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Abstract

For nearly two decades, patrolling has received significant attention from the multiagent
community. Multiagent patrolling (MAP) consists in modelling a patrol task to optimise
as a multiagent system. The problem of optimising a patrol task is to distribute the most
efficiently agents over the area to patrol in space and time, which constitutes a decision-
making problem. A range of algorithms based on reactive, cognitive, reinforcement
learning, centralised and decentralised strategies, amongst others, have been developed to
make such a task ever more efficient. However, the existing patrolling-specific approaches
based on supervised learning were still at preliminary stages, although a few works
addressed this issue.

Central to supervised learning, which is a set of methods and tools that allow inferring
new knowledge, is the idea of learning a function mapping any input to an output from a
sample of data composed of input-output pairs; learning, in this case, enables the system
to generalise to new data never observed before.

Until now, the best online MAP strategy, namely without precalculation, has turned
out to be a centralised strategy with a coordinator. However, as for any centralised
decision process in general, such a strategy is hardly scalable. The purpose of this
work is then to develop and implement a new methodology aiming at turning any
high-performance centralised strategy into a distributed strategy. Indeed, distributed
strategies are by design resilient, more adaptive to changes in the environment, and
scalable. In doing so, the centralised decision process, generally represented in MAP
by a coordinator, is distributed into patrolling agents by means of supervised learning
methods, so that each agent of the resultant distributed strategy tends to capture a part
of the algorithm executed by the centralised decision process. The outcome is a new
distributed decision-making algorithm based on machine learning. In this dissertation
therefore, such a procedure of distribution of centralised strategy is established, then
concretely implemented using some artificial neural networks architectures.

By doing so, after having exposed the context and motivations of this work, we pose
the problematic that led our study. The main multiagent strategies devised until now as
part of MAP are then described, particularly a high-performance coordinated strategy,
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which is the centralised strategy studied in this work, as well as a simple decentralised
strategy used as reference for decentralised strategies. Among others, some existing
strategies based on supervised learning are also described. Thereafter, the model as well
as certain of key concepts of MAP are defined. We also define the methodology laid
down to address and study this problematic. This methodology comes in the form of
a procedure that allows decentralising any centralised strategy by means of supervised
learning. Then, the software ecosystem we developed for the needs of this work is also
described, particularly PyTrol a discrete-time simulator dedicated to MAP developed
with the aim of performing MAP simulation, to assess strategies and generate data, and
MAPTrainer, a framework hinging on the PyTorch machine learning library, dedicated
to research in machine learning in the context of MAP. Two MAP strategies relying on
Long Short-Term Memory (LSTM) networks are then defined: RLPM and RAMPAGER.
In those strategies, the LSTM network is used as a predictor that agents use to select
the next place to visit in the area to patrol. It is trained over data generated by the
centralised strategy. We also show that the stochastic selection of the next place to visit
leads to better performance. RAMPAGER, which relies on analytical initialisation of the
LSTM network guided by the structure of the area to patrol, turns out to be the best
decentralised strategy based on LSTM networks. We then present a new generic type of
strategy, called Idleness Estimator, relying on value estimation. In the strategies of this
type, each agent embeds an estimator to estimate the time elapsed since the latest visit
of any agent on each place to monitor. This estimator is trained over data generated
by a high-performance centralised strategy as previously. Different strategies can then
be derived according to the used estimator. In this dissertation we study three types of
estimators: artificial neural networks, and particularly MultiLayer Perceptrons (MLPs),
a linear model, and the mean. An interaction scheme is lastly set up to make agents
communicate and improve their individual estimate through interaction.

Finally, the Idleness Estimator strategies, either with or without interaction, turn out
to be the best decentralised strategies studied in this dissertation.



Table of contents

List of figures xiii

List of tables xix

Nomenclature xxi

1 Introduction 1
1.1 Context and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5
2.1 Multiagent patrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Society of agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Performance measures . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Discrete time model . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Classical strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Reactive strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Cognitive strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Graph-theory-based strategies . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Markov-decision-process-based strategies . . . . . . . . . . . . . . 28

2.4 Machine-learning-based strategies . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Bayesian learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Neural-learning-based patrolling . . . . . . . . . . . . . . . . . . . 37

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Model, methodology and implementation 41
3.1 Model and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



x Table of contents

3.1.1 Model of the MAP problem . . . . . . . . . . . . . . . . . . . . . 41
3.1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Types of stationary strategies and structure of resultant data . . . . . . . 46
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 PyTrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 MAPTrainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.3 MAPTor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Model strategy and databases . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 First database: HCC 0.2 . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 Second database: HPCC 0.5 . . . . . . . . . . . . . . . . . . . . . 58

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Path-Maker: a decentralised strategy based on node prediction 61
4.1 Path-Maker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Path-Maker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.2 RNN-Path-Maker: an implementation of Path-Maker . . . . . . . 64
4.1.3 Deterministic-Path-Maker . . . . . . . . . . . . . . . . . . . . . . 65
4.1.4 Random-Path-Maker . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Training procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.1 Pretraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.2 Main training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.1 Conduct of experiments . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Training settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.3 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 RAMPAGER: a strategy relying on structure-guided LSTM initialisa-
tion 81
5.1 Procedure of training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 Structure-guided initialisation: an analytical initialisation . . . . . 82
5.2 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Conduct of experiments . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2 Preliminary experiments: selection of the LSTM setting . . . . . . 97
5.2.3 Training settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



Table of contents xi

5.2.4 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Idleness estimator: a decentralised strategy based on idleness estima-
tion 115
6.1 Idleness estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Decision-making based on idleness estimation . . . . . . . . . . . . . . . 117

6.2.1 Deterministic approach . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.2 Drawback of the deterministic approach . . . . . . . . . . . . . . 119
6.2.3 Stochastic approach . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Some statistical models for idleness estimation . . . . . . . . . . . . . . . 130
6.4 Training procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.5 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.1 Training settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.5.2 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Interacting Idleness Estimator: a strategy based on interaction 145
7.1 Interacting Idleness Estimator . . . . . . . . . . . . . . . . . . . . . . . . 146

7.1.1 Peer-to-peer interaction . . . . . . . . . . . . . . . . . . . . . . . 146
7.1.2 Transitive interaction . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.2 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2.1 Training results on HPCC 0.5 data . . . . . . . . . . . . . . . . . 149
7.2.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8 Conclusion 163

References 169

Appendix A Artificial Neural Networks 175
A.1 Some key concepts of information theory . . . . . . . . . . . . . . . . . . 175

A.1.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
A.1.2 Cross-entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.2 Artificial neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.3 Network architectures and algorithms . . . . . . . . . . . . . . . . . . . . 178



xii Table of contents

A.3.1 Feed-forward neural networks . . . . . . . . . . . . . . . . . . . . 178
A.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.3.3 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . 181
A.3.4 Learning specific to RNNs . . . . . . . . . . . . . . . . . . . . . . 185

Appendix B Additional results 187
B.1 Performance of some HPCC variants . . . . . . . . . . . . . . . . . . . . 187

B.1.1 Average idleness (Iav) . . . . . . . . . . . . . . . . . . . . . . . . 187
B.1.2 Mean Interval (MI) . . . . . . . . . . . . . . . . . . . . . . . . . . 189
B.1.3 Quadratic Mean Interval (QMI) . . . . . . . . . . . . . . . . . . . 191
B.1.4 Worst Idleness (WI) . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.2 Training performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



List of figures

2.1 Benchmark of MAP Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Decision procedure of HPCC, with n ∈ N standing for the nth decision

step, t the corresponding time, and va(n) and ia(t) the node visited by
agent a as well as its vector of individual ideleness, resp., at the nth
decision step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Normalised averaged idleness of several MAP strategies averaged over the
six topologies, for 5 and 15 agents [3]. . . . . . . . . . . . . . . . . . . . . 22

2.4 Illustration of a multiagent cyclic strategy. The cyclic strategies of the
depicted agents from their current node are π1 = 2, 1, 4, 5, 6, 4, 1, 3, 2 and
π2 = 6, 4, 1, 3, 2, 1, 4, 5, 6, perpetually [8]. . . . . . . . . . . . . . . . . . . 23

2.5 Chain graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 GBS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Set of distributed strategies. . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 The centralised-decentralised distinction defines a practical axis to evaluate

the autonomy of agents with regard to each other. . . . . . . . . . . . . . 45
3.3 Set of stationary policies, deterministic (π) and non-deterministic (p)

where p is a random procedure. . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Decision procedure of the replicated and decentralised HPCC strategy,
with n ∈ N standing for the nth decision step, t the corresponding time,
and va(n) and ia(t) the node visited by agent a as well as its vector of
individual ideleness, resp., at the nth decision step. . . . . . . . . . . . . 63

4.2 Validation cost, in pretraining, of LSTM (1, 50) on A. . . . . . . . . . . . 70
4.3 Validation cost in main training without (red) and with (green) the

pretraining stage of LSTM (1, 50) on {A, 15}. . . . . . . . . . . . . . . . 71
4.4 Accuracy in main training without (orange) and with (blue) the pretraining

stage of LSTM (1, 50) on {A, 15}. . . . . . . . . . . . . . . . . . . . . . . 71



xiv List of figures

4.5 Validation cost averaged over the A, Islands and Grid topologies and the
numbers of agents for each LSTM architecture. . . . . . . . . . . . . . . 73

4.6 Normalised average idleness, averaged over 100 runs, of the best variant
of RLPM w.r.t. the size of agents on Islands. . . . . . . . . . . . . . . . . 73

4.7 Normalised average idleness, averaged over 100 runs, of the best variant
of RLPM w.r.t. the size of agents on A. . . . . . . . . . . . . . . . . . . . 74

4.8 Normalised average idleness, averaged over 100 runs, of the best variant
of RLPM w.r.t. the size of agents on Grid. . . . . . . . . . . . . . . . . . 75

4.9 Normalised MI of the best variant of RLPM averaged over 100 runs w.r.t.
the number of agents on A, Islands and Grid. . . . . . . . . . . . . . . . 76

4.10 Normalised QMI of the best variant of RLPM averaged over 100 runs w.r.t.
the number of agents on A, Islands and Grid. . . . . . . . . . . . . . . . 76

4.11 Normalised MI and QMI of the best variant of RLPM averaged over 300
execution w.r.t. the number of agents on A, Islands and Grid. . . . . . . 77

5.1 Normalised worst idleness for 4 RLPM variants on the graph A . . . . . 98
5.2 Normalised QMI for 4 RLPM variants on the graph A . . . . . . . . . . . 99
5.3 Normalised average idleness for 4 RLPM variants on the graph A . . . . 99
5.4 Validation cost of the (2, 50)-LSTM network trained on {HPCC 0.5, A, 15}100
5.5 Accuracy of the (2, 50)-LSTM network trained on {HPCC 0.5, A, 15} . . 101
5.6 Distribution during the training of the weights of the input xt, upon the

input (it), forget (ft), output (ot) gates and the cell state (gt), respectively,
for the (2, 50)-LSTM network trained on {HPCC 0.5, A, 15} . . . . . . . 102

5.7 Distribution during the training of the biases of the input xt, upon the
input (it), forget (ft), output (ot) gates and the cell state (gt), respectively,
for the (2, 50)-LSTM network trained on {HPCC 0.5, A, 15} . . . . . . . 103

5.8 Distribution during the training of the weights of the input ht, upon the
input (it), forget (ft), output (ot) gates and the cell state (gt), respectively,
for the (2, 50)-LSTM network trained on {HPCC 0.5, A, 15} . . . . . . . 104

5.9 Distribution during the training of the biases of the hidden state ht−1,
upon the input (it), forget (ft), output (ot) gates and the cell state (gt),
respectively, for the (2, 50)-LSTM network trained on {HPCC 0.5, A, 15} 105

5.10 Distribution during the training of the weights and biases respectively, of
the sofmax layer (the last layer), for the (2, 50)-LSTM network trained on
{HPCC 0.5, A, 15} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.11 Normalised WI, averaged over 100 execution, of the RAMPAGER 2-50
and the best variant of RLPM w.r.t. the number of agents on Islands. . . 107



List of figures xv

5.12 Normalised Iav, averaged over 100 execution, of the RAMPAGER 2-50
and the best variant of RLPM w.r.t. the number of agents on Islands. . . 107

5.13 Normalised WI, averaged over 100 execution, of the RAMPAGER 2-50
and the best variant of RLPM w.r.t. the number of agents on A. . . . . . 108

5.14 Normalised Iav, averaged over 100 execution, of the RAMPAGER 2-50
and the best variant of RLPM w.r.t. the number of agents on A. . . . . . 108

5.15 Normalised WI, averaged over 100 execution, of the RAMPAGER 2-50
and the best variant of RLPM w.r.t. the number of agents on Grid. . . . 109

5.16 Normalised Iav, averaged over 100 execution, of the RAMPAGER 2-50
and the best variant of RLPM w.r.t. the number of agents on Grid. . . . 109

5.17 Normalised WI of RAMPAGER 2-50 averaged over 100 execution w.r.t.
the number of agents on B. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.18 Normalised Iav of RAMPAGER 2-50 averaged over 100 execution w.r.t.
the number of agents on B. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.19 Normalised WI of RAMPAGER 2-50 averaged over 100 execution w.r.t.
the number of agents on Circle. . . . . . . . . . . . . . . . . . . . . . . . 111

5.20 Normalised Iav of RAMPAGER 2-50 averaged over 100 execution w.r.t.
the number of agents on Circle. . . . . . . . . . . . . . . . . . . . . . . . 112

5.21 Normalised WI of RAMPAGER 2-50 and over 100 execution w.r.t. the
number of agents on Corridor. . . . . . . . . . . . . . . . . . . . . . . . . 112

5.22 Normalised Iav of RAMPAGER 2-50 and over 100 execution w.r.t. the
number of agents on Corridor. . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 Random Heuristic Pathfinder Idleness Estimator (HPIE) strategy, with
v(n) being the nth visited node. . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Random Heuristic Pathfinder Idleness Estimator (RHPIE) strategy, with
v(n) being the nth visited node. . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Mean squared error (MSE) over all of the database for each scenario and
model at the end of the training. . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Normalised MI, averaged over 100 runs, of the best IE and IRIE strategies
on the Islands topology w.r.t. the number of agents, with me standing for
Mean, le for Lin and re for MLPReLU . . . . . . . . . . . . . . . . . . . 138

6.5 Normalised MI, averaged over 100 runs, of the best IE and IRIE strategies
on the A topology w.r.t. the number of agents, with me standing for
Mean, le for Lin and re for MLPReLU . . . . . . . . . . . . . . . . . . . 138



xvi List of figures

6.6 Normalised MI, averaged over 100 runs, of the best IE and IRIE strategies
on the Grid topology w.r.t. the number of agents, with me standing for
Mean, le for Lin and re for MLPReLU . . . . . . . . . . . . . . . . . . . 139

6.7 Normalised QMI, averaged over 100 runs, of the best IE and IRIE strategies
on the Islands topology w.r.t. the number of agents, with me standing for
Mean, le for Lin and re for MLPReLU . . . . . . . . . . . . . . . . . . . 140

6.8 Normalised QMI, averaged over 100 runs, of the best IE and IRIE strategies
on the A topology w.r.t. the number of agents, with me standing for
Mean, le for Lin and re for MLPReLU . . . . . . . . . . . . . . . . . . . 140

6.9 Normalised QMI, averaged over 100 runs, of the best IE and IRIE strategies
on the Grid topology w.r.t. the number of agents, with me standing for
Mean, le for Lin and re for MLPReLU . . . . . . . . . . . . . . . . . . . 141

7.1 Interacting Random Heuristic Pathfinder Idleness Estimator (IRHPIE)
strategy, with v(n) being the nth visited node. . . . . . . . . . . . . . . . 147

7.2 MSE over all of the database for each model and scenario on Islands (I),
A and Grid(G) at the end of the training. . . . . . . . . . . . . . . . . . 150

7.3 MSE over the validation database for each model and scenario on B, Circle
(Ci) and Corridor (Co) at the end of the training. . . . . . . . . . . . . . 150

7.4 Normalised WI, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Islands, with
me standing for Mean, le for Lin and re for MLPReLU . . . . . . . . . 152

7.5 Normalised Iav, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Islands, with
me standing for Mean, le for Lin and re for MLPReLU . . . . . . . . . 153

7.6 Normalised WI, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on A, with me

standing for Mean, le for Lin and re for MLPReLU . . . . . . . . . . . . 154
7.7 Normalised Iav, averaged over 100 runs, of the best variant of RAMPAGER,

and the best RIE and IRIE w.r.t. the number of agents on A, with me

standing for Mean, le for Lin and re for MLPReLU . . . . . . . . . . . . 154
7.8 Normalised WI, averaged over 100 runs, of the best variant of RAMPAGER,

and the best RIE and IRIE w.r.t. the number of agents on Grid, with me

standing for Mean, le for Lin and re for MLPReLU . . . . . . . . . . . . 155
7.9 Normalised Iav, averaged over 100 runs, of the best variant of RAMPAGER,

and the best RIE and IRIE w.r.t. the number of agents on Grid, with me

standing for Mean, le for Lin and re for MLPReLU . . . . . . . . . . . . 155



List of figures xvii

7.10 Normalised WI, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on B, with me

standing for Mean, le for Lin and re for MLPReLU . . . . . . . . . . . . 156
7.11 Normalised Iav, averaged over 100 runs, of the best variant of RAMPAGER,

and the best RIE and IRIE w.r.t. the number of agents on B, with me

standing for Mean, le for Lin and re for MLPReLU . . . . . . . . . . . . 156
7.12 Normalised WI, averaged over 100 runs, of the best variant of RAMPAGER,

and the best RIE and IRIE w.r.t. the number of agents on Circle, with
me standing for Mean, le for Lin and re for MLPReLU . . . . . . . . . 157

7.13 Normalised Iav, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Circle, with
me standing for Mean, le for Lin and re for MLPReLU . . . . . . . . . 158

7.14 Normalised WI, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Corridor, with
me standing for Mean, le for Lin and re for MLPReLU . . . . . . . . . 158

7.15 Normalised Iav, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Corridor, with
me standing for Mean, le for Lin and re for MLPReLU . . . . . . . . . 159

A.1 McCulloch and Pitts’s neuron model. . . . . . . . . . . . . . . . . . . . . 176
A.2 Rosenblatt’s perceptron model. . . . . . . . . . . . . . . . . . . . . . . . 177
A.3 Perceptron model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.4 Feed-forward ANN with one hidden layer. . . . . . . . . . . . . . . . . . 180
A.5 Layered LSTM unit: the core composant of the LSTM architecture. . . . 182
A.6 Example of an original LSTM network with 8 inputs, 4 outputs, and 2

memory blocks of size 2, such as defined by Hochreiter et al. [20] . . . . . 183

B.1 Normalised Iav, averaged over 100 runs, of different variants of HPCC for
5, 10, 15 and 25 agents on the Islands topology. . . . . . . . . . . . . . . 187

B.2 Normalised Iav, averaged over 100 runs, of different variants of HPCC for
5, 10, 15 and 25 agents on the A topology. . . . . . . . . . . . . . . . . . 188

B.3 Normalised Iav, averaged over 100 runs, of different variants of HPCC for
5, 10, 15 and 25 agents on the Grid topology. . . . . . . . . . . . . . . . . 188

B.4 Normalised MI, averaged over 100 executions, of different variants of
HPCC for 5, 10, 15 and 25 agents on the Islands topology. . . . . . . . . 189

B.5 Normalised MI, averaged over 100 executions, of different variants of
HPCC on the A topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 190



xviii List of figures

B.6 Normalised MI, averaged over 100 executions, of different variants of
HPCC for 5, 10, 15 and 25 agents on the Grid topology. . . . . . . . . . . 190

B.7 Normalised QMI, averaged over 100 runs, of different HPCC variants for
5, 10, 15 and 25 agents on the Islands topology. . . . . . . . . . . . . . . 191

B.8 Normalised QMI, averaged over 100 runs, of CR and different HPCC
variants for 5, 10, 15 and 25 agents on the A topology. . . . . . . . . . . 192

B.9 Normalised QMI averaged over 100 runs, of different HPCC variants for 5,
10, 15 and 25 agents on the Grid topology. . . . . . . . . . . . . . . . . . 192

B.10 Normalised WI, averaged over 100 runs, of different HPCC variants for 5,
10, 15 and 25 agents on the Islands topology. . . . . . . . . . . . . . . . . 193

B.11 Normalised WI, averaged over 100 runs, of different HPCC variants for 5,
10, 15 and 25 agents on the A topology. . . . . . . . . . . . . . . . . . . . 194

B.12 Normalised WI, averaged over 100 runs, of different HPCC variants for 5,
10, 15 and 25 agents on the Grid topology. . . . . . . . . . . . . . . . . . 194

B.13 Distribution during the training of the weights of the input of xt, upon the
input (it), forget (ft), output (ot) gates and the cell state (gt), respectively,
for the (2, 50)-LSTM network trained on {HPCC 0.5, A, 15} . . . . . . . 195

B.14 Distribution during the training of the biases of the input xt, upon the
input (it), forget (ft), output (ot) gates and the cell state (gt), respectively,
for the (2, 50)-LSTM network trained on {HPCC 0.5, A, 15} . . . . . . . 196

B.15 Distribution during the training of the weights of the input ht, upon the
input (it), forget (ft), output (ot) gates and the cell state (gt), respectively,
for the (2, 50)-LSTM network trained on {HPCC 0.5, A, 15} . . . . . . . 197

B.16 Distribution during the training of the biases of the input ht, upon the
input (it), forget (ft), output (ot) gates and the cell state (gt), respectively,
for the (2, 50)-LSTM network trained on {HPCC 0.5, A, 15} . . . . . . . 198



List of tables

3.1 Output of a MAP strategy run . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Normalised Iav, MI, QMI and WI for several variants of HPCC averaged

over the A, Islands, and Grid topologies, and over 5, 10, 15 and 25 agents. 57

4.1 Overview of the training settings . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Parameters and evaluation metrics for differents values of h, the horizon
of the TBPTT algorithm, for the LSTM network (2, 50) on {HPCC 0.5,
A, 15}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Evaluation criteria averaged over the numbers of agents of some LSTM
architectures evaluated in simulation on A. . . . . . . . . . . . . . . . . . 98

6.1 Overview of the training settings . . . . . . . . . . . . . . . . . . . . . . 135
6.2 Normalised MI, QMI of the assessed IE strategies averaged over the A,

Islands, and Grid topologies, and over 5, 10, 15 and 25 agents. . . . . . . 137





Nomenclature

Symbols

a an agent

β function mapping all the nodes of V to their one-hot representations

cu,v transit time between u and v

da(t) decision of agent a at time t

d(u, v) time-to-go from u to v

E set of edges

G graph to patrol

γ function mapping one-hot vectors with their corresponding nodes in V , such as
γ = β−1

hl
t output of the layer l, at time t
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Chapter 1

Introduction

1.1 Context and motivations

Area monitoring is necessary for important practical applications: at one hand, in the
field of civil security with the detection of fire outbreaks or intruders for example, and
on the other hand, in the military field where the detection of hostile activities is an
imperative task. Patrolling, also known as patrol task, is a generic activity consisting
of humans, drones or robots monitoring an area. Such a task is well-suited to the
purpose of collecting information, seeking objects, or watching over places to detect
any intrusion for example. In the case of wide areas, one or several vehicles must move
through the latter to monitor its different regions as often as possible. The choice of the
temporal distribution of vehicles over the different regions of the area, as well as their
route, determine the operational effectiveness of the monitoring. The control of those
vehicles may be strongly constrained by communication issues. Indeed, for example in
the context of a reconnaissance mission performed by a swarm of drones, or even for
silent bots penetrating a network, communications may be impossible or, at the very
least, discouraged.

Vehicles can be addressed as interacting and evolving entities, being even sometimes
autonomous. A convenient and widely recognised way to represent and study such
interactions between entities, as well as with their environment, is to regard them as
agents evolving in a system; such systems are called MultiAgent Systems (MAS). They
constitute a scientific paradigm based on computing systems which allow studying nu-
merous complex fields such as artificial intelligence and life, software engineering, but
also the natural and social sciences, as for example biology, economics, etc. In such
a paradigm, the focus is put on interactions between parts, and not only on elements
themselves. Interacting entities are defined as agents, and what is under study is the
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result of their interactions with each other and with the environment. In that, multiagent
systems are a relevant way, if not the most relevant, to represent and study complex
systems.

Patrolling is a coordination problem with mobile agents that can be modelled as a
multiagent system where the whole is greater than the sum of its parts. Such a multiagent
system is referred to as the multiagent patroling problem or simply multiagent patrolling
(MAP). For MAP and more generally for all multiagent coordination problems, a system
is regarded as efficient if its components — namely the agents — are well coordinated
via interaction, leading to a good distribution of agents over any kind of units. MAP
problem consists in agents that must visit places of interest as often as possible. To that
end, a good strategy of agent is informally that which leads to a good distribution of
visits over the places throughout the patrolling mission.

MAP has been regarded as a good benchmark for MAS [34], because it makes the
representation and the understanding of new methods easier, letting the researcher focus
on the solution rather than on the representation of the problem [13]. Besides, by its
use of generic performance measures independent from the studied strategy — based
on the time lag between two visits to a place —, and the simplicity of its model, MAP
seems to be a reasonable candidate as benchmark of multiagent coordination problem,
to the extent that it is sufficiently generic, specific and representative. The quality
of a coordination strategy is then evaluated in simulation by using different measures,
each one measuring a specific property of the distribution of visits generated by strategies.

For over fifteen years, different types of strategies have been proposed: cognitive,
reactive, coordinated, reinforcement-learning-based, auction-based, Ant-Colonisation-
Optimisation-based, evolutionary-based, etc. Strategies wherefor the decision-making
process is laid down before the mission are referred to as precalculated strategies, whereas
those depending upon a central entity, generally a coordinator, are referred to as centralised
strategies. So far, it has been showed experimentally that precalculated and centralised
strategies are the best strategies according to the usual measures of performance used in
the context of MAP [3]. However, precalculated strategies cannot adapt to any peculiar
disturbance in the system, whereas coordinated strategies may necessitate an omniscient
coordinator, fully and continuously available; such a strong assumption is difficult to hold.
Indeed, in real scenarios communications can be interrupted, asynchronous and even
jammed by enemies. In the worst case the coordinator may be eliminated. Furthermore,
learning is known to allow for adaptation to unseen data. Thus, learned strategies are
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expected to be more adaptive and result in more autonomous agents than precalculated
or centralised strategies.

Machine learning is the scientific field which studies the means and methods by
which computer systems can perform a class of tasks without having been explicitly
programmed for that; machine must be here understood as a computer program. It
relies on statistical models and algorithms using sample data, termed as training data, to
perform inference and patterns detection, allowing then generalisation to new data never
presented to the system before.

Although some works studied the use of machine learning within the framework
of MAP, few addressed the advantages afforded by feed-forward artificial neural net-
works (ANN) to create new distributed strategies from centralised ones. The recent
breakthrough in deep learning, a subfield of machine learning, have shone light on ANN
with, among other, sequential data such as text, speech, audio and video with recurrent
neural networks (RNN)[27]. The reader unfamiliar with ANNs and RNNs can find basic
information in Appendix A.

The purpose of this work is to take a bet on distributed strategies, which are by design
resilient and more adaptive to changes in the environment owing to their acentricity,
in order to make the system more scalable and dynamic. To that end, the approach is
to learn via machine learning, and more precisely via supervised learning methods, a
distributed strategy from a centralised one, by distributing the coordinator’s centralised
decision process over patrolling agents. Such strategies split and crystallise, in some
ways, this decision process into agents via supervised learning methods.

1.2 Overview

In order to thoroughly test and evaluate the earning of supervised machine learning
methods, we first make extreme assumptions about the ability of agents: they can neither
communicate nor perceive each other. These extreme assumptions enable studying and
identifying the impact of these methods over the performance of the new MAP strategies
devised in this dissertation. Moreover, in some scenarios these assumptions are justified.
Generally, high-performance strategies make use of communications and centralised
decision-making. The aim here is then to create a non-communicating strategy that
approaches the performance of a high-performance centralised strategy, by distributing
or decentralising the latter by means of machine learning.
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Therefater, we introduce limited communications between agents as a support for in-
teraction, in order to study and evaluate these new strategies in the context of interaction.

Therefore, Chapter 2 describes the concepts underlying this work, such as MAP
and preexisting strategies, including machine-learning-based strategies.

Chapter 3 presents in the first place a formalisation of the MAP problem as well as
key ideas pertaining to it, but also the databases made up for this study, particularly
for the needs of supervised learning. The methodology and the tools that allow the
production of experimental results for the next parts of this work are also exposed.

Chapter 4 presents a new agent strategy based on a RNN architecture, the Long
Short-Term Memory (LSTM) architecture. After training, an LSTM network is used by
agents to navigate over the nodes to visit.

Chapter 5 extends Chapter 4 and is devoted to an analytical method providing
knowledge about the environment to the LSTM network used by agents to patrol.

Chapter 6 presents the application of statistical models and particularly several
architectures of ANNs to the task of estimating general features of the environment
from individual information collected by agents while patrolling. In that sense, machine
learning models are used here to perform information reconstruction filling the gap of
knowledge with regard to certain features of the environment, this gap of knowledge is
owing to the absence of communication. Each statistical model gives rise to a new MAP
strategy as part of the multiagent patrolling. Furthermore, in this chapter a methods
that take into account large estimation noise of statistical models is described.

Chapter 7 describes an interaction scheme as part of the strategies introduced in
Chapter 6, enabling limited interactions between agents.

Finally, Chapter 8 concludes this dissertation and outlines perspectives for further
works on machine learning for MAP.
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State of the art

Much is unknown about distributed computational intelligence, generally referred to as
distributed artificial intelligence, and much remains to comprehend about mechanisms
and phenomena at stake in the emergence of collective behaviours, self-organisation and
synergies of autonomous agents. Considerable research is currently being devoted to the
understanding of interaction in order to solve complex problems in a distributed manner,
especially in MAS.

Central to computational intelligence is the construction of processes or system models
[22] [23] which are not amenable to mathematical or traditional modelling because:

• the processes are too complex to represent mathematically;

• the process models are difficult and expensive to evaluate;

• there are uncertainties in process operation;

• the process is nonlinear, distributed, incomplete and stochastic in nature [54].

Such processes can be represented as complex systems. Complex systems are able to
self-organise — over time — by modifying their own structure to release some tensions,
or respond to a brutal change in their environment. The very example illustrating this
tendency is the brain’s ability to modify its neural connections during the learning process.
They are also subject to phase transitions: a small variation of one control parameter
can radically and irreversibly change the system’s behaviour; such a kind of change is
also referred to as a bifurcation.

In such systems, interactions are relevant and must be taken into account to the extent
that they codetermine the future. Moreover, because of continuous interactions between
their components, complex systems are in a perpetual state of becoming. Therefore, they
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can only be described and analysed by modelling and simulating interactions between
their components: complex systems lie on local interactions which occur there. To that
end, interactions between components are studied by means of simulations in computer
programs where components are regarded as agents: such a method is termed agent-based
simulation, consisting, in fact, in MAS simulation.

To analyse such interactions, the theory of complex systems pays a particular attention
to the theory of self-organisation within global systems arising from interactions between
their elements. A convenient way to study interactions is to represent them as networks.
The underlying structure of complex systems is thereby most of the time a network:
social network in social sciences, semantic network in linguistics, boolean network in
logic, or neural networks in computational intelligence.

Moreover, a system, and more specifically a controller, can be regarded as robust or
adptative if it contains a sufficient variety — variety that can be thought of as a synonym
of complexity [4]. Thereupon, to increase the complexity of a system, and thereby its
robustness and adaptability, random variations shall be introduced or augmented. It
would also be worth noting that another way to increase the complexity of the system
would be to augment the interactions between its components.

Generally, in science the conventional flow is to frame the phenomenon or problem
under study by devising a mathematical model describing it. Such a model is meant
to capture the key features while disregarding irrelevant aspects of this problem; it is
a very abstraction process. However, this engineering design flow may be costly and
necessitate domain experts. Alternatively, machine learning does not define beforehand
an explicit model based on the domain knowledge, but rather, discovers dynamically
a model from data specific to the problem at hand. In doing so, the machine learning
approach relies on general-purpose algorithms — the optimiser — evolving a metamodel

— the machine learning model — with the aim of optimising an objective — the objec-
tive function. The data used by the optimiser already exist or can be generated extempore.

The purpose of this chapter is to propose, a state of the art of MAP, as well as
different approaches used to solve the MAP problem, more precisely a methodology and
different algorithms to do so. It also shows to what extent this problem is a temporal
decision-making problem. Finally, certain of existing supervised learning approaches
applied to MAP are presented.
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2.1 Multiagent patrolling

Patrol task — sometimes referred to as patrolling or area coverage in the field of robotics
— is an activity by nature distributed in space and time. Several agents patrolling an
area actually perform a distributed surveillance, namely the surveillance of an area using
a group of agents coordinated in a distributed manner [45]. A convenient way to model
such a task is to represent it as a MAS, resulting in MAP. Then, the problem to find
the best coordination strategy to patrol that area is called the MAP problem, or by
metonymy simply MAP.

There are many possible ways to define the MAP problem, and many of these
definitions are equivalent up to small transformations. A consensual definition is to define
it as a generic problem of multiagent coordination providing a formalism to study, for a
group of agents, the task of visiting a set of places as soon as possible. Poulet pointed
out it can also be regarded as an allocation problem, by considering that visiting a place
is an indivisible and recurrent task whose the execution time has a constant part — the
visit itself — and a variable part — the time for an agent to reach the place to visit —,
variable part hinging upon its distance to the place [42]. As such, the MAP problem is a
coordination problem whose the object of coordination consists of the places of interest to
visit. As an allocation problem, it is more generally a temporal decision-making problem
that can be reformulated as a complex system problem where agents must be processed
as often as possible by the places to visit [42].

Also, it is worth noting that the system composed of communicating agents consti-
tutes a mobile sensor network. These agents can share sensory information through this
network.

The MAP problem has two variants:

• patrolling with the aim of defending an area against an adversarial intrusion, called
the adversarial MAP problem,

• patrolling with the aim of monitoring and checking a set of points of interest, called
the temporal MAP problem [42] or multiagent timed patrolling1 [52].

In the first case, the area to patrol represents the border of the region to supervise,
border wherein intruders can penetrate. The objective is then to optimise the probability
of intercepting any intruder given certain assumptions about their behaviour. This
type of MAP is akin to multi-agent fence-patrolling. Some works concentrated upon

1The term “timed” seems to be irrelevant as far as it can be considered as a synonym of “scheduled”.
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adversarial MAP: multi-agent fence-patrolling strategies [15], algorithms based on a
two-player leader-follower game model where the patroller is the leader and the intruder
is the follower [5], probabilistic strategies coping with three types of intrusion: a random
intruder, an intruder that waits until the guard leaves the site to initiate the attack, and
an intruder that uses statistics to forecast how long the next visit to the site will be [50].
Cooperative strategies based on a DEC-POMDP model facing several adversaries with
limited observability and rationality were also studied [7].

In the second case, each point of interest is regarded as an endangered place where
an intruder potentially stands, and the objective is then to check all places as often as
possible to neutralise any potential intrusion: every location has the same importance.
This work was carried out within this framework: MAP studied here is neither adversarial,
nor fence-patrolling. It is temporal and generic, and the algorithms are investigated and
developed for drones in a military context, making inapplicable all type of algorithms
based on communication through environment.

2.1.1 Environment

Area patrolling missions can be studied as an area coverage problem. In the robotics’
perspective, Choset proposed to divide coverage approaches into offline methods, wherefor
the layout of the environment is known, and online methods, for which the map of the
environment is unknown [9]. In what follows, we shall only focus upon the first approach,
that is offline methods wherefor the layout of the environment is known beforehand.

Choset pointed out that an area coverage can be achieved using a cellular decomposition
of the free space [9]. A cellular decomposition breaks down the target region into cells such
that coverage in each cell becomes “simple”. A complete coverage can then be attained
by ensuring that the agents visit each cell in the decomposition. There exists three types
of decomposition: approximate, semi-approximate, and exact cellular decomposition.
Methods based on approximate cellular decomposition, such as grid-based methods, have
limitations since they do not consider the structure of the environment [16]. Therefore,
they are unable to handle partially obstructed cells or cover areas close to the boundaries
in continuous spaces. In contrast, methods based on exact cellular decomposition, e.g.
graph-based methods, which employ structures such as the Reeb graph to represent the
environment do not suffer from those restrictions [44].

Similarly, Russel, Norvig and Stout, in a more generic approach speak rather of
skeletonisation that consists in replacing the real ground by a graph, which can be
interpreted as a skeleton, representing possible paths between the places to visit covering
all the area [49] [55]. Voronoi diagrams [56], Constrained Delaunay Triangulation (CDT)
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[16], Visibility Graphs and C-cells can be used to generate such a graph. For example
Tan et al. proposed a distributed model for cooperative multirobot systems based on
Voronoi diagram to model the area coverage [56]. Visiting all places ensures then that
the entire area be covered. In the case where agents communicate and make up a mobile
sensor network, visiting all places while maintaining the network will lead to maximise
the sensor network coverage area of the environment. This is generally the main objective
of robot cooperation in the context of area coverage [56]. However, although guaranteeing
to cover the whole environment in continuous spaces while traversing the graph, this
might also include many redundant movements.

Another example of graph generation is given by Fazli et al. Initially, with their
approach a set of Na agents standing for guards are positionned to cover visually the
entire area to supervise. Then, a representation of the environment in the form of
a spanning tree over the vertices of the graph, which represent in fact the guards, is
computed using the CDT to yield a graph over the guards.

A significant advantage of such an abstract representation is that a wide range of
problems, from ground patrolling to web navigation, can be modelled as a MAP. The
graph, as an abstract representation of the area to patrol, is termed as topology in our
context, and depicts the layout of the environment. In the rest of this dissertation, if
that does not lead to confusion, the topology may also be termed as network.

Finally, the environment of an agent consists of the topology and the society of other
agents patrolling over there.

2.1.1.1 Topology

Definition 2.1.1. Topology. Chevaleyre depicts a topology as a graph G = (V, E),
where V = {1, . . . , N} is the set of nodes and E ⊆ V 2 the set of edges of G [8]. To each
edge (u, v) ∈ E is associated a weight cu,v representing the distance between nodes and
assuming that any agent travels one unit of distance in one unit of time, cu,v stands for
the time to travel this edge. Any edge weight cuv represents also the time taken by an
agent to travel an edge (u, v) and will therefore be referred to as the transit time of (u, v)
in the remainder of this dissertation.

In its model, Chevaleyre assumes the graph is metric, i.e. the triangular inequality is
not violated, that is, ∀u, v, w ∈ V three nodes connected by edges, cu,v + cvw ≥ cu,w. Ac-

cordingly, the weight of a path v0, ..., vn equal to
n−1∑
j=0

cvj ,vj+1 is noted c(v0, ..., vn), whereas
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Fig. 2.1 Standard benchmark of MAP topologies [26]

that of a path of edges E ′, such as E ′ ⊆ E, is noted c(E ′).

Note that for some works the transit time is a random variable with a distribution
over potential travel durations [7].

Generally, in the MAP community six topologies are commonly used as benchmark
to evaluate strategies. Fig. 2.1 shows graphs similar to these topologies. These graphs
are characterised as follows:

• Islands: a 50-node topology with islands,

• A: a 50-node regular topology,

• Grid: a 50-node topology in the shape of a grid,

• B: a 50-node regular topology with bottlenecks,

• Circle: a 50-node topology in the form of a circle,

• Corridors: a 49-node topology in the shape of corridors.

In order to align with previous works of the MAP community, the proposed strategies
of this work are assessed using these topologies.
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2.1.2 Society of agents

In early works, the society of agents was only characterised by the number of agents
belonging to it [28][29]. Later the society was defined as a set of agents that are also
able to leave it [42]. In this dissertation only closed societies of agents, noted A, are
considered, that is societies with a constant number of agents, Na = card(A), throughout
the mission.

Agents are homogenous, namely all agents are identical, i.e. they stand for the same
type of unmanned aerial drones, and move at the same speed. Despite the fact that
caracteristics of mobile robots involved in a mission may vary from one robot to another,
the homogeneity hypothesis is usual in the MAP literature. Agents are anonymous, i.e.
for every agent all the other agents are identical and it cannot distinguish them; for the
designer, agents are identified by their ID, although their strategy cannot be an explicit
function of the this ID. This hypothesis is implicitly assumed in some works [53], but
rejected in other, where the nodes of the graph are dispatched among the agents [7].

2.1.3 Performance measures

An evaluation criterion, sometimes known as quality criterion [24], or metric, or per-
formance measure, is a measurement which characterises a particular aspect of a MAP
execution for a graph G and a duration of simulation T ∈ N∗. More generally, an
evaluation criterion is used to assist in making an objective and fair procurement source
decision [33]. In what follows, we shall describe the more relevant ones for MAP.

2.1.3.1 Idleness

In MAP, as all places must be visited as often as possible, the time elapsed since the last
visit is a natural candidate as prime and basic criterion. By doing so, Machado et al.
introduced the idleness of a node at time t ∈ R+, t ≤ T , where T ∈ R+ is the duration
of the simulation, as the time elapsed since the last visit [29]. This has then led to the
following criteria:

• the instantaneous node idleness at time t ∈ R, noted iv(t),∀v ∈ V , corresponds to
the time elapsed since its last visit by any agent at time t; if this does not lead to
confusion, it will simply be termed as idleness,

• the instantaneous graph idleness at time t ∈ R, noted iG(t), corresponds to the
average instantaneous idleness of all nodes a time t,
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• the graph idleness or average idleness, noted iG, IavG, or simply Iav, being the
average instantaneous graph idleness over all the execution’s duration,

• the worst idleness, noted imax,G, imax or WI, is the biggest value of instantaneous
node idleness occurred during the entire simulation [29]:

imax,G = max
t∈R+:t≤T,v∈V

(iv(t)) (2.1.1)

As stated by Acevedo et al., it is worth noting that using the WI ensures that the
probability an event not be detected by an agent is upper bounded to a known value [1].

2.1.3.2 Exploration time and decision cost

Machado et al. also introduced two other idleness-independent criteria:

• the exploration time, which consists of the time necessary to the agents to visit at
least once all the nodes of the graph; such a criterion can be intuitively thought of
as exploring an area in order to map it [29],

• the decision cost, which is given by the sum of all the durations required by every
agent to choose the node to visit; assuming that agents stop at nodes to make the
decision about the next node, such a criterion enables showing that the longer the
decision takes time, the longer the nodes remain without being visited [28].

2.1.3.3 Qualitative measures

In addition to the MAP criteria defined above, Menezes et al. mentioned possible
qualitative measures:

• scalability, that evaluates whether the strategy is capable of patrolling over topolo-
gies of any dimension,

• stability, that measures the variation on the idleness of each node, indicating
whether nodes are uniformly visited,

• adaptability, that evaluates the ability of the strategy to deal with topological
changes during the simulation,

• reactiveness, that evaluates the ability of the strategy to patrol over various
topologies without learning time, recalibration of parameters and definition of
specific strategies to perform the task for each topology [32].
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However, it is regrettable that, thus far, no criterion be associated to these qualita-
tive measures, except the stability that corresponds to the standard deviation of the
instantaneous idleness of nodes [42].

2.1.3.4 Interval criteria

Thereafter, Sampaio et al. introduced the notion of interval between visits of a node
as a new type of evaluation criterion [52]. They presented it as more germane and
intuitive than the average idleness, insofar as the latter considers successive values of the
instantaneous idleness of a node. An interval of a node is considered as the time elapsed
between two visits of any agent, it is a real positive number. Let:

• ∀v ∈ V , Jv be the set of intervals of v during a MAP execution upon G, such that
N v

J = |Jv|,

• J = {J1, . . . , JN} be the set of intervals for every node resulting from a MAP
execution upon G,

• NJ =
∑
v∈V

N v
J be the total number of intervals resulting from a MAP execution

upon G.

Then, this new notion gives rise to four evaluation criteria:

• the mean interval, noted MI(G, T, J), which captures the average performances of
interval between visits, such as:

MI(G, T, J) =

∑
v∈V

∑
jv∈Jv

|jv|

NJ

= N × T

NJ

(2.1.2)

• the quadratic mean interval, also called mean square interval [52], noted QMI(G, T, J),
which captures an average value of interval which takes into account, by its quadratic-
ity, the distribution of visits over the nodes of G. The lower QMI(G, T, J) is, the
better visits are distributed over the graph. As previously,

QMI(G, T, J) =

√√√√√√
∑
v∈V

∑
jv∈Jv

|jv|2

NJ

(2.1.3)

To optimise — i.e. to minimise — QMI will lead to establish a more equitable
solution — i.e. strategy — than that obtained by minimising the MI.
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• the variance of intervals, noted V I(G, T, J):

V I(G, T, J) = QMI(G, T, J)2 −MI(G, T, J)2 (2.1.4)

• the worst interval, noted WI, which is the biggest interval recorded during the
overall simulation. It follows:

WI(G, T, J) = max
v∈V, jv∈Jv

(jv) (2.1.5)

Minimising WI(G, T, J) is equivalent to search for a strategy as robust as possible.
There is identity between the worst idleness imax(G, T, J) and the worst interval
WI(G, T, J), by definition.

Interestingly, MI, QMI and WI are particular cases of the generalised mean of
intervals. Let j1, · · · , jn be all the intervals of the graph G. The generalised mean, or
power mean, of these intervals with exponent p > 0 is:

MIp(G, T, J) =
 1

NJ

∑
v∈V

∑
jv∈Jv

jp
v

1/p

(2.1.6)

It follows that,

MI(G, T, J) = MI1(G, T, J) (2.1.7)

QMI(G, T, J) = MI2(G, T, J) (2.1.8)

WI(G, T, J) = MI+∞(G, T, J)
= lim

p→∞
Mp(G, T, J)

= max
jinJ

(j)
(2.1.9)

From the foregoing, it can be stated that minimising MIp(G, T, J) as p increases, is
equivalent to find a more equitable solution, and by doing so, a more robust strategy.
QMI(G, T, J) can then be regarded as an intermediate criterion, among others, between
MI(G, T, J) and WI(G, T, J).

Also, it is worth noting that the average idleness of G, Iav(G, T, J), can be reformu-
lated as a function of MI(G, T, J) and QMI(G, T, J) as follows:
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Iav(G, T, J) = NJ

2N × T
(QMI2(G, T, J) + MI(G, T, J)) (2.1.10)

From the foregoing, the Iav can then be written as an expression of the MI and QMI,
with a particular emphasis on QMI.

2.1.3.5 Normalisation

Any criterion C selected to evaluate a MAP execution can be normalised to compare
different topologies and numbers of agents [29]. With notations of Definition 2.1.1 and
Subsection 2.1.2:

Cnorm(G, T, J) = C(G, T, J)× Na

N
(2.1.11)

2.1.4 Discrete time model

A common specialisation of the MAP model is that for which a sample time is defined,
where all transit times cuv,∀u, v ∈ V are expressed as an integer number of sample times;
such a sampling leads to a discrete-time MAP model. In this case, the formal model can
be integrated step by step: agent positions and node idlenesses at time t ∈ N∗, can be
computed from agent positions, node idlenesses and agent decisions with the relevant
heading at time t− 1. Such a time t ∈ N∗, is referred to as period and can be defined as
follows:

Definition 2.1.2. Period. In the MAP model, when a sample time is defined, the
sampling period is referred to as period, or time step, and makes up the unit of time.

Furthermore, in the specific case studied by Machado et al. [29], where ∀u, v ∈ V ,
cu,v = 1, at each time step any agent is then necessarily on a node.

In our framework, we pose the hypothesis that visits are instantaneous, i.e. the action
of visiting a node lasts 0 period.

2.2 Methodology

In their seminal work of MAP, Machado et al. established a general methodology to
study MAP consisting of the following steps [29]:

1. specification of performance measures among those of Section 2.1.3,

2. definition of strategies to evaluate,
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3. definition of some case studies with specific environment and societies of agents,
called patrolling scenario or patrolling configuration

4. design and implementation of a simulator to perform experiments

2.3 Classical strategies

At time 0, Na agents are located upon nodes of G. When the patrol task starts,
agents move simultaneously around the nodes and edges of the graph according to a
predetermined multiagent strategy, also termed as multiagent architecture [29]. When
that does not lead to confusion, in the following it will simply be referred to as strategy,
and in the context of MAP a strategy is defined as follows:

Definition 2.3.1. Strategy. A strategy executed by an agent is defined as a procedure
π : N → V such that ∀n ∈ N, π(n) is the nth node visited by the agent. A multiagent
strategy Π = { π1, ..., πNa} is then simply defined as a set of Na single-agent strategies [8].
Otherwise, as part of MAP, an agent strategy can be thought of as a decision-making
algorithm generating a list of paths, one path per agent, giving rise to a patrolling scheme.

Note that this definition of a strategy corresponds either to a plan to execute in
an open loop or to the outcome of the execution of a given procedure to choose the
next node. Alternative definitions corresponding to policies could define it as a function
mapping the current knowledge about the state to the next node to visit.

According to this definition, an agent a will visit the node corresponding to πa(n) after

a time equal to the weight of the path πa(0), ..., πa(n)., which is
n−1∑
k=0

cπa(k)πa(k+1). When the

strategy is deterministic, the path and its corresponding travel time are known beforehand.

Loosely speaking and informally, in the framework of MAP a good strategy is that
which minimises the time lag between two passages at the same place, i.e. the interval of
time, and this for all places. Besides, optimality depends always upon the considered
evaluation criterion. It is thereby necessary to consider optimality according to a specific
criterion among those defined in Subsection 2.1.3.

Machado et al. proposed four basic parameters characterising a strategy [29] that
enables exploring strategies methodologically, that is to say using a bottom-up and
incremental approach for designing MAS strategies. These parameter considered as
essential for understanding and measuring the impact of a strategy on the dynamics of a
collective problem-solving process[12]. These basic parameters are:
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1. the strategy type: reactive, cognitive, etc.,

2. the communication type: none, messages, blackboard, through the environment,
etc.,

3. the selection criterion of the next node: locally random, time without visits in the
neighbour, time without visits in the whole graph, etc.,

4. the coordination strategy: emergent or central.

Usually, and particularly in MAS, agents are considered as reactive when they act
with respect to their perceptions, and cognitive when they may pursue a goal [29].

For each one of these basic parameters it exists an infinity of possibilities. These
values are only characterisations, or archetypes.

Finally, there exists a wide variety of strategies, and in what follows, only the most
significant will be retained.

For example, some strategies based on negotiation mechanisms were investigated [3],
[32]. In the context of MAS, negotiations can only take place when agents are able to
communicate. Inside the framework established in this disseration, a realistic assumption
consists in considering that agents are able to communicate sporadically according to their
respective trajectory. By doing so, neither any strategy requiring static communication
links will be described and, a fortiori, nor any negotiation-based strategy.

Other examples are strategies based on Ant colony optimisation (ACO) algorithms.
They consist of agents acting as ants via pheromone-based communication. In such
strategies agents are spread out over the graph, then they lay pheromones down upon
nodes to determine the patrolling strategy through an ACO procedure [24] [25] [10] [17].
Although performing well in simulation, this type of algorithms assumes interactions with
environment hardly practicable in real life. Therefore, given that within our framework
agents can be drones, these algorithms are not described here.

2.3.1 Reactive strategies

In the context of MAP, Machado et al. defined reactive agents as those whose the field
of vision is one-edge depth, i.e. reactive agents only perceive adjacent nodes referred to
as their neighbourhood [29]. Therefore, they cannot plan to visit a remote node, and
thereby pursue a goal. Reactive agents are also sometimes said to act based upon their
perception.

Incidentally, it is worth noting that the concept of agents acting upon their perception
does not pertain to the application motivating this work. The graph, indeed, is an
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abstraction of the area to patrol and the perception of an agent using sensors provides
only information about the detection or not of events such as fire outbreak or hostile
activity at the place where the agent stands. Nonetheless, decentralised strategies can be
reformulated as strategies planning only the next node to visit, that is either randomly
or considering the path already travelled, respectively.

Machado et al. designed three reactive strategies [29]. First, Random Reactive
(RR) agents do not communicate and choose randomly their next node to visit. Then,
Conscientious Reactive (CR) agents select the next node to visit as that having the
highest indidividual idleness in their neighbourhood. There is no communication between
agents: idlenesses are estimated by each agent on the basis of their own path. CR can be
thought of as a good representative and thereby a comparison strategy for the reactive
ones. CR is designed following a bottom-up approach, that is, agents before organisation.

On a side note, as pointed out by Almeida et al., selecting the next node to visit
according to the individual idleness can be thought of as following a gradient: in MAP,
nodes with a high idleness act as valleys, or attractors, whereas those with a low idleness
act as mountains, or repulsors [2].

Finally, the Reactive with Flags (RF) algorithm is similar to CR except that agents
leave a flag on the visited nodes leading to share their idleness estimate using environment
as a communication medium.

Note that with respect to Def. 2.3.1, reactive strategies do not correspond to plans
to be executed but to results of execution of their reactive procedure.

2.3.2 Cognitive strategies

In the context of MAP, cognitive agents can perceive the whole graph [29]. Cognitive
agents are thus able to pursue a goal, namely to plan to visit a distant node. As previously
indicated, for the application motivating this work, the focus is on the capacity to plan a
visit to a remote node, rather than on perception skills.

Machado et al. proposed the Idleness Coordinator (IC) strategy [29], also called
Cognitive Coordinated (CC) by Almeida et al. [2] and in further works. In this strategy,
agents can perceive the whole graph and select the next remote node to visit as that
with the highest true idleness. The agent is instructed to visit this node by a centralising
coordinator. Everything happens as if there was a perfect communication between agents.
Actually, agents communicate unrestrictedly with the coordinator and idlenesses are
estimated by the latter on the basis of all information it has centralised. It is responsible
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for avoiding that more than one agent choose the same next remote node and responds
instantaneously to provide it. When the coordinator is fully-informed, i.e. it has a global
knowledge of executed and planned paths for all agents, it can be thought of as an
omniscient coordinator. Eventually, agents use the Floyd-Warshall algorithm to compute
the shortest path between their current node v0 and the assigned goal v1. This algorithm
minimises the time-to-go from v0 to v1, i.e. d(v0, v1).

Almeida et al. introduced two methods to improve the CC strategy, the first termed
Heuristic is used to select the next remote node to visit exploiting more information than
just true idleness, whereas the second one, termed Pathfinder, is used to compute the
path to go there exploiting more information than just distance [2].

2.3.2.1 Heuristic method

The Heuristic method enables selecting the next goal node by taking into account not
only the normalised idleness, but also the normalised time-to-go of a candidate goal
node from the agent’s current position. The time-to-go between two nodes of V is the
travel time of the shortest path between these two nodes. Idleness and time to go are
normalised by scaling them between 0 and 1. Because edges with high idleness values
ought to be traversed first, 0 is assigned to the maximum idleness whereas a value equal
to 1 is assigned to the minimum idleness. Intermediary values are calculated by means
of proportions as shown in Eq. 2.3.1:

∀v0 ∈ V, if min
v∈V

(iv(t)) ̸= max
v∈V

(iv(t)),∀v0 ∈ V

īv0(t) =
max
v∈V

(iv(t))− iv0(t)

max
v∈V

(iv(t))−min
v∈V

(iv(t))
(2.3.1)

where iv(t) and īv(t) are the true and normalised idlenesses of v at time t, respectively.

Normalised time-to-go is calculated similarly. Because edges with short distances
must be traversed first, 0 is assigned to the minimum time-to-go whereas 1 is assigned to
the maximum time-to-go. Intermediary values are calculated by means of proportions as
shown in Eq. 2.3.2 :
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∀d(v0, v1) the time-to-go from v0 to v1,

if min
v,w∈V :v ̸=w

(d(v, w)) ̸= max
v,w∈V :v ̸=w

(d(v, w))

d̄(v0, v1) =
d(v0, v)− min

v,w∈V :v ̸=w
(d(v, w))

max
v,w∈V :v ̸=w

(d(v, w))− min
v,w∈V :v ̸=w

(d(v, w))

(2.3.2)

Finally, for an agent at the position v0 at time t, the values associated to nodes v ∈ V

are given by Eq. 2.3.3:

∀v ∈ V , valrH ,v0(v, t) =
rH × īt(v)) + (1− rH)× d̄(v0, v))

(2.3.3)

where the weighting factor rH ∈ [0, 1] must be chosen by the designer. Minimising the
node values according to that expression, i.e. selecting the nodes with the minimum
value, allows for agents to visit nearby nodes with higher idleness first and foremost.
Moreover, as for CC, there is a mechanism forbidding the coordinator to select nodes
that are already assigned to other agents, for the purpose of maintaining the consistency
of the node assignment.

2.3.2.2 Pathfinder method

The Pathfinder method computes the path leading to the goal node. This method takes
into account the idleness of the nodes for all paths between the current location and the
goal, in order to compute the best path leading there. In doing so, the normalised transit
time of an edge c̄v1,w1 is defined from transit times of G as follows:

∀e1 = {v1,w1} ∈ E, if min
e={v,w}∈E

(cv,w) ̸= max
e={v,w}∈E

(cv,w),

c̄v1,w1 =
cv1,w1 − min

e={v,w}∈E
(cv,w)

max
e={v,w}∈E

(cv,w)− min
e={v,w}∈E

(cv,w)

(2.3.4)

Note that for topologies whose all the edges have the same transit time, the same
arbitrary value between 0 and 1 is assigned to each edge in both directions, and the
resultant graph is thereby directed. Arcs are then valued as follows:

∀e = (v,w) ∈ E,

crP
(e) = rP × īw(t) + (1− rP )× c̄v,w

(2.3.5)
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where the weighting factor rP ∈ [0, 1] must be chosen by the designer. As raised above,
the resultant graph computed by the Pathfinder method is directed, resulting in turning
edges e = {v, w} ∈ E into e = (v, w) ∈ E.

Minimising the weights of edge according to this expression allows also agents to visit
nearby nodes with higher idleness first and foremost.

2.3.2.3 Heuristic and Pathfinder methods

Applying this two methods with CC gives rise to the Heuristic Pathfinder Cognitive
Coordinated (HPCC) strategy. The decision process of HPCC includes then two steps:

• Heuristic method, i.e. the selection of a target node that is not necessary in the
neighbourhood,

• Pathfinder method, the computation of a path between the current position of the
agent and the target node previously selected.

In the HPCC strategy, the coordinator makes a decision by applying these two methods
that take as inputs the vector of true idleness and the vector of agent positions as shown
in Figure 2.2.

Also, it is worth noting that both may be used separately, giving rise thereupon
to either Heuristic Cognitive Coordinated (HCC) or Pathfinder Cognitive Coordinated
(PCC) strategies.

2.3.2.4 Performance

Fig. 2.3, from Almeida et al., depicts for 5 and 15 agents the performance, according to
the Iav averaged over the six topologies, of different MAP strategies of the state of the art,
namely CR, CC, HPCC, SC, GBLA, a strategy based on reinforcement learning presented
in 2.3.4.1, and HPTB and HPMB [3], negotiation-based strategies that are not studied
in this dissertation. These results highlight the following order on the performance of
these strategies:

SC > HPCC > GBLA > HPTB > HPMB > CC > CR (2.3.6)

HPCC, as communicating, fully-informed, coordinated, and thereby centralised strat-
egy, is then a high-performance and the best online — namely without precalculation
of paths — strategy until now, according to the results laid out by Almeida et al. [3].
It can then be regarded as a representative and thereupon a comparison strategy for
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Min i(t)

HPCC

v1(n+1)

vNa(n+1)

i1(t)

ia(t)

iNa(t) Coordinator

v1(n)
v2(n)

va(n)

vNa(n)

Fig. 2.2 Decision procedure of HPCC, with n ∈ N standing for the nth decision step, t
the corresponding time, and va(n) and ia(t) the node visited by agent a as well as its
vector of individual ideleness, resp., at the nth decision step.

Fig. 2.3 Normalised averaged idleness of several MAP strategies averaged over the six
topologies, for 5 and 15 agents [3].
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coordinated and centralised strategies. In fact, HPCC follows a top-down designing, that
is to say the society is considered prior to agents and influences them.

2.3.3 Graph-theory-based strategies

Numerous works have been led in the graph-theory framework, which have resulted in
worthwhile theoretical results. In the following, symbols have the same meaning than in
Subsections 2.1.1 and 2.1.2.

2.3.3.1 Single Cycle (SC)

Chevaleyre was the first to establish theoretical results for MAP, from graph theory [8].
First of all, he defined the notion of cyclic strategy.

Definition 2.3.2. Cyclic strategy. Let S = (s0, . . . , sn), with sn = s0 and n ≥ N be
a closed-path of size n + 1 nodes visiting all the nodes of graph G. Any strategy Π =
{π1, . . . , πNa} is a multiagent cyclic strategy based on S iff there exists {d1, . . . , dNa} ∈ N
such that ∀k ∈ N, πa(k) = s(k+da) mod n.

Fig. 2.4 Illustration of a multiagent cyclic strategy. The cyclic strategies of the depicted
agents from their current node are π1 = 2, 1, 4, 5, 6, 4, 1, 3, 2 and π2 = 6, 4, 1, 3, 2, 1, 4, 5, 6,
perpetually [8].

In such a definition, {d1, . . . , dNa} can be thought of as the distance, in terms of nodes,
with the first node of the closed path, that is s0. For example, in Fig. 2.4 d1 = 0 and
d2 = 4 [8].

Then, in a theorem he has established that for a single agent, the optimal strategy in
terms of worst idleness, as defined by Eq. 2.1.1 or 2.1.5 — the worst idleness or worst
interval being identical —, is the cyclic-based strategy based on the closed path which is
the optimal solution to the Travelling Salesman Problem (TSP), noted ST SP :
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Theorem 2.3.3. For a single agent, the optimal strategy in terms of the worst idleness
is the cyclic strategy set from ST SP .

He also proved that if Na agents follow a multiagent cyclic strategy Π and d1, ..., dNa

are well-chosen, then the worst idleness will be approximatively Na times lower than the
worst idleness of single-agent patrolling on the same cycle:

Lemma 2.3.4. Let S = s0, ..., sNa be a closed-path covering each node of G such that
there exists a node v ∈ V covered exactly once by S. Let l = c(S) be the length of the
closed-path. There exists a multiagent cyclic strategy Π = {π1, ..., πNa} based on this
closed-path such that l

Na

− max
(i,j)∈ES

(cij) ≤ WIΠ ≤
l

Na

+ max
(i,j)∈ES

(ci,j). Here, ES refers to
the set of edges present in S. Note that l is also the worst idleness of the single-agent
cyclic strategy based on S.

Let SChr denote the closed path obtained with the Christofide’s algorithm. Extending
Theorem 2.3.3 to the multiagent case by arranging agents on the same closed path
such that they keep an approximately constant offset while walking, he then proved the
following theorem:

Theorem 2.3.5. WIΠChr
≤ 3× opt + max

e={i,j}∈E
(cij)

where ΠChr is the multiagent cyclic strategy based on SChr, and opt the worst idleness of
the optimal strategy. This strategy is referred to as Single Cycle (SC) [8].

Thus, Chevaleyre has proven that the shortest cycle of a graph G is the optimal
solution on the worst idleness criterion for a single agent. He also established performance
bonds concerning the optimality of multiagent one-cycle-induced strategies. As such, he
has showed that determining the optimal multiagent cyclic strategy on the worst idleness
criterion is a NP-complete problem, that is to say, it is a NP problem and it is NP-hard,
i.e. no polynomial-time algorithms are known to compute an optimal solution to the
problem. This is thereupon equivalent to solve the TSP for the current graph G.

However, with dynamic environments or large graphs, cyclic strategies are problematic
insofar as dynamic environments need frequent recomputations of the closed walk, whereas
large graphs mean exponentially longer run time.

2.3.3.2 Graph-partitioning-based strategies

Chevaleyre introduced the graph-partitioning-based strategies, or simply partition-based
strategies [8], which correspond to multicycle strategies. Such strategies are well-known
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for their performances in term of visit frequencies. He has defined a MAP strategy
Π = {π1, ..., πNa} based on a partition P , as a strategy for which each agent k ∈ [|1, Na|]
visits the nodes of only one region of P . The class of strategies based on the partition P

are referred to as ΠP .
Let optΠcycle

and optΠP
be the worst idleness of the optimal cyclic strategy and the

optimal strategies based on P . Then Chevaleyre demonstrated the following theorem:

Theorem 2.3.6. optΠcycle
≤ optΠP

+ 3×max
i,j∈V

(cij)

In this theorem, as well as in the previous one, the term max
i,j∈V

(cij) brings to our
attention the fact that cyclic strategies are not suited for graphs containing long edges [8].
Cyclic strategies will thereby be preferred when graphs have not long edges connecting
far regions.

Finally, from the foregoing theorem, he has laid down a “computable” version of the
previous theorem in the form of the following corollary:

Corollary 2.3.7. Let P = {P1, ..., PNa} a partition of V . A cyclic strategy ΠChr such
as WIΠChr

≤ 3
2optΠP

+ 4×maxi,j∈V (cij) is computable in O(N3).

Fault-Tolerant Multi-Robot Area Coverage. Fazli et al. created a new robust
and fault-tolerant strategy based on graph-partitioning for continuous environment and
the Minimum Spanning Tree (MST) problem [16]. The complexity of this strategy is
O((N + Na)3). A spanning tree over the nodes of the graph, is created by means of a
graph reduction algorithm. Such a reduced graph is called a Reduced-CDT, and enables
improving efficiency by minimising the average of total time spent by the agents to travel
the graph. The Multi-Prim algorithm [11], extending the Prim’s one [43], is used to
build the MST of a weighted graph in order to compute a forest of partial spanning trees
from a Reduced-CDT graph as input. It is here used to compute as many trees as the
number of agents, and finally returns Na spanning trees.

The Revised Double Minimum Spanning Tree (Revised-DMST) algorithm, a variant
of Double Minimum Spanning Tree (DMST) which takes a tree as input and returns a
cycle whose length is double the length of the tree, proceeds as DMST except that it
removes each vertex already proceeded and moves to the next vertex never visited before,
connecting this one with a shortcut edge. Given that the Revised-DMST algorithm
cannot be applied owing to the possibility of a shortcut edge not being in E, the author
introduced another algorithm called Constrained Spanning Tour (CST). The latter
traverses the vertices in the same way as Revised-DMST with the difference that it uses
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edges of the original CDT graph as shortcut. Finally, a cycle is created for each partial
spanning tree using CST.

Lastly, when an agent leaves the society, all the vertices of its assigned tree are
released. Then, all of its supportive agents, i.e. agents whose the tree has a bridge with
that of the failing agent, expand their trees through the Multi-Prim Algorithm to acquire
the released vertices. The following theorem can then be stated:

Theorem 2.3.8. Robustness. The approach is robust even if Na − 1 agents leave the
society, or in other words, as long as there is at least one agent in the society, Na being
the number of agents.

This ensures that as long as at least one agent is patrolling, the whole environment
will be covered.

Multilevel Subgraph Patrolling (MSP). The Multilevel Subgraph Patrolling (MSP)
algorithm is a multilevel graph-partitioning-based algorithm. It assigns different regions,
or subgraphs, to each agent [39]. A multilevel graph partitioning algorithm reduces the
size of the graph, i.e., coarsens the graph, by collapsing vertices and edges, partitions
the smaller graph, and then uncoarsens it to construct a partition of the original graph
[21]. Finally, the parts are assigned to each agent, and for each one a patrolling path is
computed by determining either Euler cycles, or Hamiltonian cycles using heuristics, the
longest path, or non-Hamiltonian cycles.

Fig. 2.5 Four optimal closed walks on a chain graph [38]

Left-Induced Partition of Generic Graphs. Portugal et al. introduced the Min-
Max Cost Closed Walk problem, which corresponds, given a generic graph G and Na

agents, to find a partition P = {P1, ..., PNa} of V , the set of nodes of G, such as:

P ∗ = arg min
P

(max L(πa(Pa))) (2.3.7)

where L(Pa) is the length of the optimal TSP-cycle on Pa [38]. This problem being
equivalent to solving the TSP, it is NP-complete.
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Pasqualetti et al. proposed an algorithm, called Optimal Left-Induced Partition (LIP),
to determine an optimal min-max cost closed walk partition for any chain graphs, as in
Figure 2.5 [36]. Based on the latter, Portugal et al. have proposed a new algorithm
called Left-Induced Partition of Generic Graphs, to create a strategy ΠLIP by extending
it to generic graphs, finding first a complete open walk which is thereafter converted into
a chain graph noted Γ equivalent to the open walk [38]. It turns out that the open walk
must have at most 2|V | − 4 edges. This constraint ensures the following performance
guarantee with respect to the optimal solution [36]:

WILIP ≤ 8 |V | − 2
|V |

η WIΠ∗ (2.3.8)

with η = max |ci,j|
min |ci,j|

and WIΠ∗ being the worst idleness of the optimal strategy.
Finally, the optimal left-induced partition of Γ, of size Na, is computed, then each set

of the optimal partition is assigned to one agent which will patrol it back and forth.

Evolutionary Heuristic to approximate the Min-Max Cost Closed Walk Prob-
lem. Considering the high dependence of the previous algorithm on η, it is expected
to rarely reach an optimal solution. In doing so, the authors have then proposed an
additional partition-based evolutionary algorithm they call Evolutionary Heuristic to
approximate the Min-Max Cost Closed Walk Problem (EHP) [38]. This algorithm begins
with an initial partition of G of size Na, building with a classical multi-way graph-
partitioning approach. It is then evolved using a mutation and selection scheme that
randomly swaps vertices between parts of the partition. Lastly, as previously, each set of
the partition is assigned to one agent.

Finally, the authors evaluated both strategies EHP and LIP on three topologies, from
1 to 20 agents, and compared them with two cyclic strategies, the first called MST Tour,
based on an MST solving algorithm, and the second called HTSP, based on an TSP
approximated-solving algorithm. EHP is always better than LIP, but in most cases it is
outperformed by HTSP.

PART. PART is a self-organised partitioning algorithm for MAP [58]. This algorithm
yield a partition between agents as optimal as possible. In the proposed model, agents
do not have global knowledge nor the ability to communicate directly with all other
patrolling agents. The partitioning process is self-organized so that there is no global
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coordination between agents and global state known. First, the partitioning is violated
by agents during the partitioning process, i.e. the parts of V do not form a partition,
they are not strict nor non-overlapping, because messages induce delays in the system.
Then, when agents arrive at a stable configuration each node is associated with at most
one agent, and all the subgraphs in the partition are connected. Each agent works then
only over its own subgraph without interfering with each other.

PART strategy was tested and compared with CR [29], GBS [40], SEBS [40], described
in Subsection 2.4.1, and MSP [39] and has turned out to be the best strategy.

2.3.4 Markov-decision-process-based strategies

A Markov decision process (MDP) is a decision-making model for any discrete time
stochastic control process. A MDP is represented by a tuple < S, Ac, P, R >, where:

• S is the set of states, namely for a single agent, the nodes of the graph G,

• Ac is the set of actions, consisting in moving among nodes,

• P : S × Ac → K(S) — where K(S) is the credal set of S located — i.e. the set
of probability distributions over S —, is the function of probability distributions
making up the state transition function: for each state s ∈ S, this function returns
a probability distribution P (s, a), where ∀s′ ∈ S, P (s, a)(s′) = P (s, a, s′) is the
probability to reach the state s′ from s by applying action a,

• R : S×A→ R, is the immediate reward, also known as expected immediate reward.

2.3.4.1 Multiagent patrolling and reinforcement learning

Santana et al. addressed for the first time the MAP problem as a reinforcement learning
(RL) problem [53]. They demonstrated that an efficient cooperative behaviour can be
achieved by means of Q-learning, by modelling MAP as a Semi-Markov Decision Process
(SMDP), which is merely a generalisation of MDPs where actions may take a variable
amount of time. In this model the area to patrol is still depicted as a graph, and the
model being an MDP, it is defined by the tuple (S, Ac, P, R) outlined above, where
∀t ∈ N∗, the state st corresponds to both the positions of all of the agents and the
idlenesses of all the nodes of G. Then, let:

• ∀a ∈ A an agent, pa(t) ∈ V ∪ E be the position of a at time t,
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• ∀a ∈ A, ∀t ∈ N∗, ∀p ∈ V ∪ E, ip(t) is the true idleness of p at time t; if p is an
edge, then ip(t) = 0, otherwise ip(t) = iv(t) such as p = v ∈ V ,

The idleness of pa(t) at time t, ipa(t)(t), is then used as reward function, and the
multiagent policy learned by the Q-learning algorithm is that which maximises the sum
of the discounted reward after a T -period simulation run, ∀T ∈ N:

∑
a∈A

T∑
t=0

γt × ipa(t)(t) (2.3.9)

where γ ∈ [0, 1] is a discount factor.

To take advantage of Q-learning the sum to maximise in Eq. 2.3.9 should represent
the real state of the system, leading the true idleness of the node visited by a ∈ A to
be used as a reward. Otherwise, agents would try to maximise an internal sum, and
each agent will not make the effort to help other agents to maximise their rewards. To
that end, a scheme of flag communication, which can be interpreted as communication
through environment, is implemented so as each time an agent visits a node it places
a flag containing the current time step which can be seen by any other agent that will
stand on this node.

It is worth noting that the strategy proposed here is agent-independent: the same
strategy π is executed by each agent a, so that at each time t ∈ [|1, T |], the decision of a

noted da is such as da(t) = π(pa(t), ia(t)).

Two Q-learning-based strategies were modelled using two different communication
schemes:

• Black-Box Learner Agent (BBLA): agents communicate only by placing a flag on
each node they visit,

• Grey-Box Learner Agent (GBLA): agents communicate by placing a flag on each
node they visit and can also communicate their intention of actions to the other
ones.

Results show that globally GBLA is the best strategy when compared with BBLA,
CR and Heuristic Cognitive Coordinated.

Finally, although being an interesting and seminal work associating MAP with
MDPs and RL the approach of the authors assume that agents communicate by leaving
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messages on the nodes of the graph; such a strong hypothesis leads to unrealistic
communication models similar to those established in ACO-based MAP, and by doing so,
hardly practicable in real life.

2.3.4.2 Continuous Time Multiagent Patrolling

Marier et al. addressed the problem of continuous time MAP they cast as a Generalised
Semi-Markov Decision Process (GSMDP) [30]. The problem state is fully observable,
i.e. every agent has the same complete information to make its decision. The freshness
is defined from idleness as being the quantity kt

v = biv(t) with 0 < b < 1, which enables
having a bounded quantity depending on idleness. The authors point out it can be
interpreted as the expected value of a Bernoulli random variable that is worth 1 if vertex
v is observed correctly and 0 otherwise.

The state st, ∀t ∈ R+, corresponds then to:

• the position of every agent, represented by the vector of all agent positions vt,

• the freshness of every vertex, represented by the fector of all node freshnesses kt,

so that st is such as st = (vt, kt) ∈ S = V Na × [0, 1]|V |, where S is the state space.
The actions correspond to selecting a next node to visit in the neighbourhood. An

agent selects an action each time it stands on a vertex, and the transit time being
stochastic, the time of arrival to the goal node is not known in advance.

The immediate reward R is then defined, ∀t ∈ R+, in terms of kt so as the rate at
which the reward is gained is defined by:

dR = wT kt dt (2.3.10)

where w is a vector of weights.
Finally, to solve this GSMDP problem, optimisation techniques were applied to

efficiently find the optimal paths for the agents on the graph. Particularly, an algorithm
with communicating agents, named Coordinated Anytime Error Minimisation Search (C-
AEMS), was compared with a simple reactive algorithm called Reactive Markov Decision
Process (RMDP), which has proven to be barely outperformed by C-AEMS: differences of
performance are negligible. This work, in fact, highlights that simple reactive algorithms
can show the same performance as more computationally complex approaches.
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2.3.4.3 Cooperative Multiagent Patrolling based on DEC-POMDP

Beynier introduced a new formalisation of adversarial MAP under uncertainty based
on Decentralised Partially Observable Markovian Decision Process (DEC-POMDP) [7].
DEC-POMDPs are convenient to model a decision problem under uncertainty with partial
observability of the system. Although addressing an adversarial MAP, some aspects of
this work are germane to the temporal MAP.

Agents make a decision when standing upon a node, then the decision is the next
node to visit.

In this work, uncertainty arises from imperfect action executions and limited observa-
tions consisting in:

• possible transit times, refered to as travel durations by the author, as in the model
of Marier et al. [30], leading to assign a probability distribution to each edge,

• detecting illegal actions, which correspond to the probability distribution PIv(t),
that is the probability that at least one of adversaries initiate an intrusion on the
node v ∈ V at time step t ∈ N.

∀t ∈ N, st, the state at time t, is defined such as:

• p is the position of each agent,

• int ⊂ V is the set of nodes where an illegal action has just been observed,

• idle contains the idleness of each node,

• δ contains the elapsed time of each current move.

The transition function corresponds to the transition probabilities which are defined
from probabilities on travel durations and probabilities of detection of illegal action.

The reward function is defined to reward detected illegal actions. For all action a ∈ A

from a state st = (p, int, idle, δ) leading to a potential next state s′
t = (p′, int′, idle′, δ′),

the reward R(s′
t|a, st) is defined as:

R(s′
t|a, st) =

∑
v∈int′

RD(tv) +
∑

v∈p′and/∈int′

RP (v, idlev) (2.3.11)

where RD(tv) ∈ R∗
+ denotes the reward of detecting an illegal action on the node v and

RP (v, idlev) ∈ R∗
+ is the reward of the node v ∈ V without detecting any illegal action.
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RP (v, idlev) is proportional to the idleness of v, leading the agents to patrol the nodes
with the highest idleness first.

Interestingly, when setting ∀v ∈ V, ∀t ∈ N, PIv(t) = 0, it follows int = ∅ during all
the patrolling mission, resulting in a temporal MAP with non-deterministic transit times.

Finally, a distributed evolutionary algorithm was investigated to compute the policy of
the patrolling strategy. Such a distributed algorithm requires the agents to communicate
their observations about detected illegal actions. Strategy resulting from this evolutionary
algorithm turns out to be better than the optimal solution computed using the Multiagent
Decision Process toolbox [35].

2.4 Machine-learning-based strategies

A first machine learning strategy based on the SMDP model is presented in 2.3.4.1. The
purpose of this section is to present a set of machine learning strategies which do not
rely on MDP.

2.4.1 Bayesian learning

In simplified terms, Bayesian learning, also knowns as Bayesian inference, consists in
inferring the probability of having a certain value for a parameter given a sample. In
what follows, a simplified model of Bayesian learning is presented.

Let:

• X be a sample, i.e. n observed data represented by n real random vectors: X =
(X1, . . . , Xn),

• θ be the vector of parameters of the distribution of X, that we want to infer.

Following the Bayes’ rule, it follows:

P (θ|X) = P (X|θ)P (θ)
P (X) (2.4.1)

where:

• P (θ), the prior distribution, represents the information about the parameters
known beforehand,

• P (X|θ), the likelihood distribution, represents what is expected in terms of observed
data if the parameters were known; this is what is learnt and update as part of the
Bayesian learning,
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• P (θ|X), the posterior distribution yields, in the Bayesian learning framework here
laid down, the most accurate information about the value of θ.

Finally, the value of θ maximising the posterior distribution P (θ|X) is the most
probable value having generated the observed data X.

2.4.1.1 Greedy Bayesian Strategy (GBS) and State Exchange Bayesian Strat-
egy (SEBS).

Portugal and Rocha proposed two distributed MAP strategies based on the Bayesian
inference formalism [40]. This method is implemented with the aim of making the MAP
system more adaptive and flexible. In both strategies agents update their instantaneous
idlenesses by communicating with each other each time an agent reaches a vertex

The first proposed strategy, Greedy Bayesian Strategy (GBS), applies Bayesian learning
based on two types of Real-valued Random Variables (r.r.v.):

• ∀v ∈ V the Bernoulli variable movev ∈ {0, 1}, which represents whether the agent
will move to a neighbour vertex v,

• Gv ∈ R+ which represents the gain that the agent expects to obtain whether it
moves from its current vertex to the neighbour v.

In this strategy, the prior P (movev) is assumed to be uniform over all neighbouring
vertices, while P (Gv | movev), the likelihood, follows an exponential law when {movev =
1}:

∀Gv < M,

P (Gv | movev = 1) = L exp( ln(1/L)
M

Gv)
(2.4.2)

where L, M ∈ R : L, M > 0 are given values.
Here, the event {movev = 0} is never considered. This is a strong assumption as far as

P (Gv | movev) exists when movev = 0, for example whether another agent moves onto v.
That leads to obviate the model of P (Gv | movev = 0), resulting in an incomplete model.
Also, according to Eq. 2.4.2 and as stated by the authors, the likelihood distribution
is set beforehand, leading to never be updated as new information becomes available,
disabling any possible Bayesian learning.

As to P (Gv), the marginal likelihood, it is regarded by the authors as “a normalisation
factor which can be omitted for the sake of simplificity”. This is yet again a strong



34 State of the art

Fig. 2.6 Greedy Bayesian Strategy (GBS) algorithm

assumption to the extent that the decision-making is carried out ∀v ∈ NG(v0), over the
best probability of {movev = 1}, with NG(v0) beging the neighbourhood of v0, and not
over the support of movev, that is {0, 1}. Indeed, P (Gv) can only be omitted when the
decision-making is carried out over the same r.r.v. Gv, but not in any case over different
r.r.v.’s, considering that ∀v ∈ NG(v0), P (Gv) varies, unless to assume that ∀v ∈ V, P (Gv)
is constant. Therefore, ∀v ∈ V, P (Gv) should have been calculated as follows:

P (Gv) = P (Gv | movev = 1)P (movev = 1) + P (Gv | movev = 0)P (movev = 0) (2.4.3)

However, it is here unclear whether the authors use P (Gv) or not. First, they appear
to confuse P (Gv) with P (Gv | movev) by defining first ∀v ∈ NG(v0), P (Gv), then by
using this definition for Gv given that {movev = 1}, i.e. P (Gv | movev = 1). Finally, as
shown on Figure 2.6 depicting the GBS algorithm, they seem finally to use P (Gv) in the
Baye’s rule, in spite of having stated previously that it can be omitted as a normalisation
factor.

The posterior probability is then estimated for movev = 1 via the Bayes’ rule:

P (movev = 1 | Gv) = P (movev = 1)P (Gv | movev = 1)
P (Gv) (2.4.4)
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leading to choose the v ∈ NG(v0) with the maximum P (movev = 1 | Gv).
Eventually, this model seems somewhat abstruse. As stated by the authors, “since

the model assumes a uniform prior and considers only one likelihood function which is
fixed, the decisions taken in GBS are equivalent to moving to the adjacent vertex with
maximum instantaneous idleness”. This raises questions about the relevance of Bayesian
inference, which is, in this context, no longer necessary. Also, it is worth noting that,
based on the fact set out above and as agents communicate only with each other when
they reach a vertex, this strategy can be thought of as a communicating CR.

GBS agents being only interested in obtaining the best reward for themselves while
neglecting the global objective of the patrolling mision, the authors have extended the
strategy to reduce interferences between agents during the mission, given rise to the
State Exchange Bayesian Strategy (SEBS). In addition to the r.r.v.’s defined previously,
SEBS agents take now into account in their decision process a new discrete r.r.v., noted
Sv, ∀v ∈ NG(v0), which represents the number of agents that intend to visit a given
neighbour v. As previously, the r.r.v. Gv remains problematic in the context of the
authors’ model and Sv suffers from the same failings:

• the new r.r.v. Sv is set beforehand, obviating any Bayesian inference,

• P (Sv) and P (Sv | movev = 1) are confused,

• no assumptions, and no justifications of such an assumption, about the independence
of Gv and Sv, ∀v ∈ NG(v0), while this assumption is implicitly made in the Baye’s
rule used by the authors to compute the posterior P (movev | Gv, Sv),

• the decision is made over P (Gv) and P (Sv), ∀v ∈ NG(v0) instead of the supports
of Sv and Gv,

• it remains unclear whether the authors finally omit the normalisation factors P (Gv)
and P (Sv) or not.

Results show that, for 6 agents and more, SEBS and GBS outperform all the other
strategies on the final graph average idleness criterion. However, for the same tests CR
outperforms most of the time HPCC, contradicting all the domain’s results [3][42]. It
is regrettable that only the final graph average idleness is considered, leading to a lack
of information about performances while the mission is runnng. Finally, the authors
give no information about the rH and rP parameters for the HPCC strategy that they
experimented.
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2.4.1.2 Concurrent Bayesian Learner Strategy (CBLS)

Following the strategies outlined above, Portugal et al. also attempted to propose another
distributed MAP strategy based on the Bayesian inference formalism [37]. In Concurrent
Bayesian Learner Strategy (CBLS), the communication system is distributed: each agent
computes its values internally, value communicated thereafter to its other teammates
each time it arrives to a new vertex. CBLS agents apply as well, what is called a Bayesian
learning by the authors, relying on two r.r.v.’s:

• ∀v0 ∈ V , ∀v ∈ NG(v0), movev ∈ {0, 1} is a Bernoulli variable which represents
whether the agent will move to a neighbour vertex,

• θ0,i ∈ θ : card(θ) = 2 card(E) called arc strength, represents the suitability of
travelling ev0,v to reach v.

Here, P (movev), the prior, depends upon the idleness of v [41]:

P (movev) = ω · īv + (1− ω) ·max(̄iw : w ∈ NG(v))∑
k∈V

ω · īvk
+ (1− ω) ·max(̄iw : w ∈ NG(vk))

(2.4.5)

where ∀v ∈ V , ī(v) is the average idleness of v and ω ∈ [0, 1].

This definition is justified by the intent of selecting primordially the vertex with the
higher average idleness which has itself a high average neighbourhood idleness. This
method is called vertex look-ahead.

As the mission proceeds, the agent computes a reward for each arc {v0, v} as follows:

γv0,v = Sv,v0(Cv, IV (t)) · (1−H(move|θ)) (2.4.6)

with:

H(movev | θ) = H(move | θ)
log2(deg(v0))

(2.4.7)

being the normalised conditional entropy over the neighbours of v0, Sv,0 ∈ {−1, 0, 1}
depending upon Cv, the number of visits to v, IV (t), the vector of true idleness, and the
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degrees of v0 and v gives the reward sign.

Then, θv0,v is updated via a 1-step-horizon reward:

θv0,v(t) = θv0,v(t− 1) + γv0,v(t) (2.4.8)

Finally, the likelihood ditribution is learnt as follows:

P (θv0,v | movev) = θv0,v

|E|∑
j

|E|∑
k

θj,k

(2.4.9)

This quantity is updated at each decision step using accumulated experience. The
posterior probability P (movev | θv0,v) is then calculated using the Bayes’s rule as in 2.4.4.

As before [40], this model has some pitfalls: the denominator term P (θv0,v) is regarded
as a normalisation factor, whereas the decision-making is not carried out over the r.r.v.
θv0,v, justifying this simplification, but over {θv0,v,∀v ∈ NG(v0)}.

Results finally showed that CBLS outperforms GBS and SEBS as well as HPCC and
CR on the final average idleness criterion.

2.4.2 Neural-learning-based patrolling

For the reader not familiar with ANNs, Appendix A provides an overview on the basics
and history of ANNs.

2.4.2.1 Modelling a dynamic landscape

Few works addressed the problematic of using ANNs in the context of MAP. Amongst
related works, Guo et al. studied the use of ANN-based methods for planning a complete
coverage patrolling path [19]. In that work, the area to patrol is discretised into fixed
radius disks that can be thought of as nodes to visit. Then, each neuron, depicts a region
activated negatively or positively as a function of either the presence of obstacle, or the
absence of a visit by the patrol, respectively. The activities of all the neurons constitute
a dynamic landscape such that the non-visited regions attract globally the agent in the
entire space, whereas the obstacles locally repel the agent to avoid collisions. Attractive
regions, which correspond to regions without visit, can be regarded as regions with a
high idleness. The type of neural network used in that work is germane to estimation
of global features of the environment by agents, which is one of the approach used in
this disseration. However, in this work the use of ANNs by agents implies no restrictions
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with regard to communication, whereas in our framework agents do not communicate
systematically: either agents do not communicate, or they communicate only when they
are within the range of each other; they act in a decentralised way.

2.4.2.2 Hive brain

D’Ambrosio et al. developed a new communication scheme they called hive brain, as part
of cooperative multiagent learning [14]. In this scheme, each agent is endowed with a
neural network directly connected to nodes of the others agents’ internal ANN, whose
weights of connections are evolved. As stated by the authors, this technique is drawn from
an interesting physical phenomenon called odd sympathy [6], which is the tendency of
pendulum clocks to synchronise when mounted near each other owing to a small amount
of physical information transferred between the pendulums. Thus they elaborated the
hive brain analogically, where the agents learn to synchronise by training their respective
ANN in a agent simulator; the training is performed using an evolutionary algorithm. In
our perspective, this work presents the same problem as the previous one, that is to say
the implicit use of communications in the simulator between agents, to feed the brain of
one agent from another one.

2.4.2.3 Predicting states of a finite-state machine

Sales et al. developed an autonomous patrolling system composed of four intelligent
agents that can freely move through an indoor environment and detect intruders [51].
The agents are endowed with a localisation/navigation system composed of an ANN,
used in combination with a Finite State Machine (FSM) whose the states correspond
to the key features of the environment. The FSM associates a sequence of actions to
execute with a sequence of states, and the ANNs process the sensors’ data to identify
and classify the FSM states (current and transitions), and to determine the actions to
perform. After being trained offline to identify the key features of the environment such
as corridors, intersections and turns, they are fed with data obtained from agents’ sensors
to output the FSM states. Lastly, in this work, each agent calculates the shortest path
using the A∗ algorithm while taking into account its teammates, to reach the intruder’s
position when it is detected.
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2.5 Conclusion

The analysis of the state of the art presented in this chapter leads to the conclusion that
the problematic consisting in learning decentralised MAP strategies from data generated
by any centralised strategies is original. Moreover, it allows making up a framework for
this work, whose the properties are:

• the scope is that of temporal MAP,

• assessment of studied strategies is performed using benchmark topologies experi-
mented to a large extent by the MAP community,

• the number of agents does not vary throughout a mission,

• performance measures based on idleness and interval are retained and they are
normalised with respect to the number of agents Na to compare different numbers
of agents,

• strategies cannot communicate through the environment,

• learning data can be provided by the HPCC strategy that is an excellent candidate
of strategy to be decentralised considering it is a centralised, coordinated and
high-performance strategy, and,

• CR can be used as a reference for the assessment of strategies without commu-
nication between agents: any new decentralised strategy ought to outperform
CR.

Finally, with regard to supervised learning, models studied in the following will range
from simple models with few parameters, as in Bayesian learning, to complex ANNs,
such as MLPs and LSTMs.





Chapter 3

Model, methodology and
implementation

This chapter describes the model of the MAP problem, as well as some definitions
pertaining to it, which must be introduced in this dissertation for the sake of clarity.
Then, the characteristics and structure of MAP data, namely data generated by MAP
runs, are described. Finally, the general methodology used in the remainder of this
dissertation is laid out, the tools developed for this purpose are described, then the data
used for learning are presented.

3.1 Model and definitions

This section defines the model of the MAP problem and certain of key ideas pertaining
to it. This section is a complement of what has already been exposed in Chapter 2.

3.1.1 Model of the MAP problem

Unlike the methodology presented in Section 2.2, the present model distinguishes the
notions of patrolling configuration and patrolling scenario. Here, a patrolling config-
uration, MAP configuration or simply configuration, noted K, is any unordered pair
K = {G, Na}. For example, {Grid, 15} is a patrolling configuration of 15 agents on the
topology Grid. Then, a patrolling scenario, MAP scenario or simply scenario, is any
triplet {Π, G, Na} such as Π is a MAP strategy. In fact, a MAP scenario is the pair of
a MAP strategy and a MAP configuration. For example, {HPCC, Grid, 15} is a MAP
scenario of 15 HPCC agents on the topology Grid.
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The model of the MAP problem can now be defined.
A MAP problem is an optimisation problem which has to be optimised according to:

• a given evaluation criterion, noted C; such a criterion defines the characteristics
required by the strategy to design, and,

• a MAP configuration.

Such a problem is noted MAP (C, K). In this dissertation a MAP problem is an
optimisation problem whose the objective is to optimise an evaluation criterion C for a
configuration K. By doing so, it follows that solving this problem is equivalent to find
the optimal multiagent strategy Π with respect to C in the configuration K, i.e. the
strategy Π which minimises C in K, as follows:

Π∗
K = arg min( C(K, Π) : Π a MAP strategy ) (3.1.1)

By definition, such a strategy verifies:

C(K, Π∗
K) = min(C(K, Π) : Π a MAP strategy ) (3.1.2)

and Π∗
K is thus the best strategy for the problem MAP (C, K).

In the remainder of this dissertation, agents are assumed to know the a priori topology
of the environment.

Moreover, in Chapter 7, coordination between agents will be explicitly considered by
means of an interaction scheme. In this work, non-centralised strategies have to manage
only limited communication ranges, that is agents are able to communicate iff they are
within a certain range from each other.

3.1.2 Definitions

Some fundamental notions used in the remainder of this dissertation are defined in this
subsection.

3.1.2.1 Mission

In order to assess strategies for a given MAP configuration, it is relevant to test them
for several random starts, that is to say for several instances of this configuration where
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agents start the mission from different positions on the graph. Such an instance is termed
mission.

Definition 3.1.1. Mission. A mission, execution or run, is an execution of a MAP sce-
nario with specific initial conditions. These initial conditions correspond to a positioning
of agents on nodes of the graph to patrol. For non-deterministic strategies the seeds of
random sorting functions are also part of the initial conditions in the present work.

Initial positions on edge are not considered in the present work. Note also that for a
given strategy Π, C(K, Π) is estimated practically by averaging the performance measure
C of Π over several missions.

3.1.2.2 Idleness types

In this work, three types of idleness are considered:

• ∀a ∈ A,∀v ∈ V , the individual idleness of the node v for agent a at time t ∈ N∗,
noted ia

v(t), is defined as being the time elapsed since its last visit to this node,

• in a context of communication, the shared idleness for the node v of agent a

corresponds to the minimum individual idleness of v among those the agent has
received from other agents and its own individual idleness,

• the true idleness of the node v at time t, noted iv(t), corresponds to the time
elapsed since the last visit of any agent to v; it is defined, by construction such as:

∀t ∈ N∗,∀v ∈ V, iv(t) = min(ia
v(t) : a ∈ A) (3.1.3)

Then, at each time step t, individual idleness can be updated by each agent, and true
idleness is updated by the simulator. Performance measures based on idleness or interval,
presented in Subsection 2.1.3, are calculated on the basis of true idleness dynamics.
It is worth noting that in the case of perfect communication between agents sharing all
information concerning idleness using their interaction scheme, shared idlenesses of any
agent is equal to true idlenesses.

3.1.2.3 State

In the model of the MAP problem, ∀t ∈ R+, a state at time t noted st is defined as being
the tuple < P (t), i(t) >, where:
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• P (t) is the list of positions of all the agents at time t,

• i(t) is a vector which represents the true idleness of every node of the patrolled
graph G at time t, such as i(t) = (i1(t), . . . , iN(t)).

The state st can also be referred to as global state at time t.

Then, each agent a ∈ A can have a partial knowledge of the state at time t, noted sa
t

and termed as local state. sa
t is the tuple < pa(t), ia(t) >, where:

• pa(t) ∈ V ∪ E stands for the position of agent a at time t,

• ia(t) is a vector of individual idleness computed by agent a according to its visits:
ia(t) = (ia

1(t), . . . , ia
N(t)).

3.1.2.4 Strategy types

In Chapter 2, an axis ranging from reactive to cognitive strategies with an infinity of
strategies between this two ideal strategy types has been referred. One objective of this
dissertation is to propose and study new strategy types.

A strategy is qualified as centralised when agents exchange information with a central
coordinator, i.e the coordinator constitutes the centre of the changing and mobile network
of communication established by agents, and more precisely, it constitutes the central
place of the decision process. In this work, among the non-centralised strategies, namely
strategies without centre, decentralised strategies are distinguished from distributed
strategies.

Decentralised strategies consist in algorithms without communication, i.e. agents do
not communicate. In such strategies, the decision-making process is totally decentralised,
there is not any coordination, and thereby not any centre.

In contrast, although without centre, distributed strategies agents may communicate
with each other, and thereby coordinate. In fact, they form a dynamic communication
network, and if there exists a path between two agents in this network, then both agents
can communicate; therein the strategy is distributed and, in fact, clustered: agents
form communication clusters. Interestingly, a decentralised strategy can be regarded as
a distributed strategy without communication, as depicted in Fig. 3.1. Note that a
distributed algorithm is not necessarily a distributed strategy. HPCC is a distributed
algorithm insofar as the coordinator needs to communicate with the patrolling agents to
make decisions. However, it is not a distributed strategy.
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Decentralised
strategies

Distributed strategies

DEC-POMDP 
strategiesRR

CR

Fig. 3.1 Set of distributed strategies.

Based on the facts set out above, we propose a new axis orthogonal to the reactive-
cognitive one: the decentralised-centralised axis, where distributed strategies are some-
where between the centralised and decentralised ideal-strategies.

Decentralised Centralised

Distributed

Fig. 3.2 The centralised-decentralised distinction defines a practical axis to evaluate the
autonomy of agents with regard to each other.

It is then worth noting that reactive strategies are not necessarily decentralised,
although in this dissertation the CR strategy, which is chosen as the decentralised rep-
resentative to be compared with, is also a reactive strategy, by definition. Likewise,
cognitive strategies are not necessarily centralised, and conversely, although in the fol-
lowing the HPCC strategy, which is the centralised representative, is also a cognitive
strategy, by definition.

Finally, a machine learning strategy is any strategy based on a statistical or machine
learning model. More specifically, when the machine learning model is an ANN such a
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strategy is regarded as a neural strategy.

3.2 Types of stationary strategies and structure of
resultant data

In this section, different types of stationary strategies are described, then the characteris-
tics and structure of data generated by any MAP strategy during a run are laid out.

As shown in Table 3.1, any strategy gives rise to several types of sequences:

• decision sequences da(t), that represent, ∀t ∈ [|1, T |] such as T ∈ N∗ is the duration
of the mission, and for each agent a ∈ A, the decision applied by a at time t, that
is to say in MAP the next node to visit,

• state sequences, that represent the state of the system for each time t, whether
local states sa(t), i.e. those observed or computed by each agent a on its own, or
the global state s(t); for a certain family of MAS, local states can be regarded
as a distribution of the global one, so that there exists a procedure g such as
s(t) = g(s1(t), . . . , sNa(t)). For example, in MAP g corresponds to both the
concatenation of agent positions and the vector of true idleness computed according
to Eq. 3.1.3.

Agent decisions
d1 d1(1) . . . d1(T )
... ...

dNa dNa(1) . . . dNa(T )
Global states s s(1) . . . s(T )

Local states
s1 s1(1) . . . s1(T )
... ...

sNa sNa(1) . . . sNa(T )
Table 3.1 Output of a MAP strategy run

Usually, a stationary policy or strategy Π is defined as a function mapping a state to
a decision: (d1(t), . . . , dNa(t)) = Π(s(t)), more precisely to the decision made by every
agent at time t; this is exactly what is defined in Def. 2.3.1, where a multiagent strategy
for Na agents is defined as Na single-agent strategies. However, such a mapping from s
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Set of stationary policies

Set of non-deterministic policies
d(t)   p(s(t))

Set of deterministic policies
d(t)    p(s(t))

Set of distributed 
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a
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RR
CR

HPCC

Fig. 3.3 Set of stationary policies, deterministic (π) and non-deterministic (p) where p is
a random procedure.

to d is only possible for centralised strategies, where the central decision node has access
to the global state s(t), i.e. it is fully-informed, otherwise the global state would not be
known.

Fig. 3.3 depicts some types of stationary policies. Interestingly, strategies developed
in this dissertation up to Chapter 6, are in the form of da(t) = π(sa(t)), ∀a ∈ A, namely
they are agent-independent and decentralised, whereas in a large number of approaches
of the literature — particularly in graph-partitioning-based strategies presented in
2.3.3.2 and in the DEC-POMDP model presented in 2.3.4.3 — they are in the form
da(t) = πa(sa(t)), that is to say decentralised and agent-dependent.

Finally, if C can be expressed as a summation over time of individual costs depending
only on state and decision, then it is known that for T → +∞ , Π∗ is inside the set of
deterministic policies. It is true for C = Iav, without adding any other state variable to
the model of the MAP problem; see for example Subsection 2.3.4, Eq. 2.3.9 and Eq.
2.3.11. It is unlikely that under the same conditions Π∗ be inside the set of distributed
agent-independent deterministic policies. Therefore, what is searched for here is a sub-
optimal policy. In order to be less constrained in this search it is interesting to consider
a larger set of policies: the set of decentralised agent-independent non-deterministic
policies where, as shown in Fig. 3.3, da(t) ← p(sa(t)), with p(.) not being a function



48 Model, methodology and implementation

but a procedure involving randomness.

From the foregoing, two natural and germane use cases of machine learning models
for the family of MAS here considered emerge:

• approximating an agent decision by a function of the previous decisions of the
same agent da(t− t′), ∀t′ ≥ 1, so that there exists a procedure f such as da(t) =
f(da(t−1), . . . , da(1)); in MAP, this corresponds to approximating Π for predicting
the next node to visit at time t with respect to the previous ones,

• estimating s(t) from sa(t), which is partly equivalent to approximate g, and using
Π(ŝ(t)) to derive the decision, where ŝ(t) is the estimated global state; in MAP, this
corresponds to estimating true idleness for each node with respect to the individual
one, which is partly equivalent to approximate g.

Deterministic or not, decision predictors and state estimators have to be calibrated
from data generated by high-performance strategies; such strategies are also generally
centralised. In doing so, two types of data have been defined for the two use cases:

• binary paths, sequences of binary positions, i.e. nodes represented in one-hot1 format;
used in this dissertation to train some networks in Chapter 4 and Chapter 5,

• on-vertex idleness sequences, sequences of idleness vectors retained only when
agents stand on a vertex, that is to say when they have to make a decision, and, to
each on-vertex idleness vector is associated its true idleness counterpart; this use
case is used in this work to train some machine learning models in Chapter 6 and
Chapter 7.

From now on, any strategy Π used to calibrate a state estimator or a decision predictor
as part of a decision process will be qualified as model strategy.

3.3 Methodology

The aim of this work being to decentralise and distribute a centralised MAP strategy, a
new methodology extending that presented in Section 2.2 is required. Such a method-
ology is presented in this section.

First, to decentralise the centralised strategy, the methodology is deployed as follows:
1A one-hot vector is a binary vector with only one 1.
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1. Selecting an evaluation criterion C to optimise; the criterion, in fact, defines the
needed type of strategy,

2. Selecting a centralised decision strategy to decentralise; this strategy is regarded as
the model strategy,

3. Acquiring data generated by the model strategy,

4. Selecting a statistical model appropriate to the data,

5. Training the statistical model on the data previously acquired,

6. Creating the new decentralised process: the trained statistical model is deployed
into agents; each agent makes a decision using the output of its statistical model,

7. Assessing the new decentralised decision-making process in simulation.

Note that because the selection performed at step 4 is evaluated at step 7, step 4 to
7 may be performed in parallel for several models. Moreover, if a resultant distributed
process is aimed for, then communication between agents can be laid down, by definition
of a distributed system, and domain-specific distributed algorithms may be designed to
improve its performance.

In this dissertation, this methodology is concretely deployed in the context of MAP, to
distribute or decentralise a high-performance centralised strategy. The concrete method
that is used in the remainder is the following:

1. Choosing an evaluation criterion, e.g. the Iav or WI,

2. Choosing a model strategy, e.g. HPCC,

3. Generating data from executions of this model strategy in simulation,

4. Selecting statistical models to test, e.g. several ANN architectures,

5. Selecting one or several generic MAP configurations which stands for test scenarios
used to select the best statistical model among those chosen in the previous step,
e.g. {A, 15} is a general MAP configuration: A is a regular graph, and 15 agents
for 50 nodes is a reasonable multiagent patrolling,

6. Training models for the test scenario, for example that resulting from steps 2 and
5: {HPCC, A, 15}, on the generated data,
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7. Creating the new decentralised strategies based on these statistical model; to do
this, they are in fact embedded in agents,

8. Evaluating the new machine learning strategies in simulation in the test configura-
tion, e.g. {A, 15},

9. Choosing the statistical model with the best performance in simulation,

10. Generalising to all needed configurations.

Other annex steps could be inserted to refine this method with respect to the use aimed
at.

3.4 Implementation

In this section, the main tools developed to carry out this work are presented.

3.4.1 PyTrol

PyTrol2 is a discrete-time simulator dedicated to MAP, designed as a Python framework
with the aim of performing MAP simulation. Originally, this simulator has been developed
for the purpose of generating merely and rapidly a significant amount of MAP data,
for the needs of this work. It has thereafter been evolved to become an easy-to-extend
framework totally dedicated to MAP: the user can write custom building blocks to express
and experiment new ideas for MAP research; they can also develop state-of-the-art models.
It is distributed over multiple threads, and can be used sequentially or parallelly. Its
temporal model is discrete and each time step, or period, is not finished as long as all
the agents have not acted.

To simulate a MAP mission, that is to say an instance of a given MAP scenario {Π,
G, Na}, a JSON file containing the setting of the mission to simulate shall be provided
to the simulator. More precisely, the JSON file contains the description of the graph G,
the society of agents, as well as their initial positions on the graph. The duration of the
mission T ∈ N∗ ought also to be set. For each mission, simulation traces are recorded
in JSON log files, in which at each time step the position and the individual idlenesses
of each agent, as well as the true idlenesses of nodes are logged. These files are then
processed to compute statistics, or even to be used as data for learning, for example.

2https://github.com/mothguib/pytrol
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In this framework, edges are discretised. As stated in Subsection 2.1.4, they are
sampled over time, that is to say divided into units that agents travel in one period.

In its current version, PyTrol relies on 5 variables:

• the position of agents in the graph,

• the completed actions: a boolean variable which indicates whether all agents have
completed their action,

• the communication step: a boolean variable which indicates whether the communi-
cation step has begun, outside this step agents cannot communicate,

• the decision step: a boolean variable which indicates whether the decision step has
begun, outside this step agents cannot decide,

• the interaction mode: a boolean variable which indicates whether the agents can
interact, i.e. whether the interaction scheme can be used.

3.4.1.1 Main components

PyTrol comes in the form of a python package called pytrol, which is itself decomposed
into three main subpackages, as follows:

• control: represents the controller, namely the component of PyTrol which executes
agents and controls all operations necessary to play the simulation out,

• model: represents the data model of MAP, namely all concepts and objects which
determine the structure of MAP necessary to simulate a MAP execution,

• util: utilities, that is to say annex tools, procedures and algorithms being generic
enough to be used in other projects independent from PyTrol.

3.4.1.2 pytrol.control.Communicating

A key structure in PyTrol is the pytrol.control.Communicating.Communicating class.
This class, which extends threading.Thread, provides all of the abstract methods
necessary to communicate, and thereby allows creating independent threads able to
communicate. Any Communicating object will be referred to as communicating. Any
possible way of communication is practicable, letting the user provide an object whose
the class extends the utils.net.Connection.Connection abstract class. Thus, the
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type of needed connection is left to the discretion of the user. By default, the con-
crete class utils.net.SimulatedConnection.SimulatedConnection is used, enabling
communicatings to communicate by reference, i.e. memory address.

3.4.1.3 pytrol.control.agent

Before continuing, it is worth recalling that any agent strategy is, in fact, an algorithm.
Also, according to what has been set out in Section 3.2, in the context of this work a
multiagent strategy is merely defined as a set of Na single-agent strategies.

pytrol.control.agent contains agent strategy implementations. Any new imple-
mented strategy shall extend the Agent class located in the pytrol.control.agent.
Agent module, and be added in this package. Agent is an abstract class defining a
template for any agent strategy. This template defines, in fact, the basic procedure
that any agent must follow. This basic procedure, qualified as main procedure of agent,
represents the life cycle of agents and consists of:

• Agent.prepare: any preprocessing, if necessary, the agent needs to carry out to
prepare the impending main procedure,

• Agent.perceive: the agent perceives the position of the other ones, if required by
its strategy; in the strategies studied in this dissertation only the position of the
agent itself is perceived, although other types of perception are left to the discretion
of the user,

• Agent.communicate: the agent communicates with other ones, if required by its
strategy;

• Agent.analyse: the agent checks and processes messages he has received,

• Agent.decide: the agent decides; this method constitutes the core of the strategy,
given that any strategy is a decision-making procedure in the context of MAP,

• Agent.act: the agent acts according to the decision made in the previous method.

Each agent, namely each object instantiating the Agent class, is a communicating and
therefore a thread; concretely the Agent class extends the Communicating class. Any new
strategy to add in PyTrol shall be implemented from the above methods, then added to the
pytrol.control.agent package, and finally referenced in pytrol.model.AgentTypes.
A set of strategies are already implemented in PyTrol:
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• CR in pytrol.control.agent.CR, implemented according to Algorithm 1

• HPCC in pytrol.control.agent.HPCC, implemented according to Algorithm 3
for the coordinated agents and Algorithm 2 for the coordinator,

• HCC in pytrol.control.agent.HCC,

• strategies based on machine learning that extend the abstract class pytrol.control.
agent.MAPTrainerModelAgent.

Algorithm 1: Conscientious Reactive (CR)
input : t = 0, a an agent, T the number of periods

1 while t < T do
2 if not va(t) = va(t− τ0) then /* τ0 being the transit time between

the previous node and the next node to visit */
3 ng = Ng(va(t));
4 va(t + τ1) = arg max(ia(t)[ng]); /* τ1 being the transit time

between the current node and the next node to visit, and
thereby va(t + τ1) is the next node to visit */

5 end
6 end

In the implementation of HPCC studied in this dissertation and coded in PyTrol,
agents request a new goal node each time they arrive at a node; for each agent the
Heuristic and Pathfinder algorithms are therefore executed by the coordinator each
time they arrive at a node. With regard to the implementation of HCC, the Warshall’s
algorithm is executed at the simulation’s startup to compute once and for all the shortest
distances and paths between the nodes.

3.4.1.4 pytrol.control.Ananke

The pytrol.control.Ananke.Ananke3 class is the core of PyTrol, i.e. the structure
which concretely handles the simulation running. It is also a communicating.

The life cycle of Ananke starts with the mission’s initialisation which takes place
in Ananke.__init__, where it loads the graph, all information relative to the current
mission, as well as the agents.

3Ananke is an ancient Greek goddess who was the personification of inevitability, compulsion and
necessity, and in other terms, of what must happen.
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Algorithm 2: Heuristic Pathfinder Cognitive Coordinator (HPCCor)
input : t = 0, a an agent, T the number of periods, ms the stack of received

messages, asg_nodes the list of the nodes assigned to agents
1 while t < T do
2 m = pop(messages)
3 while m != NIL do
4 a, va(t) = parse(m);
5 goal_node = heuristic(i(t), va(t)); /* The Heuristic method is first

applied to select the next (remote) goal node */
6 va(t + τ1) = pathfinder(goal_node, i(t), va(t), asg_nodes)[0]; /* The

Pathfinder method is applied to select the best path to go
there, and finally the next node to visit, of index 0 in the
list, is chosen */

7 asg_nodes[a] = va(t + τ1); /* The node va(t + τ1) selected above to
be assigned to agent a is recorded to avoid assigning it to
another agent */

8 send(coordinator, message("next node", va(t + τ1)), a);
9 end

10 end

Algorithm 3: Heuristic Pathfinder Cognitive Coordinated (HPCC)
input : t = 0, a an agent, T the number of periods

1 while t < T do
2 if not va(t) = va(t− τ0) then
3 send(a, "next node request", coordinator);
4 end
5 m = receive(a);
6 if m is a "next node" message then
7 va(t + τ1) = process(m);
8 end
9 end
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Then, in Ananke.run the main simulation loop over the time steps is executed. There
is as many iterations in this loop as the duration T set for the current run. This loop
stands for the running of simulation: at each period, the strategy of agents simulated
herein is deployed. More precisely, at each iteration Ananke executes the main procedure
of the strategy by calling, for every agent, the methods described above which constitutes
their life cycle.

3.4.1.5 pytrol.control.Archivist

The pytrol.control.Archivist.Archivist class gives rise to a communicating object
which logs the running of the simulation, that is as stated above, the positions, individual
idlenesses of each agent, and true idlenesses. Complementary MAP elements or events to
log might be added.

3.4.2 MAPTrainer

MAPTrainer4 is a Python framework based on the PyTorch library5 dedicated to ma-
chine learning research in the context of MAP. As PyTorch, it uses GPUs and CPUs.
MAPTrainer is a native Python package by design, called maptrainer. Its functionalities
are built as Python classes, which enable the integration of its code with Python packages
and modules. Relying on PyTorch, it enables GPU-accelerated training, through CUDA,
for machine learning, and especially neural network applications. The objective of this
framework is to train any machine learning model, built with PyTorch, for any MAP
scenario. Parameters defining the MAP scenario are provided to the programme.

3.4.2.1 maptrainer.model

maptrainer.model allows implementing any machine learning model in the same way as
PyTorch. Any new machine learning model which is intended to be experimented
shall be added in this package. Then, the model of this class will be loaded by
maptrainer.model.modelhandler, which will check, if specified by the user, whether a
previous trained version of this model for the current MAP scenario exists. Otherwise, a
new model is created for the current scenario.

4https://github.com/mothguib/maptrainer
5pytorch.org.



56 Model, methodology and implementation

3.4.2.2 maptrainer.data

This package adds support for loading MAP data necessary to train a model. The
data of a MAP scenario are loaded by means of a data loader, which is merely an
object of maptrainer.data.MAPDataLoader.MAPDataLoader type. MAPDataLoader is
an abstract class defining a template for any data loader. A new data loader shall extend
this class and implements its methods. Over the training stage, the data loader will
then return data divided in validation and training data, and for each type of data, into
input and output data. In execution, the data will then be returned fold after fold if a
k-fold cross-validation is required. As part of this work, two concrete data loaders are
developed:

• BPDataLoader: loads binary sequences,

• IPDataLoader: loads on-vertex idleness sequences.

3.4.2.3 maptrainer.train

maptrainer.train is used to automatically train a model. A complete training is run
with the maptrainer.train.run_epochs method, which runs a training for the loaded
model, the criterion to optimise, the data loader, the learning rate, and the number of
epochs, among others.

3.4.2.4 maptrainer.valid

maptrainer.valid is used to validate the model with respect to the criterion to optimise,
the data loader, the learning rate, and the number of epochs, among others.

3.4.3 MAPTor

MAPTor6, for Map Editor, is a convenient Python toolkit for preparing and processing
MAP experiments. It can be regarded as an annex tool for PyTrol and MAPTrainer,
although it can be used in any research work concerning MAP which uses the JSON
format. By doing so, it is an editor and a processor for MAP that comes in the form of a
python package called maptor. It offers the following functionalities:

• converting positions of agents traced in JSON logs to binary position, i.e. one-hot
vectors representing the travelled nodes,

6https://github.com/mothguib/maptor
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• processing idlenesses traced in JSON logs to convert them to on-vertex idlenesses,

• computing statistics from JSON logs,

• loading the graph to patrol; considering that pytrol needs to load the graph for
each mission, this requires that maptor be a dependence of pytrol,

• automatically situating the graph in a frame, if it is not situated, using the
NetworkX 7 library,

• plotting statistics in the form of curves or diagram bars.

3.5 Model strategy and databases

In the following of this work, two high-performance centralised strategies are distributed;
databases constituted from this two strategies are now presented in this section.

3.5.1 First database: HCC 0.2

First, the HCC strategy with rH = 0.2, abbreviated as HCC 0.2, has been chosen as
model strategy without any consideration for the performance. In this case step 2 of
the methodology outlined above was skipped. Its simulation traces gave rise to the first
database used to train the statistical models studied in this dissertation. To constitute
this preliminary database, 100 runs for each MAP scenario {HCC 0.2, G, Na}, such
as G ∈ {A, Islands, Grid} and Na ∈ {5, 10, 15, 25}, were executed. Then they were
processed to make up the corresponding binary paths and on-vertex idleness sequences.

HPCC variant Iav MI QMI WI
HPCC 0.1 940 147 489 31188
HPCC 0.2 546 149 397 30025
HCC 0.2 263 232 341 13687
HPCC 0.5 233 184 293 1216
HPCC 0.8 319 194 353 4923
HPCC 0.9 329 199 365 3378

Table 3.2 Normalised Iav, MI, QMI and WI for several variants of HPCC averaged over
the A, Islands, and Grid topologies, and over 5, 10, 15 and 25 agents.

7https://networkx.github.io/. Retrieved 2019-09-30.
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3.5.2 Second database: HPCC 0.5

The HPCC strategy being a centralised high-performance and one of the best online
strategies, it has been selected to be the model strategy. However, steps 1 and 2 of
the methodology could be intertwined owing to the fact that in real life the choice of a
strategy is a multicriteria decision process.

Thus, with the aim of constituting a larger database, different variants of HPCC were
assessed. To determine the best one, six of it were evaluated according to the Iav, MI,
QMI and WI, on the A, Islands and Grid topologies. For each graph they were assessed
in simulation for rH and rP being both equal to 0.1, 0.2, 0.5, 0.8 and, 0.9. Appendix
B.1 shows the detail of the performance of these HPCC variants on the selected criteria
and Table 3.2 summarises the main features of them.

According to these results, HPCC 0.5, the variant of HPCC with rH = 0.5 and
rP = 0.5, is the best variant on all criteria, except on the MI. Particularly, except for
the two configurations {Islands, 10} and {A, 10} on the QMI, HPCC 0.5 is doubtless
the most robust solution, i.e. the variant which has the best WI and QMI. Interestingly,
in terms of performance HCC 0.2 is the best strategy after HPCC 0.5 on the QMI and
Iav. HPCC 0.5 is selected as being the second model strategy in this dissertation, and it
gives rise to a second database. For this second model strategy, it is decided to generate
10000 sequences for each MAP scenario, leading to:

• 2000 runs for a scenario with 5 agents,

• 1000 runs for a scenario with 10 agents,

• 667 runs for a scenario with 15 agents,

• 400 runs for a scenario with 25 agents.

Thus, for HPCC 0.5 data, the number of data no longer hinges on the number of agents
Na, as for the HCC 0.2 data, but it is identical, whatever the scenario. Finally, this
database includes data for the six topologies addressed in the literature in Subsection
2.1.1.

3.6 Conclusion

All together, the proposed model of temporal MAP, the methodology established to
address our problematic, namely decentralising and distributing a centralised multiagent
strategy, as well as the tools developed to study this problematic, allows implementing
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this methodology. Two databases are derived from the first steps of this implementation
and might be used to conduct experiments for strategies based on learning of nodes
to visit, or of true idlenesses. Details regarding those strategies and experiments are
exposed in the next chapters.





Chapter 4

Path-Maker: a decentralised
strategy based on node prediction

Learning temporal sequences is well adapted to the MAP problem insofar as it constitutes
a temporal decision problem. In this chapter a first application of ANN to MAP
is presented: a new procedure based on machine learning algorithms is proposed to
decentralise a centralised decision-making process. This new procedure rests on temporal
node prediction which gives rise, as implementation of this procedure, to a new generic
strategy in the context of MAP. The node predictor is first trained on simulation traces
generated by a fully-informed, coordinated and communicating strategy, namely the
model strategy; the model strategy used in this chapter is HCC 0.2. The statistical
models, by doing so, are trained on the HCC 0.2 database. Then, each agent of this
new strategy uses its predictor to select the next node to visit with respect to its current
node. Finally, different variants of this new strategy are evaluated in simulation and
compared with other strategies.

Section 4.1 outlines this new procedure which enables decentralising a centralised
decision-making process using node prediction. Then, Section 4.2 describes the way the
predictors have been trained. Finally, in Section 4.3 experiments with the new strategy,
as well as its results are described and analysed.

4.1 Path-Maker

One of the objectives of this chapter is to implement concretely the methodology outlined
in Chapter 3 into MAP strategies. More precisely the statistical model is used here
as node predictor. Particularly, RNNs, and more precisely LSTM networks are used as
node predictors.
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4.1.1 Path-Maker

Path-Maker (PM) is a machine-learning-based generic strategy: it defines a general
strategy whose the decision-making process is carried out by means of a statistical model
used as node predictor. This predictor outputs the next node according to the current
one. More precisely, the statistical model is used to make prediction with regard to
the next node to visit. This strategy can be thought of as a reactive strategy using an
artefact for guidance through the area to patrol. In fact, such a trained model takes
implicitly into account both the idleness of nodes and the agents’ positions. In this
context, any temporal series corresponding to a sequence of successive nodes visited by
an agent is called path. As part of MAP, as set out in Chapter 3 such a strategy to
learn is termed model strategy.

For a given scenario, the model temporally learns ∀k ∈ N∗, v(k + 1) the next node to
visit according to the previous ones v(k), v(k − 1), . . . , v(1), from data generated by a
model strategy, this for all paths: each path being the path of an agent on the graph, it is
fed into the network node after node. Let f be an ideal decision procedure of the model
strategy, i.e. a strategy depending only upon the current node and true idlenesses which
would have generated the data of such a model strategy. Then, it follows that the sta-
tistical model, noted f̃ , for the current scenario approximating f can be defined as follows:

Let:

• ∀t ∈ N∗, i(t) = (iv1(t), . . . , ivN
(t)} be the vector of true idleness of the graph G at

time t,

• ∀k ∈ N∗, va(k) ∈ V be the kth node visited by agent a,

• ∀a ∈ A, ta : V ×N∗ → N∗ be the function mapping to the kth node visited by agent
a the corresponding time t.

With such an ideal decision procedure f , the next node to visit would be selected such
as:

∀k ∈ N∗, va(k + 1) = f( va(k), i(ta(va(k), k)) ) (4.1.1)

is the next node to visit, whereas f̃ is a node-predictor-based decision procedure approxi-
mating f , i.e. f̃ ≈ f . Theoretically, it then follows:

∀k ∈ N∗, ṽa(k + 1) = f̃(va(k), ..., va(1)) (4.1.2)
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and

∀k ∈ N∗, f̃(va(k), ..., va(1)) ≈ f( va(k), i(ta(va(k), k)) ) (4.1.3)

This equation pertains to the feature laid down previously: each output depends
upon the previous outputs. At this stage, it is worth noting that a constraint of a path
is that any node ought to have one of its neighbours as subsequent node.

Finally, upon the training stage’s completion each agent is endowed with the same
parametrised node predictor. It then uses it to find its path through the graph throughout
the mission. This strategy is meant to replicate, or approach, the model strategy’s
behaviour in a decentralised way, as shown in Figure 4.1. In the particular case of Path-
Maker, the vector of individual idleness being computed with respect to the successive
visits of the agent, only its visited nodes are here considered.

Approx.
HPCC

va(n+1)

ia(t)

va(n)

a

Fig. 4.1 Decision procedure of the replicated and decentralised HPCC strategy, with
n ∈ N standing for the nth decision step, t the corresponding time, and va(n) and ia(t)
the node visited by agent a as well as its vector of individual ideleness, resp., at the nth
decision step.
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4.1.2 RNN-Path-Maker: an implementation of Path-Maker

As stated in the introduction and detailed in Appendix A.3.3, RNNs constitute a
type of ANNs well suited to learning time series. They can therefore be used as node
predictors to implement the Path-Maker strategy.

Node predictor. Let N denote the number of nodes in the graph. In order to feed the
model with the most meaningful information regarding the nodes, each one is encoded as
a N -dimensional one-hot vector, as described in Section 3.2. For example, ∀v ∈ V , all
the coordinates of its corresponding one-hot vector are set to 0, except the vth coordinate
which is set to 1. From now on the set of one-hot vectors corresponding to the set of
nodes V is denoted XN , with card(XN) = N and XN ⊂ {0, 1}N . The input of the
network must thereupon be an N -dimensional vector of XN , while its output can be
specified as a probability distribution on V . To ensure that the output of the RNN is a
probability distribution, i.e. the values are positive and their sum equal to 1, a softmax
layer is added as output layer of the network. Finally, the next node to visit is chosen
using this distribution.

In the following, only RNNs with the same width for all layers are considered.

Let (L, H) denote the profile of an RNN so that L and H stand for the number of
layers and the number of hidden units (or memory cells) per layer, respectively. Formally,
by defining β : V → XN as being the function mapping all the nodes of V to their
one-hot representations, the proposed architecture can then be described with:

∀t ∈ N∗, x1
t = β(va(t))

∀t ∈ N∗, if L > 1,∀l ∈ [|1, ..., L− 1|] xl+1
t = hl

t (4.1.4)
∀t ∈ N∗, m(x1

t ; θ) = softmax(W sm · hL
t + bsm)

where:

• ∀l ∈ [|1, L|], ∀t ∈ N∗, xl
t is the input of the layer l,

• hl
t is the output of the layer l,

• ∀a ∈ A, va(t) is the node visited by agent a at time t,

• m is the RNN,
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• H = dim(hL
t ),

• W sm and bsm are the N ×H-matrix of weights and the N -dimensional vector of
biases, respectively, of the softmax layer,

• θ represents the parameters of the network, including not only W sm and bsm, but
also the parameters of the layers from 1 to L− 1, with dim(θ) = 4(2L − 1)H2 +
(4L + 5Card(V ))H.

Finally, the output of M is a probability distribution over the nodes of the graph.
From this generated distribution, any decision-making procedure can be used to choose
the next node to visit.

In the following, concretely the LSTM architecture, described in Appendix A.3.3.1,
will be used as concrete RNN architecture giving rise to the LSTM-Path-Maker strategy.

4.1.3 Deterministic-Path-Maker

A first practicable used of the probability distribution generated by model m is to select
deterministically the next node to visit, such as that with the highest probability is
selected, as follows:

Let:

• m : {0, 1}N → [0, 1]N the node predictor used by an agent a ∈ A,

• Ng : [0, 1]N × V → [0, 1]N , the function setting to zero the coordinates not
corresponding to the neighbours of a given node.

Then,

∀t ∈ N∗,∀vt ∈XN ,

va(t + 1) = arg max( p1, . . . , pN : (p1, . . . , pN) = Ng(m( β(vt); θ ), vt) )
(4.1.5)

It then follows:

∀t ∈N∗ : va(t) ∈ V,

f̃(vt, ..., v1) = arg max( p1, . . . , pN : (p1, . . . , pN) = Ng(m( β(va(t)); θ ), vt) )
(4.1.6)
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with f̃ depending upon v(1), . . . , v(t) considering that their relevant features are stored
in the memory of m().

On a side note, it is interesting to note that f̃ belongs to the family of distributed
agent-independent deterministic policies, namely policies in the form of da(t) = π(sa(t)).

4.1.4 Random-Path-Maker

First experiments showed that selecting the next node to visit as being that with the
highest probability in the neighbourhood tends to lead agents to converge indefinitely
into a small set of nodes. As a consequence of this, nodes may not be visited until the
end of the execution.

As indicated in Chapter 2, random variation may increase the robustness and
adaptibility of a controller. Therefore, the decision procedure has been slightly improved:
henceforth, in order to better distribute the visits of agents over the nodes, the next
vertex is chosen randomly from a sample according to the probability distribution output
by the model. More specifically, the probability distribution is first normalised over
the probabilities of the current vertex’s neighbours using Bayes’ theorem, that is the
probabilities of the non-neighbour nodes are set to zero and all the probabilities of the
neighbours are multiplied by a common factor in order to have their sum equal to 1.
Then, a random drawing is performed. This new procedure enables therefore making
the decision process random when choosing the next node in the neighbourhood. This
leads to increase the robustness of the system, and thereby to avoid agents to visit only
a restricted group of nodes.

The new resulting strategy is called Random-Path-Maker and belongs to the family of
agent-independent non-deterministic policies. When the LSTM architecture is concretely
used, the strategy is called Random-LSTM-Path-Maker (RLPM).

4.2 Training procedure

According to Chapter 3, the training of LSTM networks is performed from logged paths
of any high-performance strategy f . In fact, what is intented in the present case is to
decentralise a high-performance decision process on the basis of a node predictor.
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4.2.1 Pretraining

For a given graph G and all scenarios involving {Π, G, Na} with possible variations of
Π and Na, the LSTM network is first pretrained with the aim of learning the graph
representing the area. This stage aims at ensuring the network to capture as far as
possible the structure of the topology. To that end, in this stage each edge is provided to
the network in the form of 2-length series of one-hot vectors.

4.2.2 Main training

Thereafter, the network is trained over all of the paths retrieved from the executions of
any scenario {Π, G, Na}, so that it learns to output with the highest probability the next
node to visit in the path. The process described here can be thought of as performing
sequence modelling where sequence is a path of nodes; here sequence modelling corre-
sponds to path generation.

As aforementioned in 4.1.2, the network’s output layer being a softmax layer, the
output can be interpreted as a probability distribution. As indicated in Appendix A.1.2
cross-entropy is a germane criterion for learning probabilities. Thus, path generation
aims at learning a probability distribution over paths by minimising the cross-entropy of
a model given a set of M training sequences of length Ts:

min
θ
−

M∑
n=1

Ts∑
t=1

log p(vn(t)|vn(1), ..., vn(t− 1); θ) (4.2.1)

where:

• ∀t ∈ [|1, Ts|], ∀n ∈ [|1, M |], vn(t) is the tth node of the nth sequence,

• θ is the set of the model’s parameters,

• p is the predicted probability for the current element vn(t) component of the
observed sequence n, given by the vn(t)th coordinate of the m(vn(t− 1); θ) vector.

4.3 Experiments and results

This section outlines the assessment of the new RLPM strategy introduced in this chapter,
that is the experiments and evaluation. The conduct of experiments is first outlined,
and the training settings is detailed. Finally, experiments in simulation of the RLPM
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strategy are described, then the results are discussed.

4.3.1 Conduct of experiments

The conduct of experiments to study and evaluate the new RLPM strategy is now
described. First the scenarios as well as the number of random initial positions for each
scenario are defined. Then, statistical models are chosen then trained. Finally, the best
statistical models, giving rise to variants of the new strategy, are experimented and
evaluated. This conduct is detailed in the next paragraphs.

Scenarios. The RLPM strategy newly defined in this chapter has been assessed on
the topologies A, Islands and Grid, shown on the Fig. 2.1, for 5, 10, 15 and 25 agents.
Therefore, 12 scenarios were experimented.

Missions. For each scenario, 100 missions were executed, i.e. for the same topology,
number of agents and strategy, 100 random starts were executed. Each mission lasted
3000 time steps.

Training of statistical models. Several LSTM architectures are selected then trained
following the two training stages defined in Section 4.2. According to the training
performance, best networks are chosen to be evaluated in simulation.

Simulation. The variants of RLPM resulting from the networks retained in the previous
step are executed then evaluated.

4.3.2 Training settings

In this chapter the HCC 0.2 database is used to train the statistical models; HCC 0.2 is
thereupon the model strategy for RLPM in what follows.

From the foregoing, for each MAP scenario several implementations of RLPM — each
one giving rise to a variant — were trained from 100 executions of HCC 0.2, this for each
scenario, using, as previously, the MAPTrainer framework. More rigorously, for each
scenario seven LSTM architectures were trained with the following profiles of parameters:
(1, 1), (2, 2), (4, 10), (1, 50), (2, 50), (3, 50), and (50, 2). Number 50 has been chosen to
have the same number of memory cells as the number of nodes in the studied topologies.
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An end-to-end training, i.e. a non-truncated BackPropagation Through Time (BPTT)
time was applied, and the LSTM networks are stateless. As described in Section 4.2,
each architecture is trained in two steps: the pretraining step over which the network is
pretrained from edges, then the main training step over which the network is trained
from longer sequences of nodes. Both last 10000 steps.

The training settings are described in Table 4.1. Here, the objective function to
optimise is the cross-entropy (CE), and the learning rate of the Gradient Descent (GD)
algorithm is worth 0.1.

Settings All architectures
Number of sequences 100 ∗Na

Apportionment Training-Validation 80%− 20%
Model strategy HCC 0.2
Batch size Full

Learning rate 0.1
Algorithm GD
Number of steps 10000
Criterion Cross-Entropy

Table 4.1 Overview of the training settings

4.3.3 Training results

4.3.3.1 Pretraining results

For any machine learning model used in the context of MAP, the neighbour accuracy
denotes, for a given topology, the proportion of nodes whose the output, i.e. the generated
probability distribution, emphasises one of their neighbour. In other terms, a node is
said neighbour-accurate for a model iff the output probability given by the model for that
node has one of its neighbours having the maximum probability. A model generating
a neighbour-accurate output for any node of a given topology will have a neighbour
accuracy of 100%.

For the three studied topologies, the neighbour-accuracy is of 100% after the pre-
training stage. This result is not a surprise considering that the pretraining database
consisting of 2-length sequences representing the edges of the graph, it is consequently
small. For example, on the A topology, the pretraining database has only 210 sequences,
namely the number of edges of A. Also, with regards to the validation cost, as shown in
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Fig. 4.2 Validation cost, in pretraining, of LSTM (1, 50) on A.

Fig. 4.2 with the architecture (1, 50) on A, in pretraining it decreases quickly, namely
it has converged after approximately 150 iterations to 1.49

4.3.3.2 Main training results

Training performances are now compared with and without the pretraining stage.

In order to have a complete analysis of the training process, not only the cross-entropy
is analysed but also the accuracy, i.e. the percentage of correct predictions of the next
node, that is the node with the highest probability output by the model.

Fig. 4.3 and Fig. 4.4 depict the validation cost and accuracy, respectively, during
the main training stage on {A, 15}, without and with the pretraining stage carried out
beforehand.

The validations costs on Fig. 4.3 range from 3.934 without the pretraining stage
and 4.34 with, to 1.10 for both. With regard to the accuracies on Fig. 4.4 they both
range from 2% to 55%. Also, according to these two plots the model converged after
approximately 10000 steps. These curves show that adding a pretraining stage has
practically no influences on the performance. Only a slight difference can be noted: a
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Fig. 4.3 Validation cost in main training without (red) and with (green) the pretraining
stage of LSTM (1, 50) on {A, 15}.

Fig. 4.4 Accuracy in main training without (orange) and with (blue) the pretraining
stage of LSTM (1, 50) on {A, 15}.
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faster decrease, growth respectively, before epoch 1000 on the validation cost, accuracy
respectively. After epoch 2000 the performance are identical on both evaluation metrics.

Fig. 4.5 depicts the initial and final values of the cost function, namely the cross-
entropy, used to train the networks during the validation stage, that for each network,
averaged over the A, Islands and Grid topologies and over the numbers of agents. Here,
the initial cost corresponds to the validation cost after the first epoch. This figure shows
that the best networks are (2, 50), (1, 50) and (4, 10). Interestingly, the initial and final
costs of architecture (50, 2) are almost identical, whereas it corresponds to the worst final
cost, among all of the architectures evaluated, here with a value of 3.87. This result tends
to highlight that the parameters of (50, 2) converged very quickly, that is in 1 epoch, due
to the depth of the network. The number of parameters for (1, 1), (2, 2) and (50, 2) are
258, 564 and 2484 respectively. It seems that these numbers are too low for a satisfactory
approximation of the sequences. Conversely, (3, 50) has 63100 parameters, which tends
to consider this number as being too large to avoid overfitting, leading to a relatively
bad performance in term of validation cost. Indeed, for 1 agent the size of training data
is approximately 250000, namely not an order of magnitude higher than the number of
parameters of the (3, 50)-network.

Considering the low performances of (50, 2), (1, 1) and (2, 2) in training, with final
costs of 3.87, 3.03, and 2.08 respectively, four LSTM architectures are tested in simulation:
(4, 10), (1, 50), (2, 50), (3, 50). Then, each architecture gives rise to four variants of RLPM
named ∀(L, H) ∈ {(4, 10), (1, 50), (2, 50), (3, 50)}, RLPM-L-H.

4.3.4 Simulation results

The RLPM variants studied here were tested and compared in simulation with CR,
the reactive and decentralised representative, HCC 0.2, the cognitive and centralised
representative from which the LSTM networks were trained. First the average idleness
(Iav), then the MI and QMI are here retained to evaluate these strategies.

Fig. 4.6 depicts the normalised average idleness for the Islands topology. For the
sake of clarity only the best variant of RLPM on this criterion, i.e. the variant with the
lowest value, has been plotted for each scenario. Not surprisingly HCC 0.2 outperforms
all of the other strategies in all cases and for all the number of agents studied here. On
this graph the RLPM variants show low performance: they are always worse than the
representatives CR and HCC 0.2 with values of 550 (RLPM-1-50) for 5 agents, 1078
(RLPM-4-10) for 10 agents, 1793 (RLPM-1-50) for 15 agents, and 1153 (RLPM-1-50) for
25 agents. Besides, a peak for 15 agents can be noticed. This result suggests, that from
5 to 15 agents the RLPM variants do not exploit the advantage afforded by additional
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Fig. 4.5 Validation cost averaged over the A, Islands and Grid topologies and the numbers
of agents for each LSTM architecture.

Fig. 4.6 Normalised average idleness, averaged over 100 runs, of the best variant of RLPM
w.r.t. the size of agents on Islands.
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agents. However, for 25 agents the performances are slightly better, which could be
explained by considering that 25 agents visiting 50 nodes, the number of nodes of this
topology, is equivalent to assign 2 places per agent.

Fig. 4.7 Normalised average idleness, averaged over 100 runs, of the best variant of RLPM
w.r.t. the size of agents on A.

The results on the Iav upon the A topology depicted on Fig. 4.7 have shown that
the best variant of RLPM, that is to say RLPM-1-50, is better than CR by 60 periods in
average for 5, 10 and 15 agents, but worse by 166 periods for 25 agents with RLPM-3-50.
Further investigation have tended to show that the RLPM strategy leads agents to visit
very frequently only some nodes. Particularly, for 25 agents it has been figured out that
the poor distribution of visits over the nodes is amplified by the inflow of additional
agents not being taken into account: many agents visit the same set of nodes leading the
normalised criterion to be penalised.

Finally, Fig. 4.8 shows that, on the Iav, RLPM-1-50 remains the best variant of
RLPM on Grid. It is better than CR for 10 and 15 agents by 43 periods in average,
whereas for 5 agents RLPM-1-50 and CR are approximately equal. For 25 agents the
best RLPM is worse than CR with a value of 716 periods against 558.

Globally, RLPM-1-50 is thus the best variant of RLPM on the average idleness,
although for some scenarios it does not outperform CR, the decentralised representative.
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Fig. 4.8 Normalised average idleness, averaged over 100 runs, of the best variant of RLPM
w.r.t. the size of agents on Grid.

As indicated by Eq. 2.1.10, the average idleness can be written as an expression of
MI and QMI.

Fig. 4.9 depicts the normalised MI for the scenarios studied here. On this criterion
the best RLPM outperforms significantly the reactive strategy CR while it is close to
HPCC. Moreover, the evolution of the best variant of RLPM over MI with respect to the
number of agents fits that of HCC 0.2 with an average difference, over all the numbers of
agents and the graphs, of 15.

For the Islands and A topologies, the architecture (2, 50) is the best on the normalised
MI, whereas for Grid it is (1, 50) for 5, 10 and 25 agents, but for 15 agents it is (4, 10).
Further analyses have shown that for 15 agents architecture (1, 50) is only worse than
(4, 10) of 1 time step, they can then be regarded as equal. RLPM-1-50 is thus globally
the best strategy on this graph. Also, for the same graph the average difference of
performances over the numbers of agents between the best architectures enumerated
above and the architecture (2, 50) is only of 2 time steps. This leads to consider RLPM-
2-50 as being globally the best RLPM strategy on the MI.

Lastly, Fig. 4.10 shows the results for the normalised QMI. For Islands, the QMI
of the best variants of RLPM is worse than HPCC and CR for all of the numbers of
agents except for 25 agents where CR is worse by 28 periods. The best architectures are
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Fig. 4.9 Normalised MI of the best variant of RLPM averaged over 100 runs w.r.t. the
number of agents on A, Islands and Grid.

Fig. 4.10 Normalised QMI of the best variant of RLPM averaged over 100 runs w.r.t.
the number of agents on A, Islands and Grid.



4.3 Experiments and results 77

(1, 50) for 5, 15 and 25 agents, and (4, 10) for 10 agents on this criterion. In average,
on Islands the best variants of RLPM are worse than HPCC by 256 periods with a
significant difference of 533 for 15 agents. For the graph A they are better than CR
but worse than HPCC, and except for 25 agents where RLPM-3-50 is the best RLPM
strategy, RLPM-1-50 is always the best one. However, RLPM-2-50 has turned out to be
the best strategy for QMI when being averaged over the number of agents with a value
of 481 periods. Moreover, in average the best variants of RLPM are worse than HPCC
by 152 periods. Lastly, for Grid the best variants of RLPM are worse than HPCC but
better than CR. The best architecture is (1, 50) for 5, 10, 15 and 25 agents. As for the A
graph, in average RLPM-2-50 is the best strategy, although the best RLPM variants are
worse than HPCC by 105 periods.

Finally, the (2, 50) architecture tends to be the best RLPM strategy on the MI, except
for Grid for which (1, 50) is slightly better, whereas on the QMI (1, 50) is irremediably
and globally the best strategy, confirming thereby the first conclusions laid down on the
Iav.

Fig. 4.11 Normalised MI and QMI of the best variant of RLPM averaged over 300
execution w.r.t. the number of agents on A, Islands and Grid.
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Fig. 4.11 depicts the performance in the (MI, QMI) criterion space of the RLPM
variants averaged over the numbers of agents. By doing so the variants of RLPM
constitutes here the decision space.

This figure highlights the (2, 50) and (1, 50) architectures are two Pareto optimal
solutions in the criterion space for Islands and A, where the former is the best on MI
with a value of 211 on Islands and 234 on A, whereas the latter is the best on QMI
with a value of 629 on Islands and 480 on A. On Grid the (2, 50) is the sole Pareto
optimal solution with a value of (290, 517). This result tends to confirm the preliminary
conclusions regarding (2, 50) and (1, 50), as being globally the best variants, where the
former tends to be better on the MI whereas the latter is better on the QMI, although
(1, 50) can be considered as being the best architecture considering its performance on
the Iav.

Interestingly, (3, 50), the most complex architecture assessed here, gives rise to the
worst strategy on the QMI criterion. As developed in Subsection 2.1.3, QMI, as
quadratic mean, takes better into account the difference of time intervals between the
nodes and thereby measures the tendency of nodes to be equitably visited throughout an
execution. Based on that, it seems that RLPM-3-50 distributes agents over the nodes
inefficiently. Similarly, the (4, 10) architecture is a bad strategy on both the MI and QMI,
that is to say in the (MI, QMI) criterion space. The performance according to the QMI
of these strategies tends to show that they visit perpetually the same small set of nodes,
leading to a poor distribution of visits over the nodes. It is likely that (4, 10) presents
also a too small number of parameters to learn the behaviour of HCC 0.2, whereas (3, 50),
conversely, could have a too large number of parameters to avoid overfitting.

4.4 Conclusion

In this chapter a new application of ANNs to MAP has been proposed and evaluated.
More precisely, LSTM, a RNN architecture, has been used as node predictor to allow
agents to navigate through the area to patrol without communicating; such a new
strategy is thereupon decentralised according to the definition of a decentralised strategy
in 3.1.2.4. This new application has thus given rise to a new LSTM-based strategy for
MAP consisting first, in training an LSTM network for a specific scenario on traces of
a high-performance strategy, then, to embed this network in patrolling agents. Seven
architectures of LSTM have been analysed in this chapter.

More concretely, as outlined in Chapter 3, data were first generated using PyTrol,
then statistical models were trained using MAPTrainer. The new strategies were then
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run in PyTrol, then confronted to the representative centralised and model strategy,
namely HCC 0.2, a variant of HPCC, and CR, the decentralised representative.

First experiments have shown that, choosing the maximum probability node in
the distribution generated by the LSTM network leads the patrolling system to visit
perpetually the same set of nodes, resulting in a non-robust system. In order to remedy
that, the procedure of node selection has been turned into a directed-random selection
where a random drawing is carried out according to the probability distribution generated
by the LSTM network, giving rise to the RLPM strategy.

The evaluation demonstrated that RLPM-2-50 and RLPM-1-50, the strategies re-
sulting from the LSTM architectures with 2 layers and 50 neurons, and 1 layers and 50
neurons, respectively, are globally the best ones. RLPM-2-50 is the best upon the MI

— a central tendency measure —, whereas RLPM-1-50 is the best upon the QMI — a
measure which tends to emphasise the node with long time intervals without visits —
and the average idleness — measure which can be expressed as a function of the MI and
QMI.

As far as for each topology the proper architecture is chosen, the experiments have
shown mitigated results. In an extreme mission where communications are prohibited,
a learning strategy based on the LSTM architecture can perform missions in a context
of crisis with reasonable performance which are, for some topologies and numbers of
agents, even better than CR, the decentralised representative. Moreover, although CR
and RLPM are decentralised strategies by design, the decision procedure of RLPM hinges
on a random step, in other words, without this additional step the system, being too
rigid it tends to lead agents to converge indefinitely towards a small set of nodes. This
entails that the learning system studied here that rests upon the LSTM architecture is
not adaptive.

Also, it could be argued that LSTM networks better learn to navigate through the
area to patrol if the structure of the graph, that is to say the topology on its own, was
strongly integrated into the network, in other terms if the network was wired so that it
would not be able to predict a node which is not a neighbour of that provided to it as
input. Therefore, in the next chapter an extension of this application will be studied,
where instead of pretraining the LSTM networks, an analytical initialisation which takes
into account the topology of the area to patrol will be performed.

It is worth noting that beyond the narrow frame of MAP, the procedure laid down
here, which has given rise to a new MAP strategy, can be applied to any decision-making
problem which has a central communication node.





Chapter 5

RAMPAGER: a strategy relying on
structure-guided LSTM
initialisation

In the previous chapter, RLPM, a concrete implementation of the generic strategy Path-
Maker, has been introduced. Until now, the structure of the graph to patrol has been
integrated in the LSTM network wiring from a pretraining stage where edges of the
graph are provided to the network. This chapter introduces an analytical procedure to
initialise any LSTM network of the same width as the number of nodes of the studied
topology with respect to its structure, in place of the pretraining stage used in the
previous chapter. Such an approach constitutes a topology-guided initialisation, or more
generally, a structure-guided initialisation. The adjective “guided” has to be understood
here as an instructional sequence of settings to carry out in order to set the considered
statistical model so that it be consistent with the problem’s constraints. The constraint
here, is the structure of the topology to patrol.

The strategy consisting in RLPM agents using an LSTM initialised analytically
according to the topology is named RAndom Muliagent PAtrollinG LSTM-Path-
MakER (RAMPAGER). First, a formal and theoretical setting for any topology will
be determined; concrete values are also proposed. Then, as in the previous chapters,
preliminary experiments allow selecting the best LSTM architecture are carried out.
Finally, those models are evaluated in training, on the HPCC 0.5 database, and in
simulation.
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5.1 Procedure of training

Unlike the previous chapter, there is no pretraining stage here. In fact, structure-guided
initialisation is supposed to remedy to the pitfalls of the pretraining. Also, the main
training remains unchanged.

5.1.1 Structure-guided initialisation: an analytical initialisa-
tion

What follows establishes a demonstration aiming at enabling any LSTM network which
satisfies some features detailed below to integrate the structure of the graph to patrol.
Namely, it is constrained by the graph depicting the area, i.e. it is not able to predict a
next node to visit which is not a neighbour of the input. Two cases are distinguished in
this procedure: architectures with one LSTM layer — here, there is identity between
the notion of LSTM layer and LSTM block which are used interchangeably —, and ones
with more than one LSTM layer.

The structure of the problem — here the structure of the topology depicting the
area to patrol — confines us to only consider LSTM networks with a width equal to the
number of nodes, N , of the graph. In other terms, all of its blocks are N -dimensional,
with ny = nx = N . L ∈ N∗ stands for the number of LSTM layers of the network.

Then, ∀l ∈ [|1, L|], W l,ix, W l,ih, W l,fx, W l,fh, W l,ox, W l,oh, W l,cx and W l,ch are of di-
mension N ×N , xl

t, and hl
t−1 of dimension N , and bl,i, bl,f , bl,o and bl,c of dimension N .

In the following, let:

• XN be the space of one-hot vectors of dimension N , i.e. ∀x ∈ XN , x ∈ {0, 1}N

and
N∑

i=1
xi = 1; a consequence is that card(XN) = N ,

• nx ∈ N∗ be the input dimension, and ny ∈ N∗ the output dimension; as stated
above nx = ny = N is the number of nodes in the graph G,

• ∀t ∈ N∗, ∀l ∈ [|1, L|], xl
t ∈ XN and hl

t−1 ∈ [0, 1]N be the input and the hidden
state, respectively, of the layer l,

• γ : XN → V the function mapping one-hot vectors with their corresponding nodes
in V , such as γ = β−1, where β is the function mapping V to XN described in
Subsection 4.1.2.



5.1 Procedure of training 83

In the following, ∀a ∈ R, and ∀n, p ∈ N : ∀A ∈Mn×p(R):

• A = a means that ∀i = 1, · · · , n, ∀j = 1, · · · , p, Ai,j = a.

• Ai0 = a, such as i0 ∈ [|1, n|], means that ∀j = 1, · · · , p, Ai0,j = a.

Lastly, the initialisation will be performed theoretically, i.e. ∀t ∈ N∗, as if it was
needed that constraints hold for any time step.

5.1.1.1 Case 1: one LSTM block.

For the sake of simplicity, in this particular case vectors and parameter matrices are
indexed by the unique layer.

The initialisation is carried out using backward induction from the output of the LSTM
block towards its input while initialising analytically the least number of parameters. In
doing so, the LSTM block’s output, simply noted ht, is first considered:

∀t ∈ N∗ : xt ∈ XN , ht = ot ∗ tanh(ct) (5.1.1)
= σ(W ox xt + W oh ht−1 + bo) ∗ tanh(ct)

Wox, Woh, bo. In the specific framework of MAP, given that theoretically the output
is to be a neighbour of xt, i.e. ∀t ∈ N∗ : xt ∈ XN , ht−1 = xt the information carried by
ht−1 is accordingly not taken into account. This then leads to: W oh = 0.

According to Eq. A.3.6, let, ∀xt ∈ XN , ∀v ∈ V , zt,v = W ox
v xt + bo

v be the vth

component of the signal coming into the output gate’s activation. To constrain the LSTM
block to generate values as high as possible for the neighbours of xt, according to Eq.
5.1.1 the output gate must be opened for them:

∀t ∈ N∗ : xt ∈ XN , ∀v ∈ V, ht−1,v =

1 if v is a neighbourg of γ(xt)
0 otherwhise

(5.1.2)

On the output gate, this leads to:
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∀t ∈ N∗ : xt ∈ XN , ∀v ∈ V, ot,v ≈

1 if v is a neighbour of γ(xt)
0 otherwhise

∀t ∈ N∗ : xt ∈ XN , ∀v ∈ V, σ(zt,v) ≈

1 if v is a neighbour of γ(xt)
0 otherwhise

⇐⇒ ∀t ∈ N∗ : xt ∈ XN , ∀v ∈ V, zt,v ≈

+∞ if v is a neighbour of γ(xt)
−∞ otherwhise

=⇒ ∀t ∈ N∗ : xt ∈ XN , ∀v ∈ V, W ox
v xt + bo

v ≈

+∞ if v is a neighbour of γ(xt)
−∞ otherwhise

with ∀v ∈ V , W ox
v denoting the vth line of W ox.

∀t ∈ N∗ : xt ∈ XN , a feasible solution is:

∀t ∈ N∗ : xt ∈ XN , ∀v ∈ V, bo ∈ RN , W ox
v,γ(xt) ≈

+∞ if v is a neighbour of γ(xt)
−∞ otherwhise

(5.1.3)
leading to:

∀u, v ∈ V, bo ∈ RN , W oh = 0, W ox ∈MN,N(R) : W ox
v,u =

+∞ if v is a neighbour of u

−∞ otherwhise
(5.1.4)

For a graph where the nodes 2 and N are neighbours of 1, and 1 and N − 1 are
neighbours of N , an extended form of W ox is:

W ox =



−∞ . . . . . . −∞ +∞
+∞ −∞

... −∞

... . . .
+∞ −∞ . . . +∞ −∞


(5.1.5)

Wcx, Wch, bc. According to Eq. A.3.8, the components of the flow ct coming from
the cell corresponding to the neighbours of γ(xt) must be positive to ensure the output



5.1 Procedure of training 85

gate set previously to let the neighbours components traverse positively the output gate.
Otherwise, the LSTM block’s output may generate a distribution whose the neighbours
of xt have a lower probability than the non-neighbour nodes. It then follows that:

∀t ∈ N∗ : xt ∈ XN , ∀v ∈ V : v neighbour of γ(xt), tanh(ct,v) ≈ 1
⇐⇒ ∀t ∈ N∗ : xt ∈ XN , ∀v ∈ V : v neighbour of γ(xt),

tanh( it,v︸︷︷︸
> 0

∗ tanh(W cx
v xt + W ch

v ht−1,v + bc
v) + ft,v ∗ ct−1,v︸ ︷︷ ︸

> 0 if ct−1,v > 0

) ≈ 1

=⇒ ∀t ∈ N∗ : xt ∈ XN , ∀v ∈ V : v neighbour of γ(xt), (5.1.6)
W cx

v xt + W ch
v︸ ︷︷ ︸

= 0

ht−1,v + bc
v ≈ +∞

=⇒ W ch = 0, bc ∈ RN , ∀t ∈ N∗ : xt ∈ XN , ∀v ∈ V : v neighbour of γ(xt),
W cx

v xt ≈ +∞

where, as previously, the information carried by ht−1 is not taken into account, leading
to W ch = 0. Considering ∀t ∈ N∗, xt ∈ XN is a one-hot vector, it follows:

W ch = 0, bc ∈ RN , W cx ∈MN,N(R) :
∀u, v ∈ V : v neighbour of u, W cx

v,u ≈ +∞ (5.1.7)

To avoid any step backward, it is necessary to ensure the LSTM block will not
generate a distribution which emphasises the current node γ(xt) in the next step. In
fact, by nature the current node γ(xt) will be a neighbour in the next decision step.
Therefore, the flow stemming from ct and traversing the second tanh activation present
in Eq. A.3.8 has to penalise the current node, namely it has to be negative. To do so,
considering that the codomain of tanh is [−1, 1], it is first needed that the output of the
first tanh activation present in Eq. A.3.7 be always close to −1 for the current node.
According to the same equation, it then follows:



86 RAMPAGER: a strategy relying on structure-guided LSTM initialisation

∀t ∈ N∗ : xt ∈ XN : u = γ(xt), tanh(ct,u) ≈ −1
⇐⇒ ∀t ∈ N∗ : xt ∈ XN : u = γ(xt),

tanh( it,u︸︷︷︸
> 0

∗ tanh(W cx
u xt + W ch

u ht−1,u + bc
u) + ft,u ∗ ct−1,u︸ ︷︷ ︸

> 0 if ct−1,u > 0

) ≈ −1

=⇒ ∀t ∈ N∗ : xt ∈ XN : u = γ(xt), (5.1.8)
W cx

u xt + W ch
u︸ ︷︷ ︸

= 0

ht−1,u + bc
u ≈ −∞

=⇒ W ch = 0, bc ∈ RN ,∀t ∈ N∗ : xt ∈ XN , u = γ(xt),
W cx

u xt ≈ −∞

Considering ∀t ∈ N∗ : xt ∈ XN , xt is a one-hot vector, it follows:

W ch = 0, bc ∈ RN , W cx ∈MN,N(R) :
∀u ∈ V, W cx

u,u ≈ −∞

Thus, W ch = 0, bc ∈ RN , W cx ∈ MN,N(R) : ∀u, v ∈ V , W cx
v,u = +∞ if v is a neigh-

bour of u apart from W cx
u,u ≈ −∞, otherwise W cx

v,u = w ∈ R : tanh(w) << tanh(+∞), is
a feasible solution.

As previously, for a graph where the nodes 2 and N are neighbours of 1, while 1 and
N − 1 are neighbours of N , an extended form of W cx is:

W cx =



−∞ +∞ w1,3 . . . +∞
+∞ −∞ . . .

w3,1 −∞
... . . .

+∞ wN,2 . . . +∞ −∞


(5.1.9)

Wix, Wih, bi. To preserve the integrity of the values output by the tanh activation at
the entrance to the LSTM block, always according to Eq. A.3.7 the input gate must be
beforehand opened for these values, values which correpond to those of the neighbour of
γ(xt), that is to say they must not be filtered by the input gate:
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∀t ∈ N∗ : xt ∈ XN : v neighbour of γ(xt), it,v ≈ 1
⇐⇒ ∀t ∈ N∗ : xt ∈ XN : v neighbour of γ(xt),

σ(W ix
v xt + W ih

v ht−1 + bi
v) ≈ 1

=⇒ ∀t ∈ N∗ : xt ∈ XN : v neighbour of γ(xt), (5.1.10)
W ix

v xt + W ih
v︸ ︷︷ ︸

= 0

ht−1 + bi
v ≈ +∞

=⇒ ∀t ∈ N∗ : xt ∈ XN : v neighbour of γ(xt), W ih = 0, bi ∈ RN

W ix
v xt ≈ +∞

Considering ∀t ∈ N∗ : xt ∈ XN , xt is a one-hot vector, it follows:

W ih = 0, bi ∈ R, W ix ∈MN,N(R) :
∀u, v ∈ V : v neighbour of v, W ix

v,u = +∞

W ih = 0, bi ∈ RN , W ix ∈ MN,N(R) : ∀u, v ∈ V , W ix
v,u = +∞ if v is a neighbour of v,

otherwise W ix
v,u = w ∈ R : σ(w) << σ(+∞) is a feasible solution.

As previously, for a graph where the nodes 2 and N are neighbours of 1, and 1 and
N − 1 are neighbours of N , an extended form of W ix is:

W ix =



w1,1 +∞ w1,3 . . . +∞
+∞ w2,2 w2,3 . . .

...
... . . .
... . . .

+∞ wN,2 . . . +∞ wN,N


(5.1.11)

Wfx, Wfh, bf . Lastly, on the forget gate, as for the input gate and according to Eq.
A.3.7, the flow of the current node’s neighbours must also be opened:
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∀t ∈ N∗ : xt ∈ XN : v neighbour of γ(xt), ft,v ≈ 1
⇐⇒ ∀t ∈ N∗ : xt ∈ XN : v neighbour of γ(xt),

σ(W fx
v xt + W fh

v ht−1 + bf
v) ≈ 1

=⇒ ∀t ∈ N∗ : xt ∈ XN : v neighbour of γ(xt), (5.1.12)
W fx

v xt + W fh
v︸ ︷︷ ︸

= 0

ht−1 + bf
v ≈ +∞

=⇒ ∀t ∈ N∗ : xt ∈ XN : v neighbour of γ(xt), W fh = 0, bf ∈ RN

W fx
v xt ≈ +∞

Considering ∀t ∈ N∗ : xt ∈ XN , xt is a one-hot vector, it follows:

W fh = 0, bf ∈ R, W fx ∈MN,N(R) :
∀u, v ∈ V : v neighbour of v, W fx

v,u = +∞

W fh = 0, bf ∈ RN , W fx ∈ MN,N(R) : ∀u, v ∈ V , W fx
v,u = +∞ if v is a neighbour of v,

otherwise W fx
v,u = w ∈ R : σ(w) << σ(+∞) is a feasible solution.

As previously, for a graph where the nodes 2 and N are neighbours of 1, and 1 and
N − 1 are neighbours of N , an extended form of W fx is:

W fx =



w1,1 +∞ w1,3 . . . +∞
+∞ w2,2 w2,3 . . .

...
... . . .
... . . .

+∞ wN,2 . . . +∞ wN,N


(5.1.13)

Finally, in the case of one LSTM block a theoretical feasible solution could be:
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Case 1: The last LSTM block, theoretical setting

W ix ∈MN,N(R) : ∀u, v ∈ V, W ix
v,u =

+∞ if v is a neighbour of u

w ∈ R : σ(w) << σ(+∞) otherwise

W fx ∈MN,N(R) : ∀u, v ∈ V, W fx
v,u =

+∞ if v is a neighbour of u

w ∈ R : σ(w) << σ(+∞) otherwise

W cx ∈MN,N(R) : ∀u, v ∈ V, W cx
v,u =


−∞ if u = v

+∞ if v is a neighbour of u

w ∈ R : σ(−∞) << σ(w) << σ(+∞) else

W ox ∈MN,N(R) : ∀u, v ∈ V, W ox
v,u =

+∞ if v is a neighbour of u

−∞ otherwise,

W ih = 0, W fh = 0, W ch = 0, W oh = 0,

bi ∈ RN , bf ∈ RN , bc ∈ RN , bo ∈ RN

(5.1.14)

5.1.1.2 Case 2: Several LSTM blocks

In the case of multilayered LSTM networks, the initialisation consists in setting first,
the last LSTM block in the same way as in the case of one LSTM block, then in setting
intermediate LSTM blocks behaving as identity function, i.e. they output their input:
∀l ∈ [|1, L − 1|], ∀t ∈ N∗, zl

t = xl
t. As previously, the initialisation will be inferred

backwardly from the output gate.

According to Eq. 5.1.1, ∀t ∈ N∗, ∀l ∈ [|1, L − 1|], hl
t = ol

t ∗ tanh(cl
t). It is then

necessary to open the output gate for components corresponding to the node itself, that is
the flow coming from a node toward itself remains unchanged. Eq. 5.1.1 also highlights
that, given that [−1, 1] is the codomain of tanh, ∀t ∈ N∗, ∀l ∈ [|1, L− 1|], tanh(cl

t) must
convey xl

t itself.

Wl,ox, Wl,oh, bl,o. Let l ∈ [|1, L− 1|]. ∀t ∈ N∗, ∀l ∈ [|1, L− 1|], ol
t must output 1 for

the node itself and 0 otherwise:
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∀t ∈ N∗ : xl
t ∈ XN , ∀v ∈ V, hl

t−1,v =

1 if v = γ(xl
t)

0 otherwhise
(5.1.15)

On the output gate by putting W l,oh = 0 as in the previous case, it follows:

∀t ∈ N∗ : xt ∈ XN , ∀v ∈ V, ol
t,v ≈

1 if v = γ(xl
t)

0 otherwhise

∀t ∈ N∗ : xl
t ∈ XN , ∀v ∈ V, σ(zl

t,v) ≈

1 if v = γ(xl
t)

0 otherwhise

⇐⇒ ∀t ∈ N∗ : xl
t ∈ XN , ∀v ∈ V, zl

t,v ≈

+∞ if v = γ(xl
t)

−∞ otherwhise

=⇒ ∀t ∈ N∗ : xl
t ∈ XN , ∀v ∈ V, W l,ox

v xl
t + bl,o

v ≈

+∞ if v = γ(xl
t)

−∞ otherwhise

=⇒ ∀t ∈ N∗ : xl
t ∈ XN , bo ∈ RN , W l,ox ≈

+∞ if v = γ(xl
t)

−∞ otherwhise

∀l ∈ [|1, L− 1|], W l,oh = 0, bo ∈ RN , and W l,ox ∈MN,N(R) : ∀u, v ∈ V, W l,ox
vu ≈ +∞, if

v is a neighbour of v, otherwise W l,ox
v,u ≈ −∞, is then a feasible solution.

An extended form of W l,ox is:

W l,ox =


+∞ −∞ . . . −∞
−∞ +∞ . . . −∞

... . . .
−∞ −∞ . . . +∞

 (5.1.16)

Wl,cx, Wl,ch, bl,c. Let l ∈ [|1, L−1|]. According to Eq. A.3.8, to ensure tanh(cl
t)→ 1

the cell must output the highest possible value for the current node v ∈ V . Therefore,
the first tanh activation — present in Eq. A.3.7 — has to be as close as possible to 1
for the current node v ∈ V :
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∀t ∈ N∗ : xl
t ∈ XN , v = γ(xl

t), tanh(cl
t,v) ≈ 1

⇐⇒ ∀t ∈ N∗ : xl
t ∈ XN , v = γ(xl

t),
tanh( il

t,v︸︷︷︸
> 0

∗ tanh(W l,xc
v xl

t + W l,hc
v hl

t−1,v + bl,c
v ) + f l

t,v ∗ cl
t−1,v︸ ︷︷ ︸

> 0 if cl
t−1,v > 0

) ≈ 1

=⇒ ∀t ∈ N∗ : xl
t ∈ XN , v = γ(xl

t),
W l,cx

v xl
t + W l,ch

v︸ ︷︷ ︸
= 0

hl
t−1,v + bl,c

v ≈ +∞

=⇒ ∀t ∈ N∗ : xl
t ∈ XN , v = γ(xl

t), W l,ch = 0, bl,c ∈ RN

W l,cx
v xl

t ≈ +∞

Likewise, the first tanh activation must be equal to 0 for all nodes different from the
current node v, which leads similarly to:

∀t ∈ N∗ : xl
t ∈ XN , v ̸= γ(xl

t), W l,cx
v xl

t ≈ 0 (5.1.17)

Considering ∀t ∈ N∗ : xl
t ∈ XN , xl

t is a one-hot vector, it follows:

W l,ch = 0, bl,c ∈ RN , W l,cx ∈MN,N(R) :

∀u, v ∈ V, W l,cx
v,u ≈

+∞ if v = u

0 otherwhise

(5.1.18)

∀l ∈ [|1, L− 1|], W l,ch = 0, bl,c ∈ RN and W l,cx ∈MN,N(R) : ∀u, v ∈ V , W l,cx
v,u ≈ +∞ if

u = v, otherwise W l,cx
v,u ≈ 0, is then a feasible solution.

An extended form of W l,cx is:
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
+∞ 0 . . . 0

0 +∞ . . . 0
... . . .
0 0 . . . +∞

 (5.1.19)

Wl,ix, Wl,ih, bl,i. Let l ∈ [|1, L− 1|]. Then, according to Eq. A.3.7, the input gate
must be set with the aim of letting the signal coming from the tanh activation pass
through. It is then opened for the current node:

∀t ∈ N∗ : xl
t ∈ XN : v = γ(xl

t), il
v,t ≈ 1

∀t ∈ N∗ : xl
t ∈ XN : v = γ(xl

t),
σ(W l,ix

v xt + W l,ih
v hl

t−1 + bl,i
v ) ≈ 1

⇐⇒ ∀t ∈ N∗ : xl
t ∈ XN : v = γ(xl

t), (5.1.20)
W l,ix

v xt + W l,ih
v hl

t−1 + bl,i
v ≈ 1

=⇒ ∀t ∈ N∗ : xl
t ∈ XN , v = γ(xl

t), W l,ih = 0, bl,i ∈ RN

W l,ix
v xl

t ≈ +∞

Likewise, the input gate must be equal to 0 for all nodes different from the current
node v, which leads similarly to:

∀t ∈ N∗ : xl
t ∈ XN , v ̸= γ(xl

t), W l,ix
v xl

t ≈ −∞ (5.1.21)

Considering ∀t ∈ N∗ : xl
t ∈ XN , xl

t is a one-hot vector, it follows:

W l,ih = 0, bl,i ∈ RN , W l,ix ∈MN,N(R) :

∀u, v ∈ V, W l,ix
v,u ≈

+∞ if v = u

−∞ otherwhise

(5.1.22)

∀l ∈ [|1, L− 1|], W l,ih = 0, bl,i ∈ RN and W l,ix ∈ MN,N(R) : ∀u, v ∈ V , W l,ix
v,u ≈ +∞ if

u = v, otherwise W l,ix
v,u ≈ −∞, is then a feasible solution.
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An extended form of W l,ix is:


+∞ −∞ . . . −∞
−∞ +∞ . . . −∞

... . . .
−∞ −∞ . . . +∞

 (5.1.23)

Wl,fx, Wl,fh, bl,f . Let l ∈ [|1, L− 1|]. Lastly, always according to Eq. A.3.7, ∀t ∈ N∗,
with the aim that ct outputs a maximum value for the the current node v ∈ V , the forget
gate ft must let the signal coming from the previous cell state ct−1 pass through for this
node v, i.e. ft,v must be approximately equal to 1:

∀t ∈ N∗ : xl
t ∈ XN : v = γ(xl

t), f l
v,t ≈ 1

∀t ∈ N∗ : xl
t ∈ XN : v = γ(xl

t),
σ(W l,fx

v xt + W l,fh
v hl

t−1 + bl,f
v ) ≈ 1

⇐⇒ ∀t ∈ N∗ : xl
t ∈ XN : v = γ(xl

t), (5.1.24)
W l,fx

v xt + W l,fh
v hl

t−1 + bl,f
v ≈ 1

=⇒ ∀t ∈ N∗ : xl
t ∈ XN , v = γ(xl

t), W l,fh = 0, bl,f ∈ RN

W l,fx
v xl

t ≈ +∞

Likewise, the forget gate must be equal to 0 for all nodes different from the current
node v, which leads similarly to:

∀t ∈ N∗ : xl
t ∈ XN , v ̸= γ(xl

t), W l,fx
v xl

t ≈ −∞ (5.1.25)

Considering ∀t ∈ N∗ : xl
t ∈ XN , xl

t is a one-hot vector, it follows:

W l,fh = 0, bl,f ∈ RN , W l,fx ∈MN,N(R) :

∀u, v ∈ V, W l,fx
v,u ≈

+∞ if v = u

−∞ otherwhise

(5.1.26)
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∀l ∈ [|1, L− 1|], W l,fh = 0, bl,f ∈ RN and W l,fx ∈ MN,N(R) : ∀u, v ∈ V , W l,fx
v,u ≈ +∞

if u = v, otherwise W l,fx
v,u ≈ −∞, is then a feasible solution.

An extended form of W l,fx is:

W fx =


+∞ −∞ . . . −∞
−∞ +∞ . . . −∞

... . . .
−∞ −∞ . . . +∞

 (5.1.27)

Finally, in the case of several LSTM blocks, for each intermediate block a theoretical
feasible solution could be:

Case 2: Several LSTM blocks, theoretical setting for the intermediate
LSTM layers

Let l ∈[|1, L− 1|],

W l,ix ∈MN,N(R) : ∀u, v ∈ V, W l,ix
v,u =

+∞ if u = v

−∞ otherwise

W l,fx ∈MN,N(R) : ∀u, v ∈ V, W l,fx
v,u =

+∞ if u = v

−∞ otherwise

W l,cx ∈MN,N(R) : ∀u, v ∈ V, W l,cx
v,u =

+∞ if u = v

0 otherwise

W l,ox ∈MN,N(R) : ∀u, v ∈ V, W l,ox
v,u =

+∞ if u = v

−∞ otherwhise

W l,ih = 0, W l,fh = 0, W l,ch = 0, W l,oh = 0,

bl
i ∈ RN , bl

f ∈ RN , bl
c ∈ RN , bl

o ∈ RN

(5.1.28)

5.1.1.3 Softmax layer

The softmax layer is then parameterised so that the output of the last LSTM block is
rescaled, while the order of its components is preserved. Considering the equation of a
softmax layer:
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∀t ∈ N∗ : ht ∈ RN , yt = σsm(W smht + bsm) (5.1.29)

where σsm is the softmax function, then W sm = k · Id where k is a scale factor.

5.1.1.4 Concrete values

Concrete values are set so that ∀a, b ∈ R, ∀M ∈ MN,N(R) such as a, b are elements
of M , if a ≈ +∞, a ≈ −∞ respectively, then b is chosen so as σ(a) >> σ(b) or
tanh(a) >> tanh(b), σ(a) << σ(b) or tanh(a) << tanh(b) respectively.

After having tested computationally different values with some LSTM models, it has
turned out that:

• σ(−7) ≈ 0.000911 ≈ 0 =⇒ −7 ≈ −∞ w.r.t. σ,

• tanh(0) = 0,

• σ(7) ≈ 0.999 ≈ 1 =⇒ 7 ≈ +∞ w.r.t. σ,

• tanh(7) ≈ 0.999998 ≈ 1 =⇒ 7 ≈ +∞ w.r.t. tanh,

For the last LSTM block, it then follows:

Case 1: The last LSTM block, concrete setting

W ix = 0 and ∀u, v ∈ V, v is a neighbour of u, W ix
v,u = 7

W fx = 0 and ∀u, v ∈ V, v is a neighbour of u, W fx
v,u = 7

W cx = 0 and ∀u, v ∈ V, v is a neighbour of u, W cx
v,u = 7 apart from W cx

u,u = −7
W ox = −7 and ∀u, v ∈ V, v is a neighbour of u, W ox

v,u = 7
W ih = 0, W fh = 0, W ch = 0, W oh = 0,

bi = 0, bf = 0, bc = 0, bo = 0

For an intermediate LSTM block:
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Case 2: Several LSTM blocks, concrete setting for the intermediate
LSTM layers

Let l ∈[|1, L− 1|],
W l,ix = −7 and ∀v ∈ V, W l,ix

v,v = 7
W l,fx = −7 and W l,fx

v,v = 7
W l,cx = 0 and W l,cx

v,v = 7
W l,ox = −7 and W l,ox

v,v = 7
W l,ih = 0, W l,fh = 0, W l,ch = 0, W l,oh = 0,

bl
i = 0, bl

f = 0, bl
c = 0, bl

o = 0

Finally for the softmax layer:

The sofmax layer

W sm = 5 · Id

5.2 Experiments and results

This section describes the assessment of RLPM when it is preinitialised following the
setting established in the previous section.

5.2.1 Conduct of experiments

Apart from an additional step consisting in selecting the best LSTM architecture to
assess in simulation, the conduct of experiments is identical to that presented in the
previous chapter in Section 4.3.1. This additional step is carried out just before the
final simulation step, namely step 5, and is described in the next paragraph. The conduct
becomes accordingly:

1. Scenarios,

2. Missions,

3. Training of statistical models,

4. Choice of the LSTM setting,
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5. Simulation.

4. Choice of the LSTM setting. In this step, some LSTM parameters are calibrated
and different LSTM architectures are assessed in simulation to select the best one
according to relevant criteria.

5.2.2 Preliminary experiments: selection of the LSTM setting

5.2.2.1 Choice of the horizon h in the TBPTT algorithm

In order to determine the best value for the parameter h of the TBPTT algorithm
presented in Apprendix A.3.4.1, several values of the latter were tested in training for
all of the scenarios studied in this chapter. For examples, values for the LSTM network
(2, 50) trained on scenario {HPCC 0.5, A, 15} are presented in Table 5.1. Considering
hardware constraints regarding the capacity of the GPU, the choice of h influences that
of the batch size. Therefore, the latter is also noted for each tested value of h. The
highest batch size, evaluated on the training database of size 8000 sequences, is preferred
to foster the quality of training.

h Batch size Validation cost Accuracy
Full 5154 1.17 54.16
Half 8004 1.14 55.29
200 8004 1.16 54.32
100 8004 1.11 55.96
50 8004 1.06 57.80
25 8004 1.00 59.77
10 8004 0.94 61.82
5 8004 0.93 62.03
1 8004 0.95 60.86

Table 5.1 Parameters and evaluation metrics for differents values of h, the horizon of the
TBPTT algorithm, for the LSTM network (2, 50) on {HPCC 0.5, A, 15}.

Results on all of the topologies have shown that, generally, h = 5 is the best value in
training; it is thereupon the value which has been retained to train the LSTM networks
in the following.
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5.2.2.2 Architecture choice

Four candidates of LSTM architecture have then been considered: (1, 50), (2, 50), (3, 50),
(4, 50), giving rise to the corresponding RLPM variants. They are assessed on A, for 5,
10, 15 and 25 agents, then the best network is selected to be trained for other scenarios.

Fig. 5.1, Fig. 5.2, and Fig. 5.3 show the performances of the four evaluated
networks, on the normalised WI, QMI and average idleness, respectively. Besides, Table
5.2 shows these criteria averaged over the numbers of agents for the four LSTM networks.

Fig. 5.1 Normalised worst idleness for 4 RLPM variants on the graph A

Architectures Norm. WI Norm. QMI Norm. Iav
(1, 50) 5590 462 391
(2, 50) 5363 458 380
(3, 50) 5493 466 390
(4, 50) 5453 465 389

Table 5.2 Evaluation criteria averaged over the numbers of agents of some LSTM
architectures evaluated in simulation on A.

It appears undoubtedly that the LSTM network (2, 50) is the best one for all of the
criteria, although the other ones be scarcely higher. Therefore, (2, 50) is chosen to be
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Fig. 5.2 Normalised QMI for 4 RLPM variants on the graph A

Fig. 5.3 Normalised average idleness for 4 RLPM variants on the graph A
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trained on all of the topologies and experimented in simulation. RAMPAGER 2-50 is
then retained to be assessed.

5.2.3 Training settings

In this chapter, unlike the previous one, the HPCC 0.5 database is used to train the
statistical model retained; HPCC 0.5 is thereupon the model strategy for RAMPAGER
2-50 in what follows. In addition, 24 scenarios are considered, which entails 24 2− 50
LSTM networks to train and assess in simulation. Here, these networks are trained using
the Adagrad algorithm with a learning rate of 0.1, over 500 epochs.

5.2.4 Training results

The total cost, i.e. the cost over the whole database before starting the training stage,
and the corresponding accuracy, are of 2.65 and 20% respectively. Then, Fig. 5.4
and Fig. 5.5 show the validation cost, namely the cross-entropy over the validation
database, and the accuracy, respectively, of the (2, 50)-LSTM network during the training
on {HPCC 0.5, A, 15}. The accuracy is also calculated over the validation database.
The validation cost ranges from 1.09, after the first epoch of training, to 0.86, after the
last one, and the accuracy from 55.82% to 64.31%. Moreover, according to these two
charts, the model converged after approximately 200 epochs.

Fig. 5.4 Validation cost of the (2, 50)-LSTM network trained on {HPCC 0.5, A, 15}

Fig. 5.6, Fig. 5.7, Fig. 5.8, Fig. 5.9 and Fig. 5.9 show the distribution of:

• the weights of all the gates of the input xt,
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Fig. 5.5 Accuracy of the (2, 50)-LSTM network trained on {HPCC 0.5, A, 15}

• the biases of all the gates of the input xt,

• the weights of all the gates of the hidden state ht−1,

• the biases of all the gates of the hidden state ht−1,

• the weights and biases of the last layer, namely the sofmax layer,

respectively. Considering parameters in the intermediate layer barely varied, their
evolution is not analysed here and are left to the reader in Appendix B.2.0.1.

For all of the weight matrices of the last LSTM layer, both at epoch 0 and at the last
epoch, parameters are roughly centred around one or two values, they are characterised by
a peak around this value. After the training stage, the distributions of these parameters
show the same pattern while remaining centred around the same values, although they
spread over a larger range of values around their peak and be more flattened. This
evolution is the sign of the tendency of the model to have slightly evolved parameters
initialised analytically to take into account the paths of nodes presented to the network,
from the topology captured in the network over the analytical initialisation stage.

With regard to the bias vectors, their distributions evolved sporadically with no
specific central values. The patterns of each distribution at epoch 0 and 500, the first
and the last ones respectively, are different. This leads to conclude that biases varied to
a large extent, and unlike to weights, they were largely subject to learning.
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Fig. 5.6 Distribution during the training of the weights of the input xt, upon the input
(it), forget (ft), output (ot) gates and the cell state (gt), respectively, for the (2, 50)-LSTM
network trained on {HPCC 0.5, A, 15}
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Fig. 5.7 Distribution during the training of the biases of the input xt, upon the input (it),
forget (ft), output (ot) gates and the cell state (gt), respectively, for the (2, 50)-LSTM
network trained on {HPCC 0.5, A, 15}
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Fig. 5.8 Distribution during the training of the weights of the input ht, upon the input
(it), forget (ft), output (ot) gates and the cell state (gt), respectively, for the (2, 50)-LSTM
network trained on {HPCC 0.5, A, 15}
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Fig. 5.9 Distribution during the training of the biases of the hidden state ht−1, upon
the input (it), forget (ft), output (ot) gates and the cell state (gt), respectively, for the
(2, 50)-LSTM network trained on {HPCC 0.5, A, 15}

Fig. 5.10 Distribution during the training of the weights and biases respectively, of the
sofmax layer (the last layer), for the (2, 50)-LSTM network trained on {HPCC 0.5, A,
15}
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5.2.5 Simulation results

In this section the results of experiments with RAMPAGER 2-50 are presented and
discussed. The focus is placed on the WI and Iav criteria, the former to evaluate the
robustess of RAMPAGER 2-50, and the latter to acquire the information carried by the
MI and QMI in an aggregated way.

The six topologies outlined in Chapter 2 and the four usual numbers of agents,
5, 10 15 and 25, were experimented. 24 scenarios with RAMPAGER, for which one
scenario gives rise to 100 runs, were therefore experimented, hence a total of 2400 runs.
On the first three topologies, Islands, A and Grid, RAMPAGER is compared with the
best RLPM variant. Then, on B, Circle and Corridor, it is only compared with CR, the
decentralised representative, and HPCC 0.5, the model strategy, because experiments
involving RLPM laid out in Chapter 4 were not carried out on these topologies.

Figs. 5.11 to 5.22 show the performance according to the WI, QMI and Iav, on
Islands, A, Grid, B, Circle and Corridor, respectively, of the RAMPAGER and the best
RLPM variant, averaged over 100 runs for each scenario.

Globally, HPCC 0.5 is always the best strategy on both criteria, except on the Circle
and Corridor topologies where HPCC is outperformed by CR on the Iav and WI for
certain of configurations.

First, according to Fig. 5.11 and Fig. 5.12, on Islands RAMPAGER is by far
better than the best RLPM variant. On WI it remains outperformed by, but close to,
CR, whereas according to Iav its performance is between CR and HPCC in term of
performance.

Then, Fig. 5.13 and Fig. 5.14 show that on A, RAMPAGER is better than the
best RLPM variant on both criteria, especially for 25 agents, and on the WI slightly
worse than, but close to, CR, except for 15 agents where it is better. On the Iav it always
outperforms CR.

On Grid, Fig. 5.15 and Fig. 5.16 highlight that RAMPAGER is better than the
best RLPM variant. On the WI, it is close to CR for 5 and 10 agents, equal to it for
15 agents, and better than it for 25 agents. It can then be argued that RAMPAGER
is globally equal to CR on the WI, with an average WI over the numbers of agents of
4313 for RAMPAGER against 4450 for CR. By doing so, on Grid RAMPAGER slightly
outperforms CR in average on the WI. On the Iav, RAMPAGER outperforms both CR
and the best RLPM variant, especially the latter for 25 agents.
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Fig. 5.11 Normalised WI, averaged over 100 execution, of the RAMPAGER 2-50 and the
best variant of RLPM w.r.t. the number of agents on Islands.

Fig. 5.12 Normalised Iav, averaged over 100 execution, of the RAMPAGER 2-50 and the
best variant of RLPM w.r.t. the number of agents on Islands.
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Fig. 5.13 Normalised WI, averaged over 100 execution, of the RAMPAGER 2-50 and the
best variant of RLPM w.r.t. the number of agents on A.

Fig. 5.14 Normalised Iav, averaged over 100 execution, of the RAMPAGER 2-50 and the
best variant of RLPM w.r.t. the number of agents on A.
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Fig. 5.15 Normalised WI, averaged over 100 execution, of the RAMPAGER 2-50 and the
best variant of RLPM w.r.t. the number of agents on Grid.

Fig. 5.16 Normalised Iav, averaged over 100 execution, of the RAMPAGER 2-50 and the
best variant of RLPM w.r.t. the number of agents on Grid.
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Fig. 5.17 Normalised WI of RAMPAGER 2-50 averaged over 100 execution w.r.t. the
number of agents on B.

On B, Fig. 5.17 and Fig. 5.18 show that on the WI and Iav RAMPAGER
outperforms CR, especially on the Iav, except for 5 agents where they are close.

On Circle, Fig. 5.19 and Fig. 5.20 show that CR is the best strategy. RAMPAGER
is worse than CR on the WI and Iav, although it be better, by far, than HPCC 0.5,
its model strategy, for 5 and 15 on the Iav, and approximately equal to it for 5 and 15
agents on the WI.

Finally, on Corridor, a graph with 49 vertices, Fig. 5.21 and Fig. 5.22 show that
RAMPAGER is strongly outperformed by CR and HPCC 0.5 on the WI, although it
outperforms HPCC 0.5 for 5 and 15 agents, and CR for all of the numbers of agents.

Note that for scenarios on Circle, {Corridor 5} and {Corridor 10}, learning from
traces of HPCC 0.5 with the aim of developing a distributed strategy makes little sense
considering the performance of HPCC 0.5 is worse than that of CR. Therefore, on Circle
and Corridor, RAMPAGER is generally outperformed by CR or HPCC 0.5 on the WI
and Iav, except for 5 and 10 agents where it outperforms HPCC 0.5 on the Iav.

It is worth noting that RAMPAGER has proven to be better than HPCC 0.5 on the
Iav for some configurations — {Circle, 5}, {Circle, 10}, {Corridor, 5}, and {Corridor, 10}

—, whereas it is, interestingly enough, the decision process which is aimed at capturing
and reconstructing in a decentralised way by RAMPAGER. As stated above, a first
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Fig. 5.18 Normalised Iav of RAMPAGER 2-50 averaged over 100 execution w.r.t. the
number of agents on B.

Fig. 5.19 Normalised WI of RAMPAGER 2-50 averaged over 100 execution w.r.t. the
number of agents on Circle.
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Fig. 5.20 Normalised Iav of RAMPAGER 2-50 averaged over 100 execution w.r.t. the
number of agents on Circle.

Fig. 5.21 Normalised WI of RAMPAGER 2-50 and over 100 execution w.r.t. the number
of agents on Corridor.
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Fig. 5.22 Normalised Iav of RAMPAGER 2-50 and over 100 execution w.r.t. the number
of agents on Corridor.

rationale is owing to the performance of HPCC 0.5, which has highlighted HPCC 0.5 is
not robust for these scenarios. Further investigations have also shown that on Circle the
QMI component of Iav in Eq. 2.1.10 gives rise to this result, RAMPAGER has a lower
QMI, whereas for Corridor it is the number of intervals NG

J that is higher for HPCC
0.5. HPCC 0.5 is thus less robust than RAMPAGER on Circle, namely the agents are
less evenly distributed over all of the nodes, whereas on Corridor the higher number of
intervals of HPCC 0.5 for a better MI and QMI than RAMPAGER involves the paths
taken by agents are less efficient.

5.3 Conclusion

This chapter has aimed at improving the RLPM strategy introduced in the previous
chapter. The problem here was to integrate the structure of the topology to patrol in
the LSTM networks used by agents to predict the next node to visit. Therefore, instead
of the pretraining step carried out in the previous chapter, a new analytical procedure
has been established. Following this analytical procedure enables initialising any LSTM
network of same width as the studied topology’s, with respect to its structure. This new
analytical procedure, qualified as structure-guided initialisation, gave rise to the new
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RAndom Muliagent PAtrollinG LSTM-Path-MakER (RAMPAGER) strategy, which
is nothing but an improvement of the RLPM strategy.

This procedure was then established formally according to the equations of the LSTM
model, first with theoretical values, then with concrete values for its implementation
in MAPTrainer. Afterwards, four LSTM networks initialised according to this new
procedure were assessed in simulation. The best one, 2− 50, was retained to be assessed
in all of the scenarios studied in this chapter, that is to say 24 scenarios with RAMPAGER
2-50.

Globally, RAMPAGER 2-50 outperforms to a large extent the best RLPM variant
on both evaluation criteria. Thus, using HPCC 0.5 data, higher quality data in term
of robustness, and initialising LSTM networks based on the structure of the problem,
and more precisely here the graph to patrol, seem to have improved RLPM. Moreover,
on the four first topologies, according to the WI RAMPAGER is generally equal to, or
better than, CR, except on Islands.



Chapter 6

Idleness estimator: a decentralised
strategy based on idleness
estimation

The two previous chapters addressed the use of RNNs with the aim of learning paths of
agents generated by a high-performance and centralised strategy. In the current chapter,
the problem of using statistical models, and furthermore certain of ANN architectures, to
estimate true idlenesses in real time during a patrolling mission is addressed. New generic
strategies based on idleness estimation are defined. Several statistical models are studied
and three of them are evaluated in simulation: the arithmetic mean, a linear-regression
model and a MLP network. These models are trained from the HCC 0.2 database,
then used by agents as part of the decision process as idleness estimators to choose
the next node to visit according to the estimated true idlenesses. The main hypothesis
of this application is that, if agents learn to reconstruct true idleness in average from
individual idleness by using a statistical model, then they would be able to approach the
performance reached by the model strategy.

The objective of this chapter being to define a new strategy based on machine learning
models used to estimate the true idleness at each time step, in what follows the definition
of such a strategy is established.

As part of MAP, a strategy based on an estimator to make a decision is named
Idleness Estimator (IE): the decision process unfolds so that an estimate of the true
idleness is first computed, then the decision regarding the next node to visit is made
with respect to this estimate.

Each statistical model gives rise to two strategy types based on idleness estimation:
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• a deterministic strategy type where idleness estimation is considered as such,

• a stochastic strategy type where idleness estimation is regarded as the average of a
discrete probability distribution for the idleness to estimate.

In fact, the stochastic strategy type is an improvement of the deterministic one:
random variations are introduced in the decision process to make the strategy more
variable and robust.

Therefore, Section 6.1 lays down the objective of this chapter, namely defining the
procedure of idleness estimation in the framework of MAP, which thereby gives rise to
the generic type of strategy mentioned above, that is IE. Section 6.2 is devoted to the
use of estimated true idleness by the agents to derive decisions. In Section 6.3 three
concrete examples of the new generic type of strategy introduced there are addressed.
Then, in Section 6.4 the training procedure of the estimators selected to be assessed is
established; such a procedure is simple and straightforward. Finally, the strategies based
on these estimators are experimented and evaluated in Section 6.5.

6.1 Idleness estimation

The estimator is noted m(., .), and is defined as follows:

According to the notations of Section 3.1, let ∀t ∈ N∗, ∀a ∈ A, ia(t) = (ia
1(t), ..., ia

N (t)) ∈
(N∗)N be the vectors of individual idlenesses and î−a(t) = (̂i−a

1 (t), ..., î−a
N (t)) ∈ N∗N be

the corresponding vector of true idleness estimated by agent a, at time t. Then,

∀t ∈ N∗, ∀a ∈ A, î−a(t) = m(ia(t), θ) (6.1.1)

where θ is the set of the estimator’s parameters.

For any agent, such an estimator outputs an estimate of the current vector of true
idlenesses, called estimated idlenesses, with respect to the current individual idlenesses
provided as input to the estimator. All of the agents embed the same estimator, i.e.
the same parametrised estimator. IE can be thought of as a reactive strategy using
an artefact for estimating missing information concerning the area to patrol, and that
takes into account the idleness of nodes and thereby implicitly the agents’ positions.
In this context, a temporal series representing the successive idlenesses each time an
agent stands upon a node is called an idleness sequence. Also, by definition of the true
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idleness, ∀a ∈ A an agent, any individual idleness ia
v(t) of the node v must be mapped to

an estimate of true idleness lower than or equal to the individual one as follows:
Let i(t) = (i1(t), ..., iN (t)) be the vector of true idleness at time t. Then, according to

Eq. 3.1.3 the following property holds:

∀t ∈ N∗,∀v ∈ V, ∀a ∈ A, iv(t) ∈ [0, ia
v(t)] (6.1.2)

However, this property does not necessary hold for î−a(t). Hence the possibility
to improve the estimation by bounding it, in a component-wise manner ∀v ∈ V , by
the interval [0, ia

v(t)]. This leads to the improved vector of estimated idleness îa(t) =
(̂ia

1(t), . . . , îa
N(t)) such as:

∀t ∈ N∗,∀v ∈ V, ∀a ∈ A, îa
v(t) = min( max(̂i−a

v (t), 0), ia
v(t) ) (6.1.3)

This new estimator, termed as enhanced estimator, can be regarded as a procedure
producing an estimation of true idlenesses corrected by the data available to the agent;
such an estimation complies with the features of true idleness. In our context, this proce-
dure is equivalent to apply Eq. 6.1.1 and 6.1.3. In the following, such an estimator
will be simply termed as estimator.

For a given scenario, the corresponding estimator is parametrised in the most efficient
way to predict the vector of true idleness with respect to its corresponding vector of
individual idleness, this for any agent. To that end, each time an agent stands upon a
node, it provides its vector of individual idleness to the estimator; in other terms, at each
time step of next node choice, the agent estimates the vector of true idleness from its
vector of individual idleness. Using an estimator as an information processing system,
allows the agent to infer knowledge about its environment, and leads thereupon to the
step of decision-making.

6.2 Decision-making based on idleness estimation

In the decision-making step, agents apply the two Heuristic and Pathfinder methods
described in Subsection 2.3.2 to their vector of estimated idleness: the Heuristic
method is applied to select the next node to visit, whereas the Pathfinder method to
choose the path to go there.

However, unlike HPCC, there is a slight difference for the Heuristic method used here:
there is no mechanisms forbidding to select nodes already selected by other agents, due



118 Idleness estimator: a decentralised strategy based on idleness estimation

to the absence of communication.

Let f be the ideal decision procedure of the model strategy, defined in Subsection
4.1.1 and especially characterised by Eq. 4.1.1, and f̃ be the statistical-model-based
decision procedure which is an approximated function of f using:

• ia(t), the vector of individual idleness of a ∈ A, instead of i(t) the vector of true
idleness,

• va(t) ∈ V the node visited by a at time t ∈ N∗,

• va(t + τ), the node resulting from the decision of a at t, where τ is the transit time
between va(t) and va(t + τ).

Then f̃ can then be characterised as follows:

∀t ∈ N∗, ∀a ∈ A, va(t + τ) = f̃(va(t), ia(t)) (6.2.1)

This equation pertains to the formal definition of an idleness-estimator strategy: at
one hand, each output depends upon both the current node and the individual idleness
vector, and on the other hand, the final decision made according to f̃ corresponds to the
next node to visit chosen with respect to the idleness estimation.

The decision procedure followed in the latter step can be more or less complex; it can
be deterministic or stochastic.

6.2.1 Deterministic approach

In the deterministic approach, each agent is merely endowed with the same parametrised
idleness estimator that they will use to estimate the true idleness vector throughout the
mission to select the next node to visit, as shown in Figure 6.1. Such as in the two
previous chapters, this strategy is meant to replicate, or at the very least to approach,
the model strategy’s behaviour in a decentralised way.

Estimation
Heuristic and

Pathfinder
methods

ia(t) îa(t) v(n + 1)

Fig. 6.1 Random Heuristic Pathfinder Idleness Estimator (HPIE) strategy, with v(n)
being the nth visited node.



6.2 Decision-making based on idleness estimation 119

On a side note, it is worth noting that CR can also be described by the equation
Eq. 6.2.1 using another function f̃ . The difference between CR and any strategy
using an estimation of true idleness is that the latter uses both static information about
the structure of the topology and the average behaviour of other agents, whereas the
former uses only local information, but dynamically, that is the individual idleness of its
neighbour nodes. CR can thereby be considered as an idleness-estimator strategy where
its estimation is simply its vector of individual idleness.

6.2.2 Drawback of the deterministic approach

An important drawback of the deterministic approach is that the relation between
individual and true idleness is likely not a function, and therefore could not be learnt.
This has led to state a theorem outlining the conditions under which such a relation is
not a function:

Theorem 6.2.1. Let G = (V, E) be a graph, let A be a society of agents and consider
two runs of a given strategy, arbitrarily named first and second run. If:

• in the initial state, a node u ∈ V is occupied with an agent a1 ∈ A for the first run
and with an agent a2 ∈ A for the second run, a1 and a2 can have the same agent
identifier, and

• a next node v ∈ V is selected by the strategy for the agent a1 in the first run and
for the agent a2 in the second run and

• for the first run, it exists w ∈ V, w ̸= v that is occupied by an agent a3 ∈ A, a3 ̸=
a1, a3 ≠ a2 or that has already been reached by a3 when, at time t, a1 arrives at v

and

• for the second run, no agents have reached w, when at time t, a2 arrives at v,

then the relation between the individual idleness ia(t) and the true idleness i(t) is not
a function, but a multivalued function.

Proof. At time t, the individual idlenesses for a1 in the first run and for a2 in the second
run are equal: both have ia

j (t) = t, ∀j ̸= v and ia
v(t) = 0. For the first run iw(t), the

true idleness of w, is equal to 0 if a3 occupies it, or equal to t − τ < t, where τ > 0
is the travel time of agent a3 from its initial position to w, otherwise. For the second
run iw(t) = t. Thus, to the same individual idleness corresponds two different values of
the true idleness. Hence, the relation between the individual idleness ia(t) and the true
idleness i(t) is not a function.
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The conditions of Theorem 6.2.1 are likely in the case of the graphs considered in
this dissertation. Indeed, the analysis of a simple example of a 4-node graph with two
islands and with 2 agents has shown that these conditions hold.

6.2.3 Stochastic approach

In order to make IE agents better distributed over the nodes of the graph to patrol,
and by doing so increase the variability of the IE strategies, the entropy of estimated
idlenesses must be increased to enhance the variability of estimated idleness. To that end,
a supplementary step in the decision process is now added to IE as shown in Figure 6.2:
for a given node v ∈ V at time t ∈ N∗, any IE agent a ∈ A, after making an estimate
of the true idleness of v, noted îv(t), considers this estimate as a mean of a random
variable supported in the interval [0, ia

v(t)]. A sample is then sampled according to this
random variable to acquire a new datum, in fact a new idleness estimate used in Heuristic
and Pathfinder methods. The resultant generic strategy type is named random idleness
estimator (RIE).

Estimation Sampling
Heuristic and

Pathfinder
methods

ia(t) îa(t) f (̂ia(t)) v(n + 1)

Fig. 6.2 Random Heuristic Pathfinder Idleness Estimator (RHPIE) strategy, with v(n)
being the nth visited node.

Such a probability distribution is now characterised.

6.2.3.1 Problem formulation

In order to sample the random variable, its probability distribution, and more precisely
its mass function, shall be defined. The objective is to find the less specific mass function
that presents the specified mean. A measure of generality of a mass function is its entropy
as defined in Appendix A.

In all the remainder of this section, let:

• m = îa
v(t), be ∀a ∈ A the estimation of true idleness of v generated by the statistical

model of a; it is here used as the expectation of the probability mass function of I,

• i = ia
v(t) be the individual idleness of v ∈ V , according to a, at time t.
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According to Eq. 3.1.3, I is supported in I = {0, 1, . . . , i} and its probability
mass function is the family {P (I = 0), P (I = 1), . . . , P (I = i)}. Hereinafter, ∀k ∈ I,
pk = P (I = k) and p = (p0, . . . , pi), such that p ∈ [0, 1]i+1.

By definition of entropy, the highest entropy probability distribution must verify:

max
{p0,p1,...,pi}

(
−

i∑
k=0

pk log(pk)
)

(6.2.2)

Eq. 6.2.2 can be rewritten as follows:

min
{p0,p1,...,pi}

(
i∑

k=0
pk log(pk)

)
(6.2.3)

The distribution maximising Eq. 6.2.2 is the most entropic and the most uniform
one. Indeed, the uniform distribution being that which maximises the entropy, making a
phenomenon more entropic is equivalent to augment its uniformness, and homogenise
the probabilities of its events. Moreover, what ensures that the entropy function has
an optimum and can be maximised is that its Hessian is a negative definite matrix; the
entropy is thus strictly concave, and by doing so, has a unique maximum. The Hessian
has the following form:

H(H) =



− 1
p0

0 . . . 0 0
0 − 1

p1... . . .
... . . .
0 0 . . . 0 − 1

pi


(6.2.4)

As previously stated, considering that p is a probability mass function, and I is a
r.r.v. of expectation m, the two following constraints have to be satisfied:

i∑
k=0

pk = 1 (6.2.5)

i∑
k=0

k pk = m (6.2.6)

Therefore, Eq. 6.2.3, Eq. 6.2.5 and Eq. 6.2.6 make up the optimisation problem
to solve for the purpose of obtaining the appropriate probability mass function, where Eq.
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6.2.3 is the objective function, and Eq. 6.2.5 and Eq. 6.2.6 constitute the constraints
of the problem, as follows:

min
{p0,p1,...,pi}

(
i∑

k=0
pk log(pk)

)

s.t.
i∑

k=0
pk = 1

i∑
k=0

k pk = m

∀k ∈ [|0, i|], pk ≥ 0

(6.2.7)

6.2.3.2 General solution

Now that the optimisation problem is formally stated, it will be solved using the method
of Lagrange multipliers. To that end, its Lagrangian is first formulated. Eq. 6.2.3 is
the objective function, whereas Eq. 6.2.5 and Eq. 6.2.6 are the constraints for the
method of Lagrange multipliers:

∀p ∈ [0, 1]i+1, ∀λ = (λ1, λ2) ∈ R, L(p, λ) =
i∑

k=0
pk log(pk)+

λ1(
i∑

k=0
pk − 1)+

λ2(
i∑

k=0
k pk −m)

(6.2.8)

First order conditions of non-linear programming state that the gradient of L w.r.t.
p shall be equal to 0, which is given by:

∀p = (p0, . . . , pi) ∈ [0, 1]i+1, ∀k ∈ I,

∂L
∂pk

= log(pk) + 1 + λ1 + λ2 k

∀p = (p0, . . . , pi) ∈ [0, 1]i+1

∇pL(p, λ) = ( ∂L
∂p0

, . . . ,
∂L
∂pi

)

∀p = (p0, . . . , pi) ∈ [0, 1]i+1

= (log(p0) + 1 + λ1, . . . , log(pi) + 1 + λ1 + λ2 i)

(6.2.9)
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Thus:

p = (p0, . . . , pi) ∈ [0, 1]i+1, ∀k ∈ I,

∂L
∂pk

= 0

⇐⇒ p = (p0, . . . , pi) ∈ [0, 1]i+1, ∀k ∈ I, ∀λ = (λ1, λ2) ∈ R

log(pk) + 1 + λ1 + λ2 k = 0
⇐⇒ p = (p0, . . . , pi) ∈ [0, 1]i+1, ∀k ∈ I, ∀λ = (λ1, λ2) ∈ R

pk = e−1−λ1−k λ2

(6.2.10)

Note that owing to the exponential, pk is positive. Substituting pk from Eq. 6.2.10
into Eq. 6.2.5 and Eq. 6.2.6 provides a system of two equations with two unknowns:
λ1 and λ2. This system can be solved and substitution of the solution in Eq. 6.2.10
provides pk for k = 0, . . . , i.

6.2.3.3 Formal relations and concrete expressions

These relations and expression are yielded by changing variables. A first change is given
by Eq. 6.2.11:

p = (p0, . . . , pi) ∈ [0, 1]i+1, ∀k ∈ I, ∀λ = (λ1, λ2) ∈ R

pk = e−1−λ1︸ ︷︷ ︸
=a

e−kλ2︸ ︷︷ ︸
=bk: b=e−λ2

(6.2.11)

Finally:

∀k ∈ I, ∀λ = (λ1, λ2) ∈ R

pk = a bk : a = e−1−λ1 , b = e−λ2
(6.2.12)

From Eq. 6.2.12 and Eq. 6.2.6, it follows:

∀a, b ∈ R,
i∑

k=0
k pk = (

i∑
k=0

pk︸ ︷︷ ︸
=1

)×m

⇐⇒ ∀a, b ∈ R,
i∑

k=0
(k −m) pk = 0

6.2.12⇐⇒ ∀a, b ∈ R, a
i∑

k=0
(k −m) bk = 0

(6.2.13)

Then, according to Eq. 6.2.5:
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∀a, b ∈ R,
i∑

k=0
pk = 1

6.2.12⇐⇒ ∀a, b ∈ R,
i∑

k=0
a bk = 1

⇐⇒ ∀a ∈ R∗, b ∈ R,
i∑

k=0
bk = 1

a

⇐⇒ ∀a ∈ R∗, b ∈ R, (1 + b + . . . + bi) = 1
a

(6.2.14)

Case 1: b = 1. b = 1 and Eq. 6.2.14 imply1:

⇐⇒ ∀a ∈ R∗,
i∑

k=0
1 = 1

a

⇐⇒ ∀a ∈ R∗,
1
a

= i + 1

⇐⇒ ∀a ∈ R∗, a = 1
i + 1

(6.2.15)

which entails:
∀k ∈ I, pk = 1

i + 1
(6.2.16)

Therefore, b = 1 and Eq. 6.2.13 imply:

∀a ∈ R∗, a
i∑

k=0
(k −m) = 0

⇐⇒ ∀a ∈ R∗,
i∑

k=0
(k −m) = 0

⇐⇒ ∀a ∈ R∗,
i∑

k=0
k =

i∑
k=0

m

⇐⇒ ∀a ∈ R∗,
i + 1

2 i = (i + 1) m

⇐⇒ ∀a ∈ R∗, m = i

2

(6.2.17)

Thus, when b = 1, or equivalently, m = i
2 , the highest entropy probability distribution

supported by I, is the discrete uniform distribution, which is, in fact, undoubtedly the
most entropic distribution, by definition of entropy.

1The demonstration is left to the reader.
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Finally, in the case where b = 1:

Case 1: b = 1.
a = 1

i + 1
b = 1

m = i

2

(6.2.18)

Case 2: b ̸= 1. When b ≠ 1, two possible cases must be distinguished: the case where
b < 1 and that where b > 1.

Case 2.1: b < 1. First, because in this case the largest pk is p0, that is Eq. 6.2.12
describes a decreasing exponential with respect to k, b < 1 and Eq. 6.2.13 imply:

m <
i

2 (6.2.19)

Thus, b < 1 corresponds to the case where m < i
2 . Then, according to b ̸= 1 and Eq.

6.2.14, it follows:

∀a ∈ R∗, b ∈ R : b ̸= 1, (1 + b + . . . + bi) = 1
a

∀a ∈ R∗, b ∈ R : b ̸= 1, a = 1− b

1− bi+1

(6.2.20)

Also, Eq. 6.2.20 entails:

a ̸= 0 (6.2.21)

Then, b < 1 implies a ̸= 0, and according to Eq. 6.2.13, it follows:

∀b ∈ R,
i∑

k=0
(k −m) bk = 0 (6.2.22)

Finally, in the case where b < 1:
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Case 2.1: b < 1, formal relations.

∀b ∈ R : b < 1, a = 1− b

1− bi+1

∀b ∈ R, b is such that:
i∑

k=0
(k −m) bk = 0

m <
i

2

(6.2.23)

Eq. 6.2.22 being a high degree polynomial, it can hardly be solved. The solution
will then be approximated.

Case 2.2: b > 1. First, because in that case the largest pk is pi, that is Eq. 6.2.12
describes an increasing exponential with respect to k, b > 1 and Eq. 6.2.13 imply2:

m >
i

2 (6.2.24)

Thus, b > 1 corresponds to the case where m > i
2 .

According to Eq. 6.2.22, considering that determining a solution of b in [0, 1] is more
convenient than finding such a solution in [1, +∞], Eq. 6.2.10 will now be rewritten so
that determining a solution for b in [1, +∞], is equivalent to finding a b′ in [0, 1].

According to Eq. 6.2.10, ∀k ∈ I, pk can be reformulated using the change of indices
(l = i− k), as follows:

⇐⇒ p = (p0, . . . , pi) ∈ [0, 1]i+1, ∀k ∈ I, ∀λ = (λ1, λ2) ∈ R

pk = e−1−λ1−k λ2

l=i−k⇐⇒ p = (p0, . . . , pi) ∈ [0, 1]i+1, ∀l ∈ I, ∀λ = (λ1, λ2) ∈ R

pl = e−1−λ1−(i−l)λ2

⇐⇒ p = (p0, . . . , pi) ∈ [0, 1]i+1, ∀l ∈ I, ∀λ = (λ1, λ2) ∈ R

pl = e−1−λ1︸ ︷︷ ︸
=a

e−(i−l)λ2︸ ︷︷ ︸
=b′i−l: b′=e−λ2

(6.2.25)

2The demonstration is left to the reader.
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The change of indices (l = i− k) leaves the value of the sum identical. It also leaves
the interval over which (pl)l∈N∗ evolves, unchanged, and accordingly well indexed. Such
a change of indices is then well defined. Finally:

∀k ∈ I, ∀λ = (λ1, λ2) ∈ R

pk = a b′i−k : a = e−1−λ1 , b′ = e−λ2
(6.2.26)

Thereupon, Eq. 6.2.13 can be rewritten according to the new formulation of
pl,∀l ∈ I (Eq. 6.2.26):

∀a, b′ ∈ R,
i∑

k=0
k pk = (

i∑
k=0

pk︸ ︷︷ ︸
=1

)×m

⇐⇒ ∀a, b′ ∈ R,
i∑

k=0
(k −m) pk = 0

6.2.26⇐⇒ ∀a, b ∈ R, a
i∑

k=0
(k −m) b′i−k = 0

(6.2.27)

Likewise, Eq. 6.2.14 and Eq. 6.2.26 entail:

∀a, b′ ∈ R,
i∑

k=0
pk = 1

⇐⇒ ∀a, b′ ∈ R,
i∑

k=0
a b′i−k = 1

⇐⇒ ∀a ∈ R∗, b′ ∈ R,
i∑

k=0
b′i−k = 1

a

⇐⇒ ∀a ∈ R∗, b′ ∈ R, (b′i + b′i−1 + . . . + 1) = 1
a

⇐⇒ ∀a ∈ R∗, b′ ∈ R : b′ ̸= 1, a = 1− b′

1− b′i+1

(6.2.28)

In both cases b < 1 and b > 1, the expression of a with respect to b and b′ respectively,
is identical. Therefore, b > 1 implies a ̸= 0, and according to Eq. 6.2.27, it follows:

b′ ∈ R,
i∑

k=0
(k −m) b′i−k = 0 (6.2.29)

Finally, in the case where b > 1:
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Case 2.2: b > 1, formal relations.

∀b′ ∈ R : b′ < 1, a = 1− b′

1− b′i+1

∀b′ ∈ R, b′ is such that:
i∑

k=0
(k −m) b′i−k = 0

m >
i

2

(6.2.30)

As for b < 1, Eq. 6.2.29 being a high degree polynomial, it can hardly be solved.
The solutions of Eq. 6.2.22 and Eq. 6.2.29 can be approximated.

6.2.3.4 Approximated solving

b will approximate i by +∞ using series convergence.

Case 2.1: b < 1. Eq. 6.2.22 can be approximated as follows:

∀b ∈ R : b < 1,
i∑

k=0
(k −m) bk = 0

i→+∞∼
+∞∑
k=0

(k −m) bk = 0

⇐⇒ ∀b ∈ R : b < 1,
+∞∑
k=0

(k −m) bk = 0

⇐⇒ ∀b ∈ R : b < 1, m
+∞∑
k=0

bk =
+∞∑
k=0

k bk

⇐⇒ ∀b ∈ R : b < 1, m
1

1− b
= b2

(1− b)2

i→+∞⇐⇒ b = m

1 + m

(6.2.31)

Finally, when m < i
2 , i.e. b < 1, and i is large enough, b ≈ m

1 + m
is a good approxi-

mation.
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Case 2.1: b < 1, concrete expressions.

b = m

1 + m

a = 1− b

1− bi+1

m <
i

2

(6.2.32)

Case 2.2: b > 1. Eq. 6.2.29 can be approximated using series convergence, as
previously, and the change of variables l = i− k, as follows:

∀b′ ∈ R : b′ > 1,
i∑

k=0
(k −m) b′i−k = 0

i→+∞∼
+∞∑
k=0

(k −m) b′i−k = 0

l=i−k⇐⇒ ∀b′ ∈ R : b′ < 1,
+∞∑
l=0

(i−m− l) b′l = 0

⇐⇒ ∀b′ ∈ R : b′ < 1, (i−m)
+∞∑
l=0

b′l =
+∞∑
l=0

l b′l

⇐⇒ ∀b′ ∈ R : b′ < 1,
i−m

1− b′ = b′

(1− b′)2

⇐⇒ ∀b′ ∈ R : b′ < 1, (i−m)(1− b′) = b′

i→+∞⇐⇒ b′ = i−m

1 + i−m

(6.2.33)

Finally, when m > i
2 , i.e. b > 1 and b′ < 1, and i is large enough, b′ ≈ i−m

1 + i−m
is a

good approximation.

Case 2.2: b > 1, concrete expressions.

b = i−m

1 + i−m

a = 1− b′

1− b′i+1

m >
i

2

(6.2.34)
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Based on the facts set out in all this section, at each decision step a patrolling idleness
estimator agent a ∈ A, will draw randomly a new idleness îa,∼

v (t) for each node v ∈ V ,
according to the distribution p = (p0, . . . , pi), such as ∀k ∈ I:

• pk = 1
i + 1, if m = i

2,

• pk = a bk, where a and b have as expressions those of Eq. 6.2.32, if m <
i

2,

• pk = a b′i−k, where a and b′ have as expressions those of Eq. 6.2.34, if m >
i

2.

Although îa,∼
v (t) be estimated from îa

v(t), if that does not lead to confusion, îa,∼
v (t)

will siply be noted îa
v(t) given that it constitutes the new estimate.

6.3 Some statistical models for idleness estimation

In this subsection, statistical models which give rise to three concrete idleness estima-
tors are presented. In what follows, statistical models will be simply referred to as models.

As preliminary remark, Eq. 6.1.1 indicates that for all of the models studied here,
the input and output, both of dimension N , stand for the vector of individual idlenesses
and the vector of estimated idlenesses, respectively.

The first model is simply the mean, which estimates, for each node the true idleness
as being the average of all true idlenesses recorded on this node for a given MAP scenario,
this for all logged MAP executions of this scenario, and for all time t ∈ N∗. With such a
model noted Mean, an agent a ∈ A carries out the estimation of the true idlenesses at
t ∈ N∗ as follows:

î−a(t) = Mean(ia(t), θ) = B, θ = {B ∈MN×1(R)} (6.3.1)

where î−a(t) and ia(t) are vectors. Note that for this model the input ia
t is not used.

Considering the Mean Squared Error (MSE) criterion, which is often used for learning
as indicated in Appendix A.3, the mean is the best estimate of a constant model. In
fact, when such a model is used as estimator of true idleness, the corresponding strategy
is called Heuristic Pathfinder Mean Estimator (HPME) when estimated idleness is used
by the strategy deterministically, and Random Heuristic Pathfinder Mean Estimator
(RHPME) when it is used stochastically. Mean accounts for a reference to be compared
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with for strategies based on more complex estimators. Such a simple standard strategy
enables assessing how effective are the latter. A learning strategy being worse than HPME
or RHPME would have a learning ability, in the framework of MAP, poorer than the mean.

Then, when the estimator corresponds to a linear model noted Lin or Linear, the
strategy is called Heuristic Pathfinder Linear Estimator (HPLE) when estimated idleness
is used by the strategy deterministically, and Random Heuristic Pathfinder Linear
Estimator (RHPLE) when it is used stochastically. For such a model, any agent a ∈ A

carries out the estimation of the true idlenesses at t ∈ N∗ as follows:

î−a(t) = Lin(ia(t), θ) = W · ia(t)T + bT , θ = {W ∈MN×N(R), b ∈ RN} (6.3.2)

with W and b being the model’s matrix of weights and vector of biases, respectively.
Training such a model corresponds to determine the W minimising a certain distance —
distance which is the criterion to minimise — between î−a(t) and i(t).

A MLP composed with H ∈ N∗ hidden ReLU layers, as described in Appendix A,
is termed as ReLU model and abbreviated MLPReLU , while its corresponding strategy is
called Heuristic Pathfinder ReLU Estimator (HPRE) when estimated idleness is used
by the strategy deterministically, and Random Heuristic Pathfinder ReLU Estimator
(RHPRE) when it is used stochastically. From such a model noted MLP H

ReLU , any agent
a ∈ A carries out the estimation of the true idlenesses at t ∈ N∗ as follows:
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î−a(t) = MLP H
ReLU(ia(t), θ)

= Wout ·ReLU(
WH ·ReLU(

WH−1 ·ReLU(
. . .

W 3 ·ReLU(
W2 ·ReLU( W1 · ia(t)T + b1 ) + b2

) + b3

. . .

) + bH−1

) + bH

) + bout,

θ = {∀h ∈ [|1, H|], ∃kh ∈ N∗ with k1 = N : ∀h ∈ [|1, H − 1|],
Wh ∈Mkh+1×kh

(R), Wout ∈MN×kH
(R), bh ∈ Rkh+1 , bout ∈ RN}

(6.3.3)
with ReLU being the element-wise ReLU activation, and ∀h ∈ [|0, H|], Wh the weight
matrix of layer h.

Finally, upon the training stage’s completion, each idleness-estimator agent is endowed
with the same parametrised model, i.e. θ will be the same ∀a ∈ A. When the decision
process is stochastic, the estimate of true idleness î−a(t) is regarded as the mean of the
probability distribution used to sample a new estimate of true idleness for each node v ∈ V .

A formal definition of the idleness-estimator strategy, as a generic strategy coming
with many variants, having been laid down, as well as statistical models which have been
introduced to be used as estimators, the training procedure of such models is detailed in
the next section.

6.4 Training procedure

The training of the models is performed from the logged idleness sequences of any high-
performance strategy f . Generally, high-performance strategies rely on communication
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and centralised decision-making process. Also, from the foregoing, the true idlenesses
used to train the model are generated by such a model strategy.

As mentioned in Section 3.2, for all configuration {G, Na}, the model is trained over
all of the couples of individual and true idleness sequences generated by a model strategy.
Each execution gives rise to Na couples composed of both an individual and true idleness
sequences. By doing so, the model learns to output the most likely true idleness vector
corresponding to the individual one provided as input to the model. Such a process can
be thought of as idleness reconstruction and more generally information reconstruction.

These idleness sequences are then processed so as, for each agent, only the vectors of
idleness corresponding to time steps when the agent stands upon a node are retained. In
fact, idleness reconstruction aims at generating, throughout the mission, a sequence of
vectors of on-vertex true idleness from the sequences of vectors of on-vertex individual
idleness. This is performed by minimising a given objective function with respect to a
model m(), given two sets of S ∈ N∗ training sequences of length Ts: the set of on-vertex
individual idleness sequences, noted I ind, which stands for the input of the model in
training, and that of on-vertex true idleness sequences, noted I tr, standing for the output
of the model. All sequences have the same length Ts, and each element of a sequence is
of dimension N . I ind and I tr are then 3-dimensional tensors.

The MSE is then computed as follows:

MSE(I ind, I tr) = 1
S × Ts ×N

S∑
s=1

Ts∑
n=1
|| I tr

s n −m(I tr
s n, θ) ||22 (6.4.1)

where θ stands for the model’s parameters whose the dimension hinges upon the used
model.

6.5 Experiments and results

In this section, the conduct of experiments is identical to that of the previous chapters
apart from the used statistical models; the models trained and evaluated here are those
described in Section 6.1. Therefore, this conduct is not recalled here. The same applies
for the selection of the best HPCC variant: the evaluation criteria considered here are
the same as in Chapter 4, that is the average idleness and the MI. Therefore, HCC 0.2
will then be the model strategy.
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As previously the training settings and results are first detailed, then experiments
and results are finally described and evaluated. A particular emphasis is placed on the
training results which confirm that the conditions of Theorem 6.2.1 concerning the
relation mapping individual idleness to true idleness hold.

6.5.1 Training settings

As stated in Subsection 4.3.1, models were trained over data generated by 100 execu-
tions of the 12 selected MAP scenarios.

For each scenario 8 statistical models were trained: a mean model, a linear model,
three MLPs with sigmoid units and three different ANNs with rectifier linear units
(ReLU) as follows:

• a network with only 1 ReLU layer simply termed ReLU,

• a network with 1 hidden and an output ReLU layer, termed ReLU Output (ReLUO),

• an MLP with 1 ReLU layer, termed ReLU MLP or MLPReLU .

Three architectures of sigmoid MLPs are tested and evaluated:

• 1 layer with 50 units,

• 10 layers with 50 units,

• 2 layers with 1500 units.

To train all of these models, the database was divided into a training and validation
database, leading to an apportionment of 80% for the training one and 20% for the
validation one. The regression models, namely the linear and ANN models were trained
using the full backward-propagation algorithm i.e. the whole training base was used
to compute the gradient, while the mean model was trained by computing the mean
of idlenesses over all of the idleness sequences for each node. The regression models
were trained over between 10000 and 100000 epochs with respect to the model, with one
model for each scenario, using the framework MAPTrainer introduced in Chapter 3
and developped for this purpose. Regarding the initialisation, the identity matrix was
used as the initial weight matrix for the linear model, whereas for the ANN models the
weights and biases were initialised uniformly between −0.1 and 0.1. In each epoch, only
one batch containing all the data of the training database is provided to the models.
Also, it is worth noting that, from the statistical model’s perspective, all of the sequences
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used to train are independent, that is to say for a given scenario they are provided to the
model regardless of the other sequences generated by the same execution: each sequence
is independent from all the other sequences.

Finally, the MSE has been chosen as the objective function to optimise, and the
standard gradient descent (GD) algorithm has been used to train the models, except
for Mean. More precisely, GD is used to optimise the models according to the MSE,
with different learning rates listed in Table 6.1 which shows an overview of the training
settings detailed here.

Model Sig. MLP ReLU MLP Lin. ReLUO ReLU
Nb. of seqs. 100 ∗Na 100 ∗Na 100 ∗Na 100 ∗Na 100 ∗Na

Train-val. 80%− 20% 80%− 20% 80%− 20% 80%− 20% 80%− 20%
Database HCC 0.2 HCC 0.2 HCC 0.2 HCC 0.2 HCC 0.2
Batch size Full Full Full Full Full
Learning rate 0.1 10−7 10−7 0.1 10−7

Algorithm GD GD GD GD GD
Nb. epochs 37500 37500 100000 10000 100000
Objective MSE MSE MSE MSE MSE

Table 6.1 Overview of the training settings

6.5.2 Training results

For all the networks, except for the last tested sigmoid MLP, the number of units in each
layer is equal to the number of nodes, that is 50. For each sigmoid MLP and for all the
scenarios, the corresponding MSE values were by far the worst compared with the other
statistical models. Besides, regardless of the size of the evaluated architecture, all of the
trained sigmoid MLPs present the same cost. This leads to conclude that regardless of
the size of the considered sigmoid MLP, the MSE is irreducible.

Fig. 6.3 shows, for each model, the MSE over all the database, that is to say
over all of the training data and validation data, for each of the 12 scenarios here
experimented, except the sigmoid MLPs which have not been depicted considering their
poor performance previously described.
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Fig. 6.3 Mean squared error (MSE) over all of the database for each scenario and model
at the end of the training.

This figure shows that the best models are generally ReLU MLP and Linear. Globally,
on the MSE, ReLU MLP is the best model, except for the scenarios {Islands, 15}, and
{Islands, 25}, for which Linear is the best, and {Grid, 15} for which Mean is the best.
Regarding the model ReLU, i.e. one single ReLU layer, except for the map Islands where
it is globally better than Mean, upon the other topologies it is worse than the latter.
Finally, ReLUO, the model with an hidden layer and an output layer ReLU, is worse
than Mean. Thus, amongst the three ReLU models, only ReLU MLP has been assessed
in simulation.

Moreover, Fig. 6.3 also highlights that for {Islands, 25}, MSE is quite high for all
of the models. This is not full consistent with the approximation capability of neural
networks: a neural network with at least one non-linear layer and one linear layer is able
to approximate any function if the number of cells is large enough. These results seem
to confirm that conditions of Theorem 6.2.1 stated in Subsection 6.2.2 are true and
that the data do not represent a function.

Finally, only the 3 models Mean, Linear and ReLU MLP, have been experimented in
simulation. These results will be analysed in the next section.
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6.5.3 Simulation results

To evaluate their performance, HPME, HPLE and HPRE as well as their stochastic
counterparts, namely RHPME, RHPLE and RHPRE, were trained on the HCC 0.2
database, then evaluated in simulation and compared with CR, the decentralised repre-
sentative, and HCC 0.2, the centralised one from which they were therefore trained. The
parameters rH and rP involving in the Heuristic and Pathfinder procedures have been
set to 0.2, to be compared with HCC 0.2. Here the MI and QMI will be first considered
studying the performance of the IE strategies.

IE strategies MI QMI
HPME 0.2 341 2990
HPLE 0.2 287 1065
HPRE 0.2 310 1109
RHPME 0.2 264 616
RHPLE 0.2 249 455
RHPRE 0.2 255 469
HCC 0.2 232 341
CR 362 584

Table 6.2 Normalised MI, QMI of the assessed IE strategies averaged over the A, Islands,
and Grid topologies, and over 5, 10, 15 and 25 agents.

Table 6.2 that shows the performance of the IE strategies averaged over the 3 topolo-
gies and the 4 numbers of agents studied here, summarises the global trends on these
evaluation criteria. The results highlight that the stochastic IE strategies are undoubtedly
better than the deterministic ones, particularly on the QMI. Also, interestingly the worst
RIE strategy is, at the very least, better than the best IE strategy on both criteria;
this points out that the introduction of randomness improves undoubtedly the decision
process of the IE generic strategy type. However, when compared with CR, the deter-
ministic IEs are better than CR according to the MI, but by far worse than it on the QMI.

Fig. 6.5, Fig. 6.4, and Fig. 6.6 show the best IE and RIE strategies, on the
topologies Islands, A and Grid, respectively, according to the normalised MI.

Not surprisingly, HCC 0.2 always outperforms all of the other strategies, CR and
the idleness estimators, on all the topologies, this for all of the numbers of agents.
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Fig. 6.4 Normalised MI, averaged over 100 runs, of the best IE and IRIE strategies on
the Islands topology w.r.t. the number of agents, with me standing for Mean, le for Lin
and re for MLPReLU .

Fig. 6.5 Normalised MI, averaged over 100 runs, of the best IE and IRIE strategies on
the A topology w.r.t. the number of agents, with me standing for Mean, le for Lin and
re for MLPReLU .
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Fig. 6.6 Normalised MI, averaged over 100 runs, of the best IE and IRIE strategies on
the Grid topology w.r.t. the number of agents, with me standing for Mean, le for Lin
and re for MLPReLU .

According to the MI, all the IE strategies, deterministic or stochastic, outperform CR,
the decentralised representative, on the three topologies.

On Islands and Grid, the best RIE strategy is globally better than the best IE and
CR strategies. On A, the best IE strategy is worse than the best RIE strategy for 5
agents, it has approximately the same performance as the latter for 10 and 15 agents,
and outperform the best RIE strategy for 25 agents. On Grid, the IE strategies show
poor performance, particularly the best IE is barely better than CR.

Globally HPLE is the best strategy among the deterministic IE strategies, leading to
consider Lin as the best estimator, whereas this trend is more balanced for the RIEs:
the best statistical model depends on the considered scenario.

Finally, on this criterion, on the three topologies, and for the combined IE and RIE
strategies, Lin is the best model in 42% of the cases, Mean in 33% of the cases, and
MLPReLU in 25% of the cases.

Fig. 6.8, Fig. 6.7 and Fig. 6.9 present the best IE and RIE strategies, on the
topologies Islands, A and Grid, respectively, according to the normalised QMI.
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Fig. 6.7 Normalised QMI, averaged over 100 runs, of the best IE and IRIE strategies on
the Islands topology w.r.t. the number of agents, with me standing for Mean, le for Lin
and re for MLPReLU .

Fig. 6.8 Normalised QMI, averaged over 100 runs, of the best IE and IRIE strategies on
the A topology w.r.t. the number of agents, with me standing for Mean, le for Lin and
re for MLPReLU .
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Fig. 6.9 Normalised QMI, averaged over 100 runs, of the best IE and IRIE strategies on
the Grid topology w.r.t. the number of agents, with me standing for Mean, le for Lin
and re for MLPReLU .

Globally, according to this criterion the deterministic IE strategies have poor per-
formance, except for {A, 5} where HPRE is slightly better than RHPME, the best
RIE strategy for this scenario. They are often worse than or equal to CR in terms
of performance, especially on the Island topology on which they are overwhelmingly
outperformed by CR.

With regard to the RIEs, they outperform all the time and to a large extent CR
and the IE strategies on this criterion, and they constitute a realistic compromise as
decentralised strategies — namely strategies that do not communicate — in terms of
performance between CR and HCC 0.2.

Finally, on this criterion and on the three topologies, for the RIE strategies Lin is the
best model in 66% of the cases and Mean in 33% of the cases. Therefore, MLPReLU is
never the best model.

Thereupon, the results for the deterministic IE strategies show reasonable performance
according to the criterion based upon the arithmetic mean, i.e. the MI, but they are
offset by results that capture the equity of the strategy, hence the results on the QMI
that justify the extension of the deterministic decision-making to the stochastic one; such
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an extension gave rise to the RIE generic strategy type. In fact, these results showed
the tendency of the deterministic IE agents to visit perpetually a particular set of nodes,
set of nodes inferred by the statistical model, at the expense of the other ones, being
thereby left unvisited. Such a tendency has been counteracted by the use of randomness
in the decision process, and was justified by the performance of the RIE strategies. RIE
is then an improvement of the IE generic strategy type.

6.6 Conclusion

A new MAP strategy based on machine learning and ANNs has been proposed in this
chapter. This new type of strategy, qualified as IE, is based upon idleness estimation:
agents are endowed with statistical models used as idleness estimator, which is a specific
case of state estimator set out in Section 3.2; such statistical models are trained
for the purpose of learning the relation mapping individual to true idlenesses. Two
decision-making approaches were then laid down with regard to the manner idleness
estimation is treated: a deterministic and a stochastic approaches. In the deterministic
approach, idleness estimation is used as such, that is to say the idleness estimate is
directly considered as the value of the node idleness to take into account to make the
decision, whereas in the stochastic approach, for each estimated idleness this estimate is
regarded as the average of a high-entropy probability distribution, and the final estimated
idleness for a given node is drawn randomly according to this distribution. Such a
stochastic approach gives rise to the RIE strategy type, which is also a generic type of
MAP strategy.

The introduction of random drawing, and more generally of randomness, in the
decision process enables, in fact, making the strategy more variable and more robust, in
order to address the theoretical result established by Theorem 6.2.1, which states the
relation to capture is not a function but rather a multivalued function.

The results presented in this chapter confirmed the theoretical result, which leads the
statistical models to high errors. Indeed, the assessment of the deterministic IE strategies
have highlighted that, globally, they have satisfactory performance on the MI, but poor
performance on the QMI, which results from a poor distribution of visits over the nodes
to monitor. Conversely, the RIE strategies have shown good performance, especially on
the QMI, and have turned out to be high-performance decentralised strategies. Random
variations, and more specifically random drawing of idleness, have thus offset the flaws
highlighted by the IE strategies: the system has been made more robust by an inflow of
randomness.
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With regard to the problems raised by estimation of true idleness, different ANN
architectures could be considered. For example, the low performance obtained by sigmoid
functions might come from the numerical difficulty to approximate an identity relation
for some high idleness values. An alternative way to use sigmoid functions could be
to use element-wise multiplicative cells between the output of a sigmoid layer and the
individual idlenesses. In that case, the sigmoid part of the network would learn the ratio
between individual and true idlenesses instead of true idlenesses directly.

In the next chapter, interaction is introduced to turn the IE strategies, which are by
definition decentralised strategies, into distributed strategies.





Chapter 7

Interacting Idleness Estimator: a
strategy based on interaction

The introduction of randomness in the previous chapters has been a manner of taking into
account an irreductible lack of information for an agent isolated from its society, isolation
that has led to a lack of variability with regard to the distribution of the patrolling agents
over the nodes. A stochastic model has then been established to cope with the lack of
variability in a system composed of IE agents: the variability of visits over the nodes to
monitor was increased by augmenting the complexity of the IE decision process. In such
a stochastic approach, the estimation of true idleness is the outcome of a sample relying
upon a high-entropy probability distribution. Another way to increase the complexity
of a system is also to augment the interactions between its components. By doing so,
in this chapter interaction is introduced as part of the IE strategy to take advantage
of the ability to share information between agents throughout the patrolling mission,
turning thereby the IE strategy into a distributed strategy, according to the definition
of a distributed strategy stated in Subsection 3.1.2. Particularly, the RIEs being the
best IE strategies, i.e. better than the deterministic IE strategies, the interaction scheme
exposed in this chapter is integrated to and experimented with RIE agents.

Therefore, in Section 7.1, an interaction scheme is introduced to allow for agents
to share information while patrolling, then in Section 7.2 the resultant strategies are
trained on both databases presented in Section 3.5, experimented in simulation, and
finally the results are discussed.
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7.1 Interacting Idleness Estimator

Interaction is the cornerstone of complex systems, and more specifically of MAS. Therefore,
in MAP, which is, by definition, a MAS, an interaction scheme has been formalised and
integrated in the IE strategies. This scheme can be set up both for the random IEs
(RIE) and the deterministic ones (IEs). When it is activated for an IE strategy, the
resultant strategy is regarded as an interacting idleness estimator (IIE), whereas with
an RIE strategy it is considered as an interacting random idleness estimator (IRIE).
Moreover, in our case, communication is the support of interaction. It is assumed
that the communication mechanism is reliable, i.e. messages sent are received without
modification and no messages are lost. It is now formally described.

7.1.1 Peer-to-peer interaction

Let a1 and a2 be two IE agents in A, able to communicate within a communication range
noted r. Let, ∀t ∈ N∗, i+a1(t) = (i+a1

1 (t), . . . , i+a1
N (t)) and i+a2(t) = (i+a2

1 (t), . . . , i+a2
N (t)),

be their shared idlenesses, respectively. Here, they maintain two estimations of idleness:

• their individual idleness vector ia(t), ∀a ∈ A,

• a shared idleness vector i+a(t), resulting from the interaction with the agents they
communicated with.

At the begining of the run, the vector of shared idleness is initialised so that it is equal
to the vector of individual idleness: i+a(t) = ia(t). At each time step it is incremented in
the same way as the vector of individual idleness, namely by 1. Then, when a1 and a2 are
at a distance lower than r, i.e. d(a1, a2) < r, ∀d a distance on the graph G, they come
into an interaction context. In such an interaction context, they are able to communicate
and exchange information, leading to sending to each other their respective vector of
shared idlenesses. Finally, each one of a1 and a2 agents applies the following rule to
update their respective vector of shared idlenesses i+a1(t) and i+a2(t):

∀a ∈ {a1, a2}, ∀t ∈ N∗, ∀v ∈ V,

i+a
v (t)← min(i+a1

v (t), i+a2
v (t))

(7.1.1)

When two agents apply the previous rule exchanging only they their respective vector of
individual idleness, such agents are said to be in a peer-to-peer interaction.
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Estimation Interaction Sampling
Heuristic and

Pathfinder
methods

ia(t) îa(t) îa,+(t) f (̂ia,+(t)) v(n + 1)

Fig. 7.1 Interacting Random Heuristic Pathfinder Idleness Estimator (IRHPIE) strategy,
with v(n) being the nth visited node.

7.1.2 Transitive interaction

Now, let RI be the interaction relation, where RI is a binary relation which denotes
whether two agents can interact, i.e. whether ∀a1, a2 ∈ A, d(a1, a2) < r ∈ R+, a given
parameter. Now, consider pairs of agents which are not in communication range, but
which can communicate and interact in a peer-to-peer manner owing to the fact that
other agents act as communication relays; in other terms there exists a path between
them in the underlying graph of the binary relation RI . Electronic communication being
instantaenous and real-time, in a real patrolling mission with vehicles embedding a publish-
subscribe connectivity framework on-board, such as Data Distribution Service (DDS),
this type of communication is practicable. These agents are then able to communicate
as if they were in the same communication range. Formally, this has been implemented
in simulation using the transitive closure of RI . Also, RI is symmetric, that is to say
∀a1, a2 ∈ A, a1RIa2 =⇒ a2RIa1, or in other words, if a1 can interact with a2 then a2

can interact with a1.
This enhanced interaction, called transitive interaction, and noted Rtrans

I , is defined
as follows:

∀a, b ∈ A, a Rtrans
I b

⇐⇒ ∀a, b ∈ A, ∃n ∈ [|1, Na − 1|] : ∃(a1, . . . , an) ∈ An, an = b, and
aRIa1RI . . . RIan = b

(7.1.2)

Thus, during a patrolling mission, at each time step t ∈ N∗, for all agent a, b ∈ A such as
a Rtrans

I b, a and b are able to interact. Then, each agent a ∈ A applie the following rule
to update its vector of shared idlenesses i+a(t):

∀a ∈ A, ∀t ∈ N∗, ∀v ∈ V, ∃n ∈ [|1, Na − 1|] : aRtrans
I a1, . . . , aRtrans

I an, and
i+a
v (t)← min(ia

v(t), i+a1
v (t), i+a2

v (t), . . . , i+an
v (t))

(7.1.3)
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Finally, when an IE strategy sets up this interaction scheme, the resultant strategy type
is named interacting idleness estimator (IIE) when the decision process is deterministic,
and interacting random idleness estimator (IRIE) when it is stochastic; the decision
procedure of the latter is depicted in Figure 7.1. In these new interacting strategies,
the enhanced estimation defined in Eq. 6.1.3 corrects the initial estimation using the
shared idleness instead of the individual one as follows:

∀t ∈ N∗, ∀v ∈ V, ∀a ∈ A, îa
v(t) = min( max(̂i−a

v (t), 0), i+a
v (t) ) (7.1.4)

When the statistical model used by an IIE agent to estimate idlenesses is:

• Mean, the resultant strategy is called Interacting Heuristic Pathfinder Mean
Estimator (IHPME)

• Lin, the resultant strategy is called Interacting Heuristic Pathfinder Linear Esti-
mator (IHPLE)

• MLPReLU , the resultant strategy is called Interacting Heuristic Pathfinder ReLU
Estimator (IHPRE)

Likewise, when the statistical model used by an IRIE agent to estimate idlenesses is:

• Mean, the resultant strategy is called Interacting Heuristic Pathfinder Mean
Estimator (IRHPME)

• Lin, the resultant strategy is called Interacting Heuristic Pathfinder Linear Esti-
mator (IRHPLE)

• MLPReLU , the resultant strategy is called Interacting Heuristic Pathfinder ReLU
Estimator (IRHPRE)

As stated previously, it is worth noting that the individual idleness vector ia(t), and
not the shared one, is used in the IE algorithms by the statistical model to estimate
the true idleness vector, given that statistical models are trained to reconstruct the true
idleness vector from the individual one. As shown in Eq. 7.1.4 the shared idleness i+a

v (t)
is then used to correct î−a

v (t), the estimate of true idleness.
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7.2 Experiments and results

In this section, as in the previous chapter, the training settings are first detailed, then
simulation experiments are analysed and evaluated.

The conduct of experiments is identical to that outlined in the previous chapter,
except that the models were also trained on the HPCC 0.5 database. This conduct is
therefore not reminded. The two model strategies, HCC 0.2 and HPCC 0.5, are then
here used. Moreover, machine learning models trained from HCC 0.2 being the same
as those used in the previous chapter, only HPCC 0.5 training settings and results are
exposed in this section. Note that each time an arbitrage must be done with respect to a
setting, e.g. an ANN architecture, a parameter, or a method, experiments are performed
in the regular configuration {A, 15} to select the appropriate setting.

Regarding the training settings, the same statistical models as in the previous chapter,
namely MLPReLU , Lin and Mean, are trained over 10000 sequences generated by HPCC
0.5 for each of the 24 scenarios. They were trained using the Adagrad algorithm with a
learning rate of 0.1, over between 400 and 20000 epochs with respect to the model and
scenario experimented.

7.2.1 Training results on HPCC 0.5 data

Fig. 7.2 and Fig. 7.3 show, for each model, the MSE cost in validation of the trained
models on Islands, A and Grid, and on B, Circle and Corridor, respectively, for each
scenario experimented here.

Fig. 7.2 shows that on Islands, A and Grid, the three statistical models have
approximately the same validation cost, except for {Islands, 5} where Mean is the best
model by almost 800, {Islands, 25} where it is better by approximately 1000, and {A, 15}
and {Grid, 5} where its MSE is approximately twice as less than the two other models.
In average Mean is the best model on Islands (8876), whereas Lin and MLPReLU are
the best ones on A (6569) and Grid (5708), respectively. In average over all of the three
topologies MLPReLU and Lin are the best models with the same performance of 7120
against 7901 for Mean. Finally, MLPReLU and Lin are the best statistical models, even
though for some scenarios Mean is by far the best one.

Training performance on B, Circle and Corridor depicted in Fig. 7.3 show that
Lin is the best model on B, with an average value of 6853, MLPReLU is the best model
on Circle with an average of 1415, whereas Mean is the best one on Corridor with an
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Fig. 7.2 MSE over all of the database for each model and scenario on Islands (I), A and
Grid(G) at the end of the training.

Fig. 7.3 MSE over the validation database for each model and scenario on B, Circle (Ci)
and Corridor (Co) at the end of the training.
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average MSE of 1905. Globally, in average over these three topologies MLPReLU is still
the best model.

Finally, in average over the six topologies MLPReLU is the best model with an average
MSE of 5626, although the difference with the other two models is small: 6254 for Lin

and 6759 for Mean. The predominance of MLPReLU is coherent given the fact that
being an ANN, its ability to learn complexe data structures is higher. However, it has to
be pointed out that according to the training performance the difference with Mean is
quite low,

√
(6759)−

√
(5626) = 7 periods, although MLPReLU is by far more complex

that Mean. The contribution of an ANN such as MLPReLU is therefore small.

7.2.2 Simulation results

The results of experiments on the RIE and IRIE strategies are now discussed.

As in Chapter 5, the six usual topologies and the four usual numbers of agents
for each topology have been experimented. The RIE 0.2 and IRIE 0.2 strategies, have
only been experimented on the three topologies Islands, A, and Grid, whereas the RIE
0.5 and IRIE 0.5 strategies, that is RIE and IRIE strategies whose the rH and rP

parameters involved in the Heuristic and Pathfinder procedures are set to 0.5, have
been experimented on the six topologies. 24 configurations and 72 scenarios with a RIE
strategy have therefore been experimented, for which one scenario gave rise to 100 runs,
and hence a total of 7200 missions run with a RIE strategy. For the IRIE strategies,
the communication range r is set to 14. This choice has been made considering the
graphs to patrol being situated in a frame of side 100, 14 corresponds to the tenth
of the diagonal’s lenght of this frame, that is approximately 141; a communication
range corresponding to the tenth of the diagonal’s lenght of the area to patrol seems
reasonable in a critical patrolling mission. On the first three topologies, Islands, A
and Grid, the RIE and IRIE, 0.2 and 0.5, strategies are compared with CR, the de-
centralised representative, HPCC 0.5 and RAMPAGER 2-50. Then, on B, Circle and
Corridor, only RIE and IRIE 0.5 are compared with CR, HPCC 0.5 and RAMPAGER
2-50. The IE strategies, namely the deterministic ones, are not retained here due to
their low performance; the RIE strategies always outperform them to a large extent,
especially on the QMI and more generally in terms of robustness and variability. Finally,
the focus will be placed on the WI and Iav; the WI to evaluate the variability of the
strategy, and in doing so the quality of the distribution of agents over the nodes, and
the Iav to evaluate the MI and QMI in an aggregated way, as shown in Subsection 2.1.3.
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Figs. 7.4 to 7.15 show the WI and Iav on Islands, A, Grid, B, Circle and Corridor,
respectively, of the RAMPAGER, the best RIE 0.2, IRIE 0.2, RIE 0.5 and IRIE 0.5,
averaged over 100 runs for each scenario.

Globally, except for some scenarios on Circle and Corridor, HPCC 0.5 remains the best
distributed strategy on both criteria and has the same performance as in Subsection
5.2.5. The best IRIE 0.2 and 0.5 are often the best strategies for all of the studied
scenarios: the best IRIE 0.2 is almost always the best one on Islands, A and Grid, and the
best IRIE 0.5 outperforms often the other strategies on B, Circle and Corridor. Most of
the time RAMPAGER is outperformed by the best IRIE or RIE strategy. All of the best
IRIE strategies are generally better than CR, the decentralised representative, except
for the particular topologies Circle and Corridor, where CR is particularly suited to this
topologies and is better than HPCC 0.5 for many scenarios on these graphs. Lastly, for
all of the idleness estimator strategies Mean is almost always the best model for any
number of agents different from 25.

Fig. 7.4 Normalised WI, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Islands, with me standing for
Mean, le for Lin and re for MLPReLU .

On Islands, Fig. 7.4 and Fig. 7.5 show that on the WI, IRHPME 0.5 is the best
RIE strategy for 5 and 10 agents, whereas IRHPME 0.2 is the best one for 15, and
IRHPLE 0.2 the best for 25 agents. For these scenarios, they outperform all CR on
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Fig. 7.5 Normalised Iav, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Islands, with me standing for
Mean, le for Lin and re for MLPReLU .

the WI. For the Iav, almost all of the machine learning strategies are better than CR.
RAMPAGER is the best machine learning strategy for 10 agents, and IRHPME 0.2 and
IRHPLE 0.2 are the best for both 10, 15 agents, and 25 agents, respectively. Except for
25 agents, on the WI and the Iav RAMPAGER outperforms the RIE strategies, i.e. the
non-interacting RIE strategies.

Fig. 7.6 and Fig. 7.7 show the performance of the studied strategies on A. On
both the WI and the Iav, IRHPME 0.2 is the best IE strategy, and is better than CR for
all of the number of agents, except for 25 agents where IRHPLE 0.2 is the best one. It is
worth noting that on the Iav, IRHPME 0.2 is even better than HPCC 0.5 for 5 agents,
and very close to it for 10 agents. With regard to RAMPAGER and the best IRIE 0.5,
they are globally outperformed by the best RIE 0.2 on the Iav, as well as on the WI for
RAMPAGER.

On Grid, the results depicted on Fig. 7.8 and Fig. 7.9 show that, as previously,
IRHPME 0.2 is the best IE strategy on both the WI and Iav, except for 25 agents where
IRHPLE 0.2 remains the best one. RAMPAGER and the best IRIE 0.5 are generally
worse than the best RIE 0.2, except for the best IRIE 0.5 which outperforms the best
RIE 0.2 on the WI for 5 and 10 agents.
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Fig. 7.6 Normalised WI, averaged over 100 runs, of the best variant of RAMPAGER, and
the best RIE and IRIE w.r.t. the number of agents on A, with me standing for Mean,
le for Lin and re for MLPReLU .

Fig. 7.7 Normalised Iav, averaged over 100 runs, of the best variant of RAMPAGER, and
the best RIE and IRIE w.r.t. the number of agents on A, with me standing for Mean,
le for Lin and re for MLPReLU .
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Fig. 7.8 Normalised WI, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Grid, with me standing for
Mean, le for Lin and re for MLPReLU .

Fig. 7.9 Normalised Iav, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Grid, with me standing for
Mean, le for Lin and re for MLPReLU .
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Fig. 7.10 Normalised WI, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on B, with me standing for
Mean, le for Lin and re for MLPReLU .

Fig. 7.11 Normalised Iav, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on B, with me standing for
Mean, le for Lin and re for MLPReLU .
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On B, Fig. 7.10 and Fig. 7.11 show that IRHPME 0.5 is the best strategy after
HPCC 0.5 on the WI, except for 25 agents where IRHPLE is the best strategy. On
this criterion, the best RIE 0.5 is generally better than RAMPAGER. Then, on the
Iav RHPME 0.5 is the best IE strategy for 5 and 10 agents, where it is even better
than HPCC 0.5, whereas RAMPAGER is the best one for 15 and 25 agents. On this
criterion, RAMPAGER outperforms globally the best RIE 0.5. In addition, CR is always
outperformed by the RIE strategies and RAMPAGER on both criteria.

Fig. 7.12 Normalised WI, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Circle, with me standing for
Mean, le for Lin and re for MLPReLU .

On Circle, Fig. 7.12 and Fig. 7.13 show that RHPME 0.5 and IRHPLE 0.5 are
globally the best machine learning strategy. RHPME 0.5 is the best one, and is even
better than HPCC 0.5, for 5 and 10 agents for both criteria, and IRHPLE 0.5 is the best
one for 15 and 25 agents. RAMPAGER is generally outperformed by the best IRIE 0.5
and RIE 0.5. Also, as exposed in Subsection 5.2.5, CR is globally the best strategy.

Finally, on Corridor, Fig. 7.14 and Fig. 7.15 show that IRHPME 0.5 is the best
strategy on the WI, whereas it is IRHPLE 0.5 on the Iav, apart from 5 agents where
RHPME 0.5 outperforms all of the other strategies. On the Iav, RAMPAGER, the best
RIE 0.5 and IRIE 0.5 outperform HPCC 0.5, although it corresponds to their model
strategy. On the WI, RAMPAGER is strongly outperformed by RHPME 0.5 for 5 and
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Fig. 7.13 Normalised Iav, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Circle, with me standing for
Mean, le for Lin and re for MLPReLU .

Fig. 7.14 Normalised WI, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Corridor, with me standing
for Mean, le for Lin and re for MLPReLU .
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Fig. 7.15 Normalised Iav, averaged over 100 runs, of the best variant of RAMPAGER,
and the best RIE and IRIE w.r.t. the number of agents on Corridor, with me standing
for Mean, le for Lin and re for MLPReLU .

10 agents, but although it is close to them, it outperforms RHPME 0.5 and RHPLE 0.5
for 15 and 25 agents respectively. On the Iav, RAMPAGER is still outperformed by
RHPME 0.5 for 5 and 10 agents, but it is better than RHPRE 0.5 and RHPLE 0.5 for
15 and 25 agent respectively, and by doing so, the latter being the best non-interacting
RIE 0.5 strategies, it also outperfoms RHPME 0.5.

As in Subsection 5.2.5, learning from HPCC 0.5 for scenarios on Circle and Corridor
with 5 and 10 agents is worthless.

Globally, a IRIE strategy is almost always the best strategy. Also, over all of the RIE
strategies, whether interacting or not, Mean is the best statistical model when compared
with the other RIE strategies on the same scenario, i.e. for each scenario involving RIE
agents Mean has been the best model, such that it is the best:

• on the WI, in 60% of the cases, that is for 43 out of 72 scenarios,

• on the Iav, in 43% of the cases, namely for 31 out of 72 scenarios.

Likewise, either RHPME or IRHPME, which result from the Mean model, have
turned out to be the best strategies over all of the configurations when compared with
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the other strategies, i.e. for each MAP configuration the RHPME or IRHPME strategy
outperform the other ones, such as they constitute the best strategy:

• on the WI, in 83% of the cases, i.e. for 20 out of 24 configurations,

• on the Iav, in 54% of the cases, that is to say for 13 out of 24 configurations.

Thereafter, RAMPAGER not being interacting, its performance are only compared
with RHPME 0.2 and 0.5. Additional results, as well as those here depicted showed that:

• on the WI, either RHPME 0.2 or 0.5 outperform RAMPAGER in 50% of the cases,
i.e. for 12 out of 24 configurations,

• on the Iav, either RHPME 0.2 or 0.5 outperform RAMPAGER in 58% of the cases,
that is for 10 configurations out of 24.

Lastly:

• on the WI, RAMPAGER is outperformed by a non-interacting RIE strategy in
67% of the cases, namely for 16 out of 24 configurations

• on the Iav, RAMPAGER is outperformed by a non-interacting RIE strategy in
58% of the cases, that is to say for 14 out of 24 configurations.

Globally, RAMPAGER present therefore lower performance than the RIE strategies.

Mean, despite its simplicity, is thereupon the best statistical model as idleness
estimator; it gives rise to the best machine learning strategy studied in this disseration.
It is specifically a high-performance strategy in term of robustness: on the WI its non-
interacting variants outperform RAMPAGER in 50% of the cases, and in taking into
account the interacting variants in 60% of the cases. However, interestingly, it is rarely
the best model for configurations with 25 agents.

Finally, comparing the simulation results established here with the training ones
highlights there are no relations between training and simulation performance. Most of
the time, the best statistical model in the training step is not the best model in simulation,
whether it be for the RIE or IRIE strategies. This result originates certainly from the
structure of the data used here and can be viewed as a consequence of Theorem 6.2.1.
Also, the cost function used to optimise the statistical models, namely the MSE, might
not be adapted to what is aimed at learning here. Considering estimated true idlenesses
are to be used in the Heuristic and Pathfinder algorithms, what is the most relevant here
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is not to approximate these values in average, but to reconstruct the order made up by
the values of true idleness on the nodes: if ∀t ∈ N∗, a node v ∈ V has a true idleness
greater than another node w ∈ V , the estimated true idleness of v ought to be greater
than w’s one, i.e îv(t) > îw(t), whathever their values.

7.3 Conclusion

In this chapter it has been attempted to improve the IE strategies by adding information
in their decision procedure by means of interaction to increase the complexity of the
system, and therefore its robustness and adaptability. In the context of the information
theory, interaction can be thought of as the counterpart of randomness introduced in
the last chapter. To that end, a new type of strategy was introduced and defined: IRIE,
which hinges on communication and interaction between agents — and which is in fact an
improvement of the RIE strategy —, has given rise to three new strategies: Interacting
Random Heuristic Pathfinder Mean Estimator (IRHPME), Interacting Random Heuristic
Pathfinder Linear Estimator (IRHPLE) and Interacting Random Heuristic Pathfinder
ReLU Estimator (IRHPRE).

In terms of results, the RIE strategies have globally shown good performance. The
WI and Iav being evaluation criteria of robustness — the Iav as a quadratic function
of QMI and the WI as a worst-case performance indicator —, on the WI the best RIE
strategy outperforms RAMPAGER in 67% of the cases, and on the Iav in 58% of the
cases. Regarding the IRIE strategies, they have turned out to be the best strategies,
both in this chapter and in all this disseration. For all of the scenarios studied herein,
the best IRIE strategy is practically always that which has the best performance.

Also, it is worth noting that a particular emphasis has to be placed on RHPME, the
random strategy corresponding to model Mean, which is, interestingly enough, better
than RAMPAGER in 50% of the cases on the WI. When considering IRHPME, it is the
best statistical model in 60% of the cases on the WI, and in 43% of the cases on the Iav.
Such a result highlights that the contribution of ANNs is quite limited, and considering
the complexe procedure necessary to train ANNs compared to a simple calculation of an
average, as well as the results set out above, it follows that Mean seems to be the more
appropriate statistical model.





Chapter 8

Conclusion

Recent years have seen an expansion of distributed artificial intelligence, and more
precisely of multiagent applications, as well as many successes with certain of machine
learning approaches. In this dissertation, these major fields of artificial intelligence have
been combined and applied to the case study of the MAP problem, which provides a
generic benchmark to study multiagent architectures. We proposed some methods based
on supervised learning and studied their relevance in the context of MAP. Another aim of
this work was to seize the opportunity of assessing machine learning algorithms in such a
context, specifically by using these algorithms to create new decentralised or distributed
multiagent strategies from a high-performance centralised strategy. Indeed, throughout
this dissertation various machine learning models were studied.

In Chapter 3, some key concepts and tools were described, particularly the model
of the temporal MAP problem and the characteristics of MAP data. A new methodology
was proposed and implemented to distribute a centralised strategy. This methodology
has turned out to be generic, and can be used beyond the frame of MAP to decentralise
or distribute any centralised decision process into independent agents, to establish an
equivalent decentralised strategy. To apply this methodology to our problematic, we
developed a software ecosystem which is a prominent contribution of this work:

• PyTrol, an easy to use simulator coded in Python to study MAP strategies, but
also to generate MAP data quickly,

• MAPTrainer, a framework based on PyTorch to train any machine learning model
in the context of MAP,

• MAPTor, an annex tool to:
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– prepare MAP configurations, scenarios and runs,

– process data generated by Pytrol in order to prepare them for the purpose of
being trained in MAPTrainer,

– make statistics on simulation traces generated by PyTrol,

– plot statistics for each experimented MAP scenario.

Regarding PyTrol, in a not too distant future a concrete class will be implemented
to allow agents and other communicating objects to communicate on TCP from remote
machines, making the simulator completely distributed.

In Chapter 4, the first type of machine learning approach studied and assessed in
the context of MAP was the learning of structure and parameters of a predictor used by
an agent to predict of the next node to visit taking into account only its past decisions.
Practically, we used LSTM networks that are well suited to learn temporal sequences,
and in doing so, to MAP insofar as it constitutes a temporal decision problem. The
new methodology laid down in Chapter 3, was implemented to give rise to a new MAP
strategy based on LSTM networks used as node predictors. This strategy, called Random
LSTM Path-Maker (RLPM), selects the next node to visit as being the outcome of a
random drawing according to the distribution probability over the nodes generated by
the LSTM network. The RLPM agents embed each an LSTM network used as node
predictor. An important issue that had to be answered was whether the LSTM networks
tightly integrate the structure of the topology.

In Chapter 5, we therefore made the hypothesis that LSTM networks could better
learn to navigate over the area to patrol if the structure of the graph was integrated into
the network. By doing so, an analytical procedure of an LSTM network initialisation
with respect to the topology to patrol has been laid down, allowing the LSTM network
to be wired so as it would not be able to predict a node not being a neighbour of
that provided as input. Applying this structure-guided initialisation of LSTM network
to RLPM gave rise to the RAMPAGER strategy. First experiments showed that the
LSTM architectures with 1 or 2 layers and a number of neurons per layer equal to the
number of nodes in the graph were globally the best among the LSTM architectures
tested in this chapter, although results has been found to be mitigated, especially in
term of robustness. However, it turned out that they were often better than CR, the
decentralised representative strategy. Other experiments showed that RAMPAGER has
turned out to be superior to the best RLPM variant. RAMPAGER also outperformed
CR, for almost all of the scenarios and evaluation criteria, except for the particular Circle
and Corridor topologies. The preliminary hypothesis has then been confirmed. This
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strategy is particularly well adapted to missions where communication are forbidden or
impossible.

In Chapter 6, we considered a second type of machine learning approach, that is
learning of structure and parameters of an estimator which estimates the global state of
the system from the partial knowledge of the agent and using the resulting estimate being
then used in classical algorithms to derive the next decision of the agent. Practically, for
MAP this approach lead to train estimators of true idleness. The aim was to train them
to estimate true idleness with respect to individual idleness, namely to learn the relation
mapping individual to true idlenesses. This new application gave rise to a new type of
MAP strategy, named IE, which is based on idleness estimation: agents are endowed
with the trained machine learning model that they use in mission as idleness estimator.
However, although 8 machine learning models were trained and evaluated, only 3 out of
the 8 were retained, according to their training performance.

First experiments highlighted that the IE strategies are not robust, and present
generally poor performance. Also, the trained models led to high errors owing to the
nature of the relation to capture: we demonstrated that this relation is likely not a
function with Theorem 6.2.1, which is a notable contribution of this chapter. This
theorem indicates that there exists at least a simple and canonical topology for which
the relation between the vectors of individual idleness and the vector of true idleness is
not a function, but a multivalued function. Further studies could be led to address this
problem by appending features to data vectors to turn the multivalued function into a
classical function, i.e. a single-valued function.

Thus, the RIE type of strategy was created from the IE type, by appending a step
of random drawing of idlenesses to the decision procedure, random drawing performed
according to a highly entropic probability distribution whose the expectation is provided
by the estimator. This evolution of the IE strategies gave rise to three new strategies:
RHPME, RHPLE and RHPRE, and has turned out to be, by far, better than the
deterministic IE strategies.

In Chapter 7, the IE strategies were improved to make them more robust, using,
this time, opportunistic information. To that end, information was added in the decision-
making process in the form of communication and interaction, to better distribute the
visits of agents over the nodes. Then, integrating the interaction scheme into the RIE
strategies led to the new IRIE type of strategy, and gave rise concretely to the IRHPME,
IRHPLE and IRHPRE strategies.
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Finally, the RIE strategies showed good performance in experiments, they outper-
formed RAMPAGER in 60% of the cases in average according to the Iav and WI. The
system made up of RIE agents has become more robust by means of random varia-
tions. Regarding the IRIE strategies, they turned out to be the best strategies of this
dissertation, showing often the highest performance.

Interestingly, the mean, as idleness estimator, has been found to be the best machine
learning model of this work: it outperformed all of the other models studied in this
dissertation. Even in a non-interacting context, it is better than RAMPAGER in 50%
of the cases on the WI, whereas considering IRHPME, its corresponding interacting
strategy, it gave rise to the best strategy in 60% of the cases on the WI, and 43% of the
cases on the Iav. This result has highlighted that the contribution of ANNs is small for
the two approaches proposed in the context of MAP.

Thus, in this dissertation a ground work is provided and several new types of
strategies based on machine learning have been established, although many issues remain
unresolved, suggesting some directions for future work in the intersection of MAP and
machine learning.

Preliminary avenues to explore would be to use a new cost function to train machine
learning models differently. This could improve robustness evaluation criteria, such as
the WI or QMI. A training system which would optimise directly the evaluation criterion
to optimise, e.g. the WMI or QMI, based on reinforcement learning could be considered.

In the case of LSTM networks, that is to say the RLPM and RAMPAGER strategies
which are strategies based on node predictors, to exploit the potential of LSTM networks
for the generation of paths as part of MAP more sophisticated and complex architectures
could be implemented and evaluated in the future. Also, an interaction scheme for
these strategies could be investigated, to make RLPM agents interact and exchange
information.

For the IE strategies, regarding the problem of estimation of true idleness, other ANN
architectures could be considered, although the values of the MSE criterion on their own
do not seem to be germane compared with the order of idlenesses. Indeed, with respect
to the Heuristic and Pathfinder algorithms, what must be reconstructed when trying
to estimate a vector of true idleness with respect to a vector of individual idleness, is
the order on the nodes made up by the true idlenesses. Another approach could be to
take into account in the learning process the fact that the output of the estimator is a
parameter of a distribution and to consider the cross-entropy as criterion to optimise
instead of the MSE.
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The problem of generalisation, pertaining to any machine learning model studied
in this dissertation, could also be investigated. In fact, although certain of models or
architectures be efficient for some configurations, none is able to outperform the other
ones in all configurations. The sole model that outperforms the other ones to a large
extent is the mean in its random versions, namely RHPME or IRHPME.
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Appendix A

Artificial Neural Networks

A.1 Some key concepts of information theory

A.1.1 Entropy

In 1948 Shannon defined information, a new notion which allows quantifying the degree
of incertainty of a system. In the same time, he also defined a new measure, called
Shannon’s entropy, to quantify information. Intuitively, the more predictable a system,
the more certain it is, and the less information it will carry. It should be added that,
as far as entropy measures the quantity of information, and actually of uncertainty, the
complexity of a system being the uncertainty emerging from interactions taking place
between its components, entropy measures also the complexity of this system.

A.1.2 Cross-entropy

Let P and Q be two probability measures with the same support X . Then, the cross-
entropy between P and Q can be interpreted as the average quantity of information —
of base corresponding to that of the used log — carried by Q, with respect to a reference
distribution P . Mathematically, the cross-entropy between P and Q corresponds to:

H(P, Q) =
∑
x∈X

P (x) log(Q(x)) (A.1.1)

It follows that the cross-entropy is a relevant error function to learn a probability
distribution insofar as it is minimum when P = Q.
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A.2 Artificial neuron model
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Fig. A.1 McCulloch and Pitts’s neuron model.

The first model of an artificial neuron, shown in Fig. A.1, was outlined in 1943 by Warren
McCulloch and Walter Pitts [31]. In this model, an artificial neuron is a computational
unit which was modelled with an eletrical circuit. In this model, the firing rule is defined
as:

O =


1 if

n∑
i=1

wi xi ≥ T

0 if
n∑

i=1
wi xi < T

(A.2.1)

where ∀i ∈ [|1, n|], xi is the ith input, wi is the weight of xi — weights represent the
proportion of information flowing from the input to the neuron —, and T ∈ R is a
threshold value.

Thereafter, Frank Rosenblatt invented the perceptron [46], also known as linear
perceptron, shown in Fig. A.2, adding a bias to McCulloch and Pitt’s model, turning
the firing rule into:



A.2 Artificial neuron model 177

x1

x2

...

xn

b

T O

w1

w2

wn

Fig. A.2 Rosenblatt’s perceptron model.

O =


1 if

n∑
i=1

wi xi − b ≥ T

0 if
n∑

i=1
wi xi − b < T

(A.2.2)

where b ∈ R is the bias.
Then, this first artificial neuron model was generalised so that it can output any real

value, and not any more only 0 or 1. In the new model, the neuron outputs:

neur =
n∑

i=1
wi xi + b (A.2.3)

where b is now regarded as the threshold value.
Afterwards, to distort the input space with the aim of making the outputs linearly

separable, a nonlinear activation function has been included in the neuron arrangement.
The output of the neuron in now expressed in the form:

y = f(neur) = f(
n∑

i=1
wi xi + b) (A.2.4)

Adding an activation function in the neuron arrangement enables using adequate levels
of amplification where necessary for small input signals, which avoids the risk of driving
the output to unacceptable limits [54].
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Fig. A.3 Perceptron model.

Finally, such a generalisation of the artificial neuron model has led to the perceptron
model shown in Fig. A.3, which is, in fact, a misnomer for a neuron model more
complicated than the linear perceptron.

When several artificial neurons are connected so that information can flow from
neuron to neuron, the resultant network of neurons is called artificial neural network
(ANN). As a consequence, an ANN is merely a nonlinear regression model meant to
approximate any function not being linearly separable.

A.3 Network architectures and algorithms

Considering the type of connectivity in an ANN, two basic achitectures of networks are
distinguished:

• feedforward neural networks,

• recurrent neural networks (RNNs).

A.3.1 Feed-forward neural networks

Feed-forward networks are characterised by forward connectivity: the signal traversing
the network flows only from the input to the output layer. Among the large variety
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of feed-forward ANNs, multi-layer perceptron (MLP) networks are composed of several
stacked layers of neurons. Except for the input layer, each neuron uses a nonlinear
activation function, and maps the output of the previous layer to the input of the current
layer. As set out above, each one computes a weighted and biased sum of the previous
layer’s inputs, which is finally passed through the nonlinear activation function, making
up thereby the neuron’s output. In addition, as part of function approximation, on each
layer the nonlinear activation functions provide a truncated basis, in its linear algebra
acceptation, to perform the approximation.

Using multilayer ANNs has been made possible thanks to the works of both Paul
Werbos [57] and Rummelhart, Hinton and Williams [48] [47]. Werbos discovered the
mathematical framework for the new training scheme of layered networks, that is to
say the backpropagation procedure, and used it to estimate a dynamic model to predict
nationalism and social communications as part of his PhD thesis [57]. With regard to
Rumelhart, Hinton, and Williams, in the seminal book Parallel Distributed Processing,
Vol. 1, they introduced for the first time the use of the backpropagation procedure to
adjust the weights of the connections in an ANN so as to minimise a measure of the
difference between the actual output vector of the ANN and the desired output vector
[48] [47].

Feed-forward network architectures are composed of three types of layers:

• the input layer, which is the entry point of the network, forwards the vector
presented to it; such a vector stands for the data to process

• the hidden layers, which correspond to successive nonlinear transformations dis-
torting the input,

• the output layer, which is the last layer wherefrom the network’s response is
delivered; this layer can also be linear.

When the hidden layers have the same number of neurons, such a number is called
hidden size or hidden dimension.

Neuron output will now be characterised mathematically for each layer of an ANN.
Let:

• H be the set of hidden layers of the network,

• ∀l > 0, Hl ∈ H be the set of the neurons’ identifiers on the layer l, and H0 be the
set of the inputs’ identifiers on the input layer,
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Fig. A.4 Feed-forward ANN with one hidden layer.

• Nin ∈ N be the dimension of the ANN’s input layer,

• y0 ∈ RNin be an input vector.

Then, to each neuron i ∈ Hl, standing for the ith neuron of the layer Hl, is associated:

• (wl
ij)i∈Hl−1 , the weight vector of j,

• bl
i ∈ R, the bias of i,

• fl, the activation function associated with the layer l,

The output of i noted yl
i corresponds then to:

∀l ∈ N∗ : l ≤ card(H), zl
i =

∑
j∈Hl−1

wl
ijy

l−1
j + bl

i (A.3.1)

∀l ∈ N∗ : l ≤ card(H), yl
i = f(zl

i) (A.3.2)

From the foregoing, to each layer l can be associated a matrix of weights, noted Wl,
of shape card(Hl) × card(Hl−1), and a vector of biases, noted Bl, of shape card(Hl).
Each line i of Wl and Bl correspond to the vector of weights (wl

ij)j∈Hl−1 , and the bias
bl

i, respectively. Let F l be the element-wise activation function, ∀l ∈ [|1, card(H)|], the
output vector of the layer l, noted yl, can then be defined such as:

yl = F l(Wl · yl−1 + Bl) (A.3.3)
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Several kinds of activation functions can be applied to z, for example the logistic sig-
moid, f(z) = 1/(1+exp(−z)), the hyperbolic tangent f(z) = (exp(z)−exp(−z))/(exp(z)+
exp(−z)), and the linear rectifier (ReLU), f(z) = max(0, z). It is worth noting that the
framework can be extended so that the use of the identity function f(z) = z instead
of a nonlinear as activation function leads to an affine transformation layer. Moreover,
allowing optional weights and bias leads to a constant or linear mapping layer.

A.3.2 Learning

In supervised machine learning such networks are generally optimised using gradient-
descent-based methods, such as the backpropagation algorithm, by minimising an objective
function, also called criterion, representing the difference between the output of the
network and its desired value [57] [48] [47]. When the objective function is minimised,
it may be called cost function, loss function, or error function, though a distinction
may be made between loss function and cost function: the former can be regarded as
the error for an input-output pair, while the latter as the error over the whole batch
or database. Quite common objective functions are the Mean Squared Error (MSE),
or the cross-entropy loss (CE) when data are probabilities. Lastly, algorithms used to
optimise such error functions are called optimisation algorithm or learning algorithm,
and thereupon, the process consisting in optimising such a function is termed learning or
training, with respect to the context.

A.3.3 Recurrent neural networks

Recurrent Neural Networks (RNNs) are neural networks which process an input sequence
one element at a time, while maintaining in their hidden units — neurons in the hidden
layers — a state vector called hidden state, containing information about the history
of the sequence’s past elements. Each output of the hidden units ht depends upon the
hidden state ht−1. This hidden state can be viewed as a memory. Indeed, adding memory
to a neural network allows to process information of the sequence itself: the sequential
information is preserved in the hidden state that enable finding correlations between
events separated by several time steps. This memory is contained in the hidden layers
which have a feedback loop; such layers are called recurrent layers.

A.3.3.1 Long Short-Term Memory

Long Short-Term Memory networks are a special kind of RNN introduced and designed
to take into account long-term dependencies. They have the same general chain structure
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as the RNNs except that the repeating module has a different structure as shown in Fig.
A.5. In the first place, in their seminal article Hochreiter et al. have defined an LSTM
network as being a RNN with one input layer, one fully self-connected hidden layer
containing purpose-built memory cells and gate units, and an output layer [20]. This
memory unit corresponds to a neuron with a recurrent self-connection. As a consequence,
a cell referred originally to an object with a single scalar output. The activations of those
neurons within the memory units constitute the state noted ct, sometimes called cell
state, of the LSTM network.

Fig. A.5 Layered LSTM unit: the core composant of the LSTM architecture.

An LSTM layer consists of a set of recurrently connected blocks, known as memory
blocks, which in turn consists of cells [18]. Each cell, being a neuron, outputs a scalar.
In the original model, as shown in Fig. A.6, each memory block contains one or more
layered recurrently connected neurons, called memory cells, and shares the same two
multiplicative units: it the input gate, and ot the output gate; all the cells of a memory
block are connected to the same gate units [20]. The gate units provide continuous
analogies of the write and read operations for the cells. A memory block of size 1 is
then a simple memory cell in the original model of Hochreiter et al. connected to tanh

activations [20]. These blocks can be thought of as a differentiable version of the memory
chips in a digital computer. In doing so, it follows the network can only interact with
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the cells via the gates. Thereafter, ft, the forget gates, has been introduced; such an
additional gate can be regarded as reset operation for the cell.

Fig. A.6 Example of an original LSTM network with 8 inputs, 4 outputs, and 2 memory
blocks of size 2, such as defined by Hochreiter et al. [20]

Finally, the memory block and the gates form the LSTM unit, which corresponds
to a repeating module. The state is thereupon the memory accumulated by the LSTM
through time by using its forget, input and output gates. However, unlike the basic RNN
model in which it covers the same concept, the cell state ct must not be confused with
the hidden state ht, the former being the cell output while the latter the output of the
hidden layers.

Also, ∀l ∈ [|1, L|] : L ∈ N∗ is the number of LSTM layers, it should be emphasised
that the hidden state, respectively the cell state, noted ht, respectively ct, of an LSTM
network, must be distinguished from the hidden state, respectively the cell state, of the
layer l, noted hl

t, respectively cl
t. In fact, one has ht = (h1

t , . . . , hL
t ) and ct = (c1

t , . . . , cL
t )

For some years and hitherto, most implemented LSTM architectures are devised as if
they contain only one cell in their LSTM units. The LSTM units of a same layer can
thereupon be “layered” into only one LSTM unit, as shown in Fig. A.5, where for all t

a time step, it, ft, ot and ct, the input gate, forget gate, output gate and cell activation,
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respectively, turn consequently into vectors with the same size as the hidden vector ht;
hence the element-wise multiplication ∗. In that context, an LSTM layer can be viewed
as a vectorial LSTM unit and therefore both the vectorial cell and gates compose a layer.
It follows that defining the size of a layer’s cell defines that of its memory cell block and
that of its hidden state in cascade.

The hidden state output from an LSTM layer l is computed according to the following
composite function:

il
t = σ(W l,ix xl

t + W l,ih hl
t−1 + bl,i) (A.3.4)

f l
t = σ(W l,fx xl

t + W l,fh hl
t−1 + bl,f ) (A.3.5)

ol
t = σ(W l,ox xl

t + W l,oh hl
t−1 + bl,o) (A.3.6)

cl
t = f l

t ∗ cl
t−1 + il

t ∗ tanh(W l,cx xl
t + W l,ch hl

t−1 + bl,c) (A.3.7)
hl

t = ol
t ∗ tanh(cl

t) (A.3.8)

The parameters of an LSTM layer to learn for a layer l are consequently:

• W l,ix, W l,ih, W l,fx, W l,fh, W l,ox, W l,oh, W l,cx and W l,ch

• bl,i, bl,f , bl,o and bl,c

It has also to be pointed out that the structure corresponding to several memory
blocks in a layer l, as established in the work of Hochreiter et al. [20], can be derived
from its more general architecture by setting to 0 the elements of W l,ih, W l,fh, W l,oh

which are not block-diagonal.
Finally, Deep LSTMs combine the multiple levels of representation that have proven

to be effective in deep networks with the flexible use of long-range context that empowers
RNNs. The architecture of the deep LSTMs is the same as that outlined previously apart
from the fact that there are several LSTM layers.

Stateful and stateless LSTM. A LSTM network is said stateless if during the train-
ing it is necessary to reset its cell and hidden states between each batch. A LSTM
network is then said stateful if it is not stateless; it preserves its previous batch’s final
state and uses it as the initial state for the next training batch, that is ∀n ∈ N∗ such as
sn is the nth sequence of each batch, the LSTM network is trained as if sn ranged from
the first batch to the last one, in other terms, the sn’s in all of the batches make up one
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sequence.

A.3.4 Learning specific to RNNs

A.3.4.1 Backpropagation through time.

BackPropagation Through Time (BPTT) is the application of the backpropagation
algorithm to RNNs. The BPTT algorithm consists in backpropagating the gradient error
as if the RNN was unrolled in time; the gradient error is therefore backpropagated in
space and time. More precisely, the network is first unrolled for all the time steps. Then
all of the elements of the sequence are provided to the network, while for each time step
the gradients are calculated and accumulated. Finally, the network is rolled back up
while keeping the accumulation of gradients, and weights are updated. It is worth noting
that to use this algorithm, the entire history of network input and network state since
the first time step must be saved.

However, BPTT can be computationally expensive as the number of time steps
increases. It can also lead to the vanishing or exploding gradient problem. To address
these problems, William and Peng have proposed a modification of the BPTT algorithm
in which only a fixed number of time steps h is considered for the backpropagation [59].
This modification is equivalent to use a bounded-history approximation to the BPTT
algorithm consisting in retaining only relevant information for the fixed number of time
steps h, and forgetting any information older than h time steps. This can be thought
of as a heuristic technique for simplifying the computation. The resultant algorithm is
called truncated backpropagation through time (TBPTT) [59].
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Additional results

B.1 Performance of some HPCC variants

B.1.1 Average idleness (Iav)

Fig. B.1 Normalised Iav, averaged over 100 runs, of different variants of HPCC for 5, 10,
15 and 25 agents on the Islands topology.
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Fig. B.2 Normalised Iav, averaged over 100 runs, of different variants of HPCC for 5, 10,
15 and 25 agents on the A topology.

Fig. B.3 Normalised Iav, averaged over 100 runs, of different variants of HPCC for 5, 10,
15 and 25 agents on the Grid topology.
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B.1.2 Mean Interval (MI)

Fig. B.4 Normalised MI, averaged over 100 executions, of different variants of HPCC for
5, 10, 15 and 25 agents on the Islands topology.
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Fig. B.5 Normalised MI, averaged over 100 executions, of different variants of HPCC on
the A topology.

Fig. B.6 Normalised MI, averaged over 100 executions, of different variants of HPCC for
5, 10, 15 and 25 agents on the Grid topology.
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B.1.3 Quadratic Mean Interval (QMI)

Fig. B.7 Normalised QMI, averaged over 100 runs, of different HPCC variants for 5, 10,
15 and 25 agents on the Islands topology.
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Fig. B.8 Normalised QMI, averaged over 100 runs, of CR and different HPCC variants
for 5, 10, 15 and 25 agents on the A topology.

Fig. B.9 Normalised QMI averaged over 100 runs, of different HPCC variants for 5, 10,
15 and 25 agents on the Grid topology.
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B.1.4 Worst Idleness (WI)

Fig. B.10 Normalised WI, averaged over 100 runs, of different HPCC variants for 5, 10,
15 and 25 agents on the Islands topology.
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Fig. B.11 Normalised WI, averaged over 100 runs, of different HPCC variants for 5, 10,
15 and 25 agents on the A topology.

Fig. B.12 Normalised WI, averaged over 100 runs, of different HPCC variants for 5, 10,
15 and 25 agents on the Grid topology.
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B.2 Training performances

B.2.0.1 Topology-guided-initialised (2-50)-LSTM

Fig. B.13 Distribution during the training of the weights of the input of xt, upon the
input (it), forget (ft), output (ot) gates and the cell state (gt), respectively, for the
(2, 50)-LSTM network trained on {HPCC 0.5, A, 15}
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Fig. B.14 Distribution during the training of the biases of the input xt, upon the input
(it), forget (ft), output (ot) gates and the cell state (gt), respectively, for the (2, 50)-LSTM
network trained on {HPCC 0.5, A, 15}
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Fig. B.15 Distribution during the training of the weights of the input ht, upon the input
(it), forget (ft), output (ot) gates and the cell state (gt), respectively, for the (2, 50)-LSTM
network trained on {HPCC 0.5, A, 15}
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Fig. B.16 Distribution during the training of the biases of the input ht, upon the input
(it), forget (ft), output (ot) gates and the cell state (gt), respectively, for the (2, 50)-LSTM
network trained on {HPCC 0.5, A, 15}
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