
HAL Id: tel-02877460
https://hal.science/tel-02877460v1

Submitted on 22 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Run-Time Management for Energy Efficiency of
Cluster-based Multi/Many-Core Systems

Simei Yang

To cite this version:
Simei Yang. Run-Time Management for Energy Efficiency of Cluster-based Multi/Many-Core Sys-
tems. Electronics. Université de Nantes, 2020. English. �NNT : �. �tel-02877460�

https://hal.science/tel-02877460v1
https://hal.archives-ouvertes.fr

Résumé
Les plates-formes multi-cœur organisées en clusters représentent des solutions prometteuses

pour offrir un compromis optimisé vis-à-vis des critères de performance et de consommation

dans les systèmes embarqués modernes. Sur une telle plate-forme, les cœurs sont divisés en

différents clusters et chaque cluster fonctionne à un niveau de tension ou de fréquence (Volt-

age/Frequency, v/f) donné. Ces plates-formes permettent de mise à l’échelle dynamique de la

tension et de la fréquence (Dynamic Voltage/Frequency Scaling (DVFS)) pour chaque cluster,

ce qui permet à différents clusters de changer leurs propres niveaux v/f indépendamment.

Comme le nombre de cœurs continue d’augmenter, de plus en plus d’applications peuvent

être prises en charge sur de telles plates-formes. Impliquant de ce fait une variation des

charges de travail supportées en cours de fonctionnement. La complexité croissante des

applications supportées et la variabilité des charges de calcul en cours de fonctionnement

justifient le besoin d’une gestion en ligne des ressources des plates-formes afin de garantir

les exigences de performance du système. Ce travail de thèse se concentre sur la gestion

en cours de fonctionnement des applications exécutées dans des systèmes multi-cœurs

organisés en clusters afin d’améliorer l’efficacité énergétique compte tenu des contraintes

de performances des applications et des contraintes de ressources de la plate-forme.

Dans ce contexte, deux principaux problèmes de recherche sont étudiés.

• Le premier problème de recherche concerne la façon de coordonner l’allocation

dynamique des tâches et la mise à l’échelle des niveaux de fréquence/tension.

L’allocation dynamique des tâches et les techniques de DVFS ont été largement ap-

pliquées pour optimiser l’efficacité énergétique dans les systèmes multi-cœurs. Cepen-

dant, la façon de coordonner ces deux techniques pour gérer plusieurs applications

exécutées dans des plates-formes multi-coeurs organisées en clusters reste une question

ouverte. L’allocation d’applications multi-tâches implique différentes configurations

possibles des tensions et fréquences de fonctionnement au sein d’un seul cluster et

à l’échelle de la plate-forme complète. Dans cette thèse, nous proposons différentes

stratégies de gestion estimant l’influence mutuelle entre l’allocation des applications et

les tensions/fréquences des clusters afin d’optimiser l’énergie consommée localement, à

l’échelle d’un cluster, et globalement, à l’échelle de la plate-forme.

• La seconde problématique de recherche abordée traite de la simulation au niveau

système des stratégies de gestion dynamique des plates-formes multi-coeurs. La

simulation au niveau système est utilisée afin d’estimer au plus tôt dans le processus

de conception des performances des systèmes étudiés. Cependant, la plupart des

environnements de simulation existant ne permettent pas de décrire la gestion dynamique

des ressources et notamment l’allocation dynamique des tâches. Dans le cadre de

notre travail, nous proposons une nouvelle approche de modélisation et de simulation

permettant la prise en compte des stratégies de gestion au sein de tels environnement.

Pour résoudre le premier problème de recherche i.e., afin d’optimiser conjointement

l’allocation dynamique des tâches et la sélection des fréquences de fonctionnement, nous

adoptons une stratégie de gestion dite hybride. Ces stratégies reposent sur un ensemble

d’éléments préparés hors ligne, au cours de la phase de conception. Dans les travaux existants,

ces éléments correspondent typiquement à des allocations préparées statiquement pour chaque

application supportée. Ces allocations seront ensuite utilisées en cours de fonctionnement afin

d’établir une allocation optimisée pour l’ensemble des applications actives. Dans le cadre de

notre travail, nous introduisons un nouveau paramètre préparé hors ligne appelé ’Fréquence

Minimale Autorisée (MAF, Minimal Allowed Frequency). Ce paramètre définit la fréquence

minimale de fonctionnement d’un cluster pour une allocation des tâches d’une application

donnée et permettant le respect des contraintes de temps associées. En se basant sur un ensemble

d’allocations préparées hors ligne et sur l’estimation du paramètre MAF pour chaque allocation,

nous proposons différentes stratégies d’optimisation de l’énergie consommée, à l’échelle d’un

seul cluster et à l’échelle d’une plate-forme composée de plusieurs clusters.

Nous étudions tout d’abord l’optimisation de l’énergie consommée à l’échelle d’un

seul cluster formé de plusieurs coeurs de processeurs homogènes. L’objectif porte sur

la minimisation de la fréquence de fonctionnement requise et ce afin de réduire l’énergie

consommée. Les principales contributions sont les suivantes.

• Tout d’abord, une nouvelle stratégie est proposée pour sélectionner pour chaque applica-

tion active au sein de chaque situation de fonctionnement une allocation appropriée. Cette

stratégie repose sur des données préparées au moment de la conception. Ces données

correspondent à plusieurs allocations possibles de chaque application ainsi que le critère

de MAF déterminé pour chaque allocation possible. La stratégie de sélection proposée

considère tout d’abord la minimisation de la fréquence requise du cluster. Elle détermine

ensuite les allocations appropriées pour chaque application active selon la situation de

fonctionnement considérée. En utilisant les paramètres MAFs estimés, notre stratégie de

gestion présente une complexité limitée afin d’explorer les configurations possibles.

• Deuxièmement, une nouvelle stratégie d’allocation des applications est proposée (Grouped

Applications Packing under Varied Constraints (GAPVC)). Cette stratégie vise à limiter

le nombre de ressources de calcul utilisées en optimisant l’utilisation de chaque ressource.

Par rapport à la stratégie simple de combinaison (First-Come-First-Served (FCFS)) qui

alloue les tâches d’une même application sur une même ressource de calcul, notre

stratégie GAPVC proposée peut réduire le nombre de ressources utilisées sans dégrader

les performances des applications. La stratégie de sélection et la stratégie de combinaison

des allocations sont appliquées itérativement pour parvenir à une solution quasi optimale.

• Troisièmement, plusieurs cas d’utilisation, comprenant jusqu’à neuf applications actives

simultanément, ont été examinés pour évaluer les avantages de l’approche de gestion

proposée en termes de puissance dynamique moyenne, de ressources d’utilisation et de

complexité. Nos expériences ont démontré que notre stratégie de gestion peut réduire la

consommation moyenne d’énergie d’environ 36% et de 206% par rapport aux méthodes

existantes dans la littérature.

Dans un second temps, nous étudions l’optimisation de l’efficacité énergétique au

niveau global d’une plate-forme formée par plusieurs clusters de calcul. A ce niveau,

l’efficacité énergétique d’une plate-forme dépend de l’allocation des applications d’un cluster

à un autre. Lorsque plusieurs applications sont exécutées sur un même cluster, la fréquence

de fonctionnement d’un cluster est dépendante de l’application avec la contrainte de temps la

plus sévère. Dès lors, dans le cas de plates-formes hétérogènes (avec des ressources de calcul

de natures différentes d’un cluster à un autre), l’allocation des applications d’un cluster à un

autre peut influer significativement sur la fréquence possible de fonctionnement des clusters.

Dans la littérature, l’allocation des applications entre clusters et optimisation des fréquences de

fonctionnement sont généralement considérées successivement. Les solutions proposées sont

généralement pour des plates-formes de complexité réduite (en nombre de clusterd et en nombre

de ressources de calcul au sein des clusters). Les solutions existantes présentent dès lors des

limitations lorsque la complexité des plates-formes augmente.

Dans ce travail , nous proposons une stratégie d’allocation des applications et de

sélection des fréquences de fonctionnement à l’échelle d’une plate-forme formée par

plusieurs clusters. La stratégie proposée peut être utilisée pour gérer plusieurs applications

exécutées de manière dynamique sur des plates-formes de différentes tailles. Une structure de

gestion hiérarchique à deux niveaux est adoptée, dans laquelle un premier niveau de gestion

global détermine les allocations des applications et fixe les niveaux de fréquence des clusters.

Le second niveau de gestion local optimise l’allocation et l’ordonnancement des tâches dans

chaque cluster. Ce travail apporte les contributions suivantes.

• Tout d’abord, pour la gestion globale, nous présentons un modèle de 0-1 Integer Program-

ming (IP) qui considère une formulation de la puissance dynamique moyenne du système

compte tenu des allocations retenues des applications actives et des fréquences possibles

de fonctionnement. Le paramètre MAF est utilisé afin d’estimer les fréquences possibles

des fonctionnement des clusters. L’objectif du modèle 0-1 IP proposé est de trouver

des allocations des applications sur les clusters de la plate-forme cible qui minimisent la

consommation dynamique moyenne de l’ensemble du système. Cette minimisation est

recherchée tout en tenant compte des contraintes de temps des applications, du nombre

de ressources au sein de chaque cluster et des fréquences possibles de fonctionnement.

• Deuxièmement, pour parvenir à la solution du problème d’optimisation formulé, il n’est

pas possible de rechercher de manière exhaustive la solution optimale dans un délai

raisonnable. Afin de réduire la complexité de la recherche, nous proposons une première

stratégie de gestion globale (Neighboring Search Application-to-Cluster Assignment

(NSACA)) qui vise à fournir des solutions quasi optimales. La méthode NSACA

considère, pour une situation de fonctionnement donné, l’ensemble des allocations

possibles pour toutes les applications actives. Cette stratégie alloue tout d’abord les

applications au sein d’un cluster compte tenu du paramètre MAF. Elle améliore ensuite

de manière itérative les allocations possibles en considérant des clusters voisins.

• Troisièmement, nous proposons une deuxième stratégie de gestion globale (Greedy

Search Application-to-Cluster Assignment (GSACA)) qui optimise l’allocation de chaque

application prise individuellement. Cette stratégie vise à établir pour chaque application

l’allocation la plus économe en énergie et réduit le nombre de migration d’une situation

de fonctionnement à une autre. Le nombre de migrations peut être contrôlé par les

utilisateurs. Par rapport à la première stratégie de gestion, la deuxième stratégie de gestion

globale peut réduire le nombre de migrations d’applications entre clusters avec un impact

limité sur l’énergie consommée.

• Quatrièmement, nos deux stratégies de gestion globales proposées utilisent la stratégie

FCFS de combinaison des allocations pour estimer le nombre de ressources de calcul

utilisées dans chaque cluster. L’objectif de la stratégie de gestion locale est d’établir

l’utilisation des ressources de calcul au sein d’un cluster. Comme la stratégie de

combinaison précédemment proposée GAPVC peut réduire le nombre de ressources

utilisées dans chaque cluster sans dégrader les performances de l’application, nous

considérons également les avantages de l’utilisation de GAPVC au niveau de la gestion

locale. L’utilisation de GAPVC permet d’optimiser l’occupation des ressources au sein

des différents clusters. En conséquence, une consommation d’énergie moyenne plus

faible peut être réalisée dans l’ensemble du système.

• Dans nos expériences, nous avons évalué nos stratégies de gestion proposées pour

différents ensembles d’applications actives (jusqu’à 10 applications) exécutées sur

différentes tailles de plates-formes (par exemple : jusqu’à 24 noyaux dans un cluster,

jusqu’à 8 clusters dans le système). Les résultats expérimentaux ont indiqué que : (1) la

consommation moyenne d’énergie réalisée par NSACA n’est que de 1.93% inférieure à

la solution optimale (c’est-à-dire par recherche Exhaustive), mais la vitesse de NSACA

est 2674 fois plus rapide. (2) sans tenir compte du coût de la migration, un plus grand

nombre de migrations dans la GSACA peut conduire à une réduction de la consommation

moyenne d’énergie de l’ensemble du système. (3) sur la base des mêmes stratégies de

gestion globale, GAPVC peut réduire la consommation moyenne d’énergie du système

jusqu’à 57.65% par rapport à FCFS.

Nous nous intéressons également à la problématique de l’évaluation des méthodes de

gestion dynamique de plates-formes. Dans le contexte de la modélisation et de la simulation

au niveau système, nous apportons les contributions suivantes:

• Nous avons proposé une nouvelle approche de modélisation et de simulation de niveau

du système qui permet l’évaluation des stratégies de gestion dynamique de plates-formes

multi-core. Afin de favoriser la simulation de ces stratégies, l’approche proposée calcule

dynamiquement les instants où les ressources de la plate-forme sont utilisées par les

applications en cours d’exécution. Basé sur les instants de simulation calculés, un modèle

de gestionnaire d’exécution est introduit pour contrôler à la fois l’ordre d’exécution

des tâches et l’avancement du temps de simulation. Cette approche de simulation peut

être utilisée afin de simuler différents nombres d’applications exécutées sur des plates-

formes hétérogènes dans des configurations de v/f variées. Contrairement à l’approche

de simulation basée sur la trace, l’approche de simulation proposée réduit le nombre

d’événements nécessaires et le nombre d’appels au moteur de simulation.

• En outre, nous mettons en œuvre et validons l’approche proposée à l’aide du cadre de

modélisation d’Intel Cofluent Studio. Grâce à une étude de cas qui tient compte de

sept applications (85 tâches au total) fonctionnant sur une plate-forme hétérogène basée

sur des clusters, l’approche proposée permet d’évaluer différentes stratégies de gestion

en fonction de la latence et du critère de consommation d’énergie. On a observé que

l’influence de l’approche proposée sur l’effort de simulation est raisonnable. Par rapport

au cadre de Cofluent par défaut (pour 85 tâches en cours d’exécution), la charge de travail

de simulation a augmenté de moins de 10.8%.

En résumé, ce travail de thèse étudie deux problèmes de recherche du point de vue des

stratégies de gestion en ligne et de l’évaluation des performances. À l’avenir, nous pourrions

apporter certaines améliorations possibles à ce travail. Tout d’abord, nous pouvons envisager la

mise en œuvre réelle de nos deux stratégies de gestion proposées dans de véritables systèmes

multi/multi-cœurs basés sur des clusters, tels que la plate-forme ARM big.LITTLE (Odroid

XU3) et Kalray MPPA. Deuxièmement, nous pouvons envisager d’autres critères d’optimisation

(e.g., fiabilité thermique, sécurité) dans les stratégies de gestion. Troisièmement, il est possible

d’étendre l’approche de simulation que nous proposons (pour l’évaluation des stratégies de

gestion) à d’autres cadres de simulation de niveau système.

Acknowledgments

During the last three years of my PhD life, I am lucky to have received a lot of help from

many nice people. Here, I would like to express my gratitude to all of them.

First of all, I would like to express my gratitude to my supervisor and co-supervisor:

Sébastien Pillement and Sébastien Le Nours. I thank them for accepting me as one of their

students and for giving me the opportunity to engage in this interesting research topic. In these

recent years, I have benefited greatly from their in-depth discussions and critical remarks.

Secondly, my heartfelt gratitude goes to my dear Maria Mendez Real, who had also advised

me during the last year of my PhD work. She was always willing to share her vast knowledge

with me and to motivate me in my work. I was so lucky to meet Maria and have the opportunity

to work with her. I think I will never forget the days when we worked in the same office.

Besides, I sincerely thank Prof. Tao Su from Sun Yat-sen University in China. In recent years,

when I was frustrated with my work, I sent him some emails. He can always look at my

difficulties from a broader perspective and give me the strength to move forward.

Thirdly, I would like to express my appreciation to the reviewers and defense committee,

particularly, Prof. Andy D. Pimentel, Prof. Frédéric Rousseau, Prof. Nathalie Julien, for their

efforts and time invested in reviewing my dissertation and attending my defense.

Moreover, I would like to thank Sandrine Charlier, Marc Brunet, and Guillaume Lirzin.

Their effective administrative and technical supports have greatly facilitated our research. I also

thank my colleagues for sharing their academic and life experiences. They are jingjing Pan,

Parth Raj Singh, Yunniel Arencibia Noa, Hai Dang Vu, Tien Thanh Nguyen, Safouane Noubir,

Alexis Duhamel, Irfan Ali Tunio, Gatien Septembre, Xiao Yang and others. I will never forget

the many friends I met in France, especially Yao Ma, Zijian Li, Ziwei Xu, Zhongchao Qiao.

They have greatly enriched my daily life in the past three years.

Finally, I would like to extend my deep gratefulness to my father, my mother and my two

brothers, for their endless love and trust in me. Particularly, I would like to thank my boyfriend,

Zhe Fu. He is always there, willing to listen to me, comfort me and support me.

Contents

List of Figures xi

List of Tables xv

List of Algorithms xvi

1 Introduction 1

1.1 Context . 1

1.1.1 Technology Trends . 1

1.1.2 Cluster-based Multi/Many-core Platforms 3

1.1.3 Task-dependent Application . 4

1.1.4 Run-Time Management of Multiple Task-dependent Applications . . . 5

1.1.5 Run-time Management for Energy Efficiency 6

1.2 Problem Statement . 7

1.2.1 Coordination of Dynamic Task Mapping and DVFS Control 7

1.2.2 Evaluation of Run-Time Management Strategy 8

1.3 Main Contributions . 8

1.4 Dissertation Organization . 10

2 State-of-the-art 13

2.1 Dynamic Task Mapping . 13

2.1.1 Hybrid Mapping with Use-case-based Preparation 15

2.1.2 Hybrid Mapping with Application-based Preparation 16

2.2 Applying Dynamic Task Mapping and DVFS 20

2.2.1 Applying Dynamic Task Mapping and DVFS Separately 21

2.2.2 Applying Dynamic Task Mapping and DVFS Coordinately 23

2.3 Management Structure . 26

2.3.1 Distributed Management . 26

2.3.2 Hierarchical Management . 28

2.4 Run-Time Management Strategy Evaluation at System-Level 29

ix

2.5 Summary and Discussion . 32

3 System Models 35

3.1 Application Models . 35

3.2 Platform Model . 37

3.3 Mapping Model . 38

3.4 Models for Energy Efficiency Evaluation . 39

3.5 Model Validation on ARM big.LITTLE platforms 42

3.6 Summary . 46

4 Run-Time Management for Local Optimization 47

4.1 Overview . 47

4.2 Summary of Related Work on Local Optimization 49

4.3 Problem Definition . 50

4.4 Proposed Management Approach . 51

4.4.1 Design-time Prepared Data . 52

4.4.2 Run-time Selection . 53

4.4.3 Run-Time Mapping Combination . 55

4.5 Experimental Evaluations . 59

4.5.1 Simulation Setup . 59

4.5.2 Evaluations of the proposed Hybrid Management Strategy 61

4.5.3 Evaluations of the Strategy Complexity 64

4.6 Summary and Discussion . 66

5 Run-Time Management for Global Optimization 67

5.1 Overview . 68

5.2 Summary of the Related Work on Global Optimization 70

5.3 0-1 IP Formulations of Global Management 70

5.3.1 Input . 72

5.3.2 Variables . 72

5.3.3 Constraints . 73

5.3.4 Objective . 74

5.3.5 Observations . 74

5.4 Solution to the 0-1 IP optimization problem 75

5.4.1 Neighboring Search Application-to-Cluster Assignment 75

5.4.2 Greedy Search Application-to-Cluster Assignment 80

5.4.3 The Impact of Local Management on Global Management 83

5.5 Experimental Evaluations . 84

5.5.1 Evaluations of Global Management Strategies 87

5.5.2 Evaluation the Influences of Local Management Strategies 92

5.6 Summary and Discussion . 95

6 System-Level Evaluation Approach of Run-Time Management Strategies 97

6.1 Overview . 98

6.2 Comparison with Existing Trace-driven Simulation 98

6.3 Proposed Modeling and Simulation Approach 100

6.3.1 Design-Time Database preparation . 101

6.3.2 Run-Time Execution Traces Processing 102

6.3.3 Run-Time Mapping Control . 103

6.3.4 Platform Heterogeneity Consideration 104

6.4 Evaluation of the modeling and simulation approach 105

6.4.1 Simulation Environment . 105

6.4.2 Simulation Setup . 106

6.4.3 Validation of the Simulation Approach on Latency Criteria 107

6.4.4 Validation of the Simulation Approach on Power Criteria 108

6.4.5 Evaluation of the Simulation Approach 109

6.5 Summary and Discussion . 111

7 Conclusion 113

7.1 Dissertation Summary . 113

7.2 Future Works . 116

Bibliography 120

Appendix A. Personal Publications 129

Appendix B. Notations 130

List of Figures

1.1 Microprocessor trend from 1970 [1]. 2

1.2 Exynos 5 Octa (5422) multi-core platform based on ARM’s big.LITTLE

architecture. 3

1.3 Dynamic execution of multiple applications in two different use-cases on a

cluster-based multi/many-core platform. 5

1.4 Overview of the run-time management for local optimization within a cluster. . 9

1.5 Overview of the run-time management for global optimization in the overall

system. 9

1.6 Overview of modeled and simulated components with application models, a

platform model and run-time management modules. 10

2.1 Overview of hybrid mapping, including design-time preparations and run-

time mapping, inspired by [2]. The main focus of this dissertation work is

highlighted by dotted box. 14

2.2 The overview of hybrid mapping strategies employing use-case-based design-

time preparation. 15

2.3 The overview of hybrid mapping strategies employing application-based design-

time preparation. 16

2.4 Overview of hybrid mapping strategies optimizing applications individually at

run-time. 17

2.5 Overview of hybrid mapping strategies optimizing applications holistically at

run-time. 18

2.6 Run-time application mapping selection and combination in [3]. 19

2.7 Applying dynamic mapping and DVFS (a) separately and (b) coordinately. . . . 20

2.8 Overview of applying dynamic mapping and DVFS separately in [4]. 21

2.9 The overview of applying dynamic mapping and DVFS separately in [5]. . . . 22

2.10 Overview of applying dynamic mapping and DVFS coordinately in [6]. 24

2.11 Overviews of coordination between hybrid mapping and DVFS within a cluster

in (a) [7] and (b) [8]. 25

xii

2.12 Run-time managers in different structures (a) centralized management, (b)

distributed management and (c) hierarchical management. 26

2.13 Y-chart-based design methodology [9]. 30

2.14 Extended Sesame framework for run-time resource scheduling [10]. 30

2.15 Extended CoFluent framework for run-time resource scheduling [11]. 31

3.1 Application model of appi. 36

3.2 SDF descriptions of (a) H.263 decoder, (b) H.263 encoder and (c) JPEG decoder. 36

3.3 Platform model of cluster-based multi/many-core systems. 37

3.4 (a) SDF description of appi. Examples of execution traces of app1 mapped on

(b) two cores and (c) four cores. 39

3.5 Dependence between voltage and frequency for matrix multiplication executed

on 1, 2 and 4 cores in (a) the little cluster and (b) the big cluster. 43

3.6 Evolution of (a) latency and (b)average dynamic power consumption based on

frequency for matrix multiplication executed on 1, 2 and 4 cores in the little and

big clusters. 44

3.7 Evolution of dynamic energy consumption based on frequency for matrix

multiplication executed on 1, 2 and 4 cores in the little and big clusters. 45

4.1 Run-time management of multiple applications active dynamically onto a cluster. 50

4.2 Overview of the proposed hybrid management approach, including design-time

and run-time steps. 51

4.3 Design-time prepared execution traces for app1 (a) mapped on one core (X1
app1

)

and (b) mapped on two cores (X2
app1

). 52

4.4 (a) Power evolution of the prepared mappings for app1 and app3. (b) Different

mapping and frequency selection points formed by the prepared MAFs. 54

4.5 Extended the selected X2
app1

and X2
app3

within a hyper-period for app1 and app3;

combined execution traces in a cluster by (c) FCFS [12, 13] and (d) LASP [14]. 56

4.6 The slot packing results of the GAPVC strategy when packing (a) slot.4 and (b)

slot.6, based on X2
app1

and X2
app3

of Figure 4.5. 58

4.7 (a) The maximum latency normalized to application period and (b) the number

of used cores for different use-cases. Results are given for FCFS, LASP and

GAPVC. 61

4.8 The average dynamic power at the tuned frequency within a hyper-period under

different resource constraints. The power of each use-case is normalized to the

result achieved by the Exhaustive strategy under the constraint of 8 available

cores. 63

4.9 The number of selection iterations for 8 use-cases under different resource

constraints. 64

5.1 The run-time hierarchical management for multiple applications executed

dynamically on a cluster-based multi/many-core platform. 68

5.2 The global management selected frequency (MAF1,j) for the active applica-

tions (app1 and app3) in a cluster. 71

5.3 NSACA application order results for 10 active applications in 4 groups. 76

5.4 NSACA initial application assignment result for 10 active applications in 4

clusters. 78

5.5 NSACA application switching result for 10 applications in 4 clusters. 79

5.6 NSACA application moving result for 10 applications in 4 clusters. 80

5.7 GSACA order result for 7 newly active applications in 4 groups. 82

5.8 GSACA cluster selection for app4 in 4 clusters. 83

5.9 Average normalized P avg
sys with respect to Exhaustive (constrained by the

heterogeneous 8×8 platform) among the 1023 use-cases. Results are given for

different platform constraints. 87

5.10 Average P avg
sys normalized to Exhaustive (constrained by each platform size) for

the 1023 use-cases. 89

5.11 The average number of migrations in a use-case (among the 1023 use-cases) of

the considered applications. Results are given for different platform constraints. 90

5.12 The average simulation time (ms) used per use-case (among the 1023 use-case).

Results are given for heterogeneous platform constrained by different platform

sizes. 91

6.1 (a) Two mappings of 3-task application onto 2 cores; Dynamic task execution of

(b) trace-driven simulation approach and (c) the proposed simulation approach. 99

6.2 The modeled system with application, platform and management components

descriptions. 101

6.3 A design-time prepared execution trace for the mapping of app1 (a) and app2
(b). 102

6.4 A run-time combined execution trace X ′
Apps(u1) using the LASP strategy [14]. 103

6.5 System-level approach for the simulation of run-time mapping strategies through

the dynamic control of the execution of tasks for different use-cases. 104

6.6 The simulation environment built in Intel CoFluent Studio framework. The

added modules of our approach are highlighted by dotted box. 105

6.7 Evaluated hierarchical run-time management of multiple applications executed

on a heterogeneous cluster-based platform. 106

6.8 Evolution of simulated app1 latency, captured for four different use-cases.

Results are given for FCFS [12, 13] and LASP [14]. 108

6.9 Simulated dynamic power of app1 captured with the advancement of simulation

time. Results are given for u1 according to different platform configurations. . . 109

6.10 The differences of simulation effort between the proposed approach and the

default approach. Results are given for an increasing number of simulated use-

cases and running tasks. 111

7.1 The combined mappings that (a) neglect and (b) consider communication

congestion . 117

7.2 MAF-based mapping selection for active applications in situations of (a) one

prepared mapping for each application and (b) multiple prepared mapping

mappings for each application . 118

List of Tables

2.1 Comparison of state-of-the-art run-time management approaches 34

3.1 Examples of cluster-based multi/many-core platforms 38

3.2 Fitting results for the models and measurements 44

4.1 Design-time prepared information of the considered applications 60

4.2 Considered use-cases . 60

4.3 Comparison of run-time management strategies among 511 use-cases 63

4.4 The average and maximum execution time of mapping combination strategies

on one little core and one big core of Exynos 5422 big.LITTLE platform

(among the 511 use-cases) . 65

5.1 Platform settings for 8 considered clusters . 85

5.2 Design-time prepared information of 10 considered applications 86

5.3 Considered Management Strategies for Comparison 86

5.4 Normalized P avg
sys of Exhaustive compared to the four different strategies 88

5.5 Comparison of FCFS and GAPVC local strategies in hierarchical management

among the 1023 use-cases . 93

5.6 Comparison of average time (ms) used to simulate a use-case for FCFS and

GAPVC in hierarchical management . 94

6.1 Evaluation of run-time management strategies based on latency and power . . . 110

xvi

List of Algorithms

1 Grouped Applications Packing under Varied Constraints (GAPVC) Strategy . . . 57

2 Neighboring Search Application-to-Cluster Assignment (NSACA) Strategy . . . 77

3 Greedy Search Application-to-Cluster Assignment (GSACA) Strategy 81

xvii

Chapter 1

Introduction

Contents

1.1 Context . 1

1.1.1 Technology Trends . 1

1.1.2 Cluster-based Multi/Many-core Platforms 3

1.1.3 Task-dependent Application . 4

1.1.4 Run-Time Management of Multiple Task-dependent Applications . . 5

1.1.5 Run-time Management for Energy Efficiency 6

1.2 Problem Statement . 7

1.2.1 Coordination of Dynamic Task Mapping and DVFS Control 7

1.2.2 Evaluation of Run-Time Management Strategy 8

1.3 Main Contributions . 8

1.4 Dissertation Organization . 10

In this chapter, we first introduce the context of this dissertation. Then, we discuss about

the research problems and present our contributions. Finally, the organization of the document

is given.

1.1 Context

1.1.1 Technology Trends

Based on the emerging trend of chip manufacturing, Gordon Moore predicted in 1975 that the

number of transistors on a chip doubles approximately every two years [15]. This prediction

is called Moore’s Law, and the period of doubling the integrated transistors on chips is often

1

Chapter 1. Introduction

The Exynos 5 Octa (5422) is based on the Arm big.LITTLE architecture [22]. It integrates

the so-called big cluster and little cluster in two different VFIs. The big cluster consists of

four high-performance cores (ARM Cortex-A15), while the little one has four low-power cores

(ARM Cortex-A7). Each cluster has its own L2-Cache to support the communication between

cores. MediaTekHelio X30 (MT6799) [23, 24] is another example that integrates clusters with

ARM Cortex-A73, Cortex-A53 and Cortex-A35. ARM big.LITTLE cluster-based platforms

are widely used in the field of mobile phones to achieve performance and energy trade-offs.

Heterogeneous cluster-based platforms (e.g., ARM big.LITTLE) have the potential to be

scaled to many cores, due to its inheritance of the design scalability feature of homogeneity

(inside a cluster). It can be expected that there can be more different clusters and more

cores inside each cluster in future systems, such as the platform studied in [4, 25]. Our

work focuses on cluster-based multi/many-core platforms, that consist of different numbers

of clusters and different numbers of cores within each cluster. We consider both homogeneous

and heterogeneous cluster-based platforms in our experimental evaluations. It is worth noting

that the cluster-based platform having one cluster is equivalent to a homogeneous platform,

while the heterogeneous cluster-based platform having one core in each cluster is equivalent to

a generic multi-core platform.

1.1.3 Task-dependent Application

In the scope of this dissertation, we consider the execution of task-dependent applications on

cluster-based platforms. A task-dependent application consists of a set of tasks, and each task

represents an atomic, non-preemptive, code. In such an application, the output data of one task

can be the input data of another one. It indicates that there exists precedence constraints between

tasks, where the execution of one task may depend on the completion of other tasks. Figure 1.3

gives one example of a task-dependent application app1. This application has four tasks and its

task2 executes after task1. According to the discussion in [26], task-dependent applications

with precedence constraints are the most typical application model. Compared to the application

model that considers tasks independent of each other, a task-dependent application model is

more realistic to represent application behavior. In addition, we consider each application has a

timing constraint. Each application executes periodically, and all application tasks have to finish

their executions within a predefined period. It is possible to apply our work to sporadic tasks

(i.e., tasks with irregular arrival time [27]), which would be further discussed in Section 7.1.

For all application tasks, their executions are fulfilled by using processing and communica-

tion resources of platforms. Task mapping defines the allocation of application tasks on platform

resources and the execution order (i.e., scheduling) of tasks on a given core. When mapped on

platform resources, each application task takes execution time to process data. Besides, each

task consume power to finish its execution. Power consumption can be categorized into dynamic

and static parts. Dynamic power is proportional to the frequency and the square of the voltage

(i.e., ∝ v2f), which is consumed in charging and discharging the transistors associated with the

4

Chapter 1. Introduction

completely redefined to support the execution of newly active applications. Therefore, run-

time management has to adopt Dynamic Task Mapping techniques to adapt application task

mapping to different use-cases accordingly.

1.1.5 Run-time Management for Energy Efficiency

Run-time management has to take energy efficiency into account in today’s multi/many-core

systems. Energy efficiency refers to using less energy consumption to execute the same

applications. Energy consumption is the integration of its power consumption over time

(i.e., Energy = Power × T ime). Reducing energy consumption is significantly important

to extend the battery life of systems. The increasing number of active applications and

the rising complexity of platforms (e.g., increasing heterogeneity in resources, more v/f

domains) make system energy efficiency a crucial optimization target. Dynamic Task Mapping

plays an important role in energy efficiency. Applications mapped on platform resources

consume power to finish their computational and communication activities. Due to the platform

heterogeneity, tasks executed on different core types may have different execution time and

power consumption, thus their energy consumption can also change. It means that appropriate

utilization of platform resources can result in better energy efficiency for all application tasks

in the system.

Additionally, energy efficiency is often achieved through Dynamic Voltage Frequency

Scaling (DVFS) [31, 32]. It refers to the technique that dynamically modifies the operating

frequency and voltage of cores that executes application tasks. According to [28, 33], there

exists a relationship between operating frequency and voltage in CMOS circuits, which suggests

that higher frequencies require the support of higher voltages. In the Samsung Exynos 5

Octa (5422) processor [21], users can only scale the operating frequency, based on which

the operating voltage is automatically adjusted. Lower v/f levels can lead to the reduction

of dynamic power consumption (due to ∝ v2f) and increase the execution time of tasks

(due to degraded processor performance) at the meantime. Dynamic energy consumption can

be reduced if the decrease in power consumption is greater than the increase in execution

time [4, 34]. Note that static power/energy can be mitigated by shutting down certain platform

resources but it is difficult to do so in the active mode of systems [28, 35].

DVFS can be applied at different granularities, depending on the supports of different

platforms. Global DVFS allows all the cores in a system to share the same v/f level, while

Per-core DVFS allows each core to have its own distinct v/f level. Per-cluster DVFS (i.e., VFI)

is a compromise solution that allows several cores in a cluster to share the same v/f level, and

different clusters can support different v/f levels. As the discussions in [31, 36], Per-cluster

DVFS is widely used in advanced many-core systems, making a trade-off between the feasibility

of global DVFS and the efficiency of per-core DVFS.

The objective of this dissertation is to propose run-time management strategies, employing

dynamic task mapping and DVFS (i.e., per-cluster) together, to achieve energy efficiency of

6

1.2. Problem Statement

multiple task-dependent applications executed dynamically on a cluster-based multi/many-core

platform. Energy efficiency can be characterized by energy consumption or average power

consumption in a certain period of time. In the experimental evaluations of this work, we focus

on the optimization of the average dynamic power consumption of active applications.

1.2 Problem Statement

For the run-time management purpose of energy efficiency of task-dependent applications

executed in cluster-based multi/many-core systems, we study two research problems on run-

time management decisions (i.e., dynamic task mapping and DVFS control) and run-time

management evaluation.

1.2.1 Coordination of Dynamic Task Mapping and DVFS Control

The first research problem studied in this dissertation work is: how to appropriately apply

dynamic task mapping and DVFS to achieve energy efficiency of task-dependent applications

in cluster-based systems. Energy efficiency of cluster-based systems has been studied

for independent tasks, while it remains an open and complex question for task-dependent

applications. On one hand, obtaining the optimal application mapping (for energy efficiency)

is a NP-hard problem [37, 38], where the solution space exploration increases with the number

of applications and the number of cores. The space exploration becomes even larger when

DVFS is taken into account. On the other hand, different task mappings lead to different DVFS

possibilities within a cluster and in the overall system, which complicates run-time management

decision issues. This work aims to achieve near-optimal management solutions for both local

optimization within a cluster and global optimization in the overall system.

Local optimization within a cluster

We first study the local optimization of energy efficiency within a cluster. At the cluster

level, we consider homogeneous cores. For the purpose of energy efficiency, it is important

to execute active applications (in a use-case) at a low cluster v/f level. This is a challenging

mission due to the fact that simultaneous active applications in the same cluster compete for

platform resources but share the same cluster v/f . The more used cores for one application

means fewer cores for other applications, which may consequently worsen the performance

of other applications. The poor performance of an application can significantly increase the

cluster v/f , thereby increasing the power/energy consumption of other applications in the same

cluster. However, existing works address the mutual influence between application mappings

and cluster v/f configurations at the cost of increased strategy complexity. A management

strategy that offers a good trade-off between energy efficiency and complexity is thus required.

7

Chapter 1. Introduction

Global optimization in the overall system

Then, we study the global optimization or energy efficiency in the overall system. At the chip-

level, application-to-cluster assignment plays a crucial role to achieve energy efficiency. In

the scope of this work, we assume that each application can be executed in different clusters,

but all tasks of an application are assigned to the same cluster to avoid communication costs

among clusters. Different application-to-cluster assignments can lead to different possibilities

of cluster v/f configurations and eventually change the system energy efficiency. In the

case of heterogeneous platforms, the application-to-cluster assignment problem becomes even

more complex because the performance and power characteristics vary from one cluster to

another. Therefore, it is required to assign applications to clusters carefully to achieve the

global optimization target. However, most existing application-to-cluster assignment solutions

focus on 2-clusters platforms (e.g., ARM big.LITTLE). They may have limitations to deal with

platforms with more different clusters or with more cores in a cluster.

1.2.2 Evaluation of Run-Time Management Strategy

With our proposed run-time management strategies, an interesting research problem arises:

how to evaluate run-time management strategies to guarantee that non-functional requirements

(e.g., application latency, resource usage, energy efficiency) will be respected during system

execution. System-level modeling and simulation approaches allow early detection of potential

design issues. However, most of the existing system-level frameworks only support a static

mapping of applications on platform resources without considering the run-time management

effects. It is required to extend system-level simulation-based approaches for run-time

management strategy evaluations.

1.3 Main Contributions

Towards the above-mentioned research problems, this dissertation makes the following three

main contributions.

Contribution 1: Run-time management for local optimization within a cluster

We propose a run-time management strategy to optimize average dynamic power consumption

of multiple applications executed dynamically within a cluster. The overview of the run-time

management for local optimization is presented in Figure 1.4.

For active applications within a cluster, the local management strategy is responsible for

determining task-to-core allocation and scheduling and setting the cluster v/f level. The

proposed strategy can achieve near-optimal energy efficiency of a cluster while meeting

8

1.4. Dissertation Organization

• Chapter 3 introduces the system models, including application, platform, and mapping

models, used throughout the dissertation. Besides, in order to evaluate system energy

efficiency, the power/energy models are presented and the models are validated by some

measurements in the ARM big.LITTLE platform.

• Chapter 4 begins with an overview of run-time management for the local optimization

of energy efficiency within a cluster. It then gives a summary of the existing strategies,

which are particularly used as counterparts to our proposed management strategy. After

that, the details of our proposed management strategy are demonstrated. Finally, the

advantages of our proposed strategy are shown in the experimental results.

• Chapter 5 focuses on run-time management for the global optimization of energy

efficiency in the overall system. It first presents an overview of this work. Then, it

highlights the existing strategies that are particularly used as counterparts to our proposed

application-to-cluster assignment strategy. Furthermore, the global management problem

is defined, followed by the details of proposed management strategies. Finally, the

experimental results are given.

• Chapter 6 concerns the system-level evaluation of run-time management strategies. First,

it presents the motivation of this work. Then, it compares our proposed simulation

approach to the existing trace-driven simulation approach. After, it presents the proposed

system-level simulation approach and the experimental evaluations.

• Chapter 7 concludes the contributions presented in previous chapters and discusses some

possible improvements in future work.

11

Chapter 1. Introduction

12

Chapter 2

State-of-the-art

Contents

2.1 Dynamic Task Mapping . 13

2.1.1 Hybrid Mapping with Use-case-based Preparation 15

2.1.2 Hybrid Mapping with Application-based Preparation 16

2.2 Applying Dynamic Task Mapping and DVFS 20

2.2.1 Applying Dynamic Task Mapping and DVFS Separately 21

2.2.2 Applying Dynamic Task Mapping and DVFS Coordinately 23

2.3 Management Structure . 26

2.3.1 Distributed Management . 26

2.3.2 Hierarchical Management . 28

2.4 Run-Time Management Strategy Evaluation at System-Level 29

2.5 Summary and Discussion . 32

Many efforts have been done to cope with run-time management of multiple applications

executed dynamically on multi/many-core systems. This chapter first summarizes the existing

works concerning dynamic task mapping strategies. Then, we discuss how state-of-the-art

approaches apply dynamic mapping and DVFS together in cluster-based multi/many-core

systems. After that, the existing management structures are compared. Finally, the state-of-

the-art system-level evaluation approaches for run-time management strategies are presented.

2.1 Dynamic Task Mapping

Task mapping can be performed either statically or dynamically. Static task mapping defines

a mapping of application tasks on platform resources at design-time, and the mapping does

13

2.2. Applying Dynamic Task Mapping and DVFS

the big clusters. In contrast, for the multimedia applications executed in the big cluster, if a

multimedia applications can be executed at a lower v/f level than the minimum v/f level of

the big cluster, the multimedia application can be migrated to the little cluster. Similarly, the

work in [51] also supports application migration after DVFS. However, this work allows only

one cluster to be activated at the same time due to the limitation of software supports. Therefore,

when application requirements cannot be satisfied at the highest v/f level in the little cluster,

this work migrates all applications to the big cluster.

The above-mentioned works aim to achieve energy efficiency while guaranteeing system

performance in cluster-based multi/many-core systems. The first mentioned work consider

periodic independent tasks executed in a system with 4 clusters, while the other mentioned

works focus on the ARM big.LITTLE system with 2 clusters. These works apply dynamic

mapping and DVFS in separated steps. Application mapping determines application perfor-

mance, which can further affect the cluster v/f level required to meet performance constraints.

Some mappings may have better energy efficiency at one v/f level but it may result in higher

v/f configurations after DVFS, which ultimately leads to high energy consumption. Better

management results can be achieved if the influence between the two techniques is taken into

account.

2.2.2 Applying Dynamic Task Mapping and DVFS Coordinately

In recent years, the mutual influence between dynamic task mapping and DVFS in cluster-

based multi/multi-core systems has received more attention. The coordination between the two

techniques can be considered through estimations or iterative evaluations.

In [6], the authors aim to satisfy application performance requirements without violating

the given power budget in the Arm big.LITTLE system. Unlike most existing works, this work

establishes coordination between application mapping and DVFS by estimating performance

gain/loss of applications. The management overview of this work is depicted in Figure 2.10.

The work applies Low-Power-First strategy (i.e., LPF discussed in Section 2.2.1) during

dynamic mapping (see step (1) of Figure 2.10). Every new active application is first mapped

onto the little cluster. When the application does not meet the performance requirement with

the highest resource usage in the little cluster, the application is mapped to the big cluster. Each

time when a certain application is active or inactive, application remapping is performed to

make utilization uniform on cores within a cluster. This work coordinates dynamic mapping

and DVFS to respect the power budget within each cluster (see step (2)). On one hand, when

the power budget is violated in a cluster, applications can be migrated to the other cluster.

After estimation (see step (2.a)), if no application can meet its performance requirement in the

new cluster, DVFS is used to reduce power consumption in the current cluster. On the other

hand, when the power budget is honored in a cluster, the cluster v/f level can be reduced

in the currently considered cluster. After estimation (see step (2.b)), if the new v/f level

causes performance violation of an application, more resources are allocated to the application.

23

2.3. Management Structure

can be independent or can communicate with each other. For independent distributed managers,

it is assumed that some management decisions (e.g., applications and cores considered by each

manager) are known at design-time. The distributed manager can be created individually for an

application, or for a core, or a cluster, in order to achieve local optimization of a sub-system.

One Manager for One Application / One Core

In [52], each distributed manager is created for a certain active application in homogeneous

multi/many-core systems. Each manager (or agent) is created to map an application onto cores

for better performance. When a new application is active, its manager randomly selects a region

(with some close available cores) on the chip to run the application. Then the application

manager starts to communicate with another application manager over a short distance to

request some resources. If the performance gain of the requesting application is greater than

the performance loss of the answering application, some resources are released from one

application to another. The resource bargain between different application managers can be

applied over larger distances (among cores) to achieve a wider range of coverage.

The work in [53] presents a distributed management approach based on each core. A run-

time heuristic algorithm is proposed to run on each processing core in a homogeneous multi-

core system (i.e., 9 cores). To reduce communication overheads, the heuristic migrates some

tasks from one core to its neighbors based on its local workload. If no improvement is achieved

from the migration, a larger neighborhood is considered. The algorithm stops when there is no

more improvement after a certain number of repetitions (set by users).

The work in [54] creates a manager for each application and for each core. Among these

works, the number of managers is highly dependent on the number of active applications or the

number of cores. As the number of supported applications and the number of cores increase,

creating a manager for each application or each core is not scalable.

One Manager for One Cluster

The authors of [55] create one manager for one cluster that executes multiple applications

on several processing cores. It aims to optimize the communication energy of homogeneous

multi/many-core systems. At system startup, it divides the platform into several fixed-size

clusters and creates a manager for each cluster. During system execution, each cluster manager

heuristically maps active applications within the cluster. When the resources are not sufficient,

the cluster manager can borrow some resources from neighbor clusters. Thus the cluster sizes

can change dynamically. The work in [56] presents another example that also supports dynamic

size of cluster.

As previously discussed in Section 2.2.2, the works in [8, 12] respectively aims to achieve

energy and power optimization within a cluster. These two works manage the executions of

multiple applications on a cluster, assuming that the application-to-cluster allocation is known

27

Chapter 2. State-of-the-art

in advance. It means that the two works create a distributed manager for a fixed size cluster in

the Arm big.LITTLE systems. There is no communication between the distributed managers in

the little cluster and the big cluster.

Compared to the distributed management approaches that are based on one application or

one core, creating one manager for one cluster helps to reduce the number of managers. Since

the main feature of distributed management is its local optimization of the system, the division

of sub-systems (e.g., in terms of an application, a core or a cluster) determines the scope of local

optimization.

2.3.2 Hierarchical Management

Hierarchical management can provide management scalability with both local and global

optimization. As shown in Figure 2.12 (c), managers are created to deal with a system at

two or more levels of abstraction. According to [57], managers at different levels consider local

optimization of each sub-system and global optimization of the overall system.

2-Level Hierarchical Management

In 2-level hierarchical management approaches, a global manager and several local managers

are created to perform run-time management. The global manager not only serves as a

communication center for different local managers but also highly determines the management

quality of the entire system.

The work in [58] presents a 2-level hierarchical resource allocation framework on a

heterogeneous platform, in which there are identical clusters on a chip (i.e., homogeneous at

the chip-level) and each cluster contains different core types (i.e., heterogeneous at the cluster-

level). In the management framework, a global manager monitors the system workload and

assigns active applications to clusters for workload balance at the chip-level. An application is

allocated to one cluster to reduce the task communication overhead between different clusters.

At the cluster-level, a local manager is created to allocate application tasks to cores within

each cluster. The local management strategy is based on some prepared mappings of each

application. For multiple active applications in a cluster, the local strategy first merges

the prepared mapping of each active application together and then iteratively migrates tasks

between cores to minimize core usage variation among cores.

The work in [59] presents 2-level hierarchical managers to enable multi-objective optimiza-

tion in a homogeneous many-core platform, which has multiple clusters and supports per-core

DVFS. The managers aim to reduce energy consumption, improve application performance and

guarantee the power constraint. At the chip-level, the global manager verifies the power and

resource requirements of a new active application and then chooses a cluster for the application.

The global manager can also dynamically change the operation mode of a cluster according

to the workload behavior. A cluster is set to energy mode or performance mode depending

28

2.4. Run-Time Management Strategy Evaluation at System-Level

on whether the power budget is violated or not. Then, at cluster-level, a local manager is

responsible for mapping or remapping tasks and setting v/f level of each core according to the

operation mode.

More-Level Hierarchical Management

The work in [60] presents hierarchical organized run-time controllers to deal with application

dynamism and architecture failures (temporary or permanent) of many-core systems with

multiple clusters. The created controllers aim to deal with the behavioral or fault events in

three different levels, which are core-level, cluster-level, and chip-level. The events that can not

be handled at a low level can be delivered to a higher level.

As previously discussed in Section 2.2.1, the work of [49] applies dynamic mapping and

DVFS separately to manage the ARM big.LITTLE system under restricted power budget. Here,

we discuss the management structure of this work. This work presents a 3-level hierarchical

management framework, which consists of different levels (i.e., chip-level, cluster-level, task-

level) of controllers. The chip-level power allocator triggers the cluster frequencies and

the quality of service (QoS) of the tasks. The per-cluster DVFS controller sets the cluster

frequencies. The per-task QoS controller sets the task performance constraint, based on

which per-task resource control determine resource allocation. There is a load balancer and

migrator at the cluster-level, which migrates tasks between big and little cluster according to

the performance requirements.

Compared to distributed management, hierarchical management has more flexibility due to

its capability of local and global optimizations. Different optimization targets can be set to

managers at different levels. The difficulty of hierarchical management is how to coordinate

management between different management levels [57].

2.4 Run-Time Management Strategy Evaluation at System-

Level

In the state-of-the-art of system-level modeling and simulation approaches, a system model is

captured according to Y-chart design methodology [9, 61, 62], where application models and a

platform model are built independently and further combined by mapping rules. As illustrated

in Figure 2.13, application models capture the functional behavior of applications, while the

platform model describes the hardware resources and hardware performance characteristics.

After the application models are mapped onto and then simulated with the platform model,

the platform model accepts the computation and communication activities of applications

as workloads [62]. As a consequence, non-functional characteristics of applications can be

estimated under different situations. The resulting performance may lead to the improvement

of platforms, the adaptation of applications or the modification of mapping strategies. The

29

Chapter 2. State-of-the-art

2.5 Summary and Discussion

This dissertation focuses on managing the energy efficiency of multiple applications executed

dynamically on cluster-based multi/many-core platforms. In this chapter, related works are

presented. The presented literature is summarized in Table 2.1.

Firstly, we discussed the existing works about dynamic task mapping, a necessary technique

to deal with application execution dynamism. We concentrate on hybrid mapping strategies,

which realize dynamic mapping based on some design-time prepared mappings to reduce run-

time computation burden. Generally, to reduce storage space, some optimized mappings are

prepared for each application (highlighted in gray in Table 2.1) at design-time. At run-time,

application mappings can be optimized independently or holistically. Our work focuses on

holistic optimization, due to its capability of overall optimization for all active applications. We

also apply independent optimization to perform application-to-cluster assignment in the overall

system, because independent optimization has better feasibility and lower complexity.

Secondly, we discussed the existing approaches that apply dynamic mapping and DVFS

techniques on cluster-based multi/many-core systems. Mapping and v/f configurations can

be applied independently or coordinately, based on whether the mutual influence between the

two techniques is predicted or evaluated during the decision-making process. Applying the two

techniques coordinately can achieve better management results. However, more computation

efforts have to be paid at run-time. The management problem becomes even more complex

when hybrid mapping targets holistic optimization for all applications. Our work addresses the

difficulties of coordinating hybrid mapping and DVFS to obtain run-time mappings for task-

dependent applications with optimized cluster v/f levels. In contrast to the previous works, we

aim at reducing strategy complexity of local optimization, and exploring management strategies

to achieve global optimization of systems with different numbers of clusters (e.g., more than 2).

Thirdly, we discussed different management structures that can be used to realize hybrid

mapping and DVFS techniques. Our work considers distributed and hierarchical structures

to allow our management strategies to be scalable in large systems where many applications

can be executed simultaneously on a large number of cores. On one hand, for cluster-based

multi/many-core systems, we adopt the existing distributed management structure where a local

manager is created for each cluster. In this dissertation, we propose a new local management

strategy to achieve local optimization in one cluster, assuming the same strategy is applied in

every cluster. Compared with existing related work, the proposed local management strategy

requires fewer search iterations to achieve energy efficiency within a cluster. On the other hand,

for global optimization in the overall cluster-based system, we apply the existing hierarchical

management structure where the global manager is created at chip-level and local managers are

created at cluster-level. Unlike most existing hierarchical management approaches, our work

considers hybrid mapping and per-cluster DVFS holistically. The proposed approach can be

scalable to homogeneous and heterogeneous cluster-based platforms with different numbers of

32

2.5. Summary and Discussion

clusters and different numbers of cores in each cluster.

From one use-case to another, our proposed run-time management strategies could update

application mapping and cluster frequency configurations for energy optimization. During the

system reconfiguration process, some time and energy would be spent to allow task/application

migrations from one core to another (or from one cluster to another). Thus it requires weigh

reconfiguration costs and benefits to make a reasonable run-time decision. Notice that system

reconfiguration costs are highly dependent on the current use-case duration [64]. The work of

[64] predicts use-case duration based on historical records. It stores 3 history samples (use-case

duration) for each use-case and computes the probabilities of possible predictions. For a new

use-case, this work checks its matched history pattern and then sums the probabilities of some

promising predictions (where use-case duration is large enough) together. If the sum probability

value is large than a predefined value, this work performs migration. For simplicity, our work

assumes that each use-case executes long enough, and the system reconfiguration costs can

be neglected compared to the reconfiguration benefits. Use-case duration prediction would be

addressed in future work.

Finally, we discussed the state-of-the-art system-level modeling and simulation approaches

that support the evaluation of run-time management strategies. These approaches use some

design-time prepared mappings to guide run-time mapping simulation. This dissertation

work presents a new system-level simulation approach, which is also based on design-time

prepared data. Compared to the existing trace-driven simulation approach, our approach does

not dispatch trace events and avoids model synchronization by computing the instants when

application tasks are run on platform resources. Besides, our approach can be implemented

without any modification of the used framework.

33

Chapter 2. State-of-the-art

Table 2.1: Comparison of state-of-the-art run-time management approaches

Ref Platform
Dynamic task mapping Apply with

Mechanism
Design-time preparation Run-time configuration DVFS

[46]
Generic

heterogeneous 2 Use-case-based Apply optimized mapping Centralized

[47]
Heterogeneous

cluster-based
Use-case-based Apply optimized mapping Centralized

[60]
Homogeneous

cluster-based
Use-case-based Apply optimized mapping

Hierarchical

(3-level)

[7]
ARM

big.LITTLE
Application-based Optimize apps individually

Per-cluster DVFS

(separately)

Distributed

(cluster)

[13] Homogeneous Application-based Optimize apps individually Centralized

[48] Homogeneous Application-based Optimize apps individually Centralized

[3]
Generic

heterogeneous
Application-based Optimize apps holistically Centralized

[8]
ARM

big.LITTLE
Application-based Optimized apps holistically

Per-cluster DVFS

(coordinately)

Distributed

(cluster)

[14] Homogeneous Application-based Optimize apps holistically Centralized

[34]
ARM

big.LITTLE
Application-based Optimize apps holistically

Per-cluster DVFS

(separately)
Centralized

[10]
Generic

heterogeneous
Application-based Optimize apps holistically Centralized

[58]
Special

heterogeneous 3 Application-based Optimized apps holistically
Hierarchical

(2-level)

[4]
Heterogeneous

cluster-based
On-the-fly mapping

Per-cluster DVFS

(separately)
Centralized

[5]
ARM

big.LITTLE
On-the-fly mapping

Per-cluster DVFS

(separately)
Centralized

[6]
ARM

big.LITTLE
On-the-fly mapping

Per-cluster DVFS

(coordinately)
Centralized

[29]
Heterogeneous

cluster-based
On-the-fly mapping

Per-cluster DVFS

(coordinately)
Centralized

[51]
ARM

big.LITTLE
On-the-fly mapping

Per-cluster DVFS

(separately)
Centralized

[49]
ARM

big.LITTLE
On-the-fly mapping

Per-cluster DVFS

(separately)

Hierarchical

(3-level)

[59] Homogeneous On-the-fly mapping
Per-core DVFS

(separately)

Hierarchical

(2-level)

[52] Homogeneous On-the-fly mapping
Distributed

(app)

[53] Homogeneous On-the-fly mapping
Distributed

(core)

[55] Homogeneous On-the-fly mapping
Distributed

(cluster)

[56] Homogeneous On-the-fly mapping
Distributed

(cluster)

2 Generic Heterogeneous: a platform contains different type of cores showing different power/performance

characteristics (e.g., GPP, DSP).
3 Special Heterogeneous: a platform has the same clusters (i.e., homogeneous) in the system and different

core types ((i.e., heterogeneous) within a cluster.

34

Chapter 3

System Models

Contents

3.1 Application Models . 35

3.2 Platform Model . 37

3.3 Mapping Model . 38

3.4 Models for Energy Efficiency Evaluation 39

3.5 Model Validation on ARM big.LITTLE platforms 42

3.6 Summary . 46

This chapter presents the application, platform, application mapping and power and energy

models. The models and notations defined in this chapter are used throughout the dissertation

work.

3.1 Application Models

In this dissertation, we target data-flow applications (i.e., task-dependent applications), where

the output of one task might be the input of other tasks [65]. Some examples include

multimedia and Digital Signal Processing (DSP) applications. Figure 3.1 gives an illustration

of an application, denoted by appi. The application appi consists of a set of H computation

tasks (or nodes): Tappi = {t1,i, t2,i, · · · , tH,i} and a set of G communication edges (or arcs):

Eappi = {e1,i, e2,i, · · · , eG,i} representing dependencies among the tasks. Task and edge in appi
are respectively indexed by th,i and eg,i. This work focuses on periodic real-time data-flow

applications and each application has a period Periodappi , denoting the application execution

deadline. The application execution time shall be within its corresponding period time.

In the scope of this work, Synchronous Data Flow (SDF) semantics [66] is used to capture

the data-flow activity of applications by specifying the number of data samples (or tokens)

35

Chapter 3. System Models

Table 3.1 presents some examples of cluster-based multi-core/many-core platforms. In-

tel Single-chip Cloud Computer (SCC) [19] and Kalray MPPA2r-256 [20] have many

homogeneous clusters (i.e., more than 10). Their homogeneous clusters support the same

frequency range. On the other hand, Exynos 5 Octa [21] and MediaTekHelio [23] have several

heterogeneous clusters. Their clusters are based on the ARM Cortex family and different

clusters support different frequency ranges.

Table 3.1: Examples of cluster-based multi/many-core platforms

Examples Architecture Nb of clusters: J
Cluster description

with supported operating frequency ranges

SCC [19] Homogeneous 24 2 Pentium cores: 125MHz ∼ 1GHz

MPPA2r-256 [20] Homogeneous 16 16 RISC cores: 600MHz ∼ 800MHz

Exynos 5 Octa [21] Heterogeneous 2
4-core ARM Cortex-A7: 0.2GHz ∼ 1.4GHz

4-core ARM Cortex-A15: 0.2GHz ∼ 2.0GHz

MediaTekHelio X30
Heterogeneous 3

2-core ARM Cortex-A73: up to 2.6GHz

(MT6799) [23]
4-core ARM Cortex-A53: up to 2.2GHz

2-core ARM Cortex-A35: up to 1.9GHz

3.3 Mapping Model

As previously defined in Section 1.1.5, task mapping refers to the allocation of application

tasks on platform resources and the execution order (i.e., scheduling) of tasks on a given core.

When applications are mapped on platform resources, their computation and communication

activities can be fulfilled after a certain time of execution. The time used to finish computation

activities of a task (th,i) is defined as computation time (CompTimeh,i), while the time used

to finish communication activities between dependent tasks via an edge (eg,i) is defined as

communication time (CommTimeg,i). CompTimeh,i and CommTimeg,i can be different

due to different processed data, mapping strategies and platform configurations (processing

element, v/f level, · · ·). This work holds the same assumption as [10], that is, communication

time within a core is very short and can be neglected.

In this work, we characterize a mapping by an execution trace, which comprises a set of

instants defining the start time (xs) and the end time (xe) of each task when executed on platform

resources. For a given task, xs th,i(k) and xe th,i(k) refer to the kth start and end instances of the

task th,i respectively. Figure 3.4 gives two examples of execution traces for app1 mapped on two

cores and four cores. In these examples, t2,1 and t3,1 are executed three times at each iteration.

Due to the different mappings between Figure 3.4 (a) and (b), their obtained instants (i.e.,

from xs t1,1(1) to xe t4,1(1)) are different the change of task execution orders. Moreover, since

38

Chapter 3. System Models

power/energy is beyond the scope of this work. The energy and the average power consumption

mentioned in the following refer to the dynamic part.

For multiple applications executed on a cluster-based multi/many-core platform, the system

average power (P avg
sys) can be expressed as the sum of the average power of all active applications

in all clusters as follows.

P avg
sys =

I∑

i=1

J∑

j=1

P avg
appi

(clusterj, fj) (3.1)

where I and J are the total number of active applications and the total number of clusters,

respectively. P avg
appi

is the average power of appi, and the power value depends on the cluster (e.g.,

clusterj) where the application is executing and the cluster frequency configuration (e.g.,fj).

For an application, its P avg
appi

within its application period (periodappi) can be computed as

the amount of energy (Eappi) consumed in a unit of time as follows.

P avg
appi

(clusterj, fj) =
Eappi(clusterj, fj)

Periodappi
(3.2)

The energy of an application (Eappi) can be computed as the sum of computation energy

(Ecomp
appi

) and communication energy (Ecomm
appi

) as expressed in Eq.(3.3).

Eappi(clusterj, fj) = Ecomm
appi

(clusterj, fj) + Ecomp
appi

(clusterj, fj) (3.3)

In this work, we focus on data-flow applications like multimedia applications. We assume

that the communication cost (e.g., time and power) of an application is much smaller than

its computation cost. Chapter 4 will use communication energy ratio (Rcomm) to indicate the

small ratio between communication energy and computation energy within a period for each

application mapping. On the other hand, the Ecomp
appi

of an application can be estimated as the

sum of energy consumed by all tasks, which can be expressed into Eq.(3.4).

Ecomp
appi

(clusterj, fj) =
H∑

h=1

Eh,i(clusterj, fj) (3.4)

where Eh,i refers to the computation energy of th,i. As the energy of a task is the integration

of its power (Ph,j) overtime, Eh,i can be further estimated as follows.

Eh,i(clusterj, fj) = Ph,i(clusterj, fj)× CompTimeh,i(clusterj, fj) (3.5)

For CMOS circuits, the works in [71–73] define the dynamic power model by the square of

the voltage (v) and the frequency(f), as shown in Eq.(3.6).

P = ǫ× v2 × f (3.6)

40

3.4. Models for Energy Efficiency Evaluation

where ǫ is a constant coefficient that depends on the technology used to manufacture the

circuits. Furthermore, according to [35, 72, 73], it exists an approximate relationship between

the operating frequency and supply voltage, as shown in Eq.(3.7).

f =
(V − Vth)

α

K × Ld

(3.7)

where Vth is the threshold voltage, Ld is the logic depth, K is a constant, while α is a

technology dependent parameter. Based on Eq.(3.6) and Eq.(3.7), the dynamic power can be

expressed as a polynomial of frequency of degree λ (i.e., fλ) [8]. λ is generally set to 3 in

related works [28, 32, 33, 73] due to that fact that they assume there is an approximate linear

proportional relationship between frequency and voltage.

Upon convenience, this work reuses the power model (Eq.(3.8)) proposed in [8], which

considers the dynamic power of an application mapped on the Exynos.5422 [21] Arm big.Little

cluster-based multi-core platform. Here, the dynamic power is estimated by the cubic of

frequency (i.e., f 3).

P = ξ × f 3 (3.8)

where ξ is a coefficient that is dependent on the task and the allocated core type.

To describe the evolution of computation time with operating frequency, we use the

traditional performance model [4, 32, 72] as shown in Eq.(3.9). W is the total number of

execution cycles, which can be understood as the amount of work that has to be done. W can

be known at a reference frequency (f0) [8]. f0 can be one any frequency level that is commonly

supported in all clusters. Eq.(3.9) will be further verified in the next section.

CompTime(f) ≈
W

f

≈
CompTime(f0)× f0

f

(3.9)

From Eq.(3.8) and Eq.(3.9), the dynamic computation energy in Eq.(3.5) can be written into

Eq.(3.10). Let ξh,i,j be the power coefficient of th,i executed on clusterj . Note that now the

energy equation has f 2
j instead of f 3

j .

Eh,i(clusterj, fj) = ξh,i,j × CompTimeh,i(clusterj, f0)× f0 × f 2
j (3.10)

Moreover, the work of [25] summarized the performance and power consumption ratios

based on the publicly available information of ARM-cortex processors. Let Rperf
j and Rpower

j

be the performance/power ratios of th,i executed on clusterj respectively, while clusterr is

41

Chapter 3. System Models

defined as a reference cluster.

Rperf
j =

CompTimeh,i(clusterj, f0)

CompTimeh,i(clusterr, f0)
(3.11)

Rpower
j =

Ph,i(clusterj, f0)

Ph,j(clusterr, f0)

=
ξh,i,j
ξh,j,r

(3.12)

Based on Eq.(3.10), (3.11) and (3.12), the average dynamic energy of a task (e.g., th,i) can

be further written into Eq.(3.13).

Eh,i(clusterj, fj) = Rpower
j × ξh,i,r ×Rperf

j × CompTimeh,i,r(f0)× f0 × f 2
j (3.13)

As a consequence, the system average power (P avg
sys) in Eq.(3.1) can be further written into

Eq.(3.14), if communication energy is neglected.

P avg
sys =

I∑

i=1

J∑

j=1

Eappi(clusterj, fj)

Periodappi

=
I∑

i=1

J∑

j=1

∑H

h=1 Eh,i(clusterj, fj)

Periodappi

=
I∑

i=1

J∑

j=1

∑H

h=1 R
power
j × ξh,i,r ×Rperf

j × CompTimeh,i,r(f0)× f0 × f 2
j

Periodappi

(3.14)

Eq.(3.14) reveals that system average power (P avg
sys) is highly dependent on the hardware

features (e.g., Rpower
j , Rperf

j and fj) and application characteristics (e.g., ξh,i,r, CompTimeh,i,r,

and Periodappi).

3.5 Model Validation on ARM big.LITTLE platforms

In this section, ODROID XU3 board [50] consisting of a Samsung Exynos 5422 [21] ARM

big.LITTLE clusters is used as experimental platform to verify our applied models. The verified

models include v-f model (i.e., Eq.(3.7)), power model (i.e., Eq.(3.8)) and performance model

(i.e., Eq.(3.9)). The ODROID XU3 board embeds INA231 current-shunt and power sensors [74]

to allow the measurement of the instant current and power consumption in the little cluster and

the big cluster. The function /clock() provided by linux can be used to measure application

execution time.

42

Chapter 3. System Models

latency values together at different frequencies (from Figure 3.6). We achieve the same energy

evolution as [4]. It can be observed that there exists a critical frequency (fcrit)” [4, 76] which

minimizes the energy consumption of application execution. The arrow in figure (a) and (b)

highlight the fcrit for the little cluster and the big clusters respectively. The fcrit values do not

depend on the application, but depends on the platform characteristics. The fcrit exists due to

the fact that cluster voltage does not decrease with frequency (see Figure 3.5), which makes

energy cannot keep decreasing with frequency. According to [4], it should avoid executing an

application at frequencies below fcrit for better system energy efficiency. In the scope of our

work, we assume that scaled frequencies are above fcrit.

3.6 Summary

In this chapter, we presented the system models that are used throughout this dissertation. We

consider data-flow applications (i.e., with task dependence). Each application is captured by

a SDF description. The targeted cluster-based multi/many-core platforms support per-cluster

DVFS, and each cluster can be set to discrete frequency levels. The mapping of applications

executed on platform resources is characterized by an execution trace, which defines the start

instant and end instant of task executions. We also presented the power and energy models

that are required for the evaluation of energy efficiency. Our used models are verified by

some measurements on the ODROID XU3 board with the ARM big.LITTLE architecture. The

measurement results show the same trend as the measurements in existing works. The power

and energy models presented in this chapter will be used to evaluate our proposed management

strategies in Chapter 4 and 5.

Our work verifies the power and energy models in ARM-based platforms by using the matrix

multiplication application. Future work could perform more extensive validation experiments

for different applications (e.g., computation-intensive, communication-intensive workloads)

and for different platforms (e.g.,x86, RISC-V). Moreover, our power/energy models are built

for each independent application. These models can be inaccurate when multiple applications

executing simultaneously on the same platform. This is because the fixed coefficients of

the models cannot capture run-time workload variations. The establishment of run-time

power/energy models can be addressed in our future work.

46

Chapter 4

Run-Time Management for Local

Optimization

Contents

4.1 Overview . 47

4.2 Summary of Related Work on Local Optimization 49

4.3 Problem Definition . 50

4.4 Proposed Management Approach . 51

4.4.1 Design-time Prepared Data . 52

4.4.2 Run-time Selection . 53

4.4.3 Run-Time Mapping Combination 55

4.5 Experimental Evaluations . 59

4.5.1 Simulation Setup . 59

4.5.2 Evaluations of the proposed Hybrid Management Strategy 61

4.5.3 Evaluations of the Strategy Complexity 64

4.6 Summary and Discussion . 66

4.1 Overview

For cluster-based multi/many-core systems that support per-cluster DVFS, mapping application

tasks and setting cluster frequencies play crucial roles to achieve energy efficiency, as discussed

previously in Chapter 1. This chapter focuses on the energy efficiency of active applications

executed locally in a given cluster.

47

Chapter 4. Run-Time Management for Local Optimization

For the local optimization in a cluster, executing multiple applications at a low cluster

frequency for energy optimization is a challenge. Applications mapped into the same cluster

influence each other due to possible platform resource competition and the common cluster

frequency configuration. For an application with timing constraint, increasing the number of

used processing cores allows a lower operating frequency level. However, using more cores for

some applications leaves fewer available cores for other active applications. Consequently,

the application that has the worst performance might determine the cluster frequency level

and significantly increase the energy consumption. A management strategy is required for

each cluster to determine the mapping of applications and set the cluster frequency level.

Implementing such a management strategy can become very complex with the increasing

application dynamism. Furthermore, the management strategy itself, as the mapping phase

should not jeopardize the timing constraints of the applications. Therefore, an efficient

management strategy with reduced complexity is of great importance.

In this chapter, we propose a new run-time management strategy to optimize energy

consumption in a cluster while preserving the application timing and platform resources

constraints. Like [8, 12], this chapter assumes that each application is known to be executed

in which cluster beforehand. The assumption is practical with reference to some mapping

strategies of Arm big.LITTLE platforms. For example, according to resource demands of

applications, we can assign applications that require more CPU resources to the big cluster, and

applications that require fewer CPU resources to the little cluster [5]. Once certain applications

are assigned to a certain cluster, the work presented in this chapter deals with task-to-core

mapping (i.e., allocation and scheduling) and cluster frequency configuration within the cluster.

The main contributions of this work are:

• We propose a new run-time selection strategy to select the best prepared mapping

of each active application. This strategy relies on hybrid mapping with application-

based preparation (see Section 2.1.2). The design-time prepared data includes possible

mappings for each application as well as the Minimum Allowed Frequency (MAF). This

latter defines the minimum required frequency for a given prepared mapping in order to

meet the application timing constraint. The selection management then tries to minimize

the required frequency of the clusters according to the selected mappings.

• To further improve the energy efficiency, a new run-time mapping combination strategy

is proposed to effectively combine the selected mappings of all active applications. The

combination strategy can imply that some tasks can be merged on a core to reduce the

resource usage of active applications. This combination strategy considers holistically the

optimization for all active applications in the cluster (see Section 2.1.2).

• Several use-cases including up to 9 active applications (45 concurrent tasks in total) have

been considered in order to evaluate the benefits of the proposed management approach

48

4.2. Summary of Related Work on Local Optimization

in terms of energy efficiency and utilization of resources. Results show up to 206%

improvements of energy efficiency when compared with state-of-the-art approaches.

4.2 Summary of Related Work on Local Optimization

As previously discussed in Chapter 2, this dissertation work focuses on hybrid mapping

strategies with application-based preparation. At design-time, different optimized mappings

can be prepared for each supported application. At run-time, mapping selection and mapping

combination are performed to achieve a mapping solution for active applications on available

platform resources. The following summarizes the existing mapping selection and mapping

combination strategies, which are particularly used as counterparts to our proposed management

strategy.

In multi/many-core systems that support per-cluster DVFS, different mapping selection

strategies can have different impacts on cluster frequency configuration. A mapping-based

selection strategy is presented in [3], where all the possible prepared mappings are exhaustively

explored to find the best set for the active applications. Theoretically, this strategy could be

extended to support frequency reduction for the best energy efficiency. However the complexity

of this approach increases with the number of prepared mappings, the number of applications

and the number of cores. A frequency-based selection strategy is presented in [8], where

different available frequency levels are explored in an iterative process. The platform frequency

is incrementally set until a possible set of prepared mappings are found for all the active

applications. This approach can take a long time to reach convergence when the frequency

increment is small. In this work, we introduce a new parameter defined as Minimum Allowed

Frequency (MAF) as a guideline to make the selection at run-time among all the design-time

prepared mappings and the cluster frequency for the active applications. This approach reduces

the searching iterations of run-time selections while offering energy efficiency.

Once mapping selection for all active applications is accomplished, mapping combination is

performed under platform resource constraints. The authors of [3] explore all the possible task

allocations in an exhaustive approach to find the best energy efficiency. This approach presents a

scalability limitation. On the other extreme, a First-Come-First-Served (FCFS)-based strategy

is proposed in [12, 13] in order to increase the speed of the mapping combination process.

However, each core is only used by one application and thus some processing resources can

be wasted. For less resource usage, the Largest Available Slot Packing (LASP) strategy is

introduced in [14]. It allows different applications to be allocated to the same core at the

cost of possible degradation of application performance. In this work, we propose a new

run-time mapping combination strategy that reduces resource usage without sacrificing the

performance of applications. Further comparisons of FCFS and LASP with our proposed

mapping combination strategy are provided in Section 4.4.3.

49

4.4. Proposed Management Approach

its start time (ST) and end time (ET). X1
app1

is thus characterized with only one slot whereas

X2
app1

contains two slots.

Different mappings can lead to different application latency. Let Latencyappi refers as the

latency of appi. It can be observed from Figure 4.3 that the latency (Latencyapp1) of X2
app1

is

smaller than that of X1
app1

due to the execution parallelism. As a result, the slack time of the

two prepared execution traces are different with respect to Periodapp1 . The slack time can be

used by DVFS to achieve lower frequencies but still meeting the considered timing constraint.

(2) Minimum Allowed Frequency (MAF)

Allowed frequencies for a given mapping are the frequencies that allow the mapped applications

to respect their timing constraints. The allowed frequencies can be obtained by both,

experimental measurements or application performance model (see Eq.(3.9) 6). In this work,

only the minimum level of the allowed frequencies, defined as Minimum Allowed Frequency

(MAF), of each prepared mapping is stored. Let MAF c
i be the MAF of appi mapped on c cores

(i.e., Xc
appi

). Different mappings of an application can lead to different MAF with respect to

the same timing constraint. For the example in Figure 4.3, MAF 2
1 can be smaller than MAF 1

1

because the longer slack time of X2
app1

allows the application execution at a lower frequency

level without timing violation.

4.4.2 Run-time Selection

For every new use-case, the run-time selection is performed to explore a set of prepared

mappings and a cluster frequency level to optimize the energy efficiency of the active

applications. As all active applications within a cluster share the same frequency level, the

objective is to find the lowest common allowed frequency under application timing and platform

resource constraints. The selected frequency level corresponds to one of the prepared MAFs for

all the active applications. Once this common frequency is selected, it further determines the

application mappings that are selected. The selection process can be illustrated by the example

of u2 = {app1, app3} in Figure 4.4.

Figure 4.4.a shows the average dynamic power evolution of the design-time prepared

mappings for app1 and app3 (see Figure 4.1 for the SDF description). These curves are built

based on the previously introduced power model (Eq.(3.8)) in Chapter 3. In this example,

only two mappings per application are prepared and their associated MAFs are depicted in the

figure. As previously discussed in Section 4.4.1, MAF 2
1 is smaller than MAF 1

1 due to different

execution parallelism. Similarly, MAF 2
3 is smaller than MAF 1

3 . As indicated from the figure,

at different frequencies, the design-time mapping that should be selected for each application

6Eq.(3.9) can be approximately written into Latencyappi
(f) ≈

Latencyappi
(f0)×f0

f
≤ Periodappi

, thus

MAF = f ≤
Latencyappi

(f0)×f0

Periodappi

53

4.4. Proposed Management Approach

4.4.3 Run-Time Mapping Combination

After the active application’s mappings selection (Xc
appi

), the selected mappings need to be

combined in order to obtain a combined execution trace. In the mapping combination step, the

selected design-time execution traces are processed in terms of slots. Our new combination

strategy denoted Grouped Applications Packing under Varied Constraints (GAPVC) considers

the advantages of the state-of-the-art strategies FCFS [12, 13] and LASP [14].

In the following, we first introduce FCFS and LASP strategies through simple examples.

Then, based on the trade-off between FCFS and LASP, the GAPVC strategy is presented.

Examples of FCFS and LASP

For simplicity of presentation, we consider the mapping combination of app1 and app3 (in

u2 = {app1, app3}) onto a cluster. Suppose the selected prepared execution traces are X2
app1

and X2
app3

, their slot-level execution traces are shown in Figure 4.5 (a) and (b) respectively.

Notice that each design-time mapping contains information of task executions in one period.

Figure 4.5 (a) extends the design-time prepared mapping X2
app1

(see Figure 4.3 (b)) within

two Periodapp1 , namely a hyper-period. As previously defined, a hyper-period refers to the

least common multiple (LCM) of application periods. The same slots executed in different

periods are defined as periodic slots (e.g., slot.1 and slot.5 in Figure 4.5). The periodic slots are

normally packed onto the same cores, in order to reduce the overhead of migrating slots from

one core to another during execution.

Based on the two design-time execution traces in Figure 4.5 (a) and (b), part (c) shows the

mapping combination result of FCFS. It merges the selected execution traces for individual

applications successively. It first allocates the slots of X2
app1

onto core1 and core2 (in Figure 4.5

(c)). After that, it allocates the slots of X2
app3

onto core3 and core4. The combined execution

trace uses 4 cores and keeps the application performance.

Figure 4.5 (d) shows the combined execution trace of LASP. The slot packing is restricted

by the availability of each processing core (ACcorei), which defines the time at which corei is

available to pack a slot. Slots are packed according to the ascending order (marked by the slot

index) of the slot end time (ET). The first slot (slot.1) is packed to an empty core (core.1) and

then ACcore1 is updated to ETslot.1. From the second slot, each slot tries to be packed in the

used core with the least ACcorei . If no used core is available, an empty core is chosen. Thus,

slot.4 is packed to core1, which has the least ACcorei among the used cores. This can entail the

execution delay of the periodic slots slot.5 and slot.6. This execution delay reduces the slack

time of the combined execution and can even result in application deadline violations. This

performance sacrifice can reduce resource usage (3 cores).

In a combined mapping, application performance and resource usage are the two important

criteria to achieve energy efficiency in a cluster. On one hand, FCFS has better application

performance, which allows for a lower frequency configuration. On the other hand, LASP has

55

4.4. Proposed Management Approach

applications can reduce the strategy complexity of mapping combination compared to LASP.

In LASP, it aims to achieve a combined mapping for all active applications within a hyper-

Algorithm 1: Grouped Applications Packing under Varied Constraints (GAPVC) Strategy

Input:

um = {app1, app2 · · · , appI}: active applications in a running use-case

Periodappi : period of each active application

Xc
appi

: selected execution trace of each active application

N : available number of cores in the cluster

{f1, f2, . . . , fmax}: available cluster frequencies

Output:

X ′
Apps: a run-time combined execution trace using a maximum of N cores

1 Run-Time Mapping Combination;

2 //Step 1: Group active applications in several groups

3 Sort active applications in the ascending order of Periodappi ;

4 for each application appi ∈ um do

5 if Periodappi : Periodappi+n
= 1 : N+,appi, appn+1 ∈ um then

6 Groupy = {appi, appi+n}; //group appi and appi+n together;

7 else

8 Groupy = {appi};

9 end

10 end

11 //Step 2: Pack slots of grouped applications to cores Initialize nEmptyCore = Nj ;

12 for each Group do

13 Extend Xc
appi

of each paired applications within their hyper − period;

14 Sort all slots in ascending order based on ETslot ;

15 Set ACcore = 0, UCcore = hyper − period for empty cores;

16 for each slot “slot.s” ∈ Apps do

17 if packing of slot s is not fixed then

18 if (first slot || ((STslot.s < ACUsedCore || ETslots.s > UCUsedCore) &&

nEmptyCore>0)) then

19 Select EmptyCore;

20 nEmptyCore−−;

21 else

22 Select UsedCore;

23 end

24 else

25 Select FixedCore;

26 end

27 Pack s to the selected core;

28 Update ACSelectedCore and DCSelectedCore;

29 end

30 Update nEmptyCore ;

31 end

57

4.5. Experimental Evaluations

already packed slot on the core (ETslot.1), while UCcore1 defines the Starting Time of the next

periodic slot STslot.5 on the core. To pack a slot (e.g., slot.s) on a core, STslot.s of the slot should

not be smaller than ACcorei , while ETslot.s should not be larger than UCcorei . UC constraints

guarantee the availability of each core for all future periodic slots of packed slots. Following

this rule, slot.4 is packed onto core2 in GAPVC, while slot.4 is packed onto core1 in LASP.

After finishing the packing of slot.4 and slot.5, ACcorei and UCcorei are updated accordingly

in figure (b). By comparing the mapping combination results of FCFS and LASP (Figure 4.5

(c) and (d)), we can observe that the packing of GAPVC (see Figure 4.6) reduces resource

usage but keeps the application performance. Note that the example in Figure 4.6 illustrates the

packing of one application group. The packing of another group is performed in the remaining

empty cores, which means that each core is only packed with slots from the same application

group.

4.5 Experimental Evaluations

4.5.1 Simulation Setup

The proposed strategy is evaluated by simulation on Visual Studio in C++. The evaluation is

performed for multimedia applications running on a single cluster under different possible use-

cases. As previously stated in Chapter 3, a cluster consists of homogeneous cores that support

a specific range of frequencies. The cluster frequencies range from 0.2GHz to 1.4GHz with

a step increment of 0.1GHz. Different resource constraints (i.e., N) are taken into account in

the following evaluations. The simulated applications, from now on denoted by app1 to app9,

are defined in Table 4.1. They were derived from reference applications (H263 encoder, H263

decoder, and JPEG decoder) with different input and output tokens. As indicated in Table 4.1,

we prepared for each application multiple design-time mappings with different numbers of used

cores and different MAF values. It might be possible that some mappings using different

numbers of cores have the same MAF . In such cases, only the mapping requiring fewer core

is kept to achieve less communication cost between cores (due to parallelism). Let app2 be an

example, the mappings using 1 core and 2 cores have the same MAF , and only 1-core mapping

is kept in the design-time prepared data.

In this chapter, we use a parameter ”communication energy ratio” (Rcomm) to indicate

the ratio between communication energy and computation energy within a period for each

prepared mapping. Here, we set Rcomm arbitrarily for the prepared mapping using the maximum

number of cores (highlighted in gray in Figure 4.1) for each application. Then, Rcomm

of other prepared mappings of the same application are approximately set according to the

proportional relationship7 between communication tokens (i.e., only counts communication

7 Rcommof another mapping

Rcomm of mapping∗
= communication tokens between cores of another mapping

communication tokens between cores of mapping∗
, mapping∗ is the mapping with known

Rcomm.

59

Chapter 4. Run-Time Management for Local Optimization

Table 4.1: Design-time prepared information of the considered applications

Application Prepared Mapping Xc
appi

Type appi
Nb of tokens

Period (µs) Nb of used cores MAF (GHz) Rcomm
8

of each task

H263 decoder

:4 tasks

:3 edges

app1 {1, 6, 6, 1} 60
1 1.1 0

2 1.0 1.1%

app2 {1, 4, 4, 1} 180 1 0.4 0

app3 {1, 264, 264, 1} 360
1 1.3 0

2 0.8 6.68%

H263 encoder

:5 tasks

:4 edges

app4 {1, 5, 5, 5, 1} 540
1 1.3 0

2 1.2 1%

app5 {1, 15, 15, 15, 1} 1080
1 0.9 0

2 0.7 2.25%

app6 {1, 45, 45, 45, 1} 1080 2 1.1 4.13%

JPEG decoder

:6 tasks

:5 edges

app7 {1, 7, 7, 7, 7, 1} 180

1 1.3 0

2 1.1 3.38%

4 1.0 6.77%

app8 {1, 9, 9, 9, 9, 1} 360

1 0.8 0

2 0.7 3.70%

4 0.6 7.41%

app9 {1, 22, 22, 22, 22, 1} 1080
1 0.5 0

2 0.4 4.61%

8 Rcomm: communication energy ratio indicates the ratio between communication energy and computation energy within a period

for each prepared mapping.

Table 4.2: Considered use-cases

Use-case Active Applications Use-case Active Applications

u1 app3, app4 u5 app1, app3, app5, app6

u2 app1, app6, app7 u6 app5, app6, app7, app8

u3 app2, app5, app6 u7 app1, app2, app3, app7, app8, app9

u4 app1, app2, app3, app4 u8 app1, app2, app4, app6, app7, app8

between cores). In this way, the communication energy varies for different prepared mappings

of each application.

For the 9 considered applications, there can be 511 (i.e., 29 − 1) possible use-cases with

different active applications for each one. Table 4.2 gives 8 example use-cases, which are used

to specifically describe the characteristics of the evaluated strategies.

60

Chapter 4. Run-Time Management for Local Optimization

to the use-cases where the three mapping combination strategies achieve the same application

latency, while FCFS uses more cores as it only executes tasks of one application onto one

core. For the use-cases indicated by index (2), LASP leads to high application latency due to

the execution delay of tasks. In u5, such execution delay even violates the application period

constraint. The proposed GAPVC strategy makes a trade-off for the used cores between FCFS

and LASP without sacrificing application performance.

General evaluations are performed for all the possible use-cases (i.e., 511) of the 9

considered applications. Compared to FCFS, GAPVC has less resource usage to achieve the

same application latency in 287 (i.e., 56.2%) use-cases. Compared to LASP, GAPVC avoids

task delay in 228 (i.e., 44.6%) use-cases and avoids timing violations in 21 (i.e., 4%) use-

cases. It means that the LASP strategy has 4% failed use-cases due to timing violation. As

the experimental evaluation is performed under the constraint of sufficient cores, the three

compared strategies have no failed use-case due to resource insufficiency.

(2) Run-time Selection and Run-time Combination

Our proposed run-time management strategy consists of the MAF-based selection strategy and

the GAPVC mapping combination strategy (MAF-based&GAPVC). We compare our run-time

management strategy with FCFS [12] and LASP [14] based on the same selection strategy

(MAF-based&FCFS, MAF-based&LASP). Additionally, in order to compare our results with

the optimal solution, we also implemented the exhaustive approach presented in [3]. The

algorithm has been extended to support frequency tuning after the exhaustive mapping selection

and combination to further optimize the average dynamic power of active applications.

For different management strategies, Figure 4.8 compares the obtained dynamic power

consumption for 8 considered use-cases, taking into account a different number of cores in the

targeted cluster. For each use-case, the power values are normalized to the result obtained by

the exhaustive search [3] under the constraint of 8 available cores (i.e., 4, 6, 8 cores). Observing

the use-cases indicated by index (1), more available cores can lead to a lower dynamic average

power of executed applications. This is because the availability of platform resources allows

finding a lower common frequency with fewer iterations. We can also notice that in some cases

(such as in u8 under the constraint of 4 available cores) no solution can be found meaning that

the mapping is not feasible for that platform in this execution scenario.

For the use-cases indicated by index (2), we can observe that our proposed strategy is able to

achieve lower average dynamic power consumption (i.e., better energy efficiency) than MAF-

based&FCFS. Since FCFS uses mores cores than GAPVC to get a combined mapping, it may

need more iterations to find the feasible selection, which makes the common frequency higher.

As a consequence, MAF-based&FCFS achieves the highest average dynamic power in u1 when

compared to the others, and no solution can be found in u7 under the constraint of 6 available

cores.

The observations of use-cases indicated by index (3) illustrate the limitation of the

62

4.5. Experimental Evaluations

neglects the task dependencies, and consequently several explorations are needed to found a

possible solution at a higher frequency level. In addition, more available cores can result in

an even lower estimated starting frequency, which can also increase the number of exploration

iterations in certain use-cases (i.e.,u3). Finally, we can observe that the proposed MAF-based

selection strategy requires the least number of iterations. Our proposed selection strategy

reduces iterations by only exploring the frequency levels that are marked as common MAF

(see Section 4.4.2).

(2) Complexity of Run-Time Mapping Combination

For GAPVC, FCFS and LASP, the strategy complexity of mapping combination highly depends

on the number of allocated slots in a use-case. FCFS presents the lowest complexity and it deals

with the slots of each active application within one period. LASP has the greatest complexity,

as it maps all the slots extended within a hyper-period of all the active applications directly. For

many active applications, the large value of their hyper-period can make the number of extended

slots huge. As discussed in Section 4.4.3, by dividing active applications into groups, GAPVC

extends the slots for each grouped applications within a hyper-period with a smaller value. The

result of summing all the slots of all grouped applications can be much less than the considered

slots of LASP.

We implemented the three mapping combination strategies on one little core and one big

core of the Exynos5422 platform [21]. We measured the execution time of each use-case

(among all the possible 511 use-cases). The average and the maximum values of the time

required to obtain the combined mapping for a use-case are shown in Table 4.4.

Table 4.4: The average and maximum execution time of mapping combination strategies on one

little core and one big core of Exynos 5422 big.LITTLE platform (among the 511 use-cases)

Cluster Value FCFS (ms) LASP (ms) GAPVC (ms)

Little
Average 0.043 2.225 0.137

Maximum 0.177 10.015 0.417

Big
Average 0.011 0.693 0.037

Maximum 0.030 3.211 0.135

From the comparison in Table 4.4, we can observe that the complexity of GAPVC is greater

than the FCFS one, but much significantly less than the complexity of LASP. Let the average

results on the little core as examples. The average result of GAPVC is 3.18 (i.e., 0.137
0.043

) times of

FCFS, while the result of LASP is 16.24 (i.e., 2.225
0.137

) times of GAPVC.

65

Chapter 4. Run-Time Management for Local Optimization

4.6 Summary and Discussion

For the local optimization of energy efficiency (characterized by average dynamic power) for

multiple task-dependent applications executed dynamically in a cluster, this chapter presents

a new run-time management strategy to determine task-to-core mapping (i.e., allocation and

scheduling) and set the cluster frequency accordingly. The proposed management strategy

is based on a design-time database, which includes multiple prepared mappings for each

application and a new defined parameter Minimum Allowed Frequency (MAF) for each

prepared mapping. For a set of active applications (in a use-case), a new run-time selection

strategy is proposed to select a low cluster frequency and an efficient prepared mapping for each

application based on MAFs. Moreover, a new run-time mapping combination strategy GAPVC

is proposed to combine the selected mappings with less resource usage without sacrificing

application performance. Combining the MAF-based selection strategy and GAPVC strategy it

is possible to achieve lower average dynamic power with reduced complexity compared to state-

of-the-art strategies. In our experimental evaluations, various case-studies with different sets

of active applications are considered, demonstrating that our proposed run-time management

strategy can reduce average power consumption by up to 206% when compared to the literature.

The goal of this work can also be understood as mapping the active applications onto limited

processing resources at a low cluster frequency level. The applications active in a cluster are

assumed to be known beforehand and they are not allowed to execute in other clusters. The

way to reduce the cluster frequency level is to appropriately deal with the varying resource

competition from dynamic active applications via appropriately selecting prepared mappings,

which have different trade-offs between resource usage and performance. From one use-case

to another, the selected mappings and the combined mapping can be totally different. Some

additional overheads can include the cost of migrating tasks from one core to another. The

consideration of migration overheads can be further addressed in our future work.

The proposed management strategy is expected to achieve local optimization in each cluster.

As previously presented in Figure 1.4, local management in different clusters can be structured

in distributed management in a cluster-based multi/many-core platform. Energy efficiency can

be achieved locally in each cluster. However, global energy optimization in the overall system

may not be achieved. Because this chapter holds the assumption that applications are not

allowed to execute in other clusters even if there is intense resource competition in a cluster.

This limitation is considered in the next chapter.

Last but not least, the proposed run-time management strategy in this chapter is possible to

be used to in multi/many-core platforms that support Global DVFS (all homogeneous cores in a

chip share the same v/f level). This situation can be seen as only one cluster in platforms. Note

that our proposed strategy does not consider the case of having heterogeneous cores in a cluster.

Because different core types use different voltages at the same frequency level, having different

types of cores in the same voltage/frequency island is not power/energy efficiency [77].

66

Chapter 5

Run-Time Management for Global

Optimization

Contents

5.1 Overview . 68

5.2 Summary of the Related Work on Global Optimization 70

5.3 0-1 IP Formulations of Global Management 70

5.3.1 Input . 72

5.3.2 Variables . 72

5.3.3 Constraints . 73

5.3.4 Objective . 74

5.3.5 Observations . 74

5.4 Solution to the 0-1 IP optimization problem 75

5.4.1 Neighboring Search Application-to-Cluster Assignment 75

5.4.2 Greedy Search Application-to-Cluster Assignment 80

5.4.3 The Impact of Local Management on Global Management 83

5.5 Experimental Evaluations . 84

5.5.1 Evaluations of Global Management Strategies 87

5.5.2 Evaluation the Influences of Local Management Strategies 92

5.6 Summary and Discussion . 95

67

5.1. Overview

global management determines application-to-cluster assignments and sets cluster frequency

levels, while the local management optimizes task-to-core allocation and scheduling in each

cluster. The global management decisions are influenced by the local management in terms of

resource usage in each cluster.

Based on the 2-level hierarchical management, this chapter makes the following contribu-

tions.

• For the global management, we present a 0-1 Integer Programming (IP) model9 that

integrates application-to-cluster assignments and cluster frequency configurations to for-

mulate the average dynamic power of the overall system at optimized cluster frequencies.

The formulation relies on some design-time prepared data (application-based preparation,

see Section 2.1.2), including one optimized mapping (i.e., with the best application

performance) and its corresponding MAF for each application. The prepared MAFs

are used to estimate the optimized cluster frequencies based on different application-to-

cluster assignments.

• To achieve the solution of the 0-1 IP optimization problem, it is not feasible to

exhaustively search for the optimal solution in a reasonable time. Motivated by reducing

strategy complexity, we propose a first global management strategy that aims to deliver

near-optimal solutions. The strategy considers application-to-cluster assignments for all

applications holistically in a use-case, allowing all migrations10.

• We propose a second global management strategy that considers assignments for

applications individually. It assigns only the newly arrived applications and allows

application migrations to a certain extent in each use-case. Compared to the first strategy,

this strategy can reduce the number of application migrations with a limited impact on

energy efficiency.

• Like most related works, these two proposed global management strategies use a simple

mapping combination strategy (FCFS) to estimate the number of used cores in each

cluster locally. To further reduce the number of used cores in each cluster without

degrading application performance, we consider also the benefits of using the GAPVC

combination strategy (see Chapter 4, Section 4.4.3) for the local management.

• We evaluate our proposed management strategies in different use-cases (i.e., different

sets of active applications) and different platform configurations (e.g., different numbers

of heterogeneous/homogeneous clusters, different numbers of cores in each cluster, . . .).

90-1 IP model: a specific type of integer programming where the decision variable is 0 or 1.
10application migration: from the current use-case to the next, the number of the current active applications that

change their assignments from one cluster to another.

69

Chapter 5. Run-Time Management for Global Optimization

5.2 Summary of the Related Work on Global Optimization

As previously discussed in Chapter 2 (Section 2.2), there has been some prior researches

about the energy optimization of cluster-based multi/many-core systems. Most state-of-the-art

strategies perform application-to-cluster assignment and cluster frequency configuration into

two separated steps. Generally, application mapping is performed first, then cluster frequencies

are decreased as much as possible under timing constraints. In this work, we formulate the

relationship between application mapping and optimized cluster frequencies into a 0-1 IP

model.

For Arm big.LITTLE cluster-based platforms, applications are usually assigned according

to their performance and resource demands. Particularly, the work of [49] employs a Low-

Power-First (LPF) based strategy, where each application is attempted to be assigned to the

low-power cores (i.e., little cores) first. If the performance constraint is not satisfied, high-

performance cores (i.e., big cores) are used. After application assignments are finished, the

cluster frequency is adapted with respect to a pre-defined power budget. For independent

periodic tasks on a platform with more clusters, the work of [77] presents a Low-Energy-First

(LEF) based mapping strategy. At fixed cluster frequencies (e.g., maximum level), the LEF

strategy assigns periodic tasks successively to the cluster that can achieve the lowest energy

consumption for each individual task. Then, each cluster reduces the frequency level as much

as possible.

These two works give the highest priority to one core type when performing application

assignments. For platforms with more cores in the clusters, we can predict that in the

case of many active applications, the workload of the top-priority cluster can be very heavy.

Consequently, the frequency and the energy consumption of one cluster can be very high,

while other clusters can be empty without any application. Due to the workload imbalance

between clusters, platform resources may not be fully utilized, thus missing out opportunities

for further energy optimization. In contrast to previous works, we propose global management

strategies (i.e., application assignments and cluster frequencies) to achieve near-optimal energy

efficiency of task-dependent applications on cluster-based multi/many platforms. The near-

optimal solutions are evaluated based on our formulated 0-1 IP model. The proposed global

management strategies can scale to platforms with more different clusters and more cores inside

each cluster.

5.3 0-1 IP Formulations of Global Management

Based on the hierarchical management structure shown in Figure 5.1, this section focuses on the

global management decision for a set of active applications (i.e., in a certain use-case) executed

on a cluster-based multi/many-core platform. Here, we assume that all tasks of each application

are assigned to the same cluster, but an application can change its execution in different clusters

70

Chapter 5. Run-Time Management for Global Optimization

In the following subsections, the 0-1 IP problem can be stated as input, variables, constraints

and the objective for a set of active applications in any use-case.

5.3.1 Input

The inputs of the 0-1 IP formulation include the active applications in the current use-case,

the design-time prepared data, and the performance/power characteristics of the cluster-based

platform.

• Active applications: for the current use-case um = {app1, app2 · · · , appI}

(1) I: the number of active applications

(2) Periodappi : the period of each active application

• Design-Time Prepared Data: for each application (appi)

(1) ci: the number of used cores of the prepared execution trace (Xci
appi

)

(2) MAF ci
i,r: the minimum allowed frequency of each application (appi) executed on

ci cores in the reference cluster (clusterr)

(3) CompTimeh,i,r(f0): the computation time of each task (th,i) executed on clusterr
at f0 (see Eq.(3.10) in Chapter 3)

(4) ξh,i,r: the power coefficient of each task (th,i) executed on clusterr (see Eq.(3.10)

in Chapter 3)

• Cluster-based multi-core/many-core platform:

(1) J : the number of different clusters

(2) Rpower
j : power ratio of each cluster (clusterj) against the reference cluster (see

Eq.(3.12))

(3) Rperf
j : performance ratio of each cluster (clusterj) against the reference cluster

(see Eq.(3.11))

(4) Nj: the number of cores in each cluster (clusterj)

(5) {fj,1, fj,2, . . . , fj,max}: the supported frequencies of each cluster (clusterj).

5.3.2 Variables

The application-to-cluster assignment problem is represented as a matrix.

72

5.3. 0-1 IP Formulations of Global Management

• Application-to-cluster assignment matrix: As an active application can be freely

assigned or migrated among different clusters, we define a (0, 1) variable ai,j .

ai,j =

{

1, if appi is assigned onto clusterj.

0, otherwise.
(5.1)

5.3.3 Constraints

• Application assignment constraints: Each application must be assigned to a cluster in

each use-case.

J∑

j=1

ai,j = 1, ∀i, ai,j ∈ {0, 1} (5.2)

• Application timing constraints: The timing constraints of active applications are

guaranteed by cluster frequency configurations. In this work, the optimized frequency

level of each cluster is estimated by the prepared MAFs of active application and can be

expressed as follows.

fj = max{MAF ci
i,j × ai,j}, ∀i (5.3)

where fj is the optimized cluster frequency of clusterj . MAF ci
i,j is the minimum allowed

frequency of appi in clusterj with respect to its timing constraint. MAF ci
i,j can be

obtained through measurements in different clusters or can be estimated based on MAF ci
i,r

as in Eq.(5.4).

MAF ci
i,j = Rperf

j ×MAF ci
i,r (5.4)

• Cluster frequency constraints: The selected frequency of each cluster should be within

the frequency range of a cluster.

fj,1 <= fj <= fj,max, ∀j (5.5)

• Platform resource constraints: In each cluster, the number of used cores (Nused
j) by the

applications should not be larger than the number of cores in each cluster (Nj). Note that

the Nused
j in each cluster depends on the applied local management strategy, which will

be discussed in Section 5.4.3.

Nj >= Nused
j (5.6)

73

Chapter 5. Run-Time Management for Global Optimization

5.3.4 Objective

The objective of the global management is to minimize the average power consumption of the

system. This objective is expressed as Eq.(5.7) based on Eq.(3.14) (see Chapter 3), where P avg
sys

is related to the square of each cluster frequency (i.e., f 2
j) and H denotes the number of tasks

of each application. Since this work assumes that communication energy is much smaller than

computation energy, communication energy is not taken into account. It is worth noticing that

Eq.(5.7) will be used latter in the proposed global management strategies to estimate the average

dynamic power of the overall system.

minP avg
sys = min

I∑

i=1

P avg
appi

= min
{fj ,ai,j}

J∑

j=1

f 2
j

I∑

i=1

ai,j ×

∑H

h=1(R
power
j × ξh,i,r ×Rperf

j × CompTimeh,i,r(f0)× f0)

Periodappi
(5.7)

subject to Eq.(5.2), (5.3),(5.5) and (5.6).

5.3.5 Observations

Based on this 0-1 IP formulation, we have the two following observations.

• Observation 1: As each cluster frequency (fj) is determined by the maximum MAF ci
i,r

of the applications in the same cluster, assigning applications with close MAF ci
i,r in a

cluster can lower the average power consumption (P avg
appi

) of other applications (having

lower MAF ci
i,r in the same clusters). Thus the applications with close MAF ci

i,r should be

assigned to the same cluster to optimize the P sys
avg in Eq.(5.7).

• Observation 2: For a use-case with only one application to an empty cluster-based

platform (without any already executed application), the average dynamic power of the

application can be written into Eq.(5.8) based on Eq.(5.7). In Eq.(5.8), let R4
j denote

Rperf
j × Rperf

j × Rperf
j × Rpower

j . The minimum P avg
appi

(i.e., P avg
sys for one application)

can be achieved in the cluster with the least R4
j . Thus, the cluster with the least R4

j has

the highest priority to be used. Note that R4
j only depends on core types of clusters. It

means that homogeneous platforms have the same R4
j for all clusters, while heterogeneous

74

5.4. Solution to the 0-1 IP optimization problem

platforms have different R4
j for all clusters.

P avg
appi

= (MAF ci
i,j)

2 ×

∑H

h=1(R
power
j × ξh,i,r ×Rperf

j × CompTimeh,i,r(f0)× f0)

Periodappi

= (MAF ci
i,r)

2 × (Rperf
j)2 ×

∑H

h=1(R
power
j × ξh,i,r × Rperf

j × CompTimeh,i,r(f0)× f0)

Periodappi

= Rpower
j × (Rperf

j)3 × (MAF ci
i,r)

2 ×

∑H

h=1(ξh,i,r × CompTimeh,i,r(f0)× f0)

Periodappi

= R4
j × (MAF ci

i,r)
2 ×

∑H

h=1(ξh,i,r × CompTimeh,i,r(f0)× f0)

Periodappi
(5.8)

5.4 Solution to the 0-1 IP optimization problem

This section presents two global management strategies to achieve the solution to the 0-1 IP

optimization problem. As discussed in [4, 29], obtaining the optimal mapping is an NP-

hard problem. To avoid time-consuming searches (e.g., caused by exhaustive search), the

two proposed global management strategies aim to achieve a near-optimal solution for the 0-

1 IP problem. Our proposed global management strategies determine application-to-cluster

assignments for the active applications in each use-case, and cluster frequencies are set under

the guidance of MAFs to meet application time constraints (see Eq.(5.3)). Moreover, the global

management strategies have to respect platform resource constraints (see Eq.(5.6)), while the

resource usage of each cluster is dependent on the applied local management (task-to-core

mapping) strategies (will be discussed in Section 5.4.3).

According to the previous observations (see Section 5.3.5), we propose two global

management strategies. The first strategy Neighboring Search Application-to-Cluster Assign-

ment (NSACA) considers assignments holistically for all active applications. The second

strategy Greedy Search Application-to-Cluster Assignment (GSACA) considers assignments

individually for each active application. Afterward, we discuss the impact of different local

management strategies (due to different resource usages) on the global management decisions.

5.4.1 Neighboring Search Application-to-Cluster Assignment

The first global management strategy Neighboring Search Application-to-Cluster Assignment

(NSACA) aims to achieve near-optimal energy-efficient application assignments on cluster-

based systems. All active applications can be re-assigned in every use-case (i.e., without

considering the application assignments of the previous use-case). The NSACA strategy

75

5.4. Solution to the 0-1 IP optimization problem

Algorithm 2: Neighboring Search Application-to-Cluster Assignment (NSACA) Strategy

Input: design-time prepared data, active applications in the current use-case, application

timing constraints, cluster-based multi/many-core platform

Output: application-to-cluster assignments, cluster frequency configurations

1 //Stage 1: Active Application Order

2 Sort active applications in the descending order of MAF ci
i,r;

3 Average I active applications into J groups;

4 //Stage 2: Application Assignment Initialization

5 for each application group do

6 Select an empty cluster with the lowest R4
j and fj,max >= max{MAF ci

i,j
︸ ︷︷ ︸

group

};

7 for each appi do

8 if Ns >= Nused
s , depending on Local Management Strategy then

9 Assign appi to the selected cluster;

10 else

11 if the current group is not the last group then

12 Move the current and remaining applications to the next group;

13 else

14 Assign the current application to the used clusters by backtracking;

15 Otherwise, application assignment fails;

16 end

17 end

18 end

19 end

20 //Stage 3: Application Assignment Improvement

21 Polish assignment by application switching in neighboring clusters;

22 for each used clusters do

23 Estimate P avg
sys when appi with the maximum MAF ci

i,r is moved to clusters−1;

24 if meet system constraints && P avg
sys is lower then

25 Move appi to clusters−1;

26 end

27 if fail to move appi to clusters−1 then

28 Estimate P avg
sys when appi with the minimum MAF ci

i,r is moved to clusters+1;

29 if meet system constraints && P avg
sys is lower then

30 Move appi to clusters+1;

31 end

32 end

33 end

77

5.4. Solution to the 0-1 IP optimization problem

Algorithm 3: Greedy Search Application-to-Cluster Assignment (GSACA) Strategy

Input: design-time prepared data, active applications in the current use-case, application

timing constraints, cluster-based multi/many-core platform

Output: application-to-cluster assignments, cluster frequency configurations

1 //Stage 1: New application order

2 Average I newly active applications into J groups, in decreasing order of MAF ci
i,r;

3 Order newly active applications in a particular way;

4 //Stage 2: New application assignment

5 for each new appi or released old appi do

6 Select clusters that meet fj,max >= MAF ci
i,j and Nj >= Nused

j ;

7 if several potentially selected empty clusters then

8 Only keep the one with the minimum R4
j ;

9 end

10 for each selected cluster clusters do

11 if the first clusters or P avg
sys decreases then

12 if Ns >= Nused
s , depending on Local Management Strategy then

13 Assign appi to clusters;
14 Update frequency level of clusters;

15 end

16 end

17 end

18 if No solution can be found for new appi then

19 Release an already assigned new application that has lower MAF ci
i,r and can

provide available cores for the currently considered new application;

20 Otherwise, application assignment fails;

21 end

22 end

23 //Stage 3: Old application migration

24 Initialize further allowed migration Nm = 0;

25 if Nm <= Allowmigration then

26 Assign the old unmigrated application with the minimum MAFi,r (line 6-17);

27 Nm++;

28 end

Stage 1: New Application Order

In the first stage, newly active applications are ordered in a particular way (line 1-3). In our

ordering approach, the newly active applications are divided into several groups according to

descending order of MAF ci
i,r. Here, GSACA aims to divide the newly applications into J (i.e.,

the number of clusters) groups averagely based on the number of newly active applications.

Then, GSACA takes turns to index applications in different groups according to descending

81

Chapter 5. Run-Time Management for Global Optimization

management is the input of the local management. On the other hand, the global management

decision depends on the local management in terms of core utilization of each cluster (i.e., line

8 of NSACA algorithm, line 12 of GSACA algorithm).

In the local management, different task-to-core mapping strategies can be adopted. In

this work, we consider FCFS and GAPVC application mapping combination strategies. As

previously discussed in Chapter 4 (Section 4.4.3), FCFS and GAPVC perform task-to-core

mapping without degrading application performance. Thus, cluster frequencies set by the global

management can be respected.

In terms of strategy implementation, we use different methods for FCFS and GAPVC

to coordinate with a global management strategy. Since FCFS directly applies the prepared

mappings of active applications, the total number of used cores in a cluster is the sum of the

used cores of the prepared mappings (Nu
j =

∑I

i=1 ci × ai,j, ∀i, ci is the number of used cores

of the prepared mapping for appi). Therefore, it is not necessary to execute FCFS to estimate

core usage in a cluster. On the other hand, as GAPVC allows tasks of different applications to

be allocated onto the same core, it is possible to use fewer cores than FCFS within a cluster

(previously shown in Section 4.5.2). In this case, we cannot accurately estimate core usages

without actually executing GAPVC in a cluster. In the work of this chapter, we execute GAPVC

in each cluster when the cores used for the prepared mappings are not too much larger than the

available cores (i.e., 0 <
∑I

i=1 ci× ai,j −Nj <= 3). Here, 3 is set arbitrarily and this value can

be changed by users according to the expected core savings of GAPVC (w.r.t. FCFS) in each

cluster. In the cases when applications compete for limited platform resources, the less resource

usage of GAPVC allows more applications to be assigned to more energy-efficient clusters (i.e.,

due to heterogeneous cluster or low cluster frequency). As a result, lower P avg
sys can be achieved

in the overall system. However, more computations can be spent to integrate GAPVC in the

hierarchical management. Future work can be considered to predict the used cores within a

cluster without actually performing GAPVC.

5.5 Experimental Evaluations

In the experimental evaluations, our proposed management algorithms are coded in C++ on

Visual Studio. To go beyond the exiting small-sized heterogeneous cluster-based platforms

(i.e., ARM big.LITTLE, Exynos 5422 [21]), we used 4 types of ARM-Cortex processors to

compose platforms with different numbers of clusters and different numbers of cores within the

cluster. Based on different resource constraints, we can evaluate our management strategies on

heterogeneous and homogeneous multi/many-core platforms.

Table 5.1 depicts the physical characteristics of four commercial processor models (e.g.,

Cortex-A9, A15, A7, A17) that are considered in our experiments. The data of performance

ratio (Rperf
j defined in Eq.(3.11) and power ratio (Rpower

j defined in Eq.(3.12)) normalized to

Cortex-A9 are obtained from [25]. The frequency ranges of processors are set differently with

84

5.5. Experimental Evaluations

0.1GHz increments in the evaluations. The four processor models are used to create different

clusters. In our experimental evaluations, heterogeneous platforms consist of different clusters

(from cluster1 to cluster8), while homogeneous platforms consist of several cluster1.

Table 5.1: Platform settings for 8 considered clusters

Processor R
perf
j

R
power
j fmin(GHz) fmax(GHz) fstep(GHz) clusterj

Cortex-A9 1 1 0.4 2.0 0.1 cluster1, cluster5

Cortex-A15 0.625 2.25 0.4 2.0 0.1 cluster2, cluster6

Cortex-A7 1.25 0.55 0.4 1.4 0.1 cluster3, cluster7

Cortex-A17 0.645 1.3 0.4 1.8 0.1 cluster4, cluster8

The simulated applications (app1 to app10) are defined in Table 5.2. They are derived from

reference (H263 encoder and H263 and JPEG decoders) applications with different input/output

tokens, based on the descriptions provided in SDF3 [67]. Note that the applications are the same

with the simulated applications in the previous chapter (Chapter 4, Table 4.1). The table gives

the number of used cores MAF values (obtained in the reference cluster Cortex-A9) of the

design-time prepared mapping of each application. In this work, we have evaluated optimized

mappings having different trade-offs between core usages and application performance at

design-time, but only the mapping having the best application performance is stored in the

design-time database.

Table 5.3 summaries the strategies that are considered in the global management and in the

local management. Firstly, we compare five global management strategies that consider the

assignments of all active applications in each use-case, regardless of whether any applications

already existed in the previous use-case. Exhaustive strategy evaluates all possible application-

to-cluster assignments and apply the solution with the lowest P avg
sys at scaled cluster frequencies

satisfying the system constraints. LPF [49] and LEF [77] strategies assign all active applications

to the clusters respectively with the lowest power consumption (i.e., Cortex-A7 due to the

minimum Rpower
j) and the lowest energy consumption (i.e., Cortex-A17 due to the minimum

R4
j) first. When the cluster with the lowest power/energy consumption is not possible to accept

a new application, the cluster with the next lowest power/energy consumption is considered. As

previously introduced, NSACA and GSACA are our proposed global management strategies.

GSACA∗ is a modified version of GSACA, which considers the assignments of all active

applications in a use-case allowing all migrations. GSACA∗ considers each application

assignment individually, serving as the counterpart of NSACA (holistically). Secondly, we

consider global management strategies that assign only the newly active applications (in each

use-case) with limited migrations. Exhaustive M0 and GSACA M0 are two strategies that

only assigns newly active applications in a use-case forbidding any migration. GSACA M1,

GSACA M2 and GSACA M3 refer to the proposed Greedy Search strategies that allows different

85

Chapter 5. Run-Time Management for Global Optimization

Table 5.2: Design-time prepared information of 10 considered applications

Application Prepared Mapping

Type appi
Nb of tokens

Period (µs) Nb of used cores ci
MAF (GHz)

of each task in Cortex-A9

H26 decoder

:4 tasks

:3 edges

app1 {1, 6, 6, 1} 60 2 1.0

app2 {1, 4, 4, 1} 180 2 0.4

app3 {1, 264, 264, 1} 360 2 0.8

H263 encoder

:5 tasks

:4 edges

app4 {1, 5, 5, 5, 1} 540 2 1.2

app5 {1, 15, 15, 15, 1} 1080 2 0.7

app6 {1, 45, 45, 45, 1} 1080 2 1.1

JPEG decoder

:6 tasks

:5 edges

app7 {1, 7, 7, 7, 7, 1} 180 4 1.0

app8 {1, 9, 9, 9, 9, 1} 360 4 0.6

app9 {1, 22, 22, 22, 22, 1} 1080 4 0.4

app10 {1, 12, 12, 12, 12, 1} 180 4 1.3

Table 5.3: Considered Management Strategies for Comparison

Strategies Abbreviation Management in each use-case

Global Management

Exhaustive Exhaustive strategy that considers assignments for all applications

(allow all migrations)

LPF Low-Power-First [49] strategy that considers assignments for all applications

LEF Low-Energy-First [77] strategy that considers assignments for all applications

NSACA Proposed NSACA that considers assignments for all applications holistically

GSACA∗ Modified GSACA that considers assignments for all applications individually

Global Management

Exhaustive M0 Exhaustive strategy assigns only new applications and allows 0 migration per use-case

(allow limited migrations)

GSACA M0 Proposed GSACA that assigns only new applications and allows 0 migration per use-case

GSACA M1 Proposed GSACA that assigns only new applications and allows 1 migration per use-case

GSACA M2 Proposed GSACA that assigns only new applications and allows 2 migration per use-case

GSACA M3 Proposed GSACA that assigns only new applications and allows 3 migration per use-case

Local Management
FCFS First-Come-First-Served [12, 13] application mappings combination strategy

GAPVC Proposed application mappings combination strategy in Chapter 4

numbers of migrations (i.e., Allowmigration = 1, or 2, or 3, see Algorithm 3) in a use-case. Here,

we set Allowmigration to specific numbers to evaluate the benefit of application migrations.

It would also be possible to set Allowmigration as the percentage of the active applications.

Note that we do not consider LPF and LEF with limited migrations, as migrations do not

change the limitations of these two strategies (due to giving the highest priority to one cluster

during application assignment, which will be discussed in Section 5.5.1). Finally, as the global

management decisions can be different due to different applied local management strategies

in each cluster. We consider two task-to-core mapping strategies, FCFS [12, 13] and GAPVC

(proposed in Chapter 4), to analyze the benefit of using fewer cores in a cluster. These two

local management strategies do not degrade application performance, thus avoiding changing

86

Chapter 5. Run-Time Management for Global Optimization

Table 5.4: Normalized P avg
sys of Exhaustive compared to the four different strategies

Platform Criteria 4x4 4x8 4x16 4x24 2x8 4x8 6x8 8x8

Heterogeneous

Exhaustive Value 1.240 1.144 1.124 1.124 1.850 1.144 1.110 1.000

∆LPF13 22.96% 53.57% 91.78% 97.28% 5.46% 53.57% 65.93% 84.17%

∆LEF 4.38% 8.96% 19.52% 21.96% 5.46% 8.96% 12.27% 15.49%

∆NSACA 1.87% 0.94% 1.93% 1.93% 0.02% 0.94% 1.01% 1.35%

∆GSACA∗ 6.84% 2.24% 0.51% 0.51% 0.67% 2.24% 1.10% 5.96%

Homogeneous

Exhaustive Value 2.309 2.287 2.286 2.286 2.588 2.287 2.250 2.248

∆LPF 6.64% 23.46% 45.58% 49.58% 11.59% 23.46% 25.53% 25.62%

∆LEF 6.64% 23.46% 45.58% 49.58% 11.59% 23.46% 25.53% 25.62%

∆NSACA 0.19% 1.03% 1.00% 1.00% 0.18% 1.03% 0.34% 0.02%

∆GSACA∗ 0.11% 1.21% 1.06% 1.06% 2.19% 1.21% 0.17% 0.01%

13 ∆Strategy=
Pavg

sys (Strategy)−Pavg
sys (Exhaustive)

P
avg
sys (Exhaustive)

: the P avg
sys difference between the considered strategy

(i.e., LPF, LEF, NSACA or GSACA∗) and Exhaustive.

clusters or low frequency configurations). On the other hand, more clusters can also lead to

reduced P avg
sys in the heterogeneous platforms (e.g., P avg

sys = 1.850 on the 2×8 heterogeneous

platform, P avg
sys = 1.144 on the 4×8 heterogeneous platform). As applications with different

MAF ci
i,r can be separated to more different clusters, lower cluster frequencies can be achieved

for less P avg
sys . The trend of more platform resources (e.g., more clusters and more cores

within the cluster) leading to reduced P avg
sys can also be observed for homogeneous platforms in

Table 5.4. However, the results for homogeneous platforms is not as obvious as heterogeneous

platforms, because heterogeneous platforms can be more energy efficient.

The results obtained for LPF and LEF are very different from the optimal ones (Exhaustive),

as shown in Figure 5.9. LPF and LEF give different assignment priorities to clusters. They

might achieve close results with the optimal ones in small platforms (e.g., 4×4 and 2×8

platforms). For example, LEF has only 4.38% higher P avg
sys than Exhaustive on the 4×4

heterogeneous platforms. However, with more cores in a cluster, more applications are assigned

in one cluster while leaving other clusters empty without any assigned application. In such

cases, the frequency of one cluster can be increased and consequently increases P avg
sys of the

system. On the 4 clusters × 24 cores heterogeneous platform, LPF and LEF respectively have

97.28% and 21.96% higher P avg
sys than Exhaustive.

Furthermore, Figure 5.9 shows that NSACA achieves very close results to the optimal ones

under different platform constraints. The maximum difference between NSACA and Exhaustive

are is 1.93% on heterogeneous platforms and about 1.03% on homogeneous platforms (see

Table 5.4). NSACA achieves near-optimal global management results. It assigns applications

with close MAF ci
i,r to the same cluster and gives higher priorities to clusters with lower

MAF ci
i,r. NSACA considers assignments holistically for all active applications. For GSACA∗

that considers application assignments individually, it also achieves near-optimal results. The

88

Chapter 5. Run-Time Management for Global Optimization

5.5.2 Evaluation the Influences of Local Management Strategies

In the last experiment, we compare FCFS and GAPVC to evaluate their influences on the

global management decisions. As previously discussed in Chapter 4 (Section 4.4.3), GAPVC

can use fewer cores than FCFS to map application tasks onto cores within a cluster. The

comparison results for four different global management strategies (i.e., Exhaustive, NSACA,

Exhaustive M0, GSACA M2) based on the two local strategies are shown in Table 5.5. Note

that this evaluation does not take LPF and LEF into account due to their limitation in energy

efficiency on platforms with more clusters and more cores in each cluster.

Table 5.5 summarizes the improvement of GAPVC compared to FCFS among the 1023 use-

cases. First, we compare the failed use-cases (see column (1)) when using the two different

local management strategies. Some use-cases fail to achieve a possible mapping solution

due to insufficient platform resources for all the active applications. The column (1.1) lists

the number of failed use-cases when using FCFS under the constraints of different platform

sizes. For example, Exhaustive+FCFS has 273 failures on both 4x4 and 2x8 heterogeneous

platforms. Because GAPVC uses fewer cores to achieve a combined mapping then FCFS,

GAPVC has more potential to handle use-cases with more active applications and consequently

results in fewer failures. The column (1.2) shows the number of reduced failed use-cases

achieved by GAPVC (w.r.t. FCFS). Compared to Exhaustive+FCFS, Exhaustive+GAPVC

has 66 (i.e., 66
273

= 24.18%) and 71 (i.e., 71
273

= 26.01%) fewer failures on 4x4 and 2x8

heterogeneous platforms respectively. Note that when platform resources are sufficient (e.g.,

4x8, 6x8 platforms), no failed use-case can be observed.

Then, we compare FCFS and GAPVC in their common feasible use-cases (see columns

(2)), where both local management strategies can achieve a feasible solution. Among all the

common feasible use-cases (see column (2.1)), we list the number of use-cases where GAPVC

can achieve lower P avg
sys in the column (2.2). The maximum P avg

sys reduction of GAPVC is shown

in the column (2.3). It can be observed that GAPVC can achieve lower P avg
sys than FCFS in

some use-cases. For the 4x4 heterogeneous platform, Exhaustive+GAPVC achieves lower P avg
sys

than Exhaustive+FCFS in 58 use-cases (over 750 common feasible use-cases). Among the 58

use-cases, the maximum reduction of P avg
sys is 5.73%. This is because the less core usage allows

GAPVC assigns more applications to more efficient clusters (e.g., due to heterogeneous cluster

or low cluster frequency). Particularly, more significant P avg
sys reduction can be observed for

Exhaustive M0+GAPVC (up to 57.65% w.r.t.Exhaustive M0+FCFS) and GSACA M2+GAPVC

(up to 41.87% w.r.t.GSACA M2+FCFS). The two strategies only considers newly active

applications and allows limited migrations (i.e., 0 and 2 respectively) per use-cases. Since

GAPVC uses fewer cores for the mapping of the existing old applications, it allows more

assignment possibilities for newly active applications and consequently achieves lower P avg
sys .

Note that when platform resources are quite enough, each global management strategy can

achieve the same P avg
sys by using FCFS or GAPVC in the local management. Such observations

can be seen for the Exhaustive and NSACA global management strategies on 4x8 and 6x8

92

5.5. Experimental Evaluations

Table 5.5: Comparison of FCFS and GAPVC local strategies in hierarchical management

among the 1023 use-cases

Global Local

(1) Among Failed um (2) Among common feasible um
15

strategy
platform

strategy
(1.1) Nb of

(1.2) Reduced
(2.1) Nb of

Improvement of GAPVC w.r.t. FCFS

failed um

of FCFS

failed um of

GAPVC w.r.t.

FCFS 14

common

feasible um

(2.2) Nb of

um with

less P
sys
avg

(2.3) Max

P
avg
sys

reduction

(2.4) Total

reduced

cores

Exhaustive

4x4 273 66 750 58 5.73% 117

2x8 273 71 750 15 3.65% 253

4x8 0 0 1023 0 0 143

6x8 0 0 1023 0 0 104

NSACA

4x4 322 24 701 6 9.50% 12

2x8 318 21 705 8 1.53% 217

4x8 0 0 1023 0 0 147

6x8 0 0 1023 0 0 148

H
et

er
o
g
en

eo
u

s

Exhaustive M0

4x4 300 55 723 68 57.65% 145

2x8 279 63 744 37 32.91% 315

4x8 0 0 1023 12 21.85% 147

6x8 0 0 1023 11 21.14% 121

4x24 0 0 1023 0 0 287

GSACA M2

4x4 310 47 713 61 41.87% 106

2x8 290 47 733 39 33.74% 292

4x8 0 0 1023 16 25.62% 174

6x8 0 0 1023 11 29.79% 148

4x24 0 0 1023 0 0 278

Exhaustive

4x4 273 66 750 24 2.82% 58

2x8 273 71 750 19 2.24% 288

4x8 0 0 1023 0 0 102

6x8 0 0 1023 0 0 19

NSACA

4x4 322 24 701 12 2.25% 24

2x8 318 21 705 16 6.64% 235

4x8 0 0 1023 0 0 60

6x8 0 0 1023 0 0 0

H
o
m

o
g
en

eo
u

s

Exhaustive M0

4x4 295 53 728 38 12.16% 80

2x8 280 61 743 40 25.97% 301

4x8 0 0 1023 0 0 124

6x8 0 0 1023 0 0 26

GSACA M2

4x4 323 27 700 29 8.36% 106

2x8 286 47 737 48 25.97% 323

4x8 0 0 1023 1 6.71% 121

6x8 0 0 1023 0 0 15

14 Reduced failed um of GAPVC w.r.t. FCFS = Nb of failed um of FCFS - Nb of failed um of GAPVC.
15 Common feasible use-cases: the use-cases where both FCFS and GAPVC achieve a mapping result.

93

Chapter 5. Run-Time Management for Global Optimization

platforms, and also for the Exhaustive M0 and GSACA M2 global management strategies

on 4x24 heterogeneous platforms. These observations suggest that with sufficient platform

resources, our considered global management strategies can have the same application-to-

cluster assignments by using FCFS and GAPVC in the local management.

We also compare the total number of reduced cores in the common feasible use-cases (see

column (2.4)) for the two local management strategies. For instance, on the 4x4 heterogeneous

platform, Exhaustive+GAPVC uses 117 fewer cores than Exhaustive+FCFS over the 750

common feasible use-cases. On the heterogeneous 4x8 and 6x8 platforms, Exhaustive+GAPVC

still uses fewer cores (up to 143) than Exhaustive+FCFS even though there is no difference

of P avg
sys between the two strategies. This indicates that for the same application-to-cluster

assignments (due to the same P avg
sys values), GAPVC can use fewer cores than FCFS to achieve

a combined mapping in each cluster.

To sum up, GAPVC can lead to less resource usage within a cluster than FCFS. In particular,

when platform resources are insufficient, GAPVC can result in fewer failed use-cases and lead

to lower P avg
sys . On the other hand, when platform resources are sufficient, our considered global

management strategies can achieve the same P avg
sys results (i.e., indicating the same application-

to-cluster assignments). In such cases, using GAPVC in the local management can still reduce

the number of used cores in each cluster. These observations can be seen for different global

management strategies when managing both heterogeneous and homogeneous platforms.

However, using GAPVC in the local management can lead to more computation than FCFS.

Because GAPVC has to be actually executed in order to accurately estimate the core usages

within a cluster (see Section 5.4.3). Consequently, It requires more calculations within a cluster

to provide feedback (e.g., the number of cores used) for global management. Here, we measure

the simulation time of each use-case (among the 1023 use-cases) when using FCFS and GAPVC

in local management. The average simulation time used per use-case is shown in Table 5.6.

Table 5.6: Comparison of average time (ms) used to simulate a use-case for FCFS and GAPVC

in hierarchical management

Strategy Platform
Heterogeneous Homogeneous

FCFS

(ms)

GAPVC

(ms)
Time difference16 FCFS

(ms)

GAPVC

(ms)
Time difference

NSACA

4x4 0.021 0.373 16.384 0.019 0.265 12.591

2x8 0.010 0.275 26.698 0.011 0.268 24.103

4x8 0.035 0.061 0.754 0.029 0.032 0.102

6x8 0.044 0.109 1.463 0.041 0.044 0.065

GSACA M2

4x4 0.043 0.557 12.040 0.041 0.637 14.478

2x8 0.028 0.178 5.278 0.291 0.176 5.056

4x8 0.044 0.175 2.926 0.048 0.084 0.730

6x8 0.069 0.161 1.336 0.069 0.076 0.113

16 Time difference:∆t = tGAPV C−tFCFS

tFCFS

94

5.6. Summary and Discussion

Due to the scalability problem of Exhaustive and Exhaustive M0, we just consider NSACA

and GSACA M2 global management strategies in the comparison. The table indicates that

more simulation time is used per use-case for the global management strategies combining

GAPVC (i.e., NSACA+GAPVC, GSACA M2+GAPVC). When using GAPVC in the local

management, we can observe the mapping time of the hierarchical management has increased

by 26.7 times (NSACA on the 2x8 heterogeneous platform). Moreover, compared to small-sized

platforms (i.e., 4x4, 2x8), the obtained time difference of big-sized platforms (i.e., 4x8, 6x8)

can be smaller. For NSACA, the time difference decreases to 0.754 on the 4x8 heterogeneous

platform. As big-sized platforms reduce the situations where active applications compete for

limited resources (i.e., when 0 <
∑I

i=1 ci × ai,j −Nj <= 3), GAPVC is less executed.

The results in Table 5.6 suggest that when platform resources are competitive for all active

applications, using GAPVC in the local management will cost more time to obtain management

results. Spending more time on searching for management solutions also means more energy

consumption. However, it is possible that no solution (or high P avg
sys results) can be found without

using GAPVC (or other local management strategies using fewer cores to get a mapping). The

future work will further weigh the gains and losses of energy efficiency when using the GAPVC

or other local management strategies.

5.6 Summary and Discussion

This chapter considers the global optimization of the average dynamic power consumption of

cluster-based multi/many-core systems. For this purpose, hierarchical management is employed

to deliver global optimization among clusters and local optimization inside each cluster.

For the global management, we presented an 0-1 IP formulation that integrates application-

to-cluster assignments and cluster frequency configurations, under application timing, platform

resource and frequency constraints. To achieve near-optimal solutions of the 0-1 IP formulation

in fast speeds, we propose two global management strategies. The first global management

strategy NSACA considers the assignments of all active applications (in a use-case) holistically,

allowing all possible migrations. The NSACA strategy can achieve near-optimal results. It

assigns applications with close MAF ci
i,r to the same clusters and iteratively improves the

assignments through moving applications between two neighboring clusters. Our experimental

evaluation shows that the average power consumption achieved by NSACA is only 1.93% worse

than the optimal solution (i.e., by Exhaustive search), but the speed of NSACA is 2674 times

faster. The second global management strategy GSACA considers assignments for applications

individually. It greedily finds the most energy-efficient application-to-cluster assignment for

each newly active application, and only migrates some old executing applications for further

optimizations. The GSACA strategy allows users to control the number of migrations per use-

case. When assuming migration overhead is 0, more migrations can lead to reduced average

power consumption. Our experimental evaluation indicates that 0.22 more migration (i.e., the

95

Chapter 5. Run-Time Management for Global Optimization

number of migrated applications) per use-case in GSACA can lead to 2.5% reduction of the

average power consumption of the overall system.

In particular, our GSACA global strategy allows migrating some applications/tasks from

one cluster to another to achieve lower P avg
sys . The existing migration mechanisms include

process recreation and process replication [79]. During task migration, process recreation kills

a process (e.g., task) in the source (e.g., core or cluster) and then creates a new process in

the destination. Process recreation has high migration overheads as it not only migrates some

data/states (e.g., stack, an contents of internal registers [80]), but also migrates the process

code. To avoid migrating process code, process replication keeps process copies in different

clusters/cores. When a process is migrated, it suspends the process in the source and then

restarts the process in the destination. Compared with process recreation, process replication

has less migration data, but it consumes more memory space to store process copies. The

selection of migration mechanism depends on the characteristics of the platform resources (e.g.,

available memory space, communication speed). To reduce migration costs, we can just migrate

the applications without heavy migration code/data. Our future work should take into account

migration overheads to provide a more accurate evaluation of the proposed strategies.

For the local management in each cluster, FCFS and GAPVC mapping combination

strategies are applied to determine task-to-core mappings. Due to the less resource usage of

GAPVC, it reduces the number of used core inside a cluster, making more applications assigned

to more efficient clusters. Based on the same global management strategies, our experiments

have shown that GAPVC can reduce system energy efficiency (i.e., P avg
sys) by up to 57.65%

(the maximum P avg
sys reduction in a use-case) compared to FCFS. However, GAPVC costs more

computations to explore resource-efficient task mapping results. When platform resources are

insufficient, using GAPVC in local management can take up to 26.7 times longer to obtain the

management solution of a use-case. This is because we have to actually execute GAPVC to

estimate the used cores within each cluster. The future work could consider predicting the used

core of GAPVC without executing the strategy.

In this work, only one optimized mapping is prepared for each application at design-time.

Since applications can be assigned to different clusters, each prepared mapping can be adjusted

according to the impact of different core types. For multiple applications executed on a cluster-

based multi/many-core platform, the reduction of cluster frequencies is mainly realized by

assigning applications with close required frequencies in the same cluster. The average dynamic

power of the overall system can be further reduced if more design-time mappings are prepared.

In this case, resource usage of each cluster can be further reduced by appropriately selecting

a prepared mapping for each application in the same cluster. Multiple prepared mappings for

each application will be considered in further works.

96

Chapter 6

System-Level Evaluation Approach of

Run-Time Management Strategies

Contents

6.1 Overview . 98

6.2 Comparison with Existing Trace-driven Simulation 98

6.3 Proposed Modeling and Simulation Approach 100

6.3.1 Design-Time Database preparation 101

6.3.2 Run-Time Execution Traces Processing 102

6.3.3 Run-Time Mapping Control . 103

6.3.4 Platform Heterogeneity Consideration 104

6.4 Evaluation of the modeling and simulation approach 105

6.4.1 Simulation Environment . 105

6.4.2 Simulation Setup . 106

6.4.3 Validation of the Simulation Approach on Latency Criteria 107

6.4.4 Validation of the Simulation Approach on Power Criteria 108

6.4.5 Evaluation of the Simulation Approach 109

6.5 Summary and Discussion . 111

97

Chapter 6. System-Level Evaluation Approach of Run-Time Management Strategies

6.1 Overview

Due to high-performance requirements and the increasing application dynamism on nowadays

multi/many-core systems, run-time management strategies have been proposed to favor the

achievement of non-functional requirements such as timing and power constraints of systems.

To guarantee the non-functional requirements to be respected, extensive evaluation of run-time

management strategies is imperative. In this chapter, we focus on introducing a system-level

simulation approach to support run-time management strategy evaluations.

System-level modeling and simulation approaches favor early detection of potential issues

and prevent costly design cycles. In existing system-level simulation-based approaches, a

system model is formed by a combination of an application model and a platform model.

Then these models can be simulated, as executable descriptions, under different situations to

estimate system performance and optimize system design. However, in most of the existing

frameworks, the mapping of applications on the platform resources is statically defined and

cannot be modified during the simulation. If the application mapping has to be adapted to

system dynamism, the simulation should be stopped and restarted each time when the mapping

is modified. To allow more efficient evaluation of run-time management strategies, extending

system-level simulation-based approaches is thus mandatory.

The main contributions of this chapter are as follows.

• We present a new system-level modeling and simulation approach to allow evaluations of

run-time management strategies on multi/many-core systems. The proposed approach

dynamically computes the instants when platform resources are used by the running

applications. Using the computed simulation instants, the simulation model of the run-

time manager controls both the order of task execution and the advancement of simulation

time.

• We implement and validate the proposed approach using Intel Cofluent Studio modeling

framework [39] and SystemC simulation language [81]. Through a case-study that

considers seven applications (85 tasks in total) running on a heterogeneous cluster-

based platform, the proposed approach demonstrates the abilities to evaluate different

management strategies.

6.2 Comparison with Existing Trace-driven Simulation

As previously discussed in Chapter 2, the work of [10] presents an extension of the Sesame

framework to facilitate system-level modeling and simulation of multiple applications dynam-

ically executed on a multi-core platform. The work is based on the trace-driven simulation

approach [62, 63]. In this chapter, a new simulation approach that applies a different principle

to adapt to the application executions is presented. The differences between the trace-driven

98

Chapter 6. System-Level Evaluation Approach of Run-Time Management Strategies

events (e.g., t1 in part (b.1)) and communication events (e.g., read and write in part (b.1)).

When a new application event is identified during simulation, the Run-Time Manager (RTM)

first checks the availability of the allocated hardware resource (e.g., core1) and then dispatches

the event onto the targeted resource. It means that some synchronizations have to be done

to ensure the availability of the allocated hardware resources during event dispatching. As

the simulation time advances, different application events are dispatched and the performance

characteristics of the application can be evaluated. When the application mapping changes, the

application events are re-dispatched and the application performance characteristics are adapted

accordingly.

On the other hand, figure (c) presents the simulated result of our proposed simulation

approach. For a given mapping (e.g., mapping (a.1)), our approach first computes the instants

when platform resources are used by applications (e.g., see (c.1)). Then the RTM controls

(starts or stops) the task execution at the different computed instants. When the application

adapts its mapping (e.g., mapping (a.2)), our approach updates the task instants and then

controls the task executions accordingly. Compared to the trace-driven simulation shown in

Figure 6.1 (b), our proposed simulation approach does not dispatch application events and

avoids model synchronization by computing the instants when platform resources are used.

With the knowledge of the computed instants, our proposed approach controls when application

tasks are run on platform resources.

6.3 Proposed Modeling and Simulation Approach

This section presents our simulation approach referring to the application and platform

model presented in Chapter 3. Each application is characterized by its computation and

communication behaviors through a SDF model. As we consider a dynamic execution scenario

of multiple applications, the Use-case Definition module is introduced to define the set of

successive use-cases (with different active applications) and their execution durations. The

platform model is characterized by the hardware resources and their non-functional parameters

(i.e., computation time, communication time, power), in order to evaluate the performance

consequences of each task/edge executed on different core types and at different frequencies.

In addition, management components are introduced to support dynamic mappings of multiple

applications onto platform resources in varying use-cases. The management components are

used to execute and evaluate a certain run-time management strategy. Like the state-of-the-

art simulation approaches [10, 11] for run-time management, our approach is also based on a

design-time database.

As illustrated in Figure 6.2, we consider run-time management in three steps: (1) a design-

time preparation, where one or several mappings for each application are prepared and stored

in a database. (2) A run-time mapping process, performed when a new use-case is detected

(Use-case Detection). In this step, a run-time mapping is established based on a particular

100

6.4. Evaluation of the modeling and simulation approach

provided in SDF3 [67]. As shown in Figure 6.7, app1 and app3 (respectively app2 and app4)

are set to consume different token sizes for processing at different data exchanging speed. The

first five applications are representatives and require different computation time and power.

To evaluate the scalability of the proposed simulation approach, app6 and app7 are arbitrarily

created to significantly increase the number of tasks. They are created by duplicating app1 5 and

10 times respectively, while the iterations execute successively in one period. Each application

is constrained by a predefined period. For further evaluation, in the following, 13 possible use-

cases are defined with different active applications (seen on top right part of Figure 6.7). The

duration of each use-case is not depicted in the figure for sake of clarity, but it can easily be set

by the user.

We choose the Samsung Exynos 5422 [21] platform as the hardware target. As summarized

in [25], the computation time of a task presents a ratio (i.e., Rperf
j defined in Eq.(3.11),

where j denotes the core type) of 1 : 0.5 when executed on the little (Cortex-A7) or the

big (Cortex-A15) cluster. Besides, the ratio of power consumption (i.e., Rpower
j defined in

Eq.(3.12)) of a task executed on the little cluster and the big cluster is set to 1 : 4. This

platform allows frequency scaling of each cluster, while the operating voltage is adapted to

the frequency setting. We used the model of Exynos 5422 in [8] to model how computation

time and dynamic power consumption of tasks change with frequency. In the case-studies, we

assume that the processing/communication resources in each cluster are sufficient for the active

applications of each use-case. It means that resource constraints are not taken into account

in the case-studies for the reason of simplification. Note that whether considering resource

constraints only affects task execution instants (due to the potential resource competition and

communication congestion), and does not change the run-time mapping control processing (the

main contribution) of the proposed simulation approach.

The hierarchical managers are built to implement some run-time management strategies of

the system. The two local managers are individually used for each cluster to optimize task-to-

core allocation and scheduling. In order to coordinate the local managers, the global manager

determines application-to-cluster allocations and sets cluster frequencies. The management

strategies are based on design-time prepared execution traces. For each application, the

established Xappi maps one task onto one core.

6.4.3 Validation of the Simulation Approach on Latency Criteria

In this part, the proposed simulation approach is applied for the evaluation of a local

management strategy, which considers task-to-core mapping inside a cluster (i.e., on a

homogeneous architecture). Here, we apply FCFS [12, 13] and LASP [14] in the local manager

to get a combined mapping of active applications in each use-case. Then the latency of each

application can be obtained for the two different strategies.

Figure 6.8 shows the latency evolution of app1 in four different simulated use-cases. The

simulations are performed in the little cluster at a fixed cluster frequency of f = 1.4 GHz.

107

Chapter 6. System-Level Evaluation Approach of Run-Time Management Strategies

increase in some use-cases.

Table 6.1: Evaluation of run-time management strategies based on latency and power

Compared Critera Strategy u1 u2 u3 u4 u5 u6

Latency18
FCFS 1 1 1 1 1 1

LASP 1 1 1.43 1.39 1.18 1.64

System Power19

Exhaustive 1 1 1 1 1 1

HPF 1 1 1 1.12 1.15 1.07

LPF 1.68 2 1.68 1.89 1.94 2.14

18 Depicts the latency of the application that has the highest variation in a use-case. Each value

is normalized by the latency obtained by FCFS.
19 Represents the average dynamic power of the system at the scaled frequency. Each value is

normalized by the system power obtained by Exhaustive.

Three Global Management Strategies are also compared. They differ in how they allocate

applications to the clusters. Exhaustive refers to the strategy that assigns applications to the

two clusters by exhaustively searching the best power efficiency. The High-Performance-First

(HPF) strategy and the Low-Power-First (LPF) strategy assign all the active applications to the

big cluster or to the little cluster respectively. Once the application allocation is done, cluster

frequency is decreased as much as possible under timing constraints. Then FCFS is used in

each local manager to determine task-to-core mappings. From Table 6.1, we can observe the

poor power efficiency of using only one cluster (i.e., HPF and LPF).

Evaluation of simulation efficiency:

We also analyzed the scalability of the proposed simulation method by comparing it with

the CoFluent default simulation method. The proposed approach simulates the execution of

applications under the control of the Run-Time Manager (RTM), and different mappings can

be provided for each application in different use-cases. On the other hand, without the RTM

model, the default simulation approach only provides one static mapping of the applications

in every use-case. In this work, we characterize simulation effort by the average time needed

to complete one simulation run. Figure 6.10 shows the differences of the simulation effort 20

between the two approaches. The results include the execution traces processing and mapping

control overheads.

We define an increasing number of successively simulated use-cases (see the first use-case

→ the last use-case in Figure 6.10) within a fixed duration of simulation time, allowing each

application to execute 100 to 240 periods. When the number of simulated use-cases increases

from 1 to 7, the number of considered tasks increases from 40 to 85, while the difference of the

20Differences of simulation effort = Simulation effort of the proposed approach - Simulation effort of the CoFluent default approach

Simulation effort of the CoFluent default approach

110

Chapter 6. System-Level Evaluation Approach of Run-Time Management Strategies

Our simulation approach can be conveniently implemented without any modification of the

used framework, making the approach portable to other simulation environments. The main

difficulty is to correctly compute the instants of each application task executed on the platform

resources under the control of a run-time management strategy.

Like the existing system-level modeling and simulation approaches with run-time man-

agement strategy extensions, the proposed approach explores and simulates run-time mapping

based on a design-time database. This approach can support both hybrid and fully on-the-fly

decision-making strategies. In hybrid strategy simulation, the database provides some opti-

mized design-time mappings to establish a run-time mapping. In on-the-fly strategy simulation,

the database provides the computation/communication time of task/edge on different platform

resources and then task execution instants are computed at run-time according to the task

execution order, the platform current state, and the applied strategy.

112

Chapter 7

Conclusion

Contents

7.1 Dissertation Summary . 113

7.2 Future Works . 116

In this chapter, we first summarize the work of this dissertation. Then, we discuss the

possible improvements and future works.

7.1 Dissertation Summary

This dissertation work has focused on run-time management of multiple applications (i.e.,

each application has dependent tasks) executed dynamically in cluster-based multi/many-core

systems. Dynamic task mapping and DVFS aim to be simultaneously applied to achieve energy

efficiency while satisfying system constraints (i.e., application timing, platform resource, and

platform frequency constraints). In this work, energy efficiency is characterized by the average

dynamic power of active applications. To reduce run-time computation burdens and guarantee

mapping feasibility, our work applies hybrid mapping strategies that fulfill dynamic mapping

based on one or several design-time prepared mappings for each application.

Towards the run-time management purpose, two main research problems are studied. The

first research problem is how to coordinate dynamic task mapping and DVFS. Most existing

strategies separate dynamic task mapping and DVFS into two independent steps without

considering their mutual influence. In our work, to estimate the impact of a prepared application

mapping on the cluster frequency configurations, we have introduced a new parameter, the

Minimum Allowed Frequency (MAF). MAF defines the minimum required frequency for a

given prepared mapping to meet the application timing constraint. We have applied MAF

to coordinate hybrid mapping and per-cluster DVFS according to two dimensions: local

optimization within a cluster and global optimization of the overall system.

113

Chapter 7. Conclusion

To achieve local optimization within a cluster, Chapter 4 has presented a novel management

strategy to determine task-to-core mapping and cluster frequency configuration to achieve

near-optimal energy efficiency of the cluster. At design-time, multiple mappings that have

different trade-offs between application performance and core usage are prepared. At run-

time, one prepared mapping is selected for each active application. However, many exploration

attempts might be required to select application mappings that allow a low cluster frequency

configuration without violating system constraints. To offer a good trade-off between

management efficiency and complexity, a run-time selection strategy is proposed to select a

prepared mapping for each active application and a low cluster frequency under the guidance of

MAFs. Besides, a mapping combination strategy, GAPVC, is proposed to heuristically combine

the selected application mappings with less resource usage without degrading the application

performance. To achieve a near-optimal solution, the selection strategy and the mapping

combination strategy are applied iteratively. Thanks to the guidance of MAFs, our run-time

management strategy can exclude some unnecessary iterations to explore system configuration.

Moreover, our experiments have demonstrated that the involvement of our selection strategy

and mapping combination strategy can reduce average power consumption by up to 206% when

compared to the literature. The proposed management strategy can be applied to each cluster to

enable distributed management in the overall system.

For the global optimization of the overall system, we have proposed a hierarchical

management strategy in which the global management determines application-to-cluster as-

signments and sets cluster frequencies, while the local management optimizes task-to-core

mappings in each cluster. However, energy optimization in a global system has not been

explicitly studied for task-dependent applications in platforms with more clusters (e.g., more

than 2) in state-of-the-art strategies. In Chapter 5, we presented our management solution

for homogeneous/heterogeneous systems with different numbers of clusters or with different

numbers of cores inside each cluster. In our strategy, we assume that one mapping is prepared

for each application at design-time and one application is assigned to one cluster at any given

time. Under these assumptions, we formulate the global management problem into a 0-1 IP

model. The 0-1 IP model takes use of MAF to estimate the optimized cluster frequencies

based on different application-to-cluster assignments. To achieve the solution to the 0-1 IP

optimization problem, two different global management strategies have been proposed. Firstly,

a neighboring search strategy NSACA is proposed. It considers the assignments of all active

applications (i.e., in a use-case) holistically, allowing all migrations of applications. The

NSACA strategy reveals the application assignment principle for near-optimal results of the

0-1 IP formulation. That is to assign applications with close MAF to the same cluster. Our

experimental evaluation shows that the average power consumption achieved by NSACA is

only 1.93% worse than the optimal solution (i.e., by Exhaustive search), but the speed of

NSACA is 2674 times faster. Moreover, a greedy search strategy GSACA that considers the

assignments of active application individually is presented. Motivated by reducing the number

114

7.1. Dissertation Summary

of migration, the GSACA strategy only assigns newly active applications in each use-case and

allows limited migrations for further energy optimization. The number of allowed migrations

can be controlled according to user requirements. Our experimental evaluation indicates that

0.22 more migration (i.e., the number of migrated applications) per use-case in GSACA can lead

to 2.5% reduction of the average power consumption of the overall system. This evaluation was

performed under the assumption that migration overhead is 0. Lastly, mapping combination

strategies FCFS and GAPVC have been compared in the local management of each cluster. The

comparison reveals that less core usage within a cluster achieved by GAPVC enables further

energy optimization in the overall system. This is because more applications can be assigned to

more efficient clusters (i.e., due to heterogeneous cluster or low cluster frequency). Based on

the same global management strategies, our experiments have shown that GAPVC can reduce

the average power consumption of system by up to 57.65% compared to FCFS (First-Come-

First-Served application mapping combination strategy) in a use-case.

The second research problem addressed in this work is: how to evaluate run-time

management strategies. Regarding this problem, most of the existing system-level simulation-

based frameworks consider static application mapping and do not support run-time management

effects. To enable run-time management property, we have proposed a new system-level

modeling and simulation approach that allows flexible evaluation of different run-time manage-

ment strategies, different numbers of active applications, and different platform configurations

(e.g., heterogeneous processing elements, v/f configurations). In our simulation approach,

the task execution instants of dynamic application mappings are first computed based on

design-time prepared data. Then, according to the computed instants, the execution states

of application tasks are controlled dynamically as simulation time advances. The proposed

simulation approach has been validated in the Intel CoFluent framework. We have evaluated the

scalability of the simulation approach. It has been observed that the influence of the proposed

approach on the simulation effort is reasonable. Compared to the default Cofluent framework

(for 85 running tasks), the simulation workload increased by less than 10.8%. But the default

Cofluent framework simulates only one mapping at run-time.

In summary, this dissertation has presented our contributions on run-time management of

multiple task-dependent periodic applications on cluster-based multi/many-core systems for

energy optimization. Our proposed run-time management strategies can be partially applied

to sporadic applications or tasks. Sporadic tasks refer to non-periodic tasks with minimum

arrival time to ensure their schedulability [27]. On one hand, our GAPVC mapping combination

strategy (in the local management) assumes that application arrival time is predictable and

known, but this is not the case for sporadic applications. Therefore, GAPVC is not feasible

for sporadic applications. We can still use FCFS mapping combination strategy to set the

scheduling of sporadic tasks. On the other hand, our MAF-based selection strategy (in the local

management) and application-to-cluster assignment strategy (in the global management) can

still be feasible for sporadic applications. The two strategies depend on design-time prepared

115

Chapter 7. Conclusion

MAFs. We can estimate the MAF for each prepared mapping of sporadic applications through

scheduling analysis (i.e., demand bound function [82]) or measurement.

Our current work has some limitations. In terms of application models, our work considers

computation-intensive applications, assuming communication congestion and communication

energy can be neglected. But this is not the case for communication-intensive or memory-

intensive workloads. Further evaluations and improvements should be performed to adjust our

proposed strategies to communication-intensive workloads. In terms of power and performance

models, we built the models for each independent application. The models are fixed and

are established according to design-time information. However, due to the influence of

communication contention or memory demands, the models may be inaccurate when multiple

applications are executing simultaneously at run-time. Moreover, our work assumes that all

applications have the same power/performance ratios from one cluster to another. This is an

ideal assumption in our global management strategies. Nevertheless, computation-intensive

and communication-intensive can have different power/performance ratios in different platform

configurations (i.e., resource heterogeneity and frequency configurations). More experimental

measurements should be performed to validate the power and performance models.

7.2 Future Works

Future work can address the limitations of our work, that is, we can adjust our proposed strate-

gies to various applications (e.g., computation-intensive, communication-intensive workloads)

and conduct more measurements to verify our power/performance models. Additionally, we

can also improve our work in other possible aspects.

Further improvement of management strategies

One of our future work will consider further optimization of run-time management strategies.

Further improvements can be considered for both local optimization and global optimization.

• Optimizing mapping combination strategy in local management

For the local optimization within a cluster, we have proposed a heuristic strategy (i.e.,

GAPVC) to determine task-to-core mappings. However, our local management strategy

has assumed that the communication cost between core is much smaller than computation

energy, and the communication energy can be neglected. The possible communication

congestion has been also neglected when performing application mapping combination at

run-time. Communication congestion occurs due to the competition for platform resources

from simultaneous communication activities. Figure 7.1 (a) gives one example of combined

mapping (of app1 and app2) that neglects the possible communication congestion (highlighted

in shadow). This Communication congestion can delay some task execution and degrade

116

7.2. Future Works

have different trade-offs between application performance and used cores, providing more

opportunities for resource optimization. As previously discussed in Section 5.4.3, fewer used

cores within a cluster allows more applications executed in more energy-efficient clusters (i.e.,

due to heterogeneous cluster, low cluster frequency), and consequently improves the energy

efficiency of the overall system.

In this case, we can firstly perform global management (application-to-cluster assignment

and cluster frequency configurations) based on one prepared mapping (e.g., the mapping

with the minimum MAF) of each application. Then, multiple prepared mappings can be

considered in the local management (task-to-core allocation and scheduling) of each cluster

to further optimize core usage. To this end, the NSACA, GSACA strategies based on one

prepared mappings of each application can be directly applied in global management. The

local management strategy based on multiple prepared mappings of each application should be

slightly modified. In our modification, the local management is required to perform mapping

selection, according to the cluster frequency determined by global management. Figure 7.2

gives an example of the modification of the mapping selection in local management. The

definition of the symbols used in the figure can be found in Chapter 5 (see Section 5.3).

In the example of Figure 7.2, app1 and app3 are assigned to the same cluster and the

cluster frequency is determined by the application with the maximum MAF (MAF 2
1,j in part

(a) of the figure). In the case of figure (a), the only one prepared mapping (i.e., X2
app3

is the

prepared mapping for app3 using 2 cores) for each application is selected directly. In the case

of figure (b), multiple mappings can be prepared for an application. As previously discussed in

Section 4.4.2, at different frequencies, the design-time mapping that could be selected for each

application can be different. If a low frequency level can be supported by multiple application

mapping, the mapping using fewer cores should be selected due to its less power consumption

(i.e., less communication between cores). The part (b) of Figure 7.2 highlights the designated

design-time mapping (bold line) selection for each application at different frequencies. In the

example of figure (b), the cluster frequency is still MAF 2
1,j . The selected mapping for app3

changes to X1
app3

, reducing 1 core of the prepared mappings. For more active applications with

more prepared mappings, the total number of reduced cores can be more significant. Note that

after the mapping selection, the selected mappings can be combined through different mapping

combination strategies, such as FCFS and GAPVC.

Real implementation of management strategies

Our future work will consider real implementation of our proposed management strategies in

real cluster-based multi/many-core systems, such as Odroid XU3 [21], Kalray MPPA [20].

The implementation is feasible due to the support of some open-source tools. For example,

PREESM [83] can simulate signal processing applications and generate application code

for heterogeneous multi/many-core embedded systems. The Synchronous Parameterized and

Interfaced Dataflow Embedded Runtime (SPIDER) [84, 85] allows the implementation of

119

Chapter 7. Conclusion

run-time mapping strategies to adapt the allocation and scheduling of application tasks onto

platform resources. The real implementation helps to make a practical evaluation of our

management strategies. We can evaluate whether the strategy complexity, migration overheads,

and communication congestion that can jeopardize application timing constraints.

Apply Dynamic Power Management (DPM) to optimize static energy

In the work of this dissertation, the proposed management strategies have focused on the

optimization of average dynamic power consumption (e.g., or dynamic energy consumption)

through dynamic task mapping and DVFS. Since static power/energy is unneglectable in future

multi/many-core systems [86], future work can consider Dynamic Power Management (DPM)

to optimize system static power. DPM dynamically shuts-down system components (e.g., cores)

that are idle or underutilized, and wake up them when necessary. We can apply DPM with

dynamic task mapping and DVFS to optimize both dynamic energy and static energy of systems.

In this case, we can shut-down the idle cluster/cores after determining the application task

map and cluster frequency configuration through our proposed hierarchical management (see

Chapter 5). However, shutting-down and waking up clusters/cores will incur some penalties in

terms of system response time and extra energy. The difficulty would be how to avoid DPM

penalties outweighing its benefits.

Consider several other optimization objectives

In the future, we may consider several other optimization objectives that are not covered in this

dissertation. For instance, energy efficiency is closely related to system thermal problems due to

hot-spots in modern chips. Moreover, the overheating problem can worsen life-time reliability

of systems. Finally, we can also address security issues of run-time managers. Since some

possible attacks to a manager can mislead the manager to make unappropriated configurations

of systems, and thus causes application performance violations or other serious problems (e.g.,

in terms of energy, thermal and reliability).

120

Bibliography

[1] 42 years of microprocessor trend data. Available:https://www.karlrupp.

net/2018/02/42-years-of-microprocessor-trend-data.

[2] Amit Kumar Singh, Piotr Dziurzanski, Hashan Roshantha Mendis, and Leandro Soares

Indrusiak. A survey and comparative study of hard and soft real-time dynamic resource

allocation strategies for multi-/many-core systems. ACM Computing Surveys (CSUR),

50(2):24, 2017.

[3] Peng Yang, Paul Marchal, Chun Wong, Stefaan Himpe, Francky Catthoor, Patrick David,

Johan Vounckx, and Rudy Lauwereins. Managing dynamic concurrent tasks in embedded

real-time multimedia systems. In Proceedings of the 15th international symposium on

System Synthesis, pages 112–119. ACM, 2002.

[4] Santiago Pagani, Anuj Pathania, Muhammad Shafique, Jian-Jia Chen, and Jörg Henkel.

Energy efficiency for clustered heterogeneous multicores. IEEE Transactions on Parallel

and Distributed Systems, 28(5):1315–1330, 2016.

[5] Young Geun Kim, Minyong Kim, and Sung Woo Chung. Enhancing energy efficiency

of multimedia applications in heterogeneous mobile multi-core processors. IEEE

Transactions on Computers, 66(11):1878–1889, 2017.

[6] Anil Kanduri, Antonio Miele, Amir M Rahmani, Pasi Liljeberg, Cristiana Bolchini,

and Nikil Dutt. Approximation-aware coordinated power/performance management

for heterogeneous multi-cores. In 2018 55th ACM/ESDA/IEEE Design Automation

Conference (DAC), pages 1–6. IEEE, 2018.

[7] Heba Khdr, Santiago Pagani, Ericles Sousa, Vahid Lari, Anuj Pathania, Frank Hannig,

Muhammad Shafique, Jürgen Teich, and Jörg Henkel. Power density-aware resource

management for heterogeneous tiled multicores. IEEE Transactions on Computers,

66(3):488–501, 2016.

121

Bibliography

[8] Houssam-Eddine Zahaf, Abou El Hassen Benyamina, Richard Olejnik, and Giuseppe

Lipari. Energy-efficient scheduling for moldable real-time tasks on heterogeneous

computing platforms. Journal of Systems Architecture, 74:46–60, 2017.

[9] Bart Kienhuis, Ed F Deprettere, Pieter Van der Wolf, and Kees Vissers. A methodology

to design programmable embedded systems. In International Workshop on Embedded

Computer Systems, pages 18–37. Springer, 2001.

[10] Wei Quan and Andy D Pimentel. A hybrid task mapping algorithm for heterogeneous

mpsocs. ACM Transactions on Embedded Computing Systems (TECS), 14(1):14, 2015.

[11] J. Lemaitre and R. Le Moigne. Dynamic migration and performance optimization of

deterministic applications across platform components using intel cofluent studio. In DAC

Workshop on System-to-Silicon Performance Modeling and Analysis, June 2015.

[12] Heba Khdr, Santiago Pagani, Ericles Sousa, Vahid Lari, Anuj Pathania, Frank Hannig,

Muhammad Shafique, Jürgen Teich, and Jörg Henkel. Power density-aware resource

management for heterogeneous tiled multicores. IEEE Transactions on Computers,

66(3):488–501, 2017.

[13] Amit Kumar Singh, Akash Kumar, and Thambipillai Srikanthan. A hybrid strategy for

mapping multiple throughput-constrained applications on mpsocs. In Proceedings of the

14th international conference on Compilers, architectures and synthesis for embedded

systems, pages 175–184. ACM, 2011.

[14] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. Resource and

throughput aware execution trace analysis for efficient run-time mapping on mpsocs. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(1):72–85,

2016.

[15] Gordon E Moore et al. Progress in digital integrated electronics. In Electron Devices

Meeting, volume 21, pages 11–13, 1975.

[16] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and Andre R

LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions. IEEE

Journal of Solid-State Circuits, 9(5):256–268, 1974.

[17] Thomas M Conte and Paolo A Gargini. On the foundation of the new computing industry

beyond2020. Preliminary IEEE RC-ITRS Report, 2015.

[18] Andreas Olofsson. Epiphany-v: A 1024 processor 64-bit risc system-on-chip. arXiv

preprint arXiv:1610.01832, 2016.

122

Bibliography

[19] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, Gregory Ruhl,

David Jenkins, Howard Wilson, Nitin Borkar, Gerhard Schrom, et al. A 48-core ia-32

message-passing processor with dvfs in 45nm cmos. In 2010 IEEE International Solid-

State Circuits Conference-(ISSCC), pages 108–109. IEEE, 2010.

[20] Mppa 2-256. Available:https://www.kalrayinc.com/technology/.

[21] Exynos 5 octa (5422). Available:http://www.samsung.com/exynos.

[22] Shubham Kamdar and Neha Kamdar. big. little architecture: Heterogeneous multicore

processing. International Journal of Computer Applications, 119(1), 2015.

[23] Helio-x30. Available:https://www.mediatek.com/products/

smartphones/mediatek-helio-x30.

[24] Lei Yang, Weichen Liu, Nan Guan, Mengquan Li, Peng Chen, and HM Edwin.

Dark silicon-aware hardware-software collaborated design for heterogeneous many-core

systems. In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC),

pages 494–499. IEEE, 2017.

[25] Anastasiia Butko, Florent Bruguier, David Novo, Abdoulaye Gamatié, and Gilles

Sassatelli. Exploration of performance and energy trade-offs for heterogeneous multicore

architectures. arXiv preprint arXiv:1902.02343, 2019.

[26] Young Choon Lee and Albert Y Zomaya. Energy conscious scheduling for distributed

computing systems under different operating conditions. IEEE Transactions on Parallel

and Distributed Systems, 22(8):1374–1381, 2010.

[27] Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic task scheduling for hard-real-

time systems. Real-Time Systems, 1(1):27–60, 1989.

[28] Nathaniel Pinckney, Korey Sewell, Ronald G Dreslinski, David Fick, Trevor Mudge,

Dennis Sylvester, and David Blaauw. Assessing the performance limits of parallelized

near-threshold computing. In DAC Design Automation Conference 2012, pages 1143–

1148. IEEE, 2012.

[29] Abdullah Elewi, Mohamed Shalan, Medhat Awadalla, and Elsayed M Saad. Energy-

efficient task allocation techniques for asymmetric multiprocessor embedded systems.

ACM Transactions on Embedded Computing Systems (TECS), 13(2s):71, 2014.

[30] Luca Benini, Davide Bertozzi, and Michela Milano. Resource management policy

handling multiple use-cases in mpsoc platforms using constraint programming. In

International Conference on Logic Programming, pages 470–484. Springer, 2008.

123

Bibliography

[31] Lionel Torres, Pascal Benoit, Gilles Sassatelli, Michel Robert, Fabien Clermidy, and

Diego Puschini. An introduction to multi-core system on chip–trends and challenges.

In Multiprocessor System-on-Chip, pages 1–21. Springer, 2011.

[32] Chung-Hsing Hsu, Ulrich Kremer, and Michael Hsiao. Compiler-directed dynamic

voltage/frequency scheduling for energy reduction in microprocessors. In ISLPED’01:

Proceedings of the 2001 International Symposium on Low Power Electronics and Design

(IEEE Cat. No. 01TH8581), pages 275–278. IEEE, 2001.

[33] Marco ET Gerards, Johann L Hurink, and Jan Kuper. On the interplay between global

dvfs and scheduling tasks with precedence constraints. IEEE Transactions on Computers,

64(6):1742–1754, 2014.

[34] Basireddy Karunakar Reddy, Amit Kumar Singh, Dwaipayan Biswas, Geoff V

Merrett, and Bashir M Al-Hashimi. Inter-cluster thread-to-core mapping and dvfs

on heterogeneous multi-cores. IEEE Transactions on Multi-Scale Computing Systems,

4(3):369–382, 2017.

[35] Gang Chen, Kai Huang, and Alois Knoll. Energy optimization for real-time

multiprocessor system-on-chip with optimal dvfs and dpm combination. ACM

Transactions on Embedded Computing Systems (TECS), 13(3s):111, 2014.

[36] Jonathan A Winter, David H Albonesi, and Christine A Shoemaker. Scalable thread

scheduling and global power management for heterogeneous many-core architectures. In

2010 19th International Conference on Parallel Architectures and Compilation Techniques

(PACT), pages 29–39. IEEE, 2010.

[37] Shahid H. Bokhari. On the mapping problem. IEEE Transactions on Computers, (3):207–

214, 1981.

[38] Hakan Aydin and Qi Yang. Energy-aware partitioning for multiprocessor real-time

systems. In Proceedings International Parallel and Distributed Processing Symposium,

pages 9–pp. IEEE, 2003.

[39] Intel cofluent studio. Available:http://www.intel.com/.

[40] S Wayne Bollinger and Scott F Midkiff. Processor and link assignment in multicomputers

using simulated annealing. In ICPP (1), pages 1–7, 1988.

[41] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and

elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary

computation, 6(2):182–197, 2002.

124

Bibliography

[42] Ch Ykman-Couvreur, Vincent Nollet, Fr Catthoor, and Henk Corporaal. Fast multi-

dimension multi-choice knapsack heuristic for mp-soc run-time management. In 2006

International Symposium on System-on-Chip, pages 1–4. IEEE, 2006.

[43] Ewerson Luiz de Souza Carvalho, Ney Laert Vilar Calazans, and Fernando Gehm Moraes.

Dynamic task mapping for mpsocs. IEEE Design & Test of Computers, 27(5):26–35, 2010.

[44] Vincent Nollet, Prabhat Avasare, Hendrik Eeckhaut, Diederik Verkest, and Henk

Corporaal. Run-time management of a mpsoc containing fpga fabric tiles. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 16(1):24–33, 2007.

[45] Amit Kumar Singh, Thambipillai Srikanthan, Akash Kumar, and Wu Jigang.

Communication-aware heuristics for run-time task mapping on noc-based mpsoc

platforms. Journal of Systems Architecture, 56(7):242–255, 2010.

[46] Andreas Schranzhofer, Jian-Jian Chen, and Lothar Thiele. Dynamic power-aware

mapping of applications onto heterogeneous mpsoc platforms. IEEE Transactions on

Industrial Informatics, 6(4):692–707, 2010.

[47] Yu-Kwong Kwok, Anthony A Maciejewski, Howard Jay Siegel, Ishfaq Ahmad, and Arif

Ghafoor. A semi-static approach to mapping dynamic iterative tasks onto heterogeneous

computing systems. Journal of Parallel and Distributed Computing, 66(1):77–98, 2006.

[48] Amit Kumar Singh, Akash Kumar, and Thambipillai Srikanthan. Accelerating throughput-

aware runtime mapping for heterogeneous mpsocs. ACM Transactions on Design

Automation of Electronic Systems (TODAES), 18(1):9, 2013.

[49] Thannirmalai Somu Muthukaruppan, Mihai Pricopi, Vanchinathan Venkataramani, Tulika

Mitra, and Sanjay Vishin. Hierarchical power management for asymmetric multi-core in

dark silicon era. In Proceedings of the 50th Annual Design Automation Conference, page

174. ACM, 2013.

[50] Odroid xu3. Available:https://wiki.odroid.com/old_product/

odroid-xu3/hardware/xu3_hardware.

[51] Pi-Cheng Hsiu, Po-Hsien Tseng, Wei-Ming Chen, Chin-Chiang Pan, and Tei-Wei Kuo.

User-centric scheduling and governing on mobile devices with big. little processors. ACM

Transactions on Embedded Computing Systems (TECS), 15(1):17, 2016.

[52] Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang Schröder-Preikschat, and

Jörg Henkel. Distrm: distributed resource management for on-chip many-core

systems. In Proceedings of the seventh IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis, pages 119–128. ACM, 2011.

125

Bibliography

[53] Peter Zipf, Gilles Sassatelli, Nurten Utlu, Nicolas Saint-Jean, Pascal Benoit, and Manfred

Glesner. A decentralised task mapping approach for homogeneous multiprocessor

network-on-chips. International Journal of Reconfigurable Computing, 2009:3, 2009.

[54] Ahsan Shabbir, Akash Kumar, Bart Mesman, and Henk Corporaal. Distributed resource

management for concurrent execution of multimedia applications on mpsoc platforms. In

2011 International Conference on Embedded Computer Systems: Architectures, Modeling

and Simulation, pages 132–139. IEEE, 2011.

[55] Guilherme Castilhos, Marcelo Mandelli, Guilherme Madalozzo, and Fernando Moraes.

Distributed resource management in noc-based mpsocs with dynamic cluster sizes. In

2013 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 153–158. IEEE,

2013.

[56] Al Faruque, Mohammad Abdullah, Rudolf Krist, and Jörg Henkel. Adam: run-time agent-

based distributed application mapping for on-chip communication. In Proceedings of the

45th annual Design Automation Conference, pages 760–765. ACM, 2008.

[57] Maximilian Götzinger, Amir M Rahmani, Martin Pongratz, Pasi Liljeberg, Axel Jantsch,

and Hannu Tenhunen. The role of self-awareness and hierarchical agents in resource

management for many-core systems. In 2016 IEEE 10th International Symposium on

Embedded Multicore/Many-core Systems-on-Chip (MCSOC), pages 53–60. IEEE, 2016.

[58] Wei Quan and Andy D Pimentel. A hierarchical run-time adaptive resource allocation

framework for large-scale mpsoc systems. Design Automation for Embedded Systems,

20(4):311–339, 2016.

[59] André Luı́s del Mestre Martins, Alzemiro Henrique Lucas da Silva, Amir M Rahmani,

Nikil Dutt, and Fernando Gehm Moraes. Hierarchical adaptive multi-objective resource

management for many-core systems. Journal of Systems Architecture, 97:416–427, 2019.

[60] Lars Schor, Iuliana Bacivarov, Devendra Rai, Hoeseok Yang, Shin-Haeng Kang, and

Lothar Thiele. Scenario-based design flow for mapping streaming applications onto

on-chip many-core systems. In Proceedings of the 2012 international conference on

Compilers, architectures and synthesis for embedded systems, pages 71–80. ACM, 2012.

[61] Andy D Pimentel, Cagkan Erbas, and Simon Polstra. A systematic approach to exploring

embedded system architectures at multiple abstraction levels. IEEE transactions on

computers, 55(2):99–112, 2006.

[62] Paul Lieverse, Pieter Van Der Wolf, Kees Vissers, and Ed Deprettere. A methodology

for architecture exploration of heterogeneous signal processing systems. Journal of VLSI

signal processing systems for signal, image and video technology, 29(3):197–207, 2001.

126

Bibliography

[63] A. Pimentel, C. Erbas, and S. Polstra. A systematic approach to exploring embedded

system architectures at multiple abstraction levels. IEEE Transactions on Computers,

55(2):99–112, 2006.

[64] Wei Quan and Andy D Pimentel. Towards self-adaptive mpsoc systems with adaptivity

throttling. In 2015 International Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS), pages 157–164. IEEE, 2015.

[65] Alan L Davis and Robert M Keller. Data flow program graphs. 1982.

[66] Edward A Lee and David G Messerschmitt. Synchronous data flow. Proceedings of the

IEEE, 75(9):1235–1245, 1987.

[67] Sdf3. Available:http://www.es.ele.tue.nl/sdf3.

[68] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. Reliability-driven task mapping for

lifetime extension of networks-on-chip based multiprocessor systems. In 2013 Design,

Automation & Test in Europe Conference & Exhibition (DATE), pages 689–694. IEEE,

2013.

[69] Maher Fakih, Kim Grüttner, Martin Fränzle, and Achim Rettberg. Towards performance

analysis of sdfgs mapped to shared-bus architectures using model-checking. In

Proceedings of the Conference on Design, Automation and Test in Europe, pages 1167–

1172. EDA Consortium, 2013.

[70] Torres Lionel, Benoit Pascal, Sassatelli Giles, and Robert Michel. An introduction

to multicore system on chip. trends and challenges. multiprocessor system-on-chip:

Hardware design and tool integration. pag. 1-18, 2010.

[71] Anantha P Chandrakasan, Samuel Sheng, and Robert W Brodersen. Low-power cmos

digital design. IEICE Transactions on Electronics, 75(4):371–382, 1992.

[72] Jing Mei, Kenli Li, Jingtong Hu, Shu Yin, and Edwin H-M Sha. Energy-aware

preemptive scheduling algorithm for sporadic tasks on dvs platform. Microprocessors

and Microsystems, 37(1):99–112, 2013.

[73] Steven M Martin, Krisztian Flautner, Trevor Mudge, and David Blaauw. Combined

dynamic voltage scaling and adaptive body biasing for lower power microprocessors under

dynamic workloads. In Proceedings of the 2002 IEEE/ACM international conference on

Computer-aided design, pages 721–725. ACM, 2002.

[74] Ina231 sensors. Available:http://www.ti.com/lit/ds/symlink/

ina231.pdf.

127

Bibliography

[75] Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond, Daniel Menard,

and Johan Lilius. Energy-awareness and performance management with parallel dataflow

applications. Journal of Signal Processing Systems, 87(1):33–48, 2017.

[76] Ravindra Jejurikar, Cristiano Pereira, and Rajesh Gupta. Leakage aware dynamic voltage

scaling for real-time embedded systems. In Proceedings of the 41st annual Design

Automation Conference, pages 275–280. ACM, 2004.

[77] Santiago Pagani, Anuj Pathania, Muhammad Shafique, Jian-Jia Chen, and Jörg Henkel.

Energy efficiency for clustered heterogeneous multicores. IEEE Transactions on Parallel

and Distributed Systems, 28(5):1315–1330, 2017.

[78] Vinicius Petrucci, Orlando Loques, Daniel Mossé, Rami Melhem, Neven Abou Gazala,

and Sameh Gobriel. Energy-efficient thread assignment optimization for heterogeneous

multicore systems. ACM Transactions on Embedded Computing Systems (TECS),

14(1):15, 2015.

[79] Simon Holmbacka, Mohammad Fattah, Wictor Lund, Amir-Mohammad Rahmani,

Sébastien Lafond, and Johan Lilius. A task migration mechanism for distributed many-

core operating systems. The Journal of Supercomputing, 68(3):1141–1162, 2014.

[80] Eduardo Wenzel Brião, Daniel Barcelos, Fabio Wronski, and Flávio Rech Wagner. Impact

of task migration in noc-based mpsocs for soft real-time applications. In 2007 IFIP

International Conference on Very Large Scale Integration, pages 296–299. IEEE, 2007.

[81] IEEE computer society. IEEE standard SystemC language reference manual. IEEE Std.

1666–2011, 9 2011.

[82] Sanjoy K Baruah, Aloysius K Mok, and Louis E Rosier. Preemptively scheduling hard-

real-time sporadic tasks on one processor. In [1990] Proceedings 11th Real-Time Systems

Symposium, pages 182–190. IEEE, 1990.

[83] Preesm. Available:https://preesm.github.io/about/.

[84] Spider. Available:https://github.com/preesm/spider/releases/

tag/v1.4.0.

[85] Hugo Miomandre, Julien Hascoët, Karol Desnos, Kevin Martin, Benoı̂t Dupont

de Dinechin, and Jean-François Nezan. Demonstrating the spider runtime for

reconfigurable dataflow graphs execution onto a dma-based manycore processor. 2017.

[86] Nam Sung Kim, Todd Austin, David Blaauw, Trevor Mudge, Jie S Hu, Mary Jane Irwin,

Mahmut Kandemir, Vijaykrishnan Narayanan, et al. Leakage current: Moore. computer,

(12):68–75, 2003.

128

Appendix A.

Personal Publications

International Conferences:

• Yang, S., Le Nours, S., mendez Real, M., Pillement, S. (2019, July). System-Level

Modeling and Simulation of MPSoC Run-Time Management using Execution Traces

Analysis. In International Conference on Embedded Computer Systems (pp. 281-293).

Springer, Cham.

• Yang, S., Le Nours, S., mendez Real, M., Pillement, S. (2019, October). Mapping and

Frequency Joint Optimization for Energy Efficient Execution of Multiple Applications

on Multicore Systems. In 2019 Conference on Design and Architectures for Signal and

Image Processing (DASIP) (pp. 29-34). IEEE.

Journal:

• Hierarchical run-time management for energy efficiency of heterogeneous cluster-based

multi/many-core systems (under modification)

Other Scientific Communications:

• Presentation - The Collaborative Workshop on Model-based Design of Signal and

Information Processing Systems (COWOMO 2018, June), Rennes, FRANCE.

• Poster - Ecole d’hiver Francophone sur les Technologies de Conception des Systemes

embarques Heterogenes (FETCH 2018, January), Saint-Malo, FRANCE

129

Appendix B.

Notations

• appi represents a possible running application.

• Tappi = {t1,i, t2,i, · · · , tH,i} denotes a set of computation tasks for appi, where a task is

indexed by th,i and H is the total number of tasks in the application.

• Eappi = {e1,i, e2,i, · · · , eG,i} denotes a set of communication edges for appi, where an

edge is indexed by eg,i and G is the total number of edges in the application.

• Periodappi represents the period of appi.

• um = {app1, app2 · · · , appI} denotes a set of active applications in use-case um, indexed

by appi.

• I represents the number of active applications in a use-case.

• clusterj represents a cluster of the cluster-based multi/many-core platform.

• J represents the total number of clusters on the considered cluster-based platform.

• Nj represents the total number of cores in clusterj .

• clusterr represents a reference cluster of the cluster-based platform.

• Rpower
j represents the power ratio of clusterj compared to clusterr.

• Rperf
j represents the performance ratio of clusterj compared to clusterr.

• {fj,1, fj,2, . . . , fj,Fmax
} denotes the set of supported frequency levels of clusterj .

• fj represents the optimized frequency level of clusterj .

• CompTimeh,i(clusterj, fj) represents the computation time of th,i executed on clusterj
at fj .

130

• CommTimeg,i(clusterj, fj) represents the communication time of eg,i executed on

clusterj at fj .

• Latencyappi represents the latency of appi.

• MAF c
i,r represents the Minimum Allowed Frequency of appi executed on the reference

cluster clusterr using c numbers of cores.

• MAF c
i,j represents the Minimum Allowed Frequency of appi executed on clusterj using

c numbers of cores.

• A = [ai,j]I×J denotes the matrix of application-to-cluster assignment.

• Xc
appi

= {xs th,i(1), xe th,i(1), · · · xs th,i(k), xe th,i(k)} represents the execution trace of

the design-time prepared mapping for appi mapped on c cores. xs th,i and xe th,i

respectively denote the start time and end time of th,i, and k refers to the kth instance

of a given task. Note that when only one mapping is prepared (in Chapter 5), Xappi is

used to denote the prepared mapping for simplify reason.

• X ′
Apps(um) represents the execution trace of the combined mapping for active applications

in um.

• f0 represents the reference frequency that used to get some design-time information (e.g.,

computation time, power).

• ξh,i,j represents the power coefficient of th,i executed on clusterj .

• Ph,i(clusterj, fj) represents the dynamic power of th,i executed on clusterj at fj .

• Eg,i(clusterj, fj) represents the dynamic energy of eg,i executed on clusterj at fj .

• P avg
appi

(clusterj, fj) represents the average dynamic power of appi executed on clusterj at

fj .

• P avg
sys represents the average dynamic power of all the active application on systems.

• hyper − period represents the hyper-period of active applications, which is the Least

Common Multiple (LCM) of the periods of active applications.

131

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Context
	Technology Trends
	Cluster-based Multi/Many-core Platforms
	Task-dependent Application
	Run-Time Management of Multiple Task-dependent Applications
	Run-time Management for Energy Efficiency

	Problem Statement
	Coordination of Dynamic Task Mapping and DVFS Control
	Evaluation of Run-Time Management Strategy

	Main Contributions
	Dissertation Organization

	State-of-the-art
	Dynamic Task Mapping
	Hybrid Mapping with Use-case-based Preparation
	Hybrid Mapping with Application-based Preparation

	Applying Dynamic Task Mapping and DVFS
	Applying Dynamic Task Mapping and DVFS Separately
	Applying Dynamic Task Mapping and DVFS Coordinately

	Management Structure
	Distributed Management
	Hierarchical Management

	Run-Time Management Strategy Evaluation at System-Level
	Summary and Discussion

	System Models
	Application Models
	Platform Model
	Mapping Model
	Models for Energy Efficiency Evaluation
	Model Validation on ARM big.LITTLE platforms
	Summary

	Run-Time Management for Local Optimization
	Overview
	Summary of Related Work on Local Optimization
	Problem Definition
	Proposed Management Approach
	Design-time Prepared Data
	Run-time Selection
	Run-Time Mapping Combination

	Experimental Evaluations
	Simulation Setup
	Evaluations of the proposed Hybrid Management Strategy
	Evaluations of the Strategy Complexity

	Summary and Discussion

	Run-Time Management for Global Optimization
	Overview
	Summary of the Related Work on Global Optimization
	0-1 IP Formulations of Global Management
	 Input
	Variables
	Constraints
	Objective
	Observations

	Solution to the 0-1 IP optimization problem
	Neighboring Search Application-to-Cluster Assignment
	Greedy Search Application-to-Cluster Assignment
	The Impact of Local Management on Global Management

	Experimental Evaluations
	Evaluations of Global Management Strategies
	Evaluation the Influences of Local Management Strategies

	Summary and Discussion

	System-Level Evaluation Approach of Run-Time Management Strategies
	Overview
	Comparison with Existing Trace-driven Simulation
	Proposed Modeling and Simulation Approach
	Design-Time Database preparation
	Run-Time Execution Traces Processing
	Run-Time Mapping Control
	Platform Heterogeneity Consideration

	Evaluation of the modeling and simulation approach
	Simulation Environment
	Simulation Setup
	Validation of the Simulation Approach on Latency Criteria
	Validation of the Simulation Approach on Power Criteria
	Evaluation of the Simulation Approach

	Summary and Discussion

	Conclusion
	Dissertation Summary
	Future Works

	Bibliography
	Appendix Personal Publications
	Appendix Notations

