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Résumé en français

Établir une communication sécurisée entre des entités distantes est l’un des objectifs
auxquels la cryptographie cherche à répondre. De tels tunnels sécurisés impliquent la
mise en œuvre d’algorithmes cryptographiques de nature (symétrique, asymétrique) et

de complexité di�érentes. Le besoin de communications sécurisées se manifeste particulièrement
avec l’apparition d’objets connectés aux usages très divers et la multiplication des interactions
entre ces objets.

Le développement de l’Internet des Objets entraîne le déploiement accéléré d’objets dits « à
bas coût ». Contrairement à un ordinateur personnel ou un smartphone, ces objets ont des
capacités très limitées notamment en termes de calcul, de communication et d’alimentation en
énergie. Néanmoins, ces objets participent à la gestion d’infrastructures et d’équipements parfois
très sensibles (fourniture d’eau, d’électricité, pacemaker ou dé�brillateur implanté dans le corps
humain, etc.). Les données échangées (dont les commandes reçues) par ces objets doivent donc
être protégées à la hauteur de ces usages. Cela requiert un haut niveau de sécurité, permis en
général par des mécanismes cryptographiques de relativement grande complexité calculatoire.
Or les algorithmes usuellement implémentés sur un ordinateur ou un smartphone ne sont pas
fonctionnels sur des objets connectés étant données les capacités réduites de ces derniers.

Cette partie introduit les problématiques des protocoles de sécurité destinés aux objets à
bas coût. Elle présente également les résultats obtenus au cours de ce travail de doctorat,
dont l’objectif est d’analyser la sécurité de protocoles existants et de produire des mécanismes
d’échange de clé applicables aux objets à bas coût, sans compromis entre sécurité et e�cacité.

Contexte

L’un des buts de la cryptographie est de permettre à deux entités distantes de communiquer de
manière sécurisée. Cet objectif est rempli quotidiennement et de manière transparente lorsque
l’on utilise un ordinateur personnel ou un smartphone pour, par exemple, consulter un service
bancaire ou parler avec une personne éloignée. La mise en œuvre d’un tel tunnel sécurisé
est rendue possible par l’utilisation conjointe d’algorithmes cryptographiques qui ont chacun
une fonction di�érente. La cryptographie asymétrique intervient alors lors d’une phase qui
précède la communication proprement dite. Les algorithmes asymétriques sont utilisés pour
que les deux parties impliquées puissent mutuellement s’authenti�er (i.e. : avoir la garantie
de leur identité respective) et permettre de partager des paramètres secrets. Ces paramètres
sont ensuite manipulés par des algorithmes symétriques qui vont concrètement protéger les
messages (par exemple vocaux, visuels) échangés entre les deux parties. Ils garantissent que
ces messages ne sont accessibles qu’aux deux parties légitimes (propriété de con�dentialité)
et qu’il est impossible de modi�er ces messages à l’insu des deux parties prenant part à la
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communication (propriété d’intégrité).
Ces algorithmes qui remplissent des fonctions distinctes ont des caractéristiques techniques

di�érentes. D’une manière générale, les algorithmes symétriques sont beaucoup plus rapides
que les algorithmes asymétriques. Mais, comme indiqué plus haut, les algorithmes asymétriques
permettent de garantir des propriétés de sécurité que ne peuvent o�rir les algorithmes symé-
triques. C’est la raison pour laquelle les deux types d’algorithmes sont généralement utilisés
dans les protocoles de sécurité : béné�ciant pleinement de leur complémentarité, ces protocoles
atteignent un niveau de sécurité supérieur. L’une des propriétés de sécurité, fondamentale,
rendue possible par la cryptographie asymétrique est la con�dentialité persistante (ou forward
secrecy [Gün90; DvW92]) généralement obtenue par le protocole Di�e-Hellman (DH) [DH76].
Cette propriété garantit que la divulgation d’un paramètre secret permanent ne compromet
pas la sécurité des communications e�ectuées antérieurement à cette divulgation. Cela permet
donc de maintenir la sécurité des communications passées en dépit de la compromission d’un
paramètre secret important et réduit l’étendue des conséquences d’une telle compromission.

Avec l’émergence de l’Internet des Objets (Internet of Things ou IoT), une multitude d’« objets
connectés » sont déployés. Ces objets à bas coût de production ont des capacités de calcul et de
communication restreintes. De même ils disposent d’une ressource limitée en termes d’alimenta-
tion électrique (ainsi ils peuvent être alimentés à l’aide d’une batterie dont il s’agit d’économiser
la consommation, voire ne recevoir d’énergie que lorsqu’ils entrent en communication avec un
lecteur). Parmi les cas d’usage impliquant ces objets, on peut citer les réseaux de senseurs sans
�l (Wireless Sensor Networks ou WSN), la radio-identi�cation (Radio Frequency Identi�cation ou
RFID), les cartes à puce, les unités de contrôle véhiculaires (Controller Area Network ou CAN), la
domotique, l’IoT industriel et la téléphonie mobile.

Ces objets participent à la gestion ou au fonctionnement d’infrastructures ou d’équipements
qui rendent des services sensibles tels que la fourniture d’eau, d’électricité ou l’assistance
médicale par le biais de pacemakers et de dé�brillateurs implantés dans le corps humain. Les
commandes transmises à ces objets et les données récupérées auprès de ces derniers impliquent
donc un niveau de sécurité à la mesure du service qu’ils contribuent à rendre. Or le niveau de
sécurité d’un algorithme cryptographique est généralement lié à sa complexité. Si les ordinateurs
personnels et les smartphones peuvent exécuter des algorithmes cryptographiques « lourds »
et complexes, il n’en est pas de même des objets connectés. Se pose alors, pour ces objets, la
di�culté de résoudre la contradiction induite par une attente élevée en termes de sécurité et
une faible capacité en termes de fonctionnalité et d’e�cacité.

Un champ de la cryptographie s’attache, approximativement depuis le début du millénaire, à
concevoir des algorithmes cryptographiques fonctionnels pour des objets à bas coût. La grande
majorité de ces algorithmes sont symétriques. S’agissant de la cryptographie asymétrique, à part
quelques exceptions, les e�orts tendent, avec des succès mitigés, à optimiser l’implémentation
d’algorithmes usuels a�n de les rendre fonctionnels sur ces objets. Ces travaux constituent une
étape importante et nécessaire. Néanmoins, l’établissement d’un tunnel sécurisé suppose plus
de fonctionnalités et de propriétés de sécurité qu’un simple algorithme de chi�rement ou de
hachage.

Objectifs

Etant données les capacités réduites des objets connectés, le choix peut être fait de réduire les
fonctionnalités des protocoles de sécurité existants et de choisir des mécanismes cryptogra-
phiques peu « coûteux » a�n que le résultat soit implémentable et fonctionnel dans un objet
disposant de faibles capacités. Cette démarche, bien qu’intéressante, n’est toutefois pas com-
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plètement satisfaisante puisqu’elle pose notamment les questions de la souplesse du protocole
ainsi obtenu et celle de la sécurité globale o�erte.

Ainsi, les protocoles existants destinés à l’établissement de communications sécurisées avec
ces objets s’appuient sur deux principes généraux. Tout d’abord une seule fonction symétrique
est mise en œuvre. Ensuite la sécurité s’appuie sur un unique paramètre secret, exploité par
l’objet tout au long de sa vie. Cela ne permet pas de garantir les mêmes propriétés et donc le
même niveau de sécurité rendus possibles par l’utilisation additionnelle de mécanismes cryp-
tographiques asymétriques. En particulier, la divulgation de cette clé symétrique permanente
aboutit à la compromission de toutes les communications futures mais aussi passées que l’objet
a établies.

L’objectif principal de cette thèse est de concevoir des protocoles d’échange de clé, destinés
à permettre l’établissement de tunnels sécurisés entre objets à bas coût, o�rant un niveau de
sécurité plus élevé que les protocoles existants tout en étant fonctionnels sur ces objets. Nous
tentons de tirer pro�t des caractéristiques techniques intrinsèques des algorithmes symétriques
pour aboutir à ce résultat en refusant le compromis entre sécurité et e�cacité.

Contributions

Dans cette section nous décrivons brièvement les résultats obtenus au cours de ce doctorat. Ces
résultats peuvent se classer en les trois catégories suivantes :

• Nous avons procédé à l’analyse de protocoles symétriques (dont des protocoles déployés
à grande échelle dans le monde) et montré qu’ils sou�rent de vulnérabilités. Ces défauts
de conception permettent la mise en œuvre d’attaques (quasiment) pratiques. Nous
en présentons une démonstration concrète en attaquant avec succès, dans un cadre
expérimental, des cartes à puce implémentant l’un des protocoles analysés.

• Nous avons conçu des modèles de sécurité que nous avons ensuite utilisés a�n d’analyser
rigoureusement les protocoles que nous avons construits.

• Nous avons élaboré des protocoles symétriques d’échange de clé authenti�é impliquant
deux ou trois parties. Ces protocoles o�rent des garanties de sécurité supérieures aux
protocoles existants. Ces propriétés et fonctionnalités additionnelles que nous avons
obtenues incluent notamment la propriété fondamentale de con�dentialité persistante
et aussi la reprise de session. Cette dernière est particulièrement avantageuse pour des
terminaux aux ressources limitées en termes de communication et calcul.

Les articles acceptés en conférence (et, pour la plupart d’entre eux, déjà présentés) au cours
de ce doctorat sont les suivants :

[ACF19] Gildas Avoine, Sébastien Canard, and Loïc Ferreira. IoT-Friendly AKE: Forward Se-
crecy and Session ResumptionMeet Symmetric-Key Cryptography. In: ESORICS 2019,
Part II. Ed. by Kazue Sako, Steve Schneider, and Peter Y. A. Ryan. Vol. 11736.
LNCS. Springer, Heidelberg, Sept. 2019, pp. 463–483.

[ACF20] G. Avoine, S. Canard, and L. Ferreira. Symmetric-key Authenticated Key Exchange
(SAKE) with Perfect Forward Secrecy. In: CT-RSA. (To appear). 2020.

[AF18a] Gildas Avoine and Loïc Ferreira. “Attacking GlobalPlatform SCP02-compliant
Smart Cards Using a Padding Oracle Attack”. In: IACR TCHES 2018.2 (2018).
https://tches.iacr.org/index.php/TCHES/article/view/878,
pp. 149–170. issn: 2569-2925.

https://tches.iacr.org/index.php/TCHES/article/view/878
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[AF18b] Gildas Avoine and Loïc Ferreira. Rescuing LoRaWAN 1.0. In: FC 2018. Ed. by
Sarah Meiklejohn and Kazue Sako. Vol. 10957. LNCS. Springer, Heidelberg, 2018,
pp. 253–271.

[CF19] Sébastien Canard and Loïc Ferreira. Extended 3-Party ACCE and Application to
LoRaWAN 1.1. In: AFRICACRYPT 19. Ed. by Johannes Buchmann, Abderrahmane
Nitaj, and Tajjeeddine Rachidi. Vol. 11627. LNCS. Springer, Heidelberg, July 2019,
pp. 21–38.

Analyse cryptographique de protocoles symétriques [AF18b; AF18a; CF19]

Analyse du protocole LoRaWAN. Le premier protocole de sécurité considéré est LoRaWAN.
La version 1.0 de ce protocole est actuellement une norme de fait pour les réseaux IoT longue
distance et à basse consommation (Low Power Wide Area Network ou LPWAN) et est déployé
dans plus de cent pays dans le monde entier. L’analyse approfondie que nous avons e�ectuée
montre que ce protocole sou�re de vulnérabilités. Nous décrivons précisément comment ces
défauts peuvent être exploités pour mettre en œuvre di�érents types d’attaque, y compris des
attaques pratiques. Ces attaques permettent d’enfreindre l’intégrité et la con�dentialité des
données applicatives et de rompre la disponibilité d’un réseau.

Le premier type d’attaque aboutit à « désynchroniser » un terminal vis-à-vis du réseau (i.e. :
le terminal est déconnecté du réseau). Le deuxième type d’attaque permet de rejouer et de
déchi�rer des trames applicatives (sans connaissance de la clé correspondante). Cela permet
donc de tromper des éléments essentiels du réseau (situés dans le cœur de réseau) ou le terminal
distant. Ces attaques, dues aux défauts intrinsèques du protocole, ne s’appuient pas sur des
défauts d’implémentation ou matériels. Elles sont applicables, avec forte probabilité, contre tout
équipement implémentant le protocole LoRaWAN 1.0.

Finalement, nous présentons des recommandations permettant de contrecarrer les attaques
décrites tout en étant compatibles avec la spéci�cation et en maintenant l’interopérabilité entre
un équipement corrigé et un équipement original. Selon nous, ces contre-mesures peuvent être
aisément mises en œuvre.

Le protocole LoRaWAN 1.1 se destine à être le successeur de la version 1.0. Il a pour objectif
de pallier les faiblesses de la version 1.0. Nous présentons des vulnérabilités encore présentes
dans cette nouvelle version 1.1. On peut notamment citer la possibilité d’épuiser des paramètres
de taille trop petite et donc d’interdire à un terminal de se connecter au réseau distant, de
contraindre un terminal en version 1.1 à exécuter la version 1.0, ce qui permet d’exploiter les
faiblesses de cette dernière, ou encore de rejouer et de déchi�rer des messages chi�rés.

Ces vulnérabilités sont dues essentiellement au fait de s’appuyer conceptuellement sur la
précédente version et de vouloir garantir une certaine compatibilité entre les deux versions.
Elles sont également induites par l’introduction d’une entité supplémentaire dans l’architecture
LoRaWAN : un serveur utilisé comme tiers de con�ance et jouant principalement le rôle de
gestionnaire de clés. Là encore nous présentons des recommendations permettant de pallier ces
di�érentes vulnérabilités.

Analyse du protocole SCP02. Le second protocole analysé est le protocole de sécurité SCP02.
Ce protocole est déployé dans plusieurs milliards de cartes à puce (dont les cartes SIM pour
la téléphonie mobile). Nous montrons que le protocole SCP02 est sujet à une attaque de type
padding oracle attack qui permet de déchi�rer, sans connaissance de la clé correspondante,
des données applicatives transmises dans un tunnel sécurisé par SCP02. Nous fournissons les
résultats de nos expérimentations pratiques obtenues à partir de 10 modèles di�érents de cartes
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à puce conçus par six encarteurs. A notre connaissance, il s’agit de la première attaque réalisée
avec succès contre le protocole SCP02.

Nous récapitulons également un ensemble de méthodes permettant de contrecarrer cette
attaque et en proposons de nouvelles applicables dans le cas de SCP02.

Cette attaque est possible pour deux raisons. Elle est tout d’abord rendue possible par les
caractéristiques techniques intrinsèques du protocole (i.e. : l’ordre des opérations cryptogra-
phiques lors du déchi�rement d’un message). Ensuite l’implémentation du protocole dans les
cartes à puce que nous avons testées fournit le canal auxiliaire permettant la mise en œuvre
concrète de l’attaque. A ce stade, nous ne pouvons préciser si ce comportement di�érencié de la
carte s’explique par le code source du protocole ou par les contraintes techniques du composant
qui l’implémente.

Ces résultats, exploitant une technique d’attaque décrite en 2002, montre que la sécurité d’un
mécanisme cryptographique (et de tout produit qui l’implémente) a une date d’expiration et
doit être périodiquement analysé de nouveau à la lumière de l’état de l’art en cryptographie et
en sécurité.

Ces di�érents résultats ont été présentés à chaque consortium en charge de la spéci�cation
technique du protocole analysé. LoRa Alliance a produit un document de recommandations
destiné à renforcer la sécurité des réseaux LoRaWAN 1.0. Par ailleurs, certains changement
ont également été pris en compte dans la spéci�cation de LoRaWAN version 1.1. Concernant
SCP02, ces résultats ont contribué à la décision de GlobalPlatform de déconseiller o�ciellement
l’usage du protocole, considéré comme obsolète. Par ailleurs, les fabricants des modèles de carte
analysés ont eu communication de nos travaux préalablement à leur présentation en conférence
(entre octobre 2017 et mars 2018).

Ces travaux ont été présentés lors des conférences internationales Financial Cryptography
and Data Security (FC, 2018), Cryptographic Hardware and Embedded Systems (CHES, 2018) et
Africacrypt (2019). Ils sont décrits de manière détaillée dans les chapitres 3 et 4.

Conception de modèles de sécurité [CF19; ACF19]

Modèle de sécurité 3-ACCE. Nous avons étendu la notion de modèle de sécurité 3-ACCE
et produit un cadre d’analyse qui permet de saisir les propriétés de sécurité que les protocoles à
trois parties doivent, selon nous, garantir a�n d’établir des tunnels sécurisés entre plusieurs
entités.

Nous avons appliqué ce modèle au protocole LoRaWAN 1.1. Par un choix de paramètres et de
déploiement appropriés nous décrivons une version légèrement modi�ée de LoRaWAN 1.1 et
prouvons formellement que cette version est sûre dans notre modèle 3-ACCE.

Modèle de sécurité 3-AKE. Nous avons également conçu un modèle de sécurité permettant
d’analyser les protocoles d’échange de clé authenti�é mis en œuvre entre trois parties. Ce
modèle inclut la propriété de sécurité fondamentale de con�dentialité persistante.

Ces di�érents travaux s’inscrivent dans le champ des protocoles tripartites et de leurs modèles
de sécurité. Comme l’attaque théorique et les vulnérabilités contre le protocole LoRaWAN 1.1
l’illustrent (décrites dans le chapitre 3), ces protocoles supposent une analyse de sécurité rigou-
reuse dans un cadre permettant de saisir des menaces fortes.

Ces travaux s’inscrivent dans une démarche de meilleure compréhension et d’analyse de la
sécurité de protocoles multipartites, lesquels re�ètent la complexité croissante des communica-
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tions et des interactions générées par l’IoT.
Ces travaux ont été présentés lors des conférences internationales Africacrypt (2019) et

European Symposium on Research in Computer Security (ESORICS, 2019). Ils sont décrits plus
précisément dans le chapitre 5.

Conception de protocoles symétriques d’échange de clé authenti�é [ACF20;
ACF19]

Protocole SAKE. Nous décrivons un protocole d’échange de clé authenti�é entre deux par-
ties, que nous appelons SAKE. Bien que basé uniquement sur des fonctions symétriques, ce
protocole garantit la propriété de con�dentialité persistante sans besoin de procédure addi-
tionnelle (telle qu’une phase de resynchronisation) ou de fonctionnalité supplémentaire (telle
qu’une horloge synchronisée). L’idée sous-jacente est d’actualiser la clé symétrique principale
à l’issue de chaque session. Nous résolvons le problème de la synchronisation entre les deux
parties qui se pose alors avec un mécanisme simple et e�cace.

Le protocole SAKE garantit que, quel que soit l’état des deux parties en termes de synchroni-
sation lors du démarrage d’une session, ces deux parties partagent une nouvelle clé de session
et sont synchronisées une fois la session conclue correctement : notre protocole SAKE est
auto-synchronisant. De même qu’avec un protocole basé sur des fonctions asymétriques (par
exemple DH), SAKE permet d’e�ectuer un nombre virtuellement illimité de sessions. De plus
nous prouvons formellement la sécurité du protocole.

Nous décrivons également une variante du protocole, que nous appelons SAKE-AM. Utilisée
conjointement avec SAKE, cette variante permet d’obtenir une implémentation qui hérite des
di�érentes propriétés de SAKE (notamment la propriété de con�dentialité persistante). Cette
implémentation permet à n’importe laquelle des deux parties d’initier une session de telle sorte
que la moindre part de calculs soit toujours réalisée par la même partie. Cette implémentation
est particulièrement avantageuse dans le contexte de l’IoT où des terminaux à bas coût commu-
niquent avec un serveur central disposant de ressources en termes de calcul notoirement plus
importantes.

A notre connaissance, SAKE est le premier protocole garantissant la propriété de con�dentia-
lité persistante et basé sur des fonctions cryptographiques symétriques qui soit comparable au
protocole DH (au-delà des di�érences intrinsèques entre cryptographie symétrique et crypto-
graphie asymétrique).

Protocole 3-AKE. Nous présentons également un protocole générique d’échange de clé au-
thenti�é à trois parties pour l’IoT que nous appelons 3-AKE. Ce protocole est basé exclusivement
sur des fonctions symétriques (pour ce qui concerne les échanges entre le terminal distant
et le serveur central) et garantit la propriété de con�dentialité persistante, à la di�érence de
protocoles IoT similaires (dont ceux déployés à grande échelle). Ce protocole permet d’e�ectuer
des reprises de session sans réduire la sécurité (en particulier la con�dentialité persistante est
toujours garantie). Cette fonctionnalité permet de réduire les coûts de calcul et de communica-
tion et est donc particulièrement avantageuse pour les terminaux à faibles ressources.

Notre protocole 3-AKE peut être mis en œuvre dans un contexte de déploiement IoT réel
(impliquant une multitude de terminaux distants et de serveurs) de telle sorte que ce dernier
béné�cie des propriétés intrinsèques du protocole. Cela permet notamment à des terminaux
(mobiles) de se connecter de manière sécurisée à des serveurs successifs à un coût (en termes
de calcul et de communication) réduit et sans compromettre la sécurité des échanges e�ectués
avec de précédents serveurs.
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Ces travaux ont été présentés lors de la conférence internationale European Symposium
on Research in Computer Security (ESORICS, 2019). Ils sont décrits plus précisément dans les
chapitres 6 et 7.

Conclusion

Au cours de ce doctorat nous avons étudié les moyens permettant l’établissement d’un tunnel
sécurisé par des terminaux disposant de peu de ressources en termes de calcul, de communication
et d’énergie notamment.

Au départ de notre démarche, nous avons constaté que la plupart des protocoles de sécurité
dédiés à l’IoT, basés sur des fonctions cryptographiques symétriques, ne garantissent pas
des propriétés de sécurité fortes telles que la con�dentialité persistante. D’autres protocoles,
s’appuyant sur des mécanismes asymétriques, ne sont pas fonctionnels sur ces terminaux.
D’une manière générale, la plupart de ces protocoles privilégient l’e�cacité au détriment de
la sécurité (chapitre 1). Nous avons illustré (concrètement) ce constat par l’analyse de deux
protocoles de sécurité largement déployés (chapitres 3 et 4). Dans un deuxième temps, nous
avons recueilli et produit (lorsqu’ils faisaient défaut) les outils méthodologiques qui nous sont
apparus nécessaires à la saine conception des mécanismes qui sont l’un des objectifs �naux de
notre travail (chapitre 5). Finalement, nous avons proposé de nouveaux protocoles d’échange de
clé, présentant des propriétés accrues (en termes de sécurité et d’e�cacité) relativement aux
protocoles existants (chapitres 6 et 7). A présent nous considérons les perspectives ouvertes par
les travaux entrepris au cours de ce doctorat et les voies qui demandent à être poursuivies.

Perspectives et questions ouvertes

Approfondissements. Le protocole SAKE (resp. SAKE-AM) décrit dans le chapitre 6 est
constitué de cinq (resp. quatre) messages qui peuvent être réduits à quatre (resp. trois) si les
deux parties prenantes sont synchronisées (relativement à leurs clés maîtres) au démarrage de
la session. Chacun des messages du protocole dessert un objectif particulier : authenti�er les
deux parties, détecter un décalage, rétablir la synchronisation. L’ensemble permet �nalement
d’atteindre la propriété de con�dentialité persistante. La suppression d’un message ouvre la
possibilité d’une attaque, comme l’ont montré les nombreuses versions alternatives que nous
avons explorées. Nous pensons que ce nombre de cinq messages est le moindre possible mais
n’avons pas formellement répondu à cette question de l’optimalité.

Au chapitre 5, nous présentons un modèle de sécurité 3-AKE. Il est utilisé pour analyser le
protocole d’échange de clé à trois parties décrit au chapitre 7. Ce modèle dé�nit la sécurité
notamment sur la notion d’indistinguabilité des clés de session. Le calcul de la clé de session
« �nale » suppose l’implication, dans des calculs préalables, de clés de session intermédiaires. Cela
entre en contradiction avec le paradigme d’indistinguabilité des clés. Pour pallier cette di�culté,
nous avons limité les possibilités pour l’adversaire de tester extensivement les di�érentes
clés. Un modèle de sécurité plus approprié permettrait à la fois de conserver cette notion
d’indistinguabilité et de ne pas restreindre les actions de l’adversaire. A cet égard, les modèles
de Brzuska, Fischlin, Warinschi et Williams [BFWW11], Brzuska, Fischlin et Smart [BFS+13] ou
Krawczyk [Kra16] peuvent servir d’inspiration.

Finalement, procéder à l’implémentation des protocoles SAKE et 3-AKE sur des terminaux à
bas coût permettrait de montrer concrètement leur e�cacité.



x Résumé en français

Con�dentialité persistante en cryptographie symétrique. Un équivalent symétrique du
protocole Di�e-Hellman remplacerait avantageusement ce dernier. Quelques travaux ont été
e�ectués en ce sens par le biais de généralisations algébriques du schéma DH [Par15; PN18]
ou avec la notion de « fonction de conversion » [CK05] (construite à partir d’une fonction
symétrique, une telle fonction permet de transformer le chi�ré correspondant à une certaine clé
en le chi�ré correspondant à une autre clé). Ce champ a, pour l’instant, aboutit à des résultats
mitigés et mérite d’être défriché.

Cryptographie post-quantique. L’un de nos objectifs a été de concevoir des protocoles
d’échange de clé à la fois e�caces sur un terminal à bas coût et présentant de meilleurs propriétés
de sécurité que les protocoles existants. Nous avons donc proposé des mécanismes basés sur
des fonctions symétriques. Avec l’ère de la cryptographie post-quantique il est maintenant clair
que les schémas cryptographiques asymétriques classiques les plus courants sont cassés. Si la
plupart des fonctions symétriques semblent encore préservées, des menaces émergent contre
certaines primitives [KLLN16a; CNS17; KLLN16b].

Ainsi, certaines fonctions symétriques (chi�rement, MAC) sûres dans un modèle classique
ne sont pas résistantes dans un modèle quantique. En e�et, à partir de ces primitives il est
possible de dé�nir des fonctions faisant apparaître une structure interne (par exemple une
période cachée) qui peut être révélée par la troublante magie de la mécanique quantique. Cela
permet alors d’accéder à un paramètre secret (tel qu’une clé) de l’algorithme attaqué.

L’étude de la sécurité quantique peut être prolongée des primitives aux protocoles. Au-delà
de la possibilité de s’attaquer aux primitives qui constituent un protocole, on peut essayer de
déterminer dans quelle mesure les caractéristiques techniques internes de ce dernier peuvent
être exploitées pour l’attaquer. Plus généralement, la cryptanalyse quantique des primitives et
des protocoles cryptographiques (y compris ceux que nous proposons dans cette thèse) est à
poursuivre et à entreprendre, de même que la conception de modèles de sécurité appropriés au
contexte quantique.

« Survivabilité » d’un protocole de sécurité. Ce qui peut surprendre de la part de certains
protocoles IoT existants est la possibilité de les casser, parfois trivialement. Cela est dû aux
caractéristiques intrinsèques à ces protocoles. Ainsi, les attaques contre le protocole LoRa-
WAN 1.0 décrites au chapitre 3 reposent essentiellement sur la taille extrêmement réduite de
certains de ses paramètres. Les concepteurs de LoRaWAN justi�ent ce choix par le nombre
limité d’échanges de clé qu’un terminal est censé e�ectuer au cours de sa vie. Néanmoins, nous
avons montré comment contraindre un terminal à initier beaucoup plus de sessions que prévu,
ce qui aboutit à des conséquences néfastes en termes de sécurité. Cet exemple conduit à nous
interroger sur le comportement d’un protocole lorsque ce dernier n’est pas mis en œuvre dans
les conditions requises par ses concepteurs.

La notion que nous abordons ici ne correspond pas à la résilience ou à la performabilité. La
première notion peut être dé�nie comme la capacité d’un système attaqué ou en présence de
fautes à repasser d’un état dégradé à un état nominal [CMH+07]. La seconde permet d’apprécier
comment un système peut résister et maintenir ses fonctionnalités nominales en présence
d’attaques [Mey80; Mey92]. La notion que nous tentons de saisir se rapproche de celle de
survivabilité [KSS03; SKH+02]. Intuitivement, il est souhaitable que les propriétés de sécurité
« essentielles » d’un système soient préservées, ce qui implique de dé�nir à quoi celles-ci corres-
pondent.

Le développement de l’IoT entraîne le déploiement d’un grand nombre de terminaux physi-
quement accessibles à l’attaquant et pour lesquels il n’y a pas de moyen simple permettant une
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mise à jour sécurisée. Le concept de survivabilité peut donc utilement contribuer à la sécurité
de ces terminaux et de leurs utilisateurs.
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Introduction 1
Secure tunnel establishment is one of the main task of authenticated key exchange

protocols. These protocols aim at sharing a secret key material among two or more
parties in order to subsequently exchange data in a secure manner.

With the arrival of the Internet of Things, several security protocols have been proposed
which aim at being implemented in devices with di�erent capabilities in terms of computation,
communication, and energy. This list includes (very) constrained devices. Therefore, these
protocols must face the following challenge: being fully functional, and at the same time
providing the highest security level as possible.

In this chapter, we present the motivations and di�culties behind authenticated key exchange
protocols dedicated to low-resource devices, and the methods used to analyse and formally
prove the security of such protocols. We also describe di�erent solutions which have been
proposed in the past. Finally we present the contributions of this thesis.
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4 Chapter 1 Introduction

1.1 Motivation

1.1.1 The Rise of Computing Machines and Cryptography

Symmetric and asymmetric cryptography. The �rst and still a paramount goal of cryptog-
raphy is to ensure con�dentiality of data. All along the history of mankind, di�erent techniques
have been devised to achieve this task. Some of them aimed at hiding the existence of the
data, others aimed at hiding the meaning of the data. Since the birth of modern cryptography
after World War II, new schemes have been conceived in order to ensure the con�dentiality of
data. Applying the Kerckho�s principle [Ker83a; Ker83b], these schemes are based on (simple)
mathematics operations and make use of one unique secret parameter: the encryption key.
The same secret key is used to encrypt the data and decrypt the ciphertext. This paradigm
is called symmetric cryptography. To the best of our knowledge, the �rst modern examples of
such schemes are Lucifer [Fei73] and DES [Nat99].

Data con�dentiality is a crucial need when a communication occurs over an insecure channel.
In such a context, prior to exchanging encrypted data, the secret key must be shared between
the two parties involved in the communication. The issue of transmitting a secret key over
an insecure channel has been given a solution with the seminal paper of Di�e and Hellman
(DH) [DH76] which founded the �eld of asymmetric cryptography. The basic idea consists
in using two keys instead of one: a public key which can be surrendered to anyone, and a
private key which must be known only to the legitimate party. Hence, any distant party B
willing to communicate with some party A can use A’s public key to send or compute a secret
value that A can yield in turn with its private key. Shortly after, Rivest, Shamir and Adleman
(RSA) [RSA78] presented an asymmetric encryption (and a signature) scheme. Nowadays, with
the sole purpose of key agreement (putting aside the question of authenticating the parties,
necessary to ensure that the secret key is shared only by legitimate parties), these asymmetric
schemes are extensively used in widely deployed protocols such as TLS 1.2 [DR08], TLS 1.3
[Res18], IKEv2 [KHN+14], SSH [YL06c; YL06a; YL06d; YL06b] to name a few.

Smaller, more pervasive computing devices. The need for and the development of mod-
ern cryptographic schemes has evolved with the �eld of computer science. The Colossus and
ENIAC machines, at the time of World War II, can be regarded as the �rst electronic, digital
computers. They opened the �rst era of computing: the mainframe computers owned and used
by governmental agencies or companies. Followed the era of mini and then personal computers
(with machines such as the Hewlett-Packard HP 3000, the R2E Micral, or the DEC PDP-8), where
the latter are owned and used by one person. With the invention of the �rst micro-processor
by Intel in 1971, the computers become smaller and faster. This opens the era of ubiquitous
computing characterised by the widespread use of small computer products, such as personal
digital assistants or smartphones [Kru09]. Following the prediction of Mark Weiser [Wei91] that
“the most profound technologies [...] weave themselves into the fabric of everyday life until they
are indistinguishable from it”, the rise of the Internet of Things (IoT) leads to the deployment of
more pervasive and also more constrained devices with respect to their capabilities.

It is expected that 125 billion connected objects be deployed by 2030 [IHS17]. They are nowa-
days used in various contexts, ranging from Wireless Sensor Networks (WSNs), Radio Frequency
Identi�cation (RFID) tags, smart cards, Controller Area Networks (CANs) for vehicular systems,
smart home, medical care (eHealth), up to industrial Internet of Things. Compared to standard
computing devices (e.g., personal computers, smartphones) these objects do not have the same
level regarding energy resource, computation power, and memory size. Consequently, they
cannot all e�ciently implement asymmetric schemes which imply an heavier circuitry (e.g.,
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modular exponentiations, operations on elliptic curve involving big numbers) than symmetric
functions (essentially based on simple arithmetic operations, and small look-up tables).

Constrained devices and security. Very concretely, newspapers or research results in the
academic �eld regularly show the security level that these constrained devices do (not) attain.
To mention only a few, Miller and Valasek [MV15] were able to mount a remote attack against
a Jeep Cherokee, which a�ects certain physical systems such as steering and braking. They
guessed a WiFi password used to protect the �rmware update mechanism of the multimedia
system, and exploited the fact that this system is connected to the vehicle’s Controller Area
Network which connects multiple electronic units used in the car’s functioning and driving.
Ronen, Shamir, Weingarten and O’Flynn [RSWO17] succeeded in taking over a ZigBee network,
and then to propagate a worm through the over-the-air update mechanism. They �rst retrieved
(through a side-channel attack) the static master symmetric key shared by all nodes of the ZigBee
network. Tierney [Tie18] has also shown how to compel a Z-Wave device to downgrade from
version S2 to S0, which allows exploiting a major weakness of that version. In version S0, the
network’s master symmetric key can be computed by an attacker merely by eavesdropping on
data exchanged when a node joins the Z-Wave network. Tierney has illustrated his attack on the
keyless Yale Conexis L1 smart lock. Halperin, Heydt-Benjamin, Ransford, Clark, Defend, Morgan,
Fu, Kohno and Maisel [HHR+08] analysed an implantable medical device that incorporates
pacemaking and de�brillation functions. Besides uncovering privacy issues (the authors got
access to unencrypted data related to the patient, such as name and diagnosis, stored at the
implanted device), they succeeded in exhausting the battery-powered device, and to replay a
command which triggers high voltage shocks (up to 138 V). These vulnerabilities pose a potential
denial-of-service risk and clearly endanger the patient’s life. Radcli�e [Rad11] has reversed
the encoding scheme used to “encrypt” the messages exchanged between an insulin pump
that delivers the proper level of insulin and the implanted wireless peripheral that estimates
the blood glucose. Changing the settings corresponding to a speci�c patient allows delivering
an incorrect amount of insulin, and plunging the patient into an hypoglycaemic state. Marin,
Singelée, Garcia, Chothia, Willems and Preneel [MSG+16] reverse-engineered the proprietary
communication protocol of an implantable de�brillator, and succeeded in compromising the
device’s availability by exhausting its battery. They also successfully replayed previous messages,
which purpose is to deliver electric shocks. Marin, Singelée, Yang, Verbauwhede and Preneel
[MSY+16] also reverse-engineered the proprietary communication protocol of an insulin pump,
and, in addition to retrieving private information related to the patient, were able to send
unauthorised commands to the insulin pump.

Highly likely, asymmetric schemes could enhance the security level of these devices, but, as
said, not all of the latter are able to implement such an heavy circuitry, due to their limited
resources.

A glimpse of implementation results. As an illustration let us consider some microcon-
trollers used by several IoT devices. We stress that these devices are not our target in this thesis.
The resources they bene�t correspond to an upper bound in regards to the very constrained
devices. Nonetheless we use these more gifted devices, which barely succeeds in implementing
e�ciently asymmetric schemes, to illustrate the di�culty to achieve the same goal on even
more constrained devices (for which we are unable to provide �gures, for obvious reasons).

In order to highlight the di�erence between symmetric and asymmetric cryptography, we
consider the implementation results of di�erent operations in these two �elds. Table 1.1 corre-
sponds to a selective summary. A strict comparison is not possible due to the intrinsic di�erences
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between symmetric and asymmetric cryptography. Rather we aim at highlighting the gap, with
regards to the implementation e�ciency on constrained devices, that separates these two types
of operations, which are commonly executed in key exchange protocols.

We start with the Atmel ATmega128L [Atm11] (running at 7.37 MHz frequency) which
equips the MICAz and MICA2 motes. A point multiplication on a 256-bit prime �eld elliptic
curve takes 1.28 seconds (second component in Table 1.1). This leads to an ECDH key exchange
which lasts 4.14 seconds [LWG14]. This �gure does not include any authentication step (e.g.,
a signature). On the Atmel ATmega2560 chip [Atm14] (at 16 MHz frequency), an ECDH key
exchange corresponding to a 255-bit prime �eld elliptic curve lasts 3.49 seconds [HS13]. The
Ed25519 signature [BDL+12] computation and veri�cation adds respectively 2.14 and 2.51 sec-
onds [HS13]. In order to get a full key exchange the session key derivation step must be added.
Nonetheless it involves usually only symmetric-key operations, hence it is much faster than
the signed ECDH key exchange. Therefore the computation time for such a full key exchange
on ATmega2560 lasts roughly 8.14 seconds (third component in Table 1.1). Furthermore, the
time needed to send and receive the key exchange messages must be also added. On a MSP430
microcontroller [Tex03] (running at 8 MHz) a simple RSA 1024 decryption needs 43,368,720
cycles, and lasts 5.42 seconds [GAB19] (�rst component in Table 1.1).

Table 1.1 – Selective comparison between symmetric (in blue) and asymmetric (in green) oper-
ations on constrained chips

TimeaModular exponentiation (cycles) (s)
RSA 1024 decryption [GAB19] 43,368,720 5.42

TimebPoint multiplication (cycles) (s)
256-bit prime �eld elliptic curve [LWG14] 9,420,788 1.28

Key exchange Energy (mJ)b Time (s)b
ECDH (Curve25519)-Ed25519 [HS13] - 8.14
ECDH-ECDSA (160-bit prime �eld) [MGSP08] 283.0 -
Kerberos (AES 128) [MGSP08] 14.4 -

Symmetric encryption Time
(cycles/byte)

Energy
(µJ/block)a Area (GE)

AES 128 [BRS+15; MPL+11; BRS+15] 132a 2.18 2400c

Speck 128/128 [BRS+15; BSS+13; BRS+15] 103a 1.44 1280d

PRESENT 80 [DCK+15; YKPH11] 1053b - 1030c

aMSP430
bATmega128(L)/ATmega2960
c0.18 µm
d0.13 µm

In comparison, the symmetric functions perform much better. On ATmega2560, encryp-
tion with the stream cipher Salsa20 [Ber08] requires 270 cycles/byte, and authentication with
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Poly1305 [Ber05] needs 177 cycles/byte [HS13].1 This corresponds respectively to 4320 and
2832 cycles to encrypt and authenticate a 16-byte block. In contrast, a point multiplication on
Curve25519 [Ber06] takes 22,791,579 cycles [HS13], and a point multiplication on a 160, 192
and 224-bit prime �eld elliptic curve needs respectively 6,276,630, 9,964,549, and 14,856,446
cycles [LWG14]. Regarding the implementation of lightweight block ciphers on ATmega128
[Atm11], we excerpt the following corresponding to AES 128 [Nat01], PRESENT 80 [BKL+07]
and Speck 64/96 [BSS+13] (64-bit block and 96-bit key) [DCK+15]. A size less than 128 bits for
the key size and the block size is not recommended in general, even though some deem that
shorter parameters are acceptable in the context of IoT. Here we mention these results because
a symmetric function can also be used as a building block for other purposes than encrypting
or authenticating data (e.g., generating a pseudo-random value). The operation corresponding
to key schedule, encryption and decryption in CBC mode of 128 bytes with AES, Speck and
PRESENT needs respectively 59,085, 59,612 and 245,853 cycles. Encryption only of 128 bits
in CTR mode with AES, Speck and PRESENT needs respectively 3175, 3251 and 15239 cycles.
With Speck 128/128, a basic encryption operation requires 143 cycles/byte [BSS+15], which,
for 16 bytes, corresponds to 2288 cycles. On a MSP430 microcontroller, encryption with AES
128 and Speck 128/128 takes respectively 132 and 103 cycles/byte (see fourth component in
Table 1.1). As one can see, symmetric operations are “lightning fast” [TPG15] compared to
asymmetric ones.

Furthermore, these devices are not only computing machines but also communicating ma-
chines. Both processes must be managed with limited energy resources. Let us consider two
key exchange protocols implemented on MICAz and TelosB [MEM] (which features the MSP430
microcontroller running at 4 MHz) motes [MGSP08]. The �rst protocol is an ECDH-ECDSA
scheme based on a 160-bit prime �eld elliptic curve. The second is the symmetric-key protocol
Kerberos [NYHR05] with AES 128. On MICAz, ECDH-ECDSA consumes 283 mJ whereas
Kerberos consumes 14.4 mJ (third component in Table 1.1). Hence, the symmetric-key protocol
Kerberos is 94.9% more energy e�cient than the asymmetric protocol ECDH-ECDSA. On TelosB,
ECDH-ECDSA and Kerberos consumes respectively 130.9 mJ and 12.64 mJ, which corresponds
to a 90.3% saving in favour of Kerberos. Moreover, the energy cost corresponding to compu-
tation and communication is distributed very di�erently depending on whether asymmetric
or symmetric operations are executed. On MICAz, the computation process consumes 4% of
the total energy cost for Kerberos and 83% for ECDH-ECDSA. A similar �gure is observed
on TelosB: 1% for Kerberos and 55% for ECDH-ECDSA. In contrast, on MSP430, encryption
with AES 128 and Speck 128/128 consumes respectively 2.18 and 1.44 µJ per block (fourth
component in Table 1.1).

More generally, e�cient asymmetric operations (ECC) perform 100 to 1,000 more slowly
than symmetric algorithms such as AES for instance, and this correlates with a 2 to 3 orders of
magnitude higher power consumption [EKP+07].

Better, faster, lighter. Regarding asymmetric schemes, a general trend aims at improving
the e�ciency of their implementation, and exploiting hardware enhancements. More powerful
chips and devices exist which perform better and are able to implement ECDH key exchange and
other asymmetric schemes. For instance, on the MSP430 microcontroller an ECDSA signature
on a 256-bit prime �eld elliptic curve can be computed in less than 1 second and veri�ed in less
than 2 seconds [LOL12]. However too much optimisation may yield vulnerabilities which allow
for side channel attacks [NCOS16]. Furthermore, the processing units, such as microcontrollers,

1In the calculation of the authentication tag, Hutter and Schwabe replace the usual encryption of the nonce
with the secret key itself, which is then unique per message to authenticate.



8 Chapter 1 Introduction

used in constrained devices have not increased their computational capabilities at the same
rate as microprocessors for personal computers or smartphones [MMDF+12]. Therefore, the
achievements may not be enough in order for very constrained devices to be able to implement
asymmetric schemes, even optimised. These devices equip sensors and actuators which, de-
spite (or because of) their very constrained resources (i.e., their low cost), are used in real-life
deployments for home automation security, remote keyless entry, security management of
infrastructures, and many other purposes that require establishing secure tunnels. In that
context, there is a persistent need for smaller size, lower computation, energy, and memory
resources devices, and lower production costs.

Moreover, the post-quantum era opens. Although threats emerge against some primitives
[KLLN16a; CNS17; KLLN16b], symmetric cryptography seems less vulnerable against quantum
computing so far. Regarding the “classic” asymmetric algorithms the assessment is straightfor-
ward: they are all broken in a post-quantum world [Sho97]. It is still uncertain if post-quantum
asymmetric algorithms more e�cient than the classic ones will be devised. Consequently,
considering using solely symmetric cryptography and its intrinsic lightweightness in order to
establish secure communications is relevant in the context of constrained devices.

1.1.2 The Need for Cryptographic Protocols E�cient on Constrained Devices

From lightweight cryptographic primitives... The development of symmetric ciphers
intended to be lightweight can likely be dated from the birth of the mobile telephony with
the A5/1 [BSW01] and A5/2 [BBK03] encryption stream ciphers in the late 1980s. Research on
this �eld has become more intensive since 2010 with the proposal of numerous ciphers, mostly
encryption and hash functions. Rather comprehensive surveys can be found in Biryukov and
Perrin [BP17], and Hatzivasilis, Fysarakis, Papaefstathiou and Manifavas [HFPM18]. Several
projects have been initiated in order to promote the design of e�cient, lightweight and secure
ciphers. For instance, the ECRYPT Stream Cipher Project (eSTREAM) [ECR08] organised
by the European ECRYPT network between 2005 and 2008, focuses on stream ciphers, and
includes a portfolio of functions intended to devices with highly restricted resources. The
CAESAR competition [Ber19] dedicated to authenticated encryption (AE) functions ended in
2019 with a set of ciphers intended to resource constrained environments. In 2019, NIST started
a Lightweight Cryptography competition [Nat19] which focuses on lightweight AE and hash
functions.

As illustrated by the aforementioned projects, most of the lightweight cryptographic functions
belong to the �eld of symmetric cryptography. Regarding lightweight asymmetric schemes,
most of the work aims at adapting existing schemes to make them functional on a low-resource
devices. Among the rare e�ective results, one can cite the Girault, Poupard and Stern [GPS06]
(GPS) authentication and signature scheme (also known as cryptoGPS) which is an adaptation
of the Schnorr scheme [Sch90], and targets as constrained devices as RFID tags. GPS has a
similar limitation as the Schnorr scheme related to the usage of precomputed “coupons” that
must be stored by the device. This narrows the number of GPS runs. Yet, a line of work aims
at overcoming this drawback through periodic reload of coupons, or on-the-tag regeneration
[HW08; NH09], as well as proposing improved variants of the protocol [GL04; CFR13].

... to lightweight cryptographic protocols. Establishing a secure tunnel between two
(low-resource) parties implies implementing a protocol. The latter builds on cryptographic
primitives in order to ensure several security properties (mutual authentication of the parties,
con�dentiality and authenticity of data). As illustrated in Section 1.1.1, a very constrained
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device is unable to implement asymmetric functions, or even a wide family of ciphers each one
providing distinct features (as TLS or IPsec for instance). Therefore current protocols intended
to constrained devices aim at overcoming this limitation with the two main principles: �rstly,
one master symmetric key is shared by two (or more) parties, and secondly, a few (possibly only
one) symmetric-key functions are used to ensure all functionalities and security properties.

Security

E�ciency
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symmetric
protocols

area of
expectations

Figure 1.1 – Protocols for constrained devices: current situation and expectations

The lack of suitable symmetric-key protocols seems to mimic the evolution of block ciphers
with respect to lightweight functions in the 1990s: it leads to many proprietary solutions which
security is questionable (e.g., [CS15; CFPR15]). Solely built on symmetric-key functions, these
protocols do not achieve the same level of security or “�exibility” provided by the protocols
that make use of asymmetric schemes (see Figure 1.1). In particular, since their security is based
on a static symmetric key, they lack in ensuring a fundamental property known as forward
secrecy [Gün90; DvW92]. This property is a very strong form of long-term security which,
informally, guarantees that future disclosures of some long-term secret keys do not compromise
past session keys.

As illustrated in Section 1.3, several protocols imply the use of a (short) counter which limits
the number of runs. Some protocols keep the ability to initiate a session for a speci�c party. For
instance, this possibility is attributed to an end-device that connects to a central server, but the
converse is not allowed. Therefore the server, which can only behave as responder, is unable to
restore a problematic connection with the end-device, and must wait for the initiator to detect
the issue and solve it. Meanwhile all valuable data sent by this end-device is lost. Furthermore,
an additional procedure independent to the regular protocol (e.g., a resynchronisation procedure)
or an extra functionality (e.g., a synchronised clock) is sometimes necessary in order to maintain
the protocol’s security. Such a requirement is not suitable to all constrained devices, and narrows
the types of devices that can implement the protocol. Overall, the current protocols dedicated
to constrained devices seemingly often trade security for e�ciency, and do not attain the same
security level as state-of-the-art protocols.
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1.2 Basics on Key Establishment Protocols

1.2.1 Types of Key Establishment Protocols

The purpose of a key establishment (or key exchange) protocol is to enable two parties (possibly
more) to share a secret value usually called a session key. In this section and in this thesis we
will consider two-party protocols possibly aided with a trusted third party. In order to yield a
secret key, the two parties share beforehand a common value. That can be a symmetric key or a
public key certi�cate. In the �rst case, con�dentiality of the symmetric key is necessary in order
to guarantee the security of the key establishment protocol. Knowledge of this symmetric key
allows an adversary to impersonate a legitimate party, and compute the secret value yielded
by the protocol run. In the second case, integrity of the certi�cate is required otherwise an
adversary could replace the certi�cate with one of her choice, which is similarly detrimental to
the protocol’s security.

The key establishment protocols can be broadly divided in two sets: key transport and key
agreement protocols. A key transport protocol is a key establishment scheme where one party
generates or obtains a session key, and then transfers it to the other party. A key agreement
protocol is a key establishment mechanism where the session key is a function of input by all
parties involved in the protocol run.

The two parties involved in a successful protocol run are said to be partners. The purpose of
the session key output by a run of the key establishment protocol is usually to establish a secure
tunnel between the two partners. This secure tunnel may then ensure con�dentiality, integrity
and authenticity of the data subsequently exchanged between the two parties. The �rst property
guarantees that data is available only to the two partners. The second property guarantees that
data has not been altered by an unauthorised entity. The third property guarantees the origin
of data.

A B
(K) (K)

m0−−−−−−−−−→
...

mi←−−−−−−−−−
sk ← KDF(K,m0, . . . ,mi)

{·}sk⇐=======⇒

pre-accept
phase


post-accept

phase

{

Figure 1.2 – Pre-accept and post-accept phases in a key establishment protocol. In this example,
the two parties share a symmetric key K .

A key establishment protocol can be divided into two phases: a pre-accept phase and a post-
accept phase. From the viewpoint of one party, the pre-accept phase ends when that party
deems to be actually communicating with its intended party, and that the session key can be
safely used to exchange data. This session key is used during the post-accept phase to securely
exchange data between the two parties (see Figure 1.2).
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1.2.2 Goals of Key Establishment Protocols

Most key establishment protocols aim at ensuring two main goals: authenticating the involved
parties, and sharing a fresh secret key. This translates into two corresponding security properties:
entity authentication and key indistinguishability. The �rst property aims at verifying that an
identity is as claimed. The second property aims at ensuring that the session key output by a
protocol run is indistinguishable from a value (of same size) drawn at random with the same
distribution. We call Authenticated Key Establishment (AKE) such protocols.

What separates the pre-accept and the post-accept phases is not necessarily the moment when
the session key is computed and used. In several key establishment protocols, this is the case:
the session key is used only during the pre-accept phase to set up the secure tunnel. Nonetheless,
there exist protocols with no clear separation between the key exchange phase and the use
of the session key. This is true in particular for the Transport Layer Security (TLS) protocol
in version 1.2 [DR08]. The session key is used to protect messages (called Finished) which
�nalise the key exchange phase (i.e., the pre-accept phase). Since these encrypted and MAC-ed
Finished messages provide a trivial way to distinguish the session key from a random value,
the security of TLS 1.2 cannot be proved based on indistinguishability of keys. Consequently,
Jager, Kohlar, Schäge and Schwenk [JKSS11] have proposed an alternative way to capture the
properties such a key establishment protocol is supposed to guarantee. The �rst property is
entity authentication, similar to that of AKE protocols. But instead of guaranteeing that the
session key is suitable to be used for any purpose, the second property ensures that the key
is suitable for a speci�c purpose which is to set up an authenticated and con�dential channel.
More precisely, in the Jager et al.’s security model (that they call Authenticated and Con�dential
Channel Establishment or ACCE), the second property corresponds to what the secure channel
itself is supposed to achieve (see Figure 1.3).

AKE
{

entity authentication
indistinguishability of keys

ACCE


entity authentication

channel security =

{
indistinguishability of ciphertexts
authenticity of plaintexts/ciphertexts

Figure 1.3 – The main properties of the AKE and ACCE security models

The variety of security models is not limited to the AKE and ACCE proposals. Multiple
models have been devised which are di�erentiated by the rules that limit or extend what the
adversary is allowed to perform (e.g., [BR94; BCK98; Sho; CK01; KOY03; Kra05; LLM07; CF12;
LSY+14]). These di�erent adversarial models allow capturing additional security properties such
as resistance to key-compromise impersonation attacks [BWJM97], and also forward secrecy.

1.3 Current Protocols for Constrained Devices

In this section, we review several symmetric protocols, including widely deployed ones, and
highlight their limitations. A rather comprehensive study on key exchange protocols can
be found in Boyd and Mathuria [BM03a], and also in Menezes, van Oorschot and Vanstone
[MVO96] (mostly in Chapter 12).
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1.3.1 Overview of the Protocols

Generic protocols. The AKEP1 and AKEP2 protocols described by Bellare and Rogaway
[BR94] are two e�cient lightweight AKE based on two static master keys. Hence they do not
provide forward secrecy. In both protocols, authentication of the parties is achieved by sending
a challenge (pseudo-random values rA, rB) from which the responder must compute a value
with one of the master keys (K ′). AKEP1 is a key transport protocol where the responder
B generates and sends to the initiator A a session key sk. AKEP2 (see Figure 1.4) is a key
agreement protocol where the session key (sk) is computed with the other master key (K) and
a pseudo-random value chosen by B.

A B
(K , K ′) (K , K ′)

rA−−−−−−−−−→
mB ← B‖A‖rA‖rB
τB ← MAC(K ′,mB)

mB , τB←−−−−−−−−−
mA ← A‖rB
τA ← MAC(K ′,mA)

mA, τA−−−−−−−−−→
sk ← KDF(K, rB) sk ← KDF(K, rB)

Figure 1.4 – The AKEP2 protocol

Dousti and Jalili [DJ14] describe a key agreement protocol, called FORSAKES, where the
two parties use of a shared master key (K), and exchange random values (rA, rB) to perform
the mutual authentication, and to compute the session key (sk). In order to provide forward
secrecy, the master key is periodically updated (using a one-way function H). Figure 1.5 depicts
the protocol.

The master key is updated regularly at each time interval. This implies a perfect time
synchronisation between the parties. Indeed, �rstly, all the operations involving both parties
must be done in the same time interval. Otherwise, the parties may use di�erent master keys,
which forbids from computing a shared session key. For instance, if the time interval falls due
after one party computes a MAC tag, and the other party veri�es it, then either party uses a
di�erent master key. Therefore the time interval must be large enough in order for the parties
be able to complete a whole protocol run. Secondly, the duration of the time interval must
exactly be equal to the duration of a protocol run. Otherwise, corrupting either parties once
they have accepted (but before the master key update) allows retrieving the current master key
used to compute the session key, hence breaking the forward secrecy. Achieving a perfect time
synchronisation may be quite complex (or even not possible) in any context, in particular with
constrained devices.

We also observe that the security model chosen by Dousti and Jalili does not allow revealing
the key ik (only sk) as this would allow to trivially win the security experiment based on
indistinguishability of the session keys.

The protocols described in the ISO/IEC 11770-2 standard [Int08] propose di�erent lightweight
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schemes built on symmetric-key functions. Some involve two parties, other require the assistance
of a third party (e.g., key server). But none provide forward secrecy.

A B
(K) (K)

mA ← A‖B‖tA‖rA
mA−−−−−−−−−→

sk, ik ← KDF(K, rA‖rB)
mB ← B‖A‖tB‖rA‖rB

τB ← MAC(ik,mB)
mB , τB←−−−−−−−−−

sk, ik ← KDF(K, rA‖rB)
m′A ← A‖B‖tA‖rA‖rB
τ ′A ← MAC(ik,m′A)

m′A, τ ′A−−−−−−−−−→
K ← H(K) K ← H(K)

Figure 1.5 – The FORSAKES protocol. tA and tB correspond to timestamps.

Computer networks. Kerberos v5 [NYHR05] is a key transport protocol that enables two
entities: a client A and a server B, to share a session key with the help of a trusted third party:
the authentication server S (see Figure 1.6). The latter shares a distinct static symmetric key
with A and B (respectively KA and KB). A new session key (sk) is shared as follows. Upon
request from A, S sends to A a fresh session key respectively encrypted under A’s and B’s
master key. Then A relays the encrypted session key to B, with additional data. The message
received byB fromA includes a validity time ` (encrypted by S) and a timestamp tA (encrypted
by A with the session key sk) in order to verify that the session key is not expired.

Based on static symmetric keys, Kerberos does not ensure forward secrecy. In addition,
the initiator A is allowed to reuse several times the same session key (as long as it does not
exceed the validity time speci�ed by S), which increases the extent of a session key disclosure.
Furthermore, the protocol implies a secure and synchronised clock (between A and B) in order
to not impair its security. Since it is based on symmetric cryptography, Hardjono [Har14]
proposes to use Kerberos as an IoT protocol.

The TLS 1.2 protocol [DR08] is a popular client-server protocol. The standard version is
based on asymmetric schemes (to wit RSA and (EC)DH), but there exists a version built only on
symmetric-key functions: the so-called pre-shared key mode (PSK) [ET05]. Figure 1.7 depicts
this variant. In that case, mutual authentication and session key computation are done with
the shared master key (K), and two pseudo-random values (rC , rS) exchanged throughout the
protocol run. Urien [Uri10] has proposed to apply TLS-PSK in order to protect transactions
done between a banking (EMV) card and a remote server.

Although TLS 1.3 [Res18] is not speci�cally dedicated to constrained devices, it also incorpo-
rates a PSK mode (see Figure 1.8). This mode essentially inherits from that of TLS 1.2 but with
a shorter message �ow, and di�erent symmetric functions to authenticate the messages and
derive multiple keys (in particular the handshake key hk, the �nished key fk, and the session
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key sk, used to protect respectively key exchange messages, the so-called Finished messages,
and the application messages). In TLS 1.3 each master key has a �nite lifetime but the latter can
be as high as seven days. Moreover, the di�erent master keys can be encrypted by the server
with the same symmetric key (called Session Ticket Encryption Key or STEK). Therefore the
disclosure of a master key or its encryption key STEK breaks forward secrecy. The same holds
regarding TLS 1.2.

A S B
(KA) (KA, KB) (KB)

A, B, rA−−−−−−−−−−−−−−−−−−→
ticketB

ENC(KA, sk‖rA‖`‖B)
←−−−−−−−−−−−−−−−−−−

ticketB , ENC(sk,A‖tA)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ENC(sk, tA)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 1.6 – The Kerberos v5 protocol. ticketB corresponds to ENC(KB, sk‖A‖`).

Smart cards. The SCP02 [Glo18] and SCP03 [Glo14] protocols are used to establish a secure
channel between a server or reader and a remote smart card (e.g., UICC/SIM card). They are
built on a single core function (respectively DES/3DES and AES). These protocols are widely
used to manage the content of SIM cards (update of secret parameters, install of applets). Their
security is also based on static symmetric keys. Although the static master keys can be updated
(the new master keys are protected with session keys computed with the current master keys),
this depends on the overall security policy of the service provider that deploys the cards, and
is not part of the SCP02 and SCP03 protocols per se. In addition, the session keys output by
these two protocols depend on a monotonically increasing counter respectively 15 and 24-bit
long which limits the number of runs. Furthermore, only the server can initiate a protocol run.
As we will see in Chapter 4, SCP02 enjoys more crippling features. Figure 1.9 depicts the key
establishment phase in SCP02.

The message �ow in SCP03 is similar to that of SCP02. The main di�erences are the symmetric
functions used to compute the messages and the session keys, and the fact that the sequence
counter in SCP03 is incremented at the beginning of a protocol run, whereas in SCP02, it is
incremented after a successful run.

Radio identi�cation (RFID). In the RFID �eld, several protocols based on a shared master
key propose to update the master key throughout the protocol run. For instance, Le, Burmester,
and de Medeiros [LBM07] propose O-FRAKE that aims at authenticating a tag to a server, and
at computing a session key in order to establish a secure channel (see Figure 1.10).

Only the server can initiate a protocol run. In order to ensure forward security, the master key
is updated throughout the protocol run. To deal with the possible desynchronisation between
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C S
(K) (K)

rC , cs-list−−−−−−−−−−−−−−−−−−−−−−−→
rS , cs

←−−−−−−−−−−−−−−−−−−−−−−−

ms← PRF(K, label1‖rC‖rS)
sk ← PRF(ms, label2‖rC‖rS)
finC ← PRF(ms, label3‖H(msgC))

psk-identity, AE(sk, finC)
−−−−−−−−−−−−−−−−−−−−−−−→

ms← PRF(K, label1‖rC‖rS)
sk ← PRF(ms, label2‖rC‖rS)

finS ← PRF(ms, label3‖H(msgS))

AE(sk, finS)
←−−−−−−−−−−−−−−−−−−−−−−−

Figure 1.7 – The key establishment in TLS 1.2 protocol in PSK mode. cs-list denotes the list
of cipher suites proposed by the client (C). msgC and msgS correspond to the
transcript of messages sent and received so far respectively by the client and the
server. Abusing the notation, AE denotes that the �nal messages are encrypted
and MAC-ed with the session key (sk).
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C S
(K) (K)

rC , cs-list−−−−−−−−−−−−−−−−−−−−−−−→

hk, fk ← KDF(K, rC , rS ,msgS)
finS ← HMAC(fk,H(msgS))

rS , cs, AE(hk, finS)
←−−−−−−−−−−−−−−−−−−−−−−−

hk, fk ← KDF(K, rC , rS ,mgC)
finC ← HMAC(fk,H(msgC))

AE(hk, finC)
−−−−−−−−−−−−−−−−−−−−−−−→

sk ← KDF(K, rC , rS ,msg
′
C) sk ← KDF(K, rC , rS ,msg

′
S)

Figure 1.8 – The key establishment in TLS 1.3 protocol in PSK mode. KDF denotes the compu-
tation through intermediary steps of several keys (hk, fk, sk) with the pre-shared
key K , and the HKDF function [KE10]. The underlying hash function for HMAC
and HKDF depends on the chosen ciphersuite cs. msgC , msg′C and msgS , msg′S
correspond to the transcript of messages received and computed so far respectively
by the client (C) and the server (S).



1

1.3 Current Protocols for Constrained Devices 17

C S
(K , K ′) (K , K ′)

psk-identity, rS←−−−−−−−−−−−−−−−−−−

authC ← MAC1(K, rS‖cnt‖rC)

cnt, rC , authC−−−−−−−−−−−−−−−−−−→

Kenc← KDF(K, cnt)
Kcmac← KDF(K ′, cnt)

authS ← MAC1(K, rC‖cnt‖rS)
τS ← MAC2(Kcmac, sec-level‖authS)

sec-level, authS , τS←−−−−−−−−−−−−−−−−−−

Kenc← KDF(K, cnt)
Kcmac← KDF(K ′, cnt)
cnt← cnt+ 1

Figure 1.9 – The key establishment in SCP02 protocol. The KDF, MAC1, and MAC2 functions
are based on DES and 3DES.
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the reader and the tag, the server keeps two consecutive values of the key: the current and
the previous one. The server is always at most one step ahead of the tag. Therefore, if the tag
does not update its master key, the server is able to catch up. But this implies that, in case of
desynchronisation, the server computes the session key from the updated master key, whereas
the tag still stores the previous value. Hence, an adversary that corrupts that tag can compute
the previous session key with respect to the server (i.e., the adversary breaks the forward
secrecy). In fact, since the server always keeps the previous value of the master key, together
with the current one, the scheme is intrinsically insecure in strong security models (i.e., mod-
els that allow the adversary to corrupt any of the partners, once the targeted party has accepted).

C S
(K) (K , K−1)

rS←−−−−−−−−−

v1, v2, v3, v4, v5 ← PRF(K, rC‖rS)
τC ← v2

rC , τC−−−−−−−−−→

v1, v2, v3, v4, v5 ← PRF(K, rC‖rS)
τS ← v3

τS←−−−−−−−−−

rC ← v1 K−1 ← K
K ← v4 K ← v4

sk ← v5 sk ← v5

Figure 1.10 – The O-FRAKE protocol. Once the server (S) sends τS , the master key K is
updated. The server keeps the previous master key K−1, in case the tag (C) does
not receive τS , and does not update its own version of the master key.

Wireless sensor networks (WSN). The area of WSN requires also lightweight, e�cient
AKE protocols, and has been subject to numerous proposals. One can cite in particular the
following ones. Perrig, Szewczyk, Tygar, Wen and Culler [PST+02] propose the SPINS protocol,
based on one encryption function. This protocol implies a central server. This server generates
and sends a fresh session key to pairwise sensors, encrypted with each sensor’s master key,
which is static and set before the sensors are deployed on the �eld (see Figure 1.11). SPINS
includes a procedure to broadcast authenticated messages. The �rst key k0 is transmitted to each
node authenticated with the node’s master key. Each subsequent authentication key belongs to
a one-way chain: ki = H(ki+1), i ≥ 0. The broadcast procedure is the following. At time ti,
each node knowns key ki. At time ti+1, the server broadcasts a message mi+1 MAC-ed with
key ki+1. Then, at time ti+1 + ∆ < ti+2, the server discloses ki+1. Each node can verify that
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ki = H(ki+1), and accept message mi+1. Key ki+1 expires at time ti+2. This protocol implies a
synchronised clock between the server and all the nodes, otherwise an attacker can compute
valid messages with key ki+1 although the key is expired.

In the same �eld, Park and Shin propose LiSP [PS04]. It is also based on a central server
which shares a di�erent master key with each sensor. The initial session key is sent to each
sensor encrypted with its static master key, and each subsequent session key is encrypted (with
no MAC) with the previous one. The master key must not be deleted because, as in SPINS, the
session keys belong to a chain computed with a one-way function H. Each key is computed
as the image of the next one: ki = H(ki+1). When a sensor receives ki+1 (encrypted with ki),
it checks if ki+1 is a pre-image of ki, and then replaces ki with ki+1. Therefore, the number
of session key update is limited by the length of the hash chain, and the master key is used to
periodically initialise a new chain. The protocol implies a (loosely) synchronised clock between
all the nodes and the central server in order to trigger the session key update but also to avoid
replay of messages (in particular the messages sent by the server to initiate a new session key
chain).

A S B
(KA) (KA, KB) (KB)

rA, A−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ke
AS ← MAC(KA, 1) Ke

BS ← MAC(KB, 1)
Ka
AS ← MAC(KA, 2) Ka

BS ← MAC(KB, 2)
Ke
SA ← MAC(KA, 3) Ke

SB ← MAC(KB, 3)
Ka
SA ← MAC(KA, 4) Ka

SB ← MAC(KB, 4)
τ ′B ← MAC(Ka

BS , rA‖rB‖A‖B)

A, B, rA, rB , τ ′B←−−−−−−−−−−−−−−−−−−−−−−−

sk ← PRG
cA ← ENC(Ke

SA, sk)
τA ← MAC(Ka

SA, rA‖B‖cA)
cB ← ENC(Ke

SB, sk)
τB ← MAC(Ka

SB, rB‖A‖cB)

cA, τA←−−−−−−−−−−−−−−−−−−−−−−−
cB , τB−−−−−−−−−−−−−−−−−−−−−−−→

Figure 1.11 – The key establishment in SPINS protocol

Smart home. Regarding the area of the smart home, several protocols make use of static
master keys. In order to share a master key, the master device in ZigBee [Zig14] merely sends
the key in clear to the joining device. Hence passively eavesdropping on this phase is enough
to undermine the security of a ZigBee network.
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The WPA2 protocol [IEE04] used in WiFi communications is a client-server type protocol
based on a shared static master key. From two 48-bit nonces (rC , rS) exchanged by the client
and the server, several session keys are derived (see Figure 1.12). They are used to protect
subsequent handshake messages (ek, ak), and application data (sk). WPA2 has been subject to
several attacks by Vanhoef and Piessens [VP17; VP18] that allows replaying and decrypting
encrypted messages, based on the ability to compel a device to reuse a session key whereas
encryption is done in CTR mode.

In Z-Wave S0 [Sil18] the master key is sent encrypted with a known (all zero) key. Hence
eavesdropping on the key exchange phase undermines the security of the network.

In Z-Wave S2 [Sig16] a static variant of the scheme ECDH scheme is used. Whereas the
master device generates a fresh ECDH share, the joining device uses always the same share.
The latter is printed on the joining device in the form of a QR code, or an hexadecimal string.
Authentication is done by comparing the ECDH share received by the master device and the
value printed on the joining device’s sticker. The secret key output by the ECDH exchange
encrypts the master key (known also to all other devices members of the same Z-Wave network),
and the ciphertext is sent to the joining device. Eventually, this master key is used to protect
the messages exchanged between the devices.

We observe that the authentication of the joining device relies upon the integrity of its sticker.
If an attacker succeeds in replacing the sticker with one of her choice (corresponding to an
ECDH public value chosen by her), then she can make a proper ECDH key exchange with
the master device, and consequently receive the network’s master key. The legitimate user
deems the authentication is valid since the received ECDH value is equal to the (fake) sticker
on the joining device. Even if the legitimate user repeats the pairing procedure with his new
device (which was unable to receive the master key during the Man-in-the-Middle attack), the
same master key is sent to the latter. Hence, this scenario allows the attacker to decrypt all
subsequent application messages exchanged between the legitimate devices, and to transmit
valid messages.

As one can see, on the one end, Z-Wave S2 tries to enhance the security through asymmetric
cryptography, but, on the other hand, the protocol does not make use of all the properties
enabled by the public key schemes due to the constrained resources of the Z-Wave devices (i.e.,
use of a static ECDH share, no forward secrecy, no proper entity authentication).

Tierney [Tie18] has also shown how to compel a Z-Wave device to downgrade from version
S2 to S0, which impairs the security.

Mobile telephony. In mobile telephony, the Universal Mobile Telecommunications System
(UMTS)[3rda] and Long Term Evolution (LTE) [3rdb] system are based on static master keys
shared between the user’s SIM card and a back-end server. From these static master keys (and
random values exchanged throughout the protocol run), all the session keys are computed. The
number of sessions is bounded by a 48-bit counter.

Controller area networks (CAN). In the �eld of the automotive security, several protocols
have been proposed based on symmetric-key functions (e.g., [VHSV11; GMVV12; BSNRN14;
NR16; VBMP17]). They aim at authenticating the messages exchanged by vehicle control units
in order to command sensitive elements of the vehicle (e.g., brake, steering). For instance, among
the latest proposals, Radu and Garcia [RG16] describe LeiA where each session key is computed
from the shared, static master key, and a (synchronised) counter. Rather than an interactive key
agreement protocol, LeiA includes an extra procedure in order for the parties to resynchronise
if needed.
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C S
(K) (K)

cnt, psk-identity, rS←−−−−−−−−−−−−−−−−

ek, ak, sk ← PRF(K, rC‖rS)
τC ← MAC(ak, cnt‖rC)

cnt, rC , τC−−−−−−−−−−−−−−−−→

ek, ak, sk ← PRF(K, rC‖rS)
cS ← ENC(ek, gk)

τS ← MAC(ak, (cnt+ 1)‖rS‖cS)

cnt+ 1, rS , cS , τS←−−−−−−−−−−−−−−−−

τ ′C ← MAC(ak, cnt+ 1)

cnt+ 1, τ ′C−−−−−−−−−−−−−−−−→

cnt← cnt+ 2 cnt← cnt+ 2

Figure 1.12 – The key establishment in WPA2 protocol. cnt is a global counter related to the
master key K . gk is a group key sent by the server.
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Internet of Things. Regarding the IoT �eld, the following protocols are widely deployed or
strongly promoted. They all build their security on symmetric-key functions, and make use of a
static and unique (per end-device) root key shared between the end-device and the back-end
network.

Sigfox [Sig17b; Sig17a] is a communication and security protocol dedicated to long-range,
low-power devices (LPWAN). Each end-device connects to a central server. The data is pro-
tected with the same static symmetric keys, used during the whole end-device’s lifespan (Sigfox
proposes no key exchange procedure).

LoRaWAN 1.0 [LoR18a] and 1.1 [Sor17] are two versions of a protocol that aims at securing
the communication between end-devices with low computational and energy resources (e.g.,
sensor, actuator) and a back-end server. The session keys are derived from the end-device’s root
keys. As all the aforementioned protocols, these do not provide forward secrecy. In addition,
due to the short size of the parameters (pseudo-random values or counters), the number of
protocol runs is bounded. Furthermore, only the end-device (but not the central server) can
initiate a session. In Chapter 3, we look in depth at these protocols and show that they su�er
from several weaknesses that lead to likely practical attacks.

Contrary to the previous technologies, Narrowband IoT (NB-IoT), enhanced Machine-Type
Communication (eMTC), Extended Coverage GSM IoT (EC-GSM-IoT) are cellular technolo-
gies. eMTC provides enhancements to the Long Term Evolution (LTE/4G) technology for
machine type communications. NB-IoT is also based on LTE, whereas EC-GSM-IoT is based
on GSM/EDGE technologies and dedicated to constrained end-devices. These technologies
aims at decreasing the end-device complexity (hence its cost), power consumption, extending
autonomy, and increasing coverage [GSM16]. The security of all these systems relies on the
underlying technology (GSM, EDGE, LTE), hence on a static symmetric root key known to a
central authority, likely the telecom operator. They inherit the intrinsic security limitations of
the symmetric-key schemes they are built on.

1.3.2 The Importance of Being Proved

Despite the great value of the paradigm of provable security, only a few of the protocols described
in Section 1.3.1 have been formally proved. Furthermore, the security models used do not grant
the adversary the same powers, hence the resulting proof are not equally meaningful.

Thus, in their proof for UMTS and LTE, Alt et al. [AFM+16] do not allow any server corruption.
Furthermore, they allow the adversary to get either one or the other, but not both master keys
needed to compute the session keys.

Radu and Garcia [RG16] prove their protocol secure in the Dolev-Yao model [DY81]. They do
not allow any party corruption, and their protocol does not provide forward secrecy either.

In the security model of Dousti and Jalili [DJ14], the adversary has access to queries that
allow registering new parties, sending data to some party, corrupting a party, and getting the
session state (which includes the session keys, and public values such as the session identi�er –
exchanged in clear throughout the protocol run –, the partner identi�er, the party’s role, and the
time when the session is initiated). More signi�cantly, Dousti and Jalili de�ne security based on
the session key indistinguishability, but do not consider entity authentication. In addition, their
notion of “freshness” (used to de�ne the characteristics of the security experiment) demands
that the targeted party have an actual partner (rather than demanding only that the targeted
party accept with some intended partner). Furthermore, corruption of the targeted party or
its intended partner is not allowed before both have computed the session keys, in contrast
to stronger models where the adversary can corrupt either of these two parties as soon as the
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targeted party accepts. More important, it is assumed a perfect time synchronisation, and a
simultaneous and automatic update of the master keys at the two intended partners (hence the
adversary is forbidden from attempting to desynchronise the parties by interacting with them).
The update is made at regular time intervals. We observe that, in their experiment, such a
duration is not de�ned in relation to the duration of a protocol run. In particular, if the time limit
exceeds the duration of a session, then the adversary can trivially win the security experiment
(the adversary issues a Corrupt-query after the session keys are computed but before the master
key is updated, and recomputes the session keys).

In the model used by Van Le et al. [LBM07], corrupting the server is not allowed, and
corruption of the tag is possible only once both parties have accepted.

Despite the fact that these protocols aim at being fully functional on constrained devices,
they require a careful cryptographic analysis against strong threat models. Moreover, some of
these protocols involve more than two parties. Hence, their security model must also capture
the interleaved operations that result from this complexity of interactions.

1.3.3 Selective Summary

As a summary, Table 1.2 compares the protocols presented in Section 1.3.1 with respect to
several signi�cant criteria.

“Security”. A check-mark (3) indicates the existence of a security proof, and is followed
by the corresponding reference. On the contrary, if references follow a cross-mark (7), they
correspond to attacks against the protocol. Note that each proof may correspond to di�erent
settings (computational, symbolic), and security models. A check-mark followed by a cross-mark
indicates the existence of both a security proof and attacks.2 This is the case for UMTS, LTE,
and WPA2.

Regarding SCP03, despite the lack of a security proof for the protocol, Sabt and Traoré [ST16]
have provided a security proof of the underlying con�dentiality and integrity algorithms.

Despite the proof provided by Alt, Fouque, Macario-Rat, Onete and Richard [AFM+16] on the
key establishment protocol of UMTS and LTE, there exist attacks against UMTS (e.g., [MW04;
ZF05; ASS09]) and LTE (e.g., [TM12; HC14; RKHP19]). These attacks are either based on stronger
powers granted to the adversary than that of Alt et al., or exploit the possible interworking
between di�erent technologies (e.g., UMTS and Global System for Mobile Communication –
GSM), or target the (post-accept) secure channel.

“PFS”. It indicates if the protocol guarantees forward secrecy. We stress that, in that case,
we do consider a “strong” security model to assess if that property is indeed provided by the
considered protocol. Indeed, forward secrecy is of paramount importance in regards to the
security level we want to meet. Hence we use the same criterion to compare the protocols
(concretely, we consider an adversary that can corrupt the targeted party and its intended
partner as soon as the targeted party accepts).

“#msg”. It gives the number of messages exchanged during a correct protocol run.

“#ses”. It gives the number of possible sessions. The symbol “∞” indicates that the protocol
allows virtually an unlimited number of runs.

Regarding WPA2 [IEE04], the session keys computation is based on two 48-bit pseudo-random
values. Hence our choice of

√
296 for the number of sessions before the session keys repeat (in

2We do not claim to provide an exhaustive list of references.
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presence of a passive adversary).
Likewise, despite the fact that LoRaWAN 1.0 [LoR18a] does not limit the number of sessions,

collisions occur on the session keys with high probability after
√

240 key exchanges (in presence
of a passive adversary).

Regarding LoRaWAN 1.1 [Sor17], the parameter j is implementation-dependent.3

“I/R”. It indicates if any (type of) party can be initiator or responder of a session. A check-
mark denotes the a�rmative whereas a cross-mark denotes the opposite. For instance, AKEP1
allows any party to initiate a session. On the contrary, only the server can initiate an SCP02
session (and only a smart card can respond to it).

“P2P”. It indicates if the key establishment is point-to-point between the two intended
partners. A cross-mark denotes that a third party (e.g., key server) is required.

“Sync”. It indicates if an extra procedure or functionality (in addition to the key establishment
procedure) is needed in order for the parties to guarantee some form of synchronisation. A
“yes” answer implies a supplementary burden (e.g., in terms of computation, implementation
surface, energy).

3According to us, it is likely that j = 1, as explained in Chapter 3.
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Table 1.2 – Comparison of several key exchange protocols (all but one) in the symmetric-key
setting

Protocol Security PFS #msg #ses I/R P2P Sync
AKEP1,
AKEP2
[BR94]

3
[BR94] 7 3 ∞ 3 3 no

ISO/IEC
11770-2
[Int08]

7
[CC04] [MS08]
[CM08] [CH14]

7 1-5 ∞ 3

3
(mech. 1-6)

7
(mech. 7-13)

no

FORSAKES
[DJ14] 3 3 3 ∞ 3 3 yes

Kerberos v5
[NYHR05]

3
[BCJ+06] [BK07]

[BJST08]
7 4 ∞ 7 7 yes

TLS 1.2 PSK
[ET05]

3
[LSY+14] 7 4 ∞ 7 3 no

TLS 1.3 PSK
[Res18]

3
[CHH+17] [DFK+17]

[PS18] [ABF+19]
7 3 ∞ 7 3 no

SCP02
[Glo18]

7
[ST16]

Chapter 4
7 3

215

(per master
key)

7 3 no

SCP03
[Glo14]

3
[ST16] 7 3

224

(per master
key)

7 3 no

O-FRAKE
[LBM07]

3
[LBM07] 7 3 ∞ 7 3 no

SPINS
[PST+02] 7 7 4 ∞ 3 7 yes

LiSP
[PS04] 7 7 1 ∞ 3 7 no

ZigBee
[Zig14] 7 7 4 ∞ 7 7 no

WPA2
[IEE04]

3 7
[HSD+05] [VP16]

[VP17] [VP18]
7 4 < 248 7 3 no

Z-Wave S0
[Sil18] 7 7 8 ∞ 7 7 no

Z-Wave S2
[Sig16]

7
[Tie18]

Section 1.3.1
7 16 ∞ 7 7 no

UMTS
[3rda]

3 7
[AFM+16] [MW04]

[ZF05] [ASS09]
7 2× 7 248 7 7 yes

LTE
[3rdb]

3 7
[AFM+16] [TM12]
[HC14] [RKHP19]

7 2× 7 248 7 7 yes

LeiA
[RG16]

3
[RG16] 7 0 256 3 3 yes

LoRaWAN 1.0
[LoR18a]

7
Chapter 3 7 2 < 220 7 3 no

LoRaWAN 1.1
[Sor17]

3
Chapter 5 7 ≥ 4 min(j216, 224) 7 3 no
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1.4 Contributions of this Thesis

Our contributions are threefold:

• We analyse existing symmetric-key protocols (including widely deployed ones) and
show that they su�er from weaknesses that allow implementing likely practical attacks.
As a concrete demonstration we provide the results of a successful attack done in an
experimental setting against smart cards implementing one of the analysed protocols.

• We devise suitable security models that we subsequently use to analyse two symmetric-
key protocols, including one that we have conceived.

• We present two- and three-party authenticated key exchange protocols in the symmetric-
key setting that provide stronger security properties than the existing protocols. The
additional properties and functionality that we obtain include the essential forward secrecy
property, and session resumption. The latter functionality is particularly advantageous
for low-resource end-devices with constrained capabilities in terms of communication
and computation.

The papers accepted in conferences (and, for most of them, already presented) during this
thesis are the following:

[ACF19] Gildas Avoine, Sébastien Canard, and Loïc Ferreira. IoT-Friendly AKE: Forward Se-
crecy and Session ResumptionMeet Symmetric-Key Cryptography. In: ESORICS 2019,
Part II. Ed. by Kazue Sako, Steve Schneider, and Peter Y. A. Ryan. Vol. 11736.
LNCS. Springer, Heidelberg, Sept. 2019, pp. 463–483.

[ACF20] G. Avoine, S. Canard, and L. Ferreira. Symmetric-key Authenticated Key Exchange
(SAKE) with Perfect Forward Secrecy. In: CT-RSA. (To appear). 2020.

[AF18a] Gildas Avoine and Loïc Ferreira. “Attacking GlobalPlatform SCP02-compliant
Smart Cards Using a Padding Oracle Attack”. In: IACR TCHES 2018.2 (2018).
https://tches.iacr.org/index.php/TCHES/article/view/878,
pp. 149–170. issn: 2569-2925.

[AF18b] Gildas Avoine and Loïc Ferreira. Rescuing LoRaWAN 1.0. In: FC 2018. Ed. by
Sarah Meiklejohn and Kazue Sako. Vol. 10957. LNCS. Springer, Heidelberg, 2018,
pp. 253–271.

[CF19] Sébastien Canard and Loïc Ferreira. Extended 3-Party ACCE and Application to
LoRaWAN 1.1. In: AFRICACRYPT 19. Ed. by Johannes Buchmann, Abderrahmane
Nitaj, and Tajjeeddine Rachidi. Vol. 11627. LNCS. Springer, Heidelberg, July 2019,
pp. 21–38.

1.4.1 Cryptographic Analysis of Existing Protocols [AF18b; AF18a; CF19]

As mentioned in Section 1.1, existing symmetric-key protocols do not provide as strong security
properties as protocols based on asymmetric schemes. We enlighten this fact through the
analysis of two protocols currently deployed worldwide, and implemented in a numerous
amount of devices.

https://tches.iacr.org/index.php/TCHES/article/view/878
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Analysis of LoRaWAN. The �rst protocol is LoRaWAN. This IoT protocol dedicated to long-
range, low-power wide area networks (LPWAN) aims at securing communications between
connected objects and a back-end network. These objects are intended to provide various
types of services from telemetry measurement, remote device activation, site surveillance and
intrusion detection, geolocation of valuable assets, up to management of networks that deliver
sensitive resources (e.g., water, energy).

We provide an extensive analysis of the protocol, and show that it su�ers from several
weaknesses. We introduce several attacks, including likely practical ones, that breach the
network availability, data integrity, and data con�dentiality, and present two di�erent attack
scenarios. Based on the inner weaknesses of the protocol, these attacks do not lean on potential
implementation or hardware bugs. Likewise they do not entail a physical access to the targeted
equipment (for one of the attack settings), and are independent from the means used to physically
protect secret parameters. Finally we propose practical recommendations aiming at thwarting
the attacks, while at the same time being compliant with the speci�cation, and keeping the
interoperability between patched and unmodi�ed equipment.

The version 1.1 aims at correcting the �aws that impair the previous version. We describe
several weaknesses that still a�ect this latest version, and present recommendations in order to
mitigate these �aws.

LoRa Alliance, in charge of developing and promoting the LoRaWAN speci�cation, has been
informed of the attacks described in our paper [AF18b]. A document recommending changes to
be implemented in LoRaWAN 1.0 has been published [LoR18b], and the subsequent version
LoRaWAN 1.1 incorporates also some suggestions yielded by our analysis.

Analysis of SCP02. The second security protocol is SCP02. Implemented in particular in
smart cards, this protocol is deployed by transport companies, mobile network operators
(UICC/SIM cards), and in the banking world to securely transmit sensitive data.

We show how to perform a padding oracle attack against the SCP02 protocol. This attack
allows to e�ciently retrieve data protected within the secure channel. Furthermore, we have
implemented the attack in an experimental setting, and we present the results of our experiments
done with 10 models of smart cards produced by six di�erent card manufacturers. This shows
that the attack is fully practical in our experimental setting. To the best of our knowledge, this
is the �rst successful attack against the SCP02 protocol.

GlobalPlatform has been informed of our analysis. While our paper [AF18a] was under
submission, GlobalPlatform has decided to deprecate the SCP02 protocol. Moreover, the manu-
facturers of the tested smart cards have received the technical details of our work prior to being
presented at the conference (between October 2017 and March 2018).

These results have been presented in the following international conferences: Financial
Cryptography and Data Security (FC, 2018), Cryptographic Hardware and Embedded Systems
(CHES, 2018) and Africacrypt (2019). They are detailed in Chapters 3 and 4.

1.4.2 Design of Security Models [CF19; ACF19]

In order to use a provable security approach, we de�ne two security models that are subsequently
applied to analyse the security of two protocols, among which one that we have devised.

The 3-AKE security model. The �rst model, that we call 3-AKE, aims at analysing the secu-
rity of 3-party authenticated key exchange protocols (AKE). This model captures in particular
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the forward secrecy property. In Chapter 7, we present a generic 3-party AKE and, based on it, a
concrete instantiation, both in the symmetric-key setting. We use the 3-AKE model to formally
prove the security of these two schemes.

The 3-ACCE security model. The second security model is based on the ACCE paradigm
devised by Jager, Kohlar, Schäge and Schwenk [JKSS11] to cope with the di�culty in proving
the security of a protocol based on the indistinguishability of the session keys, when the latter
are used during the key exchange phase. Our model allows analysing 3-party protocols which
goal is to set up secure channels, hence its name 3-ACCE.

First, we use this framework to prove the security of a generic LoRaWAN-like protocol. Then
we present an adapted version of LoRaWAN 1.1 with stronger security properties, modi�ed in
order to mitigate the vulnerabilities described in Chapter 3. Applying the �rst result, we formally
prove the security of this protocol in our model, and describe how to concretely instantiate it.

These results have been presented during the following international conferences: Africacrypt
(2019) and European Symposium on Research in Computer Security (ESORICS, 2019). They are
described in greater detail in Chapter 5.

1.4.3 Design of Forward Secret Symmetric-key Protocols [ACF20; ACF19]

As witnessed by the protocols described in Section 1.3, achieving both e�ciency and security is a
non-trivial task. Contrary to all the aforementioned protocols, we aim at describing lightweight
protocols that are simple to deploy, and do not require complex practical requirements (e.g.,
time synchronisation between principals). Consequently, we propose two authenticated key
exchange protocols that are built on symmetric-key functions solely, and ensure forward secrecy.
These protocols do not make trade-o� between e�ciency and security, and are analysed in a
strong security model.

The SAKE protocol. First, we describe a two-party symmetric-key protocol that we call
SAKE. Based on a shrewd synchronisation mechanism and a key evolving scheme, the protocol
ensures forward secrecy.

The 3-AKE protocol. Then, we describe a generic 3-party authenticated key exchange pro-
tocol dedicated to IoT, that we call 3-AKE. It involves a (wireless) end-device, a server, and
a trusted third party used as authentication and key server. Solely based on symmetric-key
functions (regarding the computations done between the end-device and the back-end net-
work), this protocol guarantees also forward secrecy. In addition, it enables session resumption
without impairing security (in particular, forward secrecy is maintained). This allows saving
communication and computation cost, and is advantageous for low-resource end-devices.

We present a concrete instantiation of the 3-AKE protocol based on the two-party protocol
SAKE.

The 3-party key exchange protocol can be applied in a real-case IoT deployment (i.e., involving
numerous end-devices and servers) such that the latter inherits from the security properties of
the protocol. This results in the ability for a (mobile) end-device to securely switch from one
server to another back and forth at a reduced (communication and computation) cost, without
compromising the sessions established with other servers.
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These results have been presented at the European Symposium on Research in Computer
Security (ESORICS, 2019). They are detailed in Chapters 6 and 7.
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Preliminaries and De�nitions 2
In this chapter we present the basic cryptographic de�nitions and building blocks we

need in order to elaborate more complex mechanisms, and to formally analyse the security
of protocols in the subsequent chapters.
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2.1 Notation
7F A byte (equal to the hexadecimal value 0x7F)
00i Byte string made of i times the byte 00
var (4) A variable var which is 4-byte long
|x| Absolute value of x
x‖y Concatenation of bytes or string of bytes x and y
bi|bi+1 Concatenation of bits bi and bi+1

x
$←− E Value x chosen uniformly at random in the set E

y ← F (x) Variable y to which the value F (x) is attributed
{0, 1}∗ Set of all binary strings
{0, 1}n Set of all n-bit strings
ENC−1 Inverse function of function ENC
Pr[A] Probability of event A

2.2 Preliminaries

In this section, we recall the de�nitions of the main security notions we use in Chapters 5, 6
and 7. The security de�nition of a pseudo-random function and pseudo-random permutation
is taken from Bellare, Desai, Jokipii, and Rogaway [BDJR97], and that of a MAC strongly
unforgeable under chosen-message attacks from Bellare and Namprempre [BN08]. We take
the de�nition of a stateful authenticated encryption scheme (sAE) from Bellare, Kohno and
Namprempre [BKN02] using the notation of Krawczyk, Paterson and Wee [KPW13]. We recall
also the de�nition of matching conversations initially proposed by Bellare and Rogaway [BR94],
and modi�ed by Jager, Kohlar, Schäge, and Schwenk [JKSS11].

2.2.1 Matching Conversations

Let Ti,s be the sequence of all (valid) messages sent and received by an instance πsi in chrono-
logical order. Let `(Ti,s) be the number of messages in Ti,s. For two transcripts Ti,s and Tj,t, we
say that Ti,s is a pre�x of Tj,t if `(Ti,s) ≥ 1, and the messages in Ti,s are identical to the �rst
`(Ti,s) messages of Tj,t.

De�nition 2.1 (Matching Conversations). We say that πsi has a matching conversation to πtj , if

• πsi has sent all protocol messages and Tj,t is a pre�x of Ti,s, or

• πtj has sent all protocol messages and Ti,s = Tj,t.

Remark. De�ning matching conversations as per De�nition 2.1 means that we use a post-
speci�ed session identi�er equal to the �rst but not necessarily all messages of the protocol
analysed. As explained by Jager et al., this asymmetry is necessary, due to the fact that protocol
messages are sent sequentially. Therefore one of the two parties has to accept without knowing
if the other party has received all messages. Indeed an adversary is always able to drop the last
message in a protocol run.

2.2.2 Pseudo-random Function

Let k be the security parameter. A pseudo-random function (PRF) F is a deterministic algorithm
which given a key K ∈ {0, 1}k and a bit string x ∈ {0, 1}∗ outputs a string y = F (K,x) ∈
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{0, 1}γ (with γ being polynomial in k). Let Func be the set of all functions of domain {0, 1}∗
and range {0, 1}γ . The security of a PRF is de�ned with the following experiment between a
challenger and an adversary A:

1. The challenger samples K $←− {0, 1}k , G $←− Func, and b $←− {0, 1} uniformly at random.

2. The adversary may adaptively query values x to the challenger. The challenger replies to
each query with either y = F (K,x) if b = 1, or y = G(x) if b = 0.

3. Finally, the adversary outputs its guess b′ ∈ {0, 1} of b.

The adversary’s advantage is de�ned as

advprfF (A) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
De�nition 2.2 (Secure PRF). A function F : {0, 1}k × {0, 1}∗ → {0, 1}γ is said to be a secure
pseudo-random function (PRF) if, for all probabilistic polynomial time adversary A, advprfF (A)
is a negligible function in k.

2.2.3 Pseudo-random Permutation

A pseudo-random permutation (PRP) F is a deterministic algorithm which given a key K ∈
{0, 1}k, where k is the security parameter, and a bit string x ∈ {0, 1}γ outputs a string
y = F (K,x) ∈ {0, 1}γ (with γ being polynomial in k). Let Perm be the set of all permutations
on {0, 1}γ . The security of a PRP is de�ned with the following experiment between a challenger
and an adversary A:

1. The challenger samples K $←− {0, 1}k, G $←− Perm, b $←− {0, 1} uniformly at random.

2. The adversary may adaptively query values x to the challenger. The challenger replies to
each query with either y = F (K,x) if b = 1, or y = G(x) if b = 0.

3. Finally, the adversary outputs its guess b′ ∈ {0, 1} of b.

The adversary’s advantage is de�ned as

advprpF (A) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
De�nition 2.3 (Secure PRP). A function F : {0, 1}k × {0, 1}γ → {0, 1}γ is said to be a se-
cure pseudo-random permutation (PRP) if, for all probabilistic polynomial time adversary A,
advprpF (A) is a negligible function in k.

2.2.4 Message Authentication Code

A message authentication code (MAC) consists of three algorithms Tag = (Tag.Gen,Tag.MAC,
Tag.Vrf). The probabilistic algorithm Tag.Gen samples a key K from the set {0, 1}k: K ←
Tag.Gen(). The algorithm Tag.MAC takes as input a key K ∈ {0, 1}k and a message m ∈
{0, 1}∗, and returns a tag τ ∈ {0, 1}γ (with γ being polynomial in k). The veri�cation algorithm
Tag.Vrf takes as input the key K , a message m, and a candidate tag τ for m. It outputs true if
τ is a valid tag on message m with respect to K . Otherwise, it returns false.
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We require that a MAC be correct. That is, for all K ∈ {0, 1}k and for all m ∈ {0, 1}∗, we
have that Tag.Vrf(K,m,Tag.MAC(K,m)) = true.

The notion of strong unforgeability under chosen-message attacks (SUF-CMA) for a MAC
Tag = (Tag.Gen,Tag.MAC,Tag.Vrf) is de�ned with the following experiment between a
challenger and an adversary A:

1. The challenger samples K ← Tag.Gen(), and sets S ← ∅.

2. The adversary may adaptively query values m to the challenger. The challenger replies
to each query with τ = Tag.MAC(K,m) and records (m, τ): S ← S ∪ {(m, τ)}.
In addition, the adversary may adaptively query values (m′, τ ′) to the challenger. The
challenger replies to each query with Tag.Vrf(K,m′, τ ′).

3. Finally, the adversary sends (m∗, τ∗) to the challenger.

The adversary’s advantage is de�ned as

advsuf-cma
Tag (A) = Pr[Tag.Vrf(K,m∗, τ∗) = true ∧ (m∗, τ∗) /∈ S].

De�nition 2.4 (SUF-CMA). Amessage authentication codeTag = (Tag.Gen,Tag.MAC,Tag.Vrf)
with Tag.MAC: {0, 1}k × {0, 1}∗ → {0, 1}γ is said to be strongly unforgeable under chosen-
message attacks (SUF-CMA) if, for all probabilistic polynomial time adversary A, advsuf-cma

Tag (A)
is a negligible function in k.

2.2.5 Stateful Authenticated Encryption

We present two �avours for the de�nition of a stateful authenticated encryption scheme. The
�rst one guarantees that the encryption scheme “hides” the plaintext such that it is not possible
to distinguish the ciphertext corresponding to a given plaintext, and the ciphertext correspond-
ing to a random value (real-or-random indistinguishability or RoR). The second guarantees that
it is not possible to distinguish two di�erent plaintexts based on their corresponding cipher-
texts (left-or-right indistinguishability or LoR). Bellare et al. [BDJR97] have shown that both
notions are equivalent. We use either de�nition to match with the speci�c security experiment
considered in the proofs given in Chapters 5 and 7.

The di�erence between both de�nitions lies in the description of the Encrypt oracle. Fig-
ures 2.1 and 2.2 describe respectively the RoR and LoR variants when the encryption function is
a stateful authenticated encryption scheme which we de�ne below.

A stateful authenticated encryption scheme (sAE) consists of the following four algorithms
StAE = (StAE.Gen, StAE.Init, StAE.Enc,StAE.Dec). The probabilistic algorithm StAE.Gen
samples a keyK from the set {0, 1}k: K ← StAE.Gen(). The deterministic algorithm StAE.Init
initialises two states ste and std respectively for encryption and decryption: (ste, std) ←
StAE.Init(). The encryption algorithm, given as (C, st′e)← StAE.Enc(K,H,M, ste), takes as
input a secret key K ∈ {0, 1}k, a header data H ∈ {0, 1}∗, a plaintext M , and the current en-
cryption state ste ∈ {0, 1}∗. It outputs an updated state st′e, and either a ciphertext C ∈ {0, 1}∗
or an error symbol⊥. The decryption algorithm, given as (M, st′d)← StAE.Dec(K,H,C, std),
takes as input a key K , a header data H , a ciphertext C , and the current decryption state std. It
outputs an updated state st′d, and either a value M , which is the message encrypted in C , or
an error symbol ⊥. The security of an sAE scheme is de�ned with the following experiment
between a challenger and an adversary A:
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1. The challenger samples K ← StAE.Gen(), and b $←− {0, 1}.

2. The adversary may adaptively query the encryption oracle Encrypt and the decryption
oracle Decrypt, as described by Figure 2.1 (resp. Figure 2.2).

3. Finally, the adversary outputs its guess b′ ∈ {0, 1} of b.

This game captures both the con�dentiality and integrity properties of a sAE scheme. The
adversary’s advantage is de�ned as

advsaeStAE(A) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
De�nition 2.5 (Secure sAE). The encryption scheme StAE is said to be a secure stateful authenti-
cated encryption scheme (sAE) if, for all probabilistic polynomial time adversaryA, advsaeStAE(A)
is a negligible function in k.

Encrypt(M,H) Decrypt(C,H)

u← u+ 1 if b = 0 then return ⊥
M0

$←− {0, 1}|M | v ← v + 1
M1 ←M (M, std)← StAE.Dec(K,H,C, std)

(Cb, stbe)
$←− StAE.Enc(K,H,Mb, ste) if v > u or C 6= Cv or H 6= Hv

if Cb =⊥ then return ⊥ then sync← false

(Cu, Hu, ste)← (Cb, H, stbe) if sync = false then return M
return Cu return ⊥

Figure 2.1 – The Encrypt and Decrypt oracles in the sAE (RoR) security experiment. The
counters u and v are initialised to 0, and sync to true at the beginning of the
experiment.

Encrypt(M0,M1, H)

u← u+ 1

(C0, st0e)
$←− StAE.Enc(K,H,M0, ste)

(C1, st1e)
$←− StAE.Enc(K,H,M1, ste)

if C0 =⊥ or C1 =⊥ then return ⊥
(Cu, Hu, ste)← (Cb, H, stbe)
return Cu

Decrypt(C,H)

if b = 0 then return ⊥
v ← v + 1
(M, std)← StAE.Dec(K,H,C, std)
if v > u or C 6= Cv or H 6= Hv

then sync← false

if sync = false then return M
return ⊥

Figure 2.2 – The Encrypt and Decrypt oracles in the sAE (LoR) security experiment. The
counters u and v are initialised to 0, and sync to true at the beginning of the
experiment.

2.3 Security Models

In this section, we present two classic security models. We start with the security model for
authenticated key exchange protocols between two parties, that we call AKE model, as described
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by Brzuska, Jacobsen, and Stebila [BJS16] (Section 2.3.1). We follow with the Authenticated and
Con�dential Channel Establishment (ACCE) security model proposed by Jager, Kohlar, Schäge,
and Schwenk [JKSS11]. This model aims at analysing protocols when the security cannot be
based on the indistinguishability of the session keys (Section 2.3.2).

The AKE model is one of the two main provable security tools that we employ in our work.
We use the AKE model �rst to prove the security of our two-party key exchange protocol SAKE
in Chapter 6, and as a building block in order to devise an extended security model (that we
call 3-AKE) described in Chapter 5, Section 5.2. In Section 2.3.2 we present the second main
tool that we employ: the ACCE model. The latter is used in Section 5.3 to prove the security
of a protocol aiming at establishing secure tunnels, and also as a building block to devise an
extension of the ACCE model intended to the three-party case (that we call 3-ACCE).

Besides the AKE and ACCE models that we mainly use, several other security models have
been formerly proposed. We recall some of them in Section 5.1.

2.3.1 AKE Security Model

In this section, we present the security model for authenticated key exchange protocols described
by Brzuska, Jacobsen, and Stebila [BJS16], that we call AKE model. This model incorporates
all the features that are usually considered when analysing key agreement protocols in the
public-key setting (e.g., DH-based protocols with signature). In this model, the adversary has full
control over the communication network. It can forward, alter, drop any message exchanged by
honest parties, or insert new messages. Brzuska et al.’s model then captures adaptive corruptions
but also forward secrecy. This appears in the de�nition of the security experiment.

2.3.1.1 Execution Environment

Parties. A two-party protocol is carried out by a set of parties P = {P0, . . . , Pn−1}. Each
party Pi has an associated long-term key Pi.ltk. The nature of the long-term key is not speci�ed
here. It can be a pair of public and private keys, a symmetric key, or a combination of both
types.

Instances. Each party can take part in multiple (sequential or parallel) executions of the
protocol. Each run of the protocol is called a session. To each session of a party Pi, an instance
πsi is associated which embodies this (local) session’s execution of the protocol, and has access
to the long-term key of the party. In addition, each instance maintains the following state
speci�c to the session.

• ρ: the role ρ ∈ {init, resp} of the session in the protocol execution, being either the
initiator or the responder.

• pid: the identity pid ∈ P of the intended communication partner of πsi .

• α: the state α ∈ {⊥, running, accepted, rejected} of the instance.

• sk: the session key derived by πsi .

• κ: the status κ ∈ {⊥, revealed} of the session key πsi .sk.

• sid: the identi�er of the session.

• b: a random bit b ∈ {0, 1} sampled at initialisation of πsi .
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We put the following correctness requirements on the variables α, sk, sid and pid. For any
two instances πsi , πtj , the following must hold:

(πsi .α = accepted)⇒ (πsi .sk 6=⊥ ∧πsi .sid 6=⊥) (2.1)

(
πsi .α = πtj .α = accepted ∧ πsi .sid = πtj .sid

)
⇒


πsi .sk = πtj .sk

πsi .pid = Pj
πtj .pid = Pi

(2.2)

Adversarial queries. The adversaryA is assumed to control the network, and interacts with
the instances by issuing the following queries to them.

• NewSession(Pi, ρ, pid): this query creates a new instance πsi at party Pi, having role ρ,
and intended partner pid. The instance’s state is set to πsi .α = running and, if ρ = init,
the �rst message of the protocol is produced and returned to the adversary.

• Send(πsi ,m): this query allows the adversary to send any message m to πsi . If πsi .α 6=
running, it returns ⊥. Otherwise πsi responds according to the protocol speci�cation.

• Corrupt(Pi): this query returns the long-term key Pi.ltk of Pi. If Corrupt(Pi) is the ν-th
query issued by the adversary, then we say that Pi is ν-corrupted. For a party that is not
corrupted, we de�ne ν = +∞.

• Reveal(πsi ): this query returns the session key πsi .sk, and πsi .κ is set to revealed.

• Test(πsi ): this query may be asked only once throughout the game. If πsi .α 6= accepted,
then it returns ⊥. Otherwise it samples an independent key sk0

$←− K, and returns skb,
where sk1 = πsi .sk. The key skb is called the Test-challenge.

2.3.1.2 Security De�nitions

De�nition 2.6 (Partnership). Two instances πsi and πtj are partners if πsi .sid = πtj .sid.

De�nition 2.7 (Freshness). An instance πsi is said to be fresh with intended partner Pj , if

(a) πsi .α = accepted and πsi .pid = Pj when A issues its ν0-th query,

(b) πsi .κ 6= revealed and Pi is ν-corrupted with ν0 < ν, and

(c) for any partner instance πtj of π
s
i , we have that π

t
j .κ 6= revealed and Pj is ν ′-corrupted

with ν0 < ν ′.

Note that the notion of freshness incorporates a requirement for forward secrecy.

An authenticated key exchange protocol (AKE) is a two-party protocol satisfying the cor-
rectness requirements (2.1) and (2.2), and where the security is de�ned in terms of an AKE
experiment played between a challenger and an adversary. This experiment uses the execution
environment described above. The adversary can win the AKE experiment in one of two ways:
(i) by making an instance accept maliciously (De�nition 2.8), or (ii) by guessing the secret bit of
the Test-instance (De�nition 2.9).

De�nition 2.8 (Entity Authentication (EA)). An instance πsi of a protocol Π is said to have
accepted maliciously in the AKE security experiment with intended partner Pj , if
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(a) πsi .α = accepted and πsi .pid = Pj when A issues its ν0-th query,

(b) Pi and Pj are ν- and ν ′-corrupted with ν0 < ν, ν ′, and

(c) there is no unique instance πtj such that πsi and π
t
j are partners.

The adversary’s advantage is de�ned as its winning probability:

advent-authΠ (A) = Pr[A wins the EA game].

De�nition 2.9 (Key Indistinguishability). An adversary A against a protocol Π, that issues
its Test-query to instance πsi during the AKE security experiment, answers the Test-challenge
correctly if it terminates with output b′, such that

(a) πsi is fresh with some intended partner Pj , and

(b) πsi .b = b′.

The adversary’s advantage is de�ned as

advkey-ind
Π (A) =

∣∣∣∣Pr[πsi .b = b′]− 1

2

∣∣∣∣ .
De�nitions 2.8 and 2.9 allow the adversary to corrupt an instance involved in the security

experiment (once the targeted instance has accepted, in order to exclude trivial attacks). There-
fore, protocols secure with respect to De�nition 2.10 below provide forward secrecy. Note that
we do not allow the targeted instance to be corrupted before it accepts. That is, this security
model does not capture key-compromise impersonation attacks (KCI) [BWJM97].1

De�nition 2.10 (AKE Security). We say that a two-party protocol Π is a secure AKE protocol if
Π satis�es the correctness requirements (2.1) and (2.2), and for all probabilistic polynomial time
adversaryA, advent-authΠ (A) and advkey-ind

Π (A) are a negligible function of the security parameter.

2.3.2 ACCE Security Model

In this section we present the Authenticated and Con�dential Channel Establishment (ACCE)
security model of Jager, Kohlar, Schäge, and Schwenk [JKSS11].

The AKE model described in Section 2.3.1 guarantees that the session key output by a key
establishment protocol is indistinguishable from a random value. However there exist protocols
where the session key is used during the key exchange phase. A famous example of such
protocols is TLS 1.2 [DR08]. In TLS 1.2 the session key is used to protect messages (called
Finished) which �nalise the key exchange phase. Since these encrypted and MAC-ed Finished
messages provide a trivial way to distinguish the session key from a random value, the security
of TLS 1.2 cannot be proved based on indistinguishability of keys. The notion of ACCE is an
alternative security model devised to circumvent the impossibility of using the AKE model in
order to prove the security of TLS 1.2.

The �rst property captured by the ACCE model is entity authentication (as in the AKE model).
But instead of guaranteeing that the session key is suitable to be used for any purpose, the
second property ensures that the key is suitable for a speci�c purpose which is to set up an
authenticated and con�dential channel. More precisely, in the Jager et al.’s security model the
second property corresponds to what the secure channel itself is supposed to achieve. That is,

1In this thesis, we consider protocols not resistant to KCI attacks.
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authenticity and con�dentiality of data. Hence an ACCE protocol allows establishing a secure
tunnel in the sense of stateful authenticated encryption (see Section 2.2.5).

We present a slightly modi�ed version of the original model of Jager et al. in order to
adequately capture the security properties of the protocols we analyse in Chapter 3.

2.3.2.1 Execution Environment

The de�nitions of parties and instances are the same as in the AKE model (Section 2.3.1.1). We
also consider the same correctness requirements (2.1) and (2.2). We de�ne the following queries
given to an adversary in order to interact with the instances and the parties during the security
experiments.

Adversarial queries. The adversaryA is assumed to control the network, and interacts with
the instances by issuing the following queries to them.

• NewSession(Pi, ρ, pid), Send(πsi ,m),Corrupt(Pi),Reveal(πsi ): these queries are identical
to the corresponding queries in the AKE model.

• Encrypt(πsi ,M0,M1, H): this query encrypts the message Mb, b = πsi .b, with header
H , with the encryption session keys (stored within πsi .ck) of an accepting instance πsi . If
πsi .α 6= accepted, then πsi returns ⊥. Precisely, it proceeds as depicted by Figure 2.3,
depending on the bit πsi .b sampled at random at the beginning of the security experiment.

• Decrypt(πsi , C,H): this query decrypts the ciphertext C with header H , with the decryp-
tion session keys (stored within πsi .ck) of an accepting instance πsi . If πsi .α 6= accepted,
then πsi returns ⊥. Precisely, it proceeds as depicted by Figure 2.3, depending on the bit
πsi .b sampled at random at the beginning of the security experiment.

Encrypt(πsi ,M0,M1, H)

if πsi .α 6= accepted then return ⊥
u← u+ 1

(C0, st0e)
$←− StAE.Enc(kenc,H,M0, ste)

(C1, st1e)
$←− StAE.Enc(kenc,H,M1, ste)

if C0 =⊥ or C1 =⊥ then return ⊥
b← πsi .b
(Cu, Hu, ste)← (Cb, H, stbe)
return Cu

Decrypt(πsi , C,H)

if πsi .α 6= accepted then return ⊥
if πsi .b = 0 then return ⊥
v ← v + 1
(M, std)← StAE.Dec(kdec,H,C, std)
if v > u or C 6= Cv or H 6= Hv

then sync← false

if sync = false then return M
return ⊥

Figure 2.3 – The Encrypt and Decrypt oracles in the ACCE security experiment. StAE is the
stateful authenticated encryption scheme used to establish the secure tunnel. The
counters u and v are initialised to 0, and sync to true at the beginning of every
session. In case πsi does not have a partner when answering a Decrypt query, then
sync = false.

We slightly relax the original model of Jager et al. as we do not require the StAE encryption
scheme to hide the length of the plaintext.2

2The protocol we analyse in Chapter 3 with this model is built on a non length-hiding encryption function.
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2.3.2.2 Security De�nitions

An authenticated and con�dential channel establishment protocol (ACCE) is a two-party protocol
satisfying the correctness requirements (2.1) and (2.2) (see the AKE model in Section 2.3.1), and
where the security is de�ned in terms of an ACCE experiment played between a challenger and
an adversary. This experiment uses the execution environment described above. The adversary
can win the ACCE experiment in one of two ways: (i) by making an instance accept maliciously
(De�nition 2.11), or (ii) by guessing the secret bit during the channel security experiment
(De�nition 2.12).

De�nition 2.11 (Entity Authentication (EA)). An instance πsi of a protocol Π is said to have
accepted maliciously in the ACCE security experiment with intended partner Pj , if

(a) πsi .α = accepted and πsi .pid = Pj when A issues its ν0-th query,

(b) Pi and Pj are ν- and ν ′-corrupted with ν0 < ν, ν′,

(c) π′.κ 6= revealed for any instance π′ that accepted while having a matching conversation
to πsi , and

(d) there is no unique oracle πtj such that πsi has a matching conversation to πtj .

The adversary’s advantage is de�ned as its winning probability:

advent-authΠ (A) = Pr[A wins the EA game].

De�nition 2.12 (Channel Security). An adversary A against a protocol Π breaks the channel
security if it terminates the channel security game with a tuple (πsi , b

′) such that

(a) πsi .α = accepted and πsi .pid = Pj when A issues its ν0-th query,

(b) Pi and Pj are ν- and ν ′-corrupted with ν0 < ν, ν ′,

(c) πsi .κ 6= revealed,

(d) π′.κ 6= revealed for any instance π′ such that πsi has a matching conversation to π′, and

(e) πsi .b = b′.

The adversary’s advantage is de�ned as

advchan-sec
Π (A) =

∣∣∣∣Pr[πsi .b = b′]− 1

2

∣∣∣∣ .
Compared to the original model of Jager et al. we slightly change the EA and CS security

de�nitions in the following way. We allow the targeted party Pi to be corrupted but only upon
acceptance of its instance πsi . That is, resistance to KCI attacks is not captured (we do so in
view of proving the security of a symmetric-key protocol, hence not resistant to KCI attacks,
in Chapter 3). Nonetheless, the model captures the forward secrecy property (if ν 6= +∞ and
ν ′ 6= +∞). Doing so, we obtain a model similar as the one used by Li, Schäge, Yang, Kohlar and
Schwenk [LSY+14] to prove the security of TLS 1.2 in PSK mode (i.e., a symmetric-key version
of TLS 1.2).

De�nition 2.13 (ACCE Security). We say that a two-party protocol Π is a secure ACCE protocol
if Π satis�es the correctness requirements (2.1) and (2.2), and for all probabilistic polynomial time
adversary A, advent-authΠ (A) and advchan-sec

Π (A) are a negligible function of the security param-
eter.
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Analysis of LoRaWAN 3
LoRaWAN is an IoT security protocol deployed worldwide in more than 100 coun-

tries. LoRaWAN aims at securing communications between a back-end network and
connected objects. These objects are intended to provide various types of services from

telemetry measurement, remote device activation, site surveillance and intrusion detection,
geolocation of valuable assets, up to management of networks that deliver sensitive resources
(e.g., water, energy).

Two main versions of the protocol exist: 1.0 and 1.1. In this chapter, we provide an extensive
analysis of 1.0, which is the currently deployed version, and we show that it su�ers from
several weaknesses. We introduce several attacks, including likely practical ones, that breach
the network availability, data integrity, and data con�dentiality. Finally we propose practical
recommendations aiming at thwarting the attacks, while at the same time being compliant with
the speci�cation, and keeping the interoperability between patched and unmodi�ed equipment.

Version 1.1 aims at correcting several �aws that impair the security of version 1.0. We present
several weaknesses of LoRaWAN 1.1 that a�ect this latest release of the protocol. Then we
present recommendations aiming at mitigating these �aws.

The results of this chapter have been published in [AF18b] and [CF19].
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3.1 Introduction

3.1.1 Context

The communication protocol LoRa, developed by Semtech company, aims at setting up a Low-
Power Wide-Area Network (LPWAN) based on a long-range, low-rate, wireless technology.
It is somewhat similar to a cellular technology (2G/3G/4G mobile systems) but optimised for
IoT/M2M. LoRa does not require a spectrum license because it uses free (although regulated)
frequency bands (e.g., 863-870 MHz in Europe, 902-928 MHz in the USA, 779-787 MHz in
China) [LoR17; Wor]. A LoRa end-device, with an autonomous power-supply, is supposed to
communicate through several kilometers in an urban area, and to have a lifespan up to eight or
ten years.

LoRaWAN is a protocol that aims at securing the Medium Access Control layer of a LoRa
network. It is designed by the LoRa Alliance, which is an association that gathers more than
500 members (telecom operators, semiconductor manufacturers, digital security companies,
hardware manufacturers, network suppliers, etc.) [IoT19].

Public and private LoRaWAN networks are deployed in more than 100 countries worldwide
[IoT19] by telecom operators (SK Telecom, FastNet, ZTE, KPN, Orange, Proximus, etc.), private
providers (e.g., LORIOT.io1), and private initiatives (e.g., The Things Network2). Several nation-
wide networks are already deployed in Europe (France, Netherlands) [Fea16], Asia (South Korea)
[Mar16], Africa (South Africa) [Biz15], Oceania (New Zealand) [Sma16b], providing already
coverage to half of the population. Trials are launched in Japan [Bri16], the USA (starting with
a hundred cities) [Kin16], China (the expected coverage extend to 100 million homes and 300
million people) [Sma16a], India (the �rst phase network aims at covering 400 million people
across the country) [Kim16]. Figure 3.1 represents a map of LoRa networks deployed worldwide
(in May 2017).

The use cases [OA16] that LoRaWAN aims at responding to include smart metering (electric-
ity, water), tracking (shipping containers, valuable assets), agriculture (irrigation), smart grids
(fault management), industrial (earthquake sensors, avalanche, �ooding), smart city, wearables
and health (medical wearables), connected home (security systems), vehicle telematics (tra�c
information, vehicle status).

In this chapter we focus on the two main versions of LoRaWAN that are de�ned:

• version 1.0.2 [SLE+16] released in 2016, which is the version currently deployed worldwide,
and whose o�cial name is now 1.0 (Sections 3.2-3.4),

• version 1.1 [Sor17] which aims at being the successor of version 1.0 (Sections 3.5-3.6).

In addition, version 1.0.3 [LoR18a] has been published in 2018, but it is cryptographically equal
to version 1.0.2.

3.1.2 Attacks and Vulnerabilities

We show in Section 3.3 how to perform several attacks against LoRaWAN 1.0, including likely
practical ones. These attacks allow to breach the network availability, data integrity, and data
con�dentiality, and target either an end-device or the back-end network. Based on the inner
weaknesses of the protocol, these attacks do not lean on potential software or hardware bugs.
Likewise they do not entail a physical access to the targeted equipment and are independent

1https://www.loriot.io
2https://www.thethingsnetwork.org

https://www.loriot.io
https://www.thethingsnetwork.org
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Figure 3.1 – Worlwide map of LoRa networks in May 2017 (source: http://iot.semtech.
com)

from the means used to physically protect secret parameters. Several recommendations aiming
at thwarting these attacks are presented in Section 3.4. In Section 3.6, we show that the latest
version 1.1 of LoRaWAN still su�ers from several �aws. We describe in Section 3.7 several ways
to mitigate these vulnerabilities.

3.2 Protocol LoRaWAN 1.0

3.2.1 Overview

A LoRaWAN network corresponds to a star-of-stars topology: a set of end-devices (ED) commu-
nicates with several gateways which relay the data to a Network Server (NS) in the back-end
side. In turn NS delivers the data to one or more Application Servers (AS) which own the corre-
sponding ED, optionally through intermediary servers such as an MQTT server (see Figure 3.2).
The security mechanisms are based on a symmetric key (the master key) MK1 shared between
an ED and NS. From this key, distinct per ED, two session keys are computed: the application
session key Ke

a guarantees the data con�dentiality between ED and AS; the command session
key Ke

c guarantees the data integrity between ED and NS (thus data integrity is not end-to-end
provided between ED and AS3). When a frame is exchanged exclusively between ED and NS,
both data con�dentiality and data integrity are provided by the command session key Ke

c . An
application payload, if present, is always encrypted. If no payload is carried the frame is only
authenticated. Encryption is done with AES [Nat01] in CTR mode [DH79; Dwo01], and data
integrity is provided with a tweaked version of AES in CMAC mode [Dwo05; SPLI06] (a pre�x
block is added to the input). ED may establish an “activation” (namely a session) with NS
through two ways. The pre-personalization (“Activation by Personalization”, ABP) consists in
setting two session keys (and other parameters but not the MK1 master key) into ED before its
deployment. An ED in ABP mode is then able to communicate with NS (and its AS) but not
to renew the “session” keys. The other possibility (“Over the Air Activation”, OTAA) consists

3As acknowledged by the speci�cation ([SLE+16], §6.1.4).

http://iot.semtech.com
http://iot.semtech.com
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in provisioning ED with an MK1 master key and other parameters, allowing to perform key
exchanges with NS through the radio interface once it is deployed. In this chapter, we focus on
OTAA mode.

End-device Gateway Network
Server

MQTT
Server

Application
Server

data integrity (Ke
c )

data con�dentiality (Ke
a)

Figure 3.2 – LoRaWAN network in version 1.0. Data exchanged between ED and NS are
encrypted with Ke

c . Data exchanged between ED and AS are encrypted with Ke
a .

3.2.2 Key Exchange

The key exchange done over the air is triggered when ED sends a Join Request message which NS
responds to with a Join Accept message (see Figure 3.3). The (unencrypted) Join Request message
includes two static IEEE EUI-64 identi�ers (the ED’s idE , and the AS’ idA), and a pseudo-random
value rndE generated by ED. The message is protected with a 32-bit CMAC authentication tag
computed with the 128-bit (static) master keyMK1. The Join Accept response from NS contains
the (static) identi�er of the latter (idN ), a pseudo-random value generated by NS (rndN ), a
value used as ED short address (DevAddr), and several (optional) radio parameters. The Join
Accept message is protected with a CMAC authentication tag, and encrypted with AES (both
operations made with the master key MK1).4 Two 128-bit session keys are then computed:

Ke
c = AES(MK1, 0x01‖data)

Ke
a = AES(MK1, 0x02‖data)

with
data = rndN (3)‖idN (3)‖rndE (2)‖0x00 · · · 00 (7).

Thus the session keys depend mostly on a secret and static value (the master key MK1),
and two pseudo-random values of 16 and 24 bits. Once the Join Request and Join Accept

4More precisely the AES decryption function is used to protect the Join Accept message, since ED implements
the encryption function only.
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messages are exchanged, ED, NS and AS are able to communicate. After NS computes the
session keys, it transmits the application session key Ke

a to AS, which has thus no control on
this key sharing phase, entirely handled by NS. The NS must keep the previous session keys,
and the corresponding security parameters, until it receives a (valid) frame protected by the new
security parameters. The security mechanisms between NS and AS are out of the LoRaWAN
scope.

ED NS
(MK1) (MK1)

rndE
$←− {0, 1}16

τE ← MAC(MK1, idA‖idE‖rndE)
Join Request← idA‖idE‖rndE‖τE

Join Request
−−−−−−−−−−−→

Verify τE
rndN

$←− {0, 1}24

τN ← MAC(MK1, rndN‖idN‖DevAddr‖prms)
Join Accept← AES−1(MK1, rndN‖idN‖DevAddr‖prms‖τN )

data← rndN‖idN‖rndE‖00 · · · 00
Ke
c ← AES(MK1, 0x01‖data)

Ke
a ← AES(MK1, 0x02‖data)

Join Accept
←−−−−−−−−−−−

rndN‖idN‖DevAddr‖prms‖τN ← AES(MK1, Join Accept)
Verify τN
data← rndN‖idN‖rndE‖00 · · · 00
Ke
c ← AES(MK1, 0x01‖data)

Ke
a ← AES(MK1, 0x02‖data)

post-accept phase
⇐==========⇒

Figure 3.3 – Correct execution of LoRaWAN 1.0

3.2.3 Data Encryption and Authentication

In this section we describe the computations done in order to encrypt and provide integrity
protection to a frame.

The plaintext frame payload ptext is encrypted in CTR mode. From the following 16-byte
block

Ai = 0x01 (1)‖0x00 · · · 00 (4)‖dir (1)‖DevAddr (4)‖fcnt (4)‖0x00 (1)‖i (1)

a secret keystream Si = AES(K,Ai), with K ∈ {Ke
a,K

e
c}, is produced and used to mask the

payload:
ctext = (S0‖ · · · ‖Sn−1)⊕ ptext.
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The session key K = Ke
a is used when application messages are exchanged between ED and

AS, and K = Ke
c is used when command-only messages are exchanged between ED and NS.

dir speci�es the direction (uplink = 0x00, downlink = 0x01). fcnt is the frame counter (16
or 32 bits), initialised to 0 when the session starts, and monotonically increased when a (valid)
frame is sent or received. Two di�erent counters are used depending on the frame’s direction.
DevAddr is ED’s address (within a given LoRa network) chosen by NS and sent in the Join
Accept message, and it remains constant during the entire session. To computeDevAddr, seven
bits are chosen from the NS’ unique identi�er idN : msb7(DevAddr) = lsb7(idN ), and 25 bits
are “arbitrarily” assigned by NS. The i value numbers the AES blocks within the payload to
encrypt.

A 32-bit authentication tag τ is computed with CMAC and the command session key Ke
c on

the whole frame (header hdr of size hlen ∈ {8, . . . , 24} and encrypted payload ctext of size
plen) and a 16-byte pre�x block

B0 = 0x49 (1)‖0x00 · · · 00 (4)‖dir (1)‖DevAddr (4)‖fcnt (4)‖0x00 (1)‖(hlen+plen) (1).

Note that B0 and Ai di�er only on the �rst and last bytes, and share the same parameters
DevAddr and fcnt. The frame eventually sent is

hdr (hlen)‖ctext (plen)‖τ (4).

Figure 3.4 depicts the generation of an application frame. The frame header hdr includes, among
other �elds, DevAddr, the frame counter fcnt on 16 bits, and an (optional) �eld FOpts which
may contain commands exclusively exchanged between ED and NS. If the frame counter is
32-bit long, this fcnt �eld corresponds to the least 16 signi�cant bits. The commands included
in the FOpts �eld are in clear. If they have to be encrypted they must be included in the frame
payload. In such a case the payload cannot contain application data, and the encryption key
used is the command session key Ke

c .

ptext

�� ��AES-CTR(K, ·)

B0‖ hdr‖ctext‖τ︸ ︷︷ ︸
�� ��AES-CMAC(Ke

c , ·)

Figure 3.4 – Generation of an application frame in LoRaWAN 1.0. The session key K ∈
{Ke

a,K
e
c} is used to encrypt the ptext payload. The encrypted frame appears in

the blue dashed box .

3.3 Attacks against LoRaWAN 1.0

Hereinafter we present the attacks we have found against the LoRaWAN protocol version 1.0.
In Sections 3.3.1 and 3.3.2, the attacker, standing between ED and NS, needs only to act on the
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air interface: she needs to eavesdrop on data exchanged between ED and the server, and to
send data to any equipment. With these simple requirements, the attacker can replay frames,
decrypt frames, and desynchronise an ED.

In Section 3.3.3, we describe other kind of attacks where the attacker needs to act at some
point on the link between NS and AS. Then the attacker can replay, forge, and, possibly, decrypt
frames.

3.3.1 Replay or Decrypt

In LoRaWAN, encryption is done in CTR mode [DH79; Dwo01] which security is proved by
Bellare, Desai, Jokipii, and Rogaway [BDJR97]. Likewise CMAC mode (also known as OMAC1
[IK03a; IK03b]), used to compute a frame’s authentication tag, is proved secure by Iwata and
Kurosawa [IK03c], and Nandi [Nan09]. Of course this does not necessarily imply that a protocol
based on these cryptographic primitives is secure in turn [Bel98; DPW11]. In particular the
security of these encryption and authentication modes is no longer guaranteed in case of a
misuse, namely if same session keys, counter blocks, and B0 pre�x block are reused. Based
on the peculiarities of LoRaWAN, it is actually possible to compel ED or NS to reuse previous
security parameters. We describe precisely how to perform such an attack against ED or NS,
and its consequences.

3.3.1.1 Targeting the End-device (Attack A1)

Goal. The purpose of this attack is to compel ED to reuse previous session keys and other
security parameters. When this happens, frames picked from a previous session become crypto-
graphically valid anew, hence can be replayed. Moreover the same secret keystream is then used
to protect the frames exchanged during the new session. This allows an adversary to decrypt
frames.

Since ED ends up reusing previous session keys (which are no longer shared with NS), this
attack is also a kind of “desynchronisation” attack. However, contrary to the desynchronisa-
tion attacks described in Section 3.3.2, this “replay or decrypt” attack has more devastating
consequences (and a higher complexity) than merely desynchronising ED and NS.

Key points. The encryption keystream Si = AES(K,Ai) used to protect a frame payload is
produced from a session key K ∈ {Ke

a,K
e
c} and Ai block counters. Within a given session the

blocks

Ai = 0x01 (1)‖0x00 · · · 00 (4)‖dir (1)‖DevAddr (4)‖fcnt (4)‖0x00 (1)‖i (1)

(as well as the pre�x block B0) depend mostly on the frame counter fcnt (set to 0 when the
session starts and monotonically increased frame after frame), and on the DevAddr parameter
(static during the whole session). The other parameters are the direction dir unchanged for
a given direction, and the i block index which evolves the same way for each frame. Hence
the way the keystream Si changes depends only on the DevAddr parameter and the session
key (usually Ke

a). For a given ED, which connects to the same NS (hence uses the same static
idN parameter), the session keys depend mainly on a secret and static value (MK1) and two
pseudo-random values (rndE , rndN ). Therefore, if one succeeds in compelling ED to reuse
the same DevAddr, rndE and rndN parameters, this leads not only to the reuse of previous
session keys Ke

a , and Ke
c , but also to the reuse of previous keystream Si and pre�x block B0.
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Attack. The purpose is to make ED use twice the same rndE , rndN , and DevAddr values.
The 16-bit rndE and 24-bit rndN parameters are pseudo-random. Let us assume that an
attacker is able to impose the rndN value that ED uses to compute the session keys. Then the
probability that the session keys repeat depends only on the rndE parameter. Firstly note that
a collision due to the birthday paradox happens with high probability (p = 1

2
) after roughly√

2 ln(2)× 216 ' 301 sessions only.
The attacker can speed up the whole process: she eavesdrops on a given session, and compels

ED to generate multiple rndE values until the expected value is produced once again. In such a
case only one value among 216 is useful to the attacker. Hence, ED must generate on average
216 rndE values. More generally, the attacker can eavesdrop on several di�erent Join Accept
messages sent by NS to ED, where each one corresponds to a di�erent rndE value. Let nja be
the number of Join Accept messages collected by the attacker (necessarily nja ≤ 216 since there
is at most 216 di�erent rndE values). Then the attacker compels ED to send a fresh Join Request
message, and expects that it matches with one of the nja Join Accept messages previously
collected. The probability of success is p = nja/2

16. The number of times that the attacker
must repeat this experiment (i.e., compelling ED to send a new Join Request message) in order
to be successful is then 1/p = 216/nja. This means that ED has to send 216/nja Join Request
messages before one carries a rndE value that matches with one of the Join Accept messages.

Once this �rst phase of the attack is achieved, the attacker ends with two di�erent sessions
protected with the same security parameters, denoted respectively sold and snew (see Figure 3.5).

Technique 1 used to achieve the attack: replay of a Join Accept message. In order to
compel ED to use a given rndN value, the attacker can replay a previous Join Accept message
sent to the targeted ED. Then ED will reuse (once again) the parameters included in the message.
Indeed the data carried in a Join Accept message correspond to

rndN (3)‖idN (3)‖DevAddr (4)‖prms (2-18)‖τN (4)

where τN is an authentication tag computed on the preceding �elds with the (static) master
key MK1. These parameters are protected with AES and MK1. The cornerstone of this attack
is that all the parameters are chosen by NS, in particular rndN and DevAddr. idN is the NS’
(static) identi�er, and the prms are also de�ned by NS. The only secret parameter involved in
the message calculation is static (MK1). Hence, ED is not able to verify if the received Join
Accept message corresponds to the Join Request it sent. Replaying a Join Accept message allows
the attacker to compel ED to (re)use both rndN and DevAddr parameters.

The possible choices for the attacker bear on the Join Accept messages previsouly sent by
NS to the targeted ED. A Join Accept message intended to another ED is not usable since the
message is protected with ED’s master key.

Technique 2 used to achieve the attack: harvest of Join messages. In order for the at-
tacker to be successful, she must compel ED to generate multiple rndE values. This can be
achieved through at least two attack vectors: �rst the air interface, second the power supply.

Attack vector: air interface. In this scenario, the ability of the attacker to make ED generate
multiple rndE values is related to the behaviour of ED when it sends a Join Request message but
does not receive a Join Accept response or receives an invalid message. The speci�cation states
that NS shall ignore Join Request messages containing previously used rndE values in order to
thwart a replay attack ([SLE+16], §6.2.4). Hence, ED has to generate a new pseudo-random rndE
value each time it computes a Join Request message, even when a previous Join Request message
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ED Attacker NS

Join Request (rndE = xi)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Join Accept (rndN = yi)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ke
c ,K

e
a ← KDF(MK1, xi, yi) Ke

c ,K
e
a ← KDF(MK1, xi, yi)

ul frame 0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
dl frame 0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

...
ul frame j−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
dl frame j←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Join Request (rndE = xi+1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

***←−−−−−−−−−−−−−−−−−−−−−
Join Accept (rndN = yi+1)
←−−−−−−−−−−−−−−−−−−−−−

Invalid Join Accept
Join Request (rndE = xi+2)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
***←−−−−−−−−−−−−−−−−−−−−−

Join Accept (rndN = yi+2)
←−−−−−−−−−−−−−−−−−−−−−

Invalid Join Accept
...

Join Request (rndE = xi+u = xi)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Join Accept (rndN = yi)←−−−−−−−−−−−−−−−−−−−−−

Join Accept (rndN = yi+u)
←−−−−−−−−−−−−−−−−−−−−−

Ke
c ,K

e
a ← KDF(MK1, xi, yi)

dl frame 0←−−−−−−−−−−−−−−−−−−−−− ←−−−−−−−−−−−−−−−−−−−−−
... ←−−−−−−−−−−−−−−−−−−−−−

dl frame j←−−−−−−−−−−−−−−−−−−−−− ←−−−−−−−−−−−−−−−−−−−−−



sold



snew

7

7

7

Figure 3.5 – “Replay or decrypt” attack against ED in the “air interface” scenario
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did not receive a response. Otherwise ED may fear the subsequent Join Request messages to
be dropped by NS. This allows the attacker to collect multiple new and valid Join Request
messages. It is enough for the attacker to send invalid Join Accept messages in response to the
ED’s messages.

The shortest receiving window of a Join Accept message is 5 seconds [Wor]. If the attacker
uses nja = 16 Join Accept messages, the attack is achieved after roughly 216/16× 5 seconds =
5.7 hours (assuming that the time needed to process the Join messages is negligible compared
to the communication duration).

Attack vector: power supply. Alternatively, the attacker can in�uence on the power supply
in order to compel ED to repeatedly reboot. Each time ED switches on, it sends a new Join
Request message to connect the back-end network. If ED is self-powered, the attacker must be
able to access the battery. If ED is powered by a continuous supply, the attacker can turn o� or
interrupt a remote electric generator ED is connected to, or the link between the generator and
ED. At least two other means can also be considered. Firstly, electromagnetic impulses targeting
ED can lead to a temporary power outage, and then a reboot. Secondly, the attacker can use a
softest version of a “USB Killer” [Ant17]. This tool appears to be a regular USB key, but, once
plugged into a device, it sends an electric impulse that destroys the device. If ED presents an
available communication port (USB or, possibly, another type of port), a variant of this tool can
be used to transmit low-intensity electric shocks to ED such that the latter reboots. In addition,
this reboot tool could be remotely controlled.

It is conceivable that this second scenario be more e�cient because the time elapsed before a
new Join Request message be sent by ED depends only on the reboot duration.

This harvesting technique yields another advantage. If the attacker forbids NS from receiving
the Join Request messages sent by ED, she gets fresh messages (i.e., unknown to NS) for free.
Note that every time NS receives a Join Request message, it sends a new Join Accept message.
Therefore, this procedure is also a way to collect multiples Join Accept messages.

Impact: frame replay. Frames drawn from the previous session (sold) can be replayed to
ED throughout the new session (snew).5 These frames are valid since they are protected with
a cryptographically correct keystream and authentication tag. The attacker has to take care
about the sequentiality. Indeed a frame shall be rejected by ED if its counter does not belong
to {fcnt, . . . , MAX_FCNT_GAP}, where fcnt is the dowlink frame counter (in that speci�c case)
managed locally by ED and used as reference (its initial value is 0), and MAX_FCNT_GAP = 214.
Hence the attacker may virtually choose up to 214 + 1 frames in order to deceive ED (more
precisely the number of available frames depends on the number of frames actually sent by NS
or AS throughout session sold). Note that the �rst frame the attacker replays may be any of
these. However the subsequent replayed frames must have increasing counter values.

Impact: frame decryption. The frame payload is encrypted in CTR mode. Once the attack
is achieved, ED uses twice the same keystream in order to protect di�erent frames. The frame
of counter t sent during session sold contains an encrypted payload csoldt = m⊕ ksoldt , where
m is the plaintext and ksoldt the keystream. The frame of same counter t sent during session
snew contains an encrypted payload csnewt = m′ ⊕ ksnewt . Since ksoldt = ksnewt , we have that
csoldt ⊕ csnewt = (m ⊕ ksoldt ) ⊕ (m′ ⊕ ksnewt ) = m ⊕m′. Hence m and m′ may (partially or

5We use the term “session”, yet it is a misuse of language. Indeed this word does not depict precisely what are
the actual exchanges since ED, at this point, has no “partner”: neither NS nor AS is able to communicate with ED.
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completely) be retrieved (in an obvious manner if one message, m or m′, is known, or through
analysis of m⊕m′ [MWES06]).

According to the LoRaWAN speci�cation ([SLE+16], §4.3.1.1), if ED sends to NS more than
ADR_ACK_LIMIT = 64 frames without receiving any response, it has to ask an explicit acknowl-
edgement to the server (ED sets the ADRACKReq bit to 1 within the frame header). The ED can
then send up to ADR_ACK_DELAY = 32 more frames to the server. If still no frame has been
received from the server, ED may switch to the next lower data rate that provides a longer radio
range. Furthermore, if ED already uses its lowest available data rate, it shall not ask for such an
acknowledgement. The speci�cation provides no guidance on how ED shall behave in the latter
case, or if it still does not receive an acknowledgement after it changed its data rate, or if it decides
not to change its rate. We may reasonably assume that ED keeps sending frames. This means
that the attacker has at her disposal at least ADR_ACK_LIMIT+ADR_ACK_DELAY = 64+32 = 96
frames usable for her decryption attempts. Moreover, if ED asks for an acknowledgement (the
attacker is aware of that since the information ADRACKReq lies in the unencrypted frame header),
the attacker can use any downlink frame drawn from session sold, and replay it to ED. Indeed,
according to the speci�cation, this is enough to respond to the acknowledgement request sent
by ED.

Comment on some mitigation mechanisms. The LoRaWAN speci�cation mentions two
mechanisms that can be seen at �rst sight as e�cient ways to mitigate the “replay or decrypt”
attack. Below we explain why these mechanisms are in fact not su�cient to thwart our attack.

Duty cycle. The ducty cyle is a mechanism used to regulate the occupation rate of the radio
channel by ED. Enforcing the duty cycle implies that ED must wait some time before sending a
new frame, hence cannot repeatedly send a lot of messages. Therefore one could claim that
the duration of the attack is greater than the �gure we provide. However, the duty cycle is a
regulation mechanism, not a security one (even if it could cleverly be used as such). Secondly,
not all countries compel to use such a mechanism (e.g., the USA and India do not). For instance,
in the USA, there is no “global” duty cycle related to the 902-928 MHz frequency band, but ED
must respect a dwell time that does not forbid from sending as many frames as wished. Finally,
ED may well be certi�ed (by the LoRa Alliance [LoR]) and yet not apply the duty cycle. Indeed
the LoRa Alliance certi�cation procedure does not cover any regulatory testing [Hun17].

Retransmissions back-o� . The speci�cation describes also a mechanism aiming at limiting
the number of messages ED can send whereas the back-end network remains silent. The critical
situations considered by the speci�cation are for instance an earthquake or a power outage on
the back-end side. If ED sends a message that requires a response but does not receive any (i.e.,
its receiving window remains empty), then it may everlastingly send new requests. If all the
ED that are a�liated to the problematic back-end network behave in this manner, this ends
with the air interface being �ooded and eventually jammed with all the messages. Yet, this
limitation mechanism is applied by ED when the back-end network remains silent. In our attack
scenario, when ED sends a Join Request message it does receive a message that is classi�ed
(through its header) as a response (i.e., a Join Accept message), even though this (invalid)
response is sent by the attacker. One could argue that a cryptographically invalid message is
necessarily sent by an attacker since an integrity check (based on a CRC) is done at the radio
level. However, regarding the downlink messages (received by ED), the speci�cation states
that “no payload integrity check is done at this level to keep messages as short as possible with
minimum impact on any duty-cycle limitations of the ISM bands used” ([SLE+16], §3.2). Finally,



3

3.3 Attacks against LoRaWAN 1.0 55

if this limitation mechanism is applied until ED receives a valid response from the back-end
network, this invalidates the air interface vector, but the “replay or decrypt” attack remains still
possible through the power supply vector, and leads to the same consequences.

3.3.1.2 Targeting the Network Server (Attack A2)

Goal. The same kind of attack can be performed against NS, aiming at compelling the server
to use the same security parameters throughout two di�erent sessions. The goal is then to
compel NS to use twice the same rndE , rndN and DevAddr values.

Attack: method 1. The key exchange is triggered by the Join Request message. Hence an
attacker replaying such a message sets the rndE parameter before knowing the DevAddr and
rndN values NS generates. These two last parameters must correspond to the rndE value
chosen by the attacker, hence only one such pair among all possible values is of interest to the
attacker.

According to the speci�cation, NS must keep track of “a certain number” of received rndE
values in order to prevent replay attacks, without clarifying if this means all values or a few of
them. We may reasonably assume that NS keeps track of a few values (say n), which seems
con�rmed by several open source codes (e.g., [Ttn; Got]). Thus the attacker cannot choose any
Join Request she wants to replay. The corresponding rndE value must not belong to the list of
n stored values. If the value the attacker wants to replay still belongs to the server’s list (let i be
its index, with 0 and n− 1 the index of the oldest and of the latest received values), she has to
wait for i+ 1 additional (legitimate) key exchanges before NS “forget” that value. The duration
of such an “opportunist” attack depends on the frequency of the key exchanges.
rndN is a 24-bit pseudo-random value. The 32-bit DevAddr parameter is made of 7 bits

from idN , and 25 bits which are “arbitrarily” chosen by NS ([SLE+16], §6.1.1). If DevAddr is
pseudo-random then the probability of success is 2−(24+25) = 2−49. But “arbitrarily” does not
mean “pseudo-random”, and observations of real-life sessions established between several ED
and NS show that the DevAddr parameter remains unchanged for a given ED throughout
di�erent sessions. For instance, some NS implementation derives the DevAddr parameter from
the unique ED’s identi�er idE . Also the DevAddr value may be chosen once and for all at
the time of ED provisioning. In such a case the probability of success increases to 2−24, and
the overall probability of success is 2−24 every n+ 1 sessions. Alternatively, the attacker can
eavesdrop on njr di�erent Join Request messages (that NS has “forgotten”), and send them to
the server. Note that the messages may come from di�erent ED, hence, may have to be sent to
one or several NS servers. The probability that at least one message triggers the same rndN
value as during a previous session is 1− (1−2−24)njr ' njr×2−24. For instance, if the attacker
uses njr = 2048 Join Request messages, her probability to succeed raises to 1

8192
.

The attacker is successful when NS sends the expected rndN value. But, contrary to a Join
Request message (sent in clear), a Join Accept message is protected with AES−1 in ECB mode.
Before encryption a Join Accept message corresponds to

rndN (3)‖idN (3)‖DevAddr (4)‖prms (2-18)‖τN (4).

idN is the unique NS’ identi�er, hence static. As said, the DevAddr parameter assigned to
a given ED remains unchanged. The prms (frequency plan) depend on the gateway, hence
likely remain the same for quite a long time. And τN is an authentication tag computed on
the preceding values with the ED’s (static) master key. Hence only rndN may vary from one
Join Accept message to another. Through direct comparison between a Join Accept message
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(received during the attack) and the one used as reference (beforehand eavesdropped by the
attacker during session sold), the attacker is able to check if the rndN value repeats.

Attack: method 2. Another method can speed up the attack. In a �rst phase the attacker
collects a set of n + k, k ≥ 1, di�erent Join Request messages from a given ED. Necessarily
at least one of these messages contains a rndE value which is “forgotten” by NS. The other
messages may carry rndE values known at the moment to NS. These messages must be ordered
in the following way: �rst the “forgotten” messages, followed by the others sorted in the same
relative order as in the NS’ list.6 In a second phase the attacker sends continuously each Join
Request message of its circular list. In response to each request NS responds with a Join Accept
message. The attacker keeps starting new sessions until she receives twice the same rndN
value (thanks to the birthday paradox). Then the attacker gets two di�erent sessions protected
with the same security parameters (if the DevAddr parameter remains unchanged). In order to
get twice the same rndN value with high probability (p = 1

2
), it is enough for NS to generate

roughly
√

2 ln(2)× 224 ' 4,823 Join Accept messages per Join Request message. To achieve
this the attacker must start (n+ k)×

√
2 ln(2)× 224 sessions. For instance, if NS keeps track

of n = 10 rndE values, the attacker can use a list of n+ 1 = 11 Join Request messages, and
the number of sessions needed to achieve the attack is 53,049. This corresponds to less than
74 hours (at the rate of 5 seconds per key exchange). However to get twice the same security
parameters without application frames protected with these parameters is pointless. Hence,
during the second phase of this method the attacker has to let NS send several frames before
starting a new session. Therefore the duration of the whole attack is likely greater than 74
hours.

Technique used to achieve the attack. In order to collect the Join Request messages, the
attacker can iterate n + k times the procedure described in Section 3.3.1.1. Then she gets a
list of messages correctly sorted and ready to be used. The Join Request messages usable by
the attacker must come from the same ED since the session keys are computed with the ED’s
master key (and also if the DevAddr parameter is closely related to ED – e.g., computed from
its idE identi�er).

Impact. Once the attacker succeeds in compelling NS to compute once again the same security
parameters, she eventually gets two di�erent sessions (sold and snew) protected with the same
security parameters. The attacker is then able to replay uplink frames and attempt decryption
of downlink frames.

According to the speci�cation, when a new key exchange is done NS shall keep the previous
security parameters until it receives a (valid) frame protected with the new security parameters,
and then it can remove the previous ones ([SLE+16], §6.2.4). Yet, since the session keys and
other security parameters are reused, the attacker can easily replay to NS a frame drawn from
the previous session sold, thus “con�rming” the new keys to NS. Then the server drops the
current keys and is ready to use the new ones.

6More exactly the necessary condition is the following: each message collected by the attacker and common
with the NS’ list must have a greater index than the index in the server’s list (0 being the index of the oldest message,
n− 1 the index of the latest), so that the message is replayed once it has left the server’s list.
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3.3.2 Desynchronisation

In this section, we present another kind of attack, based on as little as a single message replay
in one of the two scenarios we describe, which aims at lastingly precluding ED and NS from
communicating.

3.3.2.1 Targeting the End-device (Attack A3)

Goal. This attack aims at “disconnecting” ED from the network. That is ED performs a
successful key exchange which ends with ED not sharing the new session keys with NS (ED
has no “partner”). Therefore the frames sent by ED are ignored by NS, and conversely.

Key points. The session keys are computed, by a given ED and NS, with two static parameters
(the NS’ unique identi�er idN , and the ED’s master key MK1), and two variable parameters
(the pseudo-random values rndN computed by NS, and rndE by ED). As soon as ED receives
a (valid) Join Accept message it can derive the session keys and start transmitting protected
frames. In the key derivation, if ED uses values di�erent from those actually sent by NS (say
(rndE , rndN ) = (x, ỹ) on the one hand, and (rndE , rndN ) = (x, y), on the other hand, y 6= ỹ),
it eventually computes di�erent session keys than those computed by the server. This does not
forbid ED from sending protected frames though. However those frames will be dropped by NS
since they are invalid from the server perspective. Conversely, the frames sent by NS will be
discarded by ED. Thus ED, unable to communicate with NS, is “disconnected” from the network.

Attack. In order to perform such a desynchronisation attack, an attacker can �rst passively
eavesdrop on a Join Accept message sent by NS in response to ED’s Join Request message.
When ED starts a new session and sends another Join Request message, the attacker replies
before NS and replays the eavesdropped Join Accept message. This replayed message likely
contains an rndN = ỹ value di�erent from the fresh one sent by NS (rndN = y). Hence, ED
and NS compute di�erent session keys and security parameters (see Figure 3.6).

Technique used to achieve the attack. The attacker is able to replay a previous Join Accept
message thanks to the peculiarities of the LoRaWAN protocol: indeed ED has no means to verify
neither if the message is a replay, nor if it is an actual response to the Join Request message it
just sent. Moreover the attacker can use the procedure described in Section 3.3.1.1 to collect
several Join Accept messages and use these “desynchronisation ammunition” anytime later. The
Join Accept message used by the attacker must be intended to the targeted ED. Indeed such a
message is protected with the master key of the ED it is sent to.

Impact. Such a desynchronisation attack may be harmful because it can lastingly disturb the
operating of a LoRaWAN network. The usual behaviour of, say, a sensor may be to regularly
send some measurements without expecting a response unless the server detects an anomaly in
the collected data. If ED sends its measurement at a low rate, days or even weeks may elapse
before something abnormal is noticed, even if ED is supposed to react if it does not receive
a downlink frame after a �xed number of sent frames. For instance, if ED sends one frame
per hour, at least four days (ADR_ACK_LIMIT + ADR_ACK_DELAY = 64 + 32 = 96 hours) may
elapse.
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Figure 3.6 – Desynchronisation attack against ED
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3.3.2.2 Targeting the Network Server (Attack A4)

Goal. The same kind of desynchronisation attack can be done against NS, aiming at discon-
necting a given ED from the network. In that case, NS completes the key exchange without being
“partnered” with the intended ED (i.e., identi�ed by the idE parameter within the Join Request
message). Therefore the frames NS (and AS) may send are ignored by ED, and conversely.

Attack. Upon reception of a (valid) Join Request message, NS generates a new rndN value
and computes new session keys. If an attacker succeeds in replaying to NS a valid Join Request
message, the corresponding ED will no longer share the same session keys with NS.

If the attacker replays a previous Join Request message, it may be rejected since NS is supposed
to keep track of previously received rndE values. This means that the attacker has to expect, or
to wait, for the rndE value included in the replayed Join Request message to no longer belong
to the server’s list (i.e., the attacker has to wait for the targeted ED to start enough sessions so
that the server “forgets” that rndE value). Alternatively the attacker may send a brand new
Join Request message to be sure that it is not rejected by NS. However, the message is protected
by a 32-bit authentication tag computed with the ED’s master key MK1. Hence the probability
for the attacker to forge such a valid message is 2−32.

A trade-o� is the following: the attacker uses a fresh Join Request message. She leans on the
targeted ED to compute such a message, while forbidding NS from receiving it (at the moment
of its collection). Therefore the message is at the same time valid and unknown to NS.

The attacker has another challenge to take up. The speci�cation states that NS must keep the
previous session keys (and the corresponding counters) until it receives a valid frame protected
with the new keys, and then it can drop the previous security parameters and keep only the
new ones.7 Yet it is unclear about how NS should behave if it receives successively several
valid Join Request messages but no frames protected with any of the new computed session
keys. We may assume that NS stores at most a few number of security parameters. Let us
assume that NS stores only two sets of session keys: the latest valid one, and the latest computed
one. Let seskeyi be the current (valid) session keys (used by ED and NS to exchange frames).
The attacker can do the following. She waits for ED to start a new session. New session keys
(seskeysi+1) are then computed. The ED stores seskeysi+1 only while NS stores both seskeysi
and seskeysi+1. Before ED sends a frame, the attacker immediately sends to NS a Join Request
message she previously eavesdropped on (and not received, hence new to the server). The
server computes new session keys seskeysi+2 which replace the uncon�rmed keys seskeysi+1.
Then NS stores seskeysi and seskeysi+2 while ED stores seskeysi+1. Hence ED and NS do
not share the same session keys. More generally, if NS keeps the latest valid session keys and
m new sets of keys, the attacker must send successively m new Join Request messages in order
to desynchronise NS and ED.

This attack is based on the ability for the attacker to gather multiple and new Join Request
messages (i.e., fresh rndE values). However if ED sends again the same Join Request message
when it does not receive a valid answer from NS, then it is possible to disconnect ED once and
for all. Indeed, in such a case, if ED does not receive a valid Join Accept message when it starts
a new session (e.g., the attacker sends a “false” Join Accept message before NS), it will keep
sending the (same) request which is then continuously discarded by NS since it has already
received the message. Hence ED gets unable to connect the back-end network.

7This is introduced in version 1.0.2 of the speci�cation and does not appear in version 1.0.1. Also the LoRaWAN
speci�cation does not demand the same regarding ED.
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Technique used to achieve the attack. In order to get a new Join Request message the
attacker can use the technique described in Section 3.3.1.1 aiming at compelling ED to generate
multiple Join Request messages. The attacker can gather several such messages and use these
anytime later as “desynchronisation ammunition”.

Impact. The consequences of this attack against NS are the same as the one against ED:
the targeted ED is disconnected from the network. Unaware that NS does not share the same
security parameters, it may keep sending uplink frames for quite a long time while NS is unable
to process them. Conversely, the frames NS may send cannot be processed by ED.

3.3.3 Lack of Data Integrity (Attack A5)

The LoRaWAN protocol aims at providing data con�dentiality and data integrity on the air
interface, between ED and NS. However the data exchanged between NS and AS are only
encrypted but not integrity protected since NS is the only one to own the key used to compute
an authentication tag. Hence AS is not able to verify if a (encrypted) payload has been modi�ed.
The speci�cation recommends to implement (at the application level) an integrity protection
mechanism. Moreover the speci�cation seems to imply that such a mechanism is in fact optional
since “Network servers are considered as trusted” ([SLE+16], §6.1.4, p. 32). This is a bold statement.
Firstly the threat may not come only from NS (even if it can also be dishonest or compromised).
An attacker may target the link (and intermediary servers) between NS and AS. Secondly, it is
obvious that encryption only does not provide data integrity, but it may even not be su�cient
to guarantee data con�dentiality due to the malleability of the operation mode (in particular in
the LoRaWAN case with the counter mode).

Goal. The purpose of the attacker is either to modify or to decrypt an encrypted payload. The
frame carrying the payload may be sent by ED to AS or sent in the converse direction. Contrary
to the attacks described in Sections 3.3.1 and 3.3.2, the attacker here must be able to act on the
link between NS and AS. For instance the attacker could target and try to intrude on a (not or
poorly protected) MQTT server used to relay data between NS and AS [Lun17].

Attack on data integrity. Data encryption is done in counter mode, therefore it is possible
to change the plaintext by �ipping bits of the ciphertext. If the content of an encrypted payload
or merely the format of the unencrypted content is known, the attacker can replace or alter the
data with accuracy. For instance, if ED is a sensor the attacker could change the measurement
(temperature, humidity, etc.) sent. If ED is a presence sensor, the attacker may change a (binary)
value notifying an intrusion into the opposite value notifying that everything is quiet. If ED is
an actuator, the attacker could change a command ordering to close a window into a command
ordering to open it. The attacker could also truncate the encrypted payload in order to hide
information to AS or ED.

If the recipient is AS, it is not able to detect that the payload is modi�ed since there is no
authentication tag. If the recipient is ED, it is not able to detect the modi�cation since the
authentication tag is computed by NS after the attacker modi�es the frame (in fact ED will
validate the frame).

Attack on data con�dentiality. The attacker may try to guess the plaintext corresponding to
an encrypted frame as follows. She eavesdrops on a frame which payload is of the form c = k⊕m,
where k is the keystream, and m the plaintext to recover. She makes a guess m′ regarding the
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Figure 3.7 – Attack on data integrity. The lack of data integrity between NS and AS (outlined
with a red dashed line) enables trivial attacks against ED and AS, by modifying
genuine encrypted frames.

plaintext, and chooses a message u from a set of valid applicative messages (e.g., a prede�ned list
of commands shared by ED and AS). The attacker computes c′ = c⊕(m′⊕u), and sends c′ (to the
server or to ED). If the guess is correct (m = m′) then c′ = c⊕ (u⊕m′) = c⊕ (u⊕m) = k⊕u.
Hence the decryption will be correct and the command will likely be completed. Using this kind
of “command oracle” attack [AP13; CHVV03; AIES15], the attacker may rely on the expected
behaviour of the recipient (either ED or AS) to understand if her guess is correct. If the attacker
targets ED, she may do experiments with one such specimen she owns in order to learn �rst
how ED behaves, before acting.

If the recipient is AS, the attacker can make several tries (using the same encrypted payload
and frame counter), because AS unlikely veri�es the frame counter (since NS does it). On the
contrary, if the recipient is ED, the attacker can make one try only, because ED veri�es the
frame counter and will reject subsequent downlink frames carrying a reused counter.

Attack on data authenticity. If the attacker succeeds in recovering a keystream k it can
forge any ciphertext of her choice. Since the uplink counter is veri�ed by NS, likely AS does
not check it, and uses the received parameters in order to decrypt the frame.

The attacker can recover the keystream if she knows the corresponding plaintext. If the
attacker succeeds in decrypting data through the “command oracle” attack described above,
she also gets the corresponding keystream (partially or totally). Then she can use it to forge
encrypted payloads intended to AS.

This attack is not due to a lack of protection of some intermediary server (between NS and AS,
such as an MQTT server). If the application frames were duly protected, the worst an attacker
could do would be to delete frames. However, since LoRaWAN does not provide end-to-end
integrity protection between ED and AS, it is possible to deceive both of them.

Table 3.1 summarises the attacks we have found against LoRaWAN 1.0.
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Table 3.1 – Attacks against LoRaWAN 1.0. nja is the number of Join Accept messages usable
by the attacker. njr is the number of Join Request messages usable by the attacker.
m is the number of new session keys sets stored by NS.

Attack Complexity
(# Join message)

Probability
of success Impact

(A1) Replay or decrypt
(ED, Section 3.3.1.1)

216

nja
' 1

Downlink frame replay.
Uplink frame decryption.

(A2)

Replay or decrypt,
method 1 (NS, Sec-
tion 3.3.1.2)

njr ' njr
224

Uplink frame replay.
Downlink frame decryp-
tion.

Replay or decrypt,
method 2 (NS, Sec-
tion 3.3.1.2)

' 213(njr + 1)
1

2

Uplink frame replay.
Downlink frame decryp-
tion.

(A3) Desynchronisation
(ED, Section 3.3.2.1) 1 1 ED desynchronisation

(A4) Desynchronisation
(NS, Section 3.3.2.2) m 1 ED desynchronisation

(A5) Data integrity (Sec-
tion 3.3.3) - 1

Uplink frame replay,
forgery, decryption.
Downlink frame forgery.

3.4 Recommendations for LoRaWAN 1.0

Hereinafter, we propose practical recommendations aiming at thwarting the attacks described
in Section 3.3. Obviously, one could merely advise the replacement of the protocol with a more
secure protocol. Yet, we take into account that there are already many deployed LoRaWAN
networks. Hence, as an additional constraint, we aim at proposing improvements that can solve
the issues as best as possible while at the same time remaining compliant with the speci�cation,
and keeping the interoperability between patched and unmodi�ed equipment. All the attacks
can be mitigated if both ED and NS are corrected. Otherwise, the attacks targeting an unmodi�ed
equipment remain possible.

3.4.1 Practical Implementation

Against attack A5: implement end-to-end data integrity between ED and AS. This
must be done at the application level. In addition, AS must not blindly trust NS and should
verify every security parameter it receives. In particular, if AS receives the application session
key Ke

a from NS, it should verify that the key is fresh (not reused). Similarly AS must keep track
of the frame counters (both uplink and downlink counters) in order to avoid frame replays.

Against attack A4: verify that the session keys are shared. We suggest to implement
it in the following way. Straight after the key exchange is done, NS must send a so-called
DevStatusReq command and verify (authentication tag) the DevStatusAns response from ED, or
verify, if it comes earlier, the �rst frame sent by ED. The lack of response must be read into this
as an issue (ED or NS under attack).

In addition NS must keep all sets of session keys from the last valid one up to the latest
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computed one. When NS receives an uplink frame (carrying a DevStatusAns response, or another
uplink frame), it checks the authentication tag with all keys, starting from the latest. If the keys
that match with the authentication tag belong to one of the yet unapproved sets, then NS keeps
this set of session keys only and drops all the others. This set becomes then the last valid one.

Against attack A3: verify that the received Join Accept message corresponds to the
sent Join Request message. We recommend to compute the DevAddr parameter in the
following way. Let NwkAddr be the least 25 signi�cant bits. NwkAddr is computed as
NwkAddr = H(rndE , rndN , idE) where H is a collision-resistant function.

Alternatively, ED can perform a session key con�rmation with NS.

Against attack A2: generate rndN values with no repetition. A counter must be used
to produce the rndN values. The counter must not overlap, and one di�erent counter must be
used for each ED in order not to arti�cially lower the number of sessions per ED.

Against attack A1: detect a replay of rndN values. It may be implemented using compu-
tationally and memory e�cient techniques such as Bloom �lters [Blo70; DM04]. However the
rndN parameter being turned into a counter, it is enough for ED to store the last received rndN
value in order to detect a replay.

3.4.2 Changes in the LoRaWAN Speci�cations

Version 1.0. LoRa Alliance, in charge of developing and promoting the LoRaWAN speci�-
cation, has been informed of the attacks described in Section 3.3. A document recommending
changes to be implemented in LoRaWAN 1.0 has been published [LoR18b]. Two recommen-
dations correspond to ours: the rndN parameter is turned into a counter, and a session key
con�rmation is done (by ED). Yet, the key con�rmation message can also transport application
data.

The document recommends also to turn the rndE parameter into a counter. This aims at
preventing a replay of Join Request messages (which enables attacks A2 and A4). According to
us, this is hazardous. Indeed, if the rndE counter does not overlap, then an attacker can compel
ED to use all possible counter values (simply by responding an invalid Join Accept message
to its Join Request messages). Eventually, ED ends up being unable to connect the back-end
network, and blocked once and for all.

Furthermore, end-to-end data integrity between ED and AS remains unenforced.

Version 1.1. As presented in Section 3.5, this version di�ers from version 1.0 in several ways.
Nonetheless, the rndN counter, and the session key con�rmation (done by ED) have been
maintained.

3.5 Protocol LoRaWAN 1.1

3.5.1 Architecture

LoRaWAN version 1.1 has been published in 2017 [Sor17]. It aims at replacing version 1.0 and
at providing corrections to this previous release. It introduces also a third entity called Join
Server (JS), turning the original 2-party protocol (between ED and NS) into a 3-party protocol
(between ED, NS and JS). JS is connected to NS, and, possibly, to AS. The AS servers remain
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present in the architecture. The role of the latter servers, as in version 1.0, is merely to use
the session key computed by the other entities, and to exchange encrypted frames with ED.
Figure 3.8 depicts the architecture of a typical LoRaWAN network in version 1.1.

End-device Gateway Network
Server

Join
Server

Application
Server

data integrity (Ki1
c ,K

i2
c )

data con�dentiality (Ke
a)

Figure 3.8 – LoRaWAN network in version 1.1. Data exchanged between ED and NS are
encrypted with Ke

c . Data exchanged between ED and AS are encrypted with Ke
a .

LoRaWAN 1.1 o�ers three sub-protocols to establish a session, called Join procedure, Rejoin
type 1 procedure, and Rejoin type 0/2 procedure. The Join procedure is the standard way to start
a session (it inherits from version 1.0). The Rejoin type 1 procedure is an “emergency” method
aiming at reconnecting ED in case of total loss of the cryptographic context by NS. The Rejoin
type 0/2 procedure is mainly used to change the radio parameters, even if it may also be used to
update the session keys. In the remaining of this chapter we consider the method likely the
most used to execute the protocol, that is the Join procedure.

3.5.2 Authentication and Key Exchange

LoRaWAN 1.1 is a protocol based on shared (static) master keys. Each ED stores two distinct
128-bit master keys: a communication keyMK1, and an application keyMK2, and JS owns the
list of all the master keys. All the cryptographic operations are based on the AES block cipher.

Initiated only by ED, the key exchange is made of four main messages. The �rst two (Join
Request and Join Accept) are used to mutually authenticate ED and JS, and to share the data
used to compute the 128-bit session keys. The other two (RekeyInd and RekeyConf) are used to
validate the session keys. Figure 3.9 depicts a session establishment in version 1.1.

The Join Request message sent by ED carries three main parameters: JS’ identi�er idJ (64
bits), ED’s identi�er idE (64 bits), the current ED’s counter cntE (16 bits). These parameters
are protected with a 32-bit MAC tag computed with AES-CMAC keyed with the master key
MK1. For the sake of clarity, we slightly simplify the formulas and do not make appear the
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value corresponding to the message’s type (which is also sent and involved in the MAC tag
computation).

Join Request = idJ‖idE‖cntE‖τE

with
τE = MAC(MK1, idJ‖idE‖cntE).

Upon reception of the Join Request message, NS checks that the cntE counter is valid (i.e.,
greater than the last value received from that ED), and forwards the message to JS. In turn, JS
veri�es the MAC tag, and computes a Join Accept response. This message carries a counter cntJ
(24 bits), NS’ identi�er idN (24 bits), and other parameters prms (such as radio parameters).
Since the prms parameters are not relevant to the remaining of this chapter, we skip their
description and refer the interested reader to the speci�cation [Sor17]. The message is protected
with a CMAC tag computed under a (static) master keyMK3, which is derived from ED’s master
key MK1 and ED’s identi�er idE . The MAC tag involves in addition the parameters cntE and
idJ sent by ED. This aims at forbidding a replay of previous Join Accept messages to ED (which
the previous version of the protocol, LoRaWAN 1.0, is subject to as shown in Section 3.3.1.1).
The data carried in the Join Accept message are encrypted with the AES decryption function in
ECB mode, and the master key MK1. Once ED receives the Join Accept message, it veri�es the
MAC tag and the cntJ counter.

Join Accept = AES−1(MK1, cntJ‖idN‖prms‖τJ)

with

τJ = MAC(MK3, idJ‖cntE‖cntJ‖idN‖prms)
MK3 = KDFmk(MK1, idE).

The KDFmk function corresponds to

KDFmk(K,x) = AES(K, 0x06‖x‖0x00000000000000).

In order to validate the session keys, ED sends a special message called RekeyInd that triggers
the change, by NS, of its security context. In turn, NS sends a RekeyConf response. These
messages are computed as any other post-accept messages (i.e., sent through the secure channel).
Akin to the Finished messages in TLS, these messages, protected with the session keys, are used
to conclude the key exchange phase.

3.5.3 Session Keys Computation

The counters cntE and cntJ (sent during the key exchange) are unique per ED. They are
initialised to 0 and monotonically increased (respectively by ED and JS) at each new session.
From these two counters, idJ , and the master keysMK1,MK2, ED and JS compute four 128-bit
session keys Ki1

c , Ki2
c , Ke

c , and Ke
a:{

Ki1
c ‖Ki2

c ‖Ke
c = KDFc(MK1, cntJ‖idJ‖cntE)

Ke
a = KDFa(MK2, cntJ‖idJ‖cntE)

The session keys Ki1
c , Ki2

c , Ke
c are given by JS to NS (through an unde�ned by the speci�cation

but allegedly secure protocol). Ke
a is given by JS either to AS (through a protocol unde�ned by

the speci�cation), or to NS (in such a caseKe
a is encrypted with a key independent of LoRaWAN,
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ED NS JS
(MK1, MK2) (MK1, MK2)

mutual auth.←−−−−−−−−−−−→
cntE ← cntE + 1
τE ← MAC(MK1, idJ‖idE‖cntE)
Join Request← idJ‖idE‖cntE‖τE

Join Request
−−−−−−−−−−−−−→

Verify cntE
Join Request

=============⇒
Verify τE

cntJ ← cntJ + 1
MK3 ← KDFmk(MK1, idE)

τJ ← MAC(MK3, idJ‖cntE‖cntJ‖idN‖prms)
Join Accept← AES−1(MK1, cntJ‖idN‖prms‖τJ)

Ke
c‖Ki1

c ‖Ki2
c ← KDFc(MK1, cntJ‖idJ‖cntE)
Ke
a ← KDFa(MK2, cntJ‖idJ‖cntE)

Join Accept
←−−−−−−−−−−−−−

Join Accept
⇐=============

Ke
c , Ki1

c , Ki2
c , Ke

a⇐=============

cntJ‖idN‖prms‖τJ ← AES(MK1, Join Accept)
MK3 ← KDFmk(MK1, idE)
Verify τJ and cntJ
Ke
c‖Ki1

c ‖Ki2
c ← KDFc(MK1, cntJ‖idJ‖cntE)

Ke
a ← KDFa(MK2, cntJ‖idJ‖cntE)

Compute RekeyInd
RekeyInd

=============⇒
Verify RekeyInd
Compute RekeyConf

RekeyConf
⇐=============

Verify RekeyConf
post-accept phase
⇐===========⇒

Figure 3.9 – Correct execution of LoRaWAN 1.1. Double line arrows indicate the use of secure
channel keys. There are two secure channels: ED-NS (LoRaWAN), and NS-JS
(additional protocol).

only known to JS and AS [Yeg17]). The KDFc function, on input a key K and a value x, outputs
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the following three values
Ki1
c = AES(K, 0x01‖x‖0x0000)

Ki2
c = AES(K, 0x03‖x‖0x0000)

Ke
c = AES(K, 0x04‖x‖0x0000)

The function KDFa is de�ned as

KDFa(K,x) = AES(K, 0x02‖x‖0x0000).

3.5.4 Secure Channel

To that point, ED can send protected messages to the network. The messages are encrypted with
AES-CTR and Ke

c or Ke
a depending on the message type. A command message is encrypted

with Ke
c and exchanged between ED and NS. An application message is encrypted with Ke

a and
exchanged between ED and AS. In addition, irrespectively of the frame type, part of the header
is encrypted with Ke

c . Three di�erent frame counters are used. They are 32-bit each. One frame
counter is used in the uplink direction. In the downlink direction, AS and NS use a di�erent
frame counter.

LoRaWAN provides data integrity only between ED and NS (and relies upon an additional
– and unde�ned – protocol to guarantee data integrity between NS and AS). The messages
are MAC-ed with two di�erent functions (depending on the direction) which are based on a
tweaked version of AES-CMAC (a block is pre�xed to the input), and output a 32-bit tag. In
the downlink direction, the MAC function uses the key Ki1

c , and corresponds to (tweaked)
AES-CMAC which output is truncated to 32 bits. In the uplink direction, the function used is
MAC‖ de�ned as

MAC‖(K
i1
c ,K

i2
c , x) = MACb(K

i1
c , x)‖MACb(K

i2
c , x)

where MACb corresponds to the downlink MAC function which output is truncated to 16 bits.
The format of an encrypted frame is the same as in version 1.0:

hdr‖ctext‖τ .

3.6 Vulnerabilities in LoRaWAN 1.1

Several vulnerabilities that lead to likely practical attacks against LoRaWAN 1.0 have been
corrected with version 1.1. Nonetheless, some peculiarities of this last version still allows
impairing the security of a LoRaWAN network.

3.6.1 Size of the Counters

Key points. The counters cntE , cntJ are respectively 16-bit and 24-bit long. It is likely that
such short counters can be exhausted, which brings ED to be unable to initiate a new session
and be lastly (if not for good) “disconnected” from the network.

There are two other methods that allow ED to initiate a session (the so-called Rejoin proce-
dures). However the Rejoin type 0/2 procedure is available only if a session is ongoing (because
the �rst request is sent through the current secure channel). As for the Rejoin type 1 procedure,
it is invoked periodically based on a prede�ned frequency, which means that it is not available
at will.
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Technique 1. The speci�cation states that if the cntE counter wraps around, then ED must
use a di�erent idJ value (parameter used in the Join Request and Join Accept messages, and in
the session keys computation). In fact, idJ‖cntE behaves as a counter where idJ corresponds
to the most signi�cant bits, and cntE to the least signi�cant bits. Therefore it may not be
enough to exhaust the cntE counter in order to stuck ED. However, we do think that, due to
lack of clarity of the speci�cation regarding the rationale in storing more than one idJ value
into ED, and the fact that LoRaWAN 1.1 inherits from the previous version of the protocol, it
is likely that only one idJ value be stored into ED (as in the previous version, where cntE is
a pseudo-random value). Moreover it has been shown in Section 3.3.1.1 that it is possible to
compel ED to repeatedly send Join Request messages, hence to likely use all the cntE values.
Therefore exhausting ED’s counter appears feasible.

Assuming that ED sends one Join Request message every 5 seconds [Wor], the duration of
this attack is 216 × 5 seconds ' 91 hours. Note that, if ED stores k samples of idJ values, the
duration of the attack is k × 91 hours.

The only remaining possibility in order for ED to connect the back-end network is the Rejoin
type 1 procedure. This is an “emergency” procedure aiming at reconnecting ED in case of total
loss of the cryptographic context by NS, and the latter is not compelled to respond to a Rejoin
type 1 Request (especially if NS did not lose this context).

Technique 2. Now, let us assume that ED stores several idJ values. Then the attacker can
target the cntJ counter. As said above, the attacker can compel ED in repeatedly sending Join
Request messages. Each Join Request message triggers a new Join Accept response, hence
consumes a new cntJ value. Yet, cntJ is 24-bit long, whereas cntE is 16-bit long. Therefore, in
order for ED to send as many Join Request messages as possible cntJ values, ED must store
a number of idJ values equal to |cntJ |/|cntE | = 224/216 = 256. The duration of this attack
is 224 × 5 seconds = 2.66 years. This is a very long attack, yet less than the expected lifespan
of ED (up to 10 years), and it ends up with ED being possibly unable to connect the back-end
network ever again.

3.6.2 Size of the MAC Tags

As in version 1.0, the MAC’s output is 32-bit long in LoRaWAN 1.1. Hence, MAC forgeries are
worth considering, and, in combination with the fact that data encryption is done in CTR mode,
so are attacks against data integrity.

The duration of such forgeries is higher if the attacker acts on the air interface (in particular
if she targets ED) than if she is able to act in the back-end network.

3.6.3 Known Encryption Keystream

Key points. Per speci�cation, ED must send a (encrypted) RekeyInd message as long as it
does not receive a RekeyConf response (up to a �xed number of RekeyInd messages, afterwards
ED must start a new session). Conversely, NS must respond to each RekeyInd message with a
(encrypted) RekeyConf response. The (plaintext) content of both kind of messages is known
(static value described in the speci�cation). Hence, an attacker can get multiple valid encryption
keystreams for free. If she succeeds in forging a valid MAC tag, then she can get messages
carrying the plaintext of her choice. Of course, simple encryption does not provide data integrity,
and the attacker needs to forge a valid MAC tag. However this provides a way to compute
encrypted messages which underlying plaintext is semantically correct.
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Technique used. In order to collect the keystreams, the attacker can forbid NS from receiving
the RekeyInd messages, or discard the RekeyConf messages sent by NS. This compels ED to
send multiple messages. The adversary collects all these messages (and lets the �rst RekeyInd
reach NS so that NS uses the new session keys). The adversary can then use the other n− 1
messages to try to forge a valid message (i.e., compute a valid MAC tag).

Similarly, the adversary can forbid ED from receiving the RekeyConf message sent by NS
(which receives the RekeyInd messages from ED). This compels NS to respond with multiple
messages. The adversary collects all these messages. She sends the �rst RekeyConf message
to ED (in order for ED to continue the session) and can use the remaining n− 1 RekeyConf
messages in order to mount the attack.

The parameter n = ADR_ACK_LIMIT is at most 215. Nonetheless, the default settings [Wor]
in several geographical areas (e.g., USA, Europe, China) demand that n = 64. Therefore, the
attacker has at her disposal between 64 and 215 frames (in either direction). Yet, when ED
reaches this limit, it must initiate a new key exchange, which provides to the attacker a new
batch of n messages in the downlink and uplink directions.

Impact. The encrypted payload of the RekeyInd and RekeyConf commands is 8-bit long.
Therefore, a successful attacker gets a 8-bit encryption keystream. The attacker can use it to
encrypt other 8-bit long commands. The following commands can be of interest to the attacker:
ADRParamSetupReq, DutyCycleReq. These commands are intended to ED. ADRParamSetupReq
is used to change the value of the n = ADR_ACK_LIMIT parameter. The attacker can then set
this parameter at its highest value in order to favour subsequent attacks. DutyCycleReq is
used to change the transmission rate of the uplink frames (including the Join Request frames).
Hence, increasing this rate is a way to passively exhaust the 16-bit cntE counter. Moreover,
the LoRaWAN 1.1 speci�cation allows de�ning proprietary commands, which could also be
exploited by the attacker to target ED or NS.

3.6.4 Downgrade Attack

Key points. According to the speci�cation, an ED implementing version 1.1 must fall back to
version 1.0 when it faces an NS implementing version 1.0. Hence, even an ED in version 1.1 may
succumb to the attacks that have been shown possible against LoRaWAN 1.0 (see Section 3.3).
Therefore, a current deployment of LoRaWAN 1.1 may inherit the �aws of the previous version.

Scenario 1. In this scenario, ED in version 1.1 faces �rst NS in version 1.0. Then, at some
point, NS is upgraded to version 1.1. Both ED and NS execute LoRaWAN 1.1. If an attacker
eavesdropped on a Join Accept message computed in accordance with version 1.0 (when NS
was applying that version), she can send it to the upgraded ED. Then ED accepts the message
and falls back to version 1.0.

Scenario 2. In this scenario, ED in version 1.0 is deployed, and communicates with NS in
version 1.0. At some point it is upgraded to version 1.1 (as well as NS). Since ED is already
provisioned and registered on the back-end side, it is possible that ED keep the same identi�er
idE . If, in addition, the same master key used in version 1.0 is used as the MK1 master key in
version 1.1, then several attacks are possible against the (upgraded) ED.

Impact. Scenario 1 enables the desynchronisation attack (see Section 3.3.2.1). Scenario 2
enables the “replay or decrypt” attack against ED (see Section 3.3.1.1). Indeed, the reuse of
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session keys and encryption keystreams can be obtained when the 16-bit monotonically increas-
ing counter cntE that ED uses in version 1.1 meets same values as the 16-bit pseudo-random
parameter rndE used by ED in version 1.0. Moreover the desynchronisation attack is also
possible with scenario 2.

It may be possible that, when executing version 1.0, ED implements also the recommendations
published by LoRa Alliance [LoR18b] which aim at strengthening the security of version 1.0.
With respect to the desynchronistion attack, this document recommends that ED initiate a new
key exchange if it does not receive a response from the back-end network after ADR_ACK_LIMIT
uplink frames. We observe that, even in such a case, the desynchronisation attack can be
detrimental to the network availability. Indeed the regular behaviour of ED may imply sending
one frame per hour or even per day. Since ADR_ACK_LIMIT = 64, several days or weeks may
elapse without the back-end network being able to communicate with ED. Likewise, all the data
sent meanwhile by ED will be lost, and unusable by the network.

With respect to scenario 2, if ED enhances version 1.0 with the LoRa Alliance recommen-
dations then the “replay or decrypt” attack (see Section 3.3.1) is mitigated, because in such
a case the pseudo-random values involved in the session key derivation are replaced with
monotonically increasing counters.

3.6.5 Lack of Data integrity

Key points. There is no end-to-end data integrity provided by LoRaWAN between ED and AS.
The speci�cation demands data integrity be guaranteed by an additional (and unde�ned) protocol
between NS and AS. At the same time, a companion document [Yeg17] demands that data
integrity (and other security properties such as data con�dentiality and mutual authentication)
be ensured hop by hop between the components of a LoRaWAN network. Managing data
security in such an hop-by-hop fashion is hazardous because it does not take into account the
intermediate servers between NS and AS. Handing down security properties that is, according
to us, incumbent upon the LoRaWAN protocol may lead to security breaches, as some of these
servers (such as a MQTT server) have been shown to be insecurely managed [Lun17].

Impact. An attacker that succeeds in accessing a weak point between NS and AS can exploit
the lack of data integrity in a LoRaWAN application frame, and alter or truncate the frame. It
may also be possible to break data con�dentiality by applying a kind of “message oracle attack”
(see Section 3.3.3). The attacker �rst makes a guess regarding the plaintext data encrypted in
some message. She replaces the alleged message with a (per speci�cation de�ned) LoRaWAN
command. Based on the behaviour of AS (it may apply the commands chosen by the attacker, or
reject the message), the attacker learns if her guess is correct (hence deduce the plaintext data).8

3.6.6 Reuse of an Application Session Key

Key points. The session key Ke
a used by AS to encrypt application messages is either sent

by JS to AS (through a protocol unde�ned by the speci�cation), or sent by JS to NS (which
relays it to AS with the corresponding encrypted application frame). In the latter case, Ke

a is
encrypted with a key known only to JS and AS. The LoRaWAN speci�cation does not make
clear the properties of the security scheme used to wrap Ke

a . We observe that if this scheme
does not provide non-replayability of the messages, then it may be possible to compel AS to
reuse a previous application session key Ke

a .
8Rupprecht, Kohls, Holz, and Pöpper [RKHP19] have shown (though in another context) the consequences of

the combination of encryption in CTR mode and lack of data integrity.
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Technique used. The attacker acts on a weakly protected intermediary point between NS
and AS where she can replace the current application key (and the corresponding application
frame, due to the lack of end-to-end data integrity between ED and AS) with a previous one.

Impact. If AS reuses a past application session key, all the previous messages encrypted by
ED with this key become cryptographically valid anew. Hence the attacker can replay these
messages to AS. Furthermore, AS uses that same key to send back new application frames to
ED. Since encryption is done in CTR mode, the attacker can decrypt application messages.
Indeed, two di�erent messages (each from two distinct sessions) protected with the same key,
and corresponding to the same counter, are encrypted with the same keystream. Therefore
the bitwise combination of the two encrypted messages is equal to the combination of the two
corresponding plaintexts. Hence the two plaintexts can be partially or completely retrieved, in
an obvious manner if either message is known, or through statistical analysis [MWES06].

Another issue arises also. The application frame then encrypted by AS with a previous session
key Ke

a , and intended to ED, is MAC-ed by NS (with the current MAC session key). Upon
reception of that frame, ED deems it is correct since data integrity is valid. However decryption
with the current session key yields roughly garbage. It is unclear how ED behaves with the
output of the decryption process.

3.6.7 Malicious or Corrupted NS

Key points. A malicious or corrupted NS which receives the encrypted application keys Ka
e

from JS can apply the scenario described in Section 3.6.6. It can also possibly do more.
A companion speci�cation [Yeg17] states that the communication and application master

keys MK1 and MK2 must be stored at JS which is then in charge of doing the key exchange
with ED. At the same time, the speci�cation version 1.1 [Sor17] claims that the communication
master key may be given to the communication provider. Regarding the application master key,
the speci�cation does not allow nor forbid from surrendering the MK2 key to AS. Therefore
we provide the following observation. Let us assume that AS owns MK2 and computes the
application session key Ke

a . This key is computed from the two variable parameters cntE and
cntJ . We acknowledge that cntJ must be checked by JS. Hence, AS may receive that parameter
from JS. Nonetheless, per speci�cation, NS may also be in charge of relaying to AS parameters
received from JS (e.g., the encrypted key Ke

a). Therefore, it is conceivable that JS rely upon NS
in order to send cntJ to AS.

Technique used. If cntE and cntJ are received by AS from NS (and if AS does not keep track
of these parameters), a malicious or corrupted NS can choose any pair of values, and compel AS
to compute and use past, current or future application session keys. Recall that NS chooses also
the DevAddr parameter which is involved in the encryption keystream (Si) computation.

Impact. If AS reuses a past keyKe
a , the attacker can replay to AS old frames, and also attempt

frame decryption. If AS uses a future session key to encrypt an application frame, the attacker
can collect (e.g., on the air interface) and store these frames in order to use them some time later
against ED. The malicious NS can act so against any AS it is legitimately allowed to communicate
with.

The scenarios described in Sections 3.6.6 and 3.6.7 imply stringent assumptions (intruding
an intermediary server or NS). Our purpose is not to elaborate on the di�culty of achieving
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Figure 3.10 – Application session key derivation (Ke
a) and encryption keystream computation

(Si) in LoRaWAN 1.1

the latter but rather to point out some issues left unattended in the speci�cation due to its
lack of clarity and the limited security perimeter it covers. That is, under the same scenario,
and with the same capabilities (e.g., breaking into an MQTT or NS server), an attacker can
be more detrimental to LoRaWAN 1.1 than to a state-of-the-art protocol. In particular, the
LoRaWAN speci�cation seemingly considers the protocol as involving two parties only (ED
and the back-end network), and does not make clear the security properties it is supposed to
guarantee, nor the powers of the adversary it aims at defending against. A third party reduces
the security of a client-server type connection (as in LoRaWAN 1.0) by increasing the attack
surface. Whereas a given ED is bound to a given JS, many NS servers may relay the data between
an ED and its JS and AS. Thus the security of a whole network can be shattered by a malicious
NS or the weakest NS which relays data back and forth between many ED and AS.

In Chapter 5, we devise a security model that addresses the LoRaWAN protocol in its 3-
party setting (ED, NS-AS co-localised, JS), and allows capturing the security properties it should
guarantee. Then we use this security model in order to provide a security proof of a LoRaWAN 1.1
protocol modi�ed in order to mitigate the aforementioned �aws.

3.7 Recommendations for LoRaWAN 1.1

In this section, we present several recommendations aiming at mitigating the attack scenarios
described in Section 3.6. The recommendations take as most as possible into account the need
to keep the interoperability between a patched equipment and an unmodi�ed equipment.

R1 – Exhaustion of counter. Against the scenario described in Section 3.6.1 based on the
size of the counters, we recommend that ED store enough idJ values such that exhausting
counter cntE be not possible.

R2 – MAC tag forgery. Thwarting a MAC tag forgery (Section 3.6.2) is not possible without
increasing the size of the tag. We recommend the latter even though this forbids two entities
(patched and unmodi�ed) from being able to communicate.

R3 – Known encryption keystream. In order to preclude the scenario described in Sec-
tion 3.6.3, we recommend that ED and NS perform a proper session key con�rmation prior to
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transmitting any application or command frame. Alternatively, the same procedure as the one de-
scribed in LoRaWAN 1.1 can be applied, but based on a reduced number of RekeyInd/RekeyConf
commands in order to lower the extent of the attack.

R4 – Downgrade attack. Against the attack described in Section 3.6.4, we suggest three
distinct countermeasures. Firstly, ED in version 1.1 must refuse to fallback to version 1.0 when
it faces NS implementing only this version. According to us, such a circumstance should be rare
since NS will likely implement both versions. Secondly, ED in version 1.1 can execute version
1.0 following the LoRa Alliance recommendations [LoR18b]. Yet, as indicated in Section 3.4.2,
this allows (against this modi�ed version 1.0) the attack aiming at exhausting ED’s counter (see
Section 3.6.1). Thirdly, NS in version 1.0 can compute the Join Accept message the same way as
in version 1.1. This allows ED to verify that the message it receives is indeed a response to the
Join Request message it has sent.

R5 – Lack of data integrity. The attack due to the lack of end-to-end data integrity between
ED and AS (Section 3.6.5) can be mitigated the same way as for version 1.0. That is, implementing
data integrity at the application level between these two parties, and keeping track (by AS) of
the frame counter.

R6 – Reuse of an application session key & malicious or corrupted NS. Likewise, in
order to thwart the attack scenarios described in Sections 3.6.6 and 3.6.7, AS must keep track of
all parameters used in the application session key computation as well as in a frame encryption
and decryption. This includes the counters cntE and cntJ , the uplink and downlink frame
counters, and the application session key (when received from NS). This countermeasure can
be implemented using computationally and memory e�cient techniques such as Bloom �lters
[Blo70; DM04].

3.8 Other Analyses

In this section we recall independent analyses on LoRaWAN 1.0 and 1.1 that have been published
while our papers [AF18b; CF19] were under submission or after they have been accepted.

3.8.1 On LoRaWAN 1.0

Few analyses on LoRaWAN have been done. Most of the reviews deal with technical consid-
eration such as the network management (secret keys storage, etc.) and generic attacks (e.g.,
hardware attacks, web attacks) unrelated to the LoRaWAN protocol itself.

In contrast to these works, we have provided an extensive analysis of the protocol and show
that it su�ers from several weaknesses. We have presented new attacks and for each of them
we have provided a precise description of its goal, its implementation, the technical means
used, and the tangible consequences. In addition we have described attacks targeting either
ED or NS. Our attacks do not lean on strong assumptions such as the ability to monitor ED
or NS. Likewise the attacks do not entail a physical access to the targeted equipment and
are independent from the means used to protect secret values (e.g., using a tamper resistant
module such as a Secure Element). The attacks, due to the protocol weaknesses, do not lean
on potential implementation or hardware bugs, and are likely to be successful against any
equipment implementing LoRaWAN 1.0.
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Lifchitz [Lif16] notes that, since the rndE and rndN parameters are pseudo-random, a reuse
is possible due to the birthday paradox. Hence, under the strong assumption that the rndE value
is “forced” (i.e., ED controlled by an attacker), a keystream reuse happens with high probability
after

√
2 ln(2)× 11× 224 ' 16,000 sessions, or 22 hours if a key exchange is done in 5 seconds.

According to us, if both rndE and rndN values repeat, this leads to a session keys reuse. In
order for a keystream to repeat, it is necessary for the DevAddr parameter to be reused as
well. Moreover the �gure of 22 hours corresponds to a continuous series of key exchanges
without any intermediary application frame being sent. The purpose of such an attack is likely
to manipulate (decrypt, replay) such frames. Therefore, the time needed to collect these frames
must be taken into account, and, in all likelihood, the duration of this attack is higher.

Furthermore it is unclear where the numbers come from. We may assume that NS keeps
track of 10 rndE values, and the attacker uses 11 di�erent Join Request messages, randomly
choosing one at each try. However NS unlikely accepts every such message since the same
message (hence the same rndE value) is picked after roughly 4 tries. Hence the number of
sessions needed to get a reuse of both rndE and rndN values is higher than the provided number
16,000, as well as the duration of the attack. The number of 10 stored values seems also to be
implementation speci�c. Yet we cannot claim this is the genuine purpose of [Lif16].

Lifchitz’s analysis is made on version 1R0 of the protocol [SLE+15] published in January
2015. We observe that this attack is unlikely successful against an NS implementing version
1.0.2 (the current 1.0 version) published in July 2016. Indeed, according to the speci�cation, NS
must receive a valid uplink frame protected by the new security parameters before dropping the
current ones and using the new ones. The attack described by Lifchitz leads to the computation
of the same session keys two di�erent times. Yet, with high probability, these keys are fresh (i.e.,
never used previously by NS with a legitimate ED) because the attacker has no control on the
rndN parameter. This means that the attacker has to forge a valid uplink frame if she wants to
compel NS to use these keys. That is, the attacker must forge a valid 32-bit authentication tag.

Lifchitz indicates also that an alternative way to attack ED is to replay to NS a previous Join
Request message (because the server keeps track of a “certain number of [rndE]values”), leading
to ED being disconnected from the network.

Finally, Lifchitz observes that the encryption scheme does not hide the length of the plaintext
which may help an attacker to deduce the underlying data.

Miller [Mil16b; Mil16a] proposes a denial of service attack against NS by �ooding the server.
He notes also the possibility to replay Join Request messages. Moreover, since the application
frames are protected with a 32-bit authentication tag, forgery attempts may be tried mainly
against NS, according to Miller.

Tomasin, Zulian, and Vangelista [TZV17] indicate that ED may be precluded from joining
the network after a certain number of sessions, depending on the NS’ behaviour. This may
happen either “naturally” (if NS keeps track of all received rndE values), or due to an attack (if
NS decides to exclude ED which it repeatedly receives Join Request messages replays from –
the frames being replayed sent by an attacker). We observe that if the rndE value repeats there
is a more detrimental attack than a DoS, namely the “replay or decrypt” attack described in
Section 3.3.1.1.

Moreover Tomasin et al. recommend to use a 16-bit counter for rndE instead of a pseudo-
random value, and to increment the counter only when a (valid) Join Accept message is received.
This aims at ensuring that the rndE counter is shared by ED and NS. According to us, this is
incorrect because it is possible to replay any Join Accept message. In addition, this recommen-
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dation leads to another attack which allows disconnecting ED from the network once and for
all. This attack is of the same kind as the one described in Section 3.3.2.2. The attacker does the
following: when ED sends a Join Request message, she forbids (once only) ED from receiving
the Join Accept message sent by NS. Hence ED reuses the same rndE value in subsequent Join
Request messages. And these messages are then discarded by NS since they carry an invalid
(i.e., reused) rndE value. Therefore ED is stuck since it keeps using the same rndE value (which
is continuously discarded by NS).

Another issue may also happen if NS keeps a strict synchronisation with ED. Since an at-
tacker can easily replay any Join Accept messages, she can respond to ED (when it sends a Join
Request message) before NS, while forbidding the latter from receiving ED’s message. Hence ED
increments its rndE counter while NS does not. The more the attacker repeats this procedure
the greater the di�erence between both counters. If NS accepts a Join Request message only if
the di�erence between the two counters is exactly 1 then ED’s message is likely rejected.

Finally, Tomasin et al. show also that it is possible to make the distribution of the random
bit generator output produced by ED (hence the distribution of the rndE values) deviate by
in�uencing on the radio signal strength, because the speci�cation suggests to compute the
rndE values from radio measurements.9

Yang [Yan17] observes that it is possible to replay previous frames and to decrypt frames if
some security parameters are reused (namely the frame counter, and encryption keytsream).
This can be done if the frame counter wraps around. According to the author, the latter may
happen if ED is reset (in the case of the ABP mode where ED uses always the same session
keys), or if it sends an amount of frames that exceeds the size of the frame counter. However
the speci�cation forbids ED from using twice the same frame counter value (with the same
session keys). Moreover Yang’s attacker targets NS, and, per speci�cation, NS must discard any
frame replay. Hence, the feasibility of such attacks seems unlikely according to us.

Yang indicates also that the lack of data integrity between NS and AS allows an attacker to
modify the plaintext by modifying the encrypted payload (due to the encryption in counter
mode).

ED can ask NS to acknowledge the reception of an uplink frame. But the frame sent by NS in
response is not related to the uplink frame it is supposed to acknowledge. Hence, Yang observes
that this can be used to deceive ED. An attacker can eavesdrop on such an acknowledgement
response, forbid ED from receiving it, and send it later on to ED to make the latter believe that
a subsequent uplink frame (demanding to be acknowledged) has been received by NS whereas
it is not the case.

3.8.2 On LoRaWAN 1.1

In contrast to previous analyses, we have addressed in our analysis the new 3-party aspect of
the protocol introduced in its latest version. In addition, we have described new vulnerabilities
impairing the security of LoRaWAN 1.1, and proposed several recommendations aiming at
mitigating the latter. Finally, we have used a provable security approach that enables to shed
light on the security requirements implied by this 3-party protocol. We detail this contribution
in Chapter 5, Sections 5.3 and 5.4.

Butun, Pereira, and Gidlund [BPG18] make a threat analysis of LoRaWAN 1.1. Their results
do not mention any novel attack or vulnerability compared to what has been observed regarding

9Tomasin acknowledge our remarks [Tom19].
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the LoRaWAN 1.0 architecture. Among the few threats they consider relevant (the others being
physically intruding an ED and deploying a rogue gateway), Butun et al. describe an attack
aiming at exhausting the daily quota of frames ED can send, which is based on a technical
limitation that they incorrectly attribute to LoRaWAN (citing another paper [AVTP+17] that
mentions in fact Sigfox with respect to that limitation). They suggest several recommendations
in order to improve the security of LoRaWAN 1.1 such as protecting the secret keys stored by ED
in a tamper-resistant module (as recommended by the speci�cation [Sor17]), using public-key
cryptography in order to update the master keys, or replacing the cntE and cntJ parameters
(used as input in the session keys derivation) with a nonce negociated during the key exchange
(and to be used during the next key exchange). Seemingly, one nonce only, sent by ED, is used
in that proposal. The goal seems to preclude a reuse of the nonce. NS keeps track of all received
nonces, and discards any key exchange message carrying an reused value.

The rationale behind Butun et al.’s proposal is unclear to us since the current cntE and cntJ
parameters are monotonically increasing counters which are not supposed to wrap around
(under the same session keys). In addition, in that proposal, the nonce must be updated after
a successful key exchange. Therefore, a simple attack appears feasible. Upon reception of a
RekeyInd command, NS deems that the key exchange is correct, and updates the nonce (in
particular, the nonce used during the current key exchange is stored in the list of old nonces).
Let us assume that an attacker forbids ED from receiving the RekeyConf command sent by NS.
Then the key exchange is not successful from ED’s perspective. Hence, following Butun et al.’s
proposal, it does not update the nonce, and uses the same nonce during the next key exchange.
Yet this nonce is an old one for NS, which discards the Join Request message. Since ED does not
receive a response from NS, it keeps using the same nonce (which is continuously rejected by
NS). ED is then unable to reach the back-end network once and for all.

In LoRaWAN 1.1, the MAC tag of an uplink frame is computed with two session keys: the �rst
16 bits with Ki1

c , the last 16 bits with Ki2
c (cf. Section 3.5.4). This computation aims at allowing

an intermediate NS (called forwarding NS) to verify an uplink frame in a roaming con�guration.
Consequently Stöhr [Stö17] devises the following attack scenario. If the attacker is able to know
independently whether either 16-bit string of the MAC tag is correct, she can forge a valid MAC
tag with at most 2 × 216 trials instead of 232. The attacker can lean on the behaviour of the
back-end network to achieve her attack (e.g., the NS servers may return di�erent error codes,
or respond faster depending on the validity of the two pieces of the MAC tag).

This scenario highlights that the size of the MAC tags may not be long enough in order to
provide enough resistance against forgeries.

Dönmez and Nigussie [DN18b] investigate the possible vulnerabilities due to the fallback
mechanism allowed in version 1.1. They consider the case when ED in version 1.1 faces NS in
version 1.0 (and then switches back to version 1.0) and conclude, predictably, that the attacks
against version 1.0 become possible anew. Yet they do not consider the case when the 16-bit
monotonically increasing counter that ED uses in version 1.1 meets same values as the 16-bit
pseudo-random parameter used by ED in version 1.0. They also investigate the case (not treated
by the LoRaWAN speci�cation) when ED in version 1.0 faces NS in version 1.1 (which is assumed
by Dönmez and Nigussie to fall back to version 1.0), and come essentially to the same conclusion.

Dönmez and Nigussie [DN18a] consider the possibility to perform against LoRaWAN 1.1 (i.e.,
when both ED and NS implement that version) the attacks targeting version 1.0 (summarised in
[DN18b]) and conclude they are not feasible.



3

3.8 Other Analyses 77

LoRaWAN 1.1 uses two master keys MK1 and MK2 in order to cryptographically separate
the communication layer (between ED and NS) and the application layer (between ED and AS).
Dönmez and Nigussie note that when NS owns the communication master key, it can access
the application layer. Indeed, in such a case, NS can compel ED to fall back to version 1.0 which
uses one key only to protect the communication and the application layers: the communication
master key MK1. Therefore surrendering MK1 to NS defeats the purpose of the double-key
scheme and the existence of JS in LoRaWAN 1.1. The LoRaWAN 1.1 speci�cation claims that
“when working with a v1.1 Network Server, the application session key is derived only from the
[application master key], therefore the [communication master key] may be surrendered to the
network operator to manage the JOIN procedure without enabling the operator to eavesdrop on
the application payload data” ([Sor17], §6.1.1.3). Dönmez and Nigussie show that this statement
is wrong. As a mitigation, they propose ED (and AS) keeps computing the application session
key as in version 1.1.

Dönmez and Nigussie claim that the involvement of intermediary NS servers (the so-called
serving and forwarding NS) between ED and its home NS extends the possibility to alter an
application frame. Yet, according to us, this is incorrect. We acknowledge the lack of clarity of
the LoRaWAN 1.1 speci�cation regarding this point. Nonetheless, according to the speci�cation
[Sor17] (cf. §6.1.2.3) and a companion document [Yeg17] (cf. §11.3.1 and §12.2.1) both serving
NS and forwarding NS may be able to verify at least partially the MAC tag of an uplink frame
(which means by the way that, at this point, data integrity relies upon 16 bits only instead of 32
bits since these servers cannot verify the whole tag). Eventually, the home NS should verify the
whole 32-bit MAC tag.

Dönmez and Nigussie also investigate the possibilities enabled by a malicious NS. They
suggest a session key reuse (hence the possibility to replay or decrypt application frames) if
the counter cntJ managed by JS wraps around (despite the fact that the speci�cation demands
the latter be not possible). We observe that this allows to target AS but not ED. Indeed the
session keys computation involves also the cntE counter managed by ED. If, in such a case, a
malicious NS can replay to JS any Join Request message (previously received from ED) which
carries an old counter value, ED faithfully uses this monotonically increasing counter for the
key derivation. Dönmez and Nigussie recommend JS to keep track of the counter values sent by
ED (the speci�cation demands only NS do this). In contrast, we explain in Section 3.6.7 how a
malicious (or corrupted) NS can compel AS to reuse a previous session key, without JS’ counter
wrapping around.

Finally, Dönmez and Nigussie observe that the protocol does not provide forward secrecy (as
it is based on static master symmetric keys), and suggest to apply the proposal of Kim and Song
[KS17]. The latter consists essentially in using the current session keys to perform the next
key exchange, and then to replace the current keys (or the initial master keys during the �rst
key exchange) with the newly computed session keys. We observe that this update mechanism
implies that one party makes the �rst move (it is ready to use the new keys) while the other still
holds the current keys. Then the other party follows upon reception of one of the messages sent
during the key exchange. An issue arises when that message, which triggers the replacement
of the keys, is not received. The two parties are then desynchronised with respect to the keys
evolution. In such a case, both parties remain unable to perform any subsequent key exchange.
This means that ED is forbidden once and for all from reaching the back-end network. Neither
Kim and Song nor Dönmez and Nigussie explain how to maintain this essential synchronisation
between ED and the back-end network.10

10Dönmez and Nigussie acknowledge our remarks [Dön19]. Regarding Kim and Song’s proposal, Dönmez and
Nigussie acknowledge that a mechanism aiming at ensuring synchronisation remains to be de�ned.
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Remark. In Chapter 6, we describe an authenticated key exchange protocol in the symmetric-key
setting that provides forward secrecy, and explicitly deals with the synchronisation issue.

In turn, Han and Wang [HW18] propose that ED and JS update the LoRaWAN master keys
prior to each new key exchange. Their proposal implies exchanging two additional messages
during the key exchange phase. According to us, this proposal leads also to a synchronisation
issue. One party (ED or JS) has to make the �rst move (i.e., replacing its current master keys with
the new ones). Then the other party does the same upon reception of some message sent during
the key exchange phase. If this message is not received, then the parties are desynchronised
with respect to their master keys. In such a case, they are unable to perform any subsequent
key exchange. Han et al. do not deal with this issue, and leave it unsolved.

Eldefrawy, Butun, Pereira, and Gidlund [EBPG18] perform a formal security analysis of
LoRaWAN 1.1 using the Scyther veri�cation tool. They conclude to the absence of weaknesses
in the protocol. Yet they acknowledge that there may still exist vulnerabilities not found due to
the limitations of the model they employ. It could be advantageous to do an in-depth analysis
with such a veri�cation tool based on a more extensive model.
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Analysis of SCP02 4
SCP02 is a symmetric-key protocol implemented in a speci�c type of constrained de-

vices, namely smart cards. It is used by transport companies, in the banking world and by
mobile network operators (UICC/SIM cards) to transmit sensitive data through a secure

tunnel. Among a wider set of symmetric-key protocols promoted by GlobalPlatform, SCP02 is
likely the most used by the industry of smart cards.

In Chapter 3, we have seen how to exploit �aws that weaken the key exchange phase in
LoRaWAN 1.0. In this chapter, we consider the secure channel established after the key exchange
phase in SCP02, and show how to perform a padding oracle attack against this protocol. This
attack allows to e�ciently retrieve data protected within the secure channel.

We have implemented the attack in an experimental setting, and we present the results of our
experiments done with 10 models of smart cards produced by six di�erent card manufacturers.
This shows that the attack is fully practical in our experimental setting. Given that billions SIM
cards are produced every year, the number of a�ected cards, although di�cult to estimate, is
potentially high. To the best of our knowledge, this is the �rst successful attack against the
SCP02 protocol.

The results of this chapter have been published in [AF18a].
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4.1 Introduction

GlobalPlatform is an organisation that aims at de�ning technical mechanisms related to the chip
technology (e.g., smart cards, application processors, SD cards, USB tokens, secure elements),
used to securely add and remove applications, and related parameters, into the chips. This
initiative aims also at facilitating the interoperable deployment and management of applications
on these types of device, regardless of the manufacturer, as well as “promot[ing] a global
infrastructure for smart card implementation across multiple industries” [Glo18].

Several Secure Channel Protocols (SCP) are speci�ed by GlobalPlatform. Most of them are
based on symmetric-key cryptography (e.g., SCP01, SCP02, SCP03, SCP81). Regarding the
protocols status, SCP01 (based on the DES algorithm) is now deprecated. SCP02 (based on
3DES) is currently the most deployed symmetric-key based SCP protocol1, while the use of
SCP03 (based on AES) seems to be less widespread.2

SCP02 is a protocol aiming at establishing a secure channel between a card and an “o�-
card entity”. The main purpose of the protocol (yet not the only one) is the management of a
(remote) card. Through the secure channel established with SCP02, applets, �les, secret data
(e.g., encryption keys, PIN codes), etc., may be transmitted and stored into the card.

According to GlobalPlatform, SCP02 is used by transport companies, in the banking world
and by mobile network operators (UICC/SIM cards). According to GSMA [GSM19], in 2018
there are over 5 billion unique subscribers to mobile services, and 5.6 billion of SIM cards used
worldwide as estimated by the SIMalliance [SIM18].

A typical usage of the SCP02 protocol is the management of a speci�c application storing
user credentials (e.g., for payment or transport transactions) located in the UICC card that is
plugged into a smartphone. Depending on the context, an additional security protocol (e.g.,
TLS [DR08] or SCP80 [ETS17]) may be used together with SCP02. For instance, in order for a
remote server to send SCP02 commands to the UICC, a SCP02 channel is established between
the remote server and the UICC through the intermediary of an application on the smartphone.
In addition a second secure channel is established between the remote server and the application
on the smartphone (e.g., with TLS or SCP80). This second security layer embeds the SCP02
commands sent by the server. The data exchanged between the server and the application
are then protected with the two security layers, whereas the data exchanged between the
application on the smartphone and the UICC are protected with SCP02 only.

4.2 The SCP02 Protocol

SCP02 aims at establishing a secure tunnel between an “o�-card entity” and a card [Glo18]. For
simplicity, we will use the term “server” to refer to the party involved in the communication
with the card. SCP02 is based on symmetric-key algorithms. The card and the server share one
or several sets of symmetric keys. A set is made of three keys (which value may be equal). From
that set, session keys are computed each time a new channel is established. The card manages
a sequence counter related to a given keyset. Its initial value is 0 and incremented after each
successful session (established with that keyset). Once the sequence counter has reached its
maximum value, the card must not start anymore a session with the corresponding keyset.

Since the operations done during the key exchange phase are not signi�cant for the remainder
of this chapter, we skip the corresponding description, and refer to the SCP02 speci�cation
[Glo18].

1Last release: March 2018 [Glo18].
2Last release: July 2014 [Glo14].
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Depending on the security level negotiated during the key exchange, the commands sent
by the server and the responses sent by the card are encrypted and protected with a MAC tag.
Regarding the commands, the lowest security level is data integrity. Moreover data encryption
solely is not allowed. In the remainder of the chapter we consider that the commands are
encrypted and MAC-ed.

ptext

ptext

hdr ptext padMAC

︷ ︸︸ ︷

hdr ptext padENC︸ ︷︷ ︸
�� ��ENC

�� ��MAC

τctexthdr ctext τhdr′

Kenc
IVENC = 008

Kcmac
IVMAC

Figure 4.1 – Encryption and MAC computation of a command data with SCP02

Figure 4.1 depicts the data encryption and MAC computation of a command. Data encryption
is done with 3DES in CBC mode with a null IV [Int17]. Prior to encryption the plaintext ptext
is (always) padded with a �xed string of bytes according to the method described in [Int11]: a
byte equal to 80 is appended to the plaintext, then as many null bytes as necessary (possibly
none) are added in order to get a string which length is a multiple of a DES block [Int17].

The 8-byte MAC tag τ is computed on the command header hdr, the plaintext, and a padding
data padMAC. The ISO 9797-1 MAC algorithm 3, also known as “retail MAC”, is used [Int11]. It
consists in �rst applying DES-CBC-MAC to the input, and then �nalising the calculation with
one call to 3DES. The value of the �rst IV for the MAC computation is usually 008. The IV
used for the next command is equal to the MAC tag computed on the previous command. The
ciphertext ctext and the MAC tag τ become then the data �eld of the server’s command.

Upon reception of an encrypted command, the card does the reverse operations. First it
decrypts ctext. Then it searches for a valid padding data padENC and removes it. Finally, the
card recomputes a MAC tag and compares it with the tag carried in the encrypted command
(the genuine header hdr can be retrieved from the header hdr′ of the encrypted command).

4.3 The Generic Padding Oracle Attack

The padding oracle attack is based on the fact that a device behaves di�erently depending
on the correctness of the (encryption) padding data. From that di�erentiated behaviour, the
attacker tries to get some information (e.g., some bits or bytes of plaintext). That di�erence
may be based on the nature of the response (presence or absence of the response, type: e.g.,
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“regular” or error message, value, etc.) or on the duration of the operations performed (or not)
by the device. Regarding the symmetric-key encryption case, the whole decryption procedure
usually includes (among other possible operations) the MAC veri�cation, and the padding
extraction and veri�cation. It is commonly recommended to provide data authenticity and
con�dentiality by applying the so-called Encrypt-then-MAC (EtM) paradigm [Kra01; BN08].3
Nonetheless some cryptographic mechanisms apply other methods (e.g., MAC-then-Encrypt in
TLS 1.2 [DR08], Encrypt-and-MAC (E&M) in SSH [YL06c; YL06a; YL06d; YL06b]) but also in
SCP02.

Therefore, if a padding data is used during the encryption process, and the padding data must
be, during the decryption procedure, veri�ed prior to the MAC computation, then it may be
possible to perform an attack aiming at retrieving sensitive data. If one follows the MtE or the
E&M method (as in SCP02), the whole decryption procedure involves (usually) three main steps:

1. the evaluation of the decryption function on the encrypted data,

2. the extraction and veri�cation of the padding data,

3. the computation of the MAC tag on the remaining decrypted data.

Once the ciphertext is decrypted, either the padding data is valid and can be removed, and
the MAC computation can be done, or the padding data is invalid and the MAC tag cannot be
computed (at least on the genuine data).

Let us illustrate the attack with an example. For the sake of clarity, we use the speci�cs of
SCP02, namely the encryption function (and the corresponding block size), and the padding
scheme. Let C be the last encrypted block carried in a protected command, and let V be the
block used as IV during the encryption operation that yields C (V denotes either the null IV if
the command carries one encrypted block only, or the previous encrypted block if the command
carries two or more encrypted blocks). Let b0| · · · |b5 be 6-byte plaintext data corresponding
to C . In SCP02, the encryption is done with 3DES in CBC mode. Since the plaintext length
is smaller than 8 bytes a padding data is appended, and this yields B = b0| · · · |b5|80|00. The
encryption process outputs

C = ENC(V ⊕B)

= ENC((v0 ⊕ b0)| · · · |(v5 ⊕ b5)|(v6 ⊕ 80)|(v7 ⊕ 00))

Conversely the decryption operation outputs

ENC−1(C)⊕ V = (v0 ⊕ b0)| · · · |(v5 ⊕ b5)|(v6 ⊕ 80)|v7

⊕
v0| · · · |v7

= b0| · · · |b5|80|00
= B

Let us consider an adversary who replaces V with Ṽ . If the block Ṽ is randomly generated,
likely the decryption operation does not yield a valid padding data. If the block Ṽ is carefully
chosen by replacing the last two bytes of V v5|v6 with (v5⊕ g⊕ 80)|(v6⊕ 80), where g is some

3Some encryption modes (e.g., [Nat04]), coupled with a security proof [Jon03], correspond to the MAC-then-
Encrypt (MtE) paradigm.
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byte, then the decryption yields the following result

ENC−1(C)⊕ Ṽ = (v0 ⊕ b0)| · · · |(v5 ⊕ b5)|(v6 ⊕ 80)|v7

⊕
v0| · · · |v4|(v5 ⊕ g ⊕ 80)|(v6 ⊕ 80)|v7

= b0| · · · |b4|(b5 ⊕ g ⊕ 80)|00|00

The decryption operation is correct if and only if the padding data is valid. In our example,
this depends on the value b5 ⊕ g ⊕ 80:

• If b5 ⊕ g ⊕ 80 = 80, then the padding data is valid.

• If b5 ⊕ g ⊕ 80 6= 80, then the padding data is (likely) invalid.4

Obviously b5 ⊕ g ⊕ 80 = 80 if and only if b5 = g. In other words, the result of the decryption
operation (more precisely, the padding veri�cation) reveals the value of the plaintext byte b5:
knowing if the padding data is valid yields b5.

Iterating that process with di�erent blocks Ṽ produced by replacing successively vi|vi+1

with (vi ⊕ g ⊕ 80)|(vi+1 ⊕ bi+1), where bi+1 is the plaintext byte found during the previous
step, allows retrieving the plaintext byte bi. For each byte bi the attacker wants to retrieve, a
new ciphertext Ṽ ‖C is built with di�erent values g, and each resulting ciphertext is sent to an
oracle O, which the attacker needs to get access to. The oracle returns 1 if the padding data is
valid, 0 otherwise. The response from the oracle eventually reveals if the attacker’s guess g is
correct or not. This procedure eventually provides all the n = 6 plaintext bytes b0, . . . , b5. As
we can see, the attack leans on the malleability of the CBC mode, and uses the block V as a
pivot in order to get bytes encrypted within C .

The overall attack is described by Algorithm 4.1 (we assume without loss of generality that
the targeted block C includes at least one byte of padding, i.e., 80).

If the plaintext to retrieve corresponds to more than two blocks B0, . . ., Bk−1, k > 2
(which encryption yields the blocks C0, . . ., Ck−1), the attacker applies Algorithm 4.1 by using
successively each pair of encrypted blocks (Ck−2, Ck−1), (Ck−3, Ck−2), . . ., (C0, C1), (C−1, C0)
where C−1 is the CBC IV (equal to 008 in SCP02). In the remainder of this chapter we assume
that the ciphertext is made of two blocks V , C .

Note that the length of the padding is helpful since knowing this value shortens the duration
of the attack. Yet it is not necessary since the attack can retrieve the padding data as any other
unknown plaintext byte. If unknown, the padding length can be found using the dichotomous
algorithm proposed by Black and Urtubia [BU02] (which complexity is log2(d) where d is
the block size), or a linear search by testing all bytes starting from the rightmost one until
the decryption of the modi�ed block yields a valid padding (this method �nds the length in
min(d, h+ 1) steps where h is the padding length).

4.4 Application to SCP02

In this section, we explain how to apply the padding oracle attack presented in Section 4.3 to
the particular case of SCP02.

4If b5 ⊕ g ⊕ 80 = 00 this may also yield a valid padding (if the preceding decrypted bytes are equal to 80 00j ,
j ≥ 0). But this (rare) case is easy to manage.
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Algorithm 4.1 Regular padding oracle attack
FindBlock
FindBlock(V,C)

for i = n− 1 down to 0
bi ← FindByte(bi+1) // bn = 80

end for
return b0 · · · bn−1

FindByte(b)
for g = 00 to FF

Ṽ ← in V replace vi|vi+1 with (vi ⊕ g ⊕ 80)|(vi+1 ⊕ b)
send Ṽ ‖C to the oracle O
r ← O(Ṽ ‖C)
if r = 1

return g
end if

end for

4.4.1 Timing Side-channel

As soon as the valid ciphertext V ‖C is changed into Ṽ ‖C , the MAC veri�cation yields an error,
the padding data being valid or not, because the ciphertext is modi�ed. In SCP02 this ends
with the smart card outputting an error code. Furthermore, among the smart cards we have
tested, an error code is always sent, and the same error code is provided whatever the validity
of the padding data. Therefore we have used the time spent by the smart card during the whole
decryption procedure to build the oracle O.

The experiments we have done with several cards (labeled Card A to Card J) show that the
card’s response time when the padding data is valid is higher compared to the case when the
padding data is invalid. This leads to two observations. Firstly, the MAC tag is seemingly not
veri�ed when the padding data is invalid. Secondly, the response time re�ects the computation
time. Depending on the smart card, the timing di�erence ranges from quite low to unexpectedly
high. For instance, for Card B, the timing di�erence when the padding data is valid (15.60 ms)
and invalid (14.83 ms) is less than 1 ms, while for Card C, the timing di�erence between both
cases (84.34 ms vs. 25.17 ms) is higher than 59 ms. The �gures we provide correspond to the
expected values regarding both padding possibilities, and using a command that carries two
encrypted blocks and the 8-byte MAC tag.

The experiments we have made with each card show that the two distributions corresponding
to the response time when the padding is valid (DR) and when it is invalid (DW ) are clearly
distinguishable and almost disjointed. Figure 4.2 illustrates the results corresponding to four of
the attacked smart cards. For each con�guration (valid and invalid padding), 5000 encrypted
commands have been sent to the smart card, in order to get these measurements.

Let tmin be a lower bound of the values corresponding toDR. If a response time is lower than
tmin it is highly likely a wrong guess (since we never observed that a correct guess corresponds
to a response time lower than tmin). Hence, in such a case, one attempt only allows discarding
an incorrect value. On the other hand, if a response time is higher than this threshold tmin, it is
rather likely a correct guess (since we observed only a very few number of values corresponding
to DW that are higher than this threshold). Yet it is also possible that it corresponds to a wrong
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Figure 4.2 – Distribution of the number of cases when the padding data is valid (DR, continuous
blue line) and when it is invalid (DW , dashed red line) with respect to the response
time. The command’s data �eld carriesm+2 encrypted blocks (including padding
data), and the 8-byte MAC tag.
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guess with an unexpected long response time. Therefore, in order to detect a right guess, several
trials may be necessary. As we will see in Section 4.4.2, this heuristic allows having a success
probability close to 1. Moreover, in order to increase the discrepancy of the response time
when the padding is valid and when it is invalid, we prepend extra blocks R0, . . ., Rm−1 to the
ciphertext, following the same technique as [CHVV03], so that the MAC veri�cation (when it is
actually done) involves also these additional blocks. That is, instead of V ‖C , the smart card
receives as the encrypted data the string R0‖ · · · ‖Rm−1‖Ṽ ‖C . Indeed, during the decryption
operation, the DES function (or its inverse) is called around 3q times, where q is the number of
plaintext blocks. During the MAC veri�cation, the same function is called at least q + 2 times.5
Therefore the timing di�erence separating a valid and an invalid padding is proportional to
roughly q+ 2. As an illustration, Figure 4.3 depicts the distributionsDW andDR corresponding
to Card B for several values m (for each graph, the abscissa axis has the same 6-ms amplitude).
The di�erence between the mean values corresponding toDR andDW is 4.6 times higher when
m = 28 (3.7 ms) compared to m = 0 (0.8 ms).
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Figure 4.3 – DR (continuous blue line) andDW (dashed red line) corresponding to Card B with
di�erent values m.

5Optionally the IV used during the MAC computation is encrypted. In such a case the DES function is called at
least q + 3 times during that operation.
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4.4.2 Leveraging the Timing Side-channel

Complexity. We analyse the complexity of the attack applied to SCP02 following the same
reasoning as Canvel et al. [CHVV03].

Let KR be the number of attempts necessary to detect a right guess, and KW the number of
attempts necessary to discard a wrong guess. Let ε+ be the probability of a bad decision when
the distribution is actually DW , and ε− the probability of a bad decision when the distribution
is DR. Let pi be the probability to �nd the byte bi, 0 ≤ i < n. If we assume that all bytes are
independent, then the probability to �nd the n bytes is p = p0 × . . .× pn−1. Moreover if the
bytes are uniformly drawn at random from a set of size `, each byte has the same probability to
be correctly found. Therefore p = pn0 . Each byte can take any of the ` possible values. A guess
g is equal to a byte bi if and only if

• the choice for g is correct (which probability is 1
`
),

• incorrect values for g are discarded (which probability is (1− ε+)j where j is the number
of incorrect values tried before the correct one),

• and the correct value for g is detected (which probability is 1− ε−).

Hence

p0 =
`−1∑
j=0

1

`
(1− ε+)j(1− ε−)

=
1− ε−
`
× 1− (1− ε+)`

ε+

' (1− ε−)(1− ε+)
`−1
2

if ε+ � 1
`
. Therefore

p ' (1− ε−)n(1− ε+)n
`−1
2

Let t be the response time corresponding to a trial with some value g. Let us assume that all
trials are independent. Let τ+ and τ− be respectively Pr[t > tmin, when the distribution is DW ]
and Pr[t ≤ tmin, when the distribution is DR]. Following our heuristic, we discard a guess g
as soon as the corresponding response time t is lower than tmin (i.e., KW = 1). Therefore the
event corresponding to ε+ occurs when the distribution is DW , if t > tmin KR successive times.
Hence

ε+ = τKR+

The event corresponding to ε− occurs when the distribution is DR, if t > tmin at most KR − 1
times, and t ≤ tmin the subsequent trial. Therefore

ε− =

KR−1∑
j=0

(1− τ−)jτ− = 1− (1− τ−)KR

Hence, we have that

p ' (1− τ−)n·KR
(

1− τKR+

)n `−1
2

Moreover tmin is de�ned such that τ− = 0. Therefore, this simpli�es into

p '
(

1− τKR+

)n `−1
2
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If each byte bi is uniformly drawn at random among ` possible values, the average number of
values g to be tested before the right one is found is `+1

2
.

The average number of trials to �nd one byte is `−1
2
KW + KR. The overall complexity is

then Z = n×
(
`−1

2
KW +KR

)
to retrieve a n-byte string. Since the burden in the complexity

lies on the number of wrong attempts, slightly increasing KR allows increasing the overall
probability of success p while it marginally increases the complexity Z . Indeed, if τ+ < 1, p is
an increasing function of KR.

Application to SCP02. The attack is then the following. When looking for a byte bi, for each
possible value g, a modi�ed ciphertext Ṽ ‖C is sent to the targeted smart card. The di�erent
response times are collected until a decision can be taken (which means in practice KW ' 1
attempt to discard a wrong guess and KR ∈ {1, 2, 3} attempts to detect a right guess). If the
decision is that the guess is correct, the trials are stopped and the attack continues with the
byte bi−1. Otherwise, another guess value g is tested.

Algorithm 4.2 describes this timing attack (we assume without loss of generality that C
includes at least one byte of padding, i.e., 80). For a given value g, the Stop procedure returns
true as soon as a response time is lower than tmin or if the number of successive response times
higher than tmin reaches KR. The Correct procedure returns true if the number of successive
response times higher than tmin is equal to KR.

Algorithm 4.2 Padding oracle attack based on the card response time
FindBlock
FindBlock
for i = n− 1 down to 0
bi ← FindByte(bi+1, . . . , bn) // bn = 80

end for
return b0 · · · bn−1

FindByte(bi+1, . . . , bn)
for g = 00 to FF

j = 0
do

get a new ciphertext V ‖C
Ṽ ← in V replace vi|vi+1| · · · |vn

with (vi ⊕ g ⊕ 80)|(vi+1 ⊕ bi+1)| · · · |(vn ⊕ bn)
send R0‖ · · · ‖Rm−1‖Ṽ ‖C as encrypted data to the smart card
tj ← response time
j = j + 1

until Stop(t0, . . . , tk−1) = true

if Correct(t0, . . . , tk−1) = true

return g
end if

end for

As soon as a cryptographic error occurs on the smart card side (e.g., the smart card receives a
message with an invalid MAC tag, which happens when the attacker changes V ‖C into Ṽ ‖C),
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the session is stopped. Therefore a new session has to be started in order to perform each
trial. Hence a new ciphertext V ‖C (corresponding to the same plaintext that the attack aims at
retrieving) must be obtained. Since a new ciphertext is used for each attempt, we have to take
into account the bytes bi+1, . . ., bn already found, and change V accordingly.

4.4.3 Discussion

The attack we have described is fully successful in our experimental setting. The necessary
conditions in order to succeed are the following ones:

1. The attacker sits between the remote server and the card at a point where she can directly
eavesdrop on SCP02 encrypted commands and send modi�ed commands to the card.

2. The attacker is able to discriminate response times corresponding to a valid and an invalid
padding.

3. The remote server repeatedly sets up a (new) secure channel with the card.

4. The same secret information is sent through each such secure channel.

5. The secret information is sent at a predictable position.

Real case scenario. The attack can be tried in the following real use-case of SCP02: the
upload of an applet into an UICC that is plugged into a smartphone. In order to send the applet
to the UICC, a SCP02 channel is established between a remote server and the UICC, through
the intermediary of an application on the smartphone. In addition, another secure channel
can be established between the remote server and the application on the smartphone. That
is, the SCP02 commands that carry the applet are embedded into this second secure channel
(e.g., TLS or SCP80). Once the data are received by the application on the smartphone, they are
decrypted (with respect to TLS or SCP80), and the output (i.e., the encrypted SCP02 commands)
is sent to the UICC. Therefore the applet is protected only by the means of SCP02 between
the application and the UICC. SCP02 commands (e.g., the STORE DATA command) are used to
upload such an applet, which may carry secret data (e.g., a symmetric key used to encrypt data,
or to authenticate the user with respect to the service provided by the applet). A malicious
application or a Trojan on the smartphone can apply the attack in order to break the SCP02
channel, and to retrieve these sensitive data. It behaves as a local man-in-the-middle attacker
between the application on the smartphone and the smart card (see Figure 4.4).

UICC Smartphone Remote server

�

X

SCP02
SCP02/SCP80
or SCP02/TLS

Figure 4.4 – Padding oracle attack targeting an UICC. The malicious application (X) has access
to the memory space of the legitimate application (�) on the victim’s smartphone.
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The attacker can proceed as follows. First she succeeds in getting the victim download a
malicious application (embedded in an apparently ino�ensive application deployed on a popular
store) into his smartphone. Then the malicious application can use a vulnerability lying in the
legitimate application in order to escalate privileges, and to get access to the application memory
space as described by Davi, Dmitrienko, Sadeghi, and Winandy [DDSW11]. The latter assumes
that a �aw in the legitimate application is exploitable. Alternatively the attacker can use a
Trojan embedded in a popular application, or in a game (such as Trojans Dvmap or Tordow in
Pokemon Go or Telegram). Once into the smartphone, the Trojan may escalate privileges to gain
root access [Kiv], or inject a malicious code into system libraries, which will then be executed
with system rights [Unu]. To that point, the Trojan is able to get access to the memory space of
the legitimate application. Hence, it can read the genuine SCP02 commands, and modify it. The
crafted command is then sent to the UICC, completing the process initiated by the legitimate
application.

Ful�lling the conditions of success. Let us assume that encrypting the applet with SCP02
yields k blocks C0, . . ., Ck−1 (possibly transmitted to the card through several successive
STORE DATA commands), and that a 16-byte symmetric key lies in the blocks Ci, Ci+1, i+ 1 ≤
k−1. The number of SCP02 sessions a card can establish is bounded (to 215) as per speci�cation.
Hence the number of trials the attacker can make is also limited. Therefore if (and only if)
the attacker needs to decrypt the whole encrypted applet, it may happen that the key be out
of reach. However, if the attacker knows the position of the key within the encrypted data
(condition 5), she can directly target the corresponding encrypted blocks (whatever the size of
the encrypted applet). In such a case, the attacker uses �rst the blocks Ci, Ci+1 as described
by Algorithm 4.2. The block Ci is changed into C̃i in order to incorporate the attacker’s guess
g, and the string C̃i‖Ci+1 is placed into a SCP02 command data �eld (with a trailing 8-byte
arbitrary MAC tag, and an optional leading string R0‖ · · · ‖Rm−1). This fake SCP02 command
is then sent to the UICC by the malicious application. Based on the time elapsed until the UICC
sends back a response, the attacker knows if her guess is correct or not. The attacker uses the
blocks Ci, Ci+1 to retrieve the 8 bytes of the symmetric key encrypted as Ci+1, and the blocks
Ci−1, Ci in order to get the 8 bytes of the symmetric key encrypted as Ci.

The attacker expects a clean and stable response time (condition 2). Yet it may happen that
this time value be in�uenced by surrounding activities. In such a case more sophisticated
statistical tools may be used by the attacker (e.g., see [CHVV03; AP16]).

Another necessary condition is that the same secret be repeatedly sent through the secure
channel (condition 4). The nominal behaviour of the underlying application protocol could
not be as expected by the attacker. Yet this condition could be ful�lled if, upon reception of
the cryptographically invalid command (modi�ed by the attacker), the underlying application
within the card triggers a message asking the server for a new delivery of the same message
(which contains the secret). Also, upon reception of an error code, the server could decide to
send again the command carrying the secret. If the remote server sends again this command
only or the whole applet, it is very likely that the symmetric key lie at the same position within
the command and the applet. Hence condition 5 remains ful�lled.

This error code may be sent either by the card itself (because the command it received has
been modi�ed by the attacker), or by the attacker. By default, in SCP02, the responses sent by
the card are not encrypted nor protected with a MAC tag. Then the server may keep sending the
same command (if not everlastingly, at least many times, which allows the attacker to retrieve a
substring of the secret) until it is acknowledged by the card.

The complexity per byte is `−1
2
KW +KR. The �gures provided in Section 4.4.4 assume that
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each byte is uniformly distributed over {00, . . . , FF}. However the alphabet size the secret
bytes belong to can be lower than ` = 256 (e.g., the secret is some sort of PIN code or password).
That would decrease the overall complexity. Moreover it may also be possible for the attacker
to retrieve only a substring of the secret and then complete the attack through an exhaustive
search or a dictionary attack, if the attacker is able to test the remaining values.

Furthermore, the attack is made easier if the targeted card does not close the secure channel
when it receives an invalid command (the one modi�ed by the attacker). In such a case the
attacker needs to eavesdrop on the encrypted command (that carries the secret data) once only.
Then she can reuse the same encrypted version of the secret to perform the successive changes
(with the di�erent values g), and send the modi�ed commands to the card. This would remove
the conditions 3 and 4 listed above, necessary to the attack. Yet a card behaving so would
diverge from the SCP02 speci�cation. We stress that none of the smart cards we have tested
behave so.

4.4.4 Experimental Results of the Complete Attack

Test bench. We have developed the attack with the Java OPAL library [SSD] which imple-
ments several protocols for smart cards (including SCP02). The communication with the smart
card and the reader is managed with the javax.smartcardio package. The experiments have
been done on two laptops HP EliteBook and Dell Latitude E6430 running on Windows 7. Four
card readers have been used: the inner laptop readers (Broadcom Corp Contacted SmartCard,
Alcor Micro USB Smart Card Reader), a contact reader (Omnikey 5321 Smart Card Reader USB),
and a contactless one (SpringCard Prox’N’Roll).

Our program simulates both the legitimate server and the attacker. The kinematic is the
following. First an n-byte string is pseudo-randomly generated (the secret value the attacker
has to retrieve). Then the server procedure sets up an SCP02 channel with the smart card and
computes shared session keys. Through the channel, an encrypted command carrying the
n-byte secret is sent to the card. A copy of that encrypted command is given to the attacker
procedure, which modi�es it, sends it to the card and measures the response time. The measured
time is equal to the elapsed time between the moment the command is sent and the moment
a response is received from the smart card (a single Java procedure, transmit, handles the
command to send and the response to receive). Since the channel is closed by the smart card
(because the modi�ed command sent by the attacker procedure is cryptographically invalid),
the server procedure sets up a new secure channel and sends again the same n-byte secret. This
new encrypted version of the secret is given to the attacker procedure, and so forth.

We have made experiments with 10 smart cards produced by six di�erent card manufacturers
(see Table 4.1). Prior to the attack, we have made trials in order to get the distributions DW and
DR for each smart card. This is straightforward since we own the card keys. DR corresponds
to a valid padding (and a wrong MAC tag), and DW corresponds to an invalid padding (and a
wrong MAC as well). We were able to use an invalid padding during the encryption procedure.
Yet in a real context, the adversary that has access to an SCP02 encryption oracle is able to get a
distribution very close to DW by changing the trailing bytes of the encrypted data. With high
probability, changing these encrypted bytes yields an invalid padding during the decryption pro-
cedure. Alternatively, the attacker can perform o�ine tests with a specimen of the targeted card.

Experiments and results. As the smart card was the target, we have used commands and
not responses to launch the attack. We have used di�erent types of SCP02 command (PUT KEY,
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STORE DATA, GET DATA, GET STATUS), including commands that are not supposed to carry an
application payload (however these commands, when protected, carry the encrypted padding
and the MAC tag). Yet our purpose is to show that it is indeed possible to retrieve plaintext
bytes whatever the command used, be it a command not supposed to carry data besides possible
�ags (e.g., GET STATUS, GET DATA), or commands which are intended to transmit sensitive data
to the smart card (e.g., PUT KEY, STORE DATA).

We observe that the payload carried in a PUT KEY command is encrypted with 3DES in CBC
mode, as any command payload in secure mode. However, prior to be transmitted through the
secure channel, the plaintext data is �rst encrypted (with 3DES and another session key than
the one used to provide data con�dentiality throughout the secure channel). We stress that we
do not break this inner encryption layer. Yet, the padding oracle attack allows retrieving all the
(encrypted) bytes sent through the secure channel even when this “sensitive” command is used.

The maximum data size for a command is 255 bytes. Without the MAC tag, there remain
247 bytes = 30 DES blocks + 7 bytes. The attack involves two useful blocks V and C . This
leaves at most 28 extra blocks Ri in order to amplify the timing discrepancy. In practice we
have used either 0 or 28 random blocks depending on the targeted smart card.

In the best case (i.e., KW = KR = 1), the average complexity to retrieve n bytes of plaintext
is Z = n × `+1

2
. The number of available SCP02 sessions is at most 215 (i.e., the maximum

value of a keyset’s sequence counter). Since a new session has to be established for each trial,
the maximum number of plaintext bytes that can be retrieved in the best case is bounded by
2× 215

`+1
< 28, if ` = 256.

Table 4.1 – Experimental results for the padding oracle attack with n = 16 (pseudo-random)
bytes of plaintext.

Manufacturera Card µW
(ms)

µR
(ms)

tmin
(ms) m

τ+

(%) KW KR Z Z/n

1 A 39.60 42.59 41.00 28 0.16 1 3 2055.71 128.48
B 40.19 43.94 42.00 28 0.44 1 3 2077.78 129.86

2 C 25.17 84.34 75.00 0 0.00 1 2 2043.95 127.75
D 26.64 34.36 32.00 0 0.00 1 2 2066.54 129.16

3 E 15.61 25.65 23.00 0 0.00 1 2 2134.03 133.38

4 F 31.81 34.48 33.00 28 0.48 1 3 2109.71 131.86
G 15.64 18.53 17.00 0 0.28 1 3 2103.62 131.48

5 H 25.18 84.86 72.00 0 0.00 1 2 2048.34 128.02

6 I 25.90 35.85 32.00 0 0.06 1 3 2108.60 131.79
J 14.32 19.92 17.50 0 0.10 1 2 2094.85 130.93

aFor con�dentiality purpose, the manufacturer names and the card identi�ers are not provided in this thesis.

Table 4.1 summarises our results. The �gures provided are the mean corresponding to the
300 tests roughly that we have performed with each smart card. For each card, we provide the
expected response time in case of an invalid padding (µW ) and valid padding (µR), the threshold
tmin used to detect a correct guess, the number m of additional blocks Ri used to increase the
computation time discrepancy, the probability τ+ that an invalid padding yields a high response
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time, the number of trials to discard a wrong attempt (KW ), the number of trials to detect a right
attempt (KR), the average complexity Z to retrieve n = 16 bytes, and the average complexity
per byte (Z/n).

In our experiments, the minimum value for KR is 2 in order to be able to correctly �nd a
plaintext byte equal to 80 (in such a case, at least one additional attempt with the same value g
is made). But in fact, for some cards (Card C, Card D, Card H), KR = 1 is enough to detect a
right guess.

As we can see, the complexity per byte Z/n is almost optimal (close to 128.5). Moreover
the heuristic we use is actually valid since the probability τ+ that a wrong guess yields a high
response time (i.e., above tmin) is low.

The duration of the attack to retrieve n = 16 bytes ranges roughly from 160 s (Card A, Card
B) up to 680 s (Card C). It depends mainly on the smart card itself (some card sends a response
faster than others).

Estimating the number of smart cards a�ected by this vulnerability is not easy. However
cards likely implementing SCP02 are produced in their billions every year [SIM18; GSM19].
Therefore, the number of impacted smart cards is potentially high.

4.5 Countermeasures

MAC the padding data. Several countermeasures aiming at mitigating a padding oracle
attack have been proposed formerly. A simple �x proposed by Vaudenay [Vau02] is to pad
the plaintext �rst, and then to compute the MAC tag on the padded data. During the whole
decryption procedure, the MAC tag must be veri�ed �rst, and the padding data removed after.

Resistant padding scheme. As observed by Black and Urtubia [BU02], and proved by Pa-
terson and Watson [PW08], slightly changing a byte-oriented padding of the form 80 00i into
a bit-oriented padding of the form 10 · · · 0 makes the padding oracle (almost) vanish. Indeed,
any decrypted block is correctly padded with respect to a padding of the latter form unless
the decrypted block contains no bit equal to 1 (i.e., the block is equal to 00d, where d is the
block byte length). Therefore the padding oracle is not usable any more if each byte of the
plaintext block is uniformly drawn at random, because the attacker cannot look for each byte
independently but has to enumerate all possible block values. Yet, as noticed by Black and
Urtubia, a dictionary attack may still be conceivable if the attacker looks for a secret value
belonging to a reduced size set (if the attacker guesses correctly, the decryption yields 00d,
which is the only invalid plaintext). This bit-oriented padding scheme is recommended for use
with CBC mode by ISO [Int17], with a slight di�erence: the number of optional 0 bits must be
as few as possible. Therefore the padding data is carried in one block at most. This means that
any plaintext which last block is all-zero is invalid with respect to this padding scheme.

Another scheme resisting padding oracle attacks and proposed by Black and Urtubia is the fol-
lowing. An arbitrary byte x distinct from the last plaintext byte is picked, and the data is padded
with x. The receiver removes all matching trailing bytes until either a distinct byte is found or
the empty string is reached. With respect to this padding scheme, any decrypted block is valid.
Therefore it seems that the oracle is removed. We observe however that even this scheme may
still provide an oracle, depending on the behaviour of the receiver when the decryption outputs
an empty string. If this yields a distinct error or a discrepancy in the calculation duration, that
could be exploited in order to perform a (dictionary) attack. Let V ‖C be the encryption of some
secret value B. The attacker tries all possible values B′ and changes V into V ′ = V ⊕B′. Then
the decryption of V ′‖C yields ENC−1(C)⊕ V ′ = (V ⊕B)⊕ (V ⊕B′) = B ⊕B′. If B ⊕B′
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contains at least two distinct bytes, then there is at least one remaining byte after the padding
extraction. If all bytes in B ⊕B′ are equal, then no byte remains after the padding removal. If
the attacker is able to detect such a case, she knows that B = B′ ⊕ (y| · · · |y) where each byte
y can take at most 256 values. Therefore this leaves at most 256 candidates for B.

Equal computation or response time. Canvel et al. [CHVV03] suggest to make error
responses time-invariant by simulating a MAC veri�cation even when there is a padding error.
This implies carefully implementing the decryption procedure in order to eliminate all timing
channels. Indeed AlFardan et al. [AP13] have shown that even a tight channel can be exploited.
In addition, the latter authors warn that adding random delays during the decryption procedure
may not be su�cient if the delays follow a uniform distribution. This change would merely
increase the complexity of the attack.

In turn, Askarov, Zhang, and Myers [AZM10] propose a mitigation scheme that applies
to a broad class of computations. With respect to SCP02, this means sending the responses
at scheduled times (that is somehow padding the response time to an upper bound). These
authors observe that this does not prevent timing leaks, yet it bounds the amount of information
provided through this side channel as a function of the elapsed time.

Resistant operation mode. Another �x is to replace the CBC mode with an authenticated
encryption algorithm as suggested by Kupser, Mainka, Schwenk, and Somorovsky [KMSS15].

The latter proposal or another construction than E&M may be a suitable choice since Paterson
and Watson [PW12] extend the results of Bellare and Namprempre [BN08] to prove that the
E&M construction using CBC mode with a padding method as its encryption component is not
generically secure in the chosen ciphertext setting.6 They also prove that the EtM construction
(known to be secure in general when padding is not considered) is also secure when a padding
method is used.

PUT KEY command. In addition to these countermeasures, in the SCP02 case, one may use
the PUT KEY command in order to send secret values to the smart card (e.g., symmetric keys).
The data �eld of such a command corresponds to the output of a double encryption process: �rst
with a session key di�erent than the one used to encrypt and MAC the other commands, then
with these same secure channel session keys. Therefore, applied to a PUT KEY command, the
attack breaks the upper encryption layer but not the inner one, and yields the data encrypted
under this additional session key but not the genuine plaintext data.

Server side. Furthermore, the attack can be mitigated by limiting, on the server side, the
number of times the same secret value is sent to the smart card. Since the attacker needs to
make several trials (each one implying setting up a new secure channel) in order to get one
byte of plaintext, this simple mitigation forbids or drastically reduces the amount of data the
attacker can retrieve.

6Bellare, Kohno, and Namprempre [BKN04] prove that a particular Encode-then-Encrypt-and-MAC construction
is secure when a padding method is used. But the encoding function is assumed to be collision resistant (the
computation of the authentication tag involves a sequence number unique per message that aims at precluding
collisions between two encoded messages).
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Security Models 5
The provable security approach (or, more adequately, the reductionist security ap-

proach) is a paradigm aiming at providing convincing evidences regarding the security
of a cryptographic scheme. This approach can be used by means of an adversarial

model where the adversary faces a challenger and tries to break some security property, during
a speci�c experiment where rules are de�ned and powers attributed to the adversary.

In this chapter, we use this approach and de�ne two security models. The �rst model, that
we call 3-AKE, aims at analysing the security of 3-party authenticated key exchange protocols
(AKE). This model captures in particular the forward secrecy property. In Chapter 7, we present
a generic 3-party AKE and, based on it, a concrete instantiation, in the symmetric-key setting.
We use this model to formally prove the security of these two schemes.

The second security model is based on the ACCE paradigm. It allows analysing 3-party
protocols whose goal is to setup secure channels, hence its name 3-ACCE. First, we use this
framework to prove the security of a generic LoRaWAN-like protocol. Then we present an
adapted version of LoRaWAN 1.1 with stronger security properties, modi�ed in order to mitigate
the vulnerabilities described in Chapter 3. Applying the �rst result, we formally prove the
security of this protocol in our model, and describe how to concretely instantiate it.

The results of this chapter have been published in [ACF19] and [CF19].
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5.1 The Need for a Suitable Security Model

Establishing a secure communication between two parties is a fundamental goal in cryptography
as well as formally proving that such a protocol is secure. In their seminal paper, Bellare and
Rogaway [BR94] propose a security model for the symmetric 2-party setting, and describe
provably secure mutual authentication and key exchange protocols. Subsequent models have
been proposed (e.g., [BWJM97; BPR00; CK01; CBH05; LLM07; MSW08; Cre09; JKSS11] to name
a few). Of particular interest are the security models proposed to analyse real-world protocols
such as TLS [MSW08; JKSS11; KPW13], IPsec and IKE [FS99; CK02; Cre11], SSH [BKN02]. All
these models consider protocols in a 2-party setting. However there exist concrete deployments
making use of protocols de�ned or improperly seen as 2-party schemes, that involve, in fact,
three (or more) entities, which di�erent cryptographic operations are attributed to. For example,
the 3G/4G mobile phone technology can be described at �rst glance as a 2-party scheme
involving, on the one hand, a set of end-devices, and, on the other hand, a backend network
owned by the operator. However, when the end-device is abroad, the communication is relayed
by a server a�liated with a di�erent operator. Such a protocol, unlike classical 2-party setting,
requires three participants, and known 2-party security models cannot be seamlessly applied to
such a 3-party setting.

Whereas the �eld of 2-party protocols has been intensively investigated, the 3-party case
has received less attention so far. Yet, unsurprisingly, this does not prevent 3-party protocols
from being deployed in real-life, despite the lack of a suitable security model that allows seizing
precisely, and incorporating their speci�cs. This is illustrated by the works summarised below,
and also by the protocol LoRaWAN 1.1.

Existing 3-party security models. Alt, Fouque, Macario-Rat, Onete, and Richard [AFM+16]
analyse the authenticated key exchange of the 3G/4G mobile phone technology in its complete
3-party setting (with the addition of components from the core network). Based on their formal
analysis, they describe how to provide a much stronger security with a small modi�cation which
can be easily incorporated in the protocol (despite previous results which indicate privacy �aws
and suggest strong changes). Regarding the same key exchange scheme, Fouque, Onete, and
Richard [FOR16] use a 3-party security model to show that several remediations proposed in
order to thwart end-device-tracking attacks are, in fact, ine�ective. In addition, they propose
an improvement that aims at mitigating these attacks while retaining most of the 3G/4G key
exchange scheme structure.

Regarding the secure channels, Bhargavan, Boureanu, Fouque, Onete, and Richard [BBF+17]
consider the use of TLS 1.2 [DR08] when it is proxied through an intermediate middlebox (such
as a Content Delivery Network (CDN)). They propose the notion of 3(S)ACCE-security in order
to analyse such a setting. This model extends the classical 2-party authenticated and con�dential
channel establishment (ACCE) model of Jager, Kohlar, Schäge, and Schwenk [JKSS11] to the
3-party setting. It adds in particular to the properties of entity authentication and channel
security a third property aiming at “binding” several entities involved in the protocol. Bhargavan
et al. describe several attacks targeting a speci�c CDN architecture, and show that the latter
does not meet its claimed security goals.

Naylor, Schomp, Varvello, Leontiadis, Blackburn, Lopez, Papagiannaki, Rodriguez, and
Steenkiste [NSV+15] describe a multi-context TLS protocol (mcTLS) which extends TLS to
support middleboxes, in order to o�er in-network services. With mcTLS the middlebox becomes
visible to the client and the server. In addition these two end-points control the (read, write)
privileges attributed to the middlebox.
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In turn, Naylor, Li, Gkantsidis, Karagiannis, and Steenkiste [NLG+17] propose middlebox TLS
(mbTLS) which aims, in particular, at supporting legacy client, and being almost seamlessly
integrated in current TLS deployments (based on new TLS extensions). Although Naylor et
al. [NSV+15] and Naylor et al. [NLG+17] list a set of security requirements that mcTLS and
mbTLS are supposed to guarantee, they do not formally prove in an explicit security model that
their proposal actually achieves these security goals.

In the same context of proxied TLS connections, Bhargavan, Boureanu, Delignat-Lavaud,
Fouque, and Onete [BBD+18] describe several types of attacks against mcTLS, showing that the
latter is in fact insecure. They propose a security model called authenticated and con�dential
channel establishment with accountable proxies (ACCE-AP), and describe a generic 3-party con-
struction secure in their model, that they instantiate with TLS 1.3 [Res18]. Their model aims at
providing �ne-grained rights (de�ned through the context) to the middlebox. They observe that
their model is complex and achieves limited record-layer guarantees in multi-middlebox setting.

These works illustrate that 3-party protocols deserve suitable security models in order to be
properly analysed and to enlighten subtleties that, otherwise, would remain ignored to the cost
of the security.

In Section 5.2, we present a security model that allows analysing 3-party authenticated key
exchange protocols. This model is used to formally prove the security of the 3-party AKE
presented in Chapter 7.

In Section 5.3, we present a security model that allows analysing 3-party LoRaWAN-like
protocols, which main goal is to establish secure channels between several parties. This model
is motivated by version 1.1 of LoRaWAN, and the vulnerabilities, described in Chapter 3, related
to that version.

5.2 The 3-AKE Security Model

In this section, we present our 3-AKE security model. In a nutshell, we use the security
experiments of a 2-AKE model (entity authentication, key indistinguishability), as described by
Brzuska, Jacobsen, and Stebila [BJS16] (see Chapter 2, Section 2.3.1). Taking inspiration from
the 3(S)ACCE model of Bhargavan, Boureanu, Fouque, Onete, and Richard [BBF+17], we extend
this 2-AKE model to incorporate the three parties of our 3-AKE protocol, and their interleaved
operations.

This 3-AKE model aims at analysing 3-party protocols whose main goal is to yield a session
key. This contrasts with the model of Bhargavan et al. which is built on the ACCE notion, and
consequently is not meant to prove the security of protocols based on the indistinguishabiliy of
the session keys. Hence the relevance of our 3-AKE model.

In our 3-AKE security model, the adversary has full control over the communication network.
It can forward, alter, drop any message exchanged by honest parties, or insert new messages.
Our 3-AKE model captures also forward secrecy.

5.2.1 Execution Environment

Protocol entities. Our model considers three sets of parties: a set K of Authentication and
Key Servers (KS), a set E of end-devices (ED), and a set X of servers (XS) that will eventually
share session keys with ED. Each party is given a long-term key ltk.

Session instances. Each party Pi maintains a set of instances Pi.Instances = {π0
i , π

1
i , . . .}

modeling several (sequential or parallel) executions of the 3-party protocol Π. Each instance
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πni has access to the long-term key Pi.ltk of its party parent Pi. Moreover, each instance πni
maintains the following internal state:

• The instance parent πni .parent ∈ K ∪ E ∪ X indicating the party owning that instance.

• The partner-party πni .pid ∈ K ∪ E ∪ X indicating the intended party partner. A party in
one of the three sets can be partnered with a party belonging to any of the two other sets.

• The role πni .ρ ∈ {ed, ks, xs} of Pi = πni .parent. If Pi ∈ E , then πni .ρ = ed. If Pi ∈ K,
then πni .ρ = ks. If Pi ∈ X , then πni .ρ = xs.

• The session identi�er πni .sid of an instance.

• The acceptance �agπni .α ∈ {⊥, running, accepted, rejected} originally set to running
when the session is ongoing, and set to accepted/rejectedwhen the party accepts/rejects
the partner’s authentication.

• The session key πni .ck set to ⊥ at the beginning of the session, and set to a non-null
bitstring once πni computes the session key.

• The key material πni .km. If πni .parent ∈ K (resp. πni .parent ∈ X ) and πni .pid ∈ X (resp.
πni .pid ∈ K), then πni .km is set to ⊥ at the beginning of the session, and set to a non-null
bitstring once πni ends in accepting state. Otherwise πni .km is always set to ⊥.

• The status πni .κ ∈ {⊥, revealed} of the session key πni .ck.

• The transcript πni .trscrpt of the messages sent and received by πni .

• The security bit πni .b ∈ {0, 1} sampled at random at the beginning of the security experi-
ments.

• The partner-instances set πni .ISet stores the instances that are involved in the same protocol
run as πni (including πni ).

• The partner-parties set πni .PSet stores the parties parent of the instances in πni .ISet (in-
cluding πni .parent).

Adversarial queries. The adversaryA is assumed to control the network, and interacts with
the instances by issuing to them the queries described below.

In our 3-AKE model, we use familiar queries. Nonetheless we require some restrictions
regarding the Test-query. This query aims at “evaluating” the quality of a key output by any of
the 2-AKE runs done during a 3-AKE session. We use the vanilla real-or-random experiment.
Nonetheless, some session keys output during a 3-AKE session are used in the same session,
which allows the adversary to trivially distinguish between a “real” session key and a random
key. Consequently, we forbid the adversary from issuing a Test-query with respect to a key as
soon as this key is used (i.e., as input to a function).

Moreover, we require the adversary to be stateless with respect to the Test-query. That is, the
key kb sent in response to a Test-query cannot be used to interact with instances, nor contribute
to answering other Test-challenges.

Instead of proving that the key is good, one could consider proving that the key is good to be
used for some purpose [BFS+13; Kra16]. But we chose not to use a weaker notion than the more
established ones despite the necessity of these restrictions.
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• NewSession(Pi, ρ, pid): this query creates a new instance πni at party Pi, having role ρ,
and intended partner pid.

• Send(πni ,M): this query allows the adversary to send any message M to πni . If πni .α 6=
running, it returns ⊥. Otherwise πni responds according to the protocol speci�cation.

• Corrupt(Pi): this query returns the long-term key Pi.ltk of Pi. If Corrupt(Pi) is the ν-th
query issued by the adversary, then we say that Pi is ν-corrupted. For a party that has
not been corrupted, we de�ne ν = +∞.

• Reveal(πni ): this query returns the session key πni .ck, and πni .κ is set to revealed. If
Reveal(πni ) is the ν-th query issued by the adversary, then we say that πni is ν-revealed.
For a party that has not been revealed, we de�ne ν = +∞.

• Test(πni ): this query may be asked only once per pairwise partnered instances throughout
the game. If πni .α 6= accepted, then it returns ⊥. Otherwise it samples an independent
key k0

$←− KEY , and returns kb, where k1 = πni .ck. The key kb is called the Test-challenge.
In order to preclude trivial attacks, we forbid the adversary from issuing a Test-query,
and answering a Test-challenge as soon as the corresponding key πni .ck is used during
the session. Moreover, the adversary is stateless with respect to this query (it does not
keep track of kb).

5.2.2 Security De�nitions

Partnership. In order to de�ne the partnership between two instances involved in a 2-AKE
run, we use the notion of matching conversations (see De�nition 2.1). Consequently, we de�ne
sid to be the transcript, in chronological order, of all the (valid) messages sent and received by
an instance during a 2-AKE run, but, possibly, the last message. We say that two instances πni
and πuj are pairwise partnered if πni .sid = πuj .sid. Then, we de�ne the 3-AKE partnering with
the sets ISet and PSet. πni .ISet stores instances partnered with πni , and πni .PSet stores parties
partnered with πni .

De�nition 5.1 (Correctness). We de�ne the correctness of a 3-AKE protocol as follows. We
demand that, for any instance π ending in an accepting state, the following conditions hold:

• |π.ISet| = 6. Let π.ISet be {πni , πmi , π`k, πsk, πuj , πvj }.

• πni .parent = πmi .parent = Pi ∈ E

• π`k.parent = πsk.parent = Pk ∈ K

• πuj .parent = πvj .parent = Pj ∈ X

• π.PSet = {Pi, Pj , Pk}

• πmi .sid = π`k.sid 6=⊥ and πmi .ck = π`k.ck 6=⊥

• πni .sid = πuj .sid 6=⊥ and πni .ck = πuj .ck 6=⊥

• πsk.sid = πvj .sid 6=⊥ and πsk.ck = πvj .ck 6=⊥

• πvj .km = πsk.km = πmi .ck = π`k.ck

• ∃ g | g(πmi .ck, π
n
i .trscrpt) = πni .ck = πuj .ck = g(πvj .km, π

u
j .trscrpt)
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The last two conditions aim at “binding” the six instances involved in a 3-AKE run. Function
g corresponds typically to the session key derivation function used by Pi (ED) and Pj (XS)
together. Figure 5.1 depicts the links between the six instances involved in a correct protocol
run.

KSπ`k πsk

(Pk)

XS
πvj

πuj

(Pj)ED
πmi

πni

(Pi)

km

ck

ck

Figure 5.1 – The six instances involved in a correct 3-AKE run

Security of a 3-AKE protocol is de�ned in terms of an experiment played between a challenger
and an adversary. This experiment uses the execution environment described in Section 5.2.1.
The adversary can win the 3-AKE experiment in one of two ways: (i) by making an instance
accept maliciously, or (ii) by guessing the secret bit of the Test-instance. In both, the adversary
can query all oracles NewSession, Send, Reveal, Corrupt, and Test.

Entity authentication (EA). This security property must guarantee that (i) any instance
π ∈ {πni , πmi , π`k, πsk, πuj , πvj } ending in accepting state is pairwise partnered with a unique
instance, and (ii) the output of a 2-AKE run done between Pk and Pi is used as root key in a
2-AKE run done between Pi and Pj .

De�nition 5.2 (EA). An instance π of a protocol Π is said to maliciously accept in the 3-AKE
security experiment with intended partner P̃ , if

(a) π.α = accepted and π.pid = P̃ when A issues its ν0-th query.

(b) Any party in π.PSet is ν-corrupted with ν > ν0.

(c) Any instance in π.ISet is ν ′-revealed with ν ′ > ν0.

(d) There is no unique instance π̃ such that π.sid = π̃.sid,
or there is no instances πmi , π

n
i , π

u
j , π

v
j ∈ π.ISet such that

• πmi .pid = πvj .pid ∈ K,
• πni .parent = πmi .parent ∈ E ,
• πuj .parent = πvj .parent ∈ X , and
• g(πmi .ck, π

n
i .trscrpt) = πni .ck = πuj .ck = g(πvj .km, π

u
j .trscrpt).

The adversary’s advantage is de�ned as its winning probability:

advent-authΠ (A) = Pr[A wins the EA game].
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Key indistinguishability. This security property must guarantee that the adversary can do
no more than guessing in order to distinguish from random the session key output by any of
the 2-AKE runs performed during a 3-AKE protocol session.

De�nition 5.3 (Key Indistinguishability). An adversary A against a protocol Π, that issues
its Test-query to instance π during the 3-AKE security experiment, answers the Test-challenge
correctly if it terminates with output b′, such that

(a) π.α = accepted

(b) Let π̃ be the last instance in π.ISet to end in accepting state: π̃.α = accepted when A
issues its ν0-th query.

(c) Any party in π.PSet is ν-corrupted with ν > ν0.

(d) No instance in π.ISet has been queried in Reveal queries.

(e) π.b = b′

The adversary’s advantage is de�ned as

advkey-ind
Π (A) =

∣∣∣∣Pr[π.b = b′]− 1

2

∣∣∣∣ .
The de�nitions of entity authentication and key indistinguishability allow an adversary

to corrupt a party involved in the 3-AKE security experiment (up to some point, in order to
preclude trivial attacks). Therefore, protocols secure with respect to De�nition 5.4 below provide
forward secrecy.

De�nition 5.4 (3-AKE Security). A protocol Π is 3-AKE-secure if Π satis�es correctness, and for
all probabilistic polynomial time adversary A, advent-authΠ (A) and advkey-ind

Π (A) are a negligible
function of the security parameter.

5.3 The 3-ACCE Security Model

5.3.1 An Attack Scenario against LoRaWAN 1.1

We have described in Chapter 3, the protocol LoRaWAN 1.1 (Section 3.5) and several �aws
impairing the security of the protocol (Section 3.6). Seemingly, the LoRaWAN 1.1 speci�cation
considers the protocol as involving two parties only (ED and the back-end network), and
does not make clear the security properties it is supposed to guarantee, nor the powers of the
adversary it aims at defending against. A third party (namely JS) reduces the security of a
client-server type connection (as in LoRaWAN 1.0) by increasing the attack surface. In version
1.1, whereas a given ED is bound to a given JS, many NS servers may relay the data between an
ED and its JS and AS. Thus the security of a whole network can be shattered by a malicious NS
or the weakest NS which relays data back and forth between many ED and AS.

We illustrate the latter with the following scenario. During the key exchange phase, the only
cryptographic operation that NS does, in order to accept ED as partner, is verifying the RekeyInd
message with keys received from JS. This allows the following attack scenario (see Figure 5.2). If
the attacker, on the one hand, succeeds in sending keys of her choice to NS on behalf of JS, she
can, on the other hand, provide a consistent RekeyInd message (computed under these keys),
bringing NS to accept although no ED (and possibly no JS) is actually involved in the session.
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The attacker is then able to send valid messages to NS on behalf of ED (the same session keys
are used to compute the RekeyInd message and the subsequent messages of the post-accept
phase).

A (ED) NS A (JS)
(attacker) (victim) (attacker)

τE ← rand()

j̃r← · · · ‖τE
j̃r

−−−−−−−−−→ Verify cntE
j̃r

=========⇒
j̃a

←−−−−−−−−−
j̃a

⇐========= j̃a← rand()

s̃k⇐========= s̃k ← rand()

Compute r̃i with s̃k r̃i
=========⇒ Verify r̃i with s̃k

rc⇐========= Compute rc with s̃k

Figure 5.2 – Impersonation of ED to NS based on a weak protocol between NS and JS. Double
line arrows indicate the use of secure channel keys.

This scenario implies being able either to impersonate JS to NS, or to break the channel
security established (with a protocol unde�ned by the LoRaWAN speci�cation) between NS
and JS. Hence, this attack allows the attacker to impersonate ED to NS although the attacker
does not know the ED’s master keys, nor does she (directly) target the LoRaWAN 1.1 protocol.
It is conceivable because of the way the cryptographic operations in LoRaWAN are shared
between ED, NS and JS, and interleaved with the unde�ned protocol used between NS and JS.
This highlights how the security of LoRaWAN crucially depends on this additional protocol.
Analysing LoRaWAN implies taking the latter into account.

LoRaWAN 1.1 is a 3-party protocol, not a 2-party protocol between a client (ED) and a backend
network (NS-JS). Assessing its security (as a 3-party protocol) needs care. Therefore, it requires
a suitable security model that incorporates all its subtleties, and makes explicit the security
requirements which, for some of them (such as the protocol between NS and JS), are barely
mentioned in the speci�cation despite their crucial role in the overall security of a LoRaWAN
network.

In Sections 5.3.2 and 5.3.3, we describe a security model, that we call 3-ACCE, which aims at
capturing the security goals of such 3-party protocols. In Section 5.3.4 we compare our 3-ACCE
model with existing ones, and enlighten the need for such a model. In Section 5.4.1, we use this
model to prove the security of a generic LoRaWAN-like protocol. Then, in Section 5.4.2, we
provide a security proof of a concrete LoRaWAN 1.1 protocol modi�ed in order to mitigate the
�aws presented in Chapter 3.

5.3.2 Execution Environment

We describe the execution environment related to our model, using the notation of the ACCE
model of Jager et al. [JKSS11] (see Chapter 2, Section 2.3.2), and Bhargavan et al. [BBF+17].

We use the ACCE paradigm because LoRaWAN 1.1 mixes up the key exchange phase and the
post-accept phase. The key exchange phase involves two messages (the so-called RekeyInd and
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RekeyConf messages) computed with the session keys, as any other post-accept messages (i.e.,
sent through the subsequent secure channel). Akin to the Finished messages in TLS 1.2 [DR08],
these LoRaWAN messages are used to conclude the key exchange phase. Therefore, we cannot
prove the security of the protocol based on indistinguishability of keys, as in an AKE model.

Protocol entities. Our model considers three sets of parties: a set E of end-devices, a set N
of Network Servers, and a set J of Join Servers. Each party is given a long-term key ltk.

Session instances. Each party Pi maintains a set of instances Instances = {π0
i , π

1
i , . . .}

modeling several (sequential or parallel) executions of the 3-party protocol Π. Each instance πni
has access to the long-term key ltk of its party parent Pi. Moreover, each instance πni maintains
the following internal state:

• The instance parent πni .parent ∈ E ∪ N ∪ J indicating the party Pi that owns that
instance: πni .parent = Pi.

• The partner-party πni .pid ∈ E ∪ N ∪ J indicating the party πni .parent is presumably
running the protocol with. Pi ∈ E can only be partnered with a party Pk ∈ J . Pk ∈ J
can only be partnered with a party Pj ∈ N . Pj ∈ N can be partnered with either Pi ∈ E
or Pk ∈ J .

• The role πni .ρ ∈ {ed, ns-client, ns-server, js} ofPi = πni .parent. IfPi ∈ E , then πni .ρ = ed.
If Pi ∈ J , then πni .ρ = js. If Pi ∈ N , then πni .ρ ∈ {ns-client, ns-server}. In such a case,
πni .ρ = ns-client if πni .pid ∈ J , and πni .ρ = ns-server if πni .pid ∈ E .

• The session identi�er πni .sid of an instance.

• The acceptance �ag πni .α ∈ {⊥, running, accepted, rejected} originally set to ⊥
when the session is ongoing, and set to accepted/rejectedwhen the party accepts/rejects
the partner’s authentication.

• The session keys πni .ck set to ⊥ at the beginning of the session, and set to a non-null
bitstring corresponding to the encryption and decryption session keys once πni computes
the session keys.

• The key material πni .km set to ⊥ if πni .ρ ∈ {ed, ns-server}. Otherwise km is set to ⊥ at
the beginning of the session, and set to a non-null bitstring once πni ends in accepting
state.

• The security bit πni .b sampled at random at the beginning of the security experiments.

• The partner-instances set πni .ISet stores the instances that are involved in the same protocol
run as πni (including πni itself).

• The partner-parties set πni .PSet stores the parties parent of the instances in πni .ISet (in-
cluding Pi = πni .parent itself).

A correct execution of the protocol Π involves four instances πni , πuj , πvj , π`k such that

• πni .parent = Pi ∈ E , πuj .parent = πvj .parent = Pj ∈ N , π`k.parent = Pk ∈ J

• πuj .ρ = ns-server and πvj .ρ = ns-client
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• πni .sid = πuj .sid 6=⊥ and πvj .sid = π`k.sid 6=⊥

• πni .ck = πuj .ck = πvj .km = π`k.km 6=⊥

Then, the partner-instances set and the partner-parties set are de�ned asπ.ISet = {πni , πuj , πvj , π`k}
and π.PSet = {Pi, Pj , Pk}, ∀π ∈ {πni , πuj , πvj , π`k}.

Encrypt(πni ,M0,M1, H)

if πni .α 6= accepted then return ⊥
u← u+ 1

(C0, st0e)
$←− StAE.Enc(kenc,H,M0, ste)

(C1, st1e)
$←− StAE.Enc(kenc,H,M1, ste)

if C0 =⊥ or C1 =⊥ then return ⊥
b← πni .b
(Cu, Hu, ste)← (Cb, H, stbe)
return Cu

Decrypt(πni , C,H)

if πni .α 6= accepted then return ⊥
if πni .b = 0 then return ⊥
v ← v + 1
(M, std)← StAE.Dec(kdec,H,C, std)
if v > u or C 6= Cv or H 6= Hv

then sync← false

if sync = false then return M
return ⊥

Figure 5.3 – The Encrypt and Decrypt oracles in the 3-ACCE security experiment. StAE is the
stateful authenticated encryption scheme used to establish the secure tunnel. The
counters u and v are initialised to 0, and sync to true at the beginning of every
session. In case πni does not have a partner when answering a Decrypt query, then
sync = false.

Adversarial queries. An adversary may interact with the instances by issuing the following
queries.

• NewSession(Pi, ρ, pid): this query creates a new session πni with role ρ, executed by party
Pi, and intended partner-party pid. The instance’s state is set to πni .α = running.

• Send(πni ,M): the adversary can send a message M to πni , receiving a response M ′, or
an error message ⊥ if the instance does not exist or if πni .α = accepted. (Send queries
in an accepting state are handled by the Decrypt query.)

• Reveal(πni ): this query returns the session keys πni .ck and the key material πni .km of an
instance πni ending in accepting state.

• Corrupt(Pi): this query returns the long-term key Pi.ltk of Pi.

• Encrypt(πni ,M0,M1, H): it encrypts the message Mb, b = πni .b, with header H , with
the encryption session keys (stored within πni .ck) of an accepting instance πni (if πni .α 6=
accepted, then πni returns ⊥).

• Decrypt(πni , C,H): this query decrypts the ciphertext C with headerH , with the decryp-
tion session keys (stored within πni .ck) of an accepting instance πni (if πni .α 6= accepted,
then πni returns ⊥). Figure 5.3 depicts this oracle.
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5.3.3 Security De�nitions

Partnership. In order to de�ne the partnership between two instances, we use the notion of
matching conversations (see De�nition 2.1). Consequently, we de�ne sid to be the transcript, in
chronological order, of all the (valid) messages sent and received by an instance during the key
exchange, but, possibly, the last message. We say that two instances πni and πuj are pairwise
partnered if πni .sid = πuj .sid. Then, we de�ne the 3-ACCE partnering with the sets ISet and
PSet. πni .ISet stores instances partnered with πni , and πni .PSet stores parties partnered with
πni .

Correctness. The correctness in 3-ACCE is de�ned as follows. We demand that, for any
instance π ending in an accepting state, the following conditions hold:

• ∀π ∈ {πni , πuj , πvj , π`k}, π.ISet = {πni , πuj , πvj , π`k} and |π.ISet| = 4

• πni .parent = Pi ∈ E , πuj .parent = πvj .parent = Pj ∈ N , π`k.parent = Pk ∈ J

• π.PSet = {Pi, Pj , Pk}

• πni .ck = πuj .ck = πvj .km = π`k.km 6=⊥

• πni .sid = πuj .sid 6=⊥

• πvj .sid = π`k.sid 6=⊥

Security of ACCE protocols is de�ned by requiring that (i) the protocol is a secure authenti-
cation protocol, and (ii) in the post-accept phase all data is transmitted over an authenticated
and con�dential channel in the sense of length-hiding sAE (based on the left-or-right indis-
tinguishability variant, see Chapter 2, Section 2.2.5). Security of 3-ACCE protocols is de�ned
in a similar way (but the length-hiding property), but we include an additional requirement
in the entity authentication property in order to “bind” all the parties involved in a session.
The adversary’s advantage to win is de�ned with two games: the entity authentication game,
and the channel security game. In both, the adversary can query all oracles NewSession, Send,
Reveal, Corrupt, Encrypt, and Decrypt.

Entity authentication (EA). This security property must guarantee that any instance πni
ending in accepting state is partnered with a unique instance. In addition to the two parties
explicitly involved in the communication, we guarantee that a third party participates in the
session (each one belonging to a di�erent set E , N , J ). The purpose of this property, that
we borrow from Bhargavan et al. [BBF+17], is to make sure that if some ED establishes a
communication with some NS, there is a JS that is also involved. Conversely if a secure channel
is established between an NS and a JS, we want to make sure that it is with the aim of establishing
a communication between that NS and some ED. In the EA security experiment, the adversary
is successful if, when it terminates, there exists an instance that maliciously accepts according
to the following de�nition.

De�nition 5.5 (EA). An instance is said to maliciously accept if the adversary succeeds in ful-
�lling one of the following winning conditions.

ED adversary – An instance πni of parent Pi ∈ E is said to maliciously accept if
– πni .α = accepted and πni .pid = Pk ∈ J .
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– No instance in πni .ISet was queried in Reveal queries.

– No party in πni .PSet is corrupted.

– There is no unique πuj | (πuj .parent ∈ N ∧ πuj .sid = πni .sid),
or there is no π`k ∈ Pk.Instances | π`k.km = πni .ck.

NS adversary – An instance πuj of parent Pj ∈ N is said to maliciously accept if at least
one of the following two conditions holds

(a) – πuj .α = accepted and πuj .pid = Pi ∈ E .
– No instance in πuj .ISet was queried in Reveal queries.

– No party in πuj .PSet is corrupted.

– There is no unique πni | (πni ∈ Pi.Instances ∧ πuj .sid = πni .sid),
or there is no π`k | (π`k.parent = Pk ∈ J ∧ πni .pid = Pk ∧ π`k.km = πuj .ck).

(b) – πvj .α = accepted and πvj .pid = Pk ∈ J .
– No instance in πvj .ISet was queried in Reveal queries.

– No party in πvj .PSet is corrupted.

– There is no unique π`k ∈ Pk.Instances | (πvj .sid = π`k.sid),
or there is no πni | (πni .parent ∈ E ∧ πni .pid = Pk ∧ πni .ck = πvj .km).

JS adversary – An instance π`k of parent Pk ∈ J is said to maliciously accept if
– π`k.α = accepted and π`k.pid = Pj ∈ N .

– No instance in π`k.ISet was queried in Reveal queries.

– No party in π`k.PSet is corrupted.

– There is no unique πvj ∈ Pj .Instances | (πvj .sid = π`k.sid),
or there is no πni | (πni .parent ∈ E ∧ πni .pid = Pk ∧ π`k.km = πni .ck).

The adversary’s advantage is de�ned as its winning probability:

advent-authΠ (A) = Pr[A wins the EA game].

Channel security (CS). In the channel security game, the adversary can use all oracles. At
some point, the adversary sends a challenge M0, M1 (issuing a query Encrypt) to some instance
πni , and gets Cb the encryption of Mb, b = πni .b. The adversary is successful if it guesses b. That
is, it must output an instance πni and its security bit. The security bit πni .b is chosen at random
at the beginning of the game.

De�nition 5.6 (CS). An adversary A breaks the channel security if it terminates the channel
security game with a tuple (πni , b) such that

• πni .α = accepted

• No instance in πni .ISet was queried in Reveal queries.

• No party in πni .PSet is corrupted.
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• πni .b = b

The adversary’s advantage is de�ned as

advchan-sec
Π (A) =

∣∣∣∣Pr[A wins the CS game]− 1

2

∣∣∣∣ .
De�nition 5.7 (3-ACCE-security). A 3-party protocol Π is 3-ACCE-secure if Π satis�es correct-
ness, and for all probabilistic polynomial time adversaries A, advent-authΠ (A) and advchan-sec

Π (A)
are a negligible function of the security parameter.

5.3.4 Comparison with Existing Models

The 3-ACCE security notion we propose takes inspiration from that of Bhargavan et al. [BBF+17],
which is used to analyse the security of TLS when an intermediary server (the middleware)
is involved between the client and the server. In turn the latter is built on the ACCE model
introduced by Jager et al. [JKSS11] to prove the security of TLS 1.2 [DR08] in DHE mode, and
used by Kohlar et al. to prove the security of TLS 1.2 in RSA and DH modes [KSS13]. Our model
follows the same execution environment and adversarial model, and reuse the corresponding
notation to deal with the entity authentication and the channel security properties. Yet we relax
the stateful length-hiding AEAD (sLHAE) security used by Jager et al. and use the sAE-security.
That is, we do not demand the “length-hiding” property (i.e., the ciphertext hides the length of
the corresponding plaintext) for the encryption schemes. Obviously TLS 1.2 remains secure
with respect to the sAE-security.

The model of Bhargavan et al. includes a property requiring that whenever a client identi�es
a server as its partner, that server should be able to decrypt channels established between the
client and the middleware, hence audit the behaviour of the middleware.1 In our model, we
extend this property in two ways. Firstly, we demand that it be ensured by all parties involved
in a correct execution of the protocol, in order to “bind” these parties. Secondly, this property
guarantees to JS that an ED is actually involved in the key exchange, prior to establishing the
secure channel between NS and the purported ED (hence JS is not merely used as a session
keys derivation oracle). This means that when an ED establishes a session with an NS, a JS
has been part of the key derivation. When a JS is requested by an NS, there is an ED expecting
to connect the network. When NS relays data, it is to enlist an ED with the help of a JS. We
demand this additional guarantee because the purpose of such a channel established by JS is
only to compensate for the cryptographic operations that NS is unable to perform. Another
option would have been to separate into two properties: the entity authentication and the
“entity binding”. This entity binding property, that the three parties involved in the session take
on, is a way to extend to three “dimensions” what tie the parties in a classical 2-party protocol.
We do mean by “entity authentication” in a 3-party setting a property that guarantees not only
a unique partner to a given party, but also the unavoidable involvement of a third party. This is
the reason of our choice, despite a possible lack of modularity.

Moreover, as pointed out by Bhargavan et al., their model has two main limitations: it does
not handle client authentication, and does not consider forward secrecy.2 In addition, in the
3-party protocol they propose, when instantiated with TLS 1.2, the middlebox merely forwards
messages but does not have any added value. On the contrary, in the model we propose, we do
consider client (ED) authentication, and retain the genuine operations done by NS.

1This property is called accountability in [BBF+17].
2Our model does not require forward secrecy either because of the use of static symmetric keys in LoRaWAN.
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The ACCE-AP model of Bhargavan et al. [BBD+18] allows capturing a context where several
middleboxes are interspersed between a (TLS) client and a server. It aims at providing �ne-
grained rights (de�ned through contexts) to the middleboxes. We choose instead to use the
intuitive and elegant 3-ACCE model since, in our setting, one intermediate server only (NS) is
involved, which prede�ned rights are attributed to. Moreover, the authors of [BBD+18] observe
that their model is complex and achieves limited record-layer guarantees in multi-middlebox
setting.

5.4 Security Proofs in the 3-ACCE Model

5.4.1 3-ACCE Security for a Generic 3-party Protocol

In this section we describe a generic 3-party protocol Π. Next, we show that Π is generically
secure in the 3-ACCE model described in Sections 5.3.2 and 5.3.3.

5.4.1.1 Description of the Generic 3-party Protocol

Figure 5.4 depicts our view of the 3-ACCE protocol Π between ED, NS and JS. It is composed of
two distinct protocols denoted P and P ′ respectively. P is a 2-ACCE protocol between ED and
NS, and P ′ is a 2-ACCE protocol between NS and JS. The details of the protocol Π are given in
Figure 5.5.

ED
[
NS JS

]
P

2-ACCE
P ′

2-ACCE

binding

Π
3-ACCE

Figure 5.4 – 3-ACCE protocol Π

Π is generic in the sense that it depicts a whole class of protocols. Informally, this class
corresponds to 3-party protocols where one entity behaves mostly as a key server (JS), whereas
the post-accept phase is managed by the other two entities (ED, NS). Moreover, the P component
has the following features. Its key exchange is made of four main messages: the �rst two with
the major purpose of exchanging the material intended for the key derivation, and the last
two in order to con�rm the session keys or to authenticate the parties. For example, TLS-PSK
[ET05], SRP [Wu00], and SIGMA-R [Kra03] can be instances of P . As we will see in Section 5.4.2,
LoRaWAN 1.1 is such another instance.

5.4.1.2 Main Theorem and Sketch of Proof

Based on the security of P and P ′, we show that Π is 3-ACCE-secure according to De�nition 5.7.

Theorem 5.1. The protocol Π is a secure 3-ACCE protocol under the assumption that P is a secure
2-ACCE protocol, and P ′ is a secure 2-ACCE protocol, and for any probabilistic polynomial time
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ED NS JS

Join Request
===========⇒ mutual auth.←−−−−−−−−−−→

Verify Join Request
Join Request

===========⇒
Join Request

===========⇒
Verify Join Request

Join Accept
←−−−−−−−−−−−

Join Accept
⇐===========

Verify Join Accept
Compute sk

RekeyInd
===========⇒

[RekeyInd]
===========⇒

Compute sk
[Verify RekeyInd]

Join Request
===========⇒ sk⇐===========

Verify RekeyInd
RekeyConf

⇐===========
Join Request

===========⇒
Verify RekeyConf

post-accept phase
⇐==========⇒

Join Request
===========⇒

Protocol P Protocol P ′

Figure 5.5 – Correct execution of protocol Π, made of P (left) and P ′ (right) components.
Double line arrows indicate the use of the secure channel keys.

adversary A in the 3-ACCE security experiment against Π

advent-authΠ (A) ≤ nE · nN · nJ

(
2advchan-sec

P (B0) + 3advchan-sec
P ′ (B1) + 2pjr + 2pja

+advent-authP ′,client(B1) + advent-authP ′,server(B1)
)

+nE

(
nJ · advent-authP,client (B0) + nN · advent-authP,server (B0)

)
+nN · nJ

(
3advchan-sec

P ′ (B1) + advent-authP ′,client(B1) + advent-authP ′,server(B1)
)

advchan-sec
Π (A) ≤ nE · nN · nJ

(
advchan-sec

P (B0) + 3advchan-sec
P ′ (B1)

)
+ advent-authΠ (A)

where nE, nN, and nJ are respectively the number of ED, NS, and JS parties, B0 is an adversary
against the 2-ACCE-security of P , and B1 is an adversary against the 2-ACCE-security of P ′.

We give here a sketch of proof for Theorem 5.1, and provide a full proof in Section 5.4.3.1.

Sketch of proof. Let us �rst consider the EA-security property. We split the proof into three
parts depending which party (ED, NS, JS) the adversary targets.

ED adversary. Roughly speaking, in order to be successful, the adversary must make ED
accept without NS or JS being involved. Hence the adversary can �rst try to impersonate NS to
ED as in a 2-party execution of protocol P (in such a case no NS and no JS are involved in the
session). This corresponds to an advantage advent-authP,client (B0). The adversary can also try to bypass



114 Chapter 5 Security Models

the intermediate NS in order to get from JS all the necessary material (Join Accept message,
session keys sk) in order for ED to accept. This implies necessarily that a server adversary be
able to impersonate a legitimate NS to JS, that is to break the EA-security of P ′ (corresponding to
an advantage advent-authP ′,server(B1)). Finally, the adversary can try to make ED and NS have di�erent
sid. In order to be successful, the adversary has to provide a valid RekeyInd message to NS
di�erent than the one computed by ED. This implies either forging such a message, or getting
the keys used to compute it and transmitted by JS to NS. We reduce both possibilities to the
channel security with respect to P on the one hand (advchan-sec

P (B0)), and to the channel security
with respect to P ′ on the other hand (advchan-sec

P ′ (B1)).
Since we have ruled out the impersonation of NS to ED, and the impersonation of NS to

JS, ED uses the Join Accept message sent by JS upon reception of the Join Request message
computed by ED. Therefore, ED and JS compute the P -session keys with the same inputs (and
the same function). Hence they output the same keys (that is πni .ck = π`k.km). In addition, ED
and NS have matching conversations (that is, they share the same sid).

Accounting for the fact that the reduction must guess the identity of the three parties involved,
the advantage of an ED adversary is bounded by

advent-authΠ,E (A) ≤ nE · nJE

(
nN ·

(
advent-authP ′,server(B1) + advchan-sec

P (B0) + advchan-sec
P ′ (B1)

)
+advent-authP,client (B0)

)
where nJE ≤ nJ is the number of JSs that can be partnered with a given ED.

NS adversary. First we deal with the winning condition (a). The adversary can try to imperson-
ate ED to NS in order to preclude the existence of a partner to NS. This implies breaking the EA-
security of P when the server side is targeted. The corresponding advantage is advent-authP,server (B0).
Then the adversary can try to impersonate a legitimate JS to NS, in order to preclude the
involvement of JS in the protocol run. This corresponds to an advantage advent-authP ′,client(B1).

The only cryptographic operation that NS does in order to accept is verifying the RekeyInd
message it gets from ED with the keys provided by JS. Therefore the adversary is successful if,
on the one hand, it provides some keys sk to NS (through the P ′ secure channel), and, on the
other hand, it sends to NS a RekeyInd message computed under these keys sk. Note that the
adversary can be successful even if a legitimate JS is involved in the protocol.3 This is possible
if the adversary forges a valid P ′ application message carrying the keys sk it has chosen. This
can be reduced to the channel security with respect to P ′, which corresponds to the advantage
advchan-sec

P ′ (B1).
The remaining possibility in order for the adversary to win is to provide a RekeyConf message

so that NS and ED do not share the same sid (i.e., they do not have matching conversations).4
This is possible either if the adversary forges such a message, or if the adversary is able to get the
keys used to compute the message, and transmitted by JS to NS through a secure channel with
respect to P ′. We reduce either possibility respectively to the channel security with respect to P
(advchan-sec

P (B0)), and to the channel security with respect to P ′ (advchan-sec
P ′ (B1)). Furthermore,

since we have ruled out the impersonation of JS to NS, and also the possibility to forge P ′
application messages, NS and JS share the same P session keys. That is πuj .ck = π`k.km.

Accounting for the fact that the reduction must guess the identity of the three parties involved,

3The adversary sends �rst a fake Join Request message to NS (random MAC tag, correct counter cntE ). Then
the adversary sends a random Join Accept to NS followed by session keys sk of its choice, and a RekeyInd message
computed under sk (as depicted in Section 5.3.1 by Figure 5.2).

4Forging a RekeyInd message is already ruled out because we have precluded the impersonation of ED to NS.
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the advantage of an NS adversary in winning through condition (a) is bounded by

pa ≤ nE · nN

(
advent-authP,server (B0) + nJE

(
advent-authP ′,client(B1) + 2advchan-sec

P ′ (B1) + advchan-sec
P (B0)

))
.

Regarding condition (b), the adversary can �rst try to impersonate a legitimate JS to NS
in order to preclude the involvement of such a JS. This implies an adversary able to break
the EA-security of P ′ when the client side is targeted, which corresponds to an advantage
advent-authP ′,client(B1). Then the adversary can proceed as under condition (a). That is providing to NS
some keys sk of its choice, and a RekeyInd message computed under sk. This implies forging a
valid P ′ application message carrying the keys sk. We reduce such a possibility to the channel
security with respect to P ′, which corresponds to an advantage advchan-sec

P ′ (B1). Then, in order
to have that NS and JS do not share the same sid (i.e., they do not have a matching conversation),
the adversary can try to forge a P ′ application message (carrying a Join Request or a RekeyInd
message) intended to JS.5 We can reduce the latter to the channel security of P ′ (advchan-sec

P ′ (B1)).
So far, this guarantees that NS and JS have a matching conversation, that is they share the

same sid (πvj .sid = π`k.sid). Finally the adversary wins if NS and ED do not share the same P
session keys. This is possible if the adversary forges either a Join Request message or a Join
Accept message. These two possibilities are respectively bounded by the probabilities pjr and
pja (see Section 5.4.2.1).

Therefore, accounting that the reduction must guess the identity of the parties involved, the
advantage of an NS adversary in winning through condition (b) is bounded by

pb ≤ nN · nJ

(
advent-authP ′,client(B1) + 2advchan-sec

P ′ (B1) + nEJ
(pjr + pja)

)
.

where nEJ
≤ nE is the number of ED that can be partnered with a given JS. Therefore

advent-authΠ,N (A) ≤ pa + pb

≤ nE · nN

(
nJE ·

(
advchan-sec

P (B0) + 2advchan-sec
P ′ (B1) + advent-authP ′,client(B1)

)
+advent-authP,server (B0)

)
+nN · nJ

(
advent-authP ′,client(B1) + 2advchan-sec

P ′ (B1) + nEJ
(pjr + pja)

)
with nEJ

≤ nE, and nJE ≤ nJ.

JS adversary. In this setting, the adversary can �rst try to impersonate NS to JS, which
corresponds to an advantage advent-authP ′,server(B1). Then, in order to have that NS and JS do not share
the same sid (i.e., do not have a matching conversation), the adversary can try to forge one of
the messages exchanged through the secure channel (in either direction), which can be reduced
to the channel security with respect to P ′ (advchan-sec

P ′ (B1)). Ruling out all these possibilities
guarantees that JS and NS share the same sid (π`k.sid = πvj .sid).

Finally, the adversary can try to make ED and JS compute di�erent P -session keys. Since
these keys depend on the data carried in the Join Request and Join Accept messages, this
implies forging either message, corresponding to a probability pjr + pja. Hence, ruling out both
possibilities guarantees that πni .ck = π`k.km.

Taking account of all the parties involved, the advantage of a JS adversary is bounded by

advent-authΠ,J (A) ≤ nJ · nN

(
advent-authP ′,server(B1) + advchan-sec

P ′ (B1) + nEJ
(pjr + pja)

)
.

Regarding the CS property of Π we apply the following hops. First we rule out the possibility
that an instance maliciously accepts. That is we follow the same steps as in the EA proof.

5Di�erent session keys are (likely) used in either direction in order to protect P ′ application messages.



116 Chapter 5 Security Models

This leads to an advantage equal to advent-authΠ (A). This leaves two possibilities in order for
the adversary to be successful: either it targets directly the secure channel between ED and
NS, or it targets the secure channel between NS and JS. We can reduce the latter possibility
to the CS-security of P ′ corresponding to an advantage advchan-sec

P ′ (B1). Regarding the former
possibility, the adversary can �rst try to get the P session keys (sk) sent by JS to NS (which we
reduce to the channel security with respect to P ′ leading to an advantage advchan-sec

P ′ (B1)). Then
the adversary can try to break the channel security with respect to P (advchan-sec

P (B0)). We have
also to take into account that the session keys sk are sent by JS to NS through the secure channel
provided by P ′. Since the CS-security of P relies implicitly on the indistinguishability of sk
from random, we have to rely on the real-from-random indistinguishability for the plaintexts
guaranteed by the channel provided by P ′ (which we reduce to advchan-sec

P ′ (B1)).
Accounting that the reduction must guess the identity of the parties involved, the advantage of
the adversary is bounded by

advchan-sec
Π (A) ≤ nE · nN · nJ

(
advchan-sec

P (B0) + 3advchan-sec
P ′ (B1)

)
+ advent-authΠ (A).

5.4.2 3-ACCE Security with LoRaWAN 1.1

In this section, we use the generic result of Section 5.4.1, and apply it to LoRaWAN 1.1. For this
purpose, we have to (i) show that LoRaWAN 1.1 ful�lls the structure of the protocol Π proved
to be secure by Theorem 5.1, (ii) prove that the underlying protocol P = PLoRaWAN is 2-ACCE-
secure, and (iii) choose a 2-ACCE-secure instantiation for the protocol P ′ = P ′LoRaWAN .

As described in Chapter 3, Section 3.5, a typical LoRaWAN network involves four entities:
ED, NS, JS, and AS. But only the �rst three are actually involved in the key exchange, and
the channel establishment. Moreover, in actual deployments, AS is often co-localised with NS.
Another reason to opt for such a deployment is that LoRaWAN does not provide end-to-end
data integrity between ED and AS which leads to trivial attacks (see Section 3.6.5). Thus, AS is
in fact merely a functionality handled by NS, and the latter is given the four session keys Ke

a ,
Ke
c , Ki1

c , Ki2
c (see Section 3.5.3). Hence, we instantiate LoRaWAN accordingly: our protocol

is made of three active entities (ED, NS, JS) which the di�erent cryptographic operations are
attributed to. This makes the attack scenarios presented in Sections 3.6.6 and 3.6.7 ine�ective.

5.4.2.1 2-party Protocol P in LoRaWAN 1.1 is 2-ACCE Secure

In this section, we use the ACCE security model described in Chapter 2 (we rename 2-ACCE
this model in order to distinguish from the 3-ACCE model). Since LoRaWAN is based on static
symmetric keys, we de�ne the long-term key of each party to be ltk = (pk, sk,mk), made of
(i) a private key sk, (ii) the corresponding certi�ed public key pk, and (iii) a master symmetric
key mk. If Pk ∈ J , the three components of ltk are de�ned. Otherwise, Pj .ltk = (pk, sk,⊥) if
Pj ∈ N , and Pi.ltk = (⊥,⊥,mk) if Pi ∈ E . Each party Pi ∈ E has a unique master key mk,
shared with a party Pk ∈ J . The master key mk is de�ned as mk = (MK1,MK2) where
MK1 and MK2 are respectively ED’s communication master key, and application master key
(see Section 3.5.2).

Let PLoRaWAN correspond to the messages exchanged, and the operations done between a
client (ED) and a server (NS-JS) based on LoRaWAN 1.1. We claim with the following theorem
that the protocol PLoRaWAN is a secure 2-ACCE protocol. Let StAEclient (resp. StAEserver) be
the AEAD function used by the client (resp. server) to encrypt and MAC the messages in
LoRaWAN 1.1.
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Theorem 5.2. Under the assumption that StAEclient and StAEserver are sAE-secure, PLoRaWAN

is a secure 2-ACCE protocol, and for any probabilistic polynomial time adversaryA in the 2-ACCE
security experiment against PLoRaWAN

advent-authP (A) ≤ q
[
(nC + nS)

(
advprfMAC(B0) + 2advprfAES(B1)

)
+ nS · advsaeStAEclient

(B3)

+ nC

(
advprpAES(B2) + advsaeStAEserver

(B3)
)

+ 2−µ
(
nC · (1− 2−β) + nS

)]
advchan-sec

P (A) ≤ q2 · nC · nS

(
advsaeStAEclient

(B3) + advsaeStAEserver
(B3) + 2advprfAES(B1)

)
+advent-authP (A)

where q is the number of instances per party, nC (resp. nS) is the number of client (resp. server)
parties, µ is the bit length of the MAC tag, β is the bit length of the counter cntJ , and B0 is an
adversary against the PRF-security ofMAC, B1 an adversary against the PRF-security of AES, B2

an adversary against the PRP-security of AES, and B3 an adversary against the sAE-security of
StAE.

We give here a sketch of proof for Theorem 5.2, and provide a full proof in Section 5.4.3.3.

Sketch of proof. We consider the 2-ACCE security model of Jager et al. [JKSS11] described in
Chapter 2, Section 2.3.1, and de�ne the entity authentication and the channel security experi-
ments accordingly, but we forbid any corruption of the party (and its presumed partner) involved
in the security experiments (the entity authentication game and the channel security game).
That is LoRaWAN does not provide forward secrecy (nor protects against key-compromise
impersonation attacks [BWJM97]).

We consider �rst a client (ED) adversary, and then a server (NS-JS) adversary.
Regarding a client adversary, we idealise each cryptographic function used to compute a

Join Accept message: the KDFmk function used to compute the MAC key (MK3), the MAC
function, and the encryption function AES. Being able to distinguish such changes corresponds
respectively to the advantages advprfAES(B1), advprfMAC(B0), and advprpAES(B2). To that point, the
ability of an adversary to forge a valid Join Accept message lies on the ability to provide a
valid counter (probability at most 2β−1

2β
), and a valid MAC tag (probability 2−µ) carried in the

Join Accept message. Hence Pr[forgery Join Accept] ≤ pja = advprfAES(B1) + advprfMAC(B0) +
advprpAES(B2) + 2−µ(1 − 2−β). Then the adversary is successful if the client and the server do
not share the same sid (i.e., if they do not have a matching conversation). This is possible if the
adversary succeeds in forging a valid RekeyConf message. We reduce this event to the security
of the underlying AEAD function StAEserver used to compute that message (corresponding to
an advantage advprfAES(B1) + advsaeStAEserver

(B3)). Taking account of all possible client instances
adds a factor q · nC, where nC is the number of client parties, and q the number of instances per
party.

Therefore, the advantage of a client adversary in winning the EA experiment is bounded by

advent-authP,client (A) ≤ q · nC

(
advsaeStAEserver

(B3) + 2−(µ+β)(2β − 1) + advprpAES(B2) + advprfMAC(B0)

+2advprfAES(B1)
)

Regarding the server adversary, the reasoning is quite similar. First we idealise each crypto-
graphic function used to compute a Join Request and a RekeyInd message: the MAC function
used to compute the Join Request’s MAC tag, and theKDFc andKDFa functions used to compute
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the session keys involved in the calculation of the RekeyInd message. Being able to distinguish
these changes corresponds respectively to the advantages advprfMAC(B0), and 2advprfAES(B1). To
this point, the probability to forge a valid Join Request message corresponds to the probability to
forge a valid MAC tag (that is 2−µ). Hence Pr[forgery Join Request] ≤ pjr = advprfMAC(B0)+2−µ.
Finally, the only remaining possibility for the adversary is that client and server do not share the
same sid (i.e., they do not have a matching conversation). This implies forging a valid RekeyInd
message. We reduce this event to the security of the underlying AEAD function StAEclient used
to compute that message (corresponding to an advantage advsaeStAEclient

(B3)). Taking account of
all possible server instances adds a factor q · nS, where nS is the number of server parties, and q
the number of instances per party.

Therefore, the advantage of a server adversary in winning the EA experiment is bounded by

advent-authP,server (A) ≤ q · nS

(
advsaeStAEclient

(B3) + 2advprfAES(B1) + 2−µ + advprfMAC(B0)
)

In addition, we have also

Pr[forgery Join Request] ≤ pjr = advprfMAC(B0) + 2−µ

Pr[forgery Join Accept] ≤ pja = advprfAES(B1) + advprfMAC(B0) + advprpAES(B2)
+2−(µ+β) · (2β − 1)

Regarding the CS experiment, we �rst abort if there exists an instance of some client or server
party that accepts maliciously, which adds an advantage advent-authP (A). Then we idealise the
cryptographic functions used to compute the session keys Ke

a , Ke
c , Ki1

c , and Ki2
c . Being able

to distinguish the change leads to an advantage 2advprfAES(B1). Finally we reduce the ability
to win the CS experiment to the security of the underlying AEAD functions that are used
to encrypt messages in either direction: StAEclient and StAEserver. This corresponds to an
advantage advsaeStAEclient

(B3) + advsaeStAEserver
(B3). Taking account of all possible instances adds a

factor q2 · nC · nS.
Therefore, the advantage of an adversary in winning the CS experiment is bounded by

advchan-sec
P (A) ≤ q2·nC·nS

(
advsaeStAEclient

(B3) + advsaeStAEserver
(B3) + 2advprfAES(B1)

)
+advent-authP (A)

5.4.2.2 Meeting 3-ACCE Security

As seen in Chapter 3, Section 3.6, and also exhibited by Theorem 5.2, the genuine LoRaWAN 1.1
protocol su�ers from several �aws that forbid from concluding regarding its security. In
particular, the (too) short size of several parameters (notably the size µ of the MAC output)
provides useless security bounds in Theorem 5.2. Therefore, applying the recommendations
presented in Section 3.7 in order to mitigate these vulnerabilities, we modify LoRaWAN 1.1 in
the following way in order to yield PLoRaWAN .

• We demand that the size µ of the MAC output be high enough so that the security bounds
advent-authP and advchan-sec

P be tight (recommendation R2).

• We slightly change the behaviour of JS as follows: JS veri�es entirely the Join Request
message (including ED’s counter cntE), and the RekeyInd message. It sends the session
keys sk to NS only if the RekeyInd message is valid. This change aims at precluding an
attack that allows the adversary to trivially win the EA experiment. Indeed, if JS does
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not verify the RekeyInd message, this means that it accepts as soon as it sends the Join
Accept message. Yet, JS has no guarantee that ED successfully completes the protocol (it
is enough for the adversary to drop or alter the Join Accept message in order for ED to
not accept).
The components surrounded with brackets in Figure 5.5 depict these additional operations.

• The genuine LoRaWAN speci�cation states that ED must send a RekeyInd message to
NS as long as it does not receive a RekeyConf response. We demand that ED send only
one message (recommendation R3). Firstly in order to clearly separate the pre-accept and
post-accept phases. Secondly, because sending multiple RekeyInd messages allows the
adversary to trivially win the EA experiment. Indeed, the adversary has to merely forbid
NS from receiving the �rst RekeyInd message, and this breaks the transcript equality.

• We require that all entities implement version 1.1 (including NS) so that no fallback to
LoRaWAN 1.0 be possible, and the vulnerabilities of that version be avoided (recommen-
dation R4).

• In addition, we demand that ED apply recommendation R1 which aims at precluding a
counter exhaustion (see Section 3.6.1).

Hence our adapted version of LoRaWAN 1.1 ful�lls the structure of protocol Π, and corresponds
to the 2-ACCE-secure protocol PLoRaWAN .

Now we de�ne the companion security protocol P ′LoRaWAN that is used between NS and JS.
As explained in Section 5.3.1, the careful choice of this protocol is crucial to the overall security
of a LoRaWAN network. Indeed, the attack scenario described in Section 5.3.1 illustrates that
choosing an unreliable protocol as P ′LoRaWAN drastically weakens the security of LoRaWAN,
independently of the security of the LoRaWAN cryptographic functions, and how well protected
the master keys are. Therefore, we de�ne the protocol P ′LoRaWAN to be TLS 1.2 [DR08] in DHE,
or RSA mode, with mutual authentication, and instantiated with AEAD encryption schemes
such as AES-GCM, AES-CCM [McG08], or ChaCha20-Poly1305 [NL15]. TLS 1.2 is known to be
2-ACCE-secure [JKSS11; KSS13]. Alternatively, P ′LoRaWAN can be de�ned as TLS 1.3 [Res18] in
(EC)DHE mode, with mutual authentication. We recall that TLS 1.3 uses only AEAD encryption
schemes. TLS 1.3 is proved to be 2-AKE-secure [DFGS15]. Although this result applies to an
earlier draft of the protocol, we may reasonably assume that the �nal version also guarantees
2-AKE-security. Since AEAD encryption schemes are used, this implies 2-ACCE-security for
TLS 1.3.

Combining all the above with Theorem 5.1, we obtain the 3-ACCE-security of our adapted
version of LoRaWAN 1.1.

5.4.3 Extended Security Proofs

5.4.3.1 Extended Security Proof for Π

In this section, we give the full proof of Theorem 5.1. We proceed through a sequence of games
[Sho04; BR04] between a challenger and an adversary A.

Entity authentication. First we consider the entity authentication experiment described in
Section 5.3.3.

Proof. Let advent-authΠ,X (A) be the probability that an X adversary succeeds, with X ∈ {E,N, J},
where E, N, J indicate respectively a party from E , N , J . We have that advent-authΠ (A) ≤
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advent-authΠ,E (A) + advent-authΠ,N (A) + advent-authΠ,J (A).

ED adversary. Let Ei be the event that the adversary succeeds in making an instance mali-
ciously accept during Game i, where the instance belongs to a party Pi ∈ E .

Game 0. This game corresponds to the EA-security game of the 3-party protocol Π described
in Section 5.3.3 when the adversary targets ED. Therefore we have that

Pr[E0] = advent-authΠ,E (A).

Game 1. In this game, the challenger aborts the experiment if it does not guess which party
Pi ∈ E the instance that will maliciously accept belongs to, and the corresponding partner-party
Pk ∈ J . Therefore

Pr[E1] = Pr[E0]× 1

nE · nJE

.

where nE is the number of parties in E and nJE ≤ nJ is the number of parties in J that can be
partnered with a party in E .

Game 2. Now the party Pi ∈ E and its party partner Pk ∈ J are �xed. We want to rule out
the event that there is no unique instance of some party in N that is partnered (i.e., shares the
same session identi�er sid) with some instance πni of the party Pi ∈ E .

If the adversary succeeds in forging valid Join Accept and RekeyConf messages, this implies
(in particular) that there is no such instance of some party in N that is partnered with πni
(in addition, this implies that there is no instance of Pk that has computed the Join Accept
message). Therefore we want to preclude such an event. Forging these messages corresponds
to the advantage advent-authP,client (B0) for a client adversary B0 of breaking the EA-security of the
protocol P . Note however that precluding such a forgery does not imply the existence of a
unique instance πuj ∈ Pj .Instances for some party Pj ∈ N that is partnered with πni . Indeed
there is, in this execution of the 3-party protocol Π, other means to rule out the existence of such
an instance. Nonetheless, ruling out the forgery of a Join Accept message implies necessarily
the existence of an instance π`k ∈ Pk.Instances that computes that message. Therefore we have

Pr[E1] ≤ Pr[E2] + advent-authP,client (B0).

Game 3. Now we want to rule out the event that the adversary gets from Pk valid parameters
with respect to P (Join Accept message, session keys sk) so that the adversary be able to reply
to Pi without any party of N being involved.

But �rst we add an abort rule. In this game, the challenger aborts the experiment if it does
not guess which party Pj ∈ N is partnered with Pk with respect to protocol P ′. Therefore

Pr[E3] = Pr[E2]× 1

nN
.

Game 4. In this game, the challenger aborts the experiment if an adversary succeeds in
impersonating Pj to Pk. This implies an adversary B1 able to break the EA-security of P ′ when
targeting the server side. Therefore

Pr[E3] ≤ Pr[E4] + advent-authP ′,server(B1).
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Game 5. So far, we have ruled out the non-existence of an instance πuj ∈ Pj .Instances that is
involved in the execution of P with πni . Therefore, πni receives the Join Accept message sent
by πuj upon reception of the Join Request message sent by πni (recall that we have ruled out
the forgery of such a message in Game 2). Now the only way to have πni .sid 6= πuj .sid is if πni
and πuj do not share the same RekeyInd or RekeyConf message. This implies either forging a
RekeyInd message, or getting the suitable keys, transmitted by Pk to Pj , in order to compute a
RekeyInd or a RekeyConf message. We can reduce these events to the channel security with
respect to P on the one hand, and to the channel security with respect to P ′ on the other hand.

Therefore, in this game, the challenger aborts the experiment if πuj ever receives a valid
RekeyInd message but πni has not output that message, or if πni receives a valid RekeyConf
message but πuj has not computed it. We have

Pr[E4] ≤ Pr[E5] + advchan-sec
P (B0) + advchan-sec

P ′ (B1).

To this point, the execution of P between πni and πuj is correct. Hence πuj is the unique
instance such that πni .sid = πuj .sid.

We also have that π`k computes the Join Accept message, hence the existence of that instance.
In addition, πni uses the Join Accept message computed by π`k, due to Game 2. Reciprocally, π`k
uses the Join Request message computed by πni (because πuj receives correctly that message
from πni , and no impersonation of Pj to Pk takes place). Therefore both instances πni and π`k use
the same inputs and the same permutation to compute the P session keys. Hence the output is
equal. That is π`k.km = πni .ck. Therefore, to that point, the adversary has no chance of winning
the experiment. Hence

Pr[E5] = 0.

Collecting all probabilities from Game 0 to Game 5, we have that

advent-authΠ,E (A) = Pr[E0]

= nE × nJE × Pr[E1]

≤ nE · nJE

(
Pr[E2] + advent-authP,client (B0)

)
≤ nE · nJE

(
nN · Pr[E3] + advent-authP,client (B0)

)
≤ nE · nJE

(
nN ·

(
Pr[E4] + advent-authP ′,server(B1)

)
+ advent-authP,client (B0)

)
≤ nE · nJE

(
nN ·

(
Pr[E5] + advchan-sec

P (B0) + advchan-sec
P ′ (B1)

+advent-authP ′,server(B1)
)

+advent-authP,client (B0)
)

≤ nE · nJE

(
nN ·

(
advchan-sec

P (B0) + advchan-sec
P ′ (B1) + advent-authP ′,server(B1)

)
+advent-authP,client (B0)

)
NS adversary. Let us consider the winning conditions (a) and (b) of an NS adversary. Let pa

(resp. pb) the probability that the adversary wins through condition (a) (resp. condition (b)).
We have that advent-authΠ,N (A) ≤ pa + pb. We �rst consider a sequence of changes related to
condition (a).

Let Ea
i be the event that the adversary succeeds in making an instance maliciously accept

during Gamea i through condition (a), where the instance parent is in N .
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Gamea 0. This game corresponds to the EA-security game of the 3-party protocol Π described
in Section 5.3.3 when the adversary targets NS, and tries to win through condition (a). Therefore
we have that

Pr[Ea
0 ] = pa.

Gamea 1. In this game, the challenger stops the experiment if it does not guess which party
Pj ∈ N and its partner-party Pi ∈ E the adversary targets. Therefore

Pr[Ea
1 ] = Pr[Ea

0 ]× 1

nE · nN
.

Gamea 2. Now the parties Pj ∈ N and its partner-party Pi ∈ E are �xed.
In this game, the challenger aborts the experiment if the adversary succeeds in forging valid

Join Request and RekeyInd messages, hence impersonates Pi to Pj . This event corresponds
exactly to the event that an adversary against the EA-security of the protocol P wins when the
server side is targeted. The advantage of such an event is advent-authP,server (B0). Therefore

Pr[Ea
1 ] ≤ Pr[Ea

2 ] + advent-authP,server (B0).

Gamea 3. So far the parties Pi and Pj are �xed. Moreover, due to Gamea 2, for any instance
πuj ∈ Pj .Instances such that πuj .α = accepted and πuj .pid = Pi, there is an instance πni ∈
Pi.Instances that is involved in the protocol Π (i.e., at least this instance computes a Join Request
message) under the assumption that the run of protocol P ′ between Pj and some party in J
which is the intended partner of Pi is executed honestly. However, precluding the adversary
to break the EA-security of P when the server side is targeted does not imply in general the
existence of such an instance πni ∈ Pi.Instances. Indeed, the only cryptographic operation
that πuj does in order to accept is verifying the RekeyInd message with keys that it does not
even compute but receives from some party in J . Therefore, if the adversary, on the one hand,
succeeds in sending keys sk of its choice to Pj , it can, on the other hand, provide a consistent
RekeyInd message (computed under sk), bringing Pj to accept although no party in E is actually
involved. This is possible either if the adversary impersonates to Pj some party in J , or if the
adversary forges a valid P ′ application message (carrying the keys sk chosen by the adversary).
We preclude such events in the subsequent sequence of games.

But, before considering this case, the challenger aborts the experiment if it does not guess
which party Pk ∈ J is the intended partner of Pi (during the execution of protocol P ). There
are nJ parties in J . However each party in E may communicate with a limited number of
parties in J . That number is nJE ≤ nJ. Therefore we have that

Pr[Ea
3 ] = Pr[Ea

2 ]× 1

nJE

.

Gamea 4. In this game we want to preclude the impersonation of Pk to Pj . Therefore, the
challenger aborts if an adversary succeeds in making Pj accept with Pk as its purported partner.
Therefore

Pr[Ea
3 ] ≤ Pr[Ea

4 ] + advent-authP ′,client(B1).

Gamea 5. Now we want to preclude the possibility for the adversary to forge a valid P ′
application message. This event can be reduced to the channel security with respect to P ′.
Therefore we have

Pr[Ea
4 ] ≤ Pr[Ea

5 ] + advchan-sec
P ′ (B1).
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Gamea 6. So far we have ruled out the possibility for the adversary to forge valid Join Request
and RekeyInd messages. Therefore, if πuj does not receive these genuine messages from an
instance πni , this means that πuj accepts because it has been provided with the necessary material
(i.e., some keys and a RekeyInd message consistent with these keys). However we have also
ruled out the possibility for the adversary to make πuj accept such a material (in Gamea 5).
Therefore πni and πuj share these two messages.

Since no impersonation ofPk takes place (Gamea 4), there exists an instanceπ`k ∈ Pk.Instances
that receives the Join Request message sent by πni and forwarded by some instance πvj ∈
Pj .Instances, and computes the Join Accept message. π`k sends to πvj (hence to πuj ) the Join
Accept message and the P session keys. πuj correctly receives these data because we have ruled
out an impersonation of Pk to Pj , and a forgery of a P ′ application message intended to Pj .
Therefore πuj .ck = π`k.km.

If πni does not use the same Join Accept message, it computes di�erent P session keys (be-
cause the key derivation function is a permutation). These keys are used by πni to compute
the RekeyInd message it sends. Since πuj accepts by assumption, this implies that either the
adversary provides to πuj some alternative valid RekeyInd message, or the RekeyInd message
computed by πni with di�erent keys is correctly veri�ed by πuj using other keys. But this is ruled
out in Gamea 2. Therefore, πni necessarily receives the Join Accept message sent by π`k. Since
the Join Accept message is shared (in addition to the Join Request and RekeyInd messages) by
πni and πuj , the only way to have that πni .sid 6= πuj .sid is if the RekeyConf message sent by πuj is
not the one received by πni . This implies either a forgery of such a message, or the ability of an
adversary to get the keys used to compute a RekeyConf message (that is the session keys sk
sent by π`k to πvj (hence to πuj ) through the secure channel provided by P ′).

Therefore, in this game, the challenger aborts the experiment if either event happens. We
can reduce the �rst event to the channel security with respect to P , and the second event to the
channel security with respect to P ′. Hence

Pr[Ea
5 ] ≤ Pr[Ea

6 ] + advchan-sec
P (B0) + advchan-sec

P ′ (B1).

To this point, we have that πni .sid = πuj sid. Moreover, due to the EA-security of P , πni is the
unique instance that shares the same sid with πuj . Therefore, the adversary has no chance of
winning the experiment through condition (a). That is

Pr[Ea
6 ] = 0.

Collecting all the probabilities from Gamea 0 to Gamea 6, we have that

pa = Pr[Ea
0 ]

= nE · nN · Pr[Ea
1 ]

≤ nE · nN

(
Pr[Ea

2 ] + advent-authP,server (B0)
)

≤ nE · nN

(
nJE · Pr[Ea

3 ] + advent-authP,server (B0)
)

≤ nE · nN

(
nJE ·

(
Pr[Ea

4 ] + advchan-sec
P ′ (B1)

)
+ advent-authP,server (B0)

)
≤ nE · nN

(
nJE ·

(
Pr[Ea

5 ] + advent-authP ′,client(B1) + advchan-sec
P ′ (B1)

)
+ advent-authP,server (B0)

)
≤ nE · nN

(
nJE ·

(
Pr[Ea

6 ] + advchan-sec
P (B0) + advchan-sec

P ′ (B1) + advent-authP ′,client(B1)

+advchan-sec
P ′ (B1)

)
+advent-authP,server (B0)

)
≤ nE · nN

(
nJE ·

(
advchan-sec

P (B0) + advent-authP ′,client(B1) + 2advchan-sec
P ′ (B1)

)
+ advent-authP,server (B0)

)
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Now letEb
i be the event that the adversary succeeds in making an instance accept maliciously

during Gameb i through condition (b), where the parent instance is in N .

Gameb 0. This game corresponds to the EA-security game of the 3-party protocol Π described
in Section 5.3.3 when the adversary targets NS, and tries to win through condition (b). Therefore
we have that

Pr[Eb
0] = pb.

Gameb 1. In this game, the challenger aborts the experiment if it does not guess which party
Pj ∈ N and partner-party Pk ∈ J the adversary targets. Therefore

Pr[Eb
1] = Pr[Eb

0]× 1

nN · nJ
.

Gameb 2. Now the parties Pj ∈ N and Pk ∈ J are �xed.
The only cryptographic operation that πvj does in order to accept is verifying the RekeyInd

message with keys sk that it does not compute but receives allegedly from Pk. Therefore, if
the adversary, on the one hand, succeeds in sending to πvj keys sk of its choice, it can, on the
other hand, provide a consistent RekeyInd message (computed under sk), bringing πvj to accept
although no party in J (neither in E ) is actually involved. This is possible either if the adversary
impersonates Pk to Pj , or if the adversary forges a valid P ′ application message (intended to
Pj). We can reduce both events to the channel security with respect to P ′. Therefore we have

Pr[Eb
1] ≤ Pr[Eb

2] + advchan-sec
P ′ (B1).

Gameb 3. In this game we want to preclude the impersonation of Pk to Pj . Therefore, the
challenger aborts if an adversary succeeds in making Pj accept with Pk as its purported partner.
Therefore

Pr[Eb
2] ≤ Pr[Eb

3] + advent-authP ′,client(B1).

Gameb 4. Since no impersonation ofPk toPj takes place, there is an instanceπ`k ∈ Pk.Instances
that computes the Join Accept message and the P session keys sk upon reception of the Join
Request message forwarded by πvj . Moreover πvj .α = accepted and we have ruled out the
forgery of a P ′ application message (intended to Pj). Therefore, necessarily πvj receives a Join
Accept message and session keys sk, and these messages are computed by π`k.

Now, the only reason why the transcript of the messages exchanged between πvj and π`k may
di�er (i.e., πvj .sid 6= π`k.sid) is that π`k receives a P ′ application message (carrying a Join Request
or a RekeyInd message) di�erent than the one sent by πvj . This implies the ability to forge a
valid P ′ application message intended to π`k (i.e., with di�erent P ′ session keys than the ones
used in the opposite direction). Hence, in this game, the challenger aborts the experiment if π`k
ever receives a valid P ′ application message but that message is not computed by πvj . We can
reduce this event to the channel security with respect to P ′. We have

Pr[Eb
3] ≤ Pr[Eb

4] + advchan-sec
P ′ (B1).

So far, we have shown that for any instance πvj ∈ Pj .Instances such that πvj .α = accepted

and πvj .pid = Pk, there exists an instance π`k ∈ Pk.Instances such that π`k.sid = πvj .sid. More-
over, the EA-security of P ′ implies that π`k is the unique instance of Pk that shares with πvj the
P ′ handshake messages. This guarantees that the whole transcript of the P ′ messages is shared
only by πvj and π`k. That is, π`k is the unique instance of Pk such that πvj .sid = π`k.sid.
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Gameb 5. In this game, the challenger aborts the experiment if it does not guess which party
Pi ∈ E presumably computes the Join Request received by Pj . Therefore

Pr[Eb
5] = Pr[Eb

4]× 1

nEJ

where nEJ
≤ nE is the number of EDs that can be partnered with a given JS.

Gameb 6. In this game, the challenger aborts the experiment if Pj ever receives a valid Join
Request message but no instance of Pi has computed that message. Therefore

Pr[Eb
5] ≤ Pr[Eb

6] + Pr[forgery of Join Request] ≤ Pr[Eb
6] + pjr.

Gameb 7. So far there is an instance πni ∈ Pi.Instances that computes the Join Request
message received by Pj . Due to Gameb 2, this message is received by π`k.6 Therefore both
instances πni and π`k use the same Join Request message (and the same derivation function) in
order to compute the P session keys. Furthermore, the P session keys computed by π`k are
received by πvj (because a forgery of a P ′ application message intended to Pj has been ruled
out in Gameb 2). That is πvj .km = π`k.km. The only reason why πni and π`k would not compute
the same P session keys is if they do not use the same Join Accept message.

Therefore, in this game, the challenger aborts the experiment if πni ever receives a valid Join
Accept message but Pj has not sent it. Therefore we have

Pr[Eb
6] ≤ Pr[Eb

7] + Pr[forgery of Join Accept] ≤ Pr[Eb
7] + pja.

To this point, πni and π`k use the same Join Request and Join Accept messages, and the same
permutation to compute the P session keys. Hence πni .ck = π`k.km = πvj .km. Therefore, the
adversary has no chance of winning the experiment through condition (b). That is

Pr[Eb
7] = 0.

Collecting all the probabilities from Gameb 0 to Gameb 7, we have that

pb = Pr[Eb
0]

= nN · nJ · Pr[Eb
1]

≤ nN · nJ

(
Pr[Eb

2] + advchan-sec
P ′ (B1)

)
≤ nN · nJ

(
Pr[Eb

3] + advent-authP ′,client(B1) + advchan-sec
P ′ (B1)

)
≤ nN · nJ

(
Pr[Eb

4] + advchan-sec
P ′ (B1) + advent-authP ′,client(B1) + advchan-sec

P ′ (B1)
)

≤ nN · nJ

(
nEJ
· Pr[Eb

5] + advent-authP ′,client(B1) + 2advchan-sec
P ′ (B1)

)
≤ nN · nJ

(
nEJ

(
Pr[Eb

6] + pjr
)

+ advent-authP ′,client(B1) + 2advchan-sec
P ′ (B1)

)
≤ nN · nJ

(
nEJ

(
Pr[Eb

7] + pjr + pja
)

+ advent-authP ′,client(B1) + 2advchan-sec
P ′ (B1)

)
≤ nN · nJ

(
nEJ

(pjr + pja) + advent-authP ′,client(B1) + 2advchan-sec
P ′ (B1)

)
6Pk is identi�ed in this Join Request message. That is πni .pid = Pk .
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Therefore we have that

advent-authΠ,N (A) ≤ pa + pb

≤ nE · nN

(
nJE ·

(
advchan-sec

P (B0) + 2advchan-sec
P ′ (B1) + advent-authP ′,client(B1)

)
+advent-authP,server (B0)

)
+nN · nJ

(
nEJ

(pjr + pja) + advent-authP ′,client(B1) + 2advchan-sec
P ′ (B1)

)
≤ nE · nN · advent-authP,server (B0)

+(nE + 1) · nN · nJ ·
(
advent-authP ′,client(B1) + 2advchan-sec

P ′ (B1)
)

+nE · nN · nJ

(
pjr + pja + advchan-sec

P (B0)
)

because nEJ
≤ nE, and nJE ≤ nJ.

JS adversary. Let Ei be the event that the adversary succeeds in making an instance accept
maliciously during Game i, where the instance parent is in J .

Game 0. This game corresponds to the EA-security game of the 3-party protocol Π described
in Section 5.3.3 when the adversary targets JS. Therefore we have that

Pr[E0] = advent-authΠ,J (A).

Game 1. In this game, the challenger aborts the experiment if it does not guess which party
Pk ∈ J the instance that will maliciously accept belongs to, and the corresponding partner-party
Pj ∈ N . Therefore

Pr[E1] = Pr[E0]× 1

nJ · nN
.

Game 2. Now the party Pk ∈ J and its partner-party Pj ∈ N are �xed. We want to rule out
the event that there is no unique instance of Pj that is partnered (i.e., shares the same session
identi�er sid) with any instance π`k of Pk that ends in accepting state.

The non-existence of an instance πvj ∈ Pj .Instances that is presumably partnered with π`k
implies that a server adversary successfully breaks the EA-security of P ′. Therefore, in this
game, the challenger aborts the experiment if the adversary succeeds in breaking the EA-security
of P ′ when the server side is targeted. Hence we have that

Pr[E1] ≤ Pr[E2] + advent-authP ′,server(B1).

Game 3. So far, the EA-security of P ′ ensures that πvj is the unique instance to share the
handshake messages related to P ′ exchanged with π`k. However, in order to accept, π`k has
to receive in addition valid Join Request and RekeyInd messages (carried in P ′ application
messages). In turn, π`k sends P ′ application messages carrying a Join Accept message and session
keys sk. This implies necessarily that πvj is the unique instance such that π`k.sid = πvj .sid unless
one of these P ′ application messages is forged by an adversary.

Therefore, in this game, the challenger aborts the experiment if the adversary succeeds in
forging P ′ application messages. We reduce this (in)ability to the channel security with respect
to P ′. Therefore

Pr[E2] ≤ Pr[E3] + advchan-sec
P ′ (B1).
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Game 4. Now, for each instance π`k ∈ Pk.Instances such that π`k.α = accepted, there is a
unique instance πvj ∈ Pj .Instances such that π`k.sid = πvj .sid.

In this game, the challenger aborts the experiment if it does not guess which party Pi ∈ E
has presumably triggered the execution of protocol P (i.e., has computed the Join Request and
RekeyInd messages intended to Pk). Therefore

Pr[E4] = Pr[E3]× 1

nEJ

.

Game 5. Now the party Pi ∈ E that presumably computes the messages with respect to
protocol P is �xed.

The non-existence of an instance πni ∈ Pi.Instances that computes the Join Request message
forwarded by πvj to π`k implies a forgery. Therefore, in this game, the challenger aborts the
experiment if π`k receives a valid Join Request message but no instance of Pi has output that
message. Therefore

Pr[E4] ≤ Pr[E5] + Pr[forgery of Join Request] ≤ Pr[E5] + pjr.

Game 6. To this point the adversary is unable to forge a Join Request message (Game 5) and
cannot impersonate Pj to Pk (Game 2). This implies that π`k uses necessarily the Join Request
message computed by πni . Hence πni .ck 6= π`k.km necessarily implies that πni and π`k do not use
the same Join Accept message.

Hence, in this game, the challenger aborts the experiment if πni ever receives a Join Accept
message but π`k has not computed such a message. Therefore we have

Pr[E5] ≤ Pr[E6] + Pr[forgery of Join Accept] ≤ Pr[E6] + pja.

To this point, if πni veri�es correctly the Join Accept message it receives, it holds necessarily
that this message is computed by π`k upon reception of a Join Request presumably sent by πni .
Moreover we have also ruled out the event of a Join Request forgery. Therefore the only way πni
veri�es correctly the Join Accept it receives is if that message is computed by π`k upon reception
of the Join Request message sent by πni . Therefore, we have necessarily that π`k.km = πni .ck
(i.e., both instances compute the same P session keys because they use the same inputs, and
the same derivation function).

Hence, up to this point, the adversary has no chance of winning the experiment. That is

Pr[E6] = 0.

Collecting all the probabilities from Game 0 to Game 6, we have that

advent-authΠ,J (A) = Pr[E0]

= nJ · nN · Pr[E1]

≤ nJ · nN

(
Pr[E2] + advent-authP ′,server(B1)

)
≤ nJ · nN

(
Pr[E3] + advchan-sec

P ′ (B1) + advent-authP ′,server(B1)
)

≤ nJ · nN

(
nEJ
· Pr[E4] + advchan-sec

P ′ (B1) + advent-authP ′,server(B1)
)

≤ nJ · nN

(
nEJ

(Pr[E5] + pjr) + advchan-sec
P ′ (B1) + advent-authP ′,server(B1)

)
≤ nJ · nN

(
nEJ

(Pr[E6] + pjr + pja) + advchan-sec
P ′ (B1) + advent-authP ′,server(B1)

)
≤ nJ · nN

(
nEJ

(pjr + pja) + advchan-sec
P ′ (B1) + advent-authP ′,server(B1)

)
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Therefore, we have

advent-authΠ (A) ≤ advent-authΠ,E (A) + advent-authΠ,N (A) + advent-authΠ,J (A)

≤ nE · nJE

(
nN ·

(
advchan-sec

P (B0) + advchan-sec
P ′ (B1) + advent-authP ′,server(B1)

)
+advent-authP,client (B0)

)
+nE · nN

(
nJE ·

(
advchan-sec

P (B0) + 2advchan-sec
P ′ (B1) + advent-authP ′,client(B1)

)
+advent-authP,server (B0)

)
+nN · nJ

(
nEJ

(pjr + pja) + advent-authP ′,client(B1) + 2advchan-sec
P ′ (B1)

)
+nJ · nN

(
nEJ

(pjr + pja) + advchan-sec
P ′ (B1) + advent-authP ′,server(B1)

)
≤ nE · nN · nJ

(
2advchan-sec

P (B0) + 3advchan-sec
P ′ (B1) + 2pjr + 2pja

+advent-authP ′,client(B1) + advent-authP ′,server(B1)
)

+nE

(
nJ · advent-authP,client (B0) + nN · advent-authP,server (B0)

)
+nN · nJ

(
3advchan-sec

P ′ (B1) + advent-authP ′,client(B1) + advent-authP ′,server(B1)
)

because nEJ
≤ nE, and nJE ≤ nJ.

Channel security. Now we prove the channel security property.

Proof. Let advchan-sec
Π (A) be the advantage of the adversary in winning the channel security

experiment. Let Ei be the event that the adversary wins in Game i, and advi = Pr[Ei]− 1
2
.

Game 0. This game corresponds to the channel security game described in Section 5.3.3.
Therefore

Pr[E0] =
1

2
+ adv0 =

1

2
+ advchan-sec

Π (A).

Game 1. In this game, the challenger proceeds as in the previous game but aborts and chooses
a bit b uniformly at random if there exists an oracle of some party in E ∪ N ∪ J that accepts
maliciously. In other words, in this game we make the same modi�cations as in the games
performed during the entity authentication proof. Hence we have

adv0 ≤ adv1 + advent-authΠ (A).

Game 2. In this game, the challenger aborts the experiment if it does not guess the three
parties involved in the session. Therefore

adv2 ≥ adv1 ×
1

nE · nN · nJ

because nJE ≤ nJ, and nEJ
≤ nE.

Let πni , πuj , πvj , and π`k be the four instances sharing the same bid, with πni .parent ∈ E ,
πuj .parent = πvj .parent = Pj ∈ N , and π`k.parent = Pk ∈ J , such that, in the one hand,
πni and πuj are partnered (πni .sid = πuj .sid), and, in the other hand, πvj and π`k are partnered
(πvj .sid = π`k.sid).

Game 3. In this game, the challenger aborts the experiment if the adversary is able to �nd
πvj .b or π`k.b (that is if the adversary wins the experiment when targeting the NS-JS link). We
can reduce such an event to the channel security with respect to P ′. Therefore

adv2 ≤ adv3 + advchan-sec
P ′ (B1).
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Game 4. Now, the adversary can try to target πni or πuj (i.e., the ED-NS link). In order to be
successful, the adversary can �rst try to get the P session keys (sk) sent by Pk to Pj (the parent
of πvj ) through the secure channel provided by the protocol P ′. We can reduce this possibility
to the channel security with respect to P ′. Therefore

adv3 ≤ adv4 + advchan-sec
P ′ (B1).

Game 5. Now the only remaining possibility in order for the adversary to be successful is
breaking the channel security with respect to P . The inability of an adversary in breaking
the channel security with respect to P relies implicitly on the inability of such an adversary
in distinguishing the corresponding session keys sk from random. These session keys are
also sent by Pk to Pj through the secure channel provided by P ′. That channel guarantees
real-from-random indistinguishability for the plaintexts. Indeed the security of this channel
relies upon the underlying encryption function. The latter guarantees left-or-right security
when keyed with the session keys, and the left-or-right security notion is equivalent to the
real-from-random notion [BDJR97]. Hence the real-from-random indistinguishability for the
plaintexts with respect to P ′.

Therefore, in this game we add an abort rule. The challenger aborts the experiment if an
adversary succeeds in distinguishing plaintexts (sent through the channel provided by P ′) from
random. Therefore

adv4 ≤ adv5 + advchan-sec
P ′ (B1).

Now the only possibility for the adversary to be successful is to break the CS-security with
respect to P . That is

adv5 ≤ advchan-sec
P (B0).

Collecting all the probabilities from Game 0 to Game 5, we have that

advchan-sec
Π (A) = adv0

≤ adv1 + advent-authΠ (A)

≤ nE · nN · nJ · adv2 + advent-authΠ (A)

≤ nE · nN · nJ

(
adv3 + advchan-sec

P ′ (B1)
)

+ advent-authΠ (A)

≤ nE · nN · nJ

(
adv4 + 2advchan-sec

P ′ (B1)
)

+ advent-authΠ (A)

≤ nE · nN · nJ

(
adv5 + 3advchan-sec

P ′ (B1)
)

+ advent-authΠ (A)

≤ nE · nN · nJ

(
advchan-sec

P (B0) + 3advchan-sec
P ′ (B1)

)
+ advent-authΠ (A)

5.4.3.2 Extended Security Proof for PLoRaWAN in LoRaWAN 1.1

In this section, we give the full proof of Theorem 5.2.

Entity Authentication. First we consider the entity authentication property.

Proof. Let advent-authP (A) be the probability that the adversary A wins the entity authentication
game. Let advent-authP,client (A) bounds the probability that a client (ED) adversary succeeds, and
advent-authP,server (A) bounds the probability that a server (NS-JS) adversary succeeds. We have that
advent-authP (A) ≤ advent-authP,client (A) + advent-authP,server (A).
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Client adversary. Let Ei be the event that the adversary succeeds in making a client instance
accept maliciously during Game i.

Game 0. This game corresponds to the EA game of the 2-party protocol P when the client
side is targeted. Thus we have

Pr[E0] = advent-authP,client (A).

Two di�erent clients (EDs) cannot share the same transcript because they will at least di�er
with the client identi�ers. On the client side, each session is individualised with the parameters
idE , idJ , cntE (they appear in clear in the �rst message sent by the client). On the server side,
each session is individualised with the parameters idJ , idE , cntJ . The Join Accept message sent
by a server instance cannot repeat unless a collision appears in the function AES−1(MK1, ·).
An adversary can then try to forge a valid Join Accept message. This will be handled in the
successive experiments described below.

Game 1. In this game, the challenger tries to guess which client instance πsi will be the �rst
instance to accept maliciously. If the guess is wrong, then the game is aborted. Hence

Pr[E1] = Pr[E0]× 1

q · nC

where nC is the number of client parties, and q the number of instances per party.

Game 2. In this game we replace the KDFmk function used by πsi to compute the key MK3

with a random function FKDFmk
MK1

. We do the same for any server instance that uses the KDFmk
function with the same master key MK1 as πsi in order to compute MK3. We use the fact
that the master key MK1 is uniformly drawn at random. Therefore distinguishing Game 1
and Game 2 implies an algorithm B1 able to distinguish the KDFmk function from a random
function. Hence

Pr[E1]− Pr[E2] ≤ advprfKDFmk
(B1) = advprfAES(B1).

Game 3. In this game we replace the MAC function used by πsi to verify the Join Accept
message (veri�cation of τJ ) with a random function FMAC

MK3
. We do the same for any server

instance that uses the MAC function with the same master keyMK3 as πsi in order to compute τJ .
Since MK3 ← FKDFmk

MK1
(idE), we use the fact that the key MK3 is uniformly drawn at random.

Therefore distinguishing Game 2 and Game 3 implies an algorithm B0 able to distinguish the
MAC function from a random function. Hence

Pr[E2]− Pr[E3] ≤ advprfMAC(B0).

Game 4. The server instance computes the Join Accept message in the following way:
Join Accept = AES−1(MK1, cntJ‖idN‖prms‖τJ). In this game we replace the AES decryp-
tion function used by the server instance with a random permutation PermMK1 . Moreover if a
client instance uses the same master key MK1 to “decrypt” the Join Accept message, then we
replace the AES encryption function with the inverse permutation Perm−1

MK1
. We use the fact

that MK1 is uniformly drawn at random. Therefore distinguishing Game 3 and Game 4 implies
an algorithm B2 able to distinguish AES−1(MK1, ·) from a random permutation. Hence

Pr[E3]− Pr[E4] ≤ advprpAES(B2).
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Game 5. In this game, we want to ensure that the client instance πsi receives exactly the
Join Accept message computed by some other uncorrupted instance that has received the
�rst message sent by πsi . Therefore, we add an abort rule. The challenger aborts the exper-
iment if πsi ever receives a Join Accept message but no server instance having a matching
conversation to πsi has output that message. After receiving the Join Accept message the
client veri�es τJ and checks that cntJ is correct. In order to accept the message as valid,
both veri�cations must be correct. Let us assume that the adversary be able to compute
Join Accept← PermMK1(cntJ‖idN‖prms‖τ̃) for some value τ̃ and a correct value cntJ . Due
to Game 3, τJ ← FMAC

MK3
(idJ‖cntE‖cntJ‖idN‖prms) is computed by the client by evaluating a

truly random function that is only accessible to the client instance and to the server instance
knowing which master key MK3 to use. Therefore the probability of the adversary to provide a
correct value τ̃ (i.e., the probability that τ̃ = τJ ) is at most 2−µ. Moreover the adversary provides
some value as the Join Accept message (and not PermMK1(cntJ‖idN‖prms‖τ̃)). Hence the
probability that τ̃ is valid when the adversary picks a Join Accept message at random is not
greater than 2−µ.

Due to Game 4, the client instance computes from Perm−1
MK1

(Join Accept) some value cntJ ,
that is by evaluating a truly random permutation that is only accessible to the client instance
and to the server instance knowing which master keyMK1 to use. Let β be the bit length of the
cntJ parameter: there are 2β possible values for cntJ . Each new session triggers a new value
cntJ . Therefore the number of remaining correct values for cntJ is 2β − u ≤ 2β − 1 at the u-th
session. Hence the probability that cntJ is correct is at most (2β − 1)/2β at any session. Since
both conditions (correctness of τ̃ and cntJ ) have to be veri�ed, we have that

Pr[E4]− Pr[E5] ≤ 2−µ × 2β − 1

2β
.

Game 6. In this game we replace the KDFa function used by πsi to computeKe
a with a random

function FKDFa
MK2

. We do the same for any server instance that uses the KDFa function with the
same master key MK2 as πsi in order to compute Ke

a . We use the fact that the master key
MK2 is uniformly drawn at random. Therefore distinguishing Game 5 and Game 6 implies an
algorithm B1 able to distinguish the KDFa function from a random function. Hence

Pr[E5]− Pr[E6] ≤ advprfKDFa
(B1) = advprfAES(B1).

Game 7. So far, the only possibility for the adversary to win is forging a RekeyConf message
so that the two instances do not share the same sid. Therefore we add an abort rule. In this
game, the challenger aborts if the client instance πsi ever receives a valid message RekeyConf
but there exists no server instance having a matching conversation to πsi (i.e., sharing the same
transcript of exchanged messages so far) that has output that message.

The keysKe
c , Ki2

c , and (optionally)Ke
a are used to compute the RekeyConf message. Ke

c , Ki2
c

are output by the KDFc function, andKe
a is output by KDFa. In Game 2, the KDFc = KDFmk =

AES(MK1, ·) function has been replaced with a truly random function FKDFmk
MK1

that is only
accessible to the client instance and to the server instance knowing which master key MK1

to use. In Game 6, the KDFa = AES(MK2, ·) function has been replaced with a truly random
function FKDFa

MK2
that is only accessible to the client instance and to the server instance knowing

which master key MK2 to use. Therefore, the keys Ke
c , Ki2

c , and Ke
a are uniformly drawn at

random. Hence, we can reduce the forgery of a RekeyConf message to the sAE-security of the
StAEserver function used to compute that message. Therefore

Pr[E6]− Pr[E7] ≤ advsaeStAEserver
(B3).
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To that point the only way for an adversary to make πsi accept maliciously is to send a
RekeyConf message di�erent from all the messages sent by all the server instances, such that
RekeyConf is valid. However, in such a case the challenger aborts. Therefore

Pr[E7] = 0.
Collecting all probabilities from Game 0 to Game 7, we have that
advent-authP,client (A) = Pr[E0]

= q · nC · Pr[E1]

≤ q · nC

(
Pr[E2] + advprfAES(B1)

)
≤ q · nC

(
Pr[E3] + advprfMAC(B0) + advprfAES(B1)

)
≤ q · nC

(
Pr[E4] + advprpAES(B2) + advprfMAC(B0) + advprfAES(B1)

)
≤ q · nC

(
Pr[E5] + 2−µ(1− 2−β) + advprpAES(B2) + advprfMAC(B0)

+advprfAES(B1)
)

≤ q · nC

(
Pr[E6] + advprfAES(B1) + 2−µ(1− 2−β) + advprpAES(B2)

+advprfMAC(B0) + advprfAES(B1)
)

≤ q · nC

(
Pr[E7] + advsaeStAEserver

(B3) + 2−µ(1− 2−β) + advprpAES(B2)

+advprfMAC(B0) + 2advprfAES(B1)
)

≤ q · nC

(
advsaeStAEserver

(B3) + 2−µ(1− 2−β) + advprpAES(B2) + advprfMAC(B0)

+2advprfAES(B1)
)

Server adversary. LetEi be the event that the adversary succeeds in making an server instance
accept maliciously during Game i.

Game 0. This game corresponds to the EA game of the 2-party protocol P when the server
side is targeted. Thus we have

Pr[E0] = advent-authP,server (A).

Game 1. In this game, the challenger tries to guess which server instance πtj will be the �rst
instance to accept maliciously. If the guess is wrong, then the game is aborted. Hence

Pr[E1] = Pr[E0]× 1

q · nS

where nS is the number of server parties, and q the number of instances per party.

Game 2. We replace the MAC function used by the server instance πtj to verify the �rst
message from the client instance (veri�cation of τE) with a random function FMAC

MK1
. We do the

same for any client instance that uses the MAC function with the same master key MK1 as
πtj in order to compute τE . We use the fact that the key MK1 is uniformly drawn at random.
Therefore distinguishing Game 1 and Game 2 implies an algorithm able to distinguish the MAC
function from a random function. Hence

Pr[E1]− Pr[E2] ≤ advprfMAC(B0).
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Game 3. In this game, the challenger aborts if the server instance πtj ever receives a valid
message Join Request = idJ‖idE‖cntE‖τE but there is no client instance that has output the
message. Due to Game 2, τE ← FMAC

MK1
(idJ‖idE‖cntE) is computed by evaluating a truly

random function that is only accessible to the server instance and the client instance knowing
the key MK1 to use. Therefore the probability of the adversary to provide a correct value τE is
at most 2−µ. Therefore

Pr[E2]− Pr[E3] ≤ 2−µ.

Game 4. We replace the KDFn function used by the server instance πtj to compute Ke
c , Ki1

c

and Ki2
c with a random function FKDFc

MK1
. We do the same for any client instance that uses the

KDFn function with the same master key MK1 as πtj in order to compute Ki1
c and Ki2

c . We
use the fact that the master key MK1 is uniformly drawn at random. Therefore distinguishing
Game 3 and Game 4 implies an algorithm able to distinguish the KDFn function from a random
function. Therefore

Pr[E3]− Pr[E4] ≤ advprfKDFc
(B1) = advprfAES(B1).

Game 5. We replace the KDFa function used by πtj to compute Ke
a with a random function

FKDFa
MK2

. We do the same for any client instance that uses the KDFa function with the same
master key MK2 as πtj in order to compute Ke

a . We use the fact that the master key MK2 is
uniformly drawn at random. Therefore distinguishing Game 4 and Game 5 implies an algorithm
able to distinguish the KDFa function from a random function. Hence

Pr[E4]− Pr[E5] ≤ advprfKDFa
(B1) = advprfAES(B1).

Game 6. In this game, the challenger aborts if the server instance πtj ever receives a valid
message RekeyInd but there exists no client instance having a matching conversation to πtj (i.e.,
sharing the same transcript of exchanged messages so far) that has output that message. The
keys Ke

c , Ki1
c , Ki2

c , and (optionally) Ke
a are used to compute the RekeyInd message. Since the

keys Ke
c , Ki1

c , Ki2
c , and Ke

a are uniformly drawn at random, due to Game 4 and Game 5, we
can reduce the possibility of forging a RekeyInd message to the sAE-security of the StAEclient

function used to compute the message. Hence

Pr[E5]− Pr[E6] ≤ advsaeStAEclient
(B3).

To that point, the only way for an adversary to make the server instance πtj accept maliciously
is to send a RekeyInd message di�erent from all the messages sent by all the client instances,
such that RekeyInd is valid. However, in such a case, the challenge aborts. Therefore Pr[E6] = 0.
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Collecting all the probabilities from Game 0 to Game 6, we have that

advent-authP,server (A) = Pr[E0]

= q · nS · Pr[E1]

≤ q · nS

(
Pr[E2] + advprfMAC(B0)

)
≤ q · nS

(
Pr[E3] + 2−µ + advprfMAC(B0)

)
≤ q · nS

(
Pr[E4] + advprfAES(B1) + 2−µ + advprfMAC(B0)

)
≤ q · nS

(
Pr[E5] + 2advprfAES(B1) + 2−µ + advprfMAC(B0)

)
≤ q · nS

(
Pr[E6] + advsaeStAEclient

(B3) + 2advprfAES(B1) + 2−µ + advprfMAC(B0)
)

≤ q · nS

(
advsaeStAEclient

(B3) + 2advprfAES(B1) + 2−µ + advprfMAC(B0)
)

Therefore we have that

advent-authP (A) ≤ advent-authP,client (A) + advent-authP,server (A)

≤ q · nC

(
advsaeStAEserver

(B3) + 2−µ(1− 2−β) + advprpAES(B2) + advprfMAC(B0)

+2advprfAES(B1)
)

+q · nS

(
advsaeStAEclient

(B3) + 2advprfAES(B1) + 2−µ + advprfMAC(B0)
)

≤ q
[
nS · advsaeStAEclient

(B3) + nC · advsaeStAEserver
(B3)

+ (nC + nS)
(
advprfMAC(B0) + 2advprfAES(B1)

)
+ nC · advprpAES(B2) + 2−µ

(
nC(1− 2−β) + nS

)]
In addition, we have also

Pr[forgery Join Request] ≤ pjr = advprfMAC(B0) + 2−µ

Pr[forgery Join Accept] ≤ pja = advprfAES(B1) + advprfMAC(B0) + advprpAES(B2) + 2−µ(1− 2−β)

Channel Security. Now we consider the channel security property.

Proof. Let advchan-sec
P (A) be the advantage of the adversary A in winning the channel secu-

rity experiment against an instance of some client or server party. That is advchan-sec
P (A) =∣∣Pr[πsi .b = b]− 1

2

∣∣, where (πsi , b) is the tuple output by the adversary when it terminates the
CS game. Let Ei be the event that the adversary wins in Game i, and advi = Pr[Ei]− 1

2
.

Game 0. This game corresponds to the CS game of the 2-party protocol P . Therefore

Pr[E0] =
1

2
+ advchan-sec

P (A) =
1

2
+ adv0.

Game 1. In this game, the challenger aborts and chooses a bit b uniformly at random if there
exists an instance of some client or server party that accepts maliciously. Hence we have

adv0 ≤ adv1 + advent-authP (A).
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Game 2. So far, for any client instance πsi (resp. server instance πsi ), ending in accepting state,
there is a unique server instance πtj (resp. client instance πtj) that is partnered with πsi .

In this game, the challenger aborts the experiment if it does not guess which instance is
targeted by the adversary. Therefore

adv2 = adv1 ×
1

q2 · nC · nS
.

So far, the adversary knows the instance it targets. That is it knows the indices i, s corre-
sponding to some client or server party, and its instance πsi .

Game 3. In this game we replace the KDFc function used to compute the session keys Ke
c ,

Ki1
c , Ki2

c with a random function FKDFc
MK1

. We replace also the KDFa function used to compute
the session key Ke

a with a random function FKDFa
MK2

. We do the same for any instance that uses
the functions KDFc with the same master keyMK1, and KDFa with the same master keyMK2

as πsi in order to compute these session keys. We use the fact that the master keys MK1 and
MK2 are uniformly drawn at random. Therefore distinguishing Game 2 and Game 3 implies an
algorithm able to distinguish the functions KDFc and KDFa from random functions. Therefore

adv2 ≤ adv3 + advprfKDFc
(B1) + advprfKDFa

(B1) = adv3 + 2advprfAES(B1).

Game 4. In this game we construct an adversary Bclient (resp. Bserver) against the sAE-security
of the underlying authenticated encryption scheme used by the client (resp. server) to encrypt
and MAC the messages. We use the fact that a random function FKDFc

MK1
is used to compute

the session keys Ke
c , Ki1

c , Ki2
c , and a random function FKDFa

MK2
is used to compute the session

key Ke
a . Therefore these keys are random. The adversary Bclient (resp. Bserver) is built on an

adversary Aclient (resp. Aserver) able to win the CS experiment against a client (resp. server)
instance. Bclient (resp. Bserver) forwards any Encrypt(πsi , ·) query to Encrypt(·), and sends the
response to Aclient (resp. Aserver). It forwards any Decrypt(πtj , ·) query to Decrypt(·), and sends
the response to Aclient (resp. Aserver). Otherwise Bclient (resp. Bserver) behaves as the challenger
in Game 3. Therefore we have

adv4 = adv3.

If Aclient (resp. Aserver) outputs a tuple (πsi , b), then Bclient (resp. Bserver) forwards b to its sAE
challenger. Otherwise Bclient (resp. Bserver) �ips a bit at random and sends it to its challenger.
The probability for Bclient (resp. Bserver) to �nd the correct value b is at least the probability for
Aclient (resp. Aserver) to win the CS experiment. Moreover, by assumption, the advantage of
an attacker in breaking the sAE-security of the authenticated encryption scheme is at most
advsaeStAEclient

(B3) (resp. advsaeStAEserver
(B3)). Hence

adv4 ≤ advsaeStAEclient
(B3) + advsaeStAEserver

(B3).
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Collecting all the probabilities from Game 0 to Game 4, we have that

advchan-sec
P (A) = adv0

≤ adv1 + advent-authP (A)

≤ q2 · nC · nS · adv2 + advent-authP (A)

≤ q2 · nC · nS

(
adv3 + 2advprfAES(B1)

)
+ advent-authP (A)

≤ q2 · nC · nS

(
adv4 + 2advprfAES(B1)

)
+ advent-authP (A)

≤ q2 · nC · nS

(
advsaeStAEclient

(B3) + advsaeStAEserver
(B3) + 2advprfAES(B1)

)
+advent-authP (A)

5.4.3.3 sAE Security in LoRaWAN 1.1

Here we give a sketch of proof for the sAE-security of the AEAD functions StAEclient and
StAEserver used in LoRaWAN 1.1.

Sketch of proof. Bellare and Namprempre [BN00] show that the Encrypt-then-MAC (EtM)
construction is IND-CCA and INT-CTXT if the underlying symmetric encryption function is
IND-CPA and the underlying MAC function is SUF-CMA-secure. Moreover, Rogaway and
Shrimpton [RS06] show that an AEAD encryption scheme that is IND-CCA and INT-CTXT
provides AE-security. In addition, the CTR mode is proved IND-CPA by Bellare, Desai, Jokipii,
and Rogaway [BDJR97] under the assumption that the block cipher is a good PRF. Iwata and
Kurosawa [IK03c] show that CMAC is SUF-CMA-secure if the underlying block cipher is a good
PRP. Finally we recall that the AEAD encryption schemes used in LoRaWAN 1.1 follow the
EtM paradigm. One, StAEserver used to encrypt downlink messages, is composed of AES-CTR
and a tweaked version of AES-CMAC. The second AEAD scheme, StAEclient used to encrypt
uplink messages, is composed of AES-CTR, and a concatenated hash combiner made with a
tweaked version of AES-CMAC. Moreover a monotonically increasing counter (embedded in
each frame’s header) is used to compute the encryption keystream, and involved in the MAC
computation. Hence the sAE-security of the AEAD functions StAEclient and StAEserver.



5





6

SAKE: a Two-party AKE 6
Key exchange protocols in the asymmetric-key setting are known to provide stronger

security properties than protocols in symmetric-key cryptography, as illustrated in
Chapter 1. In particular, they can provide forward secrecy, as illustrated by protocols

based on the Di�e-Hellman scheme. However public-key algorithms are too heavy for some
class of low-resource devices, which can then not bene�t from forward secrecy.

After the cryptanalysis of two widely deployed protocols in Chapters 3, and 4, we describe,
in this chapter, a two-party scheme that aims at tackling the issue of forward secrecy in the
symmetric-key setting. The authenticated key exchange protocol we present is solely based on
symmetric-key functions, and yet does guarantee forward secrecy. We call it Symmetric-key
Authenticated Key Exchange, or SAKE for short.

In addition, we describe SAKE-AM, a complementary mode of SAKE, that allows inverting
the roles between the initiator and the responder. This yields an implementation such that
any party can be either initiator or responder of a protocol run, while the smallest amount
of calculation is always done by the same party (which, in practice, is the most constrained).
This is particularly convenient in the context of IoT where a set of (low-resource) end-devices
communicates with a back-end server (which has heavier computational capabilities).

Using a provable security approach, we show that the protocols are sound and secure in a
strong security model (i.e., commonly used in the public-key setting).

Finally we investigate the possibility to devise a variant of SAKE which makes use of zero
pseudo-random values.

The results of this chapter have been partially published in [ACF20].
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6.1 Motivation

6.1.1 Context

An authenticated key exchange (AKE) protocol executed between two parties aims at providing
unilateral or mutual entity authentication, and computing a fresh shared session key. Well-
known two-party authenticated key exchange protocols make use of digital signatures to
provide authentication, and apply the Di�e-Hellman (DH) scheme [DH76] to compute a shared
session key. However, such protocols can be too heavy for low-resource devices. More suited
protocols, solely based on symmetric-key functions, have been proposed (e.g., [BR94; PST+02;
PS04; Int08; BM03b; Glo18; Zig14; Sor17] to cite a few), including widely deployed ones (e.g.,
in 3G/UMTS [3rda] and 4G/LTE [3rdb]). Such symmetric-key protocols are needed in various
applications, ranging from Wireless Sensor Networks (WSNs), Radio Frequency Identi�cation
(RFID) tags, smart cards, Controller Area Networks (CANs) for vehicular systems, smart home,
up to industrial Internet of Things (IoT). Yet, existing symmetric-key based protocols lack a
fundamental security property usually provided by the DH scheme: forward secrecy [Gün90;
DvW92].

Forward secrecy is a very strong form of long-term security which, informally, guarantees
that future disclosures of some long-term secret keys do not compromise past session keys. It
is widely accepted that this property can only be provided by asymmetric schemes (at least
regarding stateless protocols). Indeed, in protocols based on symmetric-key functions, the two
parties must share a long-term symmetric key (which the session keys are computed from).
Therefore the disclosure of this static long-term key allows an adversary to compute all the past
(and future) session keys (if the adversary has eavesdropped on the communications, as it is
assumed in usual security models).

6.1.2 Forward Secrecy in the Symmetric-key Setting

In this section, we summarise several works that aim at achieving some form of forward secrecy
in the symmetric-key setting. We stress that the goals of the schemes brie�y described below are
not necessarily the same as ours (essentially, performing a key exchange in our case). Nonethe-
less, the small number of existing symmetric-key protocols that provide forward secrecy, and
the lukewarm security level they achieve illustrate that combining symmetric-key cryptography
and (a strong form of) forward secrecy is a non-trivial task.

Dousti and Jalili [DJ14] describe a key exchange protocol where the shared master key
is updated based on time. Their protocol requires perfect synchronism between the parties
otherwise this leads to two main consequences. Firstly, in order to handle the key exchange
messages, the parties may use di�erent values of the master key corresponding to consecutive
epochs, which causes the session to abort. Secondly, this allows an adversary to trivially break
forward secrecy. Once a party deems the protocol run is correct and the session key can be
safely used (i.e., once the party “accepts"), the adversary corrupts its partner (which still owns
the previous, not updated yet, master key), and computes the current session key. Furthermore,
achieving perfect time synchronisation may be quite complex in any context, in particular for
low-resource devices. Contrary to Dousti and Jalili, the protocol we propose explicitly deals
with the issue of updating the master keys at both parties without requiring any additional
functionality (such as a synchronised clock).

In the RFID �eld, the protocol proposed by Le, Burmester, and de Medeiros [LBM07] aims at
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authenticating a tag to a server, and at computing a session key in order to establish a secure
channel (which they do not describe). The master key is updated throughout the protocol run.
To deal with the possible desynchronisation between the reader and the tag, the server keeps
two consecutive values of the key: the current and the previous one. If the tag does not update
its master key (which happens when the last message is dropped), the server is able to catch up
during the next session. This implies that, in case of desynchronisation, the server computes the
session key from the updated master key, whereas the tag still stores the previous value. Hence,
an adversary who corrupts the tag can compute the previous session key with respect to the
server. In fact, since the server always keeps the previous value of the master key, together with
the current one, the scheme is intrinsically insecure in strong security models (i.e., models that
allow the adversary to corrupt any of the partners, once the targeted party accepts). Yet, Le et al.
analyse their protocol in a model where any server corruption is forbidden, and corrupting a tag
is allowed only once it accepts. In our scheme, one of the parties also keeps in memory (a few)
samples of a master key corresponding to di�erent epochs (including a previous one). Yet the
disclosure of all these values does not compromise past session keys. Furthermore, the (strong)
security model we use allows the adversary to corrupt either party as soon as the targeted party
accepts.

Brier and Peyrin [BP10] propose a forward secret key derivation scheme in a client-server
setting, that aims at improving a previous proposal [Ame09]. In addition to forward secrecy,
another constraint is that the amount of calculation to compute the master key (directly used
as encryption key) on the server side must be low. Their solution implies the storage, on the
client side, of several keys in parallel and to use a (short) counter, which is involved in the
keys update. The keys belong to a tree whose each leaf (key) is derived from the previous
one and the counter. The client must send the counter with the encrypted message for the
server to be able to compute the corresponding key. The main drawback of this scheme is that
the number of possible encryption keys is reduced. Increasing that limit implies increasing
the counter size and the number of keys stored in parallel on the client side. Moreover, Brier
and Peyrin (as well as [Ame09]) focus on forward secrecy with respect to the client only. The
server is deemed as incorruptible, and is supposed to compute an encryption key only upon
reception of a client’s message (the secure channel is unidirectional, and the server does not
need to send encrypted messages to the client). Therefore, the scheme does not need to deal
with the issue of both parties being in sync (with respect to the key computation), and providing
forward secrecy. In addition, the purpose of Brier and Peyrin (as well as [Ame09]) is not to
provide mutual authentication. More generally sending additional information in order to
resynchronise (such as a su�ciently large counter) is a simple (and ine�cient) way to build a
forward secret protocol. But this yields several drawbacks. Firstly, the size of such a counter
must be large enough in order to avoid any exhaustion. Secondly, sending the counter (at
least periodically) is necessary for the two parties to resynchronise, which consumes band-
width. Thirdly, resynchronisation may imply multiple updates of the master keys at once
(the scheme of Brier and Peyrin and [Ame09] aims at limiting that amount of calculation, but
it leads to a limited number of possible encryption keys). Our scheme avoids all these drawbacks.

The more general question of forward security in symmetric cryptography has been also inves-
tigated by Bellare and Yee [BY03]. They propose formal de�nitions and practical constructions
of forward secure primitives (e.g., MAC, symmetric encryption algorithm). Their constructions
protect against decryption of past messages, or antedated forgeries of messages (i.e., previously
authenticated messages are made untrustworthy). Their algorithms are based on key-evolving
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schemes [BM99]. Nonetheless, Bellare and Yee consider only algorithms (but not protocols) and
they do not deal with the issue of synchronising the evolution of the shared key at both par-
ties. That is, they propose out-of-context (non-interactive) solutions with respect to our purpose.

Abdalla and Bellare [AB00] investigate a related question which is “re-keying”. Their formal
analysis shows that appropriate re-keying techniques “increase” the lifetime of a key. They
consider re-keying in the context of symmetric encryption (in order to thwart attacks based
on the ability to get lots of encrypted messages under the same key), and forward security (in
order to protect past keys). Yet, they con�ne their analysis to algorithms and not protocols.
Hence, as Abdalla and Bellare [BY03], they do not treat the synchronisation issues that arise
from evolving a shared symmetric key.

The Signal messaging protocol [Sig], devised by Marlinspike and Perrin, uses a key derivation
scheme called “double ratchet algorithm” [PM16]. This scheme combines a DH based mech-
anism with a symmetric key-evolving mechanism (based on a one-way function). The �rst
mechanism provides an asymmetric ratchet, whereas the second provides a symmetric ratchet.
The asymmetric ratchet is applied when a fresh DH share is received (included in an application
message) from the peer. The symmetric ratchet is applied when a party wants to send several
successive messages without new incoming message from its partner. Thanks to the DH scheme,
the asymmetric ratchet is supposed to provide forward secrecy.1 Regarding the symmetric
ratchet, each party is compelled to store the decryption keys of the not yet received messages.
This is due to the asynchronous nature of the Signal protocol. Therefore, the symmetric ratchet
in Signal does not provide forward secrecy, as stated in their security analysis by Cohn-Gordon,
Cremers, Dowling, Garratt, and Stebila [CGCD+17]: “old but unused receiving keys are stored at
the peer for an implementation dependent length of time, trading o� forward security for trans-
parent handling of outdated messages. This of course weakens the forward secrecy of the keys”.
Consequently, Cohn-Gordon et al. choose not to model this weakened property. In turn, Alwen,
Coretti, and Dodis [ACD19] incorporate the latter in the security analysis of their “generalised
Signal protocol”. But the crucial di�erence in their notion of forward security is that, as soon
as the receiver is compromised, no more security can be provided. On the contrary, we tackle
the synchronisation issue, and solve it in our protocol. The security model we use captures
forward secrecy and allows corrupting a party and its partner as soon as the targeted party
“accepts” (i.e., deems the session key can be safely used). With regard to Signal, our protocol can
be compared to the asymmetric ratchet (in synchronous mode), and yet does not implement
asymmetric functions.

Table 6.1 provides a comparison between the aforementioned schemes with respect to six
features:

• “2P” – The scheme is a two-party protocol (in opposition to a cryptographic primitive).

• “Bilateral” – The forward secrecy property is guaranteed at both parties (e.g., in contrast
to a client-server context where the server is deemed as incorruptible).

• “Sym.” – The scheme is built on symmetric-key functions only.

• “I/R” – Any party can be initiator or responder in a session.
1In Signal, the DH exchanges can be asynchronous. This impairs the forward secrecy property usually ensured

by this scheme.
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• “No +func.” – No additional functionality is required in order to guarantee forward
secrecy (e.g., synchronised clock).

• “Unlimited” – The number of sessions the scheme can execute, or the number of (encryp-
tion) keys it can output is (virtually) unlimited.

Table 6.1 – Comparison between several schemes aiming at ensuring forward secrecy

Scheme
Feature 2P Bilateral Sym. I/R No +func. Unlimited

Dousti and Jalili [DJ14] 3 3 3 3 7 3

Le et al. [LBM07] 3 7 3 7 3 3

Brier and Peyrin [BP10] 3 7 3 7 3 7

Bellare and Yee [BY03] 7 - 3 - - -
Abdalla and Bellare [AB00] 7 - 3 - - 3

Signal [Sig] 3 7 7 3 3 3

Our SAKE/SAKE-AM protocol 3 3 3 3 3 3

6.2 Symmetric-key AKE Protocol with Forward Secrecy

6.2.1 In a Nutshell

Our Symmetric-key Authenticated Key Exchange (SAKE) protocol provides mutual authentica-
tion and key agreement, and guarantees also forward secrecy. We attain this very strong form
of long-term security by using a key-evolving scheme. As soon as two parties make a shared
(symmetric) key evolve, a synchronisation problem arises. We provide a shrewd solution to
this issue. We require using neither a clock, nor an additional resynchronising procedure. Our
solution is based on a second (independent) chain of master keys. These keys allow tracking
the evolution of the internal state, and resynchronising the parties if necessary. The parties
authenticate each other prior to updating their master keys. Hence the possible gap is bounded
(as we prove it), and each party is always able to catch up in case of desynchronisation (of course,
if the session is correct and complete). Mutual authentication, key exchange (with forward
secrecy), and resynchronisation are done in the continuity of the protocol run. In addition, the
protocol we describe has the following characteristics.

• It is self-synchronising. That is, after a correct and complete session (and whatever the
internal state of the parties prior to the session), the two parties involved in the protocol
run share a new session key, and their internal state is updated and synchronised.

• It allows establishing an (virtually) unlimited number of sessions (as opposite to protocols
that make use of a prede�ned list of master keys, each being used once only).

• The amount of calculation done by both parties in a single protocol run is strictly bounded.
In particular we avoid the need of sending additional information in order to resynchronise,
such as a (su�ciently large) counter that keeps track of the evolution of the master keys,
and the subsequent drawbacks: periodically doing a great amount of computations at
once (when resynchronisation is necessary), and consuming bandwidth (to transmit the
additional data).
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6.2.2 Key Concepts

The protocol allows two parties A (initiator) and B (responder) to mutually authenticate and
compute a shared session key. It is based on two types of master keys: a derivation master keyK
(used to compute the session keys), and an authentication master key K ′ (used to authenticate
the messages sent during a protocol run). The protocol makes use of symmetric-key functions
only. Each pair of parties (A, B) shares distinct master keys. The main lines of the protocol are
as follows: the two parties exchange pseudo-random values rA, rB . These two values are used
to

• authenticate each other: each party sends back the value it has received in a message
that is MAC-ed with the authentication master key K ′. For instance, if B receives rA it
replies with rB‖τB where τB = MAC(K ′, B‖A‖rB‖rA).

• Compute a session key: a pseudo-random function KDF is keyed with the derivation mas-
ter keyK and uses the pseudo-random values as input. That is, sk ← KDF(K, f(rA, rB)).
Function f is deliberately left unde�ned. For instance, f(rA, rB) can be equal to the
concatenation or the bitwise addition of rA and rB .2

Providing forward secrecy. The shared key K is used to compute the session keys. If this
key remains unchanged throughout all sessions, its disclosure allows computing all past (and
future) session keys. To solve this issue we apply a key-evolving technique. We update the
master key such that a previous version of the latter cannot be computed from an updated one.
Each of the two parties involved in a session updates its own copy of the derivation master key
K with a non-invertible function update: K ← update(K). Hence this protects past sessions
in case the (current value of) master key K is revealed. Each party authenticates its peer prior
to updating the derivation master key. If the master key is updated throughout the session, it
may happen that one of the two involved parties update its master key whereas the other does
not. This leads to a synchronisation problem.

K ′0 K ′1 K ′2 K ′3 · · ·

K0 K1 K2 K3 · · ·

sk0 sk1 sk2 sk3

update

update

K
D
F

Figure 6.1 – Master key chains in SAKE. At epoch j, the initiator stores four keys: K =
Kj , and K ′j−1, K ′j , K ′j+1. The responder stores two keys: K = Kj and K ′ =
K ′j . An illustration with j = 2 corresponds to the keys surrounded by the
blue dashed box .

The synchronisation problem. If two parties use a di�erent key K , they are obviously not
able to compute a shared session key. Hence they must resynchronise �rst. More fundamentally,

2The function f must be chosen such that the security of KDF is not impaired. We assume here that the
cryptographic functions used are ideal (investigating this topic is beyond the scope of this chapter).
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if a party initiates a session with some derivation master key K , and its partner stores a master
key corresponding to an earlier epoch, then an adversary who corrupts the partner can compute
past session keys with respect to the initiator, hence trivially break forward secrecy. Therefore,
it is of paramount importance that the parties know if the master key of its partner has actually
been updated. We provide a solution to both issues in the continuity of a single session. In
particular, no extra procedure is needed, and no (heavy) additional data is sent in order for a
desynchronised party to catch up.

We base our solution on the second master key K ′ used to authenticate the messages ex-
changed during a session. The solution is to update K ′ at the same time as K . Therefore the
evolution of K ′ follows that of K . The party that receives the �rst authenticated message uses
the MAC tag to learn which epoch the sender belongs to. Of course, K ′ can also be desynchro-
nised in the same way as K . This is why, whereas one party (responder B) stores only one
sample of the key K ′, the other party (initiator A) stores several samples of the authentication
master key K ′ corresponding to several consecutive epochs. We prove (in Section 6.3.1) that
only three keys K ′j+1, K ′j , K ′j−1, corresponding respectively to the next, the current, and the
previous epochs, are su�cient in order for A and B to resynchronise. The initiator (A) is the
one able to deal with the synchronisation issue, and consequently tells B how to behave. Each
party “accepts” only after it has received a con�rmation (�nal MAC-ed messages) that its partner
has already updated its own master keys. In such a case, the party ending in accepting state
deems that the fresh session key can be safely used. Otherwise (in particular when the parties
are desynchronised), the session key is discarded.

Since two independent master keys are used (authentication and session key derivation),
one can safely maintain a copy of K ′ corresponding to an earlier epoch (K ′j−1) without risk of
threatening forward secrecy. Only one sample of the derivation master key K is kept: the most
up-to-date.

6.2.3 Description of the Protocol

Our SAKE protocol is depicted by Figure 6.2. The parameter δAB computed by A corresponds
to the gap between A and B with respect to the evolution of the master keys. We prove that
δAB ∈ {−1, 0, 1} (see Section 6.3.1). That is, A can only be either one step behind, or in sync, or
one step ahead to B. During a session, A uses the keys K ′j , K ′j−1, K ′j+1 (by order of likelihood)
and the �rst message (mB) sent by B to learn δAB . The message mB is computed with the
current value K ′ of B. Therefore mB indicates the current synchronisation state of B. Then
A informs B. One bit ε is enough (message mA) because B takes two behaviours only: if
δAB ∈ {−1, 0} (ε = 0), and if δAB = 1 (ε = 1). A and B behave as follows.

• If A is in sync with B (δAB = 0), A computes the new session key, and updates its master
keys. Then, upon reception of mA, B does the same.

• IfA is in advance (δAB = 1),Awaits forB to resynchronise (i.e.,B updates its master keys
a �rst time), and to proceed with the regular operations (i.e., B computes the new session
key, and updates its master keys a second time). Then, once A receives a con�rmation
that B is synchronised (message τ ′B), A performs the regular operations as well (session
key computation, master keys update). Since A waits for B to resynchronise before
proceeding, the gap between the parties is bounded (as proved in Section 6.3.1).

• If A is late (δAB = −1), it resynchronises (i.e., it updates its master keys a �rst time),
and then performs the regular operations (session key computation, master keys update).
Then (upon reception of message mA), B applies the regular operations.
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Once a correct and complete session ends, three goals are achieved in the same protocol run:
(i) the two parties have updated their master keys, (ii) they are synchronised (which stems in
particular from the fact that the gap between A and B is bounded, i.e., |δAB| ≤ 1), and (iii) they
share a new session key. In other words, the protocol is self-synchronising.

The session can be reduced from �ve to four messages in some cases. Indeed, regarding
the synchronisation state, in two cases (when δAB ∈ {−1, 0}, that is ε = 0), A and B are
synchronised, and share a session key once B has received message mA and executed the
subsequent operations. Therefore, in such a case, the session can end upon reception of message
τ ′B by A. More precisely

• if δAB = 1 (ε = 1), then A accepts upon reception of τ ′B , and B accepts upon reception
of τ ′A;

• if δAB ∈ {−1, 0} (ε = 0), then A accepts upon reception of τ ′B , and B accepts upon
reception of mA.

Although this does not appear explicitly in Figure 6.2, a party aborts the session if it receives a
message computed with an invalid identity. For the responderB, an invalid identity corresponds
to an initiator party A it does not share master keys with. For an initiator A, the particular case
B = A, among other possibilities, yields an error (i.e., each party must have a distinct identity).

Note that, since K ′j+1 and K ′j can be computed from K ′j−1, it is also possible to store only
K ′j−1, and to compute the two other keys when necessary during the session.

Remark. With respect to the security model presented in Chapter 2, Section 2.3.1, the long-term
key of A and B corresponds respectively to A.ltk = (K,K ′j−1) and B.ltk = (K,K ′). We could
have allowed the authentication master key K ′j−1/K ′ to be disclosed prior to the start of the
session. This would not impair the forward secrecy of the derivation master keyK . Nonetheless,
knowing the authentication master key an adversary could desynchronise a legitimate party so
that the party could not catch up anymore. Hence our choice to include both master keys in the
response to a Corrupt-query.

A variant. Alternatively, the evolving authentication keys K ′ and K ′j−1, K ′j , K ′j+1 can be
replaced by a static authentication master key K ′, and two local counters cA, cB (respectively
stored by A and B) that keep track of the evolution of the derivation master key K .3 On the
initiator’s side, the MAC veri�cations are then done with consecutive values of the counter
j − 1, j, j + 1.

Overall, the sequence of operations and the computations are similar to that of SAKE. This
means mainly replacing function x 7→ MAC(K ′j , x) with x 7→ MAC(K ′, j‖x). This alternative
implies the storage of two keys and one counter: K , K ′ and cA/cB , instead of two keys only: K
and K ′j−1/K ′ (and, on the initiator’s side only, one or two additional calls to update in order to
compute K ′j and, possibly, K ′j+1).

Notation. For the sake of clarity, we use the following notation in Figure 6.2:

• kdf corresponds to: sk ← KDF(K, f(rA, rB))

• updA corresponds to
3This alternative has been suggested by anonymous reviewers from Crypto 2019.
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A B
(K,K ′j+1,K

′
j ,K

′
j−1) (K,K ′)

rA
$←− {0, 1}λ

A‖rA−−−−−−−→

rB
$←− {0, 1}λ

τB ← MAC(K ′, B‖A‖rB‖rA)
mB ← rB‖τB

mB←−−−−−−−
if (Vrf(K ′j , B‖A‖rB‖rA, τB) = true)

δAB ← 0
K ′ ← K ′j ; kdf; updA; ε← 0

else if (Vrf(K ′j−1, B‖A‖rB‖rA, τB) = true)

δAB ← 1
K ′ ← K ′j−1; ε← 1

else if (Vrf(K ′j+1, B‖A‖rB‖rA, τB) = true)

δAB ← −1
K ′ ← K ′j+1; updA; kdf; updA; ε← 0

else

abort

τA ← MAC(K ′, ε‖A‖B‖rA‖rB)
mA ← ε‖τA

mA−−−−−−−→
if (Vrf(K ′, ε‖A‖B‖rA‖rB, τA) = false)

abort
if (ε = 1)

updB
kdf; updB
τ ′B ← MAC(K ′, rB‖rA)

τ ′B←−−−−−−−
if (ε = 0)
K ′ ← K ′j
if (Vrf(K ′, rB‖rA, τ ′B) = false)

abort
else if (ε = 1)
K ′ ← K ′j+1

if (Vrf(K ′, rB‖rA, τ ′B) = false)
abort

kdf; updA

τ ′A ← MAC(K ′, rA‖rB)
τ ′A−−−−−−−→

if (Vrf(K ′, rA‖rB, τ ′A) = false)
abort

Figure 6.2 – SAKE protocol
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1. K ← update(K)

2. K ′j−1 ← K ′j

3. K ′j ← K ′j+1

4. K ′j+1 ← update(K ′j+1)

• updB corresponds to
1. K ← update(K)

2. K ′ ← update(K ′)

Moreover, Vrf(k,m, τ) denotes the MAC veri�cation function that takes as input a secret key
k, a message m, and a tag τ . It outputs true if τ is a valid tag on message m with respect to k.
Otherwise, it returns false.

Before the �rst session between A and B, the master keys are initialised as follows4:

• K and K ′ are uniformly chosen at random.

• K ′j−1 ←⊥

• K ′j ← K ′

• K ′j+1 ← update(K ′)

6.3 Proofs for SAKE

In this section we prove that (i) SAKE is sound, and (ii) it is a secure AKE protocol according to
De�nition 2.10.

6.3.1 Soundness of SAKE

We want to show that SAKE is sound, which essentially means that, once a correct session is
complete, both parties have updated their respective internal state, are synchronised, and share
the same (new) session key. We call a “benign” adversary an adversary that faithfully forwards
all messages between an initiator A and a responder B.

Lemma 6.1. Let A and B be respectively the initiator and the responder of a SAKE session. Let
δAB be the gap between A and B with respect to the evolution of the master keys of both parties.
The following conditions always hold:

1. δAB ∈ {−1, 0, 1}, and

2. whatever the synchronisation state between A and B at the beginning of a session (i.e.,
whatever A and B are synchronised or not), when that session completes in presence of a
benign adversary, then

a) A and B have updated their master keys at least once, and

b) A and B are synchronised (with respect to their master keys), and

c) A and B share the same session key.

4During the �rst protocol run, A needs only K′j to verify message mB .
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In order to prove Lemma 6.1, we use the following notation. The messages exchanged during
a session are numbered in a natural way:

1−−−−→
2←−−−−

A
3−−−−→ B

4←−−−−
5−−−−→

The notation “(iA, iB)” means that, when the session ends, the last valid message received by A
is message of index iA, and the last valid message received by B is message of index iB . We call
a (iA, iB)-session a session where the last message received by A is message iA, and the last
message received by B is message iB . By convention iA = 0 means that no message has been
received by A.

It may happen that A send a �rst message which is not received by B. B cannot know if it
has missed a �rst message. But this is of no consequence regarding the synchronisation between
A and B (A may simply run the protocol anew). Therefore we do not use the value iB = 0 (it
is equivalent to iB = 5). At initialisation (i.e., before the �rst run of the protocol), (iA, iB) is set
to (4, 5). Since A sends message i ∈ {3, 5} only upon reception of a valid message i− 1, and
B sends message j ∈ {2, 4} only upon reception of a valid message j − 1, the only possible
values for (iA, iB) are as listed in Table 6.2.

Table 6.2 – Possible values for (iA, iB) in SAKE

iA

iB 1 3 5

0 3 7 7

2 3 3 7

4 7 3 3

The diagram depicted by Figure 6.3 represents all the possible sequences of sessions with
SAKE.

Proof. We prove Lemma 6.1. We �rst prove item 1.
Let cA (resp. cB) be a (virtual) monotonically increasing counter initialised to 0 that follows

the evolution of the master keys held by A (resp. B). That is, cA (resp. cB) is increased each
time the master keys K , K ′j+1, K ′j , K ′j−1 (resp. K , K ′) are updated. The parameter δAB corre-
sponds to the gap between A and B with respect to the evolution of their master keys, hence
δAB = cA − cB .

The di�erent possible sessions are listed in Table 6.2. We prove item 1 by constructing
iteratively Table 6.3a.

Before the �rst session, A and B are synchronised. That is δAB = cA − cB = 0, and
(cA, cB) = (i, i) (with i = 0). Therefore, A can validate τB (in message mB) with the same key
K ′j = K ′ as B. Hence A computes δAB = 0, and ε = 0. Consequently, if one carries out the
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0 1

−1

(0, 1)
(2, 3)
(4, 3)
(4, 5) (2, 1)

(4, 3)
(4, 5)

(0, 1)
(2, 1)

(2
, 3

)(2
, 1

)

(2,
3)

(4,
3)

(4,
5)

(0, 1)

Figure 6.3 – Diagram of SAKE. The circled values correspond to the gap δAB , and each edge to
a (iA, iB)-session.

protocol run starting with δAB = 0 and ε = 0, for each possible value (iA, iB), one eventually
gets the following:

• (cA, cB) = (i, i) and δAB = 0 after a (0, 1)-session,

• (cA, cB) = (i+ 1, i) and δAB = 1 after a (2, 1)-session,

• (cA, cB) = (i+ 1, i+ 1) and δAB = 0 after a (2, 3)-session,

• (cA, cB) = (i+ 1, i+ 1) and δAB = 0 after a (4, 3)-session,

• (cA, cB) = (i+ 1, i+ 1) and δAB = 0 after a (4, 5)-session.

This corresponds to the �rst column of Tables 6.3a and 6.3b. As we can see, the only possible
values for δAB after any session are 0 and 1. δAB = 0 has already been investigated. Hence,
starting with δAB = 1 (i.e., (cA, cB) = (i+ 1, i)), we look for all the values δAB may have when
the session ends, considering any possible session.

(cA, cB) = (i+ 1, i) means thatA is in advance with respect toB. In such a case, A succeeds
in validating τB with K ′j−1 (and, indeed, �nds δAB = 1). Then A uses δAB = 1 and ε = 1. If
one carries out the protocol run using these two values, one gets:

• (cA, cB) = (i+ 1, i) and δAB = 1 after a (0, 1)-session,

• (cA, cB) = (i+ 1, i) and δAB = 1 after a (2, 1)-session,

• (cA, cB) = (i+ 1, i+ 2) and δAB = −1 after a (2, 3)-session,

• (cA, cB) = (i+ 2, i+ 2) and δAB = 0 after a (4, 3)-session,

• (cA, cB) = (i+ 2, i+ 2) and δAB = 0 after a (4, 5)-session.

This corresponds to the second column of Table 6.3a. This shows that a third value is possible
for δAB , which is −1 (i.e., (cA, cB) = (i, i+ 1)).

Then we restart the protocol with all possible sessions, assuming that (cA, cB) = (i, i+ 1)
at the beginning of the run. This means that A is one step late with respect to B. In such a
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case, A succeeds in validating τB with key K ′j+1 (and, indeed, �nds δAB = −1). Then A uses
δAB = −1 and ε = 0. If one carries out the protocol run using these two values, one gets:

• (cA, cB) = (i, i+ 1) and δAB = −1 after a (0, 1)-session,

• (cA, cB) = (i+ 2, i+ 1) and δAB = 1 after a (2, 1)-session,

• (cA, cB) = (i+ 2, i+ 2) and δAB = 0 after a (2, 3)-session,

• (cA, cB) = (i+ 2, i+ 2) and δAB = 0 after a (4, 3)-session,

• (cA, cB) = (i+ 2, i+ 2) and δAB = 0 after a (4, 5)-session.

We end with three possible values for δAB (third column of Table 6.3a): −1, 0 and 1, that have
already been explored. This proves that, whatever the sequences of sessions, the only possible
values for δAB are in {−1, 0, 1}.

Table 6.3 – Possible values for δAB and (cA, cB) among all sequences of sessions in SAKE

(a) Possible values for δAB

session
δAB 0 1 −1

(0, 1) 0 1 −1

(2, 1) 1 1 1

(2, 3) 0 −1 0

(4, 3) 0 0 0

(4, 5) 0 0 0

(b) Possible values for (cA, cB)

session
(cA, cB)

(i, i) (i+ 1, i) (i, i+ 1)

(0, 1) (i, i) (i+ 1, i) (i, i+ 1)

(2, 1) (i+ 1, i) (i+ 1, i) (i+ 2, i+ 1)

(2, 3) (i+ 1, i+ 1) (i+ 1, i+ 2) (i+ 2, i+ 2)

(4, 3) (i+ 1, i+ 1) (i+ 2, i+ 2) (i+ 2, i+ 2)

(4, 5) (i+ 1, i+ 1) (i+ 2, i+ 2) (i+ 2, i+ 2)

Now we prove item 2 of Lemma 6.1.
We know that δAB ∈ {−1, 0, 1}. For each possible value of δAB at the beginning of the

session, the last line of Table 6.3a indicates the value of that parameter after a correct and
complete session (i.e., a (4, 5)-session). As we can see, A and B are always synchronised (i.e.,
δAB = 0) in such a case whatever the value of δAB when the session starts. Furthermore, the
session key computation immediately precedes the last update of the derivation master key K .
Hence, when a correct and complete session ends, A and B use the same derivation master key
K to compute the session key. Therefore, using the same values rA, rB , A and B compute the
same session key.

In addition, Table 6.3b shows that, whatever the synchronisation state ofA andB (i.e., cA and
cB) at the beginning of the session, after a correct and complete session, A and B have updated
their internal state at least once (as the last line of the table, corresponding to a (4, 5)-session,
indicates).
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6.3.2 Security of SAKE

In order to prove that the protocol SAKE is a secure AKE protocol, we use the AKE security
model described in Chapter 2, Section 2.3.1. We de�ne the partnering between two instances
with the notion of matching conversations (see De�nition 2.1). That is, we de�ne sid to be the
transcript, in chronological order, of all the (valid) messages sent and received by an instance
during the key exchange, but, possibly, the last one.

We prohibit parallel executions of the protocol. Indeed, since the protocol we propose is
based on shared evolving symmetric keys, running multiple instances in parallel may cause
some executions to abort (we elaborate more on this in Section 6.6). This is the only restriction
we demand compared to AKE model. In addition, for each party Pi we de�ne the long-term
key Pi.ltk to be Pi.ltk = (K,K ′j−1) if ρ = init, and Pi.ltk = (K,K ′) if ρ = resp. The same
long-term key ltk is shared by a unique pair of parties (Pi, Pj). That is, Pi.ltk = Pj .ltk.

Furthermore, we choose the function update to be a PRF, that is update : K 7→ PRFupdate(K,x)
for some (constant) value x.

Theorem 6.2. The protocol SAKE is a secure AKE protocol, and for any probabilistic polynomial
time adversary A in the AKE security experiment against SAKE

advent-authSAKE (A) ≤ nq
(

(nq − 1)2−λ + (q + 1)advprfupdate(B) + 2advsuf-cma
Tag (C)

)
advkey-ind

SAKE(A) ≤ nq
(

(q − 1)advprfupdate(B) + advprfKDF(D)
)

+ advent-authSAKE (A)

where n is the number of parties, q the number of instances (sessions) per party, λ the size of the
pseudo-random values (rA, rB), and B is an adversary against the PRF-security of update, C an
adversary against the SUF-CMA-security of Tag = (Tag.Gen,Tag.MAC,Tag.Vrf), and D an
adversary against the PRF-security of KDF.

We give a proof of Theorem 6.2.

Entity authentication. First we consider the entity authentication experiment described in
Chapter 2, Section 2.3.1.

Proof. Let Ei be the event that the adversary succeeds in making an instance accept maliciously
in Game i. We use the following hops.

In order for an initiator instance πsi at some party Pi to accept, two valid messages (i.e.,
with valid MAC tags) must be received by πsi (mB and τ ′B). We reduce the security of the
Tag function to the (in)ability to forge a valid output. Therefore we use the fact that the key
K ′ is random. By assumption, the genuine value of K ′ (i.e., the value used during the �rst
session between two same parties) is uniformly chosen at random. Yet K ′ (and K) is updated
throughout the session with the function update. If K ′ is random, we can rely on the pseudo-
randomness of update(·) = PRFupdate(·, ·). In turn, since PRFupdate(K

′, ·) can be replaced with
a truly random function, its output (updated K ′) is random. Therefore, one can rely upon the
pseudo-randomness of the function update keyed with this new value K ′, and so forth. Each
transition (i.e., each update of K ′) implies a loss equal to advprfupdate(B) corresponding to the
ability of an adversary B to distinguish update from a random function.

If Pi is synchronised with the responder (δAB = 0), Pi updates its master keys once (upon
reception of mB). If Pi is in advance (δAB = 1), it updates its keys at most once (if a valid
message τ ′B is received). If Pi is late (δAB = −1), it updates its keys twice. Yet, in that case, Pi
did not update its keys during the previous session. Therefore, on average, Pi updates its keys
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at most once per session. Hence, when the u-th session starts, Pi has updated its keys at most
u− 1 times on average, and, upon reception of τ ′B , Pi updates the keys at most two times.

This is similar regarding the responder. A responder instance πtj at some party Pj accepts
only if the two messages mA and τ ′A are valid. Upon reception of a valid message mA, the keys
are updated once (ε = 0) or twice (ε = 1). In the latter case, the keys have not been updated
during the previous session. This means that the keys are updated on average at most once per
session. Therefore, when the u-th session starts, Pj has updated its keys at most u− 1 times on
average, and, upon reception of mA, the keys are updated at most two times.

We can now proceed with the proof. We proceed through a sequence of games [Sho04; BR04],
where each consecutive game aims at reducing the challenger’s dependency on the functions
Tag, update and KDF. Let Ei be the event that the adversary win the entity authentication
experiment in Game i.

Game 0. This game corresponds to the entity authentication security experiment. Therefore

Pr[E0] = advent-authSAKE (A).

Game 1. In this game, we add an abort rule. The challenger aborts if there exists any instance
that chooses a random value rA or rB that is not unique. There is at most n× q random values,
each uniformly drawn at random in {0, 1}λ. Therefore the probability that at least two random
values be equal is at most nq(nq−1)

2λ
. Hence

Pr[E0] ≤ Pr[E1] +
nq(nq − 1)

2λ
.

Game 2. In this game, we add an abort rule. The challenger tries to guess which instance will
be the �rst to accept maliciously. If the guess is wrong, the game is aborted. The number of
instances is at most nq. Therefore

Pr[E2] = Pr[E1]× 1

nq
.

Game 3. Let π be the instance targeted by the adversary. In this game, we add an abort rule.
The challenger aborts the experiment if π, behaving as an initiator (resp. responder) instance,
ever receives a valid message mB (resp. mA) but no instance having a matching conversation
to π has output that message. We reduce the probability of this event to the security of the
functions Tag and update. As explained above, when the u-th session starts, the master keys
have been updated at most u− 1 times already. The genuine value of K ′ is uniformly chosen at
random. In order to be able to replace, during the current session, the key used to compute the
MAC tag in mA (resp. mB) with a random value, one must rely upon the pseudo-randomness of
the function update that outputs (the new value of) K ′. In turn, this relies upon the (previous)
key K ′ being random (and on the pseudo-randomness of update). Therefore, in order to replace
K ′ with a random value one must take into account the successive losses advprfupdate(B), each
corresponding to the ability of an adversary B to distinguish the function update (keyed with a
di�erent key K ′) from a random function. Since there is at most q sessions, this loss is at most
(q − 1)advprfupdate(B). Then we reduce the probability of the adversary A to win this game to the
ability of an adversary C to forge a valid tag τB (resp. τA).

Therefore, we replace each function update(K ′) = PRFupdate(K
′, x) (keyed with a di�erent

keyK ′ throughout the, at most, q−1 successive sessions established, prior to that current session,
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by the same party that owns π) with truly random functions Fupdate
0 , . . ., Fupdate

q−2 . Moreover, if
an instance uses the same key K ′ = K ′i , 0 ≤ i < q − 1, to key update, then we replace update
with the corresponding random function Fupdate

i . Since, to that point, the key K ′ = K ′q−1 used
to compute the authentication tag τB (resp. τA) is random, we reduce the ability of A to win to
the security of the Tag function. Hence

Pr[E2] ≤ Pr[E3] + (q − 1)advprfupdate(B) + advsuf-cma
Tag (C).

Game 4. In this game, we add an abort rule. The challenger aborts the experiment if π ever
receives a valid message τ ′B (resp. τ ′A), but no instance having a matching conversation to π
has output that message. Between the message mB (resp. mA) being received by π, and the
message τ ′B (resp. τ ′A) being received by π, the master keys are updated at most twice. We
reduce the probability of the adversary to win this game to the security of the Tag function
used to compute the message τ ′B (resp. τ ′A). In turn we must rely on the randomness of the
MAC key, hence on the security of the function update used to update the MAC key K ′ (recall
that, due to Game 3, the current key K ′ is random). Therefore

Pr[E3] ≤ Pr[E4] + 2advprfupdate(B) + advsuf-cma
Tag (C).

To that point, the only way for the adversary to make π accept maliciously is to send a valid
message τ ′B (resp. τ ′A) di�erent from all the messages sent by all the instances. However, in
such a case, the challenger aborts. Therefore

Pr[E4] = 0.

Collecting all the probabilities from Game 0 to Game 4, we have that

advent-authSAKE (A) = Pr[E0]

≤ nq(nq − 1)

2λ
+ Pr[E1]

≤ nq(nq − 1)

2λ
+ nq × Pr[E2]

≤ nq(nq − 1)

2λ
+ nq

(
Pr[E3] + (q − 1)advprfupdate(B) + advsuf-cma

Tag (C)
)

≤ nq(nq − 1)

2λ
+ nq

(
Pr[E4] + (q + 1)advprfupdate(B) + 2advsuf-cma

Tag (C)
)

≤ nq(nq − 1)

2λ
+ nq

(
(q + 1)advprfupdate(B) + 2advsuf-cma

Tag (C)
)

≤ nq
(

(nq − 1)2−λ + (q + 1)advprfupdate(B) + 2advsuf-cma
Tag (C)

)

Key indistinguishability. Now we prove the key indistinguishability security.

Proof. Let E′i be the event that an adversary win the key indistinguishability experiment in
Game i, and advi = Pr[E′i]− 1

2
.

Game 0. This game corresponds to the key indistinguishability experiment described in
Chapter 2, Section 2.3.1. Therefore

Pr[E′0] =
1

2
+ advkey-ind

SAKE(A) =
1

2
+ adv0.
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Game 1. In this game, we add an abort rule. The challenger aborts the experiment and chooses
b′ ∈ {0, 1} uniformly at random if there exists an instance that accepts maliciously. In other
words, in this game we make the same modi�cations as in the games performed during the
entity authentication proof. Hence

adv0 ≤ adv1 + advent-authSAKE (A).

Game 2. In this game, we add an abort rule. The challenger tries to guess which instance is
targeted by the adversary. If the guess is wrong, the game is aborted. The number of instances
is at most nq. Therefore

adv2 = adv1 ×
1

nq
.

Game 3. Let π be the instance targeted by the adversary. We reduce the advantage of the
adversary to win this game to the security of the function KDF used to compute the session
key. That is, we rely upon the pseudo-randomness of the KDF function. This is possible if
the key K is random. The genuine value of K is uniformly chosen at random by assumption.
Then K is updated with update at most once per session on average. Therefore, when the u-th
session starts, K has been updated at most u− 1 times already. Therefore we must take into
account the successive losses due to the key update with respect to the pseudo-randomness of
update. Since there is at most q sessions per party (i.e., per original key K), this loss is at most
(q − 1)advprfupdate(B). Hence we replace each function update(K) = PRFupdate(K,x) (keyed
with a di�erent key K throughout the, at most, q − 1 successive sessions established, prior to
that current session, by the same party that owns π) with truly random functions Gupdate

0 , . . .,
Gupdate
q−2 . Moreover, if an instance uses the same key K = Ki, 0 ≤ i < q− 1, to key update, then

we replace update with the corresponding random function Gupdate
i . Since, to that point, the

key K = Kq−1 used to compute the session key is random, we reduce the ability ofA to win to
the security of KDF. Therefore

adv2 ≤ adv3 + (q − 1)advprfupdate(B) + advprfKDF(D).

To that point the session key is random, therefore the adversary has no advantage in guessing
whether π.b = b′. That is

adv3 = 0.

Collecting all the probabilities from Game 0 to Game 3, we have that

advkey-ind
SAKE(A) = adv0

≤ advent-authSAKE (A) + adv1

≤ advent-authSAKE (A) + nq × adv2

≤ advent-authSAKE (A) + nq
(
adv3 + (q − 1)advprfupdate(B) + advprfKDF(D)

)
≤ advent-authSAKE (A) + nq

(
(q − 1)advprfupdate(B) + advprfKDF(D)

)
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6.4 SAKE-AM: a Complementary Mode of SAKE

In SAKE the initiator A owns the three keys K ′j+1, K ′j , K ′j−1, and the responder B does the
lightest computations. In this section, we present a variant of SAKE such that the smallest
amount of calculations is done by the initiator. This variant corresponds also to less messages,
and we call this “aggressive mode” of the protocol SAKE-AM.

Compared to SAKE, SAKE-AM inverts the role of the initiator and the responder in terms of
calculations (in SAKE, the initiator performs – at most – two additional MAC computations
compared to the responder). Thus B owns three samples of the authentication master key
(corresponding to consecutive epochs), and A does the smallest amount of calculation. SAKE-
AM (with one message less with respect to SAKE) allows computing the synchronisation gap δ
earlier (with the �rst message). Yet the responder must wait for the third message to con�rm
that value. In a sense, this variant is also more optimistic.

The main idea is to skip the �rst SAKE message A‖rA. Hence the roles between the two
parties are swapped. This leads to other minor changes in message format compared to SAKE.
Despite these di�erences, the messages and the calculations are essentially the same as in SAKE.
This variant remains a sound and secure AKE protocol (according to De�nition 2.10).

Furthermore, in a similar way to SAKE, the session in SAKE-AM can be reduced from four to
three messages in some cases. Indeed, regarding the synchronisation state, in two cases (when
δAB ∈ {−1, 0}, that is ε = 0), A and B are synchronised, and share a session key once A has
received message mB and executed the subsequent operations. Therefore, in such a case, the
session can end upon reception of message τ ′A by B. More precisely

• if δAB = 1 (ε = 1), then A accepts upon reception of τ ′B , and B accepts upon reception
of τ ′A;

• if δAB ∈ {−1, 0} (ε = 0), then A accepts upon reception of mB , and B accepts upon
reception of τ ′A.

Notation. For the sake of clarity, we use the following notation in Figure 6.4:

• kdf corresponds to: sk ← KDF(K, f(rA, rB))

• upd′A corresponds to
1. K ← update(K)

2. K ′ ← update(K ′)

• upd′B corresponds to
1. K ← update(K)

2. K ′j−1 ← K ′j

3. K ′j ← K ′j+1

4. K ′j+1 ← update(K ′j+1)

End-device-server setting. Executing either SAKE or SAKE-AM depending on the party’s
role results in an implementation (gathering all the properties summarised in Section 6.2.1,
starting with the forward secrecy property) that allows any party to be either initiator or
responder of a session, and such that the smallest amount of calculation is always done by the
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A B
(K,K ′) (K,K ′j+1,K

′
j ,K

′
j−1)

rA
$←− {0, 1}λ

τA ← MAC(K ′, A‖B‖rA)

mA ← A‖rA‖τA
mA−−−−−−−→

if (Vrf(K ′j , A‖B‖rA, τA) = true)

δBA ← 0
K ′ ← K ′j ; kdf; upd

′
B; ε← 0

else if (Vrf(K ′j−1, A‖B‖rA, τA) = true)

δBA ← 1
K ′ ← K ′j−1; ε← 1

else if (Vrf(K ′j+1, A‖B‖rA, τA) = true)

δBA ← −1
K ′ ← K ′j+1; upd′B; kdf; upd′B; ε← 0

else

abort

rB
$←− {0, 1}λ

τB ← MAC(K ′, ε‖B‖A‖rB‖rA)
mB ← ε‖rB‖τB

mB←−−−−−−−
if (Vrf(K ′, ε‖B‖A‖rB‖rA, τB) = false)

abort

if (ε = 1)
upd′A

kdf; upd′A
τ ′A ← MAC(K ′, A‖B‖rA‖rB)

τ ′A−−−−−−−→
if (ε = 0)
K ′ ← K ′j
if (Vrf(K ′, A‖B‖rA‖rB, τ ′A) = false)

abort
else if (ε = 1)
K ′ ← K ′j+1

if (Vrf(K ′, A‖B‖rA‖rB, τ ′A) = false)
abort

kdf; upd′B

τ ′B ← MAC(K ′, rB‖rA)
τ ′B←−−−−−−−

if (Vrf(K ′, rB‖rA, τ ′B) = false)
abort

Figure 6.4 – SAKE-AM protocol
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same party. Furthermore, SAKE and SAKE-AM are built on the same cryptographic functions,
which enables to pool their implementation. This is particularly convenient in the context of
a set of (low-resource) end-devices communicating with a central server. In such a case, the
end-device supports the lightest computations, whereas either the server or the end-device can
initiate a session.

Figure 6.5 illustrates such a con�guration. When the end-device initiates a session, protocol
SAKE-AM is applied. Otherwise (the server is initiator), SAKE is executed.

Remark. In Chapter 7 we introduce a 3-party key exchange protocol dedicated to IoT, and
describe how SAKE and SAKE-AM can be appropriately used in such a context.

End-device [A] Back end [B]
(K,K ′) (K,K ′j+1,

K ′j ,K
′
j−1)

A‖rA‖τA−−−−−−−−−−−→
compute δBA

ε‖rB‖τB←−−−−−−−−−−−
τ ′A−−−−−−−−−−−→[
τ ′B←−−−−−−−−−−−

]

(a) End-device is initiator (SAKE-AM)

End-device [B] Back end [A]
(K,K ′) (K,K ′j+1,

K ′j ,K
′
j−1)

A‖rA←−−−−−−−−−−−
rB‖τB−−−−−−−−−−−→

compute δAB
ε‖τA←−−−−−−−−−−−
τ ′B−−−−−−−−−−−→[
τ ′A←−−−−−−−−−−−

]

(b) Back end is initiator (SAKE)

Figure 6.5 – SAKE/SAKE-AM executed between a low-resource end-device and a back-end
server. Both parties may initiate the session. In some cases, the last message can
be skipped.

Soundness and security of SAKE-AM. SAKE-AM is a sound and secure AKE protocol. The
proofs for SAKE-AM follow the same reasoning and are similar to that of SAKE. They yield the
same bounds (see Section 6.3).

6.5 A Random-free Variant of SAKE

In SAKE (and SAKE-AM), the pseudo-random values rA, rB are used to yield a fresh session key,
and participate also in the authentication of the parties. Using new values during each session
contributes to achieving these two tasks. Yet, these parameters are not the only ones to evolve
throughout the successive protocol runs. The master keys do also. Therefore, one can consider
removing the pseudo-random values from the messages. Without the pseudo-random values,
several messages become cryptographically valid for each �ow (instead of one only in SAKE).
For instance, without rA, party A may accept as second message either τB = MAC(K ′j , B‖A),
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or τB = MAC(K ′j−1, B‖A), or τB = MAC(K ′j+1, B‖A). Likewise, without rB , B may accept
as third message either 0‖τA or 1‖τA. Consequently, in this variant, we pre�x each MAC-ed
message with its index from 1 to 4 (but not the �rst one which carries only the initiator’s
identity).

The removal of the pseudo-random values enables a “mismatch attack”. By “attack” we mean
the following: an adversary is able to compel B to compute a message (message 4) which
is unaltered by the adversary and expected by A, and yet A rejects this message as invalid.
Although unpleasant, this “attack” does not break any claimed security property (in particular
entity authentication). Moreover, this scenario cannot damage the synchronisation of the two
parties. That is, if they start a new session, the latter completes successfully (if the adversary
remains passive), as in SAKE.

In this variant, the length of the messages is shortened, and this avoids also calling the
pseudo-random generation function. This is advantageous for low-resource devices. Therefore,
according to us this variant is suitable for constrained devices. Nonetheless, not using pseudo-
random values, in particular to derive the session key, may not be of anyone’s taste. In addition,
the possibility provided by the aforementioned scenario is not what one usually expects from
a security protocol. Consequently, for the practitioners for whom this mismatch attack is
unacceptable, the SAKE protocol is more adequate.

6.6 Comparison with the DH Paradigm

The protocol SAKE (as well as SAKE-AM) is based on shared master keys and apply symmetric-
key functions only. In particular it does not require the application of any kind of DH-like
scheme. Yet it provides a strong form of forward secrecy. Despite this result, our protocol di�ers
from a DH scheme in several ways beyond the intrinsic distinction between public-key and
symmetric-key cryptography.

Concurrent executions. Our protocol does not allow parallel executions. Indeed, since it is
based on shared evolving symmetric keys, running multiple instances in parallel may cause
some sessions to abort. A way to relax this restriction is that each party use separate master
keys for concurrent executions. On the contrary, the DH scheme allows an (virtually) unlimited
number of parallel executions.

KCI attacks. The ephemeral DH scheme (when using safe parameters) is resistant against KCI
attacks [BWJM97], whereas our protocol is not (due to the dependency between the (updated)
master keys).5 Moreover if an adversary succeeds in getting the keyK ′ (orK ′j), she can compute
the subsequent key (corresponding to K ′j+1). Hence the adversary can forge a message mB in
SAKE that brings the initiator to update its master keys twice consecutively. Therefore, that
party is desynchronised with respect to an honest partner, with no possibility to resynchronise.

Note that KCI attacks a�ect also the static DH scheme (when a party uses a �xed DH share,
whereas the other generates a fresh ephemeral one [HGFS15]).

Another consequence of the dependency of the master keys in SAKE, is that once the keys are
revealed, an adversary can passively compromise all subsequent session keys. This is not the
case in general with ephemeral DH. Yet, this is also true regarding non-DH public-key protocols
(e.g., TLS-RSA), but also ephemeral DH (in some pathological cases) when small, �xed public
parameters are used [ABD+15].

5When a party Pi’s long-term secret key is disclosed, an adversary can impersonate Pi to other parties. In the
same context, a key compromise impersonation (KCI) allows the adversary to impersonate other parties to Pi.
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Post-quantum setting. Now a probable bene�t of our protocol compared to the DH scheme
is that, since it is based on symmetric-key functions, it can likely survive in a post-quantum
world (with a suitable choice of the primitives [KLLN16a] and key length [Gro96]). On the
contrary, the DH scheme is known to be insecure in such a context [Sho94; PZ03; KJ17]. Yet,
we observe that there exists a post-quantum variant of the original DH scheme [JD11; CLN16],
but it is based on larger parameters and heavier computations than SAKE. Moreover this
post-quantum variant does not provide entity authentication.

Computations. The DH scheme implies heavier computations (modular exponentiations,
elliptic curve point multiplication) than SAKE which is solely built on symmetric-key functions.
In practice, SAKE is likely more suitable to be implemented on constrained devices which have
limited computational (and communication) capabilities.
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Three-party AKE 7
With the rise of the Internet of Things several security protocols are widely

deployed or strongly promoted, such as LoRaWAN, Sigfox, and NB-IoT among
others. They aim at connecting with one another multiple components which have

di�erent capabilities (low-resource end-devices, powerful servers).
In Chapters 3 and 4, we have analysed protocols dedicated to constrained devices, and show

that they su�er from several weaknesses leading to (likely) practical attacks. In Chapter 6, we
have presented the 2-party authenticated key exchange protocol SAKE with stronger security
properties. In this chapter, we widen our vision and consider the interleaved operations between
the diverse components of an IoT network. Consequently, we describe a generic 3-party au-
thenticated key exchange protocol dedicated to such a network. Solely based on symmetric-key
functions (regarding the computations done between the end-device and the back-end network),
this protocol guarantees forward secrecy, in contrast to widely deployed symmetric-key based
IoT protocols. Furthermore, it enables session resumption without impairing security (in partic-
ular, forward secrecy is maintained). This allows saving communication and computation cost,
and is advantageous for constrained end-devices.

In addition, we present a concrete instantiation of our protocol based on SAKE, and devise a
security model used to formally prove the security of the protocol and its instantiation.

The 3-party key exchange protocol can be applied in a real-case IoT deployment (i.e., involving
numerous end-devices and servers) such that the latter inherits from the security properties of
the protocol. This results in the ability for a (mobile) end-device to securely switch from one
server to another back and forth at a reduced (communication and computation) cost, without
compromising the sessions established with other servers.

The results of this chapter have been published in [ACF19].
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7.1 Introduction

7.1.1 Context

The arising of the Internet of Things (IoT) gives birth to di�erent types of use cases and
environments (smart home, smart cities, eHealth, Industrial IoT, etc.). According to several
reports, “the Industrial Internet of Things is the biggest and most important part of the Internet
of Things” [i-s18] and “the biggest driver of productivity and growth in the next decade” [Acc15].
The Industrial IoT (IIoT) covers sensitive applications since it aims at managing networks that
provide valuable resources (e.g., energy, water, etc.). Contrary to the smart home case, where
a network is localised to the house perimeter and implies merely a domestic management of
the network, the IIoT context may require a large coverage zone where connected objects (e.g.,
sensors, actuators, etc.) are widespread all over an urban area. This implies the involvement of,
at least, two players: the application provider (which exploits the connected objects to get some
valuable data and provide some service), and the communication provider whose network is
used by the application provider to communicate with its connected objects (see Figure 7.1).
These two entities needs to communicate with each end-device for di�erent purposes, which
implies two independent secure channels.

Back-end network

Communication
ServerEnd-device

Application
Server

Figure 7.1 – Connection between end-devices (ED ←) and an application server (→ AS)
through a communication server (− CS −)

Furthermore, as indicated in Chapter 1, the protocols for the (Industrial) IoT build their
security on symmetric-key functions, and make use of a static and unique (per end-device) root
key shared between the end-device and the back-end network. To this class of protocols belong
widely deployed or strongly promoted ones such as Sigfox [Sig17b; Sig17a], LoRaWAN [LoR18a;
Sor17], and cellular technologies such as Narrowband IoT (NB-IoT), enhanced Machine-Type
Communication (eMTC), Extended Coverage GSM IoT (EC-GSM-IoT). None of these (cellular
and non-cellular) protocols provide forward secrecy, and, to the best of our knowledge, no IoT
protocol proposes a session resumption scheme.

Cryptographic separation of the layers. The (Industrial) IoT involves low-resource end-
devices which are not able to apply heavy computations implied by asymmetric schemes.
Consequently, security protocols used on currently deployed IoT networks usually implement
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symmetric-key functions only, and are based on a unique (per end-device) symmetric root key.
Using the same root key implies that the communication layer and the application layer are
entangled. The communication provider must guarantee that only legitimate parties can send
data through its network, but does not need to get the application data. The application provider
must keep full control over its connected objects, but must not be able to interfere with the
management of the communication network. Therefore, the communication and the application
layers must be cryptographically distinct.

Forward secrecy. The (Industrial) IoT protocols based on symmetric-key functions do not
provide strong security properties usually ensured by asymmetric schemes, in particular forward
secrecy. The disclosure of the root key compromises all the past sessions established with that
key, not to mention the consequences of an intrusion into the back-end server that centralises
all root keys. The current symmetric-key based IoT protocols lack in providing this fundamental
security property.

Session resumption. A session resumption scheme allows establishing a new session at a
reduced cost: once two parties has performed a �rst key exchange, they can use some shared
key material to execute subsequent runs faster. This means less data exchanged during the key
agreement, and reduced time and energy, which is particularly convenient and advantageous
for low-resource end-devices. Yet, the symmetric-key based IoT protocols always execute the
same full key exchange.

7.1.2 Our Approach

The basis of our approach is the need for an authenticated key exchange protocol guaranteeing
better security properties than that of existing IoT protocols (including widely deployed ones),
and being at the same time suitable for low-resource end-devices. Consequently, we consider
the symmetric-key setting. In order to cryptographically separate the communication and the
application layers, we consider a LoRaWAN-like architecture with a trusted third party behaving
as a key server (see Chapter 3, Section 3.5). But we use the latter in a more e�cient way. We
describe an authenticated key exchange protocol that involves three parties: an end-device, a
(communication or application) server, and a trusted third party (the key server). This protocol is
solely based on symmetric-key functions (regarding the computations done by the end-device),
and yet it provides forward secrecy.

Moreover our 3-party protocol allows resuming sessions. A full run implies the involvement
of the trusted third party in order to establish a session between an end-device and a (communi-
cation or application) server. The resumption procedure allows executing the subsequent runs
between the end-device and the same server without the trusted third party being involved.
That is, all the messages exchanged with the latter are saved. This means a faster session
establishment with reduced time and energy (in particular for the low-resource end-device).
Our resumption scheme implies a small and �xed size storage in the end-device’s memory
independently of the number of sessions that can be resumed. Finally, our protocol allows
resuming sessions without impairing security: it combines session resumption and forward
secrecy.

An IoT network involves many entities and not only a pair of end-device and server. Our
3-party key exchange protocol can be used to deploy an arbitrary number of end-devices and
(communication or application) servers within the same network (i.e., a�liated to the same
trusted third party). This allows in particular a (mobile) end-device to switch from one com-
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munication server to another one, or to be used by two di�erent application servers without
compromising sessions established with other servers.

To sum up, in this chapter we present a 3-party authenticated key exchange (3-AKE) protocol
executed between an end-device, a server, and a trusted third party, which matches at the same
time the following properties:

• The protocol is solely based on symmetric-key functions (regarding the computations
done by the end-device).

• Application and communication security layers are separated.

• The protocol enables session resumption.

• The protocol provides forward secrecy.

7.2 Description of the 3-party AKE Protocol

In this section, we describe our generic 3-party authenticated key exchange (3-AKE) protocol.
The main purpose of our protocol is to output session keys. This subsequently enables to
establish two distinct secure channels, with a communication server on the one hand, and an
application server on the other hand. We do not detail these channels, and let it be de�ned
depending on their speci�c context.

7.2.1 The Di�erent Roles

The real-case IoT deployment we consider involves four roles: the trusted third party that we
name Authentication and Key Server (KS), the Application End-device (ED), the Communication
Server (CS), and the Application Server (AS). KS is in charge of the overall security of the system:
its main purpose is to authenticate ED, and to allow AS and CS to share distinct session keys
with ED. These keys aim at establishing two separate secure channels. The purpose of AS
is to provide some service (e.g., telemetry, asset tracking, equipment automation, etc.). The
AS exploits ED (e.g., a sensor, an actuator, etc.) to ensure that service. In order to exchange
con�dential data, ED and AS use a communication network. The entry point is CS, which grants
ED access to that network. Typically CS is managed by a telecom operator. CS needs also to
privately communicate with ED, e.g., in order to regulate the radio interface.

One KS can manage several ED. An ED can be either static or mobile, hence may have to
connect one or several CS. An AS can use several ED in order to provide its service. For the sake
of genericness, it may also be technically (i.e., cryptographically) possible with our protocol
that the same ED be used by several AS (each one providing a di�erent service). The kind of
ED we consider is a (low-resource) wireless end-device whereas we assume that KS, CS, and
AS use faster (wired) connections with each other, and have heavier capabilities, in particular
computational.

As said, the architecture we consider involves four types of entities: KS, ED, CS, and AS.
However, from a cryptographic perspective, CS and AS behave the same way with respect to KS
and ED. The main goal to reach is to allow ED to share a session key with a server XS ∈ {CS,AS}
which ensures some functionality (communication or application in our case). This is achieved
with our 3-AKE protocol: executed between KS, ED, and XS, the protocol outputs key material
that allows ED and XS to establish a secure channel. In the remainder of the chapter, we will
mention for simplicity only the two types of CS and AS servers. Nonetheless, recall that they
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represent in fact the several servers which are actually involved in the IoT architecture we
consider.

7.2.2 Key Computation and Distribution

Our 3-AKE protocol is based on a pre-shared symmetric key mk known only to two parties:
ED, and KS which ED is a�liated to. Each ED owns a distinct master key mk. A 3-AKE run is
split in two main phases. Each phase appeals to a 2-party authenticated key exchange (2-AKE)
protocol, whose security properties will be made explicit in Section 7.2.3. During the �rst phase
(Figure 7.2), ED and KS perform a 2-AKE run with the shared master keymk. During the second
phase (Figure 7.3), ED and XS ∈ {CS,AS} use the output of the �rst key exchange to perform
an additional 2-AKE run. This yields a session key used to establish a secure channel between
ED and XS. In practice, since our architecture involves two types of XS servers, a 3-AKE run is
done �rst between KS, ED, and CS, and then between KS, ED, and AS. This yields two distinct
session keys. With each session key, a secure channel can be established between ED and CS
on the one hand, and ED and AS on the other hand.

KS

CSED AS
ikc, ika ← KDF(mk)

AKE

mk
ikc/ika ← KDF(mk)

mk

ikc/ika ← KDF(mk)

(a) 2-AKE run executed between ED and KS (relayed by CS) with mk

KS

CSED AS
ikc, ika ← KDF(mk)

ikc, ika ← KDF(mk)

mk

mk
ikc, ika

{ik
c }
K
S

-C
S

{ik
a }
K
S
-A
S

(b) Transmission by KS of intermediary keys ikc (to CS) and ika (to AS) respec-
tively through the secure channels {·}KS-CS established between KS and
CS, and {·}KS-AS established between KS and AS

Figure 7.2 – 2-AKE run executed between ED and KS with mk, and distribution of ikc, ika
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More precisely, the following steps are executed between KS, ED, CS, and AS.

1. Based on the shared master key mk, KS and ED perform an AKE, relayed by CS (Fig-
ure 7.2a). This �rst AKE outputs a communication intermediary key ikc.

2. The previous step (2-AKE) is repeated between KS and ED. It outputs an application
intermediary key ika.

3. KS sends ikc to CS, and ika to AS through two distinct pre-existing secure channels
(Figure 7.2b). Then, upon reception of the keys by CS and AS, KS deletes its own copies
in order to enhance the security of the subsequent phases of the protocol (we elaborate
more on this in Section 7.2.4).

4. Using ikc, ED and CS perform an AKE which outputs a communication session key skc
(Figure 7.3a).

5. Using ika, ED and AS perform an AKE which outputs an application session key ska
(Figure 7.3b).

6. Using the application session key ska, ED and AS can now establish an application secure
channel. Likewise, with the communication session key skc, ED and CS can establish a
distinct communication secure channel (Figure 7.3c).

We call P the protocol that involves ED, and is used to perform the 2-AKE runs between ED
and KS (steps 1-2), ED and CS (step 4), and ED and AS (step 5). We call P ′ the 2-AKE protocol
used on the back-end side between KS and AS (resp. CS). Let ENC be the function used to set
up the secure channel between KS and AS (resp. CS) with the session key output by P ′. That is,
ENC is used (step 3) to encrypt ika (resp. ikc) prior to being sent by KS to AS (resp. CS).

Variants. For the sake of clarity, we have depicted in Figure 7.2a the case where the two
intermediary keys ikc and ika are successively computed. But the computation of either key
can be completely dissociated. Conversely, it may also be possible that both keys be computed
at once during the same run. The same key exchange protocol can be used in either case, the
di�erence lying in an additional derivation step that yields two keys from the unique output of
the original 2-party AKE.

Furthermore, the 2-AKE run between ED and KS can output not only an intermediary key ik
but also a session key sk. Then KS sends both ik and sk to XS. This saves an AKE run between
ED and XS (corresponding to steps 4-5).

7.2.3 The Building Blocks P , P ′, and ENC

Our 3-AKE protocol depends crucially on the 2-party protocols P and P ′, and function ENC.
Before making clear the properties of our 3-party protocol, we list below the main features we
require these three building blocks to have.

Protocol P . We require protocol P to ful�ll the following properties.

• The scheme is a 2-party AKE protocol that provides mutual authentication.

• The scheme is based on symmetric-key functions solely.

• The scheme guarantees forward secrecy.
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(a) 2-AKE run executed between ED and CS with ikc
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(b) 2-AKE run executed between ED and AS (relayed by CS) with ika
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between ED and AS

Figure 7.3 – 2-AKE run executed between ED and AS (resp. CS) with ika (resp. ikc), and
subsequent secure channels
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Although it is not related to the main goals we tackle, we add the following requirement in
order to improve the �exibility of the 3-AKE protocol:

• Any of the two parties can initiate a run of protocol P .

We informally recall what the forward secrecy property means in this symmetric-key context.
Once a 2-AKE run of P is complete, past output secrets must remain private even if the current
symmetric root key (used to authenticate the parties and compute the shared secret) is revealed.

More precisely, in a 2-AKE run done between ED and KS, the disclosure of the current master
key mk (used as root key) must not compromise past intermediary keys ik computed by these
two parties. Likewise, in a 2-AKE run done between ED and some XS ∈ {CS,AS}, the disclosure
of the current intermediary key ik (used as root key in that case) must not compromise past
session keys sk computed by ED and XS.

In Section 7.4 we present a concrete instantiation of P based on the SAKE protocol that we
have introduced in Chapter 6.

Protocol P ′. We demand P ′ to be a secure 2-AKE protocol that provides mutual authentica-
tion, and forward secrecy. Since P ′ is applied between KS and XS, asymmetric functions may
be used.

Function ENC. We demand ENC to provide data con�dentiality and data authenticity. In the
latter we include non-replayability of messages.

7.2.4 Main Features of the 3-AKE Protocol

In Chapter 5, Section 5.2, we have presented a 3-AKE security model that formally de�nes the
properties we demand a 3-AKE protocol to ensure. In Section 7.5.1 we use this security model to
prove that the three main components P , P ′ and ENC yield a secure 3-AKE protocol. Before, we
detail in this section the main features provided by our 3-AKE protocol and informally justify
these properties.

Management of the security. The key hierarchy (between mk, ik, and sk), allows ED and
KS to manage the overall security of the system. The key exchange done between KS and ED
(steps 1-2, Section 7.2.2) can be initiated by any but only these two entities. Each 2-AKE done
between ED and KS creates a new intermediary key ik. This obsoletes the current intermediary
key shared by ED and XS ∈ {CS,AS}, and “disconnects” ED from XS by resetting ik at ED.
Hence, KS and ED can defend against a dishonest or corrupted XS.

Cryptographic separation of the layers. The use of two distinct intermediary keys ikc
and ika allows separating the communication layer (between ED and CS) and the application
layer (between ED and AS). The mutual authentication done between KS and, respectively, CS
and AS, guarantees that the intermediary keys are sent to and received from legitimate parties
only.

Secure connection to any server. The 3-AKE protocol allows ED to share an intermediary
key ik with any (communication or application) server. Moreover, ED can connect any such
server without impairing the security with another server. First, each 2-AKE run done between
ED and KS yields a di�erent intermediary key ik. Hence each partnered ED and XS use a distinct
key ik. Next, KS deletes its copy of ik as soon as it has been received by XS. Finally, P provides
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forward secrecy. The disclosure of the current master key mk (stored at ED and KS) does not
compromise a past output key ik. The forward secrecy ensured by P ′ and the security of the
channel established with ENC participate also in the con�dentiality of ik. Likewise, due to the
forward secrecy of P , past session keys sk (computed between ED and XS) remain private, even
if the current key ik (stored at ED and XS) is exposed

Quick session establishment. Once a �rst intermediary key ik is shared between ED and
XS, these two parties can perform as many 2-AKE runs (hence set up as many successive secure
channels) as wished without soliciting KS anymore (i.e., ED and XS repeat several times step 4
or 5, Section 7.2.2). This avoids overloading KS (which has to manage many ED and XS). An
additional consequence is also that the number and the frequency of the connections established
between ED and XS are hidden from KS.

7.3 Session Resumption Procedure

In this section, we explain how to shorten the genuine key exchange procedure of the 3-AKE
protocol such that ED and CS or AS, after a �rst successful protocol run involving KS, can
execute subsequent key exchanges without the need for KS to intervene.

7.3.1 Rationale for a Session Resumption Procedure

As explained in Section 7.2.4, after a �rst 2-AKE run with KS, ED shares an intermediary
key ik with XS ∈ {CS,AS}. Then, ED and XS can execute, from ik, subsequent 2-AKE runs
without soliciting KS anymore. Consequently, as soon as ED shares (distinct) intermediary keys
with several servers, it can quickly switch from one server to another back and forth without
the help of KS. This is particularly convenient for a mobile ED which must connect di�erent
communication providers (hence di�erent CS servers). Likewise, this allows ED to connect
several AS servers, hence to be securely used by di�erent application providers. Moreover, since
P guarantees forward secrecy, the disclosure of (the current value of) ik does not compromise
past session keys sk. We call this faster mode (without KS) a session resumption procedure.

Due to the intrinsic properties of the 2-AKE scheme P (see Section 7.2.3), any peer (ED or XS)
can initiate the key exchange. This implies that both peers can initiate the session resumption
procedure.

The main bene�t of this procedure is to give the ability to switch between servers without
soliciting KS. Avoiding the involvement of KS (that is, avoiding a whole 2-AKE run between
ED and KS), allows to save time, computation cost and communication cost for KS but mainly
for ED. Indeed, the ED we consider are low-resource, self-powered devices. The energy cost
to transmit and to receive data usually exceeds the cost of cryptographic processing [SP05;
WGE+05]. Hence it is worth saving as much as possible the amount of data exchanged to
compute a new session key.

Another limitation of a low-resource ED is its memory space. Being able to resume a session
with several servers implies storing simultaneously as many intermediary keys. This is likely
possible for a server but becomes prohibitive for such kind of ED. In Section 7.3.2, we present a
session resumption scheme that solves this issue.

7.3.2 Session Resumption Procedure for Low-resource ED

Overview of the procedure. The session resumption procedure for a low-resource ED with
XS ∈ {CS,AS} is made of two phases:
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(a) The storage phase. ED and XS have an ongoing secure channel set up with a session key
sk (output by P ). Both share an intermediary key ik. First, ED encrypts ik under a key
known only to itself (we elaborate on this below). Next, ED sends the resulting “ticket” to
XS through the ongoing secure channel. Upon reception of the ticket by XS, ED deletes
ik. Then ED can close the channel any time.

(b) The retrieval phase. ED starts a new 2-AKE run with a known XS. First, ED gets, in the
continuity of the run, the ticket it has sent previously. Next, ED decrypts the ticket and
gets the corresponding key ik. Then, ED and XS complete the run with ik, and compute
a new session key sk.

This procedure is reminiscent of existing schemes (e.g., [SZET08; Res18; ST10]), yet intended
to a di�erent context than IoT. However none of the latter succeeds in combining session
resumption and forward secrecy without asymmetric cryptography or prohibitive requirements
(for a constrained ED) regarding memory, or the amount of transmitted data [Res18; AGJ19]. In
Section 7.3.3 we compare our proposal with other resumption schemes. In contrast, our 3-AKE
protocol provides a shrewd solution to this issue, as explained below.

Computing the ticket. The intermediary key ik that is stored at the server and later retrieved
by ED is encrypted. Only ED needs to decrypt ik since the server stores its own copy of the key.
Using the same encryption key k to protect di�erent intermediary keys (sent to di�erent servers)
obviously breaks forward secrecy: revealing k allows decrypting past intermediary keys, hence
compromising the session keys sk computed with the latter. Therefore each intermediary key
must be encrypted with a di�erent key k. However, replacing in ED’s memory each intermediary
key ik with another (encryption) key k yields the same memory issue and is pointless. Therefore,
we compute the keys k used to encrypt the intermediary keys as elements of a one-way key
chain.

From an initial random key k0, each ticket is computed as ticketi+1 = KW(ki+1, ik) with
ki+1 = H(ki), i ≥ 0. KW is a key-wrap function [RS06], and H a one-way function. ED keeps
in memory only one key kj . This key is the child of the key that has decrypted the last used
ticket. When ED wants to consume ticketi, it �rst computes the decryption key ki from the
current key kj , i ≥ j: ki = Hi−j(kj). Then kj is replaced with ki+1 = H(ki), and ticketi cannot
be decrypted anymore.

This unique encryption key gives ED the ability to compute multiple tickets, therefore to
resume as many sessions.

Two chains of keys. When ticketi is used, the current decryption key is replaced with
ki+1 = H(ki). Hence any previous ticketj , j ≤ i, is obsoleted. Let us consider the following
scenario. A mobile low-resource ED is managed by one AS, and switches back and forth
between two other servers CSa and CSb. ED stores fresh ticketi, ticketj , and ticketk, i < j < k,
respectively at AS, CSa, and CSb. ED keeps the decryption key ki. When ED makes a new key
exchange with CSa, it retrieves ticketj and decrypts it with kj = Hj−i(ki). Then, ED replaces
the current key ki with kj+1 = H(kj). Whenever ED alternates between CSa and CSb, the ticket
decryption key is updated. Consequently, ED cannot compute again ki and decrypt ticketi
which becomes unusable. Even though ticketi was the most recent ticket, it would be obsoleted
at some point. This makes the session resumption procedure unusable with AS. Therefore, we
advocate the use of two chains of decryption keys corresponding to the two types of CS and
AS servers, and the two possibly di�erent behaviours of ED (see Figure 7.4). Nonetheless, if a
di�erent context requires so, a unique chain of decryption keys can also be maintained.



174 Chapter 7 Three-party AKE

If the tickets are used in the same order they are computed, all can be (legitimately) decrypted.
In particular, according to us, it is likely, that ED, when alternating between several CS servers
(or, equivalently, between several AS servers) uses the corresponding tickets accordingly.

Figure 7.4a depicts the case where a CS ticket (ticketi) is used. The corresponding decryption
key ki is deleted, and ED keeps only ki+1. This obsoletes all previous CS tickets. Figure 7.4b
depicts the case where an AS ticket (ticket′0) is used. The decryption key k′0 is deleted, and ED
keeps only k′1. All AS ticket′j , j ≥ 1, are still usable.

k0

k1

...

ki

ki+1

ticket0

ticket1

ticketi

ticket′j+1

H

H

H

H

(a) CS tickets and keys

k′0

k′1

...

k′j

k′j+1

ticket′0

ticket′1

ticket′j

ticket′j+1

H

H

H

H

(b) AS tickets and keys

Figure 7.4 – Chains of keys used to compute a ticket. The tickets already used cannot be
decrypted because the corresponding key cannot be computed anymore. The used
tickets and their key appear in a dashed box . The current key and the available
tickets appear in blue.

Maintaining forward secrecy. When ticketi is used, the current encryption key kj , j ≤ i,
stored at ED, is replaced with the next encryption key ki+1 = H(ki). This forbids any old
ticket from being decrypted. All the remaining tickets that can be decrypted (from the now
current key ki+1) have not been used yet. Moreover, the protocol P provides forward secrecy.
Hence, the disclosure of the intermediary key ik protected into a (not used yet) ticket does
not compromise past session keys sk. In a way, the session resumption procedure inherits the
forward secrecy from P (and also the one-wayness of function H). This property is formally
proved in Section 7.5.2.

The use of the (forward secret) intermediary key ik highlights also why encrypting the
session key sk in the ticket is not a good choice. The more data the same session key protects,
the worse its disclosure.

Remark. Another reason to opt for ik is e�ciency. In fact, sk may be quite large (e.g., two pairs
of keys, encryption and MAC, for each direction, and the last value of the uplink and downlink
frame counters). The ticket is transmitted twice between ED and XS. As explained above, the
amount of data exchanged with the server is a burden for a wireless low-resource ED. From a
single intermediary key ik, any kind of security parameters can be computed. Hence the choice
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of ik.

7.3.3 Comparison with Other Session Resumption Schemes

To the best of our knowledge, no IoT protocol proposes a session resumption scheme. Nonethe-
less, such schemes exist in other contexts.

In TLS 1.2 [DR08], the server can encrypt the “master secret” and store that “Session Ticket”
[SZET08] at the client. In TLS 1.3 [Res18], the server encrypts a “resumption master secret”
(RMS) output by the previous key exchange, and stores it at the client. In IKEv2 [KHN+14], a
similar approach is used [ST10].

From the same secret value, used as symmetric master key, successive runs can be executed
with these (TLS, IKE) procedures. Hence disclosure of the reused secret may compromise
several past sessions: this breaks forward secrecy. In TLS 1.3, a fresh secret can be added to
the key derivation computation, but this implies applying the Di�e-Hellman scheme [DH76].
Moreover, in TLS, the same Session Ticket Encryption Key (STEK) is used by the server to
encrypt several RMS values (corresponding to di�erent clients). Hence a STEK may be persistent
in the server’s memory and its disclosure compromises past sessions. Therefore these solutions
are not satisfactory with respect to forward secrecy.

Aviram, Gellert, and Jager [AGJ19] propose a resumption scheme aiming at guaranteeing
forward secrecy and non-replayability when 0-RTT is used in TLS 1.3. They describe two
concrete instantiations. One is based on RSA [RSA78], the other is a tree-based scheme. As all
the aforementioned session resumption schemes, Aviram et al.’s proposal implies storing a ticket
at the client. Therefore the number of tickets to store grows with the number of servers the
client can resume a session with. Hence, low-resource end-devices with constrained memory
cannot apply these schemes.

Reversing the roles taken by the client and the server (i.e., the client computes and the server
stores the ticket) is not su�cient. First, the Aviram et al.’s RSA based scheme is excluded, despite
its elegance, for low-cost IoT end-devices that can only implement symmetric-key functions.
Moreover, their tree-based scheme implies that the decryption key grows (up to some point)
each time a ticket is used, which is prohibitive for the end-device (client).

The two schemes (RSA- and tree-based) described by Aviram et al. allow computing a �xed
number of tickets (say n). One key (asymmetric or symmetric depending on the scheme) is
used to yield the n tickets. In order to compute a new batch of n tickets, a new key must be
generated and stored by the server. We observe that, if a new batch of n tickets is computed
whereas it remains even one ticket not used yet from the previous batch, two keys (the current
and the new one) must be stored concurrently in the server’s memory.

Aviram et al. propose also an alternative that trades decryption key size for ticket size.
However sending (and retrieving) big tickets is an issue for a low-resource end-device. As
noticed by Aviram et al., each transmitted bit costs energy, which limits the battery lifetime of
self-powered end-devices.

The resumption scheme we describe reverses the roles of client (end-device) and server. At
the same time it mitigates the issues related to memory space, computation cost, and amount of
transmitted data.

7.4 Concrete Instantiation

In this section we present a concrete instantiation of our 3-AKE protocol described in Section 7.2.
We have to choose a 2-AKE-secure protocol P , a 2-AKE-secure protocol P ′, and a secure
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authenticated encryption function ENC.
Regarding protocol P , we recall that it must ful�ll the properties listed in Section 7.2.3, which

includes the essential forward secrecy. We describe an instantiation of P with (Section 7.4.2)
and without (Section 7.4.1) the session resumption procedure for low-resource ED.

7.4.1 Forward Secret 2-AKE Protocol P

We instantiate the 2-AKE protocol P with the SAKE protocol described in Chapter 6. SAKE
ful�lls all the properties listed in Section 7.2.3.1

We recall that SAKE uses a key-evolving scheme, based on a one-way function, to update
the symmetric root key shared by the two peers. Thus, applying SAKE, ED and KS compute an
intermediary ik with their shared master key mk (used as SAKE root key). The current master
key is then updated with the one-way function update: mki+1 ← update(mki). Likewise,
applying SAKE, ED and XS ∈ {CS,AS} compute a session key sk with the key ik they share
(used as SAKE root key in that case). Eventually, the SAKE root key used in that case is updated:
ikt+1 ← update(ikt).

mk0mk0

mk1mk1
· · ·

update

mk0ik0 ik1 ik2ik2

ik3ik3
· · ·

...

sk0 sk1 sk2 sk3

K
D
F

update
K
D
F

K
D
F

Figure 7.5 – Key chains in SAKE

Figure 7.5 depicts the evolution of the three types of keys over time: the master key mk,
the intermediary key ik, and the session key sk. The computation of ik0 and mk1 from mk0

corresponds to the 2-AKE run executed between ED and KS as depicted by Figure 7.2a. The
computation of sk2 and ik3 from ik2 corresponds to the 2-AKE run done between ED and CS
(resp. AS) with ik = ikc (resp. ik = ika) as depicted by Figure 7.3a (resp. Figure 7.3b). Note that
the keys ikc and ika are computed from two di�erent values mk (i.e., yielded by two di�erent
2-AKE runs between ED and KS). In Figure 7.5, the branch mk0 → mk1 → · · · corresponds
to the evolution of mk throughout successive key exchange runs executed between ED and
KS. Each of these runs yields a new intermediary key ik = ik0. The branch ik0 → ik1 → · · ·
corresponds to the evolution of ik throughout successive key exchange runs (each one outputting
a session key ski) executed between ED and XS without the involvement of KS.

1Any other 2-AKE protocol can be used, as long as it provides the same properties as SAKE, but we are not
aware of other such protocols.
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7.4.2 Protocol P with Session Resumption Scheme for Low-resource ED

In this section, we describe a session resumption scheme dedicated to low-resource ED. This
scheme (i) ful�lls the features of the procedure described in Section 7.3.2, and (ii) is a 2-AKE-
secure protocol (which include, in particular, forward secrecy). Recall that the session resumption
procedure is made of two phases (see Section 7.3.2): the storage phase (phase (a)) and the retrieval
phase (phase (b)). The retrieval phase of the scheme for low-resource ED is a variant of the
SAKE protocol adapted to include the use of the ticket. We call this variant SAKE-R.

Session resumption procedure with SAKE-R. Figure 7.6 depicts the two phases of the
procedure regarding the evolution of the keys.

mk0 mk1 · · ·

ik0 ik1 ik2

sk0 sk1

ik2 ik3 · · ·

sk2 sk3

pause (phase (a))

resume (phase (b))•

Figure 7.6 – Resuming a chain of intermediary keys (from ik2)

Figure 7.7 depicts the storage phase of the session resumption procedure. The computation
Hn(kj) = H(· · ·H(H(kj)) · · · ) corresponds to n times the application of function H, where n is
the “distance” between the current key kj stored by ED and the (new) key ki needed to encrypt
ik (i.e., n = i− j). SAKE (hence SAKE-R) uses two main keys: an authentication key K ′ and a
derivation key K . Therefore, ik corresponds to K‖K ′.

The parameter idticket indicates what key (i.e., its index in the key chain) must be used to
decrypt the ticket, and idserver identi�es the server that stores the ticket.

During the storage phase, ED merely sends the ticket through the ongoing secure channel
established with XS (see Section 7.3.2). When ED initiates the retrieval phase with SAKE-R (see
Figure 7.8), the �rst message sent to XS carries an identi�er of the ticket to retrieve. XS responds
with the corresponding ticket. The parameter idticket indicates which key ki (i.e., essentially its
index i) must be used to decrypt the corresponding ticket.

The subsequent messages are essentially the same as the original SAKE protocol. They
embed pseudo-random values that participate in the mutual authentication, and the session
key computation. When the server is the initiator, the ticket is sent in the �rst message (see
Figure 7.9).

Once ED gets ik, the ticket decryption key kj currently kept by ED is replaced with ki+1 =
H(ki), where ki is the key used to decrypt the retrieved ticket (see Section 7.3.2). Therefore, ED
rejects any replay of an already consumed ticket.

We can observe that ED updates its root key ik = K‖K ′ upon reception of message mB .
If XS does not receive message τA, it does not update its own root key ik. Hence ED and the
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ED XS

ki ← Hn(kj)
// ik = K‖K ′
ticket← KW(ki, ik)
store (idticket, idserver)

idticket‖ticket−−−−−−−−−−−−−−−−−−→
store (idticket, ticket, ik)

ack←−−−−−−−−−−−−−−−−−−
delete ik

Figure 7.7 – Storage of a ticket

server are “desynchronised” (i.e., they do not share the same value of ik). When ED initiates
anew the key exchange, it executes the SAKE protocol (and not SAKE-R) since it has already
retrieved ik. SAKE enables ED and XS to resynchronise in the continuity of the protocol run
(i.e., SAKE is self-synchronising). Therefore, ED and XS can perform a correct key exchange,
and eventually compute a shared session key sk.

For the sake of clarity we use the following notation:

• kdf corresponds to: sk ← KDF(K, f(rA, rB))

• upd corresponds to
1. K ← update(K)

2. K ′ ← update(K ′)

Function f is deliberately left unde�ned. For instance, f(rA, rB) can be equal to the concate-
nation or the bitwise addition of rA and rB .2 KDF is the session key derivation function used
in SAKE (and SAKE-R). update is the one-way function used to update the root key (i.e., the
intermediary key ik in that case). Vrf(k,m, τ) denotes the MAC veri�cation function. It takes
as input a secret key k, a message m, and a tag τ . It outputs true if τ is a valid tag on message
m with respect to k. Otherwise, it returns false.

We chose to model H and KDF as PRFs, and KW as an AE function.

7.4.3 Protocol P ′ and Function ENC

We instantiate the 2-AKE protocol P ′ with TLS 1.3. In order not to impair the security, we
enforce (EC)DHE and forbid 0-RTT mode. We de�ne the ENC function to be the record layer of
TLS 1.3.

2The function f must be chosen such that the security of KDF is not impaired. We assume here that the
cryptographic functions used are ideal (investigating this topic is beyond the scope of this chapter).
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ED [A] XS [B]
(−) (K,K ′)

(kj , idticket) (idticket, ticket)

rA
$←− {0, 1}λ

mA ← A‖rA‖idticket
mA−−−−−−−→

if (idticket not found) then
abort

rB
$←− {0, 1}λ

τB ← MAC(K ′, B‖A‖rB‖rA‖idticket‖ticket)
mB ← rB‖ticket‖τB

mB←−−−−−−−
ki ← Hn(kj)
ik ← KW−1(ki, ticket)
if (ik = ⊥) then

abort

// ik = K‖K ′
if (Vrf(K ′, B‖A‖rB‖rA‖idticket‖ticket, τB) = false) then

abort

ki+1 ← H(ki)
delete kj , ki

τA ← MAC(K ′, A‖B‖rA‖rB)

sk ← kdf
K,K ′ ← upd

τA−−−−−−−→
if (Vrf(K ′, A‖B‖rA‖rB, τA) = false) then

abort

sk ← kdf
K,K ′ ← upd

τ ′B ← MAC(K ′, rB‖rA)
delete ticket

τ ′B←−−−−−−−
if (Vrf(K ′, rB‖rA, τ ′B) = false) then

abort

Figure 7.8 – Session Resumption with SAKE-R initiated by ED
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ED [B] XS [A]
(−) (K,K ′)

(kj , idticket) (idticket, ticket)

rA
$←− {0, 1}λ

mA ← A‖rA‖idticket‖ticket
mA←−−−−−−−

if (idticket not found) then
abort

ki ← Hn(kj)
ik ← KW−1(ki, ticket)
if (ik = ⊥) then

abort

ki+1 ← H(ki)
delete kj , ki

// ik = K‖K ′

rB
$←− {0, 1}λ

τB ← MAC(K ′, B‖A‖rB‖rA)
mB ← rB‖τB

sk ← kdf
K,K ′ ← upd

mB−−−−−−−→
if (Vrf(K ′, B‖A‖rB‖rA, τB) = false) then

abort

sk ← kdf
K,K ′ ← upd

τA ← MAC(K ′, A‖B‖rA‖rB)
delete ticket

τA←−−−−−−−
if (Vrf(K ′, A‖B‖rA‖rB, τA) = false) then

abort

Figure 7.9 – Session Resumption with SAKE-R initiated by XS ∈ {CS,AS}
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7.5 Security Proofs

In this section we use the 3-AKE security model described in Chapter 5, Section 5.2, to prove the
security of our schemes. We begin with the generic 3-AKE protocol Π depicted in Section 7.2,
and follow with the instantiation described in Section 7.4.

7.5.1 Generic 3-AKE Protocol

The protocol Π is based on: (i) the 2-AKE protocol P executed between ED and KS, ED and XS,
(ii) the 2-AKE protocol P ′ executed between KS and XS, and (iii) the function ENC used to set
up a secure channel between KS and XS with a session key output by P ′. Informally, the security
of the 3-AKE protocol Π relies on the 2-AKE-security of P and P ′ (Chapter 2, Section 2.3.1),
and on the sAE-security of the function ENC (with respect to the real-or-random variant, see
Chapter 2, Section 2.2.5). Based on the security of P , P ′, and ENC, we show that Π is a secure
3-AKE protocol according to De�nition 5.4.
P is a symmetric-key based protocol, whereas P ′ can implement asymmetric schemes.

Therefore, with respect to the security model, we de�ne the long-term key ltk of each party to
be ltk = (pubk, prvk, rootk) where (i) pubk is a certi�ed public key, (ii) prvk is the corresponding
private key, and (iii) rootk is a symmetric root key. We recall that K, X , and E are respectively
the sets of KS, XS, and ED parties. For any party in K, the three components of ltk are de�ned.
For any party in X , ltk is fully de�ned after the �rst 3-AKE run (before, rootk =⊥). For any
party in E , ltk = (⊥,⊥, rootk).

Theorem 7.1. The protocol Π is a secure 3-AKE protocol under the assumption that P is a secure
2-AKE protocol, P ′ is a secure 2-AKE protocol, and ENC is a secure sAE function, and for any
probabilistic polynomial time adversary A in the 3-AKE security experiment against Π

advent-authΠ (A) = nK · nE · nX
[
2advent-authP (B1) + advent-authP ′ (B0) + advkey-ind

P ′ (B0)

+ 2advsaeENC(B2)
]

advkey-ind
Π (A) = advent-authΠ (A) + nK · nE · nX

[
2advkey-ind

P (B1) + advkey-ind
P ′ (B0)

+ advsaeENC(B2)
]

where nK , nE , nX are respectively the number of KS, ED, and XS parties, and B0 is an adversary
against the 2-AKE-security of P ′, B1 an adversary against the 2-AKE-security of P , and B2 an
adversary against the sAE-security of ENC.

In order to prove Theorem 7.1, we proceed through a sequence of games [Sho04; BR04]
between a challenger and an adversary A.

Entity authentication. First we consider the entity authentication experiment described in
Section 5.2.2.

Proof. Let Ei be the event that the adversary succeeds in making an instance accept maliciously
in Game i. We use the following hops.

Game 0. This game corresponds to the entity authentication security experiment described
in Section 5.2.2. Therefore we have that

Pr[E0] = advent-authΠ (A).
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Game 1. In this game, the challenger aborts the experiment if it does not guess the party the
adversary targets, and its party partners. There are respectively nK , nE , nX parties in the sets
K, E , and X . Therefore we have that

Pr[E1] = Pr[E0]× 1

nK · nE · nX
.

Game 2. Now the parties Pk ∈ K, Pj ∈ X and Pi ∈ E are �xed. In this game, the challenger
aborts the experiment if the adversary succeeds in impersonating Pj to Pk or conversely. We
reduce this event to the 2-AKE-security (with respect to entity authentication) of the protocol
P ′ applied between Pk and Pj . Therefore we have that

Pr[E1] ≤ Pr[E2] + advent-authP ′ (B0)

where B0 is an adversary against the 2-AKE-security of P ′.
This guarantees that to each instance πsk ∈ Pk.Instances there exists a unique instance

πvj ∈ Pj .Instances such that πsk.sid = πvj .sid (and conversely).

Game 3. In this game, the challenger aborts the experiment if the adversary succeeds in
impersonating Pi to Pk or conversely. We reduce this event to the 2-AKE-security (with respect
to entity authentication) of the protocol P applied between Pk and Pi. Therefore we have that

Pr[E2] ≤ Pr[E3] + advent-authP (B1)

where B1 is an adversary against the 2-AKE-security of P .
This guarantees that to each instance πmi ∈ Pi.Instances there exists a unique instance

π`k ∈ Pk.Instances such that πmi .sid = π`k.sid (and conversely).

Game 4. Another way for the adversary to win the entity authentication security experiment
is to get the intermediary key ik used by Pi and Pj to mutually authenticate, or to forge a
valid message intended to Pj that carries an intermediary key chosen by the adversary. In this
game, the challenger aborts the experiment if the adversary succeeds in either case. The secure
channel between Pk and Pj is established with the function ENC keyed with the session key
output by P ′. We reduce each of the two events to the sAE-security of ENC. In turn, we must
assume that the ENC key is random. The latter is reduced to the 2-AKE-security (with respect
to key indistinguishability) of P ′. Therefore we have that

Pr[E3] ≤ Pr[E4] + advkey-ind
P ′ (B0) + 2advsaeENC(B2)

where B2 is an adversary against the sAE-security of ENC.

Game 5. In this game, the challenger aborts the experiment if the adversary succeeds in
impersonating Pi to Pj or conversely. We reduce this event to the 2-AKE-security (with respect
to entity authentication) of P . Therefore we have that

Pr[E4] ≤ Pr[E5] + advent-authP (B1).

Due to Game 4 and Game 5, we have that, to each instance πni ∈ Pi.Instances, there exists a
unique instance πuj ∈ Pj .Instances such that πni .sid = πuj .sid (and conversely). Due to Game 4,
the intermediary key ck = ik shared by πmi and π`k is also known to πvj (i.e., ik = πmi .ck =
πvj .km). Due to Game 5, πni .sid = πuj .sid. Hence πni .trscrpt = πuj .trscrpt. We de�ne function
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g to be the key derivation function that outputs the session key πni .ck = πuj .ck = sk from
the root key ik and the messages exchanged between πni and πuj . Therefore, we have that
g(πmi .ck, π

n
i .trscrpt) = πni .ck = πuj .ck = g(πvj .km, π

u
j .trscrpt).

To that point, the adversary has no chance to win. Therefore

Pr[E5] = 0.

Collecting all the probabilities from Game 0 to Game 5, we have that

advent-authΠ (A) = Pr[E0]

= nK · nE · nX · Pr[E1]

≤ nK · nE · nX
[
Pr[E2] + advent-authP ′ (B0)

]
≤ nK · nE · nX

[
Pr[E3] + advent-authP (B1) + advent-authP ′ (B0)

]
≤ nK · nE · nX

[
Pr[E4] + advkey-ind

P ′ (B0) + 2advsaeENC(B2) + advent-authP (B1)

+ advent-authP ′ (B0)
]

≤ nK · nE · nX
[
Pr[E5] + advkey-ind

P ′ (B0) + 2advsaeENC(B2) + 2advent-authP (B1)

+ advent-authP ′ (B0)
]

≤ nK · nE · nX
[
advkey-ind

P ′ (B0) + advent-authP ′ (B0) + 2advent-authP (B1)

+ 2advsaeENC(B2)
]

Key indistinguishability. Now we consider the key indistinguishability security experiment
described in Section 5.2.2.

In order to win the key indistinguishability experiment, the adversary can �rst try to break
protocol P applied between ED and KS, or protocol P ′ applied between KS and XS. Then the
adversary can target the session key shared between ED and XS through two ways. Firstly, the
adversary can try to get the key ik sent by KS to XS, and protected with function ENC (ik is
used by ED and XS to derive their session key). Secondly, the adversary can try to “directly”
break protocol P applied between ED and XS which yields the session key. This is re�ected by
the successive games below.

Proof. Let Ei be the event that the adversary wins in Game i, and advi = Pr[Ei]− 1
2
. We use

the following hops.

Game 0. This game corresponds to the key indistinguishability security experiment described
in Section 5.2.2. Therefore we have that

Pr[E0] = adv0 +
1

2
= advkey-ind

Π (A) +
1

2
.

Game 1. In this game, the challenger aborts the experiment and chooses b′ ∈ {0, 1} uniformly
at random if there exists an instance that maliciously accepts. In other words, we make the same
modi�cations as in the games performed during the entity authentication proof. Therefore

adv0 ≤ adv1 + advent-authΠ (A).
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Game 2. In this game, the adversary aborts the experiment if it does not guess the party the
adversary targets, and its party partners. There are respectively nK , nE , nX parties in the sets
K, E and X . Therefore

adv2 = adv1 ×
1

nK · nE · nX
.

Game 3. Now the parties Pk ∈ K, Pj ∈ X and Pi ∈ E are �xed. Moreover, the conditions
of De�nition 5.2 are satis�ed. This means in particular that each instance ending in accepting
state is pairwise partnered with a unique instance.

In this game, we replace the session key ik output by the 2-AKE run of protocol P between
Pi and Pk with a truly random value ĩk. The challenger aborts the game if there is an algorithm
able to distinguish between both values. We reduce this event to the 2-AKE-security (with
respect to key indistinguishability) of P . Therefore, we have that

adv2 ≤ adv3 + advkey-ind
P (B1)

where B1 is an adversary against the 2-AKE-security of P .

Game 4. In this game, we replace the session key output by the 2-AKE run of protocol P ′
between Pk and Pj with a truly random value. The challenger aborts the game if there is an
algorithm able to distinguish between both values. We reduce this event to the 2-AKE-security
(with respect to key indistinguishability) of P ′. Therefore, we have that

adv3 ≤ adv4 + advkey-ind
P ′ (B0)

where B0 is an adversary against the 2-AKE-security of P ′.

Game 5. The key (allegedly ik) sent by Pk to Pj is protected with ENC, which is keyed with
the session key output by P ′. The adversary can try to get the key ĩk, and then compute the
session key sk shared between Pi and Pj . We reduce this event to the sAE-security of ENC. In
turn, this relies implicitly on the fact that the encryption key used to key ENC (and which is
output by P ′) be indistinguishable from random. This is the case due to Game 4. Therefore,
in this game, the challenger aborts the experiment if the adversary succeeds in getting ik. We
have that

adv4 ≤ adv5 + advsaeENC(B2).

Game 6. Finally, in order to win the experiment, the adversary can try to break the 2-AKE-
security (with respect to key indistinguishability) of P executed between Pi and Pj . Therefore
we have that

adv5 ≤ adv6 + advkey-ind
P (B1).

To that point, the adversary can do no better than guessing. Therefore

adv6 = 0.
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Collecting all the probabilities from Game 0 to Game 6, we have that

advkey-ind
Π (A) = adv0

≤ advent-authΠ (A) + adv1

≤ advent-authΠ (A) + nK · nE · nX · adv2

≤ advent-authΠ (A) + nK · nE · nX
[
adv3 + advkey-ind

P (B1)
]

≤ advent-authΠ (A) + nK · nE · nX
[
adv4 + advkey-ind

P ′ (B0) + advkey-ind
P (B1)

]
≤ advent-authΠ (A) + nK · nE · nX

[
adv5 + advsaeENC(B2) + advkey-ind

P ′ (B0)

+advkey-ind
P (B1)

]
≤ advent-authΠ (A) + nK · nE · nX

[
adv6 + advsaeENC(B2) + advkey-ind

P ′ (B0)

+2advkey-ind
P (B1)

]
≤ advent-authΠ (A) + nK · nE · nX

[
advsaeENC(B2) + advkey-ind

P ′ (B0)

+2advkey-ind
P (B1)

]

7.5.2 SAKE-R

In this section, we prove the security of SAKE-R. We consider the case where ED initiates
SAKE-R (see Figure 7.8). The converse case, where the XS is the initiator, follows the same
reasoning and is not detailed here.

With the following theorem we claim that SAKE-R is a secure 2-AKE protocol with respect
to the security model of Brzuska et al. [BJS16] described in Chapter 2, Section 2.3.1. For any
ED, the long-term key ltk is de�ned as ltk = (K,K ′, kj). That is, a Corrupt-query returns the
derivation master key K , the authentication master key K , and the ticket encryption key kj .
For any XS, ltk is de�ned as ltk = (K,K ′). In that case, a Corrupt-query returns K and K ′.

Theorem 7.2. The protocol SAKE-R is a secure 2-AKE protocol, and for any probabilistic polyno-
mial time adversary A in the 2-AKE security experiment against SAKE-R

advent-authSAKE-R(A) ≤ nq
[
(nq − 1)2−(λ−1) + 2(q − 1)advprfH (B0) + 2advaeKW(B1)

+3advsuf-cma
Tag (B2) + q · advprfupdate(B3)

]
advkey-ind

SAKE-R(A) ≤ advent-authSAKE-R(A) + nq
[
2
(
advaeKW(B1) + advprfKDF(B4)

)
+(q − 1)

(
advprfupdate(B3) + 2advprfH (B0)

)]
where n is the number of parties (ED and XS), q the maximum number of instances (sessions) per
party, λ the size of the pseudo-random values (rA, rB), B0 an adversary against the PRF-security
of H, B1 an adversary against the AE-security of KW, B2 an adversary against the SUF-CMA-
security of Tag = (Tag.Gen,Tag.MAC,Tag.Vrf), B3 an adversary against the PRF-security of
update, and B4 an adversary against the PRF-security of KDF.
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The security proof for SAKE-R follows essentially the same steps as the proof for SAKE (see
Chapter 6, Section 6.3).

We de�ne functions H and update to be two PRFs. That is H : y 7→ PRFH(y, x) and
update : y 7→ PRFupdate(y, x

′) for some (constant) values x and x′.

Entity authentication. We start with the 2-AKE entity authentication experiment.

Proof. Let advent-authSAKE-R(A) be the probability that the adversary wins the entity authentication
game. Let advent-authSAKE-R,client(A) be the probability that an adversary succeeds against a client
(ED), and advent-authSAKE-R,server(A) the probability that an adversary succeeds against a server (XS).
We have that

advent-authSAKE-R(A) ≤ advent-authSAKE-R,client(A) + advent-authSAKE-R,server(A).

Client adversary. We �rst consider an adversary that targets a client. Let Ei be the event that
the adversary succeeds in making a client instance accept maliciously in Gameclient i.

Gameclient 0. This game corresponds to the 2-AKE entity authentication security experiment
when the adversary targets a client instance. Therefore

Pr[E0] = advent-authSAKE-R,client(A).

Gameclient 1. In this game, the challenger aborts the experiment if there exists an instance that
chooses a random value rA or rB that is not unique. There is at most n× q random values, each
uniformly drawn at random in {0, 1}λ. Hence the two games are equivalent up to a collision
term nq(nq−1)

2λ
. Therefore

Pr[E0] ≤ Pr[E1] +
nq(nq − 1)

2λ
.

Gameclient 2. In this game, the challenger aborts the experiment if it does not guess which
client instance will be the �rst to maliciously accept. There is n parties and q instances per
party. Therefore we have that

Pr[E2] = Pr[E1]× 1

nq
.

Gameclient 3. The �rst key k0 used to compute a ticket is uniformly drawn at random. The
next encryption key k1 is computed as k1 = H(k0) = PRFH(k0, x). Since k0 is random, we
can replace PRFH(k0, ·) with a truly random function FH

k0
. We do the same for any server

instance that uses function H with the same key k0 to compute k1. Distinguishing the change
implies an algorithm able to distinguish function H from a random function. This corresponds
to an advantage advprfH (B0) where B0 is an adversary against the PRF-security of H. Since
PRFH(k0, ·) is replaced with a random function FH

k0
, k1 = FH

k0
(x) is random. In turn, we can

replace PRFH(k1, ·) with a truly random function FH
k1

. Recursively, we replace each function
PRFH(ki, ·) with a truly random function FH

ki
. There is at most q instances per party, hence at

most q−1 updates of the original key k0 before computing a ticket (that is, 0 ≤ i < q). Therefore,
distinguishing the successive changes corresponds to an advantage at most (q − 1)advprfH (B0).
Consequently, in this game, the challenger aborts the experiment if the adversary is able to
distinguish any of these changes. Therefore, we have that

Pr[E2] ≤ Pr[E3] + (q − 1)advprfH (B0).
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Gameclient 4. In this game, the challenger aborts the experiment if the adversary is able to get
the key ik from ticket = KW(ki, ik), 0 ≤ i < q. We reduce this event to the AE-security of
function KW which guarantees real-from-random indistinguishability for the plaintexts (this is
possible because ki is indistinguishable from random due to Gameclient 3). Therefore we have
that

Pr[E3] ≤ Pr[E4] + advaeKW(B1)

where B1 is an adversary against the AE-security of KW.

Gameclient 5. In this game, the challenger aborts the experiment if the targeted instance π
ever receives a valid message mB but no instance partnered with π has output that message.
Due to Gameclient 4, ik = K‖K ′ (hence K ′) can be safely replaced with a truly random value.
Therefore, we reduce this event to the SUF-CMA-security of the MAC function (keyed with K ′)
used to compute mB . Therefore, we have that

Pr[E4] ≤ Pr[E5] + advsuf-cma
Tag (B2)

where B2 is an adversary against the SUF-CMA-security of Tag.

Gameclient 6. The key used to compute the MAC tag τ ′B is update(K ′) = PRFupdate(K
′, x′). In

this game, we replace PRFupdate(K
′, ·) with a random function Fupdate

K′ . We do the same for any
server instance that uses the update function with the same key K ′. Distinguishing the change
implies an algorithm able to distinguish the function update from a random function. Therefore,
in this game, the challenger aborts the experiment if the adversary is able to distinguish such a
change. Hence

Pr[E5] ≤ Pr[E6] + advprfupdate(B3)

where B3 is an adversary against the PRF-security of update.

Gameclient 7. In this game, the challenger aborts the experiment if the targeted instance π
ever receives a valid message τ ′B but no instance partnered with π has output that message. Due
to Gameclient 6, the key used to compute the MAC tag τ ′B is truly random. Hence, we reduce
this event to the SUF-CMA-security of the MAC function used to compute τ ′B . Therefore, we
have that

Pr[E6] ≤ Pr[E7] + advsuf-cma
Tag (B2).

To that point, the adversary has no chance to win. Therefore

Pr[E7] = 0.
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Collecting all the probabilities from Gameclient 0 to Gameclient 7, we have that

advent-authSAKE-R,client(A) = Pr[E0]

≤ nq(nq − 1)

2λ
+ Pr[E1]

≤ nq(nq − 1)

2λ
+ nq × Pr[E2]

≤ nq(nq − 1)

2λ
+ nq

[
Pr[E3] + (q − 1)advprfH (B0)

]
≤ nq(nq − 1)

2λ
+ nq

[
Pr[E4] + advaeKW(B1) + (q − 1)advprfH (B0)

]
≤ nq(nq − 1)

2λ
+ nq

[
Pr[E5] + advsuf-cma

Tag (B2) + advaeKW(B1)

+(q − 1)advprfH (B0)
]

≤ nq(nq − 1)

2λ
+ nq

[
Pr[E6] + advprfupdate(B3) + advsuf-cma

Tag (B2)

+advaeKW(B1) + (q − 1)advprfH (B0)
]

≤ nq(nq − 1)

2λ
+ nq

[
Pr[E7] + advprfupdate(B3) + 2advsuf-cma

Tag (B2)

+advaeKW(B1) + (q − 1)advprfH (B0)
]

≤ nq(nq − 1)

2λ
+ nq

[
advprfupdate(B3) + 2advsuf-cma

Tag (B2) + advaeKW(B1)

+(q − 1)advprfH (B0)
]

≤ nq
[
(nq − 1)2−λ + advprfupdate(B3) + 2advsuf-cma

Tag (B2) + advaeKW(B1)

+(q − 1)advprfH (B0)
]

Server adversary. Now we consider an adversary that targets a server. Let Ei be the event
that the adversary succeeds in making a server instance accept maliciously in Gameserver i.

Gameserver 0. This game corresponds to the 2-AKE entity authentication security experiment
when the adversary targets a server instance. Therefore we have that

Pr[E0] = advent-authSAKE-R,server(A).

Gameserver 1. In this game, the challenger aborts the experiment if there exists an instance that
chooses a random value rA or rB that is not unique. There is at most n× q random values, each
uniformly drawn at random in {0, 1}λ. Hence the two games are equivalent up to a collision
term nq(nq−1)

2λ
. Therefore

Pr[E0] ≤ Pr[E1] +
nq(nq − 1)

2λ
.

Gameserver 2. In this game, the challenger aborts the experiment if it does not guess which
server instance will be the �rst to maliciously accept. There is n parties and q instances per
party. Therefore we have that

Pr[E2] = Pr[E1]× 1

nq
.
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Gameserver 3. In this game, we apply the same changes as in Gameclient 3. That is, since
ki+1 = H(ki) = PRFH(ki, x), i ≥ 0, we replace recursively PRFH(ki, ·) with a truly random
function FH

ki
. Each change yields a loss advprfH (B0). Therefore, we have that

Pr[E2] ≤ Pr[E3] + (q − 1)advprfH (B0).

Gameserver 4. In this game, the challenger aborts the experiment if the adversary is able to get
the key ik from ticket = KW(ki, ik), 0 ≤ i < q. We reduce this event to the AE-security of
function KW (this is possible because ki is indistinguishable from random due to Gameserver 3).
Therefore we have that

Pr[E3] ≤ Pr[E4] + advaeKW(B1)

where B1 is an adversary against the AE-security of KW.

Gameserver 5. The �rst value ofK ′ (K ′0) used to compute a MAC tag τA is uniformly chosen at
random. During the next protocol run, the key is replaced with update(K ′0) = PRFupdate(K

′
0, x
′).

Since K ′0 is random, we can replace PRFupdate(K
′
0, ·) with a truly random function Fupdate

K′0
. We

do the same for any client instance that uses function update with the same key K ′0. Dis-
tinguishing the change implies an algorithm able to distinguish the function update from a
random function. This corresponds to an advantage advprfupdate(B3). Since PRFupdate(K

′
0, ·) is

replaced with a random function Fupdate
K′0

, K ′1 = Fupdate
K′0

(x′) is random. In turn, we can replace
PRFupdate(K

′
1, ·) with a truly random function Fupdate

K′1
. Recursively, we replace each function

PRFupdate(K
′
i, ·) with a truly random function Fupdate

K′i
. There is at most q instances per party,

hence at most q − 1 updates of the original key K ′0 before computing a MAC tag τA (that is,
0 ≤ i < q). Therefore, distinguishing the successive changes corresponds to an advantage at
most (q − 1)advprfupdate(B3). Consequently, in this game, the challenger aborts the experiment if
the adversary succeeds in distinguishing any of these changes. Therefore, we have that

Pr[E4] ≤ Pr[E5] + (q − 1)advprfupdate(B3).

Gameserver 6. In this game, the challenger aborts the experiment if the targeted instance π
ever receives a valid message τA but no instance partnered with π has output that message.
Such a forgery can be achieved in one of two ways: either the adversary succeeds in forging a
valid MAC tag τA, or it gets the key K ′ carried in ticket. We reduce the �rst possibility to the
SUF-CMA-security of the MAC function used to compute τA. We reduce the second possibility
to the AE-security of function KW, which is already assumed due to Gameserver 4. Therefore,
we have that

Pr[E5] ≤ Pr[E6] + advsuf-cma
Tag (B2).

To that point, the adversary has no chance to win. Hence

Pr[E6] = 0.
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Collecting all the probabilities from Gameserver 0 to Gameserver 6, we have that

advent-authSAKE-R,server(A) = Pr[E0]

≤ nq(nq − 1)

2λ
+ Pr[E1]

≤ nq(nq − 1)

2λ
+ nq × Pr[E2]

≤ nq(nq − 1)

2λ
+ nq

[
Pr[E3] + (q − 1)advprfH (B0)

]
≤ nq(nq − 1)

2λ
+ nq

[
Pr[E4] + advaeKW(B1) + (q − 1)advprfH (B0)

]
≤ nq(nq − 1)

2λ
+ nq

[
Pr[E5] + (q − 1)advprfupdate(B3) + advaeKW(B1)

+(q − 1)advprfH (B0)
]

≤ nq(nq − 1)

2λ
+ nq

[
Pr[E6] + advsuf-cma

Tag (B2)

+(q − 1)advprfupdate(B3) + advaeKW(B1)

+(q − 1)advprfH (B0)
]

≤ nq
[
(nq − 1)2−λ + advsuf-cma

Tag (B2) + (q − 1)advprfupdate(B3)

+advaeKW(B1) + (q − 1)advprfH (B0)
]

Finally, we have that

advent-authSAKE-R(A) ≤ advent-authSAKE-R,client(A) + advent-authSAKE-R,server(A)

≤ nq
[
(nq − 1)2−(λ−1) + 2(q − 1)advprfH (B0) + 2advaeKW(B1)

+3advsuf-cma
Tag (B2) + q · advprfupdate(B3)

]

Key indistinguishability. Now we consider the 2-AKE key indistinguishability security
experiment.

Proof. Let Ei be the event that the adversary succeeds in making an instance accept maliciously
in Game i, and advi = Pr[Ei]− 1

2
.

Game 0. This game corresponds to the 2-AKE key indistinguishability security experiment.
Therefore we have

Pr[E0] =
1

2
+ advkey-ind

SAKE-R(A) =
1

2
+ adv0.

Game 1. In this game, the challenger aborts the experiment and chooses b ∈ {0, 1} uniformly
at random if there exists an instance that accepts maliciously. Therefore we have

adv0 ≤ adv1 + advent-authSAKE-R.
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Game 2. In this game, the challenger aborts the experiment if it does not guess which instance
the adversary targets. Therefore, we have that

adv2 = adv1 ×
1

nq
.

Game 3. We distinguish two cases: the adversary targets either a client instance or a server in-
stance, corresponding respectively to an advantage advkey-ind

SAKE-R,client(A) and advkey-ind
SAKE-R,server(A).

Therefore we have that

adv2 ≤ advkey-ind
SAKE-R,client(A) + advkey-ind

SAKE-R,server(A).

We begin with the �rst case.

Gameclient 3. In this game, we apply the same changes as in Gameclient 3 of the entity authen-
tication experiment. That is, since ki+1 = H(ki) = PRFH(ki, x), i ≥ 0, we replace recursively
PRFH(ki, ·) with a truly random function FH

ki
. Each change yields a loss advprfH (B0). Therefore,

we have that
advkey-ind

SAKE-R,client(A) ≤ advclient3 + (q − 1)advprfH (B0).

Gameclient 4. In this game, the challenger aborts the experiment if the adversary succeeds
in getting K from ticket = KW(ki, ik). We reduce this event to the AE-security of the KW
function (we use the fact that ki be indistinguishable from random due to Gameclient 3). Therefore
we have that

advclient3 ≤ advclient4 + advaeKW(B1).

Gameclient 5. In this game, we replace the KDF function used to compute the session key sk
when keyed with K , with a random function FKDF

K . We use the fact that K be indistinguishable
from random due to Gameclient 4. Consequently, the challenger aborts the experiment if the
adversary succeeds in distinguishing the change. Therefore, we have that

advclient4 ≤ advclient5 + advprfKDF(B4)

where B4 is an adversary against the PRF-security of KDF.
To that point, sk = FKDF

K (f(rA, rB)) is a random value. Therefore the adversary can do no
better than guessing. Hence

advclient5 = 0.

Collecting the probabilities from Gameclient 3 to Gameclient 5, we have that

advkey-ind
SAKE-R,client(A) ≤ advclient3 + (q − 1)advprfH (B0)

≤ advclient4 + advaeKW(B1) + (q − 1)advprfH (B0)

≤ advclient5 + advprfKDF(B4) + advaeKW(B1) + (q − 1)advprfH (B0)

≤ advprfKDF(B4) + advaeKW(B1) + (q − 1)advprfH (B0)

Now we consider the case where the adversary targets a server instance.
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Gameserver 3. The �rst value ofK (K0) used to compute the session key is uniformly chosen at
random. During the next protocol run, the key is replaced with update(K0) = PRFupdate(K0, x

′).
Since K0 is random, we can replace PRFupdate(K0, ·) with a truly random function Fupdate

K0
. We

do the same for any client instance that uses update function with the same key K0. Dis-
tinguishing the change implies an algorithm able to distinguish the function update from a
random function. This corresponds to an advantage advprfupdate(B3). Since PRFupdate(K0, ·) is
replaced with a random function Fupdate

K0
, K1 = Fupdate

K0
(x′) is random. In turn, we can replace

PRFupdate(K1, ·) with a truly random function Fupdate
K1

. Recursively, we replace each function
PRFupdate(Ki, ·) with a truly random function Fupdate

Ki
. There is at most q instances per party,

hence at most q − 1 updates of the original key K0 before computing a session key (that is,
0 ≤ i < q). Therefore, distinguishing the successive changes corresponds to an advantage at
most (q − 1)advprfupdate(B3). Consequently, in this game, the challenger aborts the experiment if
the adversary succeeds in distinguishing any of these changes. Therefore, we have that

advkey-ind
SAKE-R,server(A) ≤ advserver3 + (q − 1)advprfupdate(B3).

Gameserver 4. In this game, we apply the same changes as in Gameclient 3 of the entity authen-
tication experiment. That is, since ki+1 = H(ki) = PRFH(ki, x), i ≥ 0, we replace recursively
PRFH(ki, ·) with a truly random function FH

ki
. Each change yields a loss advprfH (B0). Therefore,

we have that
advserver3 ≤ advserver4 + (q − 1)advprfH (B0).

Gameserver 5. In this game, the challenger aborts the experiment if the adversary succeeds
in getting K from ticket = KW(ki, ik). We reduce this event to the AE-security of the KW
function (we use the fact that ki be indistinguishable from random due to Gameserver 4). Therefore
we have that

advserver4 ≤ advserver5 + advaeKW(B1).

Gameclient 6. In this game, we replace the KDF function used to compute the session key sk
when keyed with K , with a random function FKDF

K . We use the fact that K be indistinguishable
from random due to Gameserver 3 and Gameserver 5. Consequently, the challenger aborts the
experiment if the adversary succeeds in distinguishing the change. Therefore, we have that

advserver5 ≤ advserver6 + advprfKDF(B4).

To that point, sk = FKDF
K (f(rA, rB)) is a random value. Therefore the adversary can do no

better than guessing. Hence
advserver6 = 0.

Collecting the probabilities from Gameserver 3 to Gameserver 6, we have that

advkey-ind
SAKE-R,server(A) ≤ advserver3 + (q − 1)advprfupdate(B3)

≤ advserver4 + (q − 1)advprfH (B0) + (q − 1)advprfupdate(B3)

≤ advserver5 + advaeKW(B1) + (q − 1)advprfH (B0) + (q − 1)advprfupdate(B3)

≤ advserver6 + advprfKDF(B4) + advaeKW(B1) + (q − 1)advprfH (B0)

+(q − 1)advprfupdate(B3)

≤ advprfKDF(B4) + advaeKW(B1) + (q − 1)advprfH (B0)

+(q − 1)advprfupdate(B3)
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Finally, collecting all the probabilities, we have that

advkey-ind
SAKE-R(A) = adv0

≤ advent-authSAKE-R(A) + adv1

≤ advent-authSAKE-R(A) + nq · adv2

≤ advent-authSAKE-R(A) + nq
[
advkey-ind

SAKE-R,client(A) + advkey-ind
SAKE-R,server(A)

]
≤ advent-authSAKE-R(A) + nq

[
(q − 1)

(
advprfupdate(B3) + 2advprfH (B0)

)
+2
(
advaeKW(B1) + advprfKDF(B4)

)]

7.5.3 Achieving 3-AKE Security

In Chapter 6 we have proved that P = SAKE is a secure 2-AKE protocol in the Brzuska et
al. [BJS16] security model (which captures forward secrecy). Moreover P = SAKE-R is a
2-AKE-secure protocol from Theorem 7.2. With respect to the 3-AKE security model, we de�ne
the long-term key component rootk of any ED to be rootk = (K,K ′) if P = SAKE, and
rootk = (K,K ′, kj) if P = SAKE-R. That is, in the latter case, we allow the 3-AKE adversary
to get the ticket encryption key kj through a Corrupt-query, in addition to the derivation master
key K and the authentication master key K ′.
P ′ = TLS 1.3 is proved to be a secure 2-AKE protocol [DFGS16]. Although this result

applies to an earlier draft of the protocol, we may reasonably assume that the �nal version also
guarantees 2-AKE-security.

ENC de�ned as the record layer of TLS 1.3 is proved to be AE-secure [BMM+15] in the sense
of Rogaway [Rog02] (indistinguishability from random bits) which implies AE-security in the
sense of Shrimpton [Shr04] (real-from-random indistinguishability). In addition, in TLS 1.3, a
per-record nonce derived from a sequence number aims at guaranteeing non-replayability of
the records (the sequence number being maintained independently at both sides). Hence we
assume the sAE-security of ENC.

Hence, from Theorem 7.1, our instantiation (with and without the session resumption scheme
for low-resource ED) is a 3-AKE-secure protocol according to De�nition 5.4.
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Conclusion 8
We have presented new results in three �elds: �rstly in cryptanalysis of security

protocols, secondly in security models, and �nally in key establishment mecha-
nisms in the symmetric-key setting between two and three parties. In this conclu-

sion, we summarise these results and open further perspectives.

8.1 Summary of the Results

In this thesis we have addressed the issue of establishing a secure tunnel for constrained devices.
That is, devices with low resources with respect to computation, communication, and energy in
particular.

At the beginning of our approach, we have observed that most of the current protocols either
proposed or deployed are based on symmetric-key functions, and lack in providing strong
security properties such as forward secrecy. Other protocols make use of asymmetric schemes
which render them unsuitable to be implemented on very constrained devices. Overall, most
of the current protocols for constrained devices trade security for e�ciency (Chapter 1). We
have (concretely) illustrated this assessment by the analysis of two widely deployed security
protocols. Then, we have collected and devised otherwise the methodological tools necessary
to assess the security of the constructions which were our goal in the end. Finally, we have
proposed several key establishment protocols that feature enhanced properties (in terms of
e�ciency and security) with respect to existing ones.

Cryptanalysis of protocols. We have analysed two such protocols: LoRaWAN (Chapter 3)
and SCP02 (Chapter 4). They are both widely deployed in LPWAN networks (LoRaWAN), and
by the smart card industry (SCP02). The weaknesses we have highlighted lead to likely practical
attacks against either protocol.

We have described how to break data integrity, data con�dentiality, and the network avail-
ability against LoRaWAN 1.0. The aforementioned attacks, due to the protocol �aws, do not
lean on potential implementation or hardware bugs, and are likely to be successful against any
equipment implementing LoRaWAN 1.0. The success of the attacks is independent from the
means used to protect the secret parameters (e.g., using a tamper resistant module such as a
Secure Element). Furthermore, in one of the attack scenario, the attacker needs only to act on
the air interface (to eavesdrop on data and interact with her target), but she does not need to
get a physical access to any equipment (in particular the constrained device).

We have also presented how to apply a padding oracle attack against SCP02. This attack
allows to decrypt, without the corresponding key, data transmitted in the secure tunnel. To
illustrate the practical exploitability of this �aw, we have successfully attacked, in an experi-
mental setting, 10 di�erent models of smart card produced by six card manufacturers. To the
best of our knowledge, this is the �rst successful attack against SCP02. Given that billions smart
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cards are produced every year, the number of a�ected items, although di�cult to estimate, is
potentially high.

We have proposed practical recommendations aiming at thwarting, when possible, the at-
tacks, and reported our �ndings to each consortium in charge of the development and the
promotion of LoRaWAN and SCP02 respectively. LoRa Alliance has published a document
aiming at strengthening the current version 1.0, and changes have been incorporated in the
speci�cation of version 1.1. Regarding SCP02, our results have contributed in the decision by
GlobalPlatform to deprecate the protocol.

Security models. Considering the several vulnerabilities that impair these two real-life
protocols, and in view of proposing e�cient and secure key establishment protocols, we have
devised two security models (Chapter 5). They capture the security properties that protocols
must guarantee according to us, and incorporate the interleaved operations between the diverse
components of an IoT network. We have applied one of these to a slightly modi�ed version
of LoRaWAN 1.1, and proved that, with a suitable choice of parameters and deployment, this
modi�ed version is secure in our model.

Forward secret symmetric-key protocols. Finally, we have presented two key establish-
ment protocols for constrained devices. This �rst one, called SAKE, is solely built on symmetric-
key functions (Chapter 6). Based on a shrewd synchronisation mechanism and a key evolving
scheme, it guarantees forward secrecy.

3-AKE is a three-party protocol dedicated to IoT (Chapter 7). Also based on symmetric-key
functions (regarding the computations done between the end-device and the back-end network),
it guarantees forward secrecy, in contrast to widely deployed symmetric-key based IoT protocols.
It also enables session resumption without impairing security (in particular, forward secrecy is
maintained). This allows saving communication and computation cost which is advantageous
for low-resource devices. This 3-party key exchange protocol can be applied in a real-case IoT
deployment (i.e., involving numerous end-devices and servers) such that the latter inherits from
the security properties of the protocol.

8.2 Perspectives and Open Problems

Further investigations. The SAKE (resp. SAKE-AM) protocol described in Chapter 6 requires
�ve (resp. four) rounds, which can be reduced to four (resp. three) rounds if the two parties are
synchronised with respect to their master keys evolution when a session starts. Each message of
the protocol ful�lls a speci�c task: party authentication, detecting desynchronisation, and then
catching up. This eventually results in the forward secrecy property being ensured. Removing
one message yields an attack, as shown by any of the numerous alternative versions we have
analysed. Therefore, we do think that the �gure of �ve rounds is the least achievable. Yet we do
not formally prove it. This question of optimality deserves further investigation to conclude
regarding the minimum number of rounds.

The 3-AKE security model presented in Chapter 5 (in order to analyse the three-party key
establishment protocol described in Chapter 7) is based on the paradigm of indistinguishability
of the session keys. In a protocol run, the computation of the “�nal” session key implies
the involvement of “intermediary” session keys in several operations. This contradicts the
possibility to prove the security of the protocol based on indistinguishability of the keys. In
order to overcome this issue, we chose to limit the moments when the adversary can test a
session key. A more suitable model remains to be devised (perhaps based on – variants of – the
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models of Brzuska, Fischlin, Warinschi and Williams [BFWW11], Brzuska et al. [BFS+13], or
Krawczyk [Kra16]), such that the security of the protocol be still de�ned on indistinguishability
of keys, and the adversary be allowed to issue a Test-query at any moment.

Finally, implementing the SAKE and 3-AKE protocols in constrained devices (e.g., a passive
RFID tag for SAKE) would be a bene�cial proof of concept to concretely show the e�ciency of
both protocols.

Forward secrecy in the symmetric-key setting. Finding a symmetric equivalent of the
Di�e-Hellman scheme would advantageously replace the latter. Some steps on this path have
been done through algebraic generalisations of the DH scheme [Par15; PN18] or with the notion
of “conversion function” (built from a symmetric-key primitive, such a function translates the
ciphertext resulting from encryption under a speci�c key to the ciphertext corresponding to
encryption with another key) [CK05]. So far, this line of work lead to mixed results, and remains
to be continued.

Post-quantum cryptography. One of our goals was to overcome the challenge of devising
key establishment protocols at the same time e�cient on constrained devices, and with stronger
security properties than existing protocols. Consequently, we have described new variants
solely built on symmetric-key functions. Now a post-quantum era opens up. If the most common
classical asymmetric schemes are all broken, the symmetric functions seem less vulnerable
against quantum computing so far. But threats emerge against some primitives [KLLN16a;
CNS17; KLLN16b].

Symmetric-key primitives (e.g., encryption or MAC functions) which are secure in a classic
adversarial model can be broken in a quantum model. On these primitives functions can be
built with an inner structure (e.g., a hidden shift) that can be revealed through the puzzling
magic of quantum mechanics. This, in turn, discloses a secret parameter (such as a secret key
or tweak) of the attacked primitive. The quantum setting di�ers from the classic one in many
ways, and there are questions regarding the relevance of the superposition-based quantum
security [Gag17]. Yet, some results [BHN+19] succeed in overcoming this issue, and propose a
trade-o� where the adversary (which has also access to quantum computing) is only granted
classical queries (i.e., not in a quantum superposition of states).

This line of work on symmetric-key primitives is ongoing and can be extended to protocols.
Beyond targeting the functions that constitutes a protocol, one can investigate the feasibility
for a quantum adversary to take advantage of the protocol’s technical speci�cs. More generally,
continuing to study the exact quantum security of classic symmetric functions, analysing
(symmetric) protocols (including those described in this thesis) in a quantum setting, and
consequently devising suitable security models deserve attention.

Survivability of a security protocol. What may look surprising (amongst other assess-
ments) in several existing IoT protocols is the possibility to almost trivially break them. This is
not due to the way they are deployed and used, but rather to their speci�cities. For instance,
very short parameters (2 and 3-byte long) are used in LoRaWAN 1.0. The attacks we present
in Chapter 3 leverage this peculiarity. The protocol designers justify this choice by the small
number of key exchanges a LoRaWAN device is supposed to execute in its whole lifespan. Yet,
it is possible to compel a device to deviate from this expected behaviour. We have seen how the
LoRaWAN protocol resists (badly). This raises a more generic question with regard to the way
a protocol is supposed to behave when it is not used in ideal or expected conditions.

What we deal with here is not an issue related to resilience which may be de�ned as the
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ability of a system under attack or in the presence of faults to recover all its capabilities from
a degraded state to its nominal state [CMH+07]. The notion we are considering is not to be
confused either with how much a protocol may withstand and maintain its nominal functionali-
ties in the presence of faults or when facing attacks, which is related to performability [Mey80;
Mey92]. Rather, our issue is related to the notion of survivability [KSS03; SKH+02]. Intuitively
one would expect that the essential of the security properties be preserved, which leads to the
problem of de�ning what is essential in security. This depends certainly on the intended goals
of the protocol. The question of a survivable security protocol deserves further investigation.
Regarding an environment where devices become pervasive, with no easy way to update the
algorithms they implement, and physically liable to attacks, this issue is of particular concern.
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