
PS holes. However, in 2014, I have shown that a large number of small PS holes have much
stronger impacts than a small number of large PS holes [LDK14a]. Some simulations with
a moderate number of PS holes were performed [GDSR09], but stochastic PS dynamics was
only transient. Since PS holes tend to coalesce and merge, in decaying turbulence they are
bound to eventually form one large vortex. More work is needed to describe the statistical
steady-state of stirred (flux-driven) turbulence including PS holes in large systems.

In inhomogeneous plasma turbulence, where particles undergo a secular drift, the concept
of PS hole was generalized as drift-holes [TDH90]. Analytic theory predicts the existence
of drift-holes, over a broad range of conditions. The context here is that of drift-wave tur-
bulence, including magnetic curvature, which can be generalized to interchange turbulence.
As evidenced by recent work on the effect of shear flows [KD12], the interest for drift-holes
has never faded. However, drift-holes were never observed in any simulation. I argue that
the culprit is numerical dissipation, on which PS structures are very sensitive.

1.3.2 Kubo number and granulation theory

The Kubo number K is a dimensionless quantity, which characterizes the regime of
transport. The Kubo number can be defined from the point-of-view of either real space or
PS. In the context of PS dynamics in Vlasov turbulence, the Kubo number can be estimated
as K = τac/τtr. Here τac is the autocorrelation time of the turbulent spectrum of electrostatic
fluctuations, and τtr is the typical quasi-period of a PS orbit of particles trapped in a PS
vortex.

Quasilinear theory assumes the K � 1 limit. Meanwhile, mixing-length theory cor-
responds to K ∼ 1. The usual practice of combining both theories in order to calculate
turbulent relaxation, is therefore questionable. Dupree pioneered an analytic turbulence
theory called granulation theory [Dup72], to treat the K ∼ 1 regime properly (by includ-
ing non-wave-like fluctuations). He argued that PS structure formation competes against
decorrelation by random-phases wave turbulence. In the statistical steady state, this yields
granulated fluctuations: evolving clusters of particles, correlated by resonances. In a sense,
Dupree’s theory is a kinetic generalization, to collisionless plasmas, of the concept of eddies
in fluids.

Building on Dupree’s seminal work, analytic theories have predicted essential impacts
of granulation: intermittency of turbulence [TDH90], flow coupling, jamitons, non-local
transport, non-diffusive transport, and subcritical diffusion [KID+17]. These are hot issues
of plasma turbulence. Time is ripe to perform a numerical investigation, before designing a
way to discriminate from other candidate mechanisms in experimental data.

1.4 Magnetic confinement nuclear fusion

1.4.1 Towards a clean, safe, and efficient energy source

When asked by a journalist the question ”Which scientific discovery or advance would
you like to see in your lifetime?”, Stephen Hawking gave the following answer, ”I would
like nuclear fusion to become a practical power source. It would provide an inexhaustible
supply of energy, without pollution or global warming.” [Haw10]. Indeed, the global en-
ergy crisis could be alleviated by a clean, safe and efficient energy source. A promising
approach is to heat a plasma of hydrogen isotopes at 150 million degrees, and confine it
in a donut-shaped magnetic field. After decades of exponential progress, this is routinely
done in several magnetic fusion experiments (tokamaks and stellerators) around the world.
Magnetic-confinement fusion (MCF) energy is:

— Clean. Although fusion is a nuclear process, it does not involve any high-activity nor
long-lived nuclear waste. The burnt fuel is inert helium. Tritium, which is used in
the reaction, is radioactive, but orders-of-magnitude less so (with its 12.3 years half-
life) than uranium. High-energy neutrons will activate containing walls. However,
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this waste is classified as low to medium activity waste (unlike nuclear fission). The
deuterium and tritium derived from a bathtub of seawater and from the lithium in
one laptop battery are enough to provide the energy needs of an average American
adult, for life.

— Safe. Unlike nuclear fission, fusion is inherently safe. Since the fuel is a plasma of
hydrogen isotopes in a quasi-void (average density: 1020m−3), the total mass inside
a reactor is less than a gram. Any disturbance causes the plasma to immediately
cool down, halting fusion reactions. The same reason, which makes fusion so safe,
makes fusion so challenging. However, we should point out that, if the disturbance
halting fusion reactions is a major disruption, this could severely damage the device.
Currently, there are significant research efforts on early detection and mitigation of
disruptions.

— Not efficient yet. No experiment has ever reached break-even (extracting more energy
from fusion reactions than the energy required to sustain the plasma). After decades
of progress, starting from less than a Watt in the 70’s, a record of 16MW generated
from 25MW of input power was obtained (in the tokamak JET in 1997). The largest
magnetic fusion experiment, ITER, is being built in Cadarache, France. ITER aims
at reaching break even for the first time in 2035, generating 500MW from an input
of 50MW. Improving turbulence theories is useful not only for tokamaks, but also
for all magnetic fusion devices. This includes stellerators, and new compact designs,
which take advantage of breakthrough in superconducting coils [SBP+15].

1.4.2 Energetic particles in MCF

In an ignited toroidal MCF plasma operating with a deuterium-tritium mix, the confine-
ment of α-particles is critical to prevent damages on the first-wall and to achieve break-even.
The reason is that these high energy particles must be kept long enough in the plasma core
to allow enough of their energy to heat thermal populations by slowing-down processes. Ad-
ditionally, neutral beam injection is an important heating scheme, which provides another
source of Energetic Particles (EPs). A major concern is that EPs can excite macroscopic
plasma instabilities in the frequency range of Alfvén Eigenmodes (AEs) or geodesic acoustic
modes (EGAM), which significantly enhance their transport, and couple with background
turbulence. They impact fuelling and the wall integrity, and ultimately the efficiency of a
fusion reactor.

Since the recognition of this issue in the 1970’s, considerable progress has been made
in the theoretical understanding of the principal EP-driven instabilities. However, robust
predictions of stability and transport, as well as development of control schemes, require
progress on our understanding of their nonlinear physics.

1.4.3 Turbulence in MCF

In MCF devices, the huge temperature gradient between the hot core and the cool edge
makes the plasma inevitably turbulent. Turbulence drives the transport of particles and
energy from the core to the edge, which degrades required confinement. Turbulence can
be mitigated, or channelled. Some methods of control have been discovered empirically. A
better theoretical understanding of turbulence would lead to new methods of control.

Numerical simulations of MCF turbulence is challenging, especially because of coupling
between disparate scales, from electron cyclotron scale (∼ 0.01mm) to device scale (∼ 1m).
In this context, a single direct numerical simulation (gyrokinetic simulation) is very costly.
Simulating a small fraction of the whole plasma, with rough numerical discretization in the
velocity space, can consume ∼ 108 core.hours on a modern supercomputer [MIW+15].

In practice, modern gyrokinetic simulations can only afford a limited number of grid
points in the velocity (or energy) space, typically ∼ 10 to ∼ 100. This introduces large
numerical diffusion, which may spuriously wash away fine-scales PS structures. A handful
of authors have attempted to investigate PS structures with brute-force gyrokinetic simu-
lations, by increasing the number of energy grid points [WS06, TDS+09]. These showed
promising results, reinforcing the importance of resolving fine-scale PS structures. However,
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these were done at the expense of fine-scales in real space, and the one-shot nature of these
extremely costly attempts would not allow the underlying physics to be uncovered. In this
sense, investigating the impacts of fine scales in PS is not accessible to brute-force numeri-
cal simulations. Based on this reasoning, we propose in Chapter 7 a project to investigate
PS structures in MCF numerically by focusing on low-frequency turbulence, which allows
a reduction of dimensionality. With this approach, fine-scales in PS become accessible at
reasonable computing cost.

1.5 Outline of this manuscript

In chapter 2, we review the foundations of the Vlasov equation for collisionless plasmas,
and describe general linear, quasilinear and nonlinear theories. We discuss how invariants
can provide important information about the nonlinear behavior. In particular, we introduce
the energy-phasestrophy theorem, as a kinetic counterpart of the Charney-Drazin theorem
of quasi-geostrophic fluids.

In chapter 3, we describe the fundamental aspects of subcritical instabilities in plasmas,
based on systems of increasing complexity: from simple examples of a point-mass in a
potential well or a box on a table; to turbulence and instabilities in neutral fluids; and
finally to modern applications in magnetized toroidal fusion plasmas. We draw parallels
between these systems.

In chapter 4, we describe our main contributions to the nonlinear theory of the Berk-
Breizman model, and its application to energetic particle-driven modes in tokamaks and
stellerators. We review the nonlinear theory in the case of a single mode, and extend it, in
particular in regimes of subcritical instabilities and chirping. We obtain analytical expres-
sions for the subcritical threshold and for the nonlinear growth-rate. We investigate chirping
characteristics (velocity, lifetime, period), and apply it to interpret measurements of Alfvén
modes. We clarify the mechanism of relaxation oscillations associated with chirping bursts.
We develop a model combining kinetic and fluid descriptions to explore how one linearly
unstable mode may transfer its energy to another, stable mode, triggering a subcritical in-
stability. Finally, we show that the velocity slope at the boundaries of a BGK phase-space
island formed by a primary instable mode can drive the secondary instability of neighboring
modes, and develop the corresponding analytic theory.

In chapter 5, we investigate nonlinear properties of current-driven ion-acoustic turbulence
in 1D electron-ion plasmas, and in particular the formation and dynamics of PS structures.
We find that in subcritical conditions, velocity-space redistribution and anomalous resis-
tivity are due to PS turbulence, which includes not only holes, but also phase-space jets
(highly anisotropic structures, with an extent in velocity of the order of the electron thermal
velocity).

In chapter 6, we focus on quasi-2D electrostatic turbulence driven by magnetically-
trapped particles in the core of axi-symmetric tokamaks. We taken into account inhomo-
geneities of magnetic field and pressure profiles. We adopt a bounce-averaged gyrokinetic
model, and investigate the impact of electron dissipation, and of energy-structures, on tur-
bulent transport. Moreover, we analyze the statistics of test particle trajectories to clarify
the nature of transport. Finally, we summarize our recent contributions to the control of
zonal flow by heating, and the theory of trapped impurity transport.

Finally, in chapter 7, we summarize the main results developed in this manuscript, and
propose a long-term research project to further our understanding of Vlasov turbulence.
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Chapter 2

Vlasov plasmas

The kinetic theory of ideal gases assumes that the interactions among molecules are
negligible except during collisions. In contrast, hot plasmas are dominated by Coulomb-
type long-range interactions, and require another kinetic description.

Boltzmann developed his namesake equation in 1872 to describe the statistical behavior
of an out-of-equilibrium thermodynamical system. Jeans applied what is now known as the
collisionless Boltzmann equation or the Vlasov equation – depending on the community – to
gravitational problems in the context of galactic dynamics [Jea15]. Later Vlasov proposed
to apply the equation to systems of charged particles, coupling it with Maxwell equations
through charges and currents, and highlighted the importance of long-range interactions:
”a system of charged particles is, in essence, not a gas but a distinctive system coupled
by long-range forces” [Vla38, Vla68]. Depending on the context, the Vlasov equation was
coupled to various equations for self-consistency, yielding systems such as the Vlasov-Poisson,
Vlasov-Maxwell, Vlasov-Newton, Vlasov-Einstein, and Vlasov-Yang-Mills systems. In this
manuscript, we are mainly concerned with the Vlasov-Poisson system as analyzed by Landau
[Lan46], although in this chapter we attempt to keep a formalism general enough to be
applicable to the Vlasov-Maxwell system as well.

Formally, most hot plasmas of interest do not rigorously follow the Vlasov equation
(that is, even notwithstanding the limitations due to the finite number of particles, and to
higher-order correlation effects [Ich68]). They are subject to collisions, sources, sinks (in-
cluding chemical, atomic and nuclear processes) and possibly external forcing. However, in
many cases of interest, it is possible to consider regions of space and time-scales, well sepa-
rated from those of these additional processes, where the Vlasov equation, or a collisionless
Boltzmann equation, is a reasonable approximation or a convenient starting point.

2.1 Foundations of the Vlasov equation

A many-body system can be described by the microscopic distributionN (Γ, t) =
∑
δ(Γ−

Γi), where Γi(t) is the location in phase-space of a particle i, and the sum is taken over all
particles. To simplify the present discussion, we consider a single-species system of N � 1
particles, without external forces, and normalize the total phase-space volume, assumed
constant, to 1. Substituting Newton equations of motion into the partial time derivative
of N yields the Klimontovich-Dupree equation, which involves microscopic electromagnetic
fields.

Since it is unfeasible to reproduce any many-body experiment at the microscopic level,
it is much more efficient to take an ensemble point-of-view, where distributions and fields
are smooth functions of phase-space. At any given time t, the statistical properties are
determined by a N -body distribution function FN in a phase-space of dimension 6N . In-
tegrating FN over 6(N − 1) dimensions yields the one-particle distribution function f1, or
f for concision, which describes the average number of particles within an infinitesimal 6D
phase-space volume. This distribution function is also the normalized ensemble average of
the microscopic distribution N . Similarly, integrating FN over 6(N − 2) dimensions yields
the two-body distribution function f2, which is related to f1 and an ensemble average of a
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product of two microscopic distributions.

Then, in the absence of atomic and nuclear processes, the ensemble average of the
Klimontovich-Dupree equation yields a kinetic equation,

∂f1

∂t
+ Γ̇ · ∂f1

∂Γ
=

df1

dt

∣∣∣∣
coll.

, (2.1)

where Γ̇ involves ensemble-averaged electromagnetic fields obtained from velocity moments
of f1 (via Maxwell equations).

In the following, we write f1 simply as f . The l.h.s. of the kinetic equation, Eq. (2.1),
is the Lagrangian derivative of f , in other words the variation of f following collisionless
particle orbits. Eq. (2.1) is not a closed equation, because the collision term involves expres-
sions of the form 〈NN〉. Under the Coulomb approximation, which forbids any retardation
effect, and which is valid if the thermal velocity is much slower than the speed of light, we
can reduce the latter term as a function of f2. Similarly, the equation which gives the evolu-
tion of f2 involves terms of the form 〈NNN〉, and so on. Altogether, these equations form
a chain called the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy equations
[Bog46, RR60], for which a closure is required. A collision operator is a statistical operator,
which approximates the effects of particle interactions, and provides such closure.

The collision term vanishes in the absence of particle interactions, yielding the Vlasov
equation, which is valid on a time-scale much shorter than a collisional time-scale. The
result that, in the absence of collisions, f is conserved along particle orbits, can be seen as
a direct consequence of Liouville’s theorem, which states that the density in phase-space is
constant along particle orbits.

2.2 From linear to nonlinear theories

We work in a general set of coordinates q = (q1, q2, . . . qn) in n dimensions, and its
canonically conjugated set p = (p1, p2, . . . pn). The Vlasov equation can be written in
Hamiltonian form,

∂f

∂t
− [H, f ]q,p = 0, (2.2)

where the brackets are Poisson brackets,

[H, f ]q,p =
∂H

∂q
· ∂f
∂p
− ∂H

∂p
· ∂f
∂q
. (2.3)

2.2.1 Equilibrium

The equilibrium motion of a charged particle in a 1D plasma with periodic boundary
conditions, or in a tokamak, is integrable 1, and (at least) quasi-periodic. Such n-dimensional
systems can be described by a Hamiltonian Heq(Jk) in a system of n action-angle couples
(α, J), which are obtained from (q, p) by a canonical transformation [Arn78]. Here, we
note Heq(Jk) = Heq(J1, J2, . . . , Jn) for concision. We stress that Heq is a function of all
actions, but not necessarily of the vector J . The Poisson brackets then take a simple form,

[Heq, feq]α,J = −ωeq ·
∂feq

∂α
, (2.4)

where ωeq = ∂Heq/∂J are constant frequencies. The Vlasov equation in the steady state is
then consistent with any feq(Jk).

1. In a tokamak, the equilibrium motion is formally integrable because of the existence of 3 invariants,
but in practice it is only approximately integrable because one of the invariants is expressed as a Taylor
expansion in ρc/R.
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2.2.2 Linear theory

Taking into account turbulent fluctuations of the electromagnetic fields, the motion is not
integrable anymore. However, it is still convenient to use the action-angle couples obtained
from the equilibrium motion. The main advantage is that the linear part of the Vlasov
equation simplifies radically.

We write the Hamiltonian as H = Heq + δH, where δH(αk, Jk) is the perturbation, and
similarly f = feq + δf for the distribution function. The linearized Vlasov equation,

∂δf

∂t
− [Heq, δf ]α,J − [δH, feq]α,J = 0, (2.5)

yields
∂δf

∂t
+ ωeq ·

∂δf

∂α
=

∂δH

∂α
· ∂feq

∂J
. (2.6)

Since the system is quasi-periodic, we can decompose the perturbation as a Fourier series in
each αk. To simplify the calculations in this section, we also apply the Fourier transform in
time,

δH =
∑
n,ω

Ĥn,ωe
ı(n ·α−ωt), (2.7)

and similarly for δf . We have to keep in mind that the Laplace transform should be used
instead [Lan46]. To resolve this issue, we will make the usual ansatz of treating the frequency
as complex, ω = ωr + ıγ and applying the Landau prescription in the dispersion relation.
The Fourier transform of Eq. (2.6) yields a simple expression for the linear response of the
perturbed distribution function,

f̂n,ω = − n · ∂Jfeq

ω − n ·ωeq
Ĥn,ω. (2.8)

Therefore, in action-angle variables, resonances take a simple form,

ω = n ·ωeq. (2.9)

The drawback is that Maxwell equations, which close the system, can take complicated
forms in these variables. However, this is not a major hurdle in general. Formally, Maxwell
equations provide a second relation between Ĥn,ω and f̂n,ω, which, combined with Eq. (2.8),
yields a dispersion relation ω(n) for any given feq(Jk). Solving this dispersion relation yields
the linear frequency ωr and growth-rate γ.

2.2.3 Nonlinear flux

The Vlasov equation in angle-action variables,

∂f

∂t
+

∂H

∂J
· ∂f
∂α
− ∂H

∂α
· ∂f
∂J

= 0, (2.10)

can be put in a conservative form,

∂f

∂t
+

∂

∂α
·
[
∂H

∂J
f

]
− ∂

∂J
·
[
∂H

∂α
f

]
= 0. (2.11)

Averaging over all angles yields,

∂〈f〉
∂t

+
∂

∂J
·Λ = 0. (2.12)

where Λ =
〈
J̇ δf

〉
=
〈
−∂δH∂α δf

〉
is the flux of phase-space density in the directions of the

actions.
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2.2.4 Quasi-linear theory

Substituting the linear solution yields a first estimate of the flux,

ΛL = −
∑
n

ın
∣∣∣Ĥn,ω∣∣∣2 n · ∂Jfeq

ω − n ·ωeq
. (2.13)

Although the latter expression involves the complex ω, using the symmetries between n and
−n yields an expression involving real quantities only,

ΛL =
∑
n

n
∣∣∣Ĥn,ω∣∣∣2 ωr(n)− n ·ωeq

[ωr(n)− n ·ωeq]
2

+ [γ(n)]
2 n · ∂Jfeq. (2.14)

Note that the flux in the direction of any action Jj involves in principle gradients of the
equilibrium distribution function in all directions.

The superscript L emphasizes the fact that no nonlinearity whatsoever is taken into
account in this expression of the flux. Quasi-linear theory [RF61, VVS61, DP61, SG69]
provides a way to take into account some of the nonlinear terms, and the evolution of mean
profiles (〈f〉 = feq + f̂0) and mean fields (〈H〉 = Heq + Ĥ0).

More precisely, we do not make a Fourier transform in time. We treat the time evolution
more carefully. The Fourier transform in α of the Vlasov equation, Eq. (2.10), yields

∂f̂n
∂t

+ ın ·ωeq f̂n − ın · ∂feq

∂J
Ĥn =

+
∑
n′

ı(n− n′) · ∂f̂n
′

∂J
Ĥn−n′ −

∑
n′

ın′ · ∂Ĥn−n
′

∂J
f̂n′ . (2.15)

The RHS corresponds to nonlinear wave-wave and wave-particle interactions. In the
framework of quasilinear theory, the nonlinear wave-wave and wave-particle interactions are
assumed to be weak according to the hypotheses of weak turbulence and of no particle
trapped in electrostatic potential. Thus we neglect the nonlinear interactions of the form
Ĥn−n′ f̂n′ except for n = 0, n′ = 0, or n′ = n. Therefore, for n 6= 0, Eq. (2.15) is
approximated by

∂f̂n
∂t

+ ı ωR,n f̂n = ın · ∂〈f〉
∂J

Ĥn, (2.16)

where

ωR,n(Jk, t) = n ·
(
ωeq +

∂Ĥ0

∂J

)
(2.17)

is the resonant frequency including a Doppler shift induced by mean fields.
Eq. (2.16) is of the form

Lnf̂n = ĝn(Jk, t), (2.18)

where Ln is the linear operator Ln = ∂t+ı ωR,n(Jk, t), and ĝn = ın · ∂J 〈f〉 Ĥn. To solve this
equation, we assume that the evolution of mean fields is much slower than the time-evolution
of f̂n, in order to neglect the time-evolution of ωR,n. For ωR,n = 0, the solution is trivial.
For ωR,n 6= 0, Eq. (2.18) can be solved using Green’s function Gn(t, s) = exp [ı (s− t)ωR,n],
which is such that LnGn = δ(s− t). The solution is

f̂n(Jk, t) =

∫ t

0

eı (s−t)ωR,n ın · ∂〈f〉
∂J

(Jk, s) Ĥn(Jk, s) ds. (2.19)

It turns out that the latter expression is also valid for ωR,n = 0.
Each mode is assumed to have a fixed frequency ωn (obtained from linear theory), and

a time-dependent growth rate γn,

Ĥn(Jk, t) = Ĥn(Jk, s) exp

[∫ t

0

(−iωn + γn(t′)) dt′
]
. (2.20)
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This assumption is debatable because, as we will see on several occasions in the following
chapters, a mode frequency can be significantly modified by nonlinear processes.

For n = 0, Eq. (2.15) recovers the flux equation, Eq. (2.12), with the flux of phase-space
density,

Λ =
∑
n

ınf̂nĤ
∗
n. (2.21)

Substituting Eqs. (2.19) and (2.20) yields

Λ(Jk, t) =
∑
n

∣∣∣Ĥn(Jk, t)
∣∣∣2 n(n · ∂In(t)

∂J

)
, (2.22)

where

In(t) =

∫ t

0

eı(ωR,n−ωn)(s−t) exp

[∫ s

t

γn(t′)dt′
]
〈f〉(Jk, s) ds; (2.23)

Since the RHS phase-mixes for t − s larger than a typical growth time γ−1 and a typical
timescale of relaxation of 〈f〉, we can approximate

∫ s
t
γn(t′)dt′ by (s− t)γn(t) and 〈f〉(Jk, s)

by 〈f〉(Jk, t). With this approximation,

In(t) =
1− e−i(ωR,n−ωn)t−|γn(t)|t

i(ωR,n − ωn) + |γn(t)|
〈f〉(Jk, t); (2.24)

Finally, the time evolution of the averaged distribution function simplifies to

∂〈f〉
∂t

=
∂

∂J
·
[

¯̄DQL ∂〈f〉
∂J

]
, (2.25)

where ¯̄DQL is the quasi-linear diffusion tensor, whose components are

DQL
i,j (Jk, t) =

∑
n

ninj

∣∣∣Ĥn(Jk, t)
∣∣∣2 Im

1− e−ı(ωR,n−ωn)t−|γn(t)|t

(ωR,n − ωn)− ı|γn(t)|
. (2.26)

The main hypotheses of quasi-linear theory are: weak turbulence (small fluctuations of
the profiles compared to the equilibrium), no trapped particles in electrostatic potential
’wells’ (with a very large number of electrostatic waves, the resonance region of each waves
can overlap so that the particle motion becomes stochastic, and the particle can wander in
the velocity phase space [SG69, DII10]) and a small auto-correlation time of the electric field
compared to the evolution time of the profiles [ALP79].

At this point, many authors take the time-asymptotic approximation,

1− e−|γn|te−ı(ωR,n−ωn)t ≈ 1, (2.27)

which yields

DQL
i,j (Jk, t) =

∑
n

ninj

∣∣∣Ĥn(Jk, t)
∣∣∣2 |γn(t)|

(ωR,n − ωn)2 + γn(t)2
. (2.28)

However, for studying the beginning of the saturation phase, which occurs at a time of the
order of 1/γ, the expression Eq. (2.26), as is, can be retained.

Since we are typically interested in density, momentum, or heat fluxes, which are mo-
ments of the phase-space density flux Λ, let us consider Eq. (2.28) in the sense of a dis-
tribution. The diffusion coefficient involves a Cauchy-Lorentz distribution, whose limit as
γn → 0 is

lim
γn→0

|γn|
(ωR,n − ωn)2 + γn(t)2

= πδ(ωR,n − ωn) (2.29)

Note that this is the imaginary part of the Plemelj formula – the real part P/(ωR,n − ωn)
vanishes due to symmetries between n and −n.

Conventionally, this approximation is used in the resonant region, assuming |γn| � |ωn|.
Let us investigate the accuracy of this approximation depending on the parameters. To
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illustrate, let us take the example of a 1D Vlasov plasma, with a bump-on-tail distribution
of electrons, feq = fMeq + fBeq, comprising a maxwellian bulk, and a gaussian beam,

fBeq =
nB

vTB
√

2π
e
− 1

2

(
v−vB
vTB

)2

(2.30)

The resonant velocity vR = ω/k of most unstable Langmuir waves is typically at vB −
vTB , where velocity-gradient is maximum (and v > 0). Therefore, we may assume for this
illustration that vR = vB − vTB . The system size is L = 2π/k1, with periodic boundary
conditions. In this context, the angle action variables are α = k1x and J = mv/k1. The
equilibrium hamiltonian is Heq = k2

1J
2/(2m), and the perturbed one is δH = qφ. The

equilibrium frequency is ωeq = k1v, and the resonant frequency for a mode n of wave number
kn = nk1 is simply ωR,n = knv. Substituting into Eqs. (2.25) and (2.28), and renormalizing
DQL to express diffusion in terms of v instead of J yields

∂〈f〉
∂t

=
∂

∂v

(
DQL ∂〈f〉

∂v

)
, (2.31)

and

DQL(v, t) =
q2

m2

∑
n

k2
n

∣∣∣φ̂n∣∣∣2 |γn|
(knv − ωn)2 + γ2

n

. (2.32)

Then, for example, the rate of change of momentum is obtained as

dp

dt
=

∫
∂〈f〉
∂t

vdv = −
∫
DQL ∂〈f〉

∂v
dv. (2.33)

Let us ignore the contribution of the maxwellian bulk, and focus on the resonance. We
substitute fBeq for 〈f〉. The contribution of a given mode n is then proportional to

I =

∫
|γ|

(kv − ω)2 + γ2

∂fBeq

∂v
dv, (2.34)

where we have dropped the n subscript for concision. In the limit of vanishing growth rate,
I can be approximated as

I0 =
π

k

∂fBeq

∂v

∣∣∣∣∣
v=ω/k

, (2.35)

where vR = ω/k is the resonant velocity. Figure 2.1 shows the value of I/I0 against the
only two remaining parameters in this setup: γ/ω (a), and vTB/vR (b). As expected, the
approximation is increasingly accurate (I/I0 → 1) with decreasing growthrate. However,
for the approximation I = I0 to be accurate, the ratio γ/ω needs to be very small, especially
for low thermal spreads of the beam. Since the growth rate is finite, it is more accurate to
keep when possible the expression Eq. (2.28), or even Eq. (2.26).

We apply and discuss quasilinear theory in the case of energetic particle-driven modes
in Chapter 4, and in the case of trapped particles-driven turbulence in Chapter 6.

2.2.5 Nonlinear theories

Nonlinear hydrodynamic and magneto-hydrodynamic theories provide robust founda-
tions for understanding the long-time behavior of Vlasov plasmas. We can cite the Hasegawa-
Mima model [HM78], which provides a good understanding of wave-wave interactions, and
large-scale structure formation in 2D turbulence in the long-wavelength limit; and the
Hasegawa-Wakatani model [HW83] to take into account viscosity.

Here we discuss nonlinear kinetic effects underlying the Vlasov equation. The literature
yields a wealth of information and interpretations provided by numerical simulations and
experiments. However, it appears that analytic works are sparser. Although at present I
lack the knowledge to provide a comprehensive review, let me cite a few examples, some of
which are developed throughout this manuscript.
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Figure 2.1 – Accuracy of the Dirac δ approximation for the Cauchy-Lorentz distribution in
the quasilinear diffusion coefficient. (a) Nonlinear evolution of normalized bounce frequency.
(b) Snapshots of distribution function.

The linearly damped case with infinitesimal initial perturbation can be considered as
solved. Indeed, Mouhot and Villani used a perturbative approach similar to the Kol-
mogorov–Arnold–Moser (KAM) theory to demonstrate the possibility of fully nonlinear,
long-term relaxation, without entropy increase nor radiation, i.e. nonlinear Landau damp-
ing [MV11, Vil14].

Bernstein, Greene and Kruskal constructed a family of fully nonlinear, nonvanishing
steady-state solutions, then called as BGK waves, where the distribution is a function of
energy [BGK57]. The stability of such solutions remains an open question, as we discuss in
chapter 4 (4.5.2). More generally, Sagdeev developed a method based on a pseudo-potential
to find fully nonlinear solitary waves [Sag66].

In the presence of a local potentiel well which traps ions (and conversely for electrons)
within an eye-shaped separatrix in phase-space (PS), the BGK solution is a PS island, as
introduced in chapter 1. Such PS island can evolve into a self-trapped PS structure in many
situations [Sch86].

For weakly collisional, quiescent plasmas near thermal equilibrium, the dressed test-
particle model [RR60] coupled with the fluctuation-dissipation theorem successfully predicts
the fluctuation spectrum and slow relaxation. In this model, particle discreteness plays an
essential role of producing incoherent fluctuations by Cerenkov emission. Since it is based on
linear response and unperturbed orbits, the dressed test-particle model not only precludes
the presence of collective modes, but it gradually loses its validity as linear marginality
is approached from the stable end, and nonlinear discreteness noise becomes significant.
However, the method can be adapted (see e.g. [DII10]) to the problem of turbulence in
collisionless plasmas far from thermal equilibrium, by carrying one or more modifications
depending on the regime:

— switching from strictly local (in wavenumber space) to de-localized (and possibly
non-local in the sense of non-neighboring scales) emission and absorption,

— accounting for incoherent fluctuations induced by nonlinear coupling, which easily
overcome Cerenkov emission,

— coupling the Vlasov equation with a wave kinetic equation to describe the evolution
of turbulent spectrum in the presence of sources and sinks,

— replacing linear damping or growth rates by nonlinear ones (when available),
— re-normalizing the Landau propagator to account for resonance broadening by back-

ground turbulence [Dup66],
— replacing dressed test particles by self-trapped PS structures in the role of the quasi-

particle.
The latter procedure is discussed in chapter 7. It results in relaxation described by an
operator with the same structure as Lenard-Balescu.
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2.3 Invariants

In general, nonlinear theories take advantage of invariants and balance equations. Several
invariants can be identified by noting the following general property. Let u(Γ, t) and v(Γ, t)
be two arbitrary functions, analytic in a phase-space Γ ≡ (q,p), where either or both of
u and v satisfy either periodic or vanishing boundary conditions. And let w(u, t) be an
arbitrary function of u and time t. Then, integration by part shows that∫

[u, v]Γ w(u, t) dΓ = 0, (2.36)

where integration is over the whole phase-space volume. Substituting u = f and v = h and
combining with Vlasov equation yields∫

w(f, t)
∂f

∂t
dΓ = 0. (2.37)

Similarly, substituting u = h and v = f and combining with Vlasov equation yields∫
w(h, t)

∂f

∂t
dΓ = 0. (2.38)

This property can be used to find a series of invariants. Let us cite a few examples.
— Choosing w = 1 yields a first invariant: total particle number

∫
fdΓ.

— Choosing w = h yields a relationship between total kinetic energy and the work
done on particles by electromagnetic forces, which can be combined with Maxwell
equations to find a second invariant: total energy.

— Choosing w = 1 + log f yields a third invariant: total entropy
∫
f log fdΓ, which we

describe in subsection 2.3.1.
— Choosing w = f yields a fourth invariant: the quantity

∫
f2dΓ, which we discuss in

subsection 2.3.2.
These invariants provide a good basis for developing nonlinear theories. For example, O’Neil
equated the rate of change of kinetic energy to the rate of change of potential energy to
calculate the nonlinear evolution of the amplitude of a single mode in the bump-on-tail
instability [O’N65].

However, as stated in the introduction of this chapter, in hot plasma physics, we are often
faced with open systems and finite collision frequencies. In such systems, some or all of the
conservation equations associated with these invariants must be replaced by corresponding
balance equations. Nevertheless, balance equations can also yield useful nonlinear theories.
For example, a power balance was used to successfully estimate the amplitude of saturation
of a single mode in the bump-on-tail instability with external dissipation and collisions
[BB90a], as we will describe in chapter 4 (4.3.1).

2.3.1 Entropy

Although the Vlasov equation conserves total entropy
∫
f log fdΓ, this is not true for

real plasmas nor numerical simulations of Vlasov plasmas. Real plasmas are many-body
systems with a finite number of particles, which introduces irreversible heating. Numerical
simulations of the Vlasov equation are enabled by some level of discretization, truncation,
or filtering, which also yields entropy production. Entropy is also produced by irreversible
resonant quasi-linear diffusion, which is coarse-grained averaged and requires chaos.

Entropy production is practically irreducible in kinetic numerical simulations of collision-
less turbulence. In Ref. [Les16], I demonstrate that the irreducible part of spurious entropy
can amount to a large fraction of total entropy. The argument is based on a simulation
of collisionless ion-acoustic turbulence, where a significant error (15%) in entropy conser-
vation is found, independently of the numerical method, scheme, or number of grid points.
A collision operator solves the issue, but only for collision frequencies so large that they
significantly modify the macroscopic behavior.
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2.3.2 Phasestrophy

Self-trapped structures in phase-space resemble vortices in 2D ideal fluid turbulence
[Mcw84]. This reflects similarities between 2D ideal fluids and 1D Vlasov plasmas. They
are both 2D Hamiltonian systems, which conserve phase-space density. They both satisfy
a circulation theorem [LB67]. Furthermore, the evolution of each system is constrained by
two invariants: energy and enstrophy (mean square vorticity) in the fluid case, wave energy
and mean square distribution function in the Vlasov case.

Based on this analogy, Diamond coined the term phasestrophy [DKL11, DII10], for phase-
space enstrophy 2. In angle-action formalism, the phasestrophy writes

Ψ ≡
∫ 〈

f̃2
〉

dJ , (2.39)

where f̃ ≡ f − 〈f〉, angle brackets denote the average over all angles, and the integration is
over all action space. The aim is to measure self-trapped PS structures.

Conservation of
∫
f2dΓ yields

d

dt

∫ 〈
f2
〉
dJ =

d

dt

∫
〈f〉2dJ +

dΨ

dt
= 0. (2.40)

The evolution of phasestrophy follows

dΨ

dt
= −

∫
∂〈f〉2

∂t
dJ (2.41)

= −2

∫
〈f〉∂〈f〉

∂t
dJ , (2.42)

which links phasestrophy and relaxation. Substituting Eq. (2.12) yields

dΨ

dt
= 2

∫
〈f〉 ∂

∂J
·Λ dJ . (2.43)

We recall that Λ =
〈
J̇ δf

〉
=
〈
J̇ f̃
〉

is the flux of phase-space density in the directions

of the actions. Provided vanishing Λ〈f〉 or periodic boundary conditions in the actions,
integration by part yields an exact expression of phasestrophy production,

dΨ

dt
= −2

∫
Λ · ∂〈f〉

∂J
dJ . (2.44)

The same relations after the substitution (〈f〉, f̃)→ (feq, δf), including in the definition of
phasestrophy, are exactly satisfied as well.

Note that phasestrophy is also related to fluctuation entropy. Indeed, if fluctuations are
small enough, we can use the relations

〈f log f〉 = 〈f〉 log 〈f〉 +

〈
f̃2
〉

2〈f〉
+ O

(
f̃3

〈f〉2

)
(2.45)

= feq log feq +

〈
δf2
〉

2feq
+ O

(
δf3

f2
eq

)
. (2.46)

2.3.3 The Energy-Phasestrophy relation

In Ref. [LD13], we propose a link between phasestrophy production and wave power,
which I summarize here.

The parallel between 2D ideal fluids and 1D Vlasov plasmas suggests that we can use
common strategies, based on solution of the two coupled energy and enstrophy (fluid) or

2. In the neologism phasestrophy, ’phase’ refers to phase-space, and ’strophy’ is greek for ’rotation’.
However, in some papers the ’s’ is missing, and the word ’phasetrophy’ is used.
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phasestrophy and wave energy (plasma) equations, respectively. In the case of the 2D Navier-
Stokes equations, this lead to the theoretical prediction of the two inertial (or self-similar)
ranges in the spectrum of steady-state turbulence [Kol41b, Kol41a, Kra67].

The expression of phasestrophy production Eq. (2.44) is straightforwardly generalized
to include a collision operator, and specialized to 1D plasmas of length L = 2π/k1 with
periodic boundary conditions and electrostatic fluctuations. In this case, the angle action
variables for each species s are α = k1x and J = msv/k1. The perturbed hamiltonian is
δH = qsφ. Therefore, Λs = qsEf̃s/k1. Substituting into Eq. (2.44) yields

dΨs

dt
= −2

qs
ms

∫ ∞
−∞

d〈fs〉
dv

〈
E f̃s

〉
dv − γcol

Ψ Ψs, (2.47)

where γcol
Ψ is the decay rate of phasestrophy due to collisions, which we write explicitly in

chapter 4 (4.3.2).
The wave energy equation is

dW

dt
= −2

∑
s

usqs

∫ 〈
E f̃s

〉
dv, (2.48)

where W = n0q
2
〈
E2
〉
/(mω2

p) is the total wave energy, including sloshing energy. Here, us
is roughly the mean velocity of dominant phase-space structures, and can be obtained from
nonlinear calculation of particle orbits, and depends on the specific setup. We assume that
〈fs〉 has a constant slope in the velocity-range spanned by evolving phase-space structures.
Then, phasestrophy evolution is linked to the wave energy evolution, by

dW

dt
+ 2γdW =

∑
s

msus
dv〈fs〉

(
γcol

Ψ +
d

dt

)
Ψs. (2.49)

Hereafter, we call this as the energy-phasestrophy relation. In parallel with quasi-geostrophic
fluids, this relation is the kinetic counterpart of the Charney-Drazin theorem on the non-
acceleration of zonal mean flows by steady conservative waves [CD61].

In this manuscript, we apply this relation to the Berk-Breizman model in subsection 4.3.2
by removing the subscript s and adding prescribed wave dissipation, and to current-driven
ion-acoustic turbulence in section 5.3 by taking γd = νa = νf = νd = 0.
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Chapter 3

Subcritical instabilities

In neutral fluids and plasmas, the analysis of perturbations often starts with an inventory
of linearly unstable modes. Then, the nonlinear steady-state is analyzed or predicted based
on these linear modes. A crude analogy would be to base the study of a chair based on how it
responds to infinitesimally small perturbations. One would conclude that the chair is stable
to all frequencies, and cannot fall down. Of course, a chair falls down if subjected to finite-
amplitude perturbations. Similarly, waves and wave-like structures in neutral fluids and
plasmas can be triggered even though they are linearly stable. These subcritical instabilities
are dormant unless their amplitude is pushed above some threshold. Investigating their
onset conditions requires nonlinear calculations. Subcritical instabilities are ubiquitous in
neutral fluids and plasmas. In plasmas, subcritical instabilities have been investigated based
on analytical models and numerical simulations since the 1960s. More recently, they have
been measured in laboratory and space plasmas, albeit not always directly. The topic could
benefit from the much longer and richer history of subcritical instability and transition
to subcritical turbulence in neutral fluids. In this chapter, which is based on a tutorial
we published in Japanese only [LSS16], and our more recent review paper [LMSS18], we
describe the fundamental aspects of subcritical instabilities in plasmas, based on systems of
increasing complexity: from simple examples of a point-mass in a potential well or a box on
a table; to turbulence and instabilities in neutral fluids; and finally to modern applications
in magnetized toroidal fusion plasmas.

3.1 Introduction

Subcritical instabilities are nonlinear instabilities that occur even as the system is linearly
stable, but with a threshold in the amplitude of initial perturbations. Subcritical instabil-
ities stay dormant until they are brought over their threshold by some interaction, drive,
forcing, or even thermal noise or other naturally occurring perturbations if the threshold is
low enough. Subcritical instabilities are ubiquitous in neutral fluids and in plasmas. They
are of great interest for their essential impact on the onset of turbulence, structure forma-
tion, anomalous resistivity, and potentially, turbulent transport. Indeed, the widespread
use of linear theory, which subcritical instabilities circumvent, as foundation of nonlinear
(or quasi-linear) theories is a major caveat in the conventional analysis of wave-like per-
turbations. The growth of subcritical instabilities is a nonlinear process, which is often
independent of their linear decay rate. They open a new channel for tapping free energy.

The physical mechanisms of nonlinear growth are multiple, but subcritical instabilities
share common features in terms of bifurcation, and in terms of their macroscopic impact,
which are typically equivalent or larger than the impacts of linearly unstable perturbations.
The growth mechanisms are well documented, and theories often yield accurate analytic
formulas for their threshold in amplitude and for their nonlinear growth rate.

Direct measurements in neutral fluid experiments have confirmed the existence and im-
plications of subcritical instabilities. In plasmas, fluid-like subcritical instabilities are well
documented in laboratory experiments. However, high-temperature plasmas feature other
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kinds of instabilities, which involve non-gaussian distribution functions. Direct measure-
ments of these kinetic subcritical instabilities are more difficult, because they are often
based on short-lived structures, with small-scales in both real space and velocity space (but
which altogether yield macroscopic, long-lived impacts on magneto-hydrodynamics). The
development of new techniques to obtain more accurate measurements of phase-space density
are ongoing.

Subcritical instabilities can be approached from various standpoints. Large parts of the
literature focus on the mechanisms by which a finite-amplitude seed perturbation can grow
nonlinearly, or how the nonlinear structure sustains itself. Several scenarios for the onset
of subcritical instabilities or the subcritical transition to turbulence have been uncovered.
In some cases, infinitesimal perturbations or noise can grow transiently, either into a finite-
amplitude seed, or directly into a self-sustained nonlinear structure. In other cases, large
enough seeds can be formed by external forcing, or by an avalanche process originating from
a linearly unstable region (which can be a region in spacetime). Dauchot and Manneville
described the concept of subcritical instability from the point-of-view of local versus global
analysis of stability [DP97]. Based on a simplified model of Navier-Stokes turbulence, they
showed that stability conditions can only be determined from the knowledge of all reachable
attraction basins rather than from the stability of the local basin. Yoshizawa, Itoh and Itoh
described the topic of subcritical instabilities based on examples of plasma instability, as
can be found in their textbook [YII02a]. Nonmodal stability theory, as reviewed by Schmid
[Sch07], has been successfully applied to analyze nonlinear stability in a wide range of fluid
and plasma contexts, including space-and-time-dependent flows in complex geometries.

Hereafter, let us describe basic concepts of subcritical instability, starting from the sim-
plest example of a point mass in a potential well, then building up to increasingly complex
physical contexts: the Kelvin-Helmholtz instability, quasi-2D and pipe flows, 1D plasma,
drift-waves in magnetized plasmas, and finally strong electro-magnetic bursts driven by en-
ergetic particles in magnetized toroidal plasmas. We do not attempt any comprehensive
review of the literature on subcritical instabilities and subcritical turbulence, but rather
propose an introduction of the topic by selecting a few paradigmatic examples. The aims
are two-fold: 1. to allow the reader to get clear physical pictures of some of the various mech-
anisms by which subcritical instability can occur, and 2. to point out interesting analogies
between neutral fluids and plasmas, which may be exploited to push the research further.

3.2 Concepts of subcritical instability

Let us set up a simple model of Newtonian mechanics to illustrate by analogy the concept
of subcritical instability.

Consider a point mass of radial coordinate r resting on a surface of altitude φ(r), or
equivalently, a positively charged particle in an electric potential φ(r), where

φ(r) = −ar2 − br4 + cr6. (3.1)

Here, a, b and c are constant input parameters which characterize the shape of the potential.
Let us assume that the point mass or particle is initially at r = 0, and is ultimately bounded
to a finite r region of space, which is imposed by the condition c > 0. In this section we
choose arbitrarily c = 0.1. We consider two qualitatively different cases for b, namely b = 1
and b = 0. As we argue hereafter, these two cases represent systems which can (b = 1) or
cannot (b = 0) feature subcritical instabilities.

Fig. 3.1(a) shows the potential φ for a = 1.5, b = 0 and c = 0.1, and a point mass
or charged particle after it was perturbed by an external push towards positive r. This
corresponds to the conventional, supercritical instability. We assume that there is some form
of energy dissipation. Any initial perturbation in r will grow linearly at first, then r will
oscillate around the stable equilibrium, before reaching the latter equilibrium in the time-
asymptotic steady-state. In contrast, Fig. 3.1(b) shows the potential φ for a = −2, b = 1 and
c = 0.1, which is linearly stable, but nonlinearly unstable. If the initial perturbation is small
enough, the point mass or particle will oscillate around r = 0 with amplitude decreasing
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Figure 3.1 – Cartoon of the concept of supercritical and subcritical instabilities. The solid
curve is a fixed potential. (a) Supercritical case, a = 1.5, b = 0 and c = 0.1. The equilibrium
r = 0 is unstable. (b) Subcritical case, a = −2, b = 1 and c = 0.1. The equilibrium r = 0
is stable to small perturbations (circle and arrow at r = 0.5), but unstable to perturbations
with an amplitude above a certain threshold (circle and arrow at r = 1.5).
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Figure 3.2 – Potential φ(r) for various values of a. We recall that a is proportional to the
square of the linear growth rate. (a) Supercritical case, b = 0. (b) Subcritical case, b = 1.
Two points are shown by arrows: point A is the potential barrier at r = rmin, and point B
is the saturated value for the subcritical instability, r = rmax.

in time, until it rests back in its original location. If the push is large enough, on the
contrary, the point mass or particle will overcome the potential barrier and reach an other
potential well. Doing so, it will extract free energy that would not be available if it did not
overcome the potential barrier. This illustrates qualitatively the basic concept of subcritical
instability. Next, we perform a quantitative analysis.

Fig. 3.2(a) and (b) show the potential φ for the two cases b = 0 and b = 1, and for
various values of a (c = 0.1 as before). In both cases, in the neighborhood of r = 0, the
potential is strictly concave for any a > 0, and strictly convex for any a < 0. The equation
of motion is

r̈ ≡ d2r

dt2
= −Kdφ

dr
, (3.2)

where K is a positive constant. The linearized equation of motion is r̈ = 2aKr. Therefore,
a linear analysis informs us that the equilibrium r = 0 is stable for a < 0, unstable for a > 0,
and marginal for a = 0. In other words, the linear instability threshold is simply a = 0. For
a > 0, the linear growth rate is proportional to

√
a.

A nonlinear analysis, in contrast, yields a much different story. The equilibrium states
are given by ṙ = 0 and r such that dφ/dr = 0. The slope of the potential is

dφ

dr
= −2r (a+ 2b r2 − 3c r4), (3.3)

which cancels out for r = 0 and 0, 2 or 4 other real solutions, depending on the value of b
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Figure 3.3 – Bifurcation diagram, which yields the nonlinear stability. The solid curves are
the stable equilibria |r| = 0 and |r| = rmax, which correspond to the saturation amplitude.
The dashed curves are the unstable equilibria |r| = 0 and |r| = rmin, which correspond to
the threshold amplitude. (a) Supercritical system, b = 0. (a) Subcritical system, b = 1.
The region of subcritical instability is shown by hashes. The same points A and B as in
Fig. 3.2 are shown by arrows in this figure as well.

and b2 + 3ac. Let us focus on the case b ≥ 0.

1. If b2 + 3ac ≤ 0 there is no other real solution than r = 0.

2. If 0 < b2 + 3ac < b2 (which is only relevant for ac < 0), there are four real solutions
other than r = 0, which are r = ±rmin and r = ±rmax, where

rmin =

(
b−
√
b2 + 3ac

3c

)1/2

and rmax =

(
b+
√
b2 + 3ac

3c

)1/2

. (3.4)

The second derivative of the potential at these solutions is, straightforwardly,

φ′′min = 8
(
a + b r2

min

)
and φ′′max = 8

(
a + b r2

max

)
. (3.5)

Therefore, with our initial assumption of c > 0, φ′′min < 0 and φ′′max > 0. This proves
that r = ±rmin are unstable equilibria, while r = ±rmax are stable equilibria, as can
be seen from the plot of φ in Fig. 3.2(b).

3. Finally, if b2 + 3ac ≥ b2, there are two real solutions other than r = 0, which are
r = ±rmax.

Let us summarize how this translates in terms of stability for two qualitatively different
systems: b = 0 and b = 1. For b = 0, if a ≤ 0 the only equilibrium r = 0 is stable. If
a > 0, the equilibrium r = 0 is unstable, and there are two attraction basins, r = −rmax and
r = rmax, which are stable. This corresponds to the conventional linear instability followed
by nonlinear saturation, where, in the analogy, r would be the amplitude of fluctuation.

For b = 1, if a > 0, the situation is qualitatively similar to the case b = 0, a > 0. We
recover the same two attraction basins, r = ±rmax, which are easily reached because φ is
concave at r = 0. However, if −1/(3c) < a < 0 there are three stable equilibria, r = −rmax,
r = 0, and r = rmax. Starting from the location r = 0, the point mass or the particle can
reach one of the two other attraction basins, if it overcomes the potential barrier peaking at
φ(rmin). This corresponds to the subcritical instability.

From the latter analysis, one can draw the conditions for instability in bifurcation di-
agrams such as Fig. 3.3(a) for the system with b = 0 and Fig. 3.3(b) for the system with
b = 1. In terms of bifurcation theory, the system with b = 0 features a supercritical Hopf
bifurcation, and the system with b = 1 features a subcritical Hopf bifurcation (at a = 0) as
well as a fold bifurcation (at a = −1/(3c)). The unstable equilibria are also thresholds that
must be reached to trigger the instability. The stable equilibria are also the saturated am-
plitudes. As we will see, the ”finger” shape in Fig. 3.3(b) is typical of subcritical instabilities
in neutral fluids and in plasmas. Note that while linear stability is given by a condition in a
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Figure 3.4 – Case of a box on a plane with height h = 4 l. (a) Potential energy (normalized).
Inset: cartoon of the setup, where the box is tilted by an angle θ. (b) Corresponding
bifurcation diagram. The dashed curve is the unstable equilibrium |θ| = tan−1(l/h), which
correspond to the threshold amplitude. The region of subcritical instability is shown by
hashes: it spans the whole range of finite values of the control parameter h/l.

1D parameter space (a), nonlinear stability is given by a condition in a 2D parameter space
(a, r).

These subcritical bifurcations have crucial implications, not only for linear theories, but
also on nonlinear theories that are based on an expansion in the perturbation amplitude.
Indeed, in the system b = 0 where subcritical instabilities are absent, an argument of near-
marginality is often made: the system naturally remains near linear marginality a = 0,
because if the conditions overcome linear marginality (a > 0), the instability will tend to
counteract the source of instability, bringing the system back to a = 0. Now, in the system
b = 1, the same argument does not stand, for two reasons: 1. near marginality a = 0, the

perturbation has a finite amplitude |r| = [2/(3c)]
1/2

; and 2. if the conditions overcome
linear marginality, the instability will counteract the source, bringing a not only back to
a = 0 but even to a finite negative value of the order of a = −1/(3c), which may be far from
marginal stability.

Finally, let us mention the existence of a third paradigm. A system can feature subcritical
instabilities, even if there is no linear instabilities for any finite value of the control parameter.
As an example, we can consider a solid box placed on a plane surface (an idealization of
a cup on a table). The box has a square base of length l, and a height h. Fig. 3.4(a)
shows the box tilted by an angle θ, and the potential energy, which is then proportional
to sin θ + h/l cos θ. As the parameter h/l increases, the potential well at θ = 0 becomes
shallower and narrower, but never vanishes. Hence the equilibrium θ = 0 is always linearly
stable. However a subcritical instability can be triggered if the perturbation overcomes a
threshold θc such that tan θc = l/h. Fig. 3.4(b) shows the resulting bifurcation diagram.
Here there is no subcritical Hopf bifurcation (or one could argue that it has been pushed
towards infinity), and the subcritical instability spans the whole parameter space.

3.3 Subcritical instabilities in neutral fluids

In fluid dynamics, the concept of subcritical instability is not to be confused with that
of subcritical flow, which is defined as a flow with Froude number less than 1 [Cha99].
To my knowledge, subcritical flows and subcritical instabilities are unrelated. Subcritical
turbulence, in particular in the presence of sheared flow, has a long history of experimental
[Cou90, DW+28, Col65, TA92], numerical [LJ91], and theoretical research as summarized
in [TTRD93]. As entry points, we refer to a textbook by Drazin and Reid [DR81], partial
reviews of transition to turbulence by Grossman [Gro00] and Manneville [Man15], and a
review of the history of this topic in chapter 2 of Borrero’s PhD thesis [Bor14]. In this
section, rather than attempting another review, we describe a few examples to introduce
the reader to the relevant concepts, which find counterparts or analogies in plasma flows.
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Firstly, the Kelvin-Helmholtz instability in 2D geometry (in a Hele-Shaw cell) provides a
clear example of subcritical bifurcation. Secondly, the literature on Couette flow, Poiseuille
flow, and flat plate laminar boundary layer, provides a relatively simple example of physical
mechanisms of growth of a finite amplitude perturbation.

3.3.1 Experimental measurement of subcritical bifurcation

Meignin et al. observed and characterized with great clarity a subcritical instability in
experiments of the Kelvin-Helmholtz instability in a Hele-Shaw cell [MGRQR03]. Fig. 3.5
describes the experimental setup. Two fluids (Nitrogen gas and oil here) are injected at
the same pressure into a thin space between two parallel glass plates. The two fluids flow
out at atmospheric pressure. Here, the gas to liquid density ratio is of the order of 10−3.
The gas velocity Ug is used as a control parameter, which corresponds to the drive of the
instability. A perturbation is applied via a periodic modulation of the oil injection pressure
(keeping the pressure of both fluids equal on average). This leads to an observed sine wave
(at the inlet) of vertical amplitude A0 (”forcing amplitude”). Fig. 3.6 shows the observation
in three typical cases: damping (stable), marginal (steady), and growing (unstable).

For large enough values of gas velocity, they found a critical forcing amplitude below
which the perturbation is damped, but above which the perturbation grows until it saturates
to a larger value. This threshold in forcing amplitude is shown by open circles in Fig. 3.7.
The saturation value is shown by filled circles. From this figure, one concludes that linear
instability is given by a simple condition Ug > Uc,L where Uc,L ≈ 4.63m.s−1. In contrast,
nonlinear instability extends to a larger domain, given by two conditions, Ug > Uc,NL where
Uc,NL ≈ 4.2m.s−1, and A0 > Ac,NL(Ug). The unstable region is marked by up arrows in the
figure. The part of the unstable region where Ug < Uc,L is the region of subcritical instability.
Note the striking similarity with Fig. 3.3(b). A similar diagram is found in a wide range of
fluid applications, including increasingly complex systems such as the Taylor–Couette cell of
polymer solutions [GS98]. A specific introduction for subcritical instabilities of visco-elastic
polymers flows is available [MvS07].

In the Kelvin-Helmholtz case, as can be seen in Fig. 3.7, the subcritical region extends
by 9% (in terms of Ug) into the linearly stable region. In the case of plane Poiseuille flow,
the subcritical region extends by 50% in terms of the Reynolds number into the linearly
stable region (linear threshold Rc ≈ 5772, nonlinear threshold Rnl ≈ 2900 [Man04]). In the
case of hot plasmas, we will see that this extension can be even more dramatic.

The existence of a subcritical instability in the case of two layers of immiscible, inviscid
and incompressible fluids in relative motion, which is an ideal limit of the latter experiment,
was predicted qualitatively by Weissman [Wei79]. The key point is the existence of nonlinear
solutions. In addition, he has shown that the nonlinear stability of an initial perturbation
is sensitive to the form of the initial perturbation. We will be able to make many similar
conclusions for hot plasmas.

Finally, subcritical turbulence can be strong enough to hide underlying linear instabili-
ties. This is the case for Hagen-Poiseuille flow in slightly curved pipes [KBS+15].

Figure 3.5 – Reproduced from [MGRQR03].
Sketch of the experimental setup to study
the subcritical Kelvin-Helmholtz instability
in a Hele-Shaw cell. Nitrogen gas and silicon
oil are injected from the left into a thin cell
between two parallel glass plates. Gravity
is shown by an arrow marked g. An ini-
tial sine perturbation of the interface is im-
posed at the end of a splitter tongue where
fluids meet (left), and observed downstream
(right).
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Figure 3.6 – Reproduced from [MGRQR03].
Experimental results are shown. As the
wave propagates, its amplitude is either
damped (a), or constant (b), or ampli-
fied (c), depending on the initial amplitude
and on the injection velocity. When the
wave is amplified, it eventually saturates to
a cnoidal-like wave as shown in a picture
taken far downstream (d).

Figure 3.7 – Reproduced from [MGRQR03].
Nonlinear stability diagram in the space of
forcing amplitude A0 against gas velocity
Ug (instability drive). Open circles show
the amplitude threshold for subcritical in-
stability. Filled circles show the saturation
amplitude. The curves are fits of the ex-
perimental results by a reduced theoretical
model. See the reference for details.

3.3.2 Physical mechanism of subcritical growth in neutral fluids

The physical mechanism of subcritical growth of a finite amplitude perturbation, can
take various forms depending on the system.

Let us first focus on two classical flows: plane Couette flow, and plane Poiseuille flow.
The setups are illustrated in Fig. 3.8. The plane Couette flow is the laminar flow of a viscous
fluid between two parallel plates, one moving with respect to the other. The plane Poiseuille
flow, on the other hand, can be seen as a limiting case of the plane Couette flow, where the
boundary plates are not moving. The flow is then driven by a pressure gradient imposed
between the inlet and the outlet.

In the case of planar Poiseuille flow, Henningson and Alfredsson proposed a mechanism
called as ”growth by destabilization” [HA87], based on a more general suggestion by Gad-
el-Hak [GEHBR81]. In the growth by destabilization mechanism, a spot of finite amplitude
fluctuations acts as a local obstruction, modifying the velocity profile in the vicinity of the
spot. The modified profile is linearly unstable, and allows the perturbation to grow. The
modified profile was later confirmed experimentally by Klingmann and Alfredsson in the
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Figure 3.8 – (a) Cartoon of the plane Couette flow setup. A fluid is contained between two
plates, both normal to the y-axis. The bottom plate is fixed, as illustrated by hashes. The
upper plate is moving at a given velocity u0. (b) Cartoon of the plane Poiseuille flow setup.
A fluid is contained between two plates, both normal to the y-axis, and both fixed. The
pressure is higher at the inlet than at the outlet.
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case of planar Poiseuille flow [KA90], as well as by Dauchot and Daviaud [DD95] in the case
of the plane-parallel Couette flow, suggesting the validity of the mechanism of growth by
destabilization.

To give an example of another mechanism, let us now focus on the flow in the laminar
boundary layer near a flat plate. It was shown experimentally [SLC01] and explained theo-
retically [SdS03] how a convecting vortex moving at a fixed distance from the flat plate can
drive instabilities in the free streaming flow, when its translational velocity is a fraction of
the free-stream velocity [LSC04]. This instability can grow either upstream or downstream
from the vortex, depending on the relative signs of vorticity between the mean field and the
vortex structure. This suggests an other mechanism of subcritical instability. Suppose that
in some region of a flow, a linear instability generates a vortex. The vortex, which is an
extremely coherent structure, may then travel without much distortion to a linearly stable
region of the flow and in turn drive instabilities by extracting further energy from the mean
flow. This latter mechanism of vortex-induced subcritical instability will be particularly
important in plasma, where we will meet a kinetic counter-part of fluid vortices.

In wall-bounded shear flows, subcritical transition to turbulence has been quite thor-
oughly investigated [HLJ93, Man08]. The whole process, called lift-up, is now fairly well
understood, from the first local formation of finite-amplitude perturbation, to its evolu-
tion toward 3-dimensional structures, and the self-sustaining mechanism of these struc-
tures [Wal97, WW05]. Here, let us summarize the self-sustaining mechanism, assuming
that the equilibrium fluid velocity is along the x axis, and is sheared in the y direc-
tion, u = ux(y)x̂. The mechanism involves three main elements. 1. stream-aligned rolls
δu = uy(y, z)ŷ + uz(y, z)ẑ sustain perturbations in the z direction of the parallel (stream-
wise) fluid velocity, δux(y, z), called as streaks. 2. The latter streaks are linearly instable
and lead to a 3D perturbation of the form exp ıαxδu(y, z). 3. In the nonlinear phase of this
instability, the latter 3D perturbation self-interacts via convective acceleration, and transfer
its energy to the original stream-aligned rolls, closing the cycle. A similar mechanism was
later found in pipe flow [FE03, WK04, HvDW+04].

It should be noted that subcritical transition to turbulence often feature co-existing
laminar and turbulent regions. Localized turbulence may or may not expand globally de-
pending on the parameters. Pomeau proposed the concept of spatio-temporal intermittency
to interpret these observations [Pom86].

Subcritical instabilities are not limited to laboratory experiments. They have been pro-
posed for shear instabilities of wave-driven, alongshore currents, first in an idealized situation
[SVK97], and then for realistic configuration reproducing US coastlines, and including effects
of eddy viscosity and bottom friction [DIC04].

3.4 Subcritical instabilities in plasmas

We propose to categorize subcritical instabilities in plasmas as either fluid or kinetic. On
the one hand, in collisional plasmas, the particle distribution can be adequately described
by fluid equations that give the evolution of its first few velocity moments. As expected,
these fluid-like plasmas feature subcritical instabilities, which we refer to as fluid subcrit-
ical instabilities, with many similarities with the hydrodynamic instabilities discussed in
the previous section. On the other hand, in hot plasmas, collisions can be so rare that
the particle distribution readily explores the degrees of freedom in the energy (or velocity)
space. This often leads to strong resonances between particles and waves, nonlinear particle
trapping, and the spontaneous formation of non-wavelike fluctuations in the particle distri-
butions. These nonlinear kinetic processes give birth to a whole different class of subcritical
instabilities, which resemble fluid subcritical instabilities (in terms e.g. of stability diagram
with a threshold that is sensitive to the form of the initial perturbation), but with physical
mechanisms that involve and couple both the real space and the energy space. That said,
hot plasmas still retain a fluid-like character at the lowest order. Therefore, we can expect
various combinations of fluid and kinetic subcritical instabilities.
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3.4.1 Fluid-like subcritical instabilities in plasmas

The linear theory of drift-waves is well-known. In the presence of magnetic shear, drift-
waves are generally linearly unstable in toroidal geometry (thanks to the magnetic cur-
vature), but they are linearly stable in slab geometry. In contrast, 2D fluid simulations of
electrostatic drift-wave turbulence in sheared slab geometry, by Biskamp and Walter, showed
that finite turbulence levels can be maintained even if the linear growth rates of modes are
negative, due to a nonlinear suppression of shear damping [BW85]. The mechanism seems
to involve bidirectional spectral energy transfer. Later, Scott found similar results for the
collisional counterpart of the drift wave [Sco90]. Drake et al. clarified the nonlinear drive
mechanism based on fluid simulations of a 3D model, still in sheared slab geometry [DZB95].
The persistence of turbulence results from a nonlinear amplification of radial flows. Note
that this mechanism is self-consistently described by a fluid-like (MHD) model. Similarly
with neutral fluids, subcritical turbulence can be strong enough to significantly affect the
saturated state even in the presence of supercritical instabilities [BTF00, TBG06].

Highcock et al. developed further the theory of subcritical turbulence in the presence
of shear flow, based on local gyrokinetic simulations, in the case of zero magnetic shear
[HBS+10, HBP+11]. In that case, the plasma is linearly stable for any finite value of flow
shear, but subcritical turbulence can be sustained except for a non-trivial region in parameter
space. This regime of quenched turbulence was mapped based on ∼ 1500 nonlinear simula-
tions [HSC+12]. It was shown that, though linear theory cannot predict nonlinear stability
in general, in some limits it might help reduce the extent of the parameter space that needs
to be scanned. Van Wyk et al. argued that subcritical Ion-Temperature-Gradient turbulence
is experimentally-relevant for the MAST spherical Tokamak [VWHS+16, vWHF+17]. It is
very important to note that this self-sustained turbulence requires an initial perturbation
amplitude close to the nonlinear saturation amplitude.

On the other hand, Yagi et al. obtained subcritical instabilities from low initial ampli-
tudes in fluid simulations [YII+95]. They performed 2D simulations of electrostatic current-
diffusive interchange turbulence, in a simplified geometry of sheared magnetic field with
average bad curvature, including both ion and electron nonlinearities. They observed, not
only self-sustained subcritical turbulence due to current diffusion, as predicted by analytic
theory [IIF92], but also subcritical growth from initial amplitudes orders-of-magnitude lower
than the nonlinear saturation level. Later, Itoh et al. developed an analytical theory for
this subcritical instability, which is in comprehensive agreement with numerical simulations
[IIYF96]. In particular, they recovered a subcritical bifurcation similar to that of Fig. 3.3.

Another typical example in toroidal devices, is the formation of self-sustaining magnetic
islands (the neoclassical tearing mode) [CHK86]. The interested reader is encouraged to
explore the relevant literature.

Subcritical instabilities are also found in astrophysical contexts. For example, in radially
stratified disks with shear flow, incompressive short-wavelength perturbations can only be
sustained nonlinearly [JG05].

Recently, nonlinear non-modal methods of analysis have been developed to predict tur-
bulence, transport and turbulence onset in subcritical cases [FC15, PMT17]. In particular,
a wave-like advecting solution was found as an attractor at the threshold amplitude, which
promises to clarify the mechanism by which subcritical turbulence is sustained [MPT18].

3.4.2 Kinetic subcritical instabilities

Although fluid-like subcritical instabilities can include kinetic effects, in this section we
address subcritical instabilities, which are essentially kinetic in the sense that their growth
mechanism relies on nonlinear wave-particle interactions.

Overview

In simplified 1D geometry, many authors have investigated a situation such as the one
described in Fig. 3.9, where Landau damping induced by one of the plasma species (electrons
here) is competing with inverse Landau damping induced by an other species (ions here).
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Figure 3.9 – Velocity distribution of ions
(solid curve) and electrons (dotted curve)
in a two-species plasma, with a popula-
tion of supra-thermal particles, and equal
bulk ion and electron temperatures. The
ion/electron mass ratio is reduced to 30 for
the sake of readability of the figure.

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5  0  5  10  15  20

f 
/ 

f i
,0

v / vth,i

fi

fe

Based on quasi-linear theory, O’Neil demonstrated the existence of a kinetic subcritical
instability of a spectrum of many modes [O’N67]. This is due to the flattening in the velocity
distribution, which effectively mitigates Landau damping. He argued that in general, this
subcritical instability is possible when the total resonant kinetic energy available for growth
is less than the total resonant kinetic energy available for damping.

This theory discarded the role of nonlinear particle trapping, which was later found to
be essential in many contexts, as discussed below. Here, by nonlinear particle trapping, we
refer to the trapping of charged particles by their own electrostatic potential, which leads
to a BGK-like island in phase-space, as introduced in chapter 1.

A BGK island can evolve into a phase-space hole in many situations [Sch86]. A phase-
space hole is a BGK-like structure with a local depression of phase-space density within the
vortex. It can be seen as a kinetic counterpart of the fluid vortex. Although, in contrast
to a fluid vortex, which lives in real (configuration) space, the phase-space hole lives in the
phase-space of particle distribution, that is real space and energy (or velocity) space.

Dupree predicted analytically that phase-space holes can grow nonlinearly, and drive
subcritical instabilities [Dup78, Dup82, Dup83]. The mechanism is detailed in the next
part, 3.4.2.

In part 4.3.2, we further develop the theory of subcritical instabilities in the condi-
tions of Fig. 3.9, with an additional simplification of the model. In the Berk-Breizman
model, the damping species is assumed to take only the role of a neutralizing background,
and all damping processes are modeled by a linear external dissipation with a fixed rate
[BB90a]. In this system, subcritical instabilities have been observed in numerical simula-
tions [BBC+99, LIG09, LIS+10, LI12], and interpreted by analytical theory. Linear Landau
damping generates a seed structure in phase-space, which can grow nonlinearly as a re-
sult of dissipation acting as a drag force (see next section). In part 4.3.2, based on the
energy-phasestrophy relation, Eq. (2.49), we obtain the nonlinear growth rate, as well as
the threshold of initial perturbation amplitude (by balancing the growth of a phase-space
structure due to wave dissipation, and its decay due to collisions).

In toroidal geometry, we recently showed by analytic calculations the possibility of kinetic
subcritical instabilities for the trapped ion mode [KID+17]. As we discuss in chapter 6,
the destabilizing role of electron dissipation is then essential. Similarly to the 1D systems
discussed above, the mechanism is based on the dissipative nonlinear growth of a hole
structure in phase-space [Dup82, TDH90]. The mechanism still works in the present of
turbulent decorrelation of such structures [BDT88a, KID+14a], so that this is relevant to
the context of granulation [Dup72].

We also investigated another kind of subcritical instability, driven by a nonlinear reduc-
tion of damping as well, but due to nonlinear particle trapping in the situation of Fig. 3.9
for a single sine wave [NLG+10]. We showed that this type of subcritical instability is in
principle relevant for acoustic modes, such as beta Alfvén eigenmodes or geodesic acoustic
modes, under standard tokamak conditions [NGG+10]. However, the subcritical instabilities
discussed in this manuscript are in the absence of reduction of damping.

Although these theories of kinetic subcritical instabilities predict essential impacts of
subcritical instabilities on turbulence, transport, and mean flows, they do not yet provide

27



any unambiguous macroscopic signature, which could help discriminate these impacts from
the similar impacts of linearly unstable modes. Moreover, there is no indication that the
instability being subcritical is a key feature of the resulting turbulence, transport and flows.
In subsection 3.4.3, we review the first experimental evidence of strong effect of kinetic
subcritical instability, in a context where subcriticality does come with a key impact: abrupt
growth. But let us first detail the physical mechanism of nonlinear growth of a phase-space
hole, which is responsible for the most abrupt kinetic subcritical instabilities.

Nonlinear growth mechanism of a phase-space hole

Let us focus on a 1D plasma with ions and electrons, but unlike the situation of Fig. 3.9,
here both ion and electron velocity distributions are Gaussian, and the electron distribution
is shifted by a given mean velocity. This is the situation investigated in more details in
chapter 5. Fig. 3.10 shows the initial, or equilibrium velocity distributions f0,i and f0,e, as
well as the distributions at some arbitrary time t = t1 in the presence of a single electron
hole. The electron hole can grow nonlinearly in this situation, where, in the vicinity of
the hole, the electron velocity gradient is positive and the ion velocity gradient is negative.
The impact on the ion distribution of the electron hole is represented as a barely visible
flattening. Fig. 3.11 is a cartoon of the electron hole in phase-space. Trapped electrons form
a vortex structure, with a deficit of phase-space density (in other words a negative pertur-
bation of the distribution function, δf < 0) inside the eye-shaped separatrix. Therefore the
electron density features a local deficit as well, which is consistent with the local bump of
potential, which in turn is consistent with the trapping of electrons. Therefore the BGK-like
vortex forms a self-consistent, self-sustained (in the absence of collisions) structure. Here,
to simplify the discussion, the perturbation in the ion density is assumed to be negligible.

The nonlinear mechanism of growth of this electron hole can be understood based on the
latter figures, 3.10 and 3.11.

Firstly, if the hole changes its mean velocity slowly enough, trapped electrons within
the hole will move along with the hole. Detrapping is rare enough for slow variations of
the velocity of the hole. Since the Vlasov equation states that the distribution function
f is conserved along particle orbits, the value of f at the bottom of the hole will remain
constant even as the hole accelerates or decelerates. Therefore, since the equilibrium electron
distribution has a positive slope in the vicinity of the hole, the hole deepens if its mean
velocity increases, as schematized in Fig. 3.10.

Secondly, in this configuration, there is a force, which does accelerate the hole, leading
to its growth. Here the impact of electron hole on ions is essential. The ion trajectories
are shown in the bottom of Fig. 3.11. The positive charge of the electron hole scatters ions
in both directions away from the center of the hole. Due to the negative gradient of the
ion velocity distribution, there is an imbalance between decelerated ions and accelerated
ions, such that ions as a whole gain momentum. Electrons, on the contrary, lose momentum
(ensuring total momentum conservation). The result for the electron hole, which has a
negative mass, is to accelerate.

Let us give a rough estimate of the nonlinear growth rate, by noting u the velocity of
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Figure 3.10 – Velocity distribution of ions
and electrons in a two-species plasma, with
a mean velocity drift. The equilibrium dis-
tributions are noted f0,i and f0,e. The
ion/electron mass ratio is reduced to 10 for
the sake of readability of the figure. An elec-
tron hole is drawn schematically at some ar-
bitrary time t = t1. and the mechanism of
its growth from t = t1 to a later time t2 is
explained in the text as the result of a drag
force due to the scattering of ions by the
electron hole.
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Figure 3.11 – Cartoon of an electron hole, in the reference
frame of the hole. (a) Electron density perturbation. (b)
Electric potential. (c) Electron trajectories. (d) Ion tra-
jectories. Here the scales are consistent with a mass ratio
mi/me = 10.

the hole, h the hole depth (h > 0), ∆v the width of the hole, φ0 the amplitude of the
trapping potential, and f ′0,s = df0,s/dv|v=u the equilibrium velocity gradient for species s in
the vicinity of the hole. A simple calculation of particle orbits based on energy conservation
yields that ∆v is proportional to

√
φ0. The positive charge of the electron hole scatters

ions, which, because of the negative gradient of f0,i(v), leads to a positive force on ions,
F e→i proportional to −φ2

0f
′
0,i.The equal and opposite reaction is a drag force on electrons

F i→e = −F e→i. As a result the electron hole accelerates at a rate u̇ = F i→e/Mhole,
where Mhole is the negative mass of the hole, which is proportional to −h∆v. Since the
trapped-electron distribution function remains constant, the hole deepens at a rate dh/dt
proportional to u̇f ′0,e. Finally, Poisson equation shows that φ0 is roughly proportional to

h∆v, therefore h is proportional to
√
φ0. Putting the above relations of proportionality

together, we obtain a growth rate

γ ≡ (1/h)dh/dt = (1/φ0)dφ0/dt = −Cf ′0,ef ′0,i
√
φ0, (3.6)

where C is a factor which is roughly constant.

The full calculation is tedious, and takes into account additional effects such as potential
screening, and the retroaction of the growth on the drag force [Dup83, Tet83]. However the
final result is consistent with the above simplified mechanism.

This nonlinear growth of phase-space holes was confirmed by Berman et al. in numerical
simulations of the ion-acoustic instability in 1D collisionless electron-ion plasmas with a
velocity drift (but no supra-thermal population) [BTDBG82]. They performed Lagrangian
(particle-in-cell) simulations with an initial sine perturbation. They found that a subcrit-
ical instability with a very small threshold in amplitude was developing, even for velocity
drifts much below the linear threshold. Recently, we found by both Lagrangian and semi-
Lagrangian simulations that these results were attributable to the spurious numerical noise
due to the low number of particles that could reasonably be calculated given the computing
resources of the ’80s [LDK14a]. However, with modern computing [Les16], we still obtained
unambiguous subcritical instabilities, given an initial sine perturbation with large initial
amplitude (eφ0/T ∼ 1), or, more importantly, given an initial BGK-like perturbation even
with small initial amplitude (eφ0/T ∼ 10−2). We describe these findings in chapter 5.

For the origin of a large-enough initial perturbation, or initial BGK-like fluctuations,
we have discussed three plausible scenarios [LDK14a]. The first scenario is a growth from
e.g. thermal fluctuations, which is limited to an initial barely stable equilibrium. The second
scenario is the growth of a hole, which would have been externally driven by the experimental
setup or convected from a region of linear instability. The third scenario is the case of self-
sustained turbulence, as plasma conditions go from linearly unstable to subcritical on a slow
time-scale.
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3.4.3 Hybrid Fluid-Kinetic subcritical instabilities

Despites decades of theoretical advances, experimental observations of kinetic subcritical
instabilities have been lacking, probably in part because it is difficult to measure the velocity-
space distribution in relevant conditions. However, we recently identified a good candidate
experimentally [IIO+16] and interpreted it by theory as a subcritical instability driven by a
combination of fluid and kinetic nonlinearities [LII+16b].

In the helical plasma of the Large Helical Device (LHD), bursts of geodesic acoustic
mode driven by energetic particles (EGAM) are sometimes accompanied by a much more
abrupt, large-amplitude burst of an other mode. The observation cannot be explained
by conventional mechanisms such as nonlinear coupling of turbulence alone [DIIH05], or
resonant interaction with energetic particles [Fu08]. In particular, the measurements point
to a threshold in amplitude of the EGAM for the destabilization of the abrupt mode.

We proposed a theoretical interpretation based on a reduced 1D model, including both
fluid and kinetic nonlinearities [LII+16b]. The model qualitatively recovers the experimental
observations in terms of temporal evolution and phase relation, with input parameters con-
sistent with the measured plasma parameters. Within the framework of this model, we found
that the abrupt burst belongs to a new class of subcritical instability, which is hybrid between
fluid and kinetic subcritical instabilities. In fact, we found two distinct regimes, depend-
ing mainly on collisionality [LII+16a]. For very low collisionality, nonlinear fluid coupling
between modes provides a seed perturbation, which evolves due to particle trapping into a
phase-space hole, then grows, dominated by kinetic nonlinearity. In contrast, for slightly
higher collisionality, the subcritical instability requires both fluid and kinetic nonlinearities
to continuously collaborate. The LHD observation was interpreted as a manifestation of the
latter one. We describe these findings in chapter 4 (section 4.4).

In this context, it is the fact that the instability is subcritical, which yields such abrupt
growth, with a growth-rate one order-of-magnitude above that of its supercritical counter-
part.

3.5 Conclusions

Subcritical instabilities are ubiquitous in neutral fluids and in plasmas, and merit at-
tention since the access to free energy, and the spectrum of turbulence, are ultimately
nonlinear issues. Subcritical instabilities have common characteristics, such as a threshold
in amplitude, and a growth rate that increases with increasing amplitude. However, they
can originate from a wide variety of physical mechanisms.

In plasmas, subcritical instabilities are of great interest for their essential impact on
the onset of turbulence [Lan46, IIK+16], structure formation [CH93], anomalous resistivity
[LDK14a, LDK14b], and potentially, turbulent transport [KID+17].

To widen the scope, we invite the interested reader to look into the literature on sub-
critical instabilities in other areas, which we have not discussed in this chapter. Let us give
a non-exhaustive list of examples:

— the follower-loaded double pendulum in vibrational mechanics [I+04],
— the dynamics of railway vehicles [XjTL15],
— acoustic waves [ADC05] and flame dynamics [EDB+18] in combustion chambers,
— spin-waves in magnetic nanocontact systems [CFLDA09],
— the zigzag transition for confined repelling particles in quasi-1D chemical physics

[SDSGL13, DCSJ15].
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Chapter 4

Energetic-particle-driven modes
in 1D

Energetic Particles (EPs) in an ignited tokamak include α-particles and high-energy ions
injected by heating devices. EPs drive Magneto-Hydrodynamic (MHD) macroscopic modes
such as Alfvén Eigenmodes (AE) or geodesic acoustic modes (GAM). Examples include
the Toroidal Alfvén Eigenmode (TAE) [CCC85], the Global Alfvén Eigenmode (GAE), the
Beta-induced Alfvén Eigenmode (BAE), and the EP-driven GAM (EGAM). They transport
EPs, and couple with background turbulence. They impact fuelling and the wall integrity,
and ultimately the efficiency of a fusion reactor. Understanding the linear and nonlinear
evolution of EP-driven modes is crucial to predict and control these impacts. Indeed, trans-
port and loss of fast particles depend on both the nonlinear saturation amplitude and the
kind of nonlinear behaviour.

In a toroidal device, the structure, linear frequency, and linear growth rate of an EP-
driven mode are determined by 3D calculations. These linear properties evolve on a slow time
scale of mean field evolution (∼ 100ms). In contrast, nonlinear wave-particle interactions,
which determine the saturated state in the single-mode limit, happen on a fast time scale
(∼ 1ms).

Near the resonant surface, it is possible to obtain a new set of variables in which these
wave-particle interactions are treated perturbatively by a 1D Hamiltonian in two conjugated
variables [BBP97a, BBP+97c, WB98], if we assume an isolated single resonance, and by
taking advantage of the timescale separation. This is done by a perturbative expansion of a
gyrokinetic Hamiltonian around a resonant surface in phase-space, as we describe in section
4.1.

In this sense, the problem of EP-driven modes is homothetic to the well-known paradigm
of a single mode bump-on-tail instability. The Berk-Breizman (BB) model [BBY93b, BBP96,
BBP97a, BBP+97c], which we describe in Sec. 4.2, is a generalization of the simple bump-
on-tail Vlasov-Poisson model for a single mode, where we take into account two essential
ingredients:

— a prescribed damping of the wave energy at a constant rate γd, with the aim of
accounting for background dissipative mechanisms,

— a collision operator, with the aim of modeling Coulomb collisions as perceived by EPs
near the resonant surface.

Hence, although the BB model describes wave-particle interactions between EPs and an
electrostatic wave in a 1D plasma, it also provides a basis for estimating the nonlinear satu-
ration amplitude, and the qualitative nonlinear behaviour of an isolated EP-driven mode in
toroidal fusion plasmas. In the 2010’s, observed quantitative similarities between BB non-
linear theory and both 3D simulations [WB98, PBG+04] and experiments [FBB+98, HFS00]
already indicated the validity of this reduction of dimensionality. Since then, there is a grow-
ing body of evidence, some of which described in this chapter, which further confirms the
usefulness of this approach, as a complementary approach to heavier 3D analysis. Although
we focus on 3D EP-driven modes, the BB model is also applicable to the traveling wave
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tube ”quasilinear experiment” with a lossy helix [TDM87].

The apparent simplicity of the equation system of the BB model hides surprisingly rich
physics. In the stable case, when the perturbation is small, linear theory predicts exponential
decay of the wave amplitude, which in the absence of collisions and external damping is
known as Landau damping [Lan46]. In the unstable case, on the contrary, linear theory
predicts exponential growth of the wave amplitude. Then, trapping of resonant particles
significantly modifies the distribution function and an island structure appears in phase-
space. The following nonlinear saturation is determined by a competition among the drive
by resonant particles, the external damping, the particle relaxation which tends to recover
the initial positive slope in the distribution function, and particle trapping which tends to
smooth it. As a result, the long-time state bifurcates in the parameter-space between three
kinds of behaviours, namely steady-state, periodic, or chaotic responses [BBP96].

In addition, chaotic solutions can display rapid, significant, continuous shifting of the
mode frequency. This is called as chirping. Chirping has been shown to correspond to the
formation and nonlinear evolution of holes and clumps in the distribution function. Theory
relates the time evolution of frequency shift with linear drive γL and damping rate γd, when
holes and clumps evolves on a slow timescale compare to that of the bounce motion of
particles trapped within [BBP97b].

Finally, nonlinear wave-particle interactions can drive a kinetic subcritical instabilities
due to the growth of holes and clumps in the distribution function, as we mentioned in
chapter 3 (see 3.4.2). We investigate their onset conditions in subsection 4.3.2.

In toroidal magnetic fusion experiments, chirping is an ubiquitous feature of EP-driven
modes. For example, chirping TAEs with an extent of chirping of 10-30% (with respect
to the linear mode frequency) have been observed in the plasma core region of tokamaks
DIII-D [Hei95], JT-60 Upgrade (JT-60U) [KKK+99], the Small Tight Aspect Ratio Toka-
mak (START) [MGS+99], the Mega Amp Spherical Tokamak (MAST) [PBG+04], the Na-
tional Spherical Torus Experiment (NSTX) [FBD+06], and in stellerators Compact Heli-
cal Stellerator (CHS) [TTT+99], and the Large Helical Device (LHD) [OYT+06]. In gen-
eral, two branches coexist, with their frequency sweeping downwardly (down-chirping) for
one, upwardly (up-chirping) for the other. Chirping TAEs have been reproduced in three-
dimensional (3D) simulations with a drift-kinetic perturbative code [PBG+04], and with a
hybrid MHD/drift-kinetic code [TSTI03]. In many experiments, chirping events are quasi-
periodic, with a period in the order of the millisecond. Frequently, asymmetric chirping
has been observed, with the amplitude of down-chirping branches significantly dominating
up-chirping ones. Qualitatively similar chirping modes are spontaneously generated within
the BB model.

In this chapter, I describe my main contributions to the nonlinear theory of the BB
model, and its application to EP-driven modes in tokamaks and stellerators. Sec. 4.1 de-
tails how wave-particle interactions may be reduced to a 1D formalism. In Sec. 4.2, we
recall the equations of the BB model, in both full-f and δf approaches, and describe our
numerical simulation code. In Sec. 4.3, we focus on nonlinear theory in the case of a sin-
gle mode, and in particular concerning subcritical instabilities and chirping. We apply the
energy-phasestrophy relation to obtain analytical expressions for the subcritical threshold
and for the nonlinear growth-rate in cases where a single phase-space structure dominates.
We investigate chirping characteristics (velocity, lifetime, period), including the effects of
collisions. We develop a simple semi-analytic model of hole/clump pairs in the presence of
dynamical friction and velocity-diffusion, and apply it to clarify the mechanism of relaxation
oscillations associated with chirping bursts. We describe and apply a method for estimating
local linear drive, external damping rate and collision frequencies based on experimental
observations of chirping EP-driven modes. In Sec. 4.4, we develop a model to explore how
one linearly unstable mode may transfer its energy to another, stable mode, triggering a
subcritical instability. The model expands the BB model to two interacting modes, by com-
bining kinetic description and nonlinear fluid coupling. Finally, in Sec. 4.5, we discuss a few
additional phenomena in the presence of many modes.
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4.1 From 3D to 1D

Depending on the experimental conditions, EP-driven modes in toroidal fusion plasmas
can be isolated in the sense that they are well localized radially, and they don’t interact
with other modes.

Let us take the example of a Toroidal Alfvén Eigenmode (TAE) composed of a number
of (n, m) modes, where n is the toroidal mode number and m is the poloidal mode number.
If we consider only small toroidal mode numbers, then neighboring n and n + 1 modes are
isolated. Let us consider a single toroidal mode number n. On the one hand, since on a flux
surface r = rm where the component m of the mode structure is approximately centered, the
safety factor is q(rm) = (2m+ 1)/(2n), then we can estimate the distance ∆r = rm+1 − rm
between two neighboring m modes by writing ∆r q′ ≈ q(rm)− q(rm+1), as

∆r ≈ 1

nq′
. (4.1)

On the other hand, the characteristic width of TAE modes δr is of the order of δr ∼ r2
m/nqR0

[CCC85]. Hence, for typical parameters, δr/∆r ∼ (rm/R0)S � 1, where S ≡ rq′/q is the
magnetic shear. Thus, TAEs have a two-scale radial structure, the larger scale corresponding
to the envelope of the TAE. In our analysis, we assume that the number of m harmonics
involved is small enough to consider resonances one by one, as isolated (n, m) mode. The
latter hypothesis is reasonable for sufficiently core-localized, low-n TAEs. We must keep
in mind, though, that high-n TAEs are likely to be destabilized in future devices such as
ITER, in which case it may be necessary to take into account multiple-wave resonances.

Therefore, let us consider the case of an isolated EP-driven mode, dominated by a single
pair of toroidal and poloidal mode numbers. The resonance condition ω = n ·ωeq, as we re-
call from Eq. (2.9), defines a resonant phase-space surface J = {JR such that JR3 = G(JR1, JR2)},
where G is a function whose expression depends on the eigenmode.

4.1.1 Reduction of the perturbed Hamiltonian

In Ref. [BBP95b] the perturbed Hamiltonian of an isolated shear Alfvén wave (in the
zero beta limit) is put in the form

δH = V (J) cos(n ·α − ωt). (4.2)

In the appendix of Ref. [LII+16a], we describe a similar calculation for the case of an
EGAM. To summarize, developing the perturbed 3D Hamiltonian δH for an EGAM, in
the neighborhood of the flux surface of peak electric potential, yields, as a zeroth-order-in-
∂Heq/∂Jθ approximation, and after substituting the resonance condition ω = mωθ, a 1D
Hamiltonian of the form of Eq. 4.2, with n ·α = mθ and n ·J = mJθ. Here, Jθ is the
canonical poloidal angular momentum.

Both problems can then be reduced to one action and one angle [Lic69, GDPN+08], by
performing a canonical transformation J · dα−Hdt = I · dξ−H ′dt+dS with the generating
function

S = −I · ξ + I3(n ·α − ωt) + I1α1 + I2α2 + F (I1, I2)α3. (4.3)

This procedure yields,

J1 = I1 + n1 I3 ξ1 = α1 + α3 ∂I1F
J2 = I2 + n2 I3 ξ2 = α2 + α3 ∂I2F
J3 = F (I1, I2) + n3 I3 ξ3 = n ·α − ωt,

and H = H ′ + ω I3. Thus, near the resonant phase-space surface, J = JR + I3 n, and
we can expand the new Hamiltonian around this surface,

H ′(ξ, I) = Heq(JR + I3 n) + V (JR + I3 n) cos ξ3 − I3 ω (4.4)

= Heq(JR) + I3 (n ·ωeq(JR) − ω) +
1

2
D I2

3

+ V (JR + I3 n) cos ξ3, (4.5)
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with D(JR) ≡ lilj∂Ji∂JjHeq(JR).
If the variations of H(J) are small around JR, we can replace V (JR + I3 n) by V (JR)

in the latter expression, and obtain the new Hamiltonian H ′ = Heq(JR) + δH,JR(ξ3, I3),
with

δH,JR(ξ, I) ≡ 1

2
D I2 + V cos ξ. (4.6)

Thus, the problem of interactions between EPs and the EP-driven mode has been reduced
to a 1D Hamiltonian problem for the angle-action variables (ξ, I)≡(ξ3, I3).

4.1.2 Reduction of the collision operator

A first, simple model is obtained by reducing the effects of collisions to the recovery of an
equilibrium energetic particle distribution, with a recovery rate νa(v). However, as we will
see in subsection 4.3.6, this is insufficient to recover the qualitative behavior of EP-driven
modes in general.

A more rigorous treatment of collision processes is obtained if we project a collision
operator that describes Coulomb collisions perceived by energetic ions, on the resonant
phase-space surface. We consider collisions on energetic particles by thermal electrons,
main ions, and impurities, and describe them by a Fokker-Planck collision operator [HS02]
that acts on the distribution f(x,v, t) of energetic particles. The Fokker-Planck collision
operator is based on the fact that, in a tokamak plasma, collisions are dominated by binary
Coulomb collisions with small-angle deflection. This collision operator can be projected on
the resonant flux surface of a given TAE [BBP97a, LBS09]. We consider a TAE with toroidal
mode number n, resulting from the coupling of m and m + 1 poloidal modes. We consider
strongly co-passing beam particles that resonate with the TAE at a velocity v ≈ v‖ = vA,
where vA is the Alfvén velocity. In Ref. [LIS+10], we give the details of the procedure to
project the collision operator in spherical coordinates onto the resonant flux surface. It
involves a Jacobian

J =
mSmbv‖

2r2ebB0
, (4.7)

where S ≡ rq′/q is the magnetic shear. Here es and ms are charge and mass of a species s,
respectively, and b stands for beam particles.

This procedure yields
df

dt

∣∣∣∣
coll.

= ν2
f

∂f

∂Ω
+ ν3

d

∂2f

∂Ω2
, (4.8)

where Ω = n ·ωeq. Dynamical friction rate νf and collisional diffusion rate νd are obtained
as

ν2
f = v‖ J

(
2ν‖ + νslow − νdefl

)
, (4.9)

ν3
d =

v2

2
J 2

(
ν‖ cos Θ + νdefl sin Θ

)
. (4.10)

where νdefl, νslow and ν‖ are pitch-angle scattering, slowing-down, and parallel velocity
diffusion rates, respectively, v‖ is the parallel velocity of energetic particles, and Θ is the
angle of velocity with respect to magnetic field.

We assume Maxwellian background distributions, with same temperature T0. Typical
experiments satisfy the following ordering of thermal velocities, vTi � vA � vTe, while the
beam energy Eb is much larger than T0. With these assumptions, around the resonance,

ν2
f =

v‖J
v3

∑
s

nsγbs
ms

[
erf ηs −

2ηs√
π
e−η

2
s

]
, (4.11)

ν3
d =

J 2

2v3

∑
s

nsγbs
2mbη2

s

[(
(2η2

s − 1)v2
⊥ + 2v2

‖

)
erf ηs

+
2ηs√
π

(v2 − 3v2
‖) e
−η2s

]
, (4.12)
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where ηs ≡ v/vTs, v‖ = vA,

γbs =
4πe2

be
2
s log Λ

mb
, (4.13)

and log Λ is the Coulomb logarithm.
The equivalent collision operator in the Berk-Breizman model is obtained by substituting

Ω = kv in Eq. (4.8).

4.1.3 Reduction of the background damping mechanisms

Since the time-scale of fast-particle evolution is much faster than background thermal
populations evolution, these two dynamics are decoupled. Hence we can reasonably treat
the effects of background damping in an extrinsic way. We assume that all background
damping mechanisms affect linearly the wave energy W,

dW
dt

= − 2 γdW(t). (4.14)

Damping includes mechanisms such as radiative damping, whose strength depends on the
frequency [MM92]. Hence, in a rigorous model, γd should be a function of ω. However, theory
needs to be developed before this complex interplay can be taken into account. Thus, we
limit our framework to cases where γd can be treated as a constant. This framework is
consistent with a fixed mode frequency.

4.1.4 Limitations

Firstly, the mathematical reduction of dimensionality from 3D to 1D assumes an isolated
single mode. Further, since it is based on a development in the neighbourhood of a fixed
resonant phase-space surface, we must also assume a fixed mode structure, implying a fixed
MHD equilibrium. Hence, the BB model with time-independent input parameters cannot
reproduce the evolution of EP-driven modes on a timescale of MHD equilibrium evolution,
which is of the order of the second on large devices. However, this model can still describe
bifurcations on a shorter timescale where the linear growth rate can be treated as a linear
function of time as in Ref. [FBB+98]. More advanced models update the mode structure as
the frequency chirps, allowing the study of long-range chirping [MQBH20]. We must also re-
quire a low wave amplitude, such that the nonlinear redistribution of energetic particles does
not significantly alter the mode structure and frequency. In practice, if the eigenfrequency
of a low-amplitude EP-driven mode observed in experiments stays nearly constant during
a certain time-window, we infer that the fixed-mode-structure assumption is satisfied for
this time-window, since the linear frequency of such modes is very sensitive to equilibrium
plasma parameters such as the q profile [SHC95, KKK+99].

In the case of chirping, which is the case we apply to experiments, a fixed mode structure
requires that the frequencies associated with the sweeping holes and clumps do not approach
the shear Alfvén continuum frequencies. Even when the latter condition is satisfied, it is
sometimes argued that since the frequency is changed, so must be the mode structure. How-
ever, we must distinguish at least three classes of frequency sweeping, namely, slow frequency
sweeping (slow-FS), fast frequency sweeping (fast-FS), and so-called abrupt large-amplitude
events (ALE) [SKT+01], although it is not clear for the latter if the frequency does sweep.
In the case of JT-60U shot number E32359, which we analyze in subsection 4.3.6, slow-FS
have a timescale of 100 − 200 ms, and their frequency is correlated with bulk equilibrium
variations, therefore they are out of the scope of the above reduce model. Fast-FS have a
timescale of 1− 5 ms, and the associated redistribution of energetic ions is relatively small
[STI+02], therefore they are consistent with a fixed-mode-structure hypothesis. Although
the occurrence of fast-FS and ALEs seems to be linked, ALEs are identified as Energetic
Particle-driven Modes (EPMs) [BFV+07], have significantly larger amplitude and shorter
timescale (200 − 400 µs), and induce significant loss of energetic ions, and are out of the
scope of this work since we assume a weak drive and a constant density of energetic ions in
the BB model.
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Finally, modeling all background damping mechanisms as an extrinsic, fixed linear damp-
ing on the wave is a strong assumption, since a nonlinear evolution of γd has been shown
to have significant effect on the behaviour of the wave [NLG+10, NGG+10]. A more robust
validation of this assumption requires improved theoretical understanding of the damping
mechanisms. We must assume that γd does not depend neither on the wave amplitude, nor
on the energetic population. In the case of frequency sweeping, this assumption is clearly
violated if the nonlinear modification of frequency is of the order of the linear frequency,
especially if a chirping phase-space structure approaches the shear Alfvén wave continuum,
where the damping rate depends largely on the frequency.
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4.2 The Berk-Breizman model

Depending on the application, it is convenient to cast the BB model either in a self-
consistent form (full-f) or in a perturbative form (δf).

4.2.1 Normalization

For concision, we normalize frequencies to the plasma frequency ωp and lengths to the
Debye length λD = vth/ωp. Here ω2

p = n0e
2/(ε0m), e, m, and n0 are the charge, mass, and

total density, respectively, of the evolving species, and vth is a typical thermal velocity. We
also normalize densities to n0, energies to mv2

th, particle distributions to n0/vth, and electric
fields to mv2

th/(eλD).

4.2.2 Full-f BB model

We consider a 1D plasma with a distribution function f(x, v, t). In the initial condition,
the velocity distribution,

f0(v) ≡ 〈f〉|t=0 = fM0 (v) + fB0 (v), (4.15)

where 〈f〉 is the spatial average of f , comprises a Maxwellian bulk and a Gaussian beam of
high-energy particles,

fM0 (v) =
nM

vTM
√

2π
e
− 1

2

(
v

vTM

)2

and fB0 (v) =
nB

vTB
√

2π
e
− 1

2

(
v−vB
vTB

)2

, (4.16)

where nM and nB are bulk and beam densities, which verify nM +nB = 1, vTM and vTB are
thermal velocities of bulk and beam particles, and vB is the beam drift velocity. To ensure
charge neutrality, we assume a fixed background population of the opposite charge with a
density n0 = 1. Fig. 4.1(a) illustrates two typical initial distribution functions.

The evolution of the distribution is given by the kinetic equation

∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂v
= C(δf), (4.17)

where E is the electric field, δf ≡ f − f0, and C(δf) is a collision operator.
In this work, we consider either one of the following two collision models. On the one

hand, a large part of existing theory for the BB-model deals with collisions in the form of a
Krook operator [BGK54],

CK(δf) = −νa(v)δf, (4.18)

which is a simple model for collisional processes that tend to recover the initial distribution
at a rate νa, including both source and sink of energetic particles. If we assume cold and
adiabatic bulk plasmas, νa(v) acts only on the beam. Reflecting this situation, we design
the velocity dependency of νa such that it is constant in the beam region, and zero in the
bulk region.

On the other hand, the one-dimensional projection of a Fokker-Plank operator, Eq. (4.8)
includes a dynamical friction (drag) term and a velocity-space diffusion term,

CFP(δf) =
ν2
f (v)

k

∂δf

∂v
+

ν3
d(v)

k2

∂2δf

∂v2
, (4.19)

where k is the wave number for the resonance under investigation, and with similar velocity-
dependence for νf and νd. In this sense, it is a more realistic collision operator than the
Krook operator.

The electric field E is assumed to be a single harmonic wave, of wave number k, reflecting
the situation of an isolated single EP-driven mode. The displacement current equation
(DCE),

∂E

∂t
= −

∫
vδfdv − 2 γdE, (4.20)
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Figure 4.1 – Examples of initial distribution function. Here, velocity is re-normalized to the
resonant velocity vR. (a) Full-f case. (b) δf case, where fN ≡ γL0/(

√
2πvR).

yields the time evolution of the wave. The crucial point in the BB model is to include
external wave damping to model all linear dissipation mechanisms of the wave energy to the
background plasma [BBY93b]. That is the role of the term proportional to γd in Eq. (4.20).

In the initial condition we apply a small perturbation, f(x, v, t = 0) = f0(v)(1+ε cos kx),
and the initial electric field is given by solving Poisson’s equation.

In the following, γL is defined as the linear growth rate for γd = 0 and no collisions. In the
cold Maxwellian limit, γL = γL0, where γL0 is a measure of the slope of initial distribution
at resonant velocity,

γL0 ≡
π

2k2

∂f0

∂v

∣∣∣∣
v=vR

. (4.21)

In this limit, a simple relation, γ = γL − γd, stands. However, in general there is some
discrepancy between γ and γL − γd.

The BB problem can be put in Hamiltonian form in a moving-frame coordinate set, (ξ,
I), where ξ ≡ kx− ωt and I ≡ (v − vR)/k. The Hamiltonian takes a standard form,

δH =
k2

2
I2 + φ0 cos ξ, (4.22)

which is shared with the effective Hamiltonian of an EP-driven mode, Eq. (4.6). Hence, the
BB model is a simple 1D model that is homothetic to a whole class of instabilities, including
EP-driven modes in toroidal fusion plasmas.

This model ensures conservation of total particle number N(t) ≡
∫
fdxdv. It also

satisfies a power balance equation,

dE
dt

+ Ph + 4γdE = 0, (4.23)

where E(t) ≡
∫
E2/(2ε0)dx is the electric field energy, Ph(t) ≡ q

∫
vEfdxdv is the power

transferred from the perturbed electric field to both bulk and beam particles (not including
sloshing energy). Note that the power balance can be expressed in an equivalent, alternative
way, if we consider waves as quasi-particles,

dW
dt

+ PR
h + 2γdW = 0, (4.24)

where W is the total wave energy, and PR
h is the resonant power transfer, To obtain this

expression, we have separated the response of the particles into resonant and non-resonant
pieces by decomposing the distribution as f ≡ fR+fNR and the kinetic energy T accordingly,
T ≡ T R + T NR. The non-resonant part of the kinetic energy is the sloshing energy, which
can be considered as part of the total wave energy. For non-resonant particles, the velocity
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is oscillatory and we can replace the amplitude of its oscillation by the linear response, and
we obtain T NR = E . The wave energy W is composed of the field energy E and the sloshing
energy T NR. While Eq. (4.23) shows the balance between the field and all the particles,
Eq. (4.24) shows the balance between wave and resonant particles.

4.2.3 δf BB model

If the bulk particles interact adiabatically with the wave, their contribution to the La-
grangian can be expressed as part of the electric field. Then it is possible to adopt a
perturbative approach, and to cast the BB model in a reduced form that describes the time
evolution of beam particles only [BBP95a, CD93]. The evolution of the beam distribution,
fB(x, v, t), is given by the kinetic equation

∂fB

∂t
+ v

∂fB

∂x
+ Ẽ

∂fB

∂v
= C

(
δfB

)
, (4.25)

where the pseudo-electric field Ẽ is defined as

Ẽ(x, t) ≡ Q(t) cos(ξ) − P (t) sin(ξ), (4.26)

where ξ ≡ kx− ωt. Alternatively, we may use a complex representation,

Ẽ(x, t) ≡ Z(t) exp ıξ + c.c., (4.27)

where the complex Z = (Q+ ıP )/2 encodes the information of amplitude and phase.
In this model, the real frequency of the wave ω is assumed constant (and since it is used

to normalize time, ω = 1 in normalized units). This restriction does not forbid nonlinear
phenomena like frequency sweeping, since both amplitude and phase of the wave are time-
dependent. Hereafter, we renormalize physical quantities for the δf model so that they do
not depend on k. In practice, we choose k = 1. In the collision operators, νa, νf and νd
are taken as constants, since, with the δf description, velocity dependency is not needed to
avoid affecting bulk plasma with collisions.

Hereafter, we drop the subscript B in fB for concision. The evolution of the pseudo-
electric field is given by

dQ

dt
= − 1

2π

∫
f(x, v, t) cos(ξ) dx dv − γdQ, (4.28)

dP

dt
=

1

2π

∫
f(x, v, t) sin(ξ) dx dv − γd P, (4.29)

or, alternatively,
dZ1

dt
= − 1

2π

∫
f(x, v, t) e−iξ dxdv − γd Z. (4.30)

The initial values of Q and P (or Z) are given by solving Poisson’s equation. Note that the
latter equations, without factor 2 in front of γd, are consistent with Eq. (4.20).

In the collisionless case, the linear dispersion relation shows that ω = 1 only if f0 is
symmetric around the resonant velocity, vR ≡ ω/k. Since we assumed ω = 1 from the
start, we consider only such distributions, for the model to be self-consistent. The velocity
distribution of beam particles in the initial condition is shown in Fig. 4.1(b). A constant
slope is imposed between v = −vc and v = vc, where vc is an arbitrary cut-off velocity. The
zero average ensures that the plasma frequency is not perturbed by the beam density.

Since this type of initial distribution is characterized by its slope at resonant velocity,
we use γL0 as an input parameter of the BB model. In contrast, γL is calculated by solving
the dissipation-less, collisionless linear dispersion relation,

γL =
1

2k

∫
Γ

∂vf0

γL + i (k v − 1)
dv. (4.31)
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The discrepancy between γL0 and γL comes from the finite extent of f0. It is negligible for
large enough vc.

This model also conserves the total particle number. The power balance is slightly
modified from Eq. 4.23, as

Ph + PE + Pd = 0, (4.32)

where Ph is the kinetic power transfer,

Ph ≡
∫
v E f dx dv, (4.33)

PE is the electric field power transfer,

PE ≡
2π

k

d

dt

(
PQ̇−QṖ +

Q2 + P 2

2

)
, (4.34)

and Pd is the power transfer due to external damping and collisions. In the Krook case,

Pd ≡
2π

k

[
(γd + νa)

(
PQ̇−QṖ

)
+ γd

(
Q2 + P 2

)]
, (4.35)

while in the Fokker-Planck case, collisions do not contribute to this latter power transfer,
thus Pd is obtained by substituting νa = 0 in Eq. (4.35).

Compared to the full-f model, the δf model does not take into account effects of the time-
evolution of bulk particles, which is a caveat when assessing limit of theory that breaks-up
when phase-space structures approach the bulk, but it has an advantage in the application to
experiment, where we assume fixed mode structure, hence fixed background plasma. More-
over, the velocity range required to simulate a similar resonant region can be significantly
reduced with the δf model, saving computation time. In addition, the δf model assumes a
constant total number of energetic particles.

4.2.4 The COBBLES code

We developed the kinetic code COBBLES based on the Constrained Interpolation Pro-
file - Conservative Semi-Lagrangian (CIP-CSL) scheme [NTYT01] for solving the initial
value BB problem. The acronym COBBLES stands for COnservative Berk-Breizman semi-
Lagrangian Extended Solver. Here we present the main principles of our code.

Let us recall that the BB model is an extension of the Vlasov-Poisson system, which
is recovered in the collisionless, closed system (γd = 0) limit. In a previous work [LIT07],
we developed a 1D semi-Lagrangian Vlasov-Poisson code. Later, we extended this code to
include distribution relaxation and extrinsic dissipation, and develop a δf version. We refer
to these codes as full-f COBBLES and δf COBBLES, respectively.

In both codes we solve DCE instead of Poisson equation. Looking at the spatial average
of Eq. (4.20),

d〈E〉
dt

= −
∫
v (〈f〉 − f0) dv − 2 γd〈E〉, (4.36)

we see that a small deviation from a constant total momentum can be the source of a
systematic error in the average electric field. Such deviation arises when Krook collisions
are included, or can be caused by numerical error. To avoid this problem, we replace

∫
vf0dv

by
∫
v〈f〉dv in the DCE [Van02]. Then Eq. (4.36) is changed to dt〈E〉+ 2γd〈E〉 = 0, which

ensures a zero average electric field, since 〈E〉|t=0 = 0.
Let us now describe the main points of our algorithm. All quantities like f are sampled on

uniform Eulerian grids with Nx and Nv grid points in the x and v directions, respectively,
within the computational domain {(x, v) | 0 ≤ x < L, vmin ≤ v ≤ vmax}. Boundary
conditions are periodic in x, and zero-flux at velocity boundaries. The time-step width is
∆t. We use the Strang splitting [Str68] formula to obtain a second-order accuracy in time
[VDR+03]. The DCE is solved by a forward Euler scheme. Collisional diffusion is solved
by the Crank-Nicolson method [CN47]. The remaining problem is the advection of a 1D
hyperbolic equation,

∂tF + u ∂λF = 0, (4.37)
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where u is constant in the λ direction, λ is a generalized advection coordinate, and F is a
general function of λ and t.

In choosing the advection scheme, we focus on stability and convergence properties, which
are estimated with severe benchmark parameters: full-f version, a cold bulk, a weak, warm
beam, small collision frequencies, and near marginal stability. This is stringent because 1. the
colder the bulk, the less grid points are available in the bulk, leading to artificial heating ;
2. the weak warm beam induces weaker linear instabilities, which produce narrower islands in
phase space ; 3. collisions are too rare to significantly alleviate the problem of filamentation
on the time-scale of the simulation ; 4. near marginal stability, the linear growth rate γ is
very small and long-time computations (t ∼ 105) are required. In Ref. [LIG09], we compared
several advection schemes, and showed that the CIP-CSL scheme [NTYT01] features quick
convergence without unfavorable numerical oscillations. Therefore, we use this scheme in all
COBBLES simulations. The key idea of this scheme is that in addition to the distribution
function, we advect its integrated value ρ to keep a flux balance between neighboring grids.
As a result, the surface elements of phase-space density are locally conserved, up to the
machine precision.

COBBLES is coded in Fortran 90 language. It is parallelized in a hybrid fashion, using
MPI in the velocity direction and OpenMP. Differences between δf and full-f versions are in
the initialization, which defines the distribution of EPs only instead of the full distribution,
and in the DCE, which is replaced by Eqs. (4.28) and (4.29).

The COBBLES code in both full-f and δf versions was verified, validated, and bench-
marked in the following ways.

— We compared linear growth rate and real frequency measured in COBBLES simu-
lations with those obtained by solving the linear dispersion relation numerically. We
found good agreement, with relative errors of the order of 0.1%.

— In subsection 4.3.1, we show that simulations recover nonlinear theory in the colli-
sionless, γd = 0 limit, in terms of saturation level, relative oscillation amplitude, and
the Bernstein-Greene-Kruskal (BGK) steady-state solution [BGK57].

— We regularly check conservation properties. The relative error in particle conservation
is, as expected from a locally conservative scheme, of the order of machine precision.
The accuracy of energy conservation (or rather, power balance), depends on the
setup. Although the relative error is of the order of 10−5 (or less) for simulations of
the BB model, it can reach the order of 10−3 in long-time simulations of ion-acoustic
turbulence. Ref. [Les16] is dedicated to the study of entropy conservation and the
interpretation of a lack thereof in particular cases.

— We reproduced a bifurcation diagram in (γd, νa) space, presented in Fig. 3. of
Ref. [VDR+03].

— To verify our implementation of collision operator with drag and diffusion, we con-
firmed that a Gaussian perturbation in the velocity distribution follows the analytic
solution of the diffusion equation in the absence of electric field and drag, and is simply
advected at a rate v̇ = ν2

f/k in the absence of electric field and diffusion. Additionally,
in Ref. [LI12], we found a quantitative agreement between nonlinear steady-state so-
lutions from δf -COBBLES and analytic predictions derived in Refs. [Lil09, LBS09].

To summarize, in the full-f case, the locally conservative implementation adopted in
COBBLES is a key point for robust simulations in experimentally-relevant conditions, which
are particularly stringent in a numerical point-of-view.

4.2.5 The PICKLES code

In order to discriminate between physical phenomena and numerical issues which may
be due to either semi-Lagrangian or Lagrangian treatment, I developed a simple particle-in-
cell code, PICKLES (Particle-In-Cell Kinetic Lazy Electrostatic Solver). It is based on a
fourth-order Runge-Kutta method, and is parallelized via MPI. The PICKLES code takes
the same input parameters as COBBLES, except for a number of marker-particles per
species Np instead of a number of grid points in velocity. It also provides most of the same
outputs as COBBLES.
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In addition, it can be switched between full-f and δf algorithms, which allow to fur-
ther discriminate possible numerical issues due to either of these methods. We successfully
benchmarked it against COBBLES in the limit of Np →∞.
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4.3 Single mode

We assume a single electrostatic wave, with a wave number k. The assumption that the
electric field is sinusoidal corresponds to the situation of a single resonance, which is selected
by the geometry in more complex systems.

4.3.1 Nonlinear analytic theory

Simple Vlasov-Poisson

Let us first consider the simpler collisionless Vlasov-Poisson model without external
damping, corresponding to the BB model without any collision nor extrinsic dissipation.
In the unstable case, linear growth goes on until a significant number of resonant particle
trajectories are modified by electrostatic trapping. In the nonlinear phase, the distribution
develops an island structure in phase-space, and becomes flat on average in the resonant
velocity region [ZK62, ZK63]. The instability saturates and linear theory breaks down. As
a measure of the electric field amplitude E0, we use ωb, the bounce frequency of particles
that are deeply trapped in the electrostatic potential. It satisfies ω2

b ≡ kE0. O’Neil and
Mazitov extended the theory of collisionless wave-particle interaction in the nonlinear phase
[O’N65, Maz65]. They both obtained analytic estimates for the evolution of wave amplitude.
Within the assumptions γL/ωb � 1 and ω/ωb � 1, and in the small-time limit, ωbt � 1,
the electric field amplitude is estimated in Ref. [O’N65] as

ωb(t)

ωb(0)
= exp

γL
πωb

∫ 1

0

dκ

(
1− cos

2ωbt

κ

)
. (4.38)

Fig. 4.2 shows the evolution of normalized bounce frequency ωb/γL, along with snapshots
of the distribution function, for initial distribution B. The nonlinear evolution of the wave is
in qualitative agreement with the analytic calculation (4.38) in its validity limit (for the first
few amplitude oscillations). Although we cannot quantitatively compare all the features of
this analytic solution because of an ambiguity in the initial time in Eq.(4.38), we observe
a good agreement for the amplitude oscillations frequency, and for the relative amplitude
of these oscillations compared to the saturation level. Furthermore, the saturation level is
close to the value ωb/γL ∼ 3.2, which was numerically obtained in Refs. [CD93, OWM71]
with the δf BB model. A surprising relationship with residual zonal flow is discussed in
Ref. [GDE+16].

In the time-asymptotic limit, assuming some infinitesimal amount of collision, the steady-
state solution of the Vlasov-Poisson system is a distribution given as a function of the energy
only. This BGK solution is consistent with a non-zero electric field. Fig. 4.3 is a contour plot
of the distribution function in the time-asymptotic limit of numerical simulation, on which
several constant energy curves are superposed. We clearly observe an island structure, which

Figure 4.2 – Full-f COBBLES simulation with γd = νa,f,d = 0, for initial distribution
B, with Nx × Nv = 256 × 2048 grid points. (a) Nonlinear evolution of normalized bounce
frequency. (b) Snapshots of distribution function.
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simulation of Fig. 4.2.

agrees with the BGK solution. This island is topologically different from the initial condition,
thus some collisions are needed to violate Liouville’s theorem and obtain the BGK solution.
In numerical simulations, finite numerical dissipation, which is due to interpolation on a
discretized grid, smears out fine-scale structures near the separatrix, allowing a reconnection
of contour lines of f .

BB model with Krook collisions

Theories have been developed by Berk, Breizman, and coworkers, to quantitavely pre-
dict nonlinear behaviors in various parameter regimes and to explain underlying mechanisms
[BB90a, BB90b, BBP96, BBP97b, BBP98, BBC+99]. The nonlinear behavior of an insta-
bility is determined by a competition among the drive by resonant particles, the external
damping, the particle relaxation which tends to recover the initial positive slope in the dis-
tribution function, and particle trapping that tends to smooth it. Chirping solutions arise in
a low collision regime when hole and clump structures are formed in phase-space [BBP97a].
Let us review the analytic theory available for the (single-mode) BB model, which provides
simple expressions for the following nonlinear features:

— saturation level in a parameter regime above marginal stability,
— saturation level and bifurcation criterion between steady-state and periodic solutions

near marginal stability,
— time-evolution of the frequency of a chirping mode.

Steady-state above marginal stability (γd ∼ νa � γL)
When external damping and distribution relaxation are of the same order and both are

small compared to the linear drive, the wave amplitude saturates to a steady-state in the
time-asymptotic limit. To estimate a saturation level, the rate of annihilation of beam
particles is assumed to be much smaller than the saturated bounce frequency, νa � ωb at
t → ∞. Further, the resonant region is assumed to be narrow compared to the resonant
velocity, 4ωb/k � ω/k, so that the contribution to resonant power transfer comes from a
narrow region around vR. Under these assumptions, Berk and Breizman derived a relation
yielding the saturation level [BB90a],

ωb = 1.96
νa
γd
γL. (4.39)

Thus, if we normalize all frequencies to the linear growth rate, then the saturation level
depends only on the ratio of νa to γd.

Quantitative agreement was found between this prediction and numerical simulations
with a δf particle code, in a region where γd ∼ νa [BBP95a]. In Refs. [LIG09, Les11], we
recovered similar results from both δf and full-f COBBLES simulations for a weak, warm-
beam distribution - in fact the distribution B in Fig. 4.1(a) - as shown in Fig. 4.4. However,
for a distribution with a slightly higher beam density, nB = 0.15, and a slightly lower beam
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temperature, vB = 2.5, giving γL = 0.067 instead of 0.032, and only for the full-f model,
we observe a significant dependency of the saturation amplitude on the linear growth rate.
For larger γL, there is significant discrepancy with theory in the low γd region, because the
island width ∆v becomes of the order of the resonant velocity (∆v/vR = 0.14ωb/γL in the
low-γL case, and ∆v/vR = 0.29ωb/γL in the higher-γL case). This reveals a limitation of
δf model, which does not take into account the evolution of bulk plasma.

Near-marginal steady-state and periodicity (γ ≈ γL − γd � γL)
When γ � γL, a reduced integral equation for the time evolution of electric field am-

plitude has been developed using an extension based on the closeness to marginal stability
[BBP96]. Within the assumption ωb/γ � 1,

dω2
b

dt
= (γL0 − γd)ω2

b −
γL0

2

∫ t

t/2

dt1

∫ t1

t−t1
dt2(t− t1)2

e−νa(2t−t1−t2) ω2
b (t1)ω2

b (t2)ω2
b (t+ t2 − t1). (4.40)

This equation is consistent with steady, periodic, chaotic and explosive solutions. The latter
are associated with chirping. Since this theory was developed using an extension based on
the closeness to marginal stability, a common misconception is that chirping is only possible
near marginal stability. But logically, this analytical theory does not preclude anything
far from marginal stability. In fact, the BB model yields all steady, periodic, chaotic and
chirping solutions both close and far from marginal stability. We have shown that chirping
is found even when γ is as low as 0.2γL0 [LIG09].

For a cold bulk, warm beam distribution, in the collisionless limit, as we approach
marginal stability, the linear growth rate reduces to

γ ≈ γL0 − γd, (4.41)

which agrees with the linear part of the latter integral equation (4.40). In Ref. [BBP96], the
analytic treatment is carried on by normalizing time by γL0−γd. However, the linear growth
rate is different with finite collisions. Then, as we get closer to the linear stability threshold,
the relative error |γL0 − γd − γ|/(|γL0 − γd| + |γ|) approaches unity. Moreover, depending
on the initial velocity distribution, there can be significant discrepancy between γL0 and
γL. We infer that we can replace γL0 − γd by γ (which takes into account both collisions
and effects of finite temperature bulk) in the integral equation (4.40) and use γ itself as the
relevant choice of normalization parameter. This procedure yields a steady solution,

ω2
b = 2

√
2 ν2

a

√
γ

γL0
. (4.42)
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Figure 4.6 – Time evolution of the normalized field amplitude, obtained from full-f simu-
lation and from the reduced equation (4.40), with initial distribution B, γd = 0.035, and
νa = 10−4.

A series of simulations near marginal stability (0.005 < γ/γL < 0.02), for νa spanning 2 or-
ders of magnitude, confirms the validity of the latter expression. Fig. 4.5 shows quantitative
agreement with the saturation level of numerical solutions.

Moreover, nonlinear stability analysis reveals that the steady solution (4.42) is unstable
when νa < νcr, with

νcr = 4.4γ. (4.43)

This criterion gives the bifurcation from steady-state to periodic solutions near marginal sta-
bility. In Ref. [Les11], we confirmed the qualitative agreement with simulations, although
the initial perturbation amplitude must be low enough to avoid additional nonlinear effects.
Quantitatively, νcr/γ can range from 3 to 6.

Chirping
In the collisionless limit, when νa < γ � γL, the integral equation (4.40) is consistent

with explosive solutions that diverge in a finite time, which suggests that the mode energy
is partitioned into several spectral components. The resulting sideband frequencies have
been observed to shift both upwardly and downwardly [BBP+97c], the frequency shift δω(t)
increasing in time. These chirping solutions arise when hole and clump structures [BBP97a]
are formed in phase-space. They belong to a chaotic regime, and each chirping event is
slightly different.

Ref. [BBP97b] shows how one can isolate one spectral component and model it as a
BGK-like structure to obtain the time-evolution of one chirping branch. This theory is
based on the following assumptions:

— The resonant velocity of a hole/clump evolves slowly enough for trapped particle
orbits to keep their coherency, ˙δω/ω2

b , δ̈ω/ω3
b � 1;

— The width of a hole/clump evolves slowly enough for trapped particle orbits to keep
their coherency, ω̇b/ω

2
b � 1;

— Holes and clumps are narrow enough that they don’t overlay each others, ωb/δω � 1.
Within the above assumptions, the perturbation of passing particle distribution is negligible,
and a bounce-average treatment of trapped particle distribution yields the frequency shift,
in the collisionless limit, as

δω(t) = αγL0

√
γd t, (4.44)

with α ≈ 0.44 ; and a saturation level as

ωb ≈ 0.54 γL0. (4.45)

These analytic expressions have been found to agree with 1D δf particle simulations,
[BBP97b], with both Krook and diffusion-only collision operators, with full-f COBBLES
simulations, and with 3D simulations such as HAGIS [PBG+04]. To illustrate, Fig. 4.6
shows the time evolution of field amplitude, with initial distribution B, when γd = 0.035,
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Figure 4.7 – Effect of finite Krook collisions on chirping velocity. Spectrogram of the electric
field obtained in a δf -COBBLES simulation with γL0 = 0.05, γd = 0.045, and νa = 4×10−5.
Logarithmic color code ranging from 1 (black) to 10−3 (white). Two dotted, straight lines
correspond to Eq. (4.46). Two solid curves correspond to Eq. (4.47). We include a correction
coefficient β = 1.23. Two dashed curves correspond to Ref. [NLB12]. Inset: zoom on the
beginning of the first chirping event.

and νa = 10−4, so that γ = 0.05 γL0. The simulation result agrees with a numerical solution
of reduced equation (4.40), until the field amplitude approaches the applicability limit. After
saturation, the solution is close to analytic prediction Eq. (4.45).

In Sec. 4.3.6, we consider frequency sweeping in a regime where ˙δω/ω2
b ≈ 0.5, which

approaches the limit of validity of the above theory. Indeed, when ˙δω/ω2
b ≈ 0.5, 4ωb/ ˙δω ≈

2π/ωb, in other words a hole or a clump is shifted by its width in a bounce time of deeply
trapped particles. In this regime, the previous analytic treatment is not relevant. However,
numerical simulations show a similar square-root dependency of the frequency shift in time.
We argue that ˙δω/ω2

b can be seen as a measure of departure from hole/clump adiabaticity,
and we introduce the effect of non-adiabaticity on chirping velocity as a correction parameter
β,

δω(t) = αβ γL0

√
γd t. (4.46)

One effect of the departure from adiabatic conditions is a collision-induced trapping of
particles near the separatrix [EB02], which was observed to account for a 10% modification
(β = 1.1). We analyzed the dependency of β on input parameters in Ref. [LIS+10].

Furthermore, the above theory is valid on a timescale smaller than a collision time.
Fig. 4.7 shows the spectrogram of the electric field obtained in a δf -COBBLES simulation.
Note that the vertical axis is the square of δω. It is clear from this figure that it is only for
early times, t � 1/νa, that the chirping branches follow the square-root law, which shows
as straight lines on this figure. We test above and following theories on the first chirping
branch, since after the first chirping burst, the velocity distribution is modified and the
assumption of a constant velocity slope is broken. In Ref. [LDK14b] we extended the above
theory to include the effects of Krook collisions, and explain deviations from the square-root
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Figure 4.8 – Growth of phases-
trophy and wave energy in the
BB case. Inset: zoom on a
smaller timescale. Simulation
parameters are γL0/ω = 0.1,
γd/γL0 = 0.7, νa/γL0 = 10−3

and νf = νd = 0.

law Eq. (4.44) on a collision timescale. We obtained the following expressions,

δω(t) = ±αβ γL0

√
γdt

[
1 − 1

3
(νat) +

7

90
(νat)

2

− 19

1890
(νat)

3 +
1507

1701000
(νat)

4 + . . .

]
, (4.47)

ωb(t) =
16γL0

3π2

[
1 − 2

3
(νat) +

8

45
(νat)

2

− 8

315
(νat)

3 +
152

42525
(νat)

4 + . . .

]
. (4.48)

Fig. 4.7 shows a good agreement between Eq. (4.47) and the observed bended chirping.
Here, the value of β = 1.23 is obtained by linear fit of δω2(t) for δω/ω0 < 10%. Note that
Eqs. (4.44)-(4.45) are recovered in the collisionless, adiabatic (β = 1) limit. The effect of
finite collision is to reduce the extent of chirping by bending shifting branches. This effect
is not negligible since δω is reduced by 27% after a collision time, which is of the order of
chirping lifetime. The effects of drag and diffusion have been calculated in Ref. [LBS10].

4.3.2 Subcritical instability

In Ref. [LD13], which we summarize in this subsection, we apply the energy-phasestrophy
relation to obtain analytical expressions for the subcritical threshold and for the nonlinear
growth-rate in cases where a single phase-space structure dominates. The simulations here
are δf -COBBLES simulations with γL0/ω = 0.1.

Energy-phasestrophy relation

For the BB model, the energy-phasestrophy relation, Eq. (2.49), writes

dW

dt
+ 2γdW =

mωp
2kdvf0

(
γcol

Ψ +
d

dt

)
Ψ. (4.49)

Here, the decay rate γcol
Ψ of phasestrophy due to collisions (combining both kinds of collision

operators) is

γcol
Ψ = 2νa +

2

Ψs

ν3
d

k2

∫ ∞
−∞

〈(
∂δfs
∂v

)2
〉

dv. (4.50)

Note that collisional drag νf does not appear in the latter expression. Fig. 4.8 shows good
quantitative agreement between the lhs and the rhs of the energy-phasestrophy relation in
a simulation.
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Figure 4.9 – Growth rate of
the phasestrophy of one iso-
lated hole. Simulation param-
eters are γL0/ω = 0.1, νa = 0,
νf/γL0 = 0.3, νd/γL0 = 0.17,
and two different values of γd,
which are given in the legend.
Points: phasestrophy growth
measured in simulations, in-
cluding contribution from colli-
sions. Dashed curves: theory,
Eq. (4.54).

Nonlinear growth rate

If we assume that the evolution of phasestrophy is dominated by that of an isolated
phase-space structure, we can obtain an analytical expression for the nonlinear growth rate
of the structure. We assume that δf is of the form δf = 〈δf〉 [1 + cos(kx+ θ)], with a
Gaussian velocity-profile,

〈δf〉 = h(t) exp
[
−(v − v0(t))2/(2∆v(t)2)

]
. (4.51)

As we will confirm in subsection 4.3.5, this shape is a good approximation. It corresponds
to a BGK mode, which was shown to be a state of maximum entropy subject to constant
mass, momentum, and energy [Dup82]. To relate W back to Ψ, we use the Poisson equation,
even though in the BB model it is only approximately satisfied,

W =
1

2

mω2
p

k2n0

(∫
〈δf〉dv

)2

. (4.52)

Thus the evolution of phasestrophy follows a simple expression,

dΨ

dt
=
(
γΨ − γcol

Ψ

)
Ψ, (4.53)

where γΨ is the collisionless phase-space structure growth-rate,

γΨ ≈
16

3
√
π

∆v

vR

γL0

ωp
γd. (4.54)

To be concise, in this expression for γΨ we assumed ∆v dvf0 � kn0/ω and ∆̇v � γd∆v,
which are satisfied in our simulations. Eq. (4.54) is in qualitative agreement with the colli-
sionless structure growth-rate estimated in Ref. [DKL15]. However, the method used in the
reference assumes that ∂E0/∂t� γdE0, which is only valid in the initial, linear phase, near
marginal stability.

Fig. 4.9 shows the growth-rate of phasestrophy, averaged over a time window of duration
γL0∆t = 100, where ∆v in the expression of γΨ is estimated by fitting a Gaussian to 〈δf〉 in
the vicinity of the hole at each time-step. We observe quantitative agreement between our
simulations and theory for the supercritical case (γd/γL0 = 0.5), and qualitative agreement
in the subcritical case (γd/γL0 = 1.05). There is a 40% discrepancy in the subcritical case,
which is due in part to the co-existence of a secondary hole with 20% as much phasestrophy
as that of the main hole. This suggests that consideration of the primary-secondary hole
interaction is necessary to improve the accuracy of the theory.

Eq. (4.54) shows that the growth of phase-space structures is independent of linear
stability, since it is not related to the sign of the total linear growth rate γ ≈ γL0 − γd.
Nonlinear growth requires a positive γd to enable momentum exchange, a positive slope for
f0 to provide free energy, and a seed structure with a width ∆v large enough for γΨ to
overcome collisions. When the linear growth rate γ is negative, the seed structure is the
hole (clump) corresponding to the v > vR (v < vR) part of the plateau, which is formed by
particles trapped in the finite initial electric field.

49



Figure 4.10 – Dashed curves: time-series of electric field amplitude for different initial am-
plitudes. (a) Subcritical case, γd/γL0 = 1.05. (b) Supercritical case, γd/γL0 = 0.98. The
other simulation parameters are given in Fig. 4.9. Solid line: theoretical nonlinear instability
threshold, Eq. (4.57).

Figure 4.11 – Vertical bars:
range of electric field ampli-
tude between the highest stable
and the lowest unstable simula-
tion. Dotted line: theory de-
scribed in (a) this paper; (b)
Ref. [BBC+99].

Threshold in initial amplitude

The expression of collisional phasestrophy decay, Eq. (4.50), can be used to obtain the
threshold of initial perturbation amplitude required to trigger the subcritical instability. If
Krook-like collisions dominate in γcol

Ψ , the threshold width ∆vmin of a seed structure is

∆vmin

vR
≈ 3
√
π

8

ωp
γL0

νa
γd
. (4.55)

If Krook-like collisions are negligible, then γcol
Ψ ∼ ν3

d/(k∆v)2 and

∆vmin

vR
∼ 0.7

(
ωp
γL0

ωp
γd

)1/3
νd
ωp
. (4.56)

The width of the electrostatic potential well is 4ωb/k, which is twice the width of a seed
hole. Thus, the initial amplitude threshold ωb,min is of the order of(

ωb,min

ωp

)2

∼ 0.12

(
ωp
γL0

ωp
γd

)2/3 (
νd
ωp

)2

. (4.57)

Fig. 4.10(a) shows time-series of electric field amplitude ωb for different initial ampli-
tudes, for the case γd/γL0 = 1.05, which is a subcritical instability with γ/γL0 = −0.045.
The threshold between damped solutions and nonlinear instabilities is in agreement with
Eq. (4.57).

We further investigate the validity of this scaling by performing a scan of γL0/ωp =
0.02− 0.50, γd/γL0 = 1.01− 1.20 and νd/γL0 = 2× 10−3 − 10−1. For each case, a series of
simulations with different initial amplitudes is performed, and we measure, after one island
turnover, the amplitude of the highest stable solution and the amplitude of the lowest stable
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solution. Fig. 4.11 shows the range of the instability threshold, and compares it against (a)
our theory, and (b) the scaling obtained in Ref. [BBC+99] in the limit ωb � γL,

ω2
b,min ∼ ν2

d max

[(
νd
γL0

)1/2

,

(
|γL0 − γd|

γL0

)1/2
]
. (4.58)

Note that the two theories are not incompatible. The observed error in Fig. 4.11(a) is
expected since Eq. (4.57) corresponds to a single-hole limit. The picture of Landau damping
seeding the structure is valid only if the plateau shrinks slowly enough, |ω̇b| � ω2

b . This
condition must be satisfied during at least one orbit, which gives an additional condition on
the initial amplitude, namely ωb � (π + 1/2)|γ|.

In addition, our theory predicts the existence of a nonlinear instability for positive but
small γ. For a plateau of width 2∆v, Ψ ∼ ∆v3 and the growth due to the linear instability
is ∆̇v/∆v = γ/2. Then the nonlinear instability due to phasestrophy growth is stronger
than the linear growth if γΨ − γcol

Ψ > (3/2)γ. We discovered numerically the existence of
such supercritical nonlinear instabilities for 0 < γ/γL0 < 0.04. Fig. 4.10(b) shows time-
series of electric field amplitude ωb for different initial amplitudes, for γd/γL0 = 0.98, which
is slightly above marginal stability with γ/γL0 = 0.018. The threshold where the linear
growth becomes nonlinear is in agreement with Eq. (4.57).

Summary

To summarize, the energy-phasestrophy relation can be applied in the BB case to obtain
a simple expression for the growth rate of a single phase-space structure, γΨ ∼ γdγL0∆v in
the collisionless limit. This expression shows that dissipation drives a nonlinear instability of
holes and clumps via momentum exchange, regardless of linear stability. This leads to faster-
than-linear growth in barely unstable regimes, as well as to subcritical instabilities, subject
to the presence of a finite seed structure. Simulations in both subcritical and supercritical
regimes show a good agreement with analytic theory. These results were obtained in the
single structure case. Although we expect similar physical processes in the presence of
multiple holes and clumps, the theory should be revisited by taking into account multi-
structure interactions. This will likely necessitate some form of turbulence closure theory.

4.3.3 Phenomenology

As we have seen in subsection 4.3.1, it has been predicted that three kinds of be-
haviours emerge from the BB model, namely steady-state, periodic, chaotic, and chirping
responses. In fact, many qualitatively distinct nonlinear regimes have been observed in con-
finement fusion experiments in the presence of EPs [FBG+97], including a zoo of different
kinds of chirping. Chirping modes are qualitatively diverse in terms of their intermittency
[KKK+99, PBF+10, CDL+10], their monotonicity in frequency shift [BBB+06, NFA+08],
their asymmetry [BBB+06, TOI+11], and whether frequency shifting branches end as a
continuous mode [GS04] or not. In this subsection, which was published as Ref. [LI12],
the goal is to define and categorize each nonlinear regime in a systematic manner. Such a
categorization indicates how experimental input parameters may be adjusted to change the
nonlinear behavior. For instance, since Alfvén avalanches are often associated with chirping
bursts, rather than continuous modes, a good strategy would be to avoid chirping bursts.

When collisions are modeled by a simple Krook operator, a systematic categorization
of these nonlinear regimes in the (γd, νa) parameter space for a fixed initial velocity dis-
tribution has been performed numerically [VDR+03, LIG09]. In the chirping cases, two
branches coexist, with their frequency sweeping downwardly (down-chirping) for one, up-
wardly (up-chirping) for the other, as pairs of hole and clump in the distribution evolve
[BBP97b, BBP98, BBC+99]. However, including dynamical friction (drag), and diffusion in
the collision operator have a strong impact on the nonlinear behaviour, and is necessary to
qualitatively reproduce experimental chirping AEs [LBS09, LIS+10]. Let us then focus on
drag and diffusion.

We must keep in mind that, although the terms in νf and νd in the BB equations are
referred to as drag and diffusion, they do not correspond to drag and diffusion in the sense
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of a 3D Fokker-Planck collision operator, but rather to a projection of these operators on a
resonant surface. In fact, as we have seen in subsection 4.1.2, νf includes contributions from
the slowing down term, the pitch-angle scattering term and the parallel velocity diffusion,
while νd includes contributions from the pitch-angle scattering term and the parallel velocity
diffusion.

Here, we adopt the δf BB model. In this model, the linear frequency of the wave is
imposed as ω0 = ωp. Even when chirping occurs, ω0 does not change. Chirping (existence
of a significant spectral component at finite δω ≡ ω − ω0) is due to the nonlinear evolution
of the amplitude and phase of the wave.

The initial velocity distribution is that shown in Fig. 4.1(b), with γL0 = 0.1, which is
experimentally relevant gorelenkov00,heidbrink03,nazikian08. The linear drive γL, which,
we recall, is defined as the linear growth rate in the absence of damping and collision, is
γL/ω0 = 0.09. This is consistent with energetic particle-driven experiments, where γL/ω0

is estimated within the range ∼ 0.1% − 30%. It is acknowledged that deviations from
a constant-slope distribution are expected to affect the nonlinear behaviour. Thus, when
discussing experiments, our analysis must be understood as an ideal case where the energetic-
particle distribution can be modeled with a constant slope in a neighbourhood of the resonant
velocity, where the size of this neighbourhood depends on the domain spanned by resonant
wave-particle interactions and evolving phase-space structures.

Categorization

We consider five main categories for the time-evolution of the instability. The category
is obtained by an analysis of ωb(t) (which, we recall, measures the amplitude the electric
potential), and a spectrogram P(δω, t) of Ẽ(0, t). Since we want to categorize the time-
asymptotic behaviour, we restrict our analysis to a time-interval that starts well after the
end of the linear phase and the nonlinear saturation, ignoring some transient evolution. We
detail in Ref. [LI12] how we define the categories shown in the following chart.

Nonlinear
saturation

Damped

Steady

Periodic

Chaotic

Chirping

Long-lived
hole or clump

Periodic
chirping

Bursty
chirping

Intermittent
chirping

Chaotic
chirping

Steady
hole or clump

Oscillatory
hole or clump

Wavering
hole or clump

Upward
dominant

Upward
only

Downward
dominant

Downward
only

Symmetric

Hooked

Not hooked

Typical nonlinear behaviour

For a typical example of each nonlinear regime, Figs. 4.12 to 4.15 show the time-evolution
of the electric field amplitude. For each example, we also show the corresponding spectro-
gram.

Fig. 4.12 shows three nonlinear regimes, which do not feature frequency sweeping, namely
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Figure 4.12 – (a) Time-series of electric field
amplitude and (b,c,d) spectrograms for typi-
cal non-chirping solutions, with γd/γL0 = 0.8,
and νd/νf = 5. The value of νd/γL0 is 0.50 for
steady (b), 0.30 for periodic (c) and 0.23 for
chaotic (d). Each simulation corresponds to
a point in Fig. 4.16(a). Each spectrogram on
this page and the next has a logarithmic color
code, which spans 3 orders of magnitude.

Figure 4.13 – (a) Time-series of electric field
amplitude and (b,c,d) spectrograms for typi-
cal chirping solutions, with γd/γL0 = 0.5, and
νd/νf = 5. The value of νd/γL0 is 0.14 for
periodic chirping (b), 0.11 for bursty chirp-
ing (c) and 0.065 for intermittent chirping
(d). Each simulation corresponds to a point
in Fig. 4.16(a).
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Figure 4.14 – (a) Time-series of electric field
amplitude and (b,c,d) spectrograms for typ-
ical chirping solutions, with νf = νd. The
parameters are γd/γL0 = 0.8, νd/γL0 =
0.13 for chaotic chirping (b); γd/γL0 = 1.0,
νd/γL0 = 0.05 for intermittent chirping (c);
and γd/γL0 = 1.2, νd/γL0 = 0.09 for a sub-
critical case (d). In the subcritical case, we
show the amplitude time-series for two choices
of initial amplitude ωb(0)/γL0: 0.03, which
yields a damped solution; and 1.0, which
yields a nonlinear instability. Each simulation
corresponds to a point in Fig. 4.16(b).

Figure 4.15 – (a) Time-series of electric
field amplitude and (b,c,d) spectrograms for
typical solutions with long-lived hole, with
γd/γL0 = 0.5. The parameters are νf/γL0 =
0.36, νd/γL0 = 0.27 for steady hole (b);
νf/γL0 = 0.16, νd/γL0 = 0.09 for wavering
hole (c); and νf/γL0 = 0.16, νd/γL0 = 0.12
for oscillatory hole (d). Inset: zoom over
a few oscillation periods of the amplitude.
Each simulation corresponds to a point in
Fig. 4.16(d).
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steady, periodic, and chaotic. These solutions were predicted and observed when collisions
are modelled by a Krook operator, for sufficiently large collisions.

Fig. 4.13 shows three nonlinear regimes with frequency sweeping, namely periodic chirp-
ing, bursty chirping and intermittent chirping, which are not obtained in the Krook case.
The electric field amplitude displays clear relaxation oscillations, with more or less regularity
depending on the parameters. The periodic chirping regime is studied in more details in
subsection 4.3.5.

Fig. 4.14(b) shows a fourth nonlinear regime with frequency sweeping, namely chaotic
chirping. This is also an example of a solution with upward chirping dominant. In general,
chaotic chirping corresponds to an uninterrupted generation of holes and clumps of various
sizes, which yields a spectrogram with many minor and major chirping branches without
clear quiescent phases. This latter behaviour is the only chirping behaviour that was ob-
tained in the Krook case. There are also other kinds of chaotic chirping, not shown here,
where the spectrogram features several behaviours alternating in time, for example bursty
chirping and wavering hole.

For νf ∼ νd, dynamical friction significantly modifies the shape of a chirping branch,
up to a situation where the sweeping direction of a chirping hole is reversed at some point,
as seen in Fig. 4.14(b), which is called as hooked chirping. For larger collision frequencies,
the contradicting effects of drag and dissipation on a hole seem to balance, yielding long-
lived holes with more or less stable frequency shift. Such situations have been observed
and explained in Ref. [LBS09]. Fig. 4.15 shows three nonlinear regimes with long-lived
holes. When several holes coexist, the categorization into steady, oscillatory or wavering
hole is based on the hole with the largest frequency shift, which is observed to dominate the
spectrogram. We observed that the number of holes is roughly increasing with decreasing
collisionality.

The case of Fig. 4.14(d) is actually a subcritical instability, with γ/γL0 = −0.18. The
case of Fig. 4.14(c) is also a nonlinear instability, albeit not subcritical. In this case, the
growth rate is very small, γ/γL0 = 1.5× 10−7, but after a finite time, wave amplitude grows
explosively to a chirping state. The practical consequence is that the wave saturates to a
high level ωb ∼ γL much sooner than what linear theory predicts (γLt ∼ 103 instead of 108

in this case). For νf = νd = 0.05 γL0, we observe such supercritical nonlinear instabilities
when γ/γL0 < 0.04. In a long-time point-of-view though, after nonlinear saturation, the
chirping behaviour does not depend on the initial amplitude.

Small drag

To investigate the regime of small drag, we perform a series of 260 simulations where
νd/νf = 5, which is relevant to present day tokamaks [LIS+10]. Fig. 4.16(a) shows the
categorization of each simulation result in the (γd, νd) parameter space. Note the agreement
between the linear stability threshold γ = 0 and the boundary between linearly stable and
unstable simulations. This phase diagram is qualitatively similar to what was obtained with
Krook collisions. We recover the same bifurcations from steady, to periodic, to chaotic,
to chirping as the collision frequencies decrease. We don’t observe chirping solutions for
γd/γL0 < 0.1. The main difference is that chirping solutions can be intermittent, bursty or
periodic, whereas we only observed chaotic chirping in the Krook case. We observed that
several holes and clumps with different amplitudes co-exist in the Krook case, while diffusion
smooths out fine-scale structures, which explains isolated chirping events we observe in the
drag-diffusion case. Nonlinear instabilities, including subcritical instabilities, are also found
for collision frequencies slightly below the range of our diagram, νd/γL0 < 0.04. Based on
the analysis described in subsection 4.3.6, TAEs in JT-60U discharge E32359 are roughly
located at the point marked by the letter J in this diagram. In such case, the strategy to
avoid chirping bursts would be to increase the ratio γd/γL, perhaps by decreasing the beam
injection power, in order to bring the system closer to marginal stability. An other approach
would be to increase effective collision frequencies, but the required increase may be too
difficult to achieve.

Lilley showed that steady-state solutions are not possible for νd/νf < 1.043 [LBS09].
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Figure 4.16 – Behaviour bifurcation diagrams for γL0 = 0.1. (a) For νd/νf = 5. An absence
of point signifies that longer, or better resolved simulations are necessary to categorize the
time-asymptotic behaviour. The letter J indicates the JT-60U discharge E32359. (b) For
νd/νf = 1. In the bottom right corner, superposed symbols show subcritical solutions for
which the amplitude is damped when ωb/γL0 = 0.03, but unstable when ωb/γL0 = 1. (c)
For γd/γL0 = 0.9 (close to marginality). (d) For γd/γL0 = 0.5 (far from marginality).
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This steady-state threshold, as well as the steady/periodic threshold Eq. (4.43), are shown
in the bifurcation diagrams, when relevant. There is qualitative agreement within the va-
lidity limit of each theory.

Large drag

To investigate the effect of large drag, we perform a series of 221 simulations where
νd/νf = 1, which may be more relevant to ITER parameters [LBS09]. Fig. 4.16(b) shows
the categorization of each simulation result in the (γd, νd) parameter space. This diagram is
qualitatively different from what was obtained with Krook collisions. We don’t observe any
steady solution, which is consistent with the theoretical steady-state threshold. Neither do
we observe periodic or chaotic solutions. Instead, long-lived holes fill the parameter space for
large collision frequencies. For νf/γL0 = νd/γL0 < 0.1 and γd > γL0, we observe subcritical
instabilities. We find only 1 periodic chirping solution, compared to 13 in the small drag case,
which suggests that quasi-periodically bursting AEs, which are often observed in present
tokamaks, may not or rarely be observed in ITER.

Since the initial distribution is symmetric around the resonant velocity, the drag term
is the only term in the δf -BB model that is asymmetric around δω = k(v − vR) = 0. This
is consistent with the fact that we find only 3 upward chirping dominant solutions when
νf = νd/5, whereas most solutions are upward chirping dominant or upward chirping only
when νf = νd (steady-hole solutions are trivially asymmetric). Drag has a counter-intuitive
effect on chirping asymmetry. Since the effect of drag on any phase-space structure is to
advect it from large to small velocities, one could imagine that the presence of drag would
make down-chirping dominant. However, upward chirping dominates and a physical expla-
nation is proposed in Ref. [LBS09].

Close to marginal stability

Let us investigate the barely unstable regime, which is relevant for theory and may be
relevant for ITER in some cases [GBB05]. We perform a series of 204 simulations where
γd/γL0 = 0.9, which is near marginal stability in the sense that γ/γL ≈ 0.05. Fig. 4.16(c)
shows the categorization of each simulation result in the (νf , νd) parameter space. The
linear stability threshold is out of the range of this plot. As predicted by theory, steady-
state solutions only exist above the steady-state threshold. Moreover, the boundary between
steady and periodic solutions agree with the theoretical steady/periodic threshold.

Farther from marginal stability

To investigate the nonlinear behaviour relatively far from marginal stability (in an in-
stantaneous point-of-view, not necessarily in a time-averaged point-of-view), we perform a
series of 204 simulations where γd/γL0 = 0.5, which is relevant for experiments [LIS+10].
Fig. 4.16(d) shows the categorization of each simulation result in the (νf , νd) parameter
space. The linear stability threshold is out of the range of this plot. The agreement with
the theoretical steady-state threshold and steady/periodic threshold is not as good as when
γd/γL0 = 0.9, which is expected since for γd/γL0 = 0.5, γ/γL0 ≈ 0.4, whereas the assump-
tion is γ/γL0 � 1.

General remarks

In all cases, each category is relatively isolated in a well-defined region, rather than
dispersed in the whole parameter space. Note also that the region of hooked chirping is
contiguous to the region of long-lived hole.

All periodic chirping solutions satisfy our criteria for bursty chirping. In this sense,
periodic chirping is a special case of bursty chirping. Periodic chirping solutions are restricted
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to a region where γd/γL = 0.2 − 0.7, which is relatively far from marginal stability. This
suggests that, in experiments that feature periodic chirping bursts, one must be careful in
using the assumption γd ≈ γL, which stems naively from self-organization arguments.

As a caveat, we don’t observe neither long-lived clump or down-chirping dominant cases,
which are often observed in the experiment.

Ultimately, nonlinear behaviour bifurcations may be used as a guide to mitigate energetic
particle transport in magnetic fusion experiments. However, we must note the following
caveats.

1. Although quantitative similarities between AE experiments and the BB model have
been found, a one-to-one correspondence has not been established, leaving some un-
certainty in any experimental analysis based on the BB model.

2. Processes that are not included in the BB model, such as turbulence-induced drag
and diffusion, may change the qualitative picture, or yield new kinds of behaviour,
such as long-lived clumps if some process brings an effect opposite to collisional drag.

3. Several resonances or several modes co-exist in most experiments, and can interact
to produce other kinds of behaviour, such as avalanches.

4.3.4 Chirping lifetime

As illustrated in subsection 4.3.3, several holes and clumps with different amplitudes can
co-exist. Here, we are interested in the nonlinear chirping characteristics, averaged over a
significant number of chirping events. In particular, in our simulations, we observe that the
first chirping event stands out from the statistics, with a larger extent of chirping – up to
twice as much as any other one of the following series of repetitive chirping. The reason is
explained in subsection 4.3.5. Here, the first chirping burst is ignored.

The resonant velocity of a hole (a clump) does not increase (decrease) indefinitely. We
define the life-time τ of a chirping event as the time it takes to the corresponding power in
the spectrogram to decay below a fraction e−2 of the maximum amplitude reached during
this chirping event. The maximum life-time τmax is the maximum reached by τ during a
time-series, ignoring the first chirping event and any minor event. It is reasonable to assume
that the island structure is dissipated by collisional processes, in which case the maximum
chirping life-time should be of the form

τmax =
ιa
νa
, (4.59)

in the Krook case, and

τmax = ιd
γ2
L0

ν3
d

, (4.60)

in the case with drag and diffusion, when νf � νd, where ιa and ιd are constant parameters.
Therefore we define the effective collision frequency as νeff ≡ νa in the Krook case and
νeff ≡ ν3

d/γ
2
L0 in the case with diffusion.

In Fig. 4.17, we plot the maximum lifetime measured in δf -COBBLES simulations
where the ratio γd/γL0 is chosen as 0.5 and 0.9, i.e. far from and close to marginal stability,
respectively. A quantitative agreement is found with Eq. (4.59), with ιa = 1.1, for νa
spanning 2 orders of magnitude. With the diffusive collision operator, the chirping lifetime
agrees with Eq. (4.60) only for low collisionality. For high collisionality, we find that lifetime
satisfies

τmax = ιd

(
γL0

ν3
d

)0.5

, (4.61)

obtained by a linear fit with ιd = 2.7. Note that this is an improved fit compared to the

one with the formula τmax = ιd
(
γ2
L0/ν

3
d

)0.5
mistakenly given in Ref. [LIS+10]. This high

collisionality regime is important because chirping observed in experiments has a life-time
of the order of τ ∼ 500 (we recall that we normalize time with the linear frequency of the
mode).

Note that Eq. (4.60) assumes that the initial width of holes and clumps is proportional to
γL0 only [BBP97b]. We suggest that diffusion affects the width of a hole or clump during the
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Figure 4.17 – Maximum life-
time of a hole or clump,
for γd/γL0 = 0.5 (far from
marginal stability) and 0.9
(near marginal stability). (a)
Krook collisions. The crosses
correspond to the δf BB model
(”Linear beam”) and the tri-
angles correspond to the full-
f model (”Gaussian beam”).
In both cases, γL0 = 0.05.
The solid line corresponds to
Eq. (4.59). (b) Drag and dif-
fusion (δf model only) with
νf/νd = 0.1, for two different
values of γL0. The dashed line
corresponds to Eq. (4.60) with
ιd = 0.16, the solid line to
Eq. (4.61) with ιd = 2.7.

Figure 4.18 – Initial width of
holes as a function of the effec-
tive collision frequency νeff ≡
ν3
d/γ

2
L0. The simulation param-

eters are γd/γL0 = 0.5, νd/νf =
10 and γL0/ω given in the leg-
end. A dashed line shows a
power law with exponent −1/4.
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Figure 4.19 – Effect of drag in the periodic
chirping regime. (a) Time-evolution of the
electric field amplitude for νd = 0.025 and
νf shown in the legend. (b) Spectrogram of
the electric field, for νf = 0.008. Logarith-
mic color code ranging from 1 (black) to e−3

(white).

Figure 4.20 – Effect of diffusion in the peri-
odic chirping regime. Time-evolution of the
electric field amplitude for νf = 0.008 and νd
shown in the legend.

first phase of their evolution, namely drive by free-energy extraction, which in turn affects
the decay by diffusion. Our simulation data support the latter claim. We measure the width
of shifting holes (ignoring the first, exceptional burst) by fitting a Gaussian to 〈δf〉, and we
keep only the minimum ∆v0 for each simulation. Fig. 4.18 shows that k∆v0/γL0 is roughly
constant for low collisionality, but is proportional to (νd/γL0)3/4 for high collisionality, which
is consistent with Eq. (4.61).

To investigate the impact of the shape of the fast particles distribution, we repeat the
same analysis (in the Krook case) with an initial bump-on-tail distribution with a Gaus-
sian beam (with the full-f version of COBBLES) instead of a constant gradient, or linear,
beam. Fig. 4.17(a) shows that the agreement is kept, even if the shape of the distribution
has a significant effect on the extent of chirping as can be seen for example in Fig. 12 of
Ref. [LIG09].

4.3.5 Chirping period

As long as the background plasma parameters are not significantly changed, chirping
events of EP-driven modes in most tokamak and stellerator experiments are quasi-periodic,
with a quiescent phase between two chirping branches that lasts a few milliseconds. It should
be noted that this statement does not seem to apply to DIII-D [Hei95]. As we have seen in
subsection 4.3.3, this regime appears when the drag/diffusion collision operator is applied,
for νf � νd � γL0 and γd ≈ γL0/2. In this subsection, we focus on the chirping period
∆tchirp, which is defined as the average time between two bursts.

Throughout this section, δf -COBBLES simulations are performed with parameters
γL0 = 0.1, γd = 0.05, Nx×Nv = 128×2048 grid points, and time-step width ∆t = 0.05. The
collision frequencies vary, but we choose a reference case as νf = 0.008 and νd = 0.025. We
recall that the electric field amplitude is measured by the bounce-frequency ωb = (Q2+P 2)1/4

of particles that are deeply trapped in the electrostatic potential.

Fig. 4.19 shows the time-evolution of electric field amplitude for three quasi-periodic
chirping with three values of drag, as well as the spectrogram for the reference case, illus-
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Figure 4.21 – Perturbed veloc-
ity distribution for νf = 0.008,
νd = 0.025, at γL0t = 100,
and fit, Eq. (4.62), with lc =
3.20 × 10−3, lh = 3.23 × 10−3,
vc = 0.203, vh = 0.115, ∆vc =
0.215 and ∆vh = 0.213. The
difference between the numer-
ical distribution and the fit is
amplified 500 times.

trating the quasi-periodic chirping regime. As νf increases, ∆tchirp decreases. Fig. 4.20
shows three values of νd. As νd increases, ∆tchirp decreases.

The dependency of chirping period on the model parameters (γL0, γd, νf and νd) is
complex and lack theoretical analysis. In the following, we estimate the effects of νf and νd.

Gaussian model

Dupree showed that a phase-space density hole corresponds to a state of maximum
entropy, and that this state is a BGK mode, with δf ∼ exp−H/H0, where H is the energy
in the rest-frame of the hole and H0 is a constant [Dup82]. In the periodic chirping regime,
the phase-space is dominated by a single hole and a single clump for most of the duration
of a chirping burst (except at the very beginning of a burst), as hinted by the observation
of a single downwardly shifting branch and a single upwardly shifting branch for each burst
in Fig. 4.19(b). Then the spatial average of the perturbed distribution can be reasonably
modeled by two Gaussian distributions,

〈δf〉 (v, t) = lc exp

[
−
(
v − vR + vc

∆vc

)2
]
− lh exp

[
−
(
v − vR − vh

∆vh

)2
]
, (4.62)

where lc, lh, vc, vh, ∆vc and ∆vh are positive functions of time, and the subscripts c and
h denote the clump and the hole, respectively. Fig. 4.21 shows the perturbed velocity
distribution for the reference case, at γL0t = 100, where ωb/γL0 ∼ 0.1. The model is a good
fit for the simulation in this particular snapshot. The agreement is typically better for lower
amplitudes or just before a burst ; worst for higher amplitudes or during and just after a
burst.

When the field amplitude is small enough, the collision operator dominates over the
nonlinear term Ẽ∂vf in Eq. (4.25). Then the velocity distribution satisfies a Fokker-Planck
equation,

∂ 〈δf〉
∂t

= Fv
∂ 〈δf〉
∂v

+ Dv
∂2 〈δf〉
∂v2

, (4.63)

where Fv = ν2
f/k, and Dv = ν3

d/k
2 The form of the hole/clump pair is unchanged, and the

time-evolution is solved analytically,

lc(t) =
∆vc(t0)

∆vc(t)
lc(t0), lh(t) =

∆vh(t0)

∆vh(t)
lh(t0), (4.64)

vc(t) = vc(t0) + Fv (t− t0) , vh(t) = vh(t0)− Fv (t− t0) , (4.65)

∆vc(t)
2 = 4Dv (t− t0) + ∆vc(t0)2, ∆vh(t)2 = 4Dv (t− t0) + ∆vh(t0)2. (4.66)

Fig. 4.22 shows the evolution of the hole/clump pair characteristics. We adopt a least-
square fit of the hole/clump pair in the simulation at t = t0. We arbitrarily choose γL0t0 =
100, and confirm that the theory is in good agreement with simulation for 40 < γL0t <
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Figure 4.22 – Time-evolution of
hole and clump characteristics,
for our reference case (νf =
0.008, νd = 0.025). (a) Am-
plitude lh and lc. (b) Shift vh
and vc. Note that increasing vh
means accelerating hole, while
increasing vc means decelerat-
ing clump. (c) Width ∆vh and
∆vc. The dashed curves cor-
respond to Eqs. (4.64)-(4.66),
with γL0t0 = 100.

120. Similar results are found for various simulation parameters and various choices of t0.
Observed deviations from a Gaussian distribution do not have qualitative impacts on the
evolution of amplitude, shift or width. This justifies that we use the Gaussian model to
demonstrate following qualitative statements without lack of generality.

For the sake of explanations, we separate two phases. In the bursting phase, which im-
mediately follows the amplitude saturation, the dynamics is dominated by the formation of
holes and clumps. The hole (clump) is rapidly growing and rapidly accelerating (deceler-
ating). Two examples for the reference case are 20 < γL0t < 30 and 120 < γL0t < 140.
This phase appears as strong bursts of activity in the spectrogram, Fig. 4.19(b). In this
phase, the term Ẽ ∂vf dominates over the collision operator, and the time-evolution of the
amplitude depends mostly on γL0 and γd.

In the quiescent phase, the dynamics is dominated by the evolution of one hole and one
clump under the effect of dynamical drag and velocity-diffusion (E0 � ν2

f/k, ν3
d/k

2). Both
hole and clump are slowly decaying and slowly decelerating (for finite νf ). Two examples
for the reference case are 40 < γL0t < 120 and 140 < γL0t < 180. This phase appears
as a quiescent period in the spectrogram. Although we consider two phases for the sake
of explanations, there is, in fact, no clear separation between these two phases. It should
be kept in mind that velocity-diffusion is necessary for the quiescent phase to exist, as was
shown in Ref. [LIS+10]. When the lifetime of holes and clumps exceeds the distribution
recovery time, we leave the periodic chirping regime.

Quasi-linear growth rate

Let me define the quasi-linear growth rate as the rate obtained by replacingf0 by f0 +
〈δf〉 into the linearized model equations, where 〈δf〉 is given by our Gaussian model of
hole/clump pair. As a preliminary step to the analysis below, we show that this quasi-
linear growth rate reproduces the instantaneous growth rate of wave amplitude measured
directly in simulations. To obtain the linear growth rate, we search for solutions of the form
exp(pt), where p ≡ γ − ıω. Writing fk(v, t) = fp(v)ept the Fourier components of δf , and
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Figure 4.23 – Time-evolution of
the growth rate in our reference
case. Points: obtained from
the time-series of electric field
amplitude (Fig. 4.20, dashed
curve). Dashed curve: ob-
tained from the linearized equa-
tions and the Gaussian model
for ∂ 〈f〉 /∂v. In the absence
of hole and clump, γ/γL0 =
0.4476. (A) shows the discrep-
ancy between the latter value
and the maximum growth rate
reached before the second burst.

exp(−ıt)(Q+ ıP ) = Zpe
pt, we obtain a linear equation system,

(p + ıv)fp +
Zp
2

∂f0

∂v
= Fv

∂fp
∂v

+ Dv
∂2fp
∂v2

, (4.67)

(p + γd + ı)Zp = −
∫
fp dv. (4.68)

Discretizing the velocity space, the latter system can be put in the form of an eigenvalue
problem. We solve it using Lapack library. For our reference case in the absence of holes and
clumps (lc = lh = 0), we obtain ω = 1.000 and γ = 0.04476. In the presence of holes and
clumps, we denote the growth rate as γQL, indicating that we use the velocity distribution
that results from nonlinear calculations.

From the amplitude time-series of the numerical simulation, we extract the instantaneous
growth rate γNL, defined as E(t2) = E(t1) exp [γNL(t2 − t1)], where we choose arbitrarily
γL0(t2 − t1) = 4. Fig. 4.23 shows that the quasi-linear growth rate obtained from the
eigenvalue problem with the Gaussian model for hole and clump is in good agreement with
the nonlinear growth rate extracted from the simulation. We could easily go one step further,
and use the numerical velocity distribution itself, retrieved from numerical simulations,
without modeling it. We would expect even better agreement between the quasi-linear and
the nonlinear growth rate. However, the goal here is to clarify hole/clump dynamics. To
reach this goal, it is necessary to keep models as simple and analytic as reasonably possible.

Here we make an important remark. Fig. 4.22(a) shows that the second burst occurs
before the remnant hole-clump pair from the first burst is completely dissipated. Since the
initial distribution function is not recovered, there is a discrepancy between the linear growth
rate γ = 0.04476 and the maximum growth reached before the second burst at γL0t = 122,
γNL = 0.024. This discrepancy is marked (A) in Fig. 4.23. In Alfvén waves experiments
in magnetic confinement devices, the amplitude time-series of magnetic perturbation looks
as though the linear growth rate γ can be extracted by fitting an exponential to the signal.
Our analysis shows that this procedure, which is used in data analysis (e.g. [STI+02]), can
lead to large error (50% in our case). In other words the growth is not linear in the case of
quasi-periodic chirping bursts. For the same reason, successive chirping rates may not reflect
the relaxed distribution – f0(v) in the collision operator C(f − f0) – but the instantaneous
state of the relaxing distribution – f(x, v, t). In addition, since the discrepancy (A) depends
on the details of the velocity distribution, theory predicts the timing of the subsequent burst
(e.g. at γL0t ≈ 125), but only qualitatively.

Effect of drag

The effect of drag on chirping period is complex and depends on other parameters.
Fig. 4.24 shows the period as a function of drag, for two fixed values of diffusion. The data
points are shown only for simulations categorized as periodic chirping. We observe that,
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Figure 4.24 – Effect of drag on
chirping period at fixed diffu-
sion, for νd = 0.015 and 0.020.

Figure 4.25 – Effect of
hole/clump shift on quasilinear
growth rate. (a) Small width
∆vh = ∆vc = 0.15. (b) Large
width ∆vh = ∆vc = 0.25.
In both cases we choose
vc0 = vh0 = 0.16, where lines
cross in Fig. 4.22(b).

when the period is large, the general trend is a decreasing period as drag increasing. The
trend is reversed when the period is small.

To understand this complex behavior, we need to take into account the effect of drag
on both bursting phase and quiescent phase. In the bursting phase, drag lengthens the
lifetime of the hole by deepening it [LBS10]. On the one hand, when the bursting phase is
significantly shorter than the whole period, this is not a significant effect, as can be seen
in Fig. 4.19(a). Thus the effect of νf on chirping period is explained by the effect on the
quiescent period. From Eqs. (4.64)-(4.66), it is clear that the only effect of drag during
the quiescent period is to shift holes and clumps to smaller velocities. After one chirping
burst, both hole and clump are roughly shifted by a same amount, here vc0 = vh0 = 0.16
at γL0t = 30, which is the extent of chirping. Fig. 4.25 shows the quasilinear growth rate
against the shift vc − vc0 = vh0 − vh, for various hole/clump sizes and widths. We observe
that in all these cases, the growth rate increases with shift. This clarifies the effect of drag
on period: the larger the drag, the more rapidly the hole/clump pair is decelerated after a
burst, the larger the nonlinear growth rate, thus the shorter the quiescent phase and the
smaller the chirping period.

On the other hand, when the quiescent phase is much smaller than the whole period, the
dominant effect is the lengthening of the bursting phase. In this case, which is less frequent,
chirping period increases with increasing drag. This corresponds to the case νd/γL0 = 0.2
in Fig. 4.24.
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Figure 4.26 – Effect of diffusion on chirping
period at fixed drag, νf = 0.005.

Figure 4.27 – Effect of diffusion on quasilinear
growth rate. The product lc,h∆vc,h = 8 ×
10−4 is kept constant.

Effect of diffusion

The effect of diffusion on chirping period is consistent with simple intuitive arguments.
Fig. 4.26 shows that the period decreases as diffusion increases, for fixed drag. For large
diffusion, the effect tends to saturate. Again, the data points are shown only for simulations
categorized as periodic chirping.

As can be seen from Eq. (4.64), while the hole/clump amplitude is decreased and the
width is increased by diffusion, the product lc,h∆vc,h is conserved. Fig. 4.27 is a scan of the
quasilinear growth rate for decreasing lc,h and increasing ∆vc,h, while lc,h∆vc,h = 8×10−4 is
kept constant, for various shifts of the hole/clump pair. In all these cases, the rate decreases
until ∆vc,h ≈ 0.15, then increases. This clarifies the mechanism of relaxation oscillation
of the wave amplitude. After a burst, the system is typically at the point marked (B)
in Fig. 4.27 with a negative growth rate. As diffusion acts (as we move to the right in the
figure), the growth rate must go through even more negative values before recovering toward
the linear growth rate. The larger νd is, the quicker this process is, thus the smaller the
chirping period.

In addition to the effect of νd on the quiescent period, increasing νd also decreases the
duration of the bursting phase, by damping holes and clumps. This is an additional reason
why ∆tchirp decreases with increasing νd.

Conclusion

To clarify the mechanism of relaxation oscillation, I showed that the period is mainly
dictated by dynamical friction and velocity-space diffusion. Between two bursts, wave am-
plitude is low, and collisions dominate over the nonlinear term in the kinetic equation. By
modeling a hole and a clump in the velocity distribution by two Gaussians, their dynam-
ics is obtained as the analytic solution of a Fokker-Planck equation, given an initial fit of
the structures just after a burst. There is good agreement between analytic prediction and
numerical simulation for the hole/clump width, amplitude and shift. The instantaneous
quasi-linear growth rate was then obtained numerically by solving a linear equation system.
This procedure recovers time-evolution of amplitude growth and leads to a better qualitative
understanding of the nonlinear evolution of wave amplitude between bursts. In addition, this
theory explains why the growth rate of the first burst, which is equal to the linear growth
rate, is different from (in the simulation, twice larger than) the instantaneous growth rate
of subsequent bursts.

Let me mention a few caveats to this analysis. Firstly, collision frequencies are not the
only factors that determine ∆tchirp. If linear drive is decreased, more time is required to
recover a gradient steep enough to overcome damping, hence ∆tchirp increases. Secondly,
the accuracy of our simple model of hole/clump pair as two Gaussians is degraded after the
first burst, as remnants of holes and clumps from former bursts enter the picture. Thirdly,
particle trapping and detrapping are not taken into account in my theory. However, the
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agreement with simulations, where trapping and detrapping naturally occurs, shows that
their effect on hole/clump amplitude, shift and width is not significant in the quiescent
phase. Finally, additional effects, such as hole-hole or clump-clump interactions, and long-
range chirping [Bre10], should be taken into account to improve the theory. However, these
effects have limited impacts when the quiescent phase is larger than the bursting phase, or
for the periodic chirping regime with small enough frequency shift. The latter regime is
important since it was observed in tokamak experiments [KKK+99, PBG+04]. Hole-hole
or clump-clump interactions can be neglected because one single hole and one single clump
dominate during one chirping burst.

4.3.6 Analysis of experimental chirping modes

Here we describe a method for estimating local linear drive, external damping rate and
collision frequencies based on experimental observations of chirping EP-driven modes. The
method, which relies on the theoretical and semi-empirical laws for nonlinear chirping char-
acteristics, consists of fitting procedures between the BB model and the experiment, in the
quasi-periodic chirping regime. The uncertainty of this method is estimated by measuring
the effects of small variations. The linear drive and the damping rate are estimated to
within 5% and 10% accuracy, respectively. We apply this method to TAEs in JT-60U and
in MAST (the method we apply to EGAMs on the LHD in 4.4.6 is related but different).
In both cases, we find a relaxation oscillation with γL ≈ 2γd, while the system is very close
to marginal stability in a long time-averaged, or nonlinear point-of-view.

We have seen simple analytic expressions for the chirping velocity, Eq. (4.46), and for
the chirping lifetime, Eqs. (4.60)-(4.61). Analytic theory does not provide a robust analytic
expression for the chirping period in function of the input parameters. However, conceptu-
ally, there exists some relation with a subset of the input parameters. Thus, if we normalize
time with the mode frequency, then chirping velocity, lifetime and period are dictated by the
input parameters of the model, γL0, γd, and νa, or νf and νd. In the Krook case, we have
a 3-variables, 3-equations system, which can be solved by a fitting procedure described in
Ref. [LIS+10]. However the periodic regime with quiescent phases between bursts, observed
in the experiments, is not recovered. Therefore we focus on the collision operator with drag
and diffusion. In this case, there is one additional degree of freedom, hence the solution is not
unique, but the boundaries of chirping regime limit the possible range of input parameters.

Motivation

Although considerable progress has been made in the theoretical understanding of the
principal EP-driven instabilities [HF14], including with strong drive [CZ16], and the question
of their stability in ITER [PCL+15], the estimation of the mode growth rate γ remains
complex. Accurate estimations of the linear drive γL and the damping rate γd are needed,
especially if the system is close to marginal stability, where γ is sensitive to small variations.

The linear drive γL depends on several factors such as the spatial and energy gradients
of the EP distribution and the alignment between particle orbits and the eigenmode. It
can be estimated either by linear stability codes, such as PENN [JAVV95], TASK/WM
[FA03], NOVA-K [Che92], CASTOR-K [BBB+02], or LIGKA [LGKP07] ; or by gyro- or
drift- kinetic perturbative nonlinear initial value codes, such as MEGA [TSW+95], FAC
[CBB+97], HAGIS [PAC+98].

The global damping involves complicated mechanisms, which include continuum damping
[ZC92], radiative damping [MM92], Landau damping with thermal species [BF92, ZCS96]
and collisional damping [GS92]. A linear code benchmark shows that the typical accuracy is
about 50% for γd [BFG+10]. Experimentally, γd can be estimated by active measurements
of externally injected perturbations [FBB+95, FBB+00]. However, the applicability of this
technique is limited to dedicated experiments. Moreover, the existence of subcritical AEs
has not been ruled out. Therefore, nonlinear analysis is needed to assess the stability.
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Methodology

We consider magnetic field perturbations measured by a Mirnov coil at the edge of
a fusion plasma, for a time interval during which quasi-periodic, perturbative chirping is
observed, and during which background plasma parameters are not significantly changed.
One important assumption to reduce the problem to a one dimensional Hamiltonian is a
fixed mode structure. This implies that we must assume that frequency shifting occurs well
within the gap of the Alfvén continuum.

In the corresponding magnetic spectrogram, we extract the mode frequency fA, the
average chirping velocity, dδω2/dt, the maximum chirping life-time, τmax, and the average
chirping period, ∆tchirp. We aim at estimating the values of γL0, γd, νf and νd for which
the δf BB model fits experimental observations.

Eq. (4.46) gives a relation between the linear drive and external damping,

γ2
L0 γd =

1

α2β2

dδω2

dt
. (4.69)

For frequency sweeping of the order of 10% of the linear frequency, it is reasonable to
assume that the chirping lifetime is determined by collision processes, rather than by an
evolution of continuum damping. Inverting Eq. (4.61) yields a relation between the linear
drive and collisional diffusion,

γL0

ν3
d

=

(
τmax

ιd

)2

. (4.70)

Eqs. (4.69) and (4.70) form a system of two equations with four unknowns. The limited
range of the quasi-periodic chirping regime yields a third constraint on the input parameters.
Finally, we need a 2D scan in (νf , νd), where we search for solutions that fit the chirping
period. In general, β 6= 1, and trial-and-errors are required to adjust chirping velocity to
the experimental value.

Assumptions and caveats
Based on the above relations, it is possible to recover the input parameters of the BB

model such that the nonlinear evolution fits the experiment in terms of chirping velocity,
lifetime and period. In our analysis, we choose and fix the shape and extent of f0, the
approximation that f0, γd, and collision frequencies are time-independent, and the approxi-
mation that collisions are velocity-independent. These choices are justified in the same way
than we justify applying the BB model to TAEs: a posteriori, by checking that the fitted
parameters agree with experimental values and independent calculations.

However, this method of analysis is subject to important caveats, in addition to the
caveats which come with applying the BB model to EP-driven modes (described in sub-
section 4.1.4). Namely, we assume that the input parameters of the BB model that fit the
experimental spectrogram are a good estimate of the local growth rate, damping rate, and
collision frequencies. This is a strong assumption, which requires independent validation.

Overall, this method of analysis is suitable for weakly driven, isolated EP-driven chirping
modes, as long as

— the extent of chirping is small enough ;
— phase-space structures are well confined within the continuum gap ;
— the redistribution of energetic population is negligible as far as wave dispersiveness

and damping mechanisms are concerned ;
— we consider timescales much smaller than the equilibrium evolution timescale.

Application to JT-60U

In JT-60U, TAEs are destabilized by a negative ion based neutral beam (N-NB), which
injects deuterons at Eb = 360 keV. A distinction is made between abrupt large-amplitude
events (ALE) and fast frequency sweeping (fast-FS) [SKT+01]. Here, we focus on the
latter phenomenon, which has a timescale of 1 − 5 ms, and with which the associated
redistribution of energetic ions is relatively small [STI+02]. ALEs are identified as energetic
particle driven modes [BFV+07], have larger amplitude and shorter timescale (200-400 µs),
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Figure 4.28 – (a) Spectrogram
of magnetic fluctuations dur-
ing fast-FS modes in the JT-
60U discharge E32359, obtained
with a moving Fourier window
of size 2ms. (b) and (c) Spec-
trogram of the electric field,
where the kinetic parameters of
the δf BB model were chosen
to fit the magnetic spectrogram
for JT-60U discharge E32359.
The solid curve shows the ana-
lytic prediction for the chirping
velocity. (b) Krook collisions,
correction parameter β = 0.65.
(c) Friction-diffusion collisions,
correction parameter β = 0.75.

induce significant loss of energetic ions, and are out of the scope of this work since we assume
a constant density of energetic ions. In the discharge E32359, around t = 4.2 s, chirping
modes have been identified as m/n = 2/1 and 3/1 TAEs [KKK+99]. Fig. 4.28(a) shows the
corresponding spectrogram.

Let us apply our fitting procedure. We perform a first, rough scan in (νf , νd) parameter
space, assuming β = 1. Measuring average chirping velocity in repetitive chirping solutions
yields an estimation of the correction parameter, β = 0.75. We perform a second, more
careful scan, which consists of a series of 4×8 simulations in the domain (1.5% ≤ νd ≤ 2.2%,
1 ≤ νd/νf ≤ 8), where γL0 and γd are constrained by Eqs. (4.69) and (4.70). In this scan,
we find only one repetitive chirping solution with a period in agreement with the experiment
within 10% accuracy. The corresponding spectrogram is shown in Fig. 4.28(c). All chirping
features measured in this simulation fit the experiment. The estimated linear parameters
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Simulation Figure 4.29 – Evolution of the
amplitude of perturbations dur-
ing a single chirping event. The
signal is filtered between 40 and
65 kHz. In these arbitrary
units, 10−3 roughly corresponds
to a noise level. The parameters
of the simulation are shown in
Tab. 4.1.
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Experiment γL0 γL γd νf νd γ
JT-60U (E32359) 0.098 0.088 0.047 0.0042 0.017 0.046

MAST (#5568) 0.112+5%
−2% 0.099+4%

−2% 0.050+9%
−4% 0.0055+6%

−9% 0.0228+3%
−1% 0.055+2%

−2%

Table 4.1 – Frequencies and growth rates estimated from the magnetic spectrogram of chirp-
ing TAEs, in units of the mode frequency ωA = 2πfA. In the last row, the percentages in
subscript and superscript indicate the relative uncertainties.

are shown in the second row of Tab. 4.1, in units of the mode frequency ωA = 2πfA. In
theory, the solution is not unique, but the latter estimations are quite accurate because of
the narrow range of periodic chirping regime.

We also included as Fig. 4.28(b) the simulation which is closest to the experiment in
term of chirping quasi-period in the Krook case. We observe a series of minor chirping
events in between, which are absent from the experimental spectrogram. The damping rate
estimated from this analysis is γd = 8.6ωA, which is inconsistent with the latter estimation
with drag and diffusion processes. Since the latter shows much better agreement with the
experiment, we imply that the Krook model is insufficient to describe nonlinear features
related to repetition of chirping.

To validate this analysis (with drag and diffusion), we compare the amplitude of pertur-
bations in Fig. 4.29. Since the growth rate of chirping structure is neither γ nor γL, and
the decay rate not simply γd, but a function of several linear parameters, the agreement
we obtain is not trivial (we measure a growth rate of 2.3%, and a decay rate of 0.3%). For
further validation, let us estimate the values of νf and νd from plasma parameters.

Validation by comparing the collision frequencies

In the discharge E32359 around t = 4.2s, the resonant surface of the m/n = 2/1 and
3/1 TAE is located around r = 0.7m. The magnetic shear is estimated from the q profile
[GBC+00], S = 0.8. The deuterium plasma has the following characteristics, B0 = 1.2T,
R0 = 3.3m, and the tangential radius of the N-NB is RT = 2.6m. At r = 0.7 m, ne = 1.4 ·
10−19m−3, and T0 = 0.75keV. We take into account carbon impurities with Zeff = 2.7. Since
the magnetic moment is an invariant of the motion of injected beam ions from deposition
to resonant surface, we substitute v2

⊥ = v2
b (1 − R2

T /R
2
0), where vb is the velocity of beam

particles. With these equilibrium measurements, Eqs. (4.11-4.12) yield νf/ω = 1.2% and
νd/ω = 1.7%. Note that electrons account for 99% of ν2

f , which reflects a high Alfvén

velocity, while impurities account for 57% of ν3
d , which is consistent with the fact that pitch-

angle scattering is more effective with heavier particles. The value of νd estimated above
quantitatively agrees with this independent estimation. However, with our fitting procedure,
νf was underestimated by 64%. Though error bars in the experimental data may account
for this discrepancy, it is also possible that our model misses some mechanism that would
enhance the friction.

Application to MAST

The magnetic spectrogram for the MAST discharge #5568 between 64 and 73 ms is
shown in Fig. 4.30(a). The frequency sweeping mode has been identified as a global n = 1
TAE, with a relative amplitude peaking at δB/B0 ≈ 4 × 10−4 [PBG+04], which is below
a typical threshold of 10−3 for large fast particles losses induced by orbits stochastisation
[SHWC92, BBY93a]. The extent of chirping is of the order of 15% of the linear mode
frequency. The median frequency is constant, which suggests that the linear mode structure
is not significantly changed during the time interval of interest. Although we do not have
enough information to reconstruct the shear-Alfvén continuum, the small aspect ratio in
MAST suggests a large gap [GS04]. These are indications that the BB model may be
applied to this TAE.

We apply our fitting procedure. After three iterations of scans in the (νf , νd) parameter
space, our final scan consists of a series of 4×8 simulations in the domain (0.017 ≤ νd ≤ 0.026,
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Figure 4.31 – Time-evolution
of the perturbation. The sig-
nal is filtered between 90 and
130 kHz. The parameters of
the simulation are shown in
Tab. 4.1. For the simula-
tion, to avoid hiding experimen-
tal data, we show the ampli-
tude of perturbations (the en-
velope) instead of the perturba-
tions themselves. Note the use
of arbitrary units (we compare
normalized quantities only).

1 ≤ νd/νf ≤ 8), where γL0 and γd are constrained by Eqs. (4.69) and (4.70). We find only
one repetitive chirping solution with a period in agreement with the experiment within
10% accuracy. The corresponding spectrogram is shown in Fig. 4.30(b). We verify that
all chirping features measured in this simulation fit the experiment. The estimated linear
parameters are shown in Tab. 4.1.

As a validation of our analysis, we compare the amplitude of perturbations in Fig. 4.31.
As another validation, we measure a saturated bounce frequency of ωb ≈ 0.06 in the sim-
ulation, which is in agreement with the value of 0.054 estimated in Ref. [PBG+04]. We
note that the relationship with linear drive is also in agreement with the theoretical result
ωb ≈ 0.54γL0 [BBP97b].

An important result, which was also found in our analysis of JT-60U, is that γL ≈ 2γd.
This contradicts a naive assumption, γL ≈ γd, or γ � γL. The latter assumption can be
made from self-organization arguments, according to which nonlinear effects tend to keep a
system close to its instability threshold. However, this physical picture should be understood
in a long-time average point-of-view, whereas γL represents an instantaneous instability drive
from the initial distribution. Fig. 4.32 shows the velocity distribution corresponding to the
simulation shown in Fig. 4.31, averaged over 15 chirping bursts. This average distribution
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Figure 4.32 – Initial (solid line),
and long-time averaged (dashed
line) velocity distribution func-
tion, for the simulation shown
in Fig. 4.31. Here, 〈f〉 is the av-
erage over 20ms of the velocity
distribution.
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yields a (quasi-)linear growth rate γ = 0.003, which is much smaller than γL. Therefore,
in a long-time average point-of-view, the mode is close to marginal stability, but in an
instantaneous point-of-view, γ ∼ γL.

To quantify the accuracy of our fitting procedure, we make two scans, one on νf , and
another on νd, in the neighbourhood of the solution for MAST. Based on the way the
simulations deviate from the experimental data, we estimate errorbars for the estimations
of input parameters, which are included in the last row of Tab. 4.1.

Discussion on the analysis of chirping modes

We described how to take advantage of measurements of fluctuations associated with
EP-driven modes in the quasi-periodic chirping regime to estimate fundamental kinetic pa-
rameters of the local EP distribution. Since quantitative agreement with theory suggests
the predictability of nonlinear chirping characteristics based on fundamental linear kinetic
parameters, the latter may be estimated in the opposite way from chirping data in experi-
ments. More precisely, chirping velocity and life-time yield two relations among γL, γd, and
collision frequencies; and a fitting of ∆tchirp yields an estimation of remaining unknowns.
Note that major advantages of this technique are 1. kinetic parameters in the core of the
plasma estimated only from the spectrogram of magnetic fluctuations measured at the edge,
without expensive kinetic MHD calculations nor detailed core diagnostics, and 2. unified
treatments of supercritical and subcritical modes. We showed that drag and diffusion are
essential to reproduce quiescent phases observed in experiments between chirping events.

We confronted this procedure by analyzing AEs on MAST and JT-60U. We found quan-
titative agreement with measured magnetic fluctuations for the growth and decay of chirping
structures, with 3D calculations of the bounce-frequency, and qualitative agreement with
collision frequencies estimated from experimental background measurements. In these es-
timations, impurities account for the main part of velocity diffusion. An effect of drag is
to break the symmetry around the resonant velocity. The discrepancy between simulations
and experiments in terms of asymmetry between up-shifting and down-shifting frequencies
remains to be clarified. The shape of the energetic particle distribution has a significant
effect on chirping asymmetry. In the present analysis, we chose a linear initial distribution.
However it is unclear what shape of velocity distribution is relevant to the experiment.

Finally, an analytic theory for the chirping quasi-period, or an empirical formula, would
allow real-time estimations of the kinetic parameters to replace this time-consuming fitting
procedure.
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4.4 Fluid coupling with another mode

We have seen in Sec. 4.3.2 that linearly stable modes can be destabilized (subcritically)
by the presence of structures (holes and clumps) in phase-space. However, the nonlinear
growth of these structures requires the presence of a seed structure with a relatively large
threshold in amplitude. We demonstrate that, in the presence of another, linearly unstable
(supercritical) mode, wave-wave coupling can provide a seed, which can lead to subcritical
instability by either one of two mechanisms. Both mechanisms hinge on a collaboration
between fluid nonlinearity and kinetic nonlinearity. If collisional velocity diffusion is low
enough, the seed provided by the supercritical mode overcomes the threshold for nonlinear
growth of phase-space structure. Then, the supercritical mode triggers the conventional
subcritical instability. If collisional velocity diffusion is too large, the seed is significantly
below the threshold, but can still grow by a sustained collaboration between fluid and
kinetic nonlinearities. Both of these subcritical instabilities can be triggered, even when
the frequency of the supercritical mode is rapidly sweeping. These results were obtained
by modeling the subcritical mode kinetically, and the impact of the supercritical mode by
simple wave-wave coupling equations. This model is applied to bursty onset of geodesic
acoustic modes in a LHD experiment. The model recovers several key features such as
relative amplitude, timescales, and phase relations. It suggests that the strongest bursts are
subcritical instabilities, with sustained collaboration between fluid and kinetic nonlinearities.

4.4.1 Introduction

As we reviewed in chapter 3, the subcritical bifurcation in hot plasmas can originate
either from fluid nonlinearities (or nonlinearities in real space), or a kinetic nonlinearities
(or nonlinearities in the phase-space of particle distribution).

However, such subcritical growth requires a large-amplitude seed perturbation. Several
scenarios could provide the seed for kinetic nonlinear growth of a linearly stable mode:

1. the presence of large thermal noise or an external source of wave excitation,

2. a hysteresic path from supercritical to subcritical regime, or

3. a transfer of energy from another, linearly unstable mode.

Previous works on kinetic subcritical instabilities, including the theory presented in subsec-
tion 4.3.2, assumed some initial, relatively large amplitude (at least, compared to thermal
noise) perturbation [BBC+99, LIG09] for the subcritical mode, corresponding to scenario 1.
The hysteretic behavior, corresponding to scenario 2, was obtained in COBBLES simula-
tion, although this work remains unpublished. As for the work on ion-acoustic turbulence
we describe in section 5.3, it corresponds to an artificial scenario, where a seed phase-space
hole is imposed at t = 0.

In Ref. [LII+16b], we developed a model to explore the scenario 3. The model com-
bines the kinetic description of a linearly stable (subcritical) mode with the nonlinear fluid
coupling with a prescribed linearly unstable (supercritical) mode. It is an extension of the
Berk-Breizman (BB) model [BBP95a] to two interacting modes. The model suggests that
the supercritical mode can provide a seed for the nonlinear growth of the subcritical mode.
Hereafter, we investigate two interesting regimes. In a first regime, of successive fluid then
kinetic growth, the dormant subcritical mode is first triggered by fluid coupling to the su-
percritical mode, which allows it to reach amplitudes of the same order of magnitude as
the supercritical mode. This amplitude is above the threshold for the conventional kinetic
subcritical instability, Eq. (4.57), therefore the amplitude can keep growing by momentum
exchange between the wave and phase-space structure(s). In a second regime, of collaborative
fluid-kinetic growth, the subcritical growth is due to an uninterrupted collaboration between
fluid and kinetic nonlinearities. This is a new kind of instability mechanism, where fluid
and kinetic nonlinearities have similar (in amplitude) contributions to the mode growth.
Contrarily to the mechanism developed in earlier theories, the growth occurs much below
the amplitude threshold, and without chirping.

As shown in Ref. [LII+16b], the model qualitatively reproduces an experimental obser-
vation, and interprets it as a subcritical instability with essential roles of both fluid and
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kinetic nonlinearities. In the latter reference, we analyzed an intriguing observation in the
helical plasma of the LHD, which was described first in Ref. [IIO+16]. Bursts of EGAM,
with dynamical evolution of frequency (chirping) are routinely observed, with a 10 ms du-
ration [IOS+15]. Surprisingly, such a primary EGAM burst is sometimes accompanied by a
secondary, stronger burst. The secondary burst has a 1 ms duration, and a peak amplitude
that significantly exceeds that of the primary burst. Since the existence of the secondary
burst appears to be tied to the primary burst, we call the primary (weaker, and chirping)
burst as mother mode, and the secondary burst as daughter mode. The mother EGAM
chirps from 50 kHz to 90 kHz. When it approaches 80 kHz, the daughter mode abruptly
appears at ∼ 40 kHz, with a growth rate one order-of-magnitude larger than the mother’s.
The amplitude increase of the daughter is so large (compared to the amplitude decrease
of the mother) that it clearly violates the Manley-Rowe relations [MR56]. This suggests
that the daughter is not excited by e.g. simple parametric coupling. In subsection 4.4.6, we
summarize the relevant experimental conditions, and apply our model to a typical daughter
burst as shown in Fig. 4.37. Our analysis suggests that the daughter mode is a subcritical
instability, which is dormant until the mother excites it into the regime of collaborative
fluid-kinetic growth. This was first reported in Ref. [LII+16b], and here we expand on the
latter analysis of LHD experiment. We further discuss the applicability of the model to this
experiment, and several caveats.

The main point of this section, though, is to provide more theoretical basis for the
reduced model (subsection 4.4.2), explore different regimes (subsections 4.4.3 and 4.4.4),
and clarify the underlying physics based on the behavior in simpler limits (subsection 4.4.5).

4.4.2 Expanding the Berk-Breizman model

In this work, we consider the interaction of two modes. To treat the present problem,
we split the electric field E between the two waves, E = E1 + E2, and introduce a hybrid
model. The subcritical (daughter) mode, E1, is treated by the kinetic 1D model, and
the supercritical (mother) mode, E2, is treated as a simple medium for nonlinear energy
transfer. For E2, we prescribe the initial amplitude Z2,0 and time-evolution of frequency
ω2(t). We assume that the impact of the mother on the particles near the resonant location
of the daughter is negligible. This is a strong assumption, because there is a near-integer
frequency ratio at the time of daughter burst. We encourage direct tests of this assumption
by first-principles calculations. The interaction between the two waves is modeled by the
equations for period doubling.

In our model, as for the δf -BB model, the linear frequency of the wave E1 is fixed. Even
when chirping occurs, ω1 does not change. Chirping, when it occurs, is due to the nonlinear
evolution of the amplitude and phase of E1, rather than the evolution of ω1.

The evolution of the energetic particle distribution, f(x, v, t), in the neighbourhood of
the resonance of the daughter mode E1, is given by the same kinetic equation as in the BB
model, Eq. (4.25), which we recall here with adapted notations:

∂f

∂t
+ v

∂f

∂x
+
qE1

m

∂f

∂v
=

ν2
f

k1

∂δf

∂v
+
ν3
d

k2
1

∂2δf

∂v2
. (4.71)

The evolution of the two parts of electric field is given by

dZ1

dt
= − mω3

1

4πq2n0

∫
f(x, v, t) e−i(k1x−ω1t) dxdv − γd Z1 − ı

V

ω1
Z2Z

∗
1e
−ıθt, (4.72)

dZ2

dt
= −ı V

ω2
Z2

1e
ıθt, (4.73)

where Ej ≡ Zj exp [ı(kjx− ωjt)] + c.c., and n0 is the total density.

Note that we recover Eq. (4.30) in the limit of no wave coupling (V = 0). The perturbed
current is obtained by assuming that energetic particles interact with a mode only if their
velocity vi is close enough to the mode’s phase velocity vφ = ω1/k1. Terms of the order of
(ωb/ω1)2(vi − vφ)/vφ are neglected.
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Parameter Description Value Range Independent estimat.
γL0/ω1 Linear drive of daughter 0.03 0.01− 0.08 0.1 is supercrit. [WT13]

γd/γL0 L. dissipation of daughter 1.03 1.01− 1.7 γL ≈ γd hypothesis
νf/γL0 Collisional friction 0.067 0.003− 0.3 Fokker-Planck, 0.068
νd/γL0 Collisional diffusion 0.53 0.3− 1.5 Fokker-Planck, 0.44
V Z0/ω

2
1 Fluid coupling coefficient 50 40− 80 ∼ 10−2 − 102 [IHI+05]

Znoise/Z2,0 Noise amplitude 0.06 10−4 − 0.3 Input from
103Z2,0/Z0 Initial mother’s amplitude 1 0.6− 2.0 experimental
ω−2

1 dω2/dt Mother’s chirping rate 5.10−4 10−4 − 10−3 data

Table 4.2 – Input parameters of the model. Here, Z0 is an arbitrary normalizing factor.

We note that in this model, we split the electric field into two parts, and assume that
there is one class of particles (distribution f) which does not interact with one of the two
parts of the electric field. We consider the system composed of the two waves and the latter
class of particles.

Novelty of the model

Eqs. (4.72) and (4.73) both include a term that describes energy exchange between
mother and daughter. The nonlinear interaction between GAMs (zonal flows) has been
studied. The dominant interaction originates either from second-order coupling between
vorticity and parallel velocity, as well as vorticity and density [SIN+09], or via higher-order
modulation mechanisms of background turbulence [HB01, IHI+05], when the conventional
v ·∇v nonlinearity is not efficient.

In both cases, the coupling takes a standard form, which depends on the coupling con-
stant V , and the frequency mismatch θ ≡ ω2(t)− 2ω1. This choice is guided by the experi-
mental observation on the LHD [IIO+16], where a ∼ 40 kHz daughter mode abruptly grows
when the mother mode approaches ∼ 80 kHz. This is not accidental because 1. this ratio of
∼ 2 is observed in all bursts and in different plasma shots ; and 2. the dynamics of period
doubling has been demonstrated experimentally in the reference.

In this model, the linear frequency of the mode, ω1 is fixed, but the frequency of E1 can
evolve nonlinearly due to the time-evolution of Z1. In contrast, ω2 is a prescribed function
of time, which is a model for the nonlinear chirping of mode 2.

Eq. (4.73) does not include any dissipative term (no γd) nor driving term, because we as-
sume a balance between external drive and external damping for simplicity. This assumption
is consistent with the experiment we analyze in Sec. 4.4.6, given the timescale separation
between evolutions of mother and daughter. Indeed, in the experiment, the timescale of
evolution of the mother (∼ 10 ms) is much slower than this of the daughter (< 1 ms), as
long as the daughter’s amplitude is less than half that of the mother’s.

We extended δf -COBBLES to solve the initial-value model described above. Here all
simulations are done with a grid Nx × Nv = 128 × 2048 and a time-step width is ∆t =
0.05ω−1

1 . To simulate thermal noise, we add to Z1 a noise term Znoisee
ıφr , where φr is

a phase that is randomized at each time step. This is an important component of the
modeling, since in our simulations, mode 1 is linearly damped and the quasi-resonance
condition |θ| � ω1 is only satisfied for a limited period of time. Without the noise, the
amplitude of mode 1 would quickly decay to values orders-of-magnitudes below thermal
noise, effectively disabling fluid coupling.

The input parameters of the model are summarized in Table 4.2, first and second columns.
The third column gives reference values that are used in most simulations, apart from
exceptions as mentioned later. The choice of reference values, and the meaning of the fourth
and fifth columns, correspond to the LHD experiment, as will be explained in subsection
4.4.6.

Throughout this section, the frequency of the mother mode, ω2, is chosen as a linear
function of time, ω2(t) = 1.5ω1 + (dω2/dt)t. The model is consistent with other kinds of
slowly-evolving ω2, but we impose this prescription in order to reduce the number of input
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Figure 4.33 – Time evolution
of the amplitudes of modes 1
and 2 in simulations of the full
model (d), without fluid non-
linearity (V = 0) for (a) and
(c), and without kinetic non-
linearity (no term in

∫
f in

Eq. (4.72)) for (a) and (b). The
input parameters are given in
Table 4.2. Thin dotted curves
indicated by arrows in (b): case
with increased coupling coeffi-
cient, V = 400ω2

1/Z0.

parameters. The choice of constant slope can be seen as a first-order approximation based
on the time-scale separation between the mother and the daughter, since we investigate the
abrupt growth of the daughter rather than the slow evolution of the mother. The initial
frequency mismatch θ(0) = −0.5ω1 is arbitrary, but we have checked that the results do not
depend on θ(0) (we have checked the range θ(0)/ω1 = −1.0 to −0.4).

The extension of this model to three interacting modes is straightforward. However, a
strong phase relationship between mode 1 and mode 2 in the experiment [IIO+16], suggests
that the mechanism of energy exchange can be modeled by 2-waves coupling, without in-
troducing additional input parameters associated with a 3-waves model. In our simulations,
the time-evolution of mode 1 is similar whether we adopt the 2-waves model or 3-waves
model. Therefore, for the sake of clarity, we do not discuss the 3-waves model any further
in this manuscript.

4.4.3 Fluid and kinetic nonlinearities

Equation (4.72) contains two nonlinear terms, which we refer to as kinetic nonlinearity
(the term proportional to

∫
fe−ı(k1x−ω1t)), and fluid nonlinearity (the term proportional to

V Z2Z
∗
1e
−ıθt). Figure 4.33 summarizes the main message of this section. It shows the time

evolution of a subcritical mode 1 and a supercritical, chirping mode 2, obtained with the
same input parameters, as listed in Table 4.2 (third column), with the following exceptions.
The fluid nonlinearity is artificially disabled in the left column of the figure, and the ki-
netic nonlinearity is disabled in the top row of the figure. This figure shows that the fluid
nonlinearity (b), and the kinetic nonlinearity (c), can work in collaboration (d) to drive
a subcritical instability to relatively large amplitude. Figure 4.33(e) illustrates the fixed
frequency ω1 and the prescribed time-evolution of ω2.

Let us make clear, that the message is not that fluid nonlinearity alone cannot drive a
subcritical instability to relatively large amplitude. In fact, Fig. 4.33(b) includes, as dotted
curves, a simulation with increased coupling coefficient, V = 400ω2

1/Z0. In this case, mode
1 reaches an amplitude similar to the initial amplitude of mode 2. However, it does so at
the expense of an increased depletion of the energy of mode 1, and with a qualitatively
different evolution, in terms of e.g. the timing of the growth phase. The latter timing, in
particular, is crucial to interpret experiments. The message is, rather, that the presence of
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Figure 4.34 – Time-evolution of modes 1 and
2 (a), and spectrogram of the total field (b),
in a simulation in the regime of successive
fluid then kinetic growth. Input parame-
ters are γL0 = 0.03ω1, γd = 0.031ω1, νf =
1.3γL0, νd = 0.53γL0, V = 60ω2

1/Z0, Znoise =
0.06Z2,0, Z2,0 = 10−3Z0, and dω2/dt =
5 × 10−4ω2

1 (same as Fig. 4.37, except for an
order-of-magnitude larger νf ).

Figure 4.35 – Time-evolution of the ampli-
tude of mode 1 for the same parameters as
Fig. 4.34, but where the fluid nonlinearity is
switched-off at a time marked by an arrow for
each simulation.

kinetic nonlinearity, everything else being equal, can significantly enhance the subcritical
growth of a mode coupled to a supercritical mode.

4.4.4 Phenomenology

We are interested in a parameter range where the daughter mode is significantly desta-
bilized, with important contributions from both fluid and kinetic nonlinearities. In this
parameter range, we can discriminate two interesting regimes (perhaps non-exhaustively).

1. In one regime, the daughter growth is first triggered by wave-wave fluid coupling to
the mother mode, which allows it to reach amplitudes of the same order of magnitude
as the mother. This amplitude is above the threshold for the conventional kinetic sub-
critical instability, therefore the amplitude can keep growing by momentum exchange
between the wave and phase-space structure(s). In this case, the daughter mode
chirps significantly, and its amplitude can grow one or more order(s)-of-magnitude
above the mother.

2. In another regime, the daughter growth is due to an uninterrupted collaboration
between fluid and kinetic nonlinearities. This is a new kind of instability mechanism,
where fluid and kinetic nonlinearities have similar (in amplitude) contributions to the
mode’s growth. In this case, the daughter mode is not, or very weakly chirping, and
its amplitude stays within the same order-of-magnitude as the mother. In subsection
4.4.6, we interpret an experimental observation of EGAM in the LHD as an example
of this subcritical instability.

Let us now describe the evidences that support the previous claims.

Successive fluid then kinetic growth

When, typically, νf ∼ νd, subcritical instabilities can arise, even in the single-mode limit,
if the initial amplitude is large enough [LI12]. In previous works [BBC+99, LIG09, LD13],
the kinetic subcritical instability was due to the growth of phase-space structures, and thus
linked to chirping. In this case, we predicted that coupling to an unstable mode could
provide the seed perturbation required for subcritical growth [LDK14a]. This is indeed
what we observe with the present two-modes model.
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Figure 4.36 – Nonlinear stabil-
ity diagram for the daughter
mode without (a) and with (b)
the kinetic nonlinearity. Peak
amplitude of the daughter mode
as a function of both the dis-
tance from linear stability, and
the coupling coefficient. The
white area corresponds to the
stability threshold in a sense,
which is explained in the main
text. Plain circles in (b)
show the threshold derived in
Ref. [IIK+16].

Fig. 4.34 shows a typical simulation in this regime. We observe a subcritical instability
of mode 1, and the amplitude grows to values much larger than the initial amplitude of
mode 2. Meanwhile, as can be seen in the spectrogram (b), the frequency of mode 1 chirps
significantly. When δω/ω1 ≈ 20%, we stop the simulation, because an assumption of the
model breaks down. Namely, in the simulation, the phase-shift θ is calculated by assuming
that ω1 stays nearly constant.

Once fluid nonlinearity pushes the daughter amplitude to a large enough level, the sub-
critical instability is readily interpreted by the mechanism developed in Ref. [LD13]. Namely,
the electric field of the daughter traps particles in a phase-space vortex, which is large enough
to grow nonlinearly by climbing the positive velocity gradient of particle distribution.

This interpretation is further supported by the following numerical experiment. We
switch off the fluid nonlinearity when the amplitude reaches a preset value. Fig. 4.35 shows
the time evolution of three simulations with the same input parameters, except for a different
preset amplitude of switch-off. When the switch-off amplitude is larger than |Z1|/Z2,0 ≈ 0.3,
the growth of mode 1 continues to much larger levels. This shows that the fluid nonlinearity is
not necessary after an initial part of the growth phase. This, along with previous knowledge,
indicates that fluid and kinetic nonlinearities can act in a successive manner to yield a
subcritical instability.
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Figure 4.37 – Comparison of the evolution of perturbation between the experiment and
the simulation. (a) Time evolution of magnetic perturbation, filtered into low (LF) and
high frequency (HF) components. Here, ”env” refers to the envelope. (b) Spectrogram
of magnetic perturbation. (c) Time evolution of the amplitudes of modes 1 and 2 in the
simulation. (d) Spectrogram of the total field. Superimposed curve in (b) and (d): ω2(t)
used as input in the model.

Collaborative fluid/kinetic nonlinearity

When, typically, νf � νd, the single-mode model features no subcritical instability,
even for large initial amplitude of perturbation [LI12]. In the two-modes case, significant
subcritical instability requires a combination of fluid and kinetic nonlinearities. This new
hybrid fluid-kinetic subcritical instability is illustrated in Fig. 4.36, which compares the
stability of the daughter without (a) and with (b) the kinetic term in Eq.(4.72). In this figure,
the stability of the daughter, for a fixed chirping rate, is represented in a two-dimensional
parameter space (γd − γL0, V ). Here, γd − γL0 is used as a measure of distance from linear
marginal stability. Fig. 4.36 shows in color code the peak amplitude of the daughter mode,
in this parameter space. Each point is the result of an ensemble average over 8 simulations
with identical input parameters (the statistical variations are due to the random noise). We
observe that the unstable region (max |Z1|/Z2,0 ∼ 1) is significantly extended to lower V
in the parameter space of (γd − γL0, V ). In Ref. [IIK+16], a threshold condition has been
derived analytically for the onset of abrupt daughter growth, as Z2,0V/ω1 > γd. It is shown
by a series of circles in Fig. 4.36 (b). There is a good qualitative agreement with the stability
threshold in the simulations, especially near linear marginality.

Fig. 4.37(c) shows a typical simulation of the collaborative fluid/kinetic subcritical in-
stability. We will describe in subsection 4.4.6 how this particular simulation is related to
the LHD experiment shown in Fig. 4.37(a).

Fig. 4.38 shows snapshots of the perturbed distribution function, at the time of maximum
growthrate (a), at the time of peak amplitude (b), and at the time of maximum decay (c) of
the daughter mode. We observe that mode 1 is not significantly chirping during its growth,
and only slightly chirping (by less than 10%) during its decay. Indeed, the perturbation
of particle distribution at the time of peak amplitude (b) is centered around the resonant
velocity, and apparently corresponds to a non-chirping BGK. We then observe accelerating
holes and decelerating bumps, but only later, during the decay of daughter amplitude (c).
Therefore, the usual mechanism of kinetic subcritical growth, namely the acceleration of
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Figure 4.38 – Snapshots of the perturbed
particle distribution function in phase-space,
at three consecutive times of the daugh-
ter mode’s evolution: (a) time of maximum
growth-rate, (b) time of peak amplitude,
and (c) time of maximum decay.

phase-space hole(s), is not responsible for the instability in this regime.
We can make a stronger statement, namely, that it is the sustained collaboration between

fluid and kinetic nonlinearities that enable the subcritical growth in this regime. Indeed,
in contrast with the results of Fig. 4.35 in the previous regime, |Z1| quickly decays back to
noise level if we artificially disable the fluid nonlinearity at any point during the simulation.

Let us give more details about the mechanism of hybrid fluid-kinetic nonlinearity. It is
convenient to describe the three terms in the r.h.s. of Eq. 4.72 as kinetic term (with the
integral), dissipative term (with γd), and coupling term (with V ), respectively. The time
evolution of the real part of these three terms is shown in Fig. 4.39(b), for a simulation
with the same input parameters as the simulation in Fig. 4.37(c). During daughter growth,
the dissipative and coupling terms are nearly locked in phase, with an opposite sign for
the amplitude. We have indeed verified directly in our simulation that the phase difference
between dissipation and coupling terms stays between 1.2π and 1.3π during the growth.
Therefore, the coupling acts as an effective reduction of dissipation. The kinetic term is in
phase with the dissipative term. In amplitude, all three terms are comparable, as shown
in Fig. 4.39(c). Therefore, the sum of three terms approximately results in a real, positive
growth rate ∼ γd ∼ γL0. This can also be seen by defining an effective damping rate,

γd,eff = γd + Re
[
ı(V/ω1)Z2Z

∗
1Z
−1
1 e−ıθt

]
. (4.74)

The time evolution of γd,eff is shown in Fig. 4.39(d). The main growth occurs when γd,eff

stays below γL0.

4.4.5 Fluid limit

Here, we consider two simpler limits. I In the kinetic limit, the fluid nonlinearity (the
term proportional to V Z2Z

∗
1e
−ıθt) is neglected. This yields the single-mode BB model as

studied in section 4.3. Here, we focus on the fluid limit, where the kinetic nonlinearity (the
term proportional to

∫
fe−ı(k1x−ω1t)) is neglected. In this case, Eq. (4.71) can be ignored.

The theory in the dissipation-less (γd = 0) and chirp-less (dθ/dt = 0) limit, is very well
understood. Here, we investigate the coupled evolution of two modes in the presence of
both finite dissipation, and finite chirping. We choose γd = 0.031ω1, dθ/dt = 5 × 10−4ω2

1 ,
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Figure 4.39 – Collaboration of
fluid and kinetic nonlinearities.
(a) Time evolution of the ampli-
tudes of the two modes. Time
evolution of the real part (b)
and the absolute value (c) of
the three terms in the r.h.s. of
Eq. (4.72). (d) Time evolution
of the effective damping rate,
γd,eff , normalized to γL0.
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Figure 4.40 – Impact of the
coupling coefficient V in the
fluid limit. (a) Maximum am-
plitude of daughter mode, and
minimum amplitude of mother
mode. (b) . Error bars corre-
spond to the top of lower quar-
tile, and bottom of upper quar-
tile, of 128 ensembles. Insets:
Lissajous diagrams for (Z1, Z2),
at V = 34, 53 and 73 ω2

1/Z2,0

and noise level Znoise/Z2,0 = 0.03, because these values are used later in modeling the
experiment. Fig. 4.33(b) is an example of such a situation, with V = 50ω2

1/Z2,0. Fig. 4.40
shows the impact of the remaining free parameter, i.e. the coupling coefficient V . There are
two striking features, which contrast with the dissipation-less chirp-less case.

— There is a sharp transition between stability (Z1,max ∼ Znoise) and instability (Z1,max ∼
Z2,0).

— The relation between peak amplitude and coupling constant is non monotonous.
Fig. 4.40(a) includes Lissajous diagrams (Re Z̃1/|Z1| against Re Z̃2/|Z2|, where Z̃j ≡

Zje
−ıωjt) for three values of V , just below, at, and just above, the threshold value. Phase-

locking occurs at and above the threshold. This suggests that the sharpness of the transition
may be linked to a synchronization phenomenon.

The frequency ratio at the onset of daughter burst can be quite far from 2. For V = 53,
where phase-locking is observed, ω2/ω1 = 1.77 at the time of maximum growth. Therefore,
note that phase-locking does not necessarily implies a ratio of 2.

Note that for large values, V > 400ω2
1/Z2,0, the daughter amplitude can become larger

than the mother amplitude, without the help of the kinetic nonlinearity. However, in this
case, the mother amplitude drops to 3% of its initial amplitude. This drop, and the tim-
ing with respect to the prescribed evolution of ω2 (see Fig. 4.33(b), dotted curves), are
inconsistent with the experiment we interpret in subsection 4.4.6.

Note that, since the peak amplitude is sensitive to V , one can loosely define the unstable
region as a regime where the daughter reaches amplitudes comparable or much greater than
the mother (max |Z1|/Z2,0 ∼ 1), and the stable region as the counterpart (max |Z1|/Z2,0 �
1). In this sense, the white region in Fig. 4.36, where max |Z1|/Z2,0 ≈ 0.3, corresponds to
the stability threshold.

4.4.6 Application to EGAMs on the LHD

Bursts of Energetic particle-driven Geodesic Acoustic Mode (EGAM) with dynamical
evolution of frequency (chirping) are routinely observed in tokamaks and stellerators. Supris-
ingly, as was reported in Ref. [IIO+16], an EGAM burst, with a 10 ms duration, is sometimes
accompanied by a stronger burst, with a 1 ms duration, and up to twice the amplitude of
the weaker burst. In Ref. [LII+16b], we have used the above model to analyze this obser-
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1D 3D

Angle kx− ωt θ − ωt

Action mi
v−vR
k I ∼ mi

v‖−vR‖
k‖

Effective mass k2

mi
D ≈ k2‖

mi

Electric potential φ̂ φ̂1

Electric field E Eθ

Table 4.3 – Analogies between a single wave in a 1D plasma, and a single EGAM in a 3D
toroidal plasma.

vation. In this subsection, we provide more details on the latter analysis. We justify our
assumption of fixed spatial profile of the daughter during its growth, based on experimental
measurements. We discuss the role of the GAM continuum, and of the weak broadband
signal, which is observed at the time of daughter growth. To allow quantitative analysis, we
introduce scalar measures of the main properties of the daughter burst. These scalar mea-
sures are used to analyze the robustness of the modeling with respect to input parameters.
Furthermore, observed correlations between these scalar measures provide readily-testable
predictions.

Table 4.3 summarizes the analogy between the BB model and a 3D model of interactions
between EPs and an EGAM.

Modeling the experiment

We concentrate on the LHD experiment, shot #119729, at t ≈ 3.88 s. The local plasma
parameters around the radial location of mode 1 (r1 ≈ 0.06m) are B0 ≈ 1.375T, Ti ≈ 0.5−1
keV, Te ≈ 4 keV, ne ≈ 1018m−3, and q ≈ 2.5. The ion species is hydrogen. The energetic
particles originate from tangential NBI with Eb = 175keV, and tangential major radius
RT = 3.7m. The major radius of magnetic axis is R0 = 3.75m.

The density of energetic particles has not been measured in this experiment, but we may
estimate the ratio between fast ions pressure βh and thermal plasma pressure β or thermal ion
pressure βi, to help situate the experimental conditions in terms of dimensionless parameters
(although this is not used in any of the calculations in this subsection). The density of
energetic particles can be estimated [IOS+15] from the absorbed NBI power PNBI = 140kW
as nNBI ≈ 2× 1016m−3, if we assume that the particle confinement time of the injected fast
ions is ≈ 0.1s. Then, βh/β ≈ 0.7− 0.8, and βh/βi ≈ 3.5− 7.

Fig. 4.37 shows the time evolution of the magnetic perturbations (a), and its spectrogram
(b). In Fig. 4.37(a), the signal from the Mirnov coil has been filtered into a low frequency
(LF, f = 30 − 50 kHz) component for the daughter mode, and a high frequency (HF,
f = 60 − 95 kHz) component for the mother mode. From experimental measurements
[IIO+16], the electric potential of the daughter mode is located in the core region, with a
rather broad structure, ∆r/a ∼ 0.5, centered around r/a ≈ 0−0.1. The spatial configuration
agrees with this of a GAM. The toroidal mode number is n = 0. The poloidal mode number
is dominantly m = 0 for the electric potential fluctuation, and m = 1 for the density
fluctuation (up-down anti-symmetric).

Since the spatial 3D structures of mother and daughter are very similar [IIO+16], we ig-
nore the radial inhomogeneity, and study the ratio between mother and daughter amplitudes
of magnetic perturbation. As measured by heavy-ion beam probe, the profile of electric po-
tential (normalized by the peak amplitude) in the core is unchanged during the rapid growth
of daughter mode in experiments. As for the outer region, the profile is inferred from the
ratio between measured electric potential and amplitude of magnetic field perturbations.
The latter ratio for the daughter is unchanged during the growth in experiments. These
indicate that the spatial profile of the mode is nearly unchanged during the growth. This is
consistent with our simple 1D model with constant input parameters. To relate the electric
field in the simulation with the Mirnov coil signal, we assume a linear relationship between
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|φ̃| and |B̃|, which is consistent with experiment [IOS+15].
The dynamical change of frequency of the mother mode (mode 2), around the time of

the burst of the daughter mode (mode 1), is modeled as a linear increase, with dω2/dt =
5 × 10−4ω2

1 , where ω1 = 2πf1 and f1 = 43 kHz. Here, f1 is obtained from reading the
frequency of the peak in the spectrum of measured magnetic fluctuations at the time of
maximum amplitude of the daughter.

We use four scalar measures to objectively characterize the evolution of the daughter:

1. the maximum instantaneous growth rate γ,

2. the normalized peak amplitude, A ≡ max |Z1|/Z2,0,

3. a scalar τ that measures the duration of daughter burst, and

4. the ratio Rω ≡ ω2(tgrowth)/ω1 between mother and daughter frequencies at the time
tgrowth of largest growth of the daughter.

Here, the duration τ of the daughter burst is defined as

τ ≡ 1

Z2,0

∫
|Z1|S(|Z1|)dt, (4.75)

where S(|Z1|) = 1 if |Z1| > Znoise, 0 else. For the experiment, we measure growth rate
γ = 1.2× 104 s−1, amplitude A = 2.17, duration τ = 0.6 ms, and frequency ratio Rω = 1.9.
Note that Rω is slightly below the perfect frequency matching condition Rω = 2.

We scanned the parameter space (γL0, γd, νf , νd, V ). We identified a finite region of the
parameter space where γ, A, τ and Rω in the simulation are in reasonable agreement with
the experimental values. The experimental observation could also be reproduced by a wider
range of input parameters (Znoise, Z2,0, and dθ/dt). Fig. 4.37(c) shows the time evolution
of the amplitudes |Z1| and |Z2| in the simulation, and the corresponding spectrogram of
the total field (d). In Figure 4.37, time is scaled from normalized units to seconds by the
coefficient ω1, and shifted in such a way that simulation and experiment are synchronized
on the instant where ω2(t)/ω1 = 1.5, which we choose arbitrarily as the beginning of the
simulation, as explained in subsection 4.4.2. For example, the beginning of the simulation
here is at t = 3.8775s. Table 4.2 lists each input parameter (first and second columns), and
its value used in the simulation of Fig. 4.37(c) (third column). In this simulation, we measure
growthrate γ = 1.4 × 104 s−1, amplitude A = 1.34, duration τ = 0.6 ms, and frequency
ratio Rω = 1.8. In addition to these four scalars, the simulation agrees qualitatively with the
experiment in the sense that the daughter mode is only very slightly chirping (δω/ω1 < 10%,
as measured by tracking perturbations in the particle distribution), even though strongly
chirping daughter mode is allowed in the model (self-consistently, albeit not consistently with
physical assumptions). The lack of chirping of the daughter mode validates, a posteriori,
our assumption of fixed ω1 in the frequency mismatch θ used for computing the wave-wave
coupling terms.

Furthermore, the mother/daughter phase locking, which was discovered in Ref. [IIO+16],
is qualitatively captured by numerical simulations. Fig. 4.41 shows the Lissajous curve
during growth and decay phases, for the experiment (a,b) and for the simulation (c,d). The
mother/daughter phase relation locks itself during the growth phase and the decay phase of
the daughter.

Therefore, we have shown that our model is able to qualitatively reproduce the nonlinear
evolution of the daughter, in terms of amplitudes, timescales, and phase locking. We do not
pretend to recover quantitatively from first principles the features of the daughter, neither
to reproduce the combined evolution of both mother and daughter, but rather suggest the
combined fluid-kinetic subcritical instability as a candidate mechanism for the strongest
EGAM bursts in the LHD.

In our analysis, we have prescribed the time evolution of mother frequency ω2(t) with
constant chirping rate. As a caveat, this prescribed evolution ends when |Z1| ∼ |Z2|. Indeed,
in the experiment, the ratio ω2/ω1 increases very rapidly, but almost linearly, from 1.9 to
2.0, within a 0.2ms span during the daughter growth. The model, by its design, is unable to
recover this apparent synchronization mechanism. However, the ratio of 2.0 is not reached
before the very end of daughter growth. This indicates that the synchronization may not
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Figure 4.41 – Lissajous figure
during the growth (a), and the
decay (b) of daughter mode in
the experiment, and (c-d) in the
simulation. For the simulation,
Z̃i ≡ Zie

−ıωit. Colorbars show
the time shifted by t0 = 3.879s.

be a key aspect of the instability mechanism, although it may be a key aspect of the full
dynamics of coupled modes. We can speculate that, although a ratio of 2.0 may be key
in a quasi-stationary state, here the resonance condition may be broadened due the large
growth rate of the daughter. Indeed, the daughter growth rate is γ1/ω1 ∼ 1/20, therefore
a ratio ω2/ω1 ∼ 1.9 (neglecting the broadening of the mother) could allow the resonance
between mother and daughter. In other words, given the observed phase-locking during the
growth phase, it appears that the rapid time evolution of Z1 overcomes the finite frequency
mismatch θ = ω2 − 2ω1 in Z∗1e

−ıθt.
The role of the GAM continuum merits to be discussed. Unfortunately, there are large

uncertainties in the measurements of Ti (measured by a neutral particle analyzer, integrated
over a line of sight) and Te (the uncertainty is of the order of 100% because of the very low
density). Here Te is important because Te � Ti in this experiment. Therefore, an accurate
calculation of the GAM continuum, or even of the local GAM frequency, is left as an open
issue. However, a rough estimation with rotational transform ι(r) = 0.35 + 0.85(r/a)3, and
temperature profiles peaking at r = 0 below 1keV for Ti (measurements indicate a 0.5−1keV
range), and around 4keV for Te, suggests that both daughter and mother may probably be
above the GAM continuum.

In addition to the mother and the daugther, a weak, broad (30−160 kHz) signal appears
in the spectrogram at 3.87955−3.87985s, which corresponds to the time of daughter growth.
It appears to result from a parametric coupling of both mother and daughter with another
mode, with a frequency in the range 10− 15 kHz, which is present even before the mother
is destabilized. Parametric coupling is speculated based on the relationship between fre-
quencies of peaks, observed in the spectrum of B̃ at t = 3.8797s. By design, this additional
physics is not captured by the present model. Its impact on mother and daughter may be
negligible, since the amplitude of this mode is one order-of-magnitude below the amplitude
of the daughter.

Reproducing the self-consistent coupled evolution of both mother and daughter is a
relevant challenge that we leave for future work. This would require either solving a more
advanced model, with two kinetic equations and two field equations, after obtaining the
coupling term between Z1 and Z2 from 3D kinetic equations ; or another approach altogether,
such as full 3D gyrokinetic simulation. Here we focused on the instability mechanism of the
daughter mode.

Impact of input parameters

The model includes a priori 8 input parameters (assuming that the chirping rate dθ/dt
for the mother mode around the onset of daughter is a constant). In Ref. [LII+16a], we have
conducted a sensitivity analysis, where we varied each input parameter, and measured the
impact on the time evolution of the daughter mode. The fourth column (Range) of Table
4.2 lists for each parameter the range (everything else being equal) where the simulation is
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in qualitative agreement with the experiment. Note that the evolution of the daughter is
mostly sensitive to γL0, νd, V , Z2,0 and dω2/dt.

The fifth column of Table 4.2 lists estimations from independent methods when avail-
able. Two of the five sensitive parameters, Z2,0, dω2/dt, as well as Znoise, are input from
experimental data. Another sensitive parameter, νd, as well as not-so-sensitive νf , are ob-
tained from the local plasma parameters measured in the experiment. In addition to the
parameters given above, we assume a magnetic shear S = 0.2, and carbon impurities with
TC = Ti and Zeff = 2. We obtain νf/γL0 ≈ 0.068 and νd/γL0 ≈ 0.44, which are 1% and
17%, respectively, below the parameters of the simulation shown in Fig. 4.37(c).

There remain two parameters with significant impacts: 1. the slope of energetic particle
distribution, parametrized by γL0, and 2. the coupling coefficient V . For 1., it was shown
that the order of magnitude γL0/ω1 ∼ 0.1 is relevant for linearly unstable EGAMs on similar
LHD plasmas [WT13], which suggests that 0.03 is relevant for linearly stable EGAMs. For
2., substituting the parameters of the experiment into Eq. (35) of Ref. [IHI+05] yields an
estimate Z0V/ω

2
1 ∼ 10−2 − 102 which is sensitive to the radial wave number of the GAM,

but not inconsistent with our simulation. Thus, V is a key parameter, with a finite range
that reproduces the experiment, but with poor theoretical guide. Therefore, quantitative
deduction of V from first principles is encouraged.

Predictions

The model provides the following predictions, which are open to future experimental
test.

1. The ratio between the mother and the daughter mode can become much larger,
|Z1|/|Z2| � 1, and the daughter mode exhibit strong chirping, ∆ω1 ∼ ω1, if the
regime of successive fluid-kinetic subcritical instability is reached.

2. Since the best limit for driving a subcritical instability is dω2/dt → 0, and in this
case, we observed no nonlinear instability for γd > 2γL0, we predict that there won’t
appear any subcritical instability with γd � γL0.

3. In Ref. [LII+16a], we show significant correlations between growth rate and peak
amplitude, between frequency ratio and peak amplitude, and between frequency ratio
and burst duration. It remains to be tested whether experiments recover similar
correlations.

4. An analytic formulation for the onset condition of the subcritical instability for this
model was developed in Ref. [IIK+16]. This theory also explains the observed period
doubling phenomenon.

4.4.7 Summary

We have developed a reduced model for energetic particle-driven, nonlinear excitation of
subcritical instabilities in toroidal plasma. The model combines a 1D kinetic equation with
equations for period doubling. The kinetic equation approximately describes wave-particle
interactions between fast ions and a single MHD mode in a toroidal plasma, such as an
EGAM, or a toroidal Alfvén eigenmode.

Two regimes have been investigated. In a first regime, of successive fluid then kinetic
growth, the dormant subcritical mode is first triggered by fluid coupling to the supercritical
mode, which allows it to reach amplitudes of the same order of magnitude as the supercrit-
ical mode. This amplitude is above the threshold for the conventional kinetic subcritical
instability [BBC+99, LD13]. Then, the amplitude can keep growing by momentum exchange
between the wave and phase-space structure(s), accompanied by significant chirping. In a
second regime, of collaborative fluid-kinetic growth, the subcritical growth is due to an un-
interrupted collaboration between fluid and kinetic nonlinearities. This is a new kind of
instability mechanism, where fluid and kinetic nonlinearities have similar (in amplitude)
contributions to the mode growth. Contrarily to the mechanism developed in earlier theo-
ries [BBC+99, LD13], the growth occurs much below the amplitude threshold, and without
chirping. Typically, the ratio νf/νd selects one or the other regime. The first regime is
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obtained for νf/νd ∼ 1 and above. In this case, the amplitude of the subcritical mode can
grow orders-of-magnitude above the amplitude of the supercritical mode.

We have shown that the model can reproduce key aspects of the experimental observation
of Ref. [IIO+16]. It interprets the daughter mode as a manifestation of the collaborative
fluid-kinetic subcritical instability. In contrast with previously-known kinetic subcritical
instabilities, the amplitude stays below the kinetic threshold, and chirping seems to be
limited by a quasi-phase-matching condition with the mother mode. These results imply a
new channel of mode excitation, which modifies the flow of energy in the system.
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4.5 Many modes

4.5.1 Vlasov-Poisson limit

When many electrostatic waves are excited, the amplitude of each wave grows expo-
nentially until nonlinear saturation occurs, and each wave develops an island structure in
phase-space. If the width of each island is much smaller than the distance between the
phase velocities of two neighbouring waves, we may treat the problem as a superposition of
the former single wave-particle problem. However, if island structures overlap each others,
particle trajectories are not integrable. We consider a situation where there exists a velocity
interval within which the phase velocities of many waves are close enough and their islands
overlap. This corresponds to the Chirikov resonance-overlap criterion [Chi60]

We perform a full-f COBBLES simulation, without collisions nor external damping,
with nB = 0.05n0, vTM = vTB = 4.0vth, vB = 16.0vth, vmax = −vmin = 30vth, L = 512λD,
Nx × Nv = 512 × 64. The initial perturbation is a sum of 10 waves with wave numbers
kn ≡ nk1, where k1 = 2π/L, and a random phase for each wave n. Fig. 4.42(a) shows
the position and width of each island, and trajectories in the velocity direction of three
test particles evolving within the resonant region. We observe overlapping of islands, and
resonant particles seem to undergo Brownian motion in the velocity direction. We also
observe a flattening of the velocity distribution in the resonant region (not shown here).

These observations suggest that this simulation is in a regime where quasilinear theory as
reviewed in chapter 2 (2.2.4). Here the angle action variables are α = k1x and J = mv/k1.
The equilibrium hamiltonian is Heq = k2

1J
2/(2m), and the perturbed one is δH = qφ. The

equilibrium frequency is ωeq = k1v, and so the resonant frequency is simply ωR,n = knv.
Substituting into Eq. (2.25) yields

∂〈f〉
∂t

= DQL ∂
2〈f〉
∂v2

. (4.76)

The quasi-linear diffusion coefficient DQL can be estimated as

DQL =
q2

m2

π

∆vR

∑
n

|Ên|2

kn
, (4.77)

where ∆vR is the width of the whole resonant region.

Another way of estimating the diffusion coefficient involves the variance of the displace-
ment in velocity of a large number of test particles. For any time interval ∆t larger than
the correlation time, but smaller than the distribution relaxation time, this coefficient DP

(a) (b)

Figure 4.42 – Many waves in the Vlasov-Poisson model. (a) Evolution and overlapping of
multiple islands. Dashed and dotted lines are trajectories of three test-particles. (b) Time-
evolution of the quasi-linear diffusion coefficient estimated by quasi-linear theory (solid line),
and by following test particles trajectories (pluses and crosses).
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is given by

DP =

〈
[v(t0 + ∆t)− v(t0)]

2
〉

2∆t
, (4.78)

where angle brackets represent an ensemble average.
In our simulation, we estimate DP by following the trajectories of 3× 105 test particles,

which are initialized with an uniform distribution over the resonant region, and a random
position. Fig. 4.42(b) shows that DQL matches DP in simulation, even as we double ∆t.

We note that, although conventional quasilinear theory assumes that many waves are
overlapping, Berk recently discussed how to modify the expressions to expand their validity
all the way to the regime of isolated multiple waves [Ber12].

4.5.2 Secondary bump-on-tail instability

As we described in subsection 4.3.1, both bump-on-tail instability and BB instability can
saturate to a steady-state with a flattening of the velocity distribution, due to the formation
of a PS island near the resonant velocity.

In the context of the BB model, that is in the presence of finite dissipation, a mechanism
of formation of hole/clump pair was proposed, as a dissipative instability of negative-energy
modes, driven by strong velocity-gradients at the edges of the plateau formed by a primary
PS island [LN14]. In the latter work, the plateau is modeled as a simple band in v. In other
words, the x-dependency of δf is ignored.

Here we treat a related problem in the 2D phase-space (x, v). We investigate the pos-
sibility of secondary instabilities of separate modes driven by gradients of the distribution
function nearby the separatrix of the saturated PS island of a primary mode. Note that this
question is also related to the stability of BGK modes [GIB+88, GS95b, MB00, Bal12].

Model

We cast the full-f BB model in a many-waves form by relaxing the assumption of a single
sine wave in the electric field, which can be written as

E(x, t) =
∑
k

[
Ek(t)eıkx + c.c.

]
. (4.79)

The initial velocity distribution f0 is of the form given in Eqs. (4.15)-(4.16), with a maxwellian
bulk and a gaussian beam. The kinetic equation is unchanged from Eq. (4.17). The collision
operator is

CFP =
ν2
f

k1

∂

∂v
+

ν3
d

k2
1

∂2

∂v2
, (4.80)

which does not depend on the many kn, but only on the length L = 2π/k1 of the periodic
simulation box.

The displacement current equation is written in Fourier space,

∂Ek
∂t

= −4πq

∫
vfkdv − 2γd(k)Ek, (4.81)

for k 6= 0. In the limit of γd = 0, it is equivalent to Poisson’s equation. The average electric
field, E0, is zero at all times. We emphasize here that, contrary to the BB model described
in Sec. 4.2, we allow the wave damping rate γd to depend on the wave-number. We readily
extended the COBBLES code to enable this possibility.

In the initial condition we apply small perturbations,

f(x, v, t = 0) = f0(v)

[
1 +

∑
k

εk cos (kx+ φk)

]
, (4.82)

where each φk is a random phase.
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(a) (b)

Figure 4.43 – Simulation with nM = 0.9n0. (a) Time-evolution of the amplitudes of Fourier
modes k = nk1 of electric field. Inset: zoom near the time of reversal of evolution of mode
n = 5. In the inset, the two dashed lines correspond to growth rates γ5,L = −0.0008ωpe and
γ5,sec = 0.012ωpe. (b) Spatial average of the distribution function. Vertical lines indicate
the phase velocities vn = ωn,L0/kn of modes kn = nk1.

Numerical experiment setup

The parameters for the initial bump-on-tail distribution are nM = 0.9n0, vTM = 0.2vth,
nB = 0.1n0, vTB = vth, and vB = 5vth. We choose a relatively large system size, with
k1 = 0.006λ−1

D . The collision frequencies are νf = 0, and νd = 10−2ωpe. The dissipation
is arbitrarily set-up such that only one mode, namely mode n = 4, is linearly unstable for
f = f0. We choose γd(k4) = 0, and γd(k) = 0.038ωpe for k 6= k4.

For the simulation presented here, vmin = −8vth, vmax = 18vth, Nx ×Nv = 256× 2048,
and a time-step width ∆t = 0.05ωpe.

Results

We define ωn,L0 and γn,L0 as the linear frequency and growth rate of the mode of wave-
number kn = nk1 in the absence of dissipation and collision. Note that γn,L0 is proportional
to the slope of f0 at the resonant velocity vn = ωn,L0/kn,

γn,L0 =
π

2

∂f0

∂v

∣∣∣∣
v=vn

. (4.83)

We define the full linear growth rate γn,L as the linear growth rate including the effects of
collisions and dissipation. In the collisionless limit, when γn,L � ωn,L0, the full linear growth
rate reduces to γn,L = γn,L0 − γd(kn). With the parameters listed above, γ4,L = 0.034ωpe,
and γn,L < 0 for all n 6= 4. In particular, γ3,L = −0.009ωpe and γ5,L = −0.0008ωpe.

Fig. 4.43(a) shows the time evolution of the amplitudes of modes n = 3, 4, 5, 8, and 12,
which are the dominant modes for the time interval t < 1000 (normalizing time with ωpe).
Fig. 4.43(b) shows snapshots of the velocity distribution near the phase velocities of modes
n = 3, 4 and 5. We observe that mode n = 4 growths linearly until t ≈ 300, after which
it saturates, consistently with BB theory for a single mode. By comparing with a control
simulation, where all other (n 6= 4) modes are artificially filtered-out, we observed that the
time-evolution of both amplitude and velocity distribution are not significantly impacted by
the presence of other modes until t ∼ 1000.

The novelty concerns the neighboring modes. Modes n = 5 and n = 3 decay linearly
consistently with linear theory, until t ≈ 280 and t ≈ 320, respectively, after which their
evolution reverses and they grow. This timing of reversal coincides with the time when the
steep slopes at the boundaries of the BGK island formed by mode n = 4 reaches the phase
velocities of modes n = 3 and n = 5. Our hypothesis is that these two modes grow due to a
secondary instability driven by steep velocity-gradient at the edges of the PS island formed
by the primary mode n = 4.
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Figure 4.44 – Instantaneous growth
rate of the secondary instability, ver-
sus the bounce frequency of the pri-
mary mode. Case A: nM = 0.95n0,
γd,0 = 0.02ωpe ; Case B: nM = 0.97n0,
γd,0 = 0.01ωpe. In both cases, vTM =
0.2vth, vTB = 3.0vth, vB = 5.0vth,
nB = n0 − nM , νf = 0, and νd =
0.01ωpe. For each curve, the semi-
transparent part corresponds to later
times, where nonlinear interactions be-
tween modes appear to strongly influ-
ence the secondary mode.

In Ref. [DGLW19], we solve a Fokker-Planck equation to obtain the primary equilibrium
island, before deriving the dispersion relation for the secondary mode including the primary
island. The growth rate can then be obtained numerically by solving the analytic dispersion
relation. Based on this theory, we show that the onset of secondary modes is sensitive to
the detailed structure of the primary island, which itself depends on collisional drag and
diffusion. Note that this calculation applies to large primary island widths as well.

As can be seen in Fig. 4.43(a), the growth rate of n = 5 varies continuously around
t = 300. We infer that this is due to the evolution of the primary equilibrium. Indeed,
during the saturation phase, the primary mode slowly evolves, as can be seen in Fig. 4.43(a).
Let us measure, at each time t, the instantaneous growth rate of the secondary instability
γ5,sec(t), as well as the instantaneous bounce frequency ωb(t) which measures the amplitude
of the primary mode. Fig. 4.44 shows the result of this procedure, which was repeated for
various initial parameters (given in the legend). For each case, we emphasize the part of
the curve where nonlinear interactions between modes appear to be negligible, since these
interactions are outside of the scope of the present paper.

We observe that the general shape of the curve is similar for both cases. This is true as
well for three other cases not shown here. It corresponds to what one can expect by exam-
ining Fig. 4.43(b): as ωb, which also measures the width of the primary island, increases,
the velocity slope at v = v5 increases, before reaching a maximum, and finally decreasing
below its initial value. Initially, the velocity slope at v = v5 is unperturbed by the primary
island, so γ5,sec = γ5,L. The maximum (for both velocity slope at v = v5 and the secondary
growth rate) is reached for an island width 2ωb/k4 roughly equal to v4 − v5, which yields
ωb/ωpe ≈ (1 − k4/k5)/2 = 0.1, consistently with the simulation results (the exact value
depends on the precise shape of the island). Then, as the velocity slope decreases below its
initial value, γ5,sec − γ5,L becomes negative, as observed in Fig. 4.44.

Fig. 4.43(a) includes the amplitudes of modes 8 and 12. Since they are harmonics of
the dominant mode n = 4, and since the growth rate of n = 8 is double that of n = 4, we
interpret their growth as the result of fluid-like mode-mode coupling (probably in the class
of modular-parametric instabilities), rather than the result of kinetic interactions between
particles and waves.

Finally, we can take advantage of the variation of secondary growth rate with evolving
primary equilibrium, to compare the simulation results with our analytic theory. Fig. 4.44
includes the growth rates calculated by solving numerically the analytic dispersion relation
for the secondary mode including the primary island, for various values of primary island
width. We observe quantitative agreement in the relevant range of moderate island widths,
ωb ∼ ωL.
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Chapter 5

Ion-acoustic turbulence in 1D

Ion-acoustic turbulence is a central paradigm of plasma physics and controlled fusion.
When ion and electron temperatures are similar, linear theory predicts that ion-acoustic
waves are stable (except if the velocity drift between electrons and ions is at least of the
order of the electron thermal velocity), due to strong ion Landau damping [Bun59]. As
a consequence, ion-acoustic turbulence does not receive much attention in the context of
magnetically confined fusion plasma. However, as we have seen in chapter 3, stability
is a nonlinear issue, since the growth process of structures in phase-space can circumvent
linear theory. Furthermore, ion-acoustic waves constitute the basis for dominant fluctuations
in confined plasmas. Indeed, drift-waves arise from the ion-acoustic branch, modified by
inhomogeneities and geometry effects. In particular, collisionless trapped-ion and trapped-
electron modes are driven by wave-particle resonance, in the same way that the current-
driven ion-acoustic is. Therefore, the understanding of phase-space structures and their
impact on ion-acoustic turbulence is an important step towards the advance of the nonlinear
kinetic theory of collisionless plasmas.

PS holes are of particular interest [RB67, SMPR79, Sch79, Dup82, BTD85, Sch86,
BBP97b, LBS10, NLB12]. There are strong similarities between PS holes in the BB model
and those in ion-acoustic turbulence.

1. They are non-wave-like fluctuations.

2. They are spontaneously formed by nonlinear wave-particle resonant interactions, and
trap particles.

3. Like fluid vortices, they are not attached to a wave or a mode. The mean velocity
of the structure can evolve away from the resonance, and grow by climbing up the
gradient of a particle velocity distribution.

4. They exchange momentum and energy via channels which differ from those of famil-
iar linear wave-particle resonance, and so can tap free energy when wave excitation
cannot [Sch79, Dup82], leading to subcritical instabilities.

5. They can modify the saturation amplitude, yield amplitude oscillations or chaos, shift
the frequency of oscillations.

They impact not only energetic particle-driven phenomena in space and magnetic fu-
sion plasmas [ES06], but also collisionless magnetic reconnection [DSC+03], collisionless
shock waves [Sak72], alpha-channeling [MP94] and drift-waves [TDH90]. PS holes can drive
anomalous transport [BDT88b, HCH+94], drive anomalous resistivity [Dup70], and cou-
ple with zonal flows [KD11]. Multiple structures can coexist and interact, leading to rich
nonlinear phenomena, which we refer to as phase-space turbulence.

In this chapter, we consider the ion-acoustic instability in one-dimensional (1D), col-
lisionless electron-ion plasmas with a velocity drift, in other words Current-Driven Ion-
Acoustic (CDIA) turbulence. Ion-acoustic waves are longitudinal electrostatic waves, which
are commonly observed in space and laboratory plasmas. Theory and experiments indicate
that ion-acoustic waves are key agents of magnetic reconnection (via anomalous resistivity)
[CE77], turbulent heating [MSS70], particle acceleration [WHT05], and play important roles
in the context of laser-plasma interaction [Kru88].
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5.1 Model

5.1.1 Model description

The model describes the collisionless evolution of a two-species, 1D electrostatic plasma.
In addition to academic and paradigmatic interests, a 1D model is relevant to plasmas
immersed in a strong, relatively homogeneous magnetic field [OVNG01]. The evolution of
each particle distribution, fs(x, v, t), where s = i, e, is given by the Vlasov equation,

∂fs
∂t

+ v
∂fs
∂x

+
qsE

ms

∂fs
∂v

= 0, (5.1)

where qs and ms are the particle charge and mass, respectively. The evolution of the electric
field E satisfies a current equation,

∂E

∂t
= −

∑
s

msω
2
ps

n0qs

∫
vfs(x, v, t) dv, (5.2)

where ωp,s is the plasma frequency and n0 is the spatially-averaged plasma density. The

initial electric field is given by solving Poisson’s equation. We denote f̃s ≡ fs − 〈fs〉. We
remind that 〈fs〉 is the spatial average of fs, and that δfs ≡ fs − f0,s which is different

from f̃s in general. The initial velocity distribution for each species is a Gaussian, f0,s(v) =
n0/[(2π)1/2vT,s] exp[−(v − v0,s)

2/2v2
T,s]. The initial velocity drift is denoted as vd ≡ v0,e −

v0,i.
In a 1D periodic system, a spatially uniform current drives a uniform electric field, which

oscillates at a frequency ωu = ωp,e(1+me/mi)
1/2. This rapid oscillation of both the uniform

electric field and the uniform current is of little interest here [OMMK96]. Numerically, the
average part of E is set to zero, following common practice [BTD85, WHF02, PWHF03].

5.1.2 Numerical simulations

All simulations in this chapter are done with the full-f COBBLES code, which we readily
extended to treat two species kinetically. Hereafter, we adopt the physical parameters
of Refs. [BTDBG82, BTD85]. The mass ratio is mi/me = 4 (small mass ratio improves
numerical tractability and the readability of phase-space contour plots). The system size is
L = 2π/k1, where k1 = 0.2λ−1

D . We choose v0,i = 0 without loss of generality. The ion and
electron temperatures are equal, Ti = Te. Boundary conditions are periodic in real space.
The cut-off velocities are vmin,s = v0,s − 7vT,s and vmax,s = v0,s + 7vT,s.

All simulations are performed with at least Nx × Nv = 768 × 1024 grid points, and a
time-step width at most ∆t = 0.1ω−1

p,e. The grid cell size in real space is ∆x = 0.04λD.
Although the length-scales of interest are larger than the Debye length, such a small cell
size is necessary to reduce numerical artifacts.

5.2 Energy-phasestrophy relation

We can apply the energy-phasestrophy equation, Eq. (2.49),

dW

dt
=
∑
s

msus
dvf0,s

dΨs

dt
. (5.3)

Fig. 5.1 shows the lhs (”wave energy growth”) and the rhs (”phasestrophy growth”) in a
COBBLES simulation of CDIA turbulence. In the rhs, we approximate us as the velocity
of maximum overlap between f0,i and f0,e, us = 1.42vT,i. For ωpet < 1000, structures
are not localized around v = us, which accounts for the discrepancy. For later times, we
observe qualitative agreement (and quantitative agreement in a moving-average point-of-
view). Since phasestrophy is directly related to the perturbed momentum in the collisionless
limit, Ψs = −2dvf0,s

∫
v 〈δfs〉dv, phasestrophy growth implies an exchange of momentum,

between structures and waves, or between species.
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Figure 5.1 – Growth of phase-
strophy and wave energy in a
subcritical CDIA case.

Here the initial velocity drift is vd = 3vT,i, which is below the linear CDIA stability
threshold of 3.92vT,i. Therefore the case shown here is subcritical. The nonlinear threshold
for this subcritical instability depends on the kind of initial perturbations, as we describe in
the next section.

5.3 Subcritical CDIA turbulence

Linear instability requires that the velocity drift vd exceed some finite threshold vd,cr.
However, nonlinear theory [BTDBG81, Dup83] predicts that phase-space density holes can
grow nonlinearly, even for infinitely small drifts. In such plasmas, electron and ion structures
behave like macroparticles and scatter each other, leading to dynamical friction (in addition
to the usual quasilinear diffusion), which drives anomalous resistivity [Dup70]. From a mo-
mentum point-of-view, phase-space holes grow by exchanging their momentum with other
species or with the wave pseudo-momentum [DKL15]. From an energetics point of view,
growing structures continuously emit undamped waves by the Cherenkov process, leading
to the growth of total wave energy [Dup70, LD13]. Holes can also be thought of as quasi-
particle modes of zero or negative energy [Sch79]. The hole growth-rate was obtained far
from [Dup83] and close to [Dup86] linear marginal stability. In the 1980’s, particle simula-
tions of the nonlinear electron-ion instability, with mass ratio mi/me = 4 and temperature
ratio Ti/Te = 1, were performed [BTDBG82, BTD85]. To the credit of the authors, these
simulations were performed three decades ago, when computing power was roughly 7 orders
of magnitude lower than today. These simulations agree qualitatively with the theory, and
nonlinear growth was observed for vd > 0.4vd,cr, that is, far from linear marginal stability.
Electron holes were reported to grow in a similar way from either a seed phase-space hole,
or from random fluctuations, even with low-amplitude initial fluctuations (eφ/T � 10−2).

However, we demonstrated, based on PICKLES simulations, that these earlier particle
simulations almost certainly suffered from numerical issues, such as noise associated with a
small number of particles, leading to spurious conclusions [LDK14a]. In particular, nonlinear
growth is found to be much more sensitive to initial conditions than suggested in references
[BTDBG82, BTD85]. We observe that subcritical instabilities are absent when the initial
perturbation consists of an ensemble of sine waves with random phases, except close to linear
marginal stability (vd > 0.9vd,cr) and for large initial amplitudes (eφ/T ∼ 1).

In contrast, a seed local negative perturbation (hole-like) in the electron phase-space
can grow nonlinearly, even far below marginal stability (vd = 0.38vd,cr) and for small initial
amplitudes (eφ/T ∼ 10−3). Depending on the initial conditions, a growing hole may keep
most of the phase-space relatively intact (local hole growth), or, on the contrary, may lead
to a turbulent state with significant potential energy eφ, particle redistribution, heating and
anomalous resistivity (global subcritical instability). Such system-wide effects are observed
for vd = 0.76vd,cr. However, the effects of the seed phase-space perturbation are indirect. A
multitude of small holes emerge from the wake of the evolving seed perturbation. It is this
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Figure 5.2 – Snapshots of the
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phase-space turbulence that drives the subcritical instability. In other words, phase-space
turbulence, rather than turbulence in the sense of a spectrum of incoherent waves, leads to
substantial nonlinear growth (in general).

The main point of this section is to study how nonlinear stability depends on the type
of initial perturbations. We focus on three types:

1. an ensemble of waves,

2. a single PS hole,

3. an ensemble of many PS structures.

5.3.1 Ensemble of waves

We run a series of COBBLES simulations for different values of initial drift. The linear
stability threshold of the ion-acoustic mode is vd = vd,cr, with vd,cr/vT,i = 3.92. The initial
velocity distributions are shown in Fig. 5.2 for vd/vT,i = 3.8. The initial perturbation is an
ensemble of waves in the electron distribution,

fe|t=0 =

[
1 +

nmax∑
n=1

kn
k1
ε cos(knx+ φn)

]
f0,e(v), (5.4)

where kn = nk1, nmax = 20 (kmax = 4.0λ−1
D ), φn are random phases, and ε controls the

initial electric field amplitude. We measure the electric field energy by the mean square

potential, φ =
〈
ϕ2
〉1/2

. We define the potential energy as eφ.
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vd/vd,cr (vd/vT,i)

0 (0) 0.38 (1.5) 0.63 (2.5) 0.76 (3.0) 0.89 (3.5) 0.97 (3.8)

eφ/T

1 W↓, H↓ W↓, H∼ W↓, H↑ W↓, H↑ W↑, H↑ W↑, H↑
10−1 W↓, H↓ W↓, H∼ W↓, H↑ W↓, H↑ W↓, H↑ W↑, H↑
10−2 W↓, H↓ W↓, H∼ W↓, H↑ W↓, H↑ W↓, H↑ W↓, H↑
10−3 W↓, H↓ W↓, H∼ W↓, H↑ W↓, H↑ W↓, H↑ W↓, H↑

Table 5.1 – Nonlinear stability. W↓ and W↑ mean decay and growth, respectively, of an
initial ensemble of wave. H↓, H∼ and H↑ mean hole decay, local hole growth and global
subcritical instability driven by an initial hole-like phase-space perturbation.

Fig. 5.3 shows the time-evolution of potential energy, normalized to thermal energy,
eφ/T , for three linearly stable cases, and two linearly unstable cases. For all stable cases, we
hide data for times longer than half a numerical recurrence time, TR/2 = πNv/(10kmaxvT,e).
The oscillations for vd/vT,i < 4 are due to the beating of waves with opposite phase velocities.
We observe that the solutions are consistent with linear theory. Note that for drift velocities
of 4.2 and 4.5, the growth rate increases before saturation. This is in contrast with the
conventional wave saturation, where the growth rate decreases in time. This is the same
phenomenon as the faster-than-linear growth in the barely unstable regime of the BB model,
which we described in chapter 4 (4.3.2). It is due to the same mechanism: above a threshold
amplitude, the nonlinear growth rate overcomes the linear growth rate.

The important conclusion here, is that we observe no subcritical instability. This is in
contradiction with Ref. [BTDBG82], where subcritical instabilities are reported for the same
parameters and vd/vT,i ≥ 1.5, even for low-amplitude initial fluctuations with eφ/T � 10−2.
We scanned the parameter space of velocity drift and initial amplitude, and concluded
that subcritical instabilities emerge only when the drift is very close to linear marginal
stability, and the initial perturbation is relatively large. Fig. 5.4 shows the time-evolution
of normalized potential energy, for vd/vT,i = 3.8, which is only 3% below marginal stability,
and for large initial amplitude. We do observe a subcritical instability when the initial
amplitude is eφ/T ≈ 0.2, but not below. For vd/vT,i = 0.5, 1.5, 2.5 or 3.0, we did not
obtain any subcritical instability even for initial amplitudes as high as eφ/T ≈ 2. These
results are summarized in Table 5.1, which shows whether an incoherent ensemble of waves
is nonlinearly stable (W↓) or unstable (W↑). From this table, we conclude that the nonlinear
stability threshold is approximately vd/vT,i = 3.5 (vd/vd,cr = 0.89).

Subcritical instabilities are in many aspects qualitatively similar to linearly unstable
cases. The saturation level of potential energy is similar, we observe wide particle re-
distribution in phase-space, especially of the electrons, turbulent heating, and significant
anomalous resistivity. Fig. 5.2 includes snapshots of ion and electron velocity distributions
after the nonlinear growth for the subcritical simulation (vd/vT,i = 3.8) with high initial
amplitude (eφ/T ≈ 0.2). At saturation, the electron distribution is flattened over a large
range, −1 < v/vT,i < 6. The ion distribution develops a plateau around v/vT,i = 4, which
is due to accumulating ion phase-space vortices.

Phase-space redistribution is associated with anomalous resistivity. We define the anoma-
lous resistivity η as

n0q
2
i (pi − pe) η = qi 〈E〉 −

(
1

mi
+

1

me

)−1
d (pi − pe)

dt
, (5.5)

where 〈E〉 is the spatial average of the electric field (here it is zero), and ps ≡
∫
vfsdxdv is

the momentum of species s. Note that this corresponds to a standard definition of anomalous
resistivity, η = E/J , where J = e(ui − ue) is the current, and us is the fluid velocity of
species s. Combining the electron and ion equations of motion in the collisionless limit
yields d(ui − ue)/dt = (m−1

i + m−1
e )eE. Accordingly, in our code, we estimate anomalous

resistivity as η = −mime/(mi+me)dlog(ui−ue)/dt. For typical tokamak plasma conditions,
n0 = 1019m−3 and Ti = Te = 1keV , the ion-electron collision frequency is of the order of
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νei ∼ 10−7ωp,e (with real mass ratio). Fig. 5.5(a) shows the moving average (over δt =
16ω−1

p,e) of η/ηcoll where ηcoll = meνei/(n0q
2
i ) is a typical value of the collisional resistivity.

The maximum anomalous resistivity is 4 orders of magnitude higher than typical collisional
resistivity, for both subcritical and supercritical cases.

In addition, ion-acoustic waves cause both ion and electron heating. We define the mean
thermal energy Ts ≡ (ms/2n0)

∫
(v−ps)2fsdxdv. It reduces to the temperature for spatially

uniform, Boltzmann distributions. Fig. 5.5(b) shows the moving average of the mean thermal
energy perturbation δTs = Ts(t) − Ts(0). Both ion and electron thermal energies roughly
double, for both subcritical and supercritical cases. These results indicate that the saturated
level of turbulence, the anomalous resistivity, the turbulent heating, etc. are not directly
affected by linear stability. In other words, essential nonlinear phenomena do not undergo
any bifurcation at the linear stability threshold.

5.3.2 Single seed PS structure

We have shown that subcritical instabilities can grow from an ensemble of waves, but
only close to linear marginality and when the initial amplitude is large. However, it is
possible to drive subcritical instabilities from much smaller initial amplitude, and even far
from marginal stability, by preparing a self-trapped structure at t = 0.

Hereafter, we study the evolution of a local, negative phase-space density perturbation
(hole-like) in the electron distribution, and drop the subscript e in f̃h,e. The initial electron
distribution is

fe|t=0 = f0,e(v) − f̃h exp

[
−1

2

(
v − vh
∆vh

)2
] [

H(x)−∆xh/L

2

]
, (5.6)

where f̃h(t) is the hole-like perturbation amplitude, vh(t) is its velocity, ∆xh and ∆vh(t)
are its width and velocity-width, and

H(x) = 1 + cos

[
2π

x− L/2
∆xh

]
(5.7)

if |x − L/2| < ∆xh/2, otherwise H(x) = 0. The initial depth f̃h(0) is chosen to satisfy the
trapping condition [Dup82],

f̃h =
n0∆vh
6ω2

p,eλ
2

[
(1 + 2λ/∆xh)

(
1− e−∆xh/λ

)
− 2
]−1

, (5.8)

where λ is the shielding length, which is such that (kλ)−2 is the real part of the linear
susceptibility. The shape of this artificial hole-like seed is arbitrary and does not correspond
to maximum entropy.

Let us study in details the evolution of one case, which we label as S. It will serve here as
an example of a subcritical instability. The parameters for S are vd/vT,i = 3.0, vh(0)/vT,i =
0.8, ∆vh/vT,i = 0.2, and ∆xh/λD = 2. Figs. 5.6 and 5.7 show snapshots of both ion and
electron distribution functions in the reference case S. A video, which shows the evolution
of the distribution functions, their spatial averages, the normalized potential energy, and
the spectrum of potential, is available at https://iopscience.iop.org/0741-3335/56/7/
075005/media/PPCF484789_movie1.avi. Fig.5.8 shows the evolution of the depth, velocity
and velocity-width of the deepest hole. The reader should keep in mind that f̃h is defined as
the depth of the deepest negative phase-space density perturbation at each instant. In other
words, we do not track one single structure throughout its evolution, but rather switch to
whichever structure is the deepest. Such switching is taking place between ωp,et = 1000 and
3000, where the instantaneous maximum depth alternates between different holes. In these
figures, we observe two distinct phases. In the first phase, from ωp,et = 0 to 700, the initial
artificial seed dominates the phase-space. In the second phase, after 700, many structures
coexist and interact. Hereafter, we focus on the evolution of a single hole-like perturbation
in the first phase. The impacts of many phase-space structures (phase-space turbulence) in
the second phase is discussed in subsection 5.3.3.
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Figure 5.6 – Snapshots of ion (left) and electron (right) perturbed distribution in the ref-
erence simulation S (vd/vT,i = 3.0, vh(0)/vT,i = 0.8, ∆vh/vT,i = 0.2, and ∆xh/λD = 2).
Values of ωp,et from top to bottom are 0, 200, 500, 700 and 1000. A contour of constant fe
is dashed in (i).
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Figure 5.7 – Same as Fig. 5.6, but for later times. Values of ωp,et from top to bottom are
2000, 2500, and 3000.

Figure 5.8 – Time-evolution of
the depth (a) and velocity (b)
of the deepest negative phase-
space density perturbation in
the reference case S. The veloc-
ity width is shown by error bars
at ±∆vh.
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We remind that, since phase-space density is conserved along particle trajectories, the
center of a hole, where particles are deeply trapped, and which therefore follows particle or-
bits, must conserve f . Therefore, an isolated hole can grow (decay) by climbing (descending)
a velocity gradient. When the gradient is positive (negative), it must accelerate (decelerate)
to grow and decelerate (accelerate) to decay. In Fig.5.8, we observe that the artificial elec-
tron seed initially grows, from ωp,et = 0 to 400, by climbing the positive velocity gradient,
thereby accelerating from vh/vT,i = 0.8 to 3.0. The growth stops when the structure reaches
the top of the electron distribution (vh = vd). Then, from ωp,et = 0 to 400, it decays by
descending the velocity gradient, while still accelerating. It decays until it reaches a velocity
v such that f0,e(v) ≈ f0,e(vh(0))− f̃h(0). Before this final velocity is reached, however, the
diagnostic switches to other holes, which are then deeper than the initial seed. It is these
new holes that drive the nonlinear instability at later times. This process is described in the
next subsection, 5.3.3.

Whether an artificial hole-like seed initially grows or not depends on both its charac-
teristics and the plasma drift velocity. Fig. 5.9 shows the evolution of an electron hole-like
seed, initially located in the region of strong overlap between ion and electron distribu-
tions, for various initial conditions. The ratio ∆xh/∆vh = 20/ωp,e is arbitrary. For vd = 0
[Fig. 5.9(a)], we observe that all seeds (for the shapes and sizes we tested, as listed in the
legend of Fig. 5.9) are damped. This is expected since in this configuration, there is no
free-energy. Note that in this configuration, an isolated hole must accelerate (descend the
velocity gradient) to decay. Trapped particles accelerate with the hole. Thus, a phase-space
structure can drive transient velocity-space particle transport, even as it decays.

For vd/vT,i = 3.0 [Fig. 5.9(c)], which is relatively close to linear threshold (vd = 0.76vd,cr),
all seeds (for the shapes and sizes we tested) initially grow. The evolution is similar to the
reference case S. For vd/vT,i = 2.5, results are qualitatively similar and are not shown here.

For an intermediate value of drift, vd/vT,i = 1.5 [Fig. 5.9(b)], which is far from the linear
threshold (vd = 0.38vd,cr), the hole growth and subsequent decay depends on its size and
location. When they are located in the velocity-region of strong overlap between ion and
electrons, holes seem to grow more easily. This is consistent with the underlying growth
mechanism (local momentum exchange between ions, electrons and waves) and with the
predicted theoretical growth rate of an isolated hole. The hole growth is expected to be of
the order of −v2

T,e v
2
T,i∂vfe,0(vh) ∂vfi,0(vh)ωb, where ωb is the bounce frequency of a particle

deeply trapped in the hole [Dup83]. However, in all cases, the hole eventually decays and
no other phase-space structure is generated. Whether a hole with a different shape can or
cannot trigger phase-space turbulence remains an open question, since we have studied only
six cases.

In [Fig. 5.9(b)], we observe that holes initially decay for a while before starting to grow.
The reason may be that the shape of the artifical initial seed is not optimal for growth.
This hypothesis is supported by the following analysis. Fig. 5.10 compares two cases, where
∆vh(0) is fixed to 0.2vT,i, but ∆xh(0) differs. If ∆xh(0)/λD = 2, which corresponds to
a ratio ∆xh(0)/∆vh(0) = 20ω−1

p,e, the ratio ∆xh(t)/∆vh(t) executes damped oscillations
around a value of 200ω−1

p,e, until it stabilizes. Then the hole starts its nonlinear growth.
If ∆xh(0)/λD = 5, which corresponds to a ratio ∆xh(0)/∆vh(0) ≈ 50ω−1

p,e, the hole starts
to grow almost straightaway, suggesting that its shape is closer to the optimal shape for
nonlinear growth.

5.3.3 Ensemble of many PS structures

For a velocity drift vd/vT,i = 1.5, we mentioned that, although an artificial seed hole
initially grows, it eventually decays and no other phase-space structure is generated. In such
cases, we observe that the electric potential does not increase. The velocity redistribution
is negligible (〈δfs〉 /fs,0 < 10%), the mean thermal energies are constants (δTs/Ts < 0.1%),
and the anomalous resistivity is small (η/ηcoll < 500). Thus, the nonlinear growth of one
isolated hole is observed without system-wide instability. We refer to this situation as local
hole growth.

This local hole growth is in contrast with the global subcritical instability observed e.g. for
the reference case S. Fig. 5.11(a) shows snapshots of the velocity distributions in the latter
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Figure 5.9 – Time-evolution of the depth of the deepest electron phase-space perturbation
(f̃h,e) with an initial electron seed with ∆xh/∆vh = 20/ωp,e. The initial drift vd/vT,i is (a)
0.0, (b) 1.5, and (c) 3.0. The reference simulation is marked by S in (c).
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Figure 5.11 – Evolution of the reference simulation S. (a) Snapshots of velocity distributions.
(b) Time-evolution of the velocity vp of a test particle (electron) trapped in a hole with
central velocity vh(t).
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Figure 5.12 – Time-evolution of
the normalized potential energy
with an initial electron hole, for
vd/vT,i = 3.0, vh/vT,i = 0.8,
∆xh/∆vh = 20/ωp,e and vary-
ing hole velocity-width. The
reference simulation is marked
by S.
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case. We observe wide particle redistribution between t = 1000ω−1
p,e and t = 2000ω−1

p,e,
which is after the initial hole has decayed, and during the growth of the new holes. We
can check that particles are indeed trapped into the self-emerging structures. Fig. 5.11(b)
shows the velocity vp of a test electron, which is deeply trapped by a hole formed around
t = 800ω−1

p,e. The central velocity of the hole vh is estimated by tracking the local minimum
of f . The velocity of the test electron in the framework of the hole, vp − vh, is shown to
oscillate around zero, which indicate that particles follow trapped orbits in phase-space, in
the reference-frame of the structure. The bounce-frequency is measured from the time-trace
of vp − vh as ωb ≈ 0.15ωp,e. An other way to estimate the bounce-frequency is to measure
the local maximum ϕ0 of the electric potential, and the spatial extent ∆xh of the negative
perturbation. The bounce frequency is then given by ω2

b = |qe|k2
hϕ0/me, with kh = 2π/∆xh.

This method also yields ωb ≈ 0.15ωp,e for the same hole. The oscillation is quasi-periodic
from t1 = 850ω−1

p,e to t2 = 1280ω−1
p,e. At t2, the hole appears to be sheared by the tidal

forces exerted by a neighboring, larger hole. The lifetime of the hole is thus estimated as
τc = t2 − t1 = 430. The Kubo number in the region of phase-space within this hole is
K = ωbτc/(2π) ≈ 10. Repeating this analysis for other holes among the largest ones, we
found Kubo numbers in the range K ≈ 3 − 20. This confirms that the simulation is in
a regime of large Kubo number. The merging of holes reduces their lifetime. However,
merging is rare enough that particles bounce many times during the life of most large holes.

Fig. 5.12 shows the moving average (over δt = 16ω−1
p,e) of the potential energy time-

series in three cases, including the reference case S, for vh/vT,i = 0.8. We observe that the
potential energy grows to eφ/T ∼ 0.3, which is of the same order as the saturated potential
in linearly unstable cases. In the reference case S, we see a clear difference between the first
phase (t = 0− 700) and the second phase (t = 700− 2000). In the first phase, a single hole
develops [as seen in Fig. 5.6(c) ,(e) and (g)], and although the field energy grows, it is only
transiently. The field energy then decays back to a value close to the initial perturbation.
In the second phase, where multiple holes develop [as seen in Fig. 5.6(i) and (b)], the
field energy grows to eφ/T ∼ 0.3 before relaxing to eφ/T ∼ 0.1, thereby driving a global
subcritical instability. Therefore, for a given initial field energy, phase-space turbulence
(multiple interacting holes) is more efficient than a single hole to drive the instability.

Fig. 5.5 includes the time-evolution of anomalous resistivity and perturbed mean ther-
mal energies for the reference case S. We observe large anomalous resistivity and turbulent
heating, qualitatively similar to the cases with an initial ensemble of waves. These subcrit-
ical instabilities occur relatively far from marginal stability, even when the initial potential
energy is as low as eφ/T ∼ 10−2. This is in sharp contrast with the case where the ini-
tial perturbation is a collection of waves. In other words, phase-space structures, even with
non-optimal shapes, are much more efficient than coherent waves for driving nonlinear in-
stabilities.
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5.3.4 Partial summary

To summarize, we observe that many holes, even small, but when scattered in phase-
space, can drive global subcritical instabilities. In contrast, one single hole, even a large
one, can evolve while leaving most of the phase-space intact, without system-wide insta-
bility (without significant potential energy growth, redistribution, heating or anomalous
resistivity). One single hole can drive instabilities indirectly though, by triggering the for-
mation of many smaller holes in its wake. This process is detailed as follows. As can be
seen in Fig. 5.6, as the initial, artificial hole accelerates within the region vh < vd, its depth
increases (along with its width in velocity). This increase in depth is due to the trapping
of additional particles. This leaves a trail of negative phase-space density perturbations in
the region vh < vd [See Fig. 5.6(c) or (e)]. Then, as the hole enters the region vh > vd, its
width in velocity decreases, and de-trapping occurs. This, in turn, leaves a trail of positive
phase-space density perturbation in the region vh > vd [See Fig. 5.6(g)]. In analogy to
self-gravitating matter organizing into hierarchical structures via the mechanism of Jeans
collapse, negative phase-space density perturbations have a natural propensity to coallesce
[RB67, BNR70]. The negative trail bunches into a collection of small holes, scattered in
phase-space [See Fig. 5.6(g) and (i)]. The turbulent interaction of these many holes (phase-
space turbulence), is shown in Fig. 5.7. From our analysis, we conclude that phase-space
turbulence is a very efficient source of particle-transport in velocity space (or redistribution),
turbulent heating and anomalous resistivity.

The above nonlinear stability analysis of phase-space holes is summarized in Table 5.1,
which shows whether a hole decays (W↓), grows but then decays without triggering system-
wide electron redistribution (local growth, W∼) or grows and trigger such redistribution
(global subcritical instability, W↑). From this table, we conclude that the nonlinear stability
threshold with an initial hole in terms of vd/vT,i is between 1.5 and 2.5.

To study the effect of larger wave-lengths, we ran many of the simulations above with a
quadrupled system size, allowing wave-numbers as small as 0.05λ−1

D . We did not find any
qualitative difference in the results.

5.3.5 Discussions

We now turn to discussions of experimental scenarios, the effect of collisions, of a mag-
netic field and of the mass ratio. The purpose of this section is not only to clarify caveats,
but also to stimulate further studies, and is more of a speculative flavor.

Experimental scenarios

Our numerical analysis clarify the process of phase-space structures formation. If the
system is linearly unstable, a turbulent state can be reached, in which particles are randomly
scattered, leading to fine-grain structures that act as seeds. If the system is linearly stable,
we can speculate that at least four routes to instability are possible.

1. The first route was demonstrated in Fig. 5.4. It corresponds to the growth from
random fluctuations. This route is limited to an initial barely stable equilibrium
and requires large amplitude perturbations. The initial perturbation (e.g. thermal
noise) can be seen as an ensemble of waves, which will trap particles and form seed
structures that can grow nonlinearly.

2. The second route was demonstrated in Fig. 5.9(c). It corresponds to the growth of
a single hole. Such holes may be externally driven by the experimental setup or by
physical processes that are not included in this model. As we have seen, a single hole
may or may not lead to phase-space turbulence.

3. We speculate the existence of a third route, which would be a transition from su-
percritical to subcritical instability on a fluid time-scale. Fluid parameters of the
background plasma such as fluid velocities or temperatures may evolve, on a slow
time-scale, due to processes that are not included in this model, such as an applied
electric field, external heating, or other magneto-hydrodynamic instabilities. This
may lead to a transition from a linearly unstable system to a linearly stable state.
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Scenario Linearly
stable

Seed PS
structure(s)

Requires high-
amplitude IP

Sensitive to
details of IP

Supercritical
instability

No Trapping is-
lands

No No

Marginal
stability

Barely Thermal
noise

Yes Yes

External
drive

Yes Externally-
driven hole

Yes No

Fluid
transition

Yes Pre-existing
structures

No No

Kinetic
transition

Yes Pre-existing
structures

No No

Table 5.2 – Scenarios that may lead to a turbulent state with phase-space granulation. Here,
IP is short for initial perturbation, and transition refers to transition from supercritical to
subcritical conditions.

Phase-space turbulence that originates from linearly-driven seeds should be able to
survive this transition.

4. We demonstrated the viability of a fourth scenario relying on a transition from su-
percritical to metastable (subcritical steady-state) on a kinetic time-scale [NLG+10,
NGG+10]. As the wave grows linearly, the ion resonance width increases. Eventually,
trapped ions absorb wave energy at a rate for which the total nonlinear growth rate
vanishes. Such process can result in a metastable steady-state, where phase-space
structures may be continuously created and dissipated.

These scenarios are summarized in Table 5.2.

Effect of collisions

This work is concerned with collisionless plasma, but as we have seen in chapter 4,
even small collisions can have qualitative effects on the nonlinear evolution of wave-particle
interactions. If a collision operator is introduced, we expect to find regimes of intermittent,
rather than transient, turbulence. This is a speculation, based on the effects of collisions on
phase-space structures in the BB model.

Effect of the mass ratio

Phase-space holes with small mass ratio are relevant for pair plasmas [ES05] such as
electron-positron plasmas [GS95a] and paired fullerene-ion plasmas [OH03], with applica-
tions in semiconductors and space. However, the small mass ratio mi/me = 4 adopted in
this work brings the question of applicability of our findings to the most common hydrogen-
ion plasma. In the case of an electron-oxygen-ion plasma with mass ratio mi/me = 29500,
a single electron hole remains stationary for a hundred ω−1

p,e, until an ion density cavity
is formed [ES04]. Whether phase-space turbulence and subcritical instabilities develop or
not on a ion kinetic timescale (ω−1

p,i ) in large mass-ratio plasma remains an open question.
Moreover for larger mass ratio, the phase-space turbulence will probably not affect the ion
distribution and its mean thermal energy.

Effect of a magnetic field

While in this work we focused on current-driven ion-acoustic instability in unmagnetized
plasmas, similar scenarios can be developed for magnetized plasmas. Formation of a single
phase-space structure is reported in Ref. [TDH90]. In that paper, it was shown that a drift-
hole extracts free energy more efficiently than linear waves do. The turbulent case with
many structures is discussed in Ref. [BDT88b]. In this work it was shown that in trapped-
ion resonance driven, ion temperature gradient instability, transport is determined, not
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by quasi-linear turbulent diffusion, but rather by dynamical frictions exerted on turbulent
trapped-ion granulations. More recently, it was shown that both a coherent drift-hole and an
ensemble of granulations can interact with zonal flows [KD11, KD12, KID+14b]. The impact
of zonal flows on transport driven by trapped ion granulations was formulated as a part of
dynamical friction [KDW+13]. In magnetized space plasmas, phase-space turbulence and
jets are promising candidates mediators of magnetic reconnection via anomalous resistivity.

5.4 Phase-space jets

As we have seen, in the presence of wave dissipation (γd in the BB model, ion Landau
damping in the present CDIA model), phase-space structures spontaneously emerge in non-
linear Vlasov dynamics. These structures include well-known self-trapped vortices (holes).
In Ref. [LDK14b], which we summarize here, we reported the existence of another kind of
phase-space structures: elongated filaments, resembling jets. Jets are highly anisotropic,
and connect low and high velocity regions over a range larger than the electron thermal
velocity. These jets are formed by straining due to interacting holes. Therefore, jets are not
independent objects. They are tied to the formation and dynamics of holes. This process
is similar to the formation of a bridge of material between two colliding galaxies. Indeed,
there is a duality between gravitating matter and negative electron phase-space perturba-
tions [BNR70]. Though less coherent than holes, jets survive long enough for particles to
scatter between low and high phase-space density regions. Jets are found to contribute
significantly to electron redistribution, velocity-space transport and anomalous resistivity.

We find that time-scales of holes and jets are ordered as follows: jet lifetime ∼ particle
travel time on a jet ∼ hole trapping time � hole lifetime. The lengthscale of jets is of the
order of 10 Debye length. The velocity extents are ordered as follows: jet-driven convective
acceleration . hole size . particle mean-free-path on a jet ∼ jet size ∼ electron thermal
velocity. Jets and holes are associated with fundamentally different transport processes.
Hole-driven transport is essentially convective, since trapped particles accelerate along with
the hole. Jet-driven transport is essentially stochastic, since particles may accelerate or
decelerate along the jet. In terms of magnitude, holes and jets each account for roughly half
of the total particle flux.

5.4.1 Small mass ratio

In this section, we analyze a numerical experiment with a mass ratio of mi/me = 4. The
main reason for describing first the case of a small mass ratio, is that it drastically improves
the readability of phase-space contour plots. The analysis is repeated in the next section for
a mass ratio of mi/me = 1836. Most findings are valid for both mass ratios.

In this subsection, we further analyze the linearly unstable case shown in Fig. 5.5. Let
us recall the simulation parameters. The system size is L = 2π/k1, where k1 = 0.2λ−1

D . The
initial drift is vd = 4.2vT,i = 2.1vT,e. Note that, although in the last section, velocities are
given relative to vT,i, in this section we give them relative to vT,e, since PS jets appear to
scale with electronic plasma parameters. The number of grid points is Nx×Nv = 1024×2048,
and the time-step width is at most ∆t = 0.016ω−1

p,e. In fact, for historical reasons, we actually
performed the same simulation again, but with much lower initial amplitude of fluctuations,
which yields a shift by δt = 390ω−1

p,e of the nonlinear saturation compared with Fig. 5.5.
Fig. 5.13(a) shows snapshots of the velocity distribution before, during and after particle

redistribution. Electrons loose momentum, which reduces the driving current. Ion redis-
tribution is much weaker. Note that an electron hole at v/vT,e ≈ 2.2 survives for a long
time. It is unfaltering even at the end of the simulation (ωp,et = 10000). This is reminiscent
of the weakly dissipative coherent trapped-particle state [SK96]. Here dissipation is due to
numerical discretization. Fig. 5.13(b) shows the evolution, after the linear growth phase, of

the mean square potential, φ =
〈
ϕ2
〉1/2

, and anomalous resistivity η. Anomalous resistivity,
or equivalently, redistribution of electrons and velocity-space particle transport, is strongest
around t ≈ 1150 − 1400 (in units of ωp,e), which is when coherent structures dominate the
phase-space evolution.
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Figure 5.13 – CDIA simulation with mass ratio mi/me = 4, system size L = 10πλD and
initial drift vd = 4.2vT,i = 2.1vT,e. (a) Snapshots of the ion (left) and electron (right) velocity
distributions. (b) Time-evolution of the mean square potential (left axis) and anomalous
resistivity (right axis).

Figure 5.14 – (a) Snapshot at
ωp,et = 1180 of the perturbed

electron distribution f̃e, nor-
malized to fe,max = fe(v0,e).
Solid curve: contour of constant
fe/fe,max = 0.375. (b) Low-

pass filtered f̃e,holes. (c) High-

pass filtered f̃e,jets. The mass
ratio is mi/me = 4. The sys-
tem size is 10πλD.
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Figure 5.15 – Jet formation.
Snapshots at ωp,et = 1100 (a),
1120 (b), 1140 (c), 1150 (d) and
1160 (e) of the electron distri-
bution fe (mass ratio mi/me =
4). The horizontal coordinate is
shifted by s(t) = 0.05π(ωp,et −
1090), in order to compensate
for free-streaming.

Fig. 5.14(a) is a snapshot at t = 1180 of the perturbed electron distribution (we recall
that f̃e ≡ fe − 〈fe〉). As we already described in section 5.3, we observe in the nonlinear
phase that PS holes spontaneously form in the region of strong overlap between ion and
electron distributions. The holes accelerate and grow by climbing the velocity gradient in
the electron distribution. Particles that are trapped inside a hole are convected along with
it, leading to velocity-space transport. All of the above physics was already documented in
the literature.

However, holes are not the only entities which populate the phase-space of particle distri-
butions. We also observe elongated structures, such as the one highlighted in Fig. 5.14(a) by
a curve of constant phase-space density. Since fs is constant along particle orbits, this curve
represents an instantaneous electron trajectory. We also found similar structures in the sub-
critical case described in section 5.3, as highlighted by a dashed red contour in Fig. 5.6(i).
We refer to these structures as jets when they satisfy the three following characteristic
properties:

P1. their anisotropy is much higher than that of holes,
P2. they connect low and high velocity regions, separated by ∆vjet ∼ vT,e,
P3. their lifetime τjet is of the same order or higher than the average time τtravel it takes

a particle to change its velocity by vT,e.

Based on these properties, jets have the potential to cause significant particle transport,
since they provide a fast track for particles to commute between low and high phase-space
density regions. Reporting the formation, and discussing the role of jets are the objects of
this section.

The formation process is due mainly to straining between two holes with different ve-
locities. This is illustrated in Fig. 5.15, which shows snapshots of the electron distribution
function in phase-space, cropped to a small window which follows the birth process. At
t ≈ 1100 [Fig. 5.15(a)], a blob of negative phase-space density perturbation is extracted
from the low-velocity region, attracted by a large hole at higher velocity (not shown in this
figure). Since the large hole is traveling faster, the blob does not have time to connect to
it. It does however form a hole by itself at about t ≈ 1120 [Fig. 5.15(b)], probably be-
cause its dimensions approximately satisfy the self-trapping condition [Dup82]. At t ≈ 1140
[Fig. 5.15(c)], a second hole is extracted from the blob, and the bridge between the two holes
becomes thiner and thiner. At t ≈ 1150 [Fig. 5.15(d)], the two holes are drifting apart. The
resulting straining of the bridge is at the heart of the jet formation process. At t ≈ 1150
[Fig. 5.15(e)], the bridge has become a jet, satisfying properties P1 (anisotropic) and P2
(extending from v = 0.3vT,e to v = 1.8vT,e). It is obvious that any slowly (adiabatically)
moving hole forces the ambient passing particles to flow around the hole when the parti-
cles come to the separatrix. What is surprising, is that this process leads in this case to
structures one order of magnitude longer (both in space and in velocity) than the holes.

We turn to analyzing whether such a structure satisfies property P3 (lifetime & travel
time). Fig. 5.16 shows a series of snapshots of another typical phase-space jet, namely
the one shown by a solid curve in Fig. 5.14(a). Again, properties P1 and P2 are satisfied.
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Figure 5.16 – Time-evolution
of a jet. Solid: constant
fe/fe,max = 0.375 contours.
Dashed: orbits of two test
particles. The mass ratio is
mi/me = 4.
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From t ≈ 1160, the jet grows by straining between a blob of negative phase-space density
perturbation in the low-velocity region and a large hole at higher velocity. At t ≈ 1185,
the jet winds around the large hole. At t ≈ 1190, the jet finally splits into several parts.
More precisely, the jet becomes so thin at some locations that it cannot be resolved by the
discretized grid in our simulation. In physical experiments, collisions fill the coarse-graining
role of a discretized grid. From the jet’s formation to its splitting, the jet’s lifetime is
τjet ≈ 30. Other jets have shorter (≈ 10) or longer (≈ 50) lifetimes. This is comparable to
the average time it takes a particle to change its velocity by vT,e, which can be estimated
as τtravel ∼ vT,e/(eE/m) ∼ (k1vT,eeφ/Te)

−1 ∼ 25. Thus property P3 is also satisfied. For
comparison, a typical hole trapping time is τtr = 2π/ωb ∼ 50, and a typical hole lifetime is
τhole ∼ 500 or more (and the Kubo number is K ∼ 10 or more). To summarize, the ordering
of time scales is τjet ∼ τtravel ∼ τtr � τhole.

Particles can ride a jet from low to high velocity, or in the opposite direction. Either
collisions (here, small numerical collisions are present) or jet splitting make the process
irreversible. This yields net velocity-space transport. Fig. 5.16 includes the orbits of two
test particles, which are injected at t = 1158 on the contour of the jet. We estimate a mean
free path in velocity space ∆vm.f.p. as the average cumulative change of velocity of 600 such
particles during the lifetime of the jet (from t1 = 1158 to t2 = 1190), i.e.

∆vm.f.p. =

〈∫ t2

t1

|v̇i(t)|dt
〉
, (5.9)

where i = 1 . . . 600 is an index of test particles. This procedure yields ∆vm.f.p./vT,e = 2.17 for
this one jet, which indicates that a jet can drive significant stochastic transport. The average
non-cumulative change of velocity (∆vconv. = 〈vi(t2)− vi(t1)〉) is ∆vconv./vT,e = 0.48 for
this one jet, which indicates that a jet can also drive convective transport, albeit to a
smaller extent. Other jets may convect particles in the opposite direction (∆vconv. < 0). To
summarize, the ordering of velocity extents is |∆vconv.| . ∆vhole . ∆vm.f.p. ∼ ∆vjet ∼ vT,e.

To quantify jet-driven transport, we split the distribution function into two parts, one
containing mainly holes, the other one containing mainly jets. The hole part and jet part
are shown in Fig. 5.14(b) and (c), respectively. The jet part is obtained by applying a filter
in two-dimensional Fourier space (kx, kv), where the wave numbers satisfy kv/kx > R and
kv > kh. Here, R and kh are thresholds, which are empirically adjusted to R = 3 and
vT,ekh = 5. The remaining part (kv/kx ≤ R or kv ≤ kh) is mainly composed of holes. We
loosely refer to it as the hole part. We measure velocity-space transport of electron by the
flux Γv(v, t), where

∂ 〈fe〉
∂t

+
∂Γv
∂v

= 0. (5.10)

Fig. 5.17 shows the particle flux at t = 1180. Redistribution, or anomalous resistivity, is
driven by a negative (positive) flux in the v/vT,e > 1 (< 1) region. Our main observation
is that the contributions of jet part and hole part are of the same order. Jets can either
enhance or mitigate redistribution, depending on velocity and time. The oscillations in the
hole-part and the jet-part for v/vT,e < 0 and v/vT,e > 2.5 are an artifact of velocity-space
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Figure 5.17 – Velocity-direction particle flux
at ωp,et = 1180 (mass ratio mi/me = 4).

Figure 5.18 – Time-evolution of the particle
flux (mass ratio mi/me = 4). Contribution
from (a) holes, (b) jets.

Fourier transformation. We observe that the hole-driven flux is mostly negative, while the
jet-driven flux oscillates around zero. This reinforces the intuitive idea that jet transport is
essentially stochastic, while hole transport is essentially convective.

Fig. 5.18 shows the time-evolution of hole-part and jet-part of the particle flux. This
figure shows that the above observation is not a particular case for t = 1180. Jet-driven flux
is of the same order as hole-driven flux (though slightly smaller) throughout the whole phase
of electron redistribution. In the quasi-steady state (t > 1700), jets vanish. The electron
phase-space is dominated by a single vortex, which results from the merging of the many
structures seen in Fig. 5.14(a).

Globally, jets enhance anomalous resistivity, since they facilitate scattering in velocity-
space. However, locally in velocity-time space, jets can mitigate anomalous resistivity. This
is the case when holes form a negative gradient in the velocity distribution. As can be seen
in Fig. 5.13(a), at t = 1180, the gradient is globally positive, but locally negative (around
v = vT,e for example). Thus, flattening the distribution at this location means increasing the
electron momentum, which mitigates anomalous resistivity. In an averaged-time viewpoint,
though, jets enhance anomalous resistivity.

5.4.2 Large mass ratio

In this section, we repeat the above analysis with a mass ratio of mi/me = 1836. The
system size is L = 2π/k1, where k1 = 0.05λ−1

D . The initial drift is vd = 80vT,i ≈ 1.87vT,e.
The resolution is Nx ×Nv = 2048× 4096, and ∆t ≤ 0.016ω−1

p,e.
Fig. 5.19(a) shows snapshots of the velocity distribution before, during and after particle

redistribution. As expected, ion redistribution is negligible. Fig. 5.19(b) shows the evolution,
after the linear growth phase, of mean square potential, and anomalous resistivity.

Fig. 5.20(a) is a snapshot at t = 2800 of the perturbed electron distribution. The contour
of a jet is overlapped. Because of the large mass ratio, the electrons are easily trapped, and
the holes take up most of the electron distribution phase-space. As a consequence, the jets
are completely wound around holes, which makes them more difficult to distinguish on a
phase-space contour plot. However, our Fourier filter succeeds in extracting them. The hole
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Figure 5.19 – CDIA simulation with mass ratio mi/me = 1836 and system size L = 40πλD.
(a) Snapshots of the ion (left) and electron (right) velocity distributions. Note that ion
and electron distributions are not on a same scale. The inset shows them on a same scale.
(b) Time-evolution of the mean square potential (left axis) and anomalous resistivity (right
axis).

Figure 5.20 – (a) Snapshot at
ωp,et = 2800 of the perturbed

electron distribution f̃e, nor-
malized to fe,max = fe(v0,e).
Solid curve: contour of constant
fe/fe,max = 0.08. (b) Low-pass

filtered f̃e,holes. (c) High-pass

filtered f̃e,jets. The mass ratio
is mi/me = 1836. The system
size is 40πλD.
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Figure 5.21 – Velocity-direction particle flux
at ωp,et = 2800 (mass ratio mi/me = 1836).

Figure 5.22 – Time-evolution of particle flux
(mass ratio mi/me = 1836). Contribution
from (a) holes, (b) jets.

part and jet part are shown in Fig. 5.20(b) and (c), respectively.
Fig. 5.21 shows the particle flux at t = 2800, which roughly corresponds to the peak of

electric field amplitude. Again, jet-driven flux is of the same order as hole-driven flux. Jets
can either enhance or mitigate redistribution, depending on velocity and time. Hole-driven
flux is mostly negative, while the jet-driven flux oscillates around zero.

Fig. 5.22 shows the time-evolution of hole-part and jet-part of the particle flux. This
figure shows that the above observation is not a particular case for t = 2800. Jet-driven
flux is of the same order as hole-driven flux (though slightly smaller) throughout the whole
phase of electron redistribution.

5.4.3 Large system size

A caveat in the above analysis is that the system size is relatively small: comparable to
the wavelength of the most unstable wave. For too small system size, quasilinear relaxation
is effectively suppressed. Therefore a question remains: for larger systems, are phase-space
jets still relevant or does quasilinear relaxation precede and preclude the formation of such
structures? To address this issue, we have performed a series of simulations with increasing
system sizes (and increasing number of grid points Nx).

Fig. 5.23 shows the time-evolution of electric field amplitude for system size L = 2π/k1,
where λDk1 takes three different values, 0.2, 0.05, and 0.01. We observe that in all 3 cases,
relaxation occurs on a similar timescale. Furthermore, the peak amplitude and the saturated
amplitude are similar for 0.05 and 0.01. However, there is a significant difference between
0.2 and 0.05. We conclude that the large system size limit corresponds to λDk1 < 0.05.

We have repeated the analysis of Section 5.4.1, for k1 = 0.01λ−1
D , with Nx × Nv =

8192 × 2048 grid points. We have found qualitatively similar conclusions: phase-space jets
are present, and account for roughly half of the total particle flux. Fig. 5.24 is a snapshot
at t = 800 of the perturbed electron distribution. We observe that jets have spatial scales of
the order of 10 Debye lengths. Comparison with figures 5.14, 5.20, 5.26 and 5.28, suggests
that this is true regardless of the mass ratio, system size or whether the system is driven or
decaying.
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Figure 5.23 – Time-evolution of electric
field amplitude, normalized by Enorm =
mevT,eωp,e/e for different system sizes,
which are indicated in the legend. Mass
ratio is mi/me = 4. Initial drift is vd =
2.1vT,e.

Figure 5.24 – Snapshot at ωp,et = 800 of the perturbed electron distribution f̃e, normalized
to fe,max = fe(v0,e). The system size is 200πλD.

5.4.4 Driven system

An other caveat in the above analysis is that we have studied an initial value problem.
An other question remains: are phase-space jets (and holes) still relevant when an external
drive supplies free energy continuously? To address this issue, we have studied an other set
of simulations, where the initial velocity drift between ion and electron is zero (vd = 0), and
the system is driven by a constant and uniform external electric field Eext.

Fig. 5.25 shows the time-evolution of mean square potential and anomalous resistivity in
a system driven by an external electric field Eext = 10−4Enorm, where Enorm = mevT,eωp,e/e.
We observe that the peak amplitude, peak anomalous resistivity, and timescale of relaxation
are comparable to the case with initial drift and no drive. Further in time, as the constant
electric field continues to provide free energy in the form of a current, more relaxation events
occur, such as for ωp,et ≈ 10500. We repeat our analysis of phase-space structures and their

Figure 5.25 – Time-evolution of the
mean square potential (left axis) and
anomalous resistivity (right axis), in a
system driven by an external electric
field. The mass ratio is mi/me = 4.
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Figure 5.26 – (a) Snapshot at
ωp,et = 2480 of the perturbed

electron distribution f̃e, nor-
malized to fe,max = fe(v0,e),
for a driven system. Solid
curve: contour of constant
fe/fe,max = 0.5. (b) Low-pass

filtered f̃e,holes. (c) High-pass

filtered f̃e,jets. The mass ratio
is mi/me = 4.

Figure 5.27 – Velocity-direction parti-
cle flux at ωp,et = 2480 (mass ratio
mi/me = 4, driven system).

impact on particle flux for the first and the second relaxation events, which appears to be
the largest one, and which occur at ωp,et ≈ 2480 and 10560, respectively.

Let us repeat our analysis of phase-space structures and their impact on particle flux for
this driven case. Fig. 5.26(a) is a snapshot of the perturbed electron distribution at ωp,et =
2480, which roughly corresponds to the peak of electric field amplitude. The contour of a
jet is overlapped. The hole part and jet part are shown in Fig. 5.26(b) and (c), respectively.
Fig. 5.27 shows the particle flux at ωp,et = 2480. Similar figures, Fig. 5.28 and Fig. 5.29, are
provided for the second redistribution event at ωp,et = 10560. Again, for both relaxation
events, jet-driven flux is of the same order as hole-driven flux.

We measure the dominant mode frequency as ωIA = 0.123ωp,e. Therefore, the second
peak corresponds to ωIAt = 1295. On longer timescales, the jets are not expected to play
any significant role, except during transient redistribution bursts. Fig. 5.30 is a snapshot
of the perturbed electron distribution at ωp,et = 20000 (ωIAt = 2450), which corresponds
to a quiescent period between bursts. We observe that the jets are absent except for faint
remnants. The phase-space dynamics is dominated by holes, which are much more robust.
However, the anomalous resistivity during these quiescent periods is negligible (compared
to during bursts), so this does not undermines out conclusion that jets contribute to about
half of anomalous resistivity.
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Figure 5.28 – Snapshot at
ωp,et = 10560 of the perturbed

electron distribution f̃e, nor-
malized to fe,max = fe(v0,e), for
a driven system. The mass ratio
is mi/me = 4.

Figure 5.29 – Velocity-direction parti-
cle flux at ωp,et = 10560 (mass ratio
mi/me = 4, driven system).

Figure 5.30 – Snapshot at
ωp,et = 20000 of the perturbed

electron distribution f̃e, nor-
malized to fe,max = fe(v0,e), for
a driven system.
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5.4.5 Conclusion

In summary, velocity-space redistribution and anomalous resistivity are due to phase-
space turbulence, which includes not only holes, but also phase-space jets. The latter are
highly anisotropic structures, with an extent in velocity of the order of the electron thermal
velocity. Compared to phase-space holes, which are very robust structures, jets are rela-
tively transient objects. However, we showed that jets survive long enough for particles to
scatter between low and high phase-space density regions, and drive significant particle re-
distribution. Jets and holes are associated with fundamentally different transport processes.
Hole-driven transport is essentially convective, since trapped particles accelerate along with
the hole. Jet-driven transport is essentially stochastic, since particles may accelerate or
decelerate along the jet. These conclusions stand for both initial value and driven systems.
When the mass ratio is high, ion relaxation is negligible, and jets are completely wound
around holes. Since jets emerge from holes, jets are expected to play an important role in
the K � 1 (strong wave-particle interactions) regime, or in other words, when the collision
mean-free-path is much larger than the wavelengths of unstable modes.

Although we treated in this work the example of the ion-acoustic wave in 1D plasma with
Ti = Te, we have carried additional simulations with other parameters, other models, and
other waves. Based on these, we expect qualitatively similar conclusions for many regimes
of strong wave-particle interactions in dissipative collisionless or quasi-collisionless plasmas.
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Chapter 6

Trapped-particle-driven 2D
turbulence

In this chapter, we focus on turbulence in the core of axi-symmetric tokamaks. Let
us focus on electrostatic turbulence, which makes numerical and analytical investigations
much more tractable than with electromagnetic fluctuations, and is relevant for strongly
magnetized tokamaks.

Unlike the problems treated in chapters 4 and 5, this kind of turbulence is not unidi-
mensional. Though, strictly speaking, these fluctuations are inherently 3D, measurements
and modeling both show that their typical parallel wavenumber is much smaller than their
perpendicular one, k‖ � k⊥ (parallel and perpendicular refer to the local direction of the
equilibrium magnetic field). Therefore, depending on the problem at hand, it can be reason-
able to neglect 3D effects and model this turbulence locally in 2D, in the radial and poloidal
directions [Ken08]. Indeed, to the lowest order, the fluctuations induce an E ×B drift, and
thus vorticity in the local perpendicular plane.

A second important difference with the two previous chapters, where equilibrium density
and temperature were constants, is the essential role of inhomogeneities of plasma profiles.
In the presence of a radial pressure gradient, a phase shift between pressure and electric
field fluctuations can drive instabilities called as drift-waves. Turbulence then develops
by nonlinear self-advection of the E ×B flow and coupling between modes. Drift-wave
turbulence efficiently transports particles and heat radially.

Observed dominant fluctuations cover a wide range of scales, from the electron gyroradius
to a few ion gyroradii, in terms of perpendicular wavelength. These fluctuations are consid-
ered microscopic, and altogether form electrostatic micro-turbulence. Density fluctuations
are of the order of one to a few percents in the core of tokamaks.

The equilibrium magnetic field is inhomogeneous as well. Magnetic field lines are curved,
and the amplitude of the field weakens toward the outside of the torus. As a consequence,
an important fraction of the charged particles are trapped by the inhomogeneity of the
equilibrium magnetic field 1. Fig. 6.1 shows the equilibrium motion of a typical magnetically-
trapped particle. It is a combination of three quasi-periodic motions, over three different
timescales: the fast cyclotron motion (not represented in the figure), a bounce motion in
the poloidal direction drawing a banana shaped figure, and a slow precession in the toroidal
direction.

Pressure-gradient-driven drift-waves include Ion-Temperature-Gradient (ITG) or Electron-
Temperature-Gradient (ETG), as well as collisionless trapped-particle-modes [KP71], which
are excited by resonances with the precession of trapped particles. Trapped-particle-modes
are further categorized as Trapped-Ion-Modes (TIM) or Trapped-Electron-Modes (TEM),
depending on whether they are excited by trapped ions or trapped electrons. In modern
tokamaks, radial transport is typically dominated by coupled ITG/TEM turbulence.

1. The physics of magnetic trapping is unrelated to the physics of electrostatic trapping, which is at the
origin of PS vortices. Magnetic trapping is an effect of the equilibrium field on equilibrium particle motion;
while electrostatic trapping of particles is a nonlinear effect of the fluctuations on the perturbed particle
motion.
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Figure 6.1 – Trajectory of a particle
trapped by an inhomogenous magnetic
field in a torus, and (rhs) projection on
a poloidal cross-section.

In the gyrokinetic model, the fast cyclotron motion around the equilibrium magnetic
field is averaged out. This procedure reduces the dimensionality: the dynamics is then
described in a 4D phase-space, parametrized by one adiabatic invariant. The dimensionality
of the problem is thus 5D. For the kinetic description of magnetically trapped particles,
dimensionality can be reduced further by averaging out, not only the cyclotron motion, but
the poloidal bounce-motion as well. The bounce-averaged (implicitly, gyro-averaged as well)
dynamics can be described in a reduced 2D phase-space, parameterized by the energy and
the pitch-angle [GD90, FH99]. The dimensionality of the problem is thus reduced to 4D.
Finally, for particles which are most deeply trapped by the magnetic field inhomogeneity
have, the pitch-angle takes a single value (π/2). The bounce-averaged dynamics of deeply
trapped particles can then be described in a 2D phase-space (the precession angle α, and an
action ψ which plays the role of a radial coordinate), parametrized by the energy invariant
E. The dimensionality of the problem is thus reduced to 3D.

The main point of our approach is to focusing on a paradigmatic problem of interac-
tions between trapped particles and TIM or TEM (or both) turbulence, taking advantage of
this reduced dimensionality. This is much more tractable than the conventional gyrokinetic
modeling of coupled ITG and TEM (and ETG possibly) turbulence. It can be described
as halfway between a reduced model and a first-principle model. Although this reduced
approach precludes direct quantitative applicability to tokamaks, we can use it as a proto-
type of wave-particle resonance-driven inhomogeneous plasma turbulence to explore general
trends and clarify the mechanisms underlying the already complex nonlinear dynamics.

We adopt a self-consistent bounce-averaged gyrokinetic model for trapped particle pre-
cession resonance-driven turbulence, which was developed by Depret [DGBG00], Sarazin
[SGF+05] and Darmet [DGS+08], based on the Tagger-Pellat-Diamond-Biglari model [TLP77,
BDT88a]. This reduced model relies on the following assumptions:

— The frequencies of the dominant modes are much lower than the bounce frequencies
of trapped particles for all species..

— The equilibrium configuration is that of a large aspect ratio tokamak.
— The plasma is strongly magnetized, so that trapped ion precession resonance-driven

modes are mostly electrostatic.
In section 6.1, we describe the bounce-averaged gyrokinetic model, discuss the above

assumptions, introduce the numerical simulation code TERESA, and describe our recent
contributions to its development. In section 6.2, we develop the linear theory of this model,
and investigate the impacts of electron dissipation on frequency, growth rate, and the energy-
structure of the linear modes. In section 6.3, we investigate the impact of sub-resolution of
the resonance in the energy space on the field amplitude in a simulation with a single mode.
Finally, in section 6.4, we summarize our contribution to topics of turbulent transport:
impacts of electron dissipation, the energy-space structure of transport, statistics of test
particle trajectories, control of zonal flow by heating, and trapped impurity transport.
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6.1 Model

6.1.1 Bounce-averaged gyrokinetics

The equilibrium motion for each species s in a tokamak can be described by three action-
angle couples [Kau72]:

1. A first couple corresponds to gyration. The angle α1 is the gyrophase, and the
corresponding action is J1 = −msµ/qs, where µ is the magnetic moment. The
frequency is the cyclotron frequency ωc,s.

2. A second couple corresponds to the poloidal motion. The angle α2 is roughly the
poloidal angle for passing particles, and describes the bounce (banana) motion for
trapped particles (this is analogous to a simple pendulum). The corresponding ac-
tion can be approximated as J2 = (2π)−1

∮
msvG‖ds + δpass.qsψT , where vG‖ is the

parallel velocity of the guiding-center, s is an arc length along the magnetic field line,
δpass. is 1 for passing particles, 0 for trapped particles, and ψT is the toroidal flux.
The frequency is the mean poloidal frequency for passing particles, and the bounce
frequency ωb,s for trapped particles.

3. A third couple corresponds to the toroidal motion. The angle α3 is roughly the
toroidal angle for passing particles, and the bounce-averaged toroidal angle for trapped
particles. The corresponding action is the canonical toroidal angular momentum
J3 = Pϕ. For trapped particles, J3 can be approximated as J3 = qsψ, where ψ is
the poloidal magnetic flux at the cusps of the bounce motion. The frequency is the
mean toroidal frequency for passing particles, and the toroidal precession frequency
ωd,s for trapped particles.

We aim at modeling low-frequency (toroidal precession time-scale, ω ∼ ωd � ωb � ωc)
turbulence in the core of a tokamak plasma of major radius R0, composed of electrons,
deuterium, and possibly impurities. In bounce-averaged gyrokinetics [GD90, FH99], the
dynamics of trapped particles is described in the phase-space of toroidal precession angle
α ≡ α3 and toroidal angular momentum J3 = qsψ, which plays the role of radial coordinate.
The Hamiltonian for each particle is defined up to a constant. In this manuscript we choose

H = (1 + eΩdψ)E + qsJ0,sφ, (6.1)

where e is the elementary charge, Ωd = (eR2
0Bθ)

−1, Bθ is the poloidal magnetic field, E is
the equilibrium energy, and J0,s(E) is an operator which performs two successive averages:
a gyro-average (on a cyclotron motion), and a bounce-average (on a banana orbit).

The bounce-averaged gyrokinetic distribution fs of trapped particles (or ’banana cen-
ters’) satisfies a kinetic equation for each species s,

∂fs
∂t

+ [J0,sφ, fs]α,ψ + ωd,s
∂fs
∂α

= 0. (6.2)

Here, ωd,s = EΩd/Zs is the energy-dependent precession frequency, and Zs is the charge
number of species s. The radial dependencies are neglected in this operator.

Self-consistency is ensured by a quasi-neutrality constraint, including a polarization term
∆̄sφ, which involves a non-isotropic Laplacian operator,

∆̄s ≡
(
q0ρc,s
Lψ

)2
∂2

∂α2
+ δ2

b,s

∂2

∂ψ2
. (6.3)

Here, Lψ is the radial length of the simulation domain, ρc,s is the Larmor radius, and δb,s
is the banana width, all in units of ψ, and q0 is a typical value of safety factor.

The quasi-neutrality equation reads∑
s

eZ2
sneq,s
Teq,s

[
1− ft
ft

(φ− εφ,s〈φ〉)− ∆̄sφ

]
= 4π

√
2
∑
s

Zs

m
3/2
s

∫ ∞
0

J0,sfsE
1/2dE, (6.4)

where ft is the fraction of trapped particles. The average 〈φ〉 is an average on the angle α.
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In this reduced model, passing particles are treated quasi-adiabatically. The free param-
eters εφ,s controls the response of passing particles to electric perturbations. Typically, we
impose εφ,e = 1 for passing electrons, consistently with their lack of response to the zonal
potential in the limit of electron gyroradius much smaller than the characteristic radial vari-
ation of zonal flows [GIVW10]. For passing deuterium and impurities, which do respond to
zonal flows, we impose εφ,s = 0.

This reduced model relies on the following assumptions:
— The mode frequency is much lower than the bounce frequencies of trapped particles

for all species s, such as electrons (s = e) and deuterium (s = D). However, we note
that this assumption breaks down for heavy impurities since their bounce frequency
decreases with the square root of their mass number. Therefore, the results we
describe in subsection 6.4.5 for tungsten can only be taken as qualitative trends,
representative of cases with lower-mass impurities (and/or larger system sizes since
ω/ωb,s is proportional to ρ∗).

— The equilibrium configuration is that of a large aspect ratio tokamak. However, the
inverse aspect ratio ε must not be so small that the fraction fp ∼

√
ε of trapped

particles is negligible.
— Resonant interactions are dominated by strongly trapped particles. In this case we

can focus on a single value of the pitch-angle.
— The mode frequency is much lower than the passing particles transit frequency.
— The plasma is at low-β, for which trapped particles precession resonance-driven modes

are mostly electrostatic.

6.1.2 The TERESA code

A semi-Lagrangian simulation code, TERESA, has been developed based on the bounce-
averaged gyrokinetic model, making efficient use of parallel computing [CMGGL13, CMGS+14,
DGR+14]. The 3 dimensions of distribution functions are discretized, with numbers of grid
points denoted as Nα, Nψ and NE . A range of energies from 0 to 20Ts is typically required
for convergence. The energy grid is finer close to E = 0 and coarser for higher E allowing
greater precision for low E (In fact the grid is uniform in

√
E).

Boundary conditions

In this manuscript, unless stated otherwise, TERESA simulations are performed with
thermal baths at both outside boundary ψ = 0 and inside boundary ψ = Lψ, and without
any source nor sink. Note that in our model, ψ is not the conventional poloidal magnetic
flux which is roughly proportional to −r2, but a shifted version of it, such that the magnetic
axis r = 0 corresponds to ψ = Lψ, and the outer radial boundary corresponds to ψ = 0.
Artificial dissipation is imposed in buffer regions ψ < 0.15Lψ and ψ > 0.85Lψ to smooth
out the transition between turbulent fluctuations φ, and the constraint φ = 0 at ψ = 0 and
ψ = Lψ.

Equilibrium distribution

The equilibrium distribution functions are chosen as

feq,s(ψ,E) =
neq,s

(2πTeq,s/ms)3/2
exp

(
− E

Teq,s

)
. (6.5)

This is an approximation of a 2D Maxwellian where the radial dependency of the equilibrium
Hamiltonian is neglected. This implies that curvature pinch is neglected, and that global
effects due to the radial dependency of the precession frequency are neglected. This can be
useful to discriminate thermo-diffusion from curvature pinch.

The initial radial density and temperature profiles for 0.2 < ψ/Lψ < 0.8 are linear in ψ,

neq,s(ψ) = n0,s

(
1 + κn,s

ψ

Lψ

)
, (6.6)
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Teq,s(ψ) = T0,s

(
1 + κT,s

ψ

Lψ

)
, (6.7)

where the equilibrium densities at ψ = 0, n0,s, are such that
∑
s Zsn0,s = 0, and where κn,s

and κT,s are input parameters, which measure the equilibrium radial gradients in terms of
ψ (therefore, positive κn,T correspond to typical negative gradients in r). For ψ/Lψ < 0.2
or > 0.8, the equilibrium gradients are gradually diminished toward zero at the boundaries
ψ = 0 and ψ = Lψ. This is done to avoid instabilities at these boundaries, consistently with
our boundary condition φ = 0.

The density and temperature ratios between species are noted as Cs = n0,s/n0,e, and
τs = T0,i/T0,s.

Note that in section 6.2, we adopt a first-order Taylor expansion in ψ of Eq. (6.5), as in
Refs. [DGBG00, DGR+14, DGR+15, LCMD+17],

feq,s(ψ,E) = [1 + (κT,s(E − 3/2) + κn,s)ψ] exp

(
− E

T0,s

)
. (6.8)

6.1.3 Recent developments

Let me summarize my main contributions to the recent developments of the TERESA
code.

Normalization

In the code, the variables were normalized assuming that density and temperature pro-
files are homothetic. In 2019 I modified the normalization to extend the validity to non-
homothetic profiles.

Curvature pinch

The equilibrium distributions given in Eq. (6.5) and Eq. (6.8) artificially disable curvature
pinch. We recently implemented the possibility of equilibrium distribution function

feq,s(ψ,E) =
neq,s

(2πTeq,s/ms)3/2
exp

(
− Heq

Teq,s

)
, (6.9)

which is a 2D Maxwellian taking into account the radial dependency of the equilibrium
Hamiltonian, thus recovering curvature pinch.

Linear version

I developed a linear version of the TERESA code, which I verified in two ways: 1. against
numerical solutions of the analytic dispersion relation, which was obtained in the limit of
vanishing gradients, and 2. against single-mode simulations with the nonlinear version of
TERESA.

Quasi-adiabatic response

To simplify analytic calculations, one may focus on TIMs, assume that electrons respond
quasi-adiabatically to perturbations, and reserve the kinetic treatment to one species of ions
only. In this context, electron dissipation is an essential ingredient: it destabilizes a range of
modes, often called as electron roots, which propagate in the electron diamagnetic direction
[KP71], and it drives radial particle transport. Therefore, we applied an electron dissipation
model to the TERESA code.

To be consistent with the idea of a minimum model, we model electron dissipation as a
simple nonadiabatic modification of the Boltzmann response [Man77, KP71, TRC86, Jar89].
It is expressed as a phase-shift between electron density and perturbed electric potential,
n̂e/n0 = (1 + ınδ)eφ̂/Te (in Fourier space), where n is the mode number in precession angle,
and δ is an input, constant parameter.

In the literature, several ways have been adopted to model electron dissipation:
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1. solving a kinetic equations for trapped electrons as well, and include a collision op-
erator,

2. constant phase-shift implemented by a term of the form ıδ in Poisson equation,

3. an ad hoc model with an arbitrary cut-off for high mode numbers [CD92].

Our choice corresponds to the approach number 2. In Eq. (6.4), we make the substitution

φ− εφ,s〈φ〉 → φ− εφ,s〈φ〉+ F−1(ıδnφ̂n) (6.10)

where F−1 is the inverse Fourier transform operator, and φ̂n is the n-th component of the
Fourier decomposition in α of φ. Electron dissipation is modeled by a phase-shift between
φ and density perturbation, δn ≡ nδ, where δ is a constant, real, input parameter. This
approximation stems from the linearized drift-kinetic equation for electrons. Here we have
assumed νe,i/ε0 < ω ∼ ω∗ < νi,i/ε0, where ω∗ is a diamagnetic drift frequency, and νe,i and
νi,i are ion-electron and ion-ion collision frequencies. In this regime, δ can be approximated

as δ ≈ ε3/20 ω∗eηe/νei, where ηe = d lnTe/d lnne is the ratio between gradients in equilibrium
electron density and temperature profiles.

The advantages of method 2 are a. decreased computation cost, b. analytical tractability,
and c. consistency with the idea of a minimalist kinetic model with necessary ingredients only.
A strong analogy can be made between the phase-shift δ in trapped-ion turbulence and the
wave dissipation rate γd in the Berk-Breizman model [DKL15]. Both are minimalist models
for investigating fundamental physical mechanisms introduced by dissipation in resonance-
driven instabilities.

We have implemented the ıδn term in the TERESA code, and verified our implemen-
tation in Ref. [LCMD+17]. As a first verification, we confirmed the expected relationship
between density and potential perturbations during the linear phase for unstable modes. As
further verification, we showed that the simulations quantitatively recover solutions of the
linear dispersion relation. Note that in the latter reference, we derived an analytic, explicit
expression for the linear frequency and growth rate of the ion root (Re(ω) > 0), including
the dissipation term, in the limit of small growth rate γ/ω � 1.

Impacts of electron dissipation on the linear properties of TIM are described in subsection
6.2.1, and impacts on TIM turbulence and transport are described in subsection 6.4.1.

One must keep in mind the limitations of this simple electron dissipation model. As was
pointed out by Crotinger and Dupree, the ıδ approximation misses the effect of spectral
broadening in regimes of strong turbulence, and does not give the correct response to a
coherent structure [CD92]. Therefore, in the long term, numerical studies of granulation
will require more advanced models.

Test particles

Although TERESA solves the distribution function f and the electric potential φ, it
does not yield individual particle trajectories. Particle, momentum and energy fluxes can
be obtained from f and φ, but discriminating the various transport processes (e.g. dif-
fusion, advection, trapping, ballistic, super-diffusion, sub-diffusion) typically requires con-
voluted methods such as dedicated dynamical synthetic experiments (otherwise, a simple
flux-gradient plot often yields an indecipherable cloud of points). Using statistics on particle
trajectories, the analysis can be done locally in space, within a short timespan, and without
ambiguity.

Test particles are particles advected by the electrostatic field, but which do not affect
it. They can thus be used as markers in the turbulent plasma, representing exactly the
motion of a single particle belonging to f . In 2018, we developed, parallelized, integrated
and verified a test particle module. The test particle trajectories are computed directly in
the TERESA code, thus allowing the same order of accuracy as the solving of f and φ. This
was an important task in the research program of my first PhD student, Julien Médina.
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Each test particle follows the Vlasov characteristics in phase-space,

α̇ =
EΩd
Zs

+
∂(J0φ)

∂ψ
, (6.11)

ψ̇ = −∂(J0φ)

∂α
. (6.12)

These equations are solved using Runge-Kutta 4 algorithm. We verified the accuracy of the
trajectory solver, using an analytic electric potential. With the self-consistent potential, we
confirmed the balance of individual particle energy,

dH

dt

∣∣∣∣
traj.

=
∂H

∂t
+
∂H

∂α

dα

dt
+
∂H

∂ψ

dψ

dt
=

∂H

∂t
. (6.13)

In subsection 6.4.3 we exploit this new module using one million test particles on each
energy grid point (∼ 108 test particles in total), in a turbulent simulation, to gain insight
on the properties of transport phenomena.

6.1.4 Caveats

As mentionned in the introduction, the bounce-averaged gyrokinetic model is not to be
readily applied to the quantitative interpretation or prediction of modern tokamak exper-
iments, which couple the electromagnetic dynamics of both trapped and passing particles,
both ions and electrons, including supra-thermal particles (EPs). However, it can be used to
perform numerical analysis of resonance-driven drift-wave turbulence, as an isolated building
block of a complex system of coupled blocks (for the purpose of improved understanding),
with a great accuracy in all variables (including energy), at reasonable computing cost. It
can provides some basis on the way to numerical investigation of nonlinear phenomena that
involve strong wave-particle resonances and require a high accuracy in velocity-space.
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6.2 Linear instabilities

6.2.1 Impact of electron dissipation

In this part, we analyze the frequency and growth rate of both ion and electron roots of
TIM in the presence of electron dissipation, as well as the linear structure in energy space.

We can summarize the results as follows. In the limit of zero equilibrium density gra-
dient, the growth rate decreases monotonously with δ. On the other hand, it peaks at
δ ≈ 0.02 when the density gradient is comparable to the temperature gradient. When the
density gradient exceeds the temperature gradient, the most unstable mode propagates in
the electron diamagnetic direction for δ < 0.02. The results are in qualitative agreement
with analytic theories of trapped-ion modes in the literature [KP71, TLP77].

For a phase-shift δn = 0.02n between the n-th toroidal component of electron density
and electric potential perturbations, a strong peak is found at the resonant energy, with a
narrow width at half maximum ∆E = 0.2T0. This linear energy-space structure is stronger
with increasing electron dissipation. Accurately resolving this narrow peak in numerical
simulation of the initial-value problem, yields a stringent lower bound on the number of
grid points in the energy space. A 10% (1%) accuracy requires 256 (1024) grid points in
the energy direction, which is significantly higher than typical number of grid points in
e.g. parallel velocity in conventional gyrokinetic simulations.

Dispersion relation

We treat only hydrogen ions kinetically, therefore we drop the species subscript when it is
not ambiguous. Electrons are a neutralizing background, and their dissipation is taken into
account via the ansatz Eq. (6.10). We neglect the radial dependency of Ωd. For concision,
we work with normalized units. In particular, energies are normalized to Ti = T0,i, and

distributions are normalized to nim
3/2
i /(2πT

3/2
i ).

Linearizing the model equations, we obtain the dispersion relation D(x) = 0, where
x = ω/(nΩd), and

D(x) = Cr + ıC1δn +
2√
π

∫ √
E

E − x
∂feq
∂ψ

J2
0 (E)dE, (6.14)

In the latter expression, the integral is on a Landau path, and we define

Cr = C1 + C2

(
n2q2

0ρ
2
c/a

2 + k2
rδ

2
b

)
, (6.15)

C1 = τeC2/fp (we recall that τe = T0,i/T0,e, and that fp is the fraction of trapped particles),
and C2 = a/R0. In the δ → 0 limit, Eq. (6.14) is in agreement with Ref. [DGBG00]. In this
case, the marginal solution is ω = 3nω0/2, where ω0 is the precession frequency of thermal
ions.

Substituting the equilibrium distribution function, Eq. (6.8), yields

D(x) = Cr + ıC1δn − κT Ir −
2√
π

[
κn + κT (x− 3

2
)

] ∫ √
Ee−E

E − x
J2

0 dE, (6.16)

where

Ir =
2√
π

∫ ∞
0

√
Ee−EJ2

0 (E)dE. (6.17)

In the limit of small density gradient (κn → 0), the latter dispersion relation yields a
branch with positive real frequency, which corresponds to propagation in the ion diamagnetic
direction. It is often called as the ion root. In the opposite limit of small temperature
gradient (κT → 0), the latter dispersion relation yields a root with negative real frequency,
which corresponds to propagation in the electron diamagnetic direction. However, it can
not be unstable unless electron dissipation is finite δ > 0. It is often called as the dissipative
electron root. This is consistent with previous works [KP71]. Let us then analyse the impact
of electron dissipation on linear frequency and growth rate in various regimes.
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C1 C2 q0ρc/a δb/a κT κn εφ
Case 1 0.1 0.1 0.01 0.1 0.15 0 1
Case 2 0.1 0.1 0.01 0.1 0.1 0.2 1
Case 3 0.1 0.1 0.01 0.1 0.15 0.15 1

Table 6.1 – Input parameters. Here C1 = aTi(1− fp)/(fpR0Te), and C2 = a/R0.

Figure 6.2 – Linear frequency (a) and
growth rate (b) as a function of electron
dissipation, for Case 1 (flat density pro-
file), for a given mode (n = 10, k =
π/Lψ). The legend is shared. ’Analytic’,
’Numeric’ and ’Simulation’ refer to the
analytic approximate solution of the dis-
persion relation, the numerical solution
of the dispersion relation, and TERESA
simulation.

Figure 6.3 – Linear frequency (a) and
growth rate (b) as a function of the
toroidal mode number, for Case 1 (flat
density profile). The radial mode num-
ber is k = π/Lψ except for one curve for
k = 2π/Lψ. The legend is shared. Thin
curves correspond to the analytic approx-
imate solution.

Ion root

Let us consider a flat density profile, κn = 0, and explore the ion root of the trapped-
ion-mode. The input parameters of the model are shown as Case 1 in Table 6.1.

The result from TERESA simulations, as well as the numerical solution of the dispersion
relation are shown in Fig. 6.2 against the electron dissipation rate δ. Furthermore, in the
appendix of Ref. [LCMD+17], we solve the dispersion relation for the ion root, perturbatively,
up to the second order in (ω − 3nω0/2). The solution is included in Fig. 6.2. We observe a
quantitative agreement between analytic and numerical solution of the dispersion relation,
as well as with the numerical simulation, for both the real frequency and the growth rate.
The goal of Fig. 6.2 is only to provide a test for 1. our implementation of electron dissipation
in TERESA, 2. our numerical dispersion relation solver, and 3. our analytic theory.

Hereafter, let us apply the numerical solver of the dispersion relation, alone, to explore
the impact of electron dissipation on the various instabilities.

Fig. 6.3 shows the frequency (a) and linear growth rate (b) of modes with different
wavelength. Most strikingly, electron dissipation significantly mitigates the global instability
for values δ ∼ 0.01 (although the n = 1 mode is not stabilized unless δ > 0.37). In addition,
increasing electron dissipation significantly decreases the wavelength of the most unstable
mode. The impact of dissipation (for reasonable values δ � 1) on the real frequency is
negligible, for each mode taken separately.
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Figure 6.4 – Linear frequency (a), growth
rate (b) and mode number (c) of the most
unstable mode, as a function of electron
dissipation.

Figure 6.5 – Linear frequency (a) and
growth rate (b) as a function of the
toroidal mode number, for Case 2 (higher
density gradient). The radial mode num-
ber is k = π/Lψ.

We include in Fig. 6.3 the linear solution for k = 2π, to illustrate the fact that modes
with radial mode numbers k/π > 1 are much more stable than modes with k = π. We also
include the analytic approximate solution, to demonstrate that it is valid for many mode
numbers.

Fig. 6.4 (case 1) summarizes the impact of electron dissipation on the most unstable
mode. From this point of view, the real frequency (of the most unstable mode) signifi-
cantly decreases with electron dissipation, even though the frequency for a given m slightly
increases. The reason is that the mode number of the most unstable mode significantly de-
creases with increasing electron dissipation. The propagation stays in the ion diamagnetic
direction (ω > 0). The growth rate decreases monotonically as dissipation increases. The
impact of dissipation on all frequency, growth rate and mode number, is almost linear for
δ < 0.01. The growth rate in the adiabatic electron limit (δ = 0) is γ ≈ 3ωd

Electron root

Let us consider a case where the equilibrium density gradient is larger than the tempera-
ture gradient, and explore the electron root of the trapped-ion-mode. The input parameters
of the model are shown as Case 2 in Table 6.1.

The numerical solution of the dispersion relation is shown in Fig. 6.4 against electron
dissipation rate δ. In this regime, the growth rate is zero for δ = 0, but positive for finite
δ. It peaks to γ ≈ 8ωd at δ ≈ 0.02. For δ < 0.01, the most unstable mode, which has
a relatively high mode number m > 40, propagates in the electron diamagnetic direction
(ω < 0), and growth rate is an increasing function of δ. On the contrary, for δ > 0.02,
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the most unstable mode propagates in the ion diamagnetic direction, and growth rate is a
decreasing function of δ, which appears to saturate to a finite value for large δ.

Fig. 6.5 shows in more details how frequency and growth rate depend on δ, for finite
but small δ, not only for the most unstable mode, but for a large range of mode numbers.
We observe that, even when the most unstable mode is an ion root, there can be unstable
electron roots as well with comparable growth rates, and lower mode numbers (e.g. for
δ = 0.005). Conversely, dominant electron roots can coexist with ion roots with comparable
growth rates (e.g. for δ = 0.02).

Competition between ion and electron roots

Let us consider equilibrium profiles with comparable gradients, to study the competition
between ion and electron roots of the trapped-ion-mode. We choose κn = κT = 0.15. The
input parameters of the model are shown as Case 3 in Table 6.1.

The numerical solution of the dispersion relation is shown in Fig. 6.4 against electron
dissipation rate δ. In this regime, the growth rate is finite (γ ≈ 2ωd ≈ 0.2ω) for δ = 0. It
peaks to γ ≈ 3ωd at δ ≈ 0.02. Propagation is in the ion diamagnetic direction. Dependence
of the growth rate on electron dissipation is relatively weak.

6.2.2 Energy-space structure

Let us consider a flat density profile, κn = 0. The input parameters of the model are
shown as Case 1 in Table 6.1. In this case, the dispersion relation yields a branch with
positive real frequency, which corresponds to propagation in the ion diamagnetic direction.
It is often called as the ion root.

We investigate the linear energy-space structure for the ion root of the trapped-ion-
mode. This eigenfunction is obtained from single-mode TERESA simulations by extracting
at a fixed time t1 a single m Fourier component of f(α,ψ1/2, E, t1), where ψ1/2 = 0.5
corresponds to the mid-radius of the simulation box. It is then normalized by the absolute
value of the m component of φ(α,ψ1/2, t1). The time of snapshot t1 is chosen around the
end of the exponential growth (and before the decrease of growth-rate due to nonlinear
saturation), in order to give enough time for the eigenfunction to form from the initial
arbitrary perturbation. In this section, the hat notation for Fourier components is omitted.

Fig. 6.6 shows the eigenfunction δfn, for an arbitrary mode number, n = 10, obtained
from a simulation with NE = 2048 grid points in energy. We compare two cases, without
(δ = 0, left) and with (δ = 0.02, right) electron dissipation. In both cases, there is a peak at
E/T0 ≈ ω/(nΩd), which corresponds to the resonance ω = nωd(E). Interestingly, this peak
becomes stronger as δ increases.
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Figure 6.6 – Eigenfunction for Case 1 (flat density profile), n = 10, at ψ = 0.5. (a)
No electron dissipation. (b) Finite electron dissipation δ = 0.02. A dotted vertical line
corresponds to the energy such that the resonance condition ω = nωd(E) = nΩdE is satisfied.
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NE 24 48 96 192 384
Linear growth rate 63 4.6 2.6 0.013 3.6×10−6

Peak field amplitude 50 1.3 2.2 0.063 5.8×10−4

Table 6.2 – Impact of sub-resolution in energy space. Relative error (in percent), taking a
NE = 1536 simulation as the reference case.

Note that the peak is narrow, especially for the imaginary part, with a full width at half
maximum ∆E = 0.2T0 in the case of Fig. 6.6(b). We have performed a scan (restricted
to powers of 2) in the number NE of grid points in the energy direction. We found that
obtaining the eigenfunction within a 10% accuracy requires NE = 256 grid points (here, the
energy cut-off is Emax = 20T0). A 1% accuracy requires NE = 1024 grid points. That is
true even though we adopted a regular grid spacing in

√
E (rather than in E), which favors

the resolving of small-scale structures at relatively low energies E ∼ T0.
We investigated the impact of sub-resolution of the resonance in the energy space on the

linear growth rate, and the peak field amplitude (of mode n = 10 only). Table 6.2 gives
the relative errors for NE = 24, 48, 96, 192, and 384, taking a simulation with NE = 1536
as a reference case. Here, the structure of the grid in energy is homogeneous in E1/2. We
have also performed simulations with different grid structures, namely homogeneous in E,
or homogeneous in E1/3, but these lead to slightly increased inaccuracies.

In the limit of small ρ0 and δb, the eigenfunction can be estimated as

δfn,k = −nκT e
−E (E − 3/2)

ω − nΩdE + ıγ
φn,k. (6.18)

With the simple approximation φn,k = |φn,k|, the latter expression is in quantitative agree-
ment with the values from numerical simulation (Fig. 6.6). The maximum absolute error
in terms of |δfn,k|/|φn,k| is 0.0016 for δ = 0, and 0.0069 for δ = 0.02. Eq. (6.18) does not
depend explicitly on δ. In fact, here, the dominant cause of shrinking of the resonance with
finite electron dissipation is a twice smaller γ/ω ratio for δ = 0.02 compared to δ = 0.

6.3 Single-mode saturation

The saturation of a single-mode was analyzed in Ref. [Dro15]. The time-evolution (see
Fig.6.4 in the reference) is very similar to that of the simple bump-on-tail instability in the
Vlasov-Poisson model, Fig. 4.2. Furthermore, the saturated amplitude qualitatively agrees
with a mixing-length estimate.

Here, we investigate the impact of sub-resolution of the resonance in the energy space
on the first peak of field amplitude (of mode n = 10 only). Table 6.2 includes the relative
errors with NE = 1536 as a reference case. We observe that the first peak of field amplitude
is well evaluated with resolution as low as NE = 48.
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6.4 Turbulence and transport

6.4.1 Impacts of electron dissipation

We investigate the impact of electron dissipation on the peak radial particle flux. The
results can be summarized as follows. The dependency of peak particle flux on δ is sim-
ilar to that of the maximum linear growth rate. When density gradient and temperature
gradient are similar, particle flux is of the order of a gyro-Bohm estimate for high enough
electron dissipation, δ > 0.005. When the density gradient is significantly larger than the
temperature gradient, that is, when there are electron roots with growth-rates comparable
to that of most unstable ion roots, particle flux peaks at an order-of-magnitude above the
gyro-Bohm estimate for δ > 0.005. Slight, transient particle pinch is observed in the case of
higher density gradient, for smaller values of δ.

Let us consider a typical time evolution of an initial value TERESA simulation. After
the linear phase, the electric field energy first saturates to some peak value, before decaying
to a quasi-steady-state average value. We focus on the first, transient peaking of electric field
amplitude, which corresponds also the highest peak of both field amplitude and particle flux.
Understanding the first and strongest peak may serve the understanding of the quasi-steady
state.

Figure 6.7 – Peak field energy (a), peak zonal
flow energy (b), and peaks (minimum and
maximum) of radial particle flux (c), as a func-
tion of electron dissipation. Inset: zoom in the
low δ region. For clarity, the particle flux is
not plotted when |Γψ| < 10−4.

Figure 6.8 – Radial particle flux, as a
function of radius and time, for Case 2
and δ = 0.0015. Here, the flux is nor-
malized by a gyro-Bohm estimate ΓgB =
ρ∗T0/(eB0)∂n/∂r, with q0ε/ρ

∗ = 40.
Dashed vertical lines indicate the bound-
ary with buffer regions, near the magnetic
axis ψ = 0 and the outer region ψ = Lψ,
where artificial dissipation dominates.
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We ran a series of TERESA simulations for the three cases of Table 6.1, and various
values of electron dissipation rate δ. For these simulations, we use Nψ = 257 grid points
in radius, Nα = 513 grid points in precession angle, and NE = 1024 grid points in energy,
with an energy cut-off Emax = 20. This fine grid in energy is necessary to obtain the
flux with good accuracy, at least in some cases. Fig. 6.7 shows the peak field energy (a),
peak zonal flow energy (b), and peaks (minimum and maximum) of radial particle flux at
ψ = 0.5 (c). Here, the field energy is defined as eφ̃/T , where φ̃ is the root mean square
(rms) of φ− 〈φ〉α, over a radial domain 0.25 < ψ < 0.75, which excludes the buffer regions.
The zonal flow energy is defined as eφ0/T , where φ0 is the rms of φ, over the same radial
domain. The radial particle flux Γψ is defined such that the angle-averaged density satisfies
∂ 〈n〉α /∂t+ ∂Γψ/∂ψ = 0 in the absence of source.

Unsurprisingly, the dependency of peak particle flux on δ is similar to that of the maxi-
mum linear growth rate (see Fig. 6.4(b) for a graph of γ against δ). However, peak field and
zonal energies show a different behavior, especially in the presence of a density gradient,
peaking at δ ≈ 0.005 even though γ peaks at δ ≈ 0.02. In the case of flat density profile
(Case 1), field energy, zonal energy and particle flux all decrease roughly monotonously with
δ.

Let us compare the particle flux in Case 2 and Case 3, in the presence of finite dissipation,
δ > 0.005, after normalizing it by a gyro-Bohm estimate ΓgB = ρ∗T0/(eB0)∂n/∂r. If we
choose q0ε/ρ

∗ = 40, the flux peaks at Γψ/ΓgB ≈ 8 for Case 2, and Γψ/ΓgB ≈ 1 for Case 3.
We note that from linear analysis, it can be concluded that electron roots have larger growth
rates in Case 2 than in Case 3 for fixed δ. Therefore, electron roots may be responsible for
pushing the particle flux up to an order-of-magnitude above the gyro-Bohm estimate.

Interestingly, when density gradient dominates (Case 2), we observe a slight pinch of
particle (Γψ < 0) for δ ≈ 0.0015 − 0.002, where the most unstable mode propagates in the
electron diamagnetic direction. This can be seen in the inset of Fig. 6.7(c). The pinch can
also be seen in Fig. 6.8, which shows a spatio-temporal map of the particle flux for Case
2 and δ = 0.0015. The pinch is strongest at time t ≈ 3.3, and stays significant in later
times around the mid-radius of the simulation box (ψ ≈ 0.5). To invoke a density pinch,
we need to check that the negative flux is not due to a reversed density gradient. Between
t = 3.0 and t = 3.7 (time period during which the negative flux is most significant), the
density gradient is never reversed throughout all the simulation box. More precisely, the
gradient −∂n/∂Ψ stays larger than 0.1n0/LΨ (about half of the initial κn) if we exclude the
buffer regions, and larger than 0.078n0/LΨ if we include them. When density gradient and
temperature gradient are similar (Case 3), we observe a weaker pinch at δ = 0.002.

As a caveat, the model does not allow to accurately characterize the nonlinear satura-
tion. Indeed, it was shown that saturation is achieved via a spectral transfer that involves
electron drift waves [DB90, KW94]. Investigating the quasi-steady-state obtained in our
simulations may be relevant, for example to reveal hints of new physical mechanisms, but
not for quantitative interpretation or prediction of experimental data.

To conclude, particle flux depends strongly on the ordering between equilibrium density
gradient κn and equilibrium temperature gradient κT . The particle flux was compared to
a gyro-Bohm estimate, ΓgB . Particle flux peaks to ∼ ΓgB and ≈ 8ΓgB , for κn ≈ κT and
κn ≈ 2κT , respectively, and for large-enough electron dissipation. Furthermore, it can take
negative values, ≈ −0.4ΓgB , for small but finite electron dissipation δn ≈ 0.005n.

6.4.2 Anatomy of transport in energy space

A large part of the results summarized here were developed during the PhD thesis of
my first PhD student, Julien Médina. More details can be found in Refs. [MLG+18] and
[Méd19].

The gyrobounce approach allows one to study the details of the trapped particle dynam-
ics in both real space and energy (or velocity) space, at reasonable computing cost. For
collisionless TIM and TEM, we expect wave-particle resonances to play essential roles in
transport. These modes being weakly dispersive, all resonances may be concentrated within
a narrow range of energies. This raises the issue of the precision required to accurately
describe turbulence and transport.
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Figure 6.9 – Time-evolution of the am-
plitude of the dominant Fourier modes
of the electric potential φ, at ψ =
3Lψ/8. The modes n = 5 to n =
13 correspond to the 9 most intense
modes. The linearly most unstable
mode is n = 9. Here ω0 = ΩdTi.

In this part, we describe the structure in energy-space of nonlinear radial fluxes of par-
ticles in TIM turbulence. This yields an estimate of the accuracy required in energy space.

We focus on one of the simulations investigated in subsection 6.4.1 : the one denoted as
Case 1 (kinetic ions, quasi-adiabatic electrons, flat density profile), whose input parameters
are given in Table 6.1, and with electron dissipation parameter δ = 0.02. We choose a grid
with Nα ×Nψ ×NE = 256× 257× 1024.

Fig. (6.9) shows the time-evolution of a selection of dominant modes. We observe a
phase of linear growth of the plasma potential from t = 0 until t ≈ 4 − 5 (For concision,
time is normalized to the precession frequency of thermal ions, ω0 = ΩdTi). Linearly, the
most unstable mode is the mode number n = 9. Its linear frequency and growth rate are
ωn=9 = 15.6 and γn=9 = 0.987. After t = 5 the modes saturate. The saturation amplitude
in terms of the root mean square is of the order of eφrms/Ti ∼ 5× 10−3.

Radial transport

Specialized to our model, Eq. (2.12) yields

∂〈f〉
∂t

+
∂ΛNL

ψ

∂ψ
= 0, (6.19)

where ΛNL
ψ (ψ,E, t) = 〈ψ̇ δf〉 is the radial flux of phase-space density, and we added a

superscript NL to emphasize that it contains all nonlinear terms. It is calculated directly
within the TERESA simulation.

We can compare with the radial flux of phase-space density estimated by quasilinear
theory, ΛQL

ψ (ψ,E, t). Eqs. (2.25) and (2.26) yield

ΛQL
ψ (ψ,E, t) = −DQL ∂〈f〉

∂ψ
, (6.20)

where

DQL(ψ,E, t) =
∑
n

n2
∣∣∣φ̂n(ψ,E, t)

∣∣∣2 Im
1− e−i(ωR,n−ωn)t−|γn|t

(ωR,n − ωn)− ı|γn(t)|
. (6.21)

and

ωR,n(ψ,E, t) = n

(
ΩdE

Z
+
∂φ̂0

∂ψ

)
. (6.22)

The term ∂〈φ〉
∂ψ shows that the mean flow (including zonal flow) induces a Doppler shift

on the resonant frequency. To compute the quasilinear flux, the potential φ, the mean
distribution function 〈f〉, the mode frequencies ωn and growthrates γn are needed. In order
to test fundamental aspects of QL formalism, we want to limit the sources of discrepancies
between QL theory and NL simulations. Therefore, at each time we substitute φ and 〈f〉
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extracted directly from nonlinear simulation, instead of using approximations such as the
mixing length. Then, γn and ωn are obtained by solving the linear dispersion relation.

The use of this version of quasilinear theory is justified for a time ∼ 1/γ after the start of
the saturation phase. In our simulation, the fastest growing mode has a growthrate γ ≈ ω0,
where ω0 is the precession frequency of thermal ions. Let us investigate the time t = 5, at the
beginning of the turbulent phase, where the dominant modes have just achieved saturation.
We choose an arbitrary radial location, ψ0 = Lψ/2. Quasilinear diffusion features one
resonance for each mode n, when ωn = ωR,n. As expected, the resonant energies of the
dominant modes (n = 7 − 11) are concentrated within a narrow range, E/Ti ∈ [1.78, 1.83]
(and the mean flow contribution is relatively small). Therefore we expect that the flux
features a narrow peak of width ∆E ≈ 0.05Ti around E ≈ 1.8Ti. Fig. 6.10 shows the
nonlinear flux of phase-space density obtained from simulation, as well as the quasilinear
flux. The flux is positive (inbound) for E/Ti < 3/2 and negative (outbound) for E/Ti > 3/2.
This can be simply explained by the sign of ∂ψfeq, which is negative for E/Ti < 3/2 and
positive for E/Ti < 3/2. Therefore the sign is everywhere consistent with a flattening in ψ
of 〈f〉, which remains close to feq at t = 5. As expected, we observe a narrow resonance
negative peak. For the nonlinear flux, the width obtained by a gaussian fit is ∆E ≈ 0.15Ti.
Strikingly, the flux at the resonance is one order of magnitude stronger than the flux for
thermal particles. As a result, the resonance peak accounts for most of the flux, despite the
small number of particles (7%) in the range E/Ti ∈ [1.7, 2.0].

The nonlinear and quasilinear fluxes are in qualitative agreement, in terms of sign, energy
of sign reversal, position of peak, width of peak, and behavior at large energies. However,
there is quantitative discrepancy : 41% at E = 0, 55% at E = Ti, and 57% at the resonance
peak. In the next part, we investigate the origin of this discrepancy, based on term-by-term
comparison between kept and neglected terms in the Vlasov equation.

The moments of Eq. (6.19) yield the density flux,

ΓNL(ψ, t) =

∫
E

ΛNLψ (ψ,E′, t)E′1/2dE′, (6.23)

and the heat flux,

qNL(ψ, t) =

∫
E

ΛNLψ (ψ,E′, t)E′3/2dE′. (6.24)

Note that we distinguish the flux of phase-space density Λ, and the flux of density (in
the sense of fluid density) Γ. Fig. 6.11 shows both nonlinear and quasilinear density and
heat fluxes at t = 5. The negative sign of both Γ and q is consistent with a flattening
of the initial gradients. We observe a simple bell-shaped radial structure. This results
from the constraining boundary conditions, coupled with the fact that the simulation box is
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Figure 6.11 – Radial density (a) and heat (b) fluxes as a function of radius, at t = 5.

relatively small (10 banana widths). We confirmed this point with one simulation with larger
box size, which yields flatter flux profiles except near the boundaries. We can separate the
contribution from thermal particles and from resonant particles, by integrating over different
ranges of energy E. This procedure shows that the resonant particles contribute more than
90% of the total heat flux. Overall, there is good qualitative and quantitative agreement
between nonlinear and quasilinear density and heat fluxes, within a relative 16% inaccuracy.
Surprisingly, the positive and negative errors in PS density flux compensate. Whether this
is a coincidence or not remains to be investigated.

Term-by-term comparison for the Vlasov equation

To explain the discrepancy between the nonlinear and quasi-linear fluxes, let us compare
the terms in Vlasov equation, including those that are included and those that are neglected
in the quasi-linear theory. In our model, Eq. (2.15) takes the form

L1,n + L2,n + L3,n = NL1,n + NL2,n + NL3,n, (6.25)

where we have noted the linear terms as
— L1,n = ∂tf̂n,

— L2,n = ınEΩdf̂n,

— L3,n = −ınφ̂n∂ψ〈f〉,
(L3,n is linear because 〈f〉 is taken as the new equilibrium distribution) , and the nonlinear
terms as

— NL1,n = −ınf̂n∂ψφ̂0,

— NL2,n = −
∑
n′ 6=n ın

′f̂ ′n∂ψφ̂n−n′ ,

— NL3,n =
∑
n′ 6=0 ı(n− n′)φ̂n−n′∂ψ f̂n′ .

The terms L1,n, L2,n, L3,n, and NL1,n are taken into account in the quasilinear equation,
while the terms NL2,n and NL3,n are neglected.

In order to compare the magnitude of all terms, we take their absolute value and sum
them over all non zonal modes, which yields the terms L1, L2, L3, NL1, NL2 and NL3. For
example,

L1 =
∑
n 6=0

|L1,n| . (6.26)

Fig. 6.12 shows the linear and nonlinear terms of the system at t = 5, against energy (L1 is
not represented because we did not calculate it). We observe that L2 � L3,NL1,NL2,NL3

(except for E � Ti). This indicates that L1 is of the same order of magnitude as L2 and
that these two terms, which correspond to free streaming, nearly cancel each other. L2

corresponds to the banana precession around the toroidal direction and does not impact
transport in the radial direction nor the QL radial fluxes. L3 contributes directly to the
radial QL fluxes since it involves ∂ψ〈f〉. NL1 involves the zonal radial electric field ∂ψ〈φ〉
and is responsible for a doppler-shift of the resonant frequencies. NL2 and NL3 correspond to

133



0 0.5 1 1.5 2 2.5 3

E

10
-6

10
-4

10
-2

10
0

Time = 5.0

L2

L3

NL1

NL2

NL3

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

E

10
-4

10
-3

10
-2

Time = 5.0

L2

L3

NL1

NL2

NL3

(a) (b)

Figure 6.12 – (a) Comparison between linear and nonlinear terms of Vlasov equation. (b)
Zoom around the resonance.

all the other nonlinear couplings that do not involve mean flow. NL3 contributes directly to
the radial transport since it involves ∂ψ〈f〉, but it is neglected in the framework of quasilinear
theory.

The key terms influencing the radial fluxes are thus L3 and NL3. In the figure, we
observe that NL3 & L3 near the resonant energies. Therefore quasilinear theory discards an
important term, corresponding to 〈(∂αφ)∂ψ(f − 〈f〉)〉, which may explain the discrepancies
with nonlinear simulations.

Partial conclusion

To investigate how the radial turbulent transport depends on energy, the simulation
was performed with a large number of grid points, NE = 1024. We focused on a time in
the simulation corresponding to the beginning of the turbulent phase. The flux features a
narrow peak in the resonant region, with a width ∆E ≈ 0.15Ti, around the energy E ≈ 1.8Ti.
Strikingly, this resonant peak accounts for 90% of the density and heat fluxes. In contrast,
the contribution from thermal particles is negligible. Based on these results, a fine mesh in
the energy space (δE � 0.1Ti), in the resonant region, is required to accurately describe the
radial transport of density and heat.

Quasilinear theory (including the effect of mean flows) qualitatively agree with the simu-
lation results, in terms of global structure in the radial direction, sign throughout the energy
dimension, behavior at small and large energies, and for the resonant peak in terms of its
shape, location and width in the energy dimension. However, quantitatively, there is a 57%
overprediction at the peak, and a 55% overprediction at the thermal energy E = T0. Since
the flux is negative for resonant energies, and positive for thermal energies, these discrep-
ancies can compensate each others. Indeed, there is quantitative agreement for the total
density and heat fluxes, with only 16% overprediction. This may or may not be fortuitous.

We showed that the non-zonal nonlinear part of the radial advection in the Vlasov
equation, which is neglected in quasilinear theory, is actually larger than the linear part.
This explains the discrepancies.

As a caveat, we focused on collisionless trapped-particle-modes which are very weakly
dispersive. In ITG turbulence, resonances may not play such a crucial role, and the co-
existence and/or the coupling between TEM and ITG may mitigate the importance of the
resonant peak in the radial fluxes.

Another important caveat is that boundary conditions consist of thermal baths, which
strongly restrict the evolution of the profiles. As a result, the heat flux remains small in
amplitude, and the relaxation of the initial temperature gradient is only marginal. A future
analysis based on flux-driven simulations may provide new information about the role of
resonant particles in turbulent transport.
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C1 C2 q0ρc/a δb/a κT κn εφ δ
Simulation A 0.1 0.1 0.001 0.01 0.15 0.05 1 0.02

Simulation B 0.05 0.1
ions 0.01
elec. 0.001

ions 0.1
elec. 0.01

0.15 0.05 0 0

Table 6.3 – Input parameters. Here C1 = a(1− fp)/(fpR0), and C2 = a/R0.

(a) (b)

Figure 6.13 – Electric potential at t = 6. (a) Simulation A. (b) Simulation B.

6.4.3 Characterization by test particles

This subsection summarizes Ref. [MLG+19] and Chapter II of Ref. [Méd19]. We study
the evolution of millions of test particles in a turbulent plasma simulation, as a method to
get insights on the type of transport governing the plasma.

Turbulent transport may take various forms, such as diffusion [RR78, IGD95, HSPN02,
ESG+18], hyper- or sub-diffusion [MRC+03], advection [IGD95, BPS+98, BRM+01, DPDG+10],
particles draged along with self-trapped PS structures, and ballistic events such as avalanches
[IUAT09, SGA+10, DPDG+10, SGA+11]. Test particle trajectories are useful to discrimi-
nate and investigate such processes.

Here, the goal is to discriminate the diffusive contribution from the non-diffusive con-
tributions. We will compare two simulations: simulation A with quasi-adiabatic trapped
electrons, and simulation B with fully kinetic trapped electrons. In simulation A, turbu-
lence is more developed, and we find that transport is essentially diffusive. In constrast,
simulation B is dominated by streamer-like structures, and we find that transport is domi-
nated by non-diffusive processes.

Figure 6.14 – Spectral energy density En = n3φ2
n [DGBG00], taken at ψ = 0.5Lψ and

averaged over t ∈ [6, 7]. (a) Simulation A. (b) Simulation B.
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Figure 6.15 – Time-evolution of the test particles Mean Square Displacement (MSD). Here,
time is normalized to the precession frequency of thermal ions, ω0. (a) Simulation A, for
E = 1.74Ti. (b) Simulation B, for E = 1.38Ti.

The input parameters of simulations A and B are given in Tab. 6.3. The modes saturate
at t ≈ 2 in simulation A, and t ≈ 3 in simulation B. In both cases, we focus on an arbitrary
time t = 6. Fig. 6.13 shows the electric potential in (α, ψ) space. In simulation A, of
TIM turbulence, we observe no significant large structure such as zonal flow or streamer.
In constrast, simulation B is dominated by streamer-like, radially-elongated modes. Both
TIMs and TEMs are present. Fig. 6.14 shows the energy spectrum En = n3φ2

n averaged
between t = 6 and t = 7. We observe that turbulence is more developed in simulation A
than in simulation B. In simulation A, the most intense modes have mode number n in the
order of 10, and the width of the spectrum is approximately 10 as well. For 100 . n . 400,
the energy spectrum roughly follows a power law n−5/3 characteristic of a 2D turbulent
cascade.

In both simulations, we compute the trajectories of one million test particles per energy
grid. They are initialized at t0 = 6 with a Gaussian distribution in ψ centered around
ψ = 0.5Lψ and a standard deviation ∆ψ = 0.022Lψ, small enough to neglect the radial
variations of turbulence. In the α direction they are distributed randomly with a uniform
distribution. Then, TERESA computes the radial Mean Squared Displacement (MSD) of
the test particles,

〈
(ψ(t)− ψ(t0))2

〉
, where the average is over all the test particles of each

energy E, as a function of time. A random walk diffusion coefficient can then be estimated
as

DRW =
1

2

d
〈
(ψ(t)− ψ(t0))2

〉
dt

. (6.27)

Fig. 6.15 shows the time evolution of the radial MSD for one given value of energy for
each simulation. In both subfigures, we may identify 3 phases in the evolution of the MSD,
corresponding to different spatial and time scales.

1. Phase 1 corresponds to local convection on a small timescale (∼ 0.1ω−1
0 ) and small

radial scale ∼ 10−2Lψ.

2. Phase 2 corresponds to diffusion on a longer timescale ∼ ω−1
0 , of the order of the

turbulent auto-correlation time. In this phase, the MSD grows rather linearly in
time. The slope yields the randow-walk diffusion coefficient DRW.

3. In phase 3 the MSD saturates because of reduced turbulence intensity near the bound-
aries, and ultimately because of boundary conditions, on a radial scale ∼ Lψ.

Fig. 6.15(a) corresponds to simulation A and E = 1.74Ti (in the resonant region). Phase 1
appears from t ≈ 6 to t ≈ 6.4, phase 2 from t ≈ 6.4 to t ≈ 6.8, and phase 3 after t ≈ 6.8.
Fig. 6.15(b) corresponds to simulation B and E = 1.38Ti. Phase 1 appears from t ≈ 6 to
t ≈ 6.1, phase 2 from t ≈ 6.1 to t ≈ 7.5, and phase 3 after t ≈ 6.8.

From the random walk diffusion coefficient estimated from test-particles statistics, we
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Figure 6.16 – Radial flux of phase-space density against energy. The total nonlinear flux
averaged over an auto-correlation time τc and a radial range ψ/Lψ ∈ [0.4; 0.6] is compared
with the diffusive part estimated from test-particles statistics. (a) Simulation A, τc ≈ ω−1

0 .
(b) Simulation B, τc ≈ 4ω−1

0 .

calculate a radial diffusive flux as

ΓDRW
= −DRW

〈
∂〈f〉
∂ψ

〉
ψ/Lψ∈[0.4;0.6]

. (6.28)

Here, we averaged the radial gradient of 〈f〉 over ψ/Lψ ∈ [0.4; 0.6] in order to smooth out
local variations, consistently with the radial extent of our analysis of test particles.

Let us compare the diffusive flux with the total flux calculated from f and φ. In principle,
the two should coincide when transport is purely diffusive. To be consistent with the finite
radial and time extents of our test particle analysis, the total flux is averaged over an auto-
correlation time τc and a radial range ψ/Lψ ∈ [0.4; 0.6]. Fig. 6.16 shows the diffusive flux
and the total flux.

For simulation A, Fig. 6.16(a), we observe the same kind of resonance peak as found in
subsection 6.4.2, around the energy E ≈ 1.74Ti. In the resonant region, total flux and test-
particle diffusive flux agree quantitatively, which indicates that the transport of resonant
particles is diffusive. Since the resonance peak dominates transport overall, we also conclude
that the whole radial transport is dominated by diffusion in this case. However, between
E = 0 and E ≈ Ti, there is significant discrepancy between total flux and diffusive flux,
indicating that some non-diffusive mechanism may play a role for thermal particles, although
the discrepancy may be due to uncertainties in measuring the slope of the MSD.

For simulation B, Fig. 6.16(b), we observe that both fluxes are fundamentally different
from these of simulation A. Although there is a peak of diffusion coefficient near the resonant
energies, which yields some negative flux around E ≈ 1.8Ti, the diffusive flux is most intense
around E ≈ 0.1Ti. For low E the total flux is positive, i.e. from edge to core, which highlights
a caveat of our constraining thermal baths boundary conditions: profile can spuriously
stiffen. Nevertheless, the results indicate that transport in this case is mostly non diffusive.

To summarize, radial transport in well-developed TIM turbulence (simulation A) is
mostly diffusive. In contrast, there are important non-diffusive contributions in TEM/TIM
turbulence with strong streamer-like structures.

6.4.4 Control of turbulent transport

In Ref. [GLRD16], we reported on a new control method, which robustly stimulates the
appearance of zonal flows, while minimizing the duration of the control process and the
impact on plasma parameters.

The starting point of our work is a TERESA simulation where zonal flow transiently
appears after the nonlinear saturation phase. We observe that zonal flow is strongly reduced
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Figure 6.17 – Ratio of turbulent en-
ergyWm>0 over zonal flow energyWZF,
against electron/ion temperature ratio.
Arrows indicate the direction of time.

in a later phase, permitting streamers-like structures to govern the plasma behaviour in the
steady-state. By intervening for a short time during this latter state (after this transient
growth and decay of zonal flow), we discovered a possibility to bifurcate to a new steady-
state, in which zonal flows are strongly present and are maintained indefinitely, thereby
allowing a significant reduction in radial heat fluxes. The intervention, or control method,
is to increase the ion/electron temperature ratio for a short time. This is a crude model
for experimental variations of the heating schemes. The required duration of control can
be as short as a small fraction of the precession period of thermal ions, depending on the
initial temperature ratio. Although, experimentally, the timescale of heating would enforce
a longer lower limit on the duration of control. As a result of control, heat flux is reduced
by a factor 15 on average.

In Ref. [GLR+17], we uncovered an hysteresis in the interplay between zonal flows and
streamers, and a link between this hysteresis and the latter control method. We run a simu-
lation where the electron/ion temperature ratio is artificially increased step-by-step from 1
to an arbitrary value of 3.4, on a slow timescale, 250ω−1

0 , and then decreased in a similar way.
At each step, a quasi steady-state is achieved, and we measure a time-and-radial-average of
zonal flow energy 〈∂ψφ〉2, and turbulent energy 〈(∂ψφ− 〈∂ψφ)〉2〉. Fig. 6.17 shows the ratio
between these energies, against the temperature ratio. We observe a clear hysteresis, with
one or more order-of-magnitude difference between the two branches. Therefore, heat flux
is sensitive to the history of Te/Ti ratio. The transitions are associated with energy transfer
between turbulence and zonal flow. The hysteresis clarifies how controlling Te for a short
duration can induce a drastic improvement of zonal flow in the steady-state: by switching
from the higher branch of the hysteresis to the lower branch. We confirmed that this control
method is effective as long as the initial temperature ratio is below its value at the transition
marked t1 in the figure.

6.4.5 Impurity transport

The ideal plasma for fusion reactions in the core of ITER and future reactors is a mixture
of deuterium and tritium. However, core Tokamak plasmas often contain other ion species,
called impurities (e.g. helium, nitrogen, neon, argon, beryllium, carbon, or tungsten). Im-
purities are transported from edge to core by both collisional (neoclassical) and turbulent
processes. Accumulation of impurities in the core threatens the viability of fusion. One issue
is the dilution of fuel, which degrades the efficiency of fusion reactors. Another urgent issue
is that heavy impurities, which are not fully ionized, radiate away the energy generated by
fusion. The efficiency of fusion is very sensitive to core impurity concentration [PND+10].
Since slight contamination in the core can yield prohibitive energy losses, it is crucial to
improve our lacking understanding of impurity transport.
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Figure 6.18 – Linear growth-rate, tur-
bulence intensity (rms of the potential),
and density flux, all versus tungsten
concentration.

Impact of impurity density gradient

Recently we applied the TERESA code to study impurity transport [IGL+18]. We focused
on impurities with high charge number Z. We showed that the direction of the radial gradient
of impurities, even at a low concentration, could change the nature of turbulence, from TEM
to TIM.

Limit of validity of the passive treatment

In gyrokinetic simulations of turbulent impurity transport, trace impurity species are of-
ten treated as passive species, in the sense that they are not included in Maxwell equations.
This is consistent with the assumption that impurities with low enough concentrations are
impacted by turbulence generated by electrons and main ions, but do not impact it signif-
icantly in return. Indeed, the relative contribution of impurity density in quasineutrality
is of the order of CZ2, where C is the impurity concentration, and Z its charge number.
In the ”trace” limit, CZ2 � 1, the impurity behaves as a passive species, or test-particle,
which means that its presence does not affect the turbulent state.

In Ref. [LDL+20], which we briefly summarize here, we relax this assumption, and in-
vestigate the active impacts of impurity, on impurity transport, as a function of its con-
centration, in the presence of TIM and TEM turbulence. We run a series of simulations
with self-consistent (active) treatment of impurities for a wide range of concentrations, and
compare the results with a series of simulations with passive impurities.

The impacts depend on the relationship between equilibrium density gradient and tem-
perature gradient. Fig. 6.18 summarizes the impact of W40+ tungsten concentration in the
case where these gradients are equal. It includes the linear growth rate, turbulence intensity,
and impurity density flux, all normalized to their limit as C vanishes. There is a transi-
tion for all linear growth rate, turbulence intensity, and impurity density and heat fluxes,
centered around CZ2 = 1.1. However, the transition is significantly steeper for the fluxes.

We investigate the physical mechanism responsible for this difference in behavior between
turbulence intensity and transport. We observe that phase-synchronization between impu-
rity density fluctuations and electric potential fluctuations occurs for high enough impurity
concentrations, which quenches impurity transport.

The steep transition for the turbulent flux may be viewed as a threshold, which gives the
range of validity of the passive treatment, C < 2 × 10−4. When the temperature gradient
is finite and the density profile is flat, we obtain qualitatively similar results, except for the
density flux which vanishes. For the heat flux, the range of validity of the passive treatment
is slightly smaller than for the case with equal gradients, C < 10−4.

Finally, we performed a similar analysis for C6+ carbon (not shown here). There are
two qualitative differences compared with the tungsten case: 1. the transition for the flux is
centered around CZ2 = 0.5 ; and 2. the transition for the flux is at lower concentration than
the transition for turbulence intensity and growthrate, which is opposite to the tungsten
case. However, our main conclusion stands: the transition is steeper for the flux than for
turbulence, and steeper for turbulence than for the growth-rate.
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Figure 6.19 – Impurity diffusion coef-
ficient DTEM plotted against the im-
purity charge number Z in the case of
TEM turbulence.

Figure 6.20 – Thermodiffusion velocity
VZ plotted against the impurity tem-
perature gradient, for both TEM and
TIM turbulent cases.

Diffusive impurity transport

In Ref. [GLG+19], we describe how impurity diffusive transport depends on the charge
number, depending on the nature of the dominant instabilities. Here the impurity species
are treated self-consistently but in the trace limit, so that impurity concentrations do not
affect the nature of the turbulence.

Fig. 6.19 shows the diffusion coefficient for five different impurities with the same mass
number (A = 20) but with 5 different charge numbers Z from 2 to 12 in the case of TEM
turbulence. We observe that diffusion significantly increases with Z. In contrast, in TIM
turbulence, it decreases with Z. Both results qualitatively agree with quasilinear theory.
The dependency on mass number A is much weaker.

Thermo-diffusive and curvature-driven pinches

In Ref. [LGL+20], we use five different values of impurity temperature profiles to inves-
tigate the thermo-diffusive pinch. Fig. 6.20 shows that, as expected, the pinch velocity VZ
disappears when the temperature profile is flat. VZ changes its sign when the temperature
gradient does. We observe that the impurity pinch depends on the TIM or TEM nature of
the turbulence.

Finally we demonstrate that the direction of the impurity curvature pinch is inward in
the case of a positive magnetic shear, while a negative magnetic shear switches the sign of
VZ and therefore prevents impurity core accumulation, in agreement with quasilinear theory.
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Chapter 7

Conclusions and outlook

In this chapter, let me summarize in Sec. 7.1 the analogies and differences between the
models, and the main results developed in this manuscript, and propose in Sec. 7.2 a long-
term research project to further our understanding of Vlasov turbulence.

7.1 Conclusions

In this manuscript, after introducing Vlasov plasmas in general action-angle formalism,
and subcritical instabilities in neutral fluids and plasmas, we studied three main models
(and some variants) of collisionless 1 plasmas:

1. the Berk-Breizman model for Langmuir waves driven by a supra-thermal population,
including prescribed wave damping γd,

2. the 2-species, 1D Vlasov-Poisson model for sound waves driven by a velocity drift
between thermal ions and thermal electrons, i.e. current-driven ion-acoustic (CDIA)
instability,

3. the electrostatic bounce-averaged gyrokinetic model for trapped particle-driven 2D
turbulence in tokamaks with simplified geometry.

Table 7.1 summarizes important analogies and differences between these models.
In both models 1. and 2., finite wave damping (externally applied in the BB model;

due to ion Landau damping in the CDIA model) allows for the spontaneous creation of
self trapped structures (holes and clumps) in the two-dimensional (2D) phase-space, whose
median velocity evolves in time, resulting in spectral components with a frequency shift
δω(t) (chirping). The growth of phase-space structures results from momentum exchange
between the structure and the wave, or between species, which is due to the dissipation
acting on structures. The evolution of holes and clumps is a self-organization process, which
provides the energy required to balance dissipation. In the project I propose in Sec. 7.2, an
important objective is to investigate whether similar processes typically occur in model 3.,
and ultimately in tokamak core turbulence.

We developed a theory gives a simple relation between the growth of self-coherent PS
structures and that of the wave energy (the energy-phasestrophy relation). Based on the
theory, we explain the mechanism of subcritical instabilities as follows. Landau damping
generates a seed phase-space structure, whose growth rate can be positive if the growth due
to momentum exchange overcomes decay due to collisions. Not surprisingly, the theory for
1D Vlasov plasma has considerable overlap with those describing the evolution of flows in a
quasi-geostrophic fluid. Both are 2D systems which supports waves, and are constrained by
two invariants: energy and enstrophy in the fluid case, wave energy and phasestrophy in the
Vlasov case. The mechanisms involved are relevant to many laboratory and space plasmas,
where wave-particle interactions are essentially 1D. In the BB case, the energy-phasestrophy
relation provides simple expressions of the nonlinear growthrate of a single hole of size ∆v,

1. Although we demonstrated the importance of a qualitatively realistic collision operator in the context
of the BB model, we focused on regimes which are collisionless in the sense that collision frequencies are
much smaller than wave frequencies.
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BB model Vlasov-Poisson e− & i+ Bounce-averaged GK

Dim. of real space 1D 1D 2D
Dim. of PS

of trajectories
2D 2D 2D

Dim. of PS of f 2D 2D 3D
Kinetic species 1 2 1, 2, or 3
Spatial boundary

conditions
Periodic Periodic

Periodic in α,
thermal baths in Ψ

Collisions Krook or drag+diff. None None

Angle
kx− ωt

(∼ mθ + nζ − ωt) k1x α3 = α ≈ 〈ζ〉

Action m(v − vR)/k mv/k1 J3 ≈ qsΨ

Eq. hamiltonian 1
2

k2

m
J2 1

2

k2
1

m
J2 (1 + eΩdΨ)E

Pert. hamiltonian eφ0 cosα qsφ qsJ0,s(E)φ

Type of waves
Langmuir

(∼ AEs, EGAMs)
Ion-acoustic waves TIM and TEM

Driving Energetic particles Current Pressure gradient
Resonance 1D free streaming 1D free streaming Precession
Dissipation Prescribed γd Ion Landau damping Electrons (ıδ)
Turbulence No (single wave) CDIA turbulence TIM/TEM turbulence

Subcr. instability1 Yes Yes Open-question
Threshold with:

1% fluct.2 γ > −0.5γL vd > 0.98vd,cr Open-question
3% fluct.3 γ > −1.5γL vd > 0.95vd,cr Open-question
initial PS hole γ > −2γL vd > 0.5vd,cr Open-question

Simulation code COBBLES COBBLES ou PICKLES TERESA
Method Semi-Lagrangian Semi-Lagrangian ou PIC Semi-Lagrangian

1 self-trapping-driven
2 with initial random fluctuations at level eφ̃/T ≈ 1%, where φ̃ is the potential r.m.s.
3 with initial random fluctuations at level eφ̃/T ≈ 3%

Table 7.1 – Analogies and differences between the 3 main models studied in this manuscript.

γNL ∼ γd∆v∂vf0, of the initial perturbation threshold, and predicts the persistence of non-
linear instability in the marginally linear unstable regime. The theoretical arguments are in
good agreement with numerical simulation results.

In the context of the BB model, we quantified several effects of finite collisions on chirping
velocity and chirping period, in the ideal limit of a sine mode structure. Finite Krook
collisions bend chirping branches. The discrepancy from square-root time dependency is 27%
after one collision time. In the quiescent phase of the periodic chirping regime, relaxation
oscillations are mainly due to collisional diffusion, which brings a hole/clump pair to a shape
such that the linearized kinetic equation yields a negative growth rate, before the hole and
clump are small enough (in amplitude, large in width) to recover a positive growth rate.
The subsequent burst occurs before the velocity distribution completely recovers, leading to
instantaneous growth rate about half the initial linear growth rate. Larger values of diffusion
shorten the period by combining two effects: 1. structure dissipation during the burst and
2. faster recovery of a positive growth rate. Larger values of drag shorten the period if
the quiescent phase is large enough, by deceleration of hole/clump pair, which yields larger
nonlinear growth rate. Larger values of drag lengthen the period if the quiescent phase is
short, by deepening the hole, which then survives longer.

We named and define sub-categories of chirping, namely periodic, bursty, intermittent,
chaotic, steady hole, wavering hole, oscillating hole, hooked and sub-categories that char-
acterize the asymmetry between downward and upward frequency sweeping. Then, the
long-time nonlinear evolution was systematically categorized by an algorithm, which could
be readily adapted to analyze experimental data. We investigated two complementary pa-
rameter spaces: 1. the (γd, νd) space for fixed drag/diffusion ratios; 2. the (νf , νd) space
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for fixed damping rates, close to and relatively far from marginal stability; for a range of
parameters including ITER-relevant collision frequencies, and parameters that can be used
to reproduce magnetic signals of JT-60U and MAST experiments. We obtained behaviour
bifurcation diagrams which provide the parameter range for each regime, and the relation-
ship between regimes. When νf � νd, the phase diagram is qualitatively similar to what
was obtained with Krook collisions, although chirping solutions can be intermittent, bursty
or periodic, in addition to the chaotic behaviour found in the Krook case. We show that
quasi-periodic chirping is a special case of bursty chirping, limited to a region relatively far
from marginal stability (γd/γL0 = 0.2− 0.7). The presence of significant drag qualitatively
modifies the nonlinear bifurcations. Steady-state, periodic and chaotic solutions, which are
devoid of significant phase-space structure dynamics, are replaced by long-lived phase-space
holes. The periodic chirping regime almost disappears. We didn’t find any solution for
which downward chirping is dominant.

These observations call for experiments, where collision frequencies may be used as a
proxy to nonlinear regime, and/or chirping period, to mitigate energetic particle transport
in Alfvén wave experiments.

By fitting the chirping velocity, lifetime and period, between COBBLES simulations of
the BB model and TAEs in JT-60U and MAST, we estimated the local linear drive, exter-
nal damping and collision frequencies, each within 10% inaccuracy. Our results shows the
existence of modes with relatively large drive. The fact that we get the same results for
two widely different tokamaks suggests that the existence of a relaxation oscillation around
marginal stability, with the linear condition γ ∼ γL, is a general feature of periodic chirp-
ing TAEs. Although significant work is needed to establish a one-to-one correspondence,
we listed key points that suggest that it is reasonable to apply the BB model quantita-
tively to periodic, quasi-symmetric, slightly-chirping, small-amplitude TAEs on tokamaks.
Our evidences for this bold claim are 1. a quantitative agreement of our simulations with
the time-series of perturbation amplitude measured in JT-60U and MAST; 2. collision fre-
quencies in agreement with independant estimations from equilibrium profiles measured in
JT-60U, within experimental errorbars; 3. a reasonable agreement for the saturated bounce
frequency estimated in Ref. [PBG+04].

We extended the BB model to include fluid coupling between two modes. The model
combines a 1D kinetic equation with equations for period doubling. Two regimes have been
investigated. In a first regime, of successive fluid then kinetic growth, the dormant subcrit-
ical mode is first triggered by fluid coupling to the supercritical mode, which allows it to
reach amplitudes of the same order of magnitude as the supercritical mode. This ampli-
tude is above the threshold for the conventional kinetic subcritical instability. Then, the
amplitude can keep growing by momentum exchange between the wave and PS structure(s),
accompanied by significant chirping. This first regime is obtained for high collisional drag.
In this case, the amplitude of the subcritical mode can grow orders-of-magnitude above
the amplitude of the supercritical mode. In a second regime, of collaborative fluid-kinetic
growth, the subcritical growth is due to an uninterrupted collaboration between fluid and
kinetic nonlinearities. This is a new kind of instability mechanism, where fluid and kinetic
nonlinearities have similar (in amplitude) contributions to the mode growth. Contrarily
to the mechanism developed in earlier theories, the growth occurs much below the ampli-
tude threshold, and without chirping. In this regime, the model reproduces key aspects of
experimental observations of strong, abrupt EGAM burts on the LHD. We interpret the
observation as a manifestation of the collaborative fluid-kinetic subcritical instability.

We considered a third variant of the BB model, where we relax the assumption of a
single sine wave, and assume that dissipation depends on wavelength. We demonstrated
the possibility of secondary instabilities of separate modes driven by gradients of the distri-
bution function nearby the separatrix of the saturated PS island of a primary mode. The
instantaneous nonlinear growthrate measured in simulations agrees with numerical solutions
of the quasi-linear dispersion relation, with includes the primary PS island.

In the context of current-driven ion-acoustic waves in collisionless electron-ion plasmas,
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we focused on nonlinear stability. Accurate Vlasov simulations of subcritical two-species
plasma have shown that subcritical excitation of the ion-acoustic instability is much more
sensitive to initial perturbation than was reported in the existing literature. In fact, earlier
simulations were so noisy (suffering from the limited computing power of the 80s) that
the initial distribution was linearly unstable. Our semi-Lagrangian simulation is the first
simulation of subcritical ion-acoustic instability. If, on the one hand, the initial perturbation
is an ensemble of wave, a system with finite ion-electron relative drift does not evolve if it
is linearly stable. However, if it is close to marginal stability, and the initial perturbation
is very large, the system absorbs the wave energy to form phase-space structures. These
structures allow the system to relax by transporting trapped particles throughout the phase-
space. In the final stage, a velocity plateau is formed in the electron distribution. If, on the
other hand, the system has at least one initial PS structure, then it can drive subcritical
instabilities by stirring the phase-space in its wake, even far from marginal stability. When
the initial structure is unstable, the system may or may not ultimately relax into a velocity
plateau, depending on the drift velocity and the parameters of the initial structure.

When the velocity drift is finite, a single electron phase-space hole can grow nonlinearly
by climbing the velocity gradient. After it reaches the top of the electron distribution v0,e, it
decays while still accelerating. This process leaves a trail of negative fe perturbations in the
v < v0,e half of the phase-space, and a trail of positive perturbation in the other, v > v0,e,
half. Negative perturbations have a natural propensity to coalesce, and form many holes.
This process can overcome ion Landau damping when vd > 0.5vd,cr (roughly). When many
holes are formed, a large region of phase-space becomes turbulent, and individual holes lose
their identity, and so resemble granulations [Dup72]. Phase-space turbulence, which includes
many structures, is much more efficient than an ensemble of waves or an isolated hole for
driving subcritically particle redistribution, turbulent heating and anomalous resistivity.

We demonstrated that velocity-space redistribution and anomalous resistivity are due
not only to PS vortices, but also to a new object called phase-space jets. The latter are
highly anisotropic structures, with an extent in velocity of the order of the electron thermal
velocity. Compared to phase-space holes, which are very robust structures, jets are relatively
transient objects. However, they survive long enough for particles to scatter between low
and high phase-space density regions, and drive significant particle redistribution. Jets and
holes are associated with fundamentally different transport processes. Hole-driven transport
is essentially convective, since trapped particles accelerate along with the hole. Jet-driven
transport is essentially stochastic, since particles may accelerate or decelerate along the jet.

In the context of TIM turbulence, we investigated the impacts of electron dissipation on
frequency, growth rate, and the energy-structure of the linear modes, as well as on turbulence
and turbulent transport. We recovered the electron branch of TIMs. For moderate electron
dissipation, each linear mode contains a narrow and strong peak at the resonant energy.
Accurately resolving this narrow peak in numerical simulations yields a stringent lower
bound on the number of grid points in the energy space: 256 for a 10% accuracy, 1024 for
1%.

The dependency of peak particle flux on electron dissipation is similar to that of the
maximum linear growth rate. For high enough electron dissipation, δ > 0.005, when density
gradient and temperature gradient are similar, particle flux is of the order of a gyro-Bohm
estimate. When the density gradient is significantly larger than the temperature gradient,
that is, when there are electron roots with growth-rates comparable to that of most unsta-
ble ion roots, particle flux peaks at an order-of-magnitude above the gyro-Bohm estimate.
Slight, transient particle pinch is observed in the case of higher density gradient, for smaller
values of electron dissipation.

We analyzed the energy-space structure of transport. The flux features a narrow peak in
the resonant region, with a width ∆E ≈ 0.15Ti, around the resonant energies. Strikingly, this
resonant peak accounts for 90% of the density and heat fluxes. In contrast, the contribution
from thermal particles is negligible. Based on these results, a fine mesh in the energy space,
in the resonant region, is required to accurately describe the radial transport of density and
heat. Quasilinear theory (including the effect of mean flows) qualitatively agree with the
simulation results, in terms of global structure in the radial direction, sign throughout the
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energy dimension, behavior at small and large energies, and for the resonant peak in terms
of its shape, location and width in the energy dimension. However, quantitatively, there is
about 50% overprediction at the peak with a plus sign, and 50% overprediction at thermal
energies with a minus sign. These errors with opposite sign compensate in such a way that
the total density and heat fluxes are only overpredicted by 16%. A term-by-term analysis
of the Vlasov equation shows that the non-zonal nonlinear part of radial advection, which is
neglected in quasilinear theory, is actually larger than the included linear part. This explains
the original discrepancies.

We developed a method for local, unambiguous characterization of transport, based on
statistics of highly-accurate test particle trajectories. We tested it by recovering intuitive
limits: radial transport in well-developed TIM turbulence is mostly diffusive, while there
are important non-diffusive contributions in TEM/TIM turbulence with strong streamer-like
structures.

We described a hysteresis between electron/ion temperature ratio and relative zonal flow
energy, which indicates how confinement may be improved by short periods of control.

Finally, we investigated a few aspects of trapped impurity transport. The direction of
radial gradient of heavy impurities, even at a low concentration, can change the nature of
turbulence, between TEM and TIM. As impurity concentration increases, there is a transi-
tion for all linear growth rate, turbulence intensity, and impurity density and heat fluxes,
centered around CZ2 ∼ 1. However, the transition is significantly steeper for the fluxes,
because phase-synchronization between impurity density fluctuations and electric poten-
tial fluctuations occurs for high enough impurity concentrations, which quenches impurity
transport. The steep transition for the turbulent flux may be viewed as a threshold, which
gives the range of validity of the passive treatment, C < 2 × 10−4 for W 40+ tungsten, and
C < 10−2 for C6+ carbon. For low to moderate charge numbers 2 < Z < 12, diffusion
significantly increases with Z in TEM turbulence, and decreases with Z in TIM turbulence,
in agreement with quasilinear theory. The dependency on mass number A is much weaker.
A scan in temperature gradient confirms that thermo-diffusive pinch vanishes for flat tem-
perature profile, that the impurity pinch depends on the TIM or TEM nature of turbulence,
and that the direction of the impurity curvature pinch is inward (outward) in the case of a
positive (negative) magnetic shear, in agreement with quasilinear theory. These results rein-
force the credibility of bounce-averaged gyrokinetics to investigate fundamental mechanisms
and discover new trends.

7.2 Outlook

7.2.1 Phase-space turbulence, and granulation

State-of-the-art

More than four decades ago, Dupree proposed a novel turbulent state, characterized by
the presence, not only of a collection of waves with random phases, but also of small-scale
structures in the phase-space of particle distribution [Dup72]. In a limit of narrow wave
spectrum, these structures would take the form of BGK modes, with a vortex structure
in phase-space. For a wide wave spectrum, though, which is more relevant to drift-wave
turbulence, there is a competition between the formation by wave-particle resonance of
BGK modes, and their dispersion by the ambient turbulence. The result of this competition
is predicted, by analytic theory, to take the form of a smaller scale (compared to BGK
modes) random granulation of phase-space.

More recently, many authors (including myself) have discussed the importance of granu-
lation in drift-wave turbulence and transport [TDH90, DST+83, BDT88a, DII10, KID+14a,
KID+14b, KID+17], based on various analytic models. Numerical investigation remains to
be performed. This poses a challenge for the conventional gyrokinetic approach, because
resolving fine-scale structures in energy space makes such simulation very costly in terms of
computing power. Attempts have been made to resolve fine-scale velocity-space structures
in local gyrokinetic simulation [WS06]. Evidences of small-scale (∆v‖ � vth) structures
were found, but the link to granulation was not discussed.

145



In the context of granulation, electron dissipation is an essential ingredient: it drives
the nonlinear growth of phase-space structures [BDT88a], introduces dynamical friction
associated with anomalous transport of ion heat and particles due to ion phase-space struc-
tures [BDT88a], and yields an important contribution to Reynolds stress, which can drive
toroidal flows [KIDI13]. The trapped-ion reduced model with simple ıδ electron dissipation
is a promising tool to bootstrap the numerical study of granulation in drift-wave turbulence.

Objective

The objective of my project is to provide a new qualitative understanding of fundamental
mechanisms at play in PS turbulence and granulation. To this aim, we will document, ana-
lyze, model, and if possible predict (via calculations, or scaling laws, or a combination) the
statistical behavior of microscopic PS structures, and their macroscopic impacts, for Kubo
numbers both K � 1 and K ∼ 1. This encompasses the entirety of Fig. 1.1, at the expense
of other aspects (e.g. detailed geometry, full dimensionality, and some classes of particles,
which are known to have important qualitative impacts), which can be reintroduced later.
To divide and conquer this ambitious objective, we can introduce two phases:

1. In phase 1, the objective is to characterize and develop a theory of PS turbulence,
which corresponds to the limit K � 1, in both homogeneous and inhomogeneous
plasmas. We will focus on regime where mean field evolution is governed by PS
structures. In the context of granulation, phase 1 is a shortcut, because PS vortices
may then be virtually decoupled from the background (phase-independent) wave
turbulence.

2. In phase 2, the objective is to characterize and develop a theory of granulation (for
K ∼ 1).

To this aim, we will take advantage of both the COBBLES code and the TERESA
code. This allows the investigation of new fundamental mechanisms in tractable analytic
calculations, and tractable numerical simulations.

Homogeneous plasmas

The most fundamental concepts of PS turbulence in homogeneous plasma can be explored
in simple 1D electron ion plasmas, with periodic boundary conditions, that is the model
adopted in chapter 5. As can be seen in Fig. 5.24, we already witnessed cases with a
turbulent phase-space, with many (∼ 100) interacting vortices, whose sizes are distributed
on a relatively broad range of scale. However, a caveat of this simulation is that it is a
transient state in an initial-value simulation (without stirring - i.e. decaying turbulence).
As a result, PS turbulence is only transient. PS holes eventually combine into a handful of
large ones. We will need to apply a current drive to stir turbulence continuously and study
the statistical steady-state.

Inhomogeneous plasmas

As for granulation in fusion plasmas, the bounce-averaged gyrokinetic model contains
the essential ingredients:

— kinetic wave/particle interactions,
— free-energy, as well as a mechanism of energy dissipation,
— inhomogeneity of the mean fields.
However, important work is required to model the effects of collisions. By analogy with

the BB model, we can expect collisional diffusion to smooth out PS structures above some
value of collision frequency.

The plasma as a collection of PS vortices

To develop the analytic theory, we can attempt to adopt a new starting point. We will
first assume a given distribution and dynamics of PS vortices, and adapt conventional and
modern methods of statistical analysis [DII10, Kro15], to the distribution of PS vortices
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instead of the distribution of particles. We will aim for a statistical description of plasmas
as collections of PS vortices, and investigate the impacts of PS turbulence on the mean fields,
such as turbulent mixing, or structure formation in real space. In other words, departing
from the seminal work of Dupree, instead of attempting to develop from scratch a self-
consistent turbulent theory for K ∼ 1, we may attempt to build the foundations of a new
theory upon the K � 1 limit, before aiming for K ∼ 1.

In parallel with this approach, we can continue to build on Dupree’s original granulation
theory by confronting it to numerical simulations, and incorporating scaling laws found in
the simulations. By creating artificial structures, we can gain crucial hints about favorable
and unfavorable conditions

Subcritical regime

Characterizing granulation only requires adequate simulation codes, and numerical di-
agnostics. Distilling this knowledge into a deep understanding of granulation, however, is
extremely challenging because granulation couples wave turbulence with PS turbulence. One
may then aim at conditions where PS turbulence is decoupled from wave turbulence. We
can expect these conditions to be met near marginal stability, and especially in a subcritical
regime, if it exists. In these cases, PS vortices will dominate over wave turbulence.

7.2.2 Other projects

In parallel with the above main research programs, I plan to contribute to other research
topics, mainly those already under development by the ”High-temperature plasma” team in
Institut Jean Lamour:

— We plan to further analyze impurity transport based on the gyrokinetic code GYSELA.
This is the main task of my second PhD student, Kyungtak Lim, who started his
PhD program in October 2018.

— Conception of a new plasma experiment: SPEKTRE, a cylindrical magnetized plasma
device, with a length of a few meters, and a diameter of about one meter. I will also
contribute to building the research program, including investigations of turbulence.

— Analytical and numerical investigation of plasma/wall interactions and plasma sheets
based on kinetic models. We have published a first output based on a 1D/3V model
[MLF+19], in the presence of a constant and oblique magnetic field, with an amplitude
such the Debye length is intermediate between electron and ion Larmor radii. We are
currently developing a 2D model, which in particular will allow the study of electric
arc formation on walls.

— Application of a model of charged infinite planes, to study validity limits of the Vlasov
equation.
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Annexe A

Résumé en langue française
(Summary in french)

Ce mémoire d’habilitation à diriger des recherches présente une synthèse de mes princi-
paux travaux de recherche sur la physique des instabilités, de la turbulence et du transport
turbulent dans les plasmas chauds, et notamment les processus non-linéaires sous-jacents.

A.1 Thèmes de recherche

A.1.1 Contexte

Mes recherches s’inscrivent principalement dans le contexte de la fusion thermonucléaire
contrôlée par confinement magnétique (Fig. A.1), mais trouvent aussi des applications dans
les plasmas astrophysiques et les interactions laser-plasma. La fusion thermonucléaire pro-
met une énergie propre, renouvelable et universelle. Les réactions de fusion requièrent une
température de l’ordre de 100 millions de degrés. La matière est alors sous forme de plasma,
dans lequel les atomes sont ionisés et les électrons sont libres. Dans la chambre toröıdale
d’un réacteur de fusion thermonucléaire, tel qu’un tokamak, le plasma est confiné grâce
à un fort champ magnétique. La viabilité d’un tel réacteur requiert d’important progrès
dans la compréhension du transport de particules, de chaleur et d’énergie entre le cœur
et le bord du plasma, qui résulte principalement d’ondes électromagnétiques. Ces ondes
électromagnétiques naissent en exploitant l’énergie libre qui se trouve dans les gradients
de pression, de courant électrique, et de densité de l’espace des phases (ce qui inclue les
anisotropies de température, et les gradients en vitesse). Ces instabilités peuvent prendre
principalement deux formes :

— des modes macroscopiques,
— des fluctuations microscopiques qui forment une turbulence (Fig. A.2).

Figure A.1 – Composition de photographies
de l’intérieur d’un tokamak. Les températures
du coeur et du bord sont indiquées en ordre
de grandeur. Photo : CCFE, EFDA-JET.

Figure A.2 – Illustration de la turbulence.
Fluctuations du potentiel électrique obtenu
dans une simulation TERESA.
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Mes recherches visent à clarifier la physique de ces instabilités, et leurs effets sur les
caractéristiques du plasma (notamment la turbulence et le transport turbulent), à l’aide
de modèles cinétiques, qui prennent en compte de manière statistique la dynamique des
particules dans l’espace des phases.

A.1.2 Vue d’ensemble

Mes recherches incluent les activités suivantes :

— Développement de théories analytiques et de modèles réduits pour les phénomènes
non-linéaires dues aux particules énergétiques dans les plasmas de fusion [LIG09,
NLG+10, LI12, Les13, LD13, SKI+16, SKI+17, SIH+17, DGLW19]. Application à l’in-
terprétation de données expérimentales [LIS+10, NGG+10, IIO+16, LII+16b, IIK+16,
LII+16a, IIL+17, HCY+18].

— Simulations numériques de très haute précision de plasmas unidimensionnels [LDK14a,
LDK14b, Les16]. Applications à la turbulence acoustique ionique dans la magnétosphère,
le vent solaire, et dans des contextes de reconnexion magnétique. Applications à la
turbulence électrostatique dans les interactions laser-plasma.

— Simulations et analyses du transport turbulent en présence d’impuretés, telles que des
particules de tungsten [IGL+18, GLG+19, LDL+20]. Ces particules qui proviennent
de l’érosion de l’enceinte du tokamak peuvent, si elles sont transportées vers le coeur
en quantité non négligeable, détériorer fortement l’efficacité de production d’énergie
de fusion. Il est donc urgent de clarifier les mécanismes de transport des impuretés
pour guider le développement de régimes d’opération efficaces.

— Simulations de méthodes de contrôle pour basculer d’un régime de mauvais confine-
ment à un régime de bon confinement [GLRD16]. Ces nouvelles méthodes tirent avan-
tage d’un phénomène d’hystérésis que nous avons découvert, entre la température des
électrons et un écoulement fluide à large échelle appelé écoulement zonal [GLR+17].

— Caractérisation du transport turbulent dans les tokamaks [KID+14a, KID+14b, KID+17,
LCMD+17, MLG+18, MLG+19] et les stellerators [III+15].

— Analyse des interactions entre turbulence et structures macroscopiques dans les plasma
expérimentaux en géométrie cylindrique [MKS+13, IMK+14, YIK+14, KYI+15, AIS+16,
IKK+16].

Dans la suite de ce document, je choisi de décrire les sujets qui ont menés à mes publi-
cations les plus citées.

A.1.3 Vortex dans l’espace des phases

Les plasmas chauds sont souvent le lieu d’importantes interactions résonantes entre
ondes et particules. Mes contributions touchent à un effet cinétique non-linéaire, lié à ces
résonances : l’auto-piégeage de particules par leur propre potentiel électrique. Ce phénomène
donne lieu à la formation de structures semblables à des vortex, mais dans l’espace des phases
de la fonction de distribution des particules (espace réel + espace des vitesses). En étudiant la
dynamique des particules dans l’espace des phases, il est possible de clarifier les mécanismes
de phénomènes qui semblent contre-intuitifs du point de vue d’un observateur de l’espace
réel. Je me suis concentré sur trois types d’ondes, les ondes engendrées par la présence de
particules supra-thermiques dans les plasmas de fusion, les ondes acoustiques ioniques dans
les plasmas astrophysiques, et les ondes de dérives dues aux particules piégées dans les toka-
maks. J’ai clarifié l’impact des structures de l’espace des phases sur la stabilité et l’évolution
non-linéaire des ondes, ainsi que sur le transport de particules, la résistivité anormale, et le
chauffage turbulent associés à ces ondes. Mes découvertes ont ouvert la voie à l’application
expérimentale des structures de l’espace des phases comme diagnostic et moyen de contrôle.

En particulier, le confinement des ions énergétiques (supra-thermiques) produits par
les réactions de fusion est primordial. En effet, les ions énergétiques doivent redistribuer
leur énergie au reste des particules (thermiques), afin de perpétuer le chauffage, et d’éviter
d’endommager l’enceinte. Or, les particules énergétiques excitent par résonance des pertur-
bations électromagnétiques, appelés modes EP, qui induisent un transport important de ces
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particules. Les structures de l’espace des phases ont un rôle essentiel dans l’évolution de ces
modes EP, qui menacent la viabilité d’un réacteur de fusion.

Figure A.3 – Schéma d’une struc-
ture auto-piégée dans l’espace des
phases. Haut : perturbation de la
densité ionique. Milieu : potentiel
électrique généré par le vortex. Bas :
trajectoires des ions dans l’espace des
phases.

Plus précisément, je me suis concentré sur les ef-
fets d’un phénomène cinétique non-linéaire : l’auto-
piégeage de particules par leur propre potentiel
électrique. La figure A.3 illustre comment un déficit
local d’ions induit un puit de potentiel qui piège ces
mêmes ions dans un vortex de l’espace des phases.
Ce phénomène est essentiel dans les plasmas chauds,
où les particules peuvent résonner fortement avec
les ondes, du fait de la quasi-absence de collisions.
L’existence de ces structures a été prédite par simu-
lation numérique [RB67], interprétée par la théorie
[Sch79], puis observée expérimentalement dans un
vaste éventail de plasmas astrophysiques et de labo-
ratoire [ES06]. Dans les plasmas de fusion, les struc-
tures de l’espace des phases dominent l’évolution des
modes EP dans de nombreux cas. Ces structures
sont alors observées, bien qu’indirectement, via l’effet
de leur évolution sur les perturbations magnétiques
[BBB+06]. En effet, un vortex peut accélérer ou
décélérer, ce qui se traduit par une évolution tem-
porelle de la fréquence du mode (selon la formule
ω = kv). Ce phénomène de sifflement non-linéaire
sur une échelle de la milliseconde est régulièrement
observé dans de nombreuses expériences. La figure
A.4(b) montre un exemple de sifflement non-linéaire
dans le plasma torique de MAST (CCFE, Royaume-
Unis). Ici, deux structures coexistent dans l’espace
des phases, et donnent lieu à deux branches dans le spectrogramme. L’une crôıt et
l’autre décrôıt en fréquence. La majeure partie de la théorie non-linéaire, est basée sur
un modèle communément appelé Berk-Breizman (BB) [BBP96]. Dans ce modèle, on uti-
lise la séparation des échelles de temps entre l’évolution de la structure tridimensionnelle
d’un mode (∼ 100ms), d’une part, et de l’évolution de son amplitude et de sa phase par
interaction non-linéaire avec les particules énergétiques (∼ 1ms) d’autre part. Ces dernières
interactions sont essentiellement 1D, et l’on peut alors modéliser l’évolution rapide du mode
et de la fonction de distribution des particules énergétiques par un modèle cinétique 1D.

Questions ouvertes

De nombreux groupes de recherche ont pour objectif de prédire la stabilité des modes
EP dans les futures expériences telles qu’ITER ou W7-X. Un problème majeur est que
les phénomènes de dissipation sont si complexes que la théorie ne fournit qu’un ordre-de-
grandeur du taux de dissipation γd. Cela ne permet pas de connaitre le signe du taux de
croissance linéaire, γ = γL − γd, où γL est le taux d’excitation, lié à l’énergie libre. D’autre
part, la mesure de γd ne se fait que très rarement, dans des expériences dédiées. La mesure
de γL reste élusive, ou repose sur l’hypothèse γL ≈ γd, que j’ai montré fausse en général.
De plus, la théorie prédit la croissance de modes sous-critiques à seuil, c’est-à-dire non-
linéairement instables même si γ < 0. Mais les théories existantes ne donnaient pas leurs
conditions d’excitation. En 2010, j’ai donc entrepris de construire une théorie de stabilité non
linéaire des modes EP, qui puisse s’appliquer facilement aux expériences, sans besoin d’un
système de mesure dédié. L’idée est qu’un signal, même obtenu par une mesure non-intrusive
(bobine de Mirnov), tel que celui de la figure A.4(a), contient une richesse d’informations
qui n’étaient jusqu’alors que très peu exploitées.
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Contribution

Mes activités incluent le développement de théories analytiques, le développement (à par-
tir de zéro ou en collaboration) de simulations numériques, ainsi que l’analyse de données
expérimentales. La première étape consistait à combler le fossé qui séparait les simulations
BB de sifflement non-linéaire d’une riche variété d’observations. Il s’est avéré que les régimes
expérimentaux n’étaient pas accessibles aux codes existants, car leurs conditions sont par-
ticulièrement problématiques du point de vue de la stabilité des codes cinétiques. J’ai donc
développé un code basé sur une implémentation robuste (localement conservative), et un
opérateur de collision plus sophistiqué que dans les codes existants [LIG09]. Cela m’a per-
mis d’explorer pour la première fois les régimes expérimentaux, avec le modèle BB, et de
reproduire les nombreuses formes que prennent dans les expériences le sifflement non-linéaire
[LIS+10]. J’ai utilisé ce code pour approfondir notre compréhension des modes EP :

1. J’ai apporté des preuves numériques d’un transport non-diffusif des particules énergétiques,
associé aux structures dans l’espace des phases, de magnitude comparable au trans-
port diffusif. Cette analyse suggère que le transport peut être contrôlé efficacement en
modifiant légèrement et localement les taux de collisions, afin de dissiper les structures
(et non l’énergie de l’onde).

2. J’ai défini une catégorisation systématique des différents régimes de sifflement. J’ai
exploré les bifurcations entre ces régimes [LI12]. J’ai indiqué comment les paramètres
du plasma peuvent être ajustés pour bifurquer d’un régime à l’autre, et ainsi réduire
le transport.

3. J’ai clarifié le mécanisme et les impacts des instabilités sous-critiques. J’ai démontré
le comportement hystérétique des modes EP au voisinage de γ = 0.

4. J’ai réalisé les premières étapes du développement d’une théorie de la turbulence
dans l’espace des phases. J’ai démontré un théorème qui fait le lien entre l’énergie
des ondes et l’autocorrélation de la fonction de distribution des particules

〈
δf2
〉
.

Cette dernière quantité est une mesure des structures auto-piégées dans l’espace des
phases. J’ai appliqué ce théorème au cas dominés par une structure isolée (un vortex
de l’espace des phases), pour donner la première expression analytique du taux de
croissance non-linéaire, et du seuil en amplitude [LD13].

Figure A.4 – Enveloppe des pertur-
bations magnétiques, filtrées entre 90
et 130 kHz (a) et spectrogramme
(b). Comparaison entre l’expérience
MAST et la simulation numérique.

J’avais enfin en main tous les éléments nécessaires
pour exploiter les informations contenues dans une
mesure des perturbations magnétiques telle que celle
de la figure A.4(a). J’ai alors développé une méthode
non-intrusive qui permet d’évaluer le taux de crois-
sance, le taux de dissipation et les fréquences de
collision de modes EP. La figure A.4(b) illustre
cette méthode, qui consiste à faire cöıncider les
spectrogrammes de l’expérience et des simulations
BB. Les paramètres d’entrée du modèle conduisent
alors aux inconnues désirées. Comparée aux autres
méthodes, même intrusives, on obtient alors des
résultats très précis, car on exploite la sensibilité
du comportement non linéaire aux caractéristiques
linéaires, eux-mêmes sensibles aux paramètres du
plasma. Grâce à trois collaborations successives,
j’ai pu appliquer cette procédure à l’analyse des
données des machines MAST (CCFE, Royaume-
Unis), JT-60U (JAEA, Japon) et LHD (NIFS, Ja-
pon). Les résultats obtenus ont été vérifiés par
deux autres méthodes indépendantes, basées sur une
modélisation complètement tridimensionnelle, combinée à des mesures expérimentales pour
l’une d’elles. Dans le cas du LHD, j’ai inclut le couplage fluide entre plusieurs modes,
généralisant ainsi le modèle conventionnel de Berk-Breizman. Le nouveau modèle interprète
l’expérience comme la première observation d’un mode sous-critique. Ces résultats ont fait
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l’objet de 2 articles dans le journal Physical Review Letters [IIO+16, LII+16b]. Ces résultats
ont de fortes implications pour l’interprétation des expériences existantes, et la conception
des futures machines, puisqu’il indique un fait pour la première fois supporté par l’expérience,
selon lequel la stabilité des modes déstabilisés par résonance est une question cinétique et
non-linéaire.

Application aux plasmas astrophysiques

J’ai également étudié les structures de l’espace des phases dans la turbulence due aux
ondes acoustiques ioniques, dans le contexte de plasmas spatiaux, tels que la magnétosphère,
la magnétopause, et le milieu interplanétaire. J’ai clarifié les conditions nécessaires à la crois-
sance non-linéaire. J’ai montré que les structures ont des impacts importants sur la résistivité
du plasma, et le chauffage turbulent des électrons [LDK14a]. J’ai découvert l’existence d’un
nouveau type de structure dans l’espace des phases, qui s’apparente au filament qui relie
deux galaxies en collision. J’ai montré que ces filaments sont responsables pour une partie
importante du transport turbulent [LDK14b].

A.1.4 Anatomie du transport turbulent

Résumé

Le succès de la fusion thermonucléaire repose sur une meilleure compréhension du trans-
port turbulent dans les plasmas chauds, qui découle principalement des ondes de dérive
(oscillations microscopiques, déstabilisées par les gradients de densité ou de température).
Mes recherches visent à clarifier les mécanismes sous-jacents à ce transport. Il s’agit d’étudier,
par simulations numériques, les propriétés statistiques du transport turbulent en fonction
des paramètres du plasma, ainsi que la formation de structures cohérentes à partir de la
turbulence.

Contexte

Dans un plasma toröıdal de fusion par confinement magnétique, le transport de parti-
cules et d’énergie limite la pression, et donc les réactions de fusion, au cœur du plasma.
Les observations expérimentales et les simulations numériques s’accordent sur le fait que les
principaux coupables qui échappent encore au contrôle sont les ondes de dérive. Ces ondes
ont une longueur d’onde (∼ 1mm) bien plus petite que le libre parcours moyen des par-
ticules (∼ 10km), ce qui implique d’importantes interactions résonantes. Pour prendre en
compte ces effets de manière précise, il est nécessaire de déployer une modélisation cinétique.
Par contraste avec la modélisation fluide, qui décrit l’évolution de grandeurs thermodyna-
miques (telles que la densité et la température) dans l’espace réel, la modélisation cinétique
décrit l’évolution d’une fonction de distribution de particules dans un espace des phases à 6
dimensions (espace réel + espace des vitesses).

Approche numérique gyrocinétique

Dans un tokamak, les particules chargées ont tendances à s’enrouler autour des lignes
du fort champ magnétique ambient. Les trajectoires peuvent alors être décomposées en un
mouvement cyclotronique rapide, et un mouvement lent de dérive. L’approche gyrocinétique
exploite cette caractéristique en moyennant le mouvement cyclotronique, ce qui permet de
réduire la dimensionalité du problème de 6D à 5D. Dans le cadre de la thèse de Kyungtak
Lim, que je co-encadre, nous utilisons le code gyrocinétique GYSELA, développé en collabo-
ration avec l’Institut de Recherche sur la Fusion Magnétique (IRFM) du CEA Cadarache.
Nous simulons un plasma de tokamak en présence d’une faible concentration d’impuretés
telles que les particules de tungsten érodés de la paroi du réacteur. Le transport turbulent
(et par collisions) du tungsten peut amener ces particules à contaminer le cœur du plasma,
et fortement dégrader l’efficacité d’un réacteur. Il est donc urgent de développer la théorie
du transport turbulent d’impuretés afin de pouvoir proposer des méthodes de contrôle. En
2019, nous avons analysé comment le transport d’une impureté dépend de sa charge et de
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Figure A.5 – Trajectoire d’une particule piégée
dans un plasma toröıdal magnétisé, et sa projec-
tion sur une coupe polöıdale.

sa masse. Un travail est en cours pour comparer ces résultats aux théories conventionnelles
et proposer de nouvelles lois de comportement. Une simulation gyrocinétique nécessite des
millions d’heures de calculs, réalisés en parallèle sur une dizaine de milliers de processeurs.
Une part de mon travail consiste à répondre à des appels à l’exploitation de supercalcu-
lateurs. Sur la période 2019-2020 nous avons obtenu 30 millions d’heures de calcul sur le
supercalculateur Marconi (21ème machine la plus puissante au monde).

Approche numérique réduite

Il est possible de réduire le temps de calcul de plusieurs ordres de grandeur, en sélectionnant
un membre particulier parmi la famille des ondes de dérive qui constituent la turbulence.
En effet, la variation d’amplitude du champ magnétique entre le centre du tore et l’extérieur
implique qu’une partie importante des particules subit un effet de miroir magnétique. Ces
particules piégées suivent un mouvement de rebond en forme de banane dans une projection
polöıdale, accompagnée d’une précession dans la direction toröıdale, comme illustré en figure
A.5. Ce piégeage magnétique est très différent de l’auto-piégeage électrostatique. Le premier
défini les trajectoires d’équilibre, le deuxième est un effet non linéaire dû aux perturbations.

Le mouvement de précession des particules piégées peut résonner avec 2 types d’onde de
dérive, appelés Trapped Ion-driven Mode (TIM) et Trapped Electron-driven Mode (TEM).
La fréquence d’un tel mode est très inférieure à la fréquence de transit toröıdal des particules
passantes et à la fréquence de rebond des particules piégées. L’invariance adiabatique de
l’énergie des particules piégées permet alors de réduire l’espace des phases de 5 à 4 dimensions
(en faisant une moyenne de rebond, en complément de la moyenne gyrocinétique). Le modèle
se simplifie encore en faisant l’hypothèse que ce sont principalement les particules fortement
piégés qui résonnent avec le mode. Cette hypothèse relie l’énergie et le moment magnétique.
Le modèle est alors réduit à 3 dimensions (r, α, E) dans l’espace des phases de la fonction
de distribution [DGBG00] :

— Position radiale moyenne r
— Angle de précession α
— Energie E

Ce modèle réduit 3D n’est valide que dans le cadre des hypothèses mentionnées, mais il a
l’avantage de mettre l’étude des processus physiques fondamentaux sous-jacents à la portée
des capacités de calcul numérique actuelles. Ce modèle est implémenté dans le code TE-
RESA [CMGGL13], qui a été développé récemment en collaboration avec l’IJL et le CEA.
Je contribue à son développement depuis 2013. Une première publication documente l’exis-
tence et l’effet de structures fines en énergie, dans la phase linéaire [LCMD+17]. Dans le
cadre de la thèse de Julien Médina, que j’ai co-encadré, et qui a obtenu sa thèse en 2019, nous
avons exploité le code TERESA pour améliorer la compréhension du transport turbulent.
Nous avons montré que le transport peut être dominé par les effets de résonance, de manière
étroitement localisée dans l’espace des énergies [MLG+18]. Nous avons ensuite développé un
nouveau module de particules tests, qui permettent d’étudier avec précision les mécanismes
de transport turbulent à partir des trajectoires et de leurs statistiques [MLG+19]. Plus
récemment, nous avons utilisé le code TERESA pour étudier le transport d’impuretés. Nous
avons montré qu’un phénomène de synchronisation induit une transition entre deux régimes
de transport, avec un seuil en concentration [LDL+20]. Finalement, nous avons étudié com-
ment le transport d’impuretés dépend des gradients de densité [LGL+20].
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Figure A.6 – Phase-space turbulence in a large 1D plasma. Color map of a snapshot of
fluctuations in the electron distribution (PS density) in a simulation of 1D turbulence.

A.2 Projet de recherche

A.2.1 Résumé

Mon projet vise à clarifier les mécanismes sous-jacents au transport turbulent dans
les plasmas de fusion magnétique. Il consiste à étudier par simulations numériques l’auto-
piégeage de particules et la formation de structures dans l’espace des phases associé à ces
ondes de dérive, ainsi qu’un effet plus subtil de corrugation de la fonction de distribution,
”granulation”, qui résulte de la compétition entre formation de structures et dispersion tur-
bulente. Selon la théorie analytique, la granulation a d’importants impacts sur la turbulence
et le transport [KID+14a]. Nous utiliserons des simulations numériques pour quantifier les
propriétés de la granulation et ses impacts. On se penchera ensuite sur les signatures de la
granulation, qui seront susceptibles d’être mesurés.

A.2.2 Objectif

Je souhaite améliorer la prédictibilité des statistiques de la turbulence microscopique, et
des impacts macroscopiques de la turbulence, tels que le transport. La figure A.6 illustre
la présence de nombreux vortex de l’espace des phases dans une turbulence 1D. L’objectif
est de généraliser ces résultats à une turbulence 2D, puis 3D. En passant de 1D à 2D, on
s’attend également à une importante différence qualitative. La théorie analytique [Dup72]
prévoit une corrugation ou granulation de l’espace des phases, résultat de la compétition
entre la formation de structures (appelées alors drift-holes [TDH90]) par piégeage et la des-
truction des structures par la turbulence ambiante. En présence de granulation, les théories
et modèles réduits conventionnels, qui supposent que les perturbations ne sont qu’un en-
semble d’ondes incohérentes, trouvent leur limite. Cette limite pourrait expliquer pourquoi le
calcul quantitatif du transport turbulent échappe toujours aux simulations numériques dans
le cas général. En effet, la granulation induit de nouveaux effets, tel qu’une composante de
friction, qui peut avoir d’importants impacts sur la turbulence et le transport, notamment
via la génération d’écoulements zonaux [KID+14a]. La granulation de l’espace des phases
reste inexplorée par les simulations.

A.2.3 Approche numérique

Les modèles gyrocinétiques, qui réduisent l’espace des phases de 6D à 5D en moyen-
nant le rapide mouvement cyclotronique, incluent en principe la granulation. Cependant, en
pratique, les fines échelles de la granulation échappent aux simulations gyrocinétiques, qui
se limitent typiquement a quelques douzaines de points de grille dans l’espace de l’énergie.
Résoudre la granulation nécessiterait quelques milliers de points, beaucoup trop coûteux en
termes de temps de calcul.

L’approche adoptée par le code TERESA, en se focalisant sur les particules piégées, a
l’avantage de mettre l’étude de la granulation à la portée des capacités de calcul numérique
actuelles.
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A.2.4 Approche expérimentale

La théorie analytique prédit des effets indirects macroscopiques. La difficulté est de dis-
tinguer le mécanisme responsable. Heureusement, il existe aussi des effets microscopiques qui
semblent mesurables. En particulier, nos simulations permettent de préciser comment tirer
parti de récents développements de la réflectométrie pour mesurer des pics de fluctuations de
densité sur l’échelle de la granulation. Plus tard, notre analyse numérique de la granulation
devrait indiquer comment manipuler les paramètres du plasma pour agir sur la granulation
et leurs effets. Nous conduirons alors des expériences sur les machines de fusion magnétique
pour tester ces idées.

A.2.5 Impacts

Ce projet constitue une extension naturelle de mes recherches de 2D à 3D (dans l’espace
des phases). Il promet d’ouvrir la voie à de nouveaux diagnostics, et de nouvelles méthodes
de contrôle dans le but de mitiger le transport et ainsi atteindre les conditions de fusion.
Il contribuera également au développement de codes gyrocinétiques tels que GYSELA. De
plus, puisque les structures de l’espace des phases sont omniprésentes dans les plasmas très
peu collisionnels, ce projet aura également des retombées dans les contextes suivants où la
turbulence joue un rôle majeur : l’espace entre la Terre et le Soleil (la couronne solaire, le
vent solaire, la magnétosphère, et l’application à la météorologie de l’Espace), la propulsion
électrique, et la radiation dans les ceintures de Van Allen.

Ce projet vient d’être sélectionné par l’Agence Nationale de la Recherche pour être
financé à hauteur de 220 ke(ANR-JCJC) pour la période 2020-2023. Il me permettra de
financer une thèse de 3 ans et un contrat postdoctoral de 18 mois, qui seront dédiés à ce
projet. Le projet s’appuie aussi sur des collaborations internes, nationales (CEA Cadarache,
LPIIM, et LPP) et internationales (UCSD, Kyushu U., et USTC en Chine). Ce projet est
donc aussi une formidable opportunité de fédérer un consortium d’expert-e-s et de jeunes
chercheu-se-r-s. L’idée est de construire, sur une échelle de la décennie, les fondations d’un
vaste champ de recherche, puisque l’évolution exponentielle de la puissance de calcul devrait
permettre d’envisager ensuite d’étudier les structures de l’espace des phases dans des modèles
4D, puis 5D.

A.2.6 Autres activités

En parallèle à ce projet de recherche principal, je prévois de contribuer aux autres acti-
vités de l’équipe ”Plasmas chauds” de l’IJL :

— Conception d’une nouvelle expérience de plasma chaud : SPEKTRE, une machine
linéaire de plasma cylindrique magnétisé, longue de plusieurs mètres et d’un diamètre
d’environ un mètre. Je contribuerai aussi à la mise en place d’un programme de
recherche qui inclut l’étude de la turbulence.

— étude numérique et analytique des interactions plasma/parois, et étude des gaines
à l’aide de modèles cinétiques. Une première publication concerne un modèle 1D
[MLF+19], et nous développons actuellement un modèle 2D qui nous permettra
d’étudier la formation d’arcs électriques sur les parois.

— Développement d’un nouveau modèle de ”plans chargés” pour quantifier le domaine
de validité des modèles cinétiques conventionnels.
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T. Réveillé, T. Drouot, T. Cartier-Michaud, and X. Garbet. Validity limits of
the passive treatment of impurities in gyrokinetic tokamak simulations. Nucl.
Fusion, 60(3):036016, feb 2020. (Cited on pages 139, 149, 153)

[Les11] M. Lesur. The Berk-Breizman model as a paradigm for energetic particle-
driven Alfvén eigenmodes. PhD thesis, Ecole Polytechnique, France, 2011.
(Cited on pages 44, 46)

[Les13] M. Lesur. Effects of collisions on energetic particle-driven chirping bursts.
Phys. Plasmas, 20(5):055905, 2013. (Cited on pages 149)

[Les16] Maxime Lesur. Method- and scheme-independent entropy production in tur-
bulent kinetic simulations. Comput. Phys. Commun., 200:182 – 189, 2016.
(Cited on pages 15, 29, 41, 149)

[LGKP07] P. Lauber, S. Günter, A. Könies, and S.D. Pinches. Ligka: A linear gyrokinetic
code for the description of background kinetic and fast particle effects on the
mhd stability in tokamaks. J. Comput. Phys., 226(1):447–465, 2007. (Cited
on pages 66)

[LGL+20] K. Lim, E. Gravier, M. Lesur, X. Garbet, Y. Sarazin, and J. Médina. Impurity
pinch generated by trapped particle driven turbulence. submitted, 2020. (Cited
on pages 140, 153)

[LI12] M. Lesur and Y. Idomura. Nonlinear categorization of the energetic-beam-
driven instability with drag and diffusion. Nucl. Fusion, 52(9):094004, 2012.
(Cited on pages 27, 41, 51, 52, 76, 78, 149, 151)

[Lic69] A.J. Lichtenberg. Phase-space dynamics of particles. Wiley series in plasma
physics. Wiley, 1969. (Cited on pages 33)

[LIG09] M. Lesur, Y. Idomura, and X. Garbet. Fully nonlinear features of the en-
ergetic beam-driven instability. Phys. Plasmas, 16(9):092305–+, September
2009. (Cited on pages 27, 41, 44, 45, 51, 60, 72, 76, 149, 151)

[LII+16a] M Lesur, K Itoh, T Ido, S-I Itoh, Y Kosuga, M Sasaki, S Inagaki, M Osakabe,
K Ogawa, A Shimizu, K Ida, and the LHD experiment group. Nonlinear
excitation of subcritical fast ion-driven modes. Nucl. Fusion, 56(5):056009,
2016. (Cited on pages 30, 33, 84, 85, 149)

[LII+16b] M. Lesur, K. Itoh, T. Ido, M. Osakabe, K. Ogawa, A. Shimizu, M. Sasaki,
K. Ida, S. Inagaki, S.-I. Itoh, and the LHD Experiment Group. Nonlinear
excitation of subcritical instabilities in a toroidal plasma. Phys. Rev. Lett.,
116:015003, Jan 2016. (Cited on pages 30, 72, 73, 81, 149, 152)

[Lil09] M. K. Lilley. Resonant interaction of fast particles with Alfvén waves in spher-
ical tokamaks. PhD thesis, Imperial College, UK, 2009. (Cited on pages 41)

[LIS+10] M. Lesur, Y. Idomura, K. Shinohara, X. Garbet, and the JT-60 Team. Spec-
troscopic determination of kinetic parameters for frequency sweeping Alfvén
eigenmodes. Phys. Plasmas, 17(12):122311, 2010. (Cited on pages 27, 34, 47,
51, 55, 57, 58, 62, 66, 149, 151)

167



[LIT07] M. Lesur, Y. Idomura, and S. Tokuda. Kinetic simulations of electrostatic
plasma waves using cubic-interpolated-propagation scheme. JAEA-Research,
2006-089:1–29, 2007. (Cited on pages 40)

[LJ91] Anders Lundbladh and Arne V Johansson. Direct simulation of turbulent
spots in plane couette flow. J. Fluid Mech., 229:499–516, 1991. (Cited on
pages 22)

[LMSS18] Maxime Lesur, Julien Médina, Makoto Sasaki, and Akihiro Shimizu. Subcrit-
ical instabilities in neutral fluids and plasmas. Fluids, 3(4):89, 2018. (Cited
on pages 18)

[LN14] MK Lilley and RM Nyqvist. Formation of phase space holes and clumps. Phys.
Rev. Lett., 112(15):155002, 2014. (Cited on pages 88)

[LSC04] TT Lim, TK Sengupta, and M Chattopadhyay. A visual study of vortex-
induced subcritical instability on a flat plate laminar boundary layer. Experi-
ments in Fluids, 37(1):47–55, 2004. (Cited on pages 25)

[LSS16] Maxime Lesur, Makoto Sasaki, and Akihiro Shimizu. Subcritical instabilities
in neutral fluids and plasmas. J. Plasma Fusion Research, 92(9), 2016. (Cited
on pages 18)

[Man77] W.M. Manheimer. Introduction to trapped-particle instability in tokamaks.
ERDA Critical Review Series. University of Michigan Library, Jan 1977.
(Cited on pages 121)

[Man04] P Manneville. Instabilités, Chaos et Turbulence. Editions de l’Ecole Polytech-
nique, 2004. (Cited on pages 23)

[Man08] Paul Manneville. Understanding the sub-critical transition to turbulence in
wall flows. Pramana, 70(6):1009–1021, 2008. (Cited on pages 25)

[Man15] Paul Manneville. On the transition to turbulence of wall-bounded flows in
general, and plane couette flow in particular. European J. Mech.-B, 49:345–
362, 2015. (Cited on pages 22)

[Maz65] R. Mazitov. Damping of plasma waves. J. Applied Mech. Tech. Phys., 6:22–25,
1965. 10.1007/BF00914365. (Cited on pages 43)

[MB00] Giovanni Manfredi and Pierre Bertrand. Stability of bernstein–greene–kruskal
modes. Phys. Plasmas, 7(6):2425–2431, 2000. (Cited on pages 88)

[Mcw84] James C. Mcwilliams. The emergence of isolated coherent vortices in turbulent
flow. J. Fluid Mech., 146:21–43, 8 1984. (Cited on pages 16)

[Méd19] Julien Médina. Transport processes in phase space driven by trapped particle
turbulence in tokamak plasmas. PhD thesis, Université de Lorraine (Nancy),
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