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Résumé

Les plates-formes multi-cceur organisées en clusters représentent des solutions prometteuses
pour offrir un compromis optimisé vis-a-vis des criteres de performance et de consommation
dans les systemes embarqués modernes. Sur une telle plate-forme, les coeurs sont divisés en
différents clusters et chaque cluster fonctionne a un niveau de tension ou de fréquence (Volt-
age/Frequency, v/ f) donné. Ces plates-formes permettent de mise a I’échelle dynamique de la
tension et de la fréquence (Dynamic Voltage/Frequency Scaling (DVES)) pour chaque cluster,
ce qui permet a différents clusters de changer leurs propres niveaux v/ f indépendamment.
Comme le nombre de cceurs continue d’augmenter, de plus en plus d’applications peuvent
étre prises en charge sur de telles plates-formes. Impliquant de ce fait une variation des
charges de travail supportées en cours de fonctionnement. La complexité croissante des
applications supportées et la variabilité des charges de calcul en cours de fonctionnement
justifient le besoin d’une gestion en ligne des ressources des plates-formes afin de garantir
les exigences de performance du systeme. Ce travail de these se concentre sur la gestion
en cours de fonctionnement des applications exécutées dans des systemes multi-ceeurs
organisés en clusters afin d’améliorer I’efficacité énergétique compte tenu des contraintes
de performances des applications et des contraintes de ressources de la plate-forme.

Dans ce contexte, deux principaux problemes de recherche sont étudiés.

e Le premier probleme de recherche concerne la facon de coordonner I’allocation
dynamique des taches et la mise a I’échelle des niveaux de fréquence/tension.
L’allocation dynamique des tiches et les techniques de DVFS ont été largement ap-
pliquées pour optimiser I’efficacité énergétique dans les systemes multi-cceurs. Cepen-
dant, la fagon de coordonner ces deux techniques pour gérer plusieurs applications
exécutées dans des plates-formes multi-coeurs organisées en clusters reste une question
ouverte. L’allocation d’applications multi-tiches implique différentes configurations
possibles des tensions et fréquences de fonctionnement au sein d’un seul cluster et
a I’échelle de la plate-forme complete. Dans cette these, nous proposons différentes
stratégies de gestion estimant 1’influence mutuelle entre 1’allocation des applications et
les tensions/fréquences des clusters afin d’optimiser 1’énergie consommée localement, a
I’échelle d’un cluster, et globalement, a 1’échelle de la plate-forme.

e La seconde problématique de recherche abordée traite de la simulation au niveau
systeme des stratégies de gestion dynamique des plates-formes multi-coeurs. La
simulation au niveau systeme est utilisée afin d’estimer au plus tot dans le processus
de conception des performances des systemes étudiés. Cependant, la plupart des
environnements de simulation existant ne permettent pas de décrire la gestion dynamique
des ressources et notamment 1’allocation dynamique des tiches. Dans le cadre de
notre travail, nous proposons une nouvelle approche de modélisation et de simulation
permettant la prise en compte des stratégies de gestion au sein de tels environnement.



Pour résoudre le premier probleme de recherche i.e., afin d’optimiser conjointement
I’allocation dynamique des taches et la sélection des fréquences de fonctionnement, nous
adoptons une stratégie de gestion dite hybride. Ces stratégies reposent sur un ensemble
d’éléments préparés hors ligne, au cours de la phase de conception. Dans les travaux existants,
ces €léments correspondent typiquement a des allocations préparées statiquement pour chaque
application supportée. Ces allocations seront ensuite utilisées en cours de fonctionnement afin
d’établir une allocation optimisée pour I’ensemble des applications actives. Dans le cadre de
notre travail, nous introduisons un nouveau parametre préparé hors ligne appelé 'Fréquence
Minimale Autorisée (MAF, Minimal Allowed Frequency). Ce parametre définit la fréquence
minimale de fonctionnement d’un cluster pour une allocation des taches d’une application
donnée et permettant le respect des contraintes de temps associées. En se basant sur un ensemble
d’allocations préparées hors ligne et sur I’estimation du parametre MAF pour chaque allocation,
nous proposons différentes stratégies d’optimisation de 1’énergie consommée, a I’échelle d’un
seul cluster et a I’échelle d’une plate-forme composée de plusieurs clusters.

Nous étudions tout d’abord ’optimisation de I’énergie consommée a I’échelle d’un
seul cluster formé de plusieurs coeurs de processeurs homogenes. L’objectif porte sur
la minimisation de la fréquence de fonctionnement requise et ce afin de réduire I’énergie
consommée. Les principales contributions sont les suivantes.

e Tout d’abord, une nouvelle stratégie est proposée pour sélectionner pour chaque applica-
tion active au sein de chaque situation de fonctionnement une allocation appropriée. Cette
stratégie repose sur des données préparées au moment de la conception. Ces données
correspondent a plusieurs allocations possibles de chaque application ainsi que le critere
de MAF déterminé pour chaque allocation possible. La stratégie de sélection proposée
considere tout d’abord la minimisation de la fréquence requise du cluster. Elle détermine
ensuite les allocations appropriées pour chaque application active selon la situation de
fonctionnement considérée. En utilisant les parametres MAFs estimés, notre stratégie de
gestion présente une complexité limitée afin d’explorer les configurations possibles.

e Deuxiemement, une nouvelle stratégie d’allocation des applications est proposée (Grouped
Applications Packing under Varied Constraints (GAPVC)). Cette stratégie vise a limiter
le nombre de ressources de calcul utilisées en optimisant 1’ utilisation de chaque ressource.
Par rapport a la stratégie simple de combinaison (First-Come-First-Served (FCFS)) qui
alloue les taches d’une méme application sur une méme ressource de calcul, notre
stratégie GAPVC proposée peut réduire le nombre de ressources utilisées sans dégrader
les performances des applications. La stratégie de sélection et la stratégie de combinaison
des allocations sont appliquées itérativement pour parvenir a une solution quasi optimale.

e Troisiemement, plusieurs cas d’utilisation, comprenant jusqu’a neuf applications actives
simultanément, ont été examinés pour évaluer les avantages de 1’approche de gestion
proposée en termes de puissance dynamique moyenne, de ressources d’utilisation et de



complexité. Nos expériences ont démontré que notre stratégie de gestion peut réduire la
consommation moyenne d’énergie d’environ 36% et de 206% par rapport aux méthodes
existantes dans la littérature.

Dans un second temps, nous étudions I’optimisation de D’efficacité énergétique au
niveau global d’une plate-forme formée par plusieurs clusters de calcul. A ce niveau,
I’efficacité énergétique d’une plate-forme dépend de 1’allocation des applications d’un cluster
a un autre. Lorsque plusieurs applications sont exécutées sur un méme cluster, la fréquence
de fonctionnement d’un cluster est dépendante de 1’application avec la contrainte de temps la
plus sévere. Des lors, dans le cas de plates-formes hétérogenes (avec des ressources de calcul
de natures différentes d’un cluster a un autre), 1’allocation des applications d’un cluster a un
autre peut influer significativement sur la fréquence possible de fonctionnement des clusters.
Dans la littérature, I’allocation des applications entre clusters et optimisation des fréquences de
fonctionnement sont généralement considérées successivement. Les solutions proposées sont
généralement pour des plates-formes de complexité réduite (en nombre de clusterd et en nombre
de ressources de calcul au sein des clusters). Les solutions existantes présentent des lors des
limitations lorsque la complexité des plates-formes augmente.

Dans ce travail , nous proposons une stratégie d’allocation des applications et de
sélection des fréquences de fonctionnement a I’échelle d’une plate-forme formée par
plusieurs clusters. La stratégie proposée peut étre utilisée pour gérer plusieurs applications
exécutées de maniere dynamique sur des plates-formes de différentes tailles. Une structure de
gestion hiérarchique a deux niveaux est adoptée, dans laquelle un premier niveau de gestion
global détermine les allocations des applications et fixe les niveaux de fréquence des clusters.
Le second niveau de gestion local optimise 1’allocation et 1’ordonnancement des taches dans
chaque cluster. Ce travail apporte les contributions suivantes.

e Tout d’abord, pour la gestion globale, nous présentons un modele de 0-1 Integer Program-
ming (IP) qui considere une formulation de la puissance dynamique moyenne du systeme
compte tenu des allocations retenues des applications actives et des fréquences possibles
de fonctionnement. Le parametre MAF est utilisé afin d’estimer les fréquences possibles
des fonctionnement des clusters. L’objectif du modele 0-1 IP proposé est de trouver
des allocations des applications sur les clusters de la plate-forme cible qui minimisent la
consommation dynamique moyenne de I’ensemble du systeme. Cette minimisation est
recherchée tout en tenant compte des contraintes de temps des applications, du nombre
de ressources au sein de chaque cluster et des fréquences possibles de fonctionnement.

e Deuxiemement, pour parvenir a la solution du probleme d’optimisation formulé, il n’est
pas possible de rechercher de maniere exhaustive la solution optimale dans un délai
raisonnable. Afin de réduire la complexité de la recherche, nous proposons une premiere
stratégie de gestion globale (Neighboring Search Application-to-Cluster Assignment



(NSACA)) qui vise a fournir des solutions quasi optimales. La méthode NSACA
considere, pour une situation de fonctionnement donné, I’ensemble des allocations
possibles pour toutes les applications actives. Cette stratégie alloue tout d’abord les
applications au sein d’un cluster compte tenu du parametre MAF. Elle améliore ensuite
de maniere itérative les allocations possibles en considérant des clusters voisins.

e Troisiemement, nous proposons une deuxieme stratégie de gestion globale (Greedy
Search Application-to-Cluster Assignment (GSACA)) qui optimise 1’allocation de chaque
application prise individuellement. Cette stratégie vise a établir pour chaque application
I’allocation la plus économe en énergie et réduit le nombre de migration d’une situation
de fonctionnement a une autre. Le nombre de migrations peut étre controlé par les
utilisateurs. Par rapport a la premiere stratégie de gestion, la deuxieme stratégie de gestion
globale peut réduire le nombre de migrations d’applications entre clusters avec un impact
limité sur I’énergie consommée.

e Quatriemement, nos deux stratégies de gestion globales proposées utilisent la stratégie
FCFS de combinaison des allocations pour estimer le nombre de ressources de calcul
utilisées dans chaque cluster. L’objectif de la stratégie de gestion locale est d’établir
I’utilisation des ressources de calcul au sein d’un cluster. Comme la stratégie de
combinaison précédemment proposée GAPVC peut réduire le nombre de ressources
utilisées dans chaque cluster sans dégrader les performances de 1’application, nous
considérons également les avantages de 1’utilisation de GAPVC au niveau de la gestion
locale. Lutilisation de GAPVC permet d’optimiser 1’occupation des ressources au sein
des différents clusters. En conséquence, une consommation d’énergie moyenne plus
faible peut étre réalisée dans I’ensemble du systeme.

e Dans nos expériences, nous avons évalué nos stratégies de gestion proposées pour
différents ensembles d’applications actives (jusqu’a 10 applications) exécutées sur
différentes tailles de plates-formes (par exemple : jusqu’a 24 noyaux dans un cluster,
jusqu’a 8 clusters dans le systeme). Les résultats expérimentaux ont indiqué que : (1) la
consommation moyenne d’énergie réalisée par NSACA n’est que de 1.93% inférieure a
la solution optimale (c’est-a-dire par recherche Exhaustive), mais la vitesse de NSACA
est 2674 fois plus rapide. (2) sans tenir compte du colit de la migration, un plus grand
nombre de migrations dans la GSACA peut conduire a une réduction de la consommation
moyenne d’énergie de 1’ensemble du systeme. (3) sur la base des mémes stratégies de
gestion globale, GAPVC peut réduire la consommation moyenne d’énergie du systéme
jusqu’a 57.65% par rapport a FCES.

Nous nous intéressons également a la problématique de I’évaluation des méthodes de
gestion dynamique de plates-formes. Dans le contexte de la modélisation et de la simulation
au niveau systeme, nous apportons les contributions suivantes:



e Nous avons proposé une nouvelle approche de modélisation et de simulation de niveau
du systeme qui permet I’évaluation des stratégies de gestion dynamique de plates-formes
multi-core. Afin de favoriser la simulation de ces stratégies, 1’approche proposée calcule
dynamiquement les instants ou les ressources de la plate-forme sont utilisées par les
applications en cours d’exécution. Basé sur les instants de simulation calculés, un modele
de gestionnaire d’exécution est introduit pour contrdler a la fois I’ordre d’exécution
des taches et I’avancement du temps de simulation. Cette approche de simulation peut
étre utilisée afin de simuler différents nombres d’applications exécutées sur des plates-
formes hétérogenes dans des configurations de v/ f variées. Contrairement a 1’approche
de simulation basée sur la trace, I’approche de simulation proposée réduit le nombre
d’événements nécessaires et le nombre d’appels au moteur de simulation.

e En outre, nous mettons en ceuvre et validons I’approche proposée a 1’aide du cadre de
modélisation d’Intel Cofluent Studio. Grace a une étude de cas qui tient compte de
sept applications (85 taches au total) fonctionnant sur une plate-forme hétérogene basée
sur des clusters, I’approche proposée permet d’évaluer différentes stratégies de gestion
en fonction de la latence et du critere de consommation d’énergie. On a observé que
I’influence de 1’approche proposée sur I’effort de simulation est raisonnable. Par rapport
au cadre de Cofluent par défaut (pour 85 taches en cours d’exécution), la charge de travail
de simulation a augmenté de moins de 10.8%.

En résumé, ce travail de these étudie deux problemes de recherche du point de vue des
stratégies de gestion en ligne et de ’évaluation des performances. A I’avenir, nous pourrions
apporter certaines améliorations possibles a ce travail. Tout d’abord, nous pouvons envisager la
mise en ceuvre réelle de nos deux stratégies de gestion proposées dans de véritables systemes
multi/multi-cceurs basés sur des clusters, tels que la plate-forme ARM big.LITTLE (Odroid
XU3) et Kalray MPPA. Deuxiemement, nous pouvons envisager d’autres criteres d’optimisation
(e.g., fiabilité thermique, sécurité) dans les stratégies de gestion. Troisiemement, il est possible
d’étendre 1’approche de simulation que nous proposons (pour 1’évaluation des stratégies de
gestion) a d’autres cadres de simulation de niveau systeme.
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In this chapter, we first introduce the context of this dissertation. Then, we discuss about
the research problems and present our contributions. Finally, the organization of the document
is given.

1.1 Context

1.1.1 Technology Trends

Based on the emerging trend of chip manufacturing, Gordon Moore predicted in 1975 that the
number of transistors on a chip doubles approximately every two years [15]. This prediction
is called Moore’s Law, and the period of doubling the integrated transistors on chips is often
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Figure 1.1: Microprocessor trend from 1970 [1].

quoted as 18 months. The Moore’s Law can be seen in Figure 1.1, which shows that the number
of microprocessor transistors (orange dots) increases linearly after 1970. The increase in on-
chip transistors is driven by the continued success of reducing the technology size of transistors
in the semiconductor industry. In the meantime, scaling down the device dimensions reduces
supply voltage and increases frequency by the same degree, thus the power density can be
kept constant. This is known as Dennard scaling [16]. Unfortunately, the leakage power
continues to rise due to the influence of quantum effects on new technology nodes. To keep
the leakage power manageable, the supply voltage cannot be reduced anymore suggesting the
end of Dennard scaling. The operating frequency also cannot continue to increase (green dots
in Figure 1.1) due to some potential problems. On one side, higher frequencies increase the
power consumption, and the circuit may eventually self-destruct once the power consumption
exceeds 100W (Power Wall Effect) [17] (red dots in Figure 1.1). On the other side, the power
density also increases and leads to higher temperatures, while the higher temperatures result
in higher leakage and in turn lead to higher temperatures again. This phenomenon would also
damage the circuit.

Power and power density problems show the importance of not increasing the operating
frequency. Traditionally, single-core systems satisfy the ever-increasing application demands
by primarily increasing the operating frequency, which is not practical due to the breakdown
of Dennard scaling. As also shown in Figure 1.1, the circuit designers shift their focus on
integrating multiple cores into a single chip around 2006 (black dots). Compared with single-
core counterparts, multi-core systems are able to deliver the same computing performance at
lower frequencies and low power consumption. With the continuous progress of technology,
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many-core systems have emerged that integrate tens or hundreds of cores in a single-die. The
integration of more than 1000 cores in a chip has been demonstrated feasible in recent years.
For example, Epiphany-V [18] has 1024 cores developed by Adapteva on the 16-nm technology
node in 2016. Multi-core and many-core systems have become efficient solutions to deliver
good trade-offs between performance and power. They have thus progressively emerged as
possible solutions in current and future embedded systems for mobile phones, high-performance
computing, and automotive domains as examples.

1.1.2 Cluster-based Multi/Many-core Platforms

Multi/many-core platforms contain a set of processing elements (e.g., programmable cores or
dedicated hardware units), memories, and communication resources (e.g., bus or network-on-
chip (NoC)).

A homogeneous platform contains multiple processing elements of the same type. Such
platforms deliver design scalability and there exists industrial homogeneous many-core plat-
forms, such as Intel Single-chip Cloud Computer (SCC) 48-cores [19] and Kalray MPPA2®-256
[20]. In these platforms, one or several cores and some communication and memory resources
are grouped into identical clusters (or tiles) that are connected via communication resources.
Each cluster is a Voltage Frequency Island (VFI) [4], inside which the cores share the same
voltage/frequency (v/ f) level. These platforms can be regarded as homogeneous cluster-based
platforms.

A heterogeneous platform is composed of different types of processing elements that
provide different performance, power and energy characteristics. The distinct features of
different core types can be exploited by various applications to achieve performance and
power/energy efficiency trade-offs. In heterogeneous cluster-based platforms, cores within each
cluster can have the same type and share the same v/ f level, while core types can be different
from one cluster to another. One example of such platforms is the Samsung Exynos 5 Octa
(5422) processor [21], as shown in Figure 1.2.

big Cluster (Cortex-A15)

LITTLE Cluster (Cortex-A7)
CPU4 CPUS CPU6 CPU7
‘ CPUO ‘ ’ CpPU1 ‘ ‘ CPU2 ‘ ‘ CPU3 ‘
| Snoop Control Unit | | Snoop Control Unit ‘
[ 512 kB L2-Cache | | 2MB L2-Cache |

v v

’ Multi-Layer Bus ‘

¥

‘ 2GB DRAM ‘

Figure 1.2: Exynos 5 Octa (5422) multi-core platform based on ARM’s big.LITTLE
architecture.
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The Exynos 5 Octa (5422) is based on the Arm big.LITTLE architecture [22]. It integrates
the so-called big cluster and little cluster in two different VFIs. The big cluster consists of
four high-performance cores (ARM Cortex-A15), while the little one has four low-power cores
(ARM Cortex-A7). Each cluster has its own L2-Cache to support the communication between
cores. MediaTekHelio X30 (MT6799) [23, 24] is another example that integrates clusters with
ARM Cortex-A73, Cortex-A53 and Cortex-A35. ARM big.LITTLE cluster-based platforms
are widely used in the field of mobile phones to achieve performance and energy trade-offs.

Heterogeneous cluster-based platforms (e.g., ARM big.LITTLE) have the potential to be
scaled to many cores, due to its inheritance of the design scalability feature of homogeneity
(inside a cluster). It can be expected that there can be more different clusters and more
cores inside each cluster in future systems, such as the platform studied in [4, 25]. Our
work focuses on cluster-based multi/many-core platforms, that consist of different numbers
of clusters and different numbers of cores within each cluster. We consider both homogeneous
and heterogeneous cluster-based platforms in our experimental evaluations. It is worth noting
that the cluster-based platform having one cluster is equivalent to a homogeneous platform,
while the heterogeneous cluster-based platform having one core in each cluster is equivalent to
a generic multi-core platform.

1.1.3 Task-dependent Application

In the scope of this dissertation, we consider the execution of task-dependent applications on
cluster-based platforms. A task-dependent application consists of a set of tasks, and each task
represents an atomic, non-preemptive, code. In such an application, the output data of one task
can be the input data of another one. It indicates that there exists precedence constraints between
tasks, where the execution of one task may depend on the completion of other tasks. Figure 1.3
gives one example of a task-dependent application app;. This application has four tasks and its
task2 executes after taskl. According to the discussion in [26], task-dependent applications
with precedence constraints are the most typical application model. Compared to the application
model that considers tasks independent of each other, a task-dependent application model is
more realistic to represent application behavior. In addition, we consider each application has a
timing constraint. Each application executes periodically, and all application tasks have to finish
their executions within a predefined period. It is possible to apply our work to sporadic tasks
(i.e., tasks with irregular arrival time [27]), which would be further discussed in Section 7.1.
For all application tasks, their executions are fulfilled by using processing and communica-
tion resources of platforms. Task mapping defines the allocation of application tasks on platform
resources and the execution order (i.e., scheduling) of tasks on a given core. When mapped on
platform resources, each application task takes execution time to process data. Besides, each
task consume power to finish its execution. Power consumption can be categorized into dynamic
and static parts. Dynamic power is proportional to the frequency and the square of the voltage
(i.e., oc v2 f), which is consumed in charging and discharging the transistors associated with the
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Figure 1.3: Dynamic execution of multiple applications in two different use-cases on a cluster-
based multi/many-core platform.

task execution. Static power is consumed due to the always present sub-threshold and gate oxide
currents [28]. At a fixed v/ f level, this dissertation considers that different tasks have different
power consumption when executed on the same core. This is a more realistic consideration
compared to the works [4, 29] that assume all tasks have the same power consumption on the
same core.

1.1.4 Run-Time Management of Multiple Task-dependent Applications

The increasing number of cores on multi/many-core platforms provides possibilities to execute
more applications at the same time. In the context of multiple task-dependent applications ex-
ecuted in cluster-based multi/many-core systems, the set of simultaneously active applications
may vary over time as some applications can be active or inactive during system execution.
We define a set of simultaneously active applications as a use-case (i.e., scenario) according
to [30]. Figure 1.3 depicts two different use-cases. In use-case 1, app; and app- are active.
Due to the state modification of some applications (e.g., apps and app, are newly active, app-
becomes inactive), active applications in use-case 2 are different from those in use-case 1. The
state modification (i.e., active/inactive) of applications, hereinafter referred to as application
execution dynamism, can be caused by user decisions.

Application execution dynamism indicates that the application workloads supported by the
platform can vary dynamically, which arises the need for run-time management of systems.
As previously discussed, application execution can only be supported after application tasks
are mapped on platform resources. However, as active applications can be different from
one use-case to another, a new use-case needs the previous mapping to be partially or
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completely redefined to support the execution of newly active applications. Therefore, run-
time management has to adopt Dynamic Task Mapping techniques to adapt application task
mapping to different use-cases accordingly.

1.1.5 Run-time Management for Energy Efficiency

Run-time management has to take energy efficiency into account in today’s multi/many-core
systems. Energy efficiency refers to using less energy consumption to execute the same
applications. Energy consumption is the integration of its power consumption over time
(i.e., Energy = Power x Time). Reducing energy consumption is significantly important
to extend the battery life of systems. The increasing number of active applications and
the rising complexity of platforms (e.g., increasing heterogeneity in resources, more v/ f
domains) make system energy efficiency a crucial optimization target. Dynamic Task Mapping
plays an important role in energy efficiency. Applications mapped on platform resources
consume power to finish their computational and communication activities. Due to the platform
heterogeneity, tasks executed on different core types may have different execution time and
power consumption, thus their energy consumption can also change. It means that appropriate
utilization of platform resources can result in better energy efficiency for all application tasks
in the system.

Additionally, energy efficiency is often achieved through Dynamic Voltage Frequency
Scaling (DVFS) [31, 32]. It refers to the technique that dynamically modifies the operating
frequency and voltage of cores that executes application tasks. According to [28, 33], there
exists a relationship between operating frequency and voltage in CMOS circuits, which suggests
that higher frequencies require the support of higher voltages. In the Samsung Exynos 5
Octa (5422) processor [21], users can only scale the operating frequency, based on which
the operating voltage is automatically adjusted. Lower v/f levels can lead to the reduction
of dynamic power consumption (due to o< v?f) and increase the execution time of tasks
(due to degraded processor performance) at the meantime. Dynamic energy consumption can
be reduced if the decrease in power consumption is greater than the increase in execution
time [4, 34]. Note that static power/energy can be mitigated by shutting down certain platform
resources but it is difficult to do so in the active mode of systems [28, 35].

DVES can be applied at different granularities, depending on the supports of different
platforms. Global DVFS allows all the cores in a system to share the same v/ f level, while
Per-core DVFS allows each core to have its own distinct v/ f level. Per-cluster DVFS (i.e., VFI)
is a compromise solution that allows several cores in a cluster to share the same v/ f level, and
different clusters can support different v/ f levels. As the discussions in [31, 36], Per-cluster
DVFS is widely used in advanced many-core systems, making a trade-off between the feasibility
of global DVF'S and the efficiency of per-core DVFS.

The objective of this dissertation is to propose run-time management strategies, employing
dynamic task mapping and DVFS (i.e., per-cluster) together, to achieve energy efficiency of
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multiple task-dependent applications executed dynamically on a cluster-based multi/many-core
platform. Energy efficiency can be characterized by energy consumption or average power
consumption in a certain period of time. In the experimental evaluations of this work, we focus
on the optimization of the average dynamic power consumption of active applications.

1.2 Problem Statement

For the run-time management purpose of energy efficiency of task-dependent applications
executed in cluster-based multi/many-core systems, we study two research problems on run-
time management decisions (i.e., dynamic task mapping and DVES control) and run-time
management evaluation.

1.2.1 Coordination of Dynamic Task Mapping and DVFS Control

The first research problem studied in this dissertation work is: how to appropriately apply
dynamic task mapping and DVFS to achieve energy efficiency of task-dependent applications
in cluster-based systems. Energy efficiency of cluster-based systems has been studied
for independent tasks, while it remains an open and complex question for task-dependent
applications. On one hand, obtaining the optimal application mapping (for energy efficiency)
is a NP-hard problem [37, 38], where the solution space exploration increases with the number
of applications and the number of cores. The space exploration becomes even larger when
DVES is taken into account. On the other hand, different task mappings lead to different DVFS
possibilities within a cluster and in the overall system, which complicates run-time management
decision issues. This work aims to achieve near-optimal management solutions for both local
optimization within a cluster and global optimization in the overall system.

Local optimization within a cluster

We first study the local optimization of energy efficiency within a cluster. At the cluster
level, we consider homogeneous cores. For the purpose of energy efficiency, it is important
to execute active applications (in a use-case) at a low cluster v/ f level. This is a challenging
mission due to the fact that simultaneous active applications in the same cluster compete for
platform resources but share the same cluster v/f. The more used cores for one application
means fewer cores for other applications, which may consequently worsen the performance
of other applications. The poor performance of an application can significantly increase the
cluster v/ f, thereby increasing the power/energy consumption of other applications in the same
cluster. However, existing works address the mutual influence between application mappings
and cluster v/ f configurations at the cost of increased strategy complexity. A management
strategy that offers a good trade-off between energy efficiency and complexity is thus required.
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Global optimization in the overall system

Then, we study the global optimization or energy efficiency in the overall system. At the chip-
level, application-to-cluster assignment plays a crucial role to achieve energy efficiency. In
the scope of this work, we assume that each application can be executed in different clusters,
but all tasks of an application are assigned to the same cluster to avoid communication costs
among clusters. Different application-to-cluster assignments can lead to different possibilities
of cluster v/f configurations and eventually change the system energy efficiency. In the
case of heterogeneous platforms, the application-to-cluster assignment problem becomes even
more complex because the performance and power characteristics vary from one cluster to
another. Therefore, it is required to assign applications to clusters carefully to achieve the
global optimization target. However, most existing application-to-cluster assignment solutions
focus on 2-clusters platforms (e.g., ARM big.LITTLE). They may have limitations to deal with
platforms with more different clusters or with more cores in a cluster.

1.2.2 Evaluation of Run-Time Management Strategy

With our proposed run-time management strategies, an interesting research problem arises:
how to evaluate run-time management strategies to guarantee that non-functional requirements
(e.g., application latency, resource usage, energy efficiency) will be respected during system
execution. System-level modeling and simulation approaches allow early detection of potential
design issues. However, most of the existing system-level frameworks only support a static
mapping of applications on platform resources without considering the run-time management
effects. It is required to extend system-level simulation-based approaches for run-time
management strategy evaluations.

1.3 Main Contributions

Towards the above-mentioned research problems, this dissertation makes the following three
main contributions.

Contribution 1: Run-time management for local optimization within a cluster

We propose a run-time management strategy to optimize average dynamic power consumption
of multiple applications executed dynamically within a cluster. The overview of the run-time
management for local optimization is presented in Figure 1.4.

For active applications within a cluster, the local management strategy is responsible for
determining task-to-core allocation and scheduling and setting the cluster v/f level. The
proposed strategy can achieve near-optimal energy efficiency of a cluster while meeting
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Figure 1.4: Overview of the run-time management for local optimization within a cluster.

application timing constraints and platform resource usage constraints. Compared to state-

of-the-art strategies, our strategy has lower complexity to achieve near-optimal solutions.

Contribution 2: Run-time management for global optimization of the overall system

We introduce run-time management strategies to optimize average dynamic power consumption
of multiple applications executed dynamically in the overall system globally. The overview of
the run-time management for global optimization is presented in Figure 1.5.

For all active applications in the overall system, a global management strategy determines
the application-to-cluster assignments and sets cluster v/ f levels. Then, a local management
strategy optimizes the task-to-core allocation and scheduling within each cluster. The proposed
management strategies are effective to achieve a near-optimal result for energy efficiency of
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Figure 1.5: Overview of the run-time management for global optimization in the overall system.
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the overall system, satisfying application timing constraints and platform resource constraints.
The proposed strategies have reasonable strategy complexity and have potential scalability to
manage systems with different numbers of applications/clusters/cores.

Contribution 3: System-level run-time management strategy evaluation

We presents a novel system-level modeling and simulation approach to allow the evaluation of
run-time management strategies on multi/many-core systems. Figure 1.6 depicts the overview
of the modeled and simulated components in our approach, including application models, a
platform model and run-time management modules.

Application Models
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e v/fconfiguration
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cluster cluster
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Figure 1.6: Overview of modeled and simulated components with application models, a
platform model and run-time management modules.

Our proposed simulation approach can be used to evaluate different run-time management
strategies (e.g., dynamic task mapping, DVFS) on multi/many-core systems. The proposed
approach has been integrated in an industrial modeling and simulation framework [39].

1.4 Dissertation Organization

The remainder of the dissertation is organized as follows.

e Chapter 2 presents state-of-the-art researches related to run-time management strategies.
Firstly, it focuses on the existing strategies using dynamic task mapping. Then, it
summaries the related strategies that apply both dynamic task mapping and DVFS.
After that, it discusses the existing management structures and the existing system-level
evaluation approaches for run-time mapping strategies.

10
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e Chapter 3 introduces the system models, including application, platform, and mapping
models, used throughout the dissertation. Besides, in order to evaluate system energy
efficiency, the power/energy models are presented and the models are validated by some
measurements in the ARM big.LITTLE platform.

e Chapter 4 begins with an overview of run-time management for the local optimization
of energy efficiency within a cluster. It then gives a summary of the existing strategies,
which are particularly used as counterparts to our proposed management strategy. After
that, the details of our proposed management strategy are demonstrated. Finally, the
advantages of our proposed strategy are shown in the experimental results.

e Chapter 5 focuses on run-time management for the global optimization of energy
efficiency in the overall system. It first presents an overview of this work. Then, it
highlights the existing strategies that are particularly used as counterparts to our proposed
application-to-cluster assignment strategy. Furthermore, the global management problem
is defined, followed by the details of proposed management strategies. Finally, the
experimental results are given.

e Chapter 6 concerns the system-level evaluation of run-time management strategies. First,
it presents the motivation of this work. Then, it compares our proposed simulation
approach to the existing trace-driven simulation approach. After, it presents the proposed
system-level simulation approach and the experimental evaluations.

e Chapter 7 concludes the contributions presented in previous chapters and discusses some
possible improvements in future work.

11
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Many efforts have been done to cope with run-time management of multiple applications
executed dynamically on multi/many-core systems. This chapter first summarizes the existing
works concerning dynamic task mapping strategies. Then, we discuss how state-of-the-art
approaches apply dynamic mapping and DVFS together in cluster-based multi/many-core
systems. After that, the existing management structures are compared. Finally, the state-of-
the-art system-level evaluation approaches for run-time management strategies are presented.

2.1 Dynamic Task Mapping

Task mapping can be performed either statically or dynamically. Static task mapping defines
a mapping of application tasks on platform resources at design-time, and the mapping does
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not change during run-time system execution. Generally, the applied mapping is an optimized
solution that is obtained through extensive Design Space Exploration (DSE) using simulated
annealing [40] or genetic algorithm [41]. As discussed in [14], static mapping techniques are
suitable for a predefined set of applications executed on multi-core systems. However, it cannot
support system execution with different sets of active applications in various use-cases. Note
that a use-case refers to a set of simultaneously active applications (first defined in Chapter 1).

To overcome the limitation of static task mapping, dynamic task mapping is proposed. It
can adapt task mappings of active applications in different use-cases. The existing strategies of
dynamic task mapping can be classified as on-the-fly and hybrid. On-the-fly mapping strategies
establish a mapping for a set of active applications without previously analyzed results. [42—45]
employ heuristic algorithms to allocate and schedule application tasks onto platform resources,
taking the system current states into account. However, as the number of cores and the number
of active applications increase, on-the-fly mapping strategies may not guarantee the mapping
scalability due to the heavy processing bottlenecks at run-time.

In order to release the run-time computation burdens but still achieve dynamic system
configurations, hybrid mapping strategies establish a mapping for a set of active applications
based on some design-time optimized mappings. Hybrid mapping strategies are usually applied
for the mappings of complex applications, such as task-dependent applications with precedence
constraints. In this case, application precedence constraints are considered at design-time and
retained at run-time. Inspired by the survey of [2], Figure 2.1 gives an overview of hybrid
mapping strategies.

Detected Pplatform with current  Performance

Platform Specification use-case resource status constraints
! | i i

!
|
- - I s —
Design-time |1 | pesign-time RUN-time Maooin Mapping
: exploration ! prepared data un-time mapping solution

- ) )

Figure 2.1: Overview of hybrid mapping, including design-time preparations and run-time
mapping, inspired by [2]. The main focus of this dissertation work is highlighted by dotted
box.

At design-time, DSE is performed to explore some optimized mappings, taking into
account the run-time executing applications, platform specifications, and design objectives.
The explored mappings are stored as design-time prepared data and then used to establish
different mappings at run-time. Run-time mapping is performed based on the detected use-case
(with a set of active applications), the current resource status of platform and the performance
constraints. The amount of design-time prepared data influences the complexity of the run-time
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mapping. The more information prepared at design-time, the less computation intensity at run-
time, but it consumes more storage space. It is important to consider the trade-off between the
design-time storage overhead and the run-time computation effort. Design-time prepared data
and run-time mapping are the main focus (highlighted by dotted box) of this dissertation work.

Among the existing hybrid mapping strategies, the design-time preparation can be classified
into use-case-based or application-based. Use-case-based preparation refers to preparing
design-time optimized mappings for a set of active applications in each use-case, while
application-based preparation refers to preparing design-time optimized mappings for each
application.

2.1.1 Hybrid Mapping with Use-case-based Preparation

The overview of hybrid mapping strategies with use-case-based preparation is illustrated in
Figure 2.2. At design-time, optimized mappings are prepared for a set of active applications
in each use-case. The prepared mappings can be obtained by any static mapping strategies.
For example, work [46] and [47] employ such hybrid strategies, and they employ integer
programming (ILP) and a genetic algorithm respectively to achieve prepared mappings. At
run-time, the prepared mapping for the detected use-case is applied accordingly without any
modification. Efficient run-time mapping can be achieved with less computation effort.

Detected Platform with current  Performance
use-case resource status constraints

Design-Time prepared data

Run-Time mapping

Prepared mapping(s) for . . Mapping
each use-case Apply the appropriate mapping solution

Figure 2.2: The overview of hybrid mapping strategies employing use-case-based design-time
preparation.

However, a lot of storage and computation efforts are paid at design-time. Considering
different combinations of n applications that might be executed on multi/many-core systems,
the number of possible use-cases is 2" — 1. This is because each application has two states (i.e.,
active/inactive), and we eliminate the use-case with no active application. When the parameter
n is large, it could cost a lot of memory space to store at least one optimized mapping for each
use-case. Besides, some design-time DSE approaches have to evaluate a significant number
of mappings until the optimized mapping required for all the possible use-cases is obtained.
Therefore, preparing design-time mappings for all the possible use-cases is not scalable.
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2.1.2 Hybrid Mapping with Application-based Preparation

In recent years, hybrid mapping strategies with application-based preparation has attracted more
attention. The overview of such strategies is presented in Figure 2.3. At design-time, one
or several optimized mappings can be prepared for each application. For example, the work
in [14] prepares the best performance mapping for each application. In [3, 48], the prepared
mappings have different trade-offs between application performance and resource usage (or
energy efficiency). Then, run-time mapping can be performed only for newly detected active
applications (i.e., in a new use-case) or all active applications in the current use-case. Run-time
mapping consists of two steps. First, application mapping selection is performed to select one of
the prepared mappings for each active application. If there is only one prepared mapping for an
application, the prepared mapping is directly used. Second, application mapping combination
is performed to obtain a so-called combined mapping by processing the selected mappings.

Detected active Platform with current  Performance
applications (in a use-case) resource status constraints

Design-Time prepared data RUDENIMEIMapDing

Application mapping selection

One or several prepared

mapping(s) for each application ¢

Application mapping combination Mappmg
solution

Figure 2.3: The overview of hybrid mapping strategies employing application-based design-
time preparation.

In hybrid mapping strategies with application-based preparation, the total number of
prepared mappings is highly dependent on the number of supported applications, not the number
of possible use-cases. Compared to use-case-based preparation, application-based preparation
can greatly reduce the number of prepared mappings that are explored and stored at design-
time. On the other hand, more calculation might be required to obtain good-quality run-time
mapping solutions.

For a running use-case, the quality of its mapping solution is highly determined by the
application mapping selection and application mapping combination steps. These two run-
time steps have been studied to optimize active applications individually and holistically. The
former considers the optimization for each individual application. For a set of active application,
it finishes the optimization for one application then another one. The latter considers the
optimization of all active applications at the same time.
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Optimizing Applications Individually at Run-Time

The overview of hybrid mapping strategies that optimize applications individually is illustrated
in Figure 2.4. These strategies assume that the run-time active applications wait in a ready queue
and that optimization is performed for each application successively. For an active application,
one of its design-time prepared mappings is selected and then combined with the mapping
of already existing applications on the platform. Note that system status (e.g., application
performance, number of used cores) is updated each time a new application is mapped. Based
on the updated system status, the next application in the ready queue (depending on the
adopted ordering strategy) is considered until all applications are mapped to the platform. This
application mapping combination processing is regarded as First-Come-First-Served (FCFES),
which maps active applications one after another. Particularly, the FCFES applied in [7, 13, 48]
allows only one application to be mapped to each core, which means that there is no resource
competition between different applications in a core.

Active applications (in a use-case)

!

| |

I Aready B :

| queue apps ) ’Cappz ’<app3 S

| X !
4 rd

___________ QRN DA . A

lst 2nd 3
Design-Time prepared data Run-Time mapping
— > Application mapping selection
One or several prepared
map ping(s) for each application ¢

— ] . ‘ Mapping
Application mapping combination m

Figure 2.4: Overview of hybrid mapping strategies optimizing applications individually at run-
time.

In [13], the authors aim to map applications on homogeneous multi-core platforms meeting
application performance constraints. At design-time, this work evaluates an application mapped
on different numbers of cores in order to obtain optimized mappings which have different trade-
offs between resource usage and throughput. At run-time, for any given active application,
it selects the prepared mapping that satisfies the throughput constraint with the least number
of cores. The selected mapping is then applied to the processing cores that are topologically
close to each other to reduce communication costs between cores. A similar hybrid strategy is
used in [48] to optimize the energy consumption of a heterogeneous system under application
performance constraints. In the considered heterogeneous platform, there are different core
types, general-purpose processor (GPP), including digital signal processor (DSP), Accelerator
(ACC) and reconfigurable hardware (RH). At design-time, the prepared mappings for each
application depend not only on the number of cores but also on the different core types. For
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example, an application can be mapped on 2GPP&1ACC or 1GPP&2RH at design-time to
prepare for different availability of core types at run-time. At run-time, application mapping
selection is performed according to resource availability and application throughput.

As highlighted in [14], hybrid mapping strategies that map individual applications one after
another might not achieve efficient mappings for all active applications. As the availability of
platform resources varies for different applications, more platform resources or more efficient
cores (in heterogeneous platforms) can be occupied by first considered applications. As a result,
fewer efficient resources are left for later considered applications, which can degrade their
performance. That means first considered applications have higher optimization priorities than
later ones. Therefore, optimizing applications individually might not lead to the optimization
of the overall system.

Optimizing Applications Holistically at Run-Time

The overview of hybrid mapping strategies that optimize applications holistically is illustrated
in Figure 2.5. Such strategies optimize for all active applications as a whole, even sacrificing
the performance of some applications to achieve overall optimization of all active applications.
In this case, hybrid mapping strategies of [3, 10, 14, 34] allow one core to execute tasks of
different applications to achieve less resource usage.

Active applications (in a use-case)

Design-Time prepared data Run-Time mapping

= > Application mapping selection

v

Application mapping combination Mapp.ing
solution

Figure 2.5: Overview of hybrid mapping strategies optimizing applications holistically at run-
time.

One or several prepared
mapping(s) for each application

In [10, 14], the application mapping selection step is first accomplished for all the active
applications, and the application mapping combination step is then performed to combine all
the selected mappings together. These two works gives more focus on application mapping
combination. The work in [10] aims to maximize the application throughput under a predefined
energy budget of a heterogeneous multi-core platform. For any active application in a new use-
case, the prepared mapping with the maximum throughput under the energy budget is selected.

18



2.1. Dynamic Task Mapping

All the selected mappings of active applications are simply merged to form the initial combined
mapping, thus the tasks of different applications can be mapped onto the same core. To avoid
a heavy computation burden in one core and achieve better application throughput, a heuristics
is then performed to iteratively migrate tasks from one core to another for further mapping
optimization. In [14], since only one design-time mapping is prepared for each application,
the prepared mapping of each active application is directly selected at run-time. Two heuristic
algorithms (i.e., Longest Available Slot Packing (LASP) and Best Fit Slot Packing (BFSP)) have
been proposed to achieve a combined mapping with minimized resource usage on homogeneous
platforms.

The hybrid mapping strategies of [3, 34] closely involve application mapping selection
and application mapping combination steps. The work in [3] aims to minimize the energy
consumption of heterogeneous multi-core systems under application performance constraints.
At design-time, it explores different possibilities of task allocation and scheduling to generate
multiple optimized mappings for each application. Each prepared mapping is better than
another in terms of application performance or energy efficiency. Figure 2.6 illustrates the run-
time application mapping and combination of this work. Based on multiple prepared mappings
for each active applications (app;, apps and apps ...), there can be different possibilities of
mapping selection. For each set of selected mappings, application mapping combination is
performed to find a mapping solution meeting application timing constraints and minimizing
energy consumption. After mapping combination is finished for all sets of selected mappings,
the mapping solution with the best energy efficiency is preferred.

Application mapping selection (run-time) Application mapping combination (run-time)
. Different sets of Best
; mapping i selected mappings i
mappingl ‘ mappingl pping Combine each set of solution
mapping2 selected mappings
mapping2 . mapping2
mapping3

Prepared mappings (design-time)

Figure 2.6: Run-time application mapping selection and combination in [3].

A similar approach is used in [34] to consider application mappings in ARM big.LITTLE
cluster-based systems. The design-time prepared mappings for each application can use
different types of cores. According to active applications at run-time, different prepared
mappings are selected and combined in different cores to estimate energy efficiency.

Compared to optimizing applications individually, optimizing applications holistically
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can achieve overall optimization for all simultaneously active applications. However, more
evaluation efforts should be paid to compromise the resource competition among applications,
which can increase the strategy complexity of application mapping selection and application
mapping combination at run-time. Therefore, the main concern of holistically optimizing
applications is to reduce the complexity of run-time mapping strategies. Moreover, run-time
strategies can become more complex when DVES is taken into account. In this case, the
performance an energy consumption of all active applications depend not only on the run-time
mapping solution, but also on the DVES control. Our dissertation work focuses on reducing the
complexity of run-time strategies that apply dynamic mapping and DVFES together.

2.2 Applying Dynamic Task Mapping and DVFS

As previously introduced in Chapter 1, cluster-based multi/many-core systems support per-
cluster DVFS, where the core in each cluster shares the same v/f level. In such systems,
dynamic task mapping (e.g., on-the-fly, hybrid) and DVFES techniques are often applied to
reduce power/energy consumption. In the literature, the two techniques have been applied
separately or coordinately, as depicted in Figure 2.7.

Dynamic task mapping Dynamic task mapping <
""" Estimate
influence
y e
DVFS q DVFS
(a) (b)

Figure 2.7: Applying dynamic mapping and DVFS (a) separately and (b) coordinately.

Applying dynamic task mapping and DVES separately (see Figure 2.7.(a)) refers to the
two techniques applied separately into two independent steps. It considers one technique and
then considers the other one. Typically, task mapping is performed first without considering
its influence on v/ f configurations, and DVFS is then applied based on the obtained mapping.
On the other hand, applying dynamic task mapping and DVES coordinately (see Figure 2.7.(b))
refers to considering the mutual influence between the two techniques. The potential influence
from one technique on the other is estimated during the decision-making process.
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2.2.1 Applying Dynamic Task Mapping and DVFS Separately

In our considered cluster-based multi/many-core systems, existing works usually fix dynamic
task mapping first then perform DVES to achieve power/energy goals. The work in [4] aims
to reduce the energy consumption of independent periodic tasks in heterogeneous cluster-based
multi/many-core systems (up to 4 clusters, 24 cores). The management overview of this work
is given in Figure 2.8. This work first maps all independent tasks to different clusters (see
step (1) in Figure 2.8). It uses a Low-Energy-First (LEF) based mapping strategy, which
assigns tasks successively to the cluster that can achieve the lowest energy consumption for
each individual task at the maximum cluster v/ f level. This work holds the hypothesis that
the energy consumption of a task depends on the used core type and the configured cluster v/ f
level, meaning that different priorities are given to different clusters (at the maximum cluster
v/ f levels) when performing task mapping among clusters. Then, workload balance is targeted
inside each cluster. Finally, after completing the mapping of all tasks, cluster v/ f levels are
decreased as much as possible under timing constraints (see step (2)).

(1) Dynamic task mapping
e Mapping between clusters: according to cluster priorities

e Mapping in each cluster: workload balance at the maximum cluster v/f

Y
(2) DVFS within each cluster

Decrease cluster v/f as much as possible under task timing constraints

Figure 2.8: Overview of applying dynamic mapping and DVFS separately in [4].

Similarly, the work in [49] also gives different mapping priorities to the clusters in the Arm
big. LITTLE system (i.e., 2 clusters, 4 cores in each cluster). The strategy of this work can be
understood as Low-Power-First (LPF) based mapping strategy, where each application attempts
to be assigned to the lowest power cores (i.e., little cores) first. If the performance constraint is
not satisfied, high-performance cores (i.e., big cores) are used. After applications assignment,
the cluster frequency is reduced with respect to a pre-defined power budget. The two previously
mentioned works give the highest priority to one cluster when performing application-to-cluster
assignments. For platforms with more cores in the cluster, we can predict that the workload of
a cluster can be very heavy with increasing numbers of active applications. Consequently, the
frequency and the energy consumption of one cluster can be very high, while other clusters can
be empty without any executing application. Since platform resources in low-priority clusters
may not be fully used, opportunities for further energy optimization may be missed.

For the Arm big.LITTLE system, the work in [34] first performs hybrid mapping then
executes DVFS. It prepares several design-time mappings for each application, and each
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prepared mapping can use different types of cores. For run-time active applications, the
prepared mappings are selected and combined such that the overall energy consumption
is minimized without violating the application timing constraints and platform resource
constraints. After that, DVFS is performed based on the already fixed mapping of active
applications for further energy optimization. This work classifies application workloads
into compute-intensive, memory-intensive and mixed-intensive based on Memory Reads Per
Instruction (MRPI:%). Low and high MRPI values represent compute-intensive
and memory-intensive workloads, respectively. In this work, application workloads (MRPI
values) are predicted dynamically in every time interval. The prediction is based on the observed
workloads in the previous time interval. According to various MRPI ranges, cluster v/ f
level is set to different values. Note that there is a table classifying the MRPI range and the
corresponding v/ f level based on design-time analysis.

On the other hand, also for the Arm big.LITTLE system, the work in [5] not only performs
DVES based on fixed application mappings but also performs mapping migration based on
fixed v/f. The management overview of this work is illustrated in Figure 2.9. This work
isolates multimedia applications from non-multimedia applications. During task mapping (see
step (1) of Figure 2.9), the authors aim to map non-multimedia applications to the big cluster
and multimedia applications to the little cluster, due to the dedicated hardware decoders in
the considered board (i.e., Odroid XU3 [50]). Workload balance is targeted in each cluster.
Then, the v/ f level of each cluster is set by CPU frequency scaling governor (see step (2)),
which is an operating system module that adjusts CPU frequency and voltage depending on
core utilization. According to the cluster v/ f, applications can be migrated from one cluster
to the other (see step (3)). If the performance of multimedia applications cannot be satisfied
at the highest v/ f level in the little cluster, some multimedia applications can be migrated to

(1) Dynamic task mapping
e Mapping between clusters: according to the types of applications

e Mappingin each cluster: workload balance

v

(2) DVFS within each cluster
Set cluster v/f through frequency governor

|

(3) Mapping migration between clusters

yes Meet application no
. equirements? .
If big cluster, If little cluster,

lowest v/f highest v/f
Migrate applications

Figure 2.9: The overview of applying dynamic mapping and DVFS separately in [5].
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the big clusters. In contrast, for the multimedia applications executed in the big cluster, if a
multimedia applications can be executed at a lower v/ f level than the minimum v/ f level of
the big cluster, the multimedia application can be migrated to the little cluster. Similarly, the
work in [51] also supports application migration after DVFS. However, this work allows only
one cluster to be activated at the same time due to the limitation of software supports. Therefore,
when application requirements cannot be satisfied at the highest v/ f level in the little cluster,
this work migrates all applications to the big cluster.

The above-mentioned works aim to achieve energy efficiency while guaranteeing system
performance in cluster-based multi/many-core systems. The first mentioned work consider
periodic independent tasks executed in a system with 4 clusters, while the other mentioned
works focus on the ARM big.LITTLE system with 2 clusters. These works apply dynamic
mapping and DVES in separated steps. Application mapping determines application perfor-
mance, which can further affect the cluster v/ f level required to meet performance constraints.
Some mappings may have better energy efficiency at one v/ f level but it may result in higher
v/ f configurations after DVFS, which ultimately leads to high energy consumption. Better
management results can be achieved if the influence between the two techniques is taken into
account.

2.2.2 Applying Dynamic Task Mapping and DVFS Coordinately

In recent years, the mutual influence between dynamic task mapping and DVFS in cluster-
based multi/multi-core systems has received more attention. The coordination between the two
techniques can be considered through estimations or iterative evaluations.

In [6], the authors aim to satisfy application performance requirements without violating
the given power budget in the Arm big.LITTLE system. Unlike most existing works, this work
establishes coordination between application mapping and DVFS by estimating performance
gain/loss of applications. The management overview of this work is depicted in Figure 2.10.
The work applies Low-Power-First strategy (i.e., LPF discussed in Section 2.2.1) during
dynamic mapping (see step (1) of Figure 2.10). Every new active application is first mapped
onto the little cluster. When the application does not meet the performance requirement with
the highest resource usage in the little cluster, the application is mapped to the big cluster. Each
time when a certain application is active or inactive, application remapping is performed to
make utilization uniform on cores within a cluster. This work coordinates dynamic mapping
and DVFS to respect the power budget within each cluster (see step (2)). On one hand, when
the power budget is violated in a cluster, applications can be migrated to the other cluster.
After estimation (see step (2.a)), if no application can meet its performance requirement in the
new cluster, DVFES is used to reduce power consumption in the current cluster. On the other
hand, when the power budget is honored in a cluster, the cluster v/f level can be reduced
in the currently considered cluster. After estimation (see step (2.b)), if the new v/f level
causes performance violation of an application, more resources are allocated to the application.
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(1) Dynamic task mapping
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Figure 2.10: Overview of applying dynamic mapping and DVFES coordinately in [6].

Through dynamic estimations of application performances, this work is able to minimize the
penalty of management decisions (i.e., on-the-fly mapping, DVFS) and reduce application
performance loss.

Particularly for the energy efficiency within a cluster of the ARM big.LITTLE system, the
works in [7, 8] coordinate hybrid mapping and DVFS through iterative evaluations. Figure 2.11
illustrates the iterative loops of these two works. Based on several design-time prepared
mappings for each application, the two works perform mapping optimization (i.e., including
mapping selection and combination) and cluster v/ f configuration iteratively at run-time.

The authors of [7] aim to maximize system performance under power density' constraint,
which is set to guarantee avoiding thermal violations within a cluster. At design-time, it stores
two parameters for each application, including average power consumption and application
execution time that are dependent on the used cluster, the number of threads and v/ f levels.
For active applications at run-time, as illustrated in Figure 2.11 (a), mapping optimization and
cluster v/ f configuration are performed iteratively (highlighted in red) for each application
until all active applications are considered. This work optimizes applications individually. For
an active application, it selects the thread number and cluster v/ f level that can lead to the
best throughput of the application under power density constraint. As the available processing
resources reduce, the last considered application can only be mapped onto few cores, resulting
in poor application performance. Eventually, we could foresee that the cluster v/ f level and
cluster power consumption can be very high.

The authors of [8] aim to map active applications at a low cluster v/ f level within a cluster.

"'Power density refers to power consumption per unit area.
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Figure 2.11: Overviews of coordination between hybrid mapping and DVFS within a cluster in
(a) [7] and (b) [8].

Its design-time prepared mappings for each application have different trade-offs between the
number of used cores and application performance. For the run-time active applications, as
illustrated in Figure 2.11 (b), it iteratively (highlighted in red) increments cluster v/f from
the lowest level and performs mapping selection and mapping combination at each new v/ f
level. The exploration stops when a possible mapping solution is found through holistically
application optimization, platform resource constraints. This approach can obtain an energy-
efficient mapping supporting low cluster v/f. However, a long time can be taken to reach
convergence when the frequency increment is small. Therefore, it is important to reduce the
number of estimation iterations when coordinating hybrid mapping and DVFS.

To summarize, the above-discussed works coordinate dynamic task mapping and DVFS
techniques to achieve a good energy and performance trade-off. Compared to the strategies
that separate dynamic task mapping and DVFS into different steps, coordinating the two
techniques needs more computation at run-time (due to estimation or iterative evaluations).
More attention should be paid to reducing the strategy complexity of dynamic mapping and
DVES coordination. Note that the above-discussed works focus on the local optimization
within a cluster. On the other hand, for the global optimization of a system with multiple
clusters, the work in [29] outlines the optimal task mapping and cluster v/ f configurations for
periodic independent tasks. This work assumes that tasks can be assigned continuously in each
core and that each task has the same power consumption in the same core. Based on the two
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assumptions, this work builds a core utilization relationship between the highest v/ f level and
the optimal scaled v/ f level. For the system energy optimization objective, this work tries to
equalize task workloads of all clusters when executed at the highest v/ f levels. To the best of
our knowledge, this work is the only one aimed at achieving the optimal energy optimization
of the overall cluster-based multi/many-core systems. However, this work fails to handle the
assignment of task-dependent applications (i.e., with task precedence constraints). Further
efforts should be made for the global energy optimization of task-dependent applications on
cluster-based multi/many-core systems.

2.3 Management Structure

As the number of cores in modern systems increases, run-time management strategies have to
pay more attention to management scalability, which considers whether run-time management
strategies have the potential to deal with a large number of applications in multi/many-core
systems.

Management scalability has been studied in terms of management structures. The
possible management structures are shown in Figure 2.12. In centralized management (see
Figure 2.12.(a)), one manager monitors and controls applications execution in the whole system.
Managing a system from one central point provides management simplicity, but it may also
impose severe performance bottleneck and heavy computation burdens in many-core systems.
To allow the management to be scalable with the size of the many-core system, distributed
management and hierarchical management are proposed.

[/appll {appz] [appn] Manager
L -L1

detected data / \

Control Manager Manager
- Manager 12 12
- mapping { : : ° ©
-v/f detected data v £ = /\ ‘/\
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cluster

(a) (b) (c)

Figure 2.12: Run-time managers in different structures (a) centralized management, (b)
distributed management and (c) hierarchical management.

2.3.1 Distributed Management

Distributed management divides the entire management problem into several sub-problems,
each of which is handled by a manager. As shown in Figure 2.12 (b), the distributed managers
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can be independent or can communicate with each other. For independent distributed managers,
it is assumed that some management decisions (e.g., applications and cores considered by each
manager) are known at design-time. The distributed manager can be created individually for an
application, or for a core, or a cluster, in order to achieve local optimization of a sub-system.

One Manager for One Application / One Core

In [52], each distributed manager is created for a certain active application in homogeneous
multi/many-core systems. Each manager (or agent) is created to map an application onto cores
for better performance. When a new application is active, its manager randomly selects a region
(with some close available cores) on the chip to run the application. Then the application
manager starts to communicate with another application manager over a short distance to
request some resources. If the performance gain of the requesting application is greater than
the performance loss of the answering application, some resources are released from one
application to another. The resource bargain between different application managers can be
applied over larger distances (among cores) to achieve a wider range of coverage.

The work in [53] presents a distributed management approach based on each core. A run-
time heuristic algorithm is proposed to run on each processing core in a homogeneous multi-
core system (i.e., 9 cores). To reduce communication overheads, the heuristic migrates some
tasks from one core to its neighbors based on its local workload. If no improvement is achieved
from the migration, a larger neighborhood is considered. The algorithm stops when there is no
more improvement after a certain number of repetitions (set by users).

The work in [54] creates a manager for each application and for each core. Among these
works, the number of managers is highly dependent on the number of active applications or the
number of cores. As the number of supported applications and the number of cores increase,
creating a manager for each application or each core is not scalable.

One Manager for One Cluster

The authors of [55] create one manager for one cluster that executes multiple applications
on several processing cores. It aims to optimize the communication energy of homogeneous
multi/many-core systems. At system startup, it divides the platform into several fixed-size
clusters and creates a manager for each cluster. During system execution, each cluster manager
heuristically maps active applications within the cluster. When the resources are not sufficient,
the cluster manager can borrow some resources from neighbor clusters. Thus the cluster sizes
can change dynamically. The work in [56] presents another example that also supports dynamic
size of cluster.

As previously discussed in Section 2.2.2, the works in [8, 12] respectively aims to achieve
energy and power optimization within a cluster. These two works manage the executions of
multiple applications on a cluster, assuming that the application-to-cluster allocation is known
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in advance. It means that the two works create a distributed manager for a fixed size cluster in
the Arm big.LITTLE systems. There is no communication between the distributed managers in
the little cluster and the big cluster.

Compared to the distributed management approaches that are based on one application or
one core, creating one manager for one cluster helps to reduce the number of managers. Since
the main feature of distributed management is its local optimization of the system, the division
of sub-systems (e.g., in terms of an application, a core or a cluster) determines the scope of local
optimization.

2.3.2 Hierarchical Management

Hierarchical management can provide management scalability with both local and global
optimization. As shown in Figure 2.12 (c), managers are created to deal with a system at
two or more levels of abstraction. According to [57], managers at different levels consider local
optimization of each sub-system and global optimization of the overall system.

2-Level Hierarchical Management

In 2-level hierarchical management approaches, a global manager and several local managers
are created to perform run-time management. The global manager not only serves as a
communication center for different local managers but also highly determines the management
quality of the entire system.

The work in [58] presents a 2-level hierarchical resource allocation framework on a
heterogeneous platform, in which there are identical clusters on a chip (i.e., homogeneous at
the chip-level) and each cluster contains different core types (i.e., heterogeneous at the cluster-
level). In the management framework, a global manager monitors the system workload and
assigns active applications to clusters for workload balance at the chip-level. An application is
allocated to one cluster to reduce the task communication overhead between different clusters.
At the cluster-level, a local manager is created to allocate application tasks to cores within
each cluster. The local management strategy is based on some prepared mappings of each
application. For multiple active applications in a cluster, the local strategy first merges
the prepared mapping of each active application together and then iteratively migrates tasks
between cores to minimize core usage variation among cores.

The work in [59] presents 2-level hierarchical managers to enable multi-objective optimiza-
tion in a homogeneous many-core platform, which has multiple clusters and supports per-core
DVES. The managers aim to reduce energy consumption, improve application performance and
guarantee the power constraint. At the chip-level, the global manager verifies the power and
resource requirements of a new active application and then chooses a cluster for the application.
The global manager can also dynamically change the operation mode of a cluster according
to the workload behavior. A cluster is set to energy mode or performance mode depending
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on whether the power budget is violated or not. Then, at cluster-level, a local manager is
responsible for mapping or remapping tasks and setting v/ f level of each core according to the
operation mode.

More-Level Hierarchical Management

The work in [60] presents hierarchical organized run-time controllers to deal with application
dynamism and architecture failures (temporary or permanent) of many-core systems with
multiple clusters. The created controllers aim to deal with the behavioral or fault events in
three different levels, which are core-level, cluster-level, and chip-level. The events that can not
be handled at a low level can be delivered to a higher level.

As previously discussed in Section 2.2.1, the work of [49] applies dynamic mapping and
DVES separately to manage the ARM big.LITTLE system under restricted power budget. Here,
we discuss the management structure of this work. This work presents a 3-level hierarchical
management framework, which consists of different levels (i.e., chip-level, cluster-level, task-
level) of controllers. The chip-level power allocator triggers the cluster frequencies and
the quality of service (QoS) of the tasks. The per-cluster DVFS controller sets the cluster
frequencies. The per-task QoS controller sets the task performance constraint, based on
which per-task resource control determine resource allocation. There is a load balancer and
migrator at the cluster-level, which migrates tasks between big and little cluster according to
the performance requirements.

Compared to distributed management, hierarchical management has more flexibility due to
its capability of local and global optimizations. Different optimization targets can be set to
managers at different levels. The difficulty of hierarchical management is how to coordinate
management between different management levels [57].

2.4 Run-Time Management Strategy Evaluation at System-
Level

In the state-of-the-art of system-level modeling and simulation approaches, a system model is
captured according to Y-chart design methodology [9, 61, 62], where application models and a
platform model are built independently and further combined by mapping rules. As illustrated
in Figure 2.13, application models capture the functional behavior of applications, while the
platform model describes the hardware resources and hardware performance characteristics.
After the application models are mapped onto and then simulated with the platform model,
the platform model accepts the computation and communication activities of applications
as workloads [62]. As a consequence, non-functional characteristics of applications can be
estimated under different situations. The resulting performance may lead to the improvement
of platforms, the adaptation of applications or the modification of mapping strategies. The
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Figure 2.13: Y-chart-based design methodology [9].

process of system modeling and simulation are performed at a high-level of abstraction, which
minimizes modeling effort and optimizes simulation speed [61].

To the best of our knowledge, only two related works support dynamism in system-level
simulation. As previously discussed, the work of [10] presents a run-time mapping strategy to
deal with multiple applications dynamically executed on a heterogeneous multi-core platform.
This work evaluates the run-time mapping strategy on an extended Sesame system-level
modeling and simulation framework. Figure 2.14 illustrates the extended Sesame framework,
which is based on the trace-driven simulation approach [62, 63]. Each application model records
its action by a set of event traces (i.e. computation and communication events). To simulate the
performance consequences of application events, a platform model is parameterized by an event
table containing operation latencies. The extended Sesame introduces three modules (in gray in
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Figure 2.14: Extended Sesame framework for run-time resource scheduling [10].
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Figure 2.14) to support the simulation of run-time mapping strategies. The database stores some
prepared mappings that are optimized at design-time, and these prepared mappings are used to
establish mappings for active applications at run-time. The system monitor aims to identify
the current states of application workloads and platform resources. The Run-time Resource
Scheduler (RRS) is especially introduced to control the mapping of active applications in each
simulated use-case. During system simulation, RRS dynamically dispatches the event traces
to an architecture model at the intermediate mapping layer. During event dispatching, some
synchronizations have to be done to ensure the availability of the allocated hardware resources.
Our simulation approach aims to avoid such model synchronization by computing the instants
when platform resources are used.

In [11], an extension of Intel CoFluent Studio is proposed to support dynamic application
mapping but this proposal is not currently supported in the available tool. Figure 2.15
presents the extended framework, where the newly introduced modules are highlighted in
gray. The introduced modules have similar functions as those ones in the previously discussed
Sesame framework. The database stores some design-time mappings. The Performance-Aware
Supervisor (PAS) has two missions. First, PAS identifies the system violations (e.g., violations
of timing constraint or power budget) by some agents, which are added for each application and
each platform component to monitor the non-functional properties (e.g., latency, resource load,
and power consumption. etc.). Secondly, based on the monitored information, it dynamically
changes the allocation of tasks on platform resources during system simulation by a certain
run-time mapping strategy. The run-time mapping is fulfilled by additional SystemC code that
is instrumented in the framework. In contrast to this approach, we aim to implement a new
simulation approach in Intel CoFluent Studio without any modification of the used framework,
making our proposition portable to other simulations environments.

Application Models

S —
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Dynamic performance
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Figure 2.15: Extended CoFluent framework for run-time resource scheduling [11].
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2.5 Summary and Discussion

This dissertation focuses on managing the energy efficiency of multiple applications executed
dynamically on cluster-based multi/many-core platforms. In this chapter, related works are
presented. The presented literature is summarized in Table 2.1.

Firstly, we discussed the existing works about dynamic task mapping, a necessary technique
to deal with application execution dynamism. We concentrate on hybrid mapping strategies,
which realize dynamic mapping based on some design-time prepared mappings to reduce run-
time computation burden. Generally, to reduce storage space, some optimized mappings are
prepared for each application (highlighted in gray in Table 2.1) at design-time. At run-time,
application mappings can be optimized independently or holistically. Our work focuses on
holistic optimization, due to its capability of overall optimization for all active applications. We
also apply independent optimization to perform application-to-cluster assignment in the overall
system, because independent optimization has better feasibility and lower complexity.

Secondly, we discussed the existing approaches that apply dynamic mapping and DVFS
techniques on cluster-based multi/many-core systems. Mapping and v/ f configurations can
be applied independently or coordinately, based on whether the mutual influence between the
two techniques is predicted or evaluated during the decision-making process. Applying the two
techniques coordinately can achieve better management results. However, more computation
efforts have to be paid at run-time. The management problem becomes even more complex
when hybrid mapping targets holistic optimization for all applications. Our work addresses the
difficulties of coordinating hybrid mapping and DVFES to obtain run-time mappings for task-
dependent applications with optimized cluster v/ f levels. In contrast to the previous works, we
aim at reducing strategy complexity of local optimization, and exploring management strategies
to achieve global optimization of systems with different numbers of clusters (e.g., more than 2).

Thirdly, we discussed different management structures that can be used to realize hybrid
mapping and DVES techniques. Our work considers distributed and hierarchical structures
to allow our management strategies to be scalable in large systems where many applications
can be executed simultaneously on a large number of cores. On one hand, for cluster-based
multi/many-core systems, we adopt the existing distributed management structure where a local
manager is created for each cluster. In this dissertation, we propose a new local management
strategy to achieve local optimization in one cluster, assuming the same strategy is applied in
every cluster. Compared with existing related work, the proposed local management strategy
requires fewer search iterations to achieve energy efficiency within a cluster. On the other hand,
for global optimization in the overall cluster-based system, we apply the existing hierarchical
management structure where the global manager is created at chip-level and local managers are
created at cluster-level. Unlike most existing hierarchical management approaches, our work
considers hybrid mapping and per-cluster DVFES holistically. The proposed approach can be
scalable to homogeneous and heterogeneous cluster-based platforms with different numbers of
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clusters and different numbers of cores in each cluster.

From one use-case to another, our proposed run-time management strategies could update
application mapping and cluster frequency configurations for energy optimization. During the
system reconfiguration process, some time and energy would be spent to allow task/application
migrations from one core to another (or from one cluster to another). Thus it requires weigh
reconfiguration costs and benefits to make a reasonable run-time decision. Notice that system
reconfiguration costs are highly dependent on the current use-case duration [64]. The work of
[64] predicts use-case duration based on historical records. It stores 3 history samples (use-case
duration) for each use-case and computes the probabilities of possible predictions. For a new
use-case, this work checks its matched history pattern and then sums the probabilities of some
promising predictions (where use-case duration is large enough) together. If the sum probability
value is large than a predefined value, this work performs migration. For simplicity, our work
assumes that each use-case executes long enough, and the system reconfiguration costs can
be neglected compared to the reconfiguration benefits. Use-case duration prediction would be
addressed in future work.

Finally, we discussed the state-of-the-art system-level modeling and simulation approaches
that support the evaluation of run-time management strategies. These approaches use some
design-time prepared mappings to guide run-time mapping simulation. This dissertation
work presents a new system-level simulation approach, which is also based on design-time
prepared data. Compared to the existing trace-driven simulation approach, our approach does
not dispatch trace events and avoids model synchronization by computing the instants when
application tasks are run on platform resources. Besides, our approach can be implemented
without any modification of the used framework.
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Table 2.1: Comparison of state-of-the-art run-time management approaches

Dynamic task mappin, Apply with
Ref Platform Y pping PPy Mechanism
Design-time preparation Run-time configuration DVFS
Generic . . .
[46] heterogeneous 2 Use-case-based Apply optimized mapping Centralized
Heterogeneous . . .
[47] cluster-based Use-case-based Apply optimized mapping Centralized
Homogeneous e o o Hierarchical
[60] cluster-based Use-case-based Apply optimized mapping (3-level)
ARM A o R Per-cluster DVEFS Distributed
[7] big.LITTLE Application-based Optimize apps individually e — (i)
[13] Homogeneous Application-based Optimize apps individually Centralized
[48] Homogeneous Application-based Optimize apps individually Centralized
Generic A o . .
[31] e Application-based Optimize apps holistically Centralized
ARM L . . Per-cluster DVFS Distributed
[8] big.LITTLE Application-based Optimized apps holistically (AT (cluster)
[14] Homogeneous Application-based Optimize apps holistically Centralized
ARM L . . Per-cluster DVFS .
[34] big.LITTLE Application-based Optimize apps holistically —— Centralized
Generic . o . .
[10] e Application-based Optimize apps holistically Centralized
Special L . . Hierarchical
[58] ST R Application-based Optimized apps holistically (2-level)
4] Heterogeneous On-the-fly mapping Per-cluster DVFS Centralized
cluster-based (separately)
ARM : Per-cluster DVFS .
On-the-f]
5] big.LITTLE n-the-ly mapping (separately) Centralized
ARM . Per-cluster DVFS .
On-the-fly mappin .
(61 big.LITTLE Y mapping (coordinately) Centralized
[29] Heterogeneous On-the-fly mapping Per-clusFer DVFS Centralized
cluster-based (coordinately)
ARM . Per-cluster DVFS .
On-the-fl
(511 big. LITTLE n-the-ly mapping (separately) Centralized
49] . ARM On-the-fly mapping Per-cluster DVFS | Hierarchical
big.LITTLE (separately) (3-level)
: Per-core DVFS Hierarchical
On-the-fly mappin
[59] Homogeneous Y mapping (separately) (2-level)
[52] Homogeneous On-the-fly mapping Distributed
(app)
[53] | Homogeneous On-the-fly mapping Distributed
(core)
[55] Homogeneous On-the-fly mapping Distributed
(cluster)
[56] Homogeneous On-the-fly mapping Distributed
(cluster)

2 Generic Heterogeneous: a platform contains different type of cores showing different power/performance
characteristics (e.g., GPP, DSP).

3 Special Heterogeneous: a platform has the same clusters (i.e., homogeneous) in the system and different
core types ((i.e., heterogeneous) within a cluster.
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This chapter presents the application, platform, application mapping and power and energy
models. The models and notations defined in this chapter are used throughout the dissertation
work.

3.1 Application Models

In this dissertation, we target data-flow applications (i.e., task-dependent applications), where
the output of one task might be the input of other tasks [65]. Some examples include
multimedia and Digital Signal Processing (DSP) applications. Figure 3.1 gives an illustration
of an application, denoted by app;. The application app; consists of a set of H computation
tasks (or nodes): Ti,,, = {t14,t24, - ,tm;} and a set of G communication edges (or arcs):
Eopp, = {e1, €24, ,eq.i} representing dependencies among the tasks. Task and edge in app;
are respectively indexed by 7 ; and e, ;. This work focuses on periodic real-time data-flow
applications and each application has a period Period,,,,, denoting the application execution
deadline. The application execution time shall be within its corresponding period time.

In the scope of this work, Synchronous Data Flow (SDF) semantics [66] is used to capture
the data-flow activity of applications by specifying the number of data samples (or tokens)
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output tokens

Task Set Toppi={tsi, t2, t3,ita ", th,i}

Edge Set E ppi={es, €2, €35,€4,,°*",€6,i}

1
input token 1 3 €5,

Figure 3.1: Application model of app;.

produced and consumed by each task. As shown in Figure 3.1, input tokens define the number
of tokens that are read from the edge before executing a task and the output tokens define
the number of tokens that are written through the edge after the task execution. The reason for
choosing SDF is that it is a commonly adopted model of computation for data-flow applications,
offering both good expressiveness and analysis capability. Our work is not limited to this
specific model of computation and it could be extended to other data-flow models.

Particularly, Figure 3.2 gives the general SDF descriptions of H.263 decoder, H.263 encoder
and JPEG decoder according to SDF3 [67]. These three applications are typical multimedia
applications that are widely used as benchmarks in works such as [48, 68, 69]. In our work,
we will use these three applications to derive other applications with different numbers of
tokens and different period constraints. The derived applications will serve as representatives
of different computation and communication activities in the experimental evaluations of
Chapters 4, 5 and 6.

(a) (b) ()

Figure 3.2: SDF descriptions of (a) H.263 decoder, (b) H.263 encoder and (c¢) JPEG decoder.

As previously discussed in Section 1.1.5, this work considers application execution
dynamism in which use-cases can change over time. As previously defined, a use-case refers
to a set of simultaneously active applications [30]. Here, we denote a use-case by u,, =
{app1,apps,--- ,app;}, where I is the total number of active applications in the considered
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use-case. Different use-cases might exist due to different combinations of multiple applications.
The execution duration of each use-case depends on application activities. Without loss of
generality, this work makes the same assumption as in [10] that each use-case runs for a long
time, to justify run-time configurations (e.g., a new mapping or v/ [ settings).

3.2 Platform Model

As introduced in Chapter 1, this dissertation focuses on cluster-based multi/many-core plat-
forms. Figure 3.3 shows the platform model, which consists of multiple clusters associated
with a shared memory and communication resources. Let ./ be the total number of clusters and
each cluster is indexed by cluster;. Each cluster is composed of multiple or many cores. The
number of cores in cluster; is denoted by N;, and different clusters can have different numbers
of cores. It is assumed that the cores in each cluster are of the same type, while the core type
can be different from one cluster to another.

Cluster, Cluster, Cluster,

| core; || core, ” cores || corem‘ | core; || core, ” core; || coreNz‘ | core; | core, H core; || corey;

2 Tt T &% F t|laZtt %5
Local commun‘?cation (i.e.,Bus) Local comAmunication Local comA unication

U ] U

Global communication (e.g., Bus)

Figure 3.3: Platform model of cluster-based multi/many-core systems.

The heterogeneity of the cores among clusters can lead to different characteristics of latency
and power consumption. To illustrate these differences, the core type can be characterized by a
performance ratio and a power ratio normalized against a reference cluster cluster,. According
to [25], these ratios represent the performance and power improvements (or degradation) to
perform the same system executions as compared to the reference cluster. For a given cluster;,
its performance and power ratios are indexed by Rﬁ-’erf and R}™" respectively.

In addition, the considered platform supports per-cluster DVFS, each cluster being a volt-
age/frequency island (VFI) [70]. All the cores within a cluster share the same voltage/frequency
(v/ f) level, while each cluster has its own v/ f ranges. The available discrete frequency levels
of cluster; are denoted as {f;1, fj2,..., fimae} and operating voltages are adapted to the
frequency settings. The relationship between operating voltage and frequency will be further
illustrated in Section 3.4.

37



Chapter 3. System Models

Table 3.1 presents some examples of cluster-based multi-core/many-core platforms. In-
tel Single-chip Cloud Computer (SCC) [19] and Kalray MPPA2®-256 [20] have many
homogeneous clusters (i.e., more than 10). Their homogeneous clusters support the same
frequency range. On the other hand, Exynos 5 Octa [21] and MediaTekHelio [23] have several
heterogeneous clusters. Their clusters are based on the ARM Cortex family and different
clusters support different frequency ranges.

Table 3.1: Examples of cluster-based multi/many-core platforms

Cluster description
Examples Architecture Nb of clusters: J
with supported operating frequency ranges
SCC [19] Homogeneous 24 2 Pentium cores: 125M Hz ~ 1GH z
MPPA2®-256 [20] Homogeneous 16 16 RISC cores: 600M Hz ~ 800M H z
4-core ARM Cortex-A7: 0.2GHz ~ 1.4GHz
Exynos 5 Octa [21] Heterogeneous 2
4-core ARM Cortex-Al15: 0.2GHz ~ 2.0GHz
2-core ARM Cortex-A73: up to 2.6GH z
MediaTekHelio X30
Heterogeneous 3 4-core ARM Cortex-A53: up to 2.2GHz
(MT6799) [23]
2-core ARM Cortex-A35: up to 1.9GH z

3.3 Mapping Model

As previously defined in Section 1.1.5, task mapping refers to the allocation of application
tasks on platform resources and the execution order (i.e., scheduling) of tasks on a given core.
When applications are mapped on platform resources, their computation and communication
activities can be fulfilled after a certain time of execution. The time used to finish computation
activities of a task (¢5;) is defined as computation time (CompT'imey,;), while the time used
to finish communication activities between dependent tasks via an edge (e, ;) is defined as
communication time (CommTime,;). CompTimey; and CommTimey; can be different
due to different processed data, mapping strategies and platform configurations (processing
element, v/ f level, - - -). This work holds the same assumption as [10], that is, communication
time within a core is very short and can be neglected.

In this work, we characterize a mapping by an execution trace, which comprises a set of
instants defining the start time (x,) and the end time () of each task when executed on platform
resources. For a given task, 7., , (k) and .y, , (k) refer to the k" start and end instances of the
task 5, ; respectively. Figure 3.4 gives two examples of execution traces for app; mapped on two
cores and four cores. In these examples, ¢5; and 3 ; are executed three times at each iteration.
Due to the different mappings between Figure 3.4 (a) and (b), their obtained instants (i.e.,
from x4, ,(1) to z.4,, (1)) are different the change of task execution orders. Moreover, since
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different platform configurations (processing element, v/ f level, - - -) can change CompTimey, ;
and Comm/T'imeg;, the instants of execution traces will change accordingly.

K - — — i — Periodappl . 9
() [ta(0)] [6a2)] [6.03) '
corey €11 i €1 €21
core, taa(1)  [tsa(2] [tsa(B)  taa(1) |
N NN M
Tt (D) x501(1)  %01(Q)  x52103) Xe41(1) time
< Latencya.pp1 >
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K ——m Period,ppy - — = — == —— 3
1 t14(1)
(@) corey €11 | €11} €11}
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cores €311 €31l e3ql
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< Latencyapp: >
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Figure 3.4: (a) SDF description of app;. Examples of execution traces of app; mapped on (b)
two cores and (c) four cores.

The application latency, denoted by Latencye,,,, refers to the execution time of an
application from its first input to the last instant (i.e., x._, , in Figure 3.4) within one period. To
guarantee timing constraints are met, application latency should be smaller than its period (i.e.,
Latencyapy, <= Periodapy,).

3.4 Models for Energy Efficiency Evaluation

The section presents the models to evaluate the energy efficiency of executing applications on
platform resources. Energy efficiency can be characterized by energy consumption or average
power consumption in a certain period of time. In this work, we focus on the optimization of
average dynamic power consumption within a hyper-period. According to the definition of [4],
hyper-period refers to the Least Common Multiple (LC M) among periods of the considered
periodic applications. In this work, the average dynamic power consumption is optimized
through dynamic task mapping and DVFS. Shutting down some clusters/cores to reduce static
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power/energy is beyond the scope of this work. The energy and the average power consumption
mentioned in the following refer to the dynamic part.

For multiple applications executed on a cluster-based multi/many-core platform, the system
average power (Pg,¥) can be expressed as the sum of the average power of all active applications
in all clusters as follows.

I J
P = Z Z P9 (cluster;, f;) (3.1)

where [ and .J are the total number of active applications and the total number of clusters,

respectively. P09 is the average power of app;, and the power value depends on the cluster (e.g.,

cluster;) where the application is executing and the cluster frequency configuration (e.g., f;).

For an application, its F,¢ within its application period (period,,,) can be computed as

the amount of energy (£,,p,) consumed in a unit of time as follows.

Eopp; (CZUSteij f])

Pavg (Clusterj7 f]) = PeTiOd
appi

appi

(3.2)

The energy of an application (Fg,p,) can be computed as the sum of computation energy
(Ecomr) and communication energy (Eeomm) as expressed in Eq.( 3.3).
Eopp, (cluster;, f;) = Eqg"™ (clustery, f;) + Eqn ' (cluster, f;) (3.3)

In this work, we focus on data-flow applications like multimedia applications. We assume
that the communication cost (e.g., time and power) of an application is much smaller than
its computation cost. Chapter 4 will use communication energy ratio (Rcom:m) to indicate the
small ratio between communication energy and computation energy within a period for each
application mapping. On the other hand, the Eg;;z;f’ of an application can be estimated as the
sum of energy consumed by all tasks, which can be expressed into Eq.( 3.4).

H
EP(cluster;, f;) = Z Epi(cluster, f;) (3.4)

appi
h=1

where L}, ; refers to the computation energy of ¢, ;. As the energy of a task is the integration
of its power ([, ;) overtime, L}, ; can be further estimated as follows.

Ey i(cluster;, f;) = Pni(cluster;, f;) x CompTimey, ;(cluster;, f;) (3.5)

For CMOS circuits, the works in [71-73] define the dynamic power model by the square of
the voltage (v) and the frequency( f), as shown in Eq.(3.6).

P=exv*xf (3.6)
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where € is a constant coefficient that depends on the technology used to manufacture the
circuits. Furthermore, according to [35, 72, 73], it exists an approximate relationship between
the operating frequency and supply voltage, as shown in Eq.( 3.7).

f:(V—V;h)C“
KXLd

where V};, is the threshold voltage, L, is the logic depth, K is a constant, while « is a
technology dependent parameter. Based on Eq.(3.6) and Eq.(3.7), the dynamic power can be

(3.7

expressed as a polynomial of frequency of degree \ (i.e., f*) [8]. ) is generally set to 3 in
related works [28, 32, 33, 73] due to that fact that they assume there is an approximate linear
proportional relationship between frequency and voltage.

Upon convenience, this work reuses the power model (Eq.(3.8)) proposed in [8], which
considers the dynamic power of an application mapped on the Exynos.5422 [21] Arm big.Little
cluster-based multi-core platform. Here, the dynamic power is estimated by the cubic of
frequency (i.e., f?).

P=¢x f3 (3.8)

where £ is a coefficient that is dependent on the task and the allocated core type.

To describe the evolution of computation time with operating frequency, we use the
traditional performance model [4, 32, 72] as shown in Eq.(3.9). W is the total number of
execution cycles, which can be understood as the amount of work that has to be done. I can
be known at a reference frequency (fo) [8]. fo can be one any frequency level that is commonly
supported in all clusters. Eq.(3.9) will be further verified in the next section.

w

CompTime(f) ~ 7

_ CompTime(fy) X fo
h f
From Eq.(3.8) and Eq.(3.9), the dynamic computation energy in Eq.(3.5) can be written into
Eq.(3.10). Let &, ; be the power coefficient of ¢}, ; executed on cluster;. Note that now the
energy equation has f; instead of f7.

(3.9)

Ey, i(cluster;, f;) = &ni; x CompTimey, ;(cluster;, fo) X fo ¥ sz (3.10)

Moreover, the work of [25] summarized the performance and power consumption ratios
based on the publicly available information of ARM-cortex processors. Let R?erf and RZ™
be the performance/power ratios of ¢ ; executed on cluster; respectively, while cluster, is
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defined as a reference cluster.

CompTimey, ;(cluster;, fo)

Rperf CompTimey, ;(cluster,, fo) 4D
prower _ P, i(cluster;, fo)
) Z;{j(clusterr, fo) (3.12)
g

Based on Eq.(3.10), (3.11) and (3.12), the average dynamic energy of a task (e.g., t ;) can
be further written into Eq.(3.13).

Ey, i(cluster;, f;) = R?OMT X Epir X R?erf x CompTimep ;,(fo) X fo X fj2 (3.13)

As a consequence, the system average power (Pg¥) in Eq.(3.1) can be further written into

Eq.(3.14), if communication energy is neglected.

I J
pavg _ Eopp, (cluster;, f;)
sys § § :

— = Periodgyy,

J

I J

:ZZ " En(cluster;, f;) Gt
po Periodayp,
! i Zh BT X i Rﬁ?eTf x CompTimen;,(fo) X fo % fj2
= o Periodgpy,

Eq.(3.14) reveals that system average power (Fg¥¢) is highly dependent on the hardware
features (e.g., R™, R?”f and f;) and application characteristics (e.g., {5 ., CompTimey, ; ..,

and Period

appi )

3.5 Model Validation on ARM big.LITTLE platforms

In this section, ODROID XU3 board [50] consisting of a Samsung Exynos 5422 [21] ARM
big.LITTLE clusters is used as experimental platform to verify our applied models. The verified
models include v-f model (i.e., Eq.(3.7)), power model (i.e., Eq.(3.8)) and performance model
(i.e., Eq.(3.9)). The ODROID XU3 board embeds INA23 1 current-shunt and power sensors [74]
to allow the measurement of the instant current and power consumption in the little cluster and
the big cluster. The function /clock() provided by linux can be used to measure application
execution time.
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Our experiment uses matrix multiplication as a representative application. We map the
application onto different numbers of cores within a cluster. There is no data communication
from one core to another. The application cost (e.g., time and power) is mainly spent on
computation activities and memory accesses. Figure 3.5 shows the voltage-frequency evolution
of matrix multiplication application mapped on 1, 2 and 4 cores. The measurement results are
given for <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>