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Résumé

Les plates-formes multi-coeur organisées en clusters représentent des solutions prometteuses pour offrir un compromis optimisé vis-à-vis des critères de performance et de consommation dans les systèmes embarqués modernes. Sur une telle plate-forme, les coeurs sont divisés en différents clusters et chaque cluster fonctionne à un niveau de tension ou de fréquence (Voltage/Frequency, v/f ) donné. Ces plates-formes permettent de mise à l'échelle dynamique de la tension et de la fréquence (Dynamic Voltage/Frequency Scaling (DVFS)) pour chaque cluster, ce qui permet à différents clusters de changer leurs propres niveaux v/f indépendamment. Comme le nombre de coeurs continue d'augmenter, de plus en plus d'applications peuvent être prises en charge sur de telles plates-formes. Impliquant de ce fait une variation des charges de travail supportées en cours de fonctionnement. La complexité croissante des applications supportées et la variabilité des charges de calcul en cours de fonctionnement justifient le besoin d'une gestion en ligne des ressources des plates-formes afin de garantir les exigences de performance du système. Ce travail de thèse se concentre sur la gestion en cours de fonctionnement des applications exécutées dans des systèmes multi-coeurs organisés en clusters afin d'améliorer l'efficacité énergétique compte tenu des contraintes de performances des applications et des contraintes de ressources de la plate-forme.

Dans ce contexte, deux principaux problèmes de recherche sont étudiés.

• Le premier problème de recherche concerne la fac ¸on de coordonner l'allocation dynamique des tâches et la mise à l'échelle des niveaux de fréquence/tension. L'allocation dynamique des tâches et les techniques de DVFS ont été largement appliquées pour optimiser l'efficacité énergétique dans les systèmes multi-coeurs. Cependant, la fac ¸on de coordonner ces deux techniques pour gérer plusieurs applications exécutées dans des plates-formes multi-coeurs organisées en clusters reste une question ouverte. L'allocation d'applications multi-tâches implique différentes configurations possibles des tensions et fréquences de fonctionnement au sein d'un seul cluster et à l'échelle de la plate-forme complète. Dans cette thèse, nous proposons différentes stratégies de gestion estimant l'influence mutuelle entre l'allocation des applications et les tensions/fréquences des clusters afin d'optimiser l'énergie consommée localement, à l'échelle d'un cluster, et globalement, à l'échelle de la plate-forme.

• La seconde problématique de recherche abordée traite de la simulation au niveau système des stratégies de gestion dynamique des plates-formes multi-coeurs. La simulation au niveau système est utilisée afin d'estimer au plus tôt dans le processus de conception des performances des systèmes étudiés. Cependant, la plupart des environnements de simulation existant ne permettent pas de décrire la gestion dynamique des ressources et notamment l'allocation dynamique des tâches. Dans le cadre de notre travail, nous proposons une nouvelle approche de modélisation et de simulation permettant la prise en compte des stratégies de gestion au sein de tels environnement.

Pour résoudre le premier problème de recherche i.e., afin d'optimiser conjointement l'allocation dynamique des tâches et la sélection des fréquences de fonctionnement, nous adoptons une stratégie de gestion dite hybride. Ces stratégies reposent sur un ensemble d'éléments préparés hors ligne, au cours de la phase de conception. Dans les travaux existants, ces éléments correspondent typiquement à des allocations préparées statiquement pour chaque application supportée. Ces allocations seront ensuite utilisées en cours de fonctionnement afin d'établir une allocation optimisée pour l'ensemble des applications actives. Dans le cadre de notre travail, nous introduisons un nouveau paramètre préparé hors ligne appelé 'Fréquence Minimale Autorisée (MAF, Minimal Allowed Frequency). Ce paramètre définit la fréquence minimale de fonctionnement d'un cluster pour une allocation des tâches d'une application donnée et permettant le respect des contraintes de temps associées. En se basant sur un ensemble d'allocations préparées hors ligne et sur l'estimation du paramètre MAF pour chaque allocation, nous proposons différentes stratégies d'optimisation de l'énergie consommée, à l'échelle d'un seul cluster et à l'échelle d'une plate-forme composée de plusieurs clusters.

Nous étudions tout d'abord l'optimisation de l'énergie consommée à l'échelle d'un seul cluster formé de plusieurs coeurs de processeurs homogènes. L'objectif porte sur la minimisation de la fréquence de fonctionnement requise et ce afin de réduire l'énergie consommée. Les principales contributions sont les suivantes.

• Tout d'abord, une nouvelle stratégie est proposée pour sélectionner pour chaque application active au sein de chaque situation de fonctionnement une allocation appropriée. Cette stratégie repose sur des données préparées au moment de la conception. Ces données correspondent à plusieurs allocations possibles de chaque application ainsi que le critère de MAF déterminé pour chaque allocation possible. La stratégie de sélection proposée considère tout d'abord la minimisation de la fréquence requise du cluster. Elle détermine ensuite les allocations appropriées pour chaque application active selon la situation de fonctionnement considérée. En utilisant les paramètres MAFs estimés, notre stratégie de gestion présente une complexité limitée afin d'explorer les configurations possibles.

• Deuxièmement, une nouvelle stratégie d'allocation des applications est proposée (Grouped Applications Packing under Varied Constraints (GAPVC)). Cette stratégie vise à limiter le nombre de ressources de calcul utilisées en optimisant l'utilisation de chaque ressource.

Par rapport à la stratégie simple de combinaison (First-Come-First-Served (FCFS)) qui alloue les tâches d'une même application sur une même ressource de calcul, notre stratégie GAPVC proposée peut réduire le nombre de ressources utilisées sans dégrader les performances des applications. La stratégie de sélection et la stratégie de combinaison des allocations sont appliquées itérativement pour parvenir à une solution quasi optimale.

• Troisièmement, plusieurs cas d'utilisation, comprenant jusqu'à neuf applications actives simultanément, ont été examinés pour évaluer les avantages de l'approche de gestion proposée en termes de puissance dynamique moyenne, de ressources d'utilisation et de complexité. Nos expériences ont démontré que notre stratégie de gestion peut réduire la consommation moyenne d'énergie d'environ 36% et de 206% par rapport aux méthodes existantes dans la littérature.

Dans un second temps, nous étudions l'optimisation de l'efficacité énergétique au niveau global d'une plate-forme formée par plusieurs clusters de calcul. A ce niveau, l'efficacité énergétique d'une plate-forme dépend de l'allocation des applications d'un cluster à un autre. Lorsque plusieurs applications sont exécutées sur un même cluster, la fréquence de fonctionnement d'un cluster est dépendante de l'application avec la contrainte de temps la plus sévère. Dès lors, dans le cas de plates-formes hétérogènes (avec des ressources de calcul de natures différentes d'un cluster à un autre), l'allocation des applications d'un cluster à un autre peut influer significativement sur la fréquence possible de fonctionnement des clusters. Dans la littérature, l'allocation des applications entre clusters et optimisation des fréquences de fonctionnement sont généralement considérées successivement. Les solutions proposées sont généralement pour des plates-formes de complexité réduite (en nombre de clusterd et en nombre de ressources de calcul au sein des clusters). Les solutions existantes présentent dès lors des limitations lorsque la complexité des plates-formes augmente.

Dans ce travail , nous proposons une stratégie d'allocation des applications et de sélection des fréquences de fonctionnement à l'échelle d'une plate-forme formée par plusieurs clusters. La stratégie proposée peut être utilisée pour gérer plusieurs applications exécutées de manière dynamique sur des plates-formes de différentes tailles. Une structure de gestion hiérarchique à deux niveaux est adoptée, dans laquelle un premier niveau de gestion global détermine les allocations des applications et fixe les niveaux de fréquence des clusters. Le second niveau de gestion local optimise l'allocation et l'ordonnancement des tâches dans chaque cluster. Ce travail apporte les contributions suivantes.

• Tout d'abord, pour la gestion globale, nous présentons un modèle de 0-1 Integer Programming (IP) qui considère une formulation de la puissance dynamique moyenne du système compte tenu des allocations retenues des applications actives et des fréquences possibles de fonctionnement. Le paramètre MAF est utilisé afin d'estimer les fréquences possibles des fonctionnement des clusters. L'objectif du modèle 0-1 IP proposé est de trouver des allocations des applications sur les clusters de la plate-forme cible qui minimisent la consommation dynamique moyenne de l'ensemble du système. Cette minimisation est recherchée tout en tenant compte des contraintes de temps des applications, du nombre de ressources au sein de chaque cluster et des fréquences possibles de fonctionnement.

• Deuxièmement, pour parvenir à la solution du problème d'optimisation formulé, il n'est pas possible de rechercher de manière exhaustive la solution optimale dans un délai raisonnable. Afin de réduire la complexité de la recherche, nous proposons une première stratégie de gestion globale (Neighboring Search Application-to-Cluster Assignment (NSACA)) qui vise à fournir des solutions quasi optimales. La méthode NSACA considère, pour une situation de fonctionnement donné, l'ensemble des allocations possibles pour toutes les applications actives. Cette stratégie alloue tout d'abord les applications au sein d'un cluster compte tenu du paramètre MAF. Elle améliore ensuite de manière itérative les allocations possibles en considérant des clusters voisins.

• Troisièmement, nous proposons une deuxième stratégie de gestion globale (Greedy Search Application-to-Cluster Assignment (GSACA)) qui optimise l'allocation de chaque application prise individuellement. Cette stratégie vise à établir pour chaque application l'allocation la plus économe en énergie et réduit le nombre de migration d'une situation de fonctionnement à une autre. Le nombre de migrations peut être contrôlé par les utilisateurs. Par rapport à la première stratégie de gestion, la deuxième stratégie de gestion globale peut réduire le nombre de migrations d'applications entre clusters avec un impact limité sur l'énergie consommée.

• Quatrièmement, nos deux stratégies de gestion globales proposées utilisent la stratégie FCFS de combinaison des allocations pour estimer le nombre de ressources de calcul utilisées dans chaque cluster. L'objectif de la stratégie de gestion locale est d'établir l'utilisation des ressources de calcul au sein d'un cluster. Comme la stratégie de combinaison précédemment proposée GAPVC peut réduire le nombre de ressources utilisées dans chaque cluster sans dégrader les performances de l'application, nous considérons également les avantages de l'utilisation de GAPVC au niveau de la gestion locale. L'utilisation de GAPVC permet d'optimiser l'occupation des ressources au sein des différents clusters. En conséquence, une consommation d'énergie moyenne plus faible peut être réalisée dans l'ensemble du système.

• Dans nos expériences, nous avons évalué nos stratégies de gestion proposées pour différents ensembles d'applications actives (jusqu'à 10 applications) exécutées sur différentes tailles de plates-formes (par exemple : jusqu'à 24 noyaux dans un cluster, jusqu'à 8 clusters dans le système). Les résultats expérimentaux ont indiqué que : (1) la consommation moyenne d'énergie réalisée par NSACA n'est que de 1.93% inférieure à la solution optimale (c'est-à-dire par recherche Exhaustive), mais la vitesse de NSACA est 2674 fois plus rapide. (2) sans tenir compte du coût de la migration, un plus grand nombre de migrations dans la GSACA peut conduire à une réduction de la consommation moyenne d'énergie de l'ensemble du système. (3) sur la base des mêmes stratégies de gestion globale, GAPVC peut réduire la consommation moyenne d'énergie du système jusqu'à 57.65% par rapport à FCFS.

Nous nous intéressons également à la problématique de l'évaluation des méthodes de gestion dynamique de plates-formes. Dans le contexte de la modélisation et de la simulation au niveau système, nous apportons les contributions suivantes:

• Nous avons proposé une nouvelle approche de modélisation et de simulation de niveau du système qui permet l'évaluation des stratégies de gestion dynamique de plates-formes multi-core. Afin de favoriser la simulation de ces stratégies, l'approche proposée calcule dynamiquement les instants où les ressources de la plate-forme sont utilisées par les applications en cours d'exécution. Basé sur les instants de simulation calculés, un modèle de gestionnaire d'exécution est introduit pour contrôler à la fois l'ordre d'exécution des tâches et l'avancement du temps de simulation. Cette approche de simulation peut être utilisée afin de simuler différents nombres d'applications exécutées sur des platesformes hétérogènes dans des configurations de v/f variées. Contrairement à l'approche de simulation basée sur la trace, l'approche de simulation proposée réduit le nombre d'événements nécessaires et le nombre d'appels au moteur de simulation.

List of Figures app 1 and X 2 app 3 within a hyper-period for app 1 and app 3 ; combined execution traces in a cluster by (c) FCFS [START_REF] Khdr | Power density-aware resource management for heterogeneous tiled multicores[END_REF][START_REF] Kumar Singh | A hybrid strategy for mapping multiple throughput-constrained applications on mpsocs[END_REF] and (d) LASP [START_REF] Kumar Singh | Resource and throughput aware execution trace analysis for efficient run-time mapping on mpsocs[END_REF]. 4.6 The slot packing results of the GAPVC strategy when packing (a) slot.4 and (b) slot.6, based on X Results are given for FCFS [START_REF] Khdr | Power density-aware resource management for heterogeneous tiled multicores[END_REF][START_REF] Kumar Singh | A hybrid strategy for mapping multiple throughput-constrained applications on mpsocs[END_REF] and LASP [START_REF] Kumar Singh | Resource and throughput aware execution trace analysis for efficient run-time mapping on mpsocs[END_REF]. . . . . . . . . . . . . . . 6.9 Simulated dynamic power of app 1 captured with the advancement of simulation time. Results are given for u 1 according to different platform configurations. . . In this chapter, we first introduce the context of this dissertation. Then, we discuss about the research problems and present our contributions. Finally, the organization of the document is given.

Context

Technology Trends

Based on the emerging trend of chip manufacturing, Gordon Moore predicted in 1975 that the number of transistors on a chip doubles approximately every two years [START_REF] Gordon E Moore | Progress in digital integrated electronics[END_REF]. This prediction is called Moore's Law, and the period of doubling the integrated transistors on chips is often The Exynos 5 Octa (5422) is based on the Arm big.LITTLE architecture [START_REF] Kamdar | big. little architecture: Heterogeneous multicore processing[END_REF]. It integrates the so-called big cluster and little cluster in two different VFIs. The big cluster consists of four high-performance cores (ARM Cortex-A15), while the little one has four low-power cores (ARM Cortex-A7). Each cluster has its own L2-Cache to support the communication between cores. MediaTekHelio X30 (MT6799) [START_REF]Helio-x30[END_REF][START_REF] Yang | Dark silicon-aware hardware-software collaborated design for heterogeneous many-core systems[END_REF] is another example that integrates clusters with ARM Cortex-A73, Cortex-A53 and Cortex-A35. ARM big.LITTLE cluster-based platforms are widely used in the field of mobile phones to achieve performance and energy trade-offs.

Heterogeneous cluster-based platforms (e.g., ARM big.LITTLE) have the potential to be scaled to many cores, due to its inheritance of the design scalability feature of homogeneity (inside a cluster). It can be expected that there can be more different clusters and more cores inside each cluster in future systems, such as the platform studied in [4,[START_REF] Butko | Exploration of performance and energy trade-offs for heterogeneous multicore architectures[END_REF]. Our work focuses on cluster-based multi/many-core platforms, that consist of different numbers of clusters and different numbers of cores within each cluster. We consider both homogeneous and heterogeneous cluster-based platforms in our experimental evaluations. It is worth noting that the cluster-based platform having one cluster is equivalent to a homogeneous platform, while the heterogeneous cluster-based platform having one core in each cluster is equivalent to a generic multi-core platform.

Task-dependent Application

In the scope of this dissertation, we consider the execution of task-dependent applications on cluster-based platforms. A task-dependent application consists of a set of tasks, and each task represents an atomic, non-preemptive, code. In such an application, the output data of one task can be the input data of another one. It indicates that there exists precedence constraints between tasks, where the execution of one task may depend on the completion of other tasks. Figure 1.3 gives one example of a task-dependent application app 1 . This application has four tasks and its task2 executes after task1. According to the discussion in [START_REF] Choon | Energy conscious scheduling for distributed computing systems under different operating conditions[END_REF], task-dependent applications with precedence constraints are the most typical application model. Compared to the application model that considers tasks independent of each other, a task-dependent application model is more realistic to represent application behavior. In addition, we consider each application has a timing constraint. Each application executes periodically, and all application tasks have to finish their executions within a predefined period. It is possible to apply our work to sporadic tasks (i.e., tasks with irregular arrival time [START_REF] Sprunt | Aperiodic task scheduling for hard-realtime systems[END_REF]), which would be further discussed in Section 7.1.

For all application tasks, their executions are fulfilled by using processing and communication resources of platforms. Task mapping defines the allocation of application tasks on platform resources and the execution order (i.e., scheduling) of tasks on a given core. When mapped on platform resources, each application task takes execution time to process data. Besides, each task consume power to finish its execution. Power consumption can be categorized into dynamic and static parts. Dynamic power is proportional to the frequency and the square of the voltage (i.e., ∝ v 2 f ), which is consumed in charging and discharging the transistors associated with the completely redefined to support the execution of newly active applications. Therefore, runtime management has to adopt Dynamic Task Mapping techniques to adapt application task mapping to different use-cases accordingly.

Run-time Management for Energy Efficiency

Run-time management has to take energy efficiency into account in today's multi/many-core systems. Energy efficiency refers to using less energy consumption to execute the same applications. Energy consumption is the integration of its power consumption over time (i.e., Energy = P ower × T ime). Reducing energy consumption is significantly important to extend the battery life of systems. The increasing number of active applications and the rising complexity of platforms (e.g., increasing heterogeneity in resources, more v/f domains) make system energy efficiency a crucial optimization target. Dynamic Task Mapping plays an important role in energy efficiency. Applications mapped on platform resources consume power to finish their computational and communication activities. Due to the platform heterogeneity, tasks executed on different core types may have different execution time and power consumption, thus their energy consumption can also change. It means that appropriate utilization of platform resources can result in better energy efficiency for all application tasks in the system.

Additionally, energy efficiency is often achieved through Dynamic Voltage Frequency Scaling (DVFS) [START_REF] Torres | An introduction to multi-core system on chip-trends and challenges[END_REF][START_REF] Hsu | Compiler-directed dynamic voltage/frequency scheduling for energy reduction in microprocessors[END_REF]. It refers to the technique that dynamically modifies the operating frequency and voltage of cores that executes application tasks. According to [START_REF] Pinckney | Assessing the performance limits of parallelized near-threshold computing[END_REF][START_REF] Marco Et Gerards | On the interplay between global dvfs and scheduling tasks with precedence constraints[END_REF], there exists a relationship between operating frequency and voltage in CMOS circuits, which suggests that higher frequencies require the support of higher voltages. In the Samsung Exynos 5 Octa (5422) processor [START_REF]Exynos 5 octa[END_REF], users can only scale the operating frequency, based on which the operating voltage is automatically adjusted. Lower v/f levels can lead to the reduction of dynamic power consumption (due to ∝ v 2 f ) and increase the execution time of tasks (due to degraded processor performance) at the meantime. Dynamic energy consumption can be reduced if the decrease in power consumption is greater than the increase in execution time [4,[START_REF] Basireddy Karunakar Reddy | Inter-cluster thread-to-core mapping and dvfs on heterogeneous multi-cores[END_REF]. Note that static power/energy can be mitigated by shutting down certain platform resources but it is difficult to do so in the active mode of systems [START_REF] Pinckney | Assessing the performance limits of parallelized near-threshold computing[END_REF][START_REF] Chen | Energy optimization for real-time multiprocessor system-on-chip with optimal dvfs and dpm combination[END_REF].

DVFS can be applied at different granularities, depending on the supports of different platforms. Global DVFS allows all the cores in a system to share the same v/f level, while Per-core DVFS allows each core to have its own distinct v/f level. Per-cluster DVFS (i.e., VFI) is a compromise solution that allows several cores in a cluster to share the same v/f level, and different clusters can support different v/f levels. As the discussions in [START_REF] Torres | An introduction to multi-core system on chip-trends and challenges[END_REF][START_REF] Winter | Scalable thread scheduling and global power management for heterogeneous many-core architectures[END_REF], Per-cluster DVFS is widely used in advanced many-core systems, making a trade-off between the feasibility of global DVFS and the efficiency of per-core DVFS.

The objective of this dissertation is to propose run-time management strategies, employing dynamic task mapping and DVFS (i.e., per-cluster) together, to achieve energy efficiency of 1.2. Problem Statement multiple task-dependent applications executed dynamically on a cluster-based multi/many-core platform. Energy efficiency can be characterized by energy consumption or average power consumption in a certain period of time. In the experimental evaluations of this work, we focus on the optimization of the average dynamic power consumption of active applications.

Problem Statement

For the run-time management purpose of energy efficiency of task-dependent applications executed in cluster-based multi/many-core systems, we study two research problems on runtime management decisions (i.e., dynamic task mapping and DVFS control) and run-time management evaluation.

Coordination of Dynamic Task Mapping and DVFS Control

The first research problem studied in this dissertation work is: how to appropriately apply dynamic task mapping and DVFS to achieve energy efficiency of task-dependent applications in cluster-based systems. Energy efficiency of cluster-based systems has been studied for independent tasks, while it remains an open and complex question for task-dependent applications. On one hand, obtaining the optimal application mapping (for energy efficiency) is a NP-hard problem [START_REF] Shahid | On the mapping problem[END_REF][START_REF] Aydin | Energy-aware partitioning for multiprocessor real-time systems[END_REF], where the solution space exploration increases with the number of applications and the number of cores. The space exploration becomes even larger when DVFS is taken into account. On the other hand, different task mappings lead to different DVFS possibilities within a cluster and in the overall system, which complicates run-time management decision issues. This work aims to achieve near-optimal management solutions for both local optimization within a cluster and global optimization in the overall system.

Local optimization within a cluster

We first study the local optimization of energy efficiency within a cluster. At the cluster level, we consider homogeneous cores. For the purpose of energy efficiency, it is important to execute active applications (in a use-case) at a low cluster v/f level. This is a challenging mission due to the fact that simultaneous active applications in the same cluster compete for platform resources but share the same cluster v/f . The more used cores for one application means fewer cores for other applications, which may consequently worsen the performance of other applications. The poor performance of an application can significantly increase the cluster v/f , thereby increasing the power/energy consumption of other applications in the same cluster. However, existing works address the mutual influence between application mappings and cluster v/f configurations at the cost of increased strategy complexity. A management strategy that offers a good trade-off between energy efficiency and complexity is thus required.

Global optimization in the overall system

Then, we study the global optimization or energy efficiency in the overall system. At the chiplevel, application-to-cluster assignment plays a crucial role to achieve energy efficiency. In the scope of this work, we assume that each application can be executed in different clusters, but all tasks of an application are assigned to the same cluster to avoid communication costs among clusters. Different application-to-cluster assignments can lead to different possibilities of cluster v/f configurations and eventually change the system energy efficiency. In the case of heterogeneous platforms, the application-to-cluster assignment problem becomes even more complex because the performance and power characteristics vary from one cluster to another. Therefore, it is required to assign applications to clusters carefully to achieve the global optimization target. However, most existing application-to-cluster assignment solutions focus on 2-clusters platforms (e.g., ARM big.LITTLE). They may have limitations to deal with platforms with more different clusters or with more cores in a cluster.

Evaluation of Run-Time Management Strategy

With our proposed run-time management strategies, an interesting research problem arises: how to evaluate run-time management strategies to guarantee that non-functional requirements (e.g., application latency, resource usage, energy efficiency) will be respected during system execution. System-level modeling and simulation approaches allow early detection of potential design issues. However, most of the existing system-level frameworks only support a static mapping of applications on platform resources without considering the run-time management effects. It is required to extend system-level simulation-based approaches for run-time management strategy evaluations.

Main Contributions

Towards the above-mentioned research problems, this dissertation makes the following three main contributions.

Contribution 1: Run-time management for local optimization within a cluster

We propose a run-time management strategy to optimize average dynamic power consumption of multiple applications executed dynamically within a cluster. The overview of the run-time management for local optimization is presented in Figure 1.4.

For active applications within a cluster, the local management strategy is responsible for determining task-to-core allocation and scheduling and setting the cluster v/f level. The proposed strategy can achieve near-optimal energy efficiency of a cluster while meeting • Chapter 3 introduces the system models, including application, platform, and mapping models, used throughout the dissertation. Besides, in order to evaluate system energy efficiency, the power/energy models are presented and the models are validated by some measurements in the ARM big.LITTLE platform.

• Chapter 4 begins with an overview of run-time management for the local optimization of energy efficiency within a cluster. It then gives a summary of the existing strategies, which are particularly used as counterparts to our proposed management strategy. After that, the details of our proposed management strategy are demonstrated. Finally, the advantages of our proposed strategy are shown in the experimental results.

• Chapter 5 focuses on run-time management for the global optimization of energy efficiency in the overall system. It first presents an overview of this work. Then, it highlights the existing strategies that are particularly used as counterparts to our proposed application-to-cluster assignment strategy. Furthermore, the global management problem is defined, followed by the details of proposed management strategies. Finally, the experimental results are given.

• Chapter 6 concerns the system-level evaluation of run-time management strategies. First, it presents the motivation of this work. Then, it compares our proposed simulation approach to the existing trace-driven simulation approach. After, it presents the proposed system-level simulation approach and the experimental evaluations.

• Chapter 7 concludes the contributions presented in previous chapters and discusses some possible improvements in future work. Many efforts have been done to cope with run-time management of multiple applications executed dynamically on multi/many-core systems. This chapter first summarizes the existing works concerning dynamic task mapping strategies. Then, we discuss how state-of-the-art approaches apply dynamic mapping and DVFS together in cluster-based multi/many-core systems. After that, the existing management structures are compared. Finally, the state-ofthe-art system-level evaluation approaches for run-time management strategies are presented.

Dynamic Task Mapping

Task mapping can be performed either statically or dynamically. Static task mapping defines a mapping of application tasks on platform resources at design-time, and the mapping does 2.2. Applying Dynamic Task Mapping and DVFS the big clusters. In contrast, for the multimedia applications executed in the big cluster, if a multimedia applications can be executed at a lower v/f level than the minimum v/f level of the big cluster, the multimedia application can be migrated to the little cluster. Similarly, the work in [START_REF] Hsiu | User-centric scheduling and governing on mobile devices with big. little processors[END_REF] also supports application migration after DVFS. However, this work allows only one cluster to be activated at the same time due to the limitation of software supports. Therefore, when application requirements cannot be satisfied at the highest v/f level in the little cluster, this work migrates all applications to the big cluster.

The above-mentioned works aim to achieve energy efficiency while guaranteeing system performance in cluster-based multi/many-core systems. The first mentioned work consider periodic independent tasks executed in a system with 4 clusters, while the other mentioned works focus on the ARM big.LITTLE system with 2 clusters. These works apply dynamic mapping and DVFS in separated steps. Application mapping determines application performance, which can further affect the cluster v/f level required to meet performance constraints. Some mappings may have better energy efficiency at one v/f level but it may result in higher v/f configurations after DVFS, which ultimately leads to high energy consumption. Better management results can be achieved if the influence between the two techniques is taken into account.

Applying Dynamic Task Mapping and DVFS Coordinately

In recent years, the mutual influence between dynamic task mapping and DVFS in clusterbased multi/multi-core systems has received more attention. The coordination between the two techniques can be considered through estimations or iterative evaluations.

In [6], the authors aim to satisfy application performance requirements without violating the given power budget in the Arm big.LITTLE system. Unlike most existing works, this work establishes coordination between application mapping and DVFS by estimating performance gain/loss of applications. The management overview of this work is depicted in Figure 2.10. The work applies Low-Power-First strategy (i.e., LPF discussed in Section 2.2.1) during dynamic mapping (see step (1) of Figure 2.10). Every new active application is first mapped onto the little cluster. When the application does not meet the performance requirement with the highest resource usage in the little cluster, the application is mapped to the big cluster. Each time when a certain application is active or inactive, application remapping is performed to make utilization uniform on cores within a cluster. This work coordinates dynamic mapping and DVFS to respect the power budget within each cluster (see step ( 2)). On one hand, when the power budget is violated in a cluster, applications can be migrated to the other cluster. After estimation (see step (2.a)), if no application can meet its performance requirement in the new cluster, DVFS is used to reduce power consumption in the current cluster. On the other hand, when the power budget is honored in a cluster, the cluster v/f level can be reduced in the currently considered cluster. After estimation (see step (2.b)), if the new v/f level causes performance violation of an application, more resources are allocated to the application. 2.3. Management Structure can be independent or can communicate with each other. For independent distributed managers, it is assumed that some management decisions (e.g., applications and cores considered by each manager) are known at design-time. The distributed manager can be created individually for an application, or for a core, or a cluster, in order to achieve local optimization of a sub-system.

One Manager for One Application / One Core In [START_REF] Kobbe | Distrm: distributed resource management for on-chip many-core systems[END_REF], each distributed manager is created for a certain active application in homogeneous multi/many-core systems. Each manager (or agent) is created to map an application onto cores for better performance. When a new application is active, its manager randomly selects a region (with some close available cores) on the chip to run the application. Then the application manager starts to communicate with another application manager over a short distance to request some resources. If the performance gain of the requesting application is greater than the performance loss of the answering application, some resources are released from one application to another. The resource bargain between different application managers can be applied over larger distances (among cores) to achieve a wider range of coverage.

The work in [START_REF] Zipf | A decentralised task mapping approach for homogeneous multiprocessor network-on-chips[END_REF] presents a distributed management approach based on each core. A runtime heuristic algorithm is proposed to run on each processing core in a homogeneous multicore system (i.e., 9 cores). To reduce communication overheads, the heuristic migrates some tasks from one core to its neighbors based on its local workload. If no improvement is achieved from the migration, a larger neighborhood is considered. The algorithm stops when there is no more improvement after a certain number of repetitions (set by users).

The work in [START_REF] Shabbir | Distributed resource management for concurrent execution of multimedia applications on mpsoc platforms[END_REF] creates a manager for each application and for each core. Among these works, the number of managers is highly dependent on the number of active applications or the number of cores. As the number of supported applications and the number of cores increase, creating a manager for each application or each core is not scalable.

One Manager for One Cluster

The authors of [START_REF] Castilhos | Distributed resource management in noc-based mpsocs with dynamic cluster sizes[END_REF] create one manager for one cluster that executes multiple applications on several processing cores. It aims to optimize the communication energy of homogeneous multi/many-core systems. At system startup, it divides the platform into several fixed-size clusters and creates a manager for each cluster. During system execution, each cluster manager heuristically maps active applications within the cluster. When the resources are not sufficient, the cluster manager can borrow some resources from neighbor clusters. Thus the cluster sizes can change dynamically. The work in [START_REF] Faruque | Adam: run-time agentbased distributed application mapping for on-chip communication[END_REF] presents another example that also supports dynamic size of cluster.

As previously discussed in Section 2.2.2, the works in [START_REF] Zahaf | Energy-efficient scheduling for moldable real-time tasks on heterogeneous computing platforms[END_REF][START_REF] Khdr | Power density-aware resource management for heterogeneous tiled multicores[END_REF] respectively aims to achieve energy and power optimization within a cluster. These two works manage the executions of multiple applications on a cluster, assuming that the application-to-cluster allocation is known in advance. It means that the two works create a distributed manager for a fixed size cluster in the Arm big.LITTLE systems. There is no communication between the distributed managers in the little cluster and the big cluster.

Compared to the distributed management approaches that are based on one application or one core, creating one manager for one cluster helps to reduce the number of managers. Since the main feature of distributed management is its local optimization of the system, the division of sub-systems (e.g., in terms of an application, a core or a cluster) determines the scope of local optimization.

Hierarchical Management

Hierarchical management can provide management scalability with both local and global optimization. As shown in Figure 2.12 (c), managers are created to deal with a system at two or more levels of abstraction. According to [START_REF] Götzinger | The role of self-awareness and hierarchical agents in resource management for many-core systems[END_REF], managers at different levels consider local optimization of each sub-system and global optimization of the overall system.

2-Level Hierarchical Management

In 2-level hierarchical management approaches, a global manager and several local managers are created to perform run-time management. The global manager not only serves as a communication center for different local managers but also highly determines the management quality of the entire system.

The work in [START_REF] Quan | A hierarchical run-time adaptive resource allocation framework for large-scale mpsoc systems[END_REF] presents a 2-level hierarchical resource allocation framework on a heterogeneous platform, in which there are identical clusters on a chip (i.e., homogeneous at the chip-level) and each cluster contains different core types (i.e., heterogeneous at the clusterlevel). In the management framework, a global manager monitors the system workload and assigns active applications to clusters for workload balance at the chip-level. An application is allocated to one cluster to reduce the task communication overhead between different clusters. At the cluster-level, a local manager is created to allocate application tasks to cores within each cluster. The local management strategy is based on some prepared mappings of each application. For multiple active applications in a cluster, the local strategy first merges the prepared mapping of each active application together and then iteratively migrates tasks between cores to minimize core usage variation among cores.

The work in [START_REF] Del Mestre | Hierarchical adaptive multi-objective resource management for many-core systems[END_REF] presents 2-level hierarchical managers to enable multi-objective optimization in a homogeneous many-core platform, which has multiple clusters and supports per-core DVFS. The managers aim to reduce energy consumption, improve application performance and guarantee the power constraint. At the chip-level, the global manager verifies the power and resource requirements of a new active application and then chooses a cluster for the application. The global manager can also dynamically change the operation mode of a cluster according to the workload behavior. A cluster is set to energy mode or performance mode depending 2.4. Run-Time Management Strategy Evaluation at System-Level on whether the power budget is violated or not. Then, at cluster-level, a local manager is responsible for mapping or remapping tasks and setting v/f level of each core according to the operation mode.

More-Level Hierarchical Management

The work in [START_REF] Schor | Scenario-based design flow for mapping streaming applications onto on-chip many-core systems[END_REF] presents hierarchical organized run-time controllers to deal with application dynamism and architecture failures (temporary or permanent) of many-core systems with multiple clusters. The created controllers aim to deal with the behavioral or fault events in three different levels, which are core-level, cluster-level, and chip-level. The events that can not be handled at a low level can be delivered to a higher level.

As previously discussed in Section 2.2.1, the work of [START_REF] Somu Muthukaruppan | Hierarchical power management for asymmetric multi-core in dark silicon era[END_REF] applies dynamic mapping and DVFS separately to manage the ARM big.LITTLE system under restricted power budget. Here, we discuss the management structure of this work. This work presents a 3-level hierarchical management framework, which consists of different levels (i.e., chip-level, cluster-level, tasklevel) of controllers. The chip-level power allocator triggers the cluster frequencies and the quality of service (QoS) of the tasks. The per-cluster DVFS controller sets the cluster frequencies. The per-task QoS controller sets the task performance constraint, based on which per-task resource control determine resource allocation. There is a load balancer and migrator at the cluster-level, which migrates tasks between big and little cluster according to the performance requirements.

Compared to distributed management, hierarchical management has more flexibility due to its capability of local and global optimizations. Different optimization targets can be set to managers at different levels. The difficulty of hierarchical management is how to coordinate management between different management levels [START_REF] Götzinger | The role of self-awareness and hierarchical agents in resource management for many-core systems[END_REF].

Run-Time Management Strategy Evaluation at System-Level

In the state-of-the-art of system-level modeling and simulation approaches, a system model is captured according to Y-chart design methodology [START_REF] Kienhuis | A methodology to design programmable embedded systems[END_REF][START_REF] Pimentel | A systematic approach to exploring embedded system architectures at multiple abstraction levels[END_REF][START_REF] Lieverse | A methodology for architecture exploration of heterogeneous signal processing systems[END_REF], where application models and a platform model are built independently and further combined by mapping rules. As illustrated in Figure 2.13, application models capture the functional behavior of applications, while the platform model describes the hardware resources and hardware performance characteristics.

After the application models are mapped onto and then simulated with the platform model, the platform model accepts the computation and communication activities of applications as workloads [START_REF] Lieverse | A methodology for architecture exploration of heterogeneous signal processing systems[END_REF]. As a consequence, non-functional characteristics of applications can be estimated under different situations. The resulting performance may lead to the improvement of platforms, the adaptation of applications or the modification of mapping strategies. The

Summary and Discussion

This dissertation focuses on managing the energy efficiency of multiple applications executed dynamically on cluster-based multi/many-core platforms. In this chapter, related works are presented. The presented literature is summarized in Table 2.1. Firstly, we discussed the existing works about dynamic task mapping, a necessary technique to deal with application execution dynamism. We concentrate on hybrid mapping strategies, which realize dynamic mapping based on some design-time prepared mappings to reduce runtime computation burden. Generally, to reduce storage space, some optimized mappings are prepared for each application (highlighted in gray in Table 2.1) at design-time. At run-time, application mappings can be optimized independently or holistically. Our work focuses on holistic optimization, due to its capability of overall optimization for all active applications. We also apply independent optimization to perform application-to-cluster assignment in the overall system, because independent optimization has better feasibility and lower complexity.

Secondly, we discussed the existing approaches that apply dynamic mapping and DVFS techniques on cluster-based multi/many-core systems. Mapping and v/f configurations can be applied independently or coordinately, based on whether the mutual influence between the two techniques is predicted or evaluated during the decision-making process. Applying the two techniques coordinately can achieve better management results. However, more computation efforts have to be paid at run-time. The management problem becomes even more complex when hybrid mapping targets holistic optimization for all applications. Our work addresses the difficulties of coordinating hybrid mapping and DVFS to obtain run-time mappings for taskdependent applications with optimized cluster v/f levels. In contrast to the previous works, we aim at reducing strategy complexity of local optimization, and exploring management strategies to achieve global optimization of systems with different numbers of clusters (e.g., more than 2).

Thirdly, we discussed different management structures that can be used to realize hybrid mapping and DVFS techniques. Our work considers distributed and hierarchical structures to allow our management strategies to be scalable in large systems where many applications can be executed simultaneously on a large number of cores. On one hand, for cluster-based multi/many-core systems, we adopt the existing distributed management structure where a local manager is created for each cluster. In this dissertation, we propose a new local management strategy to achieve local optimization in one cluster, assuming the same strategy is applied in every cluster. Compared with existing related work, the proposed local management strategy requires fewer search iterations to achieve energy efficiency within a cluster. On the other hand, for global optimization in the overall cluster-based system, we apply the existing hierarchical management structure where the global manager is created at chip-level and local managers are created at cluster-level. Unlike most existing hierarchical management approaches, our work considers hybrid mapping and per-cluster DVFS holistically. The proposed approach can be scalable to homogeneous and heterogeneous cluster-based platforms with different numbers of clusters and different numbers of cores in each cluster.

From one use-case to another, our proposed run-time management strategies could update application mapping and cluster frequency configurations for energy optimization. During the system reconfiguration process, some time and energy would be spent to allow task/application migrations from one core to another (or from one cluster to another). Thus it requires weigh reconfiguration costs and benefits to make a reasonable run-time decision. Notice that system reconfiguration costs are highly dependent on the current use-case duration [START_REF] Quan | Towards self-adaptive mpsoc systems with adaptivity throttling[END_REF]. The work of [START_REF] Quan | Towards self-adaptive mpsoc systems with adaptivity throttling[END_REF] predicts use-case duration based on historical records. It stores 3 history samples (use-case duration) for each use-case and computes the probabilities of possible predictions. For a new use-case, this work checks its matched history pattern and then sums the probabilities of some promising predictions (where use-case duration is large enough) together. If the sum probability value is large than a predefined value, this work performs migration. For simplicity, our work assumes that each use-case executes long enough, and the system reconfiguration costs can be neglected compared to the reconfiguration benefits. Use-case duration prediction would be addressed in future work.

Finally, we discussed the state-of-the-art system-level modeling and simulation approaches that support the evaluation of run-time management strategies. These approaches use some design-time prepared mappings to guide run-time mapping simulation. This dissertation work presents a new system-level simulation approach, which is also based on design-time prepared data. Compared to the existing trace-driven simulation approach, our approach does not dispatch trace events and avoids model synchronization by computing the instants when application tasks are run on platform resources. Besides, our approach can be implemented without any modification of the used framework. This chapter presents the application, platform, application mapping and power and energy models. The models and notations defined in this chapter are used throughout the dissertation work.

Application Models

In this dissertation, we target data-flow applications (i.e., task-dependent applications), where the output of one task might be the input of other tasks [START_REF] Alan | Data flow program graphs[END_REF]. Some examples include multimedia and Digital Signal Processing (DSP) applications. Figure 3.1 gives an illustration of an application, denoted by app i . The application app i consists of a set of H computation tasks (or nodes):

T app i = {t 1,i , t 2,i , • • • , t H,i
} and a set of G communication edges (or arcs):

E app i = {e 1,i , e 2,i , • • • , e G,i
} representing dependencies among the tasks. Task and edge in app i are respectively indexed by t h,i and e g,i . This work focuses on periodic real-time data-flow applications and each application has a period P eriod app i , denoting the application execution deadline. The application execution time shall be within its corresponding period time.

In the scope of this work, Synchronous Data Flow (SDF) semantics [START_REF] Edward | Synchronous data flow[END_REF] is used to capture the data-flow activity of applications by specifying the number of data samples (or tokens) Table 3.1 presents some examples of cluster-based multi-core/many-core platforms. Intel Single-chip Cloud Computer (SCC) [START_REF] Howard | A 48-core ia-32 message-passing processor with dvfs in 45nm cmos[END_REF] and Kalray MPPA2 -256 [START_REF]Mppa[END_REF] have many homogeneous clusters (i.e., more than 10). Their homogeneous clusters support the same frequency range. On the other hand, Exynos 5 Octa [START_REF]Exynos 5 octa[END_REF] and MediaTekHelio [START_REF]Helio-x30[END_REF] have several heterogeneous clusters. Their clusters are based on the ARM Cortex family and different clusters support different frequency ranges. 

Mapping Model

As previously defined in Section 1.1.5, task mapping refers to the allocation of application tasks on platform resources and the execution order (i.e., scheduling) of tasks on a given core. When applications are mapped on platform resources, their computation and communication activities can be fulfilled after a certain time of execution. The time used to finish computation activities of a task (t h,i ) is defined as computation time (CompT ime h,i ), while the time used to finish communication activities between dependent tasks via an edge (e g,i ) is defined as communication time (CommT ime g,i ). CompT ime h,i and CommT ime g,i can be different due to different processed data, mapping strategies and platform configurations (processing element, v/f level, • • •). This work holds the same assumption as [START_REF] Quan | A hybrid task mapping algorithm for heterogeneous mpsocs[END_REF], that is, communication time within a core is very short and can be neglected.

In this work, we characterize a mapping by an execution trace, which comprises a set of instants defining the start time (x s ) and the end time (x e ) of each task when executed on platform resources. For a given task, x s t h,i (k) and x e t h,i (k) refer to the k th start and end instances of the task t h,i respectively. Figure 3.4 gives two examples of execution traces for app 1 mapped on two cores and four cores. In these examples, t 2,1 and t 3,1 are executed three times at each iteration. Due to the different mappings between Figure 3.4 (a) and (b), their obtained instants (i.e., from x s t 1,1 (1) to x e t 4,1 (1)) are different the change of task execution orders. Moreover, since power/energy is beyond the scope of this work. The energy and the average power consumption mentioned in the following refer to the dynamic part.

For multiple applications executed on a cluster-based multi/many-core platform, the system average power (P avg sys ) can be expressed as the sum of the average power of all active applications in all clusters as follows.

P avg sys = I i=1 J j=1 P avg app i (cluster j , f j ) (3.1)
where I and J are the total number of active applications and the total number of clusters, respectively. P avg app i is the average power of app i , and the power value depends on the cluster (e.g., cluster j ) where the application is executing and the cluster frequency configuration (e.g.,f j ).

For an application, its P avg app i within its application period (period app i ) can be computed as the amount of energy (E app i ) consumed in a unit of time as follows.

P avg app i (cluster j , f j ) = E app i (cluster j , f j ) P eriod app i (3.2)
The energy of an application (E app i ) can be computed as the sum of computation energy (E comp app i ) and communication energy (Ecomm app i ) as expressed in Eq. ( 3.3).

E app i (cluster j , f j ) = E comm app i (cluster j , f j ) + E comp app i (cluster j , f j ) (3.3) 
In this work, we focus on data-flow applications like multimedia applications. We assume that the communication cost (e.g., time and power) of an application is much smaller than its computation cost. Chapter 4 will use communication energy ratio (R comm ) to indicate the small ratio between communication energy and computation energy within a period for each application mapping. On the other hand, the E comp app i of an application can be estimated as the sum of energy consumed by all tasks, which can be expressed into Eq. ( 3.4).

E comp app i (cluster j , f j ) = H h=1 E h,i (cluster j , f j ) (3.4)
where E h,i refers to the computation energy of t h,i . As the energy of a task is the integration of its power (P h,j ) overtime, E h,i can be further estimated as follows.

E h,i (cluster j , f j ) = P h,i (cluster j , f j ) × CompT ime h,i (cluster j , f j ) (3.5)
For CMOS circuits, the works in [START_REF] Anantha P Chandrakasan | Low-power cmos digital design[END_REF][START_REF] Mei | Energy-aware preemptive scheduling algorithm for sporadic tasks on dvs platform[END_REF][START_REF] Steven M Martin | Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads[END_REF] define the dynamic power model by the square of the voltage (v) and the frequency(f ), as shown in Eq. (3.6).

P = ǫ × v 2 × f (3.6)
where ǫ is a constant coefficient that depends on the technology used to manufacture the circuits. Furthermore, according to [START_REF] Chen | Energy optimization for real-time multiprocessor system-on-chip with optimal dvfs and dpm combination[END_REF][START_REF] Mei | Energy-aware preemptive scheduling algorithm for sporadic tasks on dvs platform[END_REF][START_REF] Steven M Martin | Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads[END_REF], it exists an approximate relationship between the operating frequency and supply voltage, as shown in Eq.( 3.7).

f = (V -V th ) α K × L d (3.7)
where V th is the threshold voltage, L d is the logic depth, K is a constant, while α is a technology dependent parameter. Based on Eq.(3.6) and Eq.(3.7), the dynamic power can be expressed as a polynomial of frequency of degree λ (i.e., f λ ) [START_REF] Zahaf | Energy-efficient scheduling for moldable real-time tasks on heterogeneous computing platforms[END_REF]. λ is generally set to 3 in related works [START_REF] Pinckney | Assessing the performance limits of parallelized near-threshold computing[END_REF][START_REF] Hsu | Compiler-directed dynamic voltage/frequency scheduling for energy reduction in microprocessors[END_REF][START_REF] Marco Et Gerards | On the interplay between global dvfs and scheduling tasks with precedence constraints[END_REF][START_REF] Steven M Martin | Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads[END_REF] due to that fact that they assume there is an approximate linear proportional relationship between frequency and voltage.

Upon convenience, this work reuses the power model (Eq.(3.8)) proposed in [START_REF] Zahaf | Energy-efficient scheduling for moldable real-time tasks on heterogeneous computing platforms[END_REF], which considers the dynamic power of an application mapped on the Exynos.5422 [START_REF]Exynos 5 octa[END_REF] Arm big.Little cluster-based multi-core platform. Here, the dynamic power is estimated by the cubic of frequency (i.e., f 3 ).

P = ξ × f 3 (3.8)
where ξ is a coefficient that is dependent on the task and the allocated core type.

To describe the evolution of computation time with operating frequency, we use the traditional performance model [4,[START_REF] Hsu | Compiler-directed dynamic voltage/frequency scheduling for energy reduction in microprocessors[END_REF][START_REF] Mei | Energy-aware preemptive scheduling algorithm for sporadic tasks on dvs platform[END_REF] as shown in Eq.(3.9). W is the total number of execution cycles, which can be understood as the amount of work that has to be done. W can be known at a reference frequency (f 0 ) [START_REF] Zahaf | Energy-efficient scheduling for moldable real-time tasks on heterogeneous computing platforms[END_REF]. f 0 can be one any frequency level that is commonly supported in all clusters. Eq.(3.9) will be further verified in the next section.

CompT ime(f ) ≈ W f ≈ CompT ime(f 0 ) × f 0 f (3.9)
From Eq.(3.8) and Eq.(3.9), the dynamic computation energy in Eq.(3.5) can be written into Eq.(3.10). Let ξ h,i,j be the power coefficient of t h,i executed on cluster j . Note that now the energy equation has f 2 j instead of f 3 j .

E h,i (cluster j , f j ) = ξ h,i,j × CompT ime h,i (cluster j , f 0 ) × f 0 × f 2 j (3.10)
Moreover, the work of [START_REF] Butko | Exploration of performance and energy trade-offs for heterogeneous multicore architectures[END_REF] summarized the performance and power consumption ratios based on the publicly available information of ARM-cortex processors. Let R perf j and R power j be the performance/power ratios of t h,i executed on cluster j respectively, while cluster r is defined as a reference cluster.

R perf j = CompT ime h,i (cluster j , f 0 ) CompT ime h,i (cluster r , f 0 ) (3.11) R power j = P h,i (cluster j , f 0 ) P h,j (cluster r , f 0 ) = ξ h,i,j ξ h,j,r (3.12) 
Based on Eq.(3.10), (3.11) and (3.12), the average dynamic energy of a task (e.g., t h,i ) can be further written into Eq.(3.13).

E h,i (cluster j , f j ) = R power j × ξ h,i,r × R perf j × CompT ime h,i,r (f 0 ) × f 0 × f 2 j (3.13)
As a consequence, the system average power (P avg sys ) in Eq.(3.1) can be further written into Eq.(3.14), if communication energy is neglected.

P avg sys = I i=1 J j=1 E app i (cluster j , f j ) P eriod app i = I i=1 J j=1 H h=1 E h,i (cluster j , f j ) P eriod app i = I i=1 J j=1 H h=1 R power j × ξ h,i,r × R perf j × CompT ime h,i,r (f 0 ) × f 0 × f 2 j P eriod app i (3.14)
Eq.(3.14) reveals that system average power (P avg sys ) is highly dependent on the hardware features (e.g., R power j , R perf j and f j ) and application characteristics (e.g., ξ h,i,r , CompT ime h,i,r , and P eriod app i ).

Model Validation on ARM big.LITTLE platforms

In this section, ODROID XU3 board [50] consisting of a Samsung Exynos 5422 [START_REF]Exynos 5 octa[END_REF] ARM big.LITTLE clusters is used as experimental platform to verify our applied models. The verified models include v-f model (i.e., Eq.(3.7)), power model (i.e., Eq.(3.8)) and performance model (i.e., Eq.(3.9)). The ODROID XU3 board embeds INA231 current-shunt and power sensors [START_REF]Ina231 sensors[END_REF] to allow the measurement of the instant current and power consumption in the little cluster and the big cluster. The function /clock() provided by linux can be used to measure application execution time.

latency values together at different frequencies (from Figure 3.6). We achieve the same energy evolution as [4]. It can be observed that there exists a critical frequency (f crit )" [4,[START_REF] Jejurikar | Leakage aware dynamic voltage scaling for real-time embedded systems[END_REF] which minimizes the energy consumption of application execution. The arrow in figure (a) and (b) highlight the f crit for the little cluster and the big clusters respectively. The f crit values do not depend on the application, but depends on the platform characteristics. The f crit exists due to the fact that cluster voltage does not decrease with frequency (see Figure 3.5), which makes energy cannot keep decreasing with frequency. According to [4], it should avoid executing an application at frequencies below f crit for better system energy efficiency. In the scope of our work, we assume that scaled frequencies are above f crit .

Summary

In this chapter, we presented the system models that are used throughout this dissertation. We consider data-flow applications (i.e., with task dependence). Each application is captured by a SDF description. The targeted cluster-based multi/many-core platforms support per-cluster DVFS, and each cluster can be set to discrete frequency levels. The mapping of applications executed on platform resources is characterized by an execution trace, which defines the start instant and end instant of task executions. We also presented the power and energy models that are required for the evaluation of energy efficiency. Our used models are verified by some measurements on the ODROID XU3 board with the ARM big.LITTLE architecture. The measurement results show the same trend as the measurements in existing works. The power and energy models presented in this chapter will be used to evaluate our proposed management strategies in Chapter 4 and 5.

Our work verifies the power and energy models in ARM-based platforms by using the matrix multiplication application. Future work could perform more extensive validation experiments for different applications (e.g., computation-intensive, communication-intensive workloads) and for different platforms (e.g.,x86, RISC-V). Moreover, our power/energy models are built for each independent application. These models can be inaccurate when multiple applications executing simultaneously on the same platform. This is because the fixed coefficients of the models cannot capture run-time workload variations. The establishment of run-time power/energy models can be addressed in our future work. 

Overview

For cluster-based multi/many-core systems that support per-cluster DVFS, mapping application tasks and setting cluster frequencies play crucial roles to achieve energy efficiency, as discussed previously in Chapter 1. This chapter focuses on the energy efficiency of active applications executed locally in a given cluster.

For the local optimization in a cluster, executing multiple applications at a low cluster frequency for energy optimization is a challenge. Applications mapped into the same cluster influence each other due to possible platform resource competition and the common cluster frequency configuration. For an application with timing constraint, increasing the number of used processing cores allows a lower operating frequency level. However, using more cores for some applications leaves fewer available cores for other active applications. Consequently, the application that has the worst performance might determine the cluster frequency level and significantly increase the energy consumption. A management strategy is required for each cluster to determine the mapping of applications and set the cluster frequency level. Implementing such a management strategy can become very complex with the increasing application dynamism. Furthermore, the management strategy itself, as the mapping phase should not jeopardize the timing constraints of the applications. Therefore, an efficient management strategy with reduced complexity is of great importance.

In this chapter, we propose a new run-time management strategy to optimize energy consumption in a cluster while preserving the application timing and platform resources constraints. Like [START_REF] Zahaf | Energy-efficient scheduling for moldable real-time tasks on heterogeneous computing platforms[END_REF][START_REF] Khdr | Power density-aware resource management for heterogeneous tiled multicores[END_REF], this chapter assumes that each application is known to be executed in which cluster beforehand. The assumption is practical with reference to some mapping strategies of Arm big.LITTLE platforms. For example, according to resource demands of applications, we can assign applications that require more CPU resources to the big cluster, and applications that require fewer CPU resources to the little cluster [5]. Once certain applications are assigned to a certain cluster, the work presented in this chapter deals with task-to-core mapping (i.e., allocation and scheduling) and cluster frequency configuration within the cluster.

The main contributions of this work are:

• We propose a new run-time selection strategy to select the best prepared mapping of each active application. This strategy relies on hybrid mapping with applicationbased preparation (see Section 2.1.2). The design-time prepared data includes possible mappings for each application as well as the Minimum Allowed Frequency (MAF). This latter defines the minimum required frequency for a given prepared mapping in order to meet the application timing constraint. The selection management then tries to minimize the required frequency of the clusters according to the selected mappings.

• To further improve the energy efficiency, a new run-time mapping combination strategy is proposed to effectively combine the selected mappings of all active applications. The combination strategy can imply that some tasks can be merged on a core to reduce the resource usage of active applications. This combination strategy considers holistically the optimization for all active applications in the cluster (see Section 2.1.2).

• Several use-cases including up to 9 active applications (45 concurrent tasks in total) have been considered in order to evaluate the benefits of the proposed management approach 4.2. Summary of Related Work on Local Optimization in terms of energy efficiency and utilization of resources. Results show up to 206% improvements of energy efficiency when compared with state-of-the-art approaches.

Summary of Related Work on Local Optimization

As previously discussed in Chapter 2, this dissertation work focuses on hybrid mapping strategies with application-based preparation. At design-time, different optimized mappings can be prepared for each supported application. At run-time, mapping selection and mapping combination are performed to achieve a mapping solution for active applications on available platform resources. The following summarizes the existing mapping selection and mapping combination strategies, which are particularly used as counterparts to our proposed management strategy.

In multi/many-core systems that support per-cluster DVFS, different mapping selection strategies can have different impacts on cluster frequency configuration. A mapping-based selection strategy is presented in [3], where all the possible prepared mappings are exhaustively explored to find the best set for the active applications. Theoretically, this strategy could be extended to support frequency reduction for the best energy efficiency. However the complexity of this approach increases with the number of prepared mappings, the number of applications and the number of cores. A frequency-based selection strategy is presented in [START_REF] Zahaf | Energy-efficient scheduling for moldable real-time tasks on heterogeneous computing platforms[END_REF], where different available frequency levels are explored in an iterative process. The platform frequency is incrementally set until a possible set of prepared mappings are found for all the active applications. This approach can take a long time to reach convergence when the frequency increment is small. In this work, we introduce a new parameter defined as Minimum Allowed Frequency (MAF) as a guideline to make the selection at run-time among all the design-time prepared mappings and the cluster frequency for the active applications. This approach reduces the searching iterations of run-time selections while offering energy efficiency.

Once mapping selection for all active applications is accomplished, mapping combination is performed under platform resource constraints. The authors of [3] explore all the possible task allocations in an exhaustive approach to find the best energy efficiency. This approach presents a scalability limitation. On the other extreme, a First-Come-First-Served (FCFS)-based strategy is proposed in [START_REF] Khdr | Power density-aware resource management for heterogeneous tiled multicores[END_REF][START_REF] Kumar Singh | A hybrid strategy for mapping multiple throughput-constrained applications on mpsocs[END_REF] in order to increase the speed of the mapping combination process. However, each core is only used by one application and thus some processing resources can be wasted. For less resource usage, the Largest Available Slot Packing (LASP) strategy is introduced in [START_REF] Kumar Singh | Resource and throughput aware execution trace analysis for efficient run-time mapping on mpsocs[END_REF]. It allows different applications to be allocated to the same core at the cost of possible degradation of application performance. In this work, we propose a new run-time mapping combination strategy that reduces resource usage without sacrificing the performance of applications. Further comparisons of FCFS and LASP with our proposed mapping combination strategy are provided in Section 4.4.3. its start time (ST ) and end time (ET ). X 1 app 1 is thus characterized with only one slot whereas X 2 app 1 contains two slots. Different mappings can lead to different application latency. Let Latency app i refers as the latency of app i . It can be observed from Figure 4.3 that the latency (Latency app 1 ) of X 2 app 1 is smaller than that of X 1 app 1 due to the execution parallelism. As a result, the slack time of the two prepared execution traces are different with respect to P eriod app 1 . The slack time can be used by DVFS to achieve lower frequencies but still meeting the considered timing constraint.

(2) Minimum Allowed Frequency (MAF) Allowed frequencies for a given mapping are the frequencies that allow the mapped applications to respect their timing constraints. The allowed frequencies can be obtained by both, experimental measurements or application performance model (see Eq.(3.9) 6 ). In this work, only the minimum level of the allowed frequencies, defined as Minimum Allowed Frequency (MAF), of each prepared mapping is stored. Let M AF c i be the MAF of app i mapped on c cores (i.e., X c app i ). Different mappings of an application can lead to different M AF with respect to the same timing constraint. For the example in Figure 4.3, M AF 2 1 can be smaller than M AF 1 1 because the longer slack time of X 2 app 1 allows the application execution at a lower frequency level without timing violation.

Run-time Selection

For every new use-case, the run-time selection is performed to explore a set of prepared mappings and a cluster frequency level to optimize the energy efficiency of the active applications. As all active applications within a cluster share the same frequency level, the objective is to find the lowest common allowed frequency under application timing and platform resource constraints. The selected frequency level corresponds to one of the prepared MAFs for all the active applications. Once this common frequency is selected, it further determines the application mappings that are selected. The selection process can be illustrated by the example of u 2 = {app 1 , app 3 } in Figure 4.4.

Figure 4.4.a shows the average dynamic power evolution of the design-time prepared mappings for app 1 and app 3 (see Figure 4.1 for the SDF description). These curves are built based on the previously introduced power model (Eq.( 3.8)) in Chapter 3. In this example, only two mappings per application are prepared and their associated MAFs are depicted in the figure. As previously discussed in Section 4.4.1, M AF 2 1 is smaller than M AF 1 1 due to different execution parallelism. Similarly, M AF 2 3 is smaller than M AF 1 3 . As indicated from the figure, at different frequencies, the design-time mapping that should be selected for each application 6 Eq.(3.9) can be approximately written into Latency appi (f )

≈ Latencyapp i (f0)×f0 f ≤ P eriod appi , thus M AF = f ≤ Latencyapp i (f0)×f0 P eriodapp i

Run-Time Mapping Combination

After the active application's mappings selection (X c app i ), the selected mappings need to be combined in order to obtain a combined execution trace. In the mapping combination step, the selected design-time execution traces are processed in terms of slots. Our new combination strategy denoted Grouped Applications Packing under Varied Constraints (GAPVC) considers the advantages of the state-of-the-art strategies FCFS [START_REF] Khdr | Power density-aware resource management for heterogeneous tiled multicores[END_REF][START_REF] Kumar Singh | A hybrid strategy for mapping multiple throughput-constrained applications on mpsocs[END_REF] and LASP [START_REF] Kumar Singh | Resource and throughput aware execution trace analysis for efficient run-time mapping on mpsocs[END_REF].

In the following, we first introduce FCFS and LASP strategies through simple examples. Then, based on the trade-off between FCFS and LASP, the GAPVC strategy is presented.

Examples of FCFS and LASP

For simplicity of presentation, we consider the mapping combination of app 1 and app 3 (in u 2 = {app 1 , app 3 }) onto a cluster. Suppose the selected prepared execution traces are X 2 app 1 and X 2 app 3 , their slot-level execution traces are shown in Figure 4.5 (a) and (b) respectively. Notice that each design-time mapping contains information of task executions in one period. Figure 4.5 (a) extends the design-time prepared mapping X 2 app 1 (see Figure 4.3 (b)) within two P eriod app 1 , namely a hyper-period. As previously defined, a hyper-period refers to the least common multiple (LCM) of application periods. The same slots executed in different periods are defined as periodic slots (e.g., slot.1 and slot.5 in Figure 4.5). The periodic slots are normally packed onto the same cores, in order to reduce the overhead of migrating slots from one core to another during execution.

Based on the two design-time execution traces in Figure 4.5 (a) and (b), part (c) shows the mapping combination result of FCFS. It merges the selected execution traces for individual applications successively. It first allocates the slots of X 2 app 1 onto core 1 and core 2 (in Figure 4.5 (c)). After that, it allocates the slots of X 2 app 3 onto core 3 and core 4 . The combined execution trace uses 4 cores and keeps the application performance.

Figure 4.5 (d) shows the combined execution trace of LASP. The slot packing is restricted by the availability of each processing core (AC core i ), which defines the time at which core i is available to pack a slot. Slots are packed according to the ascending order (marked by the slot index) of the slot end time (ET ). The first slot (slot.1) is packed to an empty core (core.1) and then AC core 1 is updated to ET slot.1 . From the second slot, each slot tries to be packed in the used core with the least AC core i . If no used core is available, an empty core is chosen. Thus, slot.4 is packed to core 1 , which has the least AC core i among the used cores. This can entail the execution delay of the periodic slots slot.5 and slot.6. This execution delay reduces the slack time of the combined execution and can even result in application deadline violations. This performance sacrifice can reduce resource usage (3 cores).

In a combined mapping, application performance and resource usage are the two important criteria to achieve energy efficiency in a cluster. On one hand, FCFS has better application performance, which allows for a lower frequency configuration. On the other hand, LASP has applications can reduce the strategy complexity of mapping combination compared to LASP. In LASP, it aims to achieve a combined mapping for all active applications within a hyper-Algorithm 1: Grouped Applications Packing under Varied Constraints (GAPVC) Strategy already packed slot on the core (ET slot.1 ), while U C core 1 defines the Starting Time of the next periodic slot ST slot.5 on the core. To pack a slot (e.g., slot.s) on a core, ST slot.s of the slot should not be smaller than AC core i , while ET slot.s should not be larger than U C core i . U C constraints guarantee the availability of each core for all future periodic slots of packed slots. Following this rule, slot.4 is packed onto core 2 in GAPVC, while slot.4 is packed onto core 1 in LASP.

Input: u m = {app 1 , app
After finishing the packing of slot.4 and slot.5, AC core i and U C core i are updated accordingly in figure (b). By comparing the mapping combination results of FCFS and LASP (Figure 4.5 (c) and (d)), we can observe that the packing of GAPVC (see Figure 4.6) reduces resource usage but keeps the application performance. Note that the example in Figure 4.6 illustrates the packing of one application group. The packing of another group is performed in the remaining empty cores, which means that each core is only packed with slots from the same application group.

Experimental Evaluations

Simulation Setup

The proposed strategy is evaluated by simulation on Visual Studio in C++. The evaluation is performed for multimedia applications running on a single cluster under different possible usecases. As previously stated in Chapter 3, a cluster consists of homogeneous cores that support a specific range of frequencies. The cluster frequencies range from 0.2GHz to 1.4GHz with a step increment of 0.1GHz. Different resource constraints (i.e., N ) are taken into account in the following evaluations. The simulated applications, from now on denoted by app 1 to app 9 , are defined in Table 4.1. They were derived from reference applications (H263 encoder, H263 decoder, and JPEG decoder) with different input and output tokens. As indicated in Table 4.1, we prepared for each application multiple design-time mappings with different numbers of used cores and different M AF values. It might be possible that some mappings using different numbers of cores have the same M AF . In such cases, only the mapping requiring fewer core is kept to achieve less communication cost between cores (due to parallelism). Let app 2 be an example, the mappings using 1 core and 2 cores have the same M AF , and only 1-core mapping is kept in the design-time prepared data.

In this chapter, we use a parameter "communication energy ratio" (R comm ) to indicate the ratio between communication energy and computation energy within a period for each prepared mapping. Here, we set R comm arbitrarily for the prepared mapping using the maximum number of cores (highlighted in gray in Figure 4.1) for each application. Then, R comm of other prepared mappings of the same application are approximately set according to the proportional relationship 7 

between communication tokens (i.e., only counts communication 7 Rcommof another mapping

Rcomm of mapping * = communication tokens between cores of another mapping communication tokens between cores of mapping * , mapping * is the mapping with known R comm . between cores). In this way, the communication energy varies for different prepared mappings of each application.

For the 9 considered applications, there can be 511 (i.e., 2 9 -1) possible use-cases with different active applications for each one. Table 4.2 gives 8 example use-cases, which are used to specifically describe the characteristics of the evaluated strategies.

to the use-cases where the three mapping combination strategies achieve the same application latency, while FCFS uses more cores as it only executes tasks of one application onto one core. For the use-cases indicated by index (2), LASP leads to high application latency due to the execution delay of tasks. In u 5 , such execution delay even violates the application period constraint. The proposed GAPVC strategy makes a trade-off for the used cores between FCFS and LASP without sacrificing application performance.

General evaluations are performed for all the possible use-cases (i.e., 511) of the 9 considered applications. Compared to FCFS, GAPVC has less resource usage to achieve the same application latency in 287 (i.e., 56.2%) use-cases. Compared to LASP, GAPVC avoids task delay in 228 (i.e., 44.6%) use-cases and avoids timing violations in 21 (i.e., 4%) usecases. It means that the LASP strategy has 4% failed use-cases due to timing violation. As the experimental evaluation is performed under the constraint of sufficient cores, the three compared strategies have no failed use-case due to resource insufficiency.

(2) Run-time Selection and Run-time Combination

Our proposed run-time management strategy consists of the MAF-based selection strategy and the GAPVC mapping combination strategy (MAF-based&GAPVC). We compare our run-time management strategy with FCFS [START_REF] Khdr | Power density-aware resource management for heterogeneous tiled multicores[END_REF] and LASP [START_REF] Kumar Singh | Resource and throughput aware execution trace analysis for efficient run-time mapping on mpsocs[END_REF] based on the same selection strategy (MAF-based&FCFS, MAF-based&LASP). Additionally, in order to compare our results with the optimal solution, we also implemented the exhaustive approach presented in [3]. The algorithm has been extended to support frequency tuning after the exhaustive mapping selection and combination to further optimize the average dynamic power of active applications.

For different management strategies, Figure 4.8 compares the obtained dynamic power consumption for 8 considered use-cases, taking into account a different number of cores in the targeted cluster. For each use-case, the power values are normalized to the result obtained by the exhaustive search [3] under the constraint of 8 available cores (i.e., 4, 6, 8 cores). Observing the use-cases indicated by index (1), more available cores can lead to a lower dynamic average power of executed applications. This is because the availability of platform resources allows finding a lower common frequency with fewer iterations. We can also notice that in some cases (such as in u 8 under the constraint of 4 available cores) no solution can be found meaning that the mapping is not feasible for that platform in this execution scenario.

For the use-cases indicated by index (2), we can observe that our proposed strategy is able to achieve lower average dynamic power consumption (i.e., better energy efficiency) than MAF-based&FCFS. Since FCFS uses mores cores than GAPVC to get a combined mapping, it may need more iterations to find the feasible selection, which makes the common frequency higher. As a consequence, MAF-based&FCFS achieves the highest average dynamic power in u 1 when compared to the others, and no solution can be found in u 7 under the constraint of 6 available cores.

The observations of use-cases indicated by index (3) illustrate the limitation of the neglects the task dependencies, and consequently several explorations are needed to found a possible solution at a higher frequency level. In addition, more available cores can result in an even lower estimated starting frequency, which can also increase the number of exploration iterations in certain use-cases (i.e.,u 3 ). Finally, we can observe that the proposed MAF-based selection strategy requires the least number of iterations. Our proposed selection strategy reduces iterations by only exploring the frequency levels that are marked as common MAF (see Section 4.4.2).

(

2) Complexity of Run-Time Mapping Combination

For GAPVC, FCFS and LASP, the strategy complexity of mapping combination highly depends on the number of allocated slots in a use-case. FCFS presents the lowest complexity and it deals with the slots of each active application within one period. LASP has the greatest complexity, as it maps all the slots extended within a hyper-period of all the active applications directly. For many active applications, the large value of their hyper-period can make the number of extended slots huge. As discussed in Section 4.4.3, by dividing active applications into groups, GAPVC extends the slots for each grouped applications within a hyper-period with a smaller value. The result of summing all the slots of all grouped applications can be much less than the considered slots of LASP. We implemented the three mapping combination strategies on one little core and one big core of the Exynos5422 platform [START_REF]Exynos 5 octa[END_REF]. We measured the execution time of each use-case (among all the possible 511 use-cases). The average and the maximum values of the time required to obtain the combined mapping for a use-case are shown in Table 4 From the comparison in Table 4.4, we can observe that the complexity of GAPVC is greater than the FCFS one, but much significantly less than the complexity of LASP. Let the average results on the little core as examples. The average result of GAPVC is 3.18 (i.e., 0.137 0.043 ) times of FCFS, while the result of LASP is 16.24 (i.e., 2.225 0.137 ) times of GAPVC.

Summary and Discussion

For the local optimization of energy efficiency (characterized by average dynamic power) for multiple task-dependent applications executed dynamically in a cluster, this chapter presents a new run-time management strategy to determine task-to-core mapping (i.e., allocation and scheduling) and set the cluster frequency accordingly. The proposed management strategy is based on a design-time database, which includes multiple prepared mappings for each application and a new defined parameter Minimum Allowed Frequency (MAF) for each prepared mapping. For a set of active applications (in a use-case), a new run-time selection strategy is proposed to select a low cluster frequency and an efficient prepared mapping for each application based on MAFs. Moreover, a new run-time mapping combination strategy GAPVC is proposed to combine the selected mappings with less resource usage without sacrificing application performance. Combining the MAF-based selection strategy and GAPVC strategy it is possible to achieve lower average dynamic power with reduced complexity compared to stateof-the-art strategies. In our experimental evaluations, various case-studies with different sets of active applications are considered, demonstrating that our proposed run-time management strategy can reduce average power consumption by up to 206% when compared to the literature. The goal of this work can also be understood as mapping the active applications onto limited processing resources at a low cluster frequency level. The applications active in a cluster are assumed to be known beforehand and they are not allowed to execute in other clusters. The way to reduce the cluster frequency level is to appropriately deal with the varying resource competition from dynamic active applications via appropriately selecting prepared mappings, which have different trade-offs between resource usage and performance. From one use-case to another, the selected mappings and the combined mapping can be totally different. Some additional overheads can include the cost of migrating tasks from one core to another. The consideration of migration overheads can be further addressed in our future work.

The proposed management strategy is expected to achieve local optimization in each cluster. As previously presented in Figure 1.4, local management in different clusters can be structured in distributed management in a cluster-based multi/many-core platform. Energy efficiency can be achieved locally in each cluster. However, global energy optimization in the overall system may not be achieved. Because this chapter holds the assumption that applications are not allowed to execute in other clusters even if there is intense resource competition in a cluster. This limitation is considered in the next chapter.

Last but not least, the proposed run-time management strategy in this chapter is possible to be used to in multi/many-core platforms that support Global DVFS (all homogeneous cores in a chip share the same v/f level). This situation can be seen as only one cluster in platforms. Note that our proposed strategy does not consider the case of having heterogeneous cores in a cluster. Because different core types use different voltages at the same frequency level, having different types of cores in the same voltage/frequency island is not power/energy efficiency [START_REF] Pagani | Energy efficiency for clustered heterogeneous multicores[END_REF].

Overview

global management determines application-to-cluster assignments and sets cluster frequency levels, while the local management optimizes task-to-core allocation and scheduling in each cluster. The global management decisions are influenced by the local management in terms of resource usage in each cluster.

Based on the 2-level hierarchical management, this chapter makes the following contributions.

• For the global management, we present a 0-1 Integer Programming (IP) model 9 that integrates application-to-cluster assignments and cluster frequency configurations to formulate the average dynamic power of the overall system at optimized cluster frequencies.

The formulation relies on some design-time prepared data (application-based preparation, see Section 2.1.2), including one optimized mapping (i.e., with the best application performance) and its corresponding MAF for each application. The prepared MAFs are used to estimate the optimized cluster frequencies based on different application-tocluster assignments.

• To achieve the solution of the 0-1 IP optimization problem, it is not feasible to exhaustively search for the optimal solution in a reasonable time. Motivated by reducing strategy complexity, we propose a first global management strategy that aims to deliver near-optimal solutions. The strategy considers application-to-cluster assignments for all applications holistically in a use-case, allowing all migrations 10 .

• We propose a second global management strategy that considers assignments for applications individually. It assigns only the newly arrived applications and allows application migrations to a certain extent in each use-case. Compared to the first strategy, this strategy can reduce the number of application migrations with a limited impact on energy efficiency.

• Like most related works, these two proposed global management strategies use a simple mapping combination strategy (FCFS) to estimate the number of used cores in each cluster locally. To further reduce the number of used cores in each cluster without degrading application performance, we consider also the benefits of using the GAPVC combination strategy (see Chapter 4, Section 4.4.3) for the local management.

• We evaluate our proposed management strategies in different use-cases (i.e., different sets of active applications) and different platform configurations (e.g., different numbers of heterogeneous/homogeneous clusters, different numbers of cores in each cluster, . . . ).

Summary of the Related Work on Global Optimization

As previously discussed in Chapter 2 (Section 2.2), there has been some prior researches about the energy optimization of cluster-based multi/many-core systems. Most state-of-the-art strategies perform application-to-cluster assignment and cluster frequency configuration into two separated steps. Generally, application mapping is performed first, then cluster frequencies are decreased as much as possible under timing constraints. In this work, we formulate the relationship between application mapping and optimized cluster frequencies into a 0-1 IP model. For Arm big.LITTLE cluster-based platforms, applications are usually assigned according to their performance and resource demands. Particularly, the work of [START_REF] Somu Muthukaruppan | Hierarchical power management for asymmetric multi-core in dark silicon era[END_REF] employs a Low-Power-First (LPF) based strategy, where each application is attempted to be assigned to the low-power cores (i.e., little cores) first. If the performance constraint is not satisfied, highperformance cores (i.e., big cores) are used. After application assignments are finished, the cluster frequency is adapted with respect to a pre-defined power budget. For independent periodic tasks on a platform with more clusters, the work of [START_REF] Pagani | Energy efficiency for clustered heterogeneous multicores[END_REF] presents a Low-Energy-First (LEF) based mapping strategy. At fixed cluster frequencies (e.g., maximum level), the LEF strategy assigns periodic tasks successively to the cluster that can achieve the lowest energy consumption for each individual task. Then, each cluster reduces the frequency level as much as possible.

These two works give the highest priority to one core type when performing application assignments. For platforms with more cores in the clusters, we can predict that in the case of many active applications, the workload of the top-priority cluster can be very heavy. Consequently, the frequency and the energy consumption of one cluster can be very high, while other clusters can be empty without any application. Due to the workload imbalance between clusters, platform resources may not be fully utilized, thus missing out opportunities for further energy optimization. In contrast to previous works, we propose global management strategies (i.e., application assignments and cluster frequencies) to achieve near-optimal energy efficiency of task-dependent applications on cluster-based multi/many platforms. The nearoptimal solutions are evaluated based on our formulated 0-1 IP model. The proposed global management strategies can scale to platforms with more different clusters and more cores inside each cluster.

0-1 IP Formulations of Global Management

Based on the hierarchical management structure shown in Figure 5.1, this section focuses on the global management decision for a set of active applications (i.e., in a certain use-case) executed on a cluster-based multi/many-core platform. Here, we assume that all tasks of each application are assigned to the same cluster, but an application can change its execution in different clusters In the following subsections, the 0-1 IP problem can be stated as input, variables, constraints and the objective for a set of active applications in any use-case.

Input

The inputs of the 0-1 IP formulation include the active applications in the current use-case, the design-time prepared data, and the performance/power characteristics of the cluster-based platform.

• Active applications: for the current use-case

u m = {app 1 , app 2 • • • , app I }
(1) I: the number of active applications (2) P eriod app i : the period of each active application

• Design-Time Prepared Data: for each application (app i )

(1) c i : the number of used cores of the prepared execution trace (X c i app i ) (2) M AF c i i,r : the minimum allowed frequency of each application (app i ) executed on c i cores in the reference cluster (cluster r )

(3) CompT ime h,i,r (f 0 ): the computation time of each task (t h,i ) executed on cluster r at f 0 (see Eq.(3.10) in Chapter 3) (4) ξ h,i,r : the power coefficient of each task (t h,i ) executed on cluster r (see Eq.(3.10) in Chapter 3)

• Cluster-based multi-core/many-core platform:

(1) J: the number of different clusters (2) R power j : power ratio of each cluster (cluster j ) against the reference cluster (see Eq.(3.12))

(3) R perf j : performance ratio of each cluster (cluster j ) against the reference cluster (see Eq.(3.11)) (4) N j : the number of cores in each cluster (cluster j ) (5) {f j,1 , f j,2 , . . . , f j,max }: the supported frequencies of each cluster (cluster j ).

Variables

The application-to-cluster assignment problem is represented as a matrix.

0-1 IP Formulations of Global Management

• Application-to-cluster assignment matrix: As an active application can be freely assigned or migrated among different clusters, we define a (0, 1) variable a i,j .

a i,j = 1, if app i is assigned onto cluster j . 0, otherwise.

(5.1)

Constraints

• Application assignment constraints: Each application must be assigned to a cluster in each use-case.

J j=1 a i,j = 1, ∀i, a i,j ∈ {0, 1} (5.2) 
• Application timing constraints: The timing constraints of active applications are guaranteed by cluster frequency configurations. In this work, the optimized frequency level of each cluster is estimated by the prepared MAFs of active application and can be expressed as follows.

f j = max{M AF c i i,j × a i,j }, ∀i (5.3) 
where f j is the optimized cluster frequency of cluster j . M AF c i i,j is the minimum allowed frequency of app i in cluster j with respect to its timing constraint. M AF c i i,j can be obtained through measurements in different clusters or can be estimated based on M AF c i i,r as in Eq.(5.4).

M AF c

i i,j = R perf j × M AF c i i,r (5.4) 
• Cluster frequency constraints: The selected frequency of each cluster should be within the frequency range of a cluster.

f j,1 <= f j <= f j,max , ∀j (5.5) 
• Platform resource constraints: In each cluster, the number of used cores (N used j

) by the applications should not be larger than the number of cores in each cluster (N j ). Note that the N used j in each cluster depends on the applied local management strategy, which will be discussed in Section 5.4.3.

N j >= N used j (5.6)

Objective

The objective of the global management is to minimize the average power consumption of the system. This objective is expressed as Eq.(5.7) based on Eq.(3.14) (see Chapter 3), where P avg sys is related to the square of each cluster frequency (i.e., f 2 j ) and H denotes the number of tasks of each application. Since this work assumes that communication energy is much smaller than computation energy, communication energy is not taken into account. It is worth noticing that Eq.(5.7) will be used latter in the proposed global management strategies to estimate the average dynamic power of the overall system. min P avg sys = min

I i=1 P avg app i = min {f j ,a i,j } J j=1 f 2 j I i=1 a i,j × H h=1 (R power j × ξ h,i,r × R perf j × CompT ime h,i,r (f 0 ) × f 0 ) P eriod app i
(5.7) subject to Eq.( 5.2), (5.3),(5.5) and (5.6).

Observations

Based on this 0-1 IP formulation, we have the two following observations.

• Observation 1: As each cluster frequency (f j ) is determined by the maximum M AF c i i,r of the applications in the same cluster, assigning applications with close M AF c i i,r in a cluster can lower the average power consumption (P avg app i ) of other applications (having lower M AF c i i,r in the same clusters). Thus the applications with close M AF c i i,r should be assigned to the same cluster to optimize the P sys avg in Eq.(5.7).

• Observation 2: For a use-case with only one application to an empty cluster-based platform (without any already executed application), the average dynamic power of the application can be written into Eq.(5.8) based on Eq.(5.7). In Eq.(5.8), let

R 4 j denote R perf j × R perf j × R perf j × R power j
. The minimum P avg app i (i.e., P avg sys for one application) can be achieved in the cluster with the least R 4 j . Thus, the cluster with the least R 4 j has the highest priority to be used. Note that R 4 j only depends on core types of clusters. It means that homogeneous platforms have the same R 4 j for all clusters, while heterogeneous platforms have different R 4 j for all clusters.

P avg app i = (M AF c i i,j ) 2 × H h=1 (R power j × ξ h,i,r × R perf j × CompT ime h,i,r (f 0 ) × f 0 ) P eriod app i = (M AF c i i,r ) 2 × (R perf j ) 2 × H h=1 ( R power j × ξ h,i,r × R perf j × CompT ime h,i,r (f 0 ) × f 0 ) P eriod app i = R power j × (R perf j ) 3 × (M AF c i i,r ) 2 × H h=1 (ξ h,i,r × CompT ime h,i,r (f 0 ) × f 0 ) P eriod app i = R 4 j × (M AF c i i,r ) 2 × H h=1 (ξ h,i,r × CompT ime h,i,r (f 0 ) × f 0 ) P eriod app i (5.8)

Solution to the 0-1 IP optimization problem

This section presents two global management strategies to achieve the solution to the 0-1 IP optimization problem. As discussed in [4,[START_REF] Elewi | Energyefficient task allocation techniques for asymmetric multiprocessor embedded systems[END_REF], obtaining the optimal mapping is an NPhard problem. To avoid time-consuming searches (e.g., caused by exhaustive search), the two proposed global management strategies aim to achieve a near-optimal solution for the 0-1 IP problem. Our proposed global management strategies determine application-to-cluster assignments for the active applications in each use-case, and cluster frequencies are set under the guidance of MAFs to meet application time constraints (see Eq.(5.3)). Moreover, the global management strategies have to respect platform resource constraints (see Eq.(5.6)), while the resource usage of each cluster is dependent on the applied local management (task-to-core mapping) strategies (will be discussed in Section 5.4.3).

According to the previous observations (see Section 5.3.5), we propose two global management strategies. The first strategy Neighboring Search Application-to-Cluster Assignment (NSACA) considers assignments holistically for all active applications. The second strategy Greedy Search Application-to-Cluster Assignment (GSACA) considers assignments individually for each active application. Afterward, we discuss the impact of different local management strategies (due to different resource usages) on the global management decisions.

Neighboring Search Application-to-Cluster Assignment

The first global management strategy Neighboring Search Application-to-Cluster Assignment (NSACA) aims to achieve near-optimal energy-efficient application assignments on clusterbased systems. All active applications can be re-assigned in every use-case (i.e., without considering the application assignments of the previous use-case Release an already assigned new application that has lower M AF c i i,r and can provide available cores for the currently considered new application; In the first stage, newly active applications are ordered in a particular way (line 1-3). In our ordering approach, the newly active applications are divided into several groups according to descending order of M AF c i i,r . Here, GSACA aims to divide the newly applications into J (i.e., the number of clusters) groups averagely based on the number of newly active applications. Then, GSACA takes turns to index applications in different groups according to descending management is the input of the local management. On the other hand, the global management decision depends on the local management in terms of core utilization of each cluster (i.e., line 8 of NSACA algorithm, line 12 of GSACA algorithm).

In the local management, different task-to-core mapping strategies can be adopted. In this work, we consider FCFS and GAPVC application mapping combination strategies. As previously discussed in Chapter 4 (Section 4.4.3), FCFS and GAPVC perform task-to-core mapping without degrading application performance. Thus, cluster frequencies set by the global management can be respected.

In terms of strategy implementation, we use different methods for FCFS and GAPVC to coordinate with a global management strategy. Since FCFS directly applies the prepared mappings of active applications, the total number of used cores in a cluster is the sum of the used cores of the prepared mappings (N u j = I i=1 c i × a i,j , ∀i, c i is the number of used cores of the prepared mapping for app i ). Therefore, it is not necessary to execute FCFS to estimate core usage in a cluster. On the other hand, as GAPVC allows tasks of different applications to be allocated onto the same core, it is possible to use fewer cores than FCFS within a cluster (previously shown in Section 4.5.2). In this case, we cannot accurately estimate core usages without actually executing GAPVC in a cluster. In the work of this chapter, we execute GAPVC in each cluster when the cores used for the prepared mappings are not too much larger than the available cores (i.e., 0 < I i=1 c i × a i,j -N j <= 3). Here, 3 is set arbitrarily and this value can be changed by users according to the expected core savings of GAPVC (w.r.t. FCFS) in each cluster. In the cases when applications compete for limited platform resources, the less resource usage of GAPVC allows more applications to be assigned to more energy-efficient clusters (i.e., due to heterogeneous cluster or low cluster frequency). As a result, lower P avg sys can be achieved in the overall system. However, more computations can be spent to integrate GAPVC in the hierarchical management. Future work can be considered to predict the used cores within a cluster without actually performing GAPVC.

Experimental Evaluations

In the experimental evaluations, our proposed management algorithms are coded in C++ on Visual Studio. To go beyond the exiting small-sized heterogeneous cluster-based platforms (i.e., ARM big.LITTLE, Exynos 5422 [START_REF]Exynos 5 octa[END_REF]), we used 4 types of ARM-Cortex processors to compose platforms with different numbers of clusters and different numbers of cores within the cluster. Based on different resource constraints, we can evaluate our management strategies on heterogeneous and homogeneous multi/many-core platforms.

Table 5.1 depicts the physical characteristics of four commercial processor models (e.g., Cortex-A9, A15, A7, A17) that are considered in our experiments. The data of performance ratio (R perf j defined in Eq.( 3.11) and power ratio (R power j defined in Eq.( 3.12)) normalized to Cortex-A9 are obtained from [START_REF] Butko | Exploration of performance and energy trade-offs for heterogeneous multicore architectures[END_REF]. The frequency ranges of processors are set differently with 0.1GHz increments in the evaluations. The four processor models are used to create different clusters. In our experimental evaluations, heterogeneous platforms consist of different clusters (from cluster 1 to cluster 8 ), while homogeneous platforms consist of several cluster 1 . The simulated applications (app 1 to app 10 ) are defined in Table 5.2. They are derived from reference (H263 encoder and H263 and JPEG decoders) applications with different input/output tokens, based on the descriptions provided in SDF3 [START_REF][END_REF]. Note that the applications are the same with the simulated applications in the previous chapter (Chapter 4, Table 4.1). The table gives the number of used cores MAF values (obtained in the reference cluster Cortex-A9) of the design-time prepared mapping of each application. In this work, we have evaluated optimized mappings having different trade-offs between core usages and application performance at design-time, but only the mapping having the best application performance is stored in the design-time database.

Table 5.3 summaries the strategies that are considered in the global management and in the local management. Firstly, we compare five global management strategies that consider the assignments of all active applications in each use-case, regardless of whether any applications already existed in the previous use-case. Exhaustive strategy evaluates all possible applicationto-cluster assignments and apply the solution with the lowest P avg sys at scaled cluster frequencies satisfying the system constraints. LPF [START_REF] Somu Muthukaruppan | Hierarchical power management for asymmetric multi-core in dark silicon era[END_REF] and LEF [START_REF] Pagani | Energy efficiency for clustered heterogeneous multicores[END_REF] strategies assign all active applications to the clusters respectively with the lowest power consumption (i.e., Cortex-A7 due to the minimum R power j ) and the lowest energy consumption (i.e., Cortex-A17 due to the minimum R 4 j ) first. When the cluster with the lowest power/energy consumption is not possible to accept a new application, the cluster with the next lowest power/energy consumption is considered. As previously introduced, NSACA and GSACA are our proposed global management strategies. GSACA * is a modified version of GSACA, which considers the assignments of all active applications in a use-case allowing all migrations. GSACA * considers each application assignment individually, serving as the counterpart of NSACA (holistically). Secondly, we consider global management strategies that assign only the newly active applications (in each use-case) with limited migrations. Exhaustive M0 and GSACA M0 are two strategies that only assigns newly active applications in a use-case forbidding any migration. GSACA M1, GSACA M2 and GSACA M3 refer to the proposed Greedy Search strategies that allows different LPF Low-Power-First [START_REF] Somu Muthukaruppan | Hierarchical power management for asymmetric multi-core in dark silicon era[END_REF] strategy that considers assignments for all applications LEF Low-Energy-First [START_REF] Pagani | Energy efficiency for clustered heterogeneous multicores[END_REF] strategy that considers assignments for all applications NSACA Proposed NSACA that considers assignments for all applications holistically GSACA * Modified GSACA that considers assignments for all applications individually

Global Management

Exhaustive M0 Exhaustive strategy assigns only new applications and allows 0 migration per use-case (allow limited migrations)

GSACA M0

Proposed GSACA that assigns only new applications and allows 0 migration per use-case

GSACA M1

Proposed GSACA that assigns only new applications and allows 1 migration per use-case

GSACA M2

Proposed GSACA that assigns only new applications and allows 2 migration per use-case

GSACA M3

Proposed GSACA that assigns only new applications and allows 3 migration per use-case

Local Management FCFS First-Come-First-Served [START_REF] Khdr | Power density-aware resource management for heterogeneous tiled multicores[END_REF][START_REF] Kumar Singh | A hybrid strategy for mapping multiple throughput-constrained applications on mpsocs[END_REF] application mappings combination strategy GAPVC Proposed application mappings combination strategy in Chapter 4 numbers of migrations (i.e., Allow migration = 1, or 2, or 3, see Algorithm 3) in a use-case. Here, we set Allow migration to specific numbers to evaluate the benefit of application migrations. It would also be possible to set Allow migration as the percentage of the active applications. Note that we do not consider LPF and LEF with limited migrations, as migrations do not change the limitations of these two strategies (due to giving the highest priority to one cluster during application assignment, which will be discussed in Section 5.5.1). Finally, as the global management decisions can be different due to different applied local management strategies in each cluster. We consider two task-to-core mapping strategies, FCFS [START_REF] Khdr | Power density-aware resource management for heterogeneous tiled multicores[END_REF][START_REF] Kumar Singh | A hybrid strategy for mapping multiple throughput-constrained applications on mpsocs[END_REF] and GAPVC (proposed in Chapter 4), to analyze the benefit of using fewer cores in a cluster. These two local management strategies do not degrade application performance, thus avoiding changing : the P avg sys difference between the considered strategy (i.e., LPF, LEF, NSACA or GSACA * ) and Exhaustive.

clusters or low frequency configurations). On the other hand, more clusters can also lead to reduced P avg sys in the heterogeneous platforms (e.g., P avg sys = 1.850 on the 2×8 heterogeneous platform, P avg sys = 1.144 on the 4×8 heterogeneous platform). As applications with different M AF c i i,r can be separated to more different clusters, lower cluster frequencies can be achieved for less P avg sys . The trend of more platform resources (e.g., more clusters and more cores within the cluster) leading to reduced P avg sys can also be observed for homogeneous platforms in Table 5.4. However, the results for homogeneous platforms is not as obvious as heterogeneous platforms, because heterogeneous platforms can be more energy efficient.

The results obtained for LPF and LEF are very different from the optimal ones (Exhaustive), as shown in Figure 5.9. LPF and LEF give different assignment priorities to clusters. They might achieve close results with the optimal ones in small platforms (e.g., 4×4 and 2×8 platforms). For example, LEF has only 4.38% higher P avg sys than Exhaustive on the 4×4 heterogeneous platforms. However, with more cores in a cluster, more applications are assigned in one cluster while leaving other clusters empty without any assigned application. In such cases, the frequency of one cluster can be increased and consequently increases P avg sys of the system. On the 4 clusters × 24 cores heterogeneous platform, LPF and LEF respectively have 97.28% and 21.96% higher P avg sys than Exhaustive. Furthermore, Figure 5.9 shows that NSACA achieves very close results to the optimal ones under different platform constraints. The maximum difference between NSACA and Exhaustive are is 1.93% on heterogeneous platforms and about 1.03% on homogeneous platforms (see Table 5.4). NSACA achieves near-optimal global management results. It assigns applications with close M AF c i i,r to the same cluster and gives higher priorities to clusters with lower M AF c i i,r . NSACA considers assignments holistically for all active applications. For GSACA * that considers application assignments individually, it also achieves near-optimal results. The

Evaluation the Influences of Local Management Strategies

In the last experiment, we compare FCFS and GAPVC to evaluate their influences on the global management decisions. As previously discussed in Chapter 4 (Section 4.4.3), GAPVC can use fewer cores than FCFS to map application tasks onto cores within a cluster. The comparison results for four different global management strategies (i.e., Exhaustive, NSACA, Exhaustive M0, GSACA M2) based on the two local strategies are shown in Table 5.5. Note that this evaluation does not take LPF and LEF into account due to their limitation in energy efficiency on platforms with more clusters and more cores in each cluster.

Table 5.5 summarizes the improvement of GAPVC compared to FCFS among the 1023 usecases. First, we compare the failed use-cases (see column (1)) when using the two different local management strategies. Some use-cases fail to achieve a possible mapping solution due to insufficient platform resources for all the active applications. The column (1.1) lists the number of failed use-cases when using FCFS under the constraints of different platform sizes. For example, Exhaustive+FCFS has 273 failures on both 4x4 and 2x8 heterogeneous platforms. Because GAPVC uses fewer cores to achieve a combined mapping then FCFS, GAPVC has more potential to handle use-cases with more active applications and consequently results in fewer failures. The column (1.2) shows the number of reduced failed use-cases achieved by GAPVC (w.r.t. FCFS). Compared to Exhaustive+FCFS, Exhaustive+GAPVC has 66 (i.e., 66 273 = 24.18%) and 71 (i.e., 71 273 = 26.01%) fewer failures on 4x4 and 2x8 heterogeneous platforms respectively. Note that when platform resources are sufficient (e.g., 4x8, 6x8 platforms), no failed use-case can be observed.

Then, we compare FCFS and GAPVC in their common feasible use-cases (see columns (2)), where both local management strategies can achieve a feasible solution. Among all the common feasible use-cases (see column (2.1)), we list the number of use-cases where GAPVC can achieve lower P avg sys in the column (2.2). The maximum P avg sys reduction of GAPVC is shown in the column (2.3). It can be observed that GAPVC can achieve lower P avg sys than FCFS in some use-cases. For the 4x4 heterogeneous platform, Exhaustive+GAPVC achieves lower P avg sys than Exhaustive+FCFS in 58 use-cases (over 750 common feasible use-cases). Among the 58 use-cases, the maximum reduction of P avg sys is 5.73%. This is because the less core usage allows GAPVC assigns more applications to more efficient clusters (e.g., due to heterogeneous cluster or low cluster frequency). Particularly, more significant P avg sys reduction can be observed for Exhaustive M0+GAPVC (up to 57.65% w.r.t.Exhaustive M0+FCFS) and GSACA M2+GAPVC (up to 41.87% w.r.t.GSACA M2+FCFS). The two strategies only considers newly active applications and allows limited migrations (i.e., 0 and 2 respectively) per use-cases. Since GAPVC uses fewer cores for the mapping of the existing old applications, it allows more assignment possibilities for newly active applications and consequently achieves lower P avg sys . Note that when platform resources are quite enough, each global management strategy can achieve the same P avg sys by using FCFS or GAPVC in the local management. Such observations can be seen for the Exhaustive and NSACA global management strategies on 4x8 and 6x8 platforms, and also for the Exhaustive M0 and GSACA M2 global management strategies on 4x24 heterogeneous platforms. These observations suggest that with sufficient platform resources, our considered global management strategies can have the same application-tocluster assignments by using FCFS and GAPVC in the local management.

We also compare the total number of reduced cores in the common feasible use-cases (see column (2.4)) for the two local management strategies. For instance, on the 4x4 heterogeneous platform, Exhaustive+GAPVC uses 117 fewer cores than Exhaustive+FCFS over the 750 common feasible use-cases. On the heterogeneous 4x8 and 6x8 platforms, Exhaustive+GAPVC still uses fewer cores (up to 143) than Exhaustive+FCFS even though there is no difference of P avg sys between the two strategies. This indicates that for the same application-to-cluster assignments (due to the same P avg sys values), GAPVC can use fewer cores than FCFS to achieve a combined mapping in each cluster.

To sum up, GAPVC can lead to less resource usage within a cluster than FCFS. In particular, when platform resources are insufficient, GAPVC can result in fewer failed use-cases and lead to lower P avg sys . On the other hand, when platform resources are sufficient, our considered global management strategies can achieve the same P avg sys results (i.e., indicating the same applicationto-cluster assignments). In such cases, using GAPVC in the local management can still reduce the number of used cores in each cluster. These observations can be seen for different global management strategies when managing both heterogeneous and homogeneous platforms.

However, using GAPVC in the local management can lead to more computation than FCFS. Because GAPVC has to be actually executed in order to accurately estimate the core usages within a cluster (see Section 5.4.3). Consequently, It requires more calculations within a cluster to provide feedback (e.g., the number of cores used) for global management. Here, we measure the simulation time of each use-case (among the 1023 use-cases) when using FCFS and GAPVC in local management. The average simulation time used per use-case is shown in Table 5.6. ). When using GAPVC in the local management, we can observe the mapping time of the hierarchical management has increased by 26.7 times (NSACA on the 2x8 heterogeneous platform). Moreover, compared to small-sized platforms (i.e., 4x4, 2x8), the obtained time difference of big-sized platforms (i.e., 4x8, 6x8) can be smaller. For NSACA, the time difference decreases to 0.754 on the 4x8 heterogeneous platform. As big-sized platforms reduce the situations where active applications compete for limited resources (i.e., when 0 < I i=1 c i × a i,j -N j <= 3), GAPVC is less executed. The results in Table 5.6 suggest that when platform resources are competitive for all active applications, using GAPVC in the local management will cost more time to obtain management results. Spending more time on searching for management solutions also means more energy consumption. However, it is possible that no solution (or high P avg sys results) can be found without using GAPVC (or other local management strategies using fewer cores to get a mapping). The future work will further weigh the gains and losses of energy efficiency when using the GAPVC or other local management strategies.

Summary and Discussion

This chapter considers the global optimization of the average dynamic power consumption of cluster-based multi/many-core systems. For this purpose, hierarchical management is employed to deliver global optimization among clusters and local optimization inside each cluster.

For the global management, we presented an 0-1 IP formulation that integrates applicationto-cluster assignments and cluster frequency configurations, under application timing, platform resource and frequency constraints. To achieve near-optimal solutions of the 0-1 IP formulation in fast speeds, we propose two global management strategies. The first global management strategy NSACA considers the assignments of all active applications (in a use-case) holistically, allowing all possible migrations. The NSACA strategy can achieve near-optimal results. It assigns applications with close M AF c i i,r to the same clusters and iteratively improves the assignments through moving applications between two neighboring clusters. Our experimental evaluation shows that the average power consumption achieved by NSACA is only 1.93% worse than the optimal solution (i.e., by Exhaustive search), but the speed of NSACA is 2674 times faster. The second global management strategy GSACA considers assignments for applications individually. It greedily finds the most energy-efficient application-to-cluster assignment for each newly active application, and only migrates some old executing applications for further optimizations. The GSACA strategy allows users to control the number of migrations per usecase. When assuming migration overhead is 0, more migrations can lead to reduced average power consumption. Our experimental evaluation indicates that 0.22 more migration (i.e., the number of migrated applications) per use-case in GSACA can lead to 2.5% reduction of the average power consumption of the overall system.

In particular, our GSACA global strategy allows migrating some applications/tasks from one cluster to another to achieve lower P avg sys . The existing migration mechanisms include process recreation and process replication [START_REF] Holmbacka | A task migration mechanism for distributed manycore operating systems[END_REF]. During task migration, process recreation kills a process (e.g., task) in the source (e.g., core or cluster) and then creates a new process in the destination. Process recreation has high migration overheads as it not only migrates some data/states (e.g., stack, an contents of internal registers [START_REF] Wenzel Brião | Impact of task migration in noc-based mpsocs for soft real-time applications[END_REF]), but also migrates the process code. To avoid migrating process code, process replication keeps process copies in different clusters/cores. When a process is migrated, it suspends the process in the source and then restarts the process in the destination. Compared with process recreation, process replication has less migration data, but it consumes more memory space to store process copies. The selection of migration mechanism depends on the characteristics of the platform resources (e.g., available memory space, communication speed). To reduce migration costs, we can just migrate the applications without heavy migration code/data. Our future work should take into account migration overheads to provide a more accurate evaluation of the proposed strategies.

For the local management in each cluster, FCFS and GAPVC mapping combination strategies are applied to determine task-to-core mappings. Due to the less resource usage of GAPVC, it reduces the number of used core inside a cluster, making more applications assigned to more efficient clusters. Based on the same global management strategies, our experiments have shown that GAPVC can reduce system energy efficiency (i.e., P avg sys ) by up to 57.65% (the maximum P avg sys reduction in a use-case) compared to FCFS. However, GAPVC costs more computations to explore resource-efficient task mapping results. When platform resources are insufficient, using GAPVC in local management can take up to 26.7 times longer to obtain the management solution of a use-case. This is because we have to actually execute GAPVC to estimate the used cores within each cluster. The future work could consider predicting the used core of GAPVC without executing the strategy.

In this work, only one optimized mapping is prepared for each application at design-time. Since applications can be assigned to different clusters, each prepared mapping can be adjusted according to the impact of different core types. For multiple applications executed on a clusterbased multi/many-core platform, the reduction of cluster frequencies is mainly realized by assigning applications with close required frequencies in the same cluster. The average dynamic power of the overall system can be further reduced if more design-time mappings are prepared. In this case, resource usage of each cluster can be further reduced by appropriately selecting a prepared mapping for each application in the same cluster. Multiple prepared mappings for each application will be considered in further works.

Overview

Due to high-performance requirements and the increasing application dynamism on nowadays multi/many-core systems, run-time management strategies have been proposed to favor the achievement of non-functional requirements such as timing and power constraints of systems. To guarantee the non-functional requirements to be respected, extensive evaluation of run-time management strategies is imperative. In this chapter, we focus on introducing a system-level simulation approach to support run-time management strategy evaluations.

System-level modeling and simulation approaches favor early detection of potential issues and prevent costly design cycles. In existing system-level simulation-based approaches, a system model is formed by a combination of an application model and a platform model. Then these models can be simulated, as executable descriptions, under different situations to estimate system performance and optimize system design. However, in most of the existing frameworks, the mapping of applications on the platform resources is statically defined and cannot be modified during the simulation. If the application mapping has to be adapted to system dynamism, the simulation should be stopped and restarted each time when the mapping is modified. To allow more efficient evaluation of run-time management strategies, extending system-level simulation-based approaches is thus mandatory.

The main contributions of this chapter are as follows.

• We present a new system-level modeling and simulation approach to allow evaluations of run-time management strategies on multi/many-core systems. The proposed approach dynamically computes the instants when platform resources are used by the running applications. Using the computed simulation instants, the simulation model of the runtime manager controls both the order of task execution and the advancement of simulation time.

• We implement and validate the proposed approach using Intel Cofluent Studio modeling framework [START_REF]Intel cofluent studio[END_REF] and SystemC simulation language [START_REF][END_REF]. Through a case-study that considers seven applications (85 tasks in total) running on a heterogeneous clusterbased platform, the proposed approach demonstrates the abilities to evaluate different management strategies.

Comparison with Existing Trace-driven Simulation

As previously discussed in Chapter 2, the work of [START_REF] Quan | A hybrid task mapping algorithm for heterogeneous mpsocs[END_REF] presents an extension of the Sesame framework to facilitate system-level modeling and simulation of multiple applications dynamically executed on a multi-core platform. The work is based on the trace-driven simulation approach [START_REF] Lieverse | A methodology for architecture exploration of heterogeneous signal processing systems[END_REF][START_REF] Pimentel | A systematic approach to exploring embedded system architectures at multiple abstraction levels[END_REF]. In this chapter, a new simulation approach that applies a different principle to adapt to the application executions is presented. The differences between the trace-driven events (e.g., t 1 in part (b.1)) and communication events (e.g., read and write in part (b.1)).

When a new application event is identified during simulation, the Run-Time Manager (RTM) first checks the availability of the allocated hardware resource (e.g., core 1 ) and then dispatches the event onto the targeted resource. It means that some synchronizations have to be done to ensure the availability of the allocated hardware resources during event dispatching. As the simulation time advances, different application events are dispatched and the performance characteristics of the application can be evaluated. When the application mapping changes, the application events are re-dispatched and the application performance characteristics are adapted accordingly.

On the other hand, figure (c) presents the simulated result of our proposed simulation approach. For a given mapping (e.g., mapping (a.1)), our approach first computes the instants when platform resources are used by applications (e.g., see (c.1)). Then the RTM controls (starts or stops) the task execution at the different computed instants. When the application adapts its mapping (e.g., mapping (a.2)), our approach updates the task instants and then controls the task executions accordingly. Compared to the trace-driven simulation shown in Figure 6.1 (b), our proposed simulation approach does not dispatch application events and avoids model synchronization by computing the instants when platform resources are used. With the knowledge of the computed instants, our proposed approach controls when application tasks are run on platform resources.

Proposed Modeling and Simulation Approach

This section presents our simulation approach referring to the application and platform model presented in Chapter 3. Each application is characterized by its computation and communication behaviors through a SDF model. As we consider a dynamic execution scenario of multiple applications, the Use-case Definition module is introduced to define the set of successive use-cases (with different active applications) and their execution durations. The platform model is characterized by the hardware resources and their non-functional parameters (i.e., computation time, communication time, power), in order to evaluate the performance consequences of each task/edge executed on different core types and at different frequencies. In addition, management components are introduced to support dynamic mappings of multiple applications onto platform resources in varying use-cases. The management components are used to execute and evaluate a certain run-time management strategy. Like the state-of-theart simulation approaches [START_REF] Quan | A hybrid task mapping algorithm for heterogeneous mpsocs[END_REF][START_REF] Lemaitre | Dynamic migration and performance optimization of deterministic applications across platform components using intel cofluent studio[END_REF] for run-time management, our approach is also based on a design-time database.

As illustrated in Figure 6.2, we consider run-time management in three steps: (1) a designtime preparation, where one or several mappings for each application are prepared and stored in a database. (2) A run-time mapping process, performed when a new use-case is detected (Use-case Detection). In this step, a run-time mapping is established based on a particular 6.4. Evaluation of the modeling and simulation approach provided in SDF3 [START_REF][END_REF]. As shown in Figure 6.7, app 1 and app 3 (respectively app 2 and app 4 ) are set to consume different token sizes for processing at different data exchanging speed. The first five applications are representatives and require different computation time and power. To evaluate the scalability of the proposed simulation approach, app 6 and app 7 are arbitrarily created to significantly increase the number of tasks. They are created by duplicating app 1 5 and 10 times respectively, while the iterations execute successively in one period. Each application is constrained by a predefined period. For further evaluation, in the following, 13 possible usecases are defined with different active applications (seen on top right part of Figure 6.7). The duration of each use-case is not depicted in the figure for sake of clarity, but it can easily be set by the user.

We choose the Samsung Exynos 5422 [START_REF]Exynos 5 octa[END_REF] platform as the hardware target. As summarized in [START_REF] Butko | Exploration of performance and energy trade-offs for heterogeneous multicore architectures[END_REF], the computation time of a task presents a ratio (i.e., R perf j defined in Eq. (3.11), where j denotes the core type) of 1 : 0.5 when executed on the little (Cortex-A7) or the big (Cortex-A15) cluster. Besides, the ratio of power consumption (i.e., R power j defined in Eq.(3.12)) of a task executed on the little cluster and the big cluster is set to 1 : 4. This platform allows frequency scaling of each cluster, while the operating voltage is adapted to the frequency setting. We used the model of Exynos 5422 in [START_REF] Zahaf | Energy-efficient scheduling for moldable real-time tasks on heterogeneous computing platforms[END_REF] to model how computation time and dynamic power consumption of tasks change with frequency. In the case-studies, we assume that the processing/communication resources in each cluster are sufficient for the active applications of each use-case. It means that resource constraints are not taken into account in the case-studies for the reason of simplification. Note that whether considering resource constraints only affects task execution instants (due to the potential resource competition and communication congestion), and does not change the run-time mapping control processing (the main contribution) of the proposed simulation approach.

The hierarchical managers are built to implement some run-time management strategies of the system. The two local managers are individually used for each cluster to optimize task-tocore allocation and scheduling. In order to coordinate the local managers, the global manager determines application-to-cluster allocations and sets cluster frequencies. The management strategies are based on design-time prepared execution traces. For each application, the established X app i maps one task onto one core.

Validation of the Simulation Approach on Latency Criteria

In this part, the proposed simulation approach is applied for the evaluation of a local management strategy, which considers task-to-core mapping inside a cluster (i.e., on a homogeneous architecture). Here, we apply FCFS [START_REF] Khdr | Power density-aware resource management for heterogeneous tiled multicores[END_REF][START_REF] Kumar Singh | A hybrid strategy for mapping multiple throughput-constrained applications on mpsocs[END_REF] and LASP [START_REF] Kumar Singh | Resource and throughput aware execution trace analysis for efficient run-time mapping on mpsocs[END_REF] in the local manager to get a combined mapping of active applications in each use-case. Then the latency of each application can be obtained for the two different strategies. Figure 6.8 shows the latency evolution of app 1 in four different simulated use-cases. The simulations are performed in the little cluster at a fixed cluster frequency of f = 1.4 GHz. increase in some use-cases. 18 Depicts the latency of the application that has the highest variation in a use-case. Each value is normalized by the latency obtained by FCFS. 19 Represents the average dynamic power of the system at the scaled frequency. Each value is normalized by the system power obtained by Exhaustive.

Three Global Management Strategies are also compared. They differ in how they allocate applications to the clusters. Exhaustive refers to the strategy that assigns applications to the two clusters by exhaustively searching the best power efficiency. The High-Performance-First (HPF) strategy and the Low-Power-First (LPF) strategy assign all the active applications to the big cluster or to the little cluster respectively. Once the application allocation is done, cluster frequency is decreased as much as possible under timing constraints. Then FCFS is used in each local manager to determine task-to-core mappings. From Table 6.1, we can observe the poor power efficiency of using only one cluster (i.e., HPF and LPF).

Evaluation of simulation efficiency:

We also analyzed the scalability of the proposed simulation method by comparing it with the CoFluent default simulation method. The proposed approach simulates the execution of applications under the control of the Run-Time Manager (RTM), and different mappings can be provided for each application in different use-cases. On the other hand, without the RTM model, the default simulation approach only provides one static mapping of the applications in every use-case. In this work, we characterize simulation effort by the average time needed to complete one simulation run. Figure 6.10 shows the differences of the simulation effort 20 between the two approaches. The results include the execution traces processing and mapping control overheads.

We define an increasing number of successively simulated use-cases (see the first use-case → the last use-case in Figure 6.10) within a fixed duration of simulation time, allowing each application to execute 100 to 240 periods. When the number of simulated use-cases increases from 1 to 7, the number of considered tasks increases from 40 to 85, while the difference of the 20 Differences of simulation effort = Simulation effort of the proposed approach -Simulation effort of the CoFluent default approach Simulation effort of the CoFluent default approach Our simulation approach can be conveniently implemented without any modification of the used framework, making the approach portable to other simulation environments. The main difficulty is to correctly compute the instants of each application task executed on the platform resources under the control of a run-time management strategy.

Like the existing system-level modeling and simulation approaches with run-time management strategy extensions, the proposed approach explores and simulates run-time mapping based on a design-time database. This approach can support both hybrid and fully on-the-fly decision-making strategies. In hybrid strategy simulation, the database provides some optimized design-time mappings to establish a run-time mapping. In on-the-fly strategy simulation, the database provides the computation/communication time of task/edge on different platform resources and then task execution instants are computed at run-time according to the task execution order, the platform current state, and the applied strategy. In this chapter, we first summarize the work of this dissertation. Then, we discuss the possible improvements and future works.

Dissertation Summary

This dissertation work has focused on run-time management of multiple applications (i.e., each application has dependent tasks) executed dynamically in cluster-based multi/many-core systems. Dynamic task mapping and DVFS aim to be simultaneously applied to achieve energy efficiency while satisfying system constraints (i.e., application timing, platform resource, and platform frequency constraints). In this work, energy efficiency is characterized by the average dynamic power of active applications. To reduce run-time computation burdens and guarantee mapping feasibility, our work applies hybrid mapping strategies that fulfill dynamic mapping based on one or several design-time prepared mappings for each application.

Towards the run-time management purpose, two main research problems are studied. The first research problem is how to coordinate dynamic task mapping and DVFS. Most existing strategies separate dynamic task mapping and DVFS into two independent steps without considering their mutual influence. In our work, to estimate the impact of a prepared application mapping on the cluster frequency configurations, we have introduced a new parameter, the Minimum Allowed Frequency (MAF). MAF defines the minimum required frequency for a given prepared mapping to meet the application timing constraint. We have applied MAF to coordinate hybrid mapping and per-cluster DVFS according to two dimensions: local optimization within a cluster and global optimization of the overall system.

To achieve local optimization within a cluster, Chapter 4 has presented a novel management strategy to determine task-to-core mapping and cluster frequency configuration to achieve near-optimal energy efficiency of the cluster. At design-time, multiple mappings that have different trade-offs between application performance and core usage are prepared. At runtime, one prepared mapping is selected for each active application. However, many exploration attempts might be required to select application mappings that allow a low cluster frequency configuration without violating system constraints. To offer a good trade-off between management efficiency and complexity, a run-time selection strategy is proposed to select a prepared mapping for each active application and a low cluster frequency under the guidance of MAFs. Besides, a mapping combination strategy, GAPVC, is proposed to heuristically combine the selected application mappings with less resource usage without degrading the application performance. To achieve a near-optimal solution, the selection strategy and the mapping combination strategy are applied iteratively. Thanks to the guidance of MAFs, our run-time management strategy can exclude some unnecessary iterations to explore system configuration. Moreover, our experiments have demonstrated that the involvement of our selection strategy and mapping combination strategy can reduce average power consumption by up to 206% when compared to the literature. The proposed management strategy can be applied to each cluster to enable distributed management in the overall system.

For the global optimization of the overall system, we have proposed a hierarchical management strategy in which the global management determines application-to-cluster assignments and sets cluster frequencies, while the local management optimizes task-to-core mappings in each cluster. However, energy optimization in a global system has not been explicitly studied for task-dependent applications in platforms with more clusters (e.g., more than 2) in state-of-the-art strategies. In Chapter 5, we presented our management solution for homogeneous/heterogeneous systems with different numbers of clusters or with different numbers of cores inside each cluster. In our strategy, we assume that one mapping is prepared for each application at design-time and one application is assigned to one cluster at any given time. Under these assumptions, we formulate the global management problem into a 0-1 IP model. The 0-1 IP model takes use of MAF to estimate the optimized cluster frequencies based on different application-to-cluster assignments. To achieve the solution to the 0-1 IP optimization problem, two different global management strategies have been proposed. Firstly, a neighboring search strategy NSACA is proposed. It considers the assignments of all active applications (i.e., in a use-case) holistically, allowing all migrations of applications. The NSACA strategy reveals the application assignment principle for near-optimal results of the 0-1 IP formulation. That is to assign applications with close MAF to the same cluster. Our experimental evaluation shows that the average power consumption achieved by NSACA is only 1.93% worse than the optimal solution (i.e., by Exhaustive search), but the speed of NSACA is 2674 times faster. Moreover, a greedy search strategy GSACA that considers the assignments of active application individually is presented. Motivated by reducing the number 7.1. Dissertation Summary of migration, the GSACA strategy only assigns newly active applications in each use-case and allows limited migrations for further energy optimization. The number of allowed migrations can be controlled according to user requirements. Our experimental evaluation indicates that 0.22 more migration (i.e., the number of migrated applications) per use-case in GSACA can lead to 2.5% reduction of the average power consumption of the overall system. This evaluation was performed under the assumption that migration overhead is 0. Lastly, mapping combination strategies FCFS and GAPVC have been compared in the local management of each cluster. The comparison reveals that less core usage within a cluster achieved by GAPVC enables further energy optimization in the overall system. This is because more applications can be assigned to more efficient clusters (i.e., due to heterogeneous cluster or low cluster frequency). Based on the same global management strategies, our experiments have shown that GAPVC can reduce the average power consumption of system by up to 57.65% compared to FCFS (First-Come-First-Served application mapping combination strategy) in a use-case.

The second research problem addressed in this work is: how to evaluate run-time management strategies. Regarding this problem, most of the existing system-level simulationbased frameworks consider static application mapping and do not support run-time management effects. To enable run-time management property, we have proposed a new system-level modeling and simulation approach that allows flexible evaluation of different run-time management strategies, different numbers of active applications, and different platform configurations (e.g., heterogeneous processing elements, v/f configurations). In our simulation approach, the task execution instants of dynamic application mappings are first computed based on design-time prepared data. Then, according to the computed instants, the execution states of application tasks are controlled dynamically as simulation time advances. The proposed simulation approach has been validated in the Intel CoFluent framework. We have evaluated the scalability of the simulation approach. It has been observed that the influence of the proposed approach on the simulation effort is reasonable. Compared to the default Cofluent framework (for 85 running tasks), the simulation workload increased by less than 10.8%. But the default Cofluent framework simulates only one mapping at run-time.

In summary, this dissertation has presented our contributions on run-time management of multiple task-dependent periodic applications on cluster-based multi/many-core systems for energy optimization. Our proposed run-time management strategies can be partially applied to sporadic applications or tasks. Sporadic tasks refer to non-periodic tasks with minimum arrival time to ensure their schedulability [START_REF] Sprunt | Aperiodic task scheduling for hard-realtime systems[END_REF]. On one hand, our GAPVC mapping combination strategy (in the local management) assumes that application arrival time is predictable and known, but this is not the case for sporadic applications. Therefore, GAPVC is not feasible for sporadic applications. We can still use FCFS mapping combination strategy to set the scheduling of sporadic tasks. On the other hand, our MAF-based selection strategy (in the local management) and application-to-cluster assignment strategy (in the global management) can still be feasible for sporadic applications. The two strategies depend on design-time prepared MAFs. We can estimate the MAF for each prepared mapping of sporadic applications through scheduling analysis (i.e., demand bound function [START_REF] Sanjoy K Baruah | Preemptively scheduling hardreal-time sporadic tasks on one processor[END_REF]) or measurement.

Our current work has some limitations. In terms of application models, our work considers computation-intensive applications, assuming communication congestion and communication energy can be neglected. But this is not the case for communication-intensive or memoryintensive workloads. Further evaluations and improvements should be performed to adjust our proposed strategies to communication-intensive workloads. In terms of power and performance models, we built the models for each independent application. The models are fixed and are established according to design-time information. However, due to the influence of communication contention or memory demands, the models may be inaccurate when multiple applications are executing simultaneously at run-time. Moreover, our work assumes that all applications have the same power/performance ratios from one cluster to another. This is an ideal assumption in our global management strategies. Nevertheless, computation-intensive and communication-intensive can have different power/performance ratios in different platform configurations (i.e., resource heterogeneity and frequency configurations). More experimental measurements should be performed to validate the power and performance models.

Future Works

Future work can address the limitations of our work, that is, we can adjust our proposed strategies to various applications (e.g., computation-intensive, communication-intensive workloads) and conduct more measurements to verify our power/performance models. Additionally, we can also improve our work in other possible aspects.

Further improvement of management strategies

One of our future work will consider further optimization of run-time management strategies. Further improvements can be considered for both local optimization and global optimization.

• Optimizing mapping combination strategy in local management

For the local optimization within a cluster, we have proposed a heuristic strategy (i.e., GAPVC) to determine task-to-core mappings. However, our local management strategy has assumed that the communication cost between core is much smaller than computation energy, and the communication energy can be neglected. The possible communication congestion has been also neglected when performing application mapping combination at run-time. Communication congestion occurs due to the competition for platform resources from simultaneous communication activities. Figure 7.1 (a) gives one example of combined mapping (of app 1 and app 2 ) that neglects the possible communication congestion (highlighted in shadow). This Communication congestion can delay some task execution and degrade 7.2. Future Works have different trade-offs between application performance and used cores, providing more opportunities for resource optimization. As previously discussed in Section 5.4.3, fewer used cores within a cluster allows more applications executed in more energy-efficient clusters (i.e., due to heterogeneous cluster, low cluster frequency), and consequently improves the energy efficiency of the overall system.

In this case, we can firstly perform global management (application-to-cluster assignment and cluster frequency configurations) based on one prepared mapping (e.g., the mapping with the minimum MAF) of each application. Then, multiple prepared mappings can be considered in the local management (task-to-core allocation and scheduling) of each cluster to further optimize core usage. To this end, the NSACA, GSACA strategies based on one prepared mappings of each application can be directly applied in global management. The local management strategy based on multiple prepared mappings of each application should be slightly modified. In our modification, the local management is required to perform mapping selection, according to the cluster frequency determined by global management. In the example of Figure 7.2, app 1 and app 3 are assigned to the same cluster and the cluster frequency is determined by the application with the maximum MAF (M AF 2 1,j in part (a) of the figure). In the case of figure (a), the only one prepared mapping (i.e., X 2 app 3 is the prepared mapping for app 3 using 2 cores) for each application is selected directly. In the case of figure (b), multiple mappings can be prepared for an application. As previously discussed in Section 4.4.2, at different frequencies, the design-time mapping that could be selected for each application can be different. If a low frequency level can be supported by multiple application mapping, the mapping using fewer cores should be selected due to its less power consumption (i.e., less communication between cores). The part (b) of Figure 7.2 highlights the designated design-time mapping (bold line) selection for each application at different frequencies. In the example of figure (b), the cluster frequency is still M AF 2 1,j . The selected mapping for app 3 changes to X 1 app 3 , reducing 1 core of the prepared mappings. For more active applications with more prepared mappings, the total number of reduced cores can be more significant. Note that after the mapping selection, the selected mappings can be combined through different mapping combination strategies, such as FCFS and GAPVC.

Real implementation of management strategies

Our future work will consider real implementation of our proposed management strategies in real cluster-based multi/many-core systems, such as Odroid XU3 [START_REF]Exynos 5 octa[END_REF], Kalray MPPA [START_REF]Mppa[END_REF]. The implementation is feasible due to the support of some open-source tools. For example, PREESM [START_REF] Preesm | [END_REF] can simulate signal processing applications and generate application code for heterogeneous multi/many-core embedded systems. The Synchronous Parameterized and Interfaced Dataflow Embedded Runtime (SPIDER) [START_REF] Spider | [END_REF][START_REF] Miomandre | Demonstrating the spider runtime for reconfigurable dataflow graphs execution onto a dma-based manycore processor[END_REF] allows the implementation of run-time mapping strategies to adapt the allocation and scheduling of application tasks onto platform resources. The real implementation helps to make a practical evaluation of our management strategies. We can evaluate whether the strategy complexity, migration overheads, and communication congestion that can jeopardize application timing constraints.

Apply Dynamic Power Management (DPM) to optimize static energy

In the work of this dissertation, the proposed management strategies have focused on the optimization of average dynamic power consumption (e.g., or dynamic energy consumption) through dynamic task mapping and DVFS. Since static power/energy is unneglectable in future multi/many-core systems [START_REF] Kim | Leakage current: Moore[END_REF], future work can consider Dynamic Power Management (DPM) to optimize system static power. DPM dynamically shuts-down system components (e.g., cores) that are idle or underutilized, and wake up them when necessary. We can apply DPM with dynamic task mapping and DVFS to optimize both dynamic energy and static energy of systems. In this case, we can shut-down the idle cluster/cores after determining the application task map and cluster frequency configuration through our proposed hierarchical management (see Chapter 5). However, shutting-down and waking up clusters/cores will incur some penalties in terms of system response time and extra energy. The difficulty would be how to avoid DPM penalties outweighing its benefits.

Consider several other optimization objectives

In the future, we may consider several other optimization objectives that are not covered in this dissertation. For instance, energy efficiency is closely related to system thermal problems due to hot-spots in modern chips. Moreover, the overheating problem can worsen life-time reliability of systems. Finally, we can also address security issues of run-time managers. Since some possible attacks to a manager can mislead the manager to make unappropriated configurations of systems, and thus causes application performance violations or other serious problems (e.g., in terms of energy, thermal and reliability).
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  Figure 7.2 gives an example of the modification of the mapping selection in local management. The definition of the symbols used in the figure can be found in Chapter 5 (see Section 5.3).
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Table 2 .

 2 1: Comparison of state-of-the-art run-time management approaches

	Ref	Platform	Dynamic task mapping Design-time preparation Run-time configuration	Apply with DVFS	Mechanism
	[46]	Generic heterogeneous 2	Use-case-based	Apply optimized mapping		Centralized
	[47]	Heterogeneous cluster-based	Use-case-based	Apply optimized mapping		Centralized
	[60]	Homogeneous cluster-based	Use-case-based	Apply optimized mapping		Hierarchical (3-level)
	[7]	ARM big.LITTLE	Application-based	Optimize apps individually	Per-cluster DVFS (separately)	Distributed (cluster)
	[13]	Homogeneous	Application-based	Optimize apps individually		Centralized
	[48]	Homogeneous	Application-based	Optimize apps individually		Centralized
	[3]	Generic heterogeneous	Application-based	Optimize apps holistically		Centralized
	[8]	ARM big.LITTLE	Application-based	Optimized apps holistically	Per-cluster DVFS (coordinately)	Distributed (cluster)
	[14]	Homogeneous	Application-based	Optimize apps holistically		Centralized
	[34]	ARM big.LITTLE	Application-based	Optimize apps holistically	Per-cluster DVFS (separately)	Centralized
	[10]	Generic heterogeneous	Application-based	Optimize apps holistically		Centralized
	[58]	Special heterogeneous 3	Application-based	Optimized apps holistically		Hierarchical (2-level)
	[4]	Heterogeneous cluster-based	On-the-fly mapping	Per-cluster DVFS (separately)	Centralized
	[5]	ARM big.LITTLE	On-the-fly mapping	Per-cluster DVFS (separately)	Centralized
	[6]	ARM big.LITTLE	On-the-fly mapping	Per-cluster DVFS (coordinately)	Centralized
	[29]	Heterogeneous cluster-based	On-the-fly mapping	Per-cluster DVFS (coordinately)	Centralized
	[51]	ARM big.LITTLE	On-the-fly mapping	Per-cluster DVFS (separately)	Centralized
	[49]	ARM big.LITTLE	On-the-fly mapping	Per-cluster DVFS (separately)	Hierarchical (3-level)
	[59]	Homogeneous	On-the-fly mapping	Per-core DVFS (separately)	Hierarchical (2-level)
	[52]	Homogeneous	On-the-fly mapping		Distributed (app)
	[53]	Homogeneous	On-the-fly mapping		Distributed (core)
	[55]	Homogeneous	On-the-fly mapping		Distributed (cluster)
	[56]	Homogeneous	On-the-fly mapping		Distributed (cluster)
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 3 1: Examples of cluster-based multi/many-core platforms

	Examples	Architecture	Nb of clusters: J	Cluster description
				with supported operating frequency ranges
	SCC [19]	Homogeneous	24	2 Pentium cores: 125M Hz ∼ 1GHz
	MPPA2 -256 [20]	Homogeneous	16	16 RISC cores: 600M Hz ∼ 800M Hz
	Exynos 5 Octa [21]	Heterogeneous	2	4-core ARM Cortex-A7: 0.2GHz ∼ 1.4GHz
				4-core ARM Cortex-A15: 0.2GHz ∼ 2.0GHz
	MediaTekHelio X30	Heterogeneous	3	2-core ARM Cortex-A73: up to 2.6GHz
	(MT6799) [23]			

4-core ARM Cortex-A53: up to 2.2GHz 2-core ARM Cortex-A35: up to 1.9GHz

  2 

  • • • , app I }: active applications in a running use-case P eriod app i : period of each active application X c app i : selected execution trace of each active application N : available number of cores in the cluster {f 1 , f 2 , . . . , f max }: available cluster frequencies Output: X ′ Apps : a run-time combined execution trace using a maximum of N cores 1 Run-Time Mapping Combination; 2 //Step 1: Group active applications in several groups 3 Sort active applications in the ascending order of P eriod app i ; 4 for each application app i ∈ u m do 5 if P eriod app i : P eriod app i+n = 1 : N + ,app i , app n+1 ∈ u m then Group y = {app i , app i+n }; //group app i and app i+n together; Group y = {app i }; Step 2: Pack slots of grouped applications to cores Initialize nEmptyCore = N j ; 12 for each Group do

	7	else
	8	
	9	end
	10 end	
	11 //21	else
	22	Select U sedCore;
	23	end
	24	else
	25	Select F ixedCore;
	26	end
	27	Pack s to the selected core;
	29	end
	30	Update nEmptyCore ;

6 13

Extend X c app i of each paired applications within their hyperperiod; 14 Sort all slots in ascending order based on ET slot ; 15 Set AC core = 0, U C core = hyperperiod for empty cores; 16 for each slot "slot.s" ∈ Apps do 17 if packing of slot s is not fixed then 18 if (first slot || ((ST slot.s < AC U sedCore || ET slots.s > U C U sedCore ) && nEmptyCore>0)) then 19 Select EmptyCore; 20 nEmptyCore--; 28 Update AC SelectedCore and DC SelectedCore ; 31 end

Table 4 .

 4 1: Design-time prepared information of the considered applications

			Application		Prepared Mapping X c app i	
	Type	app i	Nb of tokens of each task	Period (µs)	Nb of used cores	MAF (GHz)	Rcomm 8
		app 1	{1, 6, 6, 1}	60	1 2	1.1 1.0	0 1.1%
	H263 decoder :4 tasks	app 2	{1, 4, 4, 1}	180	1	0.4	0
	:3 edges	app 3	{1, 264, 264, 1}	360	1 2	1.3 0.8	0 6.68%
		app 4	{1, 5, 5, 5, 1}	540	1 2	1.3 1.2	0 1%
	H263 encoder :5 tasks :4 edges	app 5	{1, 15, 15, 15, 1}	1080	1 2	0.9 0.7	0 2.25%
		app 6	{1, 45, 45, 45, 1}	1080	2	1.1	4.13%
					1	1.3	0
		app 7	{1, 7, 7, 7, 7, 1}	180	2	1.1	3.38%
					4	1.0	6.77%
	JPEG decoder :6 tasks :5 edges	app 8	{1, 9, 9, 9, 9, 1}	360	1 2	0.8 0.7	0 3.70%
					4	0.6	7.41%
		app 9	{1, 22, 22, 22, 22, 1}	1080	1 2	0.5 0.4	0 4.61%

8 

Rcomm: communication energy ratio indicates the ratio between communication energy and computation energy within a period for each prepared mapping.

Table 4 .

 4 , app 2 , app 3 , app 7 , app 8 , app 9 u 4 app 1 , app 2 , app 3 , app 4 u 8 app 1 , app 2 , app 4 , app 6 , app 7 , app 8

	Use-case	Active Applications	Use-case	Active Applications
	u 1	app 3 , app 4	u 5	app 1 , app 3 , app 5 , app 6
	u 2	app 1 , app 6 , app 7	u 6	app 5 , app 6 , app 7 , app 8
	u 3	app 2 , app 5 , app 6	u 7	app 1

2: Considered use-cases

Table 4 .

 4 .4. 4: The average and maximum execution time of mapping combination strategies on one little core and one big core of Exynos 5422 big.LITTLE platform (among the 511 use-cases)

	Cluster	Value	FCFS (ms)	LASP (ms)	GAPVC (ms)
	Little	Average	0.043	2.225	0.137
		Maximum	0.177	10.015	0.417
	Big	Average	0.011	0.693	0.037
		Maximum	0.030	3.211	0.135

  ). The NSACA strategy Algorithm 2: Neighboring Search Application-to-Cluster Assignment (NSACA) Strategy Input: design-time prepared data, active applications in the current use-case, application timing constraints, cluster-based multi/many-core platform Output: application-to-cluster assignments, cluster frequency configurations 1 //Stage 1: Active Application Order 2 Sort active applications in the descending order of M AF c i i,r ; 3 Average I active applications into J groups; 4 //Stage 2: Application Assignment Initialization 5 for each application group do Select an empty cluster with the lowest R 4 j and f j,max >= max{M AF c i avg sys when app i with the minimum M AF c i i,r is moved to cluster s+1 ; Greedy Search Application-to-Cluster Assignment (GSACA) Strategy Input: design-time prepared data, active applications in the current use-case, application timing constraints, cluster-based multi/many-core platform Output: application-to-cluster assignments, cluster frequency configurations 1 //Stage 1: New application order 2 Average I newly active applications into J groups, in decreasing order of M AF c i i,r ; 3 Order newly active applications in a particular way; 4 //Stage 2: New application assignment 5 for each new app i or released old app i do Select clusters that meet f j,max >= M AF c i i,j and N j >= N used

	Algorithm 3: j	;	
	7 8	if several potentially selected empty clusters then Only keep the one with the minimum R 4 j ;	i,j	};
	9	end	group	
	10	for each selected cluster cluster s do		
	11 12	if the first cluster s or P avg sys decreases then if N s >= N used s , depending on Local Management Strategy then
	15	end		
	16	end		
	17	end		
	16	end		
	17	end		
	18	end		
	19 end		
	20 //Stage 3: Application Assignment Improvement		
	29	if meet system constraints && P avg sys is lower then		
	30	Move app i to cluster s+1 ;		
	31	end		
	32	end		
	33 end		

6 7 for each app i do 8 if N s >= N used s , depending on Local Management Strategy then 9 Assign app i to the selected cluster; 10 else 11 if the current group is not the last group then 12 Move the current and remaining applications to the next group; 13 else 14 Assign the current application to the used clusters by backtracking; 15 Otherwise, application assignment fails; 21 Polish assignment by application switching in neighboring clusters; 22 for each used cluster s do 23 Estimate P avg sys when app i with the maximum M AF c i i,r is moved to cluster s-1 ; 24 if meet system constraints && P avg sys is lower then 25 Move app i to cluster s-1 ; 26 end 27 if fail to move app i to cluster s-1 then 28 Estimate P 6 13 Assign app i to cluster s ; 14 Update frequency level of cluster s ; 18 if No solution can be found for new app i then 19

Table 5 .

 5 1: Platform settings for 8 considered clusters

	Processor	R perf j	R power j	f min (GHz) fmax(GHz) fstep(GHz)	cluster j
	Cortex-A9	1	1	0.4	2.0	0.1	cluster 1 , cluster 5
	Cortex-A15	0.625	2.25	0.4	2.0	0.1	cluster 2 , cluster 6
	Cortex-A7	1.25	0.55	0.4	1.4	0.1	cluster 3 , cluster 7
	Cortex-A17	0.645	1.3	0.4	1.8	0.1	cluster 4 , cluster 8

Table 5 .

 5 2: Design-time prepared information of 10 considered applications

			Application		Prepared Mapping
	Type	app i	Nb of tokens of each task	Period (µs)	Nb of used cores c i	MAF (GHz) in Cortex-A9
	H26 decoder	app 1	{1, 6, 6, 1}	60	2	1.0
	:4 tasks	app 2	{1, 4, 4, 1}	180	2	0.4
	:3 edges	app 3	{1, 264, 264, 1}	360	2	0.8
	H263 encoder	app 4	{1, 5, 5, 5, 1}	540	2	1.2
	:5 tasks	app 5	{1, 15, 15, 15, 1}	1080	2	0.7
	:4 edges	app 6	{1, 45, 45, 45, 1}	1080	2	1.1
		app 7	{1, 7, 7, 7, 7, 1}	180	4	1.0
	JPEG decoder :6 tasks :5 edges	app 8 app 9	{1, 9, 9, 9, 9, 1} {1, 22, 22, 22, 22, 1}	360 1080	4 4	0.6 0.4
		app 10	{1, 12, 12, 12, 12, 1}	180	4	1.3

Table 5 .

 5 3: Considered Management Strategies for Comparison

	Strategies	Abbreviation	Management in each use-case
		Exhaustive	Exhaustive strategy that considers assignments for all applications
	Global Management		
	(allow all migrations)		

Table 5 .

 5 4: Normalized P avg sys of Exhaustive compared to the four different strategies

	Platform	Criteria	4x4	4x8	4x16	4x24	2x8	4x8	6x8	8x8
		Exhaustive Value	1.240	1.144	1.124	1.124	1.850	1.144	1.110	1.000
		∆LPF 13	22.96% 53.57% 91.78% 97.28%	5.46%	53.57% 65.93% 84.17%
	Heterogeneous	∆LEF	4.38%	8.96% 19.52% 21.96%	5.46%	8.96%	12.27% 15.49%
		∆NSACA	1.87%	0.94% 1.93%	1.93%	0.02%	0.94%	1.01% 1.35%
		∆GSACA *	6.84%	2.24% 0.51%	0.51%	0.67%	2.24%	1.10% 5.96%
		Exhaustive Value	2.309	2.287	2.286	2.286	2.588	2.287	2.250	2.248
		∆LPF	6.64%	23.46% 45.58% 49.58%	11.59% 23.46% 25.53% 25.62%
	Homogeneous	∆LEF	6.64%	23.46% 45.58% 49.58%	11.59% 23.46% 25.53% 25.62%
		∆NSACA	0.19%	1.03% 1.00%	1.00%	0.18%	1.03% 0.34% 0.02%
		∆GSACA *	0.11%	1.21% 1.06%	1.06%	2.19%	1.21% 0.17% 0.01%
	13 ∆Strategy=	P avg sys (Strategy)-P avg sys (Exhaustive) P avg sys (Exhaustive)						

Table 5 .

 5 5: Comparison of FCFS and GAPVC local strategies in hierarchical management among the 1023 use-cases

				(1) Among Failed u m	(2) Among common feasible u m 15	
		Global strategy	Local platform strategy	(1.1) Nb of failed u m of FCFS	(1.2) Reduced failed u m of GAPVC w.r.t. FCFS 14	(2.1) Nb of common feasible u m	Improvement of GAPVC w.r.t. FCFS (2.2) Nb of u m with (2.3) Max (2.4) Total P avg sys reduced less P sys avg reduction cores
			4x4	273	66	750	58	5.73%	117
		Exhaustive	2x8 4x8	273 0	71 0	750 1023	15 0	3.65% 0	253 143
			6x8	0	0	1023	0	0	104
	Heterogeneous	NSACA	4x4 2x8 4x8 6x8 4x4	322 318 0 0 300	24 21 0 0 55	701 705 1023 1023 723	6 8 0 0 68	9.50% 1.53% 0 0 57.65%	12 217 147 148 145
			2x8	279	63	744	37	32.91%	315
		Exhaustive M0	4x8	0	0	1023	12	21.85%	147
			6x8	0	0	1023	11	21.14%	121
			4x24	0	0	1023	0	0	287
			4x4	310	47	713	61	41.87%	106
			2x8	290	47	733	39	33.74%	292
		GSACA M2	4x8	0	0	1023	16	25.62%	174
			6x8	0	0	1023	11	29.79%	148
			4x24	0	0	1023	0	0	278
			4x4	273	66	750	24	2.82%	58
		Exhaustive	2x8	273	71	750	19	2.24%	288
			4x8	0	0	1023	0	0	102
			6x8	0	0	1023	0	0	19
			4x4	322	24	701	12	2.25%	24
	Homogeneous	NSACA	2x8 4x8 6x8 4x4	318 0 0 295	21 0 0 53	705 1023 1023 728	16 0 0 38	6.64% 0 0 12.16%	235 60 0 80
		Exhaustive M0	2x8	280	61	743	40	25.97%	301
			4x8	0	0	1023	0	0	124
			6x8	0	0	1023	0	0	26
			4x4	323	27	700	29	8.36%	106
		GSACA M2	2x8	286	47	737	48	25.97%	323
			4x8	0	0	1023	1	6.71%	121
			6x8	0	0	1023	0	0	15

Table 5 .

 5 6: Comparison of average time (ms) used to simulate a use-case for FCFS and GAPVC in hierarchical management Due to the scalability problem of Exhaustive and Exhaustive M0, we just consider NSACA and GSACA M2 global management strategies in the comparison. The table indicates that more simulation time is used per use-case for the global management strategies combining GAPVC (i.e., NSACA+GAPVC, GSACA M2+GAPVC

	Strategy	Platform	FCFS (ms)	Heterogeneous GAPVC (ms) Time difference 16	FCFS (ms)	Homogeneous GAPVC (ms) Time difference
		4x4	0.021	0.373	16.384	0.019	0.265	12.591
	NSACA	2x8	0.010	0.275	26.698	0.011	0.268	24.103
		4x8	0.035	0.061	0.754	0.029	0.032	0.102
		6x8	0.044	0.109	1.463	0.041	0.044	0.065
		4x4	0.043	0.557	12.040	0.041	0.637	14.478
	GSACA M2	2x8	0.028	0.178	5.278	0.291	0.176	5.056
		4x8	0.044	0.175	2.926	0.048	0.084	0.730
		6x8	0.069	0.161	1.336	0.069	0.076	0.113

Table 6 .

 6 1: Evaluation of run-time management strategies based on latency and power

	Compared Critera	Strategy	u 1	u 2	u 3	u 4	u 5	u 6
	Latency 18	FCFS	1	1	1	1	1	1
		LASP	1	1	1.43	1.39	1.18	1.64
		Exhaustive	1	1	1	1	1	1
	System Power 19	HPF	1	1	1	1.12	1.15	1.07
		LPF	1.68	2	1.68	1.89	1.94	2.14

• En outre, nous mettons en oeuvre et validons l'approche proposée à l'aide du cadre de modélisation d'Intel Cofluent Studio. Grâce à une étude de cas qui tient compte de sept applications (85 tâches au total) fonctionnant sur une plate-forme hétérogène basée sur des clusters, l'approche proposée permet d'évaluer différentes stratégies de gestion en fonction de la latence et du critère de consommation d'énergie. On a observé que l'influence de l'approche proposée sur l'effort de simulation est raisonnable. Par rapport au cadre de Cofluent par défaut (pour 85 tâches en cours d'exécution), la charge de travail de simulation a augmenté de moins de 10.8%.En résumé, ce travail de thèse étudie deux problèmes de recherche du point de vue des stratégies de gestion en ligne et de l'évaluation des performances. À l'avenir, nous pourrions apporter certaines améliorations possibles à ce travail. Tout d'abord, nous pouvons envisager la mise en oeuvre réelle de nos deux stratégies de gestion proposées dans de véritables systèmes multi/multi-coeurs basés sur des clusters, tels que la plate-forme ARM big.LITTLE (Odroid XU3) et Kalray MPPA. Deuxièmement, nous pouvons envisager d'autres critères d'optimisation (e.g., fiabilité thermique, sécurité) dans les stratégies de gestion. Troisièmement, il est possible d'étendre l'approche de simulation que nous proposons (pour l'évaluation des stratégies de gestion) à d'autres cadres de simulation de niveau système.

Generic Heterogeneous: a platform contains different type of cores showing different power/performance characteristics (e.g., GPP, DSP).

Special Heterogeneous: a platform has the same clusters (i.e., homogeneous) in the system and different core types ((i.e., heterogeneous) within a cluster.

0-1 IP model: a specific type of integer programming where the decision variable is 0 or 1.

application migration: from the current use-case to the next, the number of the current active applications that change their assignments from one cluster to another.

Reduced failed u m of GAPVC w.r.t. FCFS = Nb of failed u m of FCFS -Nb of failed u m of GAPVC.

Common feasible use-cases: the use-cases where both FCFS and GAPVC achieve a mapping result.

Time difference:∆t = t GAP V C -t F CF S t F CF S
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Notations

• app i represents a possible running application.

•

} denotes a set of computation tasks for app i , where a task is indexed by t h,i and H is the total number of tasks in the application.

} denotes a set of communication edges for app i , where an edge is indexed by e g,i and G is the total number of edges in the application.

• P eriod app i represents the period of app i .

• u m = {app 1 , app 2 • • • , app I } denotes a set of active applications in use-case u m , indexed by app i .

• I represents the number of active applications in a use-case.

• cluster j represents a cluster of the cluster-based multi/many-core platform.

• J represents the total number of clusters on the considered cluster-based platform.

• N j represents the total number of cores in cluster j .

• cluster r represents a reference cluster of the cluster-based platform.

• R power j represents the power ratio of cluster j compared to cluster r .

• R perf j represents the performance ratio of cluster j compared to cluster r .

• {f j,1 , f j,2 , . . . , f j,Fmax } denotes the set of supported frequency levels of cluster j .

• f j represents the optimized frequency level of cluster j .

• CompT ime h,i (cluster j , f j ) represents the computation time of t h,i executed on cluster j at f j .

• CommT ime g,i (cluster j , f j ) represents the communication time of e g,i executed on cluster j at f j .

• Latency app i represents the latency of app i .

• M AF c i,r represents the Minimum Allowed Frequency of app i executed on the reference cluster cluster r using c numbers of cores.

• M AF c i,j represents the Minimum Allowed Frequency of app i executed on cluster j using c numbers of cores.

• A = [a i,j ] I×J denotes the matrix of application-to-cluster assignment.

} represents the execution trace of the design-time prepared mapping for app i mapped on c cores. x s t h,i and x e t h,i respectively denote the start time and end time of t h,i , and k refers to the k th instance of a given task. Note that when only one mapping is prepared (in Chapter 5), X app i is used to denote the prepared mapping for simplify reason.

• X ′

Apps (u m ) represents the execution trace of the combined mapping for active applications in u m .

• f 0 represents the reference frequency that used to get some design-time information (e.g., computation time, power).

• ξ h,i,j represents the power coefficient of t h,i executed on cluster j .

• P h,i (cluster j , f j ) represents the dynamic power of t h,i executed on cluster j at f j .

• E g,i (cluster j , f j ) represents the dynamic energy of e g,i executed on cluster j at f j .

• P avg app i (cluster j , f j ) represents the average dynamic power of app i executed on cluster j at f j .

• P avg sys represents the average dynamic power of all the active application on systems.

• hyper -period represents the hyper-period of active applications, which is the Least Common Multiple (LCM) of the periods of active applications.